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Preface 

Linear Algebra is one of the essential mathematical disciplines that undergraduate 
science and engineering students need for their studies. The subject stays at the fore 
of mathematics to date, be it in theory or applications as it provides an elegant and 
effective framework for comprehending and controlling the fundamental structures 
of space and transformation. 

Our book is an exposition of basic linear algebra. We aim to present an introduction 
to linear algebra and basic functional analysis in a simple manner that will be helpful 
for readers regardless of their field of study. The book is self-contained, apt even for 
an upper undergraduate in their first brush with the subject. Abstract concepts are 
dealt with comparatively less rigor, keeping in mind a first-time reader. 

The book aims mainly at graduate and engineering students and can be used as a 
primary text in a suitable course in Linear Algebra or as a supplementary reading. 
The subject matter is brought to life with numerous examples and solved problems, 
included as terminal chapters. This feature of the book would help students famil-
iarize themselves with the subject matter faster and stimulate further interest in the 
subject. The book is written in such a way that students who are attempting competi-
tive exams for higher studies can master the subject and attain problem-solving skills 
in the subject matter. 

The book contains 13 chapters, of which the first seven chapters in Part 1 deal 
with the basic theory of linear algebra, basic functional analysis and a glimpse of 
applications of linear algebra. The last six chapters include solved problems based 
on the theory discussed in Part 1. 

Chapter 1 sets the ground for the reader by dealing with preliminary topics. This 
chapter provides a basic understanding of elementary set theory, metric spaces and 
properties, and matrix theory, which is unavoidable in a linear algebra and func-
tional analysis study. Solutions to the system of linear equations are also discussed. 
This chapter will motivate a beginner and help a proficient reader refresh the basics 
required to learn the upcoming topics. 

Chapter 2 introduces the primary object in Linear Algebra, viz. Vector Spaces. 
Numerous examples follow the definition. Important notions of subspaces, linear
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viii Preface

dependence, basis, and dimension are given due respect and are elaborated. The 
chapter concludes with a section on sums and direct sums. 

Having dealt with vector spaces, Chap. 3 focuses on mappings between vector 
spaces, particularly those which preserve the vector space structure, that is, linear 
transformations. Important terminologies, including range space, null space, rank, 
nullity, etc., are defined, followed by several important theorems. In order to bring a 
parallelism with matrix theory, matrix representations of linear transformations are 
discussed, and most of the abstract concepts related to linear transformations are 
dealt with in terms of matrices. The algebra of linear transformations is discussed, 
which would aid in constructing a vector space of linear transformations. This chapter 
includes a geometrical overview of varied linear transformations in R2, which would 
kindle the readers’ geometric intuition. Topics like the change of coordinate matrix, 
linear functionals, dual space, etc. are also discussed in this chapter. 

Chapter 4 is of paramount importance, as it discusses the spectral properties of 
matrices. Here, we study linear operators between finite-dimensional vector spaces 
in terms of matrices, employing matrix representations defined in Chap. 3. Important 
notions like eigenvalues, eigenvectors, and some useful classes of polynomials arising 
from matrices are defined. Important theorems like the Cayley–Hamiton theorem, 
Schur triangularization theorem, etc. are stated and proved in this chapter. An entire 
section is devoted to diagonalization. The idea of generalized eigenvectors and Jordan 
canonical form are also studied in detail, along with the discussion of algebraic and 
geometric multiplicities of eigenvalues of matrices. 

We start Chap. 5 by introducing the distance notion by defining norms on arbitrary 
vector spaces and discussing the properties of normed linear spaces. Further, we 
discuss the idea of the usual dot product on R2 to generalize the concept to arbitrary 
vector spaces and obtain inner product spaces. Basic notions are introduced and 
theorems on inner product are proved, followed by a discussion on orthonormal sets, 
orthogonal projection, and the famous Gram–Schmidt Orthonormalization process. 
In this chapter, we revisit the notion of completeness of abstract spaces (introduced 
in Chap. 1), which helps to introduce Banach and Hilbert space notions. In short, 
this chapter briefly introduces fundamental ideas of functional analysis, a major 
mathematical discipline with roots in algebra and analysis. 

Chapter 6 gives a flavor of operator theory by discussing bounded linear maps 
and their properties. Also, fundamental theorems on the adjoint of an operator, self-
adjoint operators, normal operators, unitary operators, etc. are proved in this chapter. 
Singular value decomposition (SVD) and pseudo-inverse of matrices are discussed 
in detail. This chapter ends with a discussion on the least square solutions of system 
of linear equations. 

In Chap. 7, we delve into the intriguing world of real-life linear algebra applica-
tions. Although there are many applications, we discuss only a few to give an idea 
on how the concepts in linear algebra are used in the real-world systems. As we 
progress through this chapter, we will see how the diverse tools of linear algebra 
open doors to innovation and new pathways for problem-solving across a wide range 
of disciplines.
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Each chapter is provided with an ample number of examples and exercises. Solu-
tions to selected exercises are given at the end of Part I. Chapters 8–13 comprise more 
than 500 solved problems of varying difficulty levels based on the topics discussed 
in Chaps. 1–6. Detailed solutions are given for each question to provide a better 
understanding of the ideas discussed. The following chapter-wise dependent chart 
demonstrates the sequential progression of topics throughout the book. 

We are deeply indebted to all the authors whose works on linear algebra and func-
tional analysis influenced our understanding of the subject. We take this opportunity 
to express our sincere gratitude toward them. We wish to acknowledge the support we 
received from our institution and the moral support from our colleagues and friends 
during each stage of manuscript preparation. We thank our academic fraternity, who 
have made valuable suggestions after reading through various parts of the manuscript. 
We would especially like to thank Manilal K. (Professor, University College, Trivan-
drum), Thomas V. O. (Professor, The Maharaja Sayajirao University of Baroda), 
Mahesh T. V. (Assistant Professor, MG College, Trivandrum), Mathew Thomas 
(Assistant Professor, St. Thomas College, Thrissur), Aleena Thomas (Research 
Scholar, Indian Institute of Space Space Science and Technology, Trivandrum), and 
Anikha S. Kumar (Research Scholar, Indian Institute of Space Space Science and 
Technology, Trivandrum) for their fruitful suggestions and constant support. Last but 
not the least, we wish to thank our family members for their patience and support 
during the preparation of this manuscript.



x Preface

No work is ever complete until it has had its fair share of criticism. Readers are 
welcome to comment on our dispositions, which will help us improve the book. 

Thiruvananthapuram, Kerala 
October 2023 

Raju K. George 
Abhijith Ajayakumar
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Part I 
Theory of Linear Algebra



Chapter 1 
Preliminaries 

We introduce a wide range of fundamental mathematical concepts and structures in 
this chapter on foundation of mathematics. Understanding their fundamental opera-
tions and attributes, we start with sets and functions. We then delve into the metric 
space universe, which offers a framework for comprehending distance and conver-
gence. Moving on to algebraic structures, we examine the distinctive qualities and 
illustrative instances of groups, rings, and fields. Polynomial rings and their essential 
properties are introduced, as are matrices and their rank, trace, and determinant, all 
of which are highlighted as they have vital roles in the coming chapters. The latter 
sections of the chapter provide an overview of Euclidean space and demonstrate how 
to solve systems of linear equations using techniques like Cramer’s rule, LU decom-
position, Gauss elimination, etc. These fundamental ideas in mathematics serve as 
the building blocks for more complex mathematical research and have numerous 
applications in science and engineering. 

1.1 Sets and Functions 

Set theory is the core of modern mathematics and serves as a language for mathe-
maticians to discuss and organize their ideas. It is a crucial and elegant concept at 
its core; a set is simply a collection of objects, similar to a bag containing multiple 
objects. These objects can be anything from numbers, characters, shapes, or other 
sets. The way set theory lets us classify, compare, and evaluate these collections is 
what makes it so powerful. This section will discuss some of the essential concepts in 
set theory. Though the notion of set is not well-defined in wide generality as it leads 
to paradoxes like Russell’s Paradox, published by Bertrand Russell (1872–1970) in 
1901, we start with the following simple definition for a preliminary understanding 
of a set. 

Definition 1.1 (Set) A set is a well-defined collection of objects. That is, to define 
a set  . X , we must know for sure whether an element . x belongs to .X or not. If . x is 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
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4 1 Preliminaries

an element of . X , then it is denoted by .x ∈ X and if . x is not an element of . X , then 
it is denoted by .x /∈ X . Two  sets .X and . Y are said to be equal if they have the same 
elements. 

Definition 1.2 (Subset) Let. X and. Y be any two sets, then. X is a subset of. Y , denoted 
by.X ⊆ Y , if every element of. X is also an element of. Y . Two  sets. X and. Y are equal 
if and only if .X ⊆ Y and .Y ⊆ X . 

A set can be defined in a number of ways. Commonly, a set is defined by either listing 
all the entries explicitly, called the Roster form, or by stating the properties that are 
meaningful and unambiguous for elements of the set, called the Set builder form. 

Example 1.1 Here are some familiar collection/sets of numbers. 

.N−the set of all natural numbers . −{1, 2, 3, . . .}

.W−the set of all whole numbers . −{0, 1, 2, . . .}

.Z−the set of all integers . −{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

.Q−the set of all rational numbers . −{ p
q | p, q ∈ Z, q /= 0}

.R−the set of all real numbers 

.C−the set of all complex numbers. 

Usually, in a particular context, we have to deal with the elements and subsets of 
a basic set which is relevant to that particular context. This basic set is called the 
“Universal Set” and is denoted by. U . For example, while studying the number system, 
we are interested in the set of natural numbers, . N, and its subsets such as the set of 
all prime numbers, the set of all odd numbers, and so forth. In this case .N is the 
universal set. A null set, often known as an empty set, is another fundamental object 
in set theory. It is a set with no elements, which means it has no objects or members. 
In set notation, the null set is commonly represented by .Φ or .{} (an empty pair of 
curly braces). 

Definition 1.3 (Cardinality) The cardinality of a set .X is the number of elements 
in . X . A set  .X can be finite or infinite depending on the number of elements in . X . 
Cardinality of .X is denoted by .|X |. 
Example 1.2 All the sets mentioned in Example 1.1 are infinite sets. The set of 
letters in the English alphabet is a finite set. 

Set Operations 

Set operations are fundamental mathematical methods for constructing, manipulat-
ing, and analyzing sets. They enable the combination, comparison, and modification 
of sets in order to acquire insights and solve various mathematical and real-life 
problems. Union (combining items from several sets), intersection (finding common 
elements between sets), complement (identifying elements not in a set), and set dif-
ference (removing elements from one set based on another) are the fundamental set 
operations.
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Fig. 1.1 The shaded portions in. a and. b represents the union and intersection of the sets.X and. Y , 
respectively 

Fig. 1.2 The shaded portion in. a represents the difference of. Y related to. X and the shaded portion 
in. b represents the complement of a set 

Definition 1.4 (Union and Intersection) Let  .X and . Y be two sets. The union of . X
and. Y , denoted by.X ∪ Y , is the set of all elements that belong to either .X or. Y . The  
intersection of .X and . Y , denoted by .X ∩ Y , is the set of all elements that belong to 
both .X and . Y . 

The relationship between sets can be illustrated with the use of diagrams, known 
asVenn diagrams. It was popularized by the famous mathematician John Venn (1834– 
1923). In a Venn diagram, a rectangle is used to represent the universal set and circles 
are used to represent its subsets. For example, the union and intersection of two sets 
are represented in Fig. 1.1. 

Definition 1.5 (Difference of . Y related to. X ) Let. X and. Y be two sets. The difference 
of . Y related to . X , denoted by .X \ Y , is the set of all elements in .X which are not in 
. Y . The difference of a set .X related to its universal set .U is called the complement 
of .X and is denoted by .Xc. That is, .Xc = U \ X . Keep in mind that .U c = Φ and 
.Φc = U (Fig. 1.2). 

Definition 1.6 (Cartesian Product) Let. X and. Y be two sets. The Cartesian product 
of .X and . Y , denoted by .X × Y , is the set of all ordered pairs .(x, y) such that . x
belongs to .X and . y belongs to . Y . That is, .X × Y = {(x, y) | x ∈ X, y ∈ Y }.
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Example 1.3 Let .X = {1, 2, 3} and .Y = {3, 4, 5}. Then the union and intersection 
of. X and. Y are.X ∪ Y = {1, 2, 3, 4, 5} and.X ∩ Y = {3}, respectively. The difference 
of. Y related to. X is.X \ Y = {1, 2}, and the Cartesian product of. X and. Y is. X × Y =
{(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 3), (3, 4), (3, 5)}. 
Remark 1.1 Two sets .X and. Y are said to be  disjoint, if their intersection is empty. 
That is, if .X ∩ Y = Φ. 

We will now try to “connect” elements of distinct sets using the concept, “Rela-
tions”. A relation between two sets allows for the exploration and quantification 
of links and relationships between elements of various sets. It essentially acts as a 
link between elements of another set and elements from another, exposing patterns, 
dependencies, or correspondences. 

Definition 1.7 (Relation) A relation . R from a non-empty set .X to a non-empty set 
. Y is a subset of the Cartesian product.X × Y . It is obtained by defining a relationship 
between the first element and second element (called the “image” of first element) 
of the ordered pairs in .X × Y . 

The set of all first elements in a relation . R is called the domain of the relation. R, 
and the set of all second elements is called the range of . R. As we represent sets, a 
relation may be represented either in the roster form or in the set builder form. In the 
case of finite sets, a visual representation by an arrow diagram is also possible. 

Example 1.4 Consider the sets .X and .Y from Example 1.3 and their Cartesian 
product.X × Y . Then.R = {(1, 3), (2, 4), (3, 5)} is a relation between.X and. Y . The  
set builder form of the given relation can be given by . R = {(x, y) | y = x + 2, x ∈
X, y ∈ Y } (Fig. 1.3). 
Remark 1.2 If.|X | = m and.|Y | = n, then.|X × Y | = mn and the number of possible 
relations from set .X to set . Y is .2mn . 

Definition 1.8 (Equivalence Relations) A relation .R on a set .X is said to be an 
equivalence relation if and only if the following conditions are satisfied: 

(a) .(x, x) ∈ R for all .x ∈ X (Reflexive) 
(b) .(x, y) ∈ R implies .(y, x) ∈ R (Symmetric) 
(c) .(x, y) ∈ R and .(y, z) ∈ R implies .(x, z) ∈ R (Transitive). 

Example 1.5 Consider. N with the relation. R, where.(x, y) ∈ R if and only if . x − y
is divisible by. n, where. n is a positive integer. We will show that. R is an equivalence 
relation on . N. For,  

Fig. 1.3 Arrow diagram 
for. R

X Y
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(a) .(x, x) ∈ R for all .x ∈ N. For, .x − x = 0 is divisible by . n for all .x ∈ N. 
(b) .(x, y) ∈ R implies .(y, x) ∈ R. For,  

. (x, y) ∈ R ⇒ x − y is divisible by n

⇒ −(x − y) is divisible by n

⇒ y − x is divisible by n

⇒ (y, x) ∈ R

(c) .(x, y) ∈ R and .(y, z) ∈ R implies .(x, z) ∈ R. For,  

. (x, y), (y, z) ∈ R ⇒ x − y and y − z is divisible by n

⇒ (x − y) + (y − z) is divisible by n

⇒ x − z is divisible by n

⇒ (x, z) ∈ R

Thus, . R is reflexive, symmetric, and transitive. Hence, . R is an equivalence relation. 

Example 1.6 Consider the set .X = {1, 2, 3}. Define a relation .R on .X by . R =
{(1, 1), (2, 2), (1, 2), (2, 3)}. Is  .R an equivalence relation? Clearly, not! We can 
observe that . R is not reflexive as .(3, 3) /∈ R. Also. R is not transitive as . (1, 2), (2, 3)
but .(1, 3) /∈ R. What if we include the elements .(3, 3) and .(1, 3) to the relation and 
redefine . R as .R̃ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)}. Then . R̃ is an equiva-
lence relation on . X . 

Relations define how elements from one set correspond to elements from another, 
allowing for a broader range of relationships. However, there are specialized rela-
tions in which each element in the first set uniquely relates to one element in the 
second. This connection gives these relations mathematical precision, making them 
crucial for modeling precise transformations and dependencies in various mathe-
matical disciplines, ranging from algebra to calculus. We refer to such relations as 
functions. 

Functions 

Function in mathematics is a rule or an expression that relates how a quantity (depen-
dent variable) varies with respect to another quantity (independent variable) asso-
ciated with it. They are ubiquitous in mathematics and they serve many purposes. 

Definition 1.9 (Function) A function . f from a set .X to a set . Y , denoted by . f :
X → Y , is a relation that assigns to each element.x ∈ X exactly one element.y ∈ Y .
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Fig. 1.4 Observe that each element from set. X is mapped to exactly one element in set. Y . Therefore 
the given relation is a function..X is called domain of. f and. Y is called the co-domain of. f . 4 does 
not belong to the range set of. f , as it does not have a pre-image. The range set of. f is. {3, 5}

Fig. 1.5 Observe that 1 is 
mapped to both 3 and 4. Thus 
.R = {(1, 3), (1, 4), (2, 3)} is 
not a function 

Then. y is called the image of . x under . f and is denoted by . f (x). The  set .X is called 
the domain of . f and. Y is called the co-domain of . f . The collection of all images of 
elements in .X is called the range of . f . 

Example 1.7 Consider the sets. X and. Y from Example 1.3. Define a relation. R from 
the set.X to the set. Y as.R = {(1, 3), (2, 3), (3, 5)}. Then the relation. R is a function 
from.X to . Y (Fig. 1.4). 

From Definition 1.9, it is clear that any function from a set. X to a set. Y is a relation 
from.X to . Y . But the converse need not be true. Consider the following example. 

Example 1.8 Consider the sets .X and . Y from Example 1.3. Then the relation . R =
{(1, 3), (1, 4), (2, 3)} from the set .X to the set .Y is not a function as two distinct 
elements of the set . Y are assigned to the element . 1 in .X (Fig. 1.5). 

It would be easier to understand the dependence between the elements if we 
could geometrically represent a function. As a convention, the visual representation 
is done by plotting the elements in the domain along the horizontal axis and the 
corresponding images along the vertical axis. 

Definition 1.10 (Graph of a Function) Let  . f : X → Y be a function. The set 
.{(x, f (x)) ∈ X × Y | x ∈ X} is called the graph of . f .
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Fig. 1.6 Observe that in the first graph any vertical line drawn in the domain will touch exactly 
one point of the graph. However, in the second graph it may touch more than one point 

Observe that the above-defined set is exactly the same as. f , by Definition 1.9. Also  
keep in mind that not all graphs represent a function. If any vertical line intersects a 
graph at more than one point, the relation represented by the graph is not a function. 
This is known as the vertical line test (Fig. 1.6). 

Definition 1.11 (One-one function and Onto function) A function . f from a set . X
to a set . Y is called a one-one (injective) function if distinct elements in the domain 
have distinct images, that is, for every .x1, x2 ∈ X , . f (x1) = f (x2) implies .x1 = x2. 
. f is called onto (surjective) if every element of. Y is the image of at least one element 
of . X , that is, for every.y ∈ Y , .∃x ∈ X such that . f (x) = y. A function which is both 
one-one and onto is called a bijective function. 

Example 1.9 Consider the function. f : R → R defined by. f (x) = x + 5 for.x ∈ R. 
First, we will check whether the function is one-one or not. We will start by assuming 
. f (x1) = f (x2) for some .x1, x2 ∈ R. Then 

. f (x1) = f (x2) ⇒ x1 + 5 = x2 + 5

⇒ x1 = x2

Therefore. f is one-one. Now to check whether the function is onto, take any.x ∈ R, 
then .x − 5 ∈ R with . f (x − 5) = x − 5 + 5 = x . That is, every element in .R (co-
domain) has a pre-image in . R (domain). Thus, . f is onto and hence . f is a bijective 
function. 

