
Chapter 1 
Preliminaries 

We introduce a wide range of fundamental mathematical concepts and structures in 
this chapter on foundation of mathematics. Understanding their fundamental opera-
tions and attributes, we start with sets and functions. We then delve into the metric 
space universe, which offers a framework for comprehending distance and conver-
gence. Moving on to algebraic structures, we examine the distinctive qualities and 
illustrative instances of groups, rings, and fields. Polynomial rings and their essential 
properties are introduced, as are matrices and their rank, trace, and determinant, all 
of which are highlighted as they have vital roles in the coming chapters. The latter 
sections of the chapter provide an overview of Euclidean space and demonstrate how 
to solve systems of linear equations using techniques like Cramer’s rule, LU decom-
position, Gauss elimination, etc. These fundamental ideas in mathematics serve as 
the building blocks for more complex mathematical research and have numerous 
applications in science and engineering. 

1.1 Sets and Functions 

Set theory is the core of modern mathematics and serves as a language for mathe-
maticians to discuss and organize their ideas. It is a crucial and elegant concept at 
its core; a set is simply a collection of objects, similar to a bag containing multiple 
objects. These objects can be anything from numbers, characters, shapes, or other 
sets. The way set theory lets us classify, compare, and evaluate these collections is 
what makes it so powerful. This section will discuss some of the essential concepts in 
set theory. Though the notion of set is not well-defined in wide generality as it leads 
to paradoxes like Russell’s Paradox, published by Bertrand Russell (1872–1970) in 
1901, we start with the following simple definition for a preliminary understanding 
of a set. 

Definition 1.1 (Set) A set is a well-defined collection of objects. That is, to define 
a set  . X , we must know for sure whether an element . x belongs to .X or not. If . x is 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
R. K. George and A. Ajayakumar, A Course in Linear Algebra, University Texts in the 
Mathematical Sciences, https://doi.org/10.1007/978-981-99-8680-4_1 

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8680-4_1&domain=pdf
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1
https://doi.org/10.1007/978-981-99-8680-4_1


4 1 Preliminaries

an element of . X , then it is denoted by .x ∈ X and if . x is not an element of . X , then 
it is denoted by .x /∈ X . Two  sets .X and . Y are said to be equal if they have the same 
elements. 

Definition 1.2 (Subset) Let. X and. Y be any two sets, then. X is a subset of. Y , denoted 
by.X ⊆ Y , if every element of. X is also an element of. Y . Two  sets. X and. Y are equal 
if and only if .X ⊆ Y and .Y ⊆ X . 

A set can be defined in a number of ways. Commonly, a set is defined by either listing 
all the entries explicitly, called the Roster form, or by stating the properties that are 
meaningful and unambiguous for elements of the set, called the Set builder form. 

Example 1.1 Here are some familiar collection/sets of numbers. 

.N−the set of all natural numbers . −{1, 2, 3, . . .}

.W−the set of all whole numbers . −{0, 1, 2, . . .}

.Z−the set of all integers . −{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

.Q−the set of all rational numbers . −{ p
q | p, q ∈ Z, q /= 0}

.R−the set of all real numbers 

.C−the set of all complex numbers. 

Usually, in a particular context, we have to deal with the elements and subsets of 
a basic set which is relevant to that particular context. This basic set is called the 
“Universal Set” and is denoted by. U . For example, while studying the number system, 
we are interested in the set of natural numbers, . N, and its subsets such as the set of 
all prime numbers, the set of all odd numbers, and so forth. In this case .N is the 
universal set. A null set, often known as an empty set, is another fundamental object 
in set theory. It is a set with no elements, which means it has no objects or members. 
In set notation, the null set is commonly represented by .Φ or .{} (an empty pair of 
curly braces). 

Definition 1.3 (Cardinality) The cardinality of a set .X is the number of elements 
in . X . A set  .X can be finite or infinite depending on the number of elements in . X . 
Cardinality of .X is denoted by .|X |. 
Example 1.2 All the sets mentioned in Example 1.1 are infinite sets. The set of 
letters in the English alphabet is a finite set. 

Set Operations 

Set operations are fundamental mathematical methods for constructing, manipulat-
ing, and analyzing sets. They enable the combination, comparison, and modification 
of sets in order to acquire insights and solve various mathematical and real-life 
problems. Union (combining items from several sets), intersection (finding common 
elements between sets), complement (identifying elements not in a set), and set dif-
ference (removing elements from one set based on another) are the fundamental set 
operations.
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Fig. 1.1 The shaded portions in. a and. b represents the union and intersection of the sets.X and. Y , 
respectively 

Fig. 1.2 The shaded portion in. a represents the difference of. Y related to. X and the shaded portion 
in. b represents the complement of a set 

Definition 1.4 (Union and Intersection) Let  .X and . Y be two sets. The union of . X
and. Y , denoted by.X ∪ Y , is the set of all elements that belong to either .X or. Y . The  
intersection of .X and . Y , denoted by .X ∩ Y , is the set of all elements that belong to 
both .X and . Y . 

The relationship between sets can be illustrated with the use of diagrams, known 
asVenn diagrams. It was popularized by the famous mathematician John Venn (1834– 
1923). In a Venn diagram, a rectangle is used to represent the universal set and circles 
are used to represent its subsets. For example, the union and intersection of two sets 
are represented in Fig. 1.1. 

Definition 1.5 (Difference of . Y related to. X ) Let. X and. Y be two sets. The difference 
of . Y related to . X , denoted by .X \ Y , is the set of all elements in .X which are not in 
. Y . The difference of a set .X related to its universal set .U is called the complement 
of .X and is denoted by .Xc. That is, .Xc = U \ X . Keep in mind that .U c = Φ and 
.Φc = U (Fig. 1.2). 

Definition 1.6 (Cartesian Product) Let. X and. Y be two sets. The Cartesian product 
of .X and . Y , denoted by .X × Y , is the set of all ordered pairs .(x, y) such that . x
belongs to .X and . y belongs to . Y . That is, .X × Y = {(x, y) | x ∈ X, y ∈ Y }.
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Example 1.3 Let .X = {1, 2, 3} and .Y = {3, 4, 5}. Then the union and intersection 
of. X and. Y are.X ∪ Y = {1, 2, 3, 4, 5} and.X ∩ Y = {3}, respectively. The difference 
of. Y related to. X is.X \ Y = {1, 2}, and the Cartesian product of. X and. Y is. X × Y =
{(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5)}. 
Remark 1.1 Two sets .X and. Y are said to be  disjoint, if their intersection is empty. 
That is, if .X ∩ Y = Φ. 

We will now try to “connect” elements of distinct sets using the concept, “Rela-
tions”. A relation between two sets allows for the exploration and quantification 
of links and relationships between elements of various sets. It essentially acts as a 
link between elements of another set and elements from another, exposing patterns, 
dependencies, or correspondences. 

Definition 1.7 (Relation) A relation . R from a non-empty set .X to a non-empty set 
. Y is a subset of the Cartesian product.X × Y . It is obtained by defining a relationship 
between the first element and second element (called the “image” of first element) 
of the ordered pairs in .X × Y . 

The set of all first elements in a relation . R is called the domain of the relation. R, 
and the set of all second elements is called the range of . R. As we represent sets, a 
relation may be represented either in the roster form or in the set builder form. In the 
case of finite sets, a visual representation by an arrow diagram is also possible. 

Example 1.4 Consider the sets .X and .Y from Example 1.3 and their Cartesian 
product.X × Y . Then.R = {(1, 3), (2, 4), (3, 5)} is a relation between.X and. Y . The  
set builder form of the given relation can be given by . R = {(x, y) | y = x + 2, x ∈
X, y ∈ Y } (Fig. 1.3). 
Remark 1.2 If.|X | = m and.|Y | = n, then.|X × Y | = mn and the number of possible 
relations from set .X to set . Y is .2mn . 

Definition 1.8 (Equivalence Relations) A relation .R on a set .X is said to be an 
equivalence relation if and only if the following conditions are satisfied: 

(a) .(x, x) ∈ R for all .x ∈ X (Reflexive) 
(b) .(x, y) ∈ R implies .(y, x) ∈ R (Symmetric) 
(c) .(x, y) ∈ R and .(y, z) ∈ R implies .(x, z) ∈ R (Transitive). 

Example 1.5 Consider. N with the relation. R, where.(x, y) ∈ R if and only if . x − y
is divisible by. n, where. n is a positive integer. We will show that. R is an equivalence 
relation on . N. For,  

Fig. 1.3 Arrow diagram 
for. R

X Y
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(a) .(x, x) ∈ R for all .x ∈ N. For, .x − x = 0 is divisible by . n for all .x ∈ N. 
(b) .(x, y) ∈ R implies .(y, x) ∈ R. For,  

. (x, y) ∈ R ⇒ x − y is divisible by n

⇒ −(x − y) is divisible by n

⇒ y − x is divisible by n

⇒ (y, x) ∈ R

(c) .(x, y) ∈ R and .(y, z) ∈ R implies .(x, z) ∈ R. For,  

. (x, y), (y, z) ∈ R ⇒ x − y and y − z is divisible by n

⇒ (x − y) + (y − z) is divisible by n

⇒ x − z is divisible by n

⇒ (x, z) ∈ R

Thus, . R is reflexive, symmetric, and transitive. Hence, . R is an equivalence relation. 

Example 1.6 Consider the set .X = {1, 2, 3}. Define a relation .R on .X by . R =
{(1, 1), (2, 2), (1, 2), (2, 3)}. Is  .R an equivalence relation? Clearly, not! We can 
observe that . R is not reflexive as .(3, 3) /∈ R. Also. R is not transitive as . (1, 2), (2, 3)
but .(1, 3) /∈ R. What if we include the elements .(3, 3) and .(1, 3) to the relation and 
redefine . R as .R̃ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then . R̃ is an equiva-
lence relation on . X . 

Relations define how elements from one set correspond to elements from another, 
allowing for a broader range of relationships. However, there are specialized rela-
tions in which each element in the first set uniquely relates to one element in the 
second. This connection gives these relations mathematical precision, making them 
crucial for modeling precise transformations and dependencies in various mathe-
matical disciplines, ranging from algebra to calculus. We refer to such relations as 
functions. 

Functions 

Function in mathematics is a rule or an expression that relates how a quantity (depen-
dent variable) varies with respect to another quantity (independent variable) asso-
ciated with it. They are ubiquitous in mathematics and they serve many purposes. 

Definition 1.9 (Function) A function . f from a set .X to a set . Y , denoted by . f :
X → Y , is a relation that assigns to each element.x ∈ X exactly one element.y ∈ Y .
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Fig. 1.4 Observe that each element from set. X is mapped to exactly one element in set. Y . Therefore 
the given relation is a function..X is called domain of. f and. Y is called the co-domain of. f . 4 does 
not belong to the range set of. f , as it does not have a pre-image. The range set of. f is. {3, 5}

Fig. 1.5 Observe that 1 is 
mapped to both 3 and 4. Thus 
.R = {(1, 3), (1, 4), (2, 3)} is 
not a function 

Then. y is called the image of . x under . f and is denoted by . f (x). The  set .X is called 
the domain of . f and. Y is called the co-domain of . f . The collection of all images of 
elements in .X is called the range of . f . 

Example 1.7 Consider the sets. X and. Y from Example 1.3. Define a relation. R from 
the set.X to the set. Y as.R = {(1, 3), (2, 3), (3, 5)}. Then the relation. R is a function 
from.X to . Y (Fig. 1.4). 

From Definition 1.9, it is clear that any function from a set. X to a set. Y is a relation 
from.X to . Y . But the converse need not be true. Consider the following example. 

Example 1.8 Consider the sets .X and . Y from Example 1.3. Then the relation . R =
{(1, 3), (1, 4), (2, 3)} from the set .X to the set .Y is not a function as two distinct 
elements of the set . Y are assigned to the element . 1 in .X (Fig. 1.5). 

It would be easier to understand the dependence between the elements if we 
could geometrically represent a function. As a convention, the visual representation 
is done by plotting the elements in the domain along the horizontal axis and the 
corresponding images along the vertical axis. 

Definition 1.10 (Graph of a Function) Let  . f : X → Y be a function. The set 
.{(x, f (x)) ∈ X × Y | x ∈ X} is called the graph of . f .



1.1 Sets and Functions 9

Fig. 1.6 Observe that in the first graph any vertical line drawn in the domain will touch exactly 
one point of the graph. However, in the second graph it may touch more than one point 

Observe that the above-defined set is exactly the same as. f , by Definition 1.9. Also  
keep in mind that not all graphs represent a function. If any vertical line intersects a 
graph at more than one point, the relation represented by the graph is not a function. 
This is known as the vertical line test (Fig. 1.6). 

Definition 1.11 (One-one function and Onto function) A function . f from a set . X
to a set . Y is called a one-one (injective) function if distinct elements in the domain 
have distinct images, that is, for every .x1, x2 ∈ X , . f (x1) = f (x2) implies .x1 = x2. 
. f is called onto (surjective) if every element of. Y is the image of at least one element 
of . X , that is, for every.y ∈ Y , .∃x ∈ X such that . f (x) = y. A function which is both 
one-one and onto is called a bijective function. 

