
Chapter 2 
Vector Spaces 

This chapter explores one of the fundamental topics in linear algebra. It starts by 
defining vector spaces, highlighting their importance as mathematical structures with 
essential qualities such as closure under addition and scalar multiplication. Subspaces 
are introduced as vector space subsets with their vector space features, followed by 
an in-depth analysis of linear dependence and independence of vectors, which are 
critical for constructing bases. The ideas of span and basis are emphasized as critical 
tools for understanding the structure of vector spaces, with dimension serving as 
a quantitative measure of their complexity. Finally, the chapter looks into vector 
space sums and the particular case of the direct sum, providing a more in-depth 
understanding of vector space composition. 

2.1 Introduction 

In Chap. 1, we have called an element of Euclidean space .Rn a “vector”. From this 
chapter onwards, we will be using the term “vector” with a broader meaning. An 
element of a vector space is called a vector. Roughly speaking, a vector space is 
a collection of objects which are closed under vector addition and scalar multipli-
cation and are subjected to some reasonable rules. The rules are chosen so that we 
can manipulate the vectors algebraically. We can also consider a vector space as a 
generalization of the Euclidean space. In this chapter, we will be discussing vector 
spaces in detail. 

Definition 2.1 (Vector space) A vector space or linear space .V over a field .K is a 
non-empty set together with two operations called vector addition (denoted by ‘. +’) 
and scalar multiplication (as the elements of .K are called scalars) satisfying certain 
conditions: 

.(V 1) .v1 + v2 ∈ V for all .v1, v2 ∈ V . 

.(V 2) .λv ∈ V for all .λ ∈ K and .v ∈ V . 
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50 2 Vector Spaces

.(V 1) and .(V 2) respectively imply that .V is closed under both vector addition and 
scalar multiplication. The following properties are familiar as we have seen these in 
Chap. 1, associated with another algebraic structure, Group. 

.(V 3) .(v1 + v2) + v3 = v1 + (v2 + v3) for all .v1, v2, v3 ∈ V . 

.(V 4) there is an element .0 ∈ V such that .v + 0 = v for all .v ∈ V . 

.(V 5) for each .v ∈ V there exists an element .−v ∈ V such that .v + (−v) = 0. 

Thus we can say that. V under vector addition must be a group. Now.(V 6) imply that 
.(V,+) is not just any group, it must be an Abelian group. 

.(V 6) .v1 + v2 = v2 + v1 for all .v1, v2 ∈ V . 

Along with closure properties and .(V,+) being an Abelian group, the following 
properties also must be satisfied for.V to be a vector space over the field. K under the 
given operations. 

.(V 7) .λ(v1 + v2) = λv1 + λv2 for all .λ ∈ K and .v1, v2 ∈ V . 

.(V 8) .(λ + μ)v = λv + μv for all .λ,μ ∈ K and .v ∈ V . 

.(V 9) .(λμ)v = λ(μv) for all .λ,μ ∈ K and .v ∈ V . 
.(V 10) .1v = v for all .v ∈ V . 

Now let us get familiar with some of the important vector spaces that we will see 
throughout this book. Let us start with a basic one. 

Example 2.1 Consider .V as the set of all real numbers, . R under usual addition as 
vector addition and usual multiplication as scalar multiplication, the scalars being 
taken from the field .R itself. In Chap. 1, we have seen that .(R,+) is an Abelian 
group. Scalar multiplication in this case is the usual multiplication of real numbers, 
which is closed. Properties .(V 7) − (V 10) are easy to verify. Thus .R over .R is a 
vector space. Similarly, we can show that . C over . C is a vector space. What about . C
over . R and . R over . C? 

Example 2.2 Let .K be any field. Then .Kn is a vector space over . K, where . n is a 
positive integer and 

. K
n = {(

x1, x2, . . . , xn
) | x1, x2, . . . , xn ∈ K

}

Addition and scalar multiplication are defined component-wise as we have seen in 
the previous chapter: 

. 
(
x1, x2, . . . , xn

) + (
y1, y2, . . . , yn

) = (
x1 + y1, x2 + y2, . . . , xn + yn

)

. λ
(
x1, x2, . . . , xn

) = (
λx1, λx2, . . . , λxn

)
, λ ∈ K

In particular, .Rn is a vector space over . R and .Cn is a vector space over . C (Verify). 
Is .Rn a vector space over . C? 

Example 2.3 The collection of all.m × n matrices,.Mm×n(K), with the usual matrix 
addition and scalar multiplication is a vector space over . K.
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Example 2.4 If . F is a sub-field of a field . K, then .K is a vector space over . F, with 
addition and multiplication just being the operations in. K. Thus, in particular, . C is a 
vector space over . R and . R is a vector space over . Q. 

Example 2.5 Let .Pn[a, b] denote the set of all polynomials of degree less than or 
equal to . n defined on .[a, b] with coefficients from the field . K. For  .p, q ∈ Pn[a, b], 
and .λ ∈ K the addition and scalar multiplication are defined by 

. (p + q)(x) = p(x) + q(x) = (an + bn)x
n + · · · + (a1 + b1)x + (a0 + b0)

where .p(x) = anxn + · · · + a1x + a0 and .q(x) = bnxn + · · · + b1x + b0 and 

. (λp)(x) = λ (p(x)) = (λan)x
n + · · · + (λa1)x + (λa0)

.Pn[a, b] along with zero polynomial forms a vector space over. K. Denote by. P[a, b]
the collection of all polynomials defined on .[a, b] with coefficients from . K. Then 
.P[a, b] is a vector space over. Kwith respect to the above operations for polynomials. 

Example 2.6 Let .C[a, b] denote the set of all real-valued continuous functions on 
the interval .[a, b]. If  . f and . g are continuous functions on .[a, b], then the vector 
addition and scalar multiplication are defined by 

. ( f + g)(x) = f (x) + g(x) and (λ f )(x) = λ f (x)

where .λ ∈ R. Then .C[a, b] is a vector space with respect to the above operations 
over the field . R. 

Example 2.7 Let .K be any field. Let .V consist of all sequences .{an} in .K that have 
only a finite number of non-zero terms. an . If.{an} and.{bn} are in. V and.λ ∈ K, define 

. {an} + {bn} = {an + bn} and λ{an} = {λan}

With the above operations .V forms a vector space over . K. 

Example 2.8 .V = {0} over the field .K is a vector space called the zero space. 

Now, we will establish some of the basic properties of vector spaces. 

Theorem 2.1 Let .V be a vector space over a field . K. Then the following statements 
are true. 

(a) .0v = 0 for each .v ∈ V . 
(b) .λ0 = 0 for each .λ ∈ K. 
(c) For .v ∈ V and .λ ∈ K, if .λv = 0, then either .λ = 0 or .v = 0. 
(d) If .v1, v2, and .v3 are vectors in a vector space .V such that .v1 + v3 = v2 + v3, 

then .v2 = v3. 
(e) .(−λ)v = −(λv) = λ(−v) for each .λ ∈ K and each .v ∈ V .
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Proof (a) For .v ∈ V , by  .(V 2), .0v ∈ V . By  .(V 5), for  .0v ∈ V there exists . (−0v)

such that .0v + (−0v) = 0. And by using .(V 8), 

. 0v = (0 + 0)v = 0v + 0v ⇒ 0v = 0

(b) For .λ ∈ K by .(V 2) .λ0 ∈ V . By  .(V 5), for  .λ0 ∈ V there exists .(−λ0) such that 
.λ0 + (−λ0) = 0. And by using .(V 7), 

. λ0 = λ(0 + 0) = λ0 + λ0 ⇒ λ0 = 0

(c) Let .λv = 0. From  .(1), if  .λ = 0, then .λv = 0. Now suppose that .λ /= 0, then 
there exists . 1

λ
∈ K and .

1
λ
(λv) = 1

λ
0 ⇒ v = 0. 

(d) Suppose that .v1, v2, v3 ∈ V be such that .v1 + v3 = v2 + v3. Since .v3 ∈ V , by  
.(V 5) there exists .−v3 ∈ V such that .v3 + (−v3) = 0. Then 

. v1 + v3 = v2 + v3 ⇒ (v1 + v3) + (−v3) = (v2 + v3) + (−v3)

⇒ v1 + (v3 + (−v3)) = v2 + (v3 + (−v3)) (using (V 3))

⇒ v1 = v2 (using (V 6))

(e) By .(V 5), we have  .λv + (−(λv)) = 0. Also  .λv + (−λ)v = (λ + (−λ))v = 0. 
By the uniqueness of additive inverse, this implies that .(−λ)v = −(λv). In par-
ticular, .(−1)v = −v. Now  by .(V 9), 

. λ(−v) = λ[(−1)v] = [λ(−1)]v = (−λ)v

From the next section, we will use . 0 for zero vector, instead of . 0. 

2.2 Subspaces 

For vector spaces, there may exist subsets which themselves are vector spaces under 
the same operations as defined in the parent space. Such subsets of a vector space 
are called subspaces. We will define the subspace of a vector space as follows. 

Definition 2.2 (Subspace) A subset .W of a vector space .V over a field .K is called 
a subspace of .V if .W is a vector space over .K with the operations of addition and 
scalar multiplication defined on . V . 

If. V is a vector space, then. V and.{0} are subspaces of. V called trivial subspaces. 
The latter is also called the zero subspace of . V . A subspace .W of .V is called a 
proper subspace if.V /= W . Otherwise it is called an improper subspace (if it exists). 
Can you find any subspaces for the vector space . R over . R other than . R and.{0}? By
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definition, a subspace is a vector space in its own right. To check whether a subset is 
a subspace, we don’t have to verify all the conditions .(V 1) − (V 10). The following 
theorem gives the set of conditions that are to be verified. 

