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Preface

It is our great pleasure to present the proceedings of the 21st Australasian Data Science
and Machine Learning Conference (formerly known as Australasian Data Mining Con-
ference, AusDM 2023), held at the University of Auckland, Auckland, during 11 to 13
December 2023.

The AusDM conference series first started in 2002 as a workshop initiated by
Professor Simeon Simoff (Western Sydney University), Professor Graham Williams
(Australian National University), and Emeritius Professor Markus Hegland (Australian
National University). Over the years, AusDM has established itself as the premier Aus-
tralasian meeting for both practitioners and researchers in the area of data mining (or
data analytics or data science) and machine learning. AusDM is devoted to the art and
science of intelligent analysis of (usually big) data sets for meaningful (and previously
unknown) insights. Since AusDM2002, the conference series has showcased research in
data science and machine learning through presentations and discussions on state-of-art
research and development. Built on this tradition, AusDM 2023 successfully facilitated
the cross-disciplinary exchange of ideas, experiences, and potential research directions,
and pushed forward the frontiers of data science and machine learning in academia,
government, and industry.

This year, the theme of the conference focused on Data Science and Machine Learn-
ing: Now part of everyone everyday. Specifically, Data Science, Machine Learning and
AI Innovation Day, Green and Responsible AI Day and Generative AI Day were orga-
nized and sparked great discussions. In addition, a journal special issuewithData Science
and Engineering by Springer was also planned.

AusDM 2023 received altogether 50 valid submissions, with authors from 16
different countries. The top 5 countries, in terms of the number of authors who sub-
mitted papers to AusDM 2023, were Australia (59 authors), New Zealand (46), India
(24), Germany (10), and South Korea (8). All submissions went through a double-blind
review process, and each paper received at least three peer-reviewed reports. Additional
reviewers were considered for a clearer review outcome, if review comments from the
initial three reviewers were inconclusive.

Out of these 50 submissions, a total of 20 papers were finally accepted for publica-
tion. The overall acceptance rate for AusDM 2023 was 40%. Out of the 34 Research
Track submissions, 13 papers (i.e. 38%) were accepted for publication. Out of the 16
submissions in the Application Track, 7 papers (i.e. 44%) were accepted for publication.

The AusDM 2023 Organizing Committee would like to give their special thanks to
Albert Bifet, Madeline Newman, and Michael Witbrock for kindly accepting the invita-
tion to give keynote speeches. In addition, the success of three panel discussions themed
around Green and Responsible AI, Generative AI and Māori Algorithmic Sovereignty
Roundtable was attributed to Kevin Ross, Gabriela Mazorra de Cos, Alvaro Orsi, Kin
Lung Chan, Malcolm Fraser, Trevor Kennedy, Christopher Mende, Daniel Wilson, Kiri
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West, Paul Brown and Ben Ritchie. The committee would like to express their appreci-
ation to Mingming Gong, Ming Cheuk and Gillian Dobbie for presenting at Spotlight
Talks, and Anusha Vidnage, Jessica Moore, Graham Williams, and Giulio Valentino
Dalla Riva for presenting at the tutorial sessions. The committee was grateful to have
Scott Spencer and Jiamou Liu as the speakers for Industry Talks.

The committee would also like to give their sincere thanks to the University of
Auckland for providing admin support and the conference venue. The committee would
also like to thank Springer CCIS and the Editorial Board for their acceptance to pub-
lish AusDM 2023 papers. This will give excellent exposure of the papers accepted for
publication.We would also like to give our heartfelt thanks to all student and staff volun-
teers at the University of Auckland, who did a tremendous job in ensuring a successful
conference event.

Last but not least, we would like to give our sincere thanks to all delegates for
attending the conference this year at the University of Auckland. We hope that it was a
fruitful experience and you enjoyed AusDM 2023!

December 2023 Diana Benavides-Prado
Sarah Erfani

Philippe Fournier-Viger
Yee Ling Boo
Yun Sing Koh
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Random Padding Data Augmentation

Nan Yang , Laicheng Zhong , Fan Huang , Wei Bao ,
and Dong Yuan(B)

Faculty of Engineering, The University of Sydney, Camperdown, Australia
{n.yang,laicheng.zhong,fan.huang,wei.bao,dong.yuan}@sydney.edu.au

Abstract. The convolutional neural network (CNN) learns the same
object in different positions in images, which can improve the model
recognition accuracy. An implication of this is that CNN may know where
the object is. The usefulness of the features’ spatial information in CNNs
has not been well investigated. In this paper, we found that the model’s
learning of features’ position information hindered the learning of the
features’ relationship. Therefore, we introduced Random Padding, a new
type of padding method for training CNNs that impairs the architecture’s
capacity to learn position information by adding zero-padding randomly
to half of the border of feature maps. Random Padding is parameter-
free, simple to construct, and compatible with the majority of CNN-
based recognition models. This technique is also complementary to data
augmentation such as random cropping, rotation, flipping, and erasing
and consistently improves the performance of image classification over
strong baselines.

Keywords: Spatial Information · Random Padding · Data
Augmentation

1 Introduction

Convolutional Neural Network (CNN) is an important component in computer
vision and plays a key role in deep learning architecture, which extracts low/mid
/high-level features [24] and classifiers naturally in an end-to-end multilayer, and
the “levels” of features can be evolved by the depth of stacked layers. The idea
of CNN model design is inspired by live organisms’ inherent visual perception
process [4]. The shallow layers learn the local features of the image, such as the
color and geometric shape of the image object, while the deep layers learn more
abstract features from the input data, such as contour characteristics and other
high-dimensional properties. The multi-layer structure of the CNN can automat-
ically learn features’ spatial information from the input image data. Spatial infor-
mation is represented by matrices in hierarchical CNN models, which are the con-
version between the overall coordinate system of the object and the coordinate
system of each component. Thus, the spatial information of the features learned
by CNN can perform a shift-invariant classification of the input information.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D. Benavides-Prado et al. (Eds.): AusDM 2023, CCIS 1943, pp. 3–18, 2024.
https://doi.org/10.1007/978-981-99-8696-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8696-5_1&domain=pdf
http://orcid.org/0000-0001-5257-9227
http://orcid.org/0000-0002-7665-716X
http://orcid.org/0000-0003-4071-4377
http://orcid.org/0000-0003-1874-1766
http://orcid.org/0000-0003-1130-0888
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In fact, what truly provides free translation and deformation invariance for
the CNN architecture are the convolution structure and the pooling operation,
while the use of sub-sampling and stride will break this special characteristic.
Even if the target position is changed, the operations of convolution and pooling
can still extract the same information from images and then flatten it to the same
feature value in different orders of the following fully connected layer. However,
subsampling and stride reduce part of the information of the input image, which
leads to the loss of some features, thus breaking the translation invariance of
CNN. Recent research on data argumentation has attempted to enhance the
invariance by performing the operations of translation, rotation, reflection, and
scaling [2,22] on the input images. However, it cannot really improve the model’s
learning ability of shift-invariance.

The shift-invariant ability of CNN depends on the learning of features’ spa-
tial information, which contains two types of information, i.e., features relation-
ship and position information. Features relationship refers to the relative posi-
tion among different features, while position information represents the absolute
position of features in the image.

We deem that feature relationship is helpful in CNN, as if a feature is useful
in one image location, the same feature is likely to be useful in other locations.
The Capsule Network [10] is designed to learn feature relationships from images,
i.e., the spatial relationships between whole objects and their parts. However, it
is difficult to implement on complex datasets, e.g., CIFAR-10 and ImageNet. On
the other hand, we believe position information is harmful to CNN, as learning
it will impede the model’s acquisition of feature relationships. Recent evidence
suggests that position information is implicitly encoded in the extracted fea-
ture maps, thus non-linear readout of position information further augments
the readout of absolute position [7]. Additionally, these studies point out the
fact that zero-padding and borders serve as an anchor for spatial information
that is generated and ultimately transmitted over the whole image during spa-
tial abstraction. Hence, how to reduce the position information introduced by
zero-padding has been long-ignored in CNN solutions to vision issues.

Fig. 1. Traditional Padding and Random Padding.

In this paper, with the purpose of reducing CNN’s learning of position infor-
mation, we proposed the Random Padding operation shown in Fig. 1, that is
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a variant of traditional padding technology. Random Padding is to add zero-
padding to the randomly chosen half boundary of the feature maps, which will
weaken the position information and let the CNN model better understand the
feature relationship. This technique makes CNN models more robust to the
change of an object’s absolute position in the images.

The contribution of the paper is summarized as follows:

– We investigate the usefulness of spatial information in CNN and propose a
new approach to improving the model accuracy, i.e., through reducing the
position information in CNN.

– We propose the Random Padding operation that can be directly added to
a variety of CNN models without any changes to the model structure. It
is lightweight that requires no additional parameter learning or computing
in model training. As the operation does not make changes on the input
images, it is complementary to the traditional data augmentations used in
CNN training.

– We conducted extensive experiments on popular CNN models. The results
show that the Random Padding operation can reduce the extraction of the
position information in CNN models and improve the accuracy on image
classification.

2 Related Work

2.1 Approaches to Improve Accuracy of CNNs

The evolution of the structure of the convolutional neural networks has gradually
improved the accuracy, i.e., Alexnet with ReLu and Dropout [11], VGG with 3 ∗ 3
kernels [16], Googlenet with inception [19] and Resnet with residual blocks [3].
In addition to upgrading of CNN architectures, the augmentation of input data
is also an indispensable part of improving performance.

Data Augmentation. Common demonstrations showing the effectiveness of
data augmentation come from simple transformations, such as translation, rota-
tion, flipping, cropping, adding noises, etc., which aim at artificially enlarging
the training dataset [15]. The shift invariance of the object is encoded by CNNs
to improve the model’s learning ability for image recognition tasks. For exam-
ple, rotation augmentation on source images is performed by randomly rotating
clockwise or counterclockwise between 0 and 360◦C with the center of the image
as the origin, reversing the entire rows and columns of image pixels horizontally
or vertically is called flipping augmentation, and random cropping is a method
to reduce the size of the input and create random subsets of the original input
[11]. Random Erasing [26] is another interesting data augmentation technique
that produces training images with varying degrees of occlusion.

Other Approaches. In addition to geometric transformation and Random
Erasing, there are many other image manipulations, such as noise injection,
kenel filters, color space transformations and mixing images [15]. Noise injection
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is a method used to help CNNs learn more robust features by injecting a matrix
of random values, which are usually drawn from a Gaussian distribution [14].
Kernel filters are a widely used image processing method for sharpening and
blurring images [9], whereas color space transformations aims to alter the color
values or distribution of images [1,8]. Mixing images appeared in recent years,
which has two approaches. The one is cropping images randomly and concate-
nate the croppings together to form new images [6], the other is to use non-linear
methods to combine images to create new training examples [18].

Different from the above approaches, we design the Random Padding opera-
tion to improve the performance of CNN models from the perspective of reducing
the position information in the network.

2.2 Padding in CNN

The boundary effect is a well-researched phenomenon in biological neural net-
works [17,20]. Previous research has addressed the boundary effect for artificial
CNNs by using specific convolution filters for the border regions [5]. At some
point during the convolution process, the filter kernel will come into contact
with the image border [7]. Classic CNNs use zero-padding to enlarge the image
for filtering by kernels. The cropped images are filled by paddings to reach the
specified size [23]. Guilin Liu and his colleagues proposed a simple and effective
padding scheme, called partial convolution-based padding. Convolution results
are reweighted near image edges relying on the ratios between the padded region
and the convolution sliding window area [12].

Padding is additional pixels which can be added to the border of an image.
In the process of convolution, the pixel in the corner of an image will only be
covered once by kernels, but the middle pixel will be covered more than once
basically, which will cause shrinking outputs and loosing information on corners
of the image. Padding works by extending the area in which a convolution neural
network processes an image. Padding is added to the frame of the image to
enlarge the image size for the kernel to cover better, which assists the kernel with
processing the image. Adding padding operations to a CNN helps the model get
a more accurate analysis of images.

3 Random Padding for CNN

This section presents the Random Padding operation for training in the con-
volutional neural network (CNN). Firstly, we introduce the detailed procedure
of Random Padding. Next, using comparative experiments to verify that the
extraction of position information will be reduced in CNNs with the method of
Random Padding. Finally, the implementation of Random Padding in different
CNN models is introduced.
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3.1 Random Padding Operation

In CNN training, we replace the traditional padding by the technique of Random
Padding, which has four types of padding selections shown in Fig. 1. For the
feature maps generated in the network, Random Padding will perform the zero-
padding operation randomly on the four boundaries according to the required
thickness of padding by the feature maps.

When padding thickness equals 1, Random Padding will first randomly select
one padding of the four patterns. Assuming that the size of the feature map in
the training is w ∗ w, the feature map will become (w + 1) ∗ (w + 1) after this
new padding method. Then, Random Padding will randomly select one of the
four modes again, which will change the size of the feature map to ((w+1)+1)∗
((w + 1) + 1). In general, Random Padding will perform 2n padding selections
if the padding thickness is n, where n = 1, 2, 3 are the most common in CNN
models. The detailed steps of Random Padding are shown in Algorithm 1. In this
process, the position of features will be randomly changed by adding Random
Padding, hence the learning of object’s position information by CNN will be
reduced.

Algorithm 1. Random Padding Procedure
Input: Input feature map: I; The thickness of padding: n; The random padding thick-

ness of four boundaries, left, right, top, bottom: l, r, t, b; Padding options: S
Output: Feature map with padding I∗

1: l, r, t, b ← 0
2: S ← [[1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 1, 0], [0, 1, 0, 1]]
3: for i = 1 to 2n do
4: Pr ← RandomSelect(S, 1) � select a padding option randomly
5: l ← l + Pr[0] � padding_left
6: r ← r + Pr[1] � padding_right
7: t ← t + Pr[2] � padding_top
8: b ← b + Pr[3] � padding_bottom
9: end for

10: I∗ ← ZeroPadding([l, r, t, b])(I)

3.2 Validation Method for Position Information Reduction in CNNs

The position information has been proved to be implicitly encoded in the feature
map extracted by CNN, which was introduced by the traditional zero padding [7].
In this article, we proposed the hypothesis that the Random Padding operation
will reduce the extraction of position information in CNNs. In this sub-section,
we prove this hypothesis by comparing position information in an end-to-end
manner between the CNN with traditional padding and the CNN with Random
Padding.
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Fig. 2. Random Padding in the CNN.

This validation experiment used the Position Encoding Network [7], which
is composed of two critical components: a feedforward convolutional encoder
network and a simple position encoding module. For this task, the two encoder
networks collected characteristics, from the CNN with traditional padding and
the CNN with Random Padding, at different layers of abstraction. After the
collection of multi-scale features from the front networks as inputs, the other
two position encoding modules outputted the prediction of position information.
Due to the fact that position encoding measurement is a novel concept, there is
no universal metric. We used Spearman’s rank correlation coefficient (SPC) and
Mean absolute error (MAE) proposed by [7] to evaluate the position encoding
performance to verify that the Random Padding operation reduces the amount
of position information extracted by CNNs. The higher the SPC, the higher the
correlation between the output and the ground-truth map, while the MAE is the
opposite. We will present the detailed setting of the experiment and the results
in Sect. 4.

3.3 Construct CNN with Random Padding

The Random Padding operation can be added to different types of backbone
networks to construct CNN for image classification.

In order to better analyze the relationship between the way of padding joins
CNN and the improvement of model performance, we replaced the traditional
padding of the first one, the first two and the first three padding layers with
the Random Padding operation to compare the accuracy of image classification
in various CNN models, which is shown in Fig. 2. Since the Random Padding
operation is complementary to general data augmentation methods, we employ
random cropping, random flipping, random rotation, and random Erasing meth-
ods to enrich the training datasets. We will present the detailed experiment
setting and results in Sect. 5.
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4 Evaluation of Position Information in CNNs

This section quantitatively evaluates the impact of CNN using traditional
padding and Random Padding on position information extraction. The first part
introduces the dataset used by pre-trained models and the evaluation metrics
for position information. Secondly, we compare the learning ability of CNN with
traditional padding and CNN with Random Padding on position information
extraction. In the third part, we analyze the experimental results and justify
that CNN with Random Padding reduces the extraction of position informa-
tion.

Fig. 3. Compare position information between the CNN with traditional padding and
the CNN with Random Padding.

4.1 Dataset and Evaluation Metrics

Dataset. We use the Imagenet dataset to train the basic VGG and VGG with
Random Padding as our initialization networks, and then we use the DUT-S
dataset [21] as our training set, which contains 10,533 images for training. Fol-
lowing the common training protocol used in [13,25], we train the models on the
same training set of DUT-S and evaluate the existence of position information on
the synthetic images (white, black and Gaussian noise) and the natural image
from the website of News-Leader. Notably, we adhere to the standard-setting
used in saliency detection to ensure that the training and test sets do not over-
lap. Since the position information is largely content independent, any image or
model can be used in our studies.

Evaluation. At present, there is no universal standard for measuring position
encoding, so we evaluated the performance of position information according
to the two different metrics methods (Spearman’s rank correlation coefficient
(SPC) and Mean Absolute Error (MAE)) previously used by [7]. SPC is a non-
parametric measurement of the association between the ground-truth and the
predicted position map. We maintain the SPC score within the range [-1, 1] to
facilitate understanding. MAE measures the average magnitude of the errors in
the predicted position map and the ground-truth gradient position map, without
considering their direction.

The lower the SPC value, the less position information the model produces,
and the higher the MAE value, the less position information the model outputs.
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We expect lower SPC values and higher MAE values after applying the Random
Padding operation in CNNs.

Table 1. Comparison of SPC and MAE in CNNs using traditional padding or Random
Padding across different image types

Nature Black White Noise

H Model SPC MAE SPC MAE SPC MAED SPC MAE
PosENet 0.130 0.284 0 0.251 0 0.251 0.015 0.251
VGG 0.411 0.239 0.216 0.242 0.243 0.242 0.129 0.245
VGG_RP −0.116 0.253 0.021 0.252 0.023 0.255 −0.045 0.251

V PosENet 0.063 0.247 0.063 0.254 0 0.253 −0.052 0.251
VGG 0.502 0.234 0.334 0.242 0.433 0.247 0.120 0.250
VGG_RP −0.174 0.249 −0.174 0.249 −0.027 0.257 0.100 0.249

G PosENet 0.428 0.189 0 0.196 0 0.206 0.026 0.198
VGG 0.765 0.14 0.421 0.205 0.399 0.192 0.161 0.187
VGG_RP −0.49 0.200 −0.009 0.196 −0.040 0.195 −0.051 0.196

HS PosENet 0.187 0.306 0 0.308 0 0.308 −0.060 0.308
VGG 0.234 0.211 0.227 0.297 0.285 0.301 0.253 0.292
VGG_RP 0.043 0.308 0.049 0.308 0.026 0.308 0.050 0.308

4.2 Architectures and Settings

Architectures. We first build two pre-trained networks based on the basic
architecture of VGG with 16 layers. The first network uses traditional padding,
and the second one applies the technique of Random Padding on the first two
padding layers. The proper number of padding layers adding in the CNN is ana-
lyzed in Sect. 5. Meanwhile, we construct a randomization test by using a normal-
ized gradient-like position map as the ground-truth. The generated gradient-like
ground-truth position maps contain Horizontal gradient (HG) and vertical gra-
dient (VG) masks, horizontal and vertical stripes (HS, VS), and Gaussian distri-
bution (G). As shown in Fig. 3, the combination of natural images Im ∈ R

h×w×3

and gradient-like masks Gpos ∈ R
h×w is used as the input of two pretrained

models with fixed weights. We remove the average pooling layer and the layer
that assigns categories of the pretrained model to construct an encoder net-
work fp and frp for extracting feature maps. The features (f1

θ , f
2
θ , f

3
θ , f

4
θ , f

5
θ )

and (f1
rθ, f

2
rθ, f

3
rθ, f

4
rθ, f

5
rθ) we extract from the two encoder networks respectively

come from five different abstraction layers, from shallow to deep. The following
is a summary of the major operations:

f i
θ = Wp ∗ Im(Gpos)

f i
rθ = Wrp ∗ Im(Gpos)

(1)
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where Wp denotes frozen weights from the model using traditional padding,
and Wrp represents frozen weights from the model using the Random Padding
operation. ∗ indicates the model operation.

After multi-scale features collection, the transformation function Tpos per-
forms bi-linear interpolation on the extracted feature maps of different sizes to
create feature maps with the same spatial dimension. (f1

pos, f
2
pos, f

3
pos, f

4
pos, f

5
pos)

and (f1
rpos, f

2
rpos, f

3
rpos, f

4
rpos, f

5
rpos) can be summarized as:

f i
pos = Tpos(f i

θ)

f i
rpos = Tpos(f i

rθ)
(2)

These resized feature maps should be concatenated together and then send
into Position Encoding Module (PosENet) [7], which only has one convolutional
layer. The features are delivered to PosENet and trained, where the goal of this
training is to generate a pattern that is only related to the position information
and has nothing to do with other features. It should be noted that during the
training process, the parameters of pretrained networks are fixed. The final stage
of this study is to compare the extraction of the amount of position information
between the CNN with traditional padding and the CNN with Random Padding.

Settings. The models we choose to compare the position information of feature
maps are traditional VGG16 and VGG16 with Random Padding. We initialize
the CNN models by pre-training on the ImageNet dataset and keep the weights
frozen in our comparison experiment. The size of the input image should be
224×224, which can be a natural picture, a black, a white, or a noise image. We
also apply five different ground-truth patterns, HG, VG, G, HS and VS, which
represent horizontal and vertical gradients, 2D Gaussian distribution, horizon-
tal and vertical stripes, respectively. All feature maps of five different layers
extracted from pre-trained models are resized to a size of 28 × 28. After the fea-
ture map is used as input, Position Encoding Module (PosENet) will be trained
with stochastic gradient descent for 15 epochs with a momentum factor of 0.9,
and weight decay of 10−4. For this task, PosENet only has one convolutional
layer with a kernel size of 3 × 3 without any padding, which will learn position
information directly from the input.

4.3 Comparison and Evaluation

We first use Random Padding on the first two padding layers in one model and
then conduct experiments to verify and compare the differences in the position
information encoded in the two pre-trained models. Following the same proto-
col, we train networks, based on traditional VGG16 and VGG16 with Random
Padding, on each type of ground-truth, and report the experimental results in
Table 1. In addition, we present the result as a reference by training PosENet
without using any pre-trained models’ feature maps as input. For this task, not
only the original image was used, but also pure black, pure white, and Gaussian
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Fig. 4. Results of PosENet based networks with traditional padding or Random
Padding corresponding to different ground-truth (GT) patterns.

noise images were used as inputs of PosENet. This is to verify whether the fea-
ture contains position information when there is no semantic information. The
structure of PosENet is very simple, which can only read out the input features.
If the input feature contains more position information, the output image can
better approximate the target object; if the input feature does not contain any
position information, the output feature map is similar to random noise and
cannot output a regular pattern, which represents that the position information
is not derived from prior knowledge of the object. Our experimental results do
not evaluate the performance of the model, but compare the impact of different
ways of padding on the position information encoded by the CNN model.

Our experiment takes three kinds of features as input, which are the fea-
ture maps extracted by VGG16 with traditional padding, VGG16 with Random
Padding, and the natural image without any processing, which are recorded
as VGG, VGG_RP, and PosENet respectively in the Table 1. The reason why
the original image is used as input is that this kind of image does not contain
position information, which shows PosENet’s own ability to extract position
information and plays a comparative role to other results. PosENet can easily
extract the position information from the pre-trained VGG models, while it is
difficult to extract position information directly from the original image. Only
when combined with a deep neural network can this network extract position
information that is coupled with the ground-truth position map. Previous stud-
ies have noted that traditional zero-padding delivers position information for
convolutional neural networks to learn.

According to the results in Table 1, VGG_RP is lower than VGG on the
evaluation index SPC value, and almost all higher than VGG on MAE value.
Sometimes, VGG_RP is even lower than PosENet’s SPC value. The qualitative
results for CNNs with traditional padding or Random Padding across different
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patterns are shown in Fig. 4. The first two columns are the patterns of the input
image and the target; the third column is the visualization of directly inputting
the source image into PosENet; the fourth and fifth columns are the generation
effects of VGG and VGG_RP respectively. We can observe a connection between
the predicted and ground-truth position maps for the VG, G, and VS patterns,
indicating that CNNs with Random Padding can better learn the object itself
that needs to be recognized, which means the technology of Random Padding can
indeed reduce CNN’s extraction of position information effectively. Therefore,
the basic CNN network will learn the position information of the object, while
both the PosENet with only one convolution layer and the CNN with Random
Padding hardly learn the position information from the input image.

5 Evaluation of Random Padding

This section evaluates the Random Padding operation in CNN for improving the
accuracy of image classification.

5.1 Dataset and Evaluation Metrics

Dataset. We use three image datasets to train the CNN model, including the
well-known datasets CIFAR-10 and CIFAR-100, and a grayscale clothing dataset
Fashion-Mnist. There are 10 classes in the dataset of CIFAR-10, and each has
6000 32× 32 color images. The training set has 50000 images and the test set has
10000 images. The CIFAR-100 is just like the CIFAR-10, except it has 100 classes
containing 600 images each. Fashion-MNIST is a dataset that contains 28 × 28
grayscale images of 70,000 fashion items divided into ten categories, each with
7,000 images. The training set has 60,000 pictures, whereas the test set contains
10,000. The image size and data format of Fashion-MNIST are identical to those
of the original MNIST.

Evaluation Metrics. The test error assessment is an important part of any
classification project, which compares the predicted result of the classified image
with its ground-truth label. For image classification, test error is used to calculate
the ratio of incorrectly recognized images to the total number of images that need
to be recognized.

5.2 Experiment Setting

We use CIFAR-10, CIFAR-100 and Fashion-Mnist to train four CNN architec-
tures, which are Alexnet, VGG, Googlenet and Resnet. We use 16-layer network
for VGG and 18-layer network for Resnet. The models with different layers’
Random Padding were training for 200 epochs with the learning rate of 10−3. In
our first experiment, we compare the different CNN models trained with Ran-
dom Padding on different layers. For the same deep learning architecture, all the
models are trained from the same weight initialization and all the input data has
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not been augmented. The second experiment is to apply the Random Padding
operation and various data augmentations (e.g., flipping, rotation, cropping and
erasing) in the CNNs together to justify the complementary performance of the
Random Padding operation with data augmentation methods.

Table 2. Test errors (%) with different architectures on CIFAR-10, CIFAR-100 and
Fashion-MNIST. Baseline: Baseline model, RP_1: Random Padding on the first
padding layer, RP_2: Random Padding on the first two padding layers, RP_3: Ran-
dom Padding on the first three padding layers.

Model Alexnet VGG16 Googlenet Resnet18

CIFAR-10 Baseline 15.19 ± 0.07 12.41 ± 0.05 11.47 ± 0.08 12.08 ± 0.04
RP_1 13.39 ± 0.05 11.34 ± 0.07 10.37 ± 0.09 8.21 ± 0.07
RP_2 12.93 ± 0.12 10.54 ± 0.04 10.25 ± 0.07 –
RP_3 12.75 ± 0.07 10.61 ± 0.05 10.20 ± 0.13 –

CIFAR-100 Baseline 44.57 ± 0.06 46.93 ± 0.04 34.81 ± 0.07 36.90 ± 0.09
RP_1 42.36 ± 0.07 42.32 ± 0.06 34.50 ± 0.07 31.29 ± 0.08
RP_2 41.54 ± 0.06 40.66 ± 0.05 33.12 ± 0.09 –
RP_3 40.66 ± 0.05 39.66 ± 0.04 32.94 ± 0.06 –

Fashion-MNIST Baseline 12.74 ± 0.06 7.02 ± 0.08 6.48 ± 0.09 5.80 ± 0.04
RP_1 12.74 ± 0.06 5.49 ± 0.05 5.88 ± 0.07 5.64 ± 0.07
RP_2 9.59 ± 0.05 5.49 ± 0.06 5.82 ± 0.05 –
RP_3 9.40 ± 0.06 5.72 ± 0.08 5.94 ± 0.07 –

5.3 Classification Accuracy on Different CNNs

The experiments in Sect. 4 proved the Random Padding operation can reduce the
extraction of position information but did not show how much this method can
improve the model performance. So we design a comparative experiment shown
in Table 2 to illustrate the results of the Random Padding operation on different
padding layers of different CNN models training on the datasets of CIFAR-10,
CIFAR-100 and Fashion-MNIST. For each kind of CNN architecture, we apply
the Random Padding operation on the first padding layer, the first two padding
layers and the first three padding layers. Specially, we only replace the traditional
padding with Random Padding on the first padding layer of the Resnet18 due to
the unique structure of shortcut in Resnet. Based on the principle of controlling
variables, we train and test the basic CNN architectures on the same dataset.
All the results are shown in Table 2.

In experiments on the CIFAR-10 dataset, our approach achieved an error rate
of 12.75% with Alexnet using Random Padding on the initial three padding lay-
ers, 10. 54% in VGG16 with two Random Padding layers, and a state-of-the-art
10.20% with Googlenet after replacing its first three traditional padding lay-
ers. On CIFAR-100, Random Padding consistently decreased classification error
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rates: Alexnet, VGG16, and Googlenet reported rates of 40.66%, 39.66%, and
32.94%, respectively, while Resnet18 reached a significantly low rate of around
31.29%. For Fashion-Mnist, despite its inherently high recognition rate, employ-
ing Random Padding still optimized model performance. Specifically, Alexnet
improved by 3.34%, whereas VGG16 and Googlenet registered 5.49% and 5.82%,
respectively. The Resnet model saw a marginal error reduction of 0.16%.

In general, as the number of layers deepens, the extracted object features
gradually become abstracted, and the encoding of position information also
becomes more implicit. The addition of the Random Padding operation in sub-
sequent deep layers will jeopardize the models’ learning of abstract features. So
we can conclude our experiment results that using the technique of Random
Padding in the first two padding layers can always improve the performance of
various deep learning models.

Table 3. Test errors (%) with different data augmentation methods on CIFAR-10
based on VGG16 with traditional padding and VGG16 with Random Padding. Base-
line: Baseline model, RC: Random Cropping, RR: Random Rotation, RF: Random
Flipping, RE: Random Erasing.

VGG16 Random Padding Test errors (%)

Baseline – 12.41 ± 0.08
� 10.54 ± 0.05

RC – 10.54 ± 0.14
� 10.08 ± 0.09

RR – 15.12 ± 0.05
� 9.82 ± 0.06

RF – 10.37 ± 0.12
� 8.69 ± 0.07

RE – 11.03 ± 0.08
� 8.89 ± 0.09

RF + RE – 8.75 ± 0.13
� 7.75 ± 0.04

RC + RE – 8.85 ± 0.07
� 8.34 ± 0.08

RC + RF – 8.74 ± 0.06
� 8.26 ± 0.07

RC+ RF + RE – 7.83 ± 0.09
� 7.21 ± 0.05

5.4 Classification Accuracy on Different CNNs

In this experiment, we use VGG16 as the benchmark model and apply Random
Padding on first two padding layers, and use CIFAR-10 as the test dataset.
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We chose four types of data augmentation, which are Random Rotation (RR),
Random Cropping (RC), Random Horizontal Flip (RF) and Random Erasing
(RE). The test error obtained by CIFAR-10 on the basic VGG16 model is used
as the baseline for this task. Then the effectiveness of our approach is evaluated
by adding various data augmentations and combining with the Random Padding
operation.

As shown in Table 3, the Random Rotation augmentation method is not
suitable for the dataset of CIFAR-10 on the VGG16, which means that the use
of Random Rotation lowers the accuracy of the model than the baseline. But
after adding the Random Padding operation, the model’s recognition rate on
the CIFAR-10 test set exceeded the baseline, which indicates that the Random
Padding operation can help the model learn features better. The model that
combines a single data augmentation and the technique of Random Padding
has stronger learning ability than the model that only uses data augmentation.
Therefore, the Random Padding operation is complementary to the data aug-
mentation methods. In particular, combining all these methods achieves a 7.21%
error rate, which has a 5.20% improvement over the baseline.

6 Conclusions

In this paper, by investigating the learning of spatial information in convolutional
neural networks (CNN), we propose a new padding approach named “Random
Padding” for training CNN. The Random Padding operation reduces the extrac-
tion of features’ positional information and make the model better understand
features’ relationships in CNNs. Experiments conducted on CIFAR-10, CIFAR-
100 and Fashion-MNIST with various data augmentation methods validate the
effectiveness of our method for improving the performances of many CNN mod-
els. In the future work, we will apply our approach in large-scale datasets and
other CNN recognition tasks, such as, object detection and face recognition.
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Abstract. Network fraud detection, specifically identifying abnormal
users on rating platforms, has attracted considerable interests of
researchers due to its wide applicability. However, the performance of
existing detection systems suffer from several challenging problems such
as class imbalance, lack of annotated data and network sparsity. To
address above challenges, in this paper, we propose a novel unsuper-
vised fraud detection algorithm FD-SpaN based on network structure
exploration, to effectively rank users based on computed probabilities of
being fraudulent and identify abnormal users on sparse networks. Firstly,
we model ratings networks as graphs in mathematical manner with intro-
duced metrics. Then, we add variable smoothing terms accordingly when
inferring the quality and trustworthiness of each item and rating respec-
tively, to tackle network sparsity on entity level. Meanwhile, for active
users, we integrate their rating patterns into our developed formulations
as a critical term to avoid overfitting. In addition, our proposed FD-SpaN
is scalable to large-scale rating networks in real world due to its linear
time complexity with respect to the size of network. Extensive exper-
iments on two real-world datasets show the effectiveness of FD-SpaN
under extreme class imbalance and network sparsity, as it outperforms
other state-of-the-art baselines in terms of all evaluation metrics.

Keywords: Network Fraud Detection · Unsupervised Learning ·
Network Sparsity

1 Introduction

User-generated feedback on e-commerce platforms like Amazon and Yelp can
provide valuable information for potential customers to help them make deci-
sions about purchase and avoid risks. As a result, malicious users will aim at
those rating platforms for different purposes e.g., overrating products for promot-
ing sales or underrating products for defaming competitors [11,15]. Therefore,
identifying such abnormal users on rating networks has been a meaningful and
popular research topic in recent as the rapid spread of online trading.

Traditional methods [11,17,24] try to extract handcraft features such as
length of reviews, rating distributions of users etc., and feed them into clas-
sic machine learning models to learn suitable weights. However, conventional
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D. Benavides-Prado et al. (Eds.): AusDM 2023, CCIS 1943, pp. 19–33, 2024.
https://doi.org/10.1007/978-981-99-8696-5_2
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Table 1. Comparison in terms of algorithmic properties with other baselines.

Birdnest [9] BAP [22] Eagle [1] Behavior [18] Rev2 [14] FD-SpaN

Graph-based models
√ √ √ √

Address Network Sparsity
√ √

Alleviate Overfitting
√ √

Linear Scalability
√ √ √ √

models are bottlenecked in performance and not scalable to larger size of data
in real world. Therefore, [9,18] start to investigate the rating patterns of users,
examining how fraudsters behave differently from normal users within the rating
network. More recently, graph-based approaches [1,3,14,22,29,31] have emerged
in the area of network fraud detection and shown promising performance. Gen-
erally, they attempt to regard rating networks as graphs and analyze the inter-
actions between nodes to find out anomalies within a graph.

Although the field of network fraud detection is well-investigated by exist-
ing graph-based methods, they are still not able to perform consistently well
across real-world platforms for many reasons. Firstly, on large trading websites
like Amazon, millions of users could potentially conduct shopping activities and
post their opinions or ratings on a daily basis. It is impossible to annotate such
a huge amount of data manually due to the massive labour and time cost. How-
ever, training process without sufficient high-quality labeled data will limit the
performance of fraud detectors [19]. Secondly, it is challenging for graph-based
detection models to analyze nodes with only a few of inter-connections with oth-
ers, while this situation is quite common in reality [26,32]. For example, a user
entity with only one or two ratings could be easily identified as a spammer by
many existing models when its ratings deviate from mainstream opinions. Nev-
ertheless, it still could be a benign user just with a different personal preference
on specific products. Besides, when a product only receives unreliable ratings, it
is unlikely to infer its inherent quality with interpretation. Lastly, many graph-
based models decide the trustworthiness of rating depending on local deviation
and ignore overall rating patterns of users, which could lead to overfitting [6,7].
The reason is that both normal and unfair users might occasionally give unusual
ratings, which violate their overall rating patterns.

In this paper, we aim to address the challenges mentioned above by propos-
ing an Unsupervised Fraud Detection ranking algorithm on Sparse Rating
Networks (FD-SpaN) to effectively identify abnormal users. Our FD-SpaN is
designed to eliminate the negative influence of network sparsity on entity level
by flexibly controlling the weights of global defaults on computation for the qual-
ity of items and the trustworthiness of ratings. Moreover, FD-SpaN attempts to
further boost performance by including overall rating patterns of active users to
avoid overfitting. As shown in Table 1, we compare FD-SpaN with other base-
lines in terms of four major algorithmic properties and FD-SpaN is the only one
to satisfy all of them. The contributions of our work are summarized as follows:
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– Analysis. We comprehensively analyze the problem of network fraud detec-
tion and existing challenges, then model rating networks as graphs to include
structural relations.

– Algorithm. We propose an efficient graph-based fraud detection algorithm
FD-SpaN, in setting of unsupervised learning, to rank and identify fraudulent
users on sparse rating networks according to computed fraud scores.

– Effectiveness. We conduct extensive experiments on two real-world sparse
datasets. Results show the effectiveness of our algorithm FD-SpaN, which
outperforms all other baselines in terms of all evaluation metrics.

2 Related Work

In this section, we classify existing works into two categories: general fraud detec-
tion and graph-based fraud detection. Comprehensive surveys could be found in
[2,19].

General Fraud Detection. [11] is the first work to investigate fraud detec-
tion on e-commerce platforms by extracting handcraft features corresponding to
reviews, reviewers and products and learning suitable weights. Inspired by it,
Behavior [18] expands feature set to detect target-based spamming, regarding
multiple reviews from the same user on a single item or brand within a short
time period as potential frauds. Co-training [17] builds up two independent mod-
els with different feature sets related to reviews and reviewers respectively, then
uses a small group of labeled data to train both classifiers and annotate unseen
data mutually to create new training samples for boosting each other iteratively.
Deceptive [24] and Singleton [26] focus on textual content analysis and measure
semantic anomaly scores of reviews by computational linguistic strategies such
as Linguistic Inquiry and Word Count (LIWC) and Latent Dirichlet Allocation
(LDA). [32] studies the problem of singleton review spam detection by converting
it into a temporal pattern discovery problem. Similarly, Birdnest [9] analyzes the
distribution and frequency of ratings given by a user in a Bayesian probabilistic
model, which measures fraud score depending on how estimated posterior distri-
bution is different from global expectation. SpEagle [25] incorporates behavioral
and textual features into FraudEagle [1] to improve the performance.

Graph-Based Fraud Detection. Since PageRank [4] and HITS [12] were
introduced to explore relations among website pages based on citing, many stud-
ies have been extensively investigating fraud detection using topological informa-
tion rather than content comparison. BAP [22] values ratings even from biased
users if ratings are opposite to the usual patterns of their reviewers. Troll-Trust
[31] ranks nodes within signed networks based on calculated trustworthiness
using sigmoid-like functions, which provides clear semantic interpretation but is
limited in dealing with discrete values i.e., ratings in most of real-world platforms.
Trustiness [28,29] formally model network fraud detection with three intrinsic
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metrics to examine information of nodes and edges in mathematical manner
within graphs. Rev2 [14] incorporates behavioral features and sentiment analysis
as auxiliary information to improve the performance of Trustiness. FraudEagle
[1] regards network fraud detection as a node classification problem and uses
loopy belief propagation to update the entire graph. More recently, FdGars [30]
and CARE [6] learn the vector representations of user nodes by leveraging the
power of Graph Convolutional Network (GCN). For tackling the problem of
camouflage, Fraudar [10] proposes a novel metric denoting the suspiciousness of
users, which would not decrease as any amount of camouflages added.

3 Preliminaries

In this section, we first model general rating networks as bipartite graphs with
mathematical symbols. Then, we formally propose the problem that we will
focus in this paper. Lastly, we introduce four basic metrics to mathematically
examine information of nodes and edges in the graph for addressing the proposed
problem.

3.1 Problem Definition

Firstly, we define a rating network as a bipartite graph G = (U,P,R), where
U denotes all user nodes; P denotes all product (interchangeable with item)
nodes; and R represents all ratings given by user u ∈ U on product p ∈ P within
the graph G as edges. In addition, let Ru,∗ be all ratings given by user u and
R∗,p be all ratings received by product p. We denote the value of rating ru,p
as w(ru,p) and scale it to the range between −1 and +1 for generalization, i.e.,
w(ru,p) ∈ [−1, 1] ∀ru,p ∈ R. Based on above preliminaries, we raise the fraud
detection problem as following:

Definition 1 (Problem). Given a bipartite rating graph G = (U,P,R), what is
the fraud score of each user node u ∈ U , also known as the probability of being a
fraudster, whose rating behavior is maliciously deviated from normal user nodes?

3.2 Metrics

To solve this specific problem, we introduce four intrinsic metrics corresponding
to bipartite rating graphs: 1) quality of item; 2) deviation of rating; 3) trustwor-
thiness of rating and 4) honesty of user. The definitions of four metrics will be
explained as follows:

1. Quality measures the inherent goodness of each item, which is also consid-
ered as the deserved rating from fair users. Therefore, we use a real num-
ber between −1 and +1 to indicate the quality of a product p, denoted as
Q(p) ∈ [−1, 1], ∀p ∈ P . Intuitively, high quality Q(p) (close to +1) of product
p represents high expected rating from normal users, and vice versa.
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Fig. 1. Rating deviation distributions of fraudulent users and normal users on two
real-world datasets.

2. Deviation measures the difference between the value w(ru,p) of a rating ru,p
and the quality Q(p) of its targeted item p, denoted as dev(ru,p). Negative
deviation suggests lower rating received than what the targeted item deserves,
while positive deviation represents higher rating than expectation.

3. Trustworthiness measures how reliable is a rating ru,p from user u on item
p, denoted as T (ru,p) ∈ [0, 1] ∀ru,p ∈ R. The trustworthiness T (ru,p) is deter-
mined by multiple factors. Intuitively, the trustworthiness scales from 0 to 1,
standing for completely untrustworthy and totally reliable, respectively.

4. Honesty measures the fairness of a user node u in the graph, denoted as
H(u) ∈ [0, 1], ∀u ∈ U , where 1 indicates absolute fair users and 0 suggests
definite spammers. In particular, the honesty of a user entity is decided by
all its ratings given to items within the graph.

4 Methodology

4.1 Unsupervised Learning

After we formulate the bipartite rating networks comprehensively with four basic
metrics, we now can explore relations among metrics in mathematical manner.
Due to the lack of annotation, we aim to infer true values of metrics in unsu-
pervised setting. Therefore, we design mathematical formulations to calculate
values for all metrics interdependently. Firstly, for each item, we use all ratings
received by the item to compute the intrinsic quality. Intuitively, each rating
weighs variously based on the trustworthiness, as reliable ratings will reflect the
real quality of item, while untrustworthy ratings aim to mislead other users.
Hence, we develop the formulation for the quality of item as below:

Q(p) =

∑
r∈R∗,p

T (r) · w(r)

|R∗,p| (1)
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where |·| is the element count operator. Secondly, for inferring the trustworthiness
of a rating, the key factor is the rating deviation. As shown in Fig. 1, on both real-
world rating networks, deviations of ratings from normal users are quite neutral,
while fraudsters are more likely to give ratings on items with lower values than
what items deserve, which generally implies that extreme deviations lead to
unreliable ratings. Hence, we develop the formulation for the trustworthiness as:

T (ru,p) = 1 − ‖dev(ru,p)‖
2

(2)

dev(ru,p) = w(ru,p) − Q(p) (3)

where ‖ · ‖ is an operator for computing absolute value. Thirdly, the honesty
of each user node in the graph is determined by all ratings it gives. In general,
benign users tend to give trustworthy ratings to items, while fraudsters rarely
rate items fairly. Thus, we infer the honesty of each user as:

H(u) =

∑
r∈Ru,∗ T (r)

|Ru,∗| (4)

Lastly, the fraud score of each user entity in the graph is reversely correlated to
its honesty score, denoted as F (u) and expressed as:

F (u) = 1 − H(u) (5)

4.2 Alleviating Network Sparsity

Normally, introduced formulations will work properly when each node in the
graph is densely connected with others. Nevertheless, on real-world rating plat-
forms, the performance of fraud detection systems will suffer from insufficient
inter-connections, which is a problem called network sparsity [23]. For example,
newly registered users on e-commerce websites will naturally have few ratings
on items, which could be easily classified as fraudulent users for first one or two
ratings significantly deviating from mainstream [3]. Similarly for item node, it
could be hard to infer the real quality of item when most of its received ratings
are untrustworthy. Therefore, effective fraud detectors are supposed to address
network sparsity, because online platforms will notify suspicious users to verify
identification only when feel confident rather than bother normal users frequently
in practice, which is harmful to the revenue [16]. Thus, we add a variable Laplace
smoothing term in Formula (1) to alleviate network sparsity on entity level as:

Q(p) =

∑
r∈R∗,p

T (r) · w(r) +
∑

r∈R∗,p
(1 − T (r)) ∗ q

|R∗,p| +
∑

r∈R∗,p
(1 − T (r))

(6)

where q refers to the default value of quality in the graph, which could be decided
as the median value of all items’ quality scores. And variable term

∑
r∈R∗,p

(1−
T (r)) flexibly controls the proportion of default on calculation for the quality.
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Intuitively, the default would account less for the calculation if the item receives
more trustworthy ratings. Likewise, we also add a variable smoothing term in
Formula (2) as:

T (ru,p) =
(1 − ‖dev(ru,p)‖

2 ) + C1 ∗ t

1 + C1
(7)

C1 = max(0, 1 − |Ru,∗|
K

) (8)

where t refers to the default value of trustworthiness in the graph and K is
a positive constant number indicating the threshold number of interactions as
active users. Intuitively, the calculation will be less dependent on default value
as the activity level of user increases. Together, variable smoothing terms in
our formulations can automatically adapt to different nodes in the graph, which
helps to alleviate network sparsity on entity level.

4.3 Avoiding Overfitting

Even in real-world sparse rating networks, where many user nodes in the graph
only give few ratings to item nodes, there still could be some active users who
rate items frequently, no matter they are fraudsters or normal users. For an
active benign user node, one of its ratings might not be as usual as others due
to the specific unsatisfactory shopping experience or unique personal preference.
Therefore, it is inaccurate to always decide the trustworthiness of a rating from
active users only by local rating deviation [20]. To solve this problem, we intro-
duce a new metric to reflect the rating patterns of users for resisting overfitting
when user nodes are active, denoted as bias(u), u ∈ U . Then, we integrate this
metric into Formula (7) for computing trustworthiness of rating as:

T (ru,p) =
(1 − ‖dev(ru,p)‖

2 ) + C1 ∗ t + C2 ∗ (1 − ‖bias(u)‖
2 )

1 + C1 + C2
(9)

bias(u) =

∑
ru,p∈Ru,∗(w(ru,p) − Q(p))

|Ru,∗| (10)

where C2 = 1−C1, controlling the importance of term bias on smoothing extreme
rating deviation with respect to the activity level of users.

4.4 Proposed Algorithm: FD-SpaN

In this section, we propose algorithm FD-SpaN to effectively rank and identify
network frauds as shown in Algorithm 1. Specifically, we iteratively calculate the
true values for metrics and adjust default values simultaneously according to the
global trend in the graph. In the end, our algorithm will output the likelihood
of each user node being abnormal in the graph. In addition, FD-SpaN can also
be applied to other fields that information can be organized as bipartite graphs,
such as social media [5,13], finance [27] and recommender system [33].
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Algorithm 1. The FD-SpaN Algorithm
Input: rating graph G = (U, P, R)
Input: constant K, training epochs epochs, error threshold ε
Output: fraud score F (u) for each user node u ∈ U in the graph
1: Randomly initialization default values q and t
2: Let i = 0
3: repeat
4: i := i + 1
5: Compute Q(p), ∀p ∈ P using Formula (6) and update q
6: Compute T (r), ∀r ∈ R using Formula (9) and update t
7: error = max(mean(Gi(p) − Gi−1(p)), mean(T i(r) − T i−1(r)))
8: until i == epochs Or error < ε
9: return F (u), ∀u ∈ U , computed by Formula (5)

4.5 Time Complexity Analysis

In each iteration of training, our algorithm FD-SpaN will go through all user
nodes once, all item nodes once and all ratings three times to update values of
metrics. Hence the time complexity for each iteration is O(x + y + 3z), where
x is the total number user nodes, y is the total number of item nodes and z is
the total number of ratings in the graph. Let, n denote the number of training
iterations needed for our model FD-SpaN to converge. As a result, the overall
time complexity for FD-SpaN would be O(n∗(x+y+3z)), where n is a constant
number. Thus, theoretically, our proposed model FD-SpaN has a linear time
complexity with respect to the size of graph, which is suitable to be applied in
larger scale of data of real world.

5 Experiments

In this section, we conduct extensive experiments on two real-world datasets
to evaluate FD-SpaN compared with the state-of-the-art baselines to show the
effectiveness of our proposed model. Specifically, We aim to answer following
research questions:

– RQ1. How does FD-SpaN perform on real-world sparse rating networks for
identifying frauds compared with other baselines?

– RQ2. How does the performance of FD-SpaN and other baselines change
under different training percentages?

– RQ3. Is FD-SpaN scalable to real-world platforms with larger size of data?
– RQ4. How does each different component of FD-SpaN contribute to the

overall performance?

5.1 Experiment Setup

Datasets. Following the tradition of previous representative work [6], we also
select two real-world datasets for extensive experiments. Table 2 shows the
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Table 2. Two real-world datasets used for evaluation.

Datasets # Users (%normal, %fraud) # Items # Reviews Density

FineFoods 256,059 (0.92%, 0.09%) 74,258 568,454 2.22
Instruments 339,231 (1.37%, 0.12%) 83,046 500,176 1.47

statistics of two real-world datasets, where attribute density refers to the average
number of ratings given by each user in the network. Both datasets are relatively
sparse and extremely imbalanced to different extents, as we aim to evaluate the
performance of FD-SpaN on identifying frauds under actual circumstances.

– FineFoods [21] is a bipartite rating network in category of fine foods, with
around 65% of user nodes and 41% of item nodes giving and receiving only
one rating, respectively. The ground truth is given by the method mentioned
in [14] based on provided helpfulness votes.

– Instruments [8] refers to the musical instruments trades on Amazon web-
sites. This rating network is even sparser, as roughly 80% of users and 44%
of items have only one rating. The ground truth is also given based on the
similar method as used in FineFoods dataset.

Baslines. We compare our model with five state-of-the-art baselines on fraud
detection. We convert these baselines to calculate the probability of each user
being anomaly, as exactly what our model does, for fair comparison.

– Birdnest [9] only considers the distribution and timestamps of ratings, and
uses Bayesian inference to calculate suspiciousness scores for users.

– BAP [22] measures the expected rating for each item and the trend of each
user giving high or low ratings. The key of BAP is to value ratings from users
even with high bias if ratings are opposite to the usual pattern of reviewers.

– Eagle [1] is based on loopy belief propagation and regards the network fraud
detection as a node classification problem in graphs.

– Behavior [18] designs and extracts multiple behavioral features of users to
calculate overall fraud scores for users.

– Rev2 [14] is based on HITS algorithm [12] and iteratively computes three
intrinsic metrics in the graph: the fairness of users, the reliability of ratings
and the goodness of products.

Evaluation Metrics. Our task is to infer the probability of each user node
being spammer in the graph. Then, we will rank user entities based on the
assigned probabilities. However, real-world rating networks are extremely imbal-
anced and sparse as shown in Table 2. Additionally, effective fraud detectors are
supposed to assign as high anomaly scores as possible to real spammers and as
low as possible to normal users. Therefore, following by the previous work [14],
we extract the most and least suspicious 100 users from the output of model
to form the test set and evaluate models by Average Precision (AP), which
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Table 3. Performance comparison (%) on two real-world datasets. The best result of
each metric is in bold. ‘-’ represents not applicable.

Method Dataset FineFoods Instruments
Metric AP AUC@200 AP AUC@200

Baselines Birdnest 19.09 52.53 1.11 -
BAP 55.92 65.48 93.29 64.15
Eagle 47.21 51.55 55.10 43.50
Behavior 63.39 61.83 93.70 65.98
Rev2 64.89 60.68 87.81 62.22

Ours FD-SpaN 70.87 67.03 95.34 66.85

measures the capacity of distinguishing fraudsters and normal users. Also, we
evaluate models by Area Under ROC Curve (AUC) on the top 200 suspicious
user entities, reflecting the ability of each algorithm to identify positive cases on
imbalanced dataset.

Implementation Details. For BAP and Rev2, we strictly follow the instruc-
tions from their paperwork to implement their algorithms. For Birdnest1, We use
the original code from authors to run experiments. For Eagle2 and Behavior3,
we use available open-source implementations online. As for our proposed model
FD-SpaN, we set parameter K = 4 according to the result on validation set,
number of training iterations epochs = 20 and training error threshold ε = 10−4

as many other studies did.

5.2 Effectiveness (RQ1)

In this experiment, we compare the results of proposed model FD-SpaN on both
real-world datasets with other state-of-the-art baselines as shown in Table 3.
Overall, we can observe that our FD-SpaN consistently outperforms all baselines
in terms of all evaluation metrics. More specifically, Birdnest performs poorly
across both datasets and has remarkable gaps with other models. This is due
to Birdnest only considers the temporal pattern and distribution of ratings pro-
vided by users to decide their suspiciousness scores, while it suffers from massive
inactive users with only few ratings, which are very common in real-world rating
networks but cannot be interpreted by Birdnest.

BAP and Eagle are graph-based models, trying to exploit topological infor-
mation of graphs to identify anomalies, as what Rev2 and FD-SpaN do. However,
they cannot achieve consistently competitive performance because they fail to

1 www.andrew.cmu.edu/user/bhooi/ratings.tar.
2 https://github.com/rgmining/fraud-eagle.
3 https://github.com/rgmining/ria.

www.andrew.cmu.edu/user/bhooi/ratings.tar
https://github.com/rgmining/fraud-eagle
https://github.com/rgmining/ria
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Fig. 2. Performance (%) of model FD-SpaN on two real-world datasets under different
training percentages.

alleviate the impacts of network sparsity. Even though Behavior obtains promis-
ing results by including multiple designed features regarding to rating behaviors,
our FD-SpaN still outperforms Behavior by 7.48% in AP and 5.20% in AUC on
FineFoods, which implies the superiority of graph-based methods.

Moreover, Rev2 is a graph-based model and attempts to address network
sparsity on graph level. However, even within the same graph, each node is
in a different situation. Therefore, applying the same parameters to different
nodes in the graph will cause damage to the overall performance. Meanwhile,
by alleviating network sparsity on entity level and resisting overfitting through
new designed metric, our proposed FD-SpaN achieves a 5.98% improvement in
AP value on FineFoods. Also, 91 out of top 100 suspicious user nodes predicted
by our model FD-SpaN on dataset Instruments are real spammers, which is the
best among all algorithms. In summary, under realistic circumstance of class
imbalance and network sparsity, our proposed model FD-SpaN can effectively
identify fraudsters within rating networks.

5.3 Training Percentage (RQ2)

In this experiment, we run our model FD-SpaN with different percentages of
training data and record the results in terms of AP and AUC values. As we
can see from Fig. 2, on FineFoods, FD-SpaN obtains stable performance in both
evaluation metrics under different training percentages. On Instruments, even
though FD-SpaN scores relatively low in AP with 10% of training data, it rapidly
recovers to normal as the training percentage increases. Together, experiment
results show the robustness of our FD-SpaN with respect to training percentages.

Moreover, we record the performance variations of our FD-SpaN and other
baselines in value of AP under different training percentages, as illustrated in
Fig. 3. On FineFoods, FD-SpaN scores the highest when only 10% of training
data provided and maintains one of the tops in most choices of training per-
centages. On Instruments, we can observe FD-SpaN has continuous growth in



30 S. Tang and R. Wong

Fig. 3. Average Precision values (%) of different algorithms on two real-world datasets
under different training percentages.

Fig. 4. Training time cost (seconds) of model FD-SpaN, using different number of
training samples.

AP value and consistently outperforms other baselines as training percentage
increases from 10% to 90%. Together, experiment results suggest our FD-SpaN
can effectively analyze topological structure of graphs to identify anomalies.

5.4 Linear Scalability (RQ3)

Alongside with previous theoretical analysis of linear scalability of our proposed
FD-SpaN, we also run our algorithm using different numbers of training samples
to verify linear scalability. We scale training samples in different magnitudes
of amount from 104 to 107 and record the training time costs for FD-SpaN to
converge on the same machine, as illustrated in Fig. 4. Basically, the running time
of FD-SpaN is increasing linearly as fed with more training samples. Therefore,
experiment results verify our model has linear scalability and is suitable to handle
with larger size of data in practice.
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Table 4. Performance variations (%) when different component of algorithm FD-SpaN
is excluded.

Dataset FineFoods Instruments
AP AUC@200 AP AUC@200

FD-SpaN/AO 62.66 64.67 95.04 65.94
FD-SpaN/AS 63.28 64.62 93.35 63.23
FD-SpaN 70.87 67.03 95.34 66.85

5.5 Ablation Study (RQ4)

In this experiment, we conduct an ablation study on both datasets to validate
the effectiveness of designed components of FD-SpaN and demonstrate how each
different component contributes to the overall performance of FD-SpaN.

– FD-SpaN/AO: it excludes the component for avoiding overfitting.
– FD-SpaN/AS: it removes the component for alleviating network sparsity.

As shown in Table 4, on FineFoods, by removing the component of either anti-
overfitting or anti-sparsity, the performance of FD-SpaN will drop remarkably
by 8.21% and 7.59% in AP and AUC values, respectively. However, we observe a
marginal decrease in performance on Instruments when the component of avoid-
ing overfitting is excluded. The reason could be that most of users in Instruments
are very inactive so that incorporating their overall rating patterns has very lim-
ited effects to resist overfitting. FD-SpaN can achieve the best performance on
sparse rating networks only when all designed modules are integrated into it.

6 Conclusion

In this paper, we propose an unsupervised graph-based fraud detection ranking
algorithm called FD-SpaN, which targets at effectively identifying anomalies on
sparse rating networks in reality. We alleviate the negative impacts of network
sparsity on entity level, which leads to finer granularity and better performance
than existing methods. We also include the rating patterns of users in our FD-
SpaN to avoid overfitting. Our algorithm has a linear time complexity with
respect to the size of graph, which makes FD-SpaN is suitable for real-world
platforms to deal with large-scale data. More importantly, extensive experiments
on two real-world datasets have shown the effectiveness and superiority of FD-
SpaN, scoring the highest in all metrics against other state-of-the-art baselines.
In the future, we plan to investigate fraud detection on dense rating networks.
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Abstract. This paper introduces a semi-supervised learning technique
for model-based clustering. Our research focus is on applying it to matri-
ces of ordered categorical response data, such as those obtained from the
surveys with Likert scale responses. We use the proportional odds model,
which is popular and widely used for analyzing such data, as the model
structure. Our proposed technique is designed for analyzing datasets that
contain both labeled and unlabeled observations from multiple clusters.
The model fitting is performed using the expectation-maximization (EM)
algorithm, incorporating the labeled cluster memberships, to cluster the
unlabeled observations.

To evaluate the performance of our proposed model, we conducted a
simulation study in which we tested the model from eight different sce-
narios, each with varying combinations and proportions of known and
unknown cluster memberships. The fitted models accurately estimate
the parameters in most of the designed scenarios, indicating that our
technique is effective in clustering partially-labeled data with ordered
categorical response variables.

Keywords: clustering · semi-supervised learning · EM algorithm ·
ordinal data · Likert scale data · proportional odds model

1 Introduction

A categorical variable is a type of variable with a fixed set of categories. There
are two main sub-types of categorical variables: nominal and ordinal variables
[1]. Nominal variables have an unordered scale of categories, such as eye colour.
In contrast, ordinal variables have an ordered scale of categories, like the Likert
scale responses to a survey question with possible categories such as “disagree”,
“neither agree nor disagree”, and “agree”.

Many methods treat the data as continuous with equally-spaced categories.
This results in significant errors in data interpretation [6,12]. Other methods
treat the data as nominal and neglect the ordering of the categories.
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There are methods for analyzing ordinal variables directly, without neglect-
ing the ordering or making assumptions about the spacing. These methods
include the proportional odds version of the cumulative logit model, the adjacent-
categories logit models, and the multinomial logistic regression model [2]. In
particular, the proportional odds model has been popular since McCullagh’s
survey paper [17] and it is still ubiquitous in many fields such as agriculture [14],
medicine [24] and socioeconomic studies [23]. For analyzing ordinal data, the
advantage of using the proportional odds model is that it assumes the ordinal
response has a latent variable which follows a logistic distribution [4] and that
the model’s parameters are invariant for all categories of the ordinal response
[2].

For clustering data, many methods are available. Common methods include
distance-based approaches such as k-means [15,16] and hierarchical agglomera-
tive clustering [13]. However, these methods do not use statistical distributions,
which makes statistical model evaluation and model selection techniques invalid
[10]. In contrast, model-based clustering approaches describe the clustering pro-
cess via statistical densities. For example, many publications [5,9,18,20–22] have
developed one-mode clustering methods based on finite-mixture densities, fitting
models using the Expectation-Maximization (EM) algorithm [8], which is a com-
monly used strategy.

Most available model-based clustering methods fit the models by assigning
observations to specific clusters without prior knowledge of their cluster member-
ships. We refer to this strategy as “unsupervised” clustering. The term “supervi-
sion” is frequently used in the field of machine learning to describe three types of
learning strategies: “supervised”, “semi-supervised”, and “unsupervised”. The level
of supervision depends on the amount of prior knowledge of cluster membership
given [21]. Semi-supervised learning falls between unsupervised and supervised
learning, where cluster memberships are available before clustering for some, but
not all, observations [26]. For instance, [25] proposed a semi-supervised hybrid
clustering algorithm that integrates distance metrics into a Gaussian mixture
model.

This paper introduces semi-supervised model-based clustering by applying it
to a matrix of ordinal data, using the proportional odds model as the basic model
structure. The model is fitted using the EM algorithm, incorporating the known
cluster memberships to carry out a probabilistic clustering of the unknown obser-
vations. Section 2 presents the model formulation including a clustering form of
the proportional odds model. Section 3 presents the model fitting procedure using
the EM algorithm. Section 4 presents a simulation study to evaluate the model’s
performance. Section 5 gives conclusions.
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2 Model Formulation

In this section, we define the proportional odds model for ordinal data (Sect. 2.1)
and a formulation of it that includes clustering (Sect. 2.2). The likelihood for this
model is provided next (Sect. 2.3).

2.1 Proportional Odds Model

We consider the data to be in the form of an n × p matrix, Y , with elements
yij , where each yij is one of q categories. Let the probabilities for the response
categories for yij be θij1, θij2, . . . , θijq such that

∑q
k=1 θijk = 1, ∀i, j. Each

response follows the multinomial distribution:

yij ∼ Multinomial (1; {θij1, θij2, . . . , θijq}) , i = 1, 2, . . . , n and j = 1, 2, . . . , p.
(2.1)

Initially, we construct a linear predictor for each entry in the data matrix that
assumes that each row and each column exhibits different response patterns,
and we denote these row and column effects as αi for i = 1, 2, . . . , n and βj for
j = 1, 2, . . . , p, respectively. These main effects are the same for all the response
categories, i.e., they don’t depend on the category index k.