Example 1.9 Consider the function. f : R → R defined by. f (x) = x + 5 for.x ∈ R. 
First, we will check whether the function is one-one or not. We will start by assuming 
. f (x1) = f (x2) for some .x1, x2 ∈ R. Then 

. f (x1) = f (x2) ⇒ x1 + 5 = x2 + 5

⇒ x1 = x2

Therefore. f is one-one. Now to check whether the function is onto, take any.x ∈ R, 
then .x − 5 ∈ R with . f (x − 5) = x − 5 + 5 = x . That is, every element in .R (co-
domain) has a pre-image in . R (domain). Thus, . f is onto and hence . f is a bijective 
function. 

The graph of a function can also be used to check whether a function is one-one. 
If any horizontal line intersects the graph more than once, then the graph does not 
represent a one-one function as it implies that two different elements in the domain 
have the same image. This is known as the horizontal line test (Fig. 1.7). 

Definition 1.12 (Composition of two functions) Let . f : X → Y and.g : Y → Z be 
any two functions, then the composition.g ◦ f is a function from.X to. Z , defined by 
.(g ◦ f )(x) = g ( f (x)) (Fig. 1.8).
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Fig. 1.7 Consider the graphs of the functions. f1, f2:R → R defined by. f1(x) = x + 5 and. f2(x) =
x2. Observe that if we draw a horizontal line parallel to the .x-axis, it will touch exactly one point 
on the graph of the function. f1. But on the graph of the function. f2, it touches two points. Then by 
horizontal line test, the first function is one-one whereas the second one is not a one-one function 

Fig. 1.8 It is clear that the range set of. f must be a subset of the domain of. g, for the composition 
function to be defined 

Properties 
Let . f : X → Y, g : Y → Z , and .h : Z → W , then 

(a) .h ◦ (g ◦ f ) = (h ◦ g) ◦ f (Associative). 
(b) If . f and . g are one-one, then .g ◦ f is one-one. 
(c) If . f and . g are onto, then .g ◦ f is onto. 

Example 1.10 Consider the functions . f, g : R → R defined by . f (x) = x2 and 
.g(x) = 2x + 1. Then . ( f ◦ g)(x) = f (g(x)) = f (2x + 1) = (2x + 1)2 = 4x2 +
4x + 1 and.(g ◦ f )(x) = g( f (x)) = g(x2) = 2x2 + 1. Observe that. f ◦ g /= g ◦ f . 
Therefore function composition need not necessarily be commutative. 

Definition 1.13 (Inverse of a function) A function . f : X → Y is said to be invert-
ible if there exists a function .g : Y → X such that .g ( f (x)) = x for all .x ∈ X and 
. f (g(y)) = y for all .y ∈ Y . The inverse function of . f is denoted by . f −1. 

The function . f is invertible if and only if . f is a bijective function. For, suppose 
there exists an inverse function . g for . f . Then
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. f (x1) = f (x2) ⇒ g ( f (x1)) = g ( f (x2)) ⇒ x1 = x2

That is, . f is injective. And . f (g(y)) = y for all .y ∈ Y implies that . f is onto. 

Example 1.11 Consider a function. f , defined as in Fig. 1.4. Indeed, from the figure 
itself, it’s evident that function . f is not bijective. Thus . f is not invertible. Observe 
that if we define . f (2) = 4, then . f is both one-one and onto. Then define a func-
tion, .g : Y → X by .g(3) = 1, .g(4) = 2, and .g(5) = 3. Now.g ( f (1)) = g (3) = 1, 
.g ( f (2)) = g (4) = 2, and .g ( f (3)) = g (5) = 3. That is, .g ( f (x)) = x for all . x ∈
X . Similarly, we can prove that . f (g(y)) = y for all .y ∈ Y . 

Example 1.12 Consider the function. f (x) = x + 5, defined as in Example 1.9. We  
have already shown that the function is bijective. Now, we will find the inverse of 
. f . By definition, we can say that . f −1 is the function that will undo the operation of 
. f . That is, if a function . f maps an element . x from set .X to . y in set . Y , its inverse 
function . f −1 reverses this mapping, taking . y from . Y back to . x in . X . In this case, 
.X = Y = R. If we consider, a .y ∈ R(co-domain), then there exists .x ∈ R(domain) 
such that.y = x + 5 (Why?). Then.x = y − 5. Thus, the function.g(y) = y − 5 will 
undo the action of . f . We can verify this algebraically as follows: 

. g ( f (x)) = g(x + 5) = x + 5 − 5 = x

and 
. f (g(x)) = f (x − 5) = x − 5 + 5 = x

Thus . f −1(x) = x − 5. 

Example 1.13 Now consider . f : R → R defined by . f (x) = x2. From Fig.  1.7, we  
can clearly say that . f is not bijective. Thus . f does not have an inverse in . R. But, if  
we restrict the domain of . f to .[0,∞), . f is a bijective function. Then the inverse of 
. f is the function. f −1(x) = √

x . For,.g ( f (x)) = g(x2) = √
x2 = x and. f (g(x)) =

f (
√

x) = (
√

x)2 = x . 

It is easy to check whether a real function is invertible or not, by just looking at 
its graph. Consider Fig. 1.9. 

Now we will discuss some of the important concepts related to functions defined 
on the set of all real numbers to itself. 

Definition 1.14 (Continuity at a point) Let  .X ⊂ R and . f : X → R be a function. 
We say that. f is continuous at.x0 ∈ X , if given any.ε > 0 there exists a.δ > 0 such that 
if . x is any point in .X satisfying .|x − x0| < δ, then .| f (x) − f (x0)| < ε. Otherwise, 
. f is said to be discontinuous at . x0. 

A function is continuous if it is continuous at each point of its domain. In graphical 
terms, the continuity of a function on the set of all real numbers means that the graph 
does not have any gaps or breaks. From Fig. 1.7, it is clear that both the functions 
. f (x) = x + 5 and . f (x) = x2 are continuous. Figure 1.10 gives an example for a 
discontinuous function.
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Fig. 1.9 Observe that the graph of . f −1(x) is the graph of . f (x) reflected about the line . y = x
(represented by the dotted line) 

Fig. 1.10 Consider the 
signum function, defined by 

. 

Clearly,. f is not continuous 
at . x = 0

Observe that in the definition of continuity of a function at a point, the value of . δ
depends on both.x0 and. ε. If. δ does not depend on the point. x0, then the continuity is 
called uniform continuity. In other words, a function . f is uniformly continuous on 
a set . X , if for every .ε > 0, there exists .δ > 0, such that for every element .x, y ∈ X , 
.| f (x) − f (y)| < ε whenever .|x − y| < δ. Graphically, this means that given any 
narrow vertical strip of width. ε on the graph, there exists a corresponding horizontal 
strip of width . δ such that all points in the interval within . δ units of each other on 
the .x-axis map to points within . ε units of each other on the .y-axis. Consider the 
following example. 

Example 1.14 Consider the function . f1(x) = x + 5. We will show that . f1 is uni-
formly continuous. For, given any.ε > 0, choose.δ = ε. Then, for any.x, y ∈ R with 
.|x − y| < δ, we have  

. | f1(x) − f1(y)| = |x + 5 − (y + 5)| = |x − y| < δ = ε

Thus. f1(x) = x + 5 is uniformly continuous over. R. However, the function. f2(x) =
x2 is not uniformly continuous on . R. Suppose on the contrary that . f2 is uniformly 
continuous. Fix .ε = 1. Then, there exists .δ0 > 0, such that for every element . x, y ∈
R, .| f (x) − f (y)| < 1 whenever .|x − y| < δ0. Now, take .y = x + δ0

2 . Then,
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. | f (x) − f (y)| =
|
|
|
|
|
x2 −

(

x + δ0

2

)2
|
|
|
|
|
=
|
|
|
|
xδ0 + δ20

4

|
|
|
|
< 1

which is a contradiction as . x can be chosen arbitrarily. 

Now, we will define continuity of a function using the notion of sequences of real 
numbers. 

Definition 1.15 (Real Sequence) A real sequence .{xn} is a function whose domain 
is the set .N of natural numbers and co-domain is the set of all real numbers . R. In  
other words, a sequence in. R assigns to each natural number.n = 1, 2, . . . a uniquely 
determined real number. For example, the function. f : N → R defined by. f (n) = 1

n

determines the sequence .
{

1, 1
2 ,

1
3 , . . .

}

. 

Example 1.15 The list of numbers .{r, r, r, . . .}, where . r is any real number, is a 
sequence called constant sequence as we can define a function, . f : N → R, by  
. f (n) = r . 

Example 1.16 The list of numbers .{r, r2, r3, . . .}, where . r is any real number, is 
a sequence called geometric sequence as we can define a function, . f : N → R, by  
. f (n) = rn . 

Definition 1.16 (Convergent Sequence) A real sequence .{xn} is said to converge to 
.x ∈ R, or  . x is said to be a limit of .{xn}, denoted by .xn → x or . lim

n→∞ xn = x , if for  

every .ε > 0, there exists a natural number .N such that .|xn − x | < ε for all .n ≥ N . 
Otherwise, we say that .{xn} is divergent. 
Theorem 1.1 A real sequence .{xn} can have at most one limit. 

Example 1.17 Consider the sequence .{xn}, where .xn = 1
n . Clearly, .xn → 0. For,  

given any.ε > 0, we have.|xn − 0| = |
| 1

n

|
|. If we take.n > 1

ε
, we have.|1/n| < ε. Thus 

. lim
n→∞

1
n = 0. 

Example 1.18 Consider the sequence.{xn}, defined as in Example 1.15. It is easy to 
observe that .xn → r as .|xn − r | = 0 for all .n ∈ N. 

Example 1.19 Consider the sequence .{xn}, defined as in Example 1.16. We can 
observe that the convergence of this sequence depends on the value of . r . First of all, 
by the above example, for .r = 0 and .r = 1, .{xn} converges to 0 and 1, respectively. 
Now let .0 < r < 1. Then .xn → 0. For any .ε > 0, if we take  .N > ln ε

ln r we have 
.|xn − 0| = rn < ε for all .n > N . Similarly, for .−1 < r < 0, .xn → 0. 

Now for .r = −1, the given sequence becomes .xn = (−1)n . Take  .ε = 1
3 . 

Then there does not exist any point .x ∈ R such that .|xn − x | < 1
3 as the interval 

.
(

x − 1
3 , x + 1

3

)

must contain both . 1 and .−1. Therefore .{xn} with .xn = (−1)n does 
not converge. Similarly, we can prove that the sequence .{xn} with .xn = rn does not 
converge outside the interval .(−1, 1].
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As we have discussed convergent sequences, Cauchy sequences must be intro-
duced, which are a specific class of sequences in which the terms become arbitrarily 
close to each other as the index increases, rather than approaching a single limit. 

Definition 1.17 (Cauchy Sequence) A real sequence .{xn} is said to be a Cauchy 
sequence, if for any .ε > 0, there exists a natural number .N such that . |xm − xn| < ε

for all .m, n ≥ N . 

For a real sequence, the terms convergent sequence and Cauchy sequence do not 
make any difference. We have the following theorem stating this fact. 

Theorem 1.2 A real sequence .{xn} is convergent if and only if it is Cauchy. 

However, this may not be true, if we are considering sequences in the set of rational 
numbers,. Q. That is, there exist sequences of rational numbers that are Cauchy but not 
convergent in. Q (the sequence may not converge to a rational number). For example, 
consider the sequence .1.41, 1.412, 1.1421, . . .. This sequence will converge to . 

√
2

which is not a rational number (also, see Exercise 13 of this chapter). Now, we will 
introduce the sequential definition for continuity. 

Definition 1.18 (Sequential Continuity) A function . f : X ⊆ R → R is said to be 
sequentially continuous at point.x0 ∈ X if for every.{xn} in. X with.xn → x0, we have  
. f (xn) → f (x0). That is if, . lim

n→∞ xn = x0 ⇒ lim
n→∞ f (xn) = f (x0). 

Then, we have the following result which asserts that sequential continuity and 
continuity of a real function are the same. 

Theorem 1.3 A function . f : X ⊆ R → R is continuous if and only if it is sequen-
tially continuous. 

Example 1.20 Consider the signum function as defined in Fig. 1.10. We know that 
. f is not continuous at .x = 0. We can use the definition of sequential continuity 
to prove this fact. Consider the sequence .

{
1
n

}

. In Example 1.17, we have seen that 
.
1
n → 0. However, observe that . f

(
1
n

) = 1 → 1 /= f (0). Thus . f is not sequentially 
continuous at . 0 and hence . f is not continuous at . 0. 

Now, consider the function . f (x) = x + 5. We have already seen that . f is con-
tinuous on . R as its graph does not have any gaps or breaks. Let us check whether . f
is sequentially continuous or not. Consider any real number .r ∈ R and a sequence 
.{rn}with.rn → r as.n → ∞. For sequential continuity. f (rn)must converge to. f (r). 
Observe that . f (rn) = rn + 5 → r + 5 as.n → ∞. Thus. f is sequential continuous. 

Remark 1.3 A set. S is said to be countably infinite if there exists a bijective function 
from. N to . S. A set which is empty, finite, or countably infinite is called a countable 
set. Otherwise it is called uncountable set. For example .Z is countable and .R is 
uncountable.
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Sequence of Functions 

Now, we will combine the ideas of functions and sequences discussed so far and 
define “sequence of functions”. 