Theorem 2.2 Let .V be a vector space over a field . K. A subset .W of .V is a subspace 
if and only if the following three conditions hold for the operations defined in . V . 

(a) .0 ∈ W. 
(b) .w1 + w2 ∈ W whenever .w1, w2 ∈ W. 
(c) .λw ∈ W whenever .λ ∈ K and .w ∈ W. 

Proof Suppose that.W is a subspace of. V . Then.W is a vector space with the operation 
addition and scalar multiplication defined on . V . Therefore .(b) and .(c) are satisfied. 
And by the uniqueness of identity element in a vector space .0 ∈ W . 

Conversely suppose that the conditions .(a), (b), and .(c) are satisfied. We have 
to show that .W is a vector space with the operations defined on . V . Since .W is a 
subset of the vector space . V , the conditions .(V 3), (V 5) − (V 10) are automatically 
satisfied by the elements in . W . Therefore .W is a subspace of . V . 

Certainly, we can observe that Condition .(a) in the above theorem need not be 
checked separately, as it can be obtained from Condition .(c) with .λ = 0. But Con-
dition .(a) can be used to identify subsets which are not subspaces as shown in the 
following example. 

Example 2.9 Let .V = R
2 = {(x1, x2) | x1, x2 ∈ R}. We have seen that .R2 is a 

vector space over . R. Consider .W1 = {(x1, x2) | x1 + x2 = 0} and . W2 = {(x1, x2) |
x1 + x2 = 1}. Then .W1 is a subspace of . V . For,  

(a) Clearly, the additive identity .(0, 0) is in .W1. 
(b) Take two elements .(x1, x2), (y1, y2) ∈ W1. Then .x1 + x2 = 0 and .y1 + y2 = 0. 

This implies that .(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) ∈ W1 as . x1 + x2 +
y1 + y2 = 0. 

(c) Take.(x1, x2) ∈ W1 and.λ ∈ R. Then.x1 + x2 = 0. This implies that. λ(x1, x2) =
(λx1, λx2) ∈ W1 as .λx1 + λx2 = λ(x1 + x2) = 0. 

But .W2 is not a subspace of .R2 as zero vector does not belong to .W2. Now  let us  
discuss the geometry of.W1 and.W2 a bit..W1 and.W2 represent two lines on the plane 
as shown in the figure (Fig. 2.1). 

Later, we will see that the only non-trivial proper subspaces of .R2 are straight 
lines passing through origin. 

Example 2.10 Let .V = Mn×n(K) and .W = {
A ∈ Mn×n(K) | AT = A

}
. That is, 

.W is the set of all .n × n symmetric matrices over . K. We will check whether the 
conditions in Theorem 2.2 are satisfied or not.
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Fig. 2.1 Observe that .W1 depicted in (a) (straight line passing through origin) is a subspace and 
.W2 depicted in (b) (straight line not passing through origin) is not a subspace 

(a) The zero matrix is equal to its transpose and hence belongs to . W . 
(b) By the properties of symmetric matrices, the sum of two symmetric matrices is 

again a symmetric matrix. That is, .A + B ∈ W whenever .A, B ∈ W . 
(c) Also.λA ∈ W whenever.A ∈ W and.λ ∈ K, since.(λA)T = λAT = λA as. AT =

A. 

Therefore, the set of all.n × n symmetric matrices over. K is a subspace of.Mn×n(K). 
What about the set of all .n × n skew-symmetric matrices over . K? 

Example 2.11 Let .V = P2[a, b]. Consider .W = {p ∈ P2[a, b] | p(0) = 0}. 
(a) Since .p(0) = 0 for zero polynomial, zero polynomial belongs to . W . 
(b) Take.p, q ∈ W , then.p(0) = q(0) = 0 and hence. (p + q)(0) = p(0) + q(0) =

0. Thus .p + q ∈ W whenever .p, q ∈ W . 
(c) Let .p ∈ W and .λ ∈ R, then .(λp)(0) = λp(0) = 0. That is, .λp ∈ W whenever 

.p ∈ W and .λ ∈ R. 

Therefore .{p ∈ P2[a, b] | p(0) = 0} is a subspace of .P2[a, b]. Now, consider the 
subset.W̃ = {p ∈ P2[a, b] | p(0) = 1}. Is it a subspace of.P2[a, b]? It is not!! (Why?) 

Remark 2.1 To check whether a subset of a vector space is a subspace, we verify 
only the closure properties of vector addition and scalar multiplication in the given 
set. Therefore Theorem 2.2 can also be stated as follows: 

• A subset.W of a vector space. V is a subspace of. V if and only if.λw1 + μw2 ∈ W , 
whenever .w1, w2 ∈ W and . λ,μ ∈ K

• A subset .W of a vector space .V is a subspace of .V if and only if .λw1 + w2 ∈ W , 
whenever .w1, w2 ∈ W and .λ ∈ K.
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Example 2.12 In the previous chapter, we have seen that the collection of all 
solutions to the system .Ax = 0 satisfies the conditions in Remark 2.1 where . A ∈
Mm×n(K) and hence they form a subspace of .Kn . That is, the solutions of a homo-
geneous system form a vector space under the operations defined on .Kn . But  the  
solutions of a non-homogeneous system does not form a vector space as zero vector 
is never a solution for a non-homogeneous system. 

The next theorem gives a method to construct new subspaces from known sub-
spaces. 

Theorem 2.3 Let .W1 and .W2 be two subspaces of a vector space .V over a field .K , 
then their intersection .W1 ∩ W2 = {w | w ∈ W1 and w ∈ W2} is a subspace of . V . 

Proof Since .W1 and .W2 are subspaces of . V , .0 ∈ W1 and .0 ∈ W2. Therefore . 0 ∈
W1 ∩ W2. Now  let .v,w ∈ W1 ∩ W2, then 

. v,w ∈ W1 ∩ W2 ⇒ v,w ∈ W1 and v,w ∈ W2

⇒ v + w ∈ W1 and v + w ∈ W2 as W1 and W2 are subspaces

⇒ v + w ∈ W1 ∩ W2

For .λ ∈ K and .w ∈ W1 ∩ W2, 

. w ∈ W1 ∩ W2 ⇒ w ∈ W1 and w ∈ W2

⇒ λw ∈ W1 and λw ∈ W2 as W1 and W2 are subspaces

⇒ λw ∈ W1 ∩ W2

Therefore .W1 ∩ W2 is a subspace of . V . 

The above result can be extended to any number of subspaces. As we have shown 
that the intersection of subspaces is again a subspace, it is natural to ask whether the 
union of subspaces is again a subspace. It is clear that the union of two subspaces 
need not be a subspace of .V (Fig. 2.2). 

The following theorem gives a scenario in which union of two subspaces of a 
vector space is again a subspace of the same. 

Theorem 2.4 Let .V be a vector space over the field .K and let .W1 and .W2 be 
subspaces of . V . Then .W1 ∪ W2 is a subspace of .V if and only if either .W1 ⊆ W2 or 
.W2 ⊆ W1. 

Proof Let.W1 and.W2 be subspaces of. V . Suppose that either.W2 ⊆ W1 or.W1 ⊆ W2. 
Then .W1 ∪ W2 is either .W1 or .W2. In either cases, .W1 ∪ W2 is a subspace of . V . 
Conversely, suppose that .W1 ∪ W2 is a subspace of . V , .W1 / W2 and .W2 / W1. 
Then there exists at least one element.w1 ∈ W1 such that.w1 /∈ W2 and.w2 ∈ W2 such 
that .w2 /∈ W1. As .W1,W2 ⊆ W1 ∪ W2 both .w1, w2 ∈ W1 ∪ W2. Since .W1 ∪ W2 is a 
subspace of . V , .w1 + w2 ∈ W1 ∪ W2. Then either .w1 + w2 ∈ W1 or .w1 + w2 ∈ W2.
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Fig. 2.2 Consider .V = R
2, take  .W1 = x − axis and .W2 = y − axis (depicted as .(a) and (b) 

respectively). Then .W1 and .W2 are subspaces of .V but .W1 ∪ W2 is not a subspace of . V , since  
.(1, 0) ∈ W1, (0, 1) ∈ W2, but.(1, 0) + (0, 1) = (1, 1) /∈ W1 ∪ W2, as we can observe from. (c)

Suppose.w1 + w2 ∈ W1. Since.w1 ∈ W1 and.W1 is a subspace,.−w1 ∈ W1 and hence 
.(−w1) + w1 + w2 = (−w1 + w1) + w2 = w2 ∈ W1 which is a contradiction. Now 
suppose.w1 + w2 ∈ W2. Since.w2 ∈ W2 and.W2 is a subspace,.−w2 ∈ W2 and hence 
.w1 + w2 + (−w2) = w1 + (w2 − w2) = w1 ∈ W2 which is again a contradiction. 
Therefore our assumption is wrong. That is, .W1 ∪ W2 is a subspace of .V if and only 
if either .W1 ⊆ W2 or .W2 ⊆ W1. 

Example 2.13 Let .V be the vector space .R3 over . R. Consider . W1 = {
(x1, x2, 0) |

x1, x2 ∈ R
}
and .W2 = {(0, x2, 0) | x2 ∈ R}. Clearly, .W1 ∪ W2 = W1 is a subspace. 

Observe that .W2 ⊂ W1. 