Under the proportional odds model, we also have cut-off points μk, for
k = 1, 2, . . . , q with the constraint μ1 < μ2 < · · · < μq = +∞. Under this
construction, the probabilities θijk, k = 1, 2, . . . , q are formulated as:

θijk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(μk − αi − βj)
1 + exp(μk − αi − βj)

k = 1

exp(μk − αi − βj)
1 + exp(μk − αi − βj)

− exp(μk−1 − αi − βj)
1 + exp(μk−1 − αi − βj)

1 < k < q

1 − ∑q−1
k=1 θijk k = q.

(2.2)

or we can express this model as:

logit [P (Yij ≤ k)] =

⎧
⎨

⎩

μk − αi − βj 1 ≤ k < q

+∞ k = q,
(2.3)

The main effects have the constraints
∑n

i=1 αi = 0 and
∑p

j=1 βj = 0 and the
total number of non-redundant parameters is ν = (q − 1) + (n − 1) + (p − 1).

2.2 Proportional Odds Model with Clustering

We now consider the situation where clusters are present and where a portion
of the data has already been labeled, i.e. has known cluster memberships. For
simplicity, we only consider the clustering model in which the rows of the data
matrix, representing the observations, are clustered. We assume that there are
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R clusters present, though there may be fewer clusters among the labeled obser-
vations.

In our semi-supervised strategy, we suppose the rows without given cluster
memberships come from a finite-mixture with R components. We suppose that
the observations with known clusters have the same model parameters as the
mixture components for the observations with unknown clusters. We now drop
the effects of the individual rows and assume that all rows belonging to the
same row cluster r have the same effect on the response, and these effects are
modeled with parameters αr for r = 1, 2, . . . , R. Therefore, the proportional
odds model with row clustering, but retaining the effects of individual columns,
can be formulated as follows:

logit[P (Yij ≤ k)] = μk − αr − βj , k < q. (2.4)

We assume that both the labeled and unlabeled observations obey this model.
In addition, we define {π1, π2, . . . , πR} as the proportion of rows in each row clus-
ter, constrained by

∑R
r=1 πr = 1. Compared with the proportional odds model

without clustering, the total number of non-redundant parameters is reduced to
ν = (q − 1) + 2 × (R − 1) + (p − 1). If we set R � n, that will ensure that the
number of non-redundant parameters is much less than n.

2.3 Likelihood

This section summarises the likelihood and log-likelihood of our proposed model.
The complete-data likelihood and log-likelihood, used for the EM algorithm, are
also given. We define Ω as the full set of combination of all parameters in the
model. The incomplete likelihood is split into the likelihood L� for observations
with known cluster memberships and the likelihood Lu for observations with
unknown cluster memberships:

L [Ω, π|Y ] = L� [Ω| (y1, . . . , yn�)]× Lu [Ω, π| (yn�+1, . . . , yn�+nu)]

=

(
n�∏
i=1

f� (yi|Ω)

) ⎛
⎝ n�+nu∏

i=n�+1

fu (yi|Ω, π)

⎞
⎠

=

(
n�∏
i=1

R∏
r=1

[fri (yi|ωri)]
I(ri=r)

) ⎛
⎝ n�+nu∏

i=n�+1

R∑
r=1

πrfr (yi|ωr)

⎞
⎠

=

(
n�∏
i=1

R∏
r=1

p∏
j=1

q∏
k=1

θ
I(yij=k)I(ri=r)

rijk

) ⎛
⎝ n�+nu∏

i=n�+1

R∑
r=1

πr

p∏
j=1

q∏
k=1

θ
I(yij=k)

rjk

⎞
⎠ ,

(2.5)

where:

– yi is ith row of observations, where i = 1, 2, . . . , n� + nu;
– I (yij = k) is an indicator variable that is 1 if yij is in category k, and 0

otherwise;
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– n� is the number of labeled rows with known cluster membership, nu is the
number of unlabeled rows with unknown row cluster membership, and n =
n� + nu;

– ri is the known cluster membership for unlabeled row i;
– ωr is the set of parameters for component r;
– ωri

is the set of parameters for component ri;
– fri

(yi|ωri
) is the component density for the ith row with known row cluster

membership ri;
– I (ri = r) is an indicator variable that is 1 if row i with known cluster mem-

bership ri belongs to row cluster r, and 0 otherwise;
– fr(yi|ωr) is the rth component density for row i with unknown row cluster

membership;
– f�(yi|Ω) is the overall mixture density for observation i with known row

cluster membership;
– fu(yi|Ω,π) is the mixture component density for observation i with unknown

row cluster membership.

The log-likelihood is as follows:

� [Ω,π|Y ] =

⎛

⎝
n�∑

i=1

R∑

r=1

p∑

j=1

q∑

k=1

I (yij = k) I (ri = r) log [θrijk]

⎞

⎠

+
n�+nu∑

i=n�+1

log

⎛

⎝
R∑

r=1

πr

p∏

j=1

q∏

k=1

θ
I(yij=k)
rjk

⎞

⎠ . (2.6)

In order to fit the model using the EM algorithm, we define latent indicator
variables Zir for observations with unknown row cluster memberships:

Zir =
{
1 i ∈ r
0 i /∈ r

i = n� + 1, n� + 2, . . . , n� + nu,

r = 1, 2, . . . , R. (2.7)

These indicator variables obey the constraint
∑R

r=1 Zir = 1, n�+1 ≤ i ≤ n�+nu

and thus:
R∏

r=1

αZir
i =

R∑

r=1

αiZir, i = n� + 1, n� + 2, . . . , n� + nu. (2.8)

The proportions πr correspond to the prior probabilities of the latent cluster
membership indicators, so the prior probability of a vector of latent variables Zi

is:

f (Zi = zi) = f [(Zi1 = zi1, Zi2 = zi2, . . . , ZiR = ziR) | (π1, π2, . . . , πR)]

=
1!

0! . . . 1! . . . 0!
πzi1
1 πzi2

2 . . . πziR

R

=
R∏

r=1

πzir
r . (2.9)
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The conditional distribution for the responses in a row i with unknown cluster
membership, given the latent row cluster membership indicators zi, can therefore
be rewritten as:

fu (yi|zi,Ω) =
R∏

r=1

[fr (yi|ωr)]
zir , i = n� + 1, n� + 2, . . . , n� + nu. (2.10)

The joint distribution of the observed responses and the row cluster membership
indicators for row i can be written as:

fu (yi,zi) = fu (yi|zi) f (zi)

=

(
R∏

r=1

[fr (yi|ωr)]
zir

) (
R∏

r=1

πzir
r

)

=
R∏

r=1

[πrfr (yi|ωr)]
zir , i = n� + 1, n� + 2, . . . , n� + nu. (2.11)

The overall complete-data likelihood for the model is:

Lc [Ω , π |Y , Z ] =

( n�∏
i=1

f� (yi|Ω )

) ⎛
⎝ n�+nu∏

i=n�+1

fu (yi, zi|Ω )

⎞
⎠

=

( n�∏
i=1

f� (yi|Ω )

) ⎛
⎝ n�+nu∏

i=n�+1

fu (yi|zi, Ω ) f (zi)

⎞
⎠

=

( n�∏
i=1

R∏
r=1

[
fri

(
yi|ωri

)]I(ri=r)

) ⎛
⎝ n�+nu∏

i=n�+1

R∏
r=1

[πrfr (yi |ωr)]
zir

⎞
⎠

=

( n�∏
i=1

R∏
r=1

[
fri

(
yi|ωri

)]I(ri=r)

) ⎛
⎝ n�+nu∏

i=n�+1

R∏
r=1

⎡
⎣πr

p∏
j=1

fr (yij |ωr)

⎤
⎦zir

⎞
⎠

=

⎛
⎝ n�∏

i=1

R∏
r=1

p∏
j=1

q∏
k=1

θ
I(yij=k)I(ri=r)
rijk

⎞
⎠

⎛
⎝ n�+nu∏

i=n�+1

R∏
r=1

⎡
⎣πr

p∏
j=1

q∏
k=1

θ
I(yij=k)
rjk

⎤
⎦zir

⎞
⎠ .

(2.12)

The corresponding complete-data log-likelihood is:

�c [Ω , π|Y , Z ] =

⎛
⎝

n�∑
i=1

R∑
r=1

p∑
j=1

q∑
k=1

I (yij = k) I (ri = r) log
[
θrijk

]
⎞
⎠

+

⎛
⎝

n�+nu∑
i=n�+1

R∑
r=1

zir log(πr) +

n�+nu∑
i=n�+1

p∑
j=1

q∑
k=1

R∑
r=1

zirI(yij = k) log
[
θrjk

]
⎞
⎠ .

(2.13)
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3 Model Fitting

This section describes the model fitting procedure using the Expectation Maxi-
mization (EM) algorithm [8]. This algorithm is an iterative procedure that esti-
mates the maximum likelihood in incomplete-data problems [19]. It iterates over
two steps called the Expectation step and the Maximization step. The Expecta-
tion step updates the posterior probabilities of cluster membership expressed by
the latent variables. The Maximization step updates the maximum likelihood
estimates of the parameters, using the latest estimated values of latent variables
from the E-step. There are various possible rules for convergence but we will con-
sider the algorithm to have converged when the incomplete-data log-likelihood
is sufficiently similar in two successive iterations. If required, the rows can then
be allocated to specific clusters based on the final estimates of the latent cluster
memberships {Zi}.

3.1 The Expectation Step (E-Step)

In the E-step, the latest estimates of the mixing proportions {πr} and parameters
Ω are used to calculate the expected values of zir. The conditional expectation
of the complete-data log-likelihood at iteration t is expressed as follows:

E{zir}|Y ,Ω (t−1),π (t−1) [�c (Ω,π|Y , {zir})]

=
n�∑

i=1

R∑

r=1

p∑

j=1

q∑

k=1

I (yij = k) I (ri = r) log
[
θ
(t−1)
rijk

]

+
n�+nu∑

i=n�+1

R∑

r=1

log
[
π(t−1)

r

]
E

[
zir| {yi} ;Ω(t−1),π(t−1)

]

+
n�+nu∑

i=n�+1

p∑

j=1

q∑

k=1

R∑

r=1

I(yij = k) log
[
θ
(t−1)
rjk

]
E

[
zir| {yi} ;Ω(t−1),π(t−1)

]
.

(3.1)

The latent variable Zir follows a Bernoulli distribution and its expectation
is computed as follows:

E
[
zir|yi;Ω(t−1),π(t−1)

]

=
(
0 × P

[
zir = 0|yi;Ω(t−1),π(t−1)

])
+

(
1 × P

[
zir = 1|yi;Ω(t−1),π(t−1)

])

= P
[
zir = 1|yi;Ω(t−1),π(t−1)

]
. (3.2)
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Then, we apply Bayes’ rule to obtain the following expression for the estimated
Zir at iteration t:

ẑ
(t)
ir = P

[
zir = 1|yi;Ω(t−1),π(t−1)

]

=
P

[
yi|zir = 1;Ω(t−1),π(t−1)

] × P
[
zir = 1;Ω(t−1),π(t−1)

]

∑R
r′=1 P

[
yi|zir′ = 1;Ω(t−1),π(t−1)

] × P
[
zir′ = 1;Ω(t−1),π(t−1)

]

=
π̂
(t−1)
r

∏p
j=1

∏q
k=1

[
θ̂
(t−1)
rjk

]I(yij=k)

∑R
r′=1

(

π̂
(t−1)

r′
∏p

j=1

∏q
k=1

[
θ̂
(t−1)

r′jk

]I(yij=k)
) . (3.3)

3.2 The Maximization Step (M-Step)

The M-step updates the maximum likelihood estimates for parameters using the
estimates ẑ

(t)
ir obtained from the E-step. We apply the Lagrange multiplier λ

approach [11] to find an analytical expression for the estimate of πr:

π̂(t)
r =

1
nu

n�+nu∑

i=n�+1

ẑ
(t)
ir . (3.4)

We use numerical optimization to find the latest estimates of the remaining
parameters, Ω. In this process we also include the observations with known
cluster memberships, because our model assumes that the known clusters have
the same parameters as the unknown clusters, so those observations inform the
cluster parameter estimation process in the M-step. Each of these observations
contributes to the likelihood of the cluster it is known to be in.

Reparameterization of Cut-Off Points μk . In the proportional odds model,
the ordering of the categories is ensured by imposing a constraint on the param-
eters μk: μ1 < μ2 < · · · < μk−1. It is easier to perform numerical optimization
by reparameterizing these parameters in such a way that we optimize uncon-
strained values. So we introduce parameters w = (w2, w3, . . . , wq−1) such that:

μk = μ1 +
k∑

�=2

exp(w�), for k = 2, 3, . . . , q − 1, (3.5)

where w2, w3, . . . , wq−1 can take any value from +∞ to −∞, and the parameters
μk are constrained by construction.

4 Simulation Study

This section gives the results of a simulation study to evaluate the performance
of our proposed approach in eight different scenarios. These scenarios vary the
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percentage of cluster memberships that are known, denoted as m%, and the
distribution of memberships within that labeled portion, denoted as {gr}.

In the simulated data, the rows are equally distributed among the R = 3
clustering groups. Table 1 defines the first four scenarios, in which all the clusters
are observed within the portion of observations with known cluster memberships.
Table 2 defines the last four scenarios, in which only a subset of the clusters are
observed within the portion of observations with known cluster membership.

Table 1. Scenarios where all clusters are observed in the labeled data.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
m%= 10% m%= 30% m%= 10% m%= 30%

π1=1/3 π1=1/3 π1=0.304 π1=0.219

π2=1/3 π2=1/3 π2=0.337 π2=0.348

π3=1/3 π3=1/3 π3=0.359 π3=0.433

g1=1/3 g1=1/3 g1=0.600 g1=0.600

g2=1/3 g2=1/3 g2=0.300 g2=0.300

g3=1/3 g3=1/3 g3=0.100 g3=0.100

Table 2. Scenarios where only a subset of the clusters is observed in the labeled data.

Scenario 5 Scenario 6 Scenario 7 Scenario 8
m%= 10% m%= 30% m%= 10% m%= 30%

π1=0.315 π1=0.262 π1=0.260 π1=0.048

π2=0.315 π2=0.262 π2=0.370 π2=0.476

π3=0.370 π3=0.476 π3=0.370 π3=0.476

g1=0.500 g1=0.500 g1=1.000 g1=1.000

g2=0.500 g2=0.500

We set n = 300, p = 5, q = 3. The responses {yij} are generated from
the multinomial distribution with probabilities defined according to (2.4). The
true values of the row cluster and column effect parameters are {α1, α2, α3} =
{−2, 0, 2} and {β1, β2, β3, β4, β5} = {−2,−1.5, 0.3, 1.0, 2.2}. The cut-off point
values μk are obtained such that the response categories have equal probabilities
for the baseline row cluster such that P (yij = 1) = P (yij = 2) = · · · = P (yij =
q) when row i belongs to the first row cluster. The true values of the cut-off
points μk and the reparameterized values wk are as follows:

μ1 = w1 = log(1/2) ≈ −0.693 (4.1)
μ2 = μ1 + exp(w2) = log(1/2) + exp [log(2)] ≈ 1.307.
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For each scenario, we simulated 100 replicate datasets.
When fitting the models, we apply the k-means algorithm to each simu-

lated dataset to produce the initial clustering groups, and optimised the log-
likelihood of the “unsupervised” strategy to generate the initial values for the
model’s parameters.

All simulation and model-fitting code was written in the R programming lan-
guage. The EM algorithm converged in all the scenarios and for all the replicate
datasets.

Tables 3 and 4 display the average estimates of the parameters and their stan-
dard errors obtained from 100 converged replicate datasets in each scenario. We
observe that all {βj} parameters are estimated exceptionally well, with standard
errors below 0.14. The cut-off points {μk} are also estimated accurately in most
scenarios, but their standard errors are higher in scenarios 5, 6, and 7. Similarly,
the clustering parameters {αr} are well-estimated with low standard errors in
most scenarios, but higher standard errors in scenarios 5, 6, and 7.

Table 5 and Table 6 give the estimated values of {πr} for all scenarios. Gen-
erally, we observed that these estimates remain close to the true values in most
scenarios, especially in scenarios 1 to 4 where all clusters were observed in the
labeled data.

The scatterplots in Fig. 1 show the estimated values of π1 and π2 from each of
the 100 replicate datasets, split by the eight scenarios. The red triangle in each
scatterplot represents the true values of parameters π1 and π2. The estimated
π1 and π2 values are closer to the true values for scenarios 1, 2, 3, 4, and 8 than
for scenarios 5, 6, and 7. In general, the estimation of the mixing proportions
{πr} is accurate in most of the scenarios.

Table 3. The average estimated values of {μk}, {αr}, and {βj}, along with their
standard errors, obtained from 100 replicate datasets. These estimates were obtained
for scenarios in which all clusters were observed in the labeled data, and the fitted
model had R = 3 clusters.

Parameter True Scenario1 Scenario2 Scenario3 Scenario4
Mean S.E. Mean S.E. Mean S.E. Mean S.E

μ1 −0.693 −0.685 0.106 −0.694 0.091 −0.654 0.109 −0.690 0.092

μ2 1.307 1.269 0.111 1.305 0.097 1.294 0.114 1.309 0.096

α1 −2.000 −1.895 0.129 −2.007 0.120 −1.887 0.129 −1.998 0.119

α2 0.000 0.007 0.122 0.003 0.098 0.063 0.133 −0.005 0.099

α3 2.000 1.888 0.124 2.004 0.115 1.824 0.128 2.003 0.116

β1 −2.000 −1.961 0.138 −2.008 0.139 −1.951 0.137 −2.007 0.139

β2 −1.500 −1.469 0.127 −1.503 0.127 −1.464 0.126 −1.503 0.127

β3 0.300 0.302 0.111 0.306 0.112 0.298 0.111 0.306 0.112

β4 1.000 0.969 0.115 0.994 0.116 0.964 0.115 0.994 0.116

β5 2.200 2.159 0.135 2.211 0.136 2.153 0.135 2.210 0.136
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Table 4. The average estimated values of {μk}, {αr}, and {βj}, along with their
standard errors, obtained from 100 replicate datasets. These estimates were obtained
for scenarios in which a subset of the clusters were observed in the labeled data and
the fitted model had R = 3 clusters.

Parameter True Scenario5 Scenario6 Scenario7 Scenario8
Mean S.E. Mean S.E. Mean S.E. Mean S.E

μ1 −0.693 −0.339 0.173 −0.189 0.262 −0.240 0.523 −0.696 0.091

μ2 1.307 1.562 0.181 1.710 0.271 1.709 0.528 1.303 0.095

α1 −2.000 −1.742 0.287 −1.732 0.475 −2.280 0.996 −2.002 0.118

α2 0.000 −0.095 0.222 −0.235 0.298 0.010 0.563 −0.013 0.100

α3 2.000 1.837 0.185 1.967 0.279 2.219 0.538 2.015 0.120

β1 −2.000 −1.900 0.134 −1.893 0.133 −1.957 0.137 −2.008 0.139

β2 −1.500 −1.429 0.124 −1.426 0.124 −1.465 0.126 −1.504 0.127

β3 0.300 0.289 0.109 0.285 0.109 0.298 0.111 0.307 0.112

β4 1.000 0.936 0.113 0.933 0.113 0.966 0.115 0.994 0.116

β5 2.200 2.104 0.134 2.100 0.132 2.158 0.136 2.211 0.136

Table 5. The averaged estimated {πr} and their standard errors obtained from sce-
narios where all clusters are known in the labeled data over the 100 converged replicate
datasets with fitting row clusters R = 3.

Parameter Scenario1 Scenario2 Scenario3 Scenario4
True Estimated True Estimated True Estimated True Estimated

π1 0.333 0.357 0.333 0.336 0.304 0.325 0.219 0.221

π2 0.333 0.292 0.333 0.333 0.337 0.283 0.348 0.345

π3 0.334 0.351 0.334 0.331 0.359 0.392 0.433 0.435

Table 6. The averaged estimated {πr} and their standard errors obtained from scenar-
ios where a subset of the clusters are known in the labeled data over the 100 converged
replicate datasets with fitting row clusters R = 3.

Parameter Scenario5 Scenario6 Scenario7 Scenario8
True Estimated True Estimated True Estimated True Estimated

π1 0.315 0.280 0.262 0.186 0.260 0.203 0.048 0.051

π2 0.315 0.241 0.262 0.237 0.370 0.364 0.476 0.478

π3 0.370 0.479 0.476 0.577 0.370 0.432 0.476 0.471
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Fig. 1. The scatterplots of estimated π1 vs π2 over 100 converged replicate datasets for
the semi-supervised model-based clustering model across all the designed the scenarios.
The red triangle point represents the true value of π1 and π2. (Color figure online)
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5 Conclusions

The work presented in this paper introduces a strategy for semi-supervised
model-based clustering that utilizes the proportional odds model as a basic struc-
ture to analyze ordinal responses. Our approach takes into account the ordinal
nature of the response data and incorporates information about existing cluster-
ing memberships to cluster data with unknown memberships. We performed a
simulation study using a variety of scenarios and compared the estimated param-
eters with the actual values to assess the accuracy of these estimates. Based on
the results, we can conclude that the model fitting process perform well in most
of the scenarios.

In further research, we aim to develop another semi-supervised clustering
strategy using the ordered stereotype model [3] as the basic structure. We will
also build a corresponding R package that includes both options for the basic
model. Also, we are working on applying our proposed model to data gath-
ered from New Zealand’s largest independent science organization, the Cawthron
Institute in the aquaculture sector [7]. The Cawthron Institute runs many differ-
ent trials and also collects data from fish in commercial farms in New Zealand.
Some of their recent trials have involved measuring different aspects of the fish
and assessing whether those fish are healthy or not. Some of the markers are
gathered in a destructive manner (i.e. collected by killing the fish). Therefore,
the Cawthron Institute would like to know which other non-destructive markers
can be used as proxies for fish health. Also, they are interested to know which
markers can identify fish that are somewhat unhealthy and likely to become very
unhealthy.
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Abstract. This study delves into the application of Generative Adver-
sarial Networks (GANs) within the context of imbalanced datasets. Our
primary aim is to enhance the performance and stability of GANs in
such datasets. In pursuit of this objective, we introduce a novel network
architecture known as Damage GAN, building upon the ContraD GAN
framework which seamlessly integrates GANs and contrastive learn-
ing. Through the utilization of contrastive learning, the discriminator
is trained to develop an unsupervised representation capable of distin-
guishing all provided samples. Our approach draws inspiration from the
straightforward framework for contrastive learning of visual representa-
tions (SimCLR), leading to the formulation of a distinctive loss function.
We also explore the implementation of self-damaging contrastive learn-
ing (SDCLR) to further enhance the optimization of the ContraD GAN
model. Comparative evaluations against baseline models including the
deep convolutional GAN (DCGAN) and ContraD GAN demonstrate the
evident superiority of our proposed model, Damage GAN, in terms of
generated image distribution, model stability, and image quality when
applied to imbalanced datasets.

Keywords: Damage GAN · ContraD GAN · SimCLR · SDCLR ·
Imbalanced datasets

1 Introduction

GAN is a popular deep learning architecture composed of a generator and a dis-
criminator. The generator aims to learn the distribution of real samples, while
the discriminator evaluates the authenticity of inputs, creating a dynamic “game
process”. While GAN is extensively used for image generation, their effectiveness
in imbalanced datasets has received less attention [1,4,20]. Contrastive learning,
a self-supervised training technique that captures augmented image invariants
and reduces training effort for image classification, has recently gained promi-
nence [2]. Our objective is to integrate contrastive learning into GAN, leveraging
its potential to improve the performance and stability in the context of imbal-
anced datasets.
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In this paper, we introduce Damage GAN, a novel GAN model constructed
by implementing SDCLR as a replacement for the SimCLR module in ContraD
GAN, and applying it to the task of training and validation. The imbalanced
CIFAR-10 dataset is utilized for both model training and validation. Evaluation
metrics such as Fréchet Inception Distance (FID) and Inception Score (IS) are
employed to assess the performance of the proposed model. After experiments,
we demonstrate that Damage GAN outperforms state-of-the-art models, such as
DCGAN and ContraD GAN, when applied to imbalanced datasets, thereby high-
lighting its potential for improving GAN performance on imbalanced datasets.

This paper is organized as follows. Section 2 is about related work, mainly
discusses and analyses the contributions and limitations related to our study in
the last ten years. In Sect. 3 we describe our research ideas and model structure in
details. In Sect. 4 we clarify the dataset used for experiments, the model training
procedure, the evaluation metrics, as well as how to conduct experiments on
exploratory data analysis and model comparison to verify the predictive ability,
stability and applicability of our model. Finally, we conclude the paper in Sect. 5
and look to the future. Since this paper contains a large number of technical
terms, the notations are summarized in Table 1 for the convenience.

2 Related Work

The foundation of our proposed model is built upon the ContraD GAN, which
involves training a generative adversarial network through contrastive learning
applied to the discriminator. To further improve the model’s performance, we
recommend incorporating Self-Damaging Contrastive Learning (SDCLR) as a
replacement for the SimCLR module within the ContraD GAN framework.

The following section introduces a literature review covering fundamental
theories pertinent to our proposed model.

2.1 GAN

The framework of GAN, which is a type of generative algorithm, was proposed
in 2014 [10]. The main idea of the generative model is to learn the pattern of the
training data and use that knowledge to create new examples [11,29,30]. GAN
introduces the concept of adversarial learning to address the limitations of gen-
erative algorithms. The basic principle is to produce data that looks very similar
to real samples. GAN consists of two modules: a generator and a discriminator,
which are typically implemented using neural networks. The generator learns to
understand the distribution of real examples and generate new ones, while the
discriminator tries to determine if the inputs are genuine or fake. The goal is for
the generator to capture the true distribution of real data and generate realistic
examples.

In recent years, GANs and their variations have gained widespread use in
the fields of Computer Vision (CV) and Natural Language Processing (NLP).
These models provide distinct advantages over other generative methods, as
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Table 1. Notations used in this paper.

Abbreviation Description

CIFAR-10 It is an image database containing 60,000 32× 32
colour images in 10 classes, with 6,000 images
per class

ContraD GAN Training GANs with stronger augmentations via
contrastive discriminator

CNN Convolutional Neural Network

CV Computer Vision

Damage GAN Proposed model in this paper

DCGAN Deep Convolutional Generative Adversarial
Network

FID Fréchet Inception Distance

ImageNet It is an image database organized according to
the WordNet hierarchy, in which each node of
the hierarchy is depicted by hundreds and
thousands of images

IS Inception Score

GAN Generative Adversarial Network

LeakyReLU It is a type of activation function based on
ReLU. It has a small slope for negative values
with which LeakyReLU can produce small,
non-zero, and constant gradients with respect to
the negative values

MLP Multi-Layer Perceptron

NLP Nature Language Processing

ReLU Rectified Linear Units. It is a non-linear
activation function that is widely used in
multi-layer neural networks or deep neural
networks

SDCLR Self-damaging Contrastive Learning of Visual
Representations

Sigmoid It is a special form of the logistic function with
an S-shaped curve

SimCLR Simple Framework for Contrastive Learning of
Visual Representations

SoftMax It is a function that turns a vector of K real
values into a vector of K real values that sum to
1

Tanh Hyperbolic Tangent. It is the hyperbolic
analogue of the Tan circular function used
throughout trigonometry
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Fig. 1. An example of convolutional layer.

discussed by Goodfellow et al. in their seminal work [9]. GANs offer parallel
generation capabilities, a unique feature not present in other generative models.
Unlike models like Boltzmann machines, GANs impose fewer restrictions on
the generator structure and eliminate the need for Markov chains. Additionally,
GANs are recognized for their ability to produce high-quality samples that often
outperform those generated by alternative algorithms.

However, GANs also exhibit certain limitations that necessitate considera-
tion. GAN training involves achieving Nash Equilibrium, a complex task that
presents challenges. The training process for GANs can be hindered by issues
such as oscillation and non-convergence. Partial mode collapses within the gen-
erator can result in a limited variety of generated outputs. Imbalances between
the generator and discriminator can lead to overfitting concerns.

2.2 CNN

CNNs are a type of neural network that utilizes convolutional filters to capture
features in a grid-like manner, resembling the structure of the visual cortex in
the human brain. This approach requires less data pre-processing compared to
traditional neural networks, as demonstrated by Heaton [13]. Notably, CNNs
have become dominant in the field of Computer Vision (CV) with notable works
such as LeNet-5 [18], AlexNet [17], VGG [25], Inception [26], and ResNet [12].
Convolutional Neural Networks (CNNs) present a range of advantages compared
to traditional neural networks. Firstly, CNNs excel in reducing the number of
specified parameters, contributing to enhanced generalization and a reduced risk
of overfitting. Additionally, the architecture of CNNs enables them to learn intri-
cate features from input data via convolutional and pooling layers. Simultane-
ously, they efficiently carry out classification tasks using fully connected layers,
ensuring an organized approach to information processing. Furthermore, CNNs
simplify the process of implementing large-scale networks, making them a pre-
ferred choice for handling complex tasks in various domains.

The CNN architecture comprises different layers, which are outlined below.
Convolutional Layer effectively captures the features of the input image by
using convolutional filters, also known as kernels, to create N-dimensional acti-
vation maps. Several hyper-parameters need to be determined and optimized in
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this process, including the number of kernels, kernel size, activation function,
stride, and padding. In Fig. 1, for example, a 3× 3 filter is applied to the input
image, moving with a step equal to the chosen stride. At each position, the fil-
ter’s metrics are multiplied with the corresponding 3× 3 spatial elements of the
input image. By performing this dot product operation for the activation map
can be generated. Pooling Layer follows the convolutional layer in order to
decrease the size of feature maps and lower the dimensionality of the network.
Prior to this process, the stride and kernel size need to be manually determined.
Several pooling methods can be employed, such as average pooling, min pooling,
max pooling and mixed pooling. Fully Connected Layer is positioned as the
last layer in the CNN structure and functions as a classifier. In this layer, each
neuron is connected to every neuron in the preceding layer. Once the convolu-
tional layers extract features and the pooling layers down-sample the outputs,
the resulting outputs are passed through the fully connected layer to generate
the final outputs of CNN. It is essential to activate the fully connected layer
using a non-linear function like SoftMax, Tanh, or ReLU [23].

2.3 DCGAN

Unsupervised learning through CNNs garnered noteworthy attention in 2015. A
notable milestone was the inception of DCGAN, which showcased the prowess of
CNNs in producing visually captivating outcomes [22]. As depicted in Fig. 2, the
structure of DCGAN aligns with the foundational architecture of the original
GAN. Nonetheless, DCGAN introduces certain alterations. Notably, the gener-
ator in DCGAN generates 100-dimensional noise, subsequently subjecting it to
processing and transformation via convolutional layers.

For the effective integration of deep convolutional networks within GANs, a
series of architectural principles have been introduced. Firstly, the discriminator
replaces pooling layers with stride convolutions, enabling spatial down-sampling.
In contrast, the generator employs fractional stride convolutions for spatial up-
sampling. Batch normalization is integrated into every layer of both the generator
and discriminator, stabilizing training, mitigating initialization issues, and pro-
moting gradient flow to deeper layers. The adoption of deeper architectures in
place of fully connected layers accelerates convergence. The output layer employs
the Tanh activation function, while the ReLU activation function is used in other

Fig. 2. The structure of DCGAN.
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layers, effectively addressing saturation and covering the color space during train-
ing. LeakyReLU activation is applied across all discriminator layers, facilitating
higher-resolution modeling.

DCGAN has emerged as a more stable GAN training framework, showcas-
ing the ability to learn meaningful image representations in both supervised
learning and generative modeling contexts. Despite these advancements, certain
challenges persist in practice, including filter collapse and oscillating behavior,
which require continued attention.

2.4 Contrastive Learning

Traditional supervised learning techniques heavily rely on annotated data, which
can pose challenges when dealing with limited annotations. To address the issue
of insufficient labeled data, researchers have explored alternative approaches.
Self-supervised learning, a type of unsupervised learning, has gained attention
for its ability to create pseudo-labels autonomously through models [19]. This
empowers the training of unannotated datasets using a supervised framework,
effectively mitigating annotation scarcity.

Among the various methods within self-supervised learning, contrastive
learning, introduced in 2021 [14], stands out. It hinges on a multitude of negative
samples and compares distinct samples to produce high-quality outcomes. This
technique aims to identify both similarities and differences within a dataset,
effectively categorizing data based on these attributes. Contrastive learning’s
primary objective is to map similar sample representations in close proximity
within the embedding space, while ensuring that dissimilar representations are
distanced from each other [24]. This results in the aggregation of positive sample
representations and the separation of negative pairs’ representations.

In the subsequent discussion, two prominent contrastive learning frameworks,
SimCLR and SDCLR, will be elaborated upon.

SimCLR. Despite showing respectable performance, various self-supervised
learning methods consistently fall short of achieving results comparable to super-
vised learning [7]. However, SimCLR, a straightforward framework that employs
self-supervised contrastive learning, manages to outperform supervised learn-
ing outcomes, particularly when applied to the ImageNet dataset [6]. SimCLR
operates based on three core components:

– Data Augmentation: This process begins by randomly sampling a batch of
images, to which two distinct data augmentations are applied.

– Base Encoder: Utilizing ResNet-50, the encoder extracts vectors from the
augmented images and generates representations through a pooling layer.

– Projection Head: Introducing a non-linear projection, typically in the form of
a single-layer MLP. The loss function integrates two primary elements: cosine
similarity and loss calculation.
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The noticeable difference between this framework and conventional super-
vised learning mainly stems from the chosen data augmentation, the incorpora-
tion of a non-linear projection, and the design of the loss function. Our proposed
model draws inspiration from the principles of SimCLR, as we strive to further
optimize it.

SDCLR. To tackle the challenge of data imbalance, specifically the “long tail”
problem, a technique known as self-damaging contrastive learning (SDCLR) has
emerged to bolster the efficacy of data training [16]. This method employs two
networks: the target model, which undergoes training, and the self-competitor,
which acts as a pruning mechanism, ensuring consistency between the outputs
of both models.

The core principle behind SDCLR is to foster representations capable of
capturing nuanced differences among similar data samples. This is achieved by
introducing a self-damaging mechanism during the training process. This mech-
anism penalizes representations that exhibit excessive similarity, even when they
pertain to different views of the same data sample.

Through the implementation of SDCLR, we can fortify the robustness of
data and effectively confront the complexities linked with data imbalance and
the “long tail” phenomenon. Consequently, we can integrate the insights derived
from this model into our own approach.

2.5 ContraD GAN

ContraD GAN represents a cutting-edge approach that seamlessly combines con-
trastive learning and Generative Adversarial Networks (GANs) [15]. This innova-
tive method introduces a unique strategy by integrating the loss function from
SimCLR with contrastive learning techniques. This integration empowers the
discriminator to undergo training with heightened data augmentation, resulting
in improved model stability and a reduced risk of discriminator overfitting.

The ContraD GAN workflow encompasses several distinct steps. Initially,
data augmentation is applied to real data, generating two distinct perspectives.
Concurrently, data augmentation is executed on the data produced by the GAN’s
generator. These viewpoints are then presented to the discriminator, yielding
corresponding representations. A projection head is subsequently employed to
derive corresponding vectors for these representations.

ContraD GAN has demonstrated its prowess as a successful fusion of GANs
and contrastive learning, yielding impressive outcomes across a range of widely
used public datasets. A primary advantage lies in its ability to train adversarial
networks with enhanced data augmentation. However, it’s important to note
that the original work mainly emphasizes the amalgamation of SimCLR and
supervised contrastive learning, with limited focus on GAN architecture design.

Consequently, the ContraD GAN framework offers substantial room for fur-
ther enhancements. For instance, addressing data imbalance challenges and
extending the applicability of ContraD GAN to various dataset types are promis-
ing areas that warrant exploration and expansion.
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Fig. 3. The structure of Damage GAN.

3 Methodology - Damage GAN

The initial version of ContraD GAN introduced an innovative incorporation
of SimCLR into the generator, resulting in a distinctive amalgamation of con-
trastive learning and GAN. This merger brought forth several benefits, including
enhanced performance under rigorous data augmentation and the mitigation of
challenges like overfitting. However, the efficacy of ContraD GAN, akin to numer-
ous contrastive learning models, is susceptible to the characteristics of the input
dataset.

ContraD GAN has showcased commendable outcomes for classification tasks
when operating with sizable, balanced datasets. Nonetheless, complexities arise
when confronted with diminutive, highly imbalanced datasets, particularly when
classifying items from rare categories characterized by limited representation.
Previous research [16] has indicated that while contrastive learning exhibits
greater resilience to imbalanced data in comparison to supervised learning, it
still encounters hurdles when addressing imbalances within long-tailed datasets.
In real-world scenarios, data distributions frequently follow a long-tailed dis-
tribution, wherein minority classes are typically inadequately represented. This
introduces the notion of “label bias,” wherein the classification decision bound-
ary is significantly influenced by the majority classes [28].

To enhance the performance of ContraD GAN in the context of imbalanced
data settings, a potential strategy involves refining the discriminator compo-
nent. Recent advancements in contrastive learning, drawing inspiration from the
SimCLR architecture, have demonstrated superior performance compared to the
original model. Consequently, exploring alternative contrastive learning architec-
tures by substituting the SimCLR component within ContraD GAN presents a
promising avenue.

An illustrative example of a relevant study addressing imbalanced data within
contrastive learning is the self-damaging contrastive learning method (SDCLR)
[16]. In SDCLR, a branch of the original SimCLR framework is adapted to create
a pruned branch, wherein samples from minority classes are treated differently
through the assignment of larger losses. This adaptation guides the model to
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assign heightened importance to samples from the minority classes, effectively
mitigating the imbalance issue.

Guided by these insights, we propose the replacement of the SimCLR segment
in the original ContraD GAN model with SDCLR (as depicted in Fig. 3). By
integrating a contrastive learning structure that exhibits enhanced performance
in imbalanced data scenarios, we anticipate an overall improvement in the GAN
framework’s performance when handling datasets characterized by imbalances.
This modification introduces a promising pathway to overcome challenges linked
to imbalanced data within ContraD GAN, extending its utility to real-world
applications.

4 Experimental Results

4.1 Datasets

The study utilizes the CIFAR-10 dataset, comprising 60,000 entries with dimen-
sions of 32× 32 pixels. To comprehensively evaluate the proposed model, the
dataset was employed in three distinct configurations:

– Full Dataset: This configuration serves as a baseline for comparison, facilitat-
ing an assessment of the proposed model’s overall performance.

– Partial Dataset: To delve into the model’s efficacy on imbalanced datasets,
the original data was reduced to one-fifth of its original size, following the
method established by Cui et al. [8]. This smaller dataset not only possesses
an imbalance but also serves as the foundation for controlled experiments.

– Imbalanced Dataset: Following the generation of the partial dataset, Cui et
al. introduced a balance factor to select examples, thereby constructing an
imbalanced dataset. For this study, a balance factor of 100 was implemented,
resulting in the largest class comprising 4,500 examples, while the smallest
class contains only 45 examples.

The comparative analysis entails evaluating different GANs on the Full, Par-
tial, and Imbalanced datasets, thus yielding insights into their respective perfor-
mances across varying dataset configurations.

4.2 Evaluation Metrics

This paper employs two primary metrics, namely the Inception Score (IS) and
the Fréchet Inception Distance (FID), to gauge the effectiveness of the GANs.

The Inception Score (IS) evaluates the quality of generated images [3].
This assessment involves inputting an image into a neural network, specifically
Inception-v3 [27], and acquiring the output layer probabilities for each category,
denoted as p(y | x). Here, x signifies the data feature, and y represents the label.
The distribution of labels is represented by p(y). The IS is calculated using the
following formula:

IS = exp
(
Ex∼pg

DKL(p(y | x)‖p(y))) (1)
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The primary aim is for the generator to produce diverse images contain-
ing meaningful objects, resulting in a low-entropy distribution p(y) and a high-
entropy distribution p(y | x). A higher Inception Score (IS) indicates superior
performance, showcasing a more substantial KL-divergence [5] between these
two distributions.

Fréchet Inception Distance (FID) can be perceived as an advancement of the
IS metric, as it takes into account not only the quality of samples generated
by GANs but also the influence of real data [21]. FID compares the statistical
attributes of generated images with those of real samples by leveraging features
from Inception-v3, unlike IS, which directly provides class assignments. The FID
is calculated using the subsequent formula:

FID = ‖µr − µg‖22 + Trace(
∑

r

+
∑

g

−2(
∑

r

∑

g

)1/2) (2)

In this context, xr ∼ N(µr,
∑

r) and xg ∼ N(µg,
∑

g) represent the 2,048-
dimensional activations of the Inception-v3 pool3 layer for real and gener-
ated samples, respectively. A reduced Fréchet Inception Distance (FID) value
indicates improved performance, highlighting a higher similarity between real
and generated images. This similarity is quantified by measuring the distance
between their activation distributions.

4.3 Results

In this section, we present a series of experiments aimed at comparing the per-
formance of three models: DCGAN, ContraD GAN, and our proposed model,
Damage GAN. The main objectives of these experiments are as follows:

Reproducing and evaluating results for both DCGAN and ContraD GAN,
while simultaneously assessing the performance of our proposed Damage GAN
model using the standard CIFAR-10 dataset.

Additionally, generating two subsets from the original CIFAR-10 dataset,
each containing 10,000 samples. One subset is balanced, while the other is delib-
erately imbalanced. By calculating FID and IS metrics across nine different sce-
narios (combining three GANs and three datasets), we aim to understand the
implications of this data modification on performance.

Furthermore, investigating the potential disparities in class distribution when
GANs operate on the imbalanced dataset. We also explore whether Damage
GAN contributes to improving this distribution.

Lastly, we aim to determine whether Damage GAN has succeeded in enhanc-
ing the image quality of the imbalanced dataset. We accomplish this by compar-
ing FID results for the two minor classes (with the largest generated samples)
and the two major classes (with the smallest generated samples).

The outcomes of the aforementioned experiments are provided below:
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Table 2. FID and IS results for 3 GANs with 3 datasets.

Dataset DCGAN ContraD Damage

FID IS(mean) IS(std) FID IS(mean) IS(std) FID IS(mean) IS(std)

Full 25.47 7.40 0.19 10.27 9.02 0.28 11.04 8.66 0.16

Partial 40.57 6.42 0.14 16.72 7.92 0.21 18.56 8.12 0.29

Imbalanced 55.15 5.71 0.16 29.92 7.43 0.16 28.45 7.95 0.15

a) The CIFAR-10 results for DCGAN and ContraD GAN align with previ-
ously published findings [15], as observed from Table 2. However, the Damage
GAN takes twice as long to run and exhibits slightly inferior performance com-
pared to ContraD GAN.

b) The FID results for all GANs deteriorate when the training sample size
is reduced, and the degradation worsens in the case of imbalanced training sets.
Among the GANs, the Damage GAN exhibits the lowest rate of deterioration,
as depicted in Table 2. Moreover, on the imbalanced dataset, the Damage GAN
outperforms the ContraD GAN by 5% in terms of scores.

Table 3. Samples of classes on Partial and Imbalanced datasets.

Dataset air car bird cat deer dog frog hrs ship truck Total

Partial 1,116 1,116 1,116 1,116 1,116 1,116 1,116 1,116 1,116 1,116 11,160

Imbalanced 348 969 125 208 1,617 75 4,500 581 2,697 45 11,165

Table 4. Distribution for classes on Partial and Imbalanced datasets.

Dataset Model air car bird cat deer dog frog hrs ship truck

Partial DCGAN 0.94 0.52 1.55 0.75 1.50 0.69 1.74 0.58 1.18 0.53

ContraD 0.96 1.23 1.10 0.90 0.85 0.74 1.11 1.13 0.93 1.02

Damage 1.02 1.22 1.14 0.75 0.87 0.79 1.08 1.14 0.93 1.02

Imbalanced DCGAN 0.94 0.19 4.67 1.04 0.96 0.51 0.98 0.49 0.86 1.73

ContraD 1.35 1.05 3.32 0.85 0.75 0.89 0.81 1.11 0.83 2.11

Damage 1.16 0.94 2.85 1.05 0.75 0.64 0.85 1.17 0.85 1.42

c) Table 3, 4 presents the deviation of the generated samples from the training
samples for both Partial and Imbalanced datasets after classifying the generated
samples into classes using the linear evaluator. As anticipated, the deviation for
the balanced set is close to 1, with a mean value of 1. On the other hand, the
imbalanced GANs display a mean deviation greater than 1, indicating under-
representation of major classes and over-representation of minor classes. The
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Table 5. FID scores for minor and major classes in the Imbalance dataset.

Model Total Classes Major Classes Minor Classes

DCGAN 55.15

ContraD 29.92 31.87 32.65

Damage 28.45 31.15 31.15

Damage GAN generates a distribution that closely resembles the generated dis-
tribution.

d) The FID results for the imbalanced dataset show a 5% improvement com-
pared to the ContraD GAN score (see Table 5). The quality of FID data for
the majority and minority classes is impacted by the smaller generated sample
size of the minority class, but it exhibits a similar 5% improvement. In contrast,
the majority class experiences a less than 2% improvement. These results align
with the published SDCLR results, which analyze the accuracy of the linear
evaluator, the imbalanced dataset, and the minority and majority classes. The
two primary categories in this context are referred to as “frogs” and “ships,”
while the less common categories are “dogs” and “trucks.” Due to the limited
number of samples available for the less common categories, a subset of 100
samples is used when calculating FID. It has been observed that FID decreases
as the sample size increases, until reaching around 5,000 samples. To determine
the FID for both the majority and minority classes, 100 samples were randomly
selected from each imbalanced dataset and compared with the full imbalanced
datasets (ContraD GAN, Damage GAN) to establish a scale factor. This scale
factor, approximately 1/16, was then applied to adjust the FID for the minority
and majority classes. Upon a visual examination of the majority and minority
classes, it appears that the quality of the minority classes is inferior to that of the
majority classes. However, this discrepancy is not reflected in the FID scores,
which raises the need for further investigation. It is possible that the issue is
related to the small sample size and warrants additional exploration.

5 Conclusion

The primary objective of this paper is to enhance the performance of Generative
Adversarial Networks (GANs) when confronted with imbalanced datasets that
closely resemble real-world data distributions. In contrast to prior researchers
who focused on altering the generator, our approach involves modifying the
original GAN by replacing the discriminator with Self-Damaging Contrastive
Learning (SDCLR). Comparative analyses between the baselines (ContraD GAN
and DCGAN) and our Damage GAN model reveal noteworthy enhancements,
particularly in terms of Fréchet Inception Distance (FID) and Inception Score
(IS), with a distinct emphasis on the standard deviation of IS. This signifies
that our model generates more consistent outputs compared to the baselines.
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Moreover, the images produced by Damage GAN showcase improved quality for
the major classes.

Nonetheless, our study does present certain limitations. Primarily, our exper-
imentation utilized the CIFAR-10 dataset, which comprises relatively small-sized
images. Future endeavors should consider evaluating our model on the GTSRB
dataset, characterized by larger images. Furthermore, the dataset in our study
features mutually exclusive labels, whereas real-world scenarios often involve
images with multiple labels. It would be valuable to explore the applicability of
our model in generating complex industry images containing diverse elements.
Lastly, while Damage GAN effectively balances minor classes and enhances per-
formance for major classes within imbalanced datasets, the FID of the minor
classes increases, indicating potentially lower image quality compared to the
baselines.

In conclusion, our modification presents improvements for GANs, particularly
in the context of addressing imbalanced datasets, and holds promise for future
advancements. Further investigations are recommended to gain deeper insights
into the factors influencing FID changes across different classes. Additionally,
testing the model on datasets featuring larger image sizes and quantities is sug-
gested to validate results obtained from CIFAR-10 and to explore the model’s
potential in handling high-resolution images.
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Abstract. Inspired by recent progress in text-conditioned image gen-
eration, we propose a model for the problem of text-conditioned graph
generation. We introduce the Vector Quantized Text to Graph generator
(VQ-T2G), a discrete graph variational autoencoder and autoregressive
transformer for generating general graphs conditioned on text. We curate
two multimodal datasets of graph-text pairs, a real-world dataset of sub-
graphs from the Wikipedia link network and a dataset of diverse syn-
thetic graphs. Experimental results on these datasets demonstrate that
VQ-T2G synthesises novel graphs with structure aligned with the text
conditioning. Additional experiments in the unconditioned graph gener-
ation setting show VQ-T2G is competitive with existing unconditioned
graph generation methods across a range of metrics.

Keywords: Graph generation · Generative modelling · Graph neural
networks · Multimodal modelling

1 Introduction

Graphs are a natural way of representing relational and structural data such as
molecules, social networks and knowledge graphs. The range of data types they
may represent makes the problem of learning and generating graphs important,
with broad applications, for example in drug [5,25] or protein [15] design and
network science [17,21]. The study of graph generation dates back to the 1950s
with the Erdős-Rényi random graph model [9]. This and similar early work in
network science [1,12,28] focused on models that generate a single class of graphs
with known statistical properties, with few parameters to control the structure.
Because they are simple and not learned from data, these models have limited
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capacity to mimic the complex dependencies and structures frequently observed
in real graphs [2].

Modern approaches to graph generation use neural networks to learn a
model over a dataset of graphs, and then sample novel graphs from the model
that mimic those in the dataset. Such models demonstrate far stronger abil-
ity to synthesise graphs from areas including molecules, citation networks, 3D
point clouds, and varieties of synthetic graphs [14,15,23,25,31]. While these
approaches have proven powerful, many of these generators lack capacity for
controllable generation of general graphs. This limits their potential use in real-
world applications where it may be desirable to have samples aligned with some
provided context or conditioning, such as for molecule design [8].

Inspired by progress in conditional image generation from text [19,20,22,32],
we propose the novel task of conditional graph generation from text. Replicating
the success of such multi-modal generative systems in the graph domain requires
that the essential computational elements of those architectures be redesigned
such that it can use graph data. This is not a trivial task due to the non-
Euclidean nature of graphs. No existing work to date has studied multimodal
modelling for graphs and text in in this context. We address the gap in this paper.
Specifically, we investigate the novel problem of generating graphs conditioned
on text, text-to-graph generation. That is, given a dataset of paired graphs Gi

and text samples Ti, G = {(G1, T1), (G2, T2), . . . (Gm, Tm)}, jointly learning over
both modalities to generate novel and realistic graphs that are aligned with given
conditioning text. This alignment can refer to two settings. The first is where
the graph structure is explicitly described by the caption. For example, the text
specifies one or more attributes such as the graph’s size, type, or structural
metrics. The second setting is where the graph is associated or semantically
related to the caption in some manner, but does not include direct information
about the graph structure.

There are three key challenges in this task. First, graphs have irregular struc-
ture. Graphs in a dataset may contain differing numbers of nodes or edges, along
with varied topological features at both the local and global level. The varied
input dimension poses issues for many approaches, including the VQ-VAEs that
we employ. Second, large-scale datasets of graphs and text that are appropriate
for this graph synthesis task do not yet exist, so we must curate them. Finally,
there are no robust evaluation methods for text-to-graph generation. We must
modify existing methods for evaluating unconditioned graph generative models
to be accurate and sufficient methods in this text conditioned setting.

Our proposed model for this problem is named the Vector-Quantized Text-
to-Graph Generator (VQ-T2G). It is a generative model for graphs that outputs
diverse and realistic graphs aligned with conditioning text. The model utilises
an adaptation of the vector-quantized variational autoencoder (VQ-VAE) [26]
to encode and reconstruct graph-structured data, followed by an autoregressive
prior trained over both the discrete latents and text captions for text-conditioned
sampling. In summary, our contributions are:
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– An adaptation of the VQ-VAE framework for graph structured data that
learns to encode then reconstruct graphs through a discrete bottleneck. In
particular, it is able to handle graphs with varying sizes.

– VQ-T2G, a model for the proposed text-to-graph generation task based on
this VQ-VAE for graphs, along with a multimodal autoregressive prior learned
over graphs and text to allow text conditioning.

– Curation of two datasets of graph-text pairs.

Datasets and code are available at https://github.com/longland-m/vqt2g.

2 Related Work

2.1 Deep Learning on Graphs

Graph neural networks (GNN) have proven powerful in a variety of applications
such as recommender systems and social network community detection. While
many GNN architectures exist in the literature, the most relevant to our work is
VQ-GNN [7], which, to date, is the only model that uses vector quantization in a
GNN. It is designed for node representation learning in large graphs, introducing
discrete representations in an approximated message passing scheme to improve
memory efficiency and scalability. As the design targets large-graph node-level
learning and the approximated message passing doesn’t carry over to graph-level
learning or reconstruction, VQ-GNN cannot be used in graph generation.

2.2 Unconditioned Graph Generation

In the unconditioned setting, graph generators aim to learn a distribution p(G)
over graphs from a dataset of observed graphs, then sample from this distribution
to synthesise novel graphs similar to those in the training set. Autoregressive
models such as GraphRNN [31] and GRAN [14] approach graph generation as
an autoregressive decision process, adding nodes and/or edges to build graphs
sequentially. Models such as GraphVAE [25] instead generate the entire graph
adjacency matrix in a single step.

2.3 Conditioned Graph Generation

Including some type of conditioning in the graph generation process may be
useful in applications where more model control is desirable. VQ-T2G falls into
this category of graph generator, with the type of conditioning being natural
language text. Many other varieties of conditioning have been explored in prior
work. SPECTRE [15] generates graphs in two stages. Part of the generated
graph spectrum is first sampled, with the model learning to sample realistic
spectra during training. The graph structure is then generated conditioned on
this sampled spectrum. The MolT5 [8] model allows for controllable generation of
molecules through conditioning on a natural language description of a molecule’s
desired characteristics, such as its physical properties. While apparently similar

https://github.com/longland-m/vqt2g
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Fig. 1. Architecture of the GVQVAE model trained during the first stage of VQ-T2G
training. The input graph (left) is represented under node ordering π as adjacency
matrix Aπ. This adjacency matrix and the graph’s node feature matrix X are the input
to the encoder. The graph is encoded then the output mapped to the nearest codebook
vectors before being input to the decoder, to construct probabilistic adjacency matrix
Ã. The graph is then reconstructed from this probabilistic matrix.

to VQ-T2G in the sense that the conditioning is text-based, MolT5 only oper-
ates on a single data modality through the SMILES representation. Since it does
not consider graph structure, it remains fundamentally different to our model.
Condgen [29] addresses the most similar setting to VQ-T2G. This model uses
a conditional generative adversarial network (GAN) architecture to condition
graph generation on a real-valued vector of graph level features. This is done
through concatenating a continuous graph embedding with one or more condi-
tioning vectors associated with the graph. For example, in a dataset of citation
graphs, generated graphs could be conditioned on the publication venue and
other citation metadata. The metadata is represented as a real-valued vector by
conversion to an appropriate numeric value or one-hot encoding. In contrast with
our setting of natural language conditioning, these features used in Condgen are
relatively simple.

2.4 Text-to-Graph Problems

Problems known as text to graph generation exist in two other domains. These are
knowledge graphs [10,27], and scene graphs (in settings where text is used in the
graph construction) [3,30]. In contrast with our goal of generating novel graphs,
these tasks perform graph conversion [10] or graph extraction [16] from text. In
other words, models for these tasks aim to parse and infer relationships between
entities then construct a graph reflecting those relationships. Our task is funda-
mentally different in that we study the generation of novel graphs from text.
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3 Model

We consider datasets of graph-text pairs G = {(G1, T1), (G2, T2), . . . , (Gm, Tm)}.
Each simple, undirected graph G is defined by its set of nodes V and edges E.
Graphs are paired (captioned) with text T . Under some chosen node ordering π,
G is represented as an adjacency matrix Aπ ∈ R

N×N with N the pre-specified
maximum graph size. When |V | < N the graph is padded with isolated (fake)
nodes. Nodes have feature vectors of dimension din and the node feature matrix
is denoted X ∈ R

N×din .
VQ-T2G is trained on such datasets in two stages. The first stage trains a

graph autoencoder with a discrete bottleneck to encode graphs into a discrete
latent space and reconstruct them from this representation. We call this first
model the graph vector-quantized variational autoencoder (GVQVAE). The sec-
ond stage learns to sample graphs from the GVQVAE by training a separate
model, an autoregressive transformer, over the discrete latent space learned in
the GVQVAE. This second stage model may also learn to use text as condi-
tioning for graphs. Figure 1 shows the architecture of the GVQVAE model. It
takes as input a graph adjacency matrix Aπ and feature matrix X and learns to
reconstruct the graph structure. The decoder outputs a probabilistic adjacency
matrix Ã representing the predicted graph.

3.1 Graph Vector-Quantized Variational Autoencoder

We use a VAE in the GVQVAE architecture, with a discrete bottleneck to encode
G into a discrete latent vector z, then reconstruct the original graph from this
representation.

The encoder is defined by a variational posterior qφ(z|G) and the decoder
by a generative distribution pθ(G|z). Each element of z maps to a continuous
vector in the model’s codebook of size K ∈ N. The codebook is an embedding
space e ∈ R

K×D, with K the size of the codebook, D the dimension of each
codebook vector, and ei denoting the i’th embedding vector. As in [26], encoder
outputs ze(G) are mapped to their nearest embedding vector to produce a vec-
tor of codebook indices. During the forward pass the decoder takes as input the
encoding of the graph mapped to the nearest codebook vectors, zq(G). However
the operation mapping encoder outputs to codebook vectors has no defined gra-
dient, so in the backwards pass the gradient skips the codebook and is passed
directly to the encoder.

The GVQVAE loss function LG is similar to the original VQ-VAE loss with
the first term replaced with a graph reconstruction loss:

LG = log p(G|zq(G)) + ‖sg[ze(G)] − e‖2
2 + β‖ze(G) − sg[e]‖2

2 (1)

Here, sg denotes a stopgradient operator. This operator is defined as identity
during forward pass. During the backward pass it blocks gradients from passing
through its argument, as such its argument is treated as a constant. The first
term is the graph reconstruction loss, measured with binary cross-entropy loss.
The second term is the VQ loss. This encourages embedding vectors to move
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closer to encoder outputs, as measured by l2 distance. The final term is a com-
mitment loss which encourages the encoder outputs to not stray too far from
codebook vectors. Since backpropagation bypasses the discrete bottleneck, only
the second term optimises the codebook. The first term is optimised by both the
encoder and decoder, and the final term is optimised by the encoder.

We now describe the graph specific architectures of the encoder and decoder,
which both differ substantially from their image domain counterparts.

Encoder. The encoder begins with message passing GraphSAGE [11] layers
with ReLU activation and BatchNorm to obtain an embedding for each node.
The node embeddings are then concatenated to a single vector and projected
using a linear layer to produce a graph-level latent representation. This repre-
sentation is then reshaped to NZ vectors of dimension D which is then mapped
to the nearest codebook codes. The hyperparameter NZ denotes the number of
codes in the latent representation; the use of linear layers means NZ need not
be equal to the number of nodes in the original graph. This assists scalability to
larger graphs as, for example, a dataset with N = 500 may use ‖z‖ = 100 codes
to represent the graph.

The initial node feature vector for the i-th node of a graph G is the concate-
nation of three features. The first is the i-th row of the graph adjacency matrix
Aπ; graphs smaller than the maximum size N have this vector padded with
−1’s. Second is the node degree, and the final features are randomly sampled
from a Gaussian distribution and are resampled during each forward pass of the
encoder.

Decoder. The decoder learns to reconstruct the graph adjacency matrix from
the discrete representations. It uses a multi-layer perceptron (MLP) architec-
ture with four layers, having Tanh activation and dropout after each layer. The
output of the final layer is reshaped to a tensor R ∈ R

N×dout , corresponding
to individual node representations of dimension dout. An inner product followed
by sigmoid is applied to this tensor to obtain a probabilistic adjacency matrix
Â = σ

(
RR�

)
∈ R

N×N from which the final adjacency matrix A is assembled.

VQ Bottleneck. The bottleneck is simply the codebook, or embedding space,
e ∈ R

K×D. These are latent vectors the encoder outputs are mapped to in the
forward pass before being passed to the decoder. The indices of these vectors
will correspond to tokens in the vocabulary of the transformer during the second
stage of training. The codebook collapse problem in vector-quantized models is
a common [6,13] issue and refers to the tendency of these models to end up
utilising only one or few codebook vectors, thereby limiting the model’s overall
representational capacity. To alleviate this issue we follow [13] and batchnorm
the output of the encoder before assignment to codebook vectors, and set the
learning rate of the codebook to be ten times that of the encoder and decoder
parameters. Empirically we find this successful in promoting good codebook
usage.
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3.2 Transformer Decoder

The autoregressive transformer learns the prior p(z) over the discrete latents
from encoded graphs, with associated text captions as conditioning. It uses a
combined vocabulary of text tokens and graph tokens (i.e. indices of the code-
book vectors). For a (graph, text) pair, the text is byte-pair encoded and con-
catenated with the vector of graph tokens from the GVQVAE encoder to form
a single sequence. The transformer uses a decoder-only architecture similar to
GPT-2 [18]. We train the tokenizer and transformer from scratch, rather than
using a pretrained language model checkpoint, to keep model size small. Text is
lowercased prior to byte-pair encoding. The number of text token positions in
the model is set to the maximum encoded length in any caption; encoded texts
shorter than this are padded to the max length with a text padding token.

To generate text-conditioned graphs following training, text captions are
input to the transformer following byte-pair encoding and padding to the max-
imum text token length. All graph tokens are then generated autoregressively
using this transformer, and these are mapped back to their corresponding code-
book vectors from the GVQVAE. This is used as input for the GVQVAE decoder,
from which the graph is generated.

4 Datasets

We have curated two graph-text datasets to evaluate our model. Both are signif-
icantly larger than existing datasets used to evaluate general graph generative
models. The first is a real-world dataset of egocentric networks from the English
Wikipedia page link network, the other is a dataset of synthetic graphs. Texts
in the synthetic dataset contain explicit descriptions of the graph’s structure,
while the Wikipedia dataset has text associated with the central node. These
each correspond to a distinct graph-text alignment setting outlined in Sect. 1.

4.1 Graph-Text Paired Datasets

Wikipedia Ego Nets. Graphs in the Wikipedia dataset consist of two-hop
ego networks from the English Wikipedia inter-page link network. Nodes corre-
spond to articles and an edge indicates an in-text link between pages. We use
the cleaned 2018 link network from WikiLinkGraphs [4] and do not consider
edge direction. The graphs are paired with the concatenation of the ego node’s
article title and first sentence. There are 8000 graph-text pairs with graph sizes
60 ≤ |V | ≤ 160, and text length 26 ≤ |V | ≤ 571. To handle the neighbor explo-
sion problem common in large graph sampling, we construct eight subgraphs
of the full link network to instead sample from. We traverse sections of the
Wikipedia category hierarchy, ensuring little to no overlap, take the induced sub-
graph of pages in these visited categories and sample 1000 graphs from each. The
topology of the link structure is known to differ across Wikipedia, such as links
in Mathematics being sparse compared to a dense core observed in Physics [24].
This structural diversity implies some relationship between the semantic content
of articles and the link network from which we may learn.
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Synthetic Graphs. The synthetic dataset consists of sixteen distinct varieties
of common synthetic graphs. Both graphs and text are constructed methodically.
The dataset has a total of 3186 graph-text pairs, with graph sizes 20 ≤ |V | ≤ 160
and text length 50 ≤ |V | ≤ 228. Texts include a description of the graph variety
along with specific attributes such as the parameters used to generate it or
the number of nodes. While rule-based methods are sufficient to construct the
graphs in this dataset, it is useful for understanding our model. The explicit
relationships between texts and graphs allows easy visual evaluation of the text
and graph alignment.