Definition 1.19 (Sequence of Functions) Let  . fn be real-valued functions defined 
on an interval .[a, b] for each .n ∈ N. Then .{ f1, f2, f3, . . .} is called a sequence of 
real-valued functions on .[0, 1], and is denoted by .{ fn}. 
Example 1.21 For each .n ∈ N, let  . fn be defined on .[0, 1] by . fn(x) = xn . Then 
.{x, x2, x3, . . .} is a sequence of real-valued functions on .[a, b]. 

For a sequence of functions, we have two types of convergences, namely point-
wise convergence and uniform convergence. We will discuss these concepts briefly 
in this section. 

Let .{ fn} be a sequence of functions on .[a, b] and .x0 ∈ [a, b]. Then the sequence 
of real numbers, .{ fn(x0)}, may be convergent. In fact, this may be true for all points 
in.[a, b]. The limiting values of the sequence of real numbers corresponding to each 
point .x ∈ X define a function called the limit function or simply the limit of the 
sequence .{ fn} of functions on .[a, b]. 
Definition 1.20 (Point-wise convergence) Let  .{ fn} be a sequence of real-valued 
function defined on an interval .[a, b]. If for each .x ∈ [a, b] and each .ε > 0, there 
exists an .N ∈ N such that .| fn(x) − f (x)| < ε for all .n > N , then we say that . { fn}
converges point-wise to the function . f on .[a, b] and is denoted by . lim

n→∞ fn(x) =
f (x), ∀ x ∈ [a, b]. 
Example 1.22 Let . fn(x) = xn be defined on .[0, 1]. By Example 1.19, the limit 
function . f (x) is given by 

. f (x) = lim
n→∞ fn(x) =

{

0, x ∈ [0, 1)
1, x = 1

Let .ε = 1
2 . Then for each .x ∈ [0, 1], there exists a positive integer .N such that 

.| fn(x) − f (x)| < 1
2 for all .n > N . If  .x = 0, f (x) = 0 and . fn(x) = 0 for all . n. 

.| fn(x) − f (x)| < 1
2 is true for all .n > 1. 

If.x = 1, f (x) = 1 and. fn(x) = 1 for all. n..| fn(x) − f (x)| < 1
2 is true for all.n > 1. 

If .x = 3
4 , f (x) = 0 and . fn(x) = (

3
4

)n
for all . n. Then 

. | fn(x) − f (x)| =
(
3

4

)n

<
1

2

is true for all .n > 2.
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Fig. 1.11 Point-wise 
convergence of.{ fn}, where  
. fn(x) = xn, x ∈ [0, 1]

0 

If .x = 9
10 , f (x) = 0 and . fn(x) = (

9
10

)n
for all . n. Then 

. | fn(x) − f (x)| =
(

9

10

)n

<
1

2

is true for all .n > 6 (Fig. 1.11). 
Observe that there is no value of .N for which .| fn(x) − f (x)| < 1

2 is true for all 
.x ∈ [0, 1]. .N depends on both . x and . ε. But, this is not the case for the following 
example. 

Example 1.23 Consider . fn(x) = x

1 + nx
, x ≥ 0. Clearly, 

. lim
n→∞ fn(x) = f (x) = 0, ∀ x ≥ 0

Also, we have 

. 0 ≤ x

1 + nx
≤ x

nx
= 1

n

Therefore, .| fn(x) − f (x)| = | fn(x)| ≤ 1
n < ε for all .x ≥ 0, provided .N > 1

ε
. That 

is, if .N > 1
ε
, then .| fn(x) − f (x)| < ε for all .n > N and for all .x ≥ 0. Here  

.N depends only on . ε. Such type of convergence is called uniform convergence 
(Fig. 1.12). 

Definition 1.21 (Uniform convergence) Let  .{ fn} be a real-valued function defined 
on an interval .[a, b]. Then .{ fn} is said to converge uniformly to the function . f on 
.[a, b], if for each .ε > 0, there exists an integer .N (dependent on . ε and independent 
of . x) such that for all .x ∈ [a, b], .| fn(x) − f (x)| < ε for all .n > N (Fig. 1.13). 

Clearly, we can observe that uniform convergence implies point-wise conver-
gence, but the converse does not hold true always. Also observe that, in Example 1.22, 
all the functions in .{ fn} were continuous. However, their point-wise limit was not 
continuous. In the case of uniform convergence, this is not possible. That is, if . { fn}
is a sequence of continuous functions and . fn → f uniformly then . f is continuous.
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Fig. 1.12 Uniform 
convergence of.{ fn}, where  
. fn(x) = x

1 + nx
, x ≥ 0

Fig. 1.13 If.{ fn} converges 
uniformly to a function. f on 
.[a, b], for  a given.ε > 0, 
there exists a positive integer 
.N such that the graph of 
. fn(x) for all .n > N and for 
all .x ∈ [a, b] lies between 
the graphs of. f (x) − ε and 
. f (x) + ε

1.2 Metric Spaces 

In . R, we have the notion of usual distance provided by the modulus function, to 
discuss the ideas like continuity of a function, convergence of a sequence, etc. These 
concepts can also be extended to a wide range of sets by generalizing the notion 
of “distance” to these sets by means of a function, called metric. A set with such 
a distance notion defined on it is called as a metric space. Consider the following 
definition. 

Definition 1.22 (Metric Space) Let .X be any non-empty set. A metric (or distance 
function) on.X is a function.d : X × X → R

+ which satisfies the following proper-
ties for all .x, y, z ∈ X : 

.(M1) .d(x, y) ≥ 0 and .d(x, y) = 0 if and only if .x = y. (Non-negativity) 

.(M2) .d(x, y) = d(y, x). (Symmetry) 

.(M3) .d(x, z) ≤ d(x, y) + d(y, z). (Triangle Inequality) 

If . d is  a metric on . X , we say that .(X, d) is a metric space.
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Example 1.24 Consider the set of all real numbers, . R. For  .x, y ∈ R, the function 
defined by 

. d(x, y) = |x − y|

is the usual distance between two points on the real line. 

.(M1) Clearly .d(x, y) = |x − y| ≥ 0 and .d(x, y) = |x − y| = 0 if and only if . x −
y = 0. That is, if and only if .x = y. 

.(M2) . d(x, y) = |x − y| = |y − x | = d(y, x)

.(M3) Also, by the properties of modulus 

. d(x, z) = |x − z|
= |x − y + y − z|
≤ |x − y| + |y − z|
= d(x, y) + d(y, z)

Thus all the conditions for a metric are satisfied and hence.(R, |.|) is a metric space. 
This metric is known as the usual metric or Euclidean Distance. 

Example 1.25 For any non-empty set . X , define a function . d by 

. d(x, y) =
{

1 , x /= y

0 , x = y

Clearly conditions .(M1) and .(M2) are satisfied. Now we will check .(M3), 

Case 1 . x /= y = z
Then .d(x, y) = 1, d(x, z) = 1 and . d(y, z) = 0

Case 2 . x = y /= z
Then .d(x, y) = 0, d(x, z) = 1 and . d(y, z) = 1

Case 3 . x = y = z
Then .d(x, y) = 0, d(x, z) = 0 and . d(y, z) = 0

Case 4 . x /= y /= z
Then .d(x, y) = 1, d(x, z) = 1 and .d(y, z) = 1. 

In all four cases, condition .(M3) is clearly satisfied. Hence .(X, d) is a metric space 
for any non-empty set . X . The given metric . d is known as a discrete metric. 

Definition 1.23 (Open Ball) Let.(X, d) be a metric space. For any point.x0 ∈ X and 
.ε ∈ R

+, 
. Bε(x0) = {x ∈ X | d(x, x0) < ε}

is called an open ball centered at .x0 with radius . ε.
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Fig. 1.14 Observe that if we take. ε less than both.c − a and.b − c, . Bε(c) ⊂ (a, b)

Fig. 1.15 Clearly..Bε(a) ⊈ [a, b] for any.ε > 0. Also, any open interval containing. b is not a subset 
of. [a, b]

Definition 1.24 (Open Set and Closed Set) Let  .(X, d) be a metric space. A subset 
.Y ⊆ X is said to be open if it contains an open ball about each of its elements.. Y ⊆ X
is said to be closed if its complement .Y c is open. 

Example 1.26 Consider the metric space .(R, |.|). Then we can verify that every 
open interval in the real line is an open set (see Exercise 8 of this chapter). Consider 
an arbitrary open interval.(a, b) ⊂ R and choose an arbitrary element.c ∈ (a, b). We  
have to show that there exists .ε > 0 such that .Bε(c) ⊂ (a, b) (Fig. 1.14). 

From Fig. 1.14, if we take  .ε < min{c − a, b − c}, it is clear that . Bε(c) ⊂ (a, b)

for any.c ∈ (a, b). Similarly, we can prove that the union of open intervals is also an 
open set in . R. But a closed interval .[a, b] ⊂ R is not an open set as . Bε(a) ⊈ [a, b]
for any .ε > 0 (Fig. 1.15). 

As .[a, b]c = (−∞, a) ∪ (b,∞) is an open set, .[a, b] is a closed set. 
Example 1.27 Every singleton set in a discrete metric space .X is an open set. It is 
obvious from the fact that for any .x ∈ X , we have .Bε(x) = {x} when.ε < 1. Also it  
is interesting to observe that every subset of a discrete metric space is open as every 
open set can be written as a union of singleton sets. Therefore, every subset of a 
discrete metric space .X is a closed set also. 

As we have defined sequences on . R, we can define sequences on an arbitrary 
metric space .(X, d) as a function from the set of all natural numbers taking values 
in . X , and we can discuss their convergence based on the distance function . d. 

Definition 1.25 (Convergent Sequence) Sequence.{xn} in a metric space.(X, d) con-
verges to .x ∈ X if for every .ε > 0 there exists .N ∈ N such that .xn ∈ Bε(x) for all 
.n > N and . x is called the limit of the sequence .{xn}. We denote this by .xn → x or 
. lim
n→∞ xn = x . In other words, we can say that .d(xn, x) → 0 as .n → ∞. 

Example 1.28 Consider the sequence .{xn}, where .xn = r + 1
n , n ∈ N in the metric 

space .(R, |.|) for some .r ∈ R. We will show that .xn → r in .(R, |.|). For any .ε > 0, 
if we take . N > 1

ε

. d(xn, r) =
|
|
|
|
r + 1

n
− r

|
|
|
|
=
|
|
|
|

1

n

|
|
|
|
< ε ∀ n > N

That is, .xn ∈ Bε(r) for all .n > N . Therefore .xn → r in .(R, |.|).
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Example 1.29 Let .{xn} be a sequence in a metric space .(X, d), where . d is the 
discrete metric. We have seen in Example 1.27 that every singleton set in a discrete 
metric space is open. Therefore for the sequence .{xn} to converge to a point .x ∈ X , 
the open set .{x} must contain almost all terms of the sequence. In other words, a 
sequence .{xn} in a discrete metric space converges if and only if it is of the form 
.x1, x2, . . . , xN , x, x, . . .. That is, if and only if .{xn} is eventually constant. 

Definition 1.26 (Cauchy Sequence) Sequence of points.{xn} in a metric space. (X, d)

is said to be a Cauchy sequence if for every .ε > 0, there exists an .Nε ∈ N such that 
.d(xn, xm) < ε for every .m, n > Nε . 

Theorem 1.4 In a metric space, every convergent sequence is Cauchy. 

The converse of the above theorem need not be true. That is, there exists metric 
spaces where every Cauchy sequence may not be convergent. 

Example 1.30 Consider the sequence .{xn} with .xn = a + 1
n in the metric space 

.((a, b), |.|) where .(a, b) is any open interval in . R. We will show that this sequence 
is Cauchy but not convergent. For an .ε > 0, if we choose . N > 2

ε

. d(xn, xm) =
|
|
|
|

1

n
− 1

m

|
|
|
|
≤
|
|
|
|

1

n

|
|
|
|
+
|
|
|
|

1

m

|
|
|
|
≤ ε

2
+ ε

2
= ε ∀ m, n > N

That is, the given sequence is a Cauchy sequence. As we have seen in Example 1.28, 
the given sequence converges to . a as .n → ∞. As .a /∈ (a, b), .{xn} with . xn = a + 1

n
is not convergent in .((a, b), |.|) . 
Definition 1.27 (Complete Metric Space) A metric space in which every Cauchy 
sequence is convergent is called a complete metric space. 

Example 1.31 By Theorem 1.2,.(R, |.|) is a complete metric space and from Exam-
ple 1.30, .((a, b), |.|) is an incomplete metric space. 

Definition 1.28 (Continuous Function) Let  .(X, d1) and .(Y, d2) be two metric 
spaces. A function. f : X → Y is said to be continuous at a point.x0 ∈ X if for every 
.ε > 0 there is a .δ > 0 such that .d2 ( f (x), f (x0)) < ε whenever .d1 (x, x0) < δ. . f is 
said to be continuous on .X if . f is continuous at every point of . X . 

