
Chapter 5 
Normed Spaces and Inner Product 
Spaces 

This chapter delves into the fundamental mathematical structures of normed linear 
spaces and inner product spaces, providing a solid comprehension of these essential 
mathematical structures. Normed spaces are defined as vector spaces that have been 
reinforced with a norm function that quantifies the magnitude or length of a vector 
from the origin. Several examples, such as Euclidean space with the well-known 
Euclidean norm, demonstrate the use of normed spaces. Building on this, inner 
product spaces are investigated, with the goal of broadening the concept of normed 
spaces by integrating an inner product that generalizes the dot product. Euclidean 
space is one example, where the inner product can characterize orthogonality and 
angle measurements. The chapter expands on the importance of orthogonality in inner 
product spaces, providing insights into geometric relationships and applications in a 
variety of domains. Gram–Schmidt orthogonalization technique is introduced, which 
provides a mechanism for constructing orthogonal bases from any bases of an inner 
product space. The concept of orthogonal complement and projection onto subspaces 
broadens our understanding by demonstrating the geometrical interpretation and 
practical application of these fundamental mathematical constructs. Proficiency in 
these topics is essential for advanced mathematical study and a variety of real-world 
applications in a variety of areas. 

5.1 Normed Linear Spaces 

In this section, we will introduce a metric structure called a norm on a vector space 
and then study in detail the resultant space. A vector space with a norm defined on 
it is called normed linear space. A norm, which intuitively measures the magnitude 
or size of a vector in a normed space, enables the definition of distance and conver-
gence. Normed spaces provide an adaptive environment for various mathematical 
and scientific applications, providing a deeper understanding of vector spaces and 
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accommodating numerous norm functions to meet various needs. Let us start with 
the following definition. 

Definition 5.1 (Normed linear space) Let. V be a vector space over the field. K, where 
.K is either .R or . C. Norm is a real-valued function on .V .(||.|| : V → R) satisfying 
the following three conditions for all .u, v ∈ V and .λ ∈ K: 

(N1) .||v|| ≥ 0, and .||v|| = 0 if and only if . v = 0
(N2) . ||λv|| = |λ| ||v||
(N3) .||u + v|| ≤ ||u|| + ||v||.(Triangle Inequality) 
Then .V together with a norm defined on it, denoted by .(V, ||.||), is called a Normed 
linear space. 

Example 5.1 Consider the vector space .R over . R. Define .||v||0 = |v| for .v ∈ R. 
Then by the properties of modulus function, .||.||0 is a norm on . R. 

Example 5.2 Consider the vector space .R
n over . R. For .v = (v1, v2, . . . , vn) in .R

n , 

define .||v||2 = (En
i=1|vi |2

) 1
2 . This norm is called the 2-norm. 

(N1) Clearly .||v||2 = (En
i=1|vi |2

) 1
2 ≥ 0 and . ||v||2 = (En

i=1|vi |2
) 1

2 = 0 ⇔
.|vi |2 = 0 for all .i = 1, 2, . . . , n ⇔ v = 0. 

(N2) For .λ ∈ R and .v ∈ R
n , 

. ||λv||2 =
(

nE

i=1

|λvi |2
) 1

2

=
(

nE

i=1

|λ|2|vi |2
) 1

2

=
(

|λ|2
nE

i=1

|vi |2
) 1

2

= |λ|
(

nE

i=1

|vi |2
) 1

2

= |λ| ||v||2

(N3) For .u, v ∈ R
n , 

.

nE

i=1

(|ui | + |vi |)2 =
nE

i=1

(|ui | + |vi |) (|ui | + |vi |)

=
nE

i=1

|ui | (|ui | + |vi |) +
nE

i=1

|vi | (|ui | + |vi |)

≤
(

nE

i=1

|ui |2
) 1

2
(

nE

i=1

(|ui | + |vi |)2
) 1

2

+
(

nE

i=1

|vi |2
) 1

2
(

nE

i=1

(|ui | + |vi |)2
) 1

2

=
(

nE

i=1

(|ui | + |vi |)2
) 1

2

⎡

⎣
(

nE

i=1

|ui |2
) 1

2

+
(

nE

i=1

|vi |2
) 1

2

⎤

⎦
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which implies 

. 

(
nE

i=1

(|ui | + |vi |)2
) 1

2

≤
(

nE

i=1

|ui |2
) 1

2

+
(

nE

i=1

|vi |2
) 1

2

Since .|ui + vi | ≤ |ui | + |vi |, we have  

. 

(
nE

i=1

|ui + vi |2
) 1

2

≤
(

nE

i=1

|ui |2
) 1

2

+
(

nE

i=1

|vi |2
) 1

2

Therefore .Rn is a normed linear space with respect to .2 − norm. In general, 
.R

n is a normed linear space with respect to the .p − norm defined by . ||v||p =
(En

i=1|vi |p
) 1

p , p ≥ 1.(Verify) 

Example 5.3 Consider the vector space .Rn over . R. For  .v = (v1, v2, . . . , vn) in 
.R

n , define.||v||∞ = max {|v1|, |v2|, . . . , |vn|} = max
i∈{1,...,n}{|vi |}. This norm is called the 

infinity norm. 

Example 5.4 Let .V = C[a, b], the space of continuous real-valued functions on 
.[a, b]. For. f ∈ V , define.|| f || = max

x∈[a,b]| f (x)|. This norm is called supremum norm. 

(N1) Clearly .|| f || = max
x∈[a,b]| f (x)| ≥ 0. Also, .|| f || = max

x∈[a,b]| f (x)| = 0 ⇔ . | f (x)| =
0 for all .x ∈ [a, b] ⇔ f (x) = 0 for all .x ∈ [a, b]. 

(N2) For .λ ∈ R and . f ∈ C[a, b], 

. ||λ f || = max
x∈[a,b]|(λ f )(x)| = max

x∈[a,b]|λ ( f (x))| = max
x∈[a,b]|λ|| f (x)| = |λ| max

x∈[a,b]| f (x)| = |λ| || f ||

(N3) Since .|a + b| ≤ |a| + |b|, for . f, g ∈ C[a, b] we have 
. || f + g|| = max

x∈[a,b]|( f + g)(x)| = max
x∈[a,b]| f (x) + g(x)| ≤ max

x∈[a,b]| f (x)| + max
x∈[a,b]|g(x)| = || f || + ||g||

Then .C[a, b] is a normed linear space with the supremum norm (Fig. 5.1). 

We have shown that .|| f || = max
x∈[a,b]| f (x)| defines a norm in .C[a, b]. Now  let us  

define .|| f || = min
x∈[a,b]| f (x)|. Does that function defines a norm on .C[a, b]? No,  it  

doesn’t! Clearly, we can observe that.|| f || = 0 does not imply that. f = 0. For exam-
ple, consider the function . f (x) = x2 in .C[−4, 4]. Then .|| f || = min

x∈[−4,4]| f (x)| = 0, 

but . f /= 0. As  .(N1) is violated, .|| f || = min
x∈[−4,4]| f (x)| does not defines a norm on 

.C[−4, 4].



166 5 Normed Spaces and Inner Product Spaces

Fig. 5.1 Consider the functions . f (x) = x2 and .g(x) = cos x in .C[−4, 4]. Then  . || f || =
max

x∈[−4,4]|x
2| = 16 and. ||g|| = max

x∈[−4,4]|cos x | = 1

Definition 5.2 (Subspace) Let .(V, ||.||) be a normed linear space. A subspace of . V
is a vector subspace .W of .V with the same norm as that of . V . The norm on .W is 
said to be induced by the norm on . V . 

Example 5.5 Consider.C[a, b]with the supremum norm, then.P[a, b] is a subspace 
of .C[a, b] with supremum norm as the induced norm. 

We will now show that every normed linear space is a metric space. Consider the 
following theorem. 

Theorem 5.1 Let .(V, ||.||) be a normed linear space. Then .d(v1, v2) = ||v1 − v2|| is 
a metric on . V . 

Proof Let .v1, v2, v3 ∈ V . Then 

(M1) By .(N1), we have  
. d(v1, v2) = ||v1 − v2|| ≥ 0

and 
. d(v1, v2) = ||v1 − v2|| = 0 ⇔ v1 − v2 = 0 ⇔ v1 = v2

(M2) By .(N2), we have  

. d(v1, v2) = ||v1 − v2|| = ||v2 − v1|| = d(v2, v1)

(M3) Now we have to prove the triangle inequality. 

.d(v1, v2) = ||v1 − v2||
= ||v1 − v3 + v3 − v2||
≤ ||v1 − v3|| + ||v3 − v2|| (By(N3))

= d(v1, v3) + d(v3, v2)
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The metric defined in the above theorem is called metric induced by the norm. 
The above theorem implies that every normed linear space is a metric space with 
respect to the induced metric. Is the converse true? Consider the following example. 

Example 5.6 In Example 1.25, we have seen that for any non-empty set . X , the  
function . d defined by 

. d(x, y) =
{
1 , x /= y

0 , x = y

defines a metric on . X . Let  .V be a vector space over the field . K. Clearly .(V, d) is a 
metric space. If .V is a normed linear space, by Theorem 5.1, we have  

. ||v|| = d(v, 0) =
{
1 , v /= 0

0 , v = 0

As you can observe that, for any .λ /= 0 ∈ K, 

. ||λv|| =
{
1 , v /= 0

0 , v = 0
/= |λ| ||v|| =

{
|λ| , v /= 0

0 , v = 0

the discrete metric cannot be obtained from any norm. Therefore, every metric space 
need not be a normed linear space. 

Now that you have understood the link between normed spaces and metric spaces, 
let us discuss a bit more in detail about defining a distance notion on vector spaces. 
In Example 5.2, we have defined a number of norms on.R

n . What is the significance 
of defining several norms on a vector space? Consider a simple example as depicted 
in Fig. 5.2. 

In real life, we can justify the significance of defining various notions of distances 
on vector spaces with many practical applications. Therefore, while dealing with a 
normed linear space we choose the norm which meets our need accordingly (Fig. 5.3). 