2.3 Linear Dependence and Independence 

Let. V be a vector space over a field. K. Let.v1, v2, . . . , vn ∈ V and.λ1, λ2, . . . , λn ∈ K. 
Then the vector 

. v = λ1v1 + λ2v2 + · · · + λnvn

is called a linear combination of the vectors and the scalars.λ1, λ2, . . . , λn are called 
the coefficients of the linear combination. If all the coefficients are zero, then.v = 0, 
which is trivial. Now suppose that there exists a non-trivial representation for. 0, that 
is, there exists scalars.λ1, λ2, . . . , λn not all zero such that a linear combination of the 
given vectors equals zero . Then we say that the vectors .v1, v2, . . . , vn are linearly 
dependent. In other words, the vectors .v1, v2, . . . , vn are linearly dependent if and 
only if there exist scalars .λ1, λ2, . . . , λn not all zero such that 

.λ1v1 + λ2v2 + · · · + λnvn = 0
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The vectors.v1, v2, . . . , vn are linearly independent if they are not linearly dependent. 
That is, 

. if λ1v1 + λ2v2 + · · · + λnvn = 0, then λ1 = λ2 = · · · = λn = 0

Clearly, any subset of a vector space .V containing zero vector is linearly dependent 
as . 0 can be written as .0 = 1.0. Since .λv = 0 implies either .λ = 0 or .v = 0, any  
singleton subset of .V containing a non-zero vector is linearly independent. 

Example 2.14 Consider the vector space.V=R
2 and the subset.S1 = {(1, 0), (1, 1)}. 

To check whether .S1 is linearly dependent or not, consider a linear combination of 
vectors in .S1 equals zero for some scalars .λ1 and . λ2. Then 

. λ1(1, 0) + λ2(1, 1) = (0, 0) ⇒ (λ1 + λ2, λ2) = (0, 0)

⇒ λ1 + λ2 = 0, λ2 = 0

⇒ λ1 = 0, λ2 = 0

That is, there does not exist non-trivial representation for zero vector in .R2 using 
vectors of . S1. Thus .S1 is linearly independent. Note that .(1, 0) cannot be obtained 
by scaling .(1, 1) or vice verse. 

Now consider a subset.S2 = {(1, 0), (2, 0)} of.R2 and a linear combination of the 
vectors in .S2 equals zero. Then 

. λ1(1, 0) + λ2(2, 0) = (0, 0) ⇒ (λ1 + λ2, λ2) = (0, 0)

⇒ λ1 + 2λ2 = 0

Then there are infinitely many possibilities for .λ1 and . λ2. For example, .λ1 = 2 and 
.λ2 = −1 is one such possibility. Clearly, .2(1, 0) + (−1)(2, 0) = (0, 0). Thus the 
zero vector in .R

2 has a non-trivial representation using the vectors of . S2. Thus .S2 is 
linearly dependent. Note that .(2, 2) = 2(1, 1) is a scaled version of .(1, 1) (Fig. 2.3). 

Using the above geometrical idea, try to characterize the linearly independent sets 
in . R and .R

2. Also observe that the equation, . λ1(1, 0) + λ2(1, 1) = (λ1 + λ2, λ2) =
(0, 0) formed by vectors in. S1, from the above example, can be written in the form of 

a system of homogeneous equation as .

|
1 1
0 1

| |
λ1

λ2

|
=

|
0
0

|
. We have seen in Section 

1.7 that a .n × n homogeneous system .Ax = 0 has a non-trivial solution when the 

coefficient matrix. A has rank less than. n. In this case,.rank

(|
1 1
0 1

|)
= 2. Therefore 

the system does not have a non-trivial solution. That is,.λ1 = λ2 = 0. Now, for vectors 

in . S2, observe that the coefficient matrix .A =
|
1 2
0 0

|
has rank . 1, which implies that 

there exists a non-trivial representation for the zero vector. Using this idea, can we 
say something about the linear dependency/independency of a collection of vectors 
in .R

2? Is it possible to generalize this idea to .R
n? Think!!!
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Fig. 2.3 Examples for a linearly independent vectors in .R2 and b linearly dependent vectors in 
.R2. Observe that the linearly independent vectors lie on two distinct straight lines passing through 
origin and the linearly dependent vectors lie on the same line passing through origin. We will soon 
prove that a set of two vectors is linearly dependent if and only if one vector is a scalar multiple of 
the other 

Remark 2.2 We can say that the number of linearly independent vectors in a collec-
tion. S of. m vectors of.Kn is the rank of the.n × m matrix. A formed by the vectors in 
. S as columns. As the rank of a matrix and its transpose is the same, we may redefine 
the rank of a matrix as the number of linearly independent rows or columns of that 
matrix. 

Example 2.15 Consider the vector space.V = P2[a, b] and the subset.S1={1, x, x2}. 
Now, for .λ1, λ2, λ3 ∈ K, 

. λ1.1 + λ2x + λ3x
2 = 0 ⇒ λ1 = λ2 = λ3 = 0

Thus .S1 is linearly independent. 
Now consider the subset .S2 = {1 − x, 1 + x2, 3 − 2x + x2} of .P2[a, b]. As  

. 2(1 − x) + 1(1 + x2) = 3 − 2x + x2

.S2 is linearly dependent. 

As we have seen in the previous example, consider the matrices .

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ and 

.

⎡

⎣
1 1 3

−1 0 −2
0 1 1

⎤

⎦. Is there any relation between the rank of these matrices and the linear 

dependency/independency of vectors in .S1 and .S2 given in Example 2.15? 
The following results are some of the important consequences of definitions of 

linear dependence and independence.



2.4 Basis and Dimension 59

Theorem 2.5 Let .V be a vector space over a field . K and .W = {w1, w2, . . . , wn} be 
a subset of . V , where .n ≥ 2. Then .W is linearly dependent if and only if at least one 
vector in .W can be written as a linear combination of the remaining vectors in . W. 

Proof Suppose that .W is linearly dependent. Then there exists scalars 
.λ1, λ2, . . . , λn ∈ K, not all zero such that 

. λ1w1 + λ2w2 + · · · + λnwn = 0

Without loss of generality, assume that.λ1 /= 0. Then since.λ1 ∈ K, 1
λ1

∈ K and hence 

. w1 = −λ2

λ1
w2 − λ3

λ1
w3 − · · · − λn

λ1
wn

Conversely suppose that one vector in .W can be written as a linear com-
bination of the remaining vectors in . W . Without loss of generality, take . w1 =
λ2w2 + · · · + λnwn . Then.w1 − λ2w2 + · · · + λnwn = 0. That is, there exists a non-
trivial representation for zero. Therefore .W is linearly dependent. 

Corollary 2.1 A subset of a vector space .V containing two non-zero vectors is 
linearly dependent if and only if one vector is a scalar multiple of the other. 

Proof Suppose that .{v1, v2} ⊆ V be linearly dependent. Then there exists scalars 
.λ1, λ2 ∈ K not both zero such that .λ1v1 + λ2v2 = 0. Without loss of generality, let 
.λ1 /= 0. Then .v1 = − λ2

λ1
v2. The converse part is trivial. 

Theorem 2.6 Let. V be a vector space over a field. K, and let.W1 ⊆ W2 ⊆ V . If.W1 is 
linearly dependent, then .W2 is linearly dependent and if .W2 is linearly independent, 
then .W1 is linearly independent. 

Proof Suppose that .W1 is linearly dependent and .W1 ⊆ W2. Then there exists 
.v1, v2, . . . , vn ∈ W1 and.λ1, λ2, . . . , λn ∈ K, not all. 0 such that. λ1v1 + λ2v2 + · · · +
λnvn = 0. Since .W1 ⊆ W2, .W2 is linearly dependent. 

Now suppose that .W2 is linearly independent. Then from above .W1 is linearly 
independent. For if .W1 is linearly dependent, then .W2 must be linearly dependent. 

Thus we can say that any super set of a linearly dependent set is linearly dependent 
and any subset of a linearly independent set is linearly independent. 

2.4 Basis and Dimension 

In this section, we will study the basic building blocks of vector spaces known as 
basis. A basis of a vector space is a subset of the vector space which can be used 
to uniquely represent each vector in the given space. We will start by the following 
definition.
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Fig. 2.4 Observe that both.Span(S1) and.Span(S2) are straight lines passing through origin 

Definition 2.3 (Span of a set) Let.S = {v1, v2, . . . , vn} be a subset of a vector space 
. V . Then the span of . S, denoted by .span(S), is the set consisting of all linear com-
binations of the vectors in . S. That is, 

. span(S) = {λ1v1 + λ2v2 + · · · + λnvn | λ1, λ2, . . . , λn ∈ K}

For convenience, we define .span{φ} = {0}. A subset . S of a vector space .V spans 
(or generates) .V if .span(S) = V . If there exists a finite subset . S of .V such that 
.span(S) = V , then. V is called finite-dimensional vector space. Otherwise it is called 
infinite-dimensional vector space. 

Example 2.16 Consider .S1 = {(1, 0)} and .S2 = {(1, 1)} in .R
2. Then (Fig. 2.4) 

. Span(S1) = {λ(1, 0) | λ ∈ R} = {(λ, 0) | λ ∈ R} = x − axis

and 
. Span(S2) = {λ(1, 1) | λ ∈ R} = {(λ, λ) | λ ∈ R}

In fact, span of any non-zero vector of the form .(x1, 0) in .R
2 will be the .x−axis 

and span of any non-zero vector of the form.(x1, x1) in .R
2 will be the line .y = x . In  

general, we can say that span of any single non-zero vector in .R2 will be a straight 
line passing through that vector and the origin. This can be generalized to .Rn also. 
Now consider the set .S3 = {(1, 0, 0), (0, 1, 0)} in .R

3. Then (Fig. 2.5) 

. Span(S3) = {λ1(1, 0, 0) + λ2(0, 1, 0) | λ1, λ2 ∈ R}
= {(λ1, λ2, 0) | λ1, λ2 ∈ R} = x − y plane

Theorem 2.7 Let .V be a vector space over a field . K. Let .S = {v1, v2, . . . , vn} be a 
subset of . V , then span.(S) is a subspace of .V and any subspace of .V that contains . S
must also contain span .(S).