Theorem 1.5 Let .(X, d1) and .(Y, d2) be two metric spaces. Then a function . f :
X → Y is said to be continuous if and only if the inverse image of any open set of 
.(Y, d2) is open in .(X, d1). 

The continuity of a function in metric spaces can also be discussed in terms of 
sequences. Consider the following definition. 

Definition 1.29 (Sequential Continuity) Let  .(X, d1) and .(Y, d2) be two metric 
spaces. A function. f : X → Y is said to be sequentially continuous at a point. x0 ∈ X
if .{xn} is any sequence in .(X, d1) with .xn → x0, then . f (xn) → f (x0) in .(Y, d2). 

Theorem 1.6 Let .(X, d1) and .(Y, d2) be two metric spaces. Then a function . f :
X → Y is continuous on . X, if and only if it is sequentially continuous.
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1.3 Some Important Algebraic Structures 

An algebraic structure consists of a non-empty set together with a collection of 
operations defined on it satisfying certain conditions or axioms which are defined as 
per the context under discussion. The operations are of great importance when the 
resultant obtained by combining two elements in the set belongs to the same set. 

Definition 1.30 (Binary Operation) Let  .G be any set. A binary operation .,∗, on . G
is a function .∗ : G × G → G defined by 

. ∗ (g1, g2) = g1 ∗ g2

Example 1.32 Let.G = R, the set of all real numbers, and let. + be the usual addition 
of real numbers. Now .+ : R × R → R such that .+(a, b) = a + b ∈ R defines a 
binary operation. Similarly, the usual multiplication and subtraction of real numbers 
are also binary operations on . R. But as the division of a real number with 0 is not 
defined, division is not a binary operation. 

Definition 1.31 (Group) A non-empty set .G together with a binary operation .
,∗, is 

said to be a group, denoted by .(G, ∗), if .,∗, satisfies the following properties: 

(a) .g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 ∀ g1, g2, g3 ∈ G (Associative property) 
(b) There exists.e ∈ G, such that.e ∗ g = g = g ∗ e ∀ g ∈ G (Existence of Identity) 
(c) For each .g ∈ G, there exists .g−1 ∈ G such that .g ∗ g−1 = e = g−1 ∗ g. (Exis-

tence of Inverse) 

If .,∗, satisfies .g1 ∗ g2 = g2 ∗ g1 ∀ g1, g2 ∈ G (Commutative property) also, then 
.(G, ∗) is called an Abelian group. 

Example 1.33 Consider .R together with the binary operation .,+,. Then .R is an 
Abelian group under the operation .

,+,. For,  

(a) Addition is associative over . R. 
(b) For all .r ∈ R, there exists .0 ∈ R such that .r + 0 = r = 0 + r . 
(c) For all .r ∈ R, there exists .−r ∈ R such that .r + (−r) = 0 = (−r) + r . 
(d) Addition is commutative over . R. 

Similarly, . C, the set of all complex numbers, . Q, the set of all rational numbers, and 
. Z, the set of all integers together with the binary operation .

,+, is an Abelian group. 
But .(R, .) is not a group, where ‘.’ denotes usual multiplication as there does not 
exist any inverse element for . 0. 

Example 1.34 Consider.R∗ = R \ {0} under usual multiplication. We can show that 
.(R∗, .) is an Abelian group. Similarly, we can show that .(Q∗, .) and .(C∗, .) are also 
Abelian groups where .Q

∗ = Q \ {0} and .C
∗ = C \ {0}. Observe that .Z∗ with usual 

multiplication is not a group as the inverse of every element does not exist in .Z
∗. 

Example 1.35 Consider .R+, the set of all positive real numbers under usual multi-
plication. We can show that.

(

R
+, .
)

is an Abelian group. Similarly, we can show that 
.
(

Q
+, .
)

and .
(

C
+, .
)

are also Abelian groups.
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Example 1.36 The set .Zn = {0, 1, 2, . . . , n − 1}, for  .n ≥ 1, is a group under the 
operation addition modulo . n, denoted by .+n . The basic operation is usual addition 
of elements, which ends by reducing the sum of the elements modulo . n, that is, 
taking the integer remainder when the sum of the elements is divided by . n. This  
group is usually referred to as the group of integers modulo. n. Consider the following 
examples: 

.+2 0 1 
0 0 1 
1 1 0 

.+3 0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1 

.+4 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

.+5 0 1 2 3 4 
0 0 1 2 3 4 
1 1 2 3 4 0 
2 2 3 4 0 1 
3 3 4 0 1 2 
4 4 0 1 2 3 

The above group multiplication table is called Cayley table. A Cayley table, named 
after the British mathematicianArthur Cayley (1821–1895) of the nineteenth century, 
illustrates the structure of a finite group by arranging all the possible products of all 
the group’s members in a square table resembling an addition or multiplication table. 

Example 1.37 A one-one function from a set . S onto itself is called a permutation. 
Consider the set .S = {1, 2, . . . ,  n}. Let  .Sn denote the set of all permutations on . S 
to itself. Then .Sn is a non-Abelian group under the operation function composi-
tion, called symmetric group on . n letters. Permutations of finite sets are represented 
by an explicit listing of each element of the domain and its corresponding image. 

For example, the elements of .S3 can be listed as . 

{

ρ0 =
(

1 2  3  
1 2  3

)

, ρ1 =
(

1 2 3  
2 3  1

)

, 

ρ2 =
(

1 2  3  
3 1 2

)

, μ1 =
(

1 2  3  
1 3 2

)

, μ2 =
(

1 2 3  
3 2 1

)

, μ3 =
(

1 2 3  
2 1 3

)}

Theorem 1.7 Let .(G, ∗) be a group. Then 

(a) the identity element is unique. 
(b) each element in . G has a unique inverse. 

Definition 1.32 (Subgroup) A subset .H of a group .(G, ∗) is said to be a subgroup 
of . G, if .H is a group with respect to the operation. ∗ in. G. Let.H ≤ G denote that . H 
is a subgroup of .G and .H < G denote that .H is a subgroup of . G, but .H /= G. 

Example 1.38 We have .(Z, +) < (Q, +) < (R, +). But  .(Zn, +n) is a not a sub-
group of .(R, +) even though as sets .Zn ⊂ R, as the operations used are different. 

Example 1.39 Consider the permutation group . S3. Then . {ρ0}, {ρ0, μ1}, 
{ρ0, μ2}, {ρ0, μ3} and .{ρ0, ρ1, ρ2} are subgroups of . S3. 
Definition 1.33 (Order of a Group) Let  .(G, ∗) be a group, then the order of .G is 
the number of elements in . G. 

Example 1.40 Observe that.(Z, +) , (Q, +) , (R, +), and.(C, +) are groups of order 
infinity and .(Zn, +n) is a group of order . n. Also observe that .Sn has order . n!. 
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Definition 1.34 (Order of an element) Let  .(G, ∗) be a group, then the order of an 
element .g ∈ G, denoted by .O(g), is the least positive integer . n such that .gn = e, 
where . e is the identity in . G. Clearly, identity element in a group .G has order 1. 

Example 1.41 Consider the group .(R, +). Then we get that no element other than 
. 0 in .R has finite order. This is because of the fact that repeated addition of a real 
number will never give us . 0. 

Example 1.42 Consider a finite group, say .(Z4, +4). Then . O(0) = 1, O(1) = 
4, O(2) = 2, and .O(3) = 4. It is easy to observe that, in a finite group . G, every  
element has finite order. Consider another example, . S3. Then . O (ρ0) = 1, O (ρ1) = 
O (ρ2) = 3, and .O (μ1) = O (μ2) = O (μ3) = 2. 

Remark 1.4 A set  .G together with a binary operation .,∗, defined on it is called a 
Groupoid or Magma. If .,∗, satisfies associative property also, then .(G, ∗) is called a 
Semi-group. A semi-group containing an identity element is called a Monoid. 

Definition 1.35 (Group Homomorphism) Let.(G, ∗) and.
(

G ,, ∗,) be any two groups. 
A map  . φ from .G to .G , satisfying .φ (g1 ∗ g2) = φ (g1) ∗, φ (g2) , ∀ g1, g2 ∈ G is 
called a group homomorphism. If . φ is one-one and onto, we say that. φ is an isomor-
phism or .(G, ∗) and .

(

G ,, ∗,) are isomorphic, denoted by .G ∼= G ,. 

Definition 1.36 (Kernel of a Homomorphism) The kernel of a homomorphism of 
a group .G to a group  .G , with identity .e, is the set of all elements in .G which are 
mapped to . e,. That is, .K er  (φ) = {g ∈ G | φ (g) = e,}. 
Example 1.43 Consider the groups .(R, +) and .(R∗, .). We will show that they are 
isomorphic. Define .φ : R → R∗ by .φ(x) = ex . Then for .x1, x2 ∈ R, 

. φ (x1 + x2) = ex1+x2 = ex1 .ex2 = φ(x1).φ(x2) 

Therefore . φ is a homomorphism from . R to .R∗. Also we can easily verify that . φ is 
both one-one and onto. Thus .(R, +) ∼= (R∗, .). Now let us find the Kernel of . φ. By  
definition, .K er (φ) is the set of all elements of the domain which are mapped to 
the identity element in the co-domain, in this case, 1. Therefore. K er  (φ) = {x ∈ R | 
φ(x) = ex = 1} = {0}. 
Example 1.44 Consider .(Z, +) and .(Zn, +n). Define .φ : Z → Zn by .φ(m) = r , 
where . r is the remainder when .m is divided by . n. Let us check whether .φ is a 
homomorphism or not. Take two elements .m1, m2 ∈ Z. By division algorithm, we 
can write .mi = qi n + ri with .0 ≤ ri < n, where .i = 1, 2 and hence . φ(m1) = r1 
and .φ(m2) = r2. Observe that .m1 + m2 = (q1 + q2)n + r1 + r2. Therefore, we can 
say that .φ(m1 + m2) is the remainder when .r1 + r2 is divided by . n. That is, 
.φ(m1 + m2) = r1 +n r2. Also  .φ(m1) +n φ(m2) = r1 +n r2. Thus . φ is a homomor-
phism. Now the set of all elements mapped to.0 ∈ Zn are integer multiples of. n. That 
is, .K er  (φ) =< n >. 
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Example 1.45 Consider the map.φ : (R, +) → (R∗, .)  defined by.φ(x) = x2. Then 
for .x1, x2 ∈ R, we have  

. φ (x1 + x2) = (x1 + x2)2 /= x2 
1 .x

2 
2 = φ (x1) .φ (x2) 

Thus . φ is not a homomorphism. 

Example 1.46 Consider .(R∗, .). Define a map .φ : R∗ → R∗ by .φ(x) = |x |. Then 
for .x1, x2 ∈ R∗ , we have  

. φ (x1x2) = |x1x2| = |x1||x2| =  φ (x1) φ (x2) 

Thus . φ is a homomorphism from .R∗ to itself. Observe that . K er  (φ) = {x ∈ R∗ | 
|x | = 1} = {−1, 1}. Thus. φ is not one-one (Why?). Also. φ is not onto as only positive 
real numbers have pre-images. Therefore . φ is not an isomorphism. 

Theorem 1.8 Let . φ be a homomorphism from a group .(G, ∗) to .
(

G ,, ∗,). Then 

(a) if . e is the identity element in . G, .φ(e) is the identity element in . G ,. 
(b) .K er (φ) is a subgroup of . G. 
(c) for any . g ∈ G, if .O(g) is finite .O (φ(g)) divides .O(g). 
(d) for any subgroup . H of . G, .φ (H ) is a subgroup of .φ (G) and if . H is Abelian, 

.φ (H ) is also Abelian. 

Two algebraic structures.(G, ∗) and.
(

G ,, ∗,) are isomorphic, if there exists a one-
one, onto homomorphism from .G to .G ,. But it will be difficult to show that . (G, ∗) 
and .

(

G ,, ∗,) are not isomorphic, following the definition as it means that there is no 
one-one homomorphism from.G onto .G ,. It is not possible to check whether such a 
function exists or not. In such cases, we could use the idea of structural properties of 
an algebraic structure, which are properties that must be shared by any isomorphic 
structure. Cardinality is an example for structural property. 

Example 1.47 In Remark 1.3, we have seen that . R is an uncountable set and . Z is a 
countable set. Hence .(R, +) and .(Z, +) are not isomorphic. 

Theorem 1.9 (Cyclic subgroup)Let.(G, ∗) be a group. Then the set. {gn | g ∈ G, n ∈ 
Z} is a subgroup of. G called cyclic subgroup of. G generated by. g, denoted by.< g >. 

If the group.G =< g > for some.g ∈ G, then .G is called a cyclic group and. g is 
called a generator of . G. 

Example 1.48 .(Z, +) is a cyclic group with two generators .{1, −1}. 
Example 1.49 .(Zn, +n) is a cyclic group. The generators are the elements . m ∈ Zn 

with .gcd(m, n) = 1, where .gcd(m, n) denotes the greatest common divisor for . m 
and . n (verify). 

Theorem 1.10 Let .(G, ∗) be a cyclic group with generator . g. If .O(G) is finite, then 
.(G, ∗) ∼= (Zn, +n) and if .O(G) is infinite, then .(G, ∗) ∼= (Z, +). 
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Example 1.50 By Example 1.47, .(R, +) is not a cyclic group. 