Now we understand that different norms on a vector space can give rise to different 
geometrical and analytical structures. Now we will discuss whether these structures 
are related or not. As a prerequisite for the discussion, let us define the “fundamental 
sets” on a normed linear space 

Definition 5.3 (Open ball) Let  .(V, ||.||) be a normed linear space. For any point 
.v0 ∈ V and .e ∈ R

+, 
. Be(v0) = {v ∈ V | ||v − v0|| < e}

is called an open ball centered at .v0 with radius . e. The  set  .{v ∈ V | ||v|| = 1} is 
called the unit sphere in . V

We can see that this definition follows from the Definition 1.23 of an open ball in 
a metric space.
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Fig. 5.2 Suppose that you have to move a chess piece from.A1 to.D4 in least number of moves. If 
the piece is a bishop we can move the piece directly from.A1 to.D4. If the piece is a rook, first we will 
have to move the piece either to.A4 or.D1 and then to.D4. Now, if the piece is king, the least number 
of moves would be 3.(A1 → B2 → C3 → D4). Observe that the path chosen by different pieces to 
move from.A1 to.D4 in least number of moves are different. Now try to calculate the distance traveled 
by the piece in each of these cases. Are they the same? We need different notions of distances, right? 
Interestingly, the metric induced from the infinity norm,.d(u, v) = maxi {|ui − vi |} is known as the 
chess distance or Chebyshev distance (In honor of the Russian mathematician, Pafnuty Chebyshev 
(1821–1894)) as the Chebyshev distance between two spaces on a chess board gives the minimum 
number of moves required by the king to move between them 

Fig. 5.3 Consider.R2 with 
different norms defined on it. 
If we are using the. 2-norm, 
the distance from the origin 
to the point.(1, 2) is 
.
/|1|2 + |2|2 = √

5 as it is 
length of the hypotenuse of a 
triangle with base. 1 and 
height. 2. If we are  using  
. 1-norm the distance will be. 3
as it is the sum of the 
absolute values of the 
coordinates and if we are 
using infinity norm, the 
distance will be. 2 as it is the 
maximum of absolute values 
of the coordinates 

Example 5.7 Consider.(R, ||.||0). In Example 1.26, we have seen that the open balls 
in .(R, ||.||0) are open intervals in the real line. Now, consider the set . S = {(v1, 0) |
v1 ∈ R, 1 < v1 < 4} in .(R2, ||.||2). Is . S an open ball in .(R2, ||.||2)? Is there any  way  
to generalize the open balls in .(R2, ||.||2)? Yes, we can!! Take an arbitrary point 
.w = (w1,w2) ∈ R

2, and .e ∈ R
+. Then
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Fig. 5.4 The open balls in.(R2, ||.||2) are open circles as given in.(a). Clearly,. S is not an open ball 
in. (R2, ||.||2)

Fig. 5.5 Unit spheres in. R2

with respect to.1− norm, 
. 2-norm and infinity norm. 
Observe that the interior 
portion of the unit spheres 
represents the open unit ball, 
. B1(0) = {v ∈ V | ||v|| < 1}
in each of the norms 

. Be(w) = {v = (v1, v2) ∈ R
2 | ||v − w|| < e}

= {v = (v1, v2) ∈ R
2 | (v1 − w1)

2 + (v2 − w2)
2 < e2}

That is, open balls in .(R2, ||.||2) are “open circles” (Fig. 5.4). 
Example 5.8 Let us compute the open unit balls centered at the origin in . R2

with respect to 1-norm, 2-norm and infinity norm. Let  .Bp
e denote the open ball 

in .
(
R

2, ||.||p

)
. Then 

. B1
1 = {

(v1, v2) ∈ R
2 | |v1| + |v2| < 1

}

B2
1 = {

(v1, v2) ∈ R
2 | |v1|2 + |v2|2 < 1

}

and (Fig. 5.5) 
.B∞

1 = {
(v1, v2) ∈ R

2 | max{|v1|, |v2|} < 1
}
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Fig. 5.6 Consider a function . f in .C[−4, 4] with supremum norm. Continuous functions that lie 
between the dotted lines constitute. B1( f ) = {g ∈ C[−4, 4] | || f − g|| < 1}

Fig. 5.7 Clearly, we can observe that every point in an open ball generated by the infinity norm is 
inside an open ball generated by. 2-norm and vice versa 

Observe that the open balls in .R
2 corresponding to different norms may not have 

the same shape even if the center and radius are the same. Now, let us give you an 
example of open ball in .C[−4, 4] with supremum norm (Fig. 5.6). 

Earlier, we have posed a question, does there exist any link between the topology 
generated by the different norms defined on a vector space? It is interesting to note 
that the topology generated by any norms on a finite-dimensional space is the same. 
That is, the open sets defined by these norms are topologically same. The following 
figure illustrates this idea by taking the open balls in .R2 generated by the infinity 
norm and . 2-norm as an example (Fig. 5.7). 

Now we will prove algebraically that, in a finite-dimensional space the open 
sets generated by any norms are topologically the same. For that, we will have the 
following definition.
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Definition 5.4 (Equivalence of norms) A norm.||.|| on a vector space. V is equivalent 
to .||.||0 on .V if there exists positive scalars . λ and . μ such that for all .v ∈ V , we have  

. λ ||v||0 ≤ ||v|| ≤ μ ||v||0
Example 5.9 Let us consider the . 1-norm, . 2-norm and infinity norm in .R

n . For any 
element .v = (v1, v2, . . . , vn) ∈ R

n , we have  

. ||v||∞ = max
i∈{1,2,...,n}{|vi |} ≤ |v1| + |v2| + · · · + |vn| = ||v||1

Also by Holder’s inequality (Exercise 5, Chap. 1), we have 

. ||v||1 =
nE

i=1

|vi | =
nE

i=1

|vi |.1 ≤
(

nE

i=1

|vi |2
) 1

2
(

nE

i=1

12
) 1

2

= √
n ||v||2

and finally, 

. ||v||2 =
(

nE

i=1

|vi |2
) 1

2

≤
(

nE

i=1

(
max

i∈{1,2,...,n}{|vi |}|vi |
)2
) 1

2

= (
n ||v||2∞

) 1
2 = √

n ||v||∞

Thus .1− norm, . 2-norm and infinity norm in .R
n are equivalent. 

In fact, we can prove that every norm in a finite-dimensional space is equivalent. 
But this is not the case if the space is infinite- dimensional. Consider the following 
example. 

Example 5.10 Consider the linear space .C[0, 1] over the field . R. In  
Example 5.4, we have seen that .|| f || = max

x∈[0,1]| f (x)| defines a norm on .C[0, 1], 
called the supremum norm. Also, we can show that .|| f ||1 = { 1

0 | f (x)|dx defines 
a norm on .C[0, 1](Verify!). We will show that there doesn’t exist any scalar . λ such 
that .|| f || ≤ || f ||1 for all . f ∈ C[0, 1]. For example, consider a function defined as 
in Fig. 5.8. Then we can observe that .|| fn|| = 1 and.|| fn||1 = 1

2n (How?). Clearly, we 
can say that there doesn’t exists any scalar . λ such that .1 ≤ λ

2n for all . n. 

We have discussed the equivalence of norms in terms of defining topologically 
identical open sets. This can also be discussed in terms of sequences. In Chap. 1, we  
have seen that the addition of metric structure to an arbitrary set enables us to discuss 
the convergence or divergence of sequences, limit and continuity of functions, etc., 
in detail. The same happens with normed linear spaces also. The difference is that 
we are adding the metric structure not just to any set, but a vector space. All these 
notions can be discussed in terms of induced metric as well as norm. We will start 
by defining a Cauchy sequence in a normed linear space.
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Fig. 5.8 Define 

as 

shown in the figure. Clearly 
. fn(x) belongs to..C[0, 1] for 
all . n

Definition 5.5 (Cauchy Sequence) A sequence.{vn} in a normed linear space. (V, ||.||)
is said to be Cauchy if for every.e > 0 there exists an.Ne ∈ N such that. ||vn − vm|| < e

for all .m, n > N . 

Definition 5.6 (Convergence) Let .{vn} be a sequence in .(V, ||.||), then.vn → v in. V
if and only if .||vn − v|| → 0 as .n → ∞. 

In Chap. 1, we have seen that in a metric space every Cauchy sequence need not 
necessarily be convergent. Now the important question of whether a Cauchy sequence 
is convergent or not in a normed linear space pops up. The following example gives 
us an answer. 

Example 5.11 Consider the normed linear space.P[0, 1] over. Rwith the supremum 
norm. Consider the sequence, .{pn(x)}, where 

. pn(x) = 1 + x

1! + x2

2! + · · · + xn

n!
Is the sequence convergent? If so, is the limit function a polynomial? Clearly, not! 
We know that.pn(x) → ex , x ∈ [0, 1](Verify!). Is it the only sequence in.P[0, 1] over 
.R that converge to a function which is not a polynomial? Let us consider another 
sequence .{qn(x)}, where 

. qn(x) = 1 + x

2
+ x2

4
+ · · · + xn

2n

First we will prove that .{qn} is a Cauchy sequence. For .n > m, 

. ||qn(x) − qm(x)|| = max
x∈[0,1]

||||
|

nE

i=0

xi

2i
−

mE

i=0

xm

2m

||||
|

= max
x∈[0,1]

|||
|
|

nE

i=m+1

xi

2i

|||
|
|

≤ 1

2m
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Fig. 5.9 As.|| fn − fm|| is 
the area of the triangle 
depicted in the figure, it is 
easy to observe that.{ fn} is 
Cauchy 

which shows that .{qn(x)} is a Cauchy sequence. Now for any .x ∈ [0, 1], we have  

.qn(x) → q(x) as .n → ∞ where .q(x) = 1

1 − x
2

(How?) and clearly . q(x) /∈ P[0, 1]
as it is not a polynomial function. Hence .{qn(x)} is not convergent in .P[0, 1]. What 
about .Pn[0, 1]? Is it complete? 

Here is another example of an incomplete normed linear space. 

Example 5.12 Consider.C[0, 1]with.|| f || = { 1
0 | f (x)|dx for. f ∈ C[0, 1]. Consider 

the sequence of functions . fn ∈ C[0, 1] where 

. fn(x) =
{
nx, x ∈ |

0, 1
n

}

1, x ∈ |
1
n , 1

}

We will show that .{ fn} is Cauchy but not convergent (Fig. 5.9). 
For .n > m, 

. | fn(x) − fm(x)| =

⎧
⎪⎨

⎪⎩

nx − mx, x ∈ |
0, 1

n

}

1 − mx, x ∈ |
1
n ,

1
m

}

0, x ∈ |
1
m , 1

}

Then 

. 

{ 1

0
| fn(x) − fm(x)|dx =

{ 1
n

0
(n − m) x .dx +

{ 1
m

1
n

(1 − mx) dx

= (n − m)
1

2n2
+ 1

m
− 1

n
− 1

2m
+ m

2n2

= 1

2

|
1

m
− 1

n

|

Now for any .e > 0, take .N > 2
e
. Then for .m, n > N , 

.

{ 1

0
| fn(x) − fm(x)|dx = 1

2

|
1

m
− 1

n

|
<

1

m
+ 1

n
<

e

2
+ e

2
= e
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Therefore the sequence is Cauchy. Now consider 

. f (x) =
{
0, x = 0

1, x ∈ (0, 1]

Then .|| fn − f || = 1
n → 0 as .n → ∞. That is, . fn converges to . f but . f /∈ C[0, 1]. 

Normed linear spaces where every Cauchy sequence is convergent are of greater 
importance in Mathematics. Such spaces are named after the famous Polish math-
ematician Stefan Banach (1892–1945) who started a systematic study in this area. 

Definition 5.7 (Banach Space) A complete normed linear space is called a Banach 
space. 

Example 5.13 Consider the normed linear space .Rn over . R with 2-norm. We will 
show that this space is a Banach space. Let.{vk} be a Cauchy sequence in.R

n . As. vk ∈
R

n , we can take .vk = (
vk1, v

k
2, . . . , v

k
n

)
for each . k. Since .{vk} is a Cauchy sequence, 

for every .e > 0 there exists an .N such that 

. ||vk − vm||2 =
nE

i=1

(
vki − vmi

)2
< e2

for all .k,m ≥ N . This implies that .
(
vki − vmi

)2
< e2 for each .i = 1, 2, . . . , n and 

.k,m ≥ N and hence.|vki − vmi | < e for each.i = 1, 2, . . . , n and.k,m ≥ N . Thus for 
a fixed  . i , the sequence .v1i , v

2
i , . . . forms a Cauchy sequence of real numbers. Since 

. R is complete, .vki → vi as .k → ∞ for each. i . Take.v = (v1, v2, . . . , vn) ∈ R
n . Then 

. ||vk − v||2 =
nE

i=1

(
vki − vi

)2 → 0 as n → ∞

Hence, .||vk − v|| → 0 as n → ∞. Therefore .Rn over .R with 2-norm is a Banach 
space. What about .Cn over . C with 2-norm? 