The graph of a function can also be used to check whether a function is one-one. 
If any horizontal line intersects the graph more than once, then the graph does not 
represent a one-one function as it implies that two different elements in the domain 
have the same image. This is known as the horizontal line test (Fig. 1.7). 

Definition 1.12 (Composition of two functions) Let . f : X → Y and.g : Y → Z be 
any two functions, then the composition.g ◦ f is a function from.X to. Z , defined by 
.(g ◦ f )(x) = g ( f (x)) (Fig. 1.8).
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Fig. 1.7 Consider the graphs of the functions. f1, f2:R → R defined by. f1(x) = x + 5 and. f2(x) =
x2. Observe that if we draw a horizontal line parallel to the .x-axis, it will touch exactly one point 
on the graph of the function. f1. But on the graph of the function. f2, it touches two points. Then by 
horizontal line test, the first function is one-one whereas the second one is not a one-one function 

Fig. 1.8 It is clear that the range set of. f must be a subset of the domain of. g, for the composition 
function to be defined 

Properties 
Let . f : X → Y, g : Y → Z , and .h : Z → W , then 

(a) .h ◦ (g ◦ f ) = (h ◦ g) ◦ f (Associative). 
(b) If . f and . g are one-one, then .g ◦ f is one-one. 
(c) If . f and . g are onto, then .g ◦ f is onto. 

Example 1.10 Consider the functions . f, g : R → R defined by . f (x) = x2 and 
.g(x) = 2x + 1. Then . ( f ◦ g)(x) = f (g(x)) = f (2x + 1) = (2x + 1)2 = 4x2 +
4x + 1 and.(g ◦ f )(x) = g( f (x)) = g(x2) = 2x2 + 1. Observe that. f ◦ g /= g ◦ f . 
Therefore function composition need not necessarily be commutative. 

Definition 1.13 (Inverse of a function) A function . f : X → Y is said to be invert-
ible if there exists a function .g : Y → X such that .g ( f (x)) = x for all .x ∈ X and 
. f (g(y)) = y for all .y ∈ Y . The inverse function of . f is denoted by . f −1. 

The function . f is invertible if and only if . f is a bijective function. For, suppose 
there exists an inverse function . g for . f . Then
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. f (x1) = f (x2) ⇒ g ( f (x1)) = g ( f (x2)) ⇒ x1 = x2

That is, . f is injective. And . f (g(y)) = y for all .y ∈ Y implies that . f is onto. 

Example 1.11 Consider a function. f , defined as in Fig. 1.4. Indeed, from the figure 
itself, it’s evident that function . f is not bijective. Thus . f is not invertible. Observe 
that if we define . f (2) = 4, then . f is both one-one and onto. Then define a func-
tion, .g : Y → X by .g(3) = 1, .g(4) = 2, and .g(5) = 3. Now.g ( f (1)) = g (3) = 1, 
.g ( f (2)) = g (4) = 2, and .g ( f (3)) = g (5) = 3. That is, .g ( f (x)) = x for all . x ∈
X . Similarly, we can prove that . f (g(y)) = y for all .y ∈ Y . 

Example 1.12 Consider the function. f (x) = x + 5, defined as in Example 1.9. We  
have already shown that the function is bijective. Now, we will find the inverse of 
. f . By definition, we can say that . f −1 is the function that will undo the operation of 
. f . That is, if a function . f maps an element . x from set .X to . y in set . Y , its inverse 
function . f −1 reverses this mapping, taking . y from . Y back to . x in . X . In this case, 
.X = Y = R. If we consider, a .y ∈ R(co-domain), then there exists .x ∈ R(domain) 
such that.y = x + 5 (Why?). Then.x = y − 5. Thus, the function.g(y) = y − 5 will 
undo the action of . f . We can verify this algebraically as follows: 

. g ( f (x)) = g(x + 5) = x + 5 − 5 = x

and 
. f (g(x)) = f (x − 5) = x − 5 + 5 = x

Thus . f −1(x) = x − 5. 

Example 1.13 Now consider . f : R → R defined by . f (x) = x2. From Fig.  1.7, we  
can clearly say that . f is not bijective. Thus . f does not have an inverse in . R. But, if  
we restrict the domain of . f to .[0,∞), . f is a bijective function. Then the inverse of 
. f is the function. f −1(x) = √

x . For,.g ( f (x)) = g(x2) = √
x2 = x and. f (g(x)) =

f (
√

x) = (
√

x)2 = x . 

It is easy to check whether a real function is invertible or not, by just looking at 
its graph. Consider Fig. 1.9. 

Now we will discuss some of the important concepts related to functions defined 
on the set of all real numbers to itself. 

Definition 1.14 (Continuity at a point) Let  .X ⊂ R and . f : X → R be a function. 
We say that. f is continuous at.x0 ∈ X , if given any.ε > 0 there exists a.δ > 0 such that 
if . x is any point in .X satisfying .|x − x0| < δ, then .| f (x) − f (x0)| < ε. Otherwise, 
. f is said to be discontinuous at . x0. 

A function is continuous if it is continuous at each point of its domain. In graphical 
terms, the continuity of a function on the set of all real numbers means that the graph 
does not have any gaps or breaks. From Fig. 1.7, it is clear that both the functions 
. f (x) = x + 5 and . f (x) = x2 are continuous. Figure 1.10 gives an example for a 
discontinuous function.
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Fig. 1.9 Observe that the graph of . f −1(x) is the graph of . f (x) reflected about the line . y = x
(represented by the dotted line) 

Fig. 1.10 Consider the 
signum function, defined by 

. 

Clearly,. f is not continuous 
at . x = 0

Observe that in the definition of continuity of a function at a point, the value of . δ
depends on both.x0 and. ε. If. δ does not depend on the point. x0, then the continuity is 
called uniform continuity. In other words, a function . f is uniformly continuous on 
a set . X , if for every .ε > 0, there exists .δ > 0, such that for every element .x, y ∈ X , 
.| f (x) − f (y)| < ε whenever .|x − y| < δ. Graphically, this means that given any 
narrow vertical strip of width. ε on the graph, there exists a corresponding horizontal 
strip of width . δ such that all points in the interval within . δ units of each other on 
the .x-axis map to points within . ε units of each other on the .y-axis. Consider the 
following example. 

Example 1.14 Consider the function . f1(x) = x + 5. We will show that . f1 is uni-
formly continuous. For, given any.ε > 0, choose.δ = ε. Then, for any.x, y ∈ R with 
.|x − y| < δ, we have  

. | f1(x) − f1(y)| = |x + 5 − (y + 5)| = |x − y| < δ = ε

Thus. f1(x) = x + 5 is uniformly continuous over. R. However, the function. f2(x) =
x2 is not uniformly continuous on . R. Suppose on the contrary that . f2 is uniformly 
continuous. Fix .ε = 1. Then, there exists .δ0 > 0, such that for every element . x, y ∈
R, .| f (x) − f (y)| < 1 whenever .|x − y| < δ0. Now, take .y = x + δ0

2 . Then,
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. | f (x) − f (y)| =
|
|
|
|
|
x2 −

(

x + δ0

2

)2
|
|
|
|
|
=
|
|
|
|
xδ0 + δ20

4

|
|
|
|
< 1

which is a contradiction as . x can be chosen arbitrarily. 

Now, we will define continuity of a function using the notion of sequences of real 
numbers. 

Definition 1.15 (Real Sequence) A real sequence .{xn} is a function whose domain 
is the set .N of natural numbers and co-domain is the set of all real numbers . R. In  
other words, a sequence in. R assigns to each natural number.n = 1, 2, . . . a uniquely 
determined real number. For example, the function. f : N → R defined by. f (n) = 1

n

determines the sequence .
{

1, 1
2 ,

1
3 , . . .

}

. 

Example 1.15 The list of numbers .{r, r, r, . . .}, where . r is any real number, is a 
sequence called constant sequence as we can define a function, . f : N → R, by  
. f (n) = r . 

Example 1.16 The list of numbers .{r, r2, r3, . . .}, where . r is any real number, is 
a sequence called geometric sequence as we can define a function, . f : N → R, by  
. f (n) = rn . 

Definition 1.16 (Convergent Sequence) A real sequence .{xn} is said to converge to 
.x ∈ R, or  . x is said to be a limit of .{xn}, denoted by .xn → x or . lim

n→∞ xn = x , if for  

every .ε > 0, there exists a natural number .N such that .|xn − x | < ε for all .n ≥ N . 
Otherwise, we say that .{xn} is divergent. 
Theorem 1.1 A real sequence .{xn} can have at most one limit. 

Example 1.17 Consider the sequence .{xn}, where .xn = 1
n . Clearly, .xn → 0. For,  

given any.ε > 0, we have.|xn − 0| = |
| 1

n

|
|. If we take.n > 1

ε
, we have.|1/n| < ε. Thus 

. lim
n→∞

1
n = 0. 

Example 1.18 Consider the sequence.{xn}, defined as in Example 1.15. It is easy to 
observe that .xn → r as .|xn − r | = 0 for all .n ∈ N. 

Example 1.19 Consider the sequence .{xn}, defined as in Example 1.16. We can 
observe that the convergence of this sequence depends on the value of . r . First of all, 
by the above example, for .r = 0 and .r = 1, .{xn} converges to 0 and 1, respectively. 
Now let .0 < r < 1. Then .xn → 0. For any .ε > 0, if we take  .N > ln ε

ln r we have 
.|xn − 0| = rn < ε for all .n > N . Similarly, for .−1 < r < 0, .xn → 0. 

Now for .r = −1, the given sequence becomes .xn = (−1)n . Take  .ε = 1
3 . 

Then there does not exist any point .x ∈ R such that .|xn − x | < 1
3 as the interval 

.
(

x − 1
3 , x + 1

3

)

must contain both . 1 and .−1. Therefore .{xn} with .xn = (−1)n does 
not converge. Similarly, we can prove that the sequence .{xn} with .xn = rn does not 
converge outside the interval .(−1, 1].
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As we have discussed convergent sequences, Cauchy sequences must be intro-
duced, which are a specific class of sequences in which the terms become arbitrarily 
close to each other as the index increases, rather than approaching a single limit. 

Definition 1.17 (Cauchy Sequence) A real sequence .{xn} is said to be a Cauchy 
sequence, if for any .ε > 0, there exists a natural number .N such that . |xm − xn| < ε

for all .m, n ≥ N . 

For a real sequence, the terms convergent sequence and Cauchy sequence do not 
make any difference. We have the following theorem stating this fact. 

Theorem 1.2 A real sequence .{xn} is convergent if and only if it is Cauchy. 

However, this may not be true, if we are considering sequences in the set of rational 
numbers,. Q. That is, there exist sequences of rational numbers that are Cauchy but not 
convergent in. Q (the sequence may not converge to a rational number). For example, 
consider the sequence .1.41, 1.412, 1.1421, . . .. This sequence will converge to . 

√
2

which is not a rational number (also, see Exercise 13 of this chapter). Now, we will 
introduce the sequential definition for continuity. 

Definition 1.18 (Sequential Continuity) A function . f : X ⊆ R → R is said to be 
sequentially continuous at point.x0 ∈ X if for every.{xn} in. X with.xn → x0, we have  
. f (xn) → f (x0). That is if, . lim

n→∞ xn = x0 ⇒ lim
n→∞ f (xn) = f (x0). 

Then, we have the following result which asserts that sequential continuity and 
continuity of a real function are the same. 

Theorem 1.3 A function . f : X ⊆ R → R is continuous if and only if it is sequen-
tially continuous. 

Example 1.20 Consider the signum function as defined in Fig. 1.10. We know that 
. f is not continuous at .x = 0. We can use the definition of sequential continuity 
to prove this fact. Consider the sequence .

{
1
n

}

. In Example 1.17, we have seen that 
.
1
n → 0. However, observe that . f

(
1
n

) = 1 → 1 /= f (0). Thus . f is not sequentially 
continuous at . 0 and hence . f is not continuous at . 0. 

Now, consider the function . f (x) = x + 5. We have already seen that . f is con-
tinuous on . R as its graph does not have any gaps or breaks. Let us check whether . f
is sequentially continuous or not. Consider any real number .r ∈ R and a sequence 
.{rn}with.rn → r as.n → ∞. For sequential continuity. f (rn)must converge to. f (r). 
Observe that . f (rn) = rn + 5 → r + 5 as.n → ∞. Thus. f is sequential continuous. 

Remark 1.3 A set. S is said to be countably infinite if there exists a bijective function 
from. N to . S. A set which is empty, finite, or countably infinite is called a countable 
set. Otherwise it is called uncountable set. For example .Z is countable and .R is 
uncountable.
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Sequence of Functions 

Now, we will combine the ideas of functions and sequences discussed so far and 
define “sequence of functions”. 

Definition 1.19 (Sequence of Functions) Let  . fn be real-valued functions defined 
on an interval .[a, b] for each .n ∈ N. Then .{ f1, f2, f3, . . .} is called a sequence of 
real-valued functions on .[0, 1], and is denoted by .{ fn}. 
Example 1.21 For each .n ∈ N, let  . fn be defined on .[0, 1] by . fn(x) = xn . Then 
.{x, x2, x3, . . .} is a sequence of real-valued functions on .[a, b]. 

For a sequence of functions, we have two types of convergences, namely point-
wise convergence and uniform convergence. We will discuss these concepts briefly 
in this section. 

Let .{ fn} be a sequence of functions on .[a, b] and .x0 ∈ [a, b]. Then the sequence 
of real numbers, .{ fn(x0)}, may be convergent. In fact, this may be true for all points 
in.[a, b]. The limiting values of the sequence of real numbers corresponding to each 
point .x ∈ X define a function called the limit function or simply the limit of the 
sequence .{ fn} of functions on .[a, b]. 
Definition 1.20 (Point-wise convergence) Let  .{ fn} be a sequence of real-valued 
function defined on an interval .[a, b]. If for each .x ∈ [a, b] and each .ε > 0, there 
exists an .N ∈ N such that .| fn(x) − f (x)| < ε for all .n > N , then we say that . { fn}
converges point-wise to the function . f on .[a, b] and is denoted by . lim

n→∞ fn(x) =
f (x), ∀ x ∈ [a, b]. 
Example 1.22 Let . fn(x) = xn be defined on .[0, 1]. By Example 1.19, the limit 
function . f (x) is given by 

. f (x) = lim
n→∞ fn(x) =

{

0, x ∈ [0, 1)
1, x = 1

Let .ε = 1
2 . Then for each .x ∈ [0, 1], there exists a positive integer .N such that 

.| fn(x) − f (x)| < 1
2 for all .n > N . If  .x = 0, f (x) = 0 and . fn(x) = 0 for all . n. 

.| fn(x) − f (x)| < 1
2 is true for all .n > 1. 

If.x = 1, f (x) = 1 and. fn(x) = 1 for all. n..| fn(x) − f (x)| < 1
2 is true for all.n > 1. 

If .x = 3
4 , f (x) = 0 and . fn(x) = (

3
4

)n
for all . n. Then 

. | fn(x) − f (x)| =
(
3

4

)n

<
1

2

is true for all .n > 2.
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Fig. 1.11 Point-wise 
convergence of.{ fn}, where  
. fn(x) = xn, x ∈ [0, 1]

0 

If .x = 9
10 , f (x) = 0 and . fn(x) = (

9
10

)n
for all . n. Then 

. | fn(x) − f (x)| =
(

9

10

)n

<
1

2

is true for all .n > 6 (Fig. 1.11). 
Observe that there is no value of .N for which .| fn(x) − f (x)| < 1

2 is true for all 
.x ∈ [0, 1]. .N depends on both . x and . ε. But, this is not the case for the following 
example. 

Example 1.23 Consider . fn(x) = x

1 + nx
, x ≥ 0. Clearly, 

. lim
n→∞ fn(x) = f (x) = 0, ∀ x ≥ 0

Also, we have 

. 0 ≤ x

1 + nx
≤ x

nx
= 1

n

Therefore, .| fn(x) − f (x)| = | fn(x)| ≤ 1
n < ε for all .x ≥ 0, provided .N > 1

ε
. That 

is, if .N > 1
ε
, then .| fn(x) − f (x)| < ε for all .n > N and for all .x ≥ 0. Here  

.N depends only on . ε. Such type of convergence is called uniform convergence 
(Fig. 1.12). 

Definition 1.21 (Uniform convergence) Let  .{ fn} be a real-valued function defined 
on an interval .[a, b]. Then .{ fn} is said to converge uniformly to the function . f on 
.[a, b], if for each .ε > 0, there exists an integer .N (dependent on . ε and independent 
of . x) such that for all .x ∈ [a, b], .| fn(x) − f (x)| < ε for all .n > N (Fig. 1.13). 

Clearly, we can observe that uniform convergence implies point-wise conver-
gence, but the converse does not hold true always. Also observe that, in Example 1.22, 
all the functions in .{ fn} were continuous. However, their point-wise limit was not 
continuous. In the case of uniform convergence, this is not possible. That is, if . { fn}
is a sequence of continuous functions and . fn → f uniformly then . f is continuous.
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Fig. 1.12 Uniform 
convergence of.{ fn}, where  
. fn(x) = x

1 + nx
, x ≥ 0

Fig. 1.13 If.{ fn} converges 
uniformly to a function. f on 
.[a, b], for  a given.ε > 0, 
there exists a positive integer 
.N such that the graph of 
. fn(x) for all .n > N and for 
all .x ∈ [a, b] lies between 
the graphs of. f (x) − ε and 
. f (x) + ε

1.2 Metric Spaces 

In . R, we have the notion of usual distance provided by the modulus function, to 
discuss the ideas like continuity of a function, convergence of a sequence, etc. These 
concepts can also be extended to a wide range of sets by generalizing the notion 
of “distance” to these sets by means of a function, called metric. A set with such 
a distance notion defined on it is called as a metric space. Consider the following 
definition. 

Definition 1.22 (Metric Space) Let .X be any non-empty set. A metric (or distance 
function) on.X is a function.d : X × X → R

+ which satisfies the following proper-
ties for all .x, y, z ∈ X : 

.(M1) .d(x, y) ≥ 0 and .d(x, y) = 0 if and only if .x = y. (Non-negativity) 

.(M2) .d(x, y) = d(y, x). (Symmetry) 

.(M3) .d(x, z) ≤ d(x, y) + d(y, z). (Triangle Inequality) 

If . d is  a metric on . X , we say that .(X, d) is a metric space.
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Example 1.24 Consider the set of all real numbers, . R. For  .x, y ∈ R, the function 
defined by 

. d(x, y) = |x − y|

is the usual distance between two points on the real line. 

.(M1) Clearly .d(x, y) = |x − y| ≥ 0 and .d(x, y) = |x − y| = 0 if and only if . x −
y = 0. That is, if and only if .x = y. 

.(M2) . d(x, y) = |x − y| = |y − x | = d(y, x)

.(M3) Also, by the properties of modulus 

. d(x, z) = |x − z|
= |x − y + y − z|
≤ |x − y| + |y − z|
= d(x, y) + d(y, z)

Thus all the conditions for a metric are satisfied and hence.(R, |.|) is a metric space. 
This metric is known as the usual metric or Euclidean Distance. 

Example 1.25 For any non-empty set . X , define a function . d by 

. d(x, y) =
{

1 , x /= y

0 , x = y

Clearly conditions .(M1) and .(M2) are satisfied. Now we will check .(M3), 

Case 1 . x /= y = z
Then .d(x, y) = 1, d(x, z) = 1 and . d(y, z) = 0

Case 2 . x = y /= z
Then .d(x, y) = 0, d(x, z) = 1 and . d(y, z) = 1

Case 3 . x = y = z
Then .d(x, y) = 0, d(x, z) = 0 and . d(y, z) = 0

Case 4 . x /= y /= z
Then .d(x, y) = 1, d(x, z) = 1 and .d(y, z) = 1. 