4.2 Graph Datasets

To compare with existing graph generation models we also experiment in the
unconditioned setting with three graph-only datasets. These are: (1) A two-
community graph dataset [15,31] with 60 ≤ |V | ≤ 160, (2) The Wikipedia ego
graph dataset introduced above (excluding the texts), (3) A dataset of protein
graphs with 100 ≤ |V | ≤ 500.

5 Experiments

Table 1. Comparison with Condgen in the text-conditioned setting on the (graph,
text) datasets. Smaller MMD scores are better. Degree: degree distribution, Clust.:
clustering coefficient, Orbit: 4-node orbit counts, Spect.: graph Laplacian spectrum.

Synthetic Wiki ego

Degree Clust Orbit Spect Degree Clust Orbit Spect

Condgen 0.33 9.0e−2 8.9e−4 0.32 0.16 0.19 9.0e−2 0.10

VQ-T2G 8.5e−2 4.5e−2 4.5e−2 2.3e−2 4.7e−2 3.2e−2 8.0e−2 1.2e−2

We empirically verify the ability of VQ-T2G to generate graphs from text
captions, as well as its performance in unconditioned generation. For text-
conditioned experiments we evaluate with distributions of graph statistics
between generated graphs and the test set. We also perform visual inspection
for generated graphs in the synthetic dataset. When training VQ-T2G we use a
data split of 90% of data for training and 10% for testing, sharing the split in
both stages of training. For text-conditioned experiments we use Condgen [29]
as a baseline to compare with. For Condgen we encode the texts as a continuous
vector and use this as the conditioning vector. Other existing graph generation
models cannot readily incorporate text conditioning.
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Table 2. Results of unconditioned graph generation of VQ-T2G against existing graph
generator models. Smaller MMD scores are better. Degree: degree distribution, Clust.:
clustering coefficient, Orbit: 4-node orbit counts, Spect.: graph Laplacian spectrum.

Two-community Wiki ego (graphs only) Proteins

Degree Clust Orbit Spect. Degree Clust Orbit Spect. Degree Clust Orbit Spect

GRAN 0.23 3.9e−2 8.5e−2 2.4e−2 6.7e−3 2.7e−2 1.3e−2 3.3e−2 2.0e−3 4.7e−2 0.13 5.1e−3

SPECTRE 0.29 5.6e−2 2.5e−2 0.23 0.44 4.0e−2 2.0e−2 0.23 1.3e−3 4.7e−2 2.9e−2 2.0e−3

Condgen 0.19 6.5e−2 4.5e−2 0.1 5.0e−2 1.6e−2 1.1e−2 5.9e−2 – – – –

VQ-T2G 0.23 6.0e−2 3.4e−2 8.1e−2 1.5e−2 1.4e−2 7.1e−3 1.6e−2 0.14 0.12 0.36 4.5e−2

5.1 Evaluation Metrics

Our metrics follow those commonly used in the evaluation of unconditional graph
generators [14,15,23,31]. That is, the maximum mean discrepancy (MMD) over
the: degree distribution, clustering coefficient distribution, count of all orbits
with 4 nodes, and eigenvalues of the normalised graph Laplacian. We use the
total variation (TV) distance kernel in the MMD due to its speed and scalability.
We compute these statistics between graphs in the test set (the ground-truth)
and graphs generated by the model, one generated from each of the test set texts.
This setup will demonstrate the ability of a model to align generated graphs with
unseen texts. Low MMD scores indicate a model has learned well.

5.2 Results

Text-Conditioned Graph Generation. Results in experiments on the graph-
text datasets, in the text-conditioned setting, are reported in Table 1. VQ-T2G
strongly outperforms Condgen on all but one measured MMD metric. These low
scores imply our model successfully learns to align generated graphs with the
text conditioning, significantly better than the baseline.

Unconditioned Graph Generation. We next evaluate the model in the
unconditioned graph generation setting. We again compare against Condgen [29]
along with the unconditioned models GRAN [14] and SPECTRE [15]. To train
VQ-T2G in the unconditioned setting we train the GVQVAE as normal, then
train the transformer over only graph tokens (i.e. a text length and text vocab-
ulary of zero). For the unconditioned Wiki ego dataset we reuse the GVQVAE
from the conditioned experiments and only train the transformer separately.
For Condgen we simply leave feature vectors empty. Note we were unable to get
Condgen to work with the proteins dataset. Of most note are the two-community
and the Wiki ego datasets; we include the proteins dataset to highlight current
limitations of the VQ-T2G model. Table 2 lists the unconditioned results. We
again generate the same number of graphs as there are in the test set and com-
pute MMD scores between these. Notably, VQ-T2G performs well on the Wiki
ego dataset but fails to beat other models in the two-community and proteins
datasets. We expect this is due to the smaller dataset sizes. It is difficult to
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train transformer models with small datasets, it was found to be easy to overfit.
Ensuring sufficient graph diversity from the unconditioned sampling was also
difficult. However it did perform well for the unconditioned Wiki ego dataset,
which is more evidence that dataset size helps VQ-T2G performance signifi-
cantly. For the proteins dataset we point out the much lower performance of our
model compared to baselines. The current architecture of VQ-T2G has difficulty
scaling to large graphs, and this, combined with the small size of the proteins
dataset, leads to poor generalisation to unseen graphs.

Fig. 2. Visualization of graphs from the synthetic dataset generated by Condgen and
VQ-T2G, along with the text used to generate the graph and the real graph paired
with that text.

Visual Evaluation. Examples of generated graphs and their conditioning text
from the synthetic dataset are in Fig. 2. We compare samples from our model
against those generated by Condgen, along with the ground-truth graph match-
ing the caption. While it is clear that neither of the models generate graphs that
exactly match the text, the graphs generated by VQ-T2G are far closer to the
real graph than those generated by Condgen. It is unsurprising that Condgen’s
results are not as accurate as the model was not designed for text conditioning.
VQ-T2G is able to generate graphs that are approximately the correct topology
but still has much room to improve. Longer and more precise text descriptions
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could assist with this. Also of note is that the conditioning text contains the
number of nodes of the graph as an integer. This is likely a non-optimal part to
include in the dataset and may be another partial reason for VQ-T2G’s perfor-
mance.

6 Conclusion

In this paper we propose a model for the novel problem of text-conditioned graph
generation, called the Vector-Quantized Text-to-Graph Generator (VQ-T2G).
We develop an adaptation of VQ-VAE, named the GVQVAE, that works on
graph structured data, encoding graphs into a discrete latent space and recon-
structing them from this representation. This model can handle graphs with
varied sizes. Our VQ-T2G model uses a GVQVAE followed by an autoregressive
transformer that incorporates text conditioning to generate graphs. We curate
two datasets of graphs paired with text for evaluation of VQ-T2G. Experiment
results show that it is capable of generating high-quality graphs aligned with
conditioning text. On both quantitative metrics and visual evaluations it signif-
icantly outperforms the Condgen baseline. In addition, VQ-T2G shows promis-
ing results in unconditioned graph generation, being competitive with existing
graph generators on datasets where text is not available, although its scalability
to larger graphs is a current weak point. Future work may address this scalability
in particular.
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Abstract. This paper proposes an ensemble model for the Stanford
Question Answering Dataset (SQuAD) with the aim of improving per-
formance compared to baseline models such as Albert, and Electra. The
proposed ensemble model incorporates Sentence Attention (SA-Net) and
Answer Attention (AA-Net) components, which leverage attention mech-
anisms to emphasize important information in sentences and answers,
respectively. Additionally, the model adopts a read+verify architecture.
In the Read stage, the model’s focus is on accurately predicting answer
text, while in the Verify stage, it emphasizes the ability to determine the
presence or absence of an answer, providing a probability for the exis-
tence of an answer. To enhance the training data, techniques for data aug-
mentation are utilized, including Synonyms Replacement and Random
Insertion. The experiment results demonstrate significant improvements
on the Albert and Electra baseline models, highlighting the effectiveness
of the proposed ensemble model for SQuAD.

Keywords: answer attention (AA) · sentence attention (SA) · SQuAD

1 Introduction

Natural Language Processing (NLP) has witnessed remarkable advancements in
recent years, with various deep learning models achieving impressive results in
tasks like question answering. Among these tasks, the Stanford Question Answer-
ing Dataset (SQuAD) [7] has served as a benchmark for evaluating the perfor-
mance of question-answering systems. The success of models like Bert, Albert,
and Electra has demonstrated the power of large-scale language models in cap-
turing complex linguistic patterns and understanding contextual information.
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Ensemble models have emerged as a promising technique to further enhance
the performance of NLP models. By combining multiple components or tech-
niques, ensemble models can effectively leverage the strengths of individual mod-
els and mitigate their weaknesses, leading to better overall performance. In this
context, this paper proposes a novel ensemble model for the SQuAD task, aim-
ing to outperform existing baseline models and push the boundaries of question
answering accuracy.

The primary goal of this paper is to demonstrate the effectiveness of the pro-
posed ensemble model compared to existing baseline models (RoBERTa, Albert,
Electra, etc.) on the SQuAD 2.0 [6]. We aim to showcase significant improve-
ments in question answering accuracy by adopting the Read+Verify approach,
leveraging data augmentation techniques, and incorporating attention mecha-
nisms. The results of this study provide valuable insights into the potential
of ensemble models for enhancing NLP applications, particularly in question
answering scenarios.

This research makes significant contributions to the field of NLP and QA.
Firstly, it proposes an ensemble model for SQuAD 2.0 that outperforms existing
baseline models. The ensemble model utilizes Sentence Attention (SA-Net) and
Answer Attention (AA-Net) modules, which emphasize important context and
relevant cues, leading to a deeper understanding of the input and more accurate
predictions. Moreover, the model leverages the Read+Verify two-stage approach,
where the Read stage focuses on predicting answer text accurately, while the Ver-
ify stage determines the presence or absence of an answer. This two-stage process
enhances the model’s performance and robustness, making it more practical for
real-world applications. Additionally, the incorporation of data augmentation
techniques, such as Synonyms Replacement (SR) and Random Insertion (RI),
improves the model’s generalization capabilities by introducing linguistic varia-
tions in the training data.

Secondly, the evaluation results demonstrate substantial performance
improvements over baseline models, showcasing the effectiveness of the proposed
ensemble approach. The ensemble model’s enhanced accuracy and robustness
hold practical implications for various NLP applications, including chatbots,
virtual assistants, and information retrieval systems. Furthermore, the research
provides valuable insights into the benefits of ensemble modeling in NLP tasks,
offering guidance to researchers and practitioners seeking to design and imple-
ment effective ensemble models for other applications. In conclusion, the con-
tributions of this study advance the state-of-the-art in question answering by
introducing an innovative ensemble model that demonstrates superior perfor-
mance, practicality, and potential for further advancements in NLP.

2 Related Work

In the field of NLP, researchers have made significant progress in question
answering tasks, particularly using SQuAD 2.0 [6] as a benchmark. Many state-
of-the-art models have been proposed to tackle this task. Some notable ones
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include BERT [3], ALBERT [4], and ELECTRA [2] which have demonstrated
the effectiveness of models in SQuAD 2.0.

BERT is a former Google-released model, and ALBERT is a variant of
BERT. Both BERT and ALBERT have been empirically proven to excel in var-
ious language processing tasks, attesting to their effectiveness and performance.
ALBERT, in particular, has demonstrated remarkable prowess across a diverse
spectrum of tasks, showcasing its ability to achieve exceptional results in chal-
lenging endeavors like the SQuAD 2.0 challenge, which is the focal task under
examination in this study. Moreover, the research extends the investigation to
ELECTRA model. By conducting further training on ELECTRA-Large, a more
powerful model is obtained, outperforming ALBERT in terms of performance on
the General Language Understanding Evaluation (GLUE) benchmark [8]. Fur-
thermore, ELECTRA-Large establishes a new state-of-the-art benchmark on the
SQuAD 2.0 dataset.

Syntax-Guided Network (SG-Net) is introduced in [11] that enhances
machine reading comprehension by integrating explicit syntactic constraints into
a self-attention network (SAN) based Transformer encoder. Experimental results
on benchmarks like SQuAD 2.0 and RACE showcase SG-Net’s effectiveness in
improving language representation and comprehension of complex passages. [12]
addresses the challenge of Machine Reading Comprehension (MRC) with a focus
on effectively handling unanswerable questions. It introduces the Retro-Reader,
which combines two stages: sketchy reading for initial judgments and intensive
reading for answer verification, achieving state-of-the-art performance on bench-
mark MRC datasets like SQuAD 2.0 and NewsQA.

Data augmentation techniques have also been employed to address the lim-
ited training data challenge in NLP. Techniques like word replacement, back-
translation, and paraphrasing have been shown to enhance model robustness
and generalization capabilities. For instance, Easy Data Augmentation (EDA)
is introduced in [9], which involves random word replacement, insertion, dele-
tion, and synonym replacement, leading to improved performance in various
NLP tasks.

Building on these prior works, this research introduces a novel ensemble
model tailored for the SQuAD 2.0 task, leveraging the substantial performance
and robustness improvements offered by ensemble techniques in question answer-
ing systems [1]. The model adopts a two-stage approach, called Read+Verify,
focusing first on predicting answers accurately and then determining the proba-
bility of answer existence. Moreover, the model incorporates Synonyms Replace-
ment and Random Insertion to diversify the training data. The performance of
the proposed ensemble model is evaluated on the SQuAD 2.0 dataset, demon-
strating promising results compared to baseline models like ALBERT and ELEC-
TRA. The study contributes valuable insights into improving question answering
accuracy and practicality through ensemble models and data augmentation tech-
niques.
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3 Problem Definition

3.1 QA Task

Given a passage P and a question Q, the goal is to find the answer span A ⊆ P
that correctly answers the question.

Mathematically, we can represent the passage P as a sequence of tokens:

P = {p1, p2, . . . , pN},

where pi represents the i-th token in the passage.
Similarly, the question Q can be represented as a sequence of tokens:

Q = {q1, q2, . . . , qM},

where qi represents the i-th token in the question.
The answer span A is represented by the start index as and the end index

ae in the passage P:
A = {pas

, pas+1, . . . , pae
}.

The goal is to find the values of as and ae that maximize the probability
P (as, ae|P,Q), where the answer span is a valid response to the question Q.

An illustrative example is provided below to demonstrate this problem.

Consider the following passage and question, the task is to find the
answer span that correctly answers the question based on the information
in the passage.

Passage:

The capital of France is Paris. It is known for its art, culture, and
history.

Question:

What is the capital of France?

The correct answer span is:

A = {Paris}.

3.2 Identifying the Presence or Absence of Answers

Besides, in SQuAD 2.0, there are two different types of questions:

1. No-Answer Questions: These are questions for which the given context
does not contain the information necessary to provide a valid answer. These
questions challenge models to recognize when an answer is not present in the
provided context and to appropriately indicate that fact.
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2. Answerable Questions: These are questions for which the context does
contain relevant information that can be used to extract a specific answer.
These questions test the model’s ability to locate and understand information
within the context and produce an accurate response.

To model the probability of an answer being present or absent, we can use a
binary random variable Y:

Y =

{
1 if an answer is present
0 if an answer is absent

The SQuAD 2.0 dataset is designed to encompass both types of questions, mim-
icking real-world scenarios where some questions have answers within the pro-
vided context, while others do not. This diversity of question types encourages
the development of models that can accurately identify the presence or absence
of answers and provide meaningful responses accordingly.

4 Method

The proposed ensemble model adopts a two-stage approach known as
Read+Verify. In the Read stage, the model’s primary objective is to predict the
answer text with high accuracy. By maximizing the model’s ability to predict
the correct answer, it lays the foundation for improved performance in question
answering. However, predicting answers alone may not be sufficient in real-world
scenarios, as some questions may not have any valid answers. Therefore, the sec-
ond stage, Verify, becomes crucial, where the model focuses on determining the
probability of the presence or absence of an answer to a given question. This
stage introduces a new dimension of robustness and practicality to the ensemble
model.

To address the challenge of limited training data, data augmentation
techniques are incorporated into the ensemble model. Specifically, Synonyms
Replacement (SR) randomly selects words from sentences and replaces them
with synonyms from a synonym dictionary. This process introduces additional
linguistic variations into the training data, allowing the model to generalize bet-
ter to unseen examples. Moreover, the model leverages Random Insertion (RI),
where it randomly selects a word from a sentence and inserts a synonym from
the word’s synonym set at a random position. This repeated process further
diversifies the data and enhances the model’s ability to handle various linguistic
structures.

Furthermore, the proposed ensemble model incorporates Sentence Attention
Layer (SA-Net) and Answer Attention Layer (AA-Net) components. These atten-
tion mechanisms enable the model to focus on critical information in both sen-
tences and answers, respectively. By emphasizing important context and relevant
cues, the ensemble model gains a deeper understanding of the input, leading to
more accurate predictions.
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Fig. 1. In our approach, we begin by inputting the Query + Context pair into a
pretrained language model like BERT. The output goes through a linear layer, predict-
ing both the answer (‘Normandy’) and its position (‘22’). This prediction guides the
extraction of the relevant context portion. Initially, the Query + Context contains
384 words, which reduces to 192 words after a ‘snip’ process. The resulting Query +
Snipped Context is then embedded. This embedding moves through a linear layer
before being fed into a PLM for sequence classification. The none-answer probability
obtained helps us infer the final answer.
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4.1 Model Architecture

In Fig. 1, we show the proposed ensemble model follows the Read+Verify two-
stage approach include Read phase and Verify Phase which are shown in
Sects. 4.1 and 4.1 respectively.
We illustrate the approach using an example from the SQuAD 2.0 dataset:

Question: What is France a region of?
Context: The Normans were the people who in the 10th and 11th
centuries gave their name to Normandy, a region in France ... over
the succeeding centuries.

In our process, the Query + Context pair is fed into a pretrained language
model, such as BERT. The resulting text representation is then passed through
a linear layer to predict the answer as ‘Normandy’ and its position as ‘22’. This
information is used to extract the relevant portion of the context. Prior to the
snipping procedure, there exist 384 words within the Query + Context, which
reduces to 192 words subsequently. Following this, we obtain the embedding for
Query + Snipped Context:

Question: What is France a region of?
Context: The Normans ... in the 10th and 11th centuries gave
their name to Normandy, a region in France.

This embedding is forwarded to a sequence classification pretrained language
model (PLM) after being passed through a 1-layer CNN classifier. The result is
the none-answer probability, from which we can infer the final answer.

Read Stage. The Read Stage is a part of a system that helps answer questions
using PLMs. The stage starts by taking two pieces of information: a passage of
text that gives some background (context) and a question. Next, the passage
and question are tokenized and embedded. Then, a group of different models
(such as BERT) work together. Each model looks at the organized context and
question and makes a representation of the context and question. This linear
layer is applied to predict the answer to the question and where in the context
the answer might be. The predicted answer and position from all the models are
collected and given as the output of this stage. The detailed work flow of Read
Stage is shown in Algorithm 1.

Verify Stage. The process involves obtaining an embedding for a combination
of a query and a snipped of context. This embedding is then sent to a sequence
classification PLM after undergoing a 1-layer CNN classifier. The outcome is the
probability of there being no answer, which can help infer the final answer.



82 L. Tang et al.

Algorithm 1. Read Stage Model
1: function ReadStageModel(contextPassage, question)
2: inputIds, attentionMask ← TokenizeAndFormat(contextPassage,

question)
3: readModelOutputs ← {}
4: for readModel in ensembleReadModels do
5: output ← ReadModel(inputIds, attentionMask)
6: readModelOutputs.append(output)
7: end for
8: averagedPredictions ← AveragePredictions(readModelOutputs)
9: return averagedPredictions

10: end function

Algorithm 2. Verify Stage Model
1: function verifyStageModel(contextPassage, question)
2: inputIds, attentionMask = tokenizeAndFormat(contextPassage,

question)
3: verifyModelOutputs = {}
4: for verifyModel in ensembleV erifyModels do
5: output = verifyModel(inputIds, attentionMask)
6: verifyModelOutputs.append(output)
7: end for
8: averagedPredictions = averagePredictions(verifyModelOutputs)
9: return averagedPredictions

10: end function

4.2 SA-Net and AA-Net

The process of calculating the final context embedding for a context and question
representation using the attention mechanism is shown in Fig. 2. The input to
the PLM consists of a question and context, separated by ‘[SEP]’ and preceded
by ‘[CLS]’. This input’s representation is denoted as hi. Through the utiliza-
tion of specialized masked attention layers, referred to as Sentence Attention
and Answer Attention, a transformed representation, h′

i, is formulated. Employ-
ing a weighted summation of both hi and h′

i, we get the combined represen-
tation hi. Subsequently, upon passing through a task-specific layer, the final
question+context embedding is obtained.

We elaborate on each stage, breaking down the process step by step with the
aid of Eqs. 1, 2, 3 and 4:

1. Equation 1 defines the Question+Context representation H as a matrix. It
consists of n hidden states (h1, h2, ..., hn), which are likely the output of some
previous layers in a neural network or pre-trained embeddings representing
the context and question.

2. Equation 2 introduces the attention mechanism, which calculates attention
weights, denoted as A′

i, for each hidden state hi in H. The attention weights
are computed using the dot product between the query vector Q′

i associated
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with hi and the key vectors K ′
i. The result of the dot product is then divided

by the square root of dk, which likely represents the dimensionality of the key
vectors. The division by the square root is used to scale the dot product and
prevent large values that could lead to unstable gradients during training.
The result is then passed through a softmax function to obtain normalized
attention weights. We add the M as mask matrix in our Sentence Atten-
tion and Answer Attention layers. The process of Sentence Attention involves
identifying the tokens in a sentence that are relevant to the given question
and marking them as true. Additionally, Answer Attention operates on top
of Sentence Attention to identify and mark the sentences that are related to
the answer.

3. Equation 3 calculates the weighted sum of the value vectors V ′
i based on the

attention weights A′
i. This step combines the relevant information from the

value vectors according to the attention distribution obtained in Eq. 2. The
resulting weighted sum is denoted as W ′

i .
4. Equation 4 defines how to compute the final context embedding hi using a

weighted combination of the original hidden state hi and the attention-based
state h′

i (obtained in Eq. 3). The parameter α controls the balance between
the two representations. If α is 1, only the original state hi is used, and if α
is 0, only the attention-based state h′

i is used. The combination of the two
representations allows the model to leverage both local and global information
in the final question+context embedding.

In summary, the given equations depict the process of applying attention to
the question+context representations hi to calculate the final question+context
embedding hi.

H = [h1, h2, . . . , hn] (1)

A′
i = Softmax

(
M · (Q′

iK
′
i
T )√

dk

)
(2)

W ′
i = A′

iV
′
i (3)

hi = αhi + (1 − α)h′
i (4)

4.3 Ensemble Model Inference

The ensemble strategy is utilized during both the Read and Verify stages to
arrive at a final answer prediction. In the Read stage, the prediction pertains
to the answer text, while in the Verify stage, it determines the probability of
answer existence.

In Fig. 3, the process of attaining the predicted answer, along with its cor-
responding position and probability, is illustrated for the read phase. With a
total of N Read Models, we acquire projected answers, answer positions, and
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Fig. 2. This outlines the process for calculating the question+context embedding. The
tokenized question+context, separated by ‘[SEP]’ and introduced by ‘[CLS]’, are input
to the PLM to obtain the representation hi. This representation is improved through
masked attention layers to create a modified version, h′

i, and is subsequently refined
by a weighted sum to yield hi, producing the final question+context embedding after
being processed by a task-specific layer.

their associated probabilities. Subsequently, we employ the algorithm, as demon-
strated by Eqs. 5 and 6, utilizing the predictions and their respective probabilities
to generate the collective forecast. Z1, Z2, . . . , ZN represent the outcomes of these
forecasts, while the corresponding probabilities are denoted as u1, u2, . . . , uN .
Initially, we address scenarios where g models predict the same result (g being
any integer greater than 1, signifying multiple models predicting identically).
The combined probability Ucombined is articulated as follows:

Ucombined =

{
u1 · (1.5)g, if Z1 = Z2 = . . . = Zg

u1, otherwise
(5)

Next, we calculate the normalized probabilities Unormalized for all N models,
ensuring that their sum is 1:

Unormalized =
Ucombined∑N

l=1 Ucombined,l
(6)

Note that in the above equations, Zl represents the prediction outcomes of the
models, ul represents the corresponding probabilities, and g represents the num-
ber of same predictions.

Differently, the Verify phase adopts XGBoost as the chosen ensemble strat-
egy. In addition to the probabilities of answer existence from M verify models,
the feature representation obtained from the Read phase is also incorporated
as a feature. The conclusive answer is derived from the output of XGBoost. A
visual representation of this process is shown in Fig. 4.
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Fig. 3. This is how the ensemble strategy is implemented during the Read phase.

4.4 Data Augmentation

Synonym Replacement (SR) and Random Insertion (RI) techniques are utilized
to enhance the training data. The procedures for these techniques are outlined
in Algorithms 3 and 4 respectively.

In the Read phase, a total of 5 sentences, randomly selected, are inserted.
These sentences constitute 20% of the overall content. Additionally, 1 sentence,
chosen at random, is inserted, making up 33% of the text. These sentences
are extracted from Wikipedia. During the Verify phase, questions along with
their corresponding answers are employed. Subsequently, sentences related to the
context of these questions are omitted, generating samples devoid of answers.

5 Experiments

During our experiments, we chose the most recent models available at the time
of our research, which include BERT [3], XLNet [10], RoBERTa [5], SG-Net [11],
ALBERT [4], and ELECTRA [2].
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Fig. 4. This is how the ensemble strategy is implemented during the Verify phase.

Algorithm 3. Synonyms Replacement (SR)
1: function synonymsReplacement(text, n)
2: words = tokenize(text)
3: nonStopwords = removeStopwords(words)
4: selectedWords = randomlySelectNWords(nonStopwords, n)
5: replacedText = replaceSelectedWordsWithSynonyms(text,

selectedWords)
6: return replacedText
7: end function

5.1 Evaluation

The SQuAD evaluation method is used to assess the performance of question-
answering systems on the SQuAD 2.0 dataset. The dataset consists of a set
of questions and corresponding passages, and the task is to predict the answer
span within the passage for each question. The evaluation is based on two main
metrics:

Exact Match (EM). EM measures the percentage of predicted answers that
exactly match the ground-truth (gold standard) answers. If the predicted answer
matches the exact span of the gold standard answer, the prediction is considered
correct and contributes to the EM score.
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Algorithm 4. Random Insertion (RI)
1: function randomInsertion(text, n)
2: words = tokenize(text)
3: nonStopwords = removeStopwords(words)
4: insertedText = text
5: for i in range(n) do
6: wordToInsert = randomlySelectWord(nonStopwords)
7: synonymToInsert = randomlySelectSynonym(wordToInsert)
8: insertedText = randomlyInsertSynonym(insertedText, wordToInsert,

synonymToInsert)
9: end for

10: return insertedText
11: end function

F1 Score. The F1 score is a measure of the overlap between the predicted
answer span and the ground-truth answer span. It considers both precision and
recall. Precision is the ratio of the number of correctly predicted tokens to the
total number of predicted tokens, while recall is the ratio of the number of
correctly predicted tokens to the total number of ground-truth tokens. The F1
score is the harmonic mean of precision and recall.

The EM and F1 scores are commonly used to evaluate the performance of
question-answering models on the SQuAD 2.0 dataset. A higher EM score indi-
cates that the model’s predictions exactly match the ground-truth answers more
often, while a higher F1 score indicates that the model’s predictions have a
higher overlap with the ground-truth answers in terms of token-level accuracy.
During evaluation, each question’s predicted answer span is compared to the cor-
responding ground-truth answer span, and the EM and F1 scores are computed
over the entire dataset by averaging the scores for individual questions.

5.2 Experiment Results

Snip is a commonly used method in SQuAD 2.0 dataset. This approach involves
selecting the shortest snippet within a passage that contains the answer to a given
question. By focusing on the most concise and relevant context, the snip method
forces the model to prioritize crucial information for accurate answers while
reducing computational overhead associated with processing longer passages.

Based on the results presented in Table 1, it is evident that the Snip technique
has a positive impact on the performance of the ensemble model. Comparing the
‘Ensemble without Snip’ and ‘Ensemble with Snip’, we can see that the inclusion
of the Snip technique results in a marginal improvement in both the Exact Match
(EM) score and the F1 score. With the ‘Ensemble with Snip’, the EM score
increased from 90.516% to 90.525%, and the F1 score increased from 92.657% to
92.665%. Even though the improvements are small, they still indicate that the
Snip technique enhances the ensemble’s ability to generate more accurate and
precise answers.
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Therefore, it is reasonable to conclude that the Snip technique is good and
beneficial for improving the ensemble model’s performance on the given task.

Table 1. The Snip technique in the ensemble model, as shown in this table, yields a
marginal yet positive enhancement in both Exact Match and F1 scores (EM: 90.516%
to 90.525%, F1: 92.657% to 92.665%) on SQuAD 2.0 dev. These improvements suggest
the Snip technique’s value in refining the ensemble’s precision and accuracy for the
task.”

EM F1

Ensemble without Snip 90.516 92.657
Ensemble with Snip 90.525 92.665

Table 2. SA-Net-enhanced models, like ALBERT+SA-Net and ELECTRA+SA-Net,
demonstrate improved performance over their base models, achieving higher Exact
Match and F1 scores on SQuAD 2.0’s development and test sets. This enhancement
signifies the efficacy of the SA-Net approach in enhancing QA capabilities.

Model SQuAD 2.0 dev SQuAD 2.0 test
EM F1 EM F1

BERT [3] – – 82.1 84.8
SG-Net [11] – – 87.2 90.1
XLNet [10] 86.1 88.8 86.4 89.1
RoBERTa [5] 86.5 89.4 86.8 89.8
ALBERT [4] 87.4 90.2 88.1 90.9
ALBERT+SA-Net 87.92 90.53 88.4 90.92
ELECTRA [2] 88.0 90.6 88.7 91.4
ELECTRA+SA-Net 88.59 91.03 88.85 91.49

As the experiment results in Table 2, it appears that SA-Net (presumably
referring to the model variants with “+SA-Net” in their names) performs slightly
better than the base models. Both ALBERT+SA-Net and ELECTRA+SA-Net
achieve higher Exact Match (EM) and F1 scores on both the development and
test sets of SQuAD 2.0 compared to their respective base models (ALERT
and ELECTRA). The improvement in performance indicates that the SA-Net
approach is effective in enhancing the question-answering capabilities of these
models. We will update the our model result on the leaderboard once it’s been
accepted.



SA-Net, AA-Net 89

6 Conclusion

This research presents significant contributions to NLP and QA by proposing an
ensemble model for SQuAD 2.0 that surpasses existing baseline models (Bert,
Albert, and Electra). The model adopts a Read+Verify two-stage approach,
improving performance and robustness for real-world applications. Data aug-
mentation techniques, such as Synonyms Replacement (SR) and Random Inser-
tion (RI), enhance the model’s generalization. Integration of Sentence Attention
Layer (SA-Net) and Answer Attention Layer (AA-Net) components provides a
deeper understanding of input and more accurate predictions. Evaluation results
demonstrate substantial performance improvements, with practical implications
for NLP applications like chatbots and virtual assistants. The study offers valu-
able insights into ensemble modeling in NLP tasks, advancing the state-of-the-art
in question answering with its innovative and practical approach.
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Abstract. In order to detect outliers and potential anomalies in datasets,
anomaly detection plays a pivotal role in identifying infrequent and irreg-
ular occurrences. The purpose of this paper is to examine and compare the
effectiveness of prominent anomaly detection algorithms, including Isola-
tion Forest, Local Outlier Factor (LOF), and One-Class Support Vector
Machines (SVM). A variety of datasets are used in our assessment to evalu-
ate key metrics such as precision, recall, F1-score, and overall accuracy. We
also introduce innovative techniques that enhance the interpretability of
these algorithms, shedding light on the underlying factors that contribute
to anomaly detection. By providing insights into the attributes and behav-
iors associated with anomalies, our research empowers decision-makers
to cultivate a profound comprehension of the identified anomalies, subse-
quently facilitating well-informed decisions grounded in the outcomes of
anomaly detection. Through our meticulous comparative analysis and our
dedication to unraveling the elements of explainability, we provide invalu-
able perspectives and pragmatic suggestions to facilitate effective anomaly
detection in real-world scenarios.

Keywords: Anomaly Detection · Unsupervised Learning ·
Explainability

1 Introduction

Anomalies are outliers, noise, exceptions, and deviations from the real behavior
of the system. Detecting anomalies involves identifying objects, patterns, occur-
rences, and observations that do not follow an anticipated pattern [6]. Anomaly
detection plays a crucial role in various domains, including Cybersecurity, fraud
detection, industrial monitoring, and healthcare. It is possible to identify out-
liers and potential anomalies that require special attention by identifying and
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flagging rare and irregular instances within datasets. The traditional supervised
learning approach relies on labeled data, making it less suitable for detecting
anomalies in unsupervised datasets. Due to their ability to uncover unknown
anomalies without relying on pre-labeled data, unsupervised anomaly detection
algorithms have gained increasing attention [15].

Anomaly detection methods have been found to be useful in a variety of fields,
but they are not without their challenges. Since anomalies are often rare and dif-
ficult to identify in real-world scenarios, obtaining labeled data for anomalies can
be challenging [12]. Furthermore, conventional anomaly detection methods may
face difficulties in explaining the anomalies detected in the data. Many existing
anomaly detection methods, often operate as “black-box” models, providing lit-
tle to no insight into how they arrive at their anomaly detection decisions. This
lack of transparency and interpretability hinders the adoption of these algorithms
in critical domains where explanations for detected anomalies are essential for
decision-making [4].

In our paper, we investigate unsupervised anomaly detection algorithms and
explore their effectiveness in identifying anomalies within diverse datasets, as
well as their limitations. In this paper, we focus on three widely used algorithms:
isolation forest, local outlier factor (LOF), and one-class support vector machines
(SVM). In terms of computational efficiency, scalability, and interpretability,
these algorithms leverage different techniques to detect anomalies.

The main contribution of this paper can be summarized as follows.

– We provide a comprehensive analysis and comparison of these algorithms,
evaluating their performance metrics such as precision, recall, F1-score, and
overall accuracy on various datasets.

– Our study is focused on benchmarking a variety of algorithms against each
other within the realm of anomaly detection. The primary objective is to
discern and highlight the unique strengths and weaknesses exhibited by these
algorithms across diverse anomaly detection scenarios.

– Through an exploration of novel techniques, we explore how to make algo-
rithms more interpretable. By uncovering the underlying factors contributing
to detected anomalies, we empower decision-makers to gain deeper insights
into the anomalies detected and make informed decisions based on the
anomaly detection results.

– We bridge the gap between algorithmic efficiency and human interpretability
by combining performance evaluation with explainability.

This paper has the following structure. The background of anomaly detection
models is discussed in Sect. 2. The methodology used in this paper is described
in Sect. 3. The detailed implementation of data preprocessing, model training
and evaluation, and explainability is presented in Sect. 4. In Sect. 5, we present
the evaluation results of these models and datasets whereas in Sect. 6, we present
a review of the exiting work. Our final section concludes our paper and outlines
our future plans.
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2 Background

Data mining and machine learning use anomaly detection to identify occurrences
that are significantly different from the norm. Since machine learning has gained
popularity in anomaly identification, both supervised and unsupervised learning
methods have been used to capture complicated patterns and identify anomalies.
For tasks, where anomalies are identified in the training data, supervised learning
techniques such as Naive Bayes, Support Vector Machines (SVM) and K-Nearest
Neighbors have been investigated and compared again, and One Class SVM, an
unsupervised anomaly detection algorithm that outperforms these supervised
algorithms [7]. These algorithms may face difficulties with labeled data avail-
ability in real-world applications where anomalies are uncommon and difficult
to obtain. Hence, we focus on anomaly detection methods based on unsuper-
vised learning techniques that do not require labeled training data. Unsupervised
methods such as Local Outlier Factor (LOF), Isolation Forest, and One-Class
SVM are used.

Fig. 1. Isolation Forest [9]

2.1 Isolation Forest

Isolation Forest is a well-known ensemble-based anomaly detection algorithm
lauded for its efficiency and capacity to handle high-dimensional data. This
algorithm operates by isolating anomalies into partitions in a random forest-like
manner. Decision trees are constructed by recursively selecting random features
and splitting randomly, which isolates the anomalies effectively.

In Fig. 1(a), a relatively small number of anomalies is visible. This results in
the formation of smaller partitions and shorter paths within the tree structure.
Contrarily, Fig. 1(b) demonstrates instances characterized by distinct attribute
values, leading to early partitioning. Notably, anomalies are likely to be swiftly
isolated within a few steps, thereby setting them apart from the larger cluster of
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data points, which necessitate more partitions for segregation. The path length
traversed by an instance within the tree serves as an anomaly score, where
a shorter path corresponds to higher anomaly levels. This scoring mechanism
enables efficient differentiation between anomalies and normal data points.

2.2 Local Outlier Factor (LOF)

LOF is a density-based anomaly detection algorithm that assesses the local den-
sity of instances relative to their neighbors. It calculates the local reachability
density for each data point by comparing its distance to its k-nearest neighbors.
The LOF score indicates how much an instance’s density deviates from that of
its neighbors. Low LOF scores correspond to points with significantly lower den-
sities than their neighbors, indicating anomalies [3]. Figure 2 illustrates the LOF
mechanism: for data point o2, its local density is computed using its k-nearest
neighbors; if o2 has lower density than its neighbors, it is labeled as an anomaly.

Fig. 2. Local Outlier Factor [1]

2.3 One-Class Support Vector Machine (One-Class SVM)

One-Class SVM is a widely-used algorithm for unsupervised anomaly detection.
It is based on the principles of Support Vector Data Description (SVDD). Its
primary objective is to learn a hyper-sphere to characterize a single class of data
points. Instances outside the decision boundary are classified as anomalies [2]. In
Fig. 3, the working principle of a One Class Support Vector Machine is depicted.
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Points near the origin are classified as anomalies (-1), while all other points are
considered normal.

Fig. 3. One Class Support Vector Machine [10]

This paper evaluates model performance based on precision, recall, F1-score,
and accuracy metrics. Accuracy reflects the correctness of normal and anomaly
classifications, while precision gauges accurate positive predictions, emphasizing
correct identification without false positives. Recall measures the model’s ability
to identify actual positives within the dataset, vital for imbalanced scenarios,
and F1-score balances precision and recall, proving valuable for uneven data.
Given the rarity of anomalies and their significant deviations, a focus on recall
is crucial to minimize false negatives, ensuring robust real-world anomaly detec-
tion. The use of F1-score addresses imbalanced data’s challenges, accounting for
false positives and negatives. The implementation leverages Anchors, an inter-
pretable rule extraction method, chosen for its simplicity and high precision,
enhancing the model’s trustworthiness.

The research encompasses cardiovascular disease and credit card fraud
datasets, addressing class imbalances and distinct data distributions. Compara-
tive analysis sheds light on algorithm effectiveness, offering insights into var-
ious contextual advantages and disadvantages. Additionally, the paper high-
lights explainability’s pivotal role in anomaly detection, striving to demystify
algorithm decisions through interpretable methodologies. By developing unsu-
pervised anomaly detection algorithms and providing practical guidance, the
research empowers users to select optimal approaches tailored to their unique
scenarios.
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3 Methodology

The main purpose of this research paper is to identify anomalies using different
models and explain why these models made this decision. Figure 4 shows a the
workflow of the proposed model. This method consists of the following steps.

Fig. 4. Graphical Representation of Proposed Methodology

– Data Collection: To begin with, we have carefully selected datasets that
contain anomalies, including Heart Disease Prediction and Credit Card Fraud
detection. These datasets are both expansive and diverse, providing a com-
prehensive testing ground for the subsequent steps.

– Data Pre-processing: The second step involves data pre-processing. A judi-
cious selection of pertinent features becomes imperative for optimizing model
performance when recognizing the presence of both useful and extraneous fea-
tures in the dataset. Due to the heterogeneous nature of the data, consisting
of both categorical and continuous attributes, adept handling is required. In
order to overcome this, a two-pronged approach is adopted: discretization of
continuous values to impart discreteness, followed by feature encoding, such
as one-hot encoding and label encoding, for categorical attributes. In order
to ensure homogeneity and comparability, normalization or standardization
techniques are used.

– Model Training: This step involves training the model. As outlined in
Sect. 2, the three models are trained here for practical implementation. To
pinpoint the optimal hyperparameters for each dataset-model pair, meticu-
lous experiments are conducted.

– Model Testing: Testing the model takes place in the fourth step. In order to
assess the models, a distinct test dataset is used, which was not used during
training. As part of the performance evaluation, the models are scrutinized
against the defined evaluation metrics - precision, recall, F1-score, and accu-
racy.

– Performance Evaluation: In this step, the efficacy of the model is com-
prehensively evaluated. Leveraging the outcomes of the previous phase, the
models are subjected to rigorous evaluation across different test datasets. Per-
formance metrics, including precision, recall, F1-score, and accuracy, form the
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bedrock of assessment, interlacing both the individual model strengths and
trade-offs. Based on these evaluations, along with training times and recall
scores, informed comparisons can be made.

– Interpretability: In the final phase of this research journey, we will exam-
ine the interpretability of model outputs. After training the models, we uti-
lize rule-generating methodologies, such as Anchors, to generate intelligible
and human-readable decision rules, such as if-then statements. Our ability
to understand the rationale behind the models’ classifications is enhanced by
this transparency.

For our research to be successful, it is imperative that these interlocking steps
are meticulously orchestrated. In the subsequent Implementation and Evaluation
section, each phase will be meticulously analyzed, encompassing the intricate
details that collectively propel us toward our goals.

4 Implementation and Evaluation

This section outlines the implementation of the mentioned unsupervised machine
learning algorithms for anomaly detection on diverse datasets: Heart Disease and
Credit Card Fraud from Kaggle. We conduct a comparative analysis to assess
Isolation Forest, Local Outlier Factor, and One-class SVM’s anomaly detec-
tion performance and generalization across real-world scenarios. It encompasses
data pre-processing, hyper-parameter tuning, model evaluation, and compara-
tive effectiveness analysis with other algorithms.

4.1 Datasets

The Heart Disease dataset [16] contains 70000 instances and 11 features. The
second dataset [5], the Credit Card Fraud, contains 1296675 instances and 22 fea-
tures. We balanced the dataset by sampling 20,000 instances from the majority
class (normal) and 5,000 instances from the minority class (fraud).

4.2 Data Pre-processing

Several data preprocessing steps were performed in this section to ensure the
data’s quality and suitability for modeling:

– Data Cleaning: In this stage, we focused on identifying and resolving errors,
inconsistencies, and missing values present in the dataset. We took necessary
steps to handle duplicate values, null values, and inconsistent data entries.
Fortunately, there were no null values in the provided datasets. However, we
did encounter an inconsistency in the heart disease dataset, specifically in the
features ap hi and ap lo, (since systolic and diastolic blood pressure cannot
be negative) where some values were negative. We promptly addressed and
corrected such discrepancies to ensure data integrity.
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For the heart disease dataset, we converted the age feature from days to
years for better interpretation and the height feature from centimeters to feet
for standardization as part of the data pre-processing step. Additionally, we
dropped the ’id’ column as it does not contribute to the anomaly detection
task.

– Data Transformation: We used the following techniques for data transforma-
tion:

• Log Transformation: To address data skewness and reduce the impact of
extreme values, we employed the natural logarithm of the data values.
Specifically, we applied this technique to the amt and city pop features
in the Credit Card Fraud Dataset. Prior to the transformation, the amt
feature had minimum and maximum values of 1 and 28,949, respectively,
while the city pop feature ranged from 23 to 2,906,700. After applying
the Log Transformation, the minimum and maximum values of amt were
adjusted to 0 and 10, respectively, and the city pop feature ranged from
3 to 15. This transformation helped to normalize the data and mitigate
the effects of extreme values, thereby improving the analysis.

• Scaling: To bring all features to a common range and standardize the data,
we utilized min-max scaling, also known as normalization. Specifically, we
applied this operation to four features in the Credit Card Fraud Dataset:
lat, long, merch lat, and merch long. Before scaling, the mean values for
lat and merch lat were 39, while the means for long and merch long were
-90. After applying the min-max scaler, the means of these features were
adjusted to 0, effectively standardizing the data and ensuring that they
fall within the same range. This normalization process facilitates more
consistent and reliable analyses across the dataset.

• Encoding Categorical Variables: To facilitate effective interpretation by
the models, we converted categorical variables into numerical represen-
tation using label encoding. Within the credit card fraud dataset, we
identified 14 unique categories of transactions, 2 genders, and 50 states,
all represented with strings. Through label encoding, we transformed the
features category, gender and state into corresponding integers, enabling
the models to handle them efficiently during training and prediction pro-
cesses.

– Feature Engineering: As part of this crucial step, we focused on extracting
relevant information from the raw data and creating new features to improve
the model’s learning capabilities. Our objective was to provide more mean-
ingful and informative input for the models to better understand and process
the data. For instance, in the heart disease dataset, we converted the age
feature from days to years for better interpretability. Additionally, we trans-
formed the height feature from centimeters to feet to ensure consistency and
ease of understanding. Similarly, in the credit card fraud dataset, we per-
formed feature engineering on the trans date trans time feature by splitting
it into separate components such as hour, day, and month. This transforma-
tion enabled the models to capture temporal patterns more effectively and
gain deeper insights into the data’s temporal dynamics.
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4.3 Algorithm Implementations

– Isolation Forest: The python implementation of isolation forest from sci-kit
learn was utilized in our experiments. Among the nine available param-
eters, we focused on tuning two specific attributes: n estimators and
contamination.
The parameter n estimators determines the number of estimators con-
structed in the ensemble. After conducting thorough experiments, we
observed that the default value of 100 for n estimators was highly efficient
for our datasets. As a result, we decided to retain the default value for this
parameter, ensuring that the algorithm maintains its computational efficiency.
The contamination parameter, on the other hand, represents the proportion
of outliers present in the dataset. To ensure accurate anomaly detection, we
meticulously adjusted the contamination parameter to match the specific
characteristics of each dataset. By carefully setting this parameter, we aimed
to strike a balance between detecting true anomalies while minimizing false
positives.
To assess the effectiveness of the Isolation Forest model, we generated outlier
scores for instances using the decision function method. Subsequently, we
defined a threshold of 0 to classify instances as anomalies or normal data.
Based on the outlier scores, we converted the predictions into binary labels,
where 1 represents anomalies and 0 denotes normal instances.
In our experiments, we found that isolation forest is highly efficient and adept
at handling large, high-dimensional datasets, requiring less memory due to its
storage of random partition structures. This makes it a practical option for
anomaly detection, especially with extensive datasets and high-dimensional
data.

– One Class Support Vector Machine: In our study, we utilized the implemen-
tation of One Class SVM provided by the sci-kit learn library in Python. The
implementation offers ten parameters that can be configured and optimized.
Among these parameters, we kept the default settings for eight, and focused
on adjusting two key parameters.
The first parameter we modified was the kernel parameter, which allowed
us to choose from four available kernels: linear, poly, rbf , and sigmoid.
Through experimentation, we found that the Radial Bias Function (RBF)
kernel yielded the most promising results for both datasets. Kernels play a
crucial role by transforming the feature space, enabling the data to become
linearly separable, and consequently improving the SVM’s classification per-
formance [14].
The second parameter we adjusted was nu which represents the fraction of
training errors or, in other words, the number of anomalous instances within
the margin. By tuning this parameter, we could control the trade-off between
maximizing the margin and capturing the anomalies effectively.
One noteworthy observation was that as training instances increased, the
One Class SVM’s training time grew exponentially due to the extensive cal-
culations required for the distance matrix. This highlights the importance of
considering computational cost for efficient training with larger datasets.
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– Local Outlier Factor: Local Outlier Factor (LOF) algorithm, evaluates the
local density deviation of each data point in relation to its neighboring points
to identify the anomalies. The sci-kit learn implementation was employed for
this purpose. Among the nine available parameters, we focused on adjusting
two key parameters: n neighbors and contamination.
For our specific implementation, we set the n neighbors parameter to the
default value of 20, while the contamination parameter was set to 0.1. The
contamination rate represents the proportion of outliers in the dataset.
Throughout our experimentation, we made significant observations and
obtained noteworthy findings.
A reduced nneighbors value, set at 10, improved the True Positive Rate
(TPR) and anomaly detection by effectively identifying outliers with LOF
scores different from 1, showcasing the algorithm’s ability to discern anomalies
from the majority of the data.

4.4 Explainability

Interpretability and explainability are essential in understanding classification
models, as conventional models lack transparency in their decisions. The genera-
tion of rules, like if-then cases or hierarchical trees, aids in illuminating decision
processes, enabling users to grasp the model’s predictions and the underlying
rationale.

Explainable Anomaly Detection (XAD) techniques can be classified into
three categories: Pre-model, In-model, and Post-model [8]. Pre-model techniques
involve feature selection and feature representation, and they operate solely on
data without the use of any machine learning model. In-model techniques, on
the other hand, utilize supervised or unsupervised models with built-in explain-
ability, such as decision trees, which employ hierarchical trees to identify if-then
cases and provide explanations for specific decisions. By focusing on the Post-
model techniques, we aimed to gain a deeper understanding of the decision logic
of our anomaly detection algorithms. Anchors generates simple and concise if-
then rules that sufficiently explain the decisions made by the anomaly detection
model. These rules are specific to local instances, meaning that even if a feature
value changes, the predictions or rules remain mostly unchanged. This localized
approach ensures robustness and stability in the explanations.

5 Results

Figure 5 presents a bar chart illustrating the comparison of recall scores among
the three algorithms. Remarkably, the Local Outlier Factor exhibits subpar per-
formance with a value of 0.08 on the Heart Disease dataset but surprisingly
outperforms the other two algorithms on the Credit Card Fraud dataset with
a value of 90%. This intriguing observation leads us to attribute the contrast-
ing outcomes to the datasets varying densities, primarily stemming from class
imbalance issues.
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Conversely, the Isolation Forest secures the second position concerning recall
scores on both datasets, and the obtained scores exhibit notable similarities
which equals 45% and 44% on Heart Disease dataset and Credit Card Fraud
dataset respectively. Interestingly, the One Class SVM’s performance proves
to be unsatisfactory on the Credit Card Fraud dataset which equals to 30%.
Whereas the algorithm showcases a recall value of 44% on the Heart Disease
dataset. We posit that this discrepancy occurs due to the One Class SVM’s
inability to effectively discern the class distributions of the anomalous instances
and normal data points within this particular dataset.

Fig. 5. Recall Score Comparisons

In Fig. 6, the bar chart illustrates the training times of the three algorithms.
Notably, Local Outlier Factor demonstrates the shortest or nominal training
duration on both datasets with values of 2.07 and 1.48 s for Heart Disease and
Credit Card Fraud datasets respectively. This efficiency can be attributed to the
fact that most of the computations in Local Outlier Factor occur during the
prediction phase.

Isolation Forest ranks second in terms of training times on both datasets.
However, it is worth mentioning that the training time for Isolation Forest is
not constant and may vary across different runs on the same dataset with one
being 46.57 and 35.89 s respectively for Heart Disease and Credit Card Fraud
datasets. This variability could be attributed to the randomness involved in the
feature selection process.

On the other hand, One Class SVM exhibits the longest training time on
both datasets with values of 48.24 s in Heart Disease dataset and 57.42 s in
Credit Card Fraud dataset. This is primarily due to the extensive number of
calculations involved in defining the distance matrix and support vectors during
the training phase. As a result, the computational complexity of One Class SVM
contributes to its higher training time compared to the other two algorithms.
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Fig. 6. The Time Taken for Training

5.1 Explainability Results

The generated anchors provide clear if-then rules based on specific features from
the data that were used by the anomaly detection model to arrive at its decision.
For instance, an anchor might state “if gender = Female and age < 20, then
normal patient,” or “if gender = male and age > 40, then check fitness.” These
rules are informative and human-readable, facilitating better understanding of
the model’s behavior.

Additionally, Anchors quantifies the accuracy and coverage of the generated
rules, allowing users to gauge the reliability and scope of each explanation. This
helps in assessing the trustworthiness of the rules and gaining insights into their
impact on the model’s predictions.

Fig. 7. Rule generated by Anchors for Isolation Forest

Figure 7 shows the rules generated by Anchors for a trained isolation forest
model. We input one instance to the anchors and it gives one rule, which provides
explanation about why this particular instance is classified as anomaly or normal.
Anchors take into consideration overall dataset and generates this rule. It also
specifies the precision rate and the amount of instances covered. From the above
generated rule, we see that the rule it is generated is 94 percent accurate.

Upon applying anchors to one class SVM, we observed that it effectively iden-
tifies the key features and their corresponding values associated with anomalous
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instances. The rules generated by this method shed light on the specific attributes
that play a crucial role in the detection process. For example, Eq. 1 is the rule
produced by Anchors for One Class SVM on the Heart Disease Dataset, achiev-
ing a precision of 0.82.

Anchor: ap lo > 80.00AND age years ≤ 46.22
AND gender > 1.00AND weight ≤ 79.00
AND height ft > 5.58 AND active ≤ 1.00

(1)

Conversely, when applying anchors to Isolation Forest, the generated rules
appeared to be relatively shallow, often involving only one or two features. This
outcome can be attributed to the intrinsic design of the Isolation Forest algo-
rithm. Equation 2 is the rule generated by Anchors for Isolation forest on Heart
Disease Dataset with a precision of 0.97

Anchor : gluc > 1.00 AND cholesterol > 1.00 (2)

6 Related Work

In this section, we present a review of the existing literature related to anomaly
detection, aimed at identifying patterns or data points that deviate from the
normal pattern within a dataset. Different approaches to anomaly detection,
including supervised and unsupervised, have been explored in prior research,
and various algorithms have been applied for outlier detection. While considering
the refined problem statement of applying data mining techniques for anomaly
detection, our goal is to implement and compare different effective methods for
identifying anomalies that significantly deviate from the majority of the data.

The overview research done on the machine learning techniques for detect-
ing the anomalies [11] helped us in narrowing to the domain of unsupervised
techniques over the supervised ones with proper justifications. The supervised
techniques require a significant amount of labelled data, where anomalies are
explicitly identified and labelled. During the classification phase, the trained
model is used to predict whether new instances are normal or anomalous by
comparing them to the learned patterns. In [13], it is explained that the signif-
icant limitations of using the supervised techniques in anomaly detection. The
important aspect being stated was that the acquiring of labelled data for anoma-
lies can be challenging and time-consuming, especially in real-world scenarios
where anomalies may be rare or evolving. Apart from that these techniques rely
heavily on labelled training data, which makes them less effective in identifying
anomalies that were not present in the training set.

Pointing down to the unsupervised algorithms, we understood that they make
use of the unlabelled data where the anomalies are not predefined and align
greater with the real-world scenarios of complex feature structures. These tech-
niques focus on detecting instances that deviate significantly from the expected
or normal patterns in the data. Therefore Unsupervised algorithms explore the
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data characteristics and identify anomalies based on their deviation from what
is considered normal. The existing studies motivated us to focus reliably on the
three algorithms which were specifically used for anomaly detection. They are:

1. Isolation Forest
2. One class support vector machine
3. Local Outlier Factor

In [9], the application of Isolation Forest detection to anomalies is discussed.
Being an unsupervised model it builds an ensemble of isolation trees (iTrees)
for a given dataset. The property of identifying the instances with short aver-
age path lengths on the isolation trees as anomalies becomes more peculiar to
the algorithm. The algorithm which works on the principal idea of isolating
anomalies rather than profiling normal instances has the ability to handle high
dimensional datasets along with being computationally efficient and having inter-
pretable results.

One class Support vector machine [14] gives significant insights into the pros
of the algorithm in this specific context of anomalies. It captures the underlying
structure of a target class and differentiates it from the rest of the data and also
tries to find a function that is positive for regions with high density of points,
and negative for small densities. The main advantage of the algorithm is the
capability to handle non-linear relationships and imbalanced datasets.

Apart from these two algorithms, the work done by [1] helped us to delve
more into the local outlier factor methods which have been specifically designed
and contextually relevant in outlier or anomaly detection. It assigns each object
in the dataset a degree of being outlier (Local Outlier Factor) and the data
points with LOF values above a certain threshold are identified as Outliers We
found the most significant advantage of the algorithm to be its usefulness for
identifying anomalies in datasets with varying densities and complex geometric
structures.

7 Conclusion

Our comprehensive study has yielded valuable insights into the suitability of
diverse algorithms for varying dataset characteristics. Isolation Forests demon-
strate robustness in handling static datasets with efficient training times and
satisfactory performance. One Class Support Vector Machines (SVM) stand
as a potent choice for well-separable datasets with substantial computational
resources. Local Outlier Factor (LOF) excels in addressing datasets with fluctu-
ating densities, showcasing its strength in scenarios marked by density variations.
Each algorithm’s distinct attributes render them well-suited to specific dataset
traits, underlining the significance of tailored algorithm selection.

For future endeavors, delving deeper into the decision-making mechanisms
of Isolation Forest and One Class SVM warrants exploration through the imple-
mentation of alternative rule generation systems like Scalable Bayesian Rule
Lists, SHAP, hypercubes, among others. Such methods can provide a holistic
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comparison of these algorithms. Additionally, customizing rule generation with
domain-specific insights holds potential for enhancing interpretability and rele-
vance, further enriching our understanding of their performance.
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Abstract. The reason behind the unfair outcomes of AI is often rooted
in biased datasets. Therefore, this work presents a framework for address-
ing fairness by debiasing datasets containing a (non-)binary protected
attribute. The framework proposes a combinatorial optimization prob-
lem where heuristics such as genetic algorithms can be used to solve for
the stated fairness objectives. The framework addresses this by finding a
data subset that minimizes a certain discrimination measure. Depending
on a user-defined setting, the framework enables different use cases, such
as data removal, the addition of synthetic data, or exclusive use of syn-
thetic data. The exclusive use of synthetic data in particular enhances
the framework’s ability to preserve privacy while optimizing for fairness.
In a comprehensive evaluation, we demonstrate that under our frame-
work, genetic algorithms can effectively yield fairer datasets compared
to the original data. In contrast to prior work, the framework exhibits a
high degree of flexibility as it is metric- and task-agnostic, can be applied
to both binary or non-binary protected attributes, and demonstrates effi-
cient runtime.
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1 Introduction

Machine learning has become an increasingly important tool for decision-making
in various applications, ranging from income [17] to recidivism prediction [18].
However, the use of these models can perpetuate existing biases in the data
and result in unfair treatment of certain demographic groups. One of the key
concerns in the development of fair machine learning models is the prevention of
discrimination regarding protected attributes such as race, gender, and religion.
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Fig. 1. The pipeline consists of three steps: (1) The user sets the sample set S and other
settings, including the objective, discrimination measure, and protected attribute; (2)
Synthetic data is generated if needed; (3) A solver optimizes the fairness objective to
yield a biased-reduced subset Dfair from the user-selected set S. If S = G was chosen,
the user obtains a bias-reduced synthetic dataset that does not leak privacy-related
information.

While most of the existing literature focuses on classification problems where
the protected attribute is binary [2,4,6,7,10,20,24,28], the real world presents
a more complex scenario where the protected attribute can consist of more than
two social groups, making it non-binary. While works that discuss and deal with
non-binary protected attributes exist, and we do not neglect their existence [5,
14,29], we view it as a necessity to contribute further to this field by providing a
flexible framework that accommodates various fairness notions and applications,
including data privacy, to strive for the employment of responsible artificial
intelligence in practice.

Since bias is rooted in data, we introduce an optimization framework that
pre-processes data to mitigate discrimination. In the context of fairness, pre-
processing ensures the generation of a fair, debiased dataset. We address the
challenges associated with non-binary protected attributes by deriving appro-
priate discrimination measures. To prevent discrimination, we formulate a com-
binatorial optimization problem to identify a subset from a given sample dataset
that minimizes a specific discrimination measure, as depicted in Fig. 1. Depend-
ing on the provided sample dataset, which may also include synthetically gen-
erated data, the framework allows for the removal of such data points or the
inclusion of synthetic ones to achieve equitable outcomes. By using generated
data, we can utilize our method in applications where data privacy is a concern.
Since the discrimination objective is stated as a black box, heuristics, which
do not assess the analytical expression of the discrimination measure during
optimization, are needed to solve our stated problem. Our formulation makes
the framework fairness-agnostic, allowing it to be used to pursue any fairness
objective.

The experimentation was carried out on the Adult [17], Bank [22], and COM-
PAS [18] datasets, all known to exhibit discrimination. We compared the dis-
crimination of the datasets before and after pre-processing them with different
heuristics on various discrimination measures. The results show that genetic
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algorithms [12] were most effective in reducing discrimination for non-binary
protected attributes. To summarize, the primary contributions of this paper are:

– We present an optimization framework that renders different approaches for
yielding fair data. The approaches include removing, adding generated data,
or solely using generated data.

– We underscore the framework’s ability to handle cases where data privacy is
a significant concern.

– Our methodology is designed to handle a protected attribute that can be
non-binary, offering broader applicability.

– We carry out an extensive evaluation of the proposed techniques on three
biased datasets. The evaluation focuses on their effectiveness in reducing dis-
crimination and their runtimes.

– We publish our implementation at https://github.com/mkduong-ai/fairdo as
a documented Python package and distribute it over PyPI.

2 Related Work

Recently, related works have equivalently formulated subset selection problems
to achieve fairness goals [7,26]. While in the work of Tang et al. [26], a distri-
bution is generated that represents the selection probability of each feasible set
to maximize the global utility on average, our work aims to return a definite
subset. To achieve fairness according to any defined criteria, our formulation
treats discrimination measures as black boxes. These measures can encompass
both group and individual fairness notions, distinguishing our work from that of
Tang et al. [26], whose framework is limited to group fairness.

Previous studies have also utilized synthetic data to address fairness and
privacy concerns [7,19]. Both of these studies employed heuristics similar to
our approach. In particular, Liu et al. [19] specialized on generating synthetic
data using a genetic algorithm to satisfy specific privacy definitions [3,8]. While
our framework does not generate privacy-preserving data specifically, it utilizes
synthetic data, which can be generated with such methods. Similarly to our
work, Duong et al. [7] leveraged synthetic data by introducing a sampling-based
heuristic for selecting a subset of such data points to minimize discrimination.
Our work generalizes the work of Duong et al. [7] as their approach can be viewed
as a special case of ours. Additionally, our formulation offers greater flexibility
compared to the approach of Duong et al. [7], as it allows for any heuristic to
tackle the task and is also not limited to binary protected attributes.

3 Measuring Discrimination

In this section, we introduce the notation used to derive discrimination measures
for assessing dataset fairness: A data point or sample is represented as a triple
(x, y, z), where x ∈ X is the feature, y ∈ Y is the ground truth label indicating
favorable or unfavorable outcomes, and z ∈ Z is the protected attribute, which

https://github.com/mkduong-ai/fairdo
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is used to differentiate between groups. The sets X,Y,Z typically hold numeric
values and are defined as X = R

d, Y = {0, 1}, and Z = {1, 2, . . . , k} with k ≥ 2.
For instance, in the context of predicting personal attributes, we can use X to
represent numeric values that encode particular aspects of a person. Y typically
describes the positive or negative outcome that we aim to predict for the person.
Z can denote any protected attribute, such as race, which can be used to identify
the person as Caucasian, Afro-American, Latin American, or Asian. We assume
that z is not included as a feature in x. To be able to differentiate between
groups, k ≥ 2 must hold. If k > 2, the protected attribute Z is said to be non-
binary. Following the definition, a dataset, denoted as D = {di}n

i=1, consists of
data points, where a single sample is defined as di = (xi, yi, zi). Machine learning
models are trained using these datasets to predict the target variable y based on
the input variables x and z. Finally, we denote a discrimination measure with
ψ : D → [0, 1], where D is the set of all datasets.