Definition 1.37 (Coset) Let  .(G, ∗) be a group and .H be a non-trivial subgroup 
of . G. Then .gH = {g ∗ h | h ∈ H} is called left coset of .H in .G containing . g and 
.Hg = {h ∗ g | h ∈ H} is called right coset of .H in .G containing . g. 

Example 1.51 Consider .(Z8, +8) and the subgroup .H = {0, 2, 4, 6} of .Z8. Then 

. 0H = {0, 2, 4, 6} =  2H = 4H = 6H 

. 1H = {1, 3, 5, 7} =  3H = 5H = 7H 

Also observe that as .(Z8, +8) is an Abelian group, the left and right cosets of each 
element coincide. 

Example 1.52 Consider the subgroup .H = {ρ0, μ1} in . S3. Then 

. ρ0H = {ρ0, μ1} =  μ1H 

. ρ1H = {ρ1, μ3} =  μ3H 

. ρ2H = {ρ2, μ2} =  μ2H 

are the distinct left cosets of .H in .G and 

. Hρ0 = {ρ0, μ1} =  Hμ1 

. Hρ1 = {ρ1, μ2} =  H μ2 

. Hρ2 = {ρ2, μ3} =  H μ3 

are the distinct right cosets of .H in . G 

Theorem 1.11 (Lagrange’s Theorem) Let . G be a finite group and . H be a subgroup 
of . G, then .O(H) divides .O(G). Moreover, the number of distinct left/right cosets of 

. H in . G is . 
O(G) 
O(H ) 

. 

Example 1.53 In Example 1.51,.H = {0, 2, 4, 6} and.G = Z8. We have. O (H ) = 4 
and .O (G) = 8. Clearly, .O(H ) divides .O(G) and the number of distinct left/right 

cosets of .H in .G is . 
O(G) 
O(H ) 

= 2 

Example 1.54 In Example 1.52, .H = {ρ0, μ1} and .G = S3. We have  . O (H ) = 2 
and .O (G) = 6. Clearly, .O(H ) divides .O(G) and the number of distinct left/right 

cosets of .H in .G is . 
O(G) 
O(H ) 

= 3. 
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Definition 1.38 (Normal Subgroup) A subgroup.H of. G is called a normal subgroup 
of .G if .gH = Hg for all .g ∈ G. 

Example 1.55 From Example 1.51, .H = {0, 2, 4, 6} is a normal subgroup of 
.(Z8, +8). In fact, every subgroup of an Abelian group is a normal subgroup (verify). 

Example 1.56 From Example 1.52, .H = {ρ0, μ1} is not a normal subgroup of . S3. 

Theorem 1.12 (Factor Group) Let .(G, ∗) be a group and . H be a normal subgroup. 
Then the set .G/H = {gH | g ∈ G} is a group under the operation . ∗,, where . ∗, is 
defined by .(g1H ) ∗, (g2H ) = (g1 ∗ g2)H. 

Example 1.57 In Example 1.55 we have seen that .H = {0, 2, 4, 6} is a normal 
subgroup of .(Z8, +8). From Example 1.51, .G/H = {0H, 1H}. Then .G/H is a 
group, with the operation .∗, defined as . (0H ) ∗, (0H) = (0H) , (0H ) ∗, (1H ) = 
(1H ) ∗, (0H ) = (1H ), and .(1H ) ∗, (1H ) = (0H ). 

Example 1.58 Consider the group .(Z, +). Clearly .3Z = {. . . ,  −6, −3, 0, 3, 6} is 
a normal subgroup of . Z. Then .G/H = {0 (3Z) , 1 (3Z) , 2 (3Z)} is a group, with 
the operation . ∗ defined as . 0 (3Z) ∗, 0 (3Z) = 0 (3Z) , 0 (3Z) ∗, 1 (3Z) = 1 (3Z) ∗,
0 (3Z) = 1 (3Z) , 0 (3Z) ∗, 2 (3Z) = 2 (3Z) ∗, 0 (3Z) = 2 (3Z) , 2 (3Z) ∗, 1 (3Z) = 
0 (3Z) , 1 (3Z) ∗, 2 (3Z) = 0 (3Z) , 1 (3Z) ∗, 1 (3Z) = 0 (3Z) and. 2 (3Z) ∗, 2 (3Z) = 
1 (3Z). 

Theorem 1.13 (First Isomorphism Theorem) Let . φ be a homomorphism from 
a group . G to a group . G ,. Then the mapping .Ψ : G/K er (φ) → G , given by 
.Ψ (gK er(φ)) = φ (g) is an isomorphism. That is, .G/K er  (φ) ∼= φ (G). 

Example 1.59 In Example 1.44, we have seen that.φ(m) = m mod n  is a homomor-
phism from .(Z, +) and .(Zn, +n) with .K er  (φ) =< n >. Therefore by 
Theorem 1.13, .Z/ <  n >∼= Zn . 

Definition 1.39 (Ring) A non-empty set .R together with two operations .,+, and 
. 
,.,, known as addition and multiplication, respectively, is called a ring (denoted by 
.{R, +, .}) if the following conditions are satisfied: 
(a) .(R, +) is an Abelian group. 
(b) .(R, .)  is a semi-group. 
(c) For all . r1, r2, r3 ∈ R 

. r1.(r2 + r3) = r1.r2 + r1.r3 (left distributive law) 

. (r1 + r2).r3 = r1.r3 + r2.r3 (right distributive law) 

If there exists a non-zero element.1 ∈ R such that for every element.r ∈ R,. r.1 = r = 
1.r , then.{R, +, .} is called a ring with unity and if multiplication is also commutative, 
then the ring is called a commutative ring. 
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Example 1.60 The set of all real numbers under usual addition and multiplication 
is a commutative ring with unity. From Example 1.33, we have.(R, +) is an Abelian 
group. Clearly, the usual multiplication .,., is closed, associative, and commutative 
over . R. Also  .1 ∈ R acts as unity and the distributive laws are satisfied. Similarly 
.{C, +, .},.{Q, +, .}, and .{Z, +, .} are commutative rings with unity. 

Example 1.61 The set .Zn = {0, 1, 2, . . . ,  n − 1}, for  .n ≥ 1, under the operations 
addition and multiplication modulo. n (taking the integer remainder when the product 
is divided by . n) is a ring with unity . 1. 

Definition 1.40 (Sub-Ring) A sub-ring of a ring.R is a subset of the.R that is a ring 
under the induced operations from. R. 

Example 1.62 Clearly .{Q, +, .} is a sub-ring of .{Q, +, .}. Also  .{Q, +, .} is a sub-
ring of .{R, +, .} which is again a sub-ring of . {C, +, .}
Example 1.63 .Zn , for  .n ≥ 1, is a ring under the operation addition modulo . n and 
multiplication modulo. n (denoted by.×n). The basic operation in.×n is multiplication, 
which ends by reducing the result modulo . n; that is, taking the integer remainder 
when the result is divided by . n as in .+n . 

Definition 1.41 (Division Ring) Let  .{R, +, .} be a ring with unity . ,1,. An element 
.r ∈ R is a unit of .R if it has multiplicative inverse in . R. That is, if there exists an 
element .r−1 ∈ R such that .r.r−1 = 1 = r−1.r . If every non-zero element in .R is a 
unit, then .R is called a division ring or skew-field. 
Example 1.64 .{R, +, .} is a division ring as for any.r (/= 0) ∈ R, there exists. 1 r ∈ R 
such that .r · 1 r = 1 = 1 r · r . 
Theorem 1.14 An element .m ∈ Zn is a unit if and only if .gcd(m, n) = 1. 

Corollary 1.1 . Zn is a division ring only if . n is a prime. 

Definition 1.42 (Field) A field is a commutative division ring. In other words, 
.{R, +, .} is a field if the following conditions are satisfied: 
(a) .(R, +) is an Abelian group. 
(b) .(R \ {0}, .) is an Abelian group. 
Example 1.65 The set of all real numbers. R under usual addition and multiplication 
is a field. Similarly, the set of all complex numbers .C and the set of all rational 
numbers .Q under usual addition and multiplication are fields. 

Example 1.66 From Corollary 1.1, the  set.Zn is a field under the operations addition 
and multiplication modulo. n, if and only if. n is a prime (Why?). Clearly,. {Zn, +n, ×n}
is an example for a finite field. 

Example 1.67 The set of all integers . Z under usual addition and multiplication is 
not a field as it is not a division ring. But . Z is a commutative ring with unity. 

Definition 1.43 (Sub-Field) A sub-field of a field is a subset of the field that is a 
field under the induced operations from the field. 
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Example 1.68 Clearly.{Q, +, .} is a sub-field of.{R, +, .} which is again a sub-field 
of .{C, +, .}. 

1.4 Polynomials 

Polynomials are a type of mathematical expression built by combining variables by 
the operations addition, subtraction, and multiplication. They are an important tool in 
mathematics as many mathematical problems can be encoded into polynomial equa-
tions. In this section, we will discuss some of the important properties of polynomials 
in one variable. 

Definition 1.44 (Ring of polynomials) Let .K be a field. Consider the set 

. K[x] = {a0 + a1x +  · · ·  +  an−1xn−1 + an xn | ai ∈ K, n ∈ Z+} 

.ai ∈ K are called coefficients of the polynomial, and the order of the highest power 
of . x with non-zero coefficient is called the degree of the polynomial. For . f (x) = 
a0 + a1x +  · · ·  +  an xn, g(x) = b0 + b1x +  · · ·  +  bm xm ∈ K[x], define 

. f (x) + g(x) = (a0 + b0) + (a1 + b1)x +  · · ·  +  (ak−1 + bk−1)xk−1 + (ak + bk)xk 

where .k = max(m, n), .ai = 0 for .i > n and .bi = 0 for .i > m. Also  

. f (x)g(x) = c0 + c1x +  · · ·  +  cm+n−1xm+n−1 + cm+n xm+n 

where .ck = akb0 + ak−1b1 +  · · ·  +  a1bk−1 + a0bk for .k = 0, 1, . . . ,  m + n. Then 
.K[x] forms a ring with respect to the operations defined above, called the ring of 
polynomials over .K in the indeterminate . x . 

Remark 1.5 If the coefficient of the highest power of. x is the multiplicative identity 
of . K, then the polynomial is called a monic polynomial. Two elements in .K[x] are 
equal if and only they have the same coefficients for all powers of . x . 

Theorem 1.15 (Division Algorithm) Let . K be a field and let . f (x), g(x) ∈ K[x] 
with .g(x) /= 0. Then there exists unique polynomials .q(x), r (x) ∈ K[x] such that 
. f (x) = g(x)q(x) + r (x) and either .r (x) = 0 or .deg[r (x)] < deg[g(x)]. If . r (x) = 
0 we have . f (x) = g(x)q(x) and we say that .g(x) is a factor . f (x). 

Theorem 1.16 Let . K be a field and let . f (x), g(x) ∈ K[x]. The greatest common 
divisor of . f (x) and .g(x), denoted by .( f (x), g(x)), is the unique monic polynomial 
.r (x) ∈ K[x] such that 

1. .r (x) is a factor of both . f (x) and .g(x). 
2. if .q(x) ∈ K[x] is a factor of both . f (x) and .g(x), then .r (x) is a factor of .q(x). 
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Moreover, there exists polynomials .l(x), m(x) ∈ K[x] such that 

. r (x) = l(x) f (x) + m(x)g(x) 

Remark 1.6 If .( f (x), g(x)) = 1, then we say that . f (x), g(x) ∈ K[x] are relatively 
prime. 

Definition 1.45 (Zero of a polynomial) Let. f (x) ∈ K[x]; an element.μ ∈ K is called 
a zero (or a root) of . f (x) if . f (μ) = 0. 

Theorem 1.17 (Factor Theorem) Let . K be a field and . f (x) ∈ K[x]. Then .μ ∈ K is 
a zero of . f (x) if and only if .x − μ is a factor of . f (x). 

Definition 1.46 (Algebraically Closed Field) A field. K is said to be an algebraically 
closed field, if every non-constant polynomial in .K[x] has a root in . K. 

Theorem 1.18 (Fundamental Theorem of Algebra) The field of complex numbers is 
algebraically closed. In other words, every non-constant polynomial in .C[x] has at 
least one root in . C. 

From the above theorem, we can infer that every polynomial of degree . n in . C[x] 
has exactly . n roots in . C. 

Example 1.69 Consider .x2 + 1 ∈ R[x]. As the given polynomial has no root in . R, 
the field of real numbers is not algebraically closed, whereas if we consider . x2 + 1 
as a polynomial in .C[x], it has roots in . C. 

Remark 1.7 (Vieta’s Formula) Let  . f (x) = a0 + a1x +  · · ·  +  an xn ∈ K[x] with 
roots .x1, x2, . . . ,  xn , then 

. x1 + x2 +  · · ·  +  xn = −an−1 

an 

. x1x2 · · · xn = (−1)n a0 

an 

It is named after the French mathematician Francois Viete (1540–1603). 