In fact, we can prove that every finite-dimensional normed linear space is com-
plete. We have seen that this is not true when the normed linear space is infinite-
dimensional. Here is an example of infinite-dimensional Banach space. 

Example 5.14 Consider .C[a, b] with supremum norm. Let .{ fn} be a Cauchy 
sequence in .C[a, b]. Then for every .e > 0 there exists an .N such that 

. || fn − fm|| = max
x∈[a,b]| fn(x) − fm(x)| < e (5.1)
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Hence for any fixed .x0 ∈ [a, b], we have  

. | fn(x0) − fm(x0)| < e

for all .m, n > N . This implies that . f1(x0), f2(x0), f3(x0), . . . is a Cauchy sequence 
of real numbers. Since .R is complete (by Theorem 1.2), this sequence converges, 
say. fn(x0) → f (x0) as.n → ∞. Proceeding like this for each point in.[a, b], we can 
define a function. f (x) on.[a, b]. Now we have to prove that. fn → f and. f ∈ C[a, b]. 
Then from, Equation 5.1, as .m → ∞, we have  

. max
x∈[a,b]| fm(x) − f (x)| ≤ e

for all .m > N . Hence for every .x ∈ [a, b], 

. | fm(x) − f (x)| ≤ e

for all .m > N . This implies that .{ fm(x)} converges to . f (x) uniformly on .[a, b]. 
Since. f '

ms are continuous on.[a, b] and the convergence is uniform, the limit function 
is continuous on .[a, b](See Exercise 12, Chap. 1). Thus . f ∈ C[a, b] and . fn → f . 
Therefore .C[a, b] is complete. 

5.2 Inner Product Spaces 

In the previous section, we have added a metric structure to vector spaces which 
enabled as to find the distance between any two vectors. Now we want to study the 
geometry of vector spaces which will be useful in many practical applications. In 
this section, we will give another abstract structure that will help us to study the 
orthogonality of vectors, projection of one vector over another vector, etc. 

.R
2 and Dot product 

.R
2 and Dot product First we will discuss the properties of the dot product in the 

space .R
2 and then generalize these ideas to abstract vector spaces. 

Definition 5.8 (Dot Product) Let.v = (v1, v2),w = (w1,w2) ∈ R
2. The dot product 

of . v and . w is denoted by .
' v.w ' and is given by 

.v.w = v1w1 + v2w2
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Theorem 5.2 For .u, v,w ∈ R
2 and .λ ∈ K, 

(a) .v.v ≥ 0 and .v.v = 0 if and only if .v = 0. 
(b) .u.(v + w) = u.v + u.w (distributivity of dot product over addition) 
(c) . (λu).v = λ(u.v)
(d) .u.v = v.u (commutative) 

Proof (a) Let .v = (v1, v2) ∈ R
2. Clearly, .v.v = v21 + v22 ≥ 0 and 

. v.v = v21 + v22 = 0 ⇔ v1 = v2 = 0 ⇔ v = 0

(b) For .u = (u1, u2), v = (v1, v2),w = (w1,w2) ∈ R
2, 

. u.(v + w) = u1(v1 + w1) + u2(v2 + w2)

= u1v1 + u2v2 + u1w1 + u2w2

= u.v + u.w

(c) For .u = (u1, u2), v = (v1, v2) ∈ R
2 and .λ ∈ K, 

. (λu).v = (λu1, λu2).(v1, v2)

= λu1v1 + λu2v2
= λ(u1v1 + u2v2) = λ(u.v)

(d) For .u = (u1, u2), v = (v1, v2) ∈ R
2, 

. u.v = u1v1 + u2v2 = v1u1 + v2u2 = v.u

Definition 5.9 (Length of a vector) Let.v = (v1, v2) ∈ R
2. The length of. v is denoted 

by .|v| and is defined by .|v| = √
v.v =

/
v21 + v22. 

Theorem 5.3 Let .u, v ∈ R
2, then .u.v = |u||v| cos θ where .0 ≤ θ ≤ π is the angle 

between . u and . v. 

Proof Let .u = (u1, u2), v = (v1, v2) ∈ R
2. If either . u or . v is the zero vector, say 

.u = 0, then 
. u.v = 0v1 + 0v2 = 0

Then as .|u| = 0, .|u||v| cos θ = 0. Therefore, the theorem holds. Now suppose that, 
both .u, v /= 0. Consider the triangle with sides .u, v and . w. Then .w = v − u and by 
the law of cosines of triangle, 

.|w|2 = |u|2 + |v|2 − 2|u||v| cos θ (5.2)
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Fig. 5.10 Orthogonal 
projection of. v on. u

where .0 ≤ θ ≤ π is the angle between . u and . v. Also,  

. |w|2 = w.w = (v − u).(v − u) = (v − u).v − (v − u).u = v.v + u.u − 2u.v
(5.3) 

Then equating (5.2) and (5.3), we get, .u.v = |u||v| cos θ . 

Remark 5.1 Let . u and. v be two vectors in .R
2 and let . θ be the angle between. u and 

. v. Then 

1. .θ = cos−1

(
u.v

|u||v|
)
. 

2. If .θ = π
2 , then .u.v = 0. Then we say that . u is orthogonal to . v and is denoted by 

.u ⊥ v. 

Let .v ∈ R
2 be any vector and .u ∈ R

2 be a vector of unit length. We want to find 
a vector in .span ({u}) such that it is near to . v than any other vector in . span ({u})
(Fig. 5.10). We know that the shortest distance from a point to a line is the segment 
perpendicular to the line from the point. We will proceed using this intuition. From 
the above figure, we get 

. πu(v) = (|v| cos θ) u

From Theorem 5.3, .cos θ = u.v
|u||v| . Substituting this in the above equation, we get 

.πu(v) = (u.v)u. The vector .πu(v) is called the orthogonal projection of . v on . u as 

.v − πu(v) is perpendicular to .span ({u}). 
Definition 5.10 (Projection) Let  .v ∈ R

2 be any vector and .u ∈ R
2 be a vector of 

unit length. Then the projection of . v onto .span ({u}) (a line passing through origin) 
is defined by .πu(v) = (u.v)u.
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Inner Product Spaces 

Norm defined on a vector space generalizes the idea of the length of a vector in .R
2. 

Likewise, we will generalize the idea of the dot product in .R2 to arbitrary vector 
spaces to obtain a more useful structure, where we can discuss the idea of orthogo-
nality, projection, etc. 

Definition 5.11 (Inner product space) Let  .V be a vector space over a field . K. 
An inner product on .V is a function that assigns, to every ordered pair of vectors 
.u, v ∈ V , a scalar in . K, denoted by .<u, v>, such that for all .u, v and . w in .V and all 
.λ ∈ K, the following hold: 

(IP1) .<v, v> ≥ 0 and . <v, v> = 0 ⇔ v = 0
(IP2) . <u + w, v> = <u, v> + <w, v>
(IP3) . <λu, v> = λ<u, v>
(IP4) .<u, v> = <v, u>, where the bar denotes complex conjugation. 

Then. V together with an inner product defined on it is called an Inner product space. 
If .K = R, then .(I P4) changes to .<u, v> = <v, u>. 
Remark 5.2 1. If .λ1, λ2, . . . , λn ∈ K and .w, v1, v2, . . . , vn ∈ V , then 

. 

/
nE

i=1

λi vi ,w

\

=
nE

i=1

λi <vi ,w>

2. By .(I P2) and .(I P3), for  a fixed .v ∈ V , .<u, v> is a linear transformation on . V . 
3. Dot product is an inner product on the vector space .R

2 over . R. 

Example 5.15 Consider the vector space .K
n over . K. For .u = (u1, u2, . . . , un) and 

.v = (v1, v2, . . . , vn) in .Kn , define .<u, v> = En
i=1 uivi , here . v denote the conjugate 

of . v. This inner product is called standard inner product in .K
n . 

(IP1) We have 

. <u, u> =
nE

i=1

uiui =
nE

i=1

|ui |2 ≥ 0

and 

. <u, u> =
nE

i=1

|ui |2 = 0 ⇔ |ui |2 = 0,∀i = 1, 2, . . . , n ⇔ ui = 0,∀i = 1, 2, . . . , n ⇔ u = 0

(IP2) For, .w = (w1,w2, . . . ,wn) ∈ K
n
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. <u + w, v> =
nE

i=1

(ui + wi )vi

=
nE

i=1

uivi +
nE

i=1

wivi = <u, v> + <u,w>

(IP3) .<λu, v> = En
i=1 λuivi = λ

En
i=1 uivi = λ<u, v>, where .λ ∈ K. 

(IP4) . <u, v> = En
i=1 uivi = En

i=1 uivi = En
i=1 viui = <v, u>

Therefore .Kn is an inner product space with respect to the standard inner product. 
Observe that if.K = R, the inner product,.<u, v> = En

i=1 uivi is the usual dot product 
in .R

n . 

Example 5.16 Let .V = C[a, b], the space of real-valued functions on .[a, b]. For  
. f, g ∈ V , define .< f, g> = { b

a f (x)g(x)dx . Then .V is an inner product space with 
the defined inner product. 

(IP1) We have 

. < f, f > =
{ b

a
f (x) f (x)dx =

{ b

a
[ f (x)]2 dx ≥ 0

and 

. < f, f > =
{ b

a
[ f (x)]2 dx = 0 ⇔ f (x) = 0,∀ x ∈ [a, b]

(IP2) For, . h ∈ C[a, b]

. < f + h, g> =
{ b

a
[ f (x) + h(x)] g(x)dx

=
{ b

a
f (x)g(x)dx +

{ b

a
h(x)g(x)dx = < f, g> + <h, g>

(IP3) .<λ f, g> = { b
a λ f (x)g(x)dx = λ

{ b
a f (x)g(x)dx = λ< f, g> where .λ ∈ R. 

(IP4) .< f, g> = { b
a f (x)g(x)dx = { b

a g(x) f (x)dx = <g, f >. 
Thus .C[a, b] is an inner product space with respect to the inner product . < f, g> ={ b
a f (x)g(x)dx . Let us consider a numerical example here for better understanding. 
Consider . f (x) = x2 − 1, g(x) = x + 1 ∈ C[0, 1]. Then 

. < f, g> =
{ 1

0
(x3 + x2 − x − 1)dx =

|
x4

4
+ x3

3
− x2

2
− x

|1

0

= −11

12

.< f, f > =
{ 1

0
(x4 − 2x2 + 1)dx =

|
x5

5
− 2

x3

3
+ x

|1

0

= 8

15
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and 

. <g, g> =
{ 1

0
(x2 + 2x + 1)dx =

|
x3

3
+ x2 + x

|1

0

= 7

3

What if we define,.< f, g> = { 1
0 f (x)g(x)dx − 1 for. f, g ∈ C[0, 1]? Does it define 

an inner product on.C[0, 1]? No, it doesn’t! Observe that, for. f (x) = x2 − 1, we get 
.< f, f > = 8

15 − 1 = −7
15 < 0. This is not possible for an inner product as it violates 

.(I P1). Now, let us discuss some of the basic properties of inner product spaces. 

Theorem 5.4 Let .V be an inner product space. Then for .u, v,w ∈ V and .λ ∈ K, 
the following statements are true. 