In the following, x, y, z are noted as random variables that can take on specific
values.

3.1 Absolute Measures

To deal with non-binary groups, Žliobaitė [29] suggested in her work to compare
groups pairwise. For this, she presented three possible ways which are com-
paring each group with another, one against the rest for each group, and all
groups against the unprivileged group. The author further discussed options to
aggregate the results. Although Žliobaitė [29] stated textually how to measure
discrimination for more than two groups, we express them mathematically in this
work. To treat groups equally without presuming which group is unprivileged
and to get the full picture, we choose to make use of comparing each group with
another. We first introduce the common fairness notion statistical parity [16,28],
which demands equal positive outcomes for different groups in Z = {1, 2, . . . , k}.
It is usually defined for binary groups, but we present the non-binary cases [29].

Definition 1 (Statistical parity). Demanding that each of the k groups have
the same probability of receiving the favorable outcome is statistical parity, i.e.,

P (y = 1 | z = 1) = . . . = P (y = 1 | z = k)
⇐⇒ P (y = 1 | z = i) = P (y = 1 | z = j) ∀i, j ∈ Z.

As the group size k grows, the satisfaction of statistical parity becomes less
probable. Because of this, the equality constraints are treated softly by deriv-
ing differences between the groups. Consequently, smaller differences imply more
equality. For binary groups, the difference is often referred to as statistical dis-
parity (SDP) [6].
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Definition 2 (Sum of absolute statistical disparities). Let there be k
groups, then the sum of absolute statistical disparities is calculated as follows [29]:

ψSDP-sum(D) =
∑

i,j∈Z
i�=j

|P (y = 1 | z = i) − P (y = 1 | z = j)|

=
k∑

i=1

k∑

j=i+1

|P (y = 1 | z = i) − P (y = 1 | z = j)|.

Because the total number of comparisons is k(k−1)
2 [29], the average discrimina-

tion between all groups becomes:

ψSDP-avg(D) =
2

k(k − 1)
·

k∑

i=1

k∑

j=i+1

|P (y = 1 | z = i)

− P (y = 1 | z = j)|.
Definition 3 (Maximal absolute statistical disparity). Maximal absolute
statistical disparity measures the absolute statistical disparity between all pairs
i, j ∈ Z and returns the maximum value. Specifically, it is given by:

ψSDP-max(D) = max
i,j∈Z

|P (y = 1 | z = i)

− P (y = 1 | z = j)|.
Žliobaitė [29], after consulting with legal experts, recommends using the max-

imum function to aggregate disparities, though the choice depends on the ethical
context of the specific use case. Discrimination measures can be seen as social
welfare functions. Minimizing the sum of absolute statistical disparities is analo-
gous to the utilitarian viewpoint [21], which aims to maximize the general utility
of the population. If one decides to care for the least well-off group, then min-
imizing the maximal absolute statistical disparity corresponds to the Rawlsian
social welfare [25].

4 Optimization Framework

Inspired by related works that identify unfair data samples [15,27], we propose
a method to remove such samples for fairness. The task is formulated as a com-
binatorial problem where the aim is to determine a subset Dfair of a given set S
such that the discrimination of the subset ψ(Dfair) is minimal, as shown in Fig. 1.
Depending on the application, set S can be the original data D, a synthetic set
G with the same distribution as D, or their union D ∪ G.

4.1 Problem Formulation

To state the problem mathematically, let note S = {s1, s2, . . . , sñ} and further
introduce a binary vector b with the same length as S, i.e., b = (b1, b2, . . . , bñ). To
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define the combinatorial optimization problem, each entry bi in b is examined
whether it is 1 (bi = 1), in which case the corresponding sample si in S is
included in the subset Dfair. Therefore, the fair set is defined with

Dfair = {si ∈ S | bi = 1, i = 1 . . . ñ}. (1)

The objective f : 0, 1ñ → [0, 1] can then be expressed by:

fS,ψ(b) = ψ(Dfair)
⇐⇒ fS,ψ(b) = ψ({si ∈ S | bi = 1, i = 1 . . . ñ}), (2)

where fS,ψ is defined as the discrimination of a subset Dfair of the given set
S and ψ evaluates the level of discrimination on Dfair. Note that the decision
variable is b, for which Dfair can be obtained. The subindices S and ψ of fS,ψ

can be seen as settings for the objective. Ignoring the subindices, we write out
the combinatorial optimization problem as follows:

min
b

f(b) (3)

subject to bi ∈ {0, 1} ∀i = 1, . . . , ñ.

Because the set of feasible subsets P(S) grows exponentially regarding the car-
dinality of S, we employ heuristics to solve our stated problem.

In the following subsections, we discuss different and useful settings of S that
serve different purposes with their corresponding advantages and disadvantages.

4.2 Removing Samples (S = D)

By setting S = D, it is intended to determine data points in the training set that
can be removed to prevent discrimination. Intuitively, having an overexposure
of certain types of samples that fulfill stereotypes can result in a discriminatory
dataset. In such situations, the most practical step is to remove the affected
samples.

However, this method is not recommended if the given dataset is small. Like-
wise, some could argue that minorities can be easily removed by this method.
Luckily, this can be prevented by choosing the right discrimination measure.

4.3 Employing only Synthetic Data (S = G)

To employ synthetic data, this method relies on a statistical model. The statis-
tical model is used to learn the distribution of the original data P (D). By doing
so, synthetic samples G can be drawn from the learned distribution G ∼ P (D).

Relying solely on synthetic data is particularly important in use cases where
data privacy and protection are major concerns and the use of real data is
prohibited. Of course, synthetic data is not necessarily disjoint from the original
dataset and can therefore be a privacy breach itself. For tabular and smaller
datasets, this can be naively mitigated by removing such privacy breaching points
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from the synthetic data by setting S = G \ D. Other ways include populating
differential privacy techniques in the data generation process [1,8,13,19].

When generally using synthetic data, one cannot easily ensure that the cor-
responding label of the features is correct. Training machine learning models on
synthetic data can therefore lead to higher error rates when predicting on real
data. Despite the distribution of the synthetic data following the distribution
of the real dataset, it depends heavily on the method used when it comes to
generating qualitative, faithful data.

4.4 Merging Real and Synthetic Data (S = D ∪ G)

Another approach to generate a non-discriminatory dataset is to merge the orig-
inal dataset D with synthetic data G that has been generated with a statistical
model as described in Sect. 4.3. By combining the two sets S = D∪G, it is possi-
ble to increase the size of the resulting dataset while avoiding over-representation
of discriminatory samples.

One advantage of this method is that it can improve the quality of the data
by utilizing both the real D and synthetic data G. The resulting dataset can
be larger and more diverse, which can lead to greater robustness when training
machine learning models. If the dataset is too small to apply removal techniques
(S = D) or relying solely on synthetic data (S = G) appears unreliable, merging
the two sets may be a viable option.

However, this method is not without its limitations and comes with dis-
advantages when generally using synthetic data, e.g., quality and faithfulness.
Different from the method described in Sect. 4.3, this method is not applicable
for purposes with privacy concerns as samples from the real data are not omitted.

4.5 Adding Synthetic Data

A different approach that requires a new formulation of the objective is to include
synthetic data points without deleting any samples from the real data. As well, a
set of generated data points G must be given, and the research question is which
of the generated points can lead to a fairer distribution when including them
in the original dataset. The possible use case for this problem is to fine-tune
machine learning models that have already learned from an unfair dataset. This
is mostly useful for large machine learning models where resources are scarce
to retrain the whole model. Following the preceding notation, the fair dataset
becomes:

Dadd
fair = D ∪ {si ∈ S | bi = 1, i = 1 . . . ñ} (4)

and we express the corresponding objective fadd
S,ψ by:

fadd
S,ψ (b) = ψ(Dadd

fair )

⇐⇒ fadd
S,ψ (b) = ψ(D ∪ {si ∈ S | bi = 1, i = 1 . . . ñ}), (5)

where S is set to G to achieve the described approach. Certainly, S can also be
set to D or any other set operation on D with G. Although such settings are
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possible, they do not serve any meaningful purposes. However, one could argue
that setting S = D can act as a reweighing method. Still, we argue against
facilitating duplicates in a dataset with intent, as no additional information is
provided.

As seen, our framework offers many advantages due to its versatility and
therefore potential use in a broad range of applications. By choosing the appro-
priate objective function, discrimination measure, and sample set, the formula-
tion is tailored to the specific intent and use case. Because the formulation is
agnostic to the solver, it can serve multiple purposes without modifying solvers.

Table 1. Overview of Datasets

Dataset Entries Cols. Label Protected
Attribute

Description

Adult [17] 32 561 22 Income Race: White,
Black, Asian-
Pacific-Islander,
American-
Indian-Eskimo,
Other

Indicates
individuals
earning over
$50,000 annually

Bank [22] 41 188 53 Term deposit
subscription

Job: Admin,
Blue-Collar,
Technician,
Services,
Management,
Retired,
Entrepreneur,
Self-Employed,
Housemaid,
Unemployed,
Student,
Unknown

Shows whether
the client has
subscribed to a
term deposit.

COMPAS [18] 7 214 8 2-year
recidivism

Race: African-
American,
Caucasian,
Hispanic, Other,
Asian, Native
American

Displays
individuals that
were rearrested
for a new crime
within 2 years
after initial
arrest

5 Heuristics

This section presents heuristics that specifically solve combinatorial optimization
problems. These include: a baseline method that returns the original dataset, a
simple random heuristic, and genetic algorithms with different operators.



Towards Fairness and Privacy: A Novel Data Pre-processing Framework 113

1. Original: Uses the original data by returning a vector of ones b = 1ñ.
2. Random Heuristic: Generates a user-defined number of random vectors,

with each entry having a 50% chance of being zero or one, and then returns
the best solution.

3. Genetic Algorithm (GA): The workflow of GAs [9] involves generating
an initial population of candidate solutions and then repeatedly performing
selection, crossover, and mutation operations over several generations. In our
implementation, the GA terminates earlier if improved solutions were not
found within 50 generations. Following operators were used in our experi-
mentation [11]:

– Selection: Elitist, Tournament, Roulette Wheel (see [11] for more details)
– Crossover: Uniform (each entry of the offspring has the same probability

of either inheriting the entry from the first or second parent)
– Mutation: Bit Flip (flips a fixed amount of random bits for each vector,

that is 
pm · ñ�, where pm ∈ [0, 1] is the mutation rate)

6 Evaluation

In our evaluation, we conducted multiple experiments to address the following
research questions:

– RQ1 How do the heuristics perform in making the datasets fairer?
– RQ2 How does runtime vary among the heuristics?
– RQ3 How stable are the results across the runs?
– RQ4 Is there a clear winner? If yes, which method is recommended for prac-

tical use?

To answer these research questions, we specifically designed experiments for
the Adult [17], Bank [22], and COMPAS [18] datasets. Both the Adult and COM-
PAS datasets include race as a non-binary protected attribute, whereas the Bank
dataset utilizes the job as a non-binary protected attribute. All datasets were
prepared and cleansed in the same manner: Categorical features were one-hot
encoded, with the exception of the protected attribute and the label. Addition-
ally, rows containing missing values were excluded from all datasets. Table 1
shows details about the datasets used in our experiments after the preparation
and cleansing steps.

Following the dataset preparation, we executed two distinct experiments.
The first experiment (Sect. 6.1) was dedicated to hyperparameter tuning of the
GAs, adjusting both population sizes and the number of generations to pin-
point optimal configurations. Armed with these optimal settings, our second
experiment (Sect. 6.2) focused on comparing different selection operators within
GAs (RQ1). Our aim was to determine which operator yielded the best per-
formance. This experiment included comparisons to several baseline methods,
one of which simply returned the original data. By expanding our evaluation to
multiple discrimination measures in this phase, we can comprehensively assess
the effectiveness of GAs in reducing discrimination in datasets.
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The experimental methodology involves the application of heuristics to pro-
duce a binary mask, which yields fair data. We then measure the discrimination
of the resulting dataset. To ensure stability in our findings (RQ3), each experi-
ment was repeated 15 times. We additionally recorded the runtime of each trial
to tackle RQ2. Depending on the experiment, we employed suitable heuristics
that aim to solve each objective with the associated discrimination measure, as
listed in Table 2. For instance, each heuristic either optimizes fS,ψ or fadd

S,ψ with
varying settings of S and ψ as given in the table. In order to perform experiments
with synthetic data, we generated data that has the same size as the original
dataset, i.e., |G| = |D|. The statistical model used to generate synthetic data is
Gaussian copula [23] which is fast and performs well on tabular data. For privacy-
sensitive use cases, we advise utilizing privacy-preserving techniques [1,8,13,19].
All experiments were conducted on an Intel(R) Xeon(R) Gold 5120 processor
clocking at 2.20GHz.

Table 2. Configuration details of heuristics, objectives, and discrimination measures
for each experiment.

Experiment Heuristics Objectives (f , S) Disc. Measures (ψ)

Hyperparam GA Remove, Merge, Add Sum SDP
Comparison Original, Random,

GA (Elitist, Tournament,
Roulette Wheel)

Remove, Merge, Add Sum SDP, Max SDP

6.1 Hyperparameter Tuning

For the genetic algorithm, we performed hyperparameter tuning, exploring var-
ious population sizes [20, 50, 100, 200] and generations [50, 100, 200, 500], all
using tournament selection, uniform crossover, and bit flip mutation at a rate of
5%. These configurations are described in Sect. 5. We evaluated the algorithm
on three distinct objectives and set ψSDP-sum as the discrimination measure.

Discrimination. As seen in Fig. 2, the heatmaps display the average discrim-
ination (including the standard deviation) of GAs solving various objectives on
different datasets. Each heatmap shows hyperparameters that were set for the
experimentation. Across the different objectives and datasets, there is a consis-
tent trend indicating that utilizing larger populations combined with a higher
number of generations typically results in less discrimination. This is particularly
evident when contrasting scenarios with a population size of 20 and 50 gener-
ations, which, on average, have discrimination scores higher by 0.1. However,
the improvements in discrimination plateau beyond certain thresholds. Specifi-
cally, once the number of generations surpasses 200 or when the population size
exceeds 100, there is no significant further decrease in discrimination observable.
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Fig. 2. Heatmaps showing discrimination scores (ψSDP-sum) after pre-processing with
genetic algorithms using different population sizes (y-axis) and generations (x-axis).
Rows depict the results of Adult, Bank, and COMPAS datasets, while columns repre-
sent the objectives.

Runtime. For brevity reasons, we display the runtimes solely for the Bank
dataset in Fig. 3, given its larger size and the similarity of the results across
other datasets. The outcome of this analysis pointed towards an optimal setting
of a population size of 100 combined with 500 generations. Under our specifica-
tions, executing the GA with these settings takes, on average, between 1.5 and
4.5min. While increasing the population size further did not show significant
improvements in reducing the bias in the datasets, it proved to be more efficient
in terms of the runtime.

6.2 Comparing Heuristics

After determining that a population size of 100 with 500 generations offered
optimal results w.r.t. discrimination and time, this configuration was maintained
for all subsequent experiments. Here, three GAs were compared, each differing
by their selection operator: elitist, tournament, and roulette wheel selection. All
GAs were set with uniform crossover and bit flip mutation at a rate of 5% to
perform the experiments. Additionally, we established both the original dataset
and the random heuristic as baselines.

Discrimination. Table 3 presents the discrimination results of our experiments.
It is evident that all tested algorithms are stable, as reflected by the low standard
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Fig. 3. Heatmaps showing runtimes in seconds for the Bank dataset after pre-
processing with genetic algorithms using different population sizes (y-axis) and gener-
ations (x-axis).

Table 3. Displayed are the mean discrimination scores, accompanied by standard
deviations, from 15 runs. The heuristics were evaluated across multiple objectives using
varying discrimination measures on the Adult, Bank, and COMPAS datasets. Best
results are marked bold.

Objective Method Sum SDP Max SDP
Adult Bank COMPAS Adult Bank COMPAS

Add 1. Original 1.07 ± 0.02 1.83 ± 0.09 1.17 ± 0.06 0.23 ± 0.00 0.09 ± 0.00 0.17 ± 0.01
2. Random 1.03 ± 0.02 2.27 ± 0.07 0.94 ± 0.03 0.21 ± 0.00 0.11 ± 0.00 0.15 ± 0.01
3. Elitist 0.82 ± 0.02 1.54 ± 0.06 0.59 ± 0.03 0.16 ± 0.00 0.07 ± 0.00 0.10 ± 0.00
4. Tournament 0.97 ± 0.02 2.06 ± 0.06 0.80 ± 0.03 0.20 ± 0.00 0.10 ± 0.00 0.13 ± 0.00
5. Roulette 1.03 ± 0.02 2.31 ± 0.08 0.94 ± 0.05 0.21 ± 0.00 0.11 ± 0.00 0.15 ± 0.01

Merge 1. Original 1.07 ± 0.02 1.83 ± 0.09 1.17 ± 0.06 0.23 ± 0.00 0.09 ± 0.00 0.17 ± 0.01
2. Random 0.80 ± 0.03 1.46 ± 0.09 0.76 ± 0.08 0.16 ± 0.01 0.07 ± 0.00 0.12 ± 0.01
3. Elitist 0.21 ± 0.04 0.42 ± 0.07 0.11 ± 0.05 0.04 ± 0.01 0.02 ± 0.00 0.01 ± 0.00
4. Tournament 0.58 ± 0.04 1.17 ± 0.09 0.51 ± 0.04 0.11 ± 0.01 0.05 ± 0.00 0.09 ± 0.01
5. Roulette 0.85 ± 0.05 1.49 ± 0.09 0.79 ± 0.09 0.16 ± 0.01 0.07 ± 0.00 0.12 ± 0.01

Remove 1. Original 0.97 ± 0.00 4.81 ± 0.00 1.89 ± 0.00 0.17 ± 0.00 0.25 ± 0.00 0.27 ± 0.00
2. Random 0.71 ± 0.02 4.07 ± 0.07 0.72 ± 0.03 0.12 ± 0.00 0.19 ± 0.00 0.12 ± 0.01
3. Elitist 0.25 ± 0.02 1.41 ± 0.12 0.20 ± 0.07 0.05 ± 0.00 0.07 ± 0.01 0.01 ± 0.00
4. Tournament 0.57 ± 0.02 3.29 ± 0.08 0.56 ± 0.04 0.11 ± 0.00 0.15 ± 0.01 0.09 ± 0.01
5. Roulette 0.75 ± 0.03 4.15 ± 0.10 0.75 ± 0.08 0.13 ± 0.00 0.20 ± 0.01 0.12 ± 0.01

deviations (RQ3). All heuristics were able to reduce the discrimination available
in the datasets in most cases. Elitist selection consistently outperformed other
methods, offering notable improvements in fairness compared to the original
datasets (RQ1). We emphasize that the measures handle non-binary attributes,
providing flexibility in targeting various fairness goals. Further, by the range
of discrimination measures utilized, our methodology can aim for diverse fair-
ness goals, be it the enhancement of the utilitarian social welfare (ψSDP-sum)
or Rawlsian social welfare (ψSDP-max), as evidenced. An interesting observation
from our study is the varied discrimination levels based on the specific measure
used, as seen in the Bank dataset, where its discrimination is either highest or
lowest when compared with other datasets. This is due to the higher number of
groups, leading to more group comparisons that affect the overall discrimination
score. When examining the objectives, removing both the synthetic and original
data tends to outperform others. This observation is particularly evident in the
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Merge objective. Given the consistent performance of the elitist selection in our
tests, we strongly recommend its use for those aiming to achieve the best fairness
outcomes (RQ4).

Table 4. Mean runtimes in seconds of different methods solving different objectives
with varying discrimination measures on the Adult, Bank, and COMPAS datasets.

Objective Method Sum SDP Max SDP
Adult Bank COMPAS Adult Bank COMPAS

Add 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 50 ± 1 107 ± 12 14 ± 0 51 ± 6 103 ± 7 13 ± 0
3. Elitist 320 ± 105 605 ± 224 53 ± 21 334 ± 80 636 ± 179 79 ± 23
4. Tournament 122 ± 38 209 ± 50 39 ± 17 119 ± 37 216 ± 74 34 ± 12
5. Roulette 82 ± 26 131 ± 46 26 ± 9 82 ± 40 132 ± 48 26 ± 12

Merge 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 46 ± 3 67 ± 1 15 ± 2 44 ± 4 66 ± 1 15 ± 3
3. Elitist 283 ± 103 359 ± 143 79 ± 25 286 ± 111 397 ± 161 75 ± 28
4. Tournament 127 ± 39 185 ± 69 36 ± 11 131 ± 61 169 ± 51 44 ± 19
5. Roulette 69 ± 21 127 ± 53 28 ± 9 83 ± 33 118 ± 31 29 ± 14

Remove 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 23 ± 1 44 ± 1 11 ± 0 22 ± 1 47 ± 11 11 ± 0
3. Elitist 138 ± 66 281 ± 119 52 ± 18 176 ± 68 290 ± 80 50 ± 15
4. Tournament 78 ± 13 119 ± 25 24 ± 9 73 ± 27 132 ± 46 25 ± 7
5. Roulette 58 ± 27 72 ± 19 22 ± 8 52 ± 24 71 ± 24 18 ± 7

Runtime. An analysis of the runtimes is presented in Table 4. The original
method consistently took 0 s (rounded) to finish. At second comes the random
method and lastly GAs. The elitist operator took the longest, with runtimes
approximately three times slower than the quickest operator, the roulette wheel.
Tournament selection comes in between. Most experiments were finished in 5min
or less, which is still very efficient. Regarding the measures, the runtimes when
optimizing ψSDP-max appeared negligibly higher compared to ψSDP-sum, so it can
be disregarded. Generally, larger datasets yielded longer runtimes, revealing a
linear relationship between dataset size and runtime. In addressing the research
question posed in RQ4, it becomes evident that the elitist operator is superior
among the tested methods. Despite being the slowest method, it is still very
efficient at reducing discrimination on datasets consisting of up to 41 188 samples,
as seen in our experimentation.

7 Conclusion

We introduced a novel and flexible optimization framework to reduce discrimi-
nation and preserve privacy in datasets. The framework accommodates various
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intents such as data removal, synthetic data addition, and exclusive use of syn-
thetic data for privacy reasons. Notably, the objectives in our framework are
designed to be independent of specific discrimination measures, allowing users
and stakeholders to address any form of discrimination without modifying the
solvers.

Due to the relatively sparse work existing on dealing with non-binary
attributes, particularly regarding established methods, we tackled non-binary
protected attributes in our experiments by deriving discrimination measures
based on the work of Žliobaitė [29] and showed that our framework allowed
the effective and fast reduction of discrimination by employing heuristics.

8 Future Work and Discussion

Future work could include extending the usability of this framework by deriv-
ing different discrimination measurements. Thus, handling multiple protected
attributes as well as regression tasks can be done without modifying the gen-
eral methodology. Additionally, formulating and integrating constraints into the
objective function can also be done, which further enhances the responsibility
of our approach. For instance, we could consider constraints such as group sizes
and add penalties if samples of minorities get removed.

Although we aim for fairness and data privacy with our framework, it is
still important to engage with diverse stakeholders to identify unintended con-
sequences and address possible ethical implications. Particularly, an extensive
discussion and analysis of the used objective and discrimination measure for
a specific application should be done to ensure that the data aligns with the
desired fairness goals.
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Abstract. Stock market analysis is a complex task that involves vari-
ous types of data, such as web news, historical prices, and technical mar-
ket indicators. Recent research in this area focuses on analyzing these
modalities either separately or all together, but the underlying corre-
lation patterns in the multimodal data were not captured. To address
this issue, we propose MStoCast, a Multimodal Stock Market Forecast
model that uses innovatively designed deep networks. First, we propose
a common network that captures cross-modality and joint information.
Then, we construct a unique network that discovers bi-modal informa-
tion from the inputs. These pieces of information are then integrated
and processed through a fully connected layer to predict the direction of
the closing price movement. Experiments using real-world datasets show
that our MStoCast model significantly outperforms other state-of-the-art
models.

Keywords: Stock market forecast · Multimodal deep learning · Word
embeddings

1 Introduction

The price movements in stock markets are influenced by various data sources,
including historical price data and technical indicators [29], financial news [25],
social media [5], and official announcements [9]. It has been demonstrated that
analyzing these multiple data modalities collectively can aid in capturing the
underlying patterns of stock movements [17,27], thereby making stock market
prediction a multimodal learning task [28]. Employing effective multimodal rep-
resentation and learning techniques to capture the influence of these diverse data
modalities is crucial for model performance. Therefore, it has become essential
to appropriately integrate these various types of data (e.g., financial news, stock
market data, and technical indicators) to predict price movements [17,18].

While the common approach involves concatenating raw features from input
modalities [2], this vector-based method might struggle to extract the intercon-
nectedness of the data sources [35]. Although matrices have been utilized to
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handle two modalities, they pose challenges when dealing with three or more
input modalities, and they may also fail to capture intra-modal information.
However, it’s imperative to capture both intra-modal and inter-modal features
[30].

Lastly, capturing bi-modal relationships among the input data is a crucial
aspect that should also be taken into consideration, especially when dealing with
three or more modalities. However, existing models often might fall short when
dealing with three or more modalities.

Moreover, capturing bi-modal relationships among the input data is also sig-
nificant. However, existing models might fall short when dealing with three or
more modalities. To address these challenges, we propose MStoCast, a stock
movement prediction model that employs both CNNs (such as ResNet [11]) and
RNNs (such as BERT [6]) to analyze multiple input modalities (i.e., financial
news, stock market data, and technical indicators). It’s important to note that,
although we have chosen ResNet and BERT (two of the most advanced models
at present) for this research, they can be substituted with other CNN and RNN
models to accommodate the requirements of different problems. Our objective
is to capture inter-modal and intra-modal information, as well as bi-modal rela-
tionships among the input data modalities, by introducing common and unique
sub-networks.

MStoCast utilizes two types of information extracted from multimodal input
sequences. The first type of information involves the bi-modal interactions among
pairs of input modalities, representing distinct and unique insights. The sec-
ond type of information encompasses common patterns, capturing both inter-
modal relationships and intra-modal details derived from all input modalities.
To achieve this, our approach involves designing both a unique network and a
common network, each aimed at extracting the respective kinds of information
crucial for accurate stock market prediction.

The unique network begins by implementing early information fusion where
we combine the input features in pairs to create compound matrices. These
matrices are then processed through three separate ResNets, enabling the extrac-
tion of bi-modal relations from the modalities. Conversely, the common net-
work commences by employing Long Short-Term Memory networks (LSTMs) to
extract intra-modal and modality-specific information from each input modality.
These extracted intra-modal details are amalgamated into a multi-modal ten-
sor through their outer product. Subsequently, Convolutional Neural Networks
(CNNs), specifically ResNets, are employed to extract cross-modal information
from this tensor. The resulting information from both the common and unique
networks is then concatenated, forming a compound vector. Through the uti-
lization of global average pooling, a feature map is obtained. The final stages
encompass the creation of two fully connected layers, responsible for analyzing
the feature vector. Additionally, another fully connected network is employed to
facilitate market movement prediction.

In our market prediction model, we incorporate historical market data, a
selection of seven technical market indicators, and financial news. MStoCast
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effectively analyzes these three input modalities to anticipate the directional
movement of closing prices. Textual data is encoded using BERT sentence
embeddings, while a combination of CNNs and RNNs is leveraged to construct
a robust multi-modal representation model tailored for market prediction. It’s
worth emphasizing that, although we opt for ResNet and BERT-two of the most
advanced models currently-in our approach, these models can be substituted
with alternative CNN and RNN models that align with the unique requirements
of other problems. Our primary focus remains on capturing the crucial inter-
modal and intra-modal information, as well as comprehending the intricate bi-
modal relationships within the input data, all achieved through the integration
of the proposed common and unique sub-networks.

The rest of the paper is organized as follows. In Sect. 2, we show the related
work in stock market prediction domain, and then introduce the specifics of
the proposed model in Sect. 3. Sections 4 and 5 cover experiments that includes
market prediction tests. In Sect. 6, we give conclusion and our recommendation
for future work.

2 Related Work

Quantitative indicators, such as historical market data and technical indicators
have been widely explored and have shown to be effective for stock market pre-
diction [3,22]. A novel State Frequency Memory recurrent network is proposed
by [34] to make long and short-term predictions using the historical market data.
The study by [10] employ LSTM to predict the movement direction of S&P500
index prices where they show that LSTM outperforms Random Forest, DNN and
Logistic Regression Classifier based models. Another study [31] uses raw finan-
cial trading data in their novel hybrid model called CLVSA: A Convolutional
LSTM Based Variational Sequence-to-Sequence Model with Attention.

The fusion of market data and technical indicators has also garnered attention
in the stock market prediction research. [21] delve into the application of LSTM
networks to forecast price trends by leveraging historical price data and technical
indicators. Employing LSTM networks with an attention mechanism, [4] focuses
on predicting Hong Kong stock movements through market data and technical
indicators, highlighting the effectiveness of the attention mechanism in LSTM-
based prediction models. In a similar vein, [15] propose an RNN-based strategy
for predicting three prominent Chinese stock market indexes, using a multi-task
RNN for feature extraction from raw market data.

Taking a different approach, [26] introduce a novel market prediction model,
AZFinText, which harnesses proper nouns for new data representation. Lever-
aging the success of deep learning in other domains, researchers have begun
exploring their utility in Natural Language Processing (NLP) tasks. A study by
[29] utilize Word2Vec word embeddings to encode textual news data for CNN
and LSTM-based prediction model.

The integration of financial news data, using NLP techniques, alongside quan-
titative indicators has become a prevalent theme in stock market prediction. The
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research by [5] incorporate sentiment dictionaries to extract features from social
media news, while [19] demonstrate the superiority of using article summaries
over complete article bodies for prediction. Analyzing events extracted from
news articles in conjunction with technical indicators, [23] predict FTSE 350
index prices. The utilization of CNN-based event embeddings for market predic-
tion via financial news articles is explored by [7]. In a noteworthy multimodal
study, [35] employ tensors to jointly model news articles and social media sen-
timents, providing predictive insights for market prices in China A-share and
Hong Kong Stock Market.

3 Model Design of MStoCast

In the design of our MStoCast method, we aim to utilize both common and
unique types of information. This entails capturing modality-specific as well as
joint information, while also delving into the modeling of bi-modal relation-
ships across various data modalities. We initially take historical market data
and financial news as our main data sources. Then we derive a list of seven
technical indicators from the market data and utilize three data modalities:
market, technical indicators and financial news, where sentence embeddings are
employed to encode the textual financial news data. The three raw input fea-
tures are denoted as ZT , ZM , ZN , representing technical indicators, market price
data, and news data, respectively. These feature vectors are analysed with three
separate LSTMs in the common network and concatenated as raw features to
form bi-modal matrices in the unique network. By performing early informa-
tion fusion in the unique network and feature fusion in the common network,
MStoCast aims to capture joint and cross-modal information from the input
modalities.

The information gathered from both the common and unique sub-networks is
then amalgamated through a fusion layer to perform multimodal market move-
ment prediction. The design of our method is presented in Fig. 1.

3.1 Unique Network

In the unique network, raw concatenated input matrices are analyzed through
convolutional networks, such as ResNets, to capture the bi-modal relationships
among the input data, which we detail as follows.

We begin by pairing up the raw input features, thereby generating three
distinct input matrices. These matrices are as follows:

ZTM =ZT ⊕ ZM

ZNM =ZN ⊕ ZM

ZNT =ZN ⊕ ZT

(1)

where ZNM is formed by the outer product (denoted by ⊕) of raw features from
the market data ZM and news embeddings ZN ; ZTM by using raw features from
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Fig. 1. The framework of our MStoCast model

the market data ZM and technical indicators ZT ; and ZNT is formed using news
embeddings ZN and technical indicators ZT .

We then proceed to construct three distinct ResNets, each responsible for
extracting underlying cross-modal information from the input matrices. Each
network in the unique sub-network includes two residual blocks. In each residual
block, the input is first processed using convolutional layers, and then we apply
batch normalization and analyze the output with an activation layer using Rec-
tified Linear Unit (ReLU) [1] function to add non-linearity. Batch normalization
lets the network to train fast by keeping the mean output close to 0 and the
output standard deviation close to 1 and the standard ReLU function returns
the element-wise maximum of 0 and the input. The output goes through another
round of convolution and batch normalization processes. We then add the initial
input to the output of second batch normalization layer and feed it into the last
activation layer.

We then produce three feature matrices ONT , ONM , OTM by processing the
three bi-modal matrices through three ResNets:

OTM =ResNet(ZTM )
ONM =ResNet(ZNM )
ONT =ResNet(ONT )

(2)

The overall algorithm of our unique network is give in Algorithm1. The
unique network can be further extended to analyze these outputs for market
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Algorithm 1. Unique Network
Input: Market price data Zm, technical indicators Zt, and financial news Zn
Output: Feature vectors ONT , ONM and OTM

1: for time step t = 1 to n do
2: ZTM ← ZT ⊕ ZM

3: ZNM ← ZN ⊕ ZM

4: ZNT ← ZN ⊕ ZT

5: Ot
NT ← ResNet(ZNT )

6: Ot
NM ← ResNet(ZNM )

7: Ot
TM ← ResNet(ZTM )

8: end for

movement prediction but it is still not as effective as utilizing the informa-
tion captured with both unique and common sub-networks, and the results of
the ablation studies showing the comparison are presented in the experiments
section.

3.2 Common Network

We propose a common network to obtain the intra-modal and inter-modal infor-
mation from the inputs. The common network includes three key elements:
LSTM layers, feature tensors, and ResNet blocks. First, the inputs are sepa-
rately processed using LSTMs to capture modality specific features.

LM = LSTM(ZM )
LT = LSTM(ZT )
LN = LSTM(ZN )

(3)

where LM is the output of LSTM layer using market input features ZM , LT is
the output of LSTM layer using the technical indicators, and LN is the output
of LSTM layer using news embeddings ZN .

The latent features obtained from with the three LSTMs are then brought
together via an outer product to form a multi-mode tensor. These tensors repre-
sent the inter-modal and intra-modal information within the multiple modalities.

TTM =
∑

j

LT(ijk) × LT
M(ijk)

TTMN =
∑

k

TTM(ijk) × LN(ikl)

(4)

Lastly, the joint information from the tensor is retrieved through using a
ResNet. In this common network, the ResNet takes TTMN as its input and
produces the output OCOMMON :

OCOMMON = ResNet(TTMN ) (5)

The overall algorithm of our common network is given in Algorithm2.
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Algorithm 2. Common Network
Input: Market price data Zm, technical indicators Zt, and financial news Zn
Output: Feature vector OCOMMON

1: for time step t = 1 to n do
2: LM ← LSTM(ZT )
3: LN ← LSTM(ZN )
4: LM ← LSTM(ZM )
5: TTM ← ∑

j LT(ijk) × LT
M(ijk)

6: TTMN ← ∑
k TTM(ijk) × LN(ikl)

7: Ot
COMMON ← ResNet(TTMN )

8: end for

3.3 Fusion Layer

The feature vectors from the common and unique sub-networks are integrated
through vector concatenation to form Omerged. We first flatten this feature vector
via global average pooling operation and then process it with two fully connected
layers using ReLU as the activation function. At the last step another fully
connected layer is used to make a prediction. The overall network is a binary
classification model that predicts the movement direction of the stock prices
and the weights are optimized by minimizing the binary crossentropy loss. The
direction of the movement is defined as the difference between Close prices on
day t+1 and day t.

4 Experimental Setup

4.1 Dataset

In our experiments, we utilized real-world datasets comprising financial news,
market data, and technical indicators spanning from January 1, 2013, to Decem-
ber 31, 2019, encompassing 1761 trading days. The financial news was sourced
from Reuters1, where each article included a title, body, and the publishing date.
The date served to synchronize the articles with the daily market data. Follow-
ing preprocessing, including the removal of duplicates and unrelated articles, the
dataset consisted of 527,047 news headlines. The minimum number of articles
per day was 38, while the maximum was 998.

We employed the headlines from the financial news, as research has indicated
that utilizing news titles can yield superior prediction results compared to using
the entire article body [27]. Our approach involved utilizing 5-day windows as
input, meaning that data from five consecutive days were used at each step to
predict the movement of the closing price for the subsequent day. As the number
of news titles per trading day varied, we amalgamated all the titles for a given
day into a single coherent sentence. Subsequently, we harnessed BERT to encode
1 https://www.reuters.com/business/finance/.

https://www.reuters.com/business/finance/
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the textual data into feature vectors, ultimately generating a singular sentence
embedding vector per trading day.

Market data pertaining to the S&P 500 index and individual stock data
for five companies within the index were extracted for the corresponding dates
from Yahoo Finance2. These market data were represented using five attributes:
Open, High, Low, Close prices, and Volume. The data were normalized to fall
within the [0, 1] range.

In addition, we computed seven technical indicators for each trading day,
derived from the prices over the preceding five days. These indicators encom-
passed Stochastic %K, Stochastic %D, Momentum, Rate of Change, William’s
%R, A/D Oscillator, and Disparity 5. These particular indicators have demon-
strated effectiveness in market prediction [14]. Refer to Table 1 for the list of
selected technical indicators and their descriptions.

Our experiments were centered on predicting the directional movement of the
S&P index price and the individual stock prices of five companies (AAPL, MSFT,
AMZN, TSLA, GOOGL). For index prediction, we initially employed an 80–20%
split for training and testing. Additionally, we evaluated yearly performance by
utilizing the first 10 months of each year for training and the last 2 months for
testing. In the case of individual stock prediction, the 80–20% split was again
used for training and testing purposes.

Table 1. Technical indicators and their descriptions

Indicator Description

Stochastic %K The %K is the percentage of the difference between its
highest and lowest values over a certain time period

Stochastic %D Moving average of Stochastic %K
Momentum The change in a security’s price over a given time period
Rate of Change The percentage difference between the current price and the

price n days ago
William’s %R A momentum indicator that measures overbought/oversold

levels
A/D Oscillator A momentum indicator that associates changes in price
Disparity 5 The distance of current price and the moving average of 5

days

4.2 Settings

In this study, the standard measure of accuracy (Acc) and Matthews Corre-
lation Coefficient are selected to evaluate the performance of the models for

2 https://finance.yahoo.com/.

https://finance.yahoo.com/
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S&P500 index and individual stock prediction [7,16,17,27,35]. MCC is gener-
ally employed when the sizes of classes y = 1 and y = 0 differ. These two metrcis
are defined as follows:

ACC =
n

N
(6)

where n is the number of correct predictions and N is the number of total pre-
dictions, and

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7)

where TP, TN, FP, and FN are the number of true positives, true negatives,
false positives, and false negatives, respectively.

In the common network, we employ 64 LSTM layers to analyze the sentence
embeddings from the news titles, while the technical indicator and market data
inputs are processed using 32 LSTM layers.

The design of the ResNet is consistent across both the unique and shared
networks. In the common network, we utilize 64 filters and set the kernel size to
3 in the convolutional layers. For the unique network, we employ convolutional
layers with 32 filters and a kernel size of 2. In both sub-networks, a stride of 1
is applied, and we perform padding convolution.

The initial two fully connected layers in the fusion layer contain 32 output
neurons each and employ the ReLU activation function to process the inputs.
The Adam optimizer is utilized to optimize the network parameters, and we set
the epoch size to 500 epochs with a batch size of 64.

4.3 Baseline Methods

We compare our approach with the following baselines on predicting individual
stocks and S&P500 index.

– Recurrent Convolutional Neural Network (RCNN) [29]: a CNN and
LSTM based market forecast model that utilizes technical indicators and
financial news.

– Event Embeddings-RCN (EB-RCN) [24]: a similar model to RCNN that
uses market data alongside with event embeddings [7] from news data.

– Bidirectional Gated Recurrent Unit (BGRU) [13]: a market forecast
model with financial news and historical market data.

– LSTM-based Recurrent State Transition (ANRES) [20]: a market
movement prediction model utilizing events from news data.

– Hybrid Attention Network (HAN) [12]: a state-of-the-art stock market
forecast model with hierarchical attention utilizing news data.

– Adversarial Attentive LSTM (Adv-LSTM) [8]: a market forecast model
utilizing attentive LSTMS with adversarial training strategy.
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These machine learning models are built for stock market prediction. But in
order to test the effectiveness of MStoCast as a multimodal learning system, we
compare it against the following two state of the art multimodal learning models
that have been successful in other domains. Both of these models have been
proposed for sentiment analysis but we adopt their architectures and customize
them for stock market prediction.

– Tensor Fusion Network (TFN) [32] utilizes the bi-modal and unimodal
information from the input modalities.

– Early Fusion LSTM (EF-LSTM) [33] concatenates the inputs from dif-
ferent modalities and employs a single LSTM to analyse the combined input.

We also perform ablation studies by creating two models using our common
(MStoCast-Common) and unique (MStoCast-Unique) sub-networks separately
and evaluate their performances.

Fig. 2. Accuracy on index and individual stock prediction (the higher, the better).

Fig. 3. MCC results on index and individual stock prediction (the higher, the better).

5 Results and Analaysis

The primary contribution of this research lies in its innovative multimodal app-
roach, which leverages both common and unique information from various data
modalities to predict price movements in stock markets. To demonstrate the effi-
cacy of the proposed MStoCast and its components, we conducted experiments
using real-world datasets. Initially, we performed ablation tests to ascertain the
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significance of the novel multimodal design. Then, we compared the performance
of MStoCast against several state-of-the-art models from stock market predic-
tion domain literature. The results of the experiments are given in Fig. 2 and
Fig. 3.

Fig. 4. Accuracy results on S&P500 index prediction (the higher, the better).

Fig. 5. MCC results on S&P500 index prediction (the higher, the better).

5.1 Ablation Study

We conducted ablation studies to assess the effectiveness of incorporating
both unique and common information within MStoCast for predicting stock
trends. To this end, we carried out experiments to compare the performance
of the unique sub-network (MStoCast-Unique) and the common sub-network
(MStoCast-Common) against the complete MStoCast architecture. We focused
on predicting the movement direction of both the S&P index and five individual
stocks. The outcomes of these experiments are presented in Fig. 6 and Fig. 7.
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A notable observation is that MStoCast consistently outperforms both the
unique and common sub-networks in both stock index prediction and individual
stock trend prediction. These results underscore the effectiveness of our proposed
design, which capitalizes on inter-modal and intra-modal information as common
knowledge, while exploiting bi-modal relationships among input modalities as
unique information, leading to improved prediction accuracy.

Among our findings, the common sub-network achieved superior results in
both metrics compared to the unique sub-network. This emphasizes that while
modeling bi-modal relationships among modalities through early fusion enhances
model performance, the primary focus should remain on capturing the inter-
modal and intra-modal dynamics inherent in the data modalities.

Fig. 6. Ablation accuracy results. Fig. 7. Ablation MCC results.

5.2 Comparison with Baselines

We conducted our experiments under two distinct data split configurations. Ini-
tially, we employed an 80–20% split and performed tests to predict the movement
direction of the S&P 500 index price and the price of five individual stocks. We
evaluated the results using two key metrics: accuracy and MCC. Our findings,
as presented in Fig. 2 and 3, clearly indicate that MStoCast consistently outper-
forms baseline stock market prediction models across both metrics. Furthermore,
the results demonstrate MStoCast’s superiority over two state-of-the-art multi-
modal deep learning models, TFN and EF-LSTM. The consistent improvement
in performance against baseline models underscores the efficacy of the proposed
design for both index and individual stock prediction, leveraging multimodal
data.

Among the baseline models, attention-based HAN and Adv-LSTM stand out,
demonstrating better performance in most tickers in terms of both accuracy
and MCC. These findings highlight the significance of the attention mechanism
in focusing on crucial data aspects when capturing latent features. However,
even against these models, MStoCast exhibits substantial enhancements in both
accuracy and MCC metrics. We attribute this to the innovative multimodal
learning design that models intra-modal and inter-modal relationships within
the input data.
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We expanded the comparative analysis to include two successful multimodal
deep learning models from other domains: TFN and EF-LSTM. MStoCast out-
performs these models significantly in predicting both index and individual stock
price movements. While TFN outperforms EF-LSTM across all tickers, both
models are often outperformed by other baseline methods.

In our experiments, models like EB-RCN and ANRES aimed to extract event-
based information from financial news and integrate it into prediction models.
The results highlighted that this approach yields superior performance compared
to employing basic word embeddings for textual data encoding. This underscores
the crucial role of effective textual representation techniques in multimodal stock
market prediction.

Another observation is that MStoCast-Common consistently outperforms the
RCNN model in most tickers, although it is often surpassed by EB-RCN. This
suggests that while tensors and sentence embeddings contribute to prediction
accuracy, employing more sophisticated textual representation methods, such as
event embeddings, can yield even better results.

Among the baseline models, EF-LSTM and MStoCast-Unique networks
employed early information fusion, where raw input features were concatenated
at the input stage prior to analysis. Conversely, other baseline methods adopted
a late fusion technique, wherein models independently analyzed input modali-
ties before fusing data at a later stage. The outcomes indicated that late fusion
techniques produce better results by capturing more crucial latent features from
input modalities.

We also evaluated models’ yearly prediction performance for S&P 500 index
prediction, using the first 10 months of each year for training and the last two
months for testing. The results, illustrated in Fig. 4 and 5, showcase MStoCast’s
consistent superiority over baseline models for each year, in both directional
accuracy and MCC. The same trend from the above tests also continue here
where Adv-LSTM performs the best among the baselines. Although the yearly
results are slightly lower than the initial test results, this can be attributed to
the smaller test sample size inherent in the yearly setup.

6 Conclusion and Future Work

In this research, we proposed a novel multimodal stock market prediction model
named MStoCast which effectively utilizes stock market data, financial news
data, and technical indicator data. The model design focuses on extracting inter-
modal and intra-modal information, and explores the bi-modal relations among
the inputs. In the experiments and trading simulation demonstrations with real-
world datasets, MStoCast model considerably outperformed the baseline models.
The results show the strong potential of MStoCast in multimodal learning.
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Abstract. A manifold distributed dataset with limited labels makes it difficult
to train a high-mean accuracy classifier. Transfer learning is beneficial in such
circumstances. For transfer learning to succeed, the target and base datasets
should have a similar manifold structure. A novel method is presented in this
paper for determining the similarity between two manifold structures. To deter-
mine whether target and base datasets have similar manifolds and are suitable
for transfer learning, this method can be used. A novel few-shot algorithm is
then presented that uses transfer learning to classify manifold distributed datasets
with a limited number of labels. Using the base and target datasets, the manifold
structure and its relevant label distribution are learned. Using this information in
combination with the few labels and unlabeled data from the target dataset, we
can develop a classifier with high mean accuracy.

Keywords: Few-shot learning · Transfer learning · manifold distributed
datasets · measuring similarity

1 Introduction

A few-shot learning method is used in machine learning and artificial intelligence to
train models with a limited number of examples. In contrast to traditional machine
learning, few-shot learning utilizes prior knowledge from related tasks in order to gain
insight from scarcely labeled data. Traditional machine learning requires a large amount
of labeled data in order to be accurate; however, in real-world scenarios, it is often
impossible or prohibitively expensive to acquire extensive labeled datasets for each new
task or category. The goal of few-shot learning is to develop algorithms and techniques
that allow models to learn from a limited number of examples per class in an efficient
manner. In contrast to traditional machine learning, few-shot learning enables machines
to learn as humans do, by generalizing information from past experiences to new sit-
uations even when only a few examples are provided. It is therefore fair to say that
few-shot learning bridges the gap between traditional machine learning and human-like
learning abilities.
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D. Benavides-Prado et al. (Eds.): AusDM 2023, CCIS 1943, pp. 137–149, 2024.
https://doi.org/10.1007/978-981-99-8696-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8696-5_10&domain=pdf
http://orcid.org/0000-0002-8901-4606
http://orcid.org/0000-0003-0201-4409
http://orcid.org/0000-0002-8284-2062
https://doi.org/10.1007/978-981-99-8696-5_10


138 S. W. Qayyumi et al.

The process of transfer learning in machine learning and deep learning refers to the
use of knowledge gained from one task to improve performance on another. Instead
of starting from scratch, transfer learning uses pre-trained models or representations to
accelerate training, enhance generalization, and improve performance on target tasks.
Traditionally, machine learning models are trained on specific datasets for specific
tasks, which requires a considerable amount of labeled data. Annotating large datasets
can, however, be time-consuming, expensive, or impractical in certain circumstances.
A transfer learning method can overcome this limitation by transferring knowledge
from an abundantly labeled source domain to a scarcely labeled target domain. Transfer
learning is based on the principle that knowledge gained from solving one task can be
applied to solving another related task. Utilizing this knowledge, models can extract
meaningful features, capture important patterns, and generalize well to new data even
when limited labeled data is available.

Manifold distributed datasets are those whose samples are located on or near a
low-dimensional manifold within a high-dimensional space. In traditional datasets, data
points are often assumed to be independent and identically distributed (i.i.d.). However,
real-life data often demonstrate complex structures and correlations that can be better
understood by considering the underlying manifold. A manifold is a curved or folded
surface embedded in a higher-dimensional space. The manifold represents the under-
lying structure of data, where each point represents a separate sample. By mapping
high-dimensional data points to a lower-dimensional manifold representation, manifold
learning uncovers the intrinsic structure and geometry of the data.

A novel method is presented in this paper for determining the similarity between
two manifold structures. To determine whether target and base datasets have similar
manifolds and are suitable for transfer learning, this method can be used. Using the
mentioned method, the paper then presents a novel algorithm for few-shot learning of
manifold distributed datasets. Using a similar base labeled manifold distributed dataset,
the algorithm learns the manifold structure of the data. Then, using the manifold struc-
ture learned from the base dataset, along with the labeled and unlabeled data from the
target manifold distributed dataset, a few-shot learning classifier is trained.

This article makes the following contributions:

– A novel method for calculating the similarity between two manifold structures is
proposed. The purpose of this method is to determine whether a base dataset is
suitable for transfer learning. (Sect. 3)

– A novel algorithm is presented for the transfer learning when data is manifold dis-
tributed and labels are limited in few-shot learning scenarios. Transfer learning is
achieved using graphs and random walks. (Sect. 4).

This article will proceed in the following manner: Sect. 2 examines current research
on few-shot learning, transfer learning, and classification of manifold-distributed data
with few labeled samples. Section 3 presents a method to compare the similarity of
manifold structures between two manifold distributed datasets. Section 4 outlines our
proposed algorithm. Section 5 describes the experiments conducted on synthetic and
real-life datasets. Our results are also compared with other state-of-the-art methods in
this section.
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2 Background and Related Work

Recent advances in deep learning, meta-learning, and transfer learning have led to sig-
nificant progress in few-shot learning. In order to address the few-shot learning prob-
lem, numerous approaches and techniques have been developed, each with its own
strengths and characteristics.

A common strategy used in few-shot learning is meta-learning, also known as learn-
ing to learn. Through the use of meta-learning algorithms, models can rapidly adapt to
new tasks with limited labeled data by accumulating knowledge from multiple related
tasks during a pre-training phase. Models become more adept at generalizing to new
classes as they learn how to learn.

Metric learning is another popular approach to few-shot learning. A metric-based
method seeks to infer a similarity metric or embedding space in which samples from the
same class are more similar than samples from different classes. Using these methods,
effective classification and recognition can be achieved with a minimum amount of
training data.

Memory-augmented architectures have also been shown to be promising for few-
shot learning. Both training and testing are conducted using models that use external
memory structures as a dynamic storage medium. Learning through few-shots is made
possible by the ability to retain important knowledge and adapt it to new situations.

Further, few-shot learning has been applied to improve model performance, adapt-
ability, and generalization through the use of generative modeling, attention mecha-
nisms, and knowledge distillation.

In recent years, several influential papers have significantly advanced the few-shot
learning technique. Several innovative algorithms and methodologies are presented that
have pushed the boundaries of what is possible even with limited training examples.
Here are some interesting ideas presented in a number of popular papers. In [13] the
authors introduced matching networks for one-shot learning. The authors propose a
trainable model that compares examples from a support set with examples from a target
set. Similarities between samples are computed using a differentiable nearest-neighbor
algorithm. As demonstrated in this study, memory-augmented architectures can be use-
ful for few-shot learning.

In [10] the authors presented a few-shot learning approach utilizing prototypical
networks. The algorithm proposed is based on the learning of a metric space where
samples from the same class are closer together than samples from other classes. By
representing classes with learned prototypes, this method enables efficient inference and
generalization of new classes. [8] introduced the concept of meta-learning using few-
shot learning as a context. In order to facilitate rapid adaptation to new tasks with limited
labeled data, the authors propose a meta-learning algorithm that learns the initialization
of the model’s parameters as the task progresses. As a result of training on multiple
related tasks, generalization and adaptation to new classes are enhanced.

In [3] the authors introduced the model-agnostic meta-learning (MAML) algorithm,
which provides a general framework for few-shot learning. The use of MAML allows
models to be quickly adapted to new tasks with limited data by optimizing their param-
eters. MAML learns from few examples efficiently by iteratively updating its initializa-
tion based on task-specific gradients.
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The transfer learning technique is a powerful tool in machine learning and computer
vision for improving the performance of related tasks based on the knowledge gained
from the first task. The transfer of representations, features, or knowledge from one
domain to another reduces the requirement for expensive training processes and large
labeled datasets. Models are believed to be capable of transferring knowledge gained
from one task to another, improving performance, generalization, and convergence.

A number of influential papers have contributed to the development and advance-
ment of transfer learning techniques. In these papers, several approaches and architec-
tures have been proposed which have had a significant impact on the field. In [7] the
authors used deep convolutional neural networks (CNNs) to introduce the concept of
transfer learning. The study demonstrated the effectiveness of pre-training CNNs on a
large-scale dataset (ImageNet) and fine-tuning them for specific target tasks. A large-
scale dataset could be generalized to different tasks, resulting in significant improve-
ments in accuracy.

In [9] the authors introduced VGGNet, which achieved excellent performance on the
ImageNet challenge. The study demonstrated that transfer learning is effective when it
is applied to very deep networks. According to the authors, VGGNet learns rich repre-
sentations on ImageNet that are generalizable to other tasks after pre-training.

In [6] the authors introduced the ResNet architecture, which addresses the problem
of training deep neural networks by introducing residual connections. Using ResNet,
the authors demonstrated superior performance on ImageNet and highlighted the impor-
tance of deep networks in transfer learning. The network could learn residual mappings
by using residual connections, allowing features from pre-trained models to be reused
more effectively.

Goodfellow et al. [5], despite not exclusively addressing transfer learning, intro-
duced the concept of generative adversarial networks (GANs), which are widely used
for transfer learning. An adversarial GAN consists of a generator and a discriminator
network. Generators learn to generate synthetic samples that cannot be distinguished
from real samples, while discriminators learn to distinguish real samples from fake
ones. GANs have been used for a variety of transfer learning tasks, including domain
adaptation and style transfer.

In few-shot learning using manifold-distributed data, it is difficult to determine the
manifold structure of the data accurately due to the limited number of observations
available for training. There is no mathematical possibility of estimating the manifold
structure in zero-shot and one-shot learning, for instance. Consequently, it is critical to
determine the minimum number of samples required to accurately determine the man-
ifold structure. It may not be possible to capture the nonlinear, complex relationships
between manifold distributed data using a small number of examples. Consequently,
the model may be overfit or underfit, resulting in poor performance when new, unseen
data is introduced. Transfer learning success is heavily dependent on selecting a suitable
source dataset. However, the algorithm used also contributes to this success [4].

Another challenge is that few-shot learning assumes that the training examples are
representative of the entire manifold distribution, which is not necessarily true for man-
ifold distributed data. When the training data is biased towards particular parts of the
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manifold or does not cover the full range of variations in the data, a model may fail to
generalize to new data points that are not included in the training set.

Furthermore, when using few-shot learning with manifold distributed data, it is
essential to select the appropriate distance metric or similarity metric. The selection
of an appropriate distance metric can be challenging due to the fact that different mani-
folds require different distance metrics.

Finally, few-shot learning may require complex and computationally expensive
models if there is a large amount of distributed data. The training data for these models
must be collected in large quantities in order to avoid overfitting, which is in conflict
with the few-shot approach.

Manifold-distributed data can be represented intuitively and naturally with graphs.
Edges represent pairwise relationships between data points, while nodes represent data
points. Graphs help capture the complex, nonlinear relationships between data points of
manifold distributed data. Graphs can also be used to incorporate additional information
about the data into the classification process, such as pairwise similarities, distances, or
labels. Pairwise relationships between data points can be used to assign edge weights.
In summary, graphs offer an effective framework for addressing many of the challenges
posed by manifold distributed data classification [1]. Using the constructed graph, we
can determine the likelihood that unlabeled observations belong to a particular class
based on their proximity to labelled observations. Graph-based classification has proven
to be a state-of-the-art approach to classifying manifold distributed data [11,12].

3 Measuring Similarity of Manifolds

Measurement of the similarity between two datasets and manifolds is crucial to deter-
mining the efficiency and feasibility of knowledge transfer. Using knowledge from one
domain, typically called the source domain, transfer learning is aimed at improving the
performance of a model in another, but related, domain, called the target domain. For a
deeper understanding of the underlying structures and distributions in both domains, it
is necessary to assess the similarity between datasets. Transfer learning is more effective
when datasets have similar statistical characteristics, such as the distribution of data, the
representation of features, and the semantic relationships among them. It is possible to
effectively transfer knowledge from the source domain to the target domain, enhancing
generalization and performance.

It is also crucial to measure the similarity between manifolds, which represent the
intrinsic low-dimensional structures of data. In high-dimensional data, manifolds can
be used to capture geometric patterns and relationships, which are necessary for under-
standing the underlying structures of target domains and source domains. By analyzing
the geometric similarities between manifolds, we can determine whether data in both
domains have similar geometric structures, allowing for the transfer of meaningful and
relevant knowledge.
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Several works have stressed the importance of assessing datasets and the many sim-
ilarities between them when it comes to transfer learning. In [2], the authors give a
comprehensive overview of transfer learning techniques and emphasize the importance
of selecting the appropriate source and target domains on the basis of similarity mea-
sures. In addition, [15] present a variety of transfer learning paradigms and emphasize
the importance of measuring dataset similarity in order to achieve successful knowledge
transfer.

In order to achieve effective transfer learning, it is essential to measure the similarity
between datasets and manifolds. Understanding the statistical and geometric relation-
ships between domains can help us improve model performance in the target domain.
Taking into account the above, we examined various similarity measures in order to
select datasets from the source domain that would be most suitable for transfer learn-
ing. Various measures can be used to measure the similarity between datasets from a
source and a target domain. However, these measures do not work when data is man-
ifold distributed. Therefore, we examined a measure that can be effective when data
from the source domain and the target domain are manifold distributed.

A graph is a natural mechanism for unraveling the structure of a manifold [12,14].
Therefore, we examined a measure based on graphs. Distance can be measured by ran-
dom walks over graphs, and that is what we are doing in our distance measurement. We
have presented our approach to measuring distance between two manifold distributed
datasets in Algorithm 1. To determine the effectiveness of our measure, we compared
it to all potential measures that can be used in transfer learning. We used both synthetic
and real-world datasets. A comparison of our method of measuring similarity with all
other methods using synthetic data of a Swiss roll is presented in Fig. 1. We began
by comparing identical Swiss rolls. We continued to measure similarity by keeping one
Swiss roll the same and adding normal distributed noise to the other Swiss roll. Figure 1
illustrates the results of the experiments.

We also evaluated the performance of our approach to similarity using images from
the miniimagenet dataset. In Table 1, a single image of each species is compared with
50 images of other species and its own. Using the set of 50 images, similarity is deter-
mined by their average distance (using our method). Based on our results, we are able to
identify similar manifold structures and distinguish between different manifolds based
on similarity of their structures.

In Table 2, we compare our method with other similarity measures. In the results,
we can see that similarity decreases as we compare an image of a bird with other bird-
like species and with non-bird-like species. In contrast, other measures of similarity are
not able to accomplish this. When we compare similar manifolds between two objects
and the number of manifolds is the same, our approach to comparing similarity between
images works well. Our method, for example, works when comparing a duck image to
another duck image, but fails when comparing a duck image with an image containing
more than one duck. The reason for this is that the manifold structure of an image of a
single duck differs from the manifold structure of an image with many ducks (Fig. 2).
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Fig. 1. Distance calculated using various methods as more noise is added to one of the manifolds

Table 1. MiniImageNet Dataset- A single image of each species is compared with 50 images of
other species and its own. Similarity is based on the average distance (using our method) from
the set of 50 images per class.

Birds(50) Ducks(50) Toco(50) Snakes(50) Dogs(50) Lions(50)

384.42 411.45 531.44 1474.24 1967.65 956.75

627.5 187.62 477.95 1597.2 1222.55 1739.42

576.21 596.57 385.16 801.92 863.38 752.33

1392.87 1455.15 1660.04 609.33 1461.78 1683.36

1323.62 870.06 2908.67 1674.11 332.47 669.92

2156.54 2423.52 2189.73 2569.52 384.42 310.96



144 S. W. Qayyumi et al.

Fig. 2. Transfer Learning - Swiss roll manifold

4 Transfer Learning

We describe our approach to transfer learning between twomanifold distributed datasets
X1 and X2 with labels y1 and y2 in Algorithm 3. Target dataset X1 is a manifold
distributed dataset with a few labels y1 whereas source dataset X2 is another manifold
distributed dataset with many labels y2. The classifier is trained using the source dataset
and a portion of the target dataset that is labeled. There are three parts to the entire
method.

Algorithm 1 calculates distances between two manifold structures. The method
serves as a distance measure for the classifier we use, which is the k neighbor classifier.
Furthermore, the method determines whether the source dataset has a similar manifold
structure to the target dataset and can be used for transfer learning. For transfer learn-
ing to be effective, it is recommended that the source dataset has a level of manifold
similarity.

Algorithm 2 constructs graphs of manifold distributed data. A random walk dis-
tance measure is used in training classifiers using these graphs. A random walker walks
over these graphs, distance is calculated which is used by the k neighbor classifier to
determine which neighbor is closest.
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Algorithm 3 performs transfer learning. Using Algorithm 1 and 2, this algorithm
trains a k neighbor classifier using randomwalk as the distance metric. In this algorithm,
the knowledge of manifold structure (source dataset) and the relationship between man-
ifolds and labels (source dataset) is transferred to the target dataset. In conjunction with
the limited labels available in the target dataset, these information are used to train a
classifier that is then used to classify the unlabeled data in the target dataset.