In all four cases, condition .(M3) is clearly satisfied. Hence .(X, d) is a metric space 
for any non-empty set . X . The given metric . d is known as a discrete metric. 

Definition 1.23 (Open Ball) Let.(X, d) be a metric space. For any point.x0 ∈ X and 
.ε ∈ R

+, 
. Bε(x0) = {x ∈ X | d(x, x0) < ε}

is called an open ball centered at .x0 with radius . ε.
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Fig. 1.14 Observe that if we take. ε less than both.c − a and.b − c, . Bε(c) ⊂ (a, b)

Fig. 1.15 Clearly..Bε(a) ⊈ [a, b] for any.ε > 0. Also, any open interval containing. b is not a subset 
of. [a, b]

Definition 1.24 (Open Set and Closed Set) Let  .(X, d) be a metric space. A subset 
.Y ⊆ X is said to be open if it contains an open ball about each of its elements.. Y ⊆ X
is said to be closed if its complement .Y c is open. 

Example 1.26 Consider the metric space .(R, |.|). Then we can verify that every 
open interval in the real line is an open set (see Exercise 8 of this chapter). Consider 
an arbitrary open interval.(a, b) ⊂ R and choose an arbitrary element.c ∈ (a, b). We  
have to show that there exists .ε > 0 such that .Bε(c) ⊂ (a, b) (Fig. 1.14). 

From Fig. 1.14, if we take  .ε < min{c − a, b − c}, it is clear that . Bε(c) ⊂ (a, b)

for any.c ∈ (a, b). Similarly, we can prove that the union of open intervals is also an 
open set in . R. But a closed interval .[a, b] ⊂ R is not an open set as . Bε(a) ⊈ [a, b]
for any .ε > 0 (Fig. 1.15). 

As .[a, b]c = (−∞, a) ∪ (b,∞) is an open set, .[a, b] is a closed set. 
Example 1.27 Every singleton set in a discrete metric space .X is an open set. It is 
obvious from the fact that for any .x ∈ X , we have .Bε(x) = {x} when.ε < 1. Also it  
is interesting to observe that every subset of a discrete metric space is open as every 
open set can be written as a union of singleton sets. Therefore, every subset of a 
discrete metric space .X is a closed set also. 

As we have defined sequences on . R, we can define sequences on an arbitrary 
metric space .(X, d) as a function from the set of all natural numbers taking values 
in . X , and we can discuss their convergence based on the distance function . d. 

Definition 1.25 (Convergent Sequence) Sequence.{xn} in a metric space.(X, d) con-
verges to .x ∈ X if for every .ε > 0 there exists .N ∈ N such that .xn ∈ Bε(x) for all 
.n > N and . x is called the limit of the sequence .{xn}. We denote this by .xn → x or 
. lim
n→∞ xn = x . In other words, we can say that .d(xn, x) → 0 as .n → ∞. 

Example 1.28 Consider the sequence .{xn}, where .xn = r + 1
n , n ∈ N in the metric 

space .(R, |.|) for some .r ∈ R. We will show that .xn → r in .(R, |.|). For any .ε > 0, 
if we take . N > 1

ε

. d(xn, r) =
|
|
|
|
r + 1

n
− r

|
|
|
|
=
|
|
|
|

1

n

|
|
|
|
< ε ∀ n > N

That is, .xn ∈ Bε(r) for all .n > N . Therefore .xn → r in .(R, |.|).
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Example 1.29 Let .{xn} be a sequence in a metric space .(X, d), where . d is the 
discrete metric. We have seen in Example 1.27 that every singleton set in a discrete 
metric space is open. Therefore for the sequence .{xn} to converge to a point .x ∈ X , 
the open set .{x} must contain almost all terms of the sequence. In other words, a 
sequence .{xn} in a discrete metric space converges if and only if it is of the form 
.x1, x2, . . . , xN , x, x, . . .. That is, if and only if .{xn} is eventually constant. 

Definition 1.26 (Cauchy Sequence) Sequence of points.{xn} in a metric space. (X, d)

is said to be a Cauchy sequence if for every .ε > 0, there exists an .Nε ∈ N such that 
.d(xn, xm) < ε for every .m, n > Nε . 

Theorem 1.4 In a metric space, every convergent sequence is Cauchy. 

The converse of the above theorem need not be true. That is, there exists metric 
spaces where every Cauchy sequence may not be convergent. 

Example 1.30 Consider the sequence .{xn} with .xn = a + 1
n in the metric space 

.((a, b), |.|) where .(a, b) is any open interval in . R. We will show that this sequence 
is Cauchy but not convergent. For an .ε > 0, if we choose . N > 2

ε

. d(xn, xm) =
|
|
|
|

1

n
− 1

m

|
|
|
|
≤
|
|
|
|

1

n

|
|
|
|
+
|
|
|
|

1

m

|
|
|
|
≤ ε

2
+ ε

2
= ε ∀ m, n > N

That is, the given sequence is a Cauchy sequence. As we have seen in Example 1.28, 
the given sequence converges to . a as .n → ∞. As .a /∈ (a, b), .{xn} with . xn = a + 1

n
is not convergent in .((a, b), |.|) . 
Definition 1.27 (Complete Metric Space) A metric space in which every Cauchy 
sequence is convergent is called a complete metric space. 

Example 1.31 By Theorem 1.2,.(R, |.|) is a complete metric space and from Exam-
ple 1.30, .((a, b), |.|) is an incomplete metric space. 

Definition 1.28 (Continuous Function) Let  .(X, d1) and .(Y, d2) be two metric 
spaces. A function. f : X → Y is said to be continuous at a point.x0 ∈ X if for every 
.ε > 0 there is a .δ > 0 such that .d2 ( f (x), f (x0)) < ε whenever .d1 (x, x0) < δ. . f is 
said to be continuous on .X if . f is continuous at every point of . X . 

Theorem 1.5 Let .(X, d1) and .(Y, d2) be two metric spaces. Then a function . f :
X → Y is said to be continuous if and only if the inverse image of any open set of 
.(Y, d2) is open in .(X, d1). 

The continuity of a function in metric spaces can also be discussed in terms of 
sequences. Consider the following definition. 

Definition 1.29 (Sequential Continuity) Let  .(X, d1) and .(Y, d2) be two metric 
spaces. A function. f : X → Y is said to be sequentially continuous at a point. x0 ∈ X
if .{xn} is any sequence in .(X, d1) with .xn → x0, then . f (xn) → f (x0) in .(Y, d2). 

Theorem 1.6 Let .(X, d1) and .(Y, d2) be two metric spaces. Then a function . f :
X → Y is continuous on . X, if and only if it is sequentially continuous.
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1.3 Some Important Algebraic Structures 

An algebraic structure consists of a non-empty set together with a collection of 
operations defined on it satisfying certain conditions or axioms which are defined as 
per the context under discussion. The operations are of great importance when the 
resultant obtained by combining two elements in the set belongs to the same set. 

Definition 1.30 (Binary Operation) Let  .G be any set. A binary operation .,∗, on . G
is a function .∗ : G × G → G defined by 

. ∗ (g1, g2) = g1 ∗ g2

Example 1.32 Let.G = R, the set of all real numbers, and let. + be the usual addition 
of real numbers. Now .+ : R × R → R such that .+(a, b) = a + b ∈ R defines a 
binary operation. Similarly, the usual multiplication and subtraction of real numbers 
are also binary operations on . R. But as the division of a real number with 0 is not 
defined, division is not a binary operation. 

Definition 1.31 (Group) A non-empty set .G together with a binary operation .
,∗, is 

said to be a group, denoted by .(G, ∗), if .,∗, satisfies the following properties: 

(a) .g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 ∀ g1, g2, g3 ∈ G (Associative property) 
(b) There exists.e ∈ G, such that.e ∗ g = g = g ∗ e ∀ g ∈ G (Existence of Identity) 
(c) For each .g ∈ G, there exists .g−1 ∈ G such that .g ∗ g−1 = e = g−1 ∗ g. (Exis-

tence of Inverse) 

If .,∗, satisfies .g1 ∗ g2 = g2 ∗ g1 ∀ g1, g2 ∈ G (Commutative property) also, then 
.(G, ∗) is called an Abelian group. 

Example 1.33 Consider .R together with the binary operation .,+,. Then .R is an 
Abelian group under the operation .

,+,. For,  

(a) Addition is associative over . R. 
(b) For all .r ∈ R, there exists .0 ∈ R such that .r + 0 = r = 0 + r . 
(c) For all .r ∈ R, there exists .−r ∈ R such that .r + (−r) = 0 = (−r) + r . 
(d) Addition is commutative over . R. 

Similarly, . C, the set of all complex numbers, . Q, the set of all rational numbers, and 
. Z, the set of all integers together with the binary operation .

,+, is an Abelian group. 
But .(R, .) is not a group, where ‘.’ denotes usual multiplication as there does not 
exist any inverse element for . 0. 

Example 1.34 Consider.R∗ = R \ {0} under usual multiplication. We can show that 
.(R∗, .) is an Abelian group. Similarly, we can show that .(Q∗, .) and .(C∗, .) are also 
Abelian groups where .Q

∗ = Q \ {0} and .C
∗ = C \ {0}. Observe that .Z∗ with usual 

multiplication is not a group as the inverse of every element does not exist in .Z
∗. 

Example 1.35 Consider .R+, the set of all positive real numbers under usual multi-
plication. We can show that.

(

R
+, .
)

is an Abelian group. Similarly, we can show that 
.
(

Q
+, .
)

and .
(

C
+, .
)

are also Abelian groups.
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Example 1.36 The set .Zn = {0, 1, 2, . . . , n − 1}, for  .n ≥ 1, is a group under the 
operation addition modulo . n, denoted by .+n . The basic operation is usual addition 
of elements, which ends by reducing the sum of the elements modulo . n, that is, 
taking the integer remainder when the sum of the elements is divided by . n. This  
group is usually referred to as the group of integers modulo. n. Consider the following 
examples: 

.+2 0 1 
0 0 1 
1 1 0 

.+3 0 1 2 
0 0 1 2 
1 1 2 0 
2 2 0 1 

.+4 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

.+5 0 1 2 3 4 
0 0 1 2 3 4 
1 1 2 3 4 0 
2 2 3 4 0 1 
3 3 4 0 1 2 
4 4 0 1 2 3 

The above group multiplication table is called Cayley table. A Cayley table, named 
after the British mathematicianArthur Cayley (1821–1895) of the nineteenth century, 
illustrates the structure of a finite group by arranging all the possible products of all 
the group’s members in a square table resembling an addition or multiplication table. 

Example 1.37 A one-one function from a set . S onto itself is called a permutation. 
Consider the set .S = {1, 2, . . . ,  n}. Let  .Sn denote the set of all permutations on . S 
to itself. Then .Sn is a non-Abelian group under the operation function composi-
tion, called symmetric group on . n letters. Permutations of finite sets are represented 
by an explicit listing of each element of the domain and its corresponding image. 

For example, the elements of .S3 can be listed as . 

{

ρ0 =
(

1 2  3  
1 2  3

)

, ρ1 =
(

1 2 3  
2 3  1

)

, 

ρ2 =
(

1 2  3  
3 1 2

)

, μ1 =
(

1 2  3  
1 3 2

)

, μ2 =
(

1 2 3  
3 2 1

)

, μ3 =
(

1 2 3  
2 1 3

)}

Theorem 1.7 Let .(G, ∗) be a group. Then 

(a) the identity element is unique. 
(b) each element in . G has a unique inverse. 

Definition 1.32 (Subgroup) A subset .H of a group .(G, ∗) is said to be a subgroup 
of . G, if .H is a group with respect to the operation. ∗ in. G. Let.H ≤ G denote that . H 
is a subgroup of .G and .H < G denote that .H is a subgroup of . G, but .H /= G. 

Example 1.38 We have .(Z, +) < (Q, +) < (R, +). But  .(Zn, +n) is a not a sub-
group of .(R, +) even though as sets .Zn ⊂ R, as the operations used are different. 

Example 1.39 Consider the permutation group . S3. Then . {ρ0}, {ρ0, μ1}, 
{ρ0, μ2}, {ρ0, μ3} and .{ρ0, ρ1, ρ2} are subgroups of . S3. 
Definition 1.33 (Order of a Group) Let  .(G, ∗) be a group, then the order of .G is 
the number of elements in . G. 

Example 1.40 Observe that.(Z, +) , (Q, +) , (R, +), and.(C, +) are groups of order 
infinity and .(Zn, +n) is a group of order . n. Also observe that .Sn has order . n!. 
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Definition 1.34 (Order of an element) Let  .(G, ∗) be a group, then the order of an 
element .g ∈ G, denoted by .O(g), is the least positive integer . n such that .gn = e, 
where . e is the identity in . G. Clearly, identity element in a group .G has order 1. 

Example 1.41 Consider the group .(R, +). Then we get that no element other than 
. 0 in .R has finite order. This is because of the fact that repeated addition of a real 
number will never give us . 0. 

Example 1.42 Consider a finite group, say .(Z4, +4). Then . O(0) = 1, O(1) = 
4, O(2) = 2, and .O(3) = 4. It is easy to observe that, in a finite group . G, every  
element has finite order. Consider another example, . S3. Then . O (ρ0) = 1, O (ρ1) = 
O (ρ2) = 3, and .O (μ1) = O (μ2) = O (μ3) = 2. 

Remark 1.4 A set  .G together with a binary operation .,∗, defined on it is called a 
Groupoid or Magma. If .,∗, satisfies associative property also, then .(G, ∗) is called a 
Semi-group. A semi-group containing an identity element is called a Monoid. 

Definition 1.35 (Group Homomorphism) Let.(G, ∗) and.
(

G ,, ∗,) be any two groups. 
A map  . φ from .G to .G , satisfying .φ (g1 ∗ g2) = φ (g1) ∗, φ (g2) , ∀ g1, g2 ∈ G is 
called a group homomorphism. If . φ is one-one and onto, we say that. φ is an isomor-
phism or .(G, ∗) and .

(

G ,, ∗,) are isomorphic, denoted by .G ∼= G ,. 

Definition 1.36 (Kernel of a Homomorphism) The kernel of a homomorphism of 
a group .G to a group  .G , with identity .e, is the set of all elements in .G which are 
mapped to . e,. That is, .K er  (φ) = {g ∈ G | φ (g) = e,}. 
Example 1.43 Consider the groups .(R, +) and .(R∗, .). We will show that they are 
isomorphic. Define .φ : R → R∗ by .φ(x) = ex . Then for .x1, x2 ∈ R, 

. φ (x1 + x2) = ex1+x2 = ex1 .ex2 = φ(x1).φ(x2) 

Therefore . φ is a homomorphism from . R to .R∗. Also we can easily verify that . φ is 
both one-one and onto. Thus .(R, +) ∼= (R∗, .). Now let us find the Kernel of . φ. By  
definition, .K er (φ) is the set of all elements of the domain which are mapped to 
the identity element in the co-domain, in this case, 1. Therefore. K er  (φ) = {x ∈ R | 
φ(x) = ex = 1} = {0}. 
Example 1.44 Consider .(Z, +) and .(Zn, +n). Define .φ : Z → Zn by .φ(m) = r , 
where . r is the remainder when .m is divided by . n. Let us check whether .φ is a 
homomorphism or not. Take two elements .m1, m2 ∈ Z. By division algorithm, we 
can write .mi = qi n + ri with .0 ≤ ri < n, where .i = 1, 2 and hence . φ(m1) = r1 
and .φ(m2) = r2. Observe that .m1 + m2 = (q1 + q2)n + r1 + r2. Therefore, we can 
say that .φ(m1 + m2) is the remainder when .r1 + r2 is divided by . n. That is, 
.φ(m1 + m2) = r1 +n r2. Also  .φ(m1) +n φ(m2) = r1 +n r2. Thus . φ is a homomor-
phism. Now the set of all elements mapped to.0 ∈ Zn are integer multiples of. n. That 
is, .K er  (φ) =< n >. 
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Example 1.45 Consider the map.φ : (R, +) → (R∗, .)  defined by.φ(x) = x2. Then 
for .x1, x2 ∈ R, we have  

. φ (x1 + x2) = (x1 + x2)2 /= x2 
1 .x

2 
2 = φ (x1) .φ (x2) 

Thus . φ is not a homomorphism. 

Example 1.46 Consider .(R∗, .). Define a map .φ : R∗ → R∗ by .φ(x) = |x |. Then 
for .x1, x2 ∈ R∗ , we have  

. φ (x1x2) = |x1x2| = |x1||x2| =  φ (x1) φ (x2) 

Thus . φ is a homomorphism from .R∗ to itself. Observe that . K er  (φ) = {x ∈ R∗ | 
|x | = 1} = {−1, 1}. Thus. φ is not one-one (Why?). Also. φ is not onto as only positive 
real numbers have pre-images. Therefore . φ is not an isomorphism. 

Theorem 1.8 Let . φ be a homomorphism from a group .(G, ∗) to .
(

G ,, ∗,). Then 

(a) if . e is the identity element in . G, .φ(e) is the identity element in . G ,. 
(b) .K er (φ) is a subgroup of . G. 
(c) for any . g ∈ G, if .O(g) is finite .O (φ(g)) divides .O(g). 
(d) for any subgroup . H of . G, .φ (H ) is a subgroup of .φ (G) and if . H is Abelian, 

.φ (H ) is also Abelian. 

Two algebraic structures.(G, ∗) and.
(

G ,, ∗,) are isomorphic, if there exists a one-
one, onto homomorphism from .G to .G ,. But it will be difficult to show that . (G, ∗) 
and .

(

G ,, ∗,) are not isomorphic, following the definition as it means that there is no 
one-one homomorphism from.G onto .G ,. It is not possible to check whether such a 
function exists or not. In such cases, we could use the idea of structural properties of 
an algebraic structure, which are properties that must be shared by any isomorphic 
structure. Cardinality is an example for structural property. 

Example 1.47 In Remark 1.3, we have seen that . R is an uncountable set and . Z is a 
countable set. Hence .(R, +) and .(Z, +) are not isomorphic. 

Theorem 1.9 (Cyclic subgroup)Let.(G, ∗) be a group. Then the set. {gn | g ∈ G, n ∈ 
Z} is a subgroup of. G called cyclic subgroup of. G generated by. g, denoted by.< g >. 

If the group.G =< g > for some.g ∈ G, then .G is called a cyclic group and. g is 
called a generator of . G. 

Example 1.48 .(Z, +) is a cyclic group with two generators .{1, −1}. 
Example 1.49 .(Zn, +n) is a cyclic group. The generators are the elements . m ∈ Zn 

with .gcd(m, n) = 1, where .gcd(m, n) denotes the greatest common divisor for . m 
and . n (verify). 

Theorem 1.10 Let .(G, ∗) be a cyclic group with generator . g. If .O(G) is finite, then 
.(G, ∗) ∼= (Zn, +n) and if .O(G) is infinite, then .(G, ∗) ∼= (Z, +). 
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Example 1.50 By Example 1.47, .(R, +) is not a cyclic group. 

Definition 1.37 (Coset) Let  .(G, ∗) be a group and .H be a non-trivial subgroup 
of . G. Then .gH = {g ∗ h | h ∈ H} is called left coset of .H in .G containing . g and 
.Hg = {h ∗ g | h ∈ H} is called right coset of .H in .G containing . g. 

Example 1.51 Consider .(Z8, +8) and the subgroup .H = {0, 2, 4, 6} of .Z8. Then 

. 0H = {0, 2, 4, 6} =  2H = 4H = 6H 

. 1H = {1, 3, 5, 7} =  3H = 5H = 7H 

Also observe that as .(Z8, +8) is an Abelian group, the left and right cosets of each 
element coincide. 