(a) . <u, v + w> = <u, v> + <u,w>
(b) . <u, λv> = λ<u, v>
(c) . <u, 0> = <0, u> = 0
(d) If .<u, v> = <u,w> for all .u ∈ V , then .v = w. 

Proof For .u, v,w ∈ V and .λ ∈ K, 

(a) . <u, v + w> = <v + w, u> = <v, u> + <w, u> = <v, u> + <w, u> = <u, v> + <u,w>
(b) . <u, λv> = <λv, u> = λ<v, u> = λ <v, u> = λ<u, v>
(c) .<u, 0> = <u, 0 + 0> = <u, 0> + <u, 0> ⇒ <u, 0> = 0. Similarly . <0, u> = <0 + 0,

u> = <0, u> + <0, u> = 0. 
(d) Suppose that .<u, v> = <u,w> for all .u ∈ V . 

. <u, v> = <u,w> ⇒ <u, v> − <u,w> = 0 ⇒ <u, v − w> = 0

That is, .<u, v> = <u,w> for all .u ∈ V implies that .<u, v − w> = 0 ∀ u ∈ V . In  
particular, .<v − w, v − w> = 0. This implies .v − w = 0. That is, .v = w. 

The following theorem gives one of the most important and widely used inequal-
ities in mathematics, called the Cauchy-Schwarz Inequality, named after the French 
mathematician Augustin-Louis Cauchy (1789–1857) and the German mathematician 
Hermann Schwarz (1843–1921). 

Theorem 5.5 (Cauchy-Schwarz Inequality) Let .V be an inner product space. For 
.v,w ∈ V , 

. |<v,w>|2 ≤ <v, v><w,w>

where equality holds if and only if .{v,w} is linearly dependent. 
Proof Let .v,w ∈ V . Consider 

.u = <w,w>v − <v,w>w
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Then 

. 0 ≤ <u, u> = <<w,w>v − <v,w>w, <w,w>v − <v,w>w>
= |<w,w>|2<v, v> − <w,w>|<v,w>|2 − <w,w>|<v,w>|2 + <w,w>|<v,w>|2
= <w,w> |<v, v><w,w> − |<v,w>|2}

Now suppose that .<w,w> > 0, then.<v, v><w,w> − |<v,w>|2 ≥ 0, which implies that 
.|<v,w>|2 ≤ <v, v><w,w>. If.<w,w> = 0, then by.(I P4),.w = 0. Therefore by Theorem 
5.4.(c), .<v,w> = 0 and hence .<v, v><w,w> = 0 = |<v,w>|2. 

Now suppose that equality holds. That is,.|<v,w>|2 = <v, v><w,w>. Then. <u, u> =
0. Then.<w,w>v = <v,w>w and hence.{v,w} is linearly dependent. Conversely, sup-
pose that.{v,w} is linearly dependent. Then by Corollary 2.1, one is a scalar multiple 
of the other. That is, there exists .λ ∈ K such that .v = λw or .w = λv. Then 

. <v, v><w,w> = <λw, λw><w,w> = |λ|2|<w,w>|2 = |<v,w>|2

Hence the proof. 

Example 5.17 Consider .R
n with standard inner product. For . (u1, . . . , un),

(v1, . . . , vn) ∈ R
n , by Cauchy-Schwarz inequality, we have 

. (u1v1 + u2v2 + · · · + unvn)
2 ≤ (u1 + u2 + · · · + un)

2(v1 + v2 + · · · + vn)
2

That is,.
(En

i=1 uivi
)2 ≤ (En

i=1 ui
)2 (En

i=1 vi
)2
. If we consider,.C[a, b]with the inner 

product, .< f, g> = { b
a f (x)g(x)dx , then by Cauchy-Schwarz inequality, we have 

. 

|{ b

a
f (x)g(x)dx

|2
≤
{ b

a
f 2(x)dx

{ b

a
g2(x)dx

That is,.|< f, g>|2 ≤ < f, f ><g, g>. Consider. f, g ∈ C[0, 1] as defined in Example 5.16. 
We have seen that .< f, g> = −11

12 , < f, f > = 8
15 and .<g, g> = 7

3 . Clearly, 

. |< f, g>|2 = 121

144
≤ 56

45
= < f, f ><g, g>

In the previous section, we have seen that every normed linear space is a metric 
space. Now, we will show that every inner product space is a normed linear space. 
The following theorem gives a method to define a norm on an inner product space 
using the inner product. 

Theorem 5.6 Let .V be an inner product space. For .v ∈ V , .||v|| = √<v, v> is a norm 
on . V . 

Proof(N1) Let .v ∈ V . Since .<v, v> ≥ 0, we have  .||v|| = √<v, v> ≥ 0. Also  
.<v, v> = 0 ⇔ v = 0, implies that .||v|| = √<v, v> = 0 ⇔ v = 0.
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(N2) .||λv|| = √<λv, λv> =
/

λλ<v, v> =
/

|λ|2 ||v||2 = |λ| ||v||, where .λ ∈ K. 
(N3) For .u, v ∈ V , 

. ||u + v||2 = <u + v, u + v>
= <u, u> + <u, v> + <v, u> + <v, v>
= ||u||2 + ||v||2 + 2Re(<u, v>)
≤ ||u||2 + ||v||2 + 2|<u, v>|
≤ ||u||2 + ||v||2 + 2 ||u|| ||v|| (Cauchy − Schwarz)

= (||u|| + ||v||)2

Hence .||u + v|| ≤ ||u|| + ||v||. 
Therefore .||v|| = √<v, v> is a norm on . V . 

Remark 5.3 The norm defined in the above theorem is called the norm induced by 
the inner product. Every inner product space is a normed linear space with respect 
to the induced norm. 

Example 5.18 Consider .Rn with standard inner product. Observe that for . v =
(v1, v2, . . . , vn) ∈ R

n , we get 

. ||v|| = /<v, v> =
(

nE

i=1

v2i

) 1
2

= ||v||2

Thus the standard inner product on .R
n induces . 2-norm. Similarly, the inner product 

.< f, g> = { b
a f (x)g(x)dx on .C[a, b] induces the norm, 

. || f || = /< f, f > =
({ b

a
f 2(x)dx

) 1
2

This norm is called, energy norm. 

The following inclusion can be derived between the collections of these abstract 
spaces. 

. {Inner product spaces} ⊂ {Normed spaces} ⊂ {Metric spaces}

Now we have to check whether the reverse inclusion is true or not. The following 
theorem gives a necessary condition for an inner product space. 

Theorem 5.7 (Parallelogram Law) Let .V be an inner product space. Then for all 
.u, v ∈ V , 

. ||u + v||2 + ||u − v||2 = 2
(||u||2 + ||v||2)
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Fig. 5.11 Parallelogram law 

Proof For all .u, v ∈ V , 

. ||u + v||2 = <u + v, u + v> = <u, u> + <u, v> + <v, u> + <v, v>
||u − v||2 = <u − v, u − v> = <u, u> − <u, v> − <v, u> + <v, v>

Therefore .||u + v||2 + ||u − v||2 = 2
(||u||2 + ||v||2) (Fig. 5.11). 

Example 5.19 In Example 5.4, we have seen that .C[a, b], the space of continuous 
real-valued functions on .[a, b] is a normed linear space with the supremum norm 
given by, .|| f || = max

x∈[a,b]| f (x)| where . f ∈ C[a, b]. This space gives an example of 

a normed linear space which is not an inner product space. Consider the elements 

. f1(x) = 1 and . f2(x) = (x − a)

(b − a)
in .C[a, b]. Then .|| f1|| = 1 and .|| f2|| = 1. We have  

. ( f1 + f2)(x) = 1 + (x − a)

(b − a)
and ( f1 − f2)(x) = 1 − (x − a)

(b − a)

Hence .|| f1 + f2|| = 2 and .|| f1 − f2|| = 1. Now  

. || f1 + f2||2 + || f1 − f2||2 = 5 but 2
(|| f1||2 + || f2||2

) = 4

Clearly, parallelogram law is not satisfied. Thus supremum norm on .C[a, b] cannot 
be obtained from an inner product. 

From the above example, we can conclude that not all normed linear spaces are 
inner product spaces. Now, we will prove that a normed linear space is an inner 
product space if and only if the norm satisfies parallelogram law. 

Theorem 5.8 Let .(V, ||.||) be a normed linear space. Then there exists an inner 
product .<, > on .V such that .<v, v> = ||v||2 for all .v ∈ V if and only if the norm 
satisfies the parallelogram law.
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Proof Suppose that we have an inner product on. V with.<v, v> = ||v||2 for all.v ∈ V . 
Then by Theorem 5.7, parallelogram law is satisfied. 

Conversely, suppose that the norm on .V satisfies parallelogram law. For any 
.u, v ∈ V , define 

. 4<u, v> = ||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2

Now we will prove that the inner product defined above will satisfy the conditions 
.(I P1) − (I P4). 

(IP1) For any .v ∈ V , we have  

. 4<v, v> = ||v + v||2 − ||v − v||2 + i ||v(1 + i)||2 − i ||v(1 − i)||2
= 4 ||v||2 + i |1 + i |2 ||v||2 − i |1 − i |2 ||v||2
= 4 ||v||2 + 2i ||v||2 − 2i ||v||2
= 4 ||v||2

This implies that .<v, v> = ||v||2 for all .v ∈ V . Hence .<v, v> ≥ 0 for all . v ∈ V
and .<v, v> = 0 if and only if .v = 0. 

(IP2) For any .u, v,w ∈ V , we have  

. 4<u + w, v> = ||(u + w) + v||2 − ||(u + w) − v||2 + i ||(u + w) + iv||2 − i ||(u + w) − iv||2

rewriting .u + w + v as .
(
u + v

2

) + (
w + v

2

)
and applying parallelogram law, 

we have 

. 

|
||
|
||
(
u + v

2

)
+
(
w + v

2

)|||
|
||
2 +

|
||
|
||
(
u + v

2

)
−
(
w + v

2

)|||
|
||
2 = 2

|
||
|
||u + v

2

|
||
|
||
2 + 2

|
||
|
||w + v

2

|
||
|
||
2

This implies 

. ||u + w + v||2 = 2
|
||
|
||u + v

2

|
||
|
||
2 + 2

|
||
|
||w + v

2

|
||
|
||
2 − ||u − w||2

Similarly, 

. ||u + w − v||2 = 2
|||
|||u − v

2

|||
|||
2 + 2

|||
|||w − v

2

|||
|||
2 − ||u − w||2

Then 

. ||u + w + v||2 − ||u + w − v||2 = 2

||||
|||u + v

2

|||
|||
2 −

|||
|||u − v

2

|||
|||
2 +

|||
|||w + v

2

|||
|||
2 −

|||
|||w − v

2

|||
|||
2
|

(5.4)
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Multiplying both sides by . i and replacing . v by .iv in the above equation, 

. i
|||u + w + iv||2 − ||u + w − iv||2} = 2i

|||
||

||
||u + iv

2

||
||

||
||

2

−
||
||

||
||u − iv

2

||
||

||
||

2

+
||
||

||
||w + iv

2

||
||

||
||

2

−
||
||

||
||w − iv

2

||
||

||
||

2
|

(5.5) 
adding (5.4) and (5.5),we get 

. 4<u + w, v> = 2

||
||
|
||u + v

2

|
||
|
||
2 −

|
||
|
||u − v

2

|
||
|
||
2 + i

|
|||

|
|||u + iv

2

|
|||

|
|||

2

− i

|
|||

|
|||u − iv

2

|
|||

|
|||

2
|

+ 2

||||
|||w + v

2

|||
|||
2 −

|||
|||w − v

2

|||
|||
2 + i

|||
|

|||
|w + iv

2

|||
|

|||
|

2

− i

|||
|

|||
|w − iv

2

|||
|

|||
|

2
|

= 8
|/
u,

v

2

\
+
/
w,

v

2

\|

No taking .w = 0 and then .u = 0 separately in the above equation, we get 
.<u, v> = 2

<
u, v

2

>
and .<w, v> = 2

<
w, v

2

>
. Thus we get, . 4<u + w, v> = 4<u, v> +

4<w, v> for all .u, v,w ∈ V . 
(IP3) Now we will prove that .<λu, v> = λ<u, v>. We will prove this as four separate 

cases. 