Algorithm 1: Measuring Similarity
Data: adj1, adj2, t
Input : adj1, adj2, t
Output: distance

1 Get and assign to n1, n2 number of rows in adj1,adj2;
2 Create identity matrices of size n1 × n1 and n2 × n2 ;
3 Create weight matrices W1, W2 : W1 = Inverse of (I1 − t × adj1) and W2 =

Inverse of (I2 − t × adj2) ;
4 Calculate distance d = norm of (W1 − W2);
5 return d;

Algorithm 2: Construction of Graphs
Data: dataset d, k neighbors
Input : dataset d, k neighbors
Output: graph g

1 Create a new empty graph;
2 Calculate the Euclidean distance matrix for d;
3 for i in range(length(d)) do
4 neighbors ← Indices of k neighbors nearest neighbors of data point i;
5 for j in neighbors do
6 Add an edge between data point i and data point j in g;

7 return g;

We have provided a detailed explanation of the transfer learning process in 2. There
are two Swiss roll manifolds A and B. A is a Swiss roll dataset with very few labels
(color class). B is a distorted Swiss roll dataset, but all labels are available. There is a
similarity in the manifold structure of both datasets. Using the 1 we are able to measure
the similarity between these datasets and determine if we should use them as a learning
resource. Considering that the manifold in this case is very similar (70%), we have
employed it for transfer learning. It is evident from the output (A-labelled) that transfer
learning has added a great deal of value in this instance, achieving an accuracy of 96%
when compared to the actual labels.
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Algorithm 3: Transfer Learning
Data: X1, y1, X2, y2, k,DT
Input : X1, y1, X2, y2, k,DT
Output: μα (mean accuracy of classification)

1 Assign random walk distance between X1, X2 to d;
2 if d ≤ DT then
3 Scale the features of X1, X2 to the range [0, 1];
4 Construct graphs g1, g2 from scaled X1, X2 with k nearest neighbors;
5 Convert g1, g2 to adjacency matrices;
6 Create a new k Neighbors classifier with k neighbors and Algorithm 1 as distance

metric;
7 Train classifier on X2 and X1 labeled with labels y2, y1;
8 Classify X1 unlabeled using the trained classifier;
9 return Prediction (y1);

5 Experimental Results

We conducted experiments on both synthetic and real-world manifold distributed
datasets. These experiments were conducted to evaluate the effectiveness of our method
and determine when we should stop using transfer learning in few-shot learning with
manifold distributed datasets. Few-shot learning with manifold distributed datasets
makes it extremely difficult to construct a classifier with a high mean accuracy. There-
fore, it is logical to learn from a source dataset and transfer knowledge to a target
dataset.

There is a breakeven point after which transfer learning does not add value, and may
even not be necessary. There may or may not be a need for transfer learning depending
on the number of labels per class available in the target dataset and how different the
source dataset is in terms of its manifold structure. In order to simulate this scenario,
we experimented with 10, 20, 30 and 40 labels per class for synthetic and real-world
datasets. We add noise to the source dataset as we increase the number of labelled data
points per class. We begin with a noise level of 1 and increase the noise level by 1 every
time. It is worth noting that an increase in noise represents an increase in standard
deviation. As noise increases, standard deviation increases as follows: 0 → 1 = 0.078,
0 → 2 = 0.29, 0 → 3 = 0.64, and 0 → 4 = 1. A target dataset is created by removing
all labels except the number required per class. An identical copy of the same dataset is
used as the base dataset. Noise is added to all features except the class.

5.1 Synthetic Datasets

Several experiments were conducted using the data generated for Swiss roll, moon
shape, and S curve shape manifolds. We generated two identical datasets: one as a target
and the other as a source. The target dataset is modified by removing all labels except
the number of labels required for each class. We modify the base dataset by adding
noise to all features except the class feature. In the Table 3, you can see the structure
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Table 2.MiniImageNet Dataset: The image of a bird is compared to that of other birds and other
species based on our approach to similarity and other distance measures

A B ours cos rbf pd wd hausdorff

0.00 0.00 20.00 0.00 0.00 0

253.61 0.10 0.00 0.45 77.37 57066

582.62 0.15 0.00 0.42 31.00 77164

2187.30 0.11 0.00 0.45 73.44 72403

4491.55 0.15 0.00 0.61 23.94 63515

Table 3. % Mean accuracy (μα) with and without transfer learning (TL) on different manifold
structures (1000 data points, 20 iterations) - σ represents noise added. We also compare our
approach with neural networks - domain adoption

Shape Manifold Sample(L) σ- Noise μα% μα (TL-Our App)% μα NN-DA%

Moon 10 1 2.00 86.1 79.9
Moon 20 2 7.00 73.2 68.3
Moon 30 3 9.10 60.9 60.0
Moon 40 4 22.2 56.7 63.5
S Curve 10 1 14.1 39.4 33.9
S Curve 20 2 19.5 23.2 25.7
S Curve 30 3 28.8 18.5 16.9
S Curve 40 4 38.2 15.5 18.3
Swiss roll 10 1 2.24 88.1 22.5
Swiss roll 20 2 7.00 74.8 15.3
Swiss roll 30 3 17.8 62.4 12.2
Swiss roll 40 4 32.2 58.2 9.8

of the manifold, the number of labeled samples in the target dataset, the noise added to
the base dataset, as well as the mean accuracy with and without transfer learning. Based
on the difference in mean accuracy with and without transfer learning, it can be seen
how beneficial transfer learning can be for few-learning with manifold distributed data.
Furthermore, the table illustrates how the manifold difference between the source and
target datasets (noise) impacts the efficacy of transfer learning.
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5.2 Real World Datasets

We conducted experiments with banknotes, Pendigits, and Satlog datasets. You can
access the datasets at (http://archive.ics.uci.edu). We generated two identical datasets:
one as a target and the other as a source. The target dataset is modified by removing all
labels except the number of labels required for each class. We modify the base dataset
by adding noise to all features except the class feature. In the Table 4, you can see
the structure of the manifold, the number of labeled samples in the target dataset, the
noise added to the base dataset, as well as the mean accuracy with and without transfer
learning. Based on the difference in mean accuracy with and without transfer learning,
it can be seen how beneficial transfer learning can be for few-learning with manifold
distributed data. Furthermore, the table illustrates how the manifold difference between
the source and target datasets (noise) impacts the efficacy of transfer learning.

Table 4. % Mean accuracy (μα) with and without transfer learning (TL) on different manifold
structures (1000 data points, 20 iterations) - σ represents noise added. We also compare our
approach with neural networks - domain adoption

6 Conclusions

The development of a classifier with high mean accuracy from a manifold distributed
dataset with limited labels is not an easy task. In order for transfer learning to be effec-
tive, the manifold structure of the base dataset must be similar to the target dataset. As
a means of solving these problems, this paper proposes a novel method for calculating
similarity between two manifold distributed datasets. It also proposes a novel transfer
learning algorithm in few-shot learning scenarios with manifold distributed datasets.
Graphs and random walks are used in our method for calculating similarity between
manifold structures. Using the manifold information along with the label distribution
from the base manifold distributed dataset and the limited labels from the target dataset,
we can construct a high mean accuracy classifier.

http://archive.ics.uci.edu
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In this paper, we discuss the transfer learning in few-shot learning scenarios with
manifold distributed datasets. Future research will focus on zero-shot, one-shot, and
two-shot learning scenarios that are more complex with respect to estimating manifold
structure.
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Abstract. When the data distribution in a dataset is highly imbalanced
or long-tailed, it can severely affect the effectiveness of a deep network
model. This drop in performance is caused due to the biased classifier,
which favours the head-class samples because these samples have more
dominant features compared to the tail-class samples. Addressing this
challenge requires not only capturing subtle inter-class differences and
intra-class similarities but also effectively utilising limited data for the
minority classes. Supervised contrastive learning (SCL) and transfer of
angle information from head classes to tail classes have recently been
proposed to address the problem of long-tail classification. For a well-
balanced dataset, SCL demonstrates effectiveness by pulling together
samples from the same classes while pushing away samples from differ-
ent classes. However, when applied to long-tailed datasets, SCL could
become biased towards the head-class samples. On the other hand, the
method of transfer of angle information aims to address the challenges
posed by long-tailed image classification; however, it lacks in achieving
both intra-class compactness and inter-class separability. To address the
shortcomings and exploit the strengths of both of these approaches, we
propose a unique hybrid method that seamlessly integrates supervised
contrastive learning and angular variance to mitigate the adverse effects
of long-tailed data on deep learning models for image classification. We
name our method as Supervised Angular Contrastive Learning (SACL).
In our experiments on long-tailed datasets with different class imbalance
ratios, we demonstrate that our method outperforms most of the existing
baseline approaches.

Keywords: Long-Tail Image Classification · Supervised Contrastive
Learning · Imbalanced Data · Feature Representation

1 Introduction

The recent advancement in computer vision technologies has enabled significant
breakthroughs across many domains, including areas like autonomous driving,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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medical diagnosis, industrial inspection, etc. One of the fundamental tasks in this
domain is image classification, where the objective is to assign labels to images
based on their visual characteristics. Traditional image classification methods
heavily rely on manually engineered features. However, with the advancement
of deep learning methods, end-to-end learning approaches have revolutionised
the field of computer vision, enabling automatic feature extraction directly from
source data. Even though deep learning models have achieved exceptional per-
formance in image classification, they still face challenges when dealing with
long-tail class distributions.

In many real-world situations, the distribution of classes is highly long-tailed
[21], with a few dominant classes and a long tail of minority classes. This imbal-
ance distribution can severely affect the performance of deep network models due
to the biased classifiers, as they tend to perform better on the dominant classes,
i.e. head classes, but show degraded performance for tail classes, i.e. majority
classes with limited samples. The common strategies used to address the chal-
lenges of long-tail distribution in the existing literature are resampling methods
[2,4,10,11,24] and cost-sensitive methods [7,13,28,32]. Although the existing
methods have addressed the long-tail distribution problem to some extent, how-
ever, there is still vast opportunity for enhancing the performance as resampling
techniques address the long-tail problem by either under-sampling the head-class
samples or over-sampling the tail-class samples. Under-sampling method could
result in the loss of crucial information and, consequently, causes the model to
underfit, while the over-sampling method increases the samples of tail classes
with the aim to create a more balanced dataset between head and tail classes.
However, it could cause overfitting to the model. Due to the limitations of the
above methods, many other methods have been proposed in the literature, such
as information augmentation, which has two types, i.e. transfer learning [6,30,32]
and data augmentation [27,29].

One of the promising strategies recently introduced consists of two-stage
methods (representation learning and classifier learning) [15,34]. Supervised con-
trastive learning (SCL) [16] method also falls in this category, which learns an
enhanced feature representation in the first stage using the supervised contrastive
loss. It is aimed to decrease intra-class distances and increase the inter-class
distances, which is one of the essential aspects for learning the better feature
representation and enables the classifier to classify better in the second stage.
However, with severe class imbalance, the samples from the tail classes are over-
lapped with the samples of head classes. Another problem with the severe class
imbalance lies at that tail class samples occupy less spatial span [20] due to the
absence of intra-class variation.

In our research, we delve into effective contrastive learning and angular vari-
ance strategies that are recently proposed in the literature [16,20], customizing
them to improve the quality and distinctiveness of image representations, espe-
cially when dealing with long-tailed data. The aim is to exploit the strengths
of both approaches, i.e. the intra-class compactness and inter-class separability
of supervised contrastive learning and from the angular variance strategy, we
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transfer the average of head class angular variance to tail classes to enrich the
feature space. The overall objective is to enhance the effectiveness and capa-
bility of our model to address the problem of long-tailed image classification.
Our approach leads to a novel hybrid network structure. This structure com-
bines a contrastive loss and angular variance to facilitate the learning of distinct
image representations. It is achieved by adding the average of head class angular
variance with the features of anchor and augmented images in supervised con-
trastive learning. Additionally, we employ a cross-entropy loss to train the clas-
sifier. Our integration of angular variance with supervised contrastive learning
has produced superior results when compared to the performance of supervised
contrastive learning alone. Our guiding principle is the understanding that supe-
rior features lead to superior classifiers. To put this into practice, we adopt a
curriculum-based approach. This means we gradually shift the learning process
from initially focusing on feature representation learning to later concentrating
on classifier learning.

Inspired by the works of [16,20], our contribution are summarised as below:

– We propose a novel hybrid method that seamlessly integrates supervised con-
trastive learning and angular variance to address the long-tailed data problem
on deep learning models for image classification.

– Experiments on the imbalanced datasets show that our method performs
better than baseline methods for most of the imbalance ratios.

2 Related Work

Our work is related to addressing the image classification problem for long-tailed
datasets. Recently, the long-tail image classification area has drawn the attention
of the computer vision community. Different methods for addressing long-tailed
classification are categorised as below:

2.1 Data Re-balancing

Data re-balancing techniques deal with artificially balancing the long-tailed data.
They are classified into two categories, i.e. over-sampling [1,23,25] and under-
sampling [9,10,19]. Over-sampling increases the tail class samples by replicating
them, which could result in overfitting the model [24]. Under-sampling techniques
balance the data by reducing head class samples, which could cause the loss of
valuable information in the presence of severe data imbalance [24].

2.2 Information Augmentation

Information Augmentation [36] supplements the model training with additional
information for enhancing the model’s performance. It is divided into two cate-
gories: data augmentation and transfer learning.
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Data Augmentation techniques apply different operations or transformations
to the training data to create new, synthetic samples. These augmented samples
retain the same label as the original samples but introduce variations in the
existing data. The primary goal of data augmentation is to diversify the dataset
with a limited number of samples, thereby improving the model’s capability
to generalize to unfamiliar data. Examples of data augmentation are random
scaling, image flipping, cropping, rotating, etc. The approach proposed in [22]
augments the long-tail image classification pipeline using retrieval augmented
classification. In [25], new tail class samples are generated using a convex com-
bination of existing samples. Various methods of noise injections have also been
considered as means of optimizing the decision boundaries by moving them away
from minority classes [39].

Transfer Learning. Transfer learning techniques [26,30,32] transfer the knowl-
edge from a source domain (e.g., datasets or head classes) to improve the train-
ing of the model in a target domain. In the context of deep long-tailed learning,
these methods are typically grouped into different categories, i.e., head-to-tail
knowledge transfer, model pre-training, knowledge distillation, and self-training.
The work in [33] addresses the minor intra-class variance of features of tail-class
samples by exploiting the knowledge of head-class intra-class variance so that
features of tail-class samples have enough intra-class variance, resulting in bet-
ter model performance. In [17], perturbation-based optimisation technique for
enhancing the representation of the minority class samples by transforming sam-
ples from the majority classes into ones that resemble the minority classes. In [8],
the authors initially train the model using all the long-tailed samples to develop
a foundation for representation, followed by fine-tuning the model, resulting in
transferring the feature from head class samples to tail class samples.

Metric Learning. techniques aim at designing distance metrics to determine
the similarity and dissimilarity among the samples. In the context of long-tailed
classification, the metric learning-based method designs distance-based loss func-
tions for learning more discriminative feature space. The work in [35] enhances
representation learning by considering the distances between all pairs of samples
within a single mini-batch. It is aimed to increase the distance between different
classes by increasing the distances between the centres of any two classes within
the mini-batch. Simultaneously, it minimises the larger distances between sam-
ples within the same class, thereby reducing intra-class variations resulting in a
discriminative set of features. To improve the generalisation of the model and
to address the severe class imbalance problem, the authors in [14] proposed the
variation of contrastive loss called k-positive contrastive loss. Authors in [31]
proposed a method based on contrastive learning for addressing long-tail classi-
fication problems.

Decoupled Learning. Decoupled learning techniques are one of the recent
techniques addressing long-tail classification challenges. In these techniques deep
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long-tailed model is trained in two stages, i.e. representation learning followed
by classifier learning. In [15], the authors proposed a model that addresses the
long-tail problem using two separate stages for representation and classification
learning. They used the cross-entropy loss function in both stages; the findings
suggest that random data sampling is beneficial for feature learning, whereas
class-balanced sampling proves more effective when it comes to training the
classifier.

3 Proposed Framework

Our work has been inspired by [16,20]. Deep learning algorithms require enor-
mous, diverse and balanced data for training. In the case of the long-tailed
dataset, majority classes (tail) have limited samples while minority (head) classes
have numerous samples, so this unequal distribution between head and tail
classes and lack of intra-class diversity in tail classes severely affect the fea-
ture space representation in which tail classes usually occupy a small spatial
span while head classes usually occupy a large spatial span, resulting in a biased
classifier [20].

The angles between the features and the corresponding class centres deter-
mine spatial span and separate the features inside the spatial spans, so a larger
spatial span has a larger angular variance, and a smaller spatial span has a
smaller angular variance. Since head classes often have a wide range of diver-
sity, this property is also apparent in the angles formed between the features of
head-class samples and their corresponding class centres. However, tail classes
need more intra-class diversity due to fewer samples in the tail classes. In order
to mitigate the problem of intra-class diversity in the tail classes, the angular
variance of head classes can be applied to tail classes [20], along with data aug-
mentation techniques in order to enhance the diversity of tail classes resulting
in enriched feature space. Figure 1 shows the framework of our proposed method
for addressing the long-tail image classification problem.

3.1 Supervised Contrastive Learning

Supervised contrastive (SC) loss [16] is an extended version of unsupervised
contrastive (UC) loss [5]. The primary difference between the SC loss and the
UC loss lies in how they assemble the positive and negative samples related to
a particular anchor image. In the UC loss, the positive image is typically an
alternative augmented version of the anchor image and all other images, even
from the same class, are considered negative images. However, the SC loss takes a
different approach. In addition to the augmented image, it includes other images
belonging to the same class as positive images.

Following SCL [16], we use a backbone network, i.e. ResNet [12] to extract
features and generate an image representation i ∈ R

D for each image x. Then,
we employ a projection head encoder to convert this image representation i
into a more appropriate vector representation z ∈ R

DE . This transformation is
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Fig. 1. Overview of the proposed framework. The first part of the network applies dif-
ferent augmentation techniques, followed by calculating the average head-class angular
variance and then transferring it to the tail classes. The second part of the network
(SCL) learns and classifies the features respectively.

carried out through a multi-layer perceptron (MLP) with one hidden layer, as
it has been shown to enhance the quality of the preceding layer’s [16]. Subse-
quently, we perform normalization on z to prepare it for measuring distances
using inner product calculations. Classification is achieved through a single lin-
ear layer applied to the image representation to generate predictions for class
logits. Cross entropy loss LCE is applied on these logits for the prediction of
samples. For a mini-batch size of N , SCL is represented as [16]:

LSCL =
2N∑

i=1

LSCL(zi) (1)

LSCL(zi) = − 1
2Nyi − 1

2N∑

j=1

log

(
exp(zi · zj/τ)

∑2N
k=1,k �=i exp(zi · zk/τ)

)
(2)

where zi and zj represent the positive pair of images and zk is the negative
image and τ ≥ 0 is temperature parameter. The integration of angle variance
with supervised contrastive loss is discussed in Sect. 3.3. This integrated app-
roach facilitates feature learning and classification.

3.2 Angular Variance

Following the literature [20], to enhance the intra-class variance of tail class
samples, we transfer the average of head-class angular variance to tail class
samples. Let fm

i represent the m-th feature of class i, and ci is the center of
class i. Then the distribution of angles formed between the class center of i-th
class and features of m-th sample of class i is given as:

ρi,m = arccos(
fm

i · ci

‖ fm
i ‖‖ ci ‖ ) (3)



156 D. M. Sangrasi et al.

In each mini-batch, ci is updated by calculating the average of features of the
corresponding class by the following formula [20].

cn
i = (1 − γ)cn

i + γcn−1
i (4)

where cn
i represents the center of class i in n-th mini-batch. The center for

each class is updated by considering both the current and previous mini-batches.
Then the angular mean μi and variance σ2

i of ρi (angle distribution) are calcu-
lated. The average of angular mean and angular variance is computed as [20]:

μh =
∑Ch

s=1 μs

Ch
, σ2

h =
∑Ch

s=1 σ2
s

Ch
(5)

where Ch is the total number of head classes, μs and σ2
s are the angular mean

and angular variance of s-th head class, respectively. The n-th tail class angular
distribution is defined as a normal distribution N

(
μn

t , σn2

t

)
. Due to the availabil-

ity of many samples in head classes, they have more intra-class angular diversity
than the tail classes. To enrich the tail classes with angular diversity, the average
of head class variance is transferred to the tail class samples. This is achieved
by creating a feature cloud around each sample feature of the t-th tail class.
A feature cloud is a set of virtual feature vectors around the tail class samples
and its generation process adheres to the probability distribution that has been
learned from the more prevalent head class. It helps to make the enlarged space
for the tail class during training and ensures that the actual tail class samples
are kept at a distance from the other class samples.

The angle between the feature of n-th tail class and a feature sampled from
its corresponding feature cloud is defined as θΔ, and its distribution is modelled
as θΔ ∼

(
0, σ2

h − σn2

t

)
and θΔ ∈ R

1×C .

3.3 Integrating Angular Variance into Supervised Contrastive Loss

In the context of angular variance [20], once the features of all samples in a
mini-batch have been extracted, we will compute the class centre for each class
present within that mini-batch. By utilizing a threshold value on the number
of samples in each class, our model effectively distinguishes between tail and
head class samples. Once this distinction is established, we measure the angles
formed between the features and their corresponding class centres. This process
results in the formation of an angle distribution. From this angle distribution,
we calculate the angular mean and variance. The average of head class angular
variance is transferred to tail class samples. In the final step, we incorporate the
average of head class angular variance alongside the features into the supervised
contrastive loss [16]. For a tail sample zj ∈ cj

t , sample the perturb angle θΔ from
N

(
0, σ2

h − σ2
t

)
and our final loss (SACL) is given as:

LSACL = − 1
2Nyi − 1

2N∑

j=1

log

(
exp ((zi · zj + θΔ)/τ)

∑2N
k=1,k �=i exp(zi · zk/τ)

)
(6)
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All the steps of our proposed method are listed in the following algorithm.
Algorithm 1: Angular Variance Based Augmentation for Supervised
Contrastive Learning

Input : All training images, number of epoch Ne, threshold T used
to split head classes and tail classes, and temperature τ

Output: Trained Model
1 Prerequisite: Assign a threshold value T to divide the dataset into

head and tail classes

2 Initialisation

3 for ep ← 0 to Ne do

4 foreach mini − batch do
5 Apply data augmentation twice to obtain two copies of the

batch and extract the features
6 Tranform the features to normalised embedding through

encoder network
7 Calculate the angular variance for each class, and obtain the

angular variance for head classes σ2
h based on T

8 For each tail class ct, calculate the angular variance gap to the
head classes as σ2

h − σ2
t

9 For zi, let zp denotes a positive sample with p ∈ P (i), where
P (i) ≡ {p ∈ A(i) : yi = yp}, A(i) ≡ I/{i}

10 For a tail sample zi ∈ cj
t , sample the perturb angle θΔ from

N(0, σ2
h-σ2

t ) and calculate the loss (LSACL) via equation 6
11 Update the weights

12 end
13 end
14 Train the classifier

Our proposed loss is listed in step 10 of our algorithm. For head class samples,
θΔ is 0, however, for tail class samples, θΔ is the difference between average
head class variance and the variance corresponding to a tail class. Our final loss
incorporates the strengths of supervised contrastive learning [16] and angular
variance [20]. Combining the two techniques helps the deep learning model to
address the long-tail image classification problem with better performance, as
demonstrated by our experiments.

4 Experiments

In this section, we provide an overview of the long-tailed datasets used in both
our model and the baseline methods. We then provide the details about the
implementation of our model. Lastly, we present a comparative analysis of the
results obtained from our methods and the baseline methods.
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4.1 Datasets

The original CIFAR-10 and CIFAR-100 datasets each contain a total of 60,000
images. Among these, 50,000 are designated as training images, while the remain-
ing 10,000 serve as test images. These images are 32 × 32 pixels in size, and the
datasets consist of 10 and 100 classes, respectively. To ensure a fair compari-
son, we have generated long-tailed versions of both datasets using the method
described in the literature [3] with the same class imbalance ratios, i.e. 10, 50, and
100 for each dataset. Figure 2 illustrates the long-tailed versions of both datasets
with an imbalance ratio of 100. Class imbalance ratio (β) is the ratio between
the maximum number of samples in the most frequent class to the minimum
number of samples in the least frequent class. In other words, β is calculated as
β = Nmax/Nmin.

Fig. 2. (a) Long-tail CIFAR-10 with imbalance factor of 100 (b) Long-tail CIFAR-100
with imbalance factor of 100

4.2 Implementation Details

For feature extraction, we have used ResNet-32 [12] as a backbone network. Dif-
ferent data augmentation techniques, such as random cropping with a resolution
of 32× 32, horizontal flip, colour jittering and random grayscale with a probabil-
ity of 0.2, are used on each dataset. We use Stochastic gradient descent (SGD)
optimizer with a momentum of 0.9. The learning rate and temperature scaling
values are 0.5 and 0.1, respectively. The training has been performed on two
NVIDIA 1080Ti GPUs for 200 epochs with a batch size of 128, whereas testing
has been performed with a balanced version of the test dataset using a batch
size of 64. For a fair comparison, we adopted the hyper-parameter settings and
backbone architecture from the baseline methods.

4.3 Comparison to the Baseline Methods

In this part, we assess our model by comparing it with existing baseline meth-
ods for addressing long-tail image classification. We conduct these comparisons
on the long-tailed CIFAR-10 and CIFAR-100 datasets, which exhibit varying
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degrees of class imbalance. The results of this comparison are presented in
Table 1. Various techniques have been suggested in the literature for address-
ing the long-tail distribution problem in deep learning models. The traditional
cross-entropy [37] loss, and its various forms lack the constraint of intra-class
and inter-class distances, so the head-class samples dominate the tail-class sam-
ples, resulting in a biased classifier. Focal loss [18] uses a reweighting strategy
and assigns higher weights to tail classes while lower weights to head classes
to address the extreme class imbalance encountered during the training. The
other set of methods for comparison consists of Cross Entropy-based resampling
(CE-DRS) and Cross Entropy-based reweighting (CE-DRW), both of which are
proposed in previous state-of-the-art [3]. These methods consist of two stages.
In the first stage, the network is trained on imbalanced data using cross-entropy
loss, while in the second stage, class resampling and reweighting are applied dur-
ing training in CE-DRS and CE-DRW, respectively. The closest baseline method
to our approach is supervised contrastive (SC) loss [16]. Our proposed method
is also based on the supervised contrastive loss; it also incorporates the angular
variance to enhance the diversity of tail samples. Methods compared with our
proposed method are listed in Table 1. For a fair comparison, we have adopted
the hyper-parameter settings and the choice of backbone architecture from the
baseline method [38] as it has the best performance compared to other baseline
methods. In Table 1, the top-performing results are highlighted in bold, while
the second-best results are indicated in italics. It can be seen our method con-
sistently outperforms the supervised contrastive loss across all imbalance ratios
in both long-tailed datasets. Additionally, it surpasses the other baseline meth-
ods in the case of an imbalance ratio of 10 for both datasets. However, for the
remaining imbalance ratios, our method’s results are comparable to those of the
baseline methods.

Table 1. Top-1 accuracy (%) on different imbalance ratios of CIFAR datasets.

Dataset Long-Tailed Cifar100 Long-Tailed Cifar10

Imbalance Ratio 10 50 100 10 50 100
CE 55.71 43.85 38.32 86.39 74.81 70.36
Focal [18] 44.38 44.32 38.41 86.66 76.72 70.38
Mixup 58.02 44.99 39.54 87.91 77.82 73.06
Manifold Mixup 56.55 43.09 38.25 87.03 77.95 73.1
CE-DRW [3] 58.12 45.29 41.51 87.56 79.21 76.34
CE-DRS [3] 58.11 45.48 41.61 87.38 79.97 75.61
CB-Focal 57.99 45.17 39.6 87.1 79.81 74.57
LDAM-DRW [3] 58.71 46.62 42.04 88.16 81.03 77.03
BBN [38] 59.12 47.02 42.56 88.32 82.18 79.82
SupContrasive 60.13 46.59 40.11 89.36 80.14 74.09
SACL (Ours) 61.24 46.81 41.13 89.91 80.24 74.55
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5 Conclusion

In this work, we developed a novel method for mitigating the adverse effects of
long-tailed data for image classification on a deep learning model. Our method
integrates the average of head class angular variance with the supervised con-
trastive loss. Experiments on long-tailed versions of datasets demonstrated that
our method has outperformed most of the baseline methods for some imbalance
ratios, and its results are comparable for the remaining imbalance ratios. To the
best of our knowledge, this is the first-ever work that explores the direction of
combining supervised contrastive learning with angular variance for addressing
the long-tail classification problem. A limitation of our work is that it requires
a predefined threshold value to divide the dataset into head and tail classes.
However, we plan to tackle this issue in our future research.
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Abstract. Symbolic regression (SR) on high-dimensional data is a chal-
lenging problem, often leading to poor generalization performance. While
feature selection can improve the generalization ability and efficiency of
learning methods, it is still a hard problem for genetic programming (GP)
for high-dimensional SR. Shapley value has been used in an additive fea-
ture attribution method to attribute the difference between the output
of the model and an average baseline to the input features. Owing to
its solid game-theoretic principles, Shapley value has the ability to fairly
compute each feature importance. In this paper, we propose a novel
feature selection algorithm based on the Shapley value to select infor-
mative features in GP for high-dimensional SR. A set of experiments
on ten high-dimensional regression datasets show that, compared with
standard GP, the proposed algorithm has better learning and generaliza-
tion performance on most of the datasets. A further analysis shows that
the proposed method evolves more compact models containing highly
informative features.

Keywords: Feature selection · generalization · genetic programming ·
symbolic regression

1 Introduction

Nowadays, with the development of data collection, the high dimensionality of
data becomes more common [1]. However, learning from high-dimensional data
presents several inherent challenges, including the issues of overfitting and high
computational cost [1]. Feature selection is a process to identify relevant features
related to the output variable(s). There have been many works in the feature
selection field [2,3]. However, most of them focus on classification. Symbolic
regression (SR) is a type of regression analysis and has the task of simultaneously
identifying the model structure/type and the associated coefficients. Genetic
programming (GP) [4] as an evolutionary computation technique is capable to
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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generate an optimal solution without the need for prior information on the form
and size of solutions, which makes GP particularly well-suited for SR. In GP for
SR (GPSR), only a limited number of existing works explicitly consider feature
selection [5–7]. The main reason is that GP possesses an implicit feature selection
ability, which automatically selects features during the GP tree model building
process. But this natural ability is not strong enough when the dimensionality
of the problem/data is high.

Generalization refers to the performance of the learnt models on the unseen
data. Models with a good generalization ability are expected to obtain similar
performance on the unseen data to that on the training data. Although general-
ization is considered an important performance metric in many machine learning
tasks, compared with the rapid development of GP, how to effectively improve
the generalization in GP is still an open issue [8–10]. Moreover, as the increase
of dimensionality, it is harder for GP to learn a good model.

Feature selection is able to reduce noise, irrelevant and redundant features,
which is likely to reduce the risk of overfitting and improve the generalization
ability. Despite its importance, there are only a limited number of existing works
using GP with explicit feature selection that can be found in the literature, e.g., a
GP with permutation importance feature selection method for high-dimensional
regression [8]. However, the permutation importance cannot identify the corre-
lated features, as it measures the impact of individual features on the model per-
formance. Thus, when there are anomalous data instances along with the presence
of correlated features, the permutation importance might not accurately reflect
the feature’s true importance [11]. To address the problem, we adopt the Shapley
value, which comes from the game theory and attributes the payoff of a cooper-
ative game to the players of the game in a mathematically fair and unique way,
to compute the feature importance. Shapley value attributes the features based
on changes in predictions for individual points, which is suitable for identifying
correlated features and obtains stable results of feature importance [12].

This paper aims to propose a novel Shapley value based feature selection
method in GP for high-dimensional symbolic regression problems. To be specific,
this paper investigates the following research objectives:

(1) whether feature selection based on Shapley value can improve the general-
ization ability of GP on the unseen data.

(2) whether feature selection based on Shapley value can improve the learning
ability of GP on the training data.

(3) whether GP with the novel feature selection algorithm can reduce the dimen-
sionality of data and evolve more compact models.

2 Background

2.1 Genetic Programming for Symbolic Regression

Genetic programming (GP) is an evolutionary computation algorithm that
aims to create computer programs for problem solving [11]. Initially, GP
generates a population of programs. This population then goes through an



Shaply Value Based Feature Selection of Genetic Programming 165

evolutionary process consisting of evaluation, fitness-based selection, and breed-
ing until reaches some terminal criteria. At the end, GP gets the optimal program
which has the best fitness as the solution for the problem.

Symbolic regression (SR) is a type of regression analysis and has the task of
function identification and coefficient fitting [6]. Compared with classical regres-
sion, SR is able to generate a mathematical model without prior information on
the form and size of the model. Thus, instead of finding a set of model parameters
for a predefined regression model structure, GP has the ability to adaptively find
an optimal solution without the prior information of the form and size of solu-
tions, which makes GP flexible and suits to SR. Thus, many researchers propose
different kinds of GP algorithms to enhance the efficiency and effectiveness for
SR [13,14]. However, how to enhance the generalization ability of GPSR is still
an open issue.

2.2 Genetic Programming for Feature Selection

GP has an ‘embedded’ ability to explore the feature space and select important
features, which makes GP become a good choice for feature selection [3,5,15].
However, this natural ability is not strong enough for high-dimensional data [11].
Thus, some existing works explore many methods to improve the efficiency of GP
for feature selection. For example, Neshatian and Zhang [3] proposed a multi-
objective GP method for classification which searches for feature subsets rather
than single features where the terminals in GP are regarded as the set of selected
features. The two objectives of their multi-objective GP methods are to find out
the maximal relevance of feature subsets and to minimize the size of feature sub-
sets. Sandin et al. [15] proposed a novel GP-based method for unbalanced high-
dimensional data for classification. The method searches through the space of
possible combinations of feature selection metrics, i.e., information gain, χ2 and
odds ratio, to decide an unbiased estimator of the discriminative power of the fea-
ture. Chen et al. [6] proposed a novel permutation importance based feature selec-
tion method for high-dimensional GPSR. The permutation importance evaluates
feature importance by shuffling feature values in the learnt model. Specifically,
when the values of one feature are shuffled, the increase of the model error indi-
cates that the feature is important. This algorithm enhances the generalization
of GPSR. However, the permutation of features may generate unrealistic data
instances which are impossible in the real world when two or more features are
correlated. For example, if there are positively two correlated features, i.e., height
and weight of a person and one of the features is shuffled, a new instance with two
meter person weighing 30 kg may be created that is unlikely or even physically
impossible. If the unrealistic data instances are used to measure the importance,
the result is unreliable, which could lead to select irrelevant features [11].

2.3 Generalization in Genetic Programming

Generalization is one of the most important performance measurements for learn-
ing models in supervised learning problems. A limited number of researches are
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Fig. 1. The data flowchart of the proposed GP system.

centered on generalization in GP for symbolic regression [13,14,16]. Chen et al.
[16] proposed a multi-objective method to improve the generalization in GP. The
training error and the Rademacher complexity of the models are regarded as the
two objectives. The Rademacher complexity of a model is computed by the max-
imum correlation between the model and the Rademacher variables on the train-
ing instances. Haeri et al. [13] proposed a layered GP based on the variance for
improving generalization. The evolutionary process is divided into hierarchical
layers where the first layer adopts the smoothest training set and the next lay-
ers are more complex than the previous layers. Furthermore, the method uses the
variance of the output value to measure and control the functional complexity,
thus reducing overfitting. The results show that the method not only reduces the
complexity but also improves the generalization of GP. Mousavi et al. [14] pro-
posed a multi-objective GP algorithm to improve the generalization. In addition
to optimizing the commonly used error measure, the method obtains better gener-
alization with the first-order derivative of a candidate model as another objective.

3 The Proposed Method

This paper proposes a new feature selection algorithm named GP with Shapley
value (GPSHAP) which belongs to the embedded method. It is based on the
fact that GP is able to explore the search space in order to automatically select
important features [5]. This paper assumes that individuals with high fitness are
more likely to have relevant features but not all the features in these individuals
are relevant and some of them may be redundant. Thus, these features can be
regarded as the candidate important feature subset. By further measuring the
importance of these candidate features, we can identify truly relevant features.

Figure 1 shows the flowchart for the new GPSR system, which is divided
into two sequential stages. In the first stage, the new feature selection method,
GPSHAP, is used to select a subset of important features. After that, standard
GPSR performs on the training data with only the selected features.

In GPSHAP, the Shapley value is adopted to evaluate the importance of
features. The Shapley value originates from the cooperative game theory which
denotes a conception of fairly allocating a total game gain to every game player.
Shapley value is an additive feature attribution algorithm satisfying mathemati-
cal axioms, i.e., efficiency, symmetry, dummy and additivity, which together can
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Fig. 2. The flowchart of GPSHAP.

be considered a definition of a fair payout [11,17]. Thus Shapley value has the
potential to fairly attribute the feature contribution. It attributes the features
to compute changes in predictions by adding the feature into the feature subset,
which is suitable for computing each feature importance and obtaining stable
results of feature importance [12]. The prediction of SR is regarded as the game
gain and different features in the best individual are regarded as players. Let
F = {v1, ..., vk} denotes the k distinguished features in the best individual Ib.
S is a subset of F , i.e., S ⊆ F . Besides, fS∪{i} refers to a GP model trained
with the ith feature and fS is a model trained without the ith feature. Thus,
predictions are represented as fS∪{i}(xS∪{i}) − fS(xS), where xS is the values
of the features in S. The Shapley value is defined in Eq. (1), which considers all
possible combinations.

φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(xS∪{i}) − fS(xS)] (1)

However, computing the Shapley value is time-consuming for high-
dimensional data as it enumerates all possible combinations. To improve the
efficiency, in this work, the approximation of φi is computed based on sampling
[18]. The approximation of φi is the average marginal contribution for multiple
sampling steps defined in Eq.(2).

φi =
1
T

T∑

t=1

(fS∪{i}(xS∪{i}) − fS(xS)) (2)

where T is the total number of sampling steps.
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Table 1. Parameter Settings

Parameter Values

Population Size 512

Generations 50

Crossover Rate 0.9

Mutation Rate 0.1

Elitism Rate 0.01

Maximum Tree Depth 10

Initialization Ramped-Half&Half

Minimum Initialization Depth 2

Maximum Initialization Depth 6

Function Set +, −, ∗, Inv( 1
x
), sqrt

Terminal Set Features (Selected Features), Random Constant∈ [−1.0, 1.0)

Fitness Function NRMSE

Figure 2 is the flowchart of GPSHAP. The whole process is described as
follows.

(1) Perform n GPSR runs parallelly, each generates one best-of-run individual
Ibi .

(2) The terminal nodes are collected from each Ibi as the distinguished feature
subset DFi.

(3) Shapley values of every feature (Scorei(Ibi)) in DFi are computed based on
Eq. (2).

(4) All parallel Shapley values are collected. The mean of these Shapley values
(Mean(

∑n
i=1 Scorei(Ibi))) is computed as the feature importance on the

training data, where if a feature does not appear in any best-of-run individ-
uals, its Shapley value is set to 0.

(5) Features are ranked based on the mean of Shapley values.
(6) Following previous work on finding a good threshold [19], we choose to select

the top log2(N) features as the final features where N means the total num-
ber of available features on the dataset.

4 Experiment Design

To investigate and confirm both the feature selection ability and the generaliza-
tion ability, GPSHAP is compared with standard GP and a GP with permutation
importance method, named as GPPI [11] on ten datasets including two synthetic
and eight real-world datasets.

4.1 Evaluation Measure — Fitness Function

GPSHAP, standard GP and GPPI all adopt the Normalized Root Mean Square
(NRMSE) defined in Eq. (3) as the fitness function on every dataset.

NRMSE =

√
1
N

∑N
i=1(f(Xi) − Yi)2

Ymax − Ymin
(3)
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where N is the number of instances, f(Xi) is the outputs of the model and Yi

is the target output. Ymax − Ymin denotes the range of the target output on the
training dataset.

Table 2. Two Synthetic Functions

Functions Training Samples Test Sample Noise

F1 = −gX1X2
X2

3
70 points 30 points 50 input variables

X1, X2 = rnd[0, 1] X1, X2 = rnd[0, 1] = rnd[0, 1]

X3 = rnd[1, 2] X3 = rnd[1, 2]

F2 = 30X1X3
(X−10)X2

2
1000 points 10000 points 50 input variables

X1, X3 = rnd(−1, 1) X1, X3 = rnd(−1, 1) = rnd[0, 1]

X2 = rnd(1, 2) X2 = rnd(1, 2)

Table 3. Benchmark Problems

Name #Features #Total Instances #Training Instances #Test Instances

F1 53 100 70 30

F2 53 11000 1000 10000

CCN 122 1994 1395 599

CCUN 124 1994 1395 599

4544 GOM 117 1059 767 328

505 tecator 124 240 168 72

QT-1 1024 427 299 128

QT-2 1024 395 277 118

QT-3 1024 692 484 208

QT-4 1024 389 272 117

4.2 Parameters and Datasets

To guarantee a fair comparison, parameter settings in GPSHAP, standard GP
and GPPI are the same as shown in Table 1. The top 1% population are reserved
as the elites and the rest of populations are generated by genetic operators.

For the two synthetic datasets as shown in Table 2, F1 is Newton’s law of
gravitation and g is the gravitational constant with the value of 6.67408E − 11.
F2 originates from [20]. In addition, to examine the ability of the methods in
selecting relevant features, noisy features are added to each dataset.

The Communities and Crime unnormalized dataset (CCUN) and the Com-
munities and Crime normalized dataset (CCN) are taken from UCI [21], two
high-dimensional datasets, 4544 GeographicalOriginalofMusic (4544 GOM) and
505 tecator are from Penn Machine Learning Benchmarks (PMLB) [22] and the
rest of four real-world datasets are taken from OpenML [23].
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Table 3 shows a summary of the ten datasets. In this paper, a popular split-
ting method in machine learning is used where 70% of instances are selected
randomly as the training sets and the rest of 30% of instances are regarded as
the test sets [6]. During the feature selection progress, all methods only use the
training sets. The experiments are run independently 30 times for each method
on each dataset.

5 Results and Discussions

This section discusses the SR results of GPSHAP, standard GP and GPPI with
comparisons of NRMSEs on the training sets and test sets. In addition, further
analyses on the model size, the number of features and distinguished features,
as well as the computational time are also provided.

Table 4. Statistical Significant Test Results

Datasets Method Training NRMSE
(Median ± MAD)

Test NRMSE
(Median ± MAD)

p value
(Training)

p value
(Test)

Significant Test
(with GPSHAP)
(Training, Test)

F1 GP 0.086 ± 0.03 0.179 ± 0.069 1.7E-08 8.35E-08 (−, −)

GPPI 0.09 ± 0.02 0.2 ± 0.07 1.84E-08 1.69E-08 (−, −)

GPSHAP 5.06E-17 ± 2.9E-17 9.12E-17 ± 6.48E-17

F2 GP 0.068 ± 0.03 0.064 ± 0.03 8.29E-06 4.12E-06 (−, −)

GPPI 0.048 ± 0.003 0.041 ± 0.027 4.22E-03 2.75E-03 (−, −)

GPSHAP 0.041 ± 0.003 0.038 ± 0.002

CCN GP 0.094 ± 0.001 0.078 ± 0.002 0.06 0.16 (=, =)

GPPI 0.093 ± 0.001 0.08 ± 0.003 0.34 7.62E-03 (=, −)

GPSHAP 0.093 ± 9.45E-04 0.077 ± 0.001

CCUN GP 0.143 ± 0.002 0.138 ± 0.002 0.01 0.05 (−, =)

GPPI 0.142 ± 0.001 0.136 ± 0.002 0.49 0.55 (=, =)

GPSHAP 0.142 ± 6.45E-04 0.137 ± 5.23E-04

4544 GOM GP 0.092 ± 0.004 0.093 ± 0.006 7.89E-04 8.91E-05 (−, −)

GPPI 0.091 ± 0.005 0.09 ± 0.004 3.89E-03 2.65E-03 (−, −)

GPSHAP 0.086 ± 0.001 0.084 ± 0.003

505 tecator GP 0.115 ± 0.017 0.111 ± 0.02 4.46E-04 3.32E-06 (−, −)

GPPI 0.1 ± 0.02 0.111 ± 0.019 3.01E-04 8.29E-06 (−, −)

GPSHAP 0.087 ± 0.004 0.084 ± 0.006

QT-1 GP 0.211 ± 0.004 0.224 ± 0.006 1.09E-05 0.11 (−, =)

GPPI 0.2 ± 0.004 0.219 ± 0.004 0.06 0.75 (=, =)

GPSHAP 0.202 ± 0.004 0.22 ± 0.006

QT-2 GP 0.113 ± 0.006 0.105 ± 0.008 8.48E-09 1.25E-07 (−, −)

GPPI 0.104 ± 0.003 0.095 ± 0.004 0.36 0.01 (=, −)

GPSHAP 0.102 ± 0.002 0.091 ± 0.003

QT-3 GP 0.168 ± 0.004 0.163 ± 0.005 0.84 1.11E-03 (=, −)

GPPI 0.162 ± 0.003 0.158 ± 0.004 4.44E-07 0.36 (+, =)

GPSHAP 0.169 ± 0.002 0.158 ± 0.003

QT-4 GP 0.172 ± 0.006 0.192 ± 0.005 0.49 0.11 (=, =)

GPPI 0.165 ± 0.004 0.19 ± 0.008 2.15E-06 0.59 (+, =)

GPSHAP 0.174 ± 0.003 0.192 ± 0.005
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Figure 3 and Fig. 5 show the distribution of NRMSEs of the best-of-run indi-
viduals from the 30 GP runs on the training sets and the test sets, respectively.
Besides, Fig. 4 and Fig. 6 show the evolution plots for the training errors and
the corresponding test errors from 30 GP runs, respectively. The lowest NRM-
SEs on the training set are collected at every generation and the corresponding
test NRMSEs are recorded. Note that the test NRMSEs are recorded to analyse
the generalization during the evolutionary process but not used during this pro-
cess. In this paper, the Mann-Whitney U Test is used to compare the training
and test NRMSEs of the 30 best-of-run models for GPSHAP, standard GP and
GPPI. The significance level is 0.05. “−” means that GPSHAP is significantly
better than comparison methods, “=” means that there is no significant differ-
ence between them and “+” denotes that GPSHAP is significantly worse than
comparison methods.

5.1 Results on the Training Sets - Learning Ability

As shown in Fig. 3, GPSHAP has better training performance than GP and
GPPI on six training sets. Based on the statistical significance tests, GPSHAP
has significantly better training performance in seven of the ten datasets than
GP and in four of ten datasets than GPPI. On QT-3 and QT-4, GPSHAP has
slightly worse training performance than GP but not significant while it has
significantly higher training error than GPPI on these two datasets.

Fig. 3. The distributions of training NRMSEs of the 30 best-of-run individuals.
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Fig. 4. The evolution plots on the mean NRMSE of 30 best-of-run individuals on the
Training Sets.

Figure 4 denotes the evolutionary process of GPSHAP, GP and GPPI on the
training sets where GPSHAP converges faster than GP and GPPI on most cases.
GPSHAP has a much better starting point because the feature selection selects
the top log2(N) important features. On F1, F2, 4544 GOM and 505 tecator,
GPSHAP has obviously better performance than GP and GPPI from stem to
stern. On QT-3 and QT-4, although the final results of GPSHAP are worse
than GPPI, the GPSHAP generally gets better performance than GPPI from
the very first several generations and the convergence speed of GPSHAP is also
faster than that of GPPI.

In general, both feature selection methods are able to improve the learn-
ing ability of GP on most datasets. The reason could be that feature selection
reduces the feature space, so the search space of GP also decreases, making it
easier to find better models. In addition, feature selection also discards irrele-
vant features and retains relevant features, which helps GP converge to optimal
models. Compared with GPPI, GPSHAP obtains better training performance

Fig. 5. The distributions of test NRMSEs of the 30 best-of-run individuals.
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Fig. 6. The evolution plots of the mean NRMSE of 30 best-of-run individuals during
every generation on the Test Sets.

on six training sets. The reason could be that the permutation importance can
be biased due to unrealistic data instances, which causes unstable results.

5.2 Results on the Test Sets - Generalization Ability

The overall patterns on the test sets are similar to those on the training sets.
Specifically, Fig. 5 shows that GPSHAP has a smaller test error than GP on all
the ten sets, which means GPSHAP has a better generalization ability on these
datasets. Although GPSHAP has worse training performance than GP on QT-3
and QT-4, it has a better generalization ability on the two datasets. Compared
with GPPI, GPSHAP also performs significantly better on six test sets.

On the two synthetic datasets, the generalization performance of GPSHAP is
obviously better than that of GP and GPPI, which shows that the Shapley value
can identify important features and keep relevant features during the evolution-
ary process. The results suggest that GPSHAP is good at exploring relationships
between input variables and target variables on the synthetic datasets.

On the eight real-world datasets, the generalization performance of GPSHAP
is also better than those of GP and GPPI on four datasets. As can be seen from
the evolution plots in Fig. 6, although both GPSHAP and GP have the issue of
overfitting on CCN, which is indicated by the increasing test error at the end of
the evolutionary process, the overfitting extent of GPSHAP is much smaller than
that of GP. Although GPSHAP performs slightly worse than GPPI on CCUN,
QT-1 and QT-4, there is no significant difference between them which is con-
firmed by the significance tests in Table 4. On the 4544 GOM dataset, the fluc-
tuation of GPSHAP shows more obvious than GP and GPPI, but the GPSHAP
performs better learning ability. GPSHAP, GP and GPPI have similar perfor-
mance at final several generations on QT-1, QT-3 and QT-4 while GPSHAP
reduces the error faster at initial several generations. In general, GPSHAP can
improve the generalization of GP as it discards noisy or irrelevant features, which
makes GP have a higher probability to use relevant features to construct models.
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5.3 Further Analysis - Result on Program Size, Number of Features
and Distinguished Features, Computational Cost

Table 5 describes the mean program size of the 30 best-of-run models, the mean
number of features and distinguished features in these models, as well as the
mean computational cost of these models. As shown in Table 5, the size of models
in GPSHAP is smaller than that in GP and GPPI on most datasets. This indi-
cates that GPSHAP has the ability to construct more compact models. Although
the model size in GPSHAP is slightly larger than that in GP on CCN, CCUN
and QT-2, GPSHAP has a smaller number of informative features. The reason
is that the feature selection process selects the top log2(N) features, so the infor-
mative features have more opportunities to be used multiple times to construct
informative models.

In terms of the number of features, GPSHAP, GP and GPPI all only use
a small number of features compared with the total number of features on the

Table 5. Program Size, Number of Features and Distinguished Features, and Compu-
tational Cost

Dataset Method #Nodes

(Mean ± Std)

#Features #Distinguished

Features

#Time(Second)

(Mean ± Std)

F1 GPSHAP 37.86±18.65 12.03±7.12 3.7±0.9 305.32± 178.45

GPPI 42.56± 17.17 16.96± 7.35 7.13± 2.67 123.46± 58.7

GP 43.4± 15.01 16.76± 6.2 6.7± 2.26 55.81±41.3

F2 GPSHAP 42.8±11.51 14.36±5.51 4±0.81 3752.7± 2647.25

GPPI 53.26± 23.84 21.6± 11.43 8± 4.2 1640.21± 348.51

GP 53.36± 19.93 23.03± 9.62 8.3± 3.33 474.04 ± 192.03

CCN GPSHAP 41.5± 13.69 15.26±5.29 5.93±0.85 4106.19± 2455.07

GPPI 46.83± 15.6 19.3± 7.25 7.5± 1.68 1575.65± 569.18

GP 39.96±11.30 16.26± 4.83 8.06± 2.23 756.45±403.63

CCUN GPSHAP 36.83± 12.21 14.4± 5.29 5.36 ± 0.87 2219.26± 1314.37

GPPI 37.16± 11.85 15.7± 5.13 8.03± 2.27 1270.6± 390.27

GP 34.1 ± 10.9 14.3 ± 5.22 7.0± 1.84 635.32 ± 273.01

4544 GOM GPSHAP 33.23± 13.69 10.9± 4.88 4.6± 1.56 1764.88± 1961.72

GPPI 24.56 ± 13.81 8.33 ± 4.77 4.26 ± 2.42 1223.34± 387.6

GP 33.23± 15.27 11.43± 6.02 6.36± 4.08 691.75 ± 267.91

505 tecator GPSHAP 65.26 ± 26.44 25.9 ± 10.28 5.83 ± 0.93 805.23± 820.78

GPPI 73.86± 24.68 31.9± 11.2 10.86± 3.52 548.21± 148.44

GP 80.53± 34.01 34.23± 14.26 11.93± 5.85 204.25 ± 121.61

QT-1 GPSHAP 92.1 ± 23.84 31.56 ± 9.1 8.46 ± 1.23 6101.61± 2551.59

GPPI 98.76± 13.88 37.86± 6.1 19.66± 3.96 3171.85± 402.72

GP 102.86± 25.83 39.1± 10 20.1± 7.66 1293.18 ± 249.66

QT-2 GPSHAP 91.83± 21.39 31.13 ± 8.75 7.96 ± 1.32 4865.35± 1796.86

GPPI 94.93± 25.97 35.13± 10.88 15.6± 5.65 2674.88± 379.5

GP 85.4 ± 22.52 31.46± 9.76 14.46± 5.88 939.64 ± 250.81

QT-3 GPSHAP 86.76 ± 20.68 29.13 ± 8.08 7.76 ± 1.43 10468.4± 5516.17

GPPI 102.06± 22.69 37.76± 8.35 18.76± 5.98 5308.61± 844.83

GP 108.86± 40.12 41.46± 16.7 21.53± 11.27 2133.83 ± 656.44

QT-4 GPSHAP 79.53 ± 29.22 26.4 ± 12.74 7.33 ± 1.22 5327.27± 2026.03

GPPI 92.96± 25.9 33.83± 9.77 16.83± 5.48 2915.54± 425.31

GP 92.66± 22.1 34.93± 9.78 20.06± 7.85 1133.04 ± 307.77
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datasets. However, GPSHAP uses a smaller number of features to construct
models than GP and GPPI, which means the Shapely value can better identify
important features and the feature selection process removes more irrelevant or
more redundant features and retains relevant features.

As for the computational cost, GPSHAP obviously spends a higher cost than
GP, because GPSHAP needs the additional computational cost for feature selec-
tion including computing the Shapley value, collecting features from best-of-run
individual and ranking features. GPSHAP is also more time-consuming than
GPPI because computing Shapley value is more expensive than computing per-
mutation importance. Although GPSHAP needs more computational cost, it
substantially improves the learning and generalization abilities and reduces the
number of features for constructing models, which evolves more compact models.
We will consider shortening the training time in the future.

6 Conclusions and Future Work

This paper proposed a novel Shapley value based feature selection method
for GPSR, which is named GPSHAP, to improve the generalization of high-
dimensional GPSR. Experimental results show that compared with standard
GP and GP with permutation importance, GPSHAP not only selects a smaller
number of good features to construct models, but also has better learning and
generalization performance. The results confirm that the feature selection pro-
cess based on the Shapley value is able to remove irrelevant features and selects
informative features, which helps GP evolve more compact models with better
generalisation ability.

For future work, to improve the efficiency of the proposed Shapley value based
feature selection method, we will consider combining it into the evolutionary
process in the future instead of using an independent stage. In order to make the
method more effective on high-dimensional datasets, we will adopt the Shapley
value to compute subtrees in order to control the genetic operators.
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Abstract. Cryptocurrency has become very popular and widely used by
major businesses as digital currency for online investments and services.
However, the price prediction of such digital currencies as Bitcoin and
Ethereum is challenging. It involves financial indicators and nonfinancial
indicators, such as historical data and social media data, respectively. In
this paper, we propose deep learning and hybrid models that effectively
incorporate both types of indicators and introduce the optimal algo-
rithms for long-term price prediction of Bitcoin and Ethereum. We con-
duct extensive experimental evaluations on real data we extracted from
financial dataset comprising Yahoo Finance data, and non-financial data
consisting of Google Trends data and approximately 30 million related
Bitcoin and Ethereum. Our experimental results show that the hybrid
models involving LSTM/1D-CNN with ARIMA/ARIMAX outperformed
the individual models for the long-term prediction of cryptocurrency
prices.

Keywords: Deep Learning · Machine Learning · Sentiment Analysis ·
Cryptocurrency · Price · Predictive Models

1 Introduction

Cryptocurrency or digital currency has gained a lot of confidence from savvy
and sophisticated investors. The primary reason for its growing prominence is the
ease of transaction facilitated by decentralized operational control [18]. However,
the success of any cryptocurrency largely depends on whether people around the
globe have started considering it to be useful and productive or not [18]. This
was clearly evident when the price of Bitcoin and Ethereum reached an all-time
high in 2021 after their adoption as a payment means after the announcement
from PayPal and the investment arm of big public companies [14].
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Of course, the price of cryptocurrencies has been quite volatile and there
are many factors, from internal to external and political, that have a direct
or indirect bearing on the price of cryptocurrencies [12]. Internal factors com-
prise the Demand and Supply of Coins Circulation, Transaction Costs, Rewards
System, Forks (Rule Changes), and Mining Difficulties. These can be further
conflated with technical features and blockchain-based features. The technical
features include financial data of the cryptocurrency, such as returns, while the
blockchain-based features include the number of cryptocurrency transactions
[11]. The external factors consist of Cryptomarket (Market Trend, Attractive-
ness or Popularity, Speculations) and Macroeconomic (Stock Markets, Interest
Rate, Exchange Rate, Gold Price) components. These factors are largely depen-
dent on sentiment data and asset-based features. Furthermore, political factors
also impact the price and include Restrictions (Ban) and Legalization (Adapta-
tion) related information. The internal factors and the political factors are very
difficult to measure. In account of this, many of the studies done to predict the
price of these cryptocurrencies have used one or many external factors, including
historical transactions and social media data, as input to machine learning, deep
learning, or statistical models in order to extract the pattern from these data
and predict the price, both short-term and long-term.

Since many of the factors influencing the price of cryptocurrencies are very
hard to measure and precisely annotate in a way that can be used as input data
for the models, identifying the influential features becomes substantially more
crucial for price prediction. Thus having the right dataset becomes the key to any
kind of model training. In many of the studies done in this area, the scale of data
used for social media has been on the lower side [13]. Therefore, in this research
paper, we analysed the sentiments of around 30 million real-time tweets related
to two leading cryptocurrencies, namely Bitcoin and Ethereum. We proposed
deep learning and hybrid models for price prediction using various combinations
of datasets, such as historical transactions, sentiment data, and Google Trends
data for long-term prediction.

The research contributions of this paper are threefold:

– The performance of a machine learning model is correlated with the quality
of the input data it receives. Accordingly, as part of this research, a compre-
hensive data set for sentiment scores of approximately 30 million real-time
tweets related to Bitcoin and Ethereum was created. We created the dataset
by mining and pre-processing these tweets before analyzing the sentiments in
a way that could be fully utilized by the models to understand the impact of
social media sentiments on cryptocurrency’s price prediction.

– An approach to derive the weighted average of the Twitter sentiments for
cryptocurrency’s price on a day using Twitter sentiment for predicting stock
price movement [8] showed that the metadata from highly influential Twit-
ter accounts could skew the result. We addressed the skewness problem as
the simple average method would only consider the compound score of the
sentiment and ignore the information of the Tweet’s metadata.
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– Statistical models and deep learning models together can handle the specifics
of the dataset, like seasonal part and trend, respectively. This can be improved
when the models are trained using various combinations of datasets. So we
benchmarked a few existing models on all combinations of datasets on a very
large scale. Along with that we also proposed a new hybrid model using 1D-
CNN along with ARIMA and ARIMAX. We were able to establish that the
hybrid models with LSTM were slightly better suited for long-term prediction
of the price of cryptocurrencies than 1D-CNN based models.

The rest of this paper is organized as follows. Related studies are discussed
in Sect. 2. The proposed approach and algorithms are discussed in Sect. 3. The
experiments and results related to the approaches are described in Sect. 4, fol-
lowed by a detailed discussion of the results in Sect. 5. The paper concludes with
the conclusion of the research and scope of future work in Sect. 6.

2 Related Work

ARIMA or Auto Regressive Moving Average Model has been reported as the best
statistical model to predict the price of cryptocurrencies [12]. A moving average
method was used to predict the price of Bitcoin Cash taking into account the
moving average for 2, 3, 4 and 7 days and it was observed that the two-day mov-
ing average showed the best performance in terms of the mean absolute error
percentage [3]. Another study [16] explored an interesting angle of establishing
a correlation between trend and volume for the Bitcoin market, but it was con-
cluded that trends did not depend on volume change. In another research [15],
the study tried to compare the performance of ARIMA with LSTM for Bitcoin.
The outcome showed that ARIMA performed better than LSTM in terms of
Root Mean Square Error (RMSE).

When it comes to time-series data, ARIMA is considered to be an excellent
method to handle the seasonal part, while RNN is very good at forecasting
the trend of it. This led to a study that developed a hybrid model combining
RNN with ARIMA [5]. It was observed that Artificial Neural Networks perform
better when it comes to long-term predictions. It was also noted in the same
research that if the model is parameterized properly, it can improve the result
significantly.

Another research [7] tried to predict the price of three cryptocurrencies,
namely Bitcoin, Litecoin and Ethereum, using three different models LSTM
(Long Short Term Memory), GRU (Gated Recurrent Unit) and bi-LSTM (bidi-
rectional LSTM). The study found that the GRU model showed the best perfor-
mance in terms of Mean Absolute Percentage Error (MAPE). It was highlighted
that if sentiment data is combined with transactional data, then there is great
potential to explore new dimensions in such research.

To understand the behaviour of Bitcoin for short-term price prediction,
Jaquart et al. [11] analyzed approximately 9 months of data for minute-based
duration using six machine learning models and four types of datasets includ-
ing technical, blockchain-based, sentiment and asset-based. A similarity was
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observed between the prediction of the price of the stock market and the predic-
tion of the price of Bitcoin, but the limitation of the general prediction (accuracy
50. 9% to 56%) was mainly due to the number of features that cannot be included
in the research. It was also mentioned that if the duration was increased from
one minute to a larger value, the performance might have improved. Another
observation in the same research was that the RNN model along with gradi-
ent boosting classifiers was found to be more suitable for the prediction task
with the technical features having more influence on the price prediction than
blockchain-based features and sentiment data.

In another study, historical data was combined with sentiments from Chinese
social media, and the LSTM model was used to forecast the price of cryptocur-
rency [9]. It was found that the model performed better than the autoregressive
model by 18.5% in the case of precision and 15.4% in the case of recall. Simi-
larly, Twitter and Google Trends data were used to predict the price of Bitcoin
and Ethereum [2], and the results showed that the volume of tweets contributed
more to the prediction of price change than the sentiments captured on Twitter.

Another research used news data and historical data to predict the price
of Ethereum using the LSTM model and it was observed that sentiment did
play a major role in the forecast process [17]. A novel approach using the 1D-
CNN model was also used on sentiment data, blockchain transaction history,
and financial indicators [4]. The research observed that 1D-CNN outperformed
the LSTM model when tried on Bitcoin. In the same research, a trading strategy
was devised so that the loss can be kept to a minimum when the Bitcoin market
is down and the profit can be increased when the market is up. In fact, 1D-CNN
has gained a lot of popularity these days in time-series forecasting, in addition
to its established task of image recognition.

3 Methods

3.1 Price Prediction Models

Deep Learning Models. Two Deep Learning models, LSTM and 1D-CNN,
were used to evaluate the long-term forecasting process. RNN has been used in
past studies as described in Sect. 2. However, it suffers from the problem of van-
ishing gradients. LSTM (Long Short-Term Memory) addresses this problem and
can forecast based on various sequences of data, especially long-term sequences
of data, leading to its popularity growth as a model to forecast time-series data.
1D-CNN is also emerging as a popular model to predict time-series data [4],
especially since it behaves more like computing the moving average in this price
prediction problem.

Hybrid Models. Four hybrid models were used in the research to understand
how statistical and deep learning models perform when combined together on
different types of datasets. As described in Sect. 2, it was observed that hybrid
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models, by combining Statistical and Deep Learning models, can perform bet-
ter than individual models alone. This is because, in hybrid mode, each type
of model can handle specifics of the dataset including seasonal part and trend.
Therefore, we proposed four types of hybrid models in this research: (1) LSTM
and ARIMA, (2) LSTM and ARIMAX, (3) 1D-CNN and ARIMA, (4) and 1D-
CNN and ARIMAX. The models consisting of LSTM or 1D-CNN that are com-
bined with ARIMA were evaluated on historical data, while the same models
that are combined with ARIMAX were used on historical data along with a
combination of Twitter sentiment data, Tweet volume, and Google Trends data.
The residual of ARIMA or ARIMAX was passed as input to the LSTM or 1D-
CNN model. The final prediction of the residual was then converted back to
the predicted value to compare it against the test value. Figure 1 explains this
process through a flow chart.