2.4 Basis and Dimension 61

Fig. 2.5 The span of 
.S3 = {(1, 0, 0), (0, 1, 0)} in 
.R3 is the entire.x − y plane 

Proof Clearly, .0 = 0v1 + 0v2 + · · · + 0vn ∈ span(S). Let  .v,w ∈ span(S). Then 
there exists .λ1, λ2, . . . , λn, μ1, μ2, . . . , μn ∈ K such that . v = λ1v1 + λ2v2 + · · · +
λnvn and .v = μ1v1 + μ2v2 + · · · + μnvn . Then 

. u + v = (λ1 + μ1)v1 + (λ2 + μ2)v2 + · · · + (λn + μn)vn ∈ span(S)

and for .μ ∈ K, 

. μv = μ(λ1v1 + λ2v2 + · · · + λnvn) = (μλ1)v1 + (μλ2)v2 + · · · + (μλn)vn ∈ span(S)

Therefore.span(S) is a subspace of. V . Now  let .W be any subspace of.V containing 
.S = {v1, v2, . . . , vn}. Then for any scalars .λ1, λ2, . . . , λn ∈ K, as  .W is a subspace 
of . V , .λ1v1 + λ2v2 + · · · + λnvn ∈ W . That is, .span(S) ⊆ W . 

Remark 2.3 Consider a matrix .A ∈ Mm×n(K). We can view each row(column) as 
a vector in .K

n(Km). The span of the row vectors of . A is called row space of . A and 
the span of the column vectors of . A is called column space of . A. 

Definition 2.4 (Basis) Let  .V be a vector space over a field . K. If a set  .B ⊆ V is 
linearly independent and .span(B) = V , then .B is called a basis for . V . If the basis 
has some specific order, then it is called an ordered basis. 

Theorem 2.8 Let .V be a finite-dimensional vector space over a field .K and 
.S={v1, v2, . . . , vn} spans . V . Then . S can be reduced to a basis .B of . V . 

Proof Let. V be a finite-dimensional vector space over a field. K and. S = {v1, v2, . . . ,
vn} spans. V . Let.Sσ = {vσ1 , vσ2 , . . . , vσk } denote the set of all non-zero elements of. S. 
Now, we will construct a linearly independent set. B from. S, with.span(B) = S. Pick  
the element .vσ1 ∈ Sσ to . B. If  .vσ2 = λvσ1 , for  some  .λ ∈ K, then .vσ2 /∈ B, otherwise 
.vσ2 ∈ B. Now consider .vσ3 ∈ Sσ . If  .vσ3 = λ1vσ1 + λ2vσ2 for some .λ1, λ2 ∈ K, then 
.vσ3 /∈ B, otherwise.vσ3 ∈ B. Proceeding like this, after.σk steps we will get a linearly 
independent set with .span(B) = V . 

Corollary 2.2 Every finite-dimensional vector space .V has a basis.
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Proof Let .V be a finite-dimensional vector space. Then there exists a finite subset 
. S of .V with .span(S) = V . Then by . S can be reduced to a basis. 

Example 2.17 Consider the set 

. B = {e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)}

in .Kn over . K. We will show that .B is a basis for .Kn . Let us consider an element 
.a = (a1, a2, . . . , an) ∈ K

n arbitrarily, then we have .a = a1e1 + a2e2 + · · · + anen . 
That is, every element in.K

n can be written as a linear combination of elements in. B
with coefficients from. K. Thus . B spans .Kn over . K. Also  

. a1e1 + a2e2 + · · · + anen = 0 ⇒ a1 = a2 = · · · = an = 0

That is, . B is linearly independent. Therefore. B is a basis for.Kn over. K and is called 
the standard ordered basis for .Kn over . K. 

Example 2.18 Consider the set . B =
{
E11 =

|
1 0
0 0

|
, E12 =

|
0 1
0 0

|
, E21 =

|
0 0
1 0

|
,

E22 =
|
0 0
0 1

| }
in .M2×2(K) over the field . K. Consider an element . 

|
a11 a12
a21 a22

|
∈

M2×2(K). Then 

. 

|
a11 a12
a21 a22

|
= a11

|
1 0
0 0

|
+ a12

|
0 1
0 0

|
+ a21

|
0 0
1 0

|
+ a22

|
0 0
0 1

|

That is, . B spans .M2×2(K) over the field . K. Also  

. λ1

|
1 0
0 0

|
+ λ2

|
0 1
0 0

|
+ λ3

|
0 0
1 0

|
+ λ4

|
0 0
0 1

|
=

|
0 0
0 0

|

.⇒
|
λ1 λ2

λ3 λ4

|
=

|
0 0
0 0

|
⇒ λ1 = λ2 = λ3 = λ4 = 0. That is,. B is linearly independent. 

Therefore . B is a basis for .M2×2(K) over . K. 

Example 2.19 Consider the set .B = {1, x, . . . , xn} in .Pn[a, b] over . R. Then .B is 
linearly independent as 

. λ1.0 + λ1x + · · · + λnx
n = 0 ⇒ λ0 = λ1 = · · · = λn = 0

and clearly . B spans .Pn[a, b]. Therefore . B is a basis for .Pn[a, b] over . R
Example 2.20 Now consider a subset. S = {(1, 1, 2), (2, 1, 1), (3, 2, 3), (−1, 0, 1)}
of .R3 over . R. We know that .span(S) is a subspace of .R3. Can you find a basis 
for .span(S)? To find a basis for .span(S), we have to find a linearly independent 
subset . S̃ of .R3 such that .span(S) = span(S̃). We may observe that the .span(S) is
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the same as the row space of the matrix .A =

⎡

⎢⎢
⎣

1 1 2
2 1 1
3 2 3

−1 0 1

⎤

⎥⎥
⎦. Thus to find a basis for 

.span(S), it is enough to find the linearly independent rows of . A. We can reduce 

.A to the row reduced form as .A =

⎡

⎢⎢
⎣

1 1 2
0 −1 −3
0 0 0
0 0 0

⎤

⎥⎥
⎦. From this we can say that the set 

.S̃ = {(1, 1, 2), (0,−1,−3)} forms a basis for .span(S). 

Theorem 2.9 Let .V be a vector space over a field . K. If  .B = {v1, v2, . . . , vn} is a 
basis for . V , then any .v ∈ V can be uniquely expressed as a linear combination of 
vectors in . B. 

Proof Let. B be a basis of .V and.v ∈ V . Suppose that . v can be expressed as a linear 
combination of vectors in . B as 

. v = λ1v1 + λ2v2 + · · · + λnvn

and as 

. v = μ1v1 + μ2v2 + · · · + μnvn

where .λi , μi ∈ K for all .i = 1, 2, . . . , n. Subtracting the second expression from 
first, we get 

. 0 = (λ1 − μ1)v1 + (λ2 − μ2)v2 + · · · + (λn − μn)vn

Since. B is linearly independent, this implies that.λi − μi = 0 for all.i = 1, 2, . . . , n. 
That is, .λi = μi for all .i = 1, 2, . . . , n. 

Theorem 2.10 Let .V be a finite-dimensional vector space over a field .K and .B be 
a basis of . V . Then basis is a minimal spanning set in . V . That is, if . B is a basis of . V , 
there does not exist a proper subset of .B that spans . V . 

Proof Let .V be a finite-dimensional vector space over a field .K and 

.B =
{
v1, v2, . . . , vn

}
be a basis of . V . Let  . S be a proper subset of .B that spans 

. V . Since .S ⊂ B and .S /= B, there exists at least one element . v such that .v ∈ B and 

.v /∈ S. Rearrange the elements of .B so that the first . k elements are also elements 
of . S and the remaining .n − k elements belong to .B only. Now take any element 
.vk+i ∈ B where.i ∈ {1, 2, . . . n − k}. Since.span(S) = V and.vk+i ∈ V , there exists 
.λ1, λ2, . . . , λk ∈ K such that .vk+i = λ1v1 + λ2v2 + · · · + λkvk . This can also be 
written as.vk+i = λ1v1 + λ2v2 + · · · + λkvk + 0vk+1 + · · · + 0vn . Also as.vk+i ∈ B, 
.vk+i can be represented as a linear combination of elements of .B by taking 1 as the
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coefficient to .vk+i and 0 as the coefficient for all elements in . B other than.vk+i . This  
is a contradiction to the fact that representation for any element with respect to a 
basis must be unique. 

Theorem 2.11 Let .V be a finite-dimensional vector space and .S be a minimal 
spanning set of . V , then . S is a basis. 

Proof Let.S = {v1, v2, . . . , vn} be a minimal spanning set of . V . To prove that . S is a 
basis, it is enough to show that . S is linearly independent. Suppose that it is linearly 
dependent, then by Theorem 2.5, at least one element say .vi ∈ S can be written as a 
linear combination of the remaining vectors. Then .S \ {vi } is a spanning set for . V . 
This is a contradiction to the fact that . S is a minimal spanning set. 