(a) . λ is an integer. 
For all .u, v,w ∈ V , we have  

. <u + w, v> = <u, v> + <w, v>

Replacing. w by. u, we get.<2u, v> = 2<u, v>. Thus the result is true for.λ = 2. 
Suppose that the result is true for any positive integer . n. That is, . <nu, v> =
n<u, v> for all .u, v ∈ V . Now  

. <(n + 1)u, v> = <nu + u, v> = <nu, v> + <u, v> = (n + 1)<u, v>

hence by the principle of mathematical induction, the result is true for all 
positive integers . n. Now, to prove this for any negative integer . n, first we 
prove that .<−u, v> = −<u, v>, for any .u, v ∈ V . We have  

. 4<u, v> = ||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2

Replacing . u by .−u, we get 

.4<−u, v> = ||−u + v||2 − ||−u − v||2 + i ||−u + iv||2 − i ||−u − iv||2
= ||−(u − v)||2 − ||−(u + v)||2 + i ||−(u − iv)||2 − i ||−(u + iv)||2
= ||u − v||2 − ||u + v||2 + i ||u − iv||2 − i ||u + iv||2
= −4<u, v>
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Thus we have .<−u, v> = −<u, v> for any .u, v ∈ V . Let  .λ = −μ be any 
negative integer, where .μ > 0. Then we have, 

. <λu, v> = <−μu, v> = <−(μu), v> = −<μu, v> = −μ<u, v> = λ<u, v>

Thus the result is true for any integer . λ. 
(b) .λ = p

q is a rational number, where .p, q /= 0 are integers. 
Then we have 

. p<u, v> = <pu, v> =
/
q

(
p

q

)
u, v

\
= q

/
p

q
u, v

\

Thus we have .

/
p
q u, v

\
= p

q <u, v> for all .u, v ∈ V . Thus the result is true for 

all rational numbers. 
(c) . λ is a real number. 

Then there exists a sequence of rational numbers .{λn} such that .λn → λ as 
.n → ∞ (See Exercise 13, Chap. 1). Observe that, as . n → ∞

. |λn<u, v> − λ<u, v>| = |(λn − λ)<u, v>| = |λn − λ||<u, v>| → 0

Hence, .λn<u,w> → λ<u, v> as .n → ∞. Now, by  .(b), .λn<u, v> = <λnu, v>. 
Also, 

. 4<λnu, v> = ||λnu + v||2 − ||λnu − v||2 + i ||λnu + iv||2 − i ||λnu − iv||2
→ ||λu + v||2 − ||λu − v||2 + i ||λu + iv||2 − i ||λu − iv||2
= 4<λu, v>

That is, .<λnu, v> → <λu, v> as .n → ∞. This implies that . <λu, v> = λ<u, v>
for any .u, v ∈ V . 

(d) . λ is a complex number. 
First we will show that .<iu, v> = i<u, v>. We have  

. 4<u, v> = ||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2

Replacing . u by . iu, we have  

.4<iu, v> = ||iu + v||2 − ||iu − v||2 + i ||iu + iv||2 − i ||iu − iv||2
= ||i(u − iv)||2 − ||i(u + iv)||2 + i ||i(u + v)||2 − i ||i(u − v)||2
= ||u − iv||2 − ||u + iv||2 + i ||u + v||2 − i ||u − v||2
= −i2 ||u − iv||2 + i2 ||u + iv||2 + i ||u + v||2 − i ||u − v||2
= i

|||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2}
= i4<u, v>
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which implies that .<iu, v> = i<u, v>. Now, for any complex number . λ =
a + ib, then 

. <λu, v> = <(a + ib)u, v>
= <au + ibu, v>
= <au, v> + <ibu, v>
= a<u, v> + ib<u, v>
= (a + ib)<u, v> = λ<u, v>

Thus .<λu, v> = λ<u, v> for all .u, v ∈ V and for all scalars . λ. 

(IP4) For any .u, v ∈ V , we have  

. 4<u, v> = ||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2
= ||v + u||2 − ||v − u||2 + i ||i(v − iu)||2 − i ||(−i)(v + iu)||2
= ||v + u||2 − ||v − u||2 + i |i |2 ||v − iu||2 − i |−i |2 ||v + iu||2
= ||v + u||2 − ||v − u||2 − i ||v − iu||2 + i ||v + iu||2
= 4<v, u>

Hence, .<u, v> = <v, u> for all .u, v ∈ V . 

Thus all the conditions for an inner product are satisfied and hence .(V, <, >) is an 
inner product space. 

Similar to what we have done in normed linear spaces, the concept of convergence 
of sequences in inner product spaces follows from the definition of convergence in 
metric spaces as given below. 

Definition 5.12 (Convergence) Let .{vn} be a sequence in an inner product space. V , 
then .vn → v if and only if .<vn, v> → 0 as .n → ∞. 

Again the question of completeness rises. The following example shows that every 
inner product space need not necessarily be complete. 

Example 5.20 Consider .C[0, 1] with the inner product .< f, g> = { 1
0 f (x)g(x)dx . 

We have already seen that.C[0, 1] is an inner product space with respect to the given 
inner product. Now, consider the sequence, 

. fn =

⎧
⎪⎨

⎪⎩

0, x ∈ |
0, 1

2

}

n
(
x − 1

2

)
, x ∈ |

1
2 ,

1
2 + 1

n

}

1, x ∈ |
1
2 + 1

n , 1
}

If we proceed as in Example 5.12, we can show that.{ fn} is Cauchy but not convergent. 
Complete inner product spaces are named after the famous German mathematician 

David Hilbert (1862–1943) who started a systematic study in this area.
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Definition 5.13 (Hilbert Space) A complete inner product space is called a Hilbert 
space. 

Example 5.21 Consider .Kn over .K with standard inner product. Then . ||v|| =√<v, v> = (En
i=1|vi |2

) 1
2 for .v = (v1, v2, . . . , vn) ∈ K

n . Then from Example 5.13, 
.K

n over .K with standard inner product is a Hilbert space. In fact, we can prove that 
every finite-dimensional space over the fields . R or . C is complete(Prove). Is .Q over 
the field .Q complete? 

5.3 Orthogonality of Vectors and Orthonormal Sets 

Orthogonality of vectors in vector spaces is one of the important basic concepts in 
mathematics which is generalized from the idea that the dot product of two vectors 
is zero implies that the vectors are perpendicular in .R

2 (Fig. 5.12). 
Orthogonal/orthonormal bases are of great importance in functional analysis, 

which we will be discussing in the coming sections. We will start with the defi-
nition of an orthogonal set. 

Definition 5.14 (Orthogonal set) Let. V be an inner product space. Vectors. v,w ∈ V
are orthogonal if.<v,w> = 0. A subset. S of. V is orthogonal if any two distinct vectors 
in . S are orthogonal. 

We are all familiar with the fundamental relation from Euclidean geometry that, 
“in a right-angled triangle, the square of the hypotenuse is equal to the sum of 
squares of the other two sides”, named after the famous Greek mathematician, 
Pythagoras(570-495 BC) (Fig. 5.13). 

This relation can be generalized to higher-dimensional spaces, to spaces that are 
not Euclidean, to objects that are not right triangles, and to objects that are not even 
triangles. Consider the following theorem. 

Theorem 5.9 (Pythagoras Theorem) Let .V be an inner product space and 
.{v1, v2, . . . , vn} be an orthogonal set in . V . Then 

. ||v1 + v2 + · · · + vn||2 = ||v1||2 + ||v2||2 + · · · + ||v2||2

Fig. 5.12 Example for 
orthogonal vectors in.R2
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Fig. 5.13 Pythagoras 
theorem illustrated in. R2

Proof As .{v1, v2, . . . , vn} is an orthogonal set in . V , we have  .<vi , v j > = 0, ∀i /= j . 
Then 

. ||v1 + v2 + · · · + vn||2 = <v1 + v2 + · · · + vn, v1 + v2 + · · · + vn>

=
nE

i, j=1

<vi , v j >

=
nE

i=1

<vi , vi >

= ||v1||2 + ||v2||2 + · · · + ||v2||2

Definition 5.15 (Orthonormal set) A vector .v ∈ V is a unit vector if .||v|| = 1. A  
subset. S of. V is orthonormal if. S is orthogonal and consists entirely of unit vectors. A 
subset of. V is an orthonormal basis for. V if it is an ordered basis that is orthonormal. 

Example 5.22 Consider the set .S = {v1, v2, v3} in .C[−1, 1], where 

. v1 = 1√
2
, v2 =

/
3

2
x and v3 =

/
5

8
(3x2 − 1)

Then 

. <v1, v1> =
{ 1

−1

1

2
dx = 1, <v2, v2> = 3

2

{ 1

−1
x2dx = 1, <v3, v3> = 5

8

{ 1

−1
(9x4 − 6x2 + 1)dx = 1

and 

. <v1, v2> =
√
3

2

{ 1

−1
xdx = 0, <v1, v3> =

√
5

4

{ 1

−1
(3x2 − 1)dx = 0,

. <v2, v3> =
√
15

4

{ 1

−1
(3x3 − x)dx = 0

Thus . S is an orthonormal set in .C[−1, 1]. As  .P2[−1, 1] is a subspace of . C[−1, 1]
with dimension . 3, . S can be considered as an orthonormal basis for .P2[−1, 1].
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Example 5.23 Consider the standard ordered basis .S = {e1, e2, . . . , en} in .R
n with 

standard inner product. Clearly .<ei , e j > = 0 for .i /= j and .||ei|| = √<ei , ei > = 1 for 
all .i = 1, 2, . . . , n. Therefore the standard ordered basis of .Rn is an orthonormal 
basis. 

In the previous chapters, we have seen that bases are the building blocks of a 
vector space. Now, suppose that this basis is orthogonal. Do we have any advantage? 
Consider the following example. 

Example 5.24 Consider the vectors .v1 = (2, 1, 2), v2 = (−2, 2, 1) and . v3 = (1,
2,−2) in.R

3. Clearly, we can see that.{v1, v2, v3} is an orthogonal basis for.R3(verify). 
Then we know that any non-zero vector in .R3 can be written as a linear com-
bination of .{v1, v2, v3} in a unique way. That is, any .v ∈ R

3 can be expressed as 
.v = λ1v1 + λ2v2 + λ3v3 for some scalars.λ1, λ2, λ3. Because of the orthogonality of 
basis vectors, here we can observe that, 

. <v, v1> = <λ1v1 + λ2v2 + λ3v3, v1> = λ1<v1, v1> = λ1 ||v1||2

Hence, .λ1 = <v,v1>
||v1||2 . Similarly, we can compute .λ2 and .λ3 as .