Example 1.52 Consider the subgroup .H = {ρ0, μ1} in . S3. Then 

. ρ0H = {ρ0, μ1} =  μ1H 

. ρ1H = {ρ1, μ3} =  μ3H 

. ρ2H = {ρ2, μ2} =  μ2H 

are the distinct left cosets of .H in .G and 

. Hρ0 = {ρ0, μ1} =  Hμ1 

. Hρ1 = {ρ1, μ2} =  H μ2 

. Hρ2 = {ρ2, μ3} =  H μ3 

are the distinct right cosets of .H in . G 

Theorem 1.11 (Lagrange’s Theorem) Let . G be a finite group and . H be a subgroup 
of . G, then .O(H) divides .O(G). Moreover, the number of distinct left/right cosets of 

. H in . G is . 
O(G) 
O(H ) 

. 

Example 1.53 In Example 1.51,.H = {0, 2, 4, 6} and.G = Z8. We have. O (H ) = 4 
and .O (G) = 8. Clearly, .O(H ) divides .O(G) and the number of distinct left/right 

cosets of .H in .G is . 
O(G) 
O(H ) 

= 2 

Example 1.54 In Example 1.52, .H = {ρ0, μ1} and .G = S3. We have  . O (H ) = 2 
and .O (G) = 6. Clearly, .O(H ) divides .O(G) and the number of distinct left/right 

cosets of .H in .G is . 
O(G) 
O(H ) 

= 3. 
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Definition 1.38 (Normal Subgroup) A subgroup.H of. G is called a normal subgroup 
of .G if .gH = Hg for all .g ∈ G. 

Example 1.55 From Example 1.51, .H = {0, 2, 4, 6} is a normal subgroup of 
.(Z8, +8). In fact, every subgroup of an Abelian group is a normal subgroup (verify). 

Example 1.56 From Example 1.52, .H = {ρ0, μ1} is not a normal subgroup of . S3. 

Theorem 1.12 (Factor Group) Let .(G, ∗) be a group and . H be a normal subgroup. 
Then the set .G/H = {gH | g ∈ G} is a group under the operation . ∗,, where . ∗, is 
defined by .(g1H ) ∗, (g2H ) = (g1 ∗ g2)H. 

Example 1.57 In Example 1.55 we have seen that .H = {0, 2, 4, 6} is a normal 
subgroup of .(Z8, +8). From Example 1.51, .G/H = {0H, 1H}. Then .G/H is a 
group, with the operation .∗, defined as . (0H ) ∗, (0H) = (0H) , (0H ) ∗, (1H ) = 
(1H ) ∗, (0H ) = (1H ), and .(1H ) ∗, (1H ) = (0H ). 

Example 1.58 Consider the group .(Z, +). Clearly .3Z = {. . . ,  −6, −3, 0, 3, 6} is 
a normal subgroup of . Z. Then .G/H = {0 (3Z) , 1 (3Z) , 2 (3Z)} is a group, with 
the operation . ∗ defined as . 0 (3Z) ∗, 0 (3Z) = 0 (3Z) , 0 (3Z) ∗, 1 (3Z) = 1 (3Z) ∗,
0 (3Z) = 1 (3Z) , 0 (3Z) ∗, 2 (3Z) = 2 (3Z) ∗, 0 (3Z) = 2 (3Z) , 2 (3Z) ∗, 1 (3Z) = 
0 (3Z) , 1 (3Z) ∗, 2 (3Z) = 0 (3Z) , 1 (3Z) ∗, 1 (3Z) = 0 (3Z) and. 2 (3Z) ∗, 2 (3Z) = 
1 (3Z). 

Theorem 1.13 (First Isomorphism Theorem) Let . φ be a homomorphism from 
a group . G to a group . G ,. Then the mapping .Ψ : G/K er (φ) → G , given by 
.Ψ (gK er(φ)) = φ (g) is an isomorphism. That is, .G/K er  (φ) ∼= φ (G). 

Example 1.59 In Example 1.44, we have seen that.φ(m) = m mod n  is a homomor-
phism from .(Z, +) and .(Zn, +n) with .K er  (φ) =< n >. Therefore by 
Theorem 1.13, .Z/ <  n >∼= Zn . 

Definition 1.39 (Ring) A non-empty set .R together with two operations .,+, and 
. 
,.,, known as addition and multiplication, respectively, is called a ring (denoted by 
.{R, +, .}) if the following conditions are satisfied: 
(a) .(R, +) is an Abelian group. 
(b) .(R, .)  is a semi-group. 
(c) For all . r1, r2, r3 ∈ R 

. r1.(r2 + r3) = r1.r2 + r1.r3 (left distributive law) 

. (r1 + r2).r3 = r1.r3 + r2.r3 (right distributive law) 

If there exists a non-zero element.1 ∈ R such that for every element.r ∈ R,. r.1 = r = 
1.r , then.{R, +, .} is called a ring with unity and if multiplication is also commutative, 
then the ring is called a commutative ring. 
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Example 1.60 The set of all real numbers under usual addition and multiplication 
is a commutative ring with unity. From Example 1.33, we have.(R, +) is an Abelian 
group. Clearly, the usual multiplication .,., is closed, associative, and commutative 
over . R. Also  .1 ∈ R acts as unity and the distributive laws are satisfied. Similarly 
.{C, +, .},.{Q, +, .}, and .{Z, +, .} are commutative rings with unity. 

Example 1.61 The set .Zn = {0, 1, 2, . . . ,  n − 1}, for  .n ≥ 1, under the operations 
addition and multiplication modulo. n (taking the integer remainder when the product 
is divided by . n) is a ring with unity . 1. 

Definition 1.40 (Sub-Ring) A sub-ring of a ring.R is a subset of the.R that is a ring 
under the induced operations from. R. 

Example 1.62 Clearly .{Q, +, .} is a sub-ring of .{Q, +, .}. Also  .{Q, +, .} is a sub-
ring of .{R, +, .} which is again a sub-ring of . {C, +, .}
Example 1.63 .Zn , for  .n ≥ 1, is a ring under the operation addition modulo . n and 
multiplication modulo. n (denoted by.×n). The basic operation in.×n is multiplication, 
which ends by reducing the result modulo . n; that is, taking the integer remainder 
when the result is divided by . n as in .+n . 

Definition 1.41 (Division Ring) Let  .{R, +, .} be a ring with unity . ,1,. An element 
.r ∈ R is a unit of .R if it has multiplicative inverse in . R. That is, if there exists an 
element .r−1 ∈ R such that .r.r−1 = 1 = r−1.r . If every non-zero element in .R is a 
unit, then .R is called a division ring or skew-field. 
Example 1.64 .{R, +, .} is a division ring as for any.r (/= 0) ∈ R, there exists. 1 r ∈ R 
such that .r · 1 r = 1 = 1 r · r . 
Theorem 1.14 An element .m ∈ Zn is a unit if and only if .gcd(m, n) = 1. 

Corollary 1.1 . Zn is a division ring only if . n is a prime. 

Definition 1.42 (Field) A field is a commutative division ring. In other words, 
.{R, +, .} is a field if the following conditions are satisfied: 
(a) .(R, +) is an Abelian group. 
(b) .(R \ {0}, .) is an Abelian group. 
Example 1.65 The set of all real numbers. R under usual addition and multiplication 
is a field. Similarly, the set of all complex numbers .C and the set of all rational 
numbers .Q under usual addition and multiplication are fields. 

Example 1.66 From Corollary 1.1, the  set.Zn is a field under the operations addition 
and multiplication modulo. n, if and only if. n is a prime (Why?). Clearly,. {Zn, +n, ×n}
is an example for a finite field. 

Example 1.67 The set of all integers . Z under usual addition and multiplication is 
not a field as it is not a division ring. But . Z is a commutative ring with unity. 

Definition 1.43 (Sub-Field) A sub-field of a field is a subset of the field that is a 
field under the induced operations from the field. 
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Example 1.68 Clearly.{Q, +, .} is a sub-field of.{R, +, .} which is again a sub-field 
of .{C, +, .}. 

1.4 Polynomials 

Polynomials are a type of mathematical expression built by combining variables by 
the operations addition, subtraction, and multiplication. They are an important tool in 
mathematics as many mathematical problems can be encoded into polynomial equa-
tions. In this section, we will discuss some of the important properties of polynomials 
in one variable. 

Definition 1.44 (Ring of polynomials) Let .K be a field. Consider the set 

. K[x] = {a0 + a1x +  · · ·  +  an−1xn−1 + an xn | ai ∈ K, n ∈ Z+} 

.ai ∈ K are called coefficients of the polynomial, and the order of the highest power 
of . x with non-zero coefficient is called the degree of the polynomial. For . f (x) = 
a0 + a1x +  · · ·  +  an xn, g(x) = b0 + b1x +  · · ·  +  bm xm ∈ K[x], define 

. f (x) + g(x) = (a0 + b0) + (a1 + b1)x +  · · ·  +  (ak−1 + bk−1)xk−1 + (ak + bk)xk 

where .k = max(m, n), .ai = 0 for .i > n and .bi = 0 for .i > m. Also  

. f (x)g(x) = c0 + c1x +  · · ·  +  cm+n−1xm+n−1 + cm+n xm+n 

where .ck = akb0 + ak−1b1 +  · · ·  +  a1bk−1 + a0bk for .k = 0, 1, . . . ,  m + n. Then 
.K[x] forms a ring with respect to the operations defined above, called the ring of 
polynomials over .K in the indeterminate . x . 

Remark 1.5 If the coefficient of the highest power of. x is the multiplicative identity 
of . K, then the polynomial is called a monic polynomial. Two elements in .K[x] are 
equal if and only they have the same coefficients for all powers of . x . 

Theorem 1.15 (Division Algorithm) Let . K be a field and let . f (x), g(x) ∈ K[x] 
with .g(x) /= 0. Then there exists unique polynomials .q(x), r (x) ∈ K[x] such that 
. f (x) = g(x)q(x) + r (x) and either .r (x) = 0 or .deg[r (x)] < deg[g(x)]. If . r (x) = 
0 we have . f (x) = g(x)q(x) and we say that .g(x) is a factor . f (x). 

Theorem 1.16 Let . K be a field and let . f (x), g(x) ∈ K[x]. The greatest common 
divisor of . f (x) and .g(x), denoted by .( f (x), g(x)), is the unique monic polynomial 
.r (x) ∈ K[x] such that 

1. .r (x) is a factor of both . f (x) and .g(x). 
2. if .q(x) ∈ K[x] is a factor of both . f (x) and .g(x), then .r (x) is a factor of .q(x). 
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Moreover, there exists polynomials .l(x), m(x) ∈ K[x] such that 

. r (x) = l(x) f (x) + m(x)g(x) 

Remark 1.6 If .( f (x), g(x)) = 1, then we say that . f (x), g(x) ∈ K[x] are relatively 
prime. 

Definition 1.45 (Zero of a polynomial) Let. f (x) ∈ K[x]; an element.μ ∈ K is called 
a zero (or a root) of . f (x) if . f (μ) = 0. 

Theorem 1.17 (Factor Theorem) Let . K be a field and . f (x) ∈ K[x]. Then .μ ∈ K is 
a zero of . f (x) if and only if .x − μ is a factor of . f (x). 

Definition 1.46 (Algebraically Closed Field) A field. K is said to be an algebraically 
closed field, if every non-constant polynomial in .K[x] has a root in . K. 

Theorem 1.18 (Fundamental Theorem of Algebra) The field of complex numbers is 
algebraically closed. In other words, every non-constant polynomial in .C[x] has at 
least one root in . C. 

From the above theorem, we can infer that every polynomial of degree . n in . C[x] 
has exactly . n roots in . C. 

Example 1.69 Consider .x2 + 1 ∈ R[x]. As the given polynomial has no root in . R, 
the field of real numbers is not algebraically closed, whereas if we consider . x2 + 1 
as a polynomial in .C[x], it has roots in . C. 

Remark 1.7 (Vieta’s Formula) Let  . f (x) = a0 + a1x +  · · ·  +  an xn ∈ K[x] with 
roots .x1, x2, . . . ,  xn , then 

. x1 + x2 +  · · ·  +  xn = −an−1 

an 

. x1x2 · · · xn = (−1)n a0 

an 

It is named after the French mathematician Francois Viete (1540–1603). 

1.5 Matrices 

A matrix in mathematics is a rectangular arrangement of numbers, symbols, or func-
tions in rows and columns. They are of great importance in mathematics and are 
widely used in linear algebra to study linear transformations which will be discussed 
in later chapters. 
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Definition 1.47 An.m × n matrix . A over a field .K is a rectangular array of .m rows 
and . n columns of entries from. K: 

. A = 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

a11 a12 . . .  a1n 

a21 a22 . . .  a2n 
... 

... 
... 

... 
am1 am2 . . .  amn 

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

Such a matrix, written as .A = (

ai j
)

, where .1 ≤ i ≤ m, .1 ≤ j ≤ n is said to be of 
size (or order).m × n. Two matrices are considered to be equal if they have the same 
size and same corresponding entries in all positions..Mm×n (K) denotes the set of all 
.m × n matrices with entries from. K. 

Matrix Operations 

Let us discuss some of the important operations that are used in the collection of all 
matrices. 

Definition 1.48 (Matrix Addition) Let  .A = (

ai j
)

and .B = (

bi j
)

, where . 1 ≤ i ≤ 
m, .1 ≤ j ≤ n be any two elements of .Mm×n (K). Then . A + B = (

ai j  + bi j
) ∈ 

Mm×n (K). Two matrices must have an equal number of rows and columns to be 
added. 

Properties 
For any matrices .A, B and . C ∈ Mm×n (K) 

1. .A + B = B + A. (Commutativity) 
2. .A + (B + C) = ( A + B) + C . (Associativity) 
3. There exists a matrix .O ∈ Mm×n (K) with all entries . 0 such that .A + O = A. 

(Existence of Identity) 
4. There exists a matrix .−A such that .A + (−A) = O . (Existence of Inverse) 

Remark 1.8 .Mm×n (K) with matrix addition defined on it forms an Abelian group. 

Definition 1.49 (Matrix Multiplication) Let.A = (

ai j
)

m×n and.B = (

bi j
)

n×p. Then 
their product .AB ∈ Mm×p and its .(i, j )th entry is given by 

. ai1b1 j + ai2b2 j +  · · ·  +  ainbnj  

For.AB to make sense, the number of columns of. A must equal the number of rows of 
. B. Then we say that the size of matrices . A and. B are compatible for multiplication. 
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Properties 
For any matrices .A, B and . C ∈ Mn×n (K) 

1. .A(BC) = ( AB)C (Associativity) 
2. .A(B + C) = AB + AC and .( A + B)C = AC + BC . (Distributive laws) 

Remark 1.9 1. Matrix multiplication need not be commutative. For example, if 

.A =
(

1 −1 
0 2

)

and .B =
(

3 4 5  
6 0  8

)

then .AB =
(−3 4  −3 
12 0 16

)

. Note that .B A  is 

undefined. It need not be commutative even if .B A  is defined. For example, 

if .A =
(

1 −1 
0 2

)

and .B =
(

3 4  
6 0

)

then .AB =
(−3 4  
12 0

)

and .AB =
(

3 5  
6 −6

)

. 

2. The set of all invertible matrices over the field .K under matrix multiplication 
forms a non-Abelian group, denoted by .GLn (K). Also observe that . Mn×n (K) 
forms a ring under the operations matrix addition and multiplication. 

Definition 1.50 (Scalar Multiplication) Let.A = [

ai j
] ∈ Mm×n (K) and.λ ∈ K, then 

.λA = [

λai j
] ∈ Mm×n (K). 

Properties 
For any matrices .A, B ∈ Mm×n (K) and . λ, μ ∈ K 

1. . λ(A + B) = λA + λB 
2. . (λ + μ)A = λA + μ A 
3. . λ(μA) = (λμ) A 
4. .A(λB) = λ(AB) = (λA)B. 

Definition 1.51 (Transpose of a matrix) The transpose of an.m × n matrix. A = [

ai j
]

is the .n × m matrix (denoted by .AT ), given by .AT = [

a ji
]

. 

Properties 
Let . A and . B be matrices of appropriate order, then 

1. . 
(

AT
)T = A 

2. . (A + B)T = AT + BT 

3. . (AB)T = BT AT 

4. .(k A)T = k AT . 

Definition 1.52 (Conjugate transpose of a matrix) The conjugate transpose of an 
.m × n matrix .A = [

ai j
]

is the .n × m matrix (denoted by .A∗) given by . A∗ = [

a ji
]

where bar denotes complex conjugation (if .ai j  = c + id, then .ai j  = c − id). 

Properties 
Let . A and . B be matrices of appropriate orders and . λ be a scalar, then 

1. . (A∗)∗ = A 
2. . (A + B)∗ = A∗ + B∗ 

3. . (AB)∗ = B∗ A∗ 

4. .(λ A)∗ = λA∗, where . λ is the conjugate of . λ. 
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Definition 1.53 (Trace of a matrix) Let .A = [

ai j
]

be an .n × n matrix. The trace of 
. A, denoted by .tr(A), is the sum of diagonal entries; that is .tr (A) = Σn 

i=1 aii . 

Properties 
For any.n × n matrices.A, B, C, and D and.λ ∈ R, we have the following properties: 

1. Trace is a linear function. 
. tr (A + B) = tr( A) + tr (B) 
. tr (λA) = λ tr(A) 

2. .tr (AT ) = tr (A) and . tr (A∗) = (tr A) 
3. . tr (AB) = tr (B A) 
4. . tr (ABC D) = tr (D ABC) = tr (C D AB) = tr (BC D A) 
5. .tr (ABC) /= tr (AC B) in general. 
6. .tr (AB) /= tr (A).tr(B) in general. 

Definition 1.54 (Determinant of a matrix) For each square matrix. A with entries in 
.K (K = R or C), we can associate a single element of .K called determinant of . A, 
denoted by .det (A). 
If. A is a.1 × 1 matrix, i.e.,.A = [a11], then its determinant is defined by.det (A) = a11. 

If . A is a .2 × 2 matrix, say .A =
[

a11 a12 

a21 a22

]

, then its determinant is defined by 

. det (A) = a11a22 − a21a12 

The determinant for a square matrix with higher dimension. n may be defined induc-
tively as follows: 

. det (A) = 
n
Σ

i=1 

(−1)i+ j ai j  Mi j  

for a fixed. j , where.Mi j  is the determinant of the.(n − 1) × (n − 1) matrix obtained 
from. A by deleting .i th row and . j th column, called minor of the element .ai j  . 

Properties 
Let . A and . B be any .n × n matrices and . λ be any scalar, then 

1. .det (In) = 1, where .In is the .n × n identity matrix. 
2. .det (AT ) = det (A) and .det (A∗) = det (A). 
3. .det (AB) = det ( A) det (B). 
4. .det (λA) = λn det (A). 
5. If . B is a matrix obtained from. A by multiplying one row (or column) by a scalar 

. λ, then .det (B) = λ det ( A). 
6. If . B is a matrix obtained from. A by interchanging any two rows (or columns) of 

. A then .det (B) = −  det (A). 
7. If two rows of a matrix are identical then the matrix has determinant zero. 
8. If . B is a matrix obtained from. A by adding . λ times one row (or column) of . A to 

another row (or column) of . A, then .det (B) = det ( A). 
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Remark 1.10 An.n × n matrix with determinant zero is called singular matrix, oth-
erwise it is called a non-singular matrix. 

Definition 1.55 (Adjoint of a Matrix) The adjoint of a matrix.A = [

ai j
]

n×n (denoted 
by .ad j (A)) is the transpose of the co-factor matrix, where co-factor matrix of . A =
[

ai j
]

n×n is .
[

(−1)i+ j Mi j
]

n×n , where.Mi j  is the determinant of the. (n − 1) × (n − 1) 
matrix obtained from. A by deleting.i th row and. j th column, called minor of the. i j th 
element. 