Fig. 1. Hybrid Model Workflow

3.2 Evaluation

The evaluation metrics are an important part of the forecasting process. They
tell the quality of the prediction through error measures. The evaluation metrics
chosen for this study are RMSE (Root Mean Square Error), loss based on MSE
(Mean Square Error) and MAPE (Mean Absolute Percentage Error). Accuracy
was not used as a metric since the target variable was a continuous value. In
general, these metrics are used together to better analyze the result of a model
since no one metric is perfect in all terms.
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3.3 Data Collection and Pre-processing

Historical Data. The historical datasets for both Bitcoin and Ethereum for
the last 5 years were downloaded from Yahoo Finance [1]. Initial data analysis
was performed on this dataset. It did not require pre-processing. The standard
deviation was high for both Bitcoin and Ethereum supporting the volatile trend
of these cryptocurrencies. The data being positively skewed is also supported by
the fact that the median value is less than the mean value. This is displayed in
the box plots shown in Fig. 2 where the boxes are divided into unequal parts by
the median line, the left part being smaller than the right part. The box plot
also indicates outliers in the price for both Bitcoin and Ethereum.

Fig. 2. Box plot for Bitcoin and Ethereum

Twitter Data. Approximately 30 million tweets for three years related to Bit-
coin and Ethereum were mined in about 3 months. There were some restrictions
on the filters that could be used with Academic Access APIs of Twitter while
mining the tweets. Due to that, more API quota was used to fetch the tweets
and then the noise was removed as part of pre-processing for better results of
Sentiment Analysis. The Tweets were changed to lowercase for further filtering.
Hashtags were removed from bitcoin, btc, ethereum, eth and cryptocurrency
words to keep them in the Tweets while removing other hashtags. Bot accounts,
hashtags, user mentions, newline, http, https links, emojis and & symbol were
removed from the Tweets to have only relevant information in the Tweets.

Google Trends Data. Google Trends data comprising interest data, related
query data, and related topics data were mined for the same duration as the
Twitter data for Bitcoin and Ethereum. This data provides information about
the interest of people across the globe through the means of their search on
Google.
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3.4 Sentiment Analysis

After the pre-processing step, sentiment analysis was performed on the Twitter
data. Based on the literature review, Vader (Valence Aware Dictionary and
sEntiment Reasoner) [10] was selected to implement sentiment analysis as it
is specifically tuned for sentiments in social media. Vader provided a positive,
negative, neutral and compound score for every Tweet. Thus, the sentiment of
each Tweet was calculated as Positive, Negative or Neutral using Vader analysis.
The next step was to calculate the weighted average of the sentiments for a day.
Calculating simple average would have just considered the compound score of the
sentiment, but the technique used to calculate the weighted average takes all the
metadata related to the Tweets into account. In one of the research done using
Twitter sentiment for predicting stock price movement [8], the idea of weighted
average was dropped as the metadata from very influential accounts could have
skewed the result. We addressed this problem in our research by normalizing all
the metadata between 0 and 1 before taking the weighted average as described
in Algorithm 1. Finally, based on this sentiment score, Tweets were classified as
Positive, Negative or Neutral [10]. Daily Tweet volume was also calculated along
with Positive, Negative and Neutral Tweet volume.

Algorithm 1. Sentiment score by weighted average method
norm retweet count ← norm(retweet count)

� Normalize metadata
norm reply count ← norm(reply count)
norm like count ← norm(like count)
norm quote count ← norm(quote count)
norm followers count ← norm(followers count)
norm following count ← norm(following count)
norm tweet count ← norm(tweet count)
norm listed count ← norm(listed count)

weight ← norm retweet count × norm reply count × norm like count ×
norm quote count × norm followers count × norm following count ×
norm tweet count × norm listed count

� Calculate weight

sentiment score ← sum(compound score×weight)
sum(weight)

� Calculate weighted average

4 Experiments and Results

Extensive experiments were conducted and analyzed using deep learning and
hybrid models to understand which financial and non-financial indicators were
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best suited to predict the price of cryptocurrencies. The models were also fine-
tuned using random hyper-parameter tuning. Various scaling techniques like
Normalization and Standardization along with different batch sizes, sequence
length, learning rates, configuration of the LSTM model or 1D-CNN model, and
regularization like dropout were tried to explore the model’s output. The data
was split into 70% training, 15% test, and 15% validation. With this split, the
prediction was done for a duration of around 3 months to 6 months depending
on the dataset as shown in Table 1 and Table 2.

4.1 Deep Learning Models

LSTM and 1D-CNN are state-of-the-art models for time-series forecasting. Both
of them were used to understand how these deep learning models performed with
financial and non-financial indicators for long-term prediction.

LSTM. The first set of experiments was tried on the historical data by using
various scaling types such as normalisation and standardisation along with dif-
ferent batch sizes, sequence lengths, and learning rates. It was observed that the
normalized data had a better result than the standardized data. The batch size
of 64 had an edge over other batch sizes and dropout layer also helped in regular-
ization. So the model having this configuration data was chosen to experiment
further using five different data sources: (1) historical, (2) historical and Twitter
sentiment, (3) historical and Tweet count, (4) historical and Google Trends, (5)
historical, Twitter sentiment, Tweet count and Google Trends. LSTM had the
best outcome for long-term prediction using the financial indicator. The results
using non-financial indicators were quite close. The pattern of the result for both
cryptocurrencies was very similar, as can be seen in Table 1 and Table 2.

1D-CNN. Since 1D-CNN is also a deep learning model, the process and setup
of the experiments were similar to that of LSTM. Different values of scaling
type, 1D-CNN configuration, learning rate, and batch size were used in the
experiments on all five types of data sources. In this case, also, Normalization
was a better choice for scaling where batch size of 32 worked best for Bitcoin
and 64 for Ethereum. 1D-CNN model showed the best output using the financial
indicator in the case of Bitcoin whereas, in the case of Ethereum, the non-
financial features outperformed the financial features. This can be observed in
Table 1 and Table 2.

4.2 Hybrid Models

The deep learning models were combined with statistical models to explore
if the hybrid models performed better than the base models. LSTM and 1D-
CNN were combined with ARIMA for financial data and ARIMAX for finan-
cial and non-financial data together. The residual of the statistical model
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Table 1. Result for Bitcoin sorted on RMSE

Model Name Indicator Type RMSE MAPE

LSTM and ARIMA Historical 1725.33 0.027

LSTM and ARIMAX Historical, Twitter Sentiment, Tweet

Count and Google Trends

1866.90 0.028

LSTM and ARIMAX Historical, Twitter Count 1901.51 0.028

LSTM and ARIMAX Historical, Google Trends 1903.28 0.028

LSTM and ARIMAX Historical, Twitter Sentiment 1921.08 0.058

1D-CNN and ARIMAX Historical, Twitter Sentiment, Tweet

Count and Google Trends

2026.15 0.033

1D-CNN and ARIMAX Historical, Twitter Sentiment 2066.43 0.033

1D-CNN and ARIMAX Historical, Twitter Count 2090.57 0.033

1D-CNN and ARIMAX Historical, Google Trends 2112.42 0.034

LSTM Historical 2557.93 0.044

LSTM Historical, Google Trends 2926.65 0.052

1D-CNN and ARIMA Historical 2983.2 0.051

LSTM Historical, Twitter Sentiment 3387.52 0.058

1D-CNN Historical 3679.92 0.057

LSTM Historical, Twitter Sentiment, Tweet

Count and Google Trends

3801.79 0.066

LSTM Historical, Twitter Count 4075.726 0.075

1D-CNN Historical, Twitter Count 4151.62 0.07

1D-CNN Historical, Twitter Sentiment 4520.34 0.077

1D-CNN Historical, Twitter Sentiment, Tweet

Count and Google Trends

4741.96 0.083

1D-CNN Historical, Google Trends 5743.11 0.109

(ARIMA/ARIMAX) was passed as input to the deep learning model (LSTM/1D-
CNN) to predict the final residual value, which was then converted back to the
actual predicted value to compare it against the test value.

LSTM and ARIMA. The first hybrid model was configured using LSTM and
ARIMA. In this model, the residual generated from ARIMA model using the
Close value of financial data was fed to LSTM model for training. Standardized
data with batch size of 32 worked better for Bitcoin whereas, for Ethereum,
it was normalized data with batch size of 32. In general, the hybrid models
outperformed the base models as can be seen in Table 1 and Table 2.

1D-CNN and ARIMA. The next hybrid model was configured using 1D-CNN
and ARIMA. Standardized data with batch size of 64 was chosen for Bitcoin
whereas, for Ethereum, it was normalized data with batch size of 64. This hybrid
model outperformed its base models for Bitcoin but in the case of Ethereum, the
performance of 1D-CNN base model was better than that of the hybrid model,
as can be seen in Table 1 and Table 2.
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Table 2. Result for Ethereum sorted on RMSE

Model Name Indicator Type RMSE MAPE

LSTM and ARIMAX Historical, Twitter Sentiment, Tweet

Count and Google Trends

153.21 0.033

LSTM and ARIMAX Historical, Google Trends 153.58 0.033

LSTM and ARIMAX Historical, Twitter Count 153.70 0.033

LSTM and ARIMAX Historical, Twitter Sentiment 154.41 0.033

1D-CNN and ARIMAX Historical, Twitter Sentiment, Tweet

Count and Google Trends

156.55 0.034

1D-CNN and ARIMAX Historical, Google Trends 157.14 0.034

1D-CNN and ARIMAX Historical, Twitter Sentiment 158.70 0.034

1D-CNN and ARIMAX Historical, Twitter Count 161.45 0.035

LSTM and ARIMA Historical 177.62 0.043

LSTM Historical 212.39 0.051

1D-CNN Historical, Twitter Sentiment 236.33 0.055

1D-CNN Historical 262.33 0.065

1D-CNN and ARIMA Historical 282.30 0.069

1D-CNN Historical, Twitter Count 284.9 0.066

1D-CNN Historical, Twitter Sentiment, Tweet

Count and Google Trends

314.65 0.073

1D-CNN Historical, Google Trends 437.42 0.095

LSTM Historical, Twitter Sentiment, Tweet

Count and Google Trends

1293.12 0.306

LSTM Historical, Twitter Sentiment 1402.95 0.342

LSTM Historical, Twitter Count 1495.91 0.37

LSTM Historical, Google Trends 1504.02 0.373

LSTM and ARIMAX. LSTM and ARIMAX hybrid model was used to test
the behaviour of non-financial indicators along with financial indicators. Stan-
dardized data with batch size 32 was used in the case of Bitcoin whereas nor-
malized data with batch size 32 was chosen for Ethereum. The hybrid models
outperformed the base models, as can be seen in Table 1 and Table 2.

1D-CNN and ARIMAX. The last set of experiments was conducted on the
hybrid model configured using 1D-CNN and ARIMAX. Standardized data with
batch size 64 was chosen for Bitcoin and normalized data with batch size 64 for
Ethereum based on the results. In this case also, the hybrid models outperformed
the base models as can be seen in Table 1 and Table 2.

Figure 3 and Fig. 4 show the visualization of the top 10 models for Bitcoin
and Ethereum respectively.

4.3 Granger Causality

Granger Causality is a statistical test to determine whether one time series
can help predict the value of another time series [6]. Twitter data and Google
Trends data were tested with historical data to check if they were useful in
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Fig. 3. Bitcoin top 10 models
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Fig. 4. Ethereum top 10 models
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predicting the price. Based on the p-value, Twitter volume for Bitcoin showed
that it significantly causes the close value of historical data in the first Lag itself.
This means that Twitter volume has a strong impact on the price prediction,
whereas for Ethereum it was after 5 lags. Twitter sentiment score did not indicate
a strong correlation, whereas Google Trends data showed that it affects the close
price after 7 lags in the case of Bitcoin and after 6 lags in the case of Ethereum.
Twitter Volume having more impact on price prediction than Twitter sentiment
was also indicated in one of the research [2] mentioned in Sect. 2. This can also
be visually verified through the graph shown in Fig. 5 for Bitcoin Tweet volume.

Fig. 5. Granger Causality Close Price and Tweet volume for Bitcoin

5 Discussion

The best result for our data for Bitcoin was for the hybrid model of LSTM
and ARIMA based on the financial indicator. This model can handle specifics of
the dataset including seasonal part and trend. This was followed by the hybrid
models of LSTM and ARIMAX based on financial and non-financial data. The
difference in result was very marginal. In the case of Ethereum, the best result
was for hybrid model based on both financial and non-financial indicators. In
theory, the non-financial data should have improved the performance of the
Bitcoin hybrid model as observed in the case of Ethereum but it is possible that
the noise present in the non-financial data, primarily tweets related to Bitcoin,
could have affected the performance of the model. The hybrid model based on
1D-CNN and ARIMAX also had a very close prediction and very less differences
in terms of error.

LSTM utilizes the long-term memory of the data, whereas 1D-CNN focusses
on the spatial aspect of the data. The result of any model depends a lot on the
data fed to it and that could be one of the reasons why the result of hybrid
models of LSTM was slightly better than that of 1D-CNN. This result could
have been improvised further by fine-tuning the model’s configuration.
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6 Conclusion and Future Work

Overall, the results indicate that the hybrid models perform better than the
basic model itself. Hybrid model with LSTM is observed to have a slight edge
over 1D-CNN. This could be due to the nature of the data including financial
and non-financial both.

There are some areas that can be explored in future studies to improve the
price prediction of cryptocurrencies. Due to the quota limit, approximately 3
years of Tweets were used in the research, whereas historical data was worth
5 years. Furthermore, the importance of Twitter data and Google Trends data
can be explored by mining more data and matching them with the duration of
historical data.

The sentiment analysis was done using Vader library which is tuned for social
media data [10]. Due to time limitations, we did not validate this analysis for
approximately 30 million Tweets used in this research. The result involving Twit-
ter sentiments was heavily dependent on the performance of this library. Explor-
ing a better sentiment analysis model geared especially toward social media data
can be helpful not just as a future extension of this research but in general for
many research projects dealing with sentiment analysis.

The Tweets were filtered and pre-processed before being used in this study.
Post-processing would be also beneficial as there were many tweets that con-
tained tutorial information or information that had no significance to cryptocur-
rencies. These tweets are difficult to filter out through a regular filtering process,
since they also use the Bitcoin or Ethereum hashtags. If their weight is included
in calculating the sentiment score or Tweet volume, they might skew the result.
Future research may improve this filtering process, which can in turn help a lot
of research projects involving Twitter data.

The news could also have a significant impact on the general sentiment of
people towards cryptocurrencies. News data might be added to the datasets
to explore whether it affects the price prediction performance. More external
factors, such as stock market trends and gold prices, as described in Sect. 2 could
also be included in the research to evaluate their impact on price prediction.

LSTM utilizes the long-term memory of the data whereas 1D-CNN focusses
on the spatial aspect of the data. So a hybrid model using 1D-CNN and LSTM
can be explored to evaluate if it is able to predict the price of the cryptocurrencies
better than the other hybrid models explored in this paper.
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Abstract. High-throughput chemical synthesis is extensively used for analyz-
ing materials since it allows a systematic probing of a large span of three space
parameters: initial conditions, final products, and the characteristics of the obtained
products. High-dimensional data visualization is required to fully understand the
relations between these three spaces. However, most methods are limited to up
to three dimensions (3D) at the time per graph. Here, we show how correlation
analysis and parallel coordinate plots reveal the relations in a multidimensional
space. This representation technique is general and may serve many synthetic and
fabrication related processes.We demonstrate the power of our approach on a spe-
cific chemical colloidal synthesis of CsPbBr3 nanocrystals, which results in highly
emissive semiconductor nanocrystals, relevant for photonic applications. The col-
loidal synthesis of these nanocrystals is a multi-parameter process, with complex
inter-relationships between the parameters, such as precursors and organic ligands
concentrations and reaction temperature. The resulting nanocrystals present dis-
tinct morphological differences, resulting in a detectable shift of their emission
spectrum. We use a dataset of 1351 samples to investigate the relations between
and within these three spaces. In our case study, we have identified trends and
anomalies in the data that provide directions for further research and illustrated
thereby the potential of correlation analysis and parallel coordinates to explore
patterns and relationships.

Keywords: High-dimensional Data · Data Visualization · Interdisciplinary
Applications of Data Science

1 Introduction

In the last decade, data-driven methodology has gained immense popularity in mate-
rials science [1]. Data science techniques have proven to be valuable in designing and
optimizing synthesis parameters by visualizing parameter spaces. In the past, one of the
main challenges was to create large, informative datasets to apply these techniques to.
Today, thanks to high-throughput chemical synthesis, large experimental datasets could
be created with high consistency in a short time frame [2].
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The high-throughput experiment provides multidimensional data: environmental
conditions, such as temperature and humidity; chemical parameters, such as volumes
and proportions of precursors; and physical parameters of the synthesis itself, such as
stirring rate and cooling time—all these can be part of the input space. The output of
such experiment is also multi-dimensional, comprising data from chemical or physical
measurements, either directly obtained or derived quantities. All of these parameters can
be assigned to one of three typical parameter spaces: the initial conditions, the final prod-
ucts and the characteristics of products, which will be noted as I, P and C respectively.
Each of the relationships between these spaces has meaning in the eyes of a materials
scientist, as shown in Fig. 1.

Fig. 1. In materials research, one typically deals with the following three parameter spaces: the
initial conditions, the final products, and the properties of the products, which we refer to as I, P,
and C, respectively. Correlation analysis and parallel coordinates are two multi-dimensional data
visualization methods that can be utilized to understand the relations between and within these
three spaces.

Many conventional methods of data visualization, such as bar graphs, line plots,
histograms, and scatter plots, are limited to two or three dimensions that can be plotted
against each other [3]. Such representations fail to represent the full parameter space of
the system and therefore do not convey the underlying complexity of the full multidi-
mensional relationships. Visualization of higher dimensional patterns and associations
is possible but are more complex and the advancement of such techniques is still an
active area of research [4].

To address the challenges posed by high dimensional data, we here employ two
conventionalmethods of data visualization: correlation analysis and parallel coordinates.
We demonstrate how these methods can be used for multi-dimensional visualization,
discuss their applications in the context of materials analysis, and showcase how they
complement one another.

Although high-throughput data and related methodologies surrounding it have been
discussed extensively in the literature [5], the adoption ofmultidimensional visualization
methods inmaterials science remains limited, partially due to scarcity of high-throughput
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data until recently and the unfamiliarity with the multi-dimensional visualization meth-
ods among the materials science community. Therefore, we aim to bring these multi-
dimensional visualization methods to the attention of the material science community
and to demonstrate their potential in materials analysis.

In the context of high-throughput synthesis, the methods of correlation analysis and
parallel coordinates can be used in various ways for investigations. Firstly, the study of
the physical laws and processes that are responsible for the specific spread of data, can
be done by exploring the spaces of P vs. C, P vs. P and C vs. C. Secondly, these methods
could serve as a tool for optimizing material manufacturing process, by distinguishing
between the successful and problematic datapoints and presenting a roadmap for each
case. This is done by focusing on the spaces of I vs. C. Finally, the methods could be
used as a tool for design and validation of high-throughput experiments. By focusing
on the spaces of I vs. I, the input features could be tested for their spread in the multi-
dimensional space, and the methods could serve as a tool for anomaly detection and
quality assurance beforehand or in real time.

2 Related Work

The utilization of the parallel coordinate method for materials analysis has been rel-
atively limited. One of the notable works, by Rickman [6], included an analysis of
multi-dimensional materials properties charts for 25 metallic and ceramic systems using
parallel coordinate plot, followed by a principal component analysis (PCA) for dimen-
sionality reduction. In another work by Kamath et al. [7], a parallel coordinate plot
was used to obtain insights into the properties of additively manufactured stainless steel
parts, based on 462 computer experiments. The work of Bhattarai et al. [8] has provided
several insights about silicate melt viscosity values and their relationships with pressure,
temperature and composition. Even less studies combined parallel coordinate plot with
correlation analysis, like the work of Rickman et al. [9], exploring the characteristics of
82 experimentally fabricated high-entropy alloys.

Additionally, themethod of parallel coordinates was implemented in TEDesign Lab,
a virtual laboratory for thermoelectric material design [10]. This interactive web-based
implementation includes various functionalities to customize and analyze the added plot,
including highlighting subrange of the full-scale values, and changing the order of axis.

Correlation analysis is a more popular method in the context of materials analysis,
often applied as a supplementary step rather than a comprehensive and systematic pro-
cedure for obtaining insights. The most common example for application of correlation
analysis is the use of correlation plots for investigating the relationships between dif-
ferent material characteristics, such as the emission intensity, photocurrent and lifetime
[11], or the hydrogen absorption energy and electronegativity difference [12]. Another
common example involved the use of correlation maps to examine the internal rela-
tion (autocorrelation) of a single continuous feature, such as one-dimensional X-ray
scattering spectra [13] and surface enhanced Raman spectroscopy [14].

Furthermore, correlation maps are used extensively in the context of machine learn-
ing (ML), one of the largest branches of data science, which is greatly applied in the field
of materials science [15, 16]. ML models can be used to predict the target feature by
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utilizing a set of given input features. During the preliminary steps of the ML workflow,
correlation maps are integrated to the model in order to explore the relations between
the characteristics of the material, which will be used later on as the input features to
the models [17, 18].

While ML gained significant popularity in the last years, visualization techniques,
and particularly those shown in this work, offer several advantages over ML techniques
in certain contexts. Firstly, many of ML techniques perform as “black box” algorithms,
offering limited explainability. In contrast, the data analysis methods presented in this
work provide a straightforward and intuitive way to explore and understand data, making
them accessible to a broader audience, including non-technical stakeholders.

In addition, correlation plots and parallel coordinates require less computational
effort and less data preprocessing than ML, making them a practical choice for smaller
datasets or rapid exploratory analysis. Also, they do not require a specific knowledge for
optimization, as someML algorithms do. Another distinct advantage, further elaborated
in this paper, pertains to the differential attention given to anomalies in the data: Since
ML algorithms present an averaged output based on values of all input datapoints, the
unconventional relationships might go unnoticed. In contrast, visualization methods
enable quick identification of outliers and allow the user to decide whether a specific
point is a “noise” to be disregarded or a unique novelty requiring further investigation.

3 Case Study

To illustrate the applicability of correlation analysis and parallel coordinates to mate-
rials research, we present a case study that investigates the interrelationships among
different parameters in a colloidal synthesis, a popular method to synthesizing inor-
ganic nanocrystals of cesium-lead-bromide perovskite (CsPbBr3). These nanocrystals
garnered a lot of attention from the material science community because of their high
photonic yield and emission tunability [19], making them very appealing for numerous
photonic applications like photovoltaic cells [20] and lasers [21]. In addition, CsPbBr3
synthesis is ideal for high-throughput experiment: The synthesis is done in ambient con-
dition and in the range of temperature close to room temperature, the precursors space is
intermediate size, and the analysis of the samples is done by simple absorption-emission
spectroscopy.

This work was based on a dataset that includes synthesis information, calculated
products and spectroscopy measurements of 1351 samples, published as a companion
dataset of a previous study [22]. In these experiments several precursor solutions – dilute
oleylamine (OLA), oleic acid (OA), lead (Pb) and cesium (Cs) – weremixed in a vial and
the reaction was initiated by adding bromide (Br) solution. The synthesis was carried
out at different combinations on a Hamilton NIMBUS-4 MicroLab robot.

Both data analysis methods explored here are done by drawing the spaces of initial
conditions (I), products (P) and the characteristics of products (C).

In our dataset, the I space consists of the concentrations of reagents in the solution:
[OLA], [OA], [Pb], [Cs] and [Br] in mM, and the temperature of the synthesis T in °C.
These initial conditions were originally specified in the dataset for all samples.

The P space is the product space of Cs-Pb-Br, consisting of the fractions of nine
morphologies (also called phases): PbBrx, Cs4PbBr6, CsPb2Br5, PbBr2, 1 ML, 2 ML, 3
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ML, 4ML and CsPbBr3, so that the sum of the nine fractions approaches 1. The fractions
of products used for P space, were given in the dataset as well.

For the C space, we focused on optical characteristics extracted out of the emission
spectrum of the samples. The emission spectrum is the electromagnetic radiation (light)
frequencies being emitted by amaterial due to the absorption of external energy. The first
characteristic is the photoluminescence quantum yield (PLQY), representing the number
of photons emitted as a fraction of the number of photons absorbed, a critical character-
istic for the utilization of these nanocrystals in photonic applications. The second one is
the central wavelength (CWL) of the emission spectrum, signifying the wavelength at
which the electromagnetic radiation with the highest intensity has been emitted. Lastly,
we have the full width at half maximum (FWHM) of the emission spectrum, represent-
ing the width of a spectrum curve measured between those points on the y-axis which
are half the maximum amplitude, providing insights to the spectral broadening of the
emitted radiation.

To compute these optical characteristics, we used the spectroscopy part of the dataset.
The FWHM was calculated from the emission spectra data, and the CWL was defined
as the central wavelength of the FWHM. The PLQY was calculated based on the area
of the sum of the Gaussians, fitted semi-automatically to the emission spectra.

The pre-processing involved formatting data into a usable dataset. First, we created
a tabular structure of a m × n matrix, with m rows corresponding to m samples, and
n columns which contain the I, C and P values for each sample. To ensure accuracy
and reliability, the raw data has been carefully screened for the optical characteristics,
addressing out-of-range values, impossible data combinations, and missing values fre-
quently contained in the raw data, in order to avoid misleading and non-physical results.
Finally, we remained with m = 1136 samples in the dataset for the C space.

3.1 Correlation Analysis

Correlation analysis is a strong and well-established technique for data analysis [23].
It is based on a correlation plot, a scatter plot of two variables. The way to evaluate
the association between the variables is the correlation test. The most common one is
Pearson correlation [24], which measures both the strength and direction of the linear
relationship between two continuous variables, and calculated as:

r =
∑

i(xi − x)(yi − y)
√∑

i(xi − x)2
∑

i(yi − y)2
(1)

where x and y are two vectors of length m, and x and y corresponds to the means of x
and y, respectively. However, Pearson correlation accounts only for a linear dependence
between the variables, and often it is necessary to define a more relevant metric, as will
be demonstrated further in this paper. To investigate the dependence between multiple
variables at the same time, a correlationmatrix is used, consisting of ordered correlation
plots in a tabular structure.Correlationmap, orCorrgram, is a visual display technique
of correlation matrix, which is very useful to highlight the most correlated variables in
a data table. The idea is to display the pattern of correlations in terms of their signs and
magnitudes.
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3.2 Parallel Coordinates

Parallel coordinate plot is a long-standing and efficient technique for high-dimensional
datasets [25, 26]. Its main advantage lies in its ability to simultaneously identify correla-
tions across multiple dimensions, making it easier for researchers to find trends, identify
outliers and perform quality checks in large multivariate data.

Brushing, an interaction technique particularly useful in parallel coordinates, enables
the user to select a subset of a dataset, that is then highlighted [27]. In addition, using
different colors can be used to facilitate the detection of patterns across the variables
and discovery of the relationships between them. In our work we used Python’s “Plotly”
package [28] to create an interactive display and to highlight data lines that fall within
a subrange of the full-scale axis values for one or more axes simultaneously.

4 Applications and Discussion

In the following, we demonstrate how the use of correlation analysis and parallel coor-
dinates reveals distinct insights from our dataset. Each combination of the spaces (I, C
and P) shows a specific pattern of the data and can serve a different purpose. We will
explore all possible combinations of these spaces thoroughly, except I vs. P, which has
been thoroughly investigated in a prior study by the creators of the dataset.

4.1 C vs. P: Characterizing Multiple Phases

We start with an investigation of the characteristics of the products versus the product
fractions (C vs. P). In Fig. 2 we selected the PLQY as our C parameter, and then used the
nine different phases of the Cs-Pb-Br space as our P parameters. Already at first glance,
we can learn qualitatively from the data spread about the effect of each phase on PLQY:
while in high fractions of some phases, a low PLQY can be seen, other phases show high
PLQY in their high fractions. To distinguish between these trends quantitively, we use
Pearson’s correlation coefficient, r. The correlation values evaluate the ratio of emitted
photons per absorbed photons, with a positive r corresponding to emitting phases with
high emission-to-absorption ratio. Hence, the method enables classification of phases
according to the selected characteristic.

Fig. 2. Correlation plots of C-P, for PLQY vs. fraction of phases. From these correlation plots we
can statistically evaluate how each phase affects the PLQY. In each figure, the number in bold is r,
the Pearson’s correlation coefficient, and the red line is the linear regression fit. The phases with
negative r (e.g., PBr2,) are non-emitting phases, while other phases with positive r (e.g., 3 ML),
are the emitting phases. (Color figure online)
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An additional example investigating C-P relationship with another characteristic of
the products – CWL, presented in Fig. 3. This time, a parallel coordinate plot was chosen,
due to its capability to visualize the wavelength by color. The purple-to-red color-bar
corresponds intuitively to the physical emission wavelengths values of 400 to 550 nm.
The plot reveals that there is a typical emission wavelength for each one of the emitting
phases, which corresponds to the known values in the literature [29, 30]. Non-emitting
phases can be noticed by multicolor lines. The reason for this is that the obtained CWL
in these phases is affected by the existence of the other emitting phases.

Through the parallel coordinate method, the typical emission wavelength of each
phase was found. The method could be utilized as a general and systematic way for
finding a specific property of an unknown sample of mixed phases. Moreover, the main
advantage of this analysis method is that it does not require a synthesis of a pure sam-
ple of each one of the phases of the material, to find their properties. Using the high-
throughput data, bothmethods succeeded in finding the optical characteristic in all phases
simultaneously based on multi-phased samples.

Fig. 3. Parallel coordinates of C-P, for CWLvs. fraction of phases. A typical emissionwavelength
is clearly noticed for each one of the emitting phases (1 ML, 2 ML, 3 ML, 4 ML and CsPbBr3),
which corresponds to the known values from literature. Non-emitting phases (such as PbBrx) can
be noticed by multicolor lines.

4.2 C vs. C: Relationships Between Properties

A different angle on the dataset comes through the relationships between the charac-
teristics of the products (C vs. C). Figure 4 presents the correlations of the optical
characteristics with themselves. In Figs. 4a and 4b, we can see that the shape of the data
is different next to the emission wavelengths of the known morphologies of the 2ML,
3ML, 4ML andCsPbBr3 phases. Around thesewavelengths, the PLQY tends to increase,
and the FWHM tends to decrease. This indicates that pure samples of the morphologies
often have better optical characteristics then the mixed samples. For example, FWHM
of 2 ML and 3 ML is less than 20 nm, while in mixed samples of these phases it reaches
30 nm. Figure 4c shows that high PLQY doesn’t necessarily correspond to low FWHM,
as there are high PLQY samples throughout the FWHM scale. We will note that while
the original dataset includedmany samples of 1ML, they are not reflected in the analysis
due to filtering of the data.
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From the spread of the data, it can be also understood that many of the samples are
of the known emitting phases, but their emission is low with decreased PLQY values.
However, their low values of FWHM indicate a well-defined sharp emission peak typical
to the physical behavior of these materials.

One interesting anomaly in the data is a point with extremely high PLQY, noted with
arrow in Fig. 4. At first sight, this point may be discarded as an outlier, as it inconsistent
with the data set. However, examining the full parameter space reveals that the reason
for this point to stand out is the lack of other samples with similar precursors properties.
Later in-depth examination (Fig. 7), shows that this samples is indeed uniquely made.
This data point serves as a notable example of an anomaly that could have been missed
when using ML algorithms since it could have been interpreted as a “noise” in the data,
and not as a local extremum in the multidimensional space.

Fig. 4. Correlation plots of C-C for optical characteristics. (a) PLQY vs. CWL. The PLQY tends
to increase at the emission of specific wavelengths. These wavelengths correspond to the known
morphologies of 1 ML, 2 ML, 3 ML, 4 ML and CsPbBr3 nanocrystals (marked in red lines). The
arrow points to an interesting anomaly with extremely high PLQY. (b) FWHM vs. CWL. The
FWHM drops when the CWL is of a specific morphology. However, in 4 ML it does not follow
the same rule. (c) FWHM vs. QY. High PLQY doesn’t necessarily correspond to low FWHM.
(Color figure online)

Additional anomaly from this exact dataset led to a revolutionary insight, published
by the author [31]. In that work, CWL was plotted against the Stokes Shift, another
optical characteristic, and showed an unexpected non-monotonic trend.

These examples show the great capability of the correlation analysis in identifying
trends and anomalies, to shed light on the physics of the investigated synthesis.

4.3 P vs. P: Coexistence of Phases

We will proceed further with the correlation analysis, towards investigation of the prod-
ucts, i.e., the P space. Here we present a tool for exploring the coexistence of phases
in Cs-Pb-Br space. The first step is done by finding the coexistence of two-phases in a
sample. In a correlation plot of two phases (Fig. 5a), a single point reflects the fractions
of these two phases in the sample. For example, a point of (0.1, 0.7) is a synthesis which
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results in the following combination of phases: 10% of phase x, 70% of phase y, and
20% of other 7 phases.

Fig. 5. Correlation analysis of P-P for dual phases coexistence. (a) Correlation plot of two phases.
Each datapoint represent coexistence of two phases per synthesized sample. (b) Correlationmatrix
of nine phases. The collection of datapoints per graph represents the correlation of two phases
of all the dataset. The full correlation matrix shows the coexistence of all possible phases. (c)
Correlation map of nine phases. The values are the calculated value of the coexistence test.

There are 1351 points in this figure, representing the whole dataset. Datapoints along
the line x + y = 1 represent samples in which there was an exact coexistence of the x
and y phases. However, since we want to investigate the mutual dependence of all nine
phases simultaneously, we shall use a correlation matrix (Fig. 5b). In this matrix, every
cell is a correlation plot of two different phases and consists of the whole dataset.
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Inspecting the correlation matrix, one can notice that two different patterns exist:
some cells (e.g., 2 ML vs. 1 ML) have a data in a form of a triangle, while other
cells (e.g., CsPbBr3 vs. PbBrx) have an L-shaped data. The physics that hides behind it
is the different coexistence relationships of the phases. The triangular cells have more
datapoints close to the full coexistence line,while theL-shaped cells showno coexistence
of the two phases, since no samples show high values of x and y simultaneously.

To quantitatively estimate the coexistence of x and y, we would like to perform a
correlation test. However, since the correlation in this application is not linear in essence,
we cannot be assisted anymore by the classical approach of Pearson’s correlation. As an
alternative, we suggest the following x-y coexistence test:

A = 1

m

∑m

i=1
xi · yi (2)

where x and y are the two phases in a specific cell, and m is the number of samples.
We calculate this value for each one of the cells and visualize it in a correlation map

(Fig. 5c). We set numerical thresholds manually for creating three distinct cells: A > 3
× 10–3 (in red) for phases which satisfy dual-coexistence, A ≤ 2 × 10–3 (in blue) for
phases which show no coexistence, and an intermediate case (in pink). The latter case
belongs to phases which coexist with more than one phase simultaneously.

We found out that in this dataset, some phases tend to coexist a lot with others. For
example, 2 ML coexists with 5 of the 8 other phases. On the other hands, other phases
tend to be pure, such as the CsPbBr3 phase. Highest coexistence occurs for the phases
of 1 ML and 2 ML, implying that their synthesis is sensitive to initial conditions and it
is challenging to get a pure sample with only one of these products.

Different types of synthesiswill providedifferent correlationmatrices for coexistence
of phases. Therefore, this analysis can be used for comparing different synthesis types in
order to select a synthesis with pure phases. Synthesis with minimal phase coexistence
will be reflected in blue cells in their respective correlation map.

Next, we will examine the third group of multiple-phase coexistence. Since each
correlation plot is limited to investigation of a two-dimensional relationship, we would
utilize our second data visualization method for high-dimensional data. In the parallel
coordinates plot of the phases (Fig. 6b), each axis represents the fraction of a different
phase of the products. Each polyline that connects the nine axes represents a single
sample with its nine respective phase fractions.

Now, we study each case of multiple-phase coexistence separately.We go back to the
correlation map and focus on one of these cells: 1 ML vs. CsPb2Br5 (green-black cell in
Fig. 6a). Using brushing we select the subranges on the parallel coordinates plot to be (1
ML > 0.1) and (CsPb2Br5 > 0.1), which means sample that contain these both phases
in a considerable amount (green-black dashed lines in Fig. 6b). After this selection, we
see that samples that satisfy this condition contain two additional phases: Cs4PbBr6 and
2 ML, which were obtained as an output of the method (green solid lines in Fig. 6b).
Going back to the correlationmap,we canmap all the other phases that correspond to this
four-phase coexistence (green cells in Fig. 6c). This validates the result by fitting to other
dual-phase coexistence cells. For completeness of the analysis, the examination of the
other multiple-coexistence cells can be performed to find all combination of coexisting
phases.
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Fig. 6. Analysis of the products P-P for multiple phase coexistence. (a) The correlation map is
first used to selected a cell of multiple-phase coexistence, consisting of CsPb2Br5 + 1 ML +
unknowns (green-black cell). (b) Parallel coordinate plot reveals the coexistence of four phases
simultaneously: CsPb2Br5 + 1 ML + 2ML + Cs4PbBr6. The original two phases are in dashed
green axes, and the obtained phases are in solid axes. (c) Returning back to the correlation map
validates the result by fitting to other dual-phase coexistence cells (green cells). (Color figure
online)

In conclusion, we show here that we can methodically map the coexistence of
multiple phases. Using correlation analysis, we classify each relationship of phases to
three groups: no coexistence, dual-phase coexistence, and multiple-phase coexistence.
Encountering a case of multiple-phase coexistence, the parallel coordinates plot enables
the identification of all coexisting phases.

4.4 I vs. I: High-Throughput Experiment Design

Now we will focus on another space, not yet analyzed – the initial conditions space, I.
When designing a high-throughput experiment, one is generally interested in achieving
a uniform spread of the input features in order to cover a maximum volume in the
multidimensional input space with a minimum number of samples.

In the correlation matrix of I-I (Fig. 7a), two types of cells can be noticed: those in
which the data is spread uniformly throughout the sub-space, and those in which the data
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is concentrated in specific domains of sub-space. In the green cells, the concentrations
of OA for the experiment were chosen to be spread with even spacing through all the
range of 3–13 mM, and with even spacing in relation to each one of the two-dimensional
sub-spaces of OA-Pb, OA-OLA and OA-Cs. This creates a uniform spread of samples
in the multi-dimensional space.

In contrast, in the red cells the concentrations of Br were spread through a large
range of 1–17 mM, however their spread in relation to each one of the two-dimensional
sub-spaces, is concentrated in the specific values of 2 and 13 mM. This creates a lack of
data in the multi-dimensional space of inputs, and results in lack of information about
the combination of precursors in the domains that are far from this value.

Fig. 7. Analysis of the input features I-I for precursors concentrations. Features with uniform
spread of data are selected in the green frame, while features with concentrated spread are selected
in red frame. (a) Correlation matrix of the precursors (all values in mM). The arrow points to the
anomaly datapoint from Fig. 4. (b) parallel coordinates of the precursors ratios. (Color figure
online)

As an example, the arrow is pointing to the anomaly datapoint with maximal PLQY
from Fig. 4. This reveals that too few experiments were performed in the surrounding
precursor domain, causing this sample to appear as an anomaly in PLQY. A similar
conclusion can be drawn using the parallel coordinate method (Fig. 7b), where uniform
spread forms a cluttered plot, while concentrated spread characterized by a sparse plot.

As shown, our methods can be used to visualize the spread of the input features
and to indicate “holes” in the multidimensional input space. Then, in turn, a plan for a
high-throughput experiment could be validated or modified if necessary.



Multi-dimensional Data Visualization for Analyzing Materials 207

4.5 C vs. I: Design and Optimization of Properties

The last useful representation to be discussed here is the relationship between the char-
acteristics of the products and the initial conditions of the synthesis (C vs. I). This is
advantageous for optimizing a material property towards a desired value and for finding
initial conditions that produce the optimal result in I-space.

To demonstrate functionality of this tool we optimize the parameter-space to maxi-
mize the photoluminescence quantum yield (PLQY) and suggest a roadmap for highly
emitting samples. We plot the PLQY against the reagent relations and the temperature,
using the parallel coordinate plot (Fig. 8). Coloring coded PLQY values, as defined in
the color bar, allows for the discrimination of low- and high-emission samples. Further-
more, it can be seen that there is a specific path, which most of the high PLQY samples
are concentrated along it. By following this theoretical path (marked in dashed orange
polyline) as a roadmap, one can reproduce the reagents concentrations that are required,
based on this high throughput synthesis.

Fig. 8. Parallel coordinates C-I for the PLQY vs. initial conditions. A certain path with higher
PLQY can be noticed through all samples. This path (marked in dashed orange polyline) can be
used as an optimized roadmap for maximal PLQY. By following it, one can reproduce the rea-gent
concentrations that are required. (Color figure online)

The strength of thismethod is that any other physical parameter can also be examined
in the same manner, which allows moving the focus of the exploration and optimization
to any other output feature.

Besides the roadmap for the desired property, by examining each axis separately, we
can learn about the most important features for the property design. Good separation
between different color ranges on a specific axis indicates a high importance of the
respective feature, while overlap and disorder of colors indicate its insignificance. This
can be used, on the one hand, to find irrelevant input features that can be ignored for
future synthesis and, on the other hand, to indicate important parameters that may not
have been considered significant in the first place.
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5 Conclusion

In this work, we present a novel application of two visualization methods that can offer a
practical and insightful alternative to current tools in the materials researcher’s toolbox
for exploring multivariate data.

We demonstrate the effectiveness of correlation analysis and the parallel coordi-
nates plot for finding high dimensional patterns within three high-dimensional spaces
commonly encountered in the context of materials synthesis: the initial conditions, the
products and the characteristics of the products. To exemplify the approach’s util-
ity, we analyzed a dataset of a high-throughput experiment, with 1351 samples of
cesium-lead-bromide nanocrystals synthesis, which involved multiple precursors and
products.

This approach constitutes a powerful tool for exploring complex interrelationships
that can guide materials research. For reference, a summary of the important aspects is
given below:

1) Visualization of the relationship between products and their characteristics allows
a characterization of all phases of a material simultaneously, based only on multi-
phased samples (Sect. 4.1).

2) Visualization of the relationship within products characteristics facilitates the inves-
tigation of the physics of the products, based on visual trends and anomalies in the
data (Sect. 4.2).

3) Visualization of the relationship within the products aids in finding phase coexistence
within the material and allows a useful way the compare different types of synthesis
to create a pure phase (Sect. 4.3).

4) Visualization of the relationship within the initial conditions can be used for design
and validation of a high-throughput experiment, ensuring sufficient coverage of the
investigated multidimensional space (Sect. 4.4).

5) Visualization of the relationship between the products characteristics and the initial
conditions enables the optimization of a desired property. In addition, it points to
the more significant initial conditions, which should be more precisely controlled to
reach a desirable goal (Sect. 4.5).

It is essential to emphasize that multidimensional synthesis like the one provided
in our case study, is common in the materials science research. Therefore, we strongly
encourage a broader implementation of these multi-dimensional visualization methods
in the application of materials analysis.

Lastly, our work showcases the insightful and practical application of data visualiza-
tion technique in material science. We believe that a closer collaboration between data
science researchers and the materials science community, with the aim of bringing more
modern data analysis techniques to bear in materials science, holds great promise.
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Abstract. The potential of leveraging network science in the area of
law has long been advocated and highlighted through case and legisla-
tion networks. Yet this particular subdomain of data management and
information retrieval is still heavily underutilised in both practice and
research. One of the contributing factors to this problem is the lack of
openly available legal data. This paper describes the development of a
legal citation network for New Zealand. In contrast to traditional case
citation networks, this data repository also includes legislation and court
data. Our network provides the data and references from over 300,000
decisions, 10,000 legislations and 115 courts from all levels of jurisdiction.
Additionally, we present exemplifying network analysis results to reveal
previously hidden information about the New Zealand legal system and
to motivate future research in this domain.

Keywords: Case Citation Network · Legal Tech · Neo4j · Network
Science · PageRank · Data Mining

1 Introduction

The law is a fundamental pillar of human societies as it shapes, controls and
governs how humans conduct business, behave and interact with each other.
Recent advances in computer-assisted technologies such as NLP, data science and
AI are creating opportunities to support the practice, research and study of this
pervasive domain. It is therefore not surprising that there has been an increase
in investments into supporting technologies for the legal industry (also known
as “legal tech” or “law tech”) over the last demi-decade [20]. A sub-discipline of
particular appeal is concerned with the area of assisted legal data management
and information retrieval.

Supporting law researchers and practitioners to retrieve information from
the vast amount of ever-growing legal documentation is of natural interest to
the legal research community. When researching a legal case, finding relevant
similar cases, old and new precedents or applicable legislations are common
tasks for legal practitioners. Case citation indices are a well-known and long-
established tool for aiding tasks like these. Similar to the practice of quantifying
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the excellence of research publications, the number of references a case receives
can indicate its importance or relevance to the research task at hand [26,27].
However, by converting these indices into citation networks we can utilise other
network science and analysis tools to reveal additional “hidden” and novel infor-
mation about the cases, laws and legal system.

Unfortunately, access to openly available legal data is still lacking in New
Zealand and case citation indices are, for the most part, only commercially
available via providers such as LexisNexis [6]. Although the potential of such
networks has been highlighted by previous research from various countries and
legal systems [13,18,21,22], to the best of our knowledge, no case citation net-
work has been analysed nor published as open access data for New Zealand.
Thus, we identified a need to develop and provide a case citation network that
contains sufficient data to support the analysis of the New Zealand legal sys-
tem and the development of future legal research applications. With that, we
also aspired to extend the usual paradigm of case citation networks to include
legislation and court data.

For this reason, we created a legal citation network for New Zealand contain-
ing over 300,000 court cases, 10,000 legislations and 115 courts from all areas of
law and jurisdiction. Additionally, we demonstrate how this data can be used
to reveal new information about the legal system and support common legal
research tasks by applying network analysis algorithms and metrics.

The paper is structured as follows: Sect. 2 provides an overview of the related
works and how this research extends previous studies in this domain, Sect. 3
describes the process of creating the legal citation network, Sect. 4 highlights
and showcases selected network analysis results and lastly, Sect. 5 summarises
this study and discusses opportunities for future research.

2 Related Work

Case citation indexing as a tool to identify potential precedent cases has been
common practice since the early 19th century [14]. Hence, it is not surprising that
the study of case citation networks has received some attention over the years and
even more so with the increasing digitalisation of legal documents. Due to the
diversity of the law domain, most research on case citation networks is focused on
either a specific legal system, court or country such as the U.S. state and federal
courts [26], the U.S. Supreme Court [11,13], the Austrian Supreme Court [14],
the European Court of Justice and the General Court [27], the European Court
of Human Rights [18], selected European courts [15], Canadian courts [22] and
German courts [10,21,24].

Furthermore, these studies investigate different aspects or use cases of these
networks. For instance, [18] use the case citation network of the European Court
of Justice to compare the decision-making between domestic and international
courts, [26] compares the case network to a research literature citation network
and [27] analyses the use of centrality measures such as PageRank and degree
centrality for case relevance ranking.
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While the studies above mostly focus on court cases and their citations,
[16,17,25] created and analysed legislation networks. However, we have not been
able to identify any study that tried to connect more than one type of legal
document other than [21]. In their study, the authors provide a German legal
citation network that contains both laws and cases, but the citations are only
extracted from cases (towards cases and laws) and not from the laws.

3 Creating the Legal Citation Network

We use the term “legal citation network” to describe a repository of legal docu-
ments that are interconnected based on the references that exist between them.
Unlike the more commonly known case citation networks, a legal citation net-
work is not limited to only one kind of legal record. Instead, the nodes of a legal
citation network can represent a variety of legal resources including cases, courts,
legislations, journals, publications, reforms, treaties and so on. In this section,
we will describe the creation process of our legal citation network starting with
the data acquisition, citation extraction and finally the database development.

3.1 Data Acquisition

Unfortunately, research in the legal tech domain can often be obscured by the
lack of openly available legal data. Given the sensitive nature of legal documents
and their intrinsic privacy concerns, this problem is not unique to New Zealand
but common around the world. Consequently, efforts have been made to provide
anonymised legal data for different countries [1–4,23]. However, in the case of
New Zealand, all openly-available data sources are only providing read access
without APIs. Furthermore, the data is stored in different formats and document
types, including non-searchable or non-editable PDFs.

To overcome this problem, we assembled web scrapers, parsers and an OCR
pipeline to collect and convert the contents from these sources into uniform and
machine-readable text. The result is a new open legal dataset containing New
Zealand case, legislation and court data.

Case and Court Dataset. A case or court decision is a document that contains
the details of a court proceeding. This includes the information about the parties
involved, the case description, the judge and the judgement. Using web scrapers
we mined the data of 338,360 cases from 1842 to 2022 from the New Zealand
Legal Information Institute’s website (NZLII) [4]. About half (51.7% or 175,084)
of these cases had their data already published in HTML format, while the rest
(48.3% or 163,276) were only available as PDF documents. A large proportion
of these PDF files are scanned documents that are not machine-readable. Hence,
we created an OCR pipeline that converts each page into an image and then
applies Google’s OCR library Tesseract1 to identify and extract the text. See
Fig. 1 for an illustration of the case data mining process.
1 https://github.com/tesseract-ocr/tesseract.

https://github.com/tesseract-ocr/tesseract
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Fig. 1. Illustration of the case-data collection step. The data for this research was
acquired from the NZLII database. About half of their cases are either in HTML or
native and scanned PDF format. Depending on the document type, the decision texts
are extracted using Python scrapers or an OCR pipeline.

For each case, we also parsed the metadata of the files to identify the year,
title, neutral citation identifier (used as a unique caseID) and name of the cor-
responding court. The names of the courts and their shortcode were then also
processed and added to a separate court dataset. In total we identified 115 unique
courts from all levels of jurisdiction. Table 1 provides an example of the case and
court data that we collected.

Table 1. Case, legislation and court dataset examples.

caseID title year court decision_text
[2021] NZCA 75 Hunter v R 2021 Court of Appeal Judgement of the court [...] The appeals against conviction are dismissed
... ... ... ...
legID title year type legislation_text
345447 Income Tax Act 2007 2007 Act (1) A person who receives a refund for a tax year under section EK 12 [...]
... ... ... ...
name shortcode
High Court of New Zealand NZHC
... ...

Legislation Dataset. The legislation data was scraped from the New Zealand
Parliamentary Counsel Office website [5]. This open-access database contains
most legislations for New Zealand in both HTML and PDF format. In total,
we collected 10,402 unique legislations. Each legislation text was then supple-
mented with its year of proclamation, title and type (i.e. “Act”, “Bill” or “Sec-
ondary Legislation”). These descriptors could be extracted and referred from
their corresponding parsed HTML documents. Table 1 provides an example of
the extracted legislation data.

3.2 Citation Extraction

The next step was to create automatic citation extraction algorithms to identify
references towards other cases and legislations from either source. Related work
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has shown different approaches to this problem [19,21,23] depending on the
corresponding citation conventions and their syntactic complexity.

In New Zealand, the syntax for citing legal resources can be more complex
than compared to other countries like Germany [21]. However, using the guide-
lines provided in [9] and by investigating many examples with the help of law
professionals, we determined some of the most common citation patterns. We
won’t be able to go into detail about the intricacies of these different citation
conventions as it would be out of the scope of this publication, but we have
highlighted the most common examples in Table 2.

Table 2. Case and legislation citation examples. Citation patterns and conventions
differ depending on the year of the case, the responsible court and whether it was
reported.

Citation Type Example

Neutral Case Citation Crawford v Phillips [2018] NZCA 208
Reported Case Citation Taylor v NZ Poultry Board [1984] 1 NZLR 394 (CA)
Unreported Case Citation R v Te Huia CA327/06
Legislation Citation Income Tax Act 2007

Case Citations. We developed multiple complex regular expressions for each
pattern and tested them on a small dataset of 100 randomly chosen court cases
that we labelled manually. In total, we missed 8.7% (12 out of 138) of the man-
ually identified citations. 16.7% of those were due to typographical errors in
the original citation. The other mistakes were mostly due to imprecise citation
behaviours or the use of abbreviations that we will include in the future. Cita-
tions that cannot be resolved into an actual reference were not counted. These
are citations without any clear identification number, file number or report name.
For example, the citation “Jackson v. Ward” can not be linked to a unique case
especially since the names might have been anonymized to “J v. W” in the actual
document.

Legislation Citations. For references towards laws, we can make use of string-
matching methods as legislation citations are much less ambiguous and are
always supposed to be cited by their exact name. During the evaluation pro-
cess, only one (out of 71) citation was missed due to a typographical error in the
original document. Here we also did not count citations to legislations that we
cannot resolve into an actual reference (i.e. all references to bills and acts that
we do not have in the dataset are ignored).

Table 3 summarises the result of applying these methods to our datasets.
In total, we managed to identify 427,701 case and 312,016 legislation references.
Self-citations from and to the same document were removed as they do not carry
any significant legal meaning.
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Table 3. Total number of identified references from cases and legislations using complex
regular expression and string matching methods.

Source Target Number

Case Case 427,639
Case Legislation 244,159
Legislation Case 62
Legislation Legislation 67,857

3.3 Converting the Data into a Graph

Akin to the related works in [21,24,25], we interpret case citation networks as
directed graphs where an edge from vertex (X) to vertex (Y) represents that (X)
has cited (Y) at least once. In other words, multiple citations from one source
to the same target still only count as one reference (i.e. no multiple edges).
Consequently, a typical case citation graph can be described as a directed simple
graph without loops:

G = (V,E) (1)

with V representing the set of vertices (cases) of the graph and E the set of
edges (references). In our graph, however, there are multiple vertex and edge
types with different properties as we included the data and citations of courts
and legislations as well. In this section, we will introduce our citation graph and
its properties as it is represented in our database.

The Neo4j Graph. The next step was to convert the datasets and the extracted
references into a network or graph-like data structure. Accordingly, we converted
and imported our newly created datasets into a Neo4j database which we provide
upon request2. Neo4j, as a graph-based database, supports the application of
network algorithms directly on the database and allows for efficient querying of
highly connected data like our citation network. Figure 2 illustrates the basic
schema and the different types of relationships and nodes of the graph3.

Graph Nodes. Our graph consists of the following node types: “Case”, “Court”
and “Legislation”. Each node represents an entry of the corresponding dataset
with the same properties as shown in Table 1. For example, a case node is a
specific court case with a title, year, court and decision_text.

2 Please contact tobias.milz@pg.canterbury.ac.nz to gain access to the data.
3 It shall be noted that we will adjust our terminology for this section and refer to

vertices and edges as “nodes” and “relationships”. This is to be consistent with the
naming convention provided by Neo4j.
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Fig. 2. Illustration of the relationship and node types in the Neo4j graph. Cases are
connected to their corresponding court (7) and can cite other cases (1) or legislations
(2). Legislations can cite each other (4) and cases (3). Courts can indirectly cite each
other, themselves (5) and legislations (6) via their cases.

Graph Relationships. There are 7 relationship types in our graph. Relation-
ships (1), (2), (3) and (4) (as shown in Fig. 2) are equivalent to the respective
references that we identified in Sect. 3.2 and highlighted in Table 3. In other
words, these relationships indicate that the source node has cited the target
node at least once (as a reminder, duplicate citations were not counted as they do
not carry additional legal meaning). Accordingly, these are directed unweighted
relationships without loops (self-citations were removed). Relationship (5) is cre-
ated between the corresponding courts of two connected cases. It represents an
indirect citation between the two courts [21,23] and is therefore also directed.
However, in contrast, this relationship can loop on the same node because cases
can obviously reference other cases from the same court. Furthermore, it has a
property that counts the number of references (i.e. number of unique cases) made
from the source court to the target court. Similarly, relationship (6), describes
and records the number of indirect citations (i.e. number of unique cases) from
a court to a legislation. Lastly, relationship type (7) connects each case and its
corresponding court.

Graph Summary. Table 4 provides an overview of the properties of the Neo4j
graph. As the relationship numbers suggest, not all extracted case citations
from Sect. 3.2 were added as relationships. This is due to two factors. First,
as explained in Sect. 3.3, multiple citations from one case to the same target are
interpreted as only one reference. Secondly, references to targets that are not in
the database are excluded. This way, we ensure that the data in the database
is consistent and does not contain “empty” nodes (i.e. nodes without property
values). For example, we identified but omitted references to cases from outside
New Zealand (e.g. the UK or Australia). In total, the database contains 236,458
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RefCase→Case relationships, which corresponds to 55.29% of the extracted case-
to-case citations.

Table 4. Neo4j graph statistics.

Label Node/Relationship Number

Case Node 338,360
Legislation Node 10,402
Court Node 124
REFcase→case Relationship 236,458
REFcase→legislation Relationship 244,159
REFlegislation→case Relationship 50
REFlegislation→legislation Relationship 67,857
REFcourt→court Relationship 761
REFcourt→legislation Relationship 7,387
RULING Relationship 338,360
Total Node 348.886
Total Relationship 895,032

4 Network Analysis

With the completion of the citation network4, we can now utilise network science
algorithms, metrics and visualisations to analyse its properties. The goal is to
demonstrate how these tools can be leveraged to support common legal research
tasks. Furthermore, we can compare our network’s structure to similar studies
from other countries and legal systems and make assumptions about the New
Zealand legal system as a whole. However, for the most part, the results from
this study are presented as a quantitative report as we will leave the in-depth
legal interpretation for another study.

4.1 In-Degree Distribution

The distribution of all links across all nodes can give an insight into a network’s
behaviour and structure. In a random network, each node would have an equal
chance of being linked to a new incoming node. Scale-free networks, on the
other hand, contain “hubs” that have a higher chance of receiving new links.
This property of preferential attachment [7] often leads to a “rich-get-richer”-like
behaviour. Some examples are literature citation networks, actors starring in
movies, the internet and cellular metabolism [8].
4 In this section we consider the Neo4j graph as a network and adapt the appropriate

terminology.
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In case citation networks this principle would result in the effect that cases
that are already heavily cited have a higher chance of getting cited again. Pre-
vious studies have found signs of this behaviour in the case citation networks
of the Austrian Supreme Court [14], the U.S. Supreme Court [26] and German
courts [21].

Figure 3 illustrates the in-degree distribution of case nodes in our network.
As evident by this power-law degree distribution, most cases receive few to no
incoming links. In fact, 95.32% of cases receive less than 4 citations, while the
rest of cases (4.68%) receive 80.66% of all citations.

Fig. 3. In-degree distribution of the case and legislation nodes (tail-end of the hor-
izontal axis is cut off for better visibility). In-degree value of a node is the number
of incoming links the node receives (i.e. the number of references from other court
cases or legislations). The course of the graphs resembles a characteristic power law
distribution, signifying a scale-free network structure.

This supports the assumption that the New Zealand case citation network
is also exhibiting a scale-free network structure, akin to the networks of the
related works mentioned above. The in-degree distribution of the legislation net-
work shows similar results with the majority of nodes (70.66%) receiving three
or fewer incoming links. These results could indicate that there are few substan-
tially influential agents (legislations and cases) that predominantly shape the
landscape of New Zealand law.

4.2 In-Degree Centrality

Network science offers an array of centrality measures to quantify the influence
and determine the role of important nodes in the network. In-degree centrality
is the most elementary of these measures as it only reflects the number of links
a node receives. It can reveal popular nodes that are likely to contain a lot of
information, however, further interpretation can be limited.

For example, when looking for an appropriate precedent case as part of your
legal research, a high in-degree centrality value can point to an influential case
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that is cited frequently and therefore very likely relevant to your case. On the
other hand, it can merely highlight already well-known cases that established
common procedural principles. That is to say, some references are made out of
routine or for procedural purposes and do not always indicate a strong similarity
or importance to your actual case. However, leveraging the fact that our network
also contains legislations, we can provide additional functionality and improve
the information gain of in-degree centrality.

For instance, Fig. 4a ranks the most cited cases with the condition that these
also cite the “Accident Compensation Act”. As cited legislations are often a much
more reliable indicator of the underlying legal topic of a case (as compared to
the area of the responsible court) our network allows for much more detailed
search and ranking results than simple case citation networks or indices. Further-
more, we can reapply the metric to only count citations made in a specific year.
Figure 4b illustrates how the network allows us to analyse citation behaviours
over time.

Fig. 4. Figure (a) shows a bar chart of the 20 most cited court cases that cite the
Accident Compensation Act 2011. This is an example, of a targeted search for prevalent
cases of a specific legal domain (accident compensation). Figure (b) illustrates the most
cited environmental court decisions by year, showing the development of important
court cases in this domain over time.

4.3 PageRank Centrality

As opposed to in-degree centrality, PageRank does not only consider the number
of direct connections of a node but also the “quality” or importance of the nodes
it is connected to. In citation networks, this has the effect that few citations
from important nodes can be weighted more than many citations from less influ-
ential nodes. This way PageRank can help to identify less obvious influencers
of information flow within the network and discover relevant nodes that might
otherwise be overlooked due to a lower in-degree value.
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Although the merit of leveraging PageRank in case citation networks has
already been highlighted in previous works [27], we can take advantage of our
legal citation network to increase its effectiveness. Unfiltered, we can use PageR-
ank to highlight not only instrumental legal cases but also legislations and courts
that significantly impacted the larger legal system. Furthermore, we can apply
PageRank on a subset of cases filtered by their court or area of law (i.e. cases
that cite specific legislations). This can provide a new avenue to discover very
specific cases that had a smaller overall impact, but significant influence on their
domain. As an example Fig. 5a shows the most important decisions of the family
court, while Fig. 5b shows some of the currently most influential legislations.

Fig. 5. Figure (a) shows a bar chart of family court decisions ranked by their PageRank
value. This is another example, of a targeted search and ranking of cases. Figure (b)
illustrates the most important legislations within the legislation network (i.e. we did
not consider any of the links from the cases or courts). An analysis of the PageRank
value over time could indicate the impact of new laws and how long it takes for these
to affect the larger legal system,

4.4 Betweenness Centrality

Betweenness centrality is another example of how the legal citation network
enables us to utilise network science metrics to discover influential cases that
we cannot find with citation indices alone. Betweenness centrality compares the
number of shortest paths that lead through each node. This has the potential to
reveal bridges, which are nodes that connect otherwise less connected (or discon-
nected) clusters. In our network, these nodes could represent interdisciplinary
court cases or legislations that link mostly unrelated domains of the law. Figure 6
shows the nodes with the highest betweenness value in our network.
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Fig. 6. Example of applying betweenness centrality to the network to discover cases
that influence the legal system by connecting different courts or areas of the law.

The figure shows that the cases with the highest betweenness value are mostly
from the Court of Appeal or the Supreme Court. Considering our interpretation
of the results in Sect. 4.5, this seems plausible. Here we will identify a strong con-
nection between these two courts and we can assume that there will be highly
connected cases on the periphery of the two clusters of these courts. For a con-
crete legal research task, we could apply community detection algorithms or filter
the network by specific courts to identify the bridges of specific areas of the law.

4.5 Court Citation Behaviour

Creating the network not only enables us to utilise network algorithms but we
can use visualisation tools to investigate or confirm common citation patterns
within the legal system. As an example, Fig. 7 illustrates the indirect citation
behaviour between all courts. The width of a link represents the number of
indirect references between the courts.