<v,v2>
||v1||2 and . <v,v3>||v1||2 , respec-

tively. This is interesting! right? Let us consider a numerical example. Take . v =
(6, 12,−3) ∈ R

3. We have  

. (6, 12,−3) = 2(2, 1, 2) + 1(−2, 2, 1) + 4(1, 2,−2)

Observe that. <v,v1>||v1||2 = 2, <v,v2>
||v2||2 = 1 and.

<v,v3>
||v3||2 = 4. Is this possible in any arbitrary inner 

product space? Yes, it is possible!! That is, if we have an orthogonal basis for an inner 
product space . V , it is easy to represent any vector .v ∈ V as a linear combination of 
the basis vectors. For, if .{v1, v2, . . . , vn} is an orthogonal basis for an inner product 
space . V , then for any .v ∈ V , we have  

. v = <v, v1>
||v1||2

v1 + <v, v2>
||v2||2

v2 + · · · + <v, vn>
||vn||2

vn

and if .{v1, v2, . . . , vn} is an orthonormal basis for . V , we have  

. v = <v, v1>v1 + <v, v2>v2 + · · · + <v, vn>vn
This fact is formulated as the following theorem. 

Theorem 5.10 Let .V be an inner product space and .S = {v1, v2, . . . , vn} be an 
orthogonal subset of .V consisting of non-zero vectors. If .w ∈ span(S), then 

. w =
nE

i=1

<w, vi >
||vi||2

vi

Further if . S is an orthonormal set,
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. w =
nE

i=1

<w, vi >vi

Proof Since .w ∈ span(S), there exists scalars .λ1, λ2, . . . , λn ∈ K such that . w =
λ1v1 + λ2v2 + · · · + λnvn . Now  for .i = 1, 2, . . . , n, we have  

. <w, vi > = <λ1v1 + λ2v2 + · · · + λnvn, vi >
= λ1<v1, vi > + λ2<v2, vi > + · · · + λn<vn, vi >

Since .S = {v1, v2, . . . , vn} is an orthogonal set, .<vi , v j > = 0 for all .i /= j and 
.<vi , vi > = ||vi||2 /= 0. Therefore 

. <w, vi > = λi ||vi||2

and hence.λi = <w, vi >
||vi||2

for.i = 1, 2, . . . , n. This implies that.w =
nE

i=1

<w, vi >
||vi||2

vi . If. S

is orthonormal,.v1, v2, . . . , vn are unit vectors and hence.||vi|| = 1 for.i = 1, 2, . . . , n. 
Therefore .w = En

i=1<w, vi >vi . 

Remark 5.4 The coefficients .
<w, vi >
||vi||2

is called the Fourier coefficients of . v with 

respect to the basis .{v1, v2, . . . , vn}, named after the French mathematician Jean-
Baptiste Joseph Fourier (1768–1830). 

The following corollary shows that the matrix representation of a linear operator 
defined on a finite-dimensional vector space with orthonormal basis can be easily 
computed using the idea of an inner product. 

Corollary 5.1 Let .V be an inner product space, and let .B = {v1, v2, . . . , vn} be 
an orthonormal basis of . V . If  .T is a linear operator on . V , and .A = [T ]B. Then 
.Ai j = <T (v j ), vi >, where .1 ≤ i, j ≤ n. 

Proof Since . B is a basis of .V and as . T is from.V to . V , from the above theorem 

. T (v j ) =
nE

i=1

<T (v j ), vi >vi

which clearly implies that .Ai j = <T (v j ), vi >, where .1 ≤ i, j ≤ n. 

Example 5.25 Consider.P2[−1, 1] with the basis defined in Example 5.22. Take an  
arbitrary element, say .w = x2 + 2x + 3 ∈ P2[−1, 1]. Then we have, 

.<w, v1> = 1√
2

{ 1

−1
(x2 + 2x + 3)dx = 10

√
2

3
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. <w, v2> =
/
3

2

{ 1

−1
(x3 + 2x2 + 3x)dx = 2

√
6

3

and 

. <w, v3> = 1√
2

{ 1

−1
(3x2 − 1)(x2 + 2x + 3)dx =

√
40

15

Observe that .w = 10
√
2

3 v1 + 2
√
2√
3
v2 +

√
40
15 v3. 

Define .T : V → V by 
. (T p) (x) = p'(x)

Then 

. T (v1) = 0, T (v2) =
/
3

2
and T (v3) =

√
15

2
x

Clearly .<T (v1), vi > = 0 where .i = 1, 2, 3. Also  

. <T (v2), v1> =
√
3

2

{ 1

−1
dx = √

3, <T (v2), v2> = 3

2

{ 1

−1
xdx = 0,

. <T (v2), v3> =
√
15

4

{ 1

−1
(3x2 − 1)dx = 0

And 

. <T (v3), v1> =
√
15

2
√
2

{ 1

−1
xdx = 0, <T (v3), v2> = 3

√
5

2
√
2

{ 1

−1
x2dx =

/
5

2
,

. <T (v3), v3> = 5
√
3

4
√
2

{ 1

−1
(3x3 − x)dx = 0

Therefore 

. [T ]B =
⎡

⎣
0

√
3 0

0 0
√
15

0 0 0

⎤

⎦

Corollary 5.2 Let .V be an inner product space, and .S = {v1, v2, . . . , vk} be an 
orthogonal subset of. V consisting of non-zero vectors. Then. S is linearly independent. 

Proof Let .λ1, λ2, . . . , λk ∈ K be such that .
Ek

i=1 λi vi = 0. Then for .v j ∈ S, 

.0 =
/

kE

i=1

λi vi , v j

\

= λ j

||||v j
||||2
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Since .S is a collection of non-zero vectors, this implies that .λ j = 0 for all 
. j = 1, 2, . . . , k. Therefore . S is linearly independent. 

Gram–Schmidt Orthonormalization 

Corollary 5.2 shows that any orthogonal set of non-zero vectors is linearly inde-
pendent. In this section, we will show that from a linearly independent set, we can 
construct an orthogonal set. In fact, we can construct an orthonormal set from a lin-
early independent set, with the same span using Gram–Schmidt Orthonormalization 
process. The process is named after the Danish mathematician Jørgen Pedersen Gram 
(1850–1916) and Baltic-German mathematician Erhard Schmidt (1876–1959). 

Theorem 5.11 (Gram–Schmidt Orthonormalization) Let .{v1, v2, . . . vn} be a 
linearly independent subset of an inner product space . V . Define 

. w1 = v1, u1 = w1

||w1||

. w2 = v2 − <v2, u1>u1, u2 = w2

||w2||

. w3 = v3 − <v3, u1>u1 − <v3, u2>u2, u3 = w3

||w3||

. 
...

. wn = vn − <vn, u1>u1 − · · · − <vn, un−1>un−1, un = wn

||wn||
Then .{u1, u2, . . . un} is an orthonormal set in .V and 

. span{u1, u2, . . . , un} = span{v1, v2, . . . , vn}
Proof Since .{v1, v2, . . . vn} is linearly independent, .vi /= 0 for all .i = 1, 2, . . . , n. 
We prove by induction on . i . Consider .{v1}. Clearly .{v1} is linearly independent. 

Take .w1 = v1 and .u1 = w1

||w1|| . Then .||u1|| = ||w1||
||w1|| = 1 and . span{u1} = span{v1}

(Fig. 5.14). 
For .0 ≤ i ≤ n − 1, define 

.wi = vi − <vi , u1>u1 − · · · − <vi , ui−1>ui−1, ui = wi

||wi||
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Fig. 5.14 Geometrical 
representation of first two 
steps of Gram–Schmidt 
process 

and suppose that .{u1, u2, . . . un−1} is an orthonormal set with 

. span{u1, u2, . . . , un−1} = span{v1, v2, . . . , vn−1}

Now define, 
. wn = vn − <vn, u1>u1 − · · · − <vn, un−1>un−1

Since .{v1, v2, . . . vn} is a linearly independent set . vn /∈ span{v1, v2, . . . , vn−1} =
span{u1, u2, . . . , un−1}. Since .wn /= 0, take  .un = wn

||wn|| . Then clearly .||un|| = 1. 

Now for .i ≤ n − 1, we have  

. <wn, ui > = <vn − <vn, u1>u1 − · · · − <vn, un−1>un−1, ui >
= <vn, ui > − <vn, u1><u1, ui > − · · · − <vn, un−1><un−1, ui >
= <vn, ui > − <vn, ui >
= 0

as.{u1, u2, . . . un−1} is an orthonormal set. Therefore.<wn,wi > = 0 for. 0 ≤ i ≤ n − 1
and hence .{u1, u2, . . . un} is an orthonormal set. Also 

. span{u1, u2, . . . un} = span{v1, v2, . . . , vn−1, un}
= span

{
v1, v2, . . . , vn−1,

wn

||wn||
}

= span{v1, v2, . . . , vn}

Hence the proof. 

Example 5.26 Let .V = R
4 and 

.S = {v1 = (0, 1, 1, 0), v2 = (1, 2, 1, 0), v3 = (1, 0, 0, 1)}
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Since .

⎡

⎣
0 1 1 0
1 2 1 0
1 0 0 1

⎤

⎦ is of rank 3, . S is linearly independent. Also as . <v1, v2> = 2 + 1 =

3, . S is not orthogonal. Now we may apply, Gram–Schmidt process to obtain an 

orthonormal set. Take .w1 = v1 = (1, 0, 1, 0). Then .u1 = w1

||w1|| = 1√
2
(0, 1, 1, 0). 

Now 

. w2 = v2 − <v2, u1>u1
= (1, 2, 1, 0) − <(1, 2, 1, 0), 1√

2
(0, 1, 1, 0)> 1√

2
(0, 1, 1, 0)

= 1

2
(2, 1,−1, 0)

and hence .u2 = w2

||w2|| = 1√
6
(2, 1,−1, 0). Finally, 

. w3 = v3 − <v3, u1>u1 − <v3, u2>u2
= (1, 0, 0, 1) − <(1, 0, 0, 1), 1√

2
(0, 1, 1, 0)> 1√

2
(0, 1, 1, 0)

− <(1, 0, 0, 1), 1
3
(2, 1,−1, 0)>1

3
(2, 1,−1, 0)

= 1

3
(1,−1, 1, 3)

and hence.u3 = w3

||w3|| = 1
2
√
3
(1,−1, 1, 3). The  set.{u1, u2, u3} is an orthonormal set 

and .span{u1, u2, u3} = span{v1, v2, v3}. 
Remark 5.5 Consider a matrix . A with columns .v1, v2, v3 from the above example. 

That is, .A =

⎡

⎢⎢
⎣

0 1 1
1 2 0
1 1 0
0 0 1

⎤

⎥⎥
⎦. Then 

. A =

⎡

⎢⎢⎢⎢
⎣

0
/

2
3

√
3
6√

2
2

1√
6

−
√
3
6√

2
2 − 1√

6

√
3
6

0 0
√
3
2

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

√
2 3

√
2

2

√
2
2

0
/

3
2

/
2
3

0 0 2
√
3

3

⎤

⎥⎥
⎦ = QR

Clearly, the columns of the matrix .Q forms an orthonormal set and .R is an upper 
triangular matrix with entries .Rii = ||wi|| ∀ i = 1, 2, 3 and . Ri j = <v j , ui > ∀ j >

i(i, j = 1, 2, 3). This decomposition of a matrix with linearly independent columns
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into the product of an upper triangular matrix and a matrix whose columns form an 
orthonormal set is called the .QR- decomposition. 
Example 5.27 Consider .V = P2[−1, 1] and .S = {

1, x, x2
}
. We have already seen 

that. S is a basis of. V and hence is linearly independent. Also as.
{ 1
−1 1.x

2dx = 2
3 ,. S is 

not orthogonal. Therefore take .w1 = 1. As .||w1||2 = { 1
−1 1dx = 2, we get .u1 = 1√

2
. 