Properties 
Let . A and . B be any .n × n matrices, then 

1. . ad j (In) = In 

2. . ad j (AB) = ad j (B) ad j (A) 
3. . ad j (k A) = kn−1ad j (A) 
4. . ad j (Am) = (ad j (A))m 

5. . ad j (AT ) = (ad j (A))T 

6. . A ad j  (A) = det (A) I = ad j ( A) A 
7. . det (ad j ( A)) = (det (A))n−1 

8. .ad j (ad j ( A)) = (det (A))n−2 A. 

Definition 1.56 (Inverse of a matrix) The inverse of a square matrix .An×n if it 
exists is the matrix .A−1 

n×n such that .AA−1 = In = A−1A and is given by . A−1 =
1 

det (A)
ad j (A). 

Properties 
Let . A and . B be any .n × n matrices and . λ be any scalar, then 

1. The inverse of a matrix if it exists is unique. 
2. . A is invertible if and only if .det A /= 0. 
3. .
(

A−1
)−1 = A. 

4. .(k A)−1 = k−1A−1, where .k /= 0 is any scalar. 
5. .det (A−1) = 1 

det (A) . 

6. .(AB)−1 = B−1 A−1. 
7. .
(

AT
)−1 = (

A−1
)T 
. 

Remark 1.11 1. There are matrices for which .AB = I but .B A /= I . For example 
take 

.A = [

1 2
]

and .B = .

[

1 
0

]

. Then .AB = .
[

1
]

.= I and .B A  = .

[

1 2  
0 0

]

./= I . 

2. If .A = .

[

a b  
c d

]

is invertible, then .A−1 is given by .A−1 = 1 
ad−bc .

[

d −b 
−c a

]

. 

3. Set of all .n × n non-singular matrices with entries from the field.K under matrix 
multiplication forms a non-Abelian group called general linear group, and is 
denoted by .GLn (K). 

1. For any matrices .A, B ∈ GLn (K), .AB ∈ GLn (K) (. det (A), det (B) /= 0 ⇒ 
det (AB) /= 0). (Closure property) 
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2. Matrix multiplication is associative. 
3. .In ∈ GLn (K) acts as identity matrix. 
4. For each .A ∈ GLn (K), we have  .det ( A) /= 0 and hence .A−1 exists. Also, 

.det (A−1) = 1 
det ( A) , and thus .A

−1 ∈ GLn (K). 

Definition 1.57 (Rank of a matrix) The rank of a matrix is the order of the highest 
order sub-matrix having non-zero determinant. 

Properties 

1. Let . A be an .m × n matrix. Then .Rank( A) ≤ min{m, n}. 
2. Only zero matrix has rank zero. 
3. A square matrix .An×n is invertible if and only if .Rank( A) = n. 
4. Sylvester’s Inequality: If . A is an .m × n matrix and . B is an .n × p matrix, then 

. Rank(A) + Rank(B) − n ≤ Rank(AB) ≤ min{Rank(A), Rank(B)} 

This result is named after the famous English mathematician James Joseph 
Sylvester (1814–1897). 

5. Frobenius Inequality: Let .A, B, and .C be any matrices such that .AB, BC , and 
.ABC exists, then 

. Rank( AB) + Rank(BC) ≤ Rank(ABC) + Rank(B) 

This result is named after the famous German mathematician Ferdinand Georg 
Frobenius (1849–1917). 

6. Rank is sub-additive. That is, .Rank(A + B) ≤ Rank(A) + Rank(B). 
7. .Rank(A) = Rank(AT ) = Rank(AT A). 
8. .Rank(k A) = Rank(A) if .k /= 0. 

Definition 1.58 (Block Matrix) A block matrix or a partitioned matrix is a matrix 
that is defined using smaller matrices called blocks. 

Example 1.70 Consider .X = .
[

A B  
C D

]

5×5 

where .A = .
[

2 0  
0 2

]

2×2 

, .B = .
[

2 1  3  
6 2 7

]

2×3 

, 

.C = . 

⎡ 

⎣ 
1 0  
5 2  
7 3  

⎤ 

⎦ 

3×2 

, and .D = . 

⎡ 

⎣ 
1 9 8  
4 2 1  
7 0 1  

⎤ 

⎦ 

3×3 

. 

Properties 

1. Let .X = .

[

A B  
C D

]

where .An×n, Bn×m, Cm×n , and .Dm×m are matrices. 

If . A is invertible, then 

.det (X ) = (det (A))
(

det (D − C A−1 B)
)
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Definition 1.59 (Block Diagonal Matrix) A block diagonal matrix is a block matrix 
which is a square matrix such that all blocks except the diagonal ones are zero. 

Properties 

1. Consider a block diagonal matrix of the form 

.A = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

A1 0 · · ·  0 
0 A2 · · ·  0 
... 

... 
. . . 

... 
0 0  · · ·  An 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
, where each .A,

i s is a square matrix. Then 

(a) . det (A) = det (A1)det (A2) · · · det ( An) 
(b) . T r  (A) = T r  ( A1) + T r  (A2) +  · · ·  + T r  (An) 
(c) .Rank(A) = Rank(A1) + Rank(A2) +  · · ·  +  Rank(An). 

Definition 1.60 (Elementary Operations) There are three kinds of elementary matrix 
operations: 

(1) Interchanging two rows (or columns). 
(2) Multiplying each element in a row (or column) by a non-zero number. 
(3) Multiplying a row (or column) by a non-zero number and adding the result to 

another row (or column). 

When these operations are performed on rows, they are called elementary row oper-
ations; and when they are performed on columns, they are called elementary column 
operations. 

Definition 1.61 (Equivalent matrices) Two matrices .A and .B are said to be  
row(column) equivalent if there is a sequence of elementary row(column) opera-
tions that transforms . A into . B and is denoted by .A ∼ B. 

Definition 1.62 (Row Echelon form of a matrix) A matrix is said to be in row echelon 
form when it satisfies the following conditions: 

(a) Each leading entry (the first non-zero entry in a row) is in a column to the right 
of the leading entry in the previous row. 

(b) Rows with all zero elements, if any, are below rows having a non-zero element. 

If the matrix also satisfies the condition 

(c) The first non-zero element in each row, called the leading entry or pivot, is 1. 

Then the matrix is in reduced row echelon form. 

Example 1.71 Consider the matrix .A = . 

⎡ 

⎣ 
3 2  1  4  
1 2  3  4  
1 6 11 12 

⎤ 

⎦. Now  
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. A = 

⎡ 

⎣ 
3 2  1  4  
1 2  3  4  
1 6 11 12 

⎤ 

⎦ R1 ↔ R2 

∼ 

⎡ 

⎣ 
1 2  3  4  
3 2  1  4  
1 6 11 12 

⎤ 

⎦
R2 → R2 − 3R1 

R3 → R3 − R1 

∼ 

⎡ 

⎣ 
1 2 3 4  
0 −4 −8 −8 
0 4 8 8  

⎤ 

⎦ R3 → R3 + R2 

∼ 

⎡ 

⎣ 
1 2 3 4  
0 −4 −8 −8 
0 0 0 0  

⎤ 

⎦ R2 → − 1 
4 R2 

∼ 

⎡ 

⎣ 
1 2 3 4  
0 1  2 2  
0 0 0 0  

⎤ 

⎦ = B 

Then . B is called the reduced row echelon form of . A. 

Remark 1.12 1. A matrix is equivalent to any of its row echelon form and reduced 
row echelon form. The reduced row echelon form of A is unique. 

2. The rank of a matrix is equal to the number of non-zero rows in its row echelon 

form. For example, the matrix.A = 

⎡ 

⎣ 
3 2  1  4  
1 2  3  4  
1 6 11 12 

⎤ 

⎦ has rank 2 as it is equivalent to 

.B = 

⎡ 

⎣ 
1 2  3 4  
0 1 2 2  
0 0 0 0  

⎤ 

⎦, which is in the row echelon form. 

1.6 Euclidean Space . Rn 

In a mathematical environment, Euclidean space is a geometric concept that contains 
all conceivable positions and locations. It provides the theoretical framework for 
many other mathematical fields, including classical geometry. We can use well-
defined connections and rules to describe points, lines, angles, and distances inside 
this space. It acts as a foundational tool and gives a framework for comprehending 
spatial relationships. Any point in .Rn is a list of . n real numbers, denoted as . v = 
(v1, v2, . . . , vn). For convenience, we may use this list as a matrix with one column 
or one row called column vector and row vector, respectively. In the physical world, 
a vector is a quantity which has both magnitude and direction, which can be easily 
visualized when we work on .R

2 or .R3. 
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Vectors in . R2 

Algebraically, a vector in .R2 is simply an ordered pair of real numbers. That is 
.R

2 = {(v1, v2) | v1, v2 ∈ R}. Two vectors .(u1, u2) and.(v1, v2) are equal if and only 
if the corresponding components are equal. That is, if and only if.u1 = v1 and.u2 = v2. 
Now we can define some operations on .R

2. 

Definition 1.63 (Vector Addition) The sum of two vectors .u = (u1, u2) and . v = 
(v1, v2), denoted by .u + v, is given by .u + v = (u1 + v1, u2 + v2) ∈ R2. 

Properties 
Let .u = (u1, u2), v = (v1, v2), w = (w1, w2) ∈ R2. Then 

1. .u + v = (u1 + v1, u2 + v2) = (v1 + u1, v2 + u2) = v + u. (Commutative) 
2. . u + (v + w) = (u1 + (v1 + w1), u2 + (v2 + w2)) = ((u1 + v1) + w1, 

(u2 + v2) + w2) = (u + v) + w. (Associative) 
3. There exists .0 = (0, 0) such that .v + 0 = v for all . v. (Existence of identity 

element) 
4. For each .v ∈ R2, there exists .−v = (−v1, −v2) ∈ R2 such that .v + (−v) = 0. 

(Existence of inverse) 

Remark 1.13 The set .R2 with vector addition forms an Abelian group. 

Definition 1.64 (Scalar Multiplication) Let  .v = (v1, v2) ∈ R2 and .λ ∈ R, then 
.λv = (λv1, λv2) ∈ R2. 

Properties 
Let .u = (u1, u2), v = (v1, v2) ∈ R2 and .λ, μ ∈ R. Then 

1. . λ(u + v) = (λ(u1 + v1), λ(u2 + v2)) = λ(u1, u2) + λ(v1, v2) = λu + λv 
2. . (λ + μ)v = ((λ + μ)v1, (λ  + μ)v2) = λ(v1, v2) + μ(v1, v2) = λv + μv 
3. .λ(μv) = (λμ)v = μ(λv). 

From the above properties, it is clear that .0v = 0 for any .v ∈ V and .0 ∈ R. Also,  
.(−1)v = −v for any .v ∈ V and .−1 ∈ R. 

The Geometric Notion of Vectors in . R2 

Corresponding to every vector in .R
2, there exists a point in the Cartesian plane, and 

each point in the Cartesian plane represents a vector in .R2. But the representation 
of vectors in .R2 as points of Cartesian plane does not provide much information 
about the operations like vector addition and scalar multiplication. So it is better to 
represent a vector in.R

2 as a directed line segment which begins at the origin and ends 
at the point. Such a visualization of a vector . v is called position vector of . v. Then 
as in the physical world, the vector possess both magnitude and direction. However, 
to represent a vector in .R

2, the directed line segment need not start from the origin; 
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Fig. 1.16 Triangle law of 
vector addition 

Fig. 1.17 Parallelogram law 
of vector addition 

it may start at some point in .R2, but the magnitude and direction cannot vary. For 
convenience, the directed line segment is considered to be starting from the origin. 

Theorem 1.19 (Triangle Law of Vector Addition) If two vectors are represented in 
magnitude and direction by the two sides of a triangle, taken in order, then their sum 
is represented in magnitude and direction by the third side of the triangle, taken in 
the reverse order (Fig.1.16). 

Theorem 1.20 (Parallelogram Law of vector Addition) If two vectors are repre-
sented in magnitude and direction by the two adjacent sides of a parallelogram, 
then their sum is represented in magnitude and direction by the diagonal of the 
parallelogram through their common point (Fig.1.17). 

These ideas of vectors and vector operations in .R2 can be extended to general 
Euclidean space .R

n . 

1.7 System of Linear Equations 

Solving simultaneous linear equations is one among the central problems in algebra. 
In this section, we will get to know some of the methods that are used to solve the 
system of linear equations. Let us start by discussing the solution of a system having 
. n equations in . n unknowns. Consider the basic problem with .n = 1, i.e., consider 
an equation of the form, .ax = b. We know that there are three possible numerical 
realizations for this equation: 

(1) .a /= 0 : In this case, we know that the equation have a unique solution, which is 
.x = b 

a . 
(2) .a, b = 0 : Any numerical value for . x will be a solution for this equation. That 

is, there are infinite number of solutions. 
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Fig. 1.18 Observe that in. a, the lines.x1 + x2 = 5 and.x1 − x2 = 3 have a unique intersection point 
.(4, 1), in . b both the equations .x1 + x2 = 5 and .2x1 + 2x2 = 10 represent the same line and in . c, 
the lines.x1 + x2 = 5 and.x1 + x2 = 2 are parallel to each other 

(3) .a = 0, b /= 0 : Then it is clear that no numerical value of . x would satisfy the 
equation. That is, the system has no solutions. 

Now consider a set of two equations in 2 unknowns .x1 and . x2: 

. a1x1 + a2x2 = b1 

. a3x1 + a4x2 = b2 

We know that these equations represent two lines on a plane and solution of this 
system, if it exists, are the intersecting points of these two lines. If the lines are inter-
secting, either there will be a unique intersection point or there will be an infinite 
number of intersection points and if the lines are non-intersecting, they must be par-
allel to each other. Thus, here also, there are only three possibilities. The possibilities 
will be the same in the case of a system of . n equations with . n unknowns. The three 
possibilities are demonstrated in the Fig. 1.18. 

Now that we have seen the possibilities for the number of solutions of a system of 
equations, we have to find a method to solve a system of linear equations. Consider 
a system of . n equations in . n unknowns .x1, x2, . . . ,  xn given by 

. a11x1 + a12x2 +  · · ·  +  a1n xn = b1 

. a21x1 + a22x2 +  · · ·  +  a2n xn = b2 

. 
... 

... 
... 

... 

.an1x1 + an2x2 +  · · ·  +  ann xn = bn 
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The system can be written in the form.Ax = b, where 

.A = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a2n 
... 

... 
. . . 

... 
an1 an2 · · ·  ann 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
, .x = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x1 
x2 
... 

xn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
and .b = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

b1 
b2 
... 

bn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
. 

The matrix. A is called the coefficient matrix. A method to solve this system is given 
byGabriel Cramer (1704–1752), using the determinants of the coefficient matrix and 
matrices obtained from it by replacing one column by the column vector of right-hand 
sides of the equations. Cramer’s rule states that if .x = (x1, x2, . . . ,  xn) is a solution 
of the system, .xi = det ( Ai ) 

det (A) , i = 1, 2, . . . ,  n, where .Ai is the matrix obtained by 
replacing the .i th column of .A by the column vector . b. Observe that this rule is 
applicable only if.det ( A) /= 0. For example, consider the equations.x1 + x2 = 5 and 
.x1 − x2 = 3. The system can be expressed in the form, 

. 

[

1 1  
1 −1

] [

x 
y

]

=
[

5 
3

]

As.det (A) = −2 /= 0, we have  

. x = 
det

([

5 1  
3 −1

])

det

([

1 1  
1 −1

]) = 4 and y = 
det

([

1 5  
1 3

])

det

([

1 1  
1 −1

]) = 1 

As we can see, Cramer’s rule is applicable only if the determinant of . A is non-zero. 
Even if the determinant of. A is non-zero, this rule may cause computational difficul-
ties for higher values of . n. Also it cannot be applied to a system of .m equations in 
. n unknowns. Another method to find the solution of a system of equations is elimi-
nation, in which multiples of one equation is added or subtracted to other equations 
so as to remove the unknowns from the equations till only one equation in one by 
unknown remains, which can be solved easily. We can use the value of this unknown 
to find the value of the remaining ones. 

Consider a system of .m equations in . n unknowns .x1, x2, . . . ,  xn given by 

. a11x1 + a12x2 +  · · ·  +  a1n xn = b1 

. a21x1 + a22x2 +  · · ·  +  a2n xn = b2 

. 
... 

... 
... 

... 

.am1x1 + am2x2 +  · · ·  +  amn xn = bm 
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The system can be written in the form.Ax = b, where.A = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a2n 
... 

... 
. . . 

... 
am1 am2 · · ·  amn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
,. x = 

. 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x1 
x2 
... 

xn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

and .b = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

b1 
b2 
... 

bn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 
. The matrix . A is called the coefficient matrix, and the matrix 

.[A | b] = . 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

a11 a12 · · ·  a1n b1 
a21 a22 · · ·  a2n b2 
... 

... 
. . . 

... 
... 

am1 am2 · · ·  amn bn 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

is called the augmented matrix of the system. If 

.b = 0, then the system is called a homogeneous system. Otherwise, it is called non-
homogeneous system. A system is said to be consistent, if it has a solution. Otherwise, 
it is called inconsistent. We will see that a homogeneous system is always consistent, 
whereas a non-homogeneous system can be inconsistent (as given in Fig. 1.18c). 

Gauss Elimination Method 

Consider a system of equations given by.Ax = b. We can solve the system using the 
following method called Gauss elimination method, named after the famous German 
mathematician Carl Friedrich Gauss (1777–1855). 

1. Construct the augmented matrix for the given system of equations. 
2. Use elementary row operations to transform the augmented matrix to its row 

echelon form. 
3. The system 

• is consistent if and only if .Rank [A | b] = Rank(A). 

.◇ has unique solution if and only if .Rank [A | b] = Rank(A) = n. 

.◇ has an infinite number of solutions if .Rank [A | b] = Rank(A) = r < n. 

• is inconsistent if and only if .Rank [A | b] /= Rank (A). 

4. If the system is consistent, write and solve the new set of equations corresponding 
to the row echelon form of the augmented matrix. 

If reduced row echelon form is used, the method is called Gauss–Jordan method. 

Remark 1.14 A homogeneous system .Ax = 0 is always consistent (since 
.Rank [A | 0] = Rank(A) always). The system 

• has a unique solution if .Rank(A) = n. 
• has infinite number of solutions if and only if .Rank(A) = r < n. 
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Example 1.72 Consider the system of equations 

. 2x1 + 3x2 + 5x3 = 9 

. 7x1 + 3x2 − 2x3 = 8 

. 2x1 + 3x2 + λ1x3 = λ2 

where .λ1 and .λ2 are some real numbers. 
The above system can be written in the matrix form.Ax = b as 

. 

⎡ 

⎣ 
2 3  5  
7 3  −2 
2 3  λ1 

⎤ 

⎦ 

⎡ 

⎣ 
x1 
x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
9 
8 
λ2 

⎤ 

⎦ 

Now the augmented matrix .[A | b] is given by 

. [A | b] =  

⎡ 

⎣ 
2 3  5  9  
7 3  −2 8  
2 3  λ1 λ2 

⎤ 

⎦
R2 → R2 − 7 2 R1 

R3 → R3 − R1 

∼ 

⎡ 

⎣ 
2 3 5 9  
0 −15 

2 
−39 
2 

−47 
2 

0 0  λ1 − 5 λ2 − 9 

⎤ 

⎦ 

As the first two rows in the reduced form are non-zero, both .Rank(A) and 
.Rank [A | b] are greater than or equal to 2. 
. ◇ The system has unique solution if and only if.Rank [A | b] = Rank(A) = 3. That 
is, if .λ1 /= 5 and for any arbitrary values . λ2. 

. ◇ The system has an infinite number of solutions if .Rank [A | b] = Rank(A) <  3. 
If .λ1 = 5 and .λ2 = 9, we have .Rank [A | b] = Rank(A) = 2 < 3. 

. ◇ The system has no solution when .Rank [A | b] /= Rank( A). That is, if . λ1 = 5 
and .λ2 /= 9. 