1.5 Matrices 

A matrix in mathematics is a rectangular arrangement of numbers, symbols, or func-
tions in rows and columns. They are of great importance in mathematics and are 
widely used in linear algebra to study linear transformations which will be discussed 
in later chapters. 
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Definition 1.47 An.m × n matrix . A over a field .K is a rectangular array of .m rows 
and . n columns of entries from. K: 

. A = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

a11 a12 . . .  a1n 

a21 a22 . . .  a2n 
... 

... 
... 

... 
am1 am2 . . .  amn 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

Such a matrix, written as .A = (

ai j
)

, where .1 ≤ i ≤ m, .1 ≤ j ≤ n is said to be of 
size (or order).m × n. Two matrices are considered to be equal if they have the same 
size and same corresponding entries in all positions..Mm×n (K) denotes the set of all 
.m × n matrices with entries from. K. 

Matrix Operations 

Let us discuss some of the important operations that are used in the collection of all 
matrices. 

Definition 1.48 (Matrix Addition) Let  .A = (

ai j
)

and .B = (

bi j
)

, where . 1 ≤ i ≤ 
m, .1 ≤ j ≤ n be any two elements of .Mm×n (K). Then . A + B = (

ai j  + bi j
) ∈ 

Mm×n (K). Two matrices must have an equal number of rows and columns to be 
added. 

Properties 
For any matrices .A, B and . C ∈ Mm×n (K) 

1. .A + B = B + A. (Commutativity) 
2. .A + (B + C) = ( A + B) + C . (Associativity) 
3. There exists a matrix .O ∈ Mm×n (K) with all entries . 0 such that .A + O = A. 

(Existence of Identity) 
4. There exists a matrix .−A such that .A + (−A) = O . (Existence of Inverse) 

Remark 1.8 .Mm×n (K) with matrix addition defined on it forms an Abelian group. 

Definition 1.49 (Matrix Multiplication) Let.A = (

ai j
)

m×n and.B = (

bi j
)

n×p. Then 
their product .AB ∈ Mm×p and its .(i, j )th entry is given by 

. ai1b1 j + ai2b2 j +  · · ·  +  ainbnj  

For.AB to make sense, the number of columns of. A must equal the number of rows of 
. B. Then we say that the size of matrices . A and. B are compatible for multiplication. 
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Properties 
For any matrices .A, B and . C ∈ Mn×n (K) 

1. .A(BC) = ( AB)C (Associativity) 
2. .A(B + C) = AB + AC and .( A + B)C = AC + BC . (Distributive laws) 

Remark 1.9 1. Matrix multiplication need not be commutative. For example, if 

.A =
(

1 −1 
0 2

)

and .B =
(

3 4 5  
6 0  8

)

then .AB =
(−3 4  −3 
12 0 16

)

. Note that .B A  is 

undefined. It need not be commutative even if .B A  is defined. For example, 

if .A =
(

1 −1 
0 2

)

and .B =
(

3 4  
6 0

)

then .AB =
(−3 4  
12 0

)

and .AB =
(

3 5  
6 −6

)

. 

2. The set of all invertible matrices over the field .K under matrix multiplication 
forms a non-Abelian group, denoted by .GLn (K). Also observe that . Mn×n (K) 
forms a ring under the operations matrix addition and multiplication. 

Definition 1.50 (Scalar Multiplication) Let.A = [

ai j
] ∈ Mm×n (K) and.λ ∈ K, then 

.λA = [

λai j
] ∈ Mm×n (K). 

Properties 
For any matrices .A, B ∈ Mm×n (K) and . λ, μ ∈ K 

1. . λ(A + B) = λA + λB 
2. . (λ + μ)A = λA + μ A 
3. . λ(μA) = (λμ) A 
4. .A(λB) = λ(AB) = (λA)B. 

Definition 1.51 (Transpose of a matrix) The transpose of an.m × n matrix. A = [

ai j
]

is the .n × m matrix (denoted by .AT ), given by .AT = [

a ji
]

. 

Properties 
Let . A and . B be matrices of appropriate order, then 

1. . 
(

AT
)T = A 

2. . (A + B)T = AT + BT 

3. . (AB)T = BT AT 

4. .(k A)T = k AT . 

Definition 1.52 (Conjugate transpose of a matrix) The conjugate transpose of an 
.m × n matrix .A = [

ai j
]

is the .n × m matrix (denoted by .A∗) given by . A∗ = [

a ji
]

where bar denotes complex conjugation (if .ai j  = c + id, then .ai j  = c − id). 

Properties 
Let . A and . B be matrices of appropriate orders and . λ be a scalar, then 

1. . (A∗)∗ = A 
2. . (A + B)∗ = A∗ + B∗ 

3. . (AB)∗ = B∗ A∗ 

4. .(λ A)∗ = λA∗, where . λ is the conjugate of . λ. 
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Definition 1.53 (Trace of a matrix) Let .A = [

ai j
]

be an .n × n matrix. The trace of 
. A, denoted by .tr(A), is the sum of diagonal entries; that is .tr (A) = Σn 

i=1 aii . 

Properties 
For any.n × n matrices.A, B, C, and D and.λ ∈ R, we have the following properties: 

1. Trace is a linear function. 
. tr (A + B) = tr( A) + tr (B) 
. tr (λA) = λ tr(A) 

2. .tr (AT ) = tr (A) and . tr (A∗) = (tr A) 
3. . tr (AB) = tr (B A) 
4. . tr (ABC D) = tr (D ABC) = tr (C D AB) = tr (BC D A) 
5. .tr (ABC) /= tr (AC B) in general. 
6. .tr (AB) /= tr (A).tr(B) in general. 

Definition 1.54 (Determinant of a matrix) For each square matrix. A with entries in 
.K (K = R or C), we can associate a single element of .K called determinant of . A, 
denoted by .det (A). 
If. A is a.1 × 1 matrix, i.e.,.A = [a11], then its determinant is defined by.det (A) = a11. 

If . A is a .2 × 2 matrix, say .A =
[

a11 a12 

a21 a22

]

, then its determinant is defined by 

. det (A) = a11a22 − a21a12 

The determinant for a square matrix with higher dimension. n may be defined induc-
tively as follows: 

. det (A) = 
n
Σ

i=1 

(−1)i+ j ai j  Mi j  

for a fixed. j , where.Mi j  is the determinant of the.(n − 1) × (n − 1) matrix obtained 
from. A by deleting .i th row and . j th column, called minor of the element .ai j  . 

Properties 
Let . A and . B be any .n × n matrices and . λ be any scalar, then 

1. .det (In) = 1, where .In is the .n × n identity matrix. 
2. .det (AT ) = det (A) and .det (A∗) = det (A). 
3. .det (AB) = det ( A) det (B). 
4. .det (λA) = λn det (A). 
5. If . B is a matrix obtained from. A by multiplying one row (or column) by a scalar 

. λ, then .det (B) = λ det ( A). 
6. If . B is a matrix obtained from. A by interchanging any two rows (or columns) of 

. A then .det (B) = −  det (A). 
7. If two rows of a matrix are identical then the matrix has determinant zero. 
8. If . B is a matrix obtained from. A by adding . λ times one row (or column) of . A to 

another row (or column) of . A, then .det (B) = det ( A). 
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Remark 1.10 An.n × n matrix with determinant zero is called singular matrix, oth-
erwise it is called a non-singular matrix. 

Definition 1.55 (Adjoint of a Matrix) The adjoint of a matrix.A = [

ai j
]

n×n (denoted 
by .ad j (A)) is the transpose of the co-factor matrix, where co-factor matrix of . A =
[

ai j
]

n×n is .
[

(−1)i+ j Mi j
]

n×n , where.Mi j  is the determinant of the. (n − 1) × (n − 1) 
matrix obtained from. A by deleting.i th row and. j th column, called minor of the. i j th 
element. 

Properties 
Let . A and . B be any .n × n matrices, then 

1. . ad j (In) = In 

2. . ad j (AB) = ad j (B) ad j (A) 
3. . ad j (k A) = kn−1ad j (A) 
4. . ad j (Am) = (ad j (A))m 

5. . ad j (AT ) = (ad j (A))T 

6. . A ad j  (A) = det (A) I = ad j ( A) A 
7. . det (ad j ( A)) = (det (A))n−1 

8. .ad j (ad j ( A)) = (det (A))n−2 A. 

Definition 1.56 (Inverse of a matrix) The inverse of a square matrix .An×n if it 
exists is the matrix .A−1 

n×n such that .AA−1 = In = A−1A and is given by . A−1 =
1 

det (A)
ad j (A). 

Properties 
Let . A and . B be any .n × n matrices and . λ be any scalar, then 

1. The inverse of a matrix if it exists is unique. 
2. . A is invertible if and only if .det A /= 0. 
3. .
(

A−1
)−1 = A. 

4. .(k A)−1 = k−1A−1, where .k /= 0 is any scalar. 
5. .det (A−1) = 1 

det (A) . 

6. .(AB)−1 = B−1 A−1. 
7. .
(

AT
)−1 = (

A−1
)T 
. 

Remark 1.11 1. There are matrices for which .AB = I but .B A /= I . For example 
take 

.A = [

1 2
]

and .B = .

[

1 
0

]

. Then .AB = .
[

1
]

.= I and .B A  = .

[

1 2  
0 0

]

./= I . 

2. If .A = .

[

a b  
c d

]

is invertible, then .A−1 is given by .A−1 = 1 
ad−bc .

[

d −b 
−c a

]

. 

3. Set of all .n × n non-singular matrices with entries from the field.K under matrix 
multiplication forms a non-Abelian group called general linear group, and is 
denoted by .GLn (K). 

1. For any matrices .A, B ∈ GLn (K), .AB ∈ GLn (K) (. det (A), det (B) /= 0 ⇒ 
det (AB) /= 0). (Closure property) 
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2. Matrix multiplication is associative. 
3. .In ∈ GLn (K) acts as identity matrix. 
4. For each .A ∈ GLn (K), we have  .det ( A) /= 0 and hence .A−1 exists. Also, 

.det (A−1) = 1 
det ( A) , and thus .A

−1 ∈ GLn (K). 

Definition 1.57 (Rank of a matrix) The rank of a matrix is the order of the highest 
order sub-matrix having non-zero determinant. 

Properties 

1. Let . A be an .m × n matrix. Then .Rank( A) ≤ min{m, n}. 
2. Only zero matrix has rank zero. 
3. A square matrix .An×n is invertible if and only if .Rank( A) = n. 
4. Sylvester’s Inequality: If . A is an .m × n matrix and . B is an .n × p matrix, then 

. Rank(A) + Rank(B) − n ≤ Rank(AB) ≤ min{Rank(A), Rank(B)} 

This result is named after the famous English mathematician James Joseph 
Sylvester (1814–1897). 

5. Frobenius Inequality: Let .A, B, and .C be any matrices such that .AB, BC , and 
.ABC exists, then 

. Rank( AB) + Rank(BC) ≤ Rank(ABC) + Rank(B) 

This result is named after the famous German mathematician Ferdinand Georg 
Frobenius (1849–1917). 

6. Rank is sub-additive. That is, .Rank(A + B) ≤ Rank(A) + Rank(B). 
7. .Rank(A) = Rank(AT ) = Rank(AT A). 
8. .Rank(k A) = Rank(A) if .k /= 0. 

Definition 1.58 (Block Matrix) A block matrix or a partitioned matrix is a matrix 
that is defined using smaller matrices called blocks. 

Example 1.70 Consider .X = .
[

A B  
C D

]

5×5 

where .A = .
[

2 0  
0 2

]

2×2 

, .B = .
[

2 1  3  
6 2 7

]

2×3 

, 

.C = . 

⎡ 

⎣ 
1 0  
5 2  
7 3  

⎤ 

⎦ 

3×2 

, and .D = . 

⎡ 

⎣ 
1 9 8  
4 2 1  
7 0 1  

⎤ 

⎦ 

3×3 

. 

Properties 

1. Let .X = .

[

A B  
C D

]

where .An×n, Bn×m, Cm×n , and .Dm×m are matrices. 

If . A is invertible, then 

.det (X ) = (det (A))
(

det (D − C A−1 B)
)
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Definition 1.59 (Block Diagonal Matrix) A block diagonal matrix is a block matrix 
which is a square matrix such that all blocks except the diagonal ones are zero. 

Properties 

1. Consider a block diagonal matrix of the form 

.A = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

A1 0 · · ·  0 
0 A2 · · ·  0 
... 

... 
. . . 

... 
0 0  · · ·  An 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
, where each .A,

i s is a square matrix. Then 

(a) . det (A) = det (A1)det (A2) · · · det ( An) 
(b) . T r  (A) = T r  ( A1) + T r  (A2) +  · · ·  + T r  (An) 
(c) .Rank(A) = Rank(A1) + Rank(A2) +  · · ·  +  Rank(An). 

Definition 1.60 (Elementary Operations) There are three kinds of elementary matrix 
operations: 

(1) Interchanging two rows (or columns). 
(2) Multiplying each element in a row (or column) by a non-zero number. 
(3) Multiplying a row (or column) by a non-zero number and adding the result to 

another row (or column). 

When these operations are performed on rows, they are called elementary row oper-
ations; and when they are performed on columns, they are called elementary column 
operations. 

Definition 1.61 (Equivalent matrices) Two matrices .A and .B are said to be  
row(column) equivalent if there is a sequence of elementary row(column) opera-
tions that transforms . A into . B and is denoted by .A ∼ B. 