Now 

. w2 = v2 − <v2, u1>u1 = x − 1

4

{ 1

−1
xdx = x, u2 =

/
3

2
x

and 

. w3 = v3 − <v3, u1>u1 − <v3, u2>u2 = x2 −
{ 1

−1
x2dx, u3 =

/
5

8
(3x2 − 1)

Thus .
{

1√
2
,

/
3
2 x,

/
5
8 (3x

2 − 1)
}
is an orthonormal basis for .P2[−1, 1]. 

The above example makes it clear that given a basis, one could construct an 
orthonormal basis from it. Hence, we could assure that “Every finite-dimensional 
vector space has an orthonormal basis”. 

5.4 Orthogonal Complement and Projection 

In Sect. 5.2, we have discussed about orthogonal projection on .R2. We will extend 
this idea to the general inner product space structure here. Representing an inner 
product space as the direct sum of a closed subspace and its orthogonal complement 
has many useful applications in mathematics. 

Definition 5.16 Let . S be a non-empty subset of an inner product space . V , then the 
set.{v ∈ V | <v, s> = 0,∀s ∈ S},i.e., the set of all vectors of.V that are orthogonal to 
every vector in . S is called the orthogonal complement of . S and is denoted by .S⊥. 
Clearly .{0}⊥ = V and .V⊥ = {0}. Also .S ∩ S⊥ = {0}. 
Remark 5.6 .S⊥ is a subspace of .V for any subset of . V . For  

. <λs1 + s2, s> = λ<s1, s> + <s2, s> = 0

for all .s1, s2 ∈ S⊥ and .λ ∈ K (Fig. 5.15). 

Example 5.28 Consider .V = R
3 and let .S1 = {(1, 2, 3)}. Then 

.S⊥
1 = {(v1, v2, v3) ∈ R

3 | <(v1, v2, v3), (1, 2, 3)> = 0}
= {(v1, v2, v3) ∈ R

3 | v1 + 2v2 + 3v3 = 0}
= plane passing through origin and perpendicular to the point (1, 2, 3)
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Fig. 5.15 Suppose. v is a 
non-zero vector in.R3. Then  
.v⊥ is the plane passing 
through origin. O and 
perpendicular to the vector. v

Take .S2 = {(1, 0, 1), (1, 2, 3)}. Then 

. S⊥
2 = {(v1, v2, v3) ∈ R

3 | <(v1, v2, v3), (1, 0, 1)> = 0, <(v1, v2, v3), (1, 2, 3)> = 0}
= {(v1, v2, v3) ∈ R

3 | v1 + v3 = 0, v1 + 2v2 + 3v3 = 0}
= {(v1, v2, v3) ∈ R

3 | v1 = v2 = −v3}
= line passing through origin and passing through the point (1, 1,−1)

Observe that if . S is a singleton set (with non-zero element), .S⊥ will be a plane 
passing through the origin as we will have to solve a homogeneous equation of three 
variables to find .S⊥. Similarly, if . S is a set with two linearly independent elements, 
.S⊥ will be a line passing through the origin. 

Example 5.29 Consider .V = P2[0, 1] and let .S = {x}. Then 

. S⊥ = {ax2 + bx + c ∈ P2[0, 1] | <x, ax2 + bx + c> = 0}
= {ax2 + bx + c ∈ P2[0, 1] |

{ 1

0
(ax3 + bx2 + cx)dx = 0}

= {ax2 + bx + c ∈ P2[0, 1] | 3a + 4b + 6c = 0}

Given a subspace of an inner product space . V , it is not always easy to find the 
orthogonal complement. The following theorem simplifies our effort in finding the 
orthogonal complement of a subspace. 

Theorem 5.12 Let .V be an inner product space and .W be a finite-dimensional 
subspace of . V . Then for any .v ∈ V , .v ∈ W⊥ if and only if .<v,wi > = 0 for all .wi ∈ B, 
where .B is a basis for . W. 

Proof Let .B = {w1,w2, . . . ,wk} be a basis for . W . Then for .w ∈ W , there exists 
scalars .λ1, λ2, . . . , λk such that .w = λ1w1 + λ2w2 + · · · + λkwk . Then for any 
.v ∈ V ,
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. <v,w> = <v, λ1w1 + λ2w2 + · · · + λkwk>

=
kE

i=1

λi <v,wi >

Therefore .<v,wi > = 0 for all .wi ∈ B implies that .<v,w> = 0. Hence, .v ∈ W⊥. Con-
versely, suppose that .v ∈ W⊥. Then by the definition of orthogonal complement 
.<v,wi > = 0 for all .wi ∈ B. 

In Sect. 5.2, we have introduced the concept of projection of a vector to a one-
dimensional subspace of .R2. We have seen that a vector .v ∈ R

2 can be written as 
a sum of vectors, .(u.v)u ∈ span{u} where . u is a unit vector and .v − (u.v)u which 
is orthogonal to .(u.v)u. That is, .v − (u.v)u is an element of .span{u}⊥. The vector 
.(u.v)u is called the projection of . v on .span{u}. We will extend this result to any 
finite-dimensional subspace .W of an inner product space . V . We will proceed by 
considering an orthonormal basis.{w1,w2, . . . ,wk} for. W , projecting.v ∈ V on each 
one-dimensional subspace.span{wi } of.W and taking the sum. That is, the projection 

of .v ∈ V on .W will be .w =
kE

i=1
<v,wi >wi . 

Theorem 5.13 Let .V be an inner product space and .W be a finite-dimensional 
subspace of . V . Then for any .v ∈ V , there exist unique vectors .w ∈ W and . w̃ ∈ W⊥
such that .v = w + w̃. Furthermore, .w ∈ W is the unique vector that has the shortest 
distance from . v. 

Proof Let .B = {w1,w2, . . . ,wk} be an orthonormal basis for .W and consider . w =Ek
i=0<v,wi >wi ∈ W . Take .w̃ = v − w. Then for any .wj ∈ B, 

. <w̃,wj > =
/

v −
kE

i=0

<v,wi >wi ,wj

\

= <v,wj > −
kE

i=1

<v,wi ><wi ,wj >

= <v,wj > − <v,wj > = 0

That is, .<w̃,wj > = 0 for all .wj ∈ B. Then by Theorem 5.12, .w̃ ∈ W⊥. Also,  . v =
w + w̃. To prove the uniqueness of. w and. w̃ suppose that.v = w + w̃ = u + ũ where 
.u ∈ W and.ũ ∈ W⊥. This implies that.v = w − u = ũ − w̃. Then as.w − u ∈ W and 
.ũ − w̃ ∈ W⊥, v ∈ W ∩ W⊥ = {0}. Hence, .w = u and .w̃ = ũ. 

Now we have to prove that.w = Ek
i=1<v,wi >wi in.W is the unique vector that has 

the shortest distance from. v. Now  for any .w' ∈ W , 

. 

||||v − w'||||2 = ||||w + w̃ − w'||||2 = ||||(w − w') + w̃
||||2

As .w − w' ∈ W and .w̃ ∈ W⊥, by  Pythagoras theorem,
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. 

||||v − w'||||2 = ||||(w − w')
||||2 + ||w̃||2 ≥ ||w̃||2 = ||v − w||2

Thus for any .w' ∈ W , we get .
||||v − w'|||| ≥ ||w̃||2 = ||v − w||. 

Corollary 5.3 Let .V be an inner product space and .W be a finite-dimensional 
subspace of . V . Then .V = W ⊕ W⊥. 

Proof From the above theorem, clearly.V = W + W⊥. Also,.W ∩ W⊥ = {0}. Then 
by Theorem 2.20, .V = W ⊕ W⊥. 

The above decomposition is called the orthogonal decomposition of .V with 
respect to the subspace . W . In general, .W can be any closed subspace of . V . 

Definition 5.17 (Orthogonal Projection) Let. V be an inner product space and.W be 
a finite-dimensional subspace of . V . Then the orthogonal projection .πW of .V onto 
.W is the function.πW (v) = w, where.v = w + w̃ is the orthogonal decomposition of 
. v with respect to . W . 

Example 5.30 Consider .R3 over . R with standard inner product. Let 

. W = {(v1, v2, v3) ∈ R
3 | v1 = 0}

That is, the.yz-.plane. Consider the vector.v1 = (2, 4, 5) ∈ R
3. Now we will find the 

projection of . v on . W . Clearly .{(0, 1, 0) , (0, 0, 1)} is an orthonormal basis for . W . 
Then the projection of .v1 on .W is given by 

. πW (v1) = <(2, 4, 5), (0, 1, 0)>(0, 1, 0) + <(2, 4, 5), (0, 0, 1)>(0, 0, 1) = (0, 4, 5)

For an arbitrary vector . v = (a, b, c) ∈ R
3

. πW (v) = <(a, b, c), (0, 1, 0)>(0, 1, 0) + <(a, b, c), (0, 0, 1)>(0, 0, 1) = (0, b, c)

Also observe that.W⊥ = {(v1, v2, v3) ∈ R
3 | v2 = v3 = 0}, i.e., the.x-.axis and hence 

.(a, b, c) = (0, b, c) + (a, 0, 0) is the orthogonal decomposition of . v with respect 
to . W . 

Example 5.31 Consider .P2[−1, 1]. Let  .W = {a + bx | a, b ∈ R}. Clearly .W is a 

subspace of .P2[0, 1] and we have already seen that .
{

1√
2
,

/
3
2 x
}
is an orthonor-

mal basis for . W . Consider the element .v = x2 + 2x + 3 ∈ P2[−1, 1]. Then from 
Example 5.25, 

. 

/
1√
2
, x2 + 2x + 3

\
= 10

√
2

3
and

//
3

2
x, x2 + 2x + 3

\

= 2
√
6

3

Therefore the projection of . v on .W is .πW (v) = 10

3
+ 2x .
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Now we will discuss some of the important properties of projection map in the 
following theorem. 

Theorem 5.14 Let .W be a finite-dimensional subspace of an inner product space 
. Vand let .πW be the orthogonal projection of .V onto . W. Then 

(a) .πW is linear. 
(b) .R (πW ) = W and . N (πW ) = W⊥
(c) . π2

W = πW

Proof (a) Let .v1, v2 ∈ V . Then by Theorem 5.13, there exists unique vectors 
.w1,w2 ∈ W and.w̃1, w̃2 ∈ W⊥ such that.v1 = w1 + w̃1 and.v2 = w2 + w̃2. Then 
.πW (v1) = w1 and .πW (v2) = w2. Now  for .λ ∈ K, 

. λv1 + v2 = λ (w1 + w̃1) + (w2 + w̃2) = (λw1 + w2) + (λw̃1 + w̃2)

where .λw1 + w2 ∈ W and .λw̃1 + w̃2 ∈ W⊥ as .W and .W⊥ are subspaces of . V . 
Therefore 

. πW (λv1 + v2) = λw1 + w2 = λπW (v1) + πW (v2)

therefore, .πW is linear. 
(b) From Theorem 5.13, we have.V = W ⊕ W⊥ and any vector .v ∈ V can be writ-

ten as.v = πW (v) + (v − πW (v)). Clearly.R (πW ) ⊆ W . Now we have prove the 
converse part. Let .w ∈ W , then .πW (w) = w as .w = w + 0 ∈ W + W⊥. There-
fore .R (πW ) = W . 
Similarly, it is clear that .N (πW ) ⊆ W⊥. Now  let  .w̃ ∈ W⊥. As  .w̃ = 0 + w̃, we  
have .πW (w̃) = 0 and hence .N (πW ) = W⊥. 