If .b = 0 in the above system, then 

. ◇ The homogeneous system has a unique solution if and only if.Rank(A) = 3. That 
is, if .λ1 /= 5 the given system has only the zero vector as solution. 

. ◇ If .λ1 = 5, then .Rank(A) = 2 < 3 and hence the given system has an infinite 
number of solutions. 

As we have identified the values of.λ1 and.λ2 for which the given system is consistent, 
let us try to compute the solutions of the given system for some particular values of 
.λ1 and . λ2. Take .λ1 = 1 and .λ2 = 9. Then, 
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. [A | b] ∼  

⎡ 

⎣ 
2 3 5 9  
0 −15 

2 
−39 
2 

−47 
2 

0 0  −4 0  

⎤ 

⎦ 

That is, the given system is reduced to the following equivalent form: 

. 2x1 + 3x2 + 5x3 = 9 
15 

2 
x2 + 

39 

2 
x3 = 

47 

2 
−4x3 = 0 

Thus, we have .x = 

⎡ 

⎣ 
−1 
5 
47 
15 
0 

⎤ 

⎦ as the unique solution for the given system. Similarly, if 

we take.λ1 = 5 and.λ2 = 9, we can show that set of all solutions of the given system 
is .
{

(x1, x2, x3) | x3 ∈ R, x1 = 14x3−2 
10 and x2 = 47−39x3 

15

}

(Verify!). 

Remark 1.15 If the coefficient matrix .A is an .n × n non-singular matrix, then the 
system.Ax = b has a unique solution .x = A−1b. 

LU Decomposition 

The .LU decomposition method consists of factorizing .A into a product of two 
triangular matrices 

. A = LU 

where . L is the lower triangular and .U is the upper triangular. We use the Doolittle 
method to convert. A into the form.A = LU , where. L and.U are as mentioned above. 
We initialize this process by setting.A = I A  and use Gaussian elimination procedure 
to achieve the desired form. The pivot element is identified in each column during 
this procedure, and if necessary, the rows are switched. We update the entries of 
both . I and .A on the right-hand side in accordance with each column, using row 
operations to remove elements below the main diagonal and multipliers to generate 
. L . We get a lower triangular matrix . L with ones on its principal diagonals and an 
upper triangular matrix .U after iterating over all the columns. This decomposition 
allows us to reduce the solution of the system .Ax = b to solving two triangular 
systems .Ly = b and .U x  = y. Generally, there are many such factorizations. If . L is 
required to have all diagonal elements equal to . 1, then the decomposition, when it 
exists, is unique. This method was introduced by the Polish mathematician Tadeusz 
Julian Banachiewicz (1882–1954). 

Example 1.73 Consider the system of equations 

.2x1 − x2 + 3x3 = 9 
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. 4x1 + 2x2 + x3 = 9 

. − 6x1 − x2 + 2x3 = 12 

The above system can be written in the matrix form.Ax = b as 

. 

⎡ 

⎣ 
2 −1 3  
4 2  1  

−6 −1 2  

⎤ 

⎦ 

⎡ 

⎣ 
x1 
x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
9 
9 
12 

⎤ 

⎦ 

Consider the coefficient matrix . A. We will use elementary row transformations to 
convert . A into the form.LU . We have  

. A = 

⎡ 

⎣ 
2 −1 3  
4 2  1  

−6 −1 2  

⎤ 

⎦ = 

⎡ 

⎣ 
1 0 0  
0 1  0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣ 
2 −1 3  
4 2  1  

−6 −1 2  

⎤ 

⎦ R2 → R2 − (2)R1 

R3 → R3 − (−3)R1 

= 

⎡ 

⎣ 
1 0  0  
2 1  0  

−3 0  1  

⎤ 

⎦ 

⎡ 

⎣ 
2 −1 3  
0 4  −5 
0 −4 11  

⎤ 

⎦ R3 → R3 − (−1)R1 

= 

⎡ 

⎣ 
1 0  0  
2 1  0  

−3 −1 1  

⎤ 

⎦ 

⎡ 

⎣ 
2 −1 3  
0 4  −5 
0 0 6  

⎤ 

⎦ = LU 

Now.Ly = b implies 

. 

⎡ 

⎣ 
1 0  0  
2 1  0  

−3 −1 1  

⎤ 

⎦ 

⎡ 

⎣ 
y1 
y2 
y3 

⎤ 

⎦ = 

⎡ 

⎣ 
9 
9 
12 

⎤ 

⎦ 

Solving the system, we get.y1 = 9, y2 = −9, and.y3 = 30. Now consider the system 
. U x  = y 

. 

⎡ 

⎣ 
2 −1 3  
0 4  −5 
0 0 6  

⎤ 

⎦ 

⎡ 

⎣ 
x1 
x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
9 

−9 
30 

⎤ 

⎦ 

Solving the system, we get .x1 = −1, x2 = 4, and .x3 = 5. 

Theorem 1.21 If . y and . z are two distinct solutions of .Ax = b, then .λy + μz is also 
a solution of .Ax = b, for any scalars .λ, μ ∈ K with .λ + μ = 1. If .b = 0, . λy + μz 
is a solution of .Ax = 0, for any scalars .λ, μ ∈ K. 

Proof Suppose that .b /= 0 and . y and . z are two given solutions of .Ax = b, then 
.Ay = b and .Az = b. Let .λ, μ ∈ K be such that .λ + μ = 1. Then 

.A(λy + μz) = λAy + μAz = λb + μb = (λ + μ)b = b 
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Now let .b = 0. If  . y and . z are two given solutions of .Ax = 0, then .Ay = 0 and 
.Az = 0. Then 

. A(λy + μz) = λ Ay + μAz = 0 

Hence the proof. 

1.8 Exercises 

1. For any sets . A and . B, show that 

(a) .A ∩ B ⊆ A, B ⊆ A ∪ B. 
(b) .A ⊆ B if and only if .A ∩ B = A. 

2. Consider the relation .R = {(0, 1), (0, 2), (1, 2)} on .X = {0, 1, 2}. Check 
whether . R is an equivalence relation. 

3. Let . f : X → Y and .g : Y → Z be any two functions. Then show that 

(a) if . f and . g are one-one, then .g ◦ f is one-one. 
(b) if . f and . g are onto, then .g ◦ f is onto. 

4. Check whether the following functions are bijective or not. 

(a) . f : R → R defined by . f (x) = x2 + 1 
(b) . f : [0, π ] → [−1, 1] defined by . f (x) = sin x 
(c) . f : R∗ → R∗ defined by . f (x) = 1 x 
(d) . f : C → C defined by . f (z) = z. 

5. Let .λi , μi ∈ K, i ∈ N. Then show that 

(a) for .1 < p < ∞ and . 
1 
p + 1 q = 1 , we have  

. 

∞
Σ

i=1 

|λi μi | ≤
( ∞
Σ

i=1 

|λi |p

) 1 
p
( ∞
Σ

i=1 

|μi |q
) 1 

q 

(b) for .1 < p < ∞, we have  

. 

( ∞
Σ

i=1 

|λi + μi |p

) 1 
p 

≤
( ∞
Σ

i=1 

|λi |p

) 1 
p 

+
( ∞
Σ

i=1 

|μi |p

) 1 
p 

These inequalities are called Holder’s inequality and Minkowski’s inequality, 
respectively. 

6. For .1 < p < ∞, consider the following collections of sequences. 
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. l p =
{

v = (v1, v2, . . .)  | vi ∈ K and 
∞
Σ

i=1 

|vi |p < ∞
}

and 

. l∞ =
{

v = (v1, v2, . . .)  | vi ∈ K and sup 
i∈N 

|vi | < ∞
}

Show that for . u = (u1, u2, . . .), v  = (v1, v2, . . .)  ∈ l p 

. dp(u, v)  =
( ∞
Σ

i=1 

|ui − vi |p

) 1 
p 

defines a metric on .l p and for .u = (u1, u2, . . .), v  = (v1, v2, . . .)  ∈ l∞, 

. d∞(u, v)  = sup 
i∈N 

|ui − vi | 

defines a metric on .l∞. 
7. Let .X be a metric space with respect to the metrics .d1 and . d2. Then show that 

each of the following: 

(a) . d(x, y) = d1(x, y) + d2(x, y) 
(b) . d(x, y) = 

d1(x, y) 
1 + d1(x, y) 

(c) . d(x, y) = max{d1(x, y) + d2(x, y)} 
also defines a metric on . X . 

8. Let .(X, d) be a metric space. Show that 

(a) union of any number of open sets is open. 
(b) finite intersection of open sets is open. 

Also give an example to show that arbitrary intersection of open sets need not 
necessarily be open. 

9. Show that a set is closed if and only if it contains all its limit points. 
10. Show that .

(

l p, dp
)

and .(l∞, d∞) are complete metric spaces. 
11. Show that a closed subspace of a complete metric space is complete. 
12. Prove that if a sequence of continuous functions on .[a, b] converges on . [a, b] 

and the convergence is uniform on.[a, b], then the limit function. f is continuous 
on .[a, b]. 

13. Let.x ∈ R. Show that the sequence.{xn}, where.xn = [nx]
n , is a rational sequence 

that converges to . x . (.[x] denotes the greatest integer less than or equal to . x .) 
14. Let .(G, ∗) be a group. Then show that 

(a) the identity element in .G is unique. 
(b) each element in .G has a unique inverse. 
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15. Center of a group: Let .(G, ∗) be group. The center of . G, denoted by .Z(G), is  
the set of all elements of .G that commute with every other element of . G. 

(a) Show that .Z(G) is a subgroup of . G. 
(b) Show that .Z(G) = G for an Abelian group. 
(c) Find the center of .GL2 (K) and . S3. 

16. Find the order of the following elements in . GL2 (K) 

(a) . 

[

1 0  
0 −1

]

(b) .

[

1 0  
1 1

]

. 

17. Let .φ : (G, ∗) → (

G ,, ∗,) be a homomorphism. Then, prove the following: 

(a) if . e is the identity element in . G, .φ(e) is the identity element in .G ,. 
(b) .K er  (φ) is a subgroup of . G. 
(c) for any .g ∈ G, if .O(g) is finite .O (φ(g)) divides .O(g). 
(d) for any subgroup.H of. G,.φ (H ) is a subgroup of.φ (G) and if.H is Abelian, 

.φ (H ) is also Abelian. 

18. Consider .φ : GLn (K) → (R∗, .), defined by .φ(A) = det (A). 

(a) Show that . φ is a homomorphism. 
(b) Find .K er  (φ). 

19. Show that every cyclic group is Abelian. 
20. Find the normal subgroups of . S3. 
21. Prove that .{Q, +, .} , .{R, +, .}, and.{C, +, .} are fields with respect to the given 

algebraic operations. Also show that .{Z, +, .} is not a field. 
22. Give an example of a finite field. 
23. Show that . K[x] = {a0 + a1x +  · · ·  +  an−1xn−1 + an xn | ai ∈ K, n ∈ Z+} 

forms a ring with respect to the operations defined in Definition 1.44. 
24. Prove the Fundamental Theorem of Algebra. 
25. Show that the set of all .n × n matrices with entries in . K, denoted by . Mn (K) 

with matrix addition and scalar multiplication, forms a ring with unity. 

26. Find the rank of the matrix.A = 

⎡ 

⎣ 
1 2  −1 3  
4 5  3 6  
0 1  2  −1 

⎤ 

⎦ using row reduced echelon form. 

27. Show that the set of all solutions of a homogeneous system of equations forms 
a group with respect to coordinate-wise addition and scalar multiplication. 

28. Consider the system of equations 

. 2x1 + x2 + 3x3 = 9 

. 3x1 + 2x2 + 5x3 = 15 

.4x1 − 2x2 + 7x3 = 16 
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Solve the above system of equations using 

(a) Gauss Elimination method 
(b) LU Decomposition method. 

Is it possible to solve this system using Cramer’s rule? If yes, find the solution 
using Cramer’s rule. 

Solved Questions related to this chapter are provided in Chap. 8. 



Chapter 2 
Vector Spaces 

This chapter explores one of the fundamental topics in linear algebra. It starts by 
defining vector spaces, highlighting their importance as mathematical structures with 
essential qualities such as closure under addition and scalar multiplication. Subspaces 
are introduced as vector space subsets with their vector space features, followed by 
an in-depth analysis of linear dependence and independence of vectors, which are 
critical for constructing bases. The ideas of span and basis are emphasized as critical 
tools for understanding the structure of vector spaces, with dimension serving as 
a quantitative measure of their complexity. Finally, the chapter looks into vector 
space sums and the particular case of the direct sum, providing a more in-depth 
understanding of vector space composition. 

2.1 Introduction 

In Chap. 1, we have called an element of Euclidean space .Rn a “vector”. From this 
chapter onwards, we will be using the term “vector” with a broader meaning. An 
element of a vector space is called a vector. Roughly speaking, a vector space is 
a collection of objects which are closed under vector addition and scalar multipli-
cation and are subjected to some reasonable rules. The rules are chosen so that we 
can manipulate the vectors algebraically. We can also consider a vector space as a 
generalization of the Euclidean space. In this chapter, we will be discussing vector 
spaces in detail. 

Definition 2.1 (Vector space) A vector space or linear space .V over a field .K is a 
non-empty set together with two operations called vector addition (denoted by ‘. +’) 
and scalar multiplication (as the elements of .K are called scalars) satisfying certain 
conditions: 

.(V 1) .v1 + v2 ∈ V for all .v1, v2 ∈ V . 

.(V 2) .λv ∈ V for all .λ ∈ K and .v ∈ V . 
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.(V 1) and .(V 2) respectively imply that .V is closed under both vector addition and 
scalar multiplication. The following properties are familiar as we have seen these in 
Chap. 1, associated with another algebraic structure, Group. 

.(V 3) .(v1 + v2) + v3 = v1 + (v2 + v3) for all .v1, v2, v3 ∈ V . 

.(V 4) there is an element .0 ∈ V such that .v + 0 = v for all .v ∈ V . 

.(V 5) for each .v ∈ V there exists an element .−v ∈ V such that .v + (−v) = 0. 

Thus we can say that. V under vector addition must be a group. Now.(V 6) imply that 
.(V,+) is not just any group, it must be an Abelian group. 

.(V 6) .v1 + v2 = v2 + v1 for all .v1, v2 ∈ V . 

Along with closure properties and .(V,+) being an Abelian group, the following 
properties also must be satisfied for.V to be a vector space over the field. K under the 
given operations. 

.(V 7) .λ(v1 + v2) = λv1 + λv2 for all .λ ∈ K and .v1, v2 ∈ V . 

.(V 8) .(λ + μ)v = λv + μv for all .λ,μ ∈ K and .v ∈ V . 

.(V 9) .(λμ)v = λ(μv) for all .λ,μ ∈ K and .v ∈ V . 
.(V 10) .1v = v for all .v ∈ V . 

Now let us get familiar with some of the important vector spaces that we will see 
throughout this book. Let us start with a basic one. 

Example 2.1 Consider .V as the set of all real numbers, . R under usual addition as 
vector addition and usual multiplication as scalar multiplication, the scalars being 
taken from the field .R itself. In Chap. 1, we have seen that .(R,+) is an Abelian 
group. Scalar multiplication in this case is the usual multiplication of real numbers, 
which is closed. Properties .(V 7) − (V 10) are easy to verify. Thus .R over .R is a 
vector space. Similarly, we can show that . C over . C is a vector space. What about . C
over . R and . R over . C? 

Example 2.2 Let .K be any field. Then .Kn is a vector space over . K, where . n is a 
positive integer and 

. K
n = {(

x1, x2, . . . , xn
) | x1, x2, . . . , xn ∈ K

}

Addition and scalar multiplication are defined component-wise as we have seen in 
the previous chapter: 

. 
(
x1, x2, . . . , xn

) + (
y1, y2, . . . , yn

) = (
x1 + y1, x2 + y2, . . . , xn + yn

)

. λ
(
x1, x2, . . . , xn

) = (
λx1, λx2, . . . , λxn

)
, λ ∈ K

In particular, .Rn is a vector space over . R and .Cn is a vector space over . C (Verify). 
Is .Rn a vector space over . C? 

Example 2.3 The collection of all.m × n matrices,.Mm×n(K), with the usual matrix 
addition and scalar multiplication is a vector space over . K.
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Example 2.4 If . F is a sub-field of a field . K, then .K is a vector space over . F, with 
addition and multiplication just being the operations in. K. Thus, in particular, . C is a 
vector space over . R and . R is a vector space over . Q. 

Example 2.5 Let .Pn[a, b] denote the set of all polynomials of degree less than or 
equal to . n defined on .[a, b] with coefficients from the field . K. For  .p, q ∈ Pn[a, b], 
and .λ ∈ K the addition and scalar multiplication are defined by 

. (p + q)(x) = p(x) + q(x) = (an + bn)x
n + · · · + (a1 + b1)x + (a0 + b0)

where .p(x) = anxn + · · · + a1x + a0 and .q(x) = bnxn + · · · + b1x + b0 and 

. (λp)(x) = λ (p(x)) = (λan)x
n + · · · + (λa1)x + (λa0)

.Pn[a, b] along with zero polynomial forms a vector space over. K. Denote by. P[a, b]
the collection of all polynomials defined on .[a, b] with coefficients from . K. Then 
.P[a, b] is a vector space over. Kwith respect to the above operations for polynomials. 

Example 2.6 Let .C[a, b] denote the set of all real-valued continuous functions on 
the interval .[a, b]. If  . f and . g are continuous functions on .[a, b], then the vector 
addition and scalar multiplication are defined by 

. ( f + g)(x) = f (x) + g(x) and (λ f )(x) = λ f (x)

where .λ ∈ R. Then .C[a, b] is a vector space with respect to the above operations 
over the field . R. 

Example 2.7 Let .K be any field. Let .V consist of all sequences .{an} in .K that have 
only a finite number of non-zero terms. an . If.{an} and.{bn} are in. V and.λ ∈ K, define 

. {an} + {bn} = {an + bn} and λ{an} = {λan}

With the above operations .V forms a vector space over . K. 

Example 2.8 .V = {0} over the field .K is a vector space called the zero space. 

Now, we will establish some of the basic properties of vector spaces. 

Theorem 2.1 Let .V be a vector space over a field . K. Then the following statements 
are true. 

(a) .0v = 0 for each .v ∈ V . 
(b) .λ0 = 0 for each .λ ∈ K. 
(c) For .v ∈ V and .λ ∈ K, if .λv = 0, then either .λ = 0 or .v = 0. 
(d) If .v1, v2, and .v3 are vectors in a vector space .V such that .v1 + v3 = v2 + v3, 

then .v2 = v3. 
(e) .(−λ)v = −(λv) = λ(−v) for each .λ ∈ K and each .v ∈ V .
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Proof (a) For .v ∈ V , by  .(V 2), .0v ∈ V . By  .(V 5), for  .0v ∈ V there exists . (−0v)

such that .0v + (−0v) = 0. And by using .(V 8), 

. 0v = (0 + 0)v = 0v + 0v ⇒ 0v = 0

(b) For .λ ∈ K by .(V 2) .λ0 ∈ V . By  .(V 5), for  .λ0 ∈ V there exists .(−λ0) such that 
.λ0 + (−λ0) = 0. And by using .(V 7), 

. λ0 = λ(0 + 0) = λ0 + λ0 ⇒ λ0 = 0

(c) Let .λv = 0. From  .(1), if  .λ = 0, then .λv = 0. Now suppose that .λ /= 0, then 
there exists . 1

λ
∈ K and .

1
λ
(λv) = 1

λ
0 ⇒ v = 0. 