This visualisation indicates a high self-citation behaviour of the High Court
(NZHC - centre node) and a strong connection to the Supreme Court (NZSC)
and Court of Appeal (NZCA). This corroborates the expectations we had for the
citation behaviour of the three highest courts in New Zealand. As is typical in
common law countries (like New Zealand), the lower courts follow the decisions
of the higher courts and cite them accordingly.
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Fig. 7. This is an illustration of the court citation network within our legal citation
network. The nodes represent the courts in our database abbreviated by their shortcode
(e.g. NZHC - New Zealand High Court). The width of the links between the courts
represents the number of references (or unique court decisions) made from the source
court to the target court.

5 Conclusion and Future Research

In this study, we introduced and described the development and analysis of the
first “legal citation network” for New Zealand. The primary goal of this study
is to provide the network to the research community and demonstrate how it
can be utilised to facilitate further research into legal tech-related information
retrieval, NLP and data management technologies.

By scraping, parsing and converting legal documents from multiple sources,
we managed to create the largest openly available legal data repository for New
Zealand with over 300,000 court cases, 10,000 legislations and 115 courts. Using
regular expressions, we detected and extracted references between the documents
and converted them into links. The result is an interconnected citation network
that we provide in the form of a Neo4j graph.

In the second part of this study, we showcased how the network can reveal new
information about the New Zealand legal system and how it can support com-
mon legal research tasks by utilising network analysis algorithms and metrics.
For instance, we illustrate how PageRank, in-degree and betweenness central-
ity can be used to identify relevant and influential cases, courts or legislations.
Additionally, we discovered that the network shows signs of scale-free behaviour,
similar to the case citation networks of other countries like the U.S., Austria and
Germany [14,21,26]. These examples shall provide an understanding of the capa-
bilities of the network and stir interest and motivation for researchers and law
practitioners to leverage this data for future research.
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This could include a deeper analysis and qualitative interpretation of specific
areas of New Zealand law. For example, how has immigration law developed
over time and which legal apparatuses were most influential? Additionally, the
network could be extended to include data from Australia, the UK and other
related countries to analyse how international court decisions affect the national
legal system. Lastly, the legal data provided could be used for fine-tuning and/or
training of legal language models like legal-BERT [12].
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Abstract. The dynamic landscape of Information Technology Project
Management (ITPM) along with a recent emphasis on the concept of
suitability, motivates organisations to better utilise their resources and
improve current practices. This has been leading to explore the poten-
tial of deep learning-based Recommendation Systems (RecSys) in this
domain. We focus on critical aspects of Agile Project Management,
resource allocation, and performance monitoring. Our study also eval-
uates RecSys’ effectiveness in enhancing project allocation and overall
project success rates in ITPM. Analysing a diverse range of data, we
observe a positive correlation between employee experience, skills, and
project allocation ratings. The findings suggest that these variables exert
a greater influence than traditional factors like age or educational back-
ground. We also demonstrate the benefits of leveraging historical perfor-
mance data for future project planning and the utility of tracking ratings
during project development. This paper contributes valuable insights for
practitioners in IT project management, offering data-driven strategies
to improve resource allocation and performance monitoring.

Keywords: IT Project Management · Resource allocation ·
Recommendation System

1 Introduction

The domain of Information Technology Project Management (ITPM) has
attracted the great attention of both researchers and practitioners [9,12], mainly
due to the dynamic transformations within the technology and software indus-
try. This dynamic transformation also increases the IT projects’ numbers and
diversity. In the majority of instances, organizations encounter limitations that
prevent the simultaneous execution of all envisioned projects. One of the major
limitations primarily arises from the scarcity of resources. Consequently, orga-
nizations find themselves compelled to adopt the practice of assigning priority
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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rankings to individual projects. This process, facilitated by diverse prioritisation
methodologies, can ultimately lead to the de-prioritisation or virtual exclusion
of projects deemed to possess lower precedence [5].

Therefore, in this research, we aim to pivot to two key areas. Firstly, we seek
to explore ways to enhance ITPM and overall software development processes,
and overall resource allocation. Secondly, we delved into the potential utility of
deep learning-based recommendation systems (RecSys) within the purview of
ITPM. The primary objective of these investigations is to address and resolve
significant challenges prevalent in resource allocation and other pertinent sectors,
with a view to augmenting the efficiency and efficacy of practices employed in
IT project management.

Confronting the challenges within ITPM often necessitates examining the
Agile Project Management (APM) paradigm, standard in contemporary soft-
ware development since its inception in the 2000 s [9]. Initially gaining traction
within small teams, APM broadened its scope to encompass larger organisa-
tions, thanks to scaled methodologies like the Scaled Agile Framework (SAFe)
and Disciplined Agile Delivery (DAD). Further, the concept of IT portfolio man-
agement was introduced to harmonise with overarching business strategies to
continuously define and deliver the right projects aligned with organisational
business strategy in dynamic and uncertain environments [10]. Despite these
strategic advancements, ITPM has frequently failed to consistently deliver the
anticipated results, as evidenced by documented failure rates surpassing success
rates [8].

On the other side, numerous successful software projects have embraced
technology-centric methodologies, with RecSys acting as an important role. A
few typical examples include Google App Store [3], Amazon, and Twitter, all
benefiting from the implementation of RecSys. In contemporary software land-
scapes, RecSys has exhibited exceptional prowess in processing voluminous data
sets, enabling efficient data filtration and seamless delivery of pertinent informa-
tion. A comparison between project management data and the data generated on
platforms such as Twitter [15] reveals that the former typically lags in both quan-
tity and quality. Despite this, numerous research works are underway exploring
the potential integration of RecSys to augment ITPM [8,14,16]. The integration
of RecSys into ITPM holds promise for improving project allocation, resource
management, and overall project success rates.

Additionally, integrating ITPM into resource allocation and performance
monitoring, utilising performance ratings, remains a traditional yet crucial
endeavour. The current challenges in this specific area are mostly related to
subjectivity and personal preferences of decision-makers during the process that
add to uncertainty around project prioritisation and resource allocations [13].

The incorporation of statistical elements into ITPM tools could yield signif-
icant benefits. In particular, detailed analysis of data distribution could unlock
valuable insights, surpassing the limitations of specialised data. This research
explores the potential advantages of applying statistical methods within ITPM
tools, emphasising the impact of data distribution on performance ratings. More-
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over, the investigation seeks to analyse the RecSys outcomes, thereby highlight-
ing its relevance and significance within the sphere of ITPM. Through our inves-
tigations, we tend to enrich the knowledge domain of ITPM, thereby enhancing
the efficacy of resource allocation and performance monitoring practices.

In this paper, we encountered scenarios within ITPM spanning diverse cat-
egories, including planning, resource allocation, monitoring, and risk manage-
ment. We conducted an extensive study to ascertain the value of RecSys and
IT project allocation data, integrating contemporary and classic scholarly arti-
cles. Additionally, we leveraged real-world data on ITPM allocation to assess its
effectiveness via rating scores. In summary, the key findings and contributions
are summarised as follows.

– We observed a positive correlation between employees’ experience, skills, and
corresponding ratings, as determined by ablation experiments. This suggests
that employees possessing extensive experience and relevant skills tend to
receive higher ratings in project allocation, challenging the deep-seated belief
that factors such as age and educational background are the primary deter-
minants.

– We analysed the correlation between language proficiency, name, and other
factors with ratings. The findings underscore that these variables may not
exert as significant an influence on project allocation ratings as experience
and skills do.

– We explored how enhancements in resource allocation can be predicated on
ratings during the planning phase. Understanding the correlation between
ratings and employee allocation decisions can pave the way for more efficient
resource distribution, bolstering project success rates.

– We investigated the practicality of tracking ratings using tools during the
development phase. This approach offers a valuable mechanism for monitoring
project progress and employee performance, facilitating timely adjustments
and interventions.

– We delved into the potential advantages of leveraging historical perfor-
mance data for future project development. By capitalising on past perfor-
mance data, IT project managers can make more informed decisions, refining
resource allocation strategies.

2 Related Works

Upon reviewing the existing relevant studies, we organised these studies into
three key sections, i.e., prevailing challenges in ITPM, the importance of modern
RecSys, and recent research exploring the integration of RecSys in ITPM.

Pacagnella and Da present a comprehensive literature review spanning two
decades that delves into APM [9]. In their review, they reflected on the critical
appraisal of APM, underscoring the necessity for tailoring policies, practices,
and processes to suit the unique requirements of individual projects. Shastri et
al. examine project managers’ challenges in Agile teams [12]. Despite the Agile
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approach promoting roles such as product owner, scrum master, and coach,
project managers continue to play a vital role in Agile projects.

Also to increase the ITPM visibility within organisations, portfolio man-
agement has been introduced as an organised and central approach for project
selection, resource allocation, and actions to fund and sustain all IT projects in
an organisation [11]. However, the concept itself has not resolved the issues of
optimising resource allocation while having scheduling limitations. More specif-
ically in IT organisations, there should be enough resources to deliver all of the
proposed projects within the time allocated for the portfolio. Capacity planning
achieves this balance, making sure resources are used as effectively and efficiently
as possible, sequencing work that impacts the various work areas [2]. Different
analytical and AI approaches have been introduced for these capacity planning
and resource allocations [6]. Nevertheless, the focus of this research is on RecSys.

From a RecSys perspective, Cheng et al. introduce the concept of Wide and
Deep learning, which amalgamates memorization and generalization benefits for
recommender systems [3]. On the other hand, the deep component utilises deep
neural networks to learn low-dimensional dense embeddings for sparse features,
facilitating better generalisation to unseen feature combinations. Meanwhile, He
et al. examine the use of deep neural networks for collaborative filtering in rec-
ommendation systems [7]. Both research works showcase the potential of deep
learning techniques in enhancing RecSys’ effectiveness.

Meanwhile, there have been several notable explorations of RecSys in the
ITPM field. For example, Achrak and Chkouri recommend best practices, project
manager behaviours, and organisational policies for Agile Methods [1], while Wei
and Capretz discuss the use of open-source tools in Recommendation Systems
in Software Engineering [16]. Sousa et al. propose a recommender system that
suggests risks and response plans for a target project [14]. La and López outline
the groundwork for developing an adaptive method for tool selection based on
capturing information about project features and organisational capabilities [8].

Furthermore, Chiang and Lin argue that human resource allocation is critical
for successful project outcomes in software development [4]. They propose a com-
prehensive framework to assist software companies in evaluating their resources
and determining the feasibility of project estimations. This perspective aligns
with exploring factors like experience, skills, and language proficiency.

Researches have revealed limitations and areas for improvement of RecSys,
particularly in the use of the wide and deep model. Current trends in RecSys
favor the adoption of Graph Neural Networks (GNNs) [15]. Zhang et al. proposed
a motif-based graph attention network for web service recommendation (MGSR)
that addresses the over-smoothing issue by incorporating network motifs in layer
propagation [17]. GNNs offer the ability to learn more complex behaviors and
diverse data connections, even mitigating the cold start issue. In our ITPM
scenario, employee data may share more features, which can be better utilized
without manually converting them into multi-hot and other features for the wide
and deep. As GNNs show promise in RecSys, these challenges and incorporating
network motifs and multi-source data connections can lead to more accurate and
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personalized recommendations, even for users or items with limited historical
data. However, it is essential to acknowledge the potential limitations of GNNs
and conduct rigorous experiments and comparative studies to understand their
strengths and weaknesses in different scenarios. Exploring alternative approaches
or hybrid models that combine GNNs with traditional models could also be
fruitful in optimizing recommendation performance in ITPM tool applications.

3 Methodology

In this section, we elaborate on the methodology employed in this research work,
which consists of three core components: data preparation, model architecture,
and ablation study. Specifically, during the data preparation phase, we describe
the features in the “IT Employee Data for Project Allocation” dataset, including
employee attributes and skills. The section on model architecture introduces the
wide and deep model, which combines categorical and numerical feature handling
for precise project allocation. We systematically evaluate feature importance in
the ablation study to gain insights into the model’s rating predictions.

Data Preparation. The dataset utilised for this study, referred to as “IT
Employee Data for Project Allocation,” encompasses records for 1,000 employ-
ees dispersed across multiple CSV files. The “Employees” dataset provides com-
prehensive employee data, while the “Employee Skills” dataset augments the
information suite for efficient project allocation management. This phase aims
to tailor this data for input into our model within the RecSys for ITPM con-
text. Initial preprocessing involves transforming the 1,000 employee data samples
using LabelEncoder and StandardScaler functions from the sklearn library. This
process efficiently translates categorical data into numerical features, which are
partitioned into training and test datasets at a ratio of 7:3. Upon extraction from
the CSV files, the dataset comprises 17 columns, encapsulating key attributes
such as Employee ID, Employee Name, and Experience, among others. In addi-
tion, the “Employee Skills” CSV file contributes an additional 21 columns, cap-
turing proficiencies such as Python, Machine Learning, Deep Learning, etc. Due
to the high-dimensional feature space and the limited data points (1000), we
employ a multi-hot manual feature representation for specific attributes like lan-
guages, interests, project counts, and skills, post their numerical transformation
(refer to Table 1). This strategy facilitates encoding specific attributes’ presence
or absence, thereby preserving vital information encapsulated in the data. Fol-
lowing the consolidation and merging of columns, the dataset is segregated into
training and test subsets, thereby ensuring it is adequately prepped for input
into the model.
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Table 1. Allocation Data Features

Feature Type Original Columns

Rating Float Rating

ID integer Eid

Experience Integer Experience

First name String Ename

Surname String Ename

Total projects Integer Total projects

Languages Strings to Multi-hot Language1, Language2, Language3

Interests Area of Interest 1,

Strings to Multi-hot Area of Interest 2,

Area of Interest 3,

Projects count AI project count, ML project count,

Multi-hot JS project count, Java project count

DotNet project count, Mobile project count

Skills Python, Machine Learning,

Deep Learning, Data Analysis

Asp.Net, Ado.Net, VB.Net

Multi-hot C#, Java, Spring Boot,

Hibernate, NLP, CV,

JS, React, Node, Angular,

Dart, Flutter, Vb.Net

Fig. 1. Wide and deep architecture [3]

Model Architecture. The implementation of the RecSys within this study
necessitates the use of the Wide & Deep model [3] for allocating employee data.
The architecture of the model is demonstrated in Fig. 1. This model’s effective
training requires converting the training data frame into tensors, with the con-
stitutive “wide” and “deep” elements depicted in Table 2.

The Wide & Deep model presents a hybrid architecture comprising distinct
“wide” and “deep” components. The “wide” component, proficient in managing
categorical features (data with numerous discrete values), oversees attributes like
AreaofInterest and Languages. By leveraging feature crosses and transforma-
tions, this component discerns interactions between diverse categorical features,
thereby learning high-order correlations and patterns. Conversely, optimised for
manipulating numerical features (continuous-valued data), the “deep” compo-
nent handles parameters like Totalprojects, Experience, and Rating. The deep
component, constituted by numerous neural layers, is adept at decoding intri-
cate and nonlinear representations of the numerical input, thereby uncovering
complex relational dependencies within the data.
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The wide and deep model combines the strengths of a linear model (wide
part) and a deep neural network (deep part). The wide component is a gener-
alised linear model and the deep component is a feed-forward neural network.
Each hidden layer is formulated in Eq. 1.

a(l+1) = f
(
W (l)a(l) + b(l)

)
, (1)

where l denotes the layer number and f refers to the activation function ReLUs.

P (Y ) = σ
(
wT

wide · x + wT
deep · (a(lf)) + b

)
, (2)

where P (Y ) is the prediction rating score, wwide is the vector of all wide model
weights and wdeep are the weights applied on the final activations a(lf).

In the final stage, these components converge to generate predictions. This
amalgamation leverages the unique strengths of each component. The “wide”
component excels at learning from sparse, broad signals, while the “deep” com-
ponent focuses on deciphering complex patterns in dense, localised features. By
integrating wide and deep architectures, the model addresses the heterogeneity of
employee data obtaining relevant information from various features to generate
precise, personalised project allocation recommendations. With proven efficacy
in multiple recommendation tasks, the Wide & Deep model aligns impeccably
with this study’s objective of optimising project allocation among IT employees.

Table 2. Wide and Deep inputs

Wide or Deep Features

Wide Eid, Interests, Languages, Projects count, Skills

Deep First name, Surname, Total projects, Experience

To set up the experiment, we adopt the Adam optimiser with an initial learn-
ing rate of 0.005 and a weight decay parameter of 0.0001. We partitioned the
dataset into training and test subsets, with 7000 instances allocated for training
and 3000 for testing. Furthermore, we selected a batch size of 100 to balance
computational efficiency and gradient estimation accuracy.

Ablation Study. The third component of our research methodology involves
conducting an ablation study, predicated on the model’s training and evalua-
tion using the Mean Squared Error (MSE) loss function. The primary objective
here is not to develop novel algorithms or models but to investigate the connec-
tions within the ITPM allocation data. More specifically, ablation methods are
employed to investigate the relationship between the ratings and various aspects
of the employee data. This strategy systematically removes each dimension (i.e.,
feature or variable) to observe the relationships between the rating and partic-
ular employee data attributes. Ablation experiments contribute to identifying
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the significance of individual features on the model’s ability to predict ratings.
We can determine the relative importance of specific employee data features on
rating prediction by eliminating different features and comparing performance
alterations. Such an analysis is indispensable for discerning the components of
employee data exerting the most substantial influence on ratings and hence,
critical for accurate rating predictions. This experiment is carried out over 300
epochs.

Upon completion of the ablation study, the final results must be evaluated
from a statistical point of view. Our approach involves analysing the distribution
of the data and leading discussions based on the ratings. The Shapiro-Wilk test
and histograms will be used for this analysis. Given data limitations, complete
knowledge of the ratings’ quality or potential to increase data quantity might
not be available. Nonetheless, by examining the data distribution and leverag-
ing prior experience, we can employ reduction or summarization techniques to
construct a robust ITPM tool. This approach will involve assessing the statis-
tical properties of the rating data, which will reveal insights about the central
tendency, spread, and shape of the data. Even without full information on the
ratings’ quality, prior experiences and domain expertise can inform the ITPM
tool’s development.

Potential data reduction techniques or summary methods might be neces-
sary to compensate for the limited data quantity. Data reduction could involve
aggregating ratings at different levels (e.g., team or department level), thereby
providing a wider perspective. Summary statistics, such as mean, median, or
percentiles, can offer valuable information without necessitating a vast dataset.

Using statistical analysis, prior experience, and data reduction strategies,
we aim to construct a reliable and effective ITPM tool. Despite the constraints
imposed by limited data availability, this tool will assist in resource allocation,
performance monitoring, and decision-making within the organisation. Regular
updates and stakeholder feedback will be essential to the tool’s refinement and
improvement.

4 Experimental Results and Discussion

The ablation tests for each feature are presented in a graphical representation of
results, as depicted in Fig. 2. As can be seen from the figures, all the MSE losses
quickly fit the data within the first 2 to 100 epochs. Notably, the variance in
each ablation test can be attributed to the standard scaling of features, Adam
optimiser properties, and log scaling in loss score. For example, the absence of
“experience” saw the loss plummet to nearly 1 within the first ten epochs, yet
this elevated MSE value persisted up to 300 epochs. This observation suggests
that in this dataset, “experience” turns out to be a critical feature; its absence
results in maintaining a high loss value. In contrast, the “skills” feature witnessed
a slower drop, reaching a similar loss level after 200 epochs, possibly hinting at
some dependency across its dimensions. However, our experimental results con-
clusively reveal that “experience” and “skills” significantly influence the ratings
within the ITPM context.
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Fig. 2. Ablation experiments results.
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Other features such as “speaking languages”, “ID”, and “name” (including
first and last name) seemed to have minimal impact on the loss curve. Unex-
pectedly, despite the perceived importance of communication, the influence of
speaking languages on ratings in software development appears insignificant.
Other dimensions like project counts and interests also demonstrated minimal
influence on the loss results. Based on these observations, when building a rating
tool using RecSys, “ID” and “name” could be eliminated first.

A critical aspect of our research is to examine the original rating data, given
that RecSys is optimally fitted to the rating data. In our analysis, we found that
the mean rating is 1.29, the median rating is 1.17, and the 25th and 75th per-
centile ratings are 0.87 and 0.88, respectively. The raw ratings are a reflection of
an organisation’s standards and culture. Therefore, discerning what constitutes
quality ratings and their measure is crucial. An ideal rating system must avoid
excessively high ratings that could compromise the rating system and potentially
lower the rating standards. A normal distribution could indicate quality results,
with most people performing averagely in a fair and inclusive environment and
only a few obtaining very high or low ratings. We analysed the existing data by
plotting the ratings and performing a Shapiro-Wilk test to ascertain this.

The Shapiro-Wilk test yielded a statistic value of 0.88 and a p-value of 4.47e-
27. Although the statistic value being close to 1 suggests that the data is rela-
tively normally distributed, the p-value less than 0.05 indicates a deviation from
a normal distribution. On examining the histogram (refer to Fig. 3), outliers
around rating values 1 and 2 are noticeable. Despite these outliers, the overall
distribution appears right-skewed, leaning towards a normal distribution. The
ratings are generally lower than in a perfect normal distribution, with a higher
concentration of scores around 1 and fewer scores above 3. In summary, while
the data deviates from a perfect normal distribution, its shape is relatively close
to normal. This finding is crucial for understanding the distribution of ratings
and evaluating the impact of potential outliers on the dataset.

Based on the ablation test and distribution histogram, we infer that IT
project allocation can significantly benefit from using RecSys with appropri-
ate data. The tool’s relevance and promise for optimising IT project allocation
are evident from its widespread use in various industries like advertising, online
shopping, and video platforms. However, the growing reliance on RecSys has
given rise to challenges, particularly fraud, which can undermine the system’s
integrity and trustworthiness.

RecSys in advertising can have a significant impact, but it also comes with
the risk of fraud. For example, in the context of ITPM, manipulations of key
dimensions like “skills” can lead to inaccurate project allocations and unfair
advantages. Robust security measures and careful validation of data inputs in
RecSys are thus essential to prevent fraudulent activities and ensure the system’s
effectiveness.

Potential solutions to achieve a normal distribution of rating results and
mitigate fraud include implementing objective rules and enhancing data diver-
sity. Diversity in data dimensions is vital, as ITPM involves complex manage-
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Fig. 3. Employee rating distribution

ment tasks that cannot be fully automated. Hence, future tools should consider
diverse factors like “age”, “educational background”, “previous working experi-
ence”, “market influence”, etc. This approach not only increases the cost of fraud
but also aids in detecting fraud patterns, thus enhancing the system’s resilience
against fraudulent activities.

5 Conclusion and Future Work

In conclusion, our investigation into RecSys application within the ITPM domain
encompassed comprehensive literature reviews and empirical experiments util-
ising public datasets. Our literature review unearthed prevalent challenges in
ITPM, especially within the context of APM, and the state-of-the-art research
on RecSys within ITPM.

Through our empirical experimentation, which involved ablation tests on
IT project allocation data, we underscored the crucial role of features such as
employee experience and skills. We also noted the minimal influence of dimen-
sions such as ID and name. It is imperative to acknowledge the limitations of our
research, primarily arising from constrained data dimensions, limited data size,
and the inherent variations in enterprise culture. These constraints imply that
the universality of our findings might be restricted. Nonetheless, our research
significantly contributes by setting a benchmark for understanding the interplay
between ITPM dimensions. Additionally, it validates a process in resource allo-
cation within the ITPM landscape, paving the way for future studies to extend
and refine this body of knowledge.
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Moving forward, several intriguing aspects remain to be explored. Firstly,
conducting a more extensive investigation into other influential features not con-
sidered in this study, such as an employee’s education, market influence, and
background in different project roles, would be valuable. This could provide a
more holistic view of the factors influencing project allocation. Secondly, intro-
ducing additional methods to handle fraud in RecSys, particularly within the
ITPM domain, would be a beneficial future endeavour. This would aid in main-
taining the integrity of the recommendation system and ensuring fair resource
allocation. Furthermore, expanding the dataset with more diverse and extensive
data from different organisations could refine the model and lead to a more gen-
eralised solution applicable across a wider range of contexts. Lastly, as machine
learning and artificial intelligence evolve rapidly, integrating advanced models
into RecSys for ITPM could provide more sophisticated and accurate recom-
mendations, enhancing overall project success.
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Abstract. Due to climate change, forest regions in California are
increasingly experiencing severe wildfires, with other issues affecting the
rest of the world. Machine learning (ML) and artificial intelligence (AI)
models have emerged to predict wildfire hazards and aid mitigation
efforts. However, the wildfire prediction modelling domain faces incon-
sistencies due to database manipulations for multi-class classification. To
help to address this issue, our paper focuses on creating wildfire predic-
tion models through One-class classification algorithms: Support Vector
Machine, Isolation Forest, AutoEncoder, Variational AutoEncoder, Deep
Support Vector Data Description, and Adversarially Learned Anomaly
Detection. To minimise bias in the selection of the training and testing
data, Five-Fold Cross-Validation was used to validate all One-class ML
models. These One-class ML models outperformed Two-class ML models
using the same ground truth data, with mean accuracy levels between
90 and 99 percent. Shapley values were used to derive the most impor-
tant features affecting the wildfire prediction model, which is a novel
contribution to the field of wildfire prediction. Among the most impor-
tant factors were the seasonal maximum and mean dew point temper-
atures. In providing access to our algorithms, using Python Flask and
a web-based tool, the top-performing models were operationalized for
deployment as a REST API, with the potential to strengthen wildfires
mitigation strategies.

Keywords: One-class SVM · ANN-AutoEncoder · ANN-Variational
Auto-Encoder · Isolation Forest · scikit-learn · PyOD

1 Introduction

Wildfires have become a significant issue, destroying thousands of square kilome-
tres of forest yearly. This type of disaster has a global impact on environments,
the economy, and health. Natural wildfires are caused primarily by lightning, vol-
canic eruptions, dry climate, and vegetation. However, it has been documented
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that at least 90% of wildfires are caused by human behaviour, such as smoking
in public, camping fires, and garbage burning [28]. As a result, continuous moni-
toring is required to address this serious issue and, more importantly, to forecast
the possibility of widespread and intense wildfires. This brings us to the fun-
damental challenge that the public and fire management authorities inevitably
face: the possibility of predicting wildfires well in advance to take timely action
to mitigate damages.

ML and AI methods may aid researchers in developing models for monitor-
ing and predicting wildfire anomalies in advance. However, technical limitations
and environmental issues impede the process of monitoring and detecting wild-
fire occurrences and spread. Furthermore, the specific characteristics that may
influence wildfire ignition remain as a research gap. This is due primarily to
significant changes in atmospheric conditions, which frequently include air tem-
perature, relative humidity, wind speed and direction, and spatial and temporal
time-bounded features [21].

Many ML solutions for wildfire prediction have been developed by
researchers, but only a few solutions make it to the deployment stage when
it comes to practical use. Incorporating ML models into an Application Pro-
gramming Interface (API) to develop user-friendly applications would improve
the wildfire prediction domain. We look to address this opportunity, and provide
the following contributions:

1. Using a fire incidence data set, we demonstrate how the application of appro-
priate One-class classification algorithms are better suited towards fire risk
prediction than Two-class models.

2. The use of Shapley values identify features from the One-class ML models that
significantly influence the risk of a wildfire event, providing explainability for
our models.

3. A proposed architecture for the development and deployment of a web-based
wildfire prediction tool that adopts the best One-class ML model.

For this study, the state of California was selected as the context for predict-
ing the occurrence of wildfires. The experiment generated a set of historical fire
data from California (2012 to 2016). Multiple One-class ML algorithms: Support
Vector Machine (SVM), Isolation Forest (IF), Autoencoder (AE), Variational
AutoEncoder (VAE), Deep Support Vector Data Description (DeepSVDD), and
Adversarially Learned Anomaly Detection (ALAD) were investigated in these
experiments. Repeated Five-Fold Cross-Validation (CV) was applied to the train-
ing data set to generate these models, yielding accuracy ranging from 90% to
99%.

The rest of the paper is organized as follows. In Sect. 2 we provide the study
background and describe the One-class ML algorithms used in our experiments.
Next, in Sect. 3 we describe the data set for the Californian case study. Our
methodology is then provided in Sect. 4. The results of applying our methodology
are presented in Sect. 5. In Sect. 6, the deployment of the ML models is discussed,
followed by the web-based prototype evaluation in Sect. 7. Finally, in Sect. 8 we
summarise our findings and outline opportunities for future work.
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2 Background

Defining a negatively unbiased sample data set for complex events such as wild-
fires is difficult. Without properly validating these data points, a slew of non-fire
data points could be generated for a given location, date, and time. This prob-
lem can be solved by using a One-class classification model that defines a class
boundary based on positive data labels [15].

When the model outcome probability is greater than the threshold value
in One-class binary classification, it is labelled as an inlier (•) and when the
model outcome probability is less than the threshold value in One-class binary
classification, it is labelled as an outlier (?), which are based on the model output
probability and the threshold value, as shown in Fig. 1a. Choosing an accurate
threshold is critical for correctly classifying inliers and outliers. In principle, the
classification boundary of One-class learning accepts many positive data labels
while rejecting only a few outliers (see Fig. 1a). Positive data labels are used to
train the model in One-class learning, whereas outliers are considered negative
data labels or non-fire events.

Fig. 1. The distinction between One-class classification (a) and Two-class classification
(b). Compared with a One-class classification model, a Two-class classification model
accepts inlier (positive) data labels but rejects outlier labels.

As noted above, the model’s outcome probabilities, as well as its inlier and
outlier predictions, are affected by the threshold value. When the threshold is
greater than a certain value for a given prediction instance [10, p. 159], it will be
detected as a fire (inlier). For our experiments, each One-class ML algorithm’s
functionality is described below.

In terms of our approaches, the Support Vector Machine (SVM) is a super-
vised learning model that analyses data and identifies patterns for both clas-
sification and regression tasks [6]. The One-class variant refers to two types
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of One-class SVM (OCSVM). The standard OCSVM uses a sphere of minimal
volume to contain a specified proportion of training instances [31]. The other
OCSVM trains objects using a hyperplane in a kernel feature space. Data is
transformed to a higher dimensional space in order to investigate the possibil-
ity of constructing a hyperplane decision boundary, with the assumption that all
training points belong to one class and all non-training points belong to another.
To generate the ML model in the experiments, the latter OCSVM algorithm was
used. The One-class OCSVM operates in such a way that standard data clustered
into a single region has a high density, while outliers are detected as low-density
regions. New data points can be tested based on density regions to detect normal
or outlier cases.

Isolation Forest (IF) is a binary random forest approach in which each node
randomly chooses a dimension, and then a splitting threshold [17]. It will keep
going until each node has a single sample. This method is used to build an
ensemble of trees. A sample with exceptional values has a higher chance of being
isolated early in the growth of the tree by chance than samples in clusters; as a
result, the average depth of samples in the ensemble of trees directly affects the
abnormality score [17].

A recent overview of ML and AI algorithms used in wildfire prediction are
summarised in [2] which discussed models that are based on Artificial Neural
Networks (ANN) including ones based on Radial Basis Function ANNs [23]. For
our experiments we similarly adopted an AutoEncoder (AE) which is a type of
multi-layer ANN for unsupervised learning that copies input values to output
values, allowing mapping from high-dimensional space to lower-dimensional rep-
resentation [26]. To reduce reconstruction errors, input data is encoded in the
hidden layers. This method forces the hidden layers to learn the most patterns
in the data while ignoring the “noise”. Anomalies are defined as input data with
a high reconstruction error. In contrast to an AE, the Variational AutoEncoder
(VAE) learns the parameters of a probability distribution representing the data,
which could make the model more adept at spotting anomalies [26].

Like AE and VAE, the goal of DeepSVDD [29] is to learn network parameters
collaboratively while minimising the average distance from all data representa-
tions to the center for this algorithm. Normal data are closely mapped to the
center for this algorithm, whereas anomalous data are mapped farther from the
centre or outside a hypersphere [16]. In DeepSVDD, ANN are used as One-class
classifiers, where any data points which the neural network rejects is categorised
as an outlier. Network weights are derived from the training data. These trained
network weights are then used in the process of testing new data instances.
We have selected DeepSVDD [29] and ALAD [34] due to their popularity in
performing prediction domains.

Finally, ALAD [34] is a reconstruction-based anomaly detection technique
that assesses how well a sample is reconstructed by a Generative Adversarial
Network (GAN). GANs are adopted as they can model complex high-dimensional
distributions of real-world data, implying that they could be useful in anomaly
detection. ALAD is a promising approach in complex, high-dimensional data.
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ALAD is based on bidirectional GANs and contains an encoder network that
maps data samples to latent variables. During training, this learns an encoder
from the data space to the latent space, making it significantly more efficient
at test time. ALAD assesses how far a sample is from its reconstruction by the
GAN, where normal samples should be accurately reconstructed while anomalous
samples are likely to be poorly reconstructed.

The OCSVM algorithm from the Python scikit-learn package [27] was
used for the experiments. All the remaining methods including an alternative
implementation of the OCSVM algorithm were taken from the Python PyOD
package [35].

3 Data Set

The case study is based on California in the United States of America, which
spans a land area of 423,970 square km1. From 2012 to 2016, 7,335 wildfire events
were recorded in California by US Federal land management agencies, NOAA,
the American Scientific Agency, MODIS 500m resolution satellite images, and
the US Census Bureau2. The variables for the Californian data set were acquired
accordingly, and are listed in Table 1. The collected data were combined into a
data set that was geolocated and transformed into an appropriate format for
further analysis3. These procedures were followed for the implementation of the
use case in California.

4 Methodology

As demonstrated in Fig. 2, developing a decision support system for wildfire
prediction involves a number of steps, including data preparation, processing,
modelling, validation of ML models, and the potential for deployment of ML
models.

Wildfire features, weather features, Live Fuel Moisture Content (LFMC) fea-
tures, and social features are the four input categories that are used. The data set
was encoded and scaled to test the ML models based on One-class classification.
Below is a more thorough explanation of these steps.

The relevant classifier function calls were used during model training to fit
the model to the data. Hyper-parameter tuning was used to configure the func-
tion’s hyper-parameters, eventually producing one ML model for each classifier
type that performed the best. During the tuning process, the hyper-parameters
of the models were adjusted to achieve the best accuracy based on the most

1 https://www.fire.ca.gov/our-impact/statisticsStatistics on CA wildfires and CAL
FIRE activity.

2 A different case study with 2.2 million acres burned in Western Australia was con-
ducted as the second case study. However, due to page limitations, we are unable to
discuss this data set and its associated results in this paper.

3 This thesis provides more detail on the steps involved in data pre-processing [10].

https://www.fire.ca.gov/our-impact/statistics
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Table 1. Variables used for ML models - Californian data set (7,335 Events)

No. Feature Description Prior Research

1 IDATE Fire Occurrence Date (Month & Date as an Integer) [1]

2 LAT Fire location latitude (degrees) [1,11,33]

3 LON Fire location longitude (degrees) [1,11,33]

4 ELEVATION_m Fire location elevation (in meters) [1,7,11]

5 ACRES Acres burnt (in acres)

6 PPT_mm Precipitation (in mm for the fire incident date) [1,11,13]

7 TMIN_c Minimum temperature (in Celsius for the fire inci-
dent date)

[11,13]

8 TMEAN_c Mean temperature (in Celsius for the fire incident
date)

[11,13]

9 TMAX_c Maximum temperature (in Celsius for the fire inci-
dent date)

[1,11,13]

10 TDMEAN_c Mean dew point temperature (in Celsius for the fire
incident date)

[11,13]

11 VPDMIN_hpa Minimum vapor pressure (in hectopascals) - Califor-
nian use case

[7]

12 VPDMAX_hpa Maximum vapor pressure (in hectopascals) - Califor-
nian use case

[7]

13 lfmc_mean Mean fuel moisture for a particular day (numeric) [11]

14 lfmc_stdv Standard deviation of fuel moisture for a particular
day (numeric)

[11]

15 Mean_Sea_Level _Pressure Mean sea level pressure of the nearest weather sta-
tion to the wildfire event (in hectopascals) - (Univer-
sal Kriging)

[25]

16 Mean_Station _Pressure Nearest mean weather station pressure to the wildfire
event (in hectopascasl) - (Universal Kriging)

[25]

17 Mean_Wind _Speed Mean wind speed for a given location (numeric mph)
- (Universal Kriging)

[1,7,11]

18 Maximum_sustained _wind_speed Maximum sustained wind speed for a given location
(numeric MPH) - (Universal Kriging)

[7,11]

19 NAMELSAD County name (string) [13]

20 Population Number of residents living in the respective county
(numeric)

[13,24]

significant features determined by the ML algorithm. This procedure used the
Python hyperopt package [4]. To elaborate, the first step was to specify rele-
vant hyper-parameters for the ML models with predefined options and a range of
values. The ML models were then trained for 80 iterations using various combina-
tions of those hyper-parameters. Within each iteration, each model was trained
using Five-Fold CV, and the average performance of that model was used to
tune the hyper-parameters for the following model. Target values were predicted
using testing data and then on the entire data set using the best-performing
ML model via 20 times Five-Fold CV. This process produced mean Accuracy,
Precision, Recall, and F1-Score classification metrics.
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Fig. 2. The process of building a wildfire prediction model involves various steps from
data preparation to deploying ML models through a web-based tool

5 Results

Here we compare the results of the ML models on the California wildfire data
set as described in Sect. 5.1 with Two-class classification problems, which are
described in the earlier research cited in Sect. 5.2. Additionally, Sect. 5.3 illus-
trates the most important features and their impact on One-class ML models
for the two subtypes of OCSVM.

5.1 One-Class Machine Learning Model Results

Table 2 summarises the performance of the One-class ML models for the Califor-
nian data set. The number of inliers (fire positive) predictions, which correspond
to the number of actual wildfire events, and the number of outliers (fire negative)
predictions are used to assess the effectiveness of the applied ML approaches.
The results from Table 2 highlight that the OCSVM (PyOD) model was the best
performing One-class classifier, achieving a mean test Accuracy of 0.99, mean
Precision of 1.00, mean Recall of 0.99, and mean F1-Score of 0.99. A more
objective assessment of the OCSVM (PyOD) model through 20 × Five-Fold CV
resulted in its performance being higher than the other ML models observed.

With mean test Accuracy of 0.99, Precision of 1.00, Recall of 0.99, and F1-
Score of 1.00, the IF model produced results comparable with the other ML
models validating its outstandng performance. Mean test Accuracy, Precision,
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Table 2. California ML Model Results Summary

ML Technique Data set Type Data set Count Inliers Outliers Mean Accuracy Mean Precision Mean Recall Mean F1-Score 20 × Five-Fold CV

OCSVM Train (80%) 5,868 5,806 62 0.989 1.000 0.989 0.994 0.990
(sklearn) Test (20%) 1,467 1,443 24 0.983 1.000 0.983 0.991 ±0.0030
OCSVM Train (80%) 5,868 5,809 59 0.989 1.000 0.990 0.990 0.990
(PyOD) Test (20%) 1,467 1,458 9 0.993 1.000 0.990 1.000 ±0.0028
AE Train (80%) 5,868 5,809 59 0.989 1.000 0.990 0.990 0.989
(PyOD) Test (20%) 1,467 1,454 13 0.991 1.000 0.990 1.000 ±0.0030
VAE Train (80%) 5,868 5,809 59 0.989 1.000 0.990 0.990 0.989
(PyOD) Test (20%) 1,467 1,454 13 0.991 1.000 0.990 1.000 ±0.0028
IF Train (80%) 5,868 5,809 59 0.989 1.000 0.990 0.990 0.989
(PyOD) Test (20%) 1,467 1,458 9 0.993 1.000 0.990 1.000 ±0.0030
DeepSVDD Train (80%) 5,868 5,281 587 0.899 1.000 0.900 0.950 0.897
(PyOD) Test (20%) 1,467 1,316 151 0.897 1.000 0.900 0.950 ±0.0101
ALAD Train (80%) 5,868 5,281 587 0.899 1.000 0.900 0.950 0.900
(PyOD) Test (20%) 1,467 1,272 195 0.867 1.000 0.870 0.930 ±0.0081

Recall, and F1-Score for the AE and VAE models ranged from 0.99 to 1.00.
Additionally, the mean test Accuracy, Precision, Recall, and F1-Score values for
the DeepSVDD and ALAD ML models were lower ranging from 0.87 to 1.00.

It should be noted that both OCSVM ML models, despite being less complex
than an ALAD and DeepSVDD model, perform better on all mean test metrics
providing adequate support for the outcomes of adopting simpler One-class ML
models.

5.2 Two-Class Machine Learning Outcomes for the Same
Ground-Truth Data

In assessing the One-class ML approach using the same ground truth data and
a randomly generated equal amount of false data [32], created by applying Two-
class ML models for the California region. Sayad [30] used a similar approach in
representing negative samples using random timestamps and locations. Hence,
the same approach was followed in creating a false data set. Furthermore, com-
monly used wildfire prediction models using Two-class ML models were inves-
tigated and chosen for this use case. As shown in Table 3, the Two-class ML
algorithms were used with supporting literature for predicting wildfires.

Table 3. Performance of Two-class ML models

ML Algorithm Supporting Literature Mean Accuracy Mean Precision Mean Recall Mean F1-Score

SVM [8,11,22] 0.628 0.657 0.763 0.706
RF [8,11,20] 0.679 0.664 0.724 0.693
Logistic Regression [3,9,22] 0.676 0.651 0.756 0.697
XGBoost Regression [19,20] 0.675 0.660 0.717 0.688
ANN [8,9,22] 0.682 0.665 0.732 0.697

The outcome shows that similar Two-class-based ML models achieved mean
test Accuracies from 0.63 to 0.68 for the test data set. Mean test Precision
recorded values from 0.65 to 0.66 and average mean Recall values ranged from
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0.73 to 0.76. Mean test F1-Score values recorded a range from 0.69 to 0.72. Hence,
these results suggest that the Two-class models exhibit reduced performance for
the selected data sets compared to One-class ML models using the same ground
truth data. Therefore, One-class ML models can serve as good alternatives in
prediction models such as wildfire risk, which has limited ground truth data over
the period in question.

5.3 Feature Importance Derived Using Shapley Values

This section examines the results obtained through the application of Shapley
values, which emphasize the most crucial features and their impact on One-class
ML models. These values are obtained by using game theory principles and
coefficients from the internal linear regression [18].

The Shapley value is a metric used to determine the average marginal contri-
bution of each feature when considering all possible combinations (coalitions) of
features [18]. To illustrate, to calculate the Shapley value of mean wind speed,
one needs to evaluate all possible combinations of mean wind speed observations.
For each combination, the marginal contribution of ignition probability will be
assessed. By aggregating all the marginal contributions to ignition probability,
the mean marginal contribution of ignition probability can be determined as the
Shapley value’s outcome.

Using Shapley values [18], the plot on the left in Fig. 3 shows the average
impact of the features on the One-class OCSVM PyOD ML models’ outputs. The
most influential attributes included the maximum and average dew point tem-
peratures associated with different seasons. Then Mean_Sea_Level_Pressure,
PPT_mm, and lfmc_mean are the second set of essential features that influence
wildfire prediction. For example, the temperature variables and lfmc_mean have
a more significant impact on the model output for the risk of wildfire than does
the population. Also, high LFMC is more susceptible to ignition and can signal
more fire spread [11]. Mean_Sea_Level_Pressure is the average level of one or
more bodies of water on Earth from which elevation can be calculated. With
increasing elevation, sea level pressure decreases. Wind speed and direction are
both factors in the wind effect. The dry wind is one of the primary causes of
wildfire spreading. The rate of wildfire spread has been estimated to be around
8% of wind speed, regardless of fuel type, especially in dry fuel moisture condi-
tions [12]. It can be noted that these same features are ranked highly across all
the models, and hence, these top-ranked features should be given more impor-
tance in the modelling process. Furthermore, the Shapley value impact has been
investigated in Fig. 3. The result of testing the features and models informed
a web-based tool, which is presented in the following section to showcase the
efficiency and practicality of One-class ML models.
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Fig. 3. Shapley values generated from the OCSVM PyOD model (right) shows that the
mean and temperature values are high when the model output is predicting a positive
fire occurrence

6 Deployment of Machine Learning Models

The web-based tool4 is presented as a contribution to the state-of-the-art ML-
based wildfire prediction domain (see Fig. 4). The main objective of this phase
of research is to deploy the results of the selected ML model using a REST
API, which will then be fed into a web-based tool. The web-based tool’s goal is
to provide long-term wildfire predictions based on One-class classification-based
ML models that can predict the start of a wildfire one week in advance for any
given location in California. This can also help international wildfire manage-
ment authorities test wildfire prediction models across multiple geographies. The
web-based tool is also useful for countries that do not have access to wildfire fore-
casting systems. However, this is not meant to replace current regional wildfire
forecasting systems.

The ML model is fed with 20 features (see Sect. 3) from four categories and
six probability rates of danger levels, which are mapped by the decision scores
(d) of the One-class ML models: No Danger (d ≤ 0), Low (0 < d ≤ 60), Moderate
(60 < d ≤ 80), High (80 < d ≤ 90), Very High (90 < d ≤ 97) and Severe (97 <
d ≤ 100). These fire danger rating breakpoints used were similar to fire spread
probabilities modelled by the US Wildland Fire Decision Support System [14]
to create these threshold classes. The selection of these fire danger rating class
thresholds was informed by historical fire danger outcomes, as documented in
[5]. The Flask REST service for the web-based tool uses three other external
REST APIs for generating wildfire prediction outcomes:

1. The publicly available free Open Topo Data elevation REST API which gives
elevation data of any location when latitude and longitude are given.

2. The OpenWeather REST API provides historical, current and forecasted
weather details through REST APIs for any point on the world.

4 https://www.bushfirepredict.com.

https://www.bushfirepredict.com
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3. USGS Earth Explorer Website hosts LFMC data as different vegetation
indexes carry a file format of all locations of California based on a MODIS
grid.

Web User
www.bushfirepredict.com

Fire Danger Ratings
Decision Score (d)

1. No Danger (d < 0)
2. Low (0 < = d < = 60)
3. Moderate (60 < d <=80)
4. High (80 < d < = 90)
5. Very High (90 < d <= 97)
6. Severe (97 < d <= 100)

Cloud DNS

Cloud Firewall

Cloud VPC

Cloud Storage

Appache 2.4.48
PHP 8.0.1

Jquery 3.5.1
Mapbox API 2.2.0

MySQL 8.0.21

Web
Application

Python 3.8.3
Flask 1.1.2

Sklearn 0.24.1
GeoPandas 0.10

Pandas 1.3.0
NumPy 1.20

Python Flask
REST API

CentOS Linux & Compute Engine

Open Topography Data
Elevation API

Google Cloud Platform (GCP)

Open Weather Map
API

LFMC Parameters from
NetCDF files

Fig. 4. The deployed ML model’s architecture deriving wildfire prediction outcomes
using six fire danger rating levels

The four main functionalities listed below were thus identified as the outcome
of this web-based tool:

1. Choose some historical wildfire events to train the ML models and validate
the model output. Users can also alter the input parameters and analyse and
explore the most important features of the ML models.

2. Select any location in California using the map, manually enter the input
features, and use a probability to predict wildfire susceptibility.

3. Search all input features for the next 7 d.
4. View historical yearly wildfire heat-maps based on ML model training and

testing data.

Several technological advancements in the field of wildfires have emerged in
recent years as a result of the high costs and practical difficulties of fighting wild-
fires. Technology training is at the top of the list because it is crucial for sharing
common resources and standards for information on fire danger and commu-
nication between fire authorities. The use of technological systems to forecast
and predict the occurrence of wildfires has enabled emergency response teams to
plan ahead and take preventative action. Firefighters must receive the necessary
training to deal with such emergencies. Implementing a straightforward, inex-
pensive prototype can significantly lower the price of intricate training. Large
financial budgets can also be set aside for public education campaigns about
wildfire prevention and natural wildfire occurrences. The infrastructure cost of
the Google Cloud Platform (GCP) (virtual machine and domain name) consti-
tutes the sole cost element for the implementation of this web-based tool. The
remaining programmes and services are either open source, free, or have a free
usage tier. Hosting this in an on-premise local area network may thus result in
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an infrastructure cost saving in terms of infrastructure. The web-based tool has
a monthly fee of $42 NZD and can forecast wildfires up to a week in advance5.
To assess the utility of this tool, a user-based questionnaire evaluation has been
carried out, the results of which are reported in the next section.

7 Web-Based Prototype Evaluation

The utility of the web-based tool was assessed by administering an 18-question
questionnaire to New Zealand computing practitioners covering general design,
performance, and content. The questionnaire was completed in an average of
15min by 11 participants. More than 81 percent of respondents used Chrome,
while Firefox was also used by some, according to the findings. Additionally,
over 63% of respondents reported feeling extremely satisfied, with the remaining
respondents rating their satisfaction as “somewhat”. Experience with the mobile
phone view using different browsers produced mixed results, with the major-
ity of respondents being satisfied, 18% being neither satisfied nor dissatisfied,
and the remaining 9% being extremely dissatisfied. The mobile phone version
needs to be enhanced further as a result. The overall design of the tool resulted
in an above-average ranking for all feedback. Performance-wise, the speed of
information retrieval from the input feature fields, the speed of ML prediction,
and the response time were all very quick. Additionally, the overall performance
was rated as being better than satisfactory, with 80% stating that it performed
excellently and with positive feedback exceeding 63% for the tool’s content when
measuring the understandability of input and output features of the accuracy of
wildfire prediction outcomes. This results in a high-performance rating for the
web-based tool.

Fig. 5. Inyo 2012-06-30 Fire Event with main input features

5 More information on the cost calculation can be found on [10, pp. 167–168].
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8 Conclusion and Future Work

In summary, historical wildfire events in California were represented using a
total of 20 features. Seven different One-class ML algorithms were used order
to train multiple models. After the hyper-parameters of the ML models were
tuned, the models were validated using repeated 20 × Five-Fold CV. The average
test Accuracy of each ML model ranged from 0.90 to 1.00, demonstrating the
ML models’ high generic performance for the California data set. In addition,
Precision, Recall, and F1-Score values were used to evaluate the effectiveness of
the ML models.

Not only does our study address the need to create ML-based wildfire predic-
tion models, but, more importantly, it identifies key features from these models
that could influence wildfire ignition. As well as our findings being consistent
with the outcomes of previous research we also showed the degree to which
these identified features contribute to the risk of a wildfire event.

Finally, we described development of a web-based prototype that integrates
the best performing ML algorithms and model of the sequence of wildfire events
for wildfire occurrence mapping. The intended audiences for this tool are the
general public and wildfire authorities.

However, as we only used one data set for this study, future work will involve
the creation of more wildfire data sets from other countries, potentially using
different features. Top-ranked features extracted from these ML models using
Shapley values may be compared and contrasted with the findings from our
existing work to show how the contribution of different features influence the
risk of wildfire depending on the location.
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Abstract. Melanoma is the most deadly form of skin cancer and can be
treated if detected at an early stage. This study develops a skin cancer
image classification method using the feature selection ability of genetic
programming and multi-modal skin cancer data. This study utilizes suit-
able feature descriptors to extract informative features that incorporate
the scale, color, local, global, and texture information from the dermo-
scopic images, as well as effectively utilize domain knowledge to enhance
the performance of binary and multiclass classification tasks. Existing
approaches mainly rely on grayscale and texture information to clas-
sify skin cancer images. Designing an effective way to combine multi-
channel multi-resolution spatial/frequency information has not been well
explored to improve the classification performance of complex skin can-
cer images. To preserve all local, global, color, and texture information
simultaneously, we extract Local Binary Patterns and wavelet decom-
position features from multiple color channels. The proposed method is
evaluated using a dermoscopic image dataset and compared to existing
deep learning and GP methods. The results conclude that the proposed
method outperformed the other methods in this study. With the inter-
pretability of GP models, the proposed method highlights important
domain-specific features with high discriminating ability between differ-
ent types of skin cancers. This discovery validates the potential of the
proposed method to improve dermatologists’ real-time diagnostic ability.

Keywords: Cancer detection · Multimodal data · Image
classification · Genetic Programming · Feature selection

1 Introduction

The occurrence of melanoma, the most lethal form of skin cancer, has seen a
rapid rise in the last three decades [19]. Detecting skin cancer at its initial stages
offers a high likelihood of recovery, with a five-year survival rate of 92% [19].
Recent advancements in computer-aided diagnostic (CAD) systems have enabled
earlier detection of diverse skin cancers. Dermatologists examine several crucial
visual attributes to formulate diagnoses using dermoscopy criteria; these include
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Asymmetry, Border irregularity, Color variation, and Diameter of the lesion,
collectively referred to as the ABCD rule [20]. Another visual screening technique
for skin cancer detection is the 7-point checklist method which includes regression
areas, pigment network, streaks, asymmetry, blue-whitish veil, dots/globules,
and presence/absence of six colors: black, white, red, dark-brown, light-brown,
bluish-gray [5]. These fundamental medical characteristics aid dermatologists in
precisely identifying various types of skin cancers.

Genetic programming (GP) is a bio-inspired technique that employs a pro-
cess of genetic evolution to generate a population of computer programs (referred
to as models or trees) aimed at solving a specific task [12]. GP incorporates
genetic operators like reproduction, crossover, and mutation, applied iteratively
to transform the existing generation of programs into a new one [12]. The result-
ing evolved program exhibits a tree-like structure comprising terminal nodes
and internal nodes. Terminal nodes are features, while internal nodes are func-
tions. GP has its inherent feature selection capacity by designating the most
significant features as terminals, which often possess a greater discriminatory
capability between classes compared to the original features. This particular
attribute significantly impacts the achievement of robust performance. Beyond
its classification applications, GP has been extensively explored for its utility in
feature selection as well [21].

For effective classification of skin cancer images, the classification algorithm
requires a range of distinct features with discriminative qualities, encompassing
attributes such as local and global aspects, as well as scale, color, and texture
characteristics, to achieve optimal performance. Features can be extracted from
multiple color channels and scales of an image to incorporate texture and color
information. Insights derived from research into the human visual system empha-
size that the spatial/frequency representation contains both localized and overar-
ching information. This revelation has driven researchers to formulate multi-scale
texture models for image classification [7]. The wavelet decomposition applied
to images captures multi-scale properties rendering itself as a valuable technique
for texture analysis, facilitating the creation of informative features [9]. This
served as the impetus for our decision to extract wavelet-based features in this
study. In addition, it is essential to develop accurate classification methods or
diagnostic systems that can be used in real-life situations to classify a particular
type of skin cancer. In the medical field, correctly identifying a diseased image
is more crucial than correctly identifying a non-diseased one [3,11]. Along with
correctly classifying, dermatologists need to recognize significant features that
can assist them in visual pattern analysis [9,22].

Convolutional neural networks (CNNs) have been increasingly used in der-
moscopy image analysis during the past decade. Esteva et al. [8] trained an
Inception network on clinical and dermoscopy images and achieved human-level
classification performance. Liu et al. [13] developed a skin image classification
model by combining domain knowledge and deep learning with clinical images.
However, CNNs typically require data augmentation and appropriate model
architecture to train effectively from scratch due to the limited size of medi-
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cal datasets [6]. Using CNNs requires a significant amount of time and resources
due to their high computational cost.

Numerous methodologies have been devised for extracting diverse feature
types from lesion images [9,18]. These techniques assess the efficacy of these fea-
tures in identifying melanoma within a binary image classification framework.
However, they lack integration of multimodal data (including tabular and image
data) and fail to amalgamate domain expertise with image-extracted features to
differentiate between various cancer types. Furthermore, these approaches con-
fine their applicability solely to binary classification tasks, specifically melanoma
detection, without addressing the more intricate challenge of multiclass skin
image classification. In contrast, this endeavor centers on devising a potent clas-
sification approach that leverages domain knowledge and features extracted from
skin cancer images, showcasing competence across diverse scenarios.

Goals: This research introduces a novel skin cancer image classification app-
roach that employs genetic programming for feature selection, effectively merging
insights from dermatology and computer vision to address binary and multiclass
image classification. In contrast to previous methodologies, the proposed method
uniquely employs GP to select features by capitalizing on diverse attributes such
as texture, color, border shape, and geometrical information. These attributes are
derived from domain-specific knowledge and image-based features, enhancing the
precision of skin cancer detection. This information is provided by multimodal
data, i.e., domain (specialized) knowledge (7-point checklist) and image features
extracted by image descriptors from multiple color channels and multiple res-
olutions. The method adopts a wrapper approach to pick informative features
from these two sets of features. These selected features are subsequently fed into
a classification algorithm, such as a support vector machine, to learn a classifier.
Through this strategy, the proposed method aims to autonomously identify and
utilize the most informative domain-specific and image-derived features. This
research tackles the following key research questions:

– Which types of features are positively contributing to providing good classi-
fication performance for binary and multiclass classification tasks?

– Can the proposed approach provide better discriminating ability when a com-
bination of feature sets is used than utilizing a single feature set?

– Can the proposed GP method outperform the existing deep learning and GP
methods for skin cancer image classification?

2 Background

The primary objective of feature extraction in skin cancer imaging is to derive
image features that closely align with those perceptible to dermatologists and can
consequently be employed for identifying distinct forms of skin cancer [9]. In the
current study, we extend this process by integrating domain-specific information
in the form of tabular data, which is curated by expert dermatologists utilizing
the 7-point checklist method. In addition, we encompass features extracted from
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Fig. 1. Identification of some dermoscopic criteria based on 7-Point Checklist (7PC)
with blue-whitish veil, atypical pigment network, dots, and streaks [15] (Color figure
online).

dermoscopic images via widely recognized image descriptors suitable for skin can-
cer detection, notably the three-level pyramid-structured wavelet decomposition
(3LWD) [7] and the Local Binary Pattern (LBP) [16]. These distinct categories of
features are amalgamated within the framework of our study with the following
aims: 1) to furnish the requisite discriminative information to the GP process,
facilitating the effective selection of features during the course of evolutionary
refinement, and 2) to explore which particular combinations of features exert
greater prominence in the classification of dermoscopy images.

2.1 7-Point Checklist Domain Specific Features (7PC)

In recent years, a plethora of analytical methods based on scored algorithms have
emerged with the dual aim of simplifying dermoscopic learning and enhancing
the early detection of melanoma. Among these methods, the 7-point checklist [5]
stands out as one of the most current and rigorously validated dermoscopic algo-
rithms. This is attributed to its commendable balance between high sensitivity
and specificity, even when employed by individuals without specialized expertise.
Of the seven criteria in the checklist, three are major (atypical network, blue-
whitish veil, and atypical vascular pattern) and four are minor (irregular streaks,
irregular dots/globules, irregular blotches, and regression structures). Figure 1
shows the presence of pigment network, dots, streaks, and blue-whitish veil in a
dermoscopic image. Initially chosen for their association with melanoma, these
criteria also prove informative for other skin cancer types [5].

2.2 Local Binary Patterns (LBPs)

LBP serves as a widely employed image descriptor for feature extraction, devel-
oped by Ojala et al. [16]. This method undertakes a pixel-wise scan across an
image, employing a sliding window with a predetermined radius. The central
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Fig. 2. Feature extraction with LBP and creating a LBP histogram.

pixel’s value is determined through an assessment of the intensities of surround-
ing pixels situated along the specified radius. The process generates a histogram,
representing a feature vector, as depicted in Fig. 2. There are two kinds of LBPs:
uniform and non-uniform. Uniform patterns have a maximum of two 0 to 1 or
1 to 0 transitions. Non-uniform patterns have more than two such transitions.
For example, 01000000 and 1110000 are uniform LBPs, whereas 00110100 and
00100100 are non-uniform LBPs. To improve efficiency, the feature vector can be
reduced to p (p− 1) + 3 bins by using only uniform LBP patterns. Non-uniform
patterns are grouped into a single bin. Commonly, LBP uses a window size of
3×3 pixels and a radius of 1 pixel (LBP8,1).

Color, an integral facet of the ABCD rule [20], is pivotal for skin lesion classifi-
cation. Color variations induce substantial diversity within the RGB (red, green,
blue) space, potentially enabling features extracted from RGB color channels to
effectively differentiate between classes. In the current study, uniform LBP fea-
tures are extracted from each of the three RGB color channels to identify corners,
blobs, and streaks in skin images, potentially improving performance.

2.3 Three Level Wavelet Decomposition (3LWD)

The analysis of texture plays a crucial role in identifying the visual charac-
teristics of a lesion and is an essential component of clinical diagnosis. This
is exemplified by the use of the ABCD rule in dermoscopy [7]. By employing
pyramid-structured wavelet analysis, both the intricate details of local nuances,
such as structure and texture and the broader global features that define the
lesion’s overall properties can be effectively captured [9]. In this study, a three-
level pyramid-structured wavelet decomposition technique is opted, specifically
applied to the red, green, blue, and luminance1 color channels within the con-
text of skin images. This way we include multichannel (four color channels) and
multiresolution (three scales in 3LWD) image features.

To glean informative insights from wavelet coefficients, diverse statistical met-
rics are utilized, encompassing norm, skewness, energy, kurtosis, mean, entropy,
average energy, and standard deviation. Further details can be referenced in [9].
Figure 3(a) illustrates a skin lesion image, and Fig. 3(b) depicts the application
of pyramid-structured wavelet decomposition to the image in Fig. 3(a).

1 luminance = (0.299× R) + (0.587× G) + (0.114× B).
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3 The Proposed Method

The proposed method, a wrapper-based feature selection approach using domain
knowledge in GP (DKGP), for skin cancer image classification is described in
this section. The overall structure is presented in Fig. 4. The dataset comes with
images and tabular data based on 7PC. Each image in the dataset is given to
the two image descriptors (3LWD and LBP) discussed in Sect. 2 to get two sets
of feature vectors. These image feature vectors are then combined with domain-
specific 7PC features to form two sets of feature vectors, namely 7PC+LBP, and
7PC+3LWD. The feature vectors of the combined dataset are partitioned into
separate training and test sets. The training set is utilized to facilitate the evolu-
tion of individuals within the GP framework, equipped with informative features
at their terminal nodes. Employing these selected features from the evolved GP
individual, the original training and test sets undergo a transformation, resulting
in reduced training and test sets. Subsequently, a classification algorithm, such
as a support vector machine (SVM), is employed. This algorithm employs the
transformed training set to build a classification model. The acquired classifica-
tion model is then applied to the transformed test set to measure the performance
of the trained model based on utilizing the extracted/selected features.

Fig. 3. Three-level pyramid-structured wavelet decomposition.

3.1 Terminal Set

The terminal set consists of five sets of feature vectors, extracted from the feature
extraction methods discussed in Sect. 2.

1. 7PC: 12 dermoscopic features provided by expert dermatologists based on the
seven-point checklist method as described in Sect. 2.1.

2. LBP: 59 LBP features extracted from each of the RGB channels and concate-
nated to make 177 (= 59 LBP features × 3 channels) features.

3. 3LWD: Wavelet-based texture features extracted from RGB and luminance
color channels of the images to make a total of 416 (= 8 statistical measures
× 13 nodes × 4 color channels) features.

4. 7PC+LBP: 7PC and LBP feature sets as mentioned above are concatenated
to make a total of 189 (= 12 7PC + 177 LBP) features.

5. 7PC+3LWD: 7PC and 3LWD feature sets are concatenated to make 428 (=
12 7PC + 416 3LWD) features.
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Fig. 4. The flowchart of the proposed DKGP method.

3.2 Function Set

The function set encompasses seven distinct operators, namely four arithmetic
operators (+,−,×, /), two trigonometric operators (sin, cos), and one condi-
tional operator (if ). In the context of the arithmetic operators, the first three
operators retain their conventional arithmetic interpretations; however, the divi-
sion operator is guarded to yield 0 when encountering division by 0. The if oper-
ator demands four inputs and yields the third input if the first input surpasses
the second input; otherwise, it yields the fourth input.