Definition 1.62 (Row Echelon form of a matrix) A matrix is said to be in row echelon 
form when it satisfies the following conditions: 

(a) Each leading entry (the first non-zero entry in a row) is in a column to the right 
of the leading entry in the previous row. 

(b) Rows with all zero elements, if any, are below rows having a non-zero element. 

If the matrix also satisfies the condition 

(c) The first non-zero element in each row, called the leading entry or pivot, is 1. 

Then the matrix is in reduced row echelon form. 

Example 1.71 Consider the matrix .A = . 

⎡ 

⎣ 
3 2  1  4  
1 2  3  4  
1 6 11 12 

⎤ 

⎦. Now  
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. A = 

⎡ 

⎣ 
3 2  1  4  
1 2  3  4  
1 6 11 12 

⎤ 

⎦ R1 ↔ R2 

∼ 

⎡ 

⎣ 
1 2  3  4  
3 2  1  4  
1 6 11 12 

⎤ 

⎦
R2 → R2 − 3R1 

R3 → R3 − R1 

∼ 

⎡ 

⎣ 
1 2 3 4  
0 −4 −8 −8 
0 4 8 8  

⎤ 

⎦ R3 → R3 + R2 

∼ 

⎡ 

⎣ 
1 2 3 4  
0 −4 −8 −8 
0 0 0 0  

⎤ 

⎦ R2 → − 1 
4 R2 

∼ 

⎡ 

⎣ 
1 2 3 4  
0 1  2 2  
0 0 0 0  

⎤ 

⎦ = B 

Then . B is called the reduced row echelon form of . A. 

Remark 1.12 1. A matrix is equivalent to any of its row echelon form and reduced 
row echelon form. The reduced row echelon form of A is unique. 

2. The rank of a matrix is equal to the number of non-zero rows in its row echelon 

form. For example, the matrix.A = 

⎡ 

⎣ 
3 2  1  4  
1 2  3  4  
1 6 11 12 

⎤ 

⎦ has rank 2 as it is equivalent to 

.B = 

⎡ 

⎣ 
1 2  3 4  
0 1 2 2  
0 0 0 0  

⎤ 

⎦, which is in the row echelon form. 

1.6 Euclidean Space . Rn 

In a mathematical environment, Euclidean space is a geometric concept that contains 
all conceivable positions and locations. It provides the theoretical framework for 
many other mathematical fields, including classical geometry. We can use well-
defined connections and rules to describe points, lines, angles, and distances inside 
this space. It acts as a foundational tool and gives a framework for comprehending 
spatial relationships. Any point in .Rn is a list of . n real numbers, denoted as . v = 
(v1, v2, . . . , vn). For convenience, we may use this list as a matrix with one column 
or one row called column vector and row vector, respectively. In the physical world, 
a vector is a quantity which has both magnitude and direction, which can be easily 
visualized when we work on .R

2 or .R3. 
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Vectors in . R2 

Algebraically, a vector in .R2 is simply an ordered pair of real numbers. That is 
.R

2 = {(v1, v2) | v1, v2 ∈ R}. Two vectors .(u1, u2) and.(v1, v2) are equal if and only 
if the corresponding components are equal. That is, if and only if.u1 = v1 and.u2 = v2. 
Now we can define some operations on .R

2. 

Definition 1.63 (Vector Addition) The sum of two vectors .u = (u1, u2) and . v = 
(v1, v2), denoted by .u + v, is given by .u + v = (u1 + v1, u2 + v2) ∈ R2. 

Properties 
Let .u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ R2. Then 

1. .u + v = (u1 + v1, u2 + v2) = (v1 + u1, v2 + u2) = v + u. (Commutative) 
2. . u + (v + w) = (u1 + (v1 + w1), u2 + (v2 + w2)) = ((u1 + v1) + w1, 

(u2 + v2) + w2) = (u + v) + w. (Associative) 
3. There exists .0 = (0, 0) such that .v + 0 = v for all . v. (Existence of identity 

element) 
4. For each .v ∈ R2, there exists .−v = (−v1, −v2) ∈ R2 such that .v + (−v) = 0. 

(Existence of inverse) 

Remark 1.13 The set .R2 with vector addition forms an Abelian group. 

Definition 1.64 (Scalar Multiplication) Let  .v = (v1, v2) ∈ R2 and .λ ∈ R, then 
.λv = (λv1, λv2) ∈ R2. 

Properties 
Let .u = (u1, u2), v = (v1, v2) ∈ R2 and .λ, μ ∈ R. Then 

1. . λ(u + v) = (λ(u1 + v1), λ(u2 + v2)) = λ(u1, u2) + λ(v1, v2) = λu + λv 
2. . (λ + μ)v = ((λ + μ)v1, (λ  + μ)v2) = λ(v1, v2) + μ(v1, v2) = λv + μv 
3. .λ(μv) = (λμ)v = μ(λv). 

From the above properties, it is clear that .0v = 0 for any .v ∈ V and .0 ∈ R. Also,  
.(−1)v = −v for any .v ∈ V and .−1 ∈ R. 

The Geometric Notion of Vectors in . R2 

Corresponding to every vector in .R
2, there exists a point in the Cartesian plane, and 

each point in the Cartesian plane represents a vector in .R2. But the representation 
of vectors in .R2 as points of Cartesian plane does not provide much information 
about the operations like vector addition and scalar multiplication. So it is better to 
represent a vector in.R

2 as a directed line segment which begins at the origin and ends 
at the point. Such a visualization of a vector . v is called position vector of . v. Then 
as in the physical world, the vector possess both magnitude and direction. However, 
to represent a vector in .R

2, the directed line segment need not start from the origin; 
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Fig. 1.16 Triangle law of 
vector addition 

Fig. 1.17 Parallelogram law 
of vector addition 

it may start at some point in .R2, but the magnitude and direction cannot vary. For 
convenience, the directed line segment is considered to be starting from the origin. 

Theorem 1.19 (Triangle Law of Vector Addition) If two vectors are represented in 
magnitude and direction by the two sides of a triangle, taken in order, then their sum 
is represented in magnitude and direction by the third side of the triangle, taken in 
the reverse order (Fig.1.16). 

Theorem 1.20 (Parallelogram Law of vector Addition) If two vectors are repre-
sented in magnitude and direction by the two adjacent sides of a parallelogram, 
then their sum is represented in magnitude and direction by the diagonal of the 
parallelogram through their common point (Fig.1.17). 

These ideas of vectors and vector operations in .R2 can be extended to general 
Euclidean space .R

n . 

1.7 System of Linear Equations 

Solving simultaneous linear equations is one among the central problems in algebra. 
In this section, we will get to know some of the methods that are used to solve the 
system of linear equations. Let us start by discussing the solution of a system having 
. n equations in . n unknowns. Consider the basic problem with .n = 1, i.e., consider 
an equation of the form, .ax = b. We know that there are three possible numerical 
realizations for this equation: 

(1) .a /= 0 : In this case, we know that the equation have a unique solution, which is 
.x = b 

a . 
(2) .a, b = 0 : Any numerical value for . x will be a solution for this equation. That 

is, there are infinite number of solutions. 
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Fig. 1.18 Observe that in. a, the lines.x1 + x2 = 5 and.x1 − x2 = 3 have a unique intersection point 
.(4, 1), in . b both the equations .x1 + x2 = 5 and .2x1 + 2x2 = 10 represent the same line and in . c, 
the lines.x1 + x2 = 5 and.x1 + x2 = 2 are parallel to each other 

(3) .a = 0, b /= 0 : Then it is clear that no numerical value of . x would satisfy the 
equation. That is, the system has no solutions. 

Now consider a set of two equations in 2 unknowns .x1 and . x2: 

. a1x1 + a2x2 = b1 

. a3x1 + a4x2 = b2 

We know that these equations represent two lines on a plane and solution of this 
system, if it exists, are the intersecting points of these two lines. If the lines are inter-
secting, either there will be a unique intersection point or there will be an infinite 
number of intersection points and if the lines are non-intersecting, they must be par-
allel to each other. Thus, here also, there are only three possibilities. The possibilities 
will be the same in the case of a system of . n equations with . n unknowns. The three 
possibilities are demonstrated in the Fig. 1.18. 

Now that we have seen the possibilities for the number of solutions of a system of 
equations, we have to find a method to solve a system of linear equations. Consider 
a system of . n equations in . n unknowns .x1, x2, . . . ,  xn given by 

. a11x1 + a12x2 +  · · ·  +  a1n xn = b1 

. a21x1 + a22x2 +  · · ·  +  a2n xn = b2 

. 
... 

... 
... 

... 

.an1x1 + an2x2 +  · · ·  +  ann xn = bn 
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The system can be written in the form.Ax = b, where 

.A = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a2n 
... 

... 
. . . 

... 
an1 an2 · · ·  ann 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
, .x = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x1 
x2 
... 

xn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
and .b = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

b1 
b2 
... 

bn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
. 

The matrix. A is called the coefficient matrix. A method to solve this system is given 
byGabriel Cramer (1704–1752), using the determinants of the coefficient matrix and 
matrices obtained from it by replacing one column by the column vector of right-hand 
sides of the equations. Cramer’s rule states that if .x = (x1, x2, . . . ,  xn) is a solution 
of the system, .xi = det ( Ai ) 

det (A) , i = 1, 2, . . . ,  n, where .Ai is the matrix obtained by 
replacing the .i th column of .A by the column vector . b. Observe that this rule is 
applicable only if.det ( A) /= 0. For example, consider the equations.x1 + x2 = 5 and 
.x1 − x2 = 3. The system can be expressed in the form, 

. 

[

1 1  
1 −1

] [

x 
y

]

=
[

5 
3

]

As.det (A) = −2 /= 0, we have  

. x = 
det

([

5 1  
3 −1

])

det

([

1 1  
1 −1

]) = 4 and y = 
det

([

1 5  
1 3

])

det

([

1 1  
1 −1

]) = 1 

As we can see, Cramer’s rule is applicable only if the determinant of . A is non-zero. 
Even if the determinant of. A is non-zero, this rule may cause computational difficul-
ties for higher values of . n. Also it cannot be applied to a system of .m equations in 
. n unknowns. Another method to find the solution of a system of equations is elimi-
nation, in which multiples of one equation is added or subtracted to other equations 
so as to remove the unknowns from the equations till only one equation in one by 
unknown remains, which can be solved easily. We can use the value of this unknown 
to find the value of the remaining ones. 

Consider a system of .m equations in . n unknowns .x1, x2, . . . ,  xn given by 

. a11x1 + a12x2 +  · · ·  +  a1n xn = b1 

. a21x1 + a22x2 +  · · ·  +  a2n xn = b2 

. 
... 

... 
... 

... 

.am1x1 + am2x2 +  · · ·  +  amn xn = bm 
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The system can be written in the form.Ax = b, where.A = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a2n 
... 

... 
. . . 

... 
am1 am2 · · ·  amn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
,. x = 

. 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x1 
x2 
... 

xn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

and .b = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

b1 
b2 
... 

bn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
. The matrix . A is called the coefficient matrix, and the matrix 

.[A | b] = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

a11 a12 · · ·  a1n b1 
a21 a22 · · ·  a2n b2 
... 

... 
. . . 

... 
... 

am1 am2 · · ·  amn bn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

is called the augmented matrix of the system. If 

.b = 0, then the system is called a homogeneous system. Otherwise, it is called non-
homogeneous system. A system is said to be consistent, if it has a solution. Otherwise, 
it is called inconsistent. We will see that a homogeneous system is always consistent, 
whereas a non-homogeneous system can be inconsistent (as given in Fig. 1.18c). 

Gauss Elimination Method 

Consider a system of equations given by.Ax = b. We can solve the system using the 
following method called Gauss elimination method, named after the famous German 
mathematician Carl Friedrich Gauss (1777–1855). 

1. Construct the augmented matrix for the given system of equations. 
2. Use elementary row operations to transform the augmented matrix to its row 

echelon form. 
3. The system 

• is consistent if and only if .Rank [A | b] = Rank(A). 

.◇ has unique solution if and only if .Rank [A | b] = Rank(A) = n. 

.◇ has an infinite number of solutions if .Rank [A | b] = Rank(A) = r < n. 

• is inconsistent if and only if .Rank [A | b] /= Rank (A). 

4. If the system is consistent, write and solve the new set of equations corresponding 
to the row echelon form of the augmented matrix. 

If reduced row echelon form is used, the method is called Gauss–Jordan method. 

Remark 1.14 A homogeneous system .Ax = 0 is always consistent (since 
.Rank [A | 0] = Rank(A) always). The system 

• has a unique solution if .Rank(A) = n. 
• has infinite number of solutions if and only if .Rank(A) = r < n. 
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Example 1.72 Consider the system of equations 

. 2x1 + 3x2 + 5x3 = 9 

. 7x1 + 3x2 − 2x3 = 8 

. 2x1 + 3x2 + λ1x3 = λ2 

where .λ1 and .λ2 are some real numbers. 
The above system can be written in the matrix form.Ax = b as 

. 