(d) Suppose that .v1, v2, v3 ∈ V be such that .v1 + v3 = v2 + v3. Since .v3 ∈ V , by  
.(V 5) there exists .−v3 ∈ V such that .v3 + (−v3) = 0. Then 

. v1 + v3 = v2 + v3 ⇒ (v1 + v3) + (−v3) = (v2 + v3) + (−v3)

⇒ v1 + (v3 + (−v3)) = v2 + (v3 + (−v3)) (using (V 3))

⇒ v1 = v2 (using (V 6))

(e) By .(V 5), we have  .λv + (−(λv)) = 0. Also  .λv + (−λ)v = (λ + (−λ))v = 0. 
By the uniqueness of additive inverse, this implies that .(−λ)v = −(λv). In par-
ticular, .(−1)v = −v. Now  by .(V 9), 

. λ(−v) = λ[(−1)v] = [λ(−1)]v = (−λ)v

From the next section, we will use . 0 for zero vector, instead of . 0. 

2.2 Subspaces 

For vector spaces, there may exist subsets which themselves are vector spaces under 
the same operations as defined in the parent space. Such subsets of a vector space 
are called subspaces. We will define the subspace of a vector space as follows. 

Definition 2.2 (Subspace) A subset .W of a vector space .V over a field .K is called 
a subspace of .V if .W is a vector space over .K with the operations of addition and 
scalar multiplication defined on . V . 

If. V is a vector space, then. V and.{0} are subspaces of. V called trivial subspaces. 
The latter is also called the zero subspace of . V . A subspace .W of .V is called a 
proper subspace if.V /= W . Otherwise it is called an improper subspace (if it exists). 
Can you find any subspaces for the vector space . R over . R other than . R and.{0}? By
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definition, a subspace is a vector space in its own right. To check whether a subset is 
a subspace, we don’t have to verify all the conditions .(V 1) − (V 10). The following 
theorem gives the set of conditions that are to be verified. 

Theorem 2.2 Let .V be a vector space over a field . K. A subset .W of .V is a subspace 
if and only if the following three conditions hold for the operations defined in . V . 

(a) .0 ∈ W. 
(b) .w1 + w2 ∈ W whenever .w1, w2 ∈ W. 
(c) .λw ∈ W whenever .λ ∈ K and .w ∈ W. 

Proof Suppose that.W is a subspace of. V . Then.W is a vector space with the operation 
addition and scalar multiplication defined on . V . Therefore .(b) and .(c) are satisfied. 
And by the uniqueness of identity element in a vector space .0 ∈ W . 

Conversely suppose that the conditions .(a), (b), and .(c) are satisfied. We have 
to show that .W is a vector space with the operations defined on . V . Since .W is a 
subset of the vector space . V , the conditions .(V 3), (V 5) − (V 10) are automatically 
satisfied by the elements in . W . Therefore .W is a subspace of . V . 

Certainly, we can observe that Condition .(a) in the above theorem need not be 
checked separately, as it can be obtained from Condition .(c) with .λ = 0. But Con-
dition .(a) can be used to identify subsets which are not subspaces as shown in the 
following example. 

Example 2.9 Let .V = R
2 = {(x1, x2) | x1, x2 ∈ R}. We have seen that .R2 is a 

vector space over . R. Consider .W1 = {(x1, x2) | x1 + x2 = 0} and . W2 = {(x1, x2) |
x1 + x2 = 1}. Then .W1 is a subspace of . V . For,  

(a) Clearly, the additive identity .(0, 0) is in .W1. 
(b) Take two elements .(x1, x2), (y1, y2) ∈ W1. Then .x1 + x2 = 0 and .y1 + y2 = 0. 

This implies that .(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) ∈ W1 as . x1 + x2 +
y1 + y2 = 0. 

(c) Take.(x1, x2) ∈ W1 and.λ ∈ R. Then.x1 + x2 = 0. This implies that. λ(x1, x2) =
(λx1, λx2) ∈ W1 as .λx1 + λx2 = λ(x1 + x2) = 0. 

But .W2 is not a subspace of .R2 as zero vector does not belong to .W2. Now  let us  
discuss the geometry of.W1 and.W2 a bit..W1 and.W2 represent two lines on the plane 
as shown in the figure (Fig. 2.1). 

Later, we will see that the only non-trivial proper subspaces of .R2 are straight 
lines passing through origin. 

Example 2.10 Let .V = Mn×n(K) and .W = {
A ∈ Mn×n(K) | AT = A

}
. That is, 

.W is the set of all .n × n symmetric matrices over . K. We will check whether the 
conditions in Theorem 2.2 are satisfied or not.
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Fig. 2.1 Observe that .W1 depicted in (a) (straight line passing through origin) is a subspace and 
.W2 depicted in (b) (straight line not passing through origin) is not a subspace 

(a) The zero matrix is equal to its transpose and hence belongs to . W . 
(b) By the properties of symmetric matrices, the sum of two symmetric matrices is 

again a symmetric matrix. That is, .A + B ∈ W whenever .A, B ∈ W . 
(c) Also.λA ∈ W whenever.A ∈ W and.λ ∈ K, since.(λA)T = λAT = λA as. AT =

A. 

Therefore, the set of all.n × n symmetric matrices over. K is a subspace of.Mn×n(K). 
What about the set of all .n × n skew-symmetric matrices over . K? 

Example 2.11 Let .V = P2[a, b]. Consider .W = {p ∈ P2[a, b] | p(0) = 0}. 
(a) Since .p(0) = 0 for zero polynomial, zero polynomial belongs to . W . 
(b) Take.p, q ∈ W , then.p(0) = q(0) = 0 and hence. (p + q)(0) = p(0) + q(0) =

0. Thus .p + q ∈ W whenever .p, q ∈ W . 
(c) Let .p ∈ W and .λ ∈ R, then .(λp)(0) = λp(0) = 0. That is, .λp ∈ W whenever 

.p ∈ W and .λ ∈ R. 

Therefore .{p ∈ P2[a, b] | p(0) = 0} is a subspace of .P2[a, b]. Now, consider the 
subset.W̃ = {p ∈ P2[a, b] | p(0) = 1}. Is it a subspace of.P2[a, b]? It is not!! (Why?) 

Remark 2.1 To check whether a subset of a vector space is a subspace, we verify 
only the closure properties of vector addition and scalar multiplication in the given 
set. Therefore Theorem 2.2 can also be stated as follows: 

• A subset.W of a vector space. V is a subspace of. V if and only if.λw1 + μw2 ∈ W , 
whenever .w1, w2 ∈ W and . λ,μ ∈ K

• A subset .W of a vector space .V is a subspace of .V if and only if .λw1 + w2 ∈ W , 
whenever .w1, w2 ∈ W and .λ ∈ K.
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Example 2.12 In the previous chapter, we have seen that the collection of all 
solutions to the system .Ax = 0 satisfies the conditions in Remark 2.1 where . A ∈
Mm×n(K) and hence they form a subspace of .Kn . That is, the solutions of a homo-
geneous system form a vector space under the operations defined on .Kn . But  the  
solutions of a non-homogeneous system does not form a vector space as zero vector 
is never a solution for a non-homogeneous system. 

The next theorem gives a method to construct new subspaces from known sub-
spaces. 

Theorem 2.3 Let .W1 and .W2 be two subspaces of a vector space .V over a field .K , 
then their intersection .W1 ∩ W2 = {w | w ∈ W1 and w ∈ W2} is a subspace of . V . 

Proof Since .W1 and .W2 are subspaces of . V , .0 ∈ W1 and .0 ∈ W2. Therefore . 0 ∈
W1 ∩ W2. Now  let .v,w ∈ W1 ∩ W2, then 

. v,w ∈ W1 ∩ W2 ⇒ v,w ∈ W1 and v,w ∈ W2

⇒ v + w ∈ W1 and v + w ∈ W2 as W1 and W2 are subspaces

⇒ v + w ∈ W1 ∩ W2

For .λ ∈ K and .w ∈ W1 ∩ W2, 

. w ∈ W1 ∩ W2 ⇒ w ∈ W1 and w ∈ W2

⇒ λw ∈ W1 and λw ∈ W2 as W1 and W2 are subspaces

⇒ λw ∈ W1 ∩ W2

Therefore .W1 ∩ W2 is a subspace of . V . 

The above result can be extended to any number of subspaces. As we have shown 
that the intersection of subspaces is again a subspace, it is natural to ask whether the 
union of subspaces is again a subspace. It is clear that the union of two subspaces 
need not be a subspace of .V (Fig. 2.2). 

The following theorem gives a scenario in which union of two subspaces of a 
vector space is again a subspace of the same. 

Theorem 2.4 Let .V be a vector space over the field .K and let .W1 and .W2 be 
subspaces of . V . Then .W1 ∪ W2 is a subspace of .V if and only if either .W1 ⊆ W2 or 
.W2 ⊆ W1. 

Proof Let.W1 and.W2 be subspaces of. V . Suppose that either.W2 ⊆ W1 or.W1 ⊆ W2. 
Then .W1 ∪ W2 is either .W1 or .W2. In either cases, .W1 ∪ W2 is a subspace of . V . 
Conversely, suppose that .W1 ∪ W2 is a subspace of . V , .W1 / W2 and .W2 / W1. 
Then there exists at least one element.w1 ∈ W1 such that.w1 /∈ W2 and.w2 ∈ W2 such 
that .w2 /∈ W1. As .W1,W2 ⊆ W1 ∪ W2 both .w1, w2 ∈ W1 ∪ W2. Since .W1 ∪ W2 is a 
subspace of . V , .w1 + w2 ∈ W1 ∪ W2. Then either .w1 + w2 ∈ W1 or .w1 + w2 ∈ W2.
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Fig. 2.2 Consider .V = R
2, take  .W1 = x − axis and .W2 = y − axis (depicted as .(a) and (b) 

respectively). Then .W1 and .W2 are subspaces of .V but .W1 ∪ W2 is not a subspace of . V , since  
.(1, 0) ∈ W1, (0, 1) ∈ W2, but.(1, 0) + (0, 1) = (1, 1) /∈ W1 ∪ W2, as we can observe from. (c)

Suppose.w1 + w2 ∈ W1. Since.w1 ∈ W1 and.W1 is a subspace,.−w1 ∈ W1 and hence 
.(−w1) + w1 + w2 = (−w1 + w1) + w2 = w2 ∈ W1 which is a contradiction. Now 
suppose.w1 + w2 ∈ W2. Since.w2 ∈ W2 and.W2 is a subspace,.−w2 ∈ W2 and hence 
.w1 + w2 + (−w2) = w1 + (w2 − w2) = w1 ∈ W2 which is again a contradiction. 
Therefore our assumption is wrong. That is, .W1 ∪ W2 is a subspace of .V if and only 
if either .W1 ⊆ W2 or .W2 ⊆ W1. 

Example 2.13 Let .V be the vector space .R3 over . R. Consider . W1 = {
(x1, x2, 0) |

x1, x2 ∈ R
}
and .W2 = {(0, x2, 0) | x2 ∈ R}. Clearly, .W1 ∪ W2 = W1 is a subspace. 

Observe that .W2 ⊂ W1. 

2.3 Linear Dependence and Independence 

Let. V be a vector space over a field. K. Let.v1, v2, . . . , vn ∈ V and.λ1, λ2, . . . , λn ∈ K. 
Then the vector 

. v = λ1v1 + λ2v2 + · · · + λnvn

is called a linear combination of the vectors and the scalars.λ1, λ2, . . . , λn are called 
the coefficients of the linear combination. If all the coefficients are zero, then.v = 0, 
which is trivial. Now suppose that there exists a non-trivial representation for. 0, that 
is, there exists scalars.λ1, λ2, . . . , λn not all zero such that a linear combination of the 
given vectors equals zero . Then we say that the vectors .v1, v2, . . . , vn are linearly 
dependent. In other words, the vectors .v1, v2, . . . , vn are linearly dependent if and 
only if there exist scalars .λ1, λ2, . . . , λn not all zero such that 

.λ1v1 + λ2v2 + · · · + λnvn = 0
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The vectors.v1, v2, . . . , vn are linearly independent if they are not linearly dependent. 
That is, 

. if λ1v1 + λ2v2 + · · · + λnvn = 0, then λ1 = λ2 = · · · = λn = 0

Clearly, any subset of a vector space .V containing zero vector is linearly dependent 
as . 0 can be written as .0 = 1.0. Since .λv = 0 implies either .λ = 0 or .v = 0, any  
singleton subset of .V containing a non-zero vector is linearly independent. 

Example 2.14 Consider the vector space.V=R
2 and the subset.S1 = {(1, 0), (1, 1)}. 

To check whether .S1 is linearly dependent or not, consider a linear combination of 
vectors in .S1 equals zero for some scalars .λ1 and . λ2. Then 

. λ1(1, 0) + λ2(1, 1) = (0, 0) ⇒ (λ1 + λ2, λ2) = (0, 0)

⇒ λ1 + λ2 = 0, λ2 = 0

⇒ λ1 = 0, λ2 = 0

That is, there does not exist non-trivial representation for zero vector in .R2 using 
vectors of . S1. Thus .S1 is linearly independent. Note that .(1, 0) cannot be obtained 
by scaling .(1, 1) or vice verse. 

Now consider a subset.S2 = {(1, 0), (2, 0)} of.R2 and a linear combination of the 
vectors in .S2 equals zero. Then 

. λ1(1, 0) + λ2(2, 0) = (0, 0) ⇒ (λ1 + λ2, λ2) = (0, 0)

⇒ λ1 + 2λ2 = 0

Then there are infinitely many possibilities for .λ1 and . λ2. For example, .λ1 = 2 and 
.λ2 = −1 is one such possibility. Clearly, .2(1, 0) + (−1)(2, 0) = (0, 0). Thus the 
zero vector in .R

2 has a non-trivial representation using the vectors of . S2. Thus .S2 is 
linearly dependent. Note that .(2, 2) = 2(1, 1) is a scaled version of .(1, 1) (Fig. 2.3). 

Using the above geometrical idea, try to characterize the linearly independent sets 
in . R and .R

2. Also observe that the equation, . λ1(1, 0) + λ2(1, 1) = (λ1 + λ2, λ2) =
(0, 0) formed by vectors in. S1, from the above example, can be written in the form of 

a system of homogeneous equation as .

|
1 1
0 1

| |
λ1

λ2

|
=

|
0
0

|
. We have seen in Section 

1.7 that a .n × n homogeneous system .Ax = 0 has a non-trivial solution when the 

coefficient matrix. A has rank less than. n. In this case,.rank

(|
1 1
0 1

|)
= 2. Therefore 

the system does not have a non-trivial solution. That is,.λ1 = λ2 = 0. Now, for vectors 

in . S2, observe that the coefficient matrix .A =
|
1 2
0 0

|
has rank . 1, which implies that 

there exists a non-trivial representation for the zero vector. Using this idea, can we 
say something about the linear dependency/independency of a collection of vectors 
in .R

2? Is it possible to generalize this idea to .R
n? Think!!!
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Fig. 2.3 Examples for a linearly independent vectors in .R2 and b linearly dependent vectors in 
.R2. Observe that the linearly independent vectors lie on two distinct straight lines passing through 
origin and the linearly dependent vectors lie on the same line passing through origin. We will soon 
prove that a set of two vectors is linearly dependent if and only if one vector is a scalar multiple of 
the other 

Remark 2.2 We can say that the number of linearly independent vectors in a collec-
tion. S of. m vectors of.Kn is the rank of the.n × m matrix. A formed by the vectors in 
. S as columns. As the rank of a matrix and its transpose is the same, we may redefine 
the rank of a matrix as the number of linearly independent rows or columns of that 
matrix. 

Example 2.15 Consider the vector space.V = P2[a, b] and the subset.S1={1, x, x2}. 
Now, for .λ1, λ2, λ3 ∈ K, 

. λ1.1 + λ2x + λ3x
2 = 0 ⇒ λ1 = λ2 = λ3 = 0

Thus .S1 is linearly independent. 
Now consider the subset .S2 = {1 − x, 1 + x2, 3 − 2x + x2} of .P2[a, b]. As  

. 2(1 − x) + 1(1 + x2) = 3 − 2x + x2

.S2 is linearly dependent. 

As we have seen in the previous example, consider the matrices .

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ and 

.

⎡

⎣
1 1 3

−1 0 −2
0 1 1

⎤

⎦. Is there any relation between the rank of these matrices and the linear 

dependency/independency of vectors in .S1 and .S2 given in Example 2.15? 
The following results are some of the important consequences of definitions of 

linear dependence and independence.
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Theorem 2.5 Let .V be a vector space over a field . K and .W = {w1, w2, . . . , wn} be 
a subset of . V , where .n ≥ 2. Then .W is linearly dependent if and only if at least one 
vector in .W can be written as a linear combination of the remaining vectors in . W. 

Proof Suppose that .W is linearly dependent. Then there exists scalars 
.λ1, λ2, . . . , λn ∈ K, not all zero such that 

. λ1w1 + λ2w2 + · · · + λnwn = 0

Without loss of generality, assume that.λ1 /= 0. Then since.λ1 ∈ K, 1
λ1

∈ K and hence 

. w1 = −λ2

λ1
w2 − λ3

λ1
w3 − · · · − λn

λ1
wn

Conversely suppose that one vector in .W can be written as a linear com-
bination of the remaining vectors in . W . Without loss of generality, take . w1 =
λ2w2 + · · · + λnwn . Then.w1 − λ2w2 + · · · + λnwn = 0. That is, there exists a non-
trivial representation for zero. Therefore .W is linearly dependent. 

Corollary 2.1 A subset of a vector space .V containing two non-zero vectors is 
linearly dependent if and only if one vector is a scalar multiple of the other. 

Proof Suppose that .{v1, v2} ⊆ V be linearly dependent. Then there exists scalars 
.λ1, λ2 ∈ K not both zero such that .λ1v1 + λ2v2 = 0. Without loss of generality, let 
.λ1 /= 0. Then .v1 = − λ2

λ1
v2. The converse part is trivial. 

Theorem 2.6 Let. V be a vector space over a field. K, and let.W1 ⊆ W2 ⊆ V . If.W1 is 
linearly dependent, then .W2 is linearly dependent and if .W2 is linearly independent, 
then .W1 is linearly independent. 

Proof Suppose that .W1 is linearly dependent and .W1 ⊆ W2. Then there exists 
.v1, v2, . . . , vn ∈ W1 and.λ1, λ2, . . . , λn ∈ K, not all. 0 such that. λ1v1 + λ2v2 + · · · +
λnvn = 0. Since .W1 ⊆ W2, .W2 is linearly dependent. 

Now suppose that .W2 is linearly independent. Then from above .W1 is linearly 
independent. For if .W1 is linearly dependent, then .W2 must be linearly dependent. 

Thus we can say that any super set of a linearly dependent set is linearly dependent 
and any subset of a linearly independent set is linearly independent. 

2.4 Basis and Dimension 

In this section, we will study the basic building blocks of vector spaces known as 
basis. A basis of a vector space is a subset of the vector space which can be used 
to uniquely represent each vector in the given space. We will start by the following 
definition.
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Fig. 2.4 Observe that both.Span(S1) and.Span(S2) are straight lines passing through origin 

Definition 2.3 (Span of a set) Let.S = {v1, v2, . . . , vn} be a subset of a vector space 
. V . Then the span of . S, denoted by .span(S), is the set consisting of all linear com-
binations of the vectors in . S. That is, 

. span(S) = {λ1v1 + λ2v2 + · · · + λnvn | λ1, λ2, . . . , λn ∈ K}

For convenience, we define .span{φ} = {0}. A subset . S of a vector space .V spans 
(or generates) .V if .span(S) = V . If there exists a finite subset . S of .V such that 
.span(S) = V , then. V is called finite-dimensional vector space. Otherwise it is called 
infinite-dimensional vector space. 