Theorem 2.12 Let .V be a vector space over a field .K and .B = {v1, v2, . . . , vn} be 
a basis of . V . Let .W = {w1, w2, . . . , wm} be a linearly independent set in . V , then 
.m ≤ n. 

Proof Since .B = {v1, v2, . . . , vn} is a basis of . V , .B spans .V and .B is linearly 
independent. Since.w1 ∈ V , by the previous theorem.w1 has a unique representation 
using the vectors in . B, say  

.w1 = λ1v1 + λ2v2 + · · · + λnvn (2.1) 

Now we can express one of the. vi , say. vk , in terms of.w1 and the remaining. v'
i s. That 

is, 

.vk = μw1 + μ1v1 + · · · + μk−1vk−1 + μk+1vk+1 + · · · + μnvn (2.2) 

where .μ = −1
λk

and .μ j = −λ j

λk
, j /= k. 

Now we will show that the set.B1 = {w1, v1, v2, . . . , vk−1, vk+1, . . . , vn} obtained 
by replacing .vk by .w1 is a basis for . V . That is, we will prove that .B1 is linearly 
independent and .B1 spans . V . Suppose that they are linearly dependent. Then by 
Theorem 2.5 at least one of the vectors in .B1 can be written as a linear combination 
of the remaining vectors. Since (2.1) is the unique representation for .w1, we cannot 
express .w1 in terms of .v1, v2, . . . , vk−1, vk+1, . . . , vn . Therefore some .vl ∈ B1 can 
be written as a linear combination of the remaining vectors in.B1. That is, there exist 
scalars .α, α1, . . . , αl−1, αl+1, . . . , αk−1, αk+1, . . . , αn ∈ K such that 

. vl = αw1 + α1v1 + · · · + αl−1vl−1 + αl+1vl+1 + · · · + αk−1vk−1 + αk+1vk+1 + · · · + αnvn

Now substituting (2.1) in the above equation we get that .vl can be expressed as a 
linear combination of vectors in . B, which is a contradiction as .B is linearly inde-
pendent. Therefore.B1 is linearly independent. Since.vk can be expressed as in (2.2), 
.span(B1) = span(B) = V . Therefore .B1 is a basis of . V . We repeat this process by 
replacing some .v j ∈ B1, by .w2, and so on.
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Now if .m ≤ n, .Bm = {w1, w2, . . . , wm, vi1 , vi2 , . . . , vim−n } is a basis for . V . If  
.m > n, .Bn = {w1, w2, . . . , wn} is a basis for . V . Then .wn+1 ∈ W can be written as 
a linear combination of vectors in .Bn , which is a contradiction to the fact that .W is 
linearly independent. Therefore .m ≤ n. 

Basis of a vector space is not unique. For example, consider .R2. Clearly . B1 =
{(1, 0), (0, 1)} is a basis for .R2 as any vector .(x1, x2) ∈ R

2 can be written as 
.(x1, x2) = x1(1, 0) + x2(0, 1), x1, x2 ∈ R and.B1 is linearly independent. Now con-
sider the set .Bλ = {(1, 0), (0, λ)}. Then .Bλ is a basis for .R2 for any .λ /= 0 ∈ R as 
any vector.(x1, x2) ∈ R

2 can be written as. (x1, x2) = x1(1, 0) + x2
λ
(0, λ), x1, x2 ∈ R

and .Bλ is linearly independent for any .λ /= 0 ∈ R. The following corollary shows 
that any two bases for a vector space have the same cardinality. 

Corollary 2.3 For a finite-dimensional vector space .V over . K, any two bases for 
.V have the same cardinality. 

Proof Let .B1 = {v1, v2, . . . , vn} and .B2 = {w1, w2, . . . , wm} be any two bases for 
. V . Consider .B1 as a basis and .B2 as a linearly independent set, then by the above 
theorem, .m ≤ n. Now consider .B2 as a basis and .B1 as a linearly independent set, 
then .n ≤ m. Therefore .m = n. 

Corollary 2.4 Let .V be a vector space over a field .K and .B be a basis of . V . Then 
basis is a maximal linearly independent set in . V . That is, if .B is a basis of . V , there 
does not exist a linearly independent set . S such that .B ⊂ S ⊂ V . 

Proof Let .B be a basis of .V and . S be a linearly independent set in . V . By the  
Theorem 2.12, the cardinality of. S is less than or equal to cardinality of. B. Therefore 
there does not exist a linearly independent set . S such that .B ⊂ S ⊂ V . 

In the above corollary, we have shown that every basis is a maximal linearly 
independent set. Now we will prove that the converse is also true. 

Theorem 2.13 Let .V be a finite-dimensional vector space over a field . K. Let . S =
{v1, v2, . . . , vn} be a maximal linearly independent set in . V , then . S is a basis. 

Proof Let. S be a maximal linearly independent set in. V . To show that. S is a basis, it 
is enough to prove that.span(S) = V . Suppose that this is not true. Then there exists 
a non-zero vector.v ∈ V such that.v /∈ span(S). Now consider the set .S1 = S ∪ {v}. 
We will show that.S1 is linearly independent, which will be a contradiction to the fact 
that . S is maximal. Now let .λ, λ1, λ2, . . . , λn ∈ K be such that . λv + λ1v1 + λ1v2 +
· · · + λnvn = 0. If.λ = 0, then as. S is linearly independent.λ1 = λ2 = · · · = λn = 0. 
If .λ /= 0, as.v /∈ span(S), the expression.λv + λ1v1 + λ1v2 + · · · + λnvn = 0 is not 
possible. Therefore .S1 is linearly independent. 

Theorem 2.14 Let .V be a finite-dimensional vector space over a field .K and . S be 
a linearly independent subset of . V . Then . S can be extended to a basis.
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Proof Let .V be a finite-dimensional vector space over a field . K. Let  
.B={v1, v2, . . . , vn} be a basis of . V . Let  . S be a linearly independent subset of . V . 
Now .S ∪ B is a spanning set of . V . By Theorem 2.8, it can be reduced to a basis. If 
.|S| = n, then by Theorem 2.12, . S is a maximal linearly independent set and hence 
a basis. Suppose that .|S| < n. Then take the vector .v1 ∈ B. If  .v1 /∈ span(S), then 
.S1 = S ∪ {v1} is a linearly independent set. If .|S1| = n, then as above .S1 is a basis. 
If .v1 ∈ span(S), discard . v1. Then choose .v2 ∈ V and proceed in the same way. By 
repeating this process, we obtain a basis for .V which is an extension of . S. 

The following theorem summarizes the results from Theorems 2.10–2.14. 

Theorem 2.15 Let .V be a finite-dimensional vector space over a field .K and . B =
{v1, v2, . . . , vn}. Then the following are equivalent: 
(a) .B is a basis of . V . 
(b) .B is a minimal spanning set. 
(c) .B is a maximal linearly independent set. 

In Corollary 2.3, we have seen that any basis for a vector space has the same 
cardinality. Therefore, we can uniquely define a quantity to express the cardinality 
of a basis for a vector space. 

Definition 2.5 (Dimension) Let. V be a vector space over a field. K and. B be basis of 
. V . The number of elements of . B is called dimension of . V . It is denoted by.dim(V ). 
For convenience, the dimension of .{0} is defined as 0. 
Example 2.21 From Example 2.17, it is easy to observe that .Kn over .K has dimen-
sion . n. 

Example 2.22 From Example 2.18, .M2×2 (K) over .K has dimension . 4. In general, 
.Mn×n (K) over .K has dimension . n2. 

Example 2.23 From Example 2.19, .Pn[a, b] over . R has dimension .n + 1. 

What about the dimension of.P[a, b]? Does there exist a finite set which is linearly 
independent and spans.P[a, b]? If such a finite set does not exist, such vector spaces 
are called infinite-dimensional vector spaces. Can you give another example for an 
infinite-dimensional vector space? What about .C[a, b]? Now, the following remark 
discusses some interesting facts about the importance of field . K, while considering 
a vector space .V (K). 

Remark 2.4 One set can be a vector space over different fields and their dimension 
may vary with the field under consideration. For example.C = the set of all complex 
numbers is a vector space over both the fields. R and. C. Since every element. a + bi ∈
C can be written as 

. a + bi = (a + bi)1

where .a + bi ∈ C (field under consideration) and .1 ∈ C (set under consideration), 
.{1} is a basis for.C (C) and.dimC (C) = 1. If. R is the field under consideration, then 
.a + bi ∈ C can be written as
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. a + bi = a(1) + b(i)

where.a, b ∈ R and.1, i ∈ C. Therefore.{1, i} is a basis for.C (R) and.dimR (C) = 2. 

Theorem 2.16 Let .V be a finite-dimensional vector space, then 

(a) Every spanning set of vectors in .V with cardinality the same as that of . dim(V )

is a basis of . V . 
(b) Every linearly independent set of vectors in .V with cardinality the same as that 

of .dim(V ) is a basis of . V . 

Proof (a) Let .V be a finite-dimensional vector space with .dim(V ) = n. Then by 
Corollary 2.3, any basis of .V have cardinality . n. Let  . S be subset of .V with 
.span(S) = V and .|S| = n. By Theorem 2.8 any spanning set can be reduced to 
a basis. Therefore . S is a basis for . V . 

(b) Let. V be a finite-dimensional vector space with.dim(V ) = n. Let. S be a linearly 
independent subset of. V with.|S| = n. By Theorem 2.14 any linearly independent 
set . S can be extended to a basis. Therefore . S is a basis for . V . 