⎡ 

⎣ 
2 3  5  
7 3  −2 
2 3  λ1 

⎤ 

⎦ 

⎡ 

⎣ 
x1 
x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
9 
8 
λ2 

⎤ 

⎦ 

Now the augmented matrix .[A | b] is given by 

. [A | b] =  

⎡ 

⎣ 
2 3  5  9  
7 3  −2 8  
2 3  λ1 λ2 

⎤ 

⎦
R2 → R2 − 7 2 R1 

R3 → R3 − R1 

∼ 

⎡ 

⎣ 
2 3 5 9  
0 −15 

2 
−39 
2 

−47 
2 

0 0  λ1 − 5 λ2 − 9 

⎤ 

⎦ 

As the first two rows in the reduced form are non-zero, both .Rank(A) and 
.Rank [A | b] are greater than or equal to 2. 
. ◇ The system has unique solution if and only if.Rank [A | b] = Rank(A) = 3. That 
is, if .λ1 /= 5 and for any arbitrary values . λ2. 

. ◇ The system has an infinite number of solutions if .Rank [A | b] = Rank(A) <  3. 
If .λ1 = 5 and .λ2 = 9, we have .Rank [A | b] = Rank(A) = 2 < 3. 

. ◇ The system has no solution when .Rank [A | b] /= Rank( A). That is, if . λ1 = 5 
and .λ2 /= 9. 

If .b = 0 in the above system, then 

. ◇ The homogeneous system has a unique solution if and only if.Rank(A) = 3. That 
is, if .λ1 /= 5 the given system has only the zero vector as solution. 

. ◇ If .λ1 = 5, then .Rank(A) = 2 < 3 and hence the given system has an infinite 
number of solutions. 

As we have identified the values of.λ1 and.λ2 for which the given system is consistent, 
let us try to compute the solutions of the given system for some particular values of 
.λ1 and . λ2. Take .λ1 = 1 and .λ2 = 9. Then, 
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. [A | b] ∼  

⎡ 

⎣ 
2 3 5 9  
0 −15 

2 
−39 
2 

−47 
2 

0 0  −4 0  

⎤ 

⎦ 

That is, the given system is reduced to the following equivalent form: 

. 2x1 + 3x2 + 5x3 = 9 
15 

2 
x2 + 

39 

2 
x3 = 

47 

2 
−4x3 = 0 

Thus, we have .x = 

⎡ 

⎣ 
−1 
5 
47 
15 
0 

⎤ 

⎦ as the unique solution for the given system. Similarly, if 

we take.λ1 = 5 and.λ2 = 9, we can show that set of all solutions of the given system 
is .
{

(x1, x2, x3) | x3 ∈ R, x1 = 14x3−2 
10 and x2 = 47−39x3 

15

}

(Verify!). 

Remark 1.15 If the coefficient matrix .A is an .n × n non-singular matrix, then the 
system.Ax = b has a unique solution .x = A−1b. 

LU Decomposition 

The .LU decomposition method consists of factorizing .A into a product of two 
triangular matrices 

. A = LU 

where . L is the lower triangular and .U is the upper triangular. We use the Doolittle 
method to convert. A into the form.A = LU , where. L and.U are as mentioned above. 
We initialize this process by setting.A = I A  and use Gaussian elimination procedure 
to achieve the desired form. The pivot element is identified in each column during 
this procedure, and if necessary, the rows are switched. We update the entries of 
both . I and .A on the right-hand side in accordance with each column, using row 
operations to remove elements below the main diagonal and multipliers to generate 
. L . We get a lower triangular matrix . L with ones on its principal diagonals and an 
upper triangular matrix .U after iterating over all the columns. This decomposition 
allows us to reduce the solution of the system .Ax = b to solving two triangular 
systems .Ly = b and .U x  = y. Generally, there are many such factorizations. If . L is 
required to have all diagonal elements equal to . 1, then the decomposition, when it 
exists, is unique. This method was introduced by the Polish mathematician Tadeusz 
Julian Banachiewicz (1882–1954). 

Example 1.73 Consider the system of equations 

.2x1 − x2 + 3x3 = 9 
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. 4x1 + 2x2 + x3 = 9 

. − 6x1 − x2 + 2x3 = 12 

The above system can be written in the matrix form.Ax = b as 

. 

⎡ 

⎣ 
2 −1 3  
4 2  1  

−6 −1 2  

⎤ 

⎦ 

⎡ 

⎣ 
x1 
x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
9 
9 
12 

⎤ 

⎦ 

Consider the coefficient matrix . A. We will use elementary row transformations to 
convert . A into the form.LU . We have  

. A = 

⎡ 

⎣ 
2 −1 3  
4 2  1  

−6 −1 2  

⎤ 

⎦ = 

⎡ 

⎣ 
1 0 0  
0 1  0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
2 −1 3  
4 2  1  

−6 −1 2  

⎤ 

⎦ R2 → R2 − (2)R1 

R3 → R3 − (−3)R1 

= 

⎡ 

⎣ 
1 0  0  
2 1  0  

−3 0  1  

⎤ 

⎦ 

⎡ 

⎣ 
2 −1 3  
0 4  −5 
0 −4 11  

⎤ 

⎦ R3 → R3 − (−1)R1 

= 

⎡ 

⎣ 
1 0  0  
2 1  0  

−3 −1 1  

⎤ 

⎦ 

⎡ 

⎣ 
2 −1 3  
0 4  −5 
0 0 6  

⎤ 

⎦ = LU 

Now.Ly = b implies 

. 

⎡ 

⎣ 
1 0  0  
2 1  0  

−3 −1 1  

⎤ 

⎦ 

⎡ 

⎣ 
y1 
y2 
y3 

⎤ 

⎦ = 

⎡ 

⎣ 
9 
9 
12 

⎤ 

⎦ 

Solving the system, we get.y1 = 9, y2 = −9, and.y3 = 30. Now consider the system 
. U x  = y 

. 

⎡ 

⎣ 
2 −1 3  
0 4  −5 
0 0 6  

⎤ 

⎦ 

⎡ 

⎣ 
x1 
x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
9 

−9 
30 

⎤ 

⎦ 

Solving the system, we get .x1 = −1, x2 = 4, and .x3 = 5. 

Theorem 1.21 If . y and . z are two distinct solutions of .Ax = b, then .λy + μz is also 
a solution of .Ax = b, for any scalars .λ, μ ∈ K with .λ + μ = 1. If .b = 0, . λy + μz 
is a solution of .Ax = 0, for any scalars .λ, μ ∈ K. 

Proof Suppose that .b /= 0 and . y and . z are two given solutions of .Ax = b, then 
.Ay = b and .Az = b. Let .λ, μ ∈ K be such that .λ + μ = 1. Then 

.A(λy + μz) = λAy + μAz = λb + μb = (λ + μ)b = b 
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Now let .b = 0. If  . y and . z are two given solutions of .Ax = 0, then .Ay = 0 and 
.Az = 0. Then 

. A(λy + μz) = λ Ay + μAz = 0 

Hence the proof. 

1.8 Exercises 

1. For any sets . A and . B, show that 

(a) .A ∩ B ⊆ A, B ⊆ A ∪ B. 
(b) .A ⊆ B if and only if .A ∩ B = A. 

2. Consider the relation .R = {(0, 1), (0, 2), (1, 2)} on .X = {0, 1, 2}. Check 
whether . R is an equivalence relation. 

3. Let . f : X → Y and .g : Y → Z be any two functions. Then show that 

(a) if . f and . g are one-one, then .g ◦ f is one-one. 
(b) if . f and . g are onto, then .g ◦ f is onto. 

4. Check whether the following functions are bijective or not. 

(a) . f : R → R defined by . f (x) = x2 + 1 
(b) . f : [0, π ] → [−1, 1] defined by . f (x) = sin x 
(c) . f : R∗ → R∗ defined by . f (x) = 1 x 
(d) . f : C → C defined by . f (z) = z. 

5. Let .λi , μi ∈ K, i ∈ N. Then show that 

(a) for .1 < p < ∞ and . 
1 
p + 1 q = 1 , we have  

. 

∞
Σ

i=1 

|λi μi | ≤
( ∞
Σ

i=1 

|λi |p

) 1 
p
( ∞
Σ

i=1 

|μi |q
) 1 

q 

(b) for .1 < p < ∞, we have  

. 

( ∞
Σ

i=1 

|λi + μi |p

) 1 
p 

≤
( ∞
Σ

i=1 

|λi |p

) 1 
p 

+
( ∞
Σ

i=1 

|μi |p

) 1 
p 

These inequalities are called Holder’s inequality and Minkowski’s inequality, 
respectively. 

6. For .1 < p < ∞, consider the following collections of sequences. 



46 1 Preliminaries 

. l p =
{

v = (v1, v2, . . .)  | vi ∈ K and 
∞
Σ

i=1 

|vi |p < ∞
}

and 

. l∞ =
{

v = (v1, v2, . . .)  | vi ∈ K and sup 
i∈N 

|vi | < ∞
}

Show that for . u = (u1, u2, . . .), v  = (v1, v2, . . .)  ∈ l p 

. dp(u, v)  =
( ∞
Σ

i=1 

|ui − vi |p

) 1 
p 

defines a metric on .l p and for .u = (u1, u2, . . .), v  = (v1, v2, . . .)  ∈ l∞, 

. d∞(u, v)  = sup 
i∈N 

|ui − vi | 

defines a metric on .l∞. 
7. Let .X be a metric space with respect to the metrics .d1 and . d2. Then show that 

each of the following: 

(a) . d(x, y) = d1(x, y) + d2(x, y) 
(b) . d(x, y) = 

d1(x, y) 
1 + d1(x, y) 

(c) . d(x, y) = max{d1(x, y) + d2(x, y)} 
also defines a metric on . X . 

8. Let .(X, d) be a metric space. Show that 

(a) union of any number of open sets is open. 
(b) finite intersection of open sets is open. 

Also give an example to show that arbitrary intersection of open sets need not 
necessarily be open. 

9. Show that a set is closed if and only if it contains all its limit points. 
10. Show that .

(

l p, dp
)

and .(l∞, d∞) are complete metric spaces. 
11. Show that a closed subspace of a complete metric space is complete. 
12. Prove that if a sequence of continuous functions on .[a, b] converges on . [a, b] 

and the convergence is uniform on.[a, b], then the limit function. f is continuous 
on .[a, b]. 

13. Let.x ∈ R. Show that the sequence.{xn}, where.xn = [nx]
n , is a rational sequence 

that converges to . x . (.[x] denotes the greatest integer less than or equal to . x .) 
14. Let .(G, ∗) be a group. Then show that 

(a) the identity element in .G is unique. 
(b) each element in .G has a unique inverse. 
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15. Center of a group: Let .(G, ∗) be group. The center of . G, denoted by .Z(G), is  
the set of all elements of .G that commute with every other element of . G. 

(a) Show that .Z(G) is a subgroup of . G. 
(b) Show that .Z(G) = G for an Abelian group. 
(c) Find the center of .GL2 (K) and . S3. 

16. Find the order of the following elements in . GL2 (K) 

(a) . 

[

1 0  
0 −1

]

(b) .

[

1 0  
1 1

]

. 

17. Let .φ : (G, ∗) → (

G ,, ∗,) be a homomorphism. Then, prove the following: 

(a) if . e is the identity element in . G, .φ(e) is the identity element in .G ,. 
(b) .K er  (φ) is a subgroup of . G. 
(c) for any .g ∈ G, if .O(g) is finite .O (φ(g)) divides .O(g). 
(d) for any subgroup.H of. G,.φ (H ) is a subgroup of.φ (G) and if.H is Abelian, 

.φ (H ) is also Abelian. 

18. Consider .φ : GLn (K) → (R∗, .), defined by .φ(A) = det (A). 

(a) Show that . φ is a homomorphism. 
(b) Find .K er  (φ). 

19. Show that every cyclic group is Abelian. 
20. Find the normal subgroups of . S3. 
21. Prove that .{Q, +, .} , .{R, +, .}, and.{C, +, .} are fields with respect to the given 

algebraic operations. Also show that .{Z, +, .} is not a field. 
22. Give an example of a finite field. 
23. Show that . K[x] = {a0 + a1x +  · · ·  +  an−1xn−1 + an xn | ai ∈ K, n ∈ Z+} 

forms a ring with respect to the operations defined in Definition 1.44. 
24. Prove the Fundamental Theorem of Algebra. 
25. Show that the set of all .n × n matrices with entries in . K, denoted by . Mn (K) 

with matrix addition and scalar multiplication, forms a ring with unity. 

26. Find the rank of the matrix.A = 

⎡ 

⎣ 
1 2  −1 3  
4 5  3 6  
0 1  2  −1 

⎤ 

⎦ using row reduced echelon form. 

27. Show that the set of all solutions of a homogeneous system of equations forms 
a group with respect to coordinate-wise addition and scalar multiplication. 

28. Consider the system of equations 

. 2x1 + x2 + 3x3 = 9 

. 3x1 + 2x2 + 5x3 = 15 

.4x1 − 2x2 + 7x3 = 16 
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Solve the above system of equations using 

(a) Gauss Elimination method 
(b) LU Decomposition method. 

Is it possible to solve this system using Cramer’s rule? If yes, find the solution 
using Cramer’s rule. 

Solved Questions related to this chapter are provided in Chap. 8. 
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