3.3 Fitness Function

The fitness function is the balanced classification accuracy defined as

fitness =
1
m

m∑

i=1

TPi

TPi + FNi
(1)

where, m represents the number of classes, TP stands for true positive, FN
signifies false negative, and the ratio TPi

TPi+FNi
denotes the true positive rate of

class i. In scenarios where class imbalances exist, i.e., leading to very different
number of instances across classes, employing the standard overall accuracy,
calculated by the ratio of correctly classified instances to the total number of
instances, may generate results skewed towards the majority class. Consequently,
adopting the balanced accuracy metric can mitigate this problem. This metric
assigns equal importance to all classes within a dataset. By utilizing this fitness
function, as shown in Equation (1), the GP process is guided towards achieving
good performance across all classes.

3.4 Classification

Once the GP evolutionary process is complete, the best GP individual is iden-
tified, featuring selected features at its terminals based on the training data.
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Fig. 5. Samples of the three classes in the PH2 dataset.

These chosen features play a pivotal role in transforming the original training
and test data, resulting in new training and test sets. The modified training
data is employed to train a classification method, such as SVM. Subsequently,
the modified test data is used to evaluate the performance of the trained classi-
fication model on the test dataset.

4 Experiment Design

To conduct the experiments, we employ 10-fold cross-validation to partition the
datasets. This division assigns nine folds for training and one fold for testing,
using stratified random sampling for balanced distribution. There are 30 inde-
pendent runs of GP carried out, and the outcomes are presented as mean and
standard deviation values for balanced accuracy and F1-score. In each GP run,
an individual is evolved using the training data (9 folds), with the fitness func-
tion (Eq. 1) evaluating the accuracy of the DKGP method. The selected features
within the evolved individual are then applied to adapt the test data (1 fold).
This iterative procedure is repeated 10 times to yield results for 10-fold cross
validation, ensuring each fold serves as a test set exactly once. Consequently, this
entire process is replicated 30 times, employing distinct seed values, resulting in
30 sets of training and test accuracy results. The implementation leverages the
Evolutionary Computing Java-based (ECJ) package version 27 [14].

For the wrapper classification methods, we utilize four techniques: Naive
Bayes (NB), Support Vector Machines (SVMs), k-Nearest Neighbor (k-NN) with
k=5 (balancing noise reduction and efficiency), and Random Forest (RF). Imple-
mentation is executed using the widely adopted Waikato Environment for Knowl-
edge Analysis (WEKA) package [10]. Consistent with prior studies [1,2], of GP
for skin cancer detection, this work opts for a Radial Basis Function kernel,
which has shown superior performance compared to the default linear kernel.
These settings have been adopted from previous studies [1,2] where they have
shown the best performance amongst other settings.

4.1 Dataset

There are 200 images in the PH2 dataset [15]. These images are captured using a
dermatoscope and measure approximately 768×560 pixels. They are divided into
three categories: melanoma, common nevus, and atypical nevus. In dermatology,
melanoma and common nevus refer to malignant and non-malignant lesions,
respectively. Atypical nevus, on the other hand, is a non-malignant lesion that
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could potentially develop into tumor cells later. To conduct binary classification
experiments, 40 instances of melanoma are designated as the “malignant” class.
The “benign” class consists of a total of 80 common nevus and 80 atypical nevus,
as per [2]. Exemplar samples from this dataset are depicted in Fig. 5.

4.2 GP Parameters

The GP parameters employed in the proposed method are detailed in Table 1.
The evolutionary process persists until either a maximum of 50 generations is
achieved or a flawless classification model with 100% accuracy is identified. These
are commonly adopted GP settings [2].

Table 1. GP Parameter Settings.

Parameter Value Parameter Value

Generations 50 Selection type Tournament
Population Size 1024 Tournament size 7
Crossover Rate 0.80 Tree depth 2–6
Mutation Rate 0.19 Initial Population Ramped half-and-half
Elitism 0.01

4.3 Classification Methods for Comparison

Existing GP Method: Embedded GP (EGP-4) [1] is an existing GP approach
that evolves four trees in its individual to perform melanoma detection in a
binary classification task. It utilizes image features only extracted using LBP
image descriptor and the ABCD rule of dermoscopy [20].

Existing Deep Learning Methods: Moreover, we compare DKGP with
recently developed deep learning methods for the PH2 dataset as discussed
below:

– Patino et al. [17] devised a multiclass classification approach that incorpo-
rates distinct morphological operations to encompass asymmetry, color, and
border attributes. The method employs three classification techniques: a fully
connected neural network, SVM, and logistic regression.

– Alkarakatly et al. [4] introduced a 5-layer Convolutional Neural Network
(CNN) to address the 3-class classification task posed by the PH2 dataset.

5 Results and Discussions

The results of binary and multiclass classification are presented in Tables 2 and
3, respectively. The values of these results in terms of balanced accuracy and
F1-score represent the mean and standard deviation among the 30 GP runs.
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5.1 Binary Classification

The results for the task of binary classification are presented in Table 2. Horizon-
tally, the table consists of five blocks and the first block lists the features used to
perform classification. The second, third, fourth, and fifth blocks each of which
show the results of using NB, SVM, k-NN, and RF classification methods, respec-
tively, used in the wrapper approach in the proposed DKGP method. There are
five rows that show the feature sets used to perform classification. Here, 7PC,
LBP, and 3LWD show the three sets of features that are used individually to
perform experiments. 7PC+LBP shows that the two sets of features, 7PC and
LBP, are concatenated together to perform experiments. Similarly, 7PC+3LWD
shows the 7PC feature set concatenated together with 3LWD feature set before
being provided to the proposed DKGP method. The results are given in terms
of balanced accuracy and F1-score. The bold sign shows the highest accuracy
achieved among the four classifiers in a row using a feature set.

There are five sets of experiments using the five feature sets as mentioned
in Sect. 3.1. Among the five feature sets (Table 2), DKGP achieved the highest
performance with 88.69% average accuracy using the 7PC feature set and NB as
a wrapped classifier. In addition, DKGP achieved the highest F1-score of 87.48%
using the 7PC feature set and RF as a wrapped classifier. It has been observed
that using the individual feature sets, i.e., 7PC, LBP, and 3LWD, 7PC has always
performed better than the other two. For example, 7PC features provided 84.56%
balanced accuracy and 85.89% F1-score using k-NN classifier, and outperformed
the LBP feature set with 76.09% balanced accuracy and 77.53% F1-score, and
also outperformed 3LWD with 79.69% balanced accuracy and 81.42% F1-score.
There is another behavior seen using concatenated feature sets when provided to
the SVM classifier. SVM provided the highest classification accuracy of 87.44%
using the 7PC+LBP feature set and outperformed the individual 7PC and LBP
feature sets with 83.88% and 74.81% accuracy. This shows that combining the
two feature sets (7PC with domain-specific knowledge and LBP with computer
vision knowledge) allows SVM to learn better and discriminate among the two
classes compared to using a single set of features. However, this trend has not
been observed in the other classification methods: NB, k-NN, and RF.

5.2 Multiclass Classification

The results of multiclass classification are presented in Table 3. Among the five
feature sets, 7PC with domain knowledge has been prominent and provides the
highest test accuracy of 88.33% with k-NN wrapped classifier. Using the two
image feature descriptors, i.e., LBP and 3LWD, DKGP could not achieve good
results for the multiclass classification task. For instance, LBP and 3LWD pro-
vided the highest test accuracies of 58.75% and 70.00% on average with RF
and k-NN, respectively. However, when these image features are combined with
domain-specific features, there is a massive improvement of around 32% in test
classification performance. For example, SVM achieved 55.42% classification
accuracy on average using the LBP features, and it increased to 87.25% accuracy
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on average using 7PC+LBP features. This shows that 7PC features have high
discriminative knowledge to distinguish between the three classes.

Among the four wrapped classification methods, k-NN achieved the highest
classification performance of 88.33% and 88.89% on average in terms of balanced
accuracy and F1-score using 7PC features, respectively. RF also achieved the
highest performance with 7PC features. SVM achieved the highest performance
of 87.25% and 86.08% in terms of balanced accuracy and F1-score, respectively,
using the combination of domain-specific and LBP (7PC+LBP) features. NB
achieved the highest performance of 84.50% balanced accuracy and 84.59% F1-
score using 7PC features. These results are very encouraging for a very complex
real-world problem of skin cancer detection where most of the classifiers are
performing well for the multiclass classification task.

5.3 Overall Results

The outcomes of both binary and multiclass classification substantiate that the
integration of domain knowledge within the proposed DKGP approach substan-
tially enhances the classification algorithm’s capability to construct a more pre-
cise classifier, as opposed to relying solely on features extracted from skin images.
We have found an interesting behavior among all classification methods that
they achieve better classification performance when utilizing the combination of
domain-specific (7PC), and domain-independent (LBP, and 3LWD) feature sets,
as compared to utilizing a single feature set. For instance, in the binary clas-
sification task, RF achieved 75.16% accuracy using LBP features and 77.06%
accuracy using 7PC+LBP features, as shown in Table 2. Similarly, RF achieved
73.72% accuracy using 3LWD features and 76.04% accuracy using 7PC+3LWD
features, as shown in Table 2. This trend has been seen in both binary and mul-
ticlass classification results. For example, in the multiclass classification task,
SVM provided 55.42% accuracy using LBP features and 87.25% accuracy using
7PC+LBP features, as shown in Table 3. Similarly, SVM achieved 64.79% accu-
racy using 3LWD features and 81.67% accuracy using 7PC+3LWD features, as
shown in Table 2. From these binary and multiclass classification results, it is
concluded that utilizing domain-specific knowledge helps achieve performance
gains in complex real-world image classification tasks.

Table 2. Results of the proposed DKGP method for Binary Classification: Accuracy
and F1-score (%) on the test set.

Feature Set NB SVM k-NN RF
accuracy F1-score accuracy F1-score accuracy F1-score accuracy F1-score

7PC 88.69 ± 1.40 85.91 ± 1.42 83.88 ± 1.90 84.32 ± 2.09 84.56 ± 2.21 85.89 ± 2.16 87.31 ± 1.92 87.48 ± 1.98
LBP 76.41 ± 1.78 75.78 ± 2.33 74.81 ± 2.43 74.67 ± 2.70 76.09 ± 2.47 77.53 ± 2.64 75.16 ± 2.53 76.91 ± 2.83
3LWD 74.69 ± 3.56 71.34 ± 3.68 75.08 ± 2.62 75.86 ± 2.50 79.69 ± 2.90 81.42 ± 3.07 73.72 ± 2.38 75.33 ± 2.46
7PC+LBP 84.31 ± 1.86 84.07 ± 1.60 87.44 ± 2.13 87.13 ± 2.29 80.25 ± 1.46 81.97 ± 1.61 77.06 ± 2.81 79.74 ± 2.70
7PC+3LWD 80.31 ± 2.51 77.12 ± 2.14 76.98 ± 2.59 80.40 ± 2.52 80.00 ± 1.63 82.00 ± 1.42 76.04 ± 2.56 79.19 ± 2.17
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Table 3. Results of the proposed DKGP method for Multiclass Classification:
Accuracy and F1-score (%) on the test set.

Feature Set NB SVM k-NN RF
accuracy F1-score accuracy F1-score accuracy F1-score accuracy F1-score

7PC 84.50 ± 1.13 84.59 ± 1.19 86.81 ± 1.71 86.79 ± 1.84 88.33 ± 1.78 88.89 ± 1.97 87.50 ± 1.25 87.81 ± 1.23
LBP 52.50 ± 2.83 50.69 ± 3.02 55.42 ± 3.83 53.75 ± 3.61 58.33 ± 2.42 59.08 ± 2.36 58.75 ± 1.42 59.57 ± 1.69
3LWD 65.63 ± 2.63 63.88 ± 2.55 64.79 ± 2.21 64.42 ± 3.41 70.00 ±1.42 70.69 ± 1.65 67.71 ± 2.21 68.49 ± 2.28
7PC+LBP 80.00 ± 1.44 80.43 ± 1.26 87.25 ± 2.53 86.08 ± 2.82 80.21 ± 2.63 80.59 ± 2.77 79.58 ± 3.42 80.06 ± 3.69
7PC+3LWD 72.08 ± 2.92 70.24 ± 3.15 81.67 ± 1.66 82.63 ± 1.34 77.50 ± 2.83 78.51 ± 2.78 76.67 ± 2.00 77.45 ± 2.22

Table 4. Comparison with existing deep learning and GP methods on the PH2 dataset
for Multiclass classification.

Method task Strategy Results
Patino et al. [17] multi neural network 86.50%
Alkarakatly et al. [4] multi 5-layer CNN 90.00% (overall)
Ain et al. [1] binary embedded GP 78.17%
DKGP binary domain knowledge GP wrapper 88.69%
= multi = 88.33%

5.4 Comparison with Existing Methods

Table 4 compares DKGP with existing methodologies, both in terms of the strate-
gies employed and the results achieved. Patino et al. [17] attained a balanced
accuracy of 86.50% within a multiclass classification context, employing 10-fold
cross-validation. In the domain of binary classification, Ain et al. [1] devised a
multi-tree GP approach for melanoma detection, securing a balanced accuracy
of 78.17%. The uniformity in experimental settings across both [1,17] and our
proposed DKGP method facilitates direct comparisons.

In binary classification, DKGP exhibits a performance of 88.69%, outper-
forming the second approach [1] by a substantial improvement of nearly 10%
accuracy. For multiclass classification, DKGP achieves 88.33% accuracy, sur-
passing the method in [17] with an enhancement of nearly 2% accuracy. A
direct comparison between DKGP and the method introduced by Alkarakatly
et al. [4] poses challenges, as the latter relies on the overall accuracy within an
imbalanced classification setting, potentially skewing outcomes towards major-
ity class instances. Conversely, DKGP embraces balanced classification accuracy
(as defined in Equation (1), ensuring equal consideration for all classes.

5.5 Computation Time

Generally, the time required to train a deep learning method is quite long and
usually takes several days. However, the proposed DKGP method is very effi-
cient in terms of time computation. For instance, the longest computation time
that DKGP utilized is only 7.08min with k-NN as a wrapped classifier using
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7PC+3LWD features in the multiclass classification task, which is very fast.
Similarly, DKGP provided the highest classification performance of 88.69% and
88.33% in the binary and multiclass classification tasks utilizing only 3.36 and
2.47 s on average, respectively, to train the NB classifier with 7PC features. This
shows the effectiveness and efficiency of the proposed DKGP method for skin
cancer binary and multiclass image classification.

5.6 An Evolved GP Individual

We further demonstrate the effectiveness of our proposed DKGP method by
analyzing a good evolved GP program as shown in Fig. 6. This individual is
taken from the multiclass experiments where SVM is provided with the domain-
specific features (7PC) and domain-independent features (LBP) in the form
of a single feature set, i.e., 7PC+LBP. This GP individual achieved 87.96%
classification accuracy on the test data of the PH2 dataset. The colored nodes
represent terminal nodes and the white nodes represent function nodes. Since
LBP features are extracted from RGB color channels, the red, green, and blue
colored nodes correspond to the LBP feature extracted from red, green, and blue
color channels of the dermoscopy images, respectively. The grey-colored nodes
represent the 7PC domain-specific features.

We can clearly observe that, among the LBP features, the GP individual has
selected a combination of different color channels which shows the importance
of color in skin cancer image classification. This individual selects eight LBP
features from the red channel (F6, F8, F32, F48, F49, F53, F58, F62), and six
features each from the green channel (F70, F80, F98, F99, F108, F104) and
seven features from the blue channel (F132, F139, F151, F156, F160, F172,
F173). It is interesting to note that F8 and F80 appear three and two times,
respectively, in this individual, showing their high discriminating ability between
classes. Moreover, the expression (cos(F8)−cos(F181)) appears twice. To dig
further into the binary pattern of these features, we found that F8 and F80
represent line ends and edges, which corresponds to the presence of streaks and
regression areas in the skin lesions. This shows that this GP individual has
achieved high classification performance by selecting important LBP texture
patterns that have significant information about identifying dermoscopic criteria
such as streaks and regression areas.

Among the 7PC features, the GP individual, as shown in Fig. 6 selects three
features (F180, F181, and F182), which correspond to the presence/absence of
streaks, regression areas, and blue-whitish veil, respectively. In addition, F181
has been selected twice showing its effectiveness in discriminating between benign
melanoma, and atypical nevi classes.

Another important aspect is dimensionality reduction. This GP individual
has selected 24 features (21 LBP and three 7PC) from a total of 189 7PC+LBP
features. This shows that DKGP method provides dimensionality reduction of
many folds while achieving good classification performance for the complex skin
cancer image classification problem. This also shows the effectiveness of incor-
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porating knowledge from dermatology and computer vision domains to improve
classification performance in skin cancer images.

Fig. 6. A good evolved GP individual providing 87.96% balanced accuracy using SVM
in the multiclass classification task on the unseen data.

6 Conclusions

This work has developed a GP-based wrapper approach utilizing domain knowl-
edge in binary and multiclass skin cancer image classification. The proposed
method incorporates various types of multi-channel and multi-resolution image
features that possess important information related to RGB and gray-level pixel-
based image properties, and combines them effectively with domain knowledge
of dermatology to perform classification. The proposed DKGP method utilizes
three types of features; domain knowledge extracted from 7PC, and domain-
independent knowledge extracted from LBP, and 3LWD. The DKGP method
efficiently employs diverse combinations of feature sets, offering them to GP for
feature selection and subsequently employing a wrapper classification technique
for accurate classification. This approach has demonstrated its efficacy in both
binary and multiclass skin image classification tasks, surpassing the performance
of existing GP and deep learning methods, thus affirming its capability to effec-
tively discern differences between classes.

However, due to the constraint imposed by the availability of domain knowl-
edge, the experiments are performed using only one dataset that comes along
with this domain knowledge based on 7PC. We will investigate more datasets and
suitable future extraction methods. Furthermore, our future pursuits will involve
thoroughly exploring the integration of domain-specific knowledge with domain-
independent image features, aiming to enhance classification performance.
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Abstract. Continuous exposure to air pollutants over a long period of
time adversely affects population health. Addressing this issue may help
in reducing the disease burden. Thus, it is crucial to understand the spa-
tial and spatiotemporal variation in this prolonged exposure to ambient
air pollutants to make informed decisions. The objective of this study
is to evaluate the performance of most commonly used spatial interpo-
lation techniques in sparsely located real-world sensor data for the pur-
pose of estimating the prolonged exposure to air pollutants. The secondary
data obtained from NSW Air Quality Monitoring Network (AQMN) sites
within Greater Sydney during 1st January 2011 - 31st December 2017 by
considering the daily concentrations of Nitrogen Oxide (NO) were used
for this study. Nearest Neighbour (NN) interpolation, Inverse Distance
Weighted (IDW) interpolation without search radius and with search
radius (10 km, 15 km, 20 km, 25 km, 30 km, 35 km, 40 km, 45 kmand 50 km)
were used to estimate the daily concentrations at unknown locations. The
performance of these interpolation techniques was assessed based on leave
location-out cross-validation (LLO-CV) using Root Mean Square Error
(RMSE), Index of Agreement (d) and Coefficient of Determination (R2).
Results revealed that, IDW with search radius of 25 km and power value of
one performed better for the given dataset. IDW outperformed NN inter-
polation technique. These findings may help policy makers to come up with
strategies for disease management, control and mitigation.

Keywords: Prolonged exposure · Nearest Neighbour Interpolation ·
Inverse Distance Weighted Interpolation · Leave location-out
cross-validation
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guidelines [1]. Continuous exposure to air pollutants over a long period of time
adversely affects population health. Diseases such as cataract [2–4], diabetes [5],
cancer [6–9], cardio-vascular diseases [10–12] are linked with continuous exposure
to air pollutants over a long period. Addressing this issue may help in reduc-
ing the disease burden. Estimating the prolonged exposure to air pollutants is
a crucial step in identifying this association of the air pollutants with a given
disease for disease management, control and mitigation. Thus, it is crucial to
understand the spatial and spatio-temporal variation in the prolonged exposure
to ambient air pollutants to make informed decisions.

The ambient air pollution levels are measured using the sensors located at
monitoring sites across space at short time period such as hourly or daily records
[13]. It is of interest to estimate the average exposure over a long span of time as
several years. Estimating this prolonged exposure to ambient air pollutants using
available sparsely located sensor data is to be handled spatially and temporally.
The spatial aspect of the problem involves estimating the air pollutant concen-
trations at unknown locations using values at known locations. The temporal
aspect of the problem involves estimating the average exposure to air pollutants
at a given location over a span of time period.

When estimating the prolonged exposure using short-term measurements,
majority of the techniques focus on either improving prediction for high resolu-
tion spatially while considering annual averages in time [14–18]; or considering
a spatial point (i.e. centroid) to address the variation within the spatial polygon
(i.e. spatial area) with or without considering high resolution in time [19]. This
needs further exploration with respect to the selected data in analysing the effi-
ciency of these techniques. There is a huge need in improving the estimation of
prolonged exposure using short-term measurements addressing high resolution
space and time especially due to the highly fluctuating nature of these data. Our
research focuses on evaluating the performance of estimating prolonged exposure
when considering high resolution spatially as well as temporally. The objective
of this paper is to evaluate the performance of the most commonly used spa-
tial interpolation techniques in real-world sparsely located sensor data for the
purpose of estimating the prolonged exposure to air pollutants.

2 Methods and Methodology

2.1 Data Collection and Pre-processing

Data used for this study are Ambient Nitrogen Oxide (NO) Concentrations mea-
sured through an advanced Air Quality Monitoring System, the NSW Air Qual-
ity Monitoring Network (AQMN) [13]. These data were publicly available and
downloaded by using the Data download facility provided under the “Enhance
air quality website and data delivery” (EWADD) project [13]. Daily averages of
ambient Nitrogen Oxide Concentrations at the sites located within or close to
the Greater Sydney region and from 1st January 2011 - 31st December 2017
were considered for this study.
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These data were found with a lot of missing values with gaps ranging from a
few days to years. The missing values at each sites were explored using missing
percentage and the longest gap [20]. The monitoring sites with missing per cent
less than 20% and the longest gap of less than 30 consecutive days were selected
[20]. These selected sites were imputed using Kalman Smoothing on Structural
Time Series method in the imputeTS R package [21] as it has been proven effi-
cient for relatively small missing values [22]. Missing values with large gaps were
imputed using a bi-directional method based on regularized regression models
[23]. The data thus prepared was used for further analysis. The sites selected for
further analysis is as shown in Fig. 1.

Fig. 1. NSW Air Quality Monitoring Network sites selected for further analysis of
Nitrogen Oxide (NO)

2.2 Spatial Interpolation

It is of interest to estimate the daily NO concentrations at unknown locations
using the available data. The idea is based on Tobler’s first law of geography,
“everything is related to everything else, but near things are more related than
distant things” [24]. A variety of techniques are available for spatial interpo-
lation. Some of them are non-geostatistical techniques such as Nearest neigh-
bours, Natural Neighbours, Inverse Distance weighted, Trend surface analysis;
geo-statistical techniques such as kriging and ensemble techniques [25]. While
these methods are firmly established for spatial interpolation and temporal vari-
ability, accommodating daily fluctuations to estimate the prolonged exposure
over several years becomes intricate due to the computational challenges posed
by high-dimensional time points. Nearest Neighbour (NN) and Inverse Distance
Weighting (IDW) interpolation technique were chosen for this study due to their
simpler computational implementation for daily records of seven years of data
with better results [19].
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Nearest Neighbour Interpolation. The nearest neighbour interpolation is
a straightforward interpolation technique, relying on the Voronoi diagram. This
Voronoi diagram is constructed by assigning the unknown point location in space
with the daily NO concentration of the nearest known point location from the
set of point locations with known daily NO concentration [26].

Inverse Distance Weighted Interpolation. According to IDW interpolation
technique, the daily NO concentration at an unknown location is calculated as,

u(x) =

⎧
⎨

⎩

∑N
d−1 wi(x)u(xi)
∑N

i=1 wi(x)
, if d (x,xi) �= 0 for all i

u (xi) , if d (x,xi) = 0 for some i
(1)

wi(x) =
1

d(x, xi)p
(2)

where u(x) is predicted value at location x, wi is the IDW weighting function
assigned, u(xi) observed value at location xi, d(x, xi)p is the geographic distance
between unknown location x and known location xi and p is the power value
[27,28]. The choice of p affects the influence of the weighting function. The most
commonly used weighting function are reciprocal of distance (when p = 1) or
squared distance (when p = 2) [27,28].

2.3 Performance Measures

The performance of these interpolation techniques was assessed using the fol-
lowing most commonly used performance measures.

The root mean square error (RMSE) is given by [29],

RMSE =

√
√
√
√[

1
n

n∑

i=1

(Oi − Pi)2] (3)

The index of agreement, proposed by [29], is given by

d = 1 −
∑n

i=1(Oi − Pi)2
∑n

i=1(|Pi − Ō| + |Oi − Ō|)2 , 0 ≤ d ≤ 1 (4)

The coefficient of determination (R2) [22] is given by,

R2 = [
∑n

i=1[(Pi − (̄P ))(Oi − (̄O))]
n.σpσo

]2 (5)

where Oi is the observed data point, Pi is the interpolated data point, Ō
and P̄ are the means of observed and interpolated data points respectively, σO

and σP are the standard deviations of observed and interpolated data points
respectively and n is the total number of observations.
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2.4 Approach

Daily NO concentrations are spatio-temporal in nature. It is of interest to esti-
mate the daily NO concentrations at unknown locations over the period of time
considered. Let XS,T be the daily NO concentration at site, S on a given day
T . Here S = 1, 2, 3, ..., s;T = 1, 2, 3, ..., t where s is the total number of sites in
the study area and t is the total number of days in the study period. Different
spatial models were obtained for each day T of the study period by considering
only the spatial variation. The performance at a given site is calculated as the
average of the performance measure over the study period for that site S. The
performance at different sites were explored based on Leave-Location-out cross
validation (LLO-CV) technique to avoid spatial over-fitting [30] as illustrated in
Fig. 2.

3 Results and Discussion

3.1 Spatial Location of Sites

Figure 3 (A) and (B) summarises the elevation of the sites and the geographic
distance between two sites respectively. It can be seen clearly that Bargo and
Oakdale are located at the highest elevation compared to the other sites. Figure 1
and Fig. 3(B) depict that the sites are not evenly distributed across space. Oak-
dale is the closest site to Bargo while Bargo is located further away from the
rest of the sites. On the other hand, sites such as Chullora, Liverpool, Prospect
and Rozelle have more sites located closer to each other (Fig. 3(B)).

3.2 Comparison of the Performance of Spatial Interpolation
Techniques

The overall performance of Nearest Neighbour (NN) interpolation and Inverse
Distance Weighted (IDW) interpolation technique for the power of values one and
two were compared as shown in Fig. 4. Results showed that IDW outperformed
NN technique. This result was consistent for all three performance measures
Root Mean Square Error (RMSE), Index of Agreement (d) and Coefficient of
Determination (R2) considered. Additionally, there was no significant difference
in the overall performance between IDW with power values of one and two. The
performance of these techniques was further explored in detail at each site as
shown in Fig. 5.

Figure 5 showed that there was no significant difference in the performance
of IDW techniques at sites for different power values of one and two. This result
was consistent with the three performance measures considered. However, the
performance of NN and IDW interpolation varied at different sites. Accord-
ing to RMSE, IDW performed better at Bargo, Bringelly, Liverpool, Prospect,
Randwick and Rozelle compared to NN interpolation. However, NN interpola-
tion performed better than IDW interpolation at Oakdale and Richmond. There
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Fig. 2. Schematic representation of Leave-Location-out cross-validation

was no significant difference in the performance of these techniques at Chullora,
Earlwood and Lindfield.

According to d, IDW interpolation outperformed NN interpolation at Bargo,
Bringelly, Liverpool, Prospect, Randwick and Rozelle whereas vice-versa at
Richmond. Additionally, there was no significant difference in the performance
of these techniques at Chullora, Earlwood, Lindfield, Oakdale and St.Marys.
According to R2, IDW interpolation outperformed NN interpolation at Bargo,
Chullora, Earlwood, Liverpool, Prospect, Randwick and Rozelle whereas no sig-
nificant difference at Bringelly, Lindfield, Oakdale and St.Marys.

For a much more detailed understanding, the observed values at each site
location were compared with the predicted values based on NN interpolation
(Fig. 6) and IDW interpolation (Fig. 7).

Figure 6 and 7 highlighted that NN interpolation significantly underestimated
the daily NO concentrations at Bargo, Liverpool and Prospect whereas sig-
nificantly overestimated at Bringelly and Oakdale. IDW interpolation showed
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Fig. 3. (A)Elevation of sites measured in metres (B) Geographical distance between
two sites in kilo-meters

Fig. 4. Comparison of the performance of Nearest Neighbour interpolation, Inverse
distance weighted interpolation with power = 1 and Inverse distance weighted inter-
polation with power = 2. (A) Based on Root Mean Square Error (RMSE) (B) Based
on Index of Agreement (d) (C) Based on Coefficient of determination (R2)

improved predictions at Bargo, Bringelly, Liverpool, Prospect and St.Marys.
However, predictions at Liverpool, Earlwood and Prospect can be improved fur-
ther.

Note that at Chullora, NN performed better than IDW interpolation. Addi-
tionally, both NN and IDW interpolation performed very poorly at Oakdale.
Note that Oakdale is located at the highest elevation of approximately 451m
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Fig. 5. Comparison of the performance of Nearest Neighbour interpolation, Inverse
distance weighted interpolation with power = 1 and Inverse distance weighted inter-
polation with power = 2 at each site. (A) Based on Root Mean Square Error (RMSE)
(B) Based on Index of Agreement (d) (C) Based on Coefficient of determination (R2)

Fig. 6. Comparison of the predictions based on Nearest Neighbour interpolation with
the observed values at different sites during 1st January 2011 - 31st December 2017

(as shown in Fig. 3) and further away from the rest of the sites. The poor results
at Oakdale may be due to these geographic locations and further investigation
is needed. However, the IDW prediction at Bargo, a site located at an elevation
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Fig. 7. Comparison of the predictions based on Inverse Distance Weighted interpolation
for power values of one in (A) and two in (B) with the observed values at different sites
during 1st January 2011 - 31st December 2017

of approximately 312m, was not so bad. It is interesting to note that Bargo is
located further away from the rest of the sites but closer to Oakdale.

3.3 Exploring the Performance with Varying Search Radius

The performance of IDW interpolation was explored by introducing a search
radius. Figure 8 visualizes the selection of sites for interpolation based on search
radius by using Earlwood as an example. This process is repeated for all the sites
by varying search radius between 5 km - 50 km and the results were summarised
in Table 1.

Within a 5 km radius, none of the sites have their respective neighbours. Only
four sites (Chullora, Earlwood, Lindfield, Rozelle) have their respective neigh-
bour within a 10 km radius. All sites except (Bargo, Oakdale and Richmond)
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Fig. 8. A visual illustration of selecting search radius considering Earlwood as an exam-
ple. Here black dotted circle of different radii (5 km to 50 km) highlight the monitoring
sites within respective distances from Earlwood.

have at least one of their respective neighbour within a 15 km radius. The respec-
tive neighbour of Richmond is located within a 15 km–20 km search radius. It
is worth noting that Bargo and Oakdale do not have any sites located within a
25 km radius. However, there exist one and two neighbours within 25 km–30 km
of Bargo and Oakdale respectively.

Figure 9 clearly highlights the variation in performance for different search
radii. Same as earlier, there was no significant difference in the performance of
IDW interpolation for power values of one and two. Overall root mean square
error was very low for a search radius of 10 km followed by a significant raise.
The root mean square error value dropped to the search radius of 25 km and
then increased. These findings were consistent with the Index of Agreement and
Coefficient of Determination. It is important to note that only four sites had
neighbours located within a 10 km radius. These sites had either only one or two
neighbouring sites available for interpolation where as more neighbouring sites
were available for interpolation when search radius was increased to 25 km.

Table 2 summarises the overall performance of NN interpolation technique,
IDW interpolation utilizing search radius of 10 km and 25 km and IDW interpo-
lation without utilizing search radius, based on performance measures RMSE, d
and R2. All the IDW interpolation outperformed the NN interpolation. The over-
all performance of IDW interpolation utilizing search radius performed better
than that of, without utilizing search radius. Moreover, the IDW interpolation
utilizing a search radius of 10 km performed better than that of the search radius
of 25 km. However, it is important to note that the overall performance results
were based on only four sites when considering search radius of 10 km, whereas
the results were based on ten sites, when considering the search radius of 25 km.
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Table 1. Number of sites located within different search radii for each site

Sites Search Radius (in km)
5 10 15 20 25 30 35 40 45 50

BARGO 0 0 0 0 0 1 1 1 1 2
BRINGELLY 0 0 2 3 3 5 7 9 10 11
CHULLORA 0 1 3 6 6 8 8 8 9 9
EARLWOOD 0 2 3 4 6 6 7 8 8 9
LINDFIELD 0 1 1 4 5 6 6 8 9 9
LIVERPOOL 0 0 2 4 6 7 8 9 10 10
OAKDALE 0 0 0 0 0 2 2 3 4 5
PROSPECT 0 0 1 4 7 8 9 9 9 10
RANDWICK 0 0 2 4 4 4 6 6 7 8
RICHMOND 0 0 0 1 1 2 3 4 6 8
ROZELLE 0 2 4 4 6 6 6 8 8 9
ST.MARYS 0 0 2 4 4 5 5 9 9 10

Table 2. A comparison of the overall performance of different spatial interpolation
techniques considered

Methods RMSE d R2

Nearest Neighbour Interpolation 0.951 0.623 0.521
IDW interpolation of power 1 without utilizing search radius 0.771 0.712 0.642
IDW interpolation of power 2 without utilizing search radius 0.761 0.719 0.644
IDW interpolation of power 1 utilizing search radius of 10 km 0.714 0.884 0.735
IDW interpolation of power 2 utilizing search radius of 10 km 0.749 0.874 0.730
IDW interpolation of power 1 utilizing search radius of 25 km 0.747 0.791 0.711
IDW interpolation of power 2 utilizing search radius of 25 km 0.749 0.792 0.708

Additionally, there was no significant difference in the power of IDW interpola-
tion for this dataset. However, IDW interpolation based on the power value of
one showed a slightly improved result despite the search radius.
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Fig. 9. Variation in the performance of Inverse distance weighted interpolation tech-
nique of power (p = 1 and 2) with search radius 5 km, 10 km, 15 km, 20 km, 25 km,
30 km, 35 km, 40 km, 45 km and 50 km. (A)based on root mean square error (RMSE)
(B) based on Index of Agreement (C) based on Coefficient of determination

4 Conclusion

The conclusions obtained were based on the daily concentrations of ambient
Nitrogen Oxide (NO) at sites within Greater Sydney during 1st January 2011 -
31st December 2017. The performance of spatial interpolation techniques Nearest
Neighbour (NN) interpolation and Inverse Distance Weighted (IDW) interpola-
tion was assessed using Root Mean Square Error (RMSE), Index of Agreement
(d) and Coefficient of Determination (R2) based on leave-location-out cross-
validation (LLO-CV). IDW interpolation outperformed NN interpolation. Addi-
tionally, findings showed an improvement in results when using IDW interpola-
tion with a search radius of 10 km and 25 km over the one without utilizing a
search radius. To be more precise, IDW interpolation using a search radius of
10 km demonstrated slightly better performance compared to a radius of 25 km.
However, the lack of monitoring sites still remains as an issue. Incorporating low-
cost sensors in addition to these high cost sensors could be one of the solutions.
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However, the reliability and accuracy of these low-cost sensor recordings with
that of high-cost sensors need further investigation. These results can be used in
estimating the prolonged exposure to Nitrogen Oxide at unknown locations and
identifying the association of the prolonged exposure with public health. This
may help policy makers to come up with strategies for disease management, con-
trol and mitigation. Future work involves extending the study by evaluating the
performance of other well-established spatial and spatiotemporal interpolation
techniques. Additionally, it is important to note that the results were consider-
ing daily NO concentrations. However, these results might differ for other air
pollutants. Thus, this study is also to be extended for other major air pollutants
such as ground level ozone, Nitrogen dioxide, Particulate matters (PM10 and
PM2.5).
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Abstract. Emergency department (ED) triage notes contain valuable information
for near real-time syndromic surveillance of emergent public health events. With
the increasing use of machine learning algorithms for classification of ED triage
notes, active learning (AL) offers a way to automatically obtain high-quality data
for labelling, resulting in a reduced requirement for annotators to search for suit-
able data. Active learning involves selecting the most valuable data to enhance the
model’s learning process, guided by a query strategy that identifies samples with
most impact on the model’s training. The objective of this study was to assess
the effectiveness of active learning in developing a high-performing model for
ED syndrome detection. The research aimed to explore pool-based active learning
and investigated various query strategies to improve the model’s performance in
identifying asthma presentations from ED triage notes. Our results showed that
AL can be highly effective for reducing annotation effort while building reliable
models. Uncertainty sampling strategy outperformed all other methods, achieving
an F1 score of 0.91 to improve the baseline score by 7.6 percentage points.

Keywords: Active learning · large language models · emergency department ·
syndromic surveillance · natural language processing · chief complaints

1 Introduction

Emergency triage is the process of rapidly assessing and prioritizing patients based
on their clinical presentations. Triage notes are the documents that are created during
this process and contain a wealth of information about patients’ medical conditions.
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These notes serve as valuable resources for identifying cases and syndromes in real-
time, enhancing detection, and facilitating effective planning for public health events.
In recent years, there has been an increase in the use of machine learning algorithms for
surveillance and classification of ED triage notes [1]. These algorithms can be used to
identify patients who are at risk for certain conditions, or to track the spread of disease.

Most modern Natural Language Processing (NLP) systems designed for detecting
medical conditions rely on machine learning models trained using labelled data. The
effectiveness of these models is determined by the amount of quality training data they
have access to. Although these models can achieve remarkable results with sufficient
supervision, gathering enough labelled data is a costly andmanual process. The labelling
process requires a detailed understanding of the problem domain, and the time that
domain experts have available for labelling is limited. This limitation often becomes the
primary factor that hinders the creation of new NLP models [2]. Active learning (AL)
is an established approach to address the labelling bottleneck.

Active learning combines machine learning and human input to select the most
valuable data to enhance the machine learning process. Themachine learner is guided by
“consulting the oracle” of a domain expert to identify information that yields the greatest
understanding of the domain in the shortest amount of time [3]. Active learning is an
iterative procedure that utilizes machine-driven algorithms to extract data from a pool
of unlabeled data. Experts then annotate this data, which is used to enhance the machine
learningmodel through training. This process is repeated until a stopping criterion ismet.
The goal is to build a high-performing model while minimizing the specialized human
effort needed to locate records for annotation. Machine learning methods are employed
to identify the most likely valuable data for annotation instead. The focus of this paper
is to investigate whether the use of active learning can help train a high-performing
model with reduced human annotation for clinical text classification tasks, specifically
near real-time syndromic detection of asthma from emergency department notes. Early
detection of changes in asthma presentation patterns, such as those that occur during
thunderstorm asthma events, can inform staffing and resourcing and improve care [4].

1.1 Background

Active Learning (AL) comprises three main scenarios: (1) Pool-based AL, where the
learner accesses a fixed set of unlabeled instances known as the pool; (2) Stream-based
AL, where the learner receives instances one at a time; and (3) Membership query
synthesis, where the learner generates new artificial instances to be labeled. When the
pool-based scenario operates on a batch of instances rather than a single instance, it is
referred to as batch-mode AL [5].

Pool-based sampling is a widely used approach to active learning [6]. To describe
the algorithm of this approach, we have a small, labelled dataset L and a large unlabelled
dataset U. The objective is to select the most suitable samples from U for labelling, in an
iterative manner. At each step, the active learning algorithm leverages the information
present in L to train a model M, then a query strategy is employed to identify the optimal
candidates in U for further labelling, denoted as I. An oracle then assigns labels to I,
which is subsequently incorporated into L. The process repeats until the stop criterion
is met. Algorithm 1 illustrates this process.
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The query strategy is a fundamental component of active learning,wherein a selective
approach chooses the samples to be labelled by an oracle or domain expert [7]. This
involves selecting instances that are expected to have the greatest impact on the model’s
learning process, typically by focusing on samples that are difficult to correctly identify,
or marginal to, or representative of the underlying data distribution. As a result, the
model can effectively learn from a limited labeled dataset and achieve high performance
with minimal human annotation effort.

The query strategy should aim to choose either (or both) the most informative or
(and) the most representative samples [8]. A strategy that identifies informative samples
ensures that the selected instances provide insights into the margins or edges of the
underlying data distribution, addressing areas of uncertainty and improving the model’s
overall understanding of its data boundaries. There are several query strategies that fall
into this category. Uncertainty sampling involves selecting instances that the model is
most uncertain about [9]. Disagreement sampling entails choosing instances based on
disagreements among multiple models [10]. Gradient information measures informa-
tiveness based on the norm of the gradient [11].Performance prediction selects instances
that would result in the greatest reduction in error if labelled and added to the training
set [12].

A strategy that selects representative samples ensures that the chosen instances ade-
quately cover the main patterns and characteristics of the dataset, allowing the model to
generalize well to similar unseen data. Density-based strategies work by clustering the
unlabelled data so that instances can be identified from clusters to represent the main
features of the unlabelled data [13]. Discriminative methods select instances that are
different from already labelled instances. This can be done by finding instances that are
misclassified by the current model [14]. These methods aim to ensure batch diversity,
so that instances that have diverse characteristics are selected. This can be done by iter-
atively selecting instances that are different from the previously selected instances [15],
or by using clustering-based approaches [16]. Many studies have explored hybrid query
strategies, considering both the uncertainty and diversity of query samples [17–19].

Active learning has found applications in various clinical tasks, such as concept
extraction [20], medical records deidentification [21], text classification [22, 23], and
named entity recognition [24].

Emergency department triage notes are collected at the start of a patient’s visit
and are used to prioritize their care. They can also be used to track trends in patient
visits in near real time. The content of these notes is concise and lacks grammatical
structure, is fragmented, and comprises short phrases, measurements, and abbreviations
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[25]. This characteristic gives rise to a distinctive language specific to triage notes.
Developing robust supervised machine learning (ML) classifiers for these notes relies
on obtaining high-quality manual annotations. However, this process is expensive as
it demands clinical expertise from healthcare professionals who are familiar with the
language used in emergency care.

Some research studies have used coding against pre-existing data as a substitute for
labeling triage notes [26]. On the other hand, some researchers have manually annotated
their datasets [27, 28]. It is important to note that using codes as the gold standardmethod
has well-documented limitations. These codes may not always accurately reflect the
actual reason for a patient’s visit. For example, codes could be assigned to identify the
underlying cause of a condition, or for purposes such as financial incentives [29, 30].
Often, only a single code is used, which might not correlate to the surveillance condition
of interest that is available in the ED text. For example, asthma related to a chest infection
could be coded with either an ‘asthma’ or an ‘infection’ code. Most importantly in the
case of training for real-time classification of ED notes, annotation needs to conform to
what is discernable in the limited text available at triage time, whereas diagnostic codes
may reference subsequent textual information.

In this work, we aim to assess the effectiveness of active learning in developing a
high-performing model for a clinical text classification task from emergency department
notes, specifically focusing on syndrome detection of presentations of asthma, a leading
cause of disease burden in Australia [31]. The research aims to explore pool-based active
learning: different query strategies will be investigated to identify the most valuable
instances for labelling, ultimately enhancing the model’s ability to identify syndromes
from emergency department triage notes.

2 Data

The data comes from the SynSurv near real-time syndromic surveillance system, which
primarily collects data from the emergency departments of 26 of the 39 public hospitals
in the Australian State of Victoria, which has a population of 6.5 million. It includes texts
written byEDnurses at the triage desk after their initial assessment of each patient. These
have a unique structuremainly composed of abbreviations (such as “SOB” for “shortness
of breath” or “BIBA” for “Brought in by ambulance”) and short phrases (such as “asthma
flare up unable to manage with ventolin at home”). Some of the abbreviations may differ
across hospitals. The texts typically encompass a presenting complaint, medical history,
relevant negatives, and the nurse’s observations of the patient. The length of the text
varies, ranging from detailed narratives of how a patient presents to the triage nurse
to concise mentions of a presumed diagnosis and relevant observations. The notes can
contain misspellings and the quality of the text can vary widely. ED records also include
an age field, which is considered when assessing a record for labelling, and so we
included into the data by prepending it to the text.

The unlabelled text pool consisted of 733,638 ED triage texts – all the unique texts
with 3 or more characters, received by SynSurv from 1 January 2022 to 22 May 2023.
The average length of text was 34.3 words, the maximum text length was 367 words,
and the minimum was 4 words.



288 S. Khademi et al.

Labelling criteria were designed by JBL, an author who is a medical doctor with
experience in the emergency department (ED). The criteria were used to identify a cohort
of asthma cases for monitoring for any sudden increase in acute asthma reporting in a
local area that might indicate an unfolding health event, particularly for “thunderstorm
asthma”. A detected increase in asthma presentations can trigger the allocation of extra
resources to help hospitals experiencing an influx to cope with the event. A record
is labeled as an asthma presentation if it mentions: asthma symptoms plus a relevant
history; use of asthma medications without an accompanying non-asthma indication
(such as anaphylaxis or chronic obstructive pulmonary disease); or if a trained health
worker (nurse, doctor, or ambulance paramedic) seems to have considered the diagnosis
likely. A record is not labeled as asthma if the patient is under 2 years old or over 70 years
unless the nurse explicitly states that the patient has asthma or there is a clear history of
asthma. Mentions of symptoms (e.g., wheeze, dyspnea, or increased work of breathing)
are not labelled as asthma unless accompanied by other features as above.

Detection of acute or exacerbated asthma in triage notes is a very challenging task.
Asthma can have symptoms in common with other health conditions, such as cardiac,
allergic reactions, or lung trauma. In some cases, it can be very difficult for even a
domain expert to decide if an acute asthma attack is the reason for a presentation. For
example, a patient who was 40 years old and presented with shortness of breath and
chest pain described as “heart hurting”, that started a few hours prior to presentation.
The patient had nausea and vomiting, and inspiratory and expiratory wheezing. He was
given both asthma and cardiacmedications, showing that both heart and lung issues were
considered by the healthcare team. The domain expert decided that for the purpose of
training a model for detecting acute asthma, this should be considered as a cardiac case,
despite the healthcare team’s assessment of possible asthma. Table 1 contains examples
of asthma (label 1) and non-asthma (label 0) records.

Table 1. Examples of asthma presentations

Asthma Presentation

Yes Age: 54- exacerbated asthma. Using Ventolin adn pred, nil improvement. Coughing,
tightness in chest. Coughing at triage+++, states feels like breathing very fast, nil
wheeze on ausculation. Nil resp distress

Yes Age: 5Y - cough, vomiting + abdo pain. 3x 6 puffs salbutamol nil effect. OE
speaking full sentences, tracheal tug, UL insp wheeze SOB

No Age: 87 - SOB 3/7 URTI, On arrival resp distress, 89% RA, Crackles 10mg Salbu,
500mcg Atrovent, Phx intubated before, COPD, CABGS, AF, CHOL, HTN

No Age: 1 year - Croup - woke up struggling to breathe. D2 of croup. Mo gave redipred
and went to GP. OE NWOB, nil stridor. Distressed ++

No Age: 48Y - Unwell with pain, insp and exp wheeze, leg swelling, Febrile tachycardic.
EMS Treatment (Lung CA with bone mets, had hydromorph, fenatnyl patch AV
350mcg IN fentanyl 50mg IN ketamine 5/10 post meds pt tachy, febrile, with
cellulitis had ventolin puffers pt on 2L oxygen, HR 118, BP 126/74, RR24, T 37.9,
BGL 14.6, GCS15, spo2 92%)
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3 Methods

The goal of our active learning research was to empirically compare the use of these
techniques against traditional approaches for identifying further training data, while
using minimal amounts of data to reduce the labelling burden on domain experts. Our
approach was to utilize an initially trained asthma classification model’s predictions
and probabilities, and the vector-space embeddings of the texts in the active learning
processes. Therefore, we first trained a classifier on a limited set of training data to give us
a discriminator, which we used to select a likely asthma-related cohort and applied active
learning to identify the most useful examples for labelling. We implemented a stopping
criterion using a metric-based approach, setting a predefined threshold performance of
0.9 on the F1 score. This decision was informed by our experience working with the ED
data [32], considering the acceptable performance level, the quality of our test datasets,
and the constraints of the limited time available for our experiments.

3.1 Data Preparation for Classification

A pattern matching rule, designed by JBL, was employed on the text pool to identify
records for labellingwhich containedmentions of asthma, asthmamedications, or asthma
symptoms. The rule searched for records that contained one or more of the following
strings: ‘asthm’, ‘wheez’, ‘salb’, ‘ventol’, and ‘tightness’ - 56,587 recordswere identified
as potential candidates for labelling. To ensure a representative distribution of text lengths
in our labelled data, subsets of 500 records were sampled from the data according to their
text lengths and annotated by JBL. Six subsets of 500 labelled records were obtained,
resulting in a labelled training dataset containing 2,500 records, with 500 held in reserve.

The labelled 2,500 training dataset contained 647 records with a positive label for
an asthma presentation and 1,853 records for a negative presentation. From the 2,500
we sampled out 100 records (55 of negative and 45 of positive labels) for a validation
dataset. We also sampled out 150 for a test dataset, and from the reserved dataset of 500
we manually identified 100 more labelled examples for the test set that were likely to
challenge the models, resulting in a test dataset of 250 (125 of each label).

These data were approximately 0.3% of the original 733 thousand text pool. Table 2
presents the datasets distributions.

Table 2. The datasets distributions

Dataset Asthma Non-Asthma Total

Pool – – 733,638

Asthma pattern matching – – 56,587

Training 527 1,723 2,250

Validation 45 55 100

Test 125 125 250
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Because of the data imbalance of 527 positive to 1723 negative labels, for training
our models we used under-sampling to combine the 527 positive labels and half of the
negative labels of the training dataset into two smaller training datasets of 1,389, each
containing 527 positive and 862 negative instances (one negative example was repeated
to balance the two training sets).

3.2 Classification Model

We used the RoBERTa-large-PM-M3-Voc [33] model, published by Facebook, which
has been shown to be superior to other models for classifying biomedical and clinical
texts. We fine-tuned a classifier on each dataset, obtaining two models. We selected the
best performing classifier checkpoints from each training run by evaluating F1 scores
on the validation dataset, then further assessed the models by loading these checkpoints
and predicting on the test dataset. Test scores are shown in Table 3.

Table 3. Baseline models’ test scores

Model TN FN FP TP Precision Recall F1

Baseline Model
One

100 19 25 106 0.8092 0.8480 0.8281

Baseline Model
Two

78 11 47 114 0.7081 0.9120 0.7972

3.3 Predictions on the Pool

The base classifier trained on the first training data subset had a better F1 score on the
test data because of its greater precision, however the model trained on the second subset
had a far higher recall (0.91 vs. 0.85), though its lack of precision resulted in a lower
F1 score. We estimated that their combined positive predictions on the text pool would
indicate a likely asthma-related subset of the text pool, and that their overlapping positive
predictions would mean that negative predictions would be included, thereby including
examples of model disagreement or uncertainty.

After applying the models to the entire 700 thousand record text pool (including
labelled records), we obtained 14,101 positive predictions from the first base classifier,
and 18,513 from the second base classifier. Their combined positive predictions were
19,073, resulting from 13,541 identical positive predictions from each model and 5,532
positive predictions made by only one of the models. The difference therefore contained
negative predictions from one of the classifiers. By constraining our view of the text pool
to these data we effectively filtered out records that were unlikely to be asthma-related
but still allowed for some uncertainty in the predictions. We refer to these records as the
“positive predictions” data.
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3.4 Query Strategies

We imported the text pool into a ChromaDB vector database, with Sentence-BERT
embeddings [34], using the all-MiniLM-L6-v2model, which is trained on a large dataset
of sentence pairs and maps sentences to a 384-dimensional dense vector space. We used
the default Euclidian distance algorithm for mapping the vector embeddings relation-
ships. We treated an entire record as a single text unit—this was appropriate for both the
brevity of the ED notes and the type of text found in them. For metadata we included
the record identifier, the two base models’ predictions and probabilities, and the label,
where one existed. Importing into a vector database allowed us to preserve the embed-
dings information, which we used for clustering the likely asthma-related records, and
additionally allowed us to perform ad hoc document similarity analysis via the inbuilt
query mechanism of ChromaDB.

We then performed three-dimensional k-means clustering of the group of either
labelled or positively predicted text, using UMAP and HBDSCAN over the vector
embeddings, again based on Euclidean distance. Forty-one clusters were identified, and
we estimated their centroids by calculating the average of their XYZ axes. The clusters
and their centroids were the basis for identifying our active-learning records. Since there
were 41 clusters, we decided to obtain 4 examples per cluster (4 x 41 = 164) from our
active learning methods, and 164 records when evaluating other sampling approaches.
We took all the samples of 164 each from the predicted cohort, by using the three most
common families of active learning strategies: random sampling, uncertainty sampling,
and diversity sampling [35]. We also created a baseline by sampling 164 of the records
that had been identified by pattern matching. The sampling is explained in detail in the
following sections.

Pattern Matching
In the baseline pattern matching approach, candidate records were selected from the
available pool based on the presence of predetermined search strings. The search strings
included ‘asthm’, ‘wheez’, ‘salb’, ‘ventol’, and ‘tightness’, and any record that exhibited
one or more of these search strings was included. These were subsequently labelled in
batches of 500. A random sample of 164 was taken from the remaining 400 records
of the initial pattern-matched dataset, that had not been used in the initial training. It
contained 60 positive and 104 negative labels for asthma.

Random Sampling
This active learning strategy ensures that any record that had been identified as potentially
asthma by the initial classification process has an equal opportunity to be chosen. We
randomly selected 164 records from the “positive predictions” group, which excluding
any that had already been labelled. Random sampling used the same sampling technique
as was used to select from pattern-matched records, the difference was the data source.
That is, we sampled from the records identified by the two baseline classifiers, rather
than records identified via pattern matching. Because of the overlapping predictions of
the two baseline classifiers, there were records that one or other of the classifiers said
were not asthma. According to the best of the baseline classifiers there were 103 positive
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predictions and 61 negative predictions, but the subsequent labelling showed these as
84 positive and 80 negative labelled asthma records.

Diversity Sampling
Diversity sampling, also referred to as representativeness sampling, focuses on assem-
bling a diverse collection of records that represent the data, which in our case are the
group of positive predictions records. Using the 41 clusters obtained by k-means cluster-
ing, we identified the 4 closest unlabeled records to the centroid of each of the clusters,
based on Euclidian distance—and so obtained 164 records that represented the range
of topics in the data. The best baseline classifier predicted that there were 93 positive
and 71 negative asthma records in this sample, but labelling showed that there were 56
positive and 108 negative labels.

Uncertainty Sampling
The uncertainty-based sampling approach selects data about which the classifier model
lacks confidence, aiming to identify data points that can offer the most information about
subject (decision) boundaries. This is also referred to as informativeness sampling, as
labelling such low-confidence data provides more information to the model compared
to repeated instances of already well-known data. For each of the 41 clusters we chose
the 4 records where the most accurate base classifier (base classifier 1) had the lowest
probability for its predictions,whichwere ranging fromaround 0.75 to 0.51. The baseline
classifier had predicted 94 positive and 70 negative asthma records in the sample, but
labelling had these as 39 positive and 125 negative labels.

3.5 Training on Active Learning Enhanced Data

After the samples had been labelled, they were added to the training subsets that had
been used in the first training for the two base classifiers. This is depicted in Table 4.

Table 4. Active learning contributions to training datasets

Dataset New Pos Pos Total Pos New Neg Neg Total Neg Total

Uncertainty 39 527 566 125 862 987 1553

Diversity 56 527 583 108 862 970 1553

Sampling 84 527 611 80 862 942 1553

Pattern Matched 60 527 587 104 862 966 1553

Baseline 527 527 862 862 1389

New RoBERTa classifiers were trained over the updated datasets with identical
parameters to those used in the first round of training and used the same test dataset
for evaluation. This meant that the different strategies were all evaluated under the same
conditions as the initial training and as each other, the only difference being the added
information in the data obtained by the various active learning (or pattern matched)
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strategies, which was labelled and added to the training datasets. When assessing ran-
dom sampling, in order to accommodate the uncertainties associated with the random
approach, we generated three random samples, trained a new model for each sample,
and utilized the scores from the median model during the evaluation process.

3.6 Training with Hybrid Query Strategies

Wecarriedout another roundof trainingby addingvarious query strategy results together:
Uncertainty + Diversity, Uncertainty + Random Sampling, Diversity + Random Sam-
pling, and even RandomSampling+RandomSampling (by sampling a further 164 from
the combined records from the best and worst of the random sampling datasets). Finally,
we evaluated a dataset of Uncertainty + Diversity + Random Sampling strategy. As
before, these were added to the initial 2,500 record training dataset used for training the
baselinemodel. A few duplicates existed because of overlaps in the sampling techniques,
these were removed.

4 Results

When evaluating random sampling we used the scores of the median model. For the
uncertainty and diversity datasets we used the scores of the best model. The models’
performance was assessed using the standard evaluation metrics of precision, recall, and
F1-score, which are presented in Table 5.

Table 5. Scores of baseline models vs. models including active learning data in training

Model TN FN FP TP Precision Recall F1

Uncertainty 3 118 16 7 109 0.9397 0.8720 0.9046

Sampling 3, 4 108 10 17 115 0.8712 0.9200 0.8949

Diversity 3 107 13 18 112 0.8615 0.8960 0.8784

Pattern Matched 2 113 24 12 101 0.8938 0.8080 0.8487

Baseline 1 1 100 19 25 106 0.8092 0.8480 0.8281

Baseline 2 1 78 11 47 114 0.7081 0.9120 0.7972

1.Baseline is the initial model trained on 2,500 labelled records, identified via pattern matching.
2.Pattern Matched is a model trained on the initial 2,500 plus 164 additional records identified via
pattern matching.
3.Uncertainty, Diversity, and Sampling are models trained on the initial 2,500 plus 164 records
which were sampled from the baseline models’ predictions, according to their respective sampling
process (Uncertainty, Diversity or Sampling), and labelled.
4.Sampling was repeated 3 times, to allow for its unpredictability, the median scores are used.

The results of using hybrid query strategies datasets are shown in Table 6, which
includes all prior tests for comparison.
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Table 6. Scores after combining active learning data for training

Model TN FN FP TP Precision Recall F1

Uncertainty +
Sampling

112 9 13 116 0.8992 0.9280 0.9134

Uncertainty 118 16 7 109 0.9397 0.8720 0.9046

Sampling 108 10 17 115 0.8712 0.9200 0.8949

Uncertainty +
Diversity +
Sampling

108 10 17 115 0.8712 0.9200 0.8949

Uncertainty +
Diversity

116 17 9 108 0.9231 0.8640 0.8926

Sampling +
Sampling

110 14 15 111 0.8810 0.8880 0.8845

Diversity +
Sampling

104 10 21 115 0.8456 0.9200 0.8812

Diversity 107 13 18 112 0.8615 0.8960 0.8784

Pattern Matched 113 24 12 101 0.8938 0.8080 0.8487

Baseline 1 100 19 25 106 0.8092 0.8480 0.8281

Baseline 2 78 11 47 114 0.7081 0.9120 0.7972

5 Discussions

In this study, we investigated the impact of active learning strategies on selecting data
for labelling to train models for classifying emergency department acute asthma pre-
sentations. We evaluated three commonly used active learning approaches: uncertainty
sampling, diversity sampling, and random sampling.

Our findings confirmed the viability of active learning methods for medical text
classification, offering a promising approach to reduce annotation costs. We observed
that selecting records that the initially trained model was uncertain about provided a
more informative training set, as evidenced by the better scores obtained by subsequent
models. This aligns with the conclusions drawn from other research [20, 24]. When 164
records identified using uncertainty were added to the baseline of 2500 training records,
and a newmodel was trained, the F1-score improved by 7.6 percentage points compared
to the baseline model’s score, resulting in a score of 0.905.

The diversity method also elicited a significant difference, but not as large; its F1-
score of 0.878 was 5.0 percentage points better than baseline. Our hypothesis is that the
initially labeled data sufficiently represented the space, thus limiting the advantage for
the representative approach of the diversity method. Other researchers who have found
diversity sampling not as effective as uncertainty in the medical domain argue that this
could be due to the more restricted sublanguage of the medical domain, having a limited
vocabulary [23].
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Models trained with the additional records obtained through random sampling from
the predicted cohort, on average, exhibited superior performance compared to those
trained using diversity sampling. The median F1-score of 0.895 was notably 6.7 points
higher than the baseline, surpassing the diversity-trained model’s score by 1.6 points.
The score was only 1 percentage point less than the uncertainty trained model. The
random sampling performance reinforces the observation that we were able to train an
accurate model on the initially labelled data, and so it was effective to randomly sample
from records it had identified as likely asthma. Also, random sampling allowed for a
variety of asthma examples and a more balanced set of labels, which had the potential
to work favorably compared with the diversity sampling approach that targeted records
near to each k-means cluster center.

Records sampled from pattern matched examples did not however perform as well
- training that included a batch of these only raised the F1-score by 2.1 percentage
points. This indicates that all the active learning approaches outperformed an approach
of merely adding extra records identified by pattern matching.

Interesting results were obtained when the various active learning datasets were
combined. The hybrid of the uncertainty and random sampled records improved the
model over the previous best score (from uncertainty sampling) by 0.9 percentage points,
to achieve an F1-score of 0.913, but all other combinations either made no difference
or decreased the model performance to below that of both the uncertainty and random
samplingmodels. Ordinarily, addingmore data improves amodel’s performance, but this
result suggested that additional data could be detrimental, comparedwith the contribution
of a single set of extra training records obtained by an active learning method.

We performed error analysis on the uncertainty trainedmodel’s false predictions. Out
of 250 records, there were 16 instances of false negative predictions. All these records
had mentions of other health issues, such as infection, use of antibiotics, fever, or croup.
This led the model to incorrectly predict that the patient did not have asthma. Of the 7
false positive predictions, all the patients were over the age of 70 and had a history of
asthma. However, they also had strong indications of other health issues, which could
have been the likely reason for their presentation (instead of asthma).

The potential utility and efficiency of this active learning approach assists syndromic
surveillance systems to be rapidly prepared and implemented to address emerging pub-
lic health crises. By increasing the scope of AL trained surveillance of health events of
interest, early warning of dynamic changes in presentation patterns can improve care
and outcomes. In the case of thunderstorm asthma events, health systems could respond
more rapidly and specifically to allocate resources and inform providers and the commu-
nity to be alert for symptoms, maximise preventive therapies and stock up on relieving
medicines.

Our study has limitations. We were not able to explore the effect of iterative rounds
of active learning, because we reached close to a maximum possible performance in
our classifiers after just the initial application of active learning. Ideally, we should have
started with a smaller number of training records, and consequently our initial classifier
would have not been so performant, and we could have observed at least two rounds of
improvement due to the application of repeated active learning.
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In the future, we plan to initiate the task with a smaller set of labeled data and extend
our investigation into the effects of active learning, aiming to gain amore comprehensive
understanding of its potential benefits, and investigate other active learning approaches.

6 Conclusion

Our study highlighted the impact of active learning strategies on enhancing the efficiency
and efficacy of medical text classification models, specifically focusing on emergency
department asthma presentations. Our findings underscored the superiority of uncer-
tainty sampling, wherein selecting records that initially perplexed the model yielded
substantial improvements in subsequent model training. Notably, the effectiveness of
random sampling highlighted the model’s ability to glean valuable insights from its
own predictions. The use of active learning in syndromic surveillance allows develop-
ment of detection models in timely way enabling public health systems’ responsiveness,
preparedness, and safety, ultimately improving patient care and outcomes.
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