Theorem 2.17 Let .V be a finite-dimensional vector space over a field . K. Let .W be 
a subspace . V . Then .W is finite-dimensional and .dim(W ) ≤ dim(V ). Moreover, if 
.dim(W ) = dim(V ), then .V = W. 

Proof Let .W be a subspace of . V . Then .W is a vector space with the operations 
defined on . B. Consider a basis .B for . W . Then .B is a linearly independent set in 
. V . Then by Theorem 2.12, .dim(W ) ≤ dim(V ). If .dim(W ) = dim(V ), then by the 
previous theorem, . B is a basis for .V also and hence .V = W . 

Example 2.24 Consider the vector space .R2 over . R. Let  .W be a subspace of .R2. 
Since.dim(R2) = 2 the only possible dimensions for.W are 0, 1, and 2. If. dim(W ) =
0, then.W = {0} and if .dim(W ) = 2, then.W = R

2. Now  let .dim(W ) = 1. Then. W
is spanned by some non-zero vector. Therefore .W is given by . W = {λv | λ ∈ R}
for some .v /= 0 ∈ R

2. That is, .W is a line passing through origin. Hence the only 
subspaces of .R2 are the zero space, lines passing through origin, and .R2 itself. 
Similarly, the only subspaces of .R3 are the zero space, lines passing through origin, 
planes passing through origin, and .R

3 itself. 

2.5 Sum and Direct Sum 

In the previous section, we have seen that the union of two subspaces need not 
necessarily be a subspace. Therefore analogous to union of subsets in set theory, we 
define a new concept called the sum of subspaces and analogous to disjoint union of 
subsets we introduce direct sums. 

Theorem 2.18 Let .W1,W2, . . . ,Wn be subspaces of a vector space over a field . K, 
then their sum .W1 + W2 + · · · + Wn = {w1 + w2 + · · · + wn | wi ∈ Wi } is a sub-
space of .V and it is the smallest subspace of .V containing .W1,W2, . . . ,Wn.
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Proof Since .W1,W2, . . . ,Wn are subspaces of . V , .0 ∈ Wi for all .i = 1, 2, . . . , n. 
Then 

. 0 = 0 + 0 + · · · + 0 ∈ W1 + W2 + · · · + Wn

Now let .v,w ∈ W1 + W2 + · · · + Wn and .λ ∈ K, then .v = v1 + v2 + · · · + vn and 
.w = w1 + w2 + · · · + wn where .vi , wi ∈ Wi for all .i = 1, 2, . . . , n. As each .Wi is 
a subspace of . V , .vi + wi ∈ Wi and .λvi ∈ Wi for all .i = 1, 2, . . . , n. Hence 

. v + w =
nE

i=1

(vi + wi ) ∈ W1 + W2 + · · · + Wn

and 

. λv =
nE

i=1

λvi ∈ W1 + W2 + · · · + Wn

Therefore .W1 + W2 + · · · + Wn is a subspace of . V . Since .wi ∈ Wi can be writ-
ten as .wi = 0 + · · · + 0 + wi + 0 + · · · + 0 ∈ W1 + W2 + · · · + Wn , . W1 + W2 +
· · · + Wn contains each .Wi . Now to prove that .W1 + W2 + · · · + Wn is the small-
est subspace containing .W1,W2, . . . ,Wn , we will show that any subspace of . V
containing.W1,W2, . . . ,Wn contains .W1 + W2 + · · · + Wn . Let .W be any subspace 
containing.W1,W2, . . . ,Wn . Let. w = w1 + w2 + · · · + wn ∈ W1 + W2 + · · · + Wn

where .wi ∈ Wi for all .i = 1, 2, . . . , n. Since .W is a subspace of .V and .W contains 
.W1,W2, . . . ,Wn , .w ∈ W . 

Example 2.25 Let .V = R
2. Consider .W1 = {(x1, x2) | x1 = x2, x1, x2 ∈ R} and 

.W2 = {(x1, x2) | x1 = −x2, x1, x2 ∈ R}. Then .W1 and .W2 are subspaces of . V
(Fig. 2.6). 

Fig. 2.6 Observe that both.W1 and.W2 depicted in (a) and  (b) respectively are straight lines passing 
through origin and hence are subspaces of.R2
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Any vector .(x1, x2) ∈ R
2 can be written as a linear combination of elements of 

.W1 and .W2 as follows: 

. (x1, x2) =
(
x1 + x2

2
,
x1 + x2

2

)
+

(
x1 − x2

2
,
x2 − x1

2

)
∈ W1 + W2

As.W1 + W2 is a subspace of.R2, this implies that.W1 + W2 = R
2. Also observe that 

the representation of any vector as the sum of elements in.W1 and.W2 is unique here. 

Example 2.26 Let .V = M2×2(R). Consider 

. W1 =
{|

a11 a12
0 a22

|
| a11, a12, a22 ∈ R

}

and 

. W2 =
{|

a11 0
a21 a22

|
| a11, a21, a22 ∈ R

}

Then .W1 and .W2 are subspaces of .V (Verify). Also any vector in .M2×2(R) can be 
expressed as a sum of elements in.W1 and.W2. But here this expression is not unique. 
For example, 

. 

|
1 2
3 4

|
=

|
1 2
0 4

|
+

|
0 0
3 0

|
∈ W1 + W2

and 

. 

|
1 2
3 4

|
=

|
0 2
0 0

|
+

|
1 0
3 4

|
∈ W1 + W2

If the elements can be expressed uniquely, then it has particular importance and 
is called direct sum. That is, the sum .W1 + W2 is called direct sum denoted by 
.W1 ⊕ W2 if every element .w ∈ W1 + W2 can be uniquely written as .w = w1 + w2, 
where.w1 ∈ W1 and.w2 ∈ W2. That  is, if .w = v1 + v2, where.v1 ∈ W1 and.v2 ∈ W2, 
then .v1 = w1 and .v2 = w2. 

Definition 2.6 (Direct sum) Let  .V be a vector space over a field .K and 
.W1,W2, . . . ,Wn be subspaces of . V . If every element in .V can be uniquely rep-
resented as a sum of elements in .W1,W2, . . . ,Wn , then .V is called the direct sum 
of .W1,W2, . . . ,Wn and is denoted by .V = W1 ⊕ W2 ⊕ · · · ⊕ Wn . 

Suppose we have a vector space.V over a field. K and subspaces. W1,W2, . . . ,Wn

of. V . Then it is not easy to check whether every element in.V has a unique represen-
tation as the sum of elements of .W1,W2, . . . ,Wn . The following theorem provides 
a solution for this. 

Theorem 2.19 Let .V be a vector space over a field .K and .W1,W2, . . . ,Wn be sub-
spaces of . V . Then .V = W1 ⊕ W2 ⊕ · · · ⊕ Wn if and only if the following conditions 
are satisfied:
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(a) . V = W1 + W2 + · · · + Wn

(b) zero vector has only the trivial representation. 

Proof Let.V = W1 ⊕ W2 ⊕ · · · ⊕ Wn . Then by the definition of direct sum both. (a)

and .(b) hold. Conversely, suppose that both .(a) and .(b) hold. Let .v ∈ V have two 
representations namely, 

.v = v1 + v2 + · · · + vn (2.3) 

and 

.v = w1 + w2 + · · · + wn (2.4) 

where .vi , wi ∈ Wi for all .i = 1, 2, . . . , n. Then subtracting .(2) from.(1) gives 

. 0 = (v1 − w1) + (v2 − w2) + · · · + (vn − wn)

and as zero has trivial representation only,.vi − wi = 0 for all .i = 1, 2, . . . , n which 
implies .vi = wi for all .i = 1, 2, . . . , n. That is, every vector has a unique represen-
tation. Therefore .V = W1 ⊕ W2 ⊕ · · · ⊕ Wn . 

Example 2.27 Consider.V = R
2 and take.W1 and.W2 as in Example 2.25. Then. V =

W1 ⊕ W2. We already know that .V = W1 + W2. It is enough to prove that the zero 
vector has only the trivial representation. Let .(x1, x1) ∈ W1 and .(x2,−x2) ∈ W2 be 
such that.(x1, x1) + (x2,−x2) = (0, 0). This implies that. (x1 + x2, x1 − x2) = (0, 0)
and hence .x1 = x2 = 0. Thus zero vector has only the trivial representation. 

The following theorem gives a necessary and sufficient condition to check whether 
the sum of two subspaces is a direct sum or not. 

Theorem 2.20 Let .V be a vector space over a field . K. Let .W1 and .W2 be two 
subspaces of. V , then.V = W1 ⊕ W2 if and only if.V = W1 + W2 and.W1 ∩ W2 = {0}. 
Proof Let .V = W1 ⊕ W2, then by the definition of direct sum .V = W1 + W2. If  
.w ∈ W1 ∩ W2, then 

. w ∈ W1 ∩ W2 ⇒ w ∈ W1 and w ∈ W2 ⇒ −w ∈ W2

Now .0 = w + (−w) ∈ W1 + W2. Since .V = W1 ⊕ W2, this implies that .w = 0. 
That is, .W1 ∩ W2 = {0}. 

Conversely, suppose that .V = W1 + W2 and .W1 ∩ W2 = {0}. Let  . 0 = w1 + w2

where.w1 ∈ W1 and.w2 ∈ W2 be a non-trivial representation of the zero vector. Now 
.0 = w1 + w2 ⇒ −w1 = w2 ∈ W1, since .W1 is a subspace. As .W1 ∩ W2 = {0}, this  
implies that .w1 = w2 = 0.