Example 2.16 Consider .S1 = {(1, 0)} and .S2 = {(1, 1)} in .R
2. Then (Fig. 2.4) 

. Span(S1) = {λ(1, 0) | λ ∈ R} = {(λ, 0) | λ ∈ R} = x − axis

and 
. Span(S2) = {λ(1, 1) | λ ∈ R} = {(λ, λ) | λ ∈ R}

In fact, span of any non-zero vector of the form .(x1, 0) in .R
2 will be the .x−axis 

and span of any non-zero vector of the form.(x1, x1) in .R
2 will be the line .y = x . In  

general, we can say that span of any single non-zero vector in .R2 will be a straight 
line passing through that vector and the origin. This can be generalized to .Rn also. 
Now consider the set .S3 = {(1, 0, 0), (0, 1, 0)} in .R

3. Then (Fig. 2.5) 

. Span(S3) = {λ1(1, 0, 0) + λ2(0, 1, 0) | λ1, λ2 ∈ R}
= {(λ1, λ2, 0) | λ1, λ2 ∈ R} = x − y plane

Theorem 2.7 Let .V be a vector space over a field . K. Let .S = {v1, v2, . . . , vn} be a 
subset of . V , then span.(S) is a subspace of .V and any subspace of .V that contains . S
must also contain span .(S).
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Fig. 2.5 The span of 
.S3 = {(1, 0, 0), (0, 1, 0)} in 
.R3 is the entire.x − y plane 

Proof Clearly, .0 = 0v1 + 0v2 + · · · + 0vn ∈ span(S). Let  .v,w ∈ span(S). Then 
there exists .λ1, λ2, . . . , λn, μ1, μ2, . . . , μn ∈ K such that . v = λ1v1 + λ2v2 + · · · +
λnvn and .v = μ1v1 + μ2v2 + · · · + μnvn . Then 

. u + v = (λ1 + μ1)v1 + (λ2 + μ2)v2 + · · · + (λn + μn)vn ∈ span(S)

and for .μ ∈ K, 

. μv = μ(λ1v1 + λ2v2 + · · · + λnvn) = (μλ1)v1 + (μλ2)v2 + · · · + (μλn)vn ∈ span(S)

Therefore.span(S) is a subspace of. V . Now  let .W be any subspace of.V containing 
.S = {v1, v2, . . . , vn}. Then for any scalars .λ1, λ2, . . . , λn ∈ K, as  .W is a subspace 
of . V , .λ1v1 + λ2v2 + · · · + λnvn ∈ W . That is, .span(S) ⊆ W . 

Remark 2.3 Consider a matrix .A ∈ Mm×n(K). We can view each row(column) as 
a vector in .K

n(Km). The span of the row vectors of . A is called row space of . A and 
the span of the column vectors of . A is called column space of . A. 

Definition 2.4 (Basis) Let  .V be a vector space over a field . K. If a set  .B ⊆ V is 
linearly independent and .span(B) = V , then .B is called a basis for . V . If the basis 
has some specific order, then it is called an ordered basis. 

Theorem 2.8 Let .V be a finite-dimensional vector space over a field .K and 
.S={v1, v2, . . . , vn} spans . V . Then . S can be reduced to a basis .B of . V . 

Proof Let. V be a finite-dimensional vector space over a field. K and. S = {v1, v2, . . . ,
vn} spans. V . Let.Sσ = {vσ1 , vσ2 , . . . , vσk } denote the set of all non-zero elements of. S. 
Now, we will construct a linearly independent set. B from. S, with.span(B) = S. Pick  
the element .vσ1 ∈ Sσ to . B. If  .vσ2 = λvσ1 , for  some  .λ ∈ K, then .vσ2 /∈ B, otherwise 
.vσ2 ∈ B. Now consider .vσ3 ∈ Sσ . If  .vσ3 = λ1vσ1 + λ2vσ2 for some .λ1, λ2 ∈ K, then 
.vσ3 /∈ B, otherwise.vσ3 ∈ B. Proceeding like this, after.σk steps we will get a linearly 
independent set with .span(B) = V . 

Corollary 2.2 Every finite-dimensional vector space .V has a basis.
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Proof Let .V be a finite-dimensional vector space. Then there exists a finite subset 
. S of .V with .span(S) = V . Then by . S can be reduced to a basis. 

Example 2.17 Consider the set 

. B = {e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)}

in .Kn over . K. We will show that .B is a basis for .Kn . Let us consider an element 
.a = (a1, a2, . . . , an) ∈ K

n arbitrarily, then we have .a = a1e1 + a2e2 + · · · + anen . 
That is, every element in.K

n can be written as a linear combination of elements in. B
with coefficients from. K. Thus . B spans .Kn over . K. Also  

. a1e1 + a2e2 + · · · + anen = 0 ⇒ a1 = a2 = · · · = an = 0

That is, . B is linearly independent. Therefore. B is a basis for.Kn over. K and is called 
the standard ordered basis for .Kn over . K. 

Example 2.18 Consider the set . B =
{
E11 =

|
1 0
0 0

|
, E12 =

|
0 1
0 0

|
, E21 =

|
0 0
1 0

|
,

E22 =
|
0 0
0 1

| }
in .M2×2(K) over the field . K. Consider an element . 

|
a11 a12
a21 a22

|
∈

M2×2(K). Then 

. 

|
a11 a12
a21 a22

|
= a11

|
1 0
0 0

|
+ a12

|
0 1
0 0

|
+ a21

|
0 0
1 0

|
+ a22

|
0 0
0 1

|

That is, . B spans .M2×2(K) over the field . K. Also  

. λ1

|
1 0
0 0

|
+ λ2

|
0 1
0 0

|
+ λ3

|
0 0
1 0

|
+ λ4

|
0 0
0 1

|
=

|
0 0
0 0

|

.⇒
|
λ1 λ2

λ3 λ4

|
=

|
0 0
0 0

|
⇒ λ1 = λ2 = λ3 = λ4 = 0. That is,. B is linearly independent. 

Therefore . B is a basis for .M2×2(K) over . K. 

Example 2.19 Consider the set .B = {1, x, . . . , xn} in .Pn[a, b] over . R. Then .B is 
linearly independent as 

. λ1.0 + λ1x + · · · + λnx
n = 0 ⇒ λ0 = λ1 = · · · = λn = 0

and clearly . B spans .Pn[a, b]. Therefore . B is a basis for .Pn[a, b] over . R
Example 2.20 Now consider a subset. S = {(1, 1, 2), (2, 1, 1), (3, 2, 3), (−1, 0, 1)}
of .R3 over . R. We know that .span(S) is a subspace of .R3. Can you find a basis 
for .span(S)? To find a basis for .span(S), we have to find a linearly independent 
subset . S̃ of .R3 such that .span(S) = span(S̃). We may observe that the .span(S) is
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the same as the row space of the matrix .A =

⎡

⎢⎢
⎣

1 1 2
2 1 1
3 2 3

−1 0 1

⎤

⎥⎥
⎦. Thus to find a basis for 

.span(S), it is enough to find the linearly independent rows of . A. We can reduce 

.A to the row reduced form as .A =

⎡

⎢⎢
⎣

1 1 2
0 −1 −3
0 0 0
0 0 0

⎤

⎥⎥
⎦. From this we can say that the set 

.S̃ = {(1, 1, 2), (0,−1,−3)} forms a basis for .span(S). 

Theorem 2.9 Let .V be a vector space over a field . K. If  .B = {v1, v2, . . . , vn} is a 
basis for . V , then any .v ∈ V can be uniquely expressed as a linear combination of 
vectors in . B. 

Proof Let. B be a basis of .V and.v ∈ V . Suppose that . v can be expressed as a linear 
combination of vectors in . B as 

. v = λ1v1 + λ2v2 + · · · + λnvn

and as 

. v = μ1v1 + μ2v2 + · · · + μnvn

where .λi , μi ∈ K for all .i = 1, 2, . . . , n. Subtracting the second expression from 
first, we get 

. 0 = (λ1 − μ1)v1 + (λ2 − μ2)v2 + · · · + (λn − μn)vn

Since. B is linearly independent, this implies that.λi − μi = 0 for all.i = 1, 2, . . . , n. 
That is, .λi = μi for all .i = 1, 2, . . . , n. 

Theorem 2.10 Let .V be a finite-dimensional vector space over a field .K and .B be 
a basis of . V . Then basis is a minimal spanning set in . V . That is, if . B is a basis of . V , 
there does not exist a proper subset of .B that spans . V . 

Proof Let .V be a finite-dimensional vector space over a field .K and 

.B =
{
v1, v2, . . . , vn

}
be a basis of . V . Let  . S be a proper subset of .B that spans 

. V . Since .S ⊂ B and .S /= B, there exists at least one element . v such that .v ∈ B and 

.v /∈ S. Rearrange the elements of .B so that the first . k elements are also elements 
of . S and the remaining .n − k elements belong to .B only. Now take any element 
.vk+i ∈ B where.i ∈ {1, 2, . . . n − k}. Since.span(S) = V and.vk+i ∈ V , there exists 
.λ1, λ2, . . . , λk ∈ K such that .vk+i = λ1v1 + λ2v2 + · · · + λkvk . This can also be 
written as.vk+i = λ1v1 + λ2v2 + · · · + λkvk + 0vk+1 + · · · + 0vn . Also as.vk+i ∈ B, 
.vk+i can be represented as a linear combination of elements of .B by taking 1 as the
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coefficient to .vk+i and 0 as the coefficient for all elements in . B other than.vk+i . This  
is a contradiction to the fact that representation for any element with respect to a 
basis must be unique. 

Theorem 2.11 Let .V be a finite-dimensional vector space and .S be a minimal 
spanning set of . V , then . S is a basis. 

Proof Let.S = {v1, v2, . . . , vn} be a minimal spanning set of . V . To prove that . S is a 
basis, it is enough to show that . S is linearly independent. Suppose that it is linearly 
dependent, then by Theorem 2.5, at least one element say .vi ∈ S can be written as a 
linear combination of the remaining vectors. Then .S \ {vi } is a spanning set for . V . 
This is a contradiction to the fact that . S is a minimal spanning set. 

Theorem 2.12 Let .V be a vector space over a field .K and .B = {v1, v2, . . . , vn} be 
a basis of . V . Let .W = {w1, w2, . . . , wm} be a linearly independent set in . V , then 
.m ≤ n. 

Proof Since .B = {v1, v2, . . . , vn} is a basis of . V , .B spans .V and .B is linearly 
independent. Since.w1 ∈ V , by the previous theorem.w1 has a unique representation 
using the vectors in . B, say  

.w1 = λ1v1 + λ2v2 + · · · + λnvn (2.1) 

Now we can express one of the. vi , say. vk , in terms of.w1 and the remaining. v'
i s. That 

is, 

.vk = μw1 + μ1v1 + · · · + μk−1vk−1 + μk+1vk+1 + · · · + μnvn (2.2) 

where .μ = −1
λk

and .μ j = −λ j

λk
, j /= k. 

Now we will show that the set.B1 = {w1, v1, v2, . . . , vk−1, vk+1, . . . , vn} obtained 
by replacing .vk by .w1 is a basis for . V . That is, we will prove that .B1 is linearly 
independent and .B1 spans . V . Suppose that they are linearly dependent. Then by 
Theorem 2.5 at least one of the vectors in .B1 can be written as a linear combination 
of the remaining vectors. Since (2.1) is the unique representation for .w1, we cannot 
express .w1 in terms of .v1, v2, . . . , vk−1, vk+1, . . . , vn . Therefore some .vl ∈ B1 can 
be written as a linear combination of the remaining vectors in.B1. That is, there exist 
scalars .α, α1, . . . , αl−1, αl+1, . . . , αk−1, αk+1, . . . , αn ∈ K such that 

. vl = αw1 + α1v1 + · · · + αl−1vl−1 + αl+1vl+1 + · · · + αk−1vk−1 + αk+1vk+1 + · · · + αnvn

Now substituting (2.1) in the above equation we get that .vl can be expressed as a 
linear combination of vectors in . B, which is a contradiction as .B is linearly inde-
pendent. Therefore.B1 is linearly independent. Since.vk can be expressed as in (2.2), 
.span(B1) = span(B) = V . Therefore .B1 is a basis of . V . We repeat this process by 
replacing some .v j ∈ B1, by .w2, and so on.
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Now if .m ≤ n, .Bm = {w1, w2, . . . , wm, vi1 , vi2 , . . . , vim−n } is a basis for . V . If  
.m > n, .Bn = {w1, w2, . . . , wn} is a basis for . V . Then .wn+1 ∈ W can be written as 
a linear combination of vectors in .Bn , which is a contradiction to the fact that .W is 
linearly independent. Therefore .m ≤ n. 

Basis of a vector space is not unique. For example, consider .R2. Clearly . B1 =
{(1, 0), (0, 1)} is a basis for .R2 as any vector .(x1, x2) ∈ R

2 can be written as 
.(x1, x2) = x1(1, 0) + x2(0, 1), x1, x2 ∈ R and.B1 is linearly independent. Now con-
sider the set .Bλ = {(1, 0), (0, λ)}. Then .Bλ is a basis for .R2 for any .λ /= 0 ∈ R as 
any vector.(x1, x2) ∈ R

2 can be written as. (x1, x2) = x1(1, 0) + x2
λ
(0, λ), x1, x2 ∈ R

and .Bλ is linearly independent for any .λ /= 0 ∈ R. The following corollary shows 
that any two bases for a vector space have the same cardinality. 

Corollary 2.3 For a finite-dimensional vector space .V over . K, any two bases for 
.V have the same cardinality. 

Proof Let .B1 = {v1, v2, . . . , vn} and .B2 = {w1, w2, . . . , wm} be any two bases for 
. V . Consider .B1 as a basis and .B2 as a linearly independent set, then by the above 
theorem, .m ≤ n. Now consider .B2 as a basis and .B1 as a linearly independent set, 
then .n ≤ m. Therefore .m = n. 

Corollary 2.4 Let .V be a vector space over a field .K and .B be a basis of . V . Then 
basis is a maximal linearly independent set in . V . That is, if .B is a basis of . V , there 
does not exist a linearly independent set . S such that .B ⊂ S ⊂ V . 

Proof Let .B be a basis of .V and . S be a linearly independent set in . V . By the  
Theorem 2.12, the cardinality of. S is less than or equal to cardinality of. B. Therefore 
there does not exist a linearly independent set . S such that .B ⊂ S ⊂ V . 

In the above corollary, we have shown that every basis is a maximal linearly 
independent set. Now we will prove that the converse is also true. 

Theorem 2.13 Let .V be a finite-dimensional vector space over a field . K. Let . S =
{v1, v2, . . . , vn} be a maximal linearly independent set in . V , then . S is a basis. 

Proof Let. S be a maximal linearly independent set in. V . To show that. S is a basis, it 
is enough to prove that.span(S) = V . Suppose that this is not true. Then there exists 
a non-zero vector.v ∈ V such that.v /∈ span(S). Now consider the set .S1 = S ∪ {v}. 
We will show that.S1 is linearly independent, which will be a contradiction to the fact 
that . S is maximal. Now let .λ, λ1, λ2, . . . , λn ∈ K be such that . λv + λ1v1 + λ1v2 +
· · · + λnvn = 0. If.λ = 0, then as. S is linearly independent.λ1 = λ2 = · · · = λn = 0. 
If .λ /= 0, as.v /∈ span(S), the expression.λv + λ1v1 + λ1v2 + · · · + λnvn = 0 is not 
possible. Therefore .S1 is linearly independent. 

Theorem 2.14 Let .V be a finite-dimensional vector space over a field .K and . S be 
a linearly independent subset of . V . Then . S can be extended to a basis.
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Proof Let .V be a finite-dimensional vector space over a field . K. Let  
.B={v1, v2, . . . , vn} be a basis of . V . Let  . S be a linearly independent subset of . V . 
Now .S ∪ B is a spanning set of . V . By Theorem 2.8, it can be reduced to a basis. If 
.|S| = n, then by Theorem 2.12, . S is a maximal linearly independent set and hence 
a basis. Suppose that .|S| < n. Then take the vector .v1 ∈ B. If  .v1 /∈ span(S), then 
.S1 = S ∪ {v1} is a linearly independent set. If .|S1| = n, then as above .S1 is a basis. 
If .v1 ∈ span(S), discard . v1. Then choose .v2 ∈ V and proceed in the same way. By 
repeating this process, we obtain a basis for .V which is an extension of . S. 

The following theorem summarizes the results from Theorems 2.10–2.14. 

Theorem 2.15 Let .V be a finite-dimensional vector space over a field .K and . B =
{v1, v2, . . . , vn}. Then the following are equivalent: 
(a) .B is a basis of . V . 
(b) .B is a minimal spanning set. 
(c) .B is a maximal linearly independent set. 

In Corollary 2.3, we have seen that any basis for a vector space has the same 
cardinality. Therefore, we can uniquely define a quantity to express the cardinality 
of a basis for a vector space. 

Definition 2.5 (Dimension) Let. V be a vector space over a field. K and. B be basis of 
. V . The number of elements of . B is called dimension of . V . It is denoted by.dim(V ). 
For convenience, the dimension of .{0} is defined as 0. 
Example 2.21 From Example 2.17, it is easy to observe that .Kn over .K has dimen-
sion . n. 

Example 2.22 From Example 2.18, .M2×2 (K) over .K has dimension . 4. In general, 
.Mn×n (K) over .K has dimension . n2. 

Example 2.23 From Example 2.19, .Pn[a, b] over . R has dimension .n + 1. 

What about the dimension of.P[a, b]? Does there exist a finite set which is linearly 
independent and spans.P[a, b]? If such a finite set does not exist, such vector spaces 
are called infinite-dimensional vector spaces. Can you give another example for an 
infinite-dimensional vector space? What about .C[a, b]? Now, the following remark 
discusses some interesting facts about the importance of field . K, while considering 
a vector space .V (K). 

Remark 2.4 One set can be a vector space over different fields and their dimension 
may vary with the field under consideration. For example.C = the set of all complex 
numbers is a vector space over both the fields. R and. C. Since every element. a + bi ∈
C can be written as 

. a + bi = (a + bi)1

where .a + bi ∈ C (field under consideration) and .1 ∈ C (set under consideration), 
.{1} is a basis for.C (C) and.dimC (C) = 1. If. R is the field under consideration, then 
.a + bi ∈ C can be written as
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. a + bi = a(1) + b(i)

where.a, b ∈ R and.1, i ∈ C. Therefore.{1, i} is a basis for.C (R) and.dimR (C) = 2. 

Theorem 2.16 Let .V be a finite-dimensional vector space, then 

(a) Every spanning set of vectors in .V with cardinality the same as that of . dim(V )

is a basis of . V . 
(b) Every linearly independent set of vectors in .V with cardinality the same as that 

of .dim(V ) is a basis of . V . 

Proof (a) Let .V be a finite-dimensional vector space with .dim(V ) = n. Then by 
Corollary 2.3, any basis of .V have cardinality . n. Let  . S be subset of .V with 
.span(S) = V and .|S| = n. By Theorem 2.8 any spanning set can be reduced to 
a basis. Therefore . S is a basis for . V . 

(b) Let. V be a finite-dimensional vector space with.dim(V ) = n. Let. S be a linearly 
independent subset of. V with.|S| = n. By Theorem 2.14 any linearly independent 
set . S can be extended to a basis. Therefore . S is a basis for . V . 

Theorem 2.17 Let .V be a finite-dimensional vector space over a field . K. Let .W be 
a subspace . V . Then .W is finite-dimensional and .dim(W ) ≤ dim(V ). Moreover, if 
.dim(W ) = dim(V ), then .V = W. 

Proof Let .W be a subspace of . V . Then .W is a vector space with the operations 
defined on . B. Consider a basis .B for . W . Then .B is a linearly independent set in 
. V . Then by Theorem 2.12, .dim(W ) ≤ dim(V ). If .dim(W ) = dim(V ), then by the 
previous theorem, . B is a basis for .V also and hence .V = W . 

Example 2.24 Consider the vector space .R2 over . R. Let  .W be a subspace of .R2. 
Since.dim(R2) = 2 the only possible dimensions for.W are 0, 1, and