(c) Take any .v ∈ V . By Theorem 5.13, there exists unique vectors .w ∈ W and . w̃ ∈
W⊥ such that .v = w + w̃. Then 

. π2
W (v) = πW (πW (v)) = πW (w) = w = πW (v)

Therefore .π2
W = πW . 

In Theorem 5.13, we decomposed. V as the direct sum of two subspaces where one 
is the orthogonal complement of the other. There may exist decompositions of .V as 
the direct sum of two subspaces where one subspace is not the orthogonal complement 
of the other. For example, consider.R3. Let.W1 = span{(1, 0, 0), (0, 1, 0)} and. W2 =
span{(1, 1, 1)}. Observe that .V = W1 ⊕ W2 and .W1 /⊥ W2. In such cases also we 
can define a linear map. 

Theorem 5.15 Let . V be an inner product space and .W1,W2 be subspaces of . V with 
.V = W1 ⊕ W2. Then the map .P defined by .P(v) = w1, where .v = w1 + w2 is the 
unique representation of .v ∈ V is linear. 

Proof Similar to the proof of Theorem 5.14(a).
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Fig. 5.16 Observe that 
.R(P1) /⊥ N(P1). Therefore 
.P1 is not an orthogonal 
projection 

The above defined map .P is called projection map. Observe that an orthogonal 
projection map is a projection map .P with .[R(P)]⊥ = N (P). 

Example 5.32 Consider .R2 over . R with standard inner product. Let . P1 : R2 → R
2

be a linear map defined by 
. P1(v1, v2) = (v1, 0)

Observe that .R(P1) is the straight line .y = x and .N(P1) is the .y− axis. Clearly, 
.R

2 = R(P1) ⊕ N(P1). Thus .P1 is a projection but not an orthogonal projection 
(Fig. 5.16). 

Example 5.33 Consider .P2[0, 1] with the inner product .<p, q> = { 1
0 p(x)q(x)dx . 

Let .P2 : P2[0, 1] → P2[0, 1] be a linear map defined by 

. P2(a0 + a1x + a2x
2) = a1x

We have .R(P2) = span{x} and .N(P2) = span{1, x2}. Observe that . P2[0, 1] =
R(P2) ⊕ N(P2), but.R(P2) /⊥ N(P2). Therefore.P2 is a projection but not an orthog-
onal projection. 

The following theorem gives an algebraic method to check whether a linear oper-
ator is a projection map or not. 

Theorem 5.16 Let .V be a finite-dimensional inner product space and . T be a linear 
operator on . V . Then . T is a projection of .V if and only if .T 2 = T . 

Proof Suppose that .T is a projection on . V , then clearly .T 2 = T by definition. 
Now suppose that .T is a linear operator on .V such that .T 2 = T . We will show 
that .V = R(T ) ⊕ N(T ). Let  .v ∈ R(T ) ⊕ N(T ). Then there exists .ṽ ∈ V such that 
.T (ṽ) = v. Also.T (v) = 0. Now.T 2(ṽ) = T (v) = 0 = T (ṽ) = v as.T 2 = T . Thus. T
is a projection on . V . 

Example 5.34 Consider the linear operators .P1 and .P2 from Examples 5.32 and 
5.33 respectively. Clearly, we can see that .P2

1 = P1 and .P2
2 = P2.
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5.5 Exercises 

1. Show that .(R, d) is a metric space, where .d : R × R → R is defined by 

(a) .d(x, y) = |ex − ey | for .x, y ∈ R. 
(b) .d(x, y) = |x−y|

1+|x−y| for .x, y ∈ R. 

Check whether . d is induced by any norm on . R? 
2. Let .v = (v1, v2, . . . vn) ∈ R

n . Show that 

(a) .||v||∞ = max{|v1|, . . . , |vn|} defines a norm on .R
n called infinity norm. 

(b) for .p ≥ 1, .||v||p = (En
i=1|vi |p

) 1
p defines a norm on .R

n called p-norm. 

3. Show that the following functions define a norm on.Mm×n (R). Let. A = |
ai j

} ∈
Mm×n (R). 

(a) . ||A||1 = max
1≤ j≤n

Em
i=1|ai j |

(b) . ||A||∞ = max
1≤i≤m

En
j=1|ai j |

(c) .||A||2 = /
λmax (AT A), where .λmax denotes the highest eigenvalue of . A. 

4. Show that in a finite-dimensional space. V every norm defined on it are equivalent. 
5. Show that every finite-dimensional normed linear space is complete. 
6. Show that 

(a) .||v||p = (E∞
i=1|vi |p

) 1
p defines a norm on . l p. 

(b) .||v||∞ = sup
i∈N

|vi | defines a norm on .l∞. 

(c) for .1 ≤ p < r < ∞, .l p ⊂ lr . Also .l p ⊂ l∞. 

7. Show that the following collections 

. c = {v = (v1, v2, . . .) ∈ l∞ | vi → λ ∈ K as i → ∞}
c0 = {v = (v1, v2, . . .) ∈ l∞ | vi → 0 as i → ∞}
c00 = {v = (v1, v2, . . .) ∈ l∞ | all but finitely many v'

i s are equal to 0}

are subspaces of .l∞. 
8. Show that .c, c0 are complete, whereas .c00 is not complete with respect to the 

norm defined on .l∞. 
9. Let .V be a vector space over a field . K. A set .B ⊂ V is a Hamel basis for .V if 

.span(B) = V and any finite subset of .B is linearly independent. Show that if 

.(V, ||.||) is an infinite-dimensional Banach space with a Hamel basis . B, then . B
is uncountable. (Hint: Use  Baire’s Category theorem.) 

10. Let .u = (u1, u2), v = (v1, v2) ∈ R
2. Check whether the following defines an 

inner product on .R
2 or not. 

(a) . <u, v> = v1(u1 + 2u2) + v2(2u1 + 5v2)
(b) .<u, v> = v1(2u1 + u2) + v2(u1 + v2)
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11. Show that .<z1, z2> = Re(z1z2) defines an inner product on . C, where . Re(z)
denotes the real part of the complex number .z = a + ib. 

12. Show that .<A, B> = Tr (B∗A) defines an inner product on .Mm×n (K). 
13. Prove or disprove: 

(a) The sequence spaces .l p with .p /= 2 are not inner product spaces. 
(b) . l2 with.<u, v> = E∞

i=1 uivi , where.u = (u1, u2, . . .), v = (v1, v2, . . .) ∈ l2 is 
a Hilbert space. 

14. Let .(V, <, >) be an inner product space . Then show that for all . u, v ∈ V

. <u, v> = 1

4
[<u + v, u + v> − <u − v, u − v>>]

if .K = R. Also show that if .K = C, we have  

. <u, v> = 1

4
[<u + v, u + v> − <u − v, u − v> + i<u + iv, u + iv> − i<u − iv, u − iv>]

15. Show that in an inner product space . V , .un → u and .vn → v implies that 
.<un, vn> → <u, v>. 

16. Show that .l p with .<u, v> = E∞
n=1 unvn is a Hilbert space. 

17. Let. V be an inner product space with an orthonormal basis.{v1, v2, . . . , vn}. Then 
for any .v ∈ V , show that .||v||2 = En

i=1|<v, vi >|2. 
18. (Bessel’s Inequality) Let . S be a countable orthonormal set in an inner product 

space . V . Then for every .v ∈ V , show that .
E

ui∈S|<v, ui >|2 ≤ ||v||2. 
19. Let . S be an orthonormal set in an inner product space. V . Then for every.v ∈ V , 

show that the set.Sv = {u ∈ S | <v, u> = 0} is a countable set. (Hint: Use  Bessel’s 
Inequality) 

20. Construct an orthonormal basis using Gram–Schmidt orthonormalization pro-
cess 

(a) for .R3 with standard inner product, using the basis . 

⎧
⎨

⎩

⎡

⎣
1
2
2

⎤

⎦ ,

⎡

⎣
−1
0
2

⎤

⎦ ,

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭

(b) for .P3[0, 1] with .< f, g> = { 1
0 f (x)g(x)dx , using the basis . {1, x, x2}

21. Show that, for .A ∈ Mn×n (R), .AAT = I if and only if the rows of .A form an 
orthonormal basis for .Rn . 

22. Consider .R2 with standard inner product. Find .S⊥, when . S is 

(a) .{u}, where . u = (u1, u2) /= 0
(b) .{u, v}, where u,v are two linearly independent vectors. 

23. Let.S1, S2 be two non-empty subsets of an inner product space. V , with.S1 ⊂ S2. 
Then show that 
(a) .S1 ⊂ S⊥⊥

1 (b) .S⊥
2 ⊂ S⊥

1 (c) .S⊥⊥⊥
1 = S⊥

1
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24. Let .S = {(3, 5,−1)} ⊂ R
3. 

(a) Find an orthonormal basis . B for .S⊥. 
(b) Find the projection of .(2, 3,−1) onto .S⊥. 
(c) Extend . B to an orthonormal basis of .R3. 

25. Let .V be a finite-dimensional inner product space. Let .W1,W2 be subspaces of 
. V . Then show that 

(a) . (W1 + W2)
⊥ = W⊥

1 ∩ W⊥
2

(b) . (W1 ∩ W2)
⊥ = W⊥

1 + W⊥
2

26. Prove or disprove: Let .W be any subspace of .Rn and let .S ⊂ R
n spans . W . 

Consider a matrix . A with elements of . S as columns. Then .W⊥ = ker(A). 
27. Find the orthogonal projection of the given vector . v onto the given subspace . W

of an inner product space . V . 

(a) .v = (1, 2), . W = {(x1, x2) ∈ R
2 | x1 + x2 = 0}

(b) .v = (3, 1, 2), . W = {(x1, x2, x3) ∈ R
3 | x3 = 2x1 + x2}

(c) .v = 1 + 2x + x2, . W = {a0 + a1x + a2x2 ∈ P2[0, 1] | a2 = 0}
28. Let .V be an inner product space and .W be a finite-dimensional subspace of 

. V . If  . T is an orthogonal projection of .V onto . W , then .I − T is the orthogonal 
projection of .V onto .W⊥. 

29. Consider.C[−1, 1]with the inner product.< f, g> = { 1
−1 f (s)g(s)ds, for all. f, g ∈

C[0, 1]. Let .W be the subspace of .C[0, 1] spanned by .{x + 1, x2 + x}. 
(a) Find an orthonormal basis for .span (W ). 
(b) What will be the projection of .x3 onto .span (W )? 

30. Show that a bounded linear operator on a Hilbert space .V is an orthogonal 
projection if and only if .P is self-adjoint and .P is idempotent.(P2 = P). 

Solved Questions related to this chapter are provided in Chap. 11.
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