2.5 Sum and Direct Sum 71

Fig. 2.7 Observe that any 
vector in.R2 can be written 
as a sum of elements of. W1
and.W2. Also observe that 
. W1 ∩ W2 = {0}

Example 2.28 Let .V = P3[a, b]. Let  

. W1 = {a0 + a2x
2 | a0, a2 ∈ R}

and 
. W2 = {a1x + a3x

3 | a1, a3 ∈ R}

Any element in .P3[a, b] is of the form .a0 + a1x + a2x2 + a3x3. Then clearly 
.P3[a, b] = W1 + W2. Also .W1 ∩ W2 = {0}, as polynomials in .W1 and .W2 have dif-
ferent orders. Therefore .P3[a, b] = W1 ⊕ W2. 

Example 2.29 Let .V = R
2. Let  .W1 = {(x1, 0) | x1 ∈ R} and . W2 = {(0, x2) | x2 ∈

R}. 

Then any vector .(x1, x2) ∈ R
2 can be written as . (x1, x2) = (x1, 0) + (0, x2) ∈

W1 + W2. Since .W1 + W2 is a subspace of .R2, we get .V = W1 + W2. Also  . W1 ∩
W2 = {0}. Therefore .R

2 = W1 ⊕ W2 (Fig. 2.7). 

The examples discussed deal with subspaces of finite dimensional vector spaces. 
Now let us give you an example from an infinite-dimensional vector space. 

Example 2.30 Let .V = C[a, b]. Take  

. W1 = { f (x) | f (−x) = − f (x)}

and 
. W2 = { f (x) | f (−x) = f (x)}

.W1 and .W2 are respectively the collection of all odd functions and even functions. 
(Verify that they are subspaces of .C[a, b].) Now, for any . f ∈ C[a, b], consider 
. f1(x) = f (x)− f (−x)

2 and . f2(x) = f (x)+ f (−x)
2 . We have
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. f1(−x) = f (−x) − f (−(−x))

2
= −( f (x) − f (−x))

2
= − f1(x)

and 

. f2(−x) = f (−x) + f (−(−x))

2
= f (−x) + f (x)

2
= f2(x)

Thus . f1 ∈ W1 and . f2 ∈ W2. Clearly, . f = f1 + f2 and hence .C[a, b] = W1 + W2. 
Also observe that.W1 ∩ W2 = {0}. For  if. f ∈ W1 ∩ W2,. f (−x) = − f (x) = f (x)∀x
∈ [a, b]. This gives. f (x) = 0 for all.x ∈ [a, b]. Thus we can conclude that. C[a, b] =
W1 ⊕ W2. 

Observe that the above proposition discusses the case of two subspaces only. When 
asking about a possible direct sum with more than two subspaces, it is not enough 
to check that the intersection of any two of the subspaces is .{0}. For example, con-
sider the subspaces of .R3 given by . W1 = {(x1, 0, 0) | x1 ∈ R},W2 = {(0, x2, x3) |
x2, x3 ∈ R},W3 = {(x1, x1, 0) | x1 ∈ R}. Clearly, .R3 = W1 + W2 + W3 and . W1 ∩
W2 = W1 ∩ W3 = W2 ∩ W3 = {0} (verify). But.R3 /= W1 ⊕ W2 ⊕ W3 as. (0, 0, 0) =
(0, 0, 0) + (0, 0, 0) + (0, 0, 0) and .(0, 0, 0) = (1, 0, 0) + (0, 1, 0) + (−1,−1, 0). 

Now we will discuss the dimension of the sum of two subspaces of a finite-
dimensional vector space. 

Theorem 2.21 Let. V be a finite-dimensional vector space over a field. K and. W1,W2

be two subspaces of . V , then 

. dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2)

Proof Let .W1,W2 be two subspaces of finite-dimensional vector space . V . Then 
.W1 ∩ W2 is also a subspace of. V . Let.{u1, u2, . . . , ul} be a basis for.W1 ∩ W2. Since 
.W1 ⊆ W1 ∩ W2, .{u1, u2, . . . , ul} is a linearly independent set in .W1, and hence 
it can be extended to a basis .{u1, u2, . . . , ul , v1, v2, . . . , vm} of .W1. Similarly, let 
.{u1, u2, . . . , ul , w1, w2, . . . , wn} be a basis of .W2. Clearly 

. B = {u1, u2, . . . , ul , , v1, v2, . . . , vm, w1, w2, . . . , wn}

is a spanning set of .W1 + W2. Now will show that .B is a basis for .W1 + W2. It is  
enough to show that . B is linearly independent. Let . λ1, . . . , λl, μ1, . . . , μm, ξ1, . . . ,

ξn ∈ K be such that 

.λ1u1 + · · · + λlul + μ1v1 + · · · + μmvm + ξ1w1 + · · · + ξnwn = 0 (2.5) 

This implies 

.ξ1w1 + · · · + ξnwn = −λ1u1 − · · · − λlul − μ1v1 − · · · − μmvm ∈ W1 ∩ W2
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as.{u1, u2, . . . , ul , v1, v2, . . . , vm} is basis for.W1 and.{w1, w2, . . . , wn} ⊆ W2. Now  
.{u1, u2, . . . , ul} is a basis for .W1 ∩ W2 implying there exist scalars . α1, α2, . . . , αl ∈
K such that 

. ξ1w1 + · · · + ξnwn = α1u1 + α2u2 + · · · + αlul

Since.{u1, u2, . . . , ul , w1, w2, . . . , wn} is a basis for.W2, the above equation implies 
that .ξ1 = · · · = ξn = α1 = · · · = αl = 0. Then .(3) changes to . λ1u1 + · · · + λlul +
μ1v1 + · · · + μmvm = 0. Since.{u1, u2, . . . , ul , v1, v2, . . . , vm} is a basis of.W1, this  
implies that.λ1 = · · · = λl = μ1 = · · · = μm = 0. That is,. B is linearly independent. 
Thus we have shown that . B is a basis for .W1 + W2. Now  

. dim(W1 + W2) = l + m + n

= (l + m) + (l + n) − l

= dim(W1) + dim(W2) − dim(W1 ∩ W2)

Example 2.31 Consider the vector space .M2×2(R) over the field . R. Let  

. W1 =
{|

a11 a12
a12 a22

|
| a11, a12, a22 ∈ R

}

and 

. W2 =
{|

a11 −a12
a12 0

|
| a11, a12 ∈ R

}

Verify that.W1 and.W2 are subspaces of.M2×2(R). Since.

{|
1 0
0 0

|
,

|
0 1
1 0

|
,

|
0 0
0 1

|}
is a 

basis for.W1, .dim(W1) = 3 and as.

{|
0 −1
1 0

|
,

|
1 0
0 0

|}
is a basis for.W2, . dim(W2) =

2. Now  

. W1 ∩ W2 =
{|

a11 0
0 0

|
| a11 ∈ R

}

Since .

{|
1 0
0 0

|}
is a basis for .W1 ∩ W2, .dim(W1 ∩ W2) = 1. Thus 

. dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2) = 4

Hence .W1 + W2 = M2×2(R). 

Example 2.32 Consider the vector space .P4[a, b]. Let  

. W1 = {λ0 + λ2x
2 + λ4x

4 | λ0, λ2, λ4 ∈ R}

and 
.W2 = {λ1x + λ3x

3 | λ1, λ3 ∈ R}
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Since .{1, x2, x4} is a basis for .W1, .dim(W1) = 3 and as .{x, x3} is a basis for .W2, 
.dim(W2) = 2. Clearly .dim(W1 ∩ W2) = 0 (How?) and hence 

. dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2) = 5

As .W1 + W2 = P4[a, b] and .W1 ∩ W2 = {0}, we have .P4[a, b] = W1 ⊕ W2. 

Theorem 2.22 Let .V be a finite-dimensional vector space over a field . K. Let 
.W1,W2, . . . ,Wn be subspaces of . V , such that .V = W1 + W2 + · · · + Wn and 
.dim(V ) = dim(W1) + dim(W2) + · · · + dim(Wn). Then . V = W1 ⊕ W2 ⊕ · · · ⊕
Wn. 

Proof Let .V be a finite-dimensional vector space with .W1,W2, . . . ,Wn as sub-
spaces of . V . Consider a basis .Bi for each .i = 1, 2, . . . , n and let .B = ∪n

i=1Bi . 
Since.V = W1 + W2 + · · · + Wn ,. B spans. V . Now suppose that. B is linearly depen-
dent. Then at least one of the vectors can be written as a linear combination of 
other vectors. Then .dim(V ) < dim(W1) + dim(W2) + · · · + dim(Wn), which is a 
contradiction. Therefore .B is linearly independent and hence .B is a basis of . V . 
Now let .0 = w1 + w2 + · · · + wn where .wi ∈ Wi . Since .Bi is a basis for .Wi , each 
.wi ∈ Wi can be expressed uniquely as a sum of elements in . Bi . i.e., 0 can be writ-
ten as a linear combination of elements of . B. As  .B is a basis for . V , this implies 
that the coefficients are zero. That is, .wi = 0 for all .i = 1, 2, . . . , n. Therefore 
.V = W1 ⊕ W2 ⊕ · · · ⊕ Wn . 

2.6 Exercises 

1. Show that the collections given in Examples 2.2–2.7 are vector spaces with 
respect to the given operations. 

2. Consider the vector space .R2 with usual addition and multiplication over . R. 
Give an example for a subset of .R2 which is 

(a) closed under addition but not closed under scalar multiplication. 
(b) closed under scalar multiplication but not closed under addition. 

3. Does .R2 over . R with operations defined by 

. (x1, x2) + (y1, y2) = (x1 + x2, y1 + y2) and λ(x1, x2) = (λx1, 0)

form a vector space? 
4. Check whether the following vectors are linearly dependent or not. 

(a) .{(1, 2), (2, 1)} in .R
2 over . R. 

(b) .{(1, 2, 1), (2, 1, 1), (1, 1, 2)} in .R
3 over . R. 

(c) .{(i,−i), (−1, 1)} in .C
2 over . R. 

(d) .{(i,−i), (−1, 1)} in .C
2 over . C.
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(e) .{1 + x, 1 + x2} in .P2[a, b] over . R. 
(f) .{2, x − 2, 1 + x + x2, x3 − x2} in .P3[a, b] over . R. 

(g) .

{|
1 2
0 1

|
,

|
1 0
2 1

|
,

|
0 1
2 1

|
,

|
1 1
2 0

|}
in .M2(R) over . R. 

(h) .

{|
1 −1
1 0

|
,

|
1 1
0 1

|
,

|
3 −1
2 1

|}
in .M2(R) over . R. 

5. Let .{v1, v2} be a linearly independent subset of a vector space .V over a field . K. 
Then show that .{v1 + v2, v1 − v2} is linearly independent only if characteristic 
of .K is not equal to 2. 

6. Check whether the following subsets of .R2 are subspaces of .R2 over . R. If yes, 
find its dimension and write down a basis. 

(a) . {(x1, x2) ∈ R
2 | x2 = 1}

(b) . {(x1, x2) ∈ R
2 | x1 + x2 = 0}

(c) . {(x1, x2) ∈ R
2 | x1

x2
= 1}

(d) . {(x1, x2) ∈ R
2 | x1, x2 ≤ 0}

(e) .{(x1, x2) ∈ R
2 | x21 + x22 = 0}. 

7. Check whether the following subsets of .M2 (K) are subspaces of .M2 (K) over 
. K. If yes, find its dimension and write down a basis. 

(a) . 

{|
a11 a12
a21 a22

|
∈ M2 (K) | a11 + a12 = 0

}

(b) . 

{|
a11 a12
a21 a22

|
∈ M2 (K) | a11 + a12 = 1

}

(c) . {A ∈ M2 (K) | det (A) = 0}
(d) . {A ∈ M2 (K) | det (A) /= 0}
(e) .

{|
a11 a12
a21 a22

|
∈ Mn (K) | a11 = a22

}
. 

8. Check whether the following subsets of .P2 (R) are subspaces of .P2 (R) over . R. 
If yes, find its dimension and write down a basis. 

(a) . {p(x) ∈ P2 (R) | p(0) = 0}
(b) . {p(x) ∈ P2 (R) | p(0) = 1}
(c) . {p(x) ∈ P2 (R) | p(0) = p(1) = 0}
(d) . {p(x) ∈ P2 (R) | p(x) ≥ 0}
(e) .{p(x) ∈ P2 (R) | p(x) = p(−x)}. 

9. State whether the following statements are true or false. 

(a) A non-trivial vector space over the fields. R or. C always has an infinite number 
of elements. 

(b) The set of all rational numbers. Q is a vector space over. R under usual addition 
and multiplication. 

(c) .{(x1, x2) | x21 + x22 = 0, x1, x2 ∈ C} is a subspace of .C2 over . C.
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(d) There exists a non-trivial subspace of .R over .R under usual addition and 
multiplication. 

(e) .{(i, 1), (−1, i)} is a linearly independent set in .C
2 over . C. 

(f) If .W1,W2,W are subspaces of a vector space .V such that . W1 + W = W2 +
W , then .W1 = W2. 

(g) If .W1,W2 are subspaces of .R7 with .dim (W1) = 4 and .dim (W2) = 4, then 
.dim (W1 ∩ W2) = 1. 

10. Show that .R with usual addition and multiplication over .Q is an infinite-
dimensional vector space. (Hint: Use the fact that. π is a transcendental number.) 

11. Find the row space and column space of .

|
1 −1
2 0

|
. 

12. Show that the rows of a .3 × 2 matrix are linearly dependent. 
13. Show that the columns of a .3 × 5 matrix are linearly dependent. 
14. Which of the following collection of vectors span .R

2 over . R? 

(a) . {(1, 1)}
(b) . {(1, 2), (0, 4)}
(c) . {(0, 0), (1,−1), (3, 2)}
(d) . {(2, 4), (4, 8)}
(e) .{(3, 2), (1, 4), (4, 6)}. 

15. Which of the following collection of vectors span .R
3 over . R? 

(a) . {(1, 1, 0), (0, 1, 1)}
(b) . {(0, 2, 0), (1, 0, 0), (1, 2, 0)}
(c) . {(0, 0,−1), (0, 1,−1), (−1, 1,−1)}
(d) . {(0, 4, 2), (0, 8, 4), (1, 12, 6)}
(e) .{(1, 3, 2), (1, 2, 3), (3, 2, 1), (2, 1, 3)}. 

16. Which of the following collection of vectors span .P
2[a, b] over . R? 

(a) . {x2 + 1, x2 + x, x + 1}
(b) . {x + 1, x − 1, x2 − 1}
(c) . {x2 + x + 1, 2x − 1}
(d) . {2x2 − x + 1, x2 + x, 2x − 3, x2 − 5}
(e) .{x + 1, 2x + 2, x2 + x}. 

17. Let .W1,W2 be subsets of a vector space .V over the field . K. Show that 

(a) .span (W1 ∩ W2) ⊆ span (W1) ∩ span (W2). 
(b) .span (W1) ∪ span (W2) ⊆ span (W1 ∪ W2). 

Does the converse hold in both .a) and . b)? 
18. Let .W1,W2 be subspaces of a vector space .V over the field . K. Show that 

.span (W1 + W2) = span (W1) + span (W2). 
19. Let .V1 = {v1, v2, . . . , vn}, .V2 = {v1, v2, . . . , vn, v} be subsets of a vector space 

. V . Then .span (V1) = span (V2) if and only if .v ∈ span (V1).



2.6 Exercises 77

20. Check whether the given collection of vectors form a basis for corresponding 
vector spaces. 

(a) .{(2, 1, 1), (1, 2, 1), (1, 1, 2)} for .R3 over . R. 
(b) .{1, x − 1, (x − 1)2} for .P2 (R) over . R. 
(c) .{1, x2 − 1, 2x2 + 5} for .P2 (R) over . R. 

(d) .

{|
1 0
0 −2

|
,

|
0 2
0 0

|
,

|
0 0
2 0

|
,

|
0 0
0 1

|}
for .M2 (R) over . R. 

21. Determine which of the given subsets forms a basis for .R3 over . R. Express the 
vector .(1, 2, 3) as a linear combination of the vectors in each subset that is a 
basis. 

(a) . {(1, 1, 1), (1, 1, 0), (1, 0, 0)}
(b) . {(1, 2, 1), (2, 1, 1), (1, 1, 2)}
(c) .{(2, 3, 1), (1,−2, 0), (1, 5, 1)}. 

22. Check whether the sets given in Questions.14 − 16 form a basis for the respective 
vector spaces. If not, find the dimension of their span. 

23. Find the dimension of span of the following collection of vectors: 

(a) .{(1,−2), (−2, 4)} in .R
2 over . R. 

(b) .{(−2, 3), (1, 2), (5, 6)} in .R
2 over . R. 

(c) .{(0, 3, 1), (−1, 2, 3), (2, 3, 0), (−1, 2, 4)} in .R
3 over . R. 

(d) .{1 + x, x2 + x + 1} in .P2[a, b] over . R. 
(e) .{1 − x, x2, 2x2 + x − 1} in .P2[a, b] over . R. 

(f) .

{|
1 1
0 0

|
,

|
1 −1
0 0

|
,

|
0 0
1 1

|
,

|
0 0

−1 1

|}
in .M2(R) over . R. 

(g) .

{|
1 1
1 0

|
,

|
1 1
0 1

|
,

|
1 0
1 1

|
,

|
0 1
1 1

|}
in .M2(R) over . R. 

Also, find a basis for the linear space spanned by the vectors. 
24. Consider two subspaces of .R4 given by 

. W1 = {(x1, x2, 2x1, x1 + x2) ∈ R
4 | x1, x2 ∈ R}

and 
. W2 = {(x1, 2x1, x2, x1 − x2) ∈ R

4 | x1, x2 ∈ R}

Find 

(a) .W1 + W2 and .W1 ∩ W2. 
(b) .dim (W1 + W2) and .dim (W1 ∩ W2). 

25. Let .V be a finite-dimensional vector space over a field .K and.W1 be a subspace 
of . V . Prove that there exists a subspace .W2 of .V such that .V = W1 ⊕ W2. 

26. Let .V be a vector space over a field .K and .W1,W2, . . . ,Wn be subspaces of . V
with.Wi ∩ Wj = {0} ∀ i /= j and.W1 + W2 + · · · + Wn = V . Is the sum a direct 
sum?
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27. Let .W1 = {A ∈ Mn (K) | Ai j = 0 ∀i ≥ j}, . W2 = {A ∈ Mn (K) | Ai j = 0 ∀
i ≤ j}, and .W3 = {A ∈ Mn (K) | Ai j = 0 ∀ i /= j}. Then show that . Mn (K) =
W1 ⊕ W2 ⊕ W3. 

28. Let 
. W1 = {A ∈ Mn (K) | AT = A}

and 
. W2 = {A ∈ Mn (K) | AT = −A}

Then show that .Mn (K) = W1 ⊕ W2. 

Solved Questions related to this chapter are provided in Chap. 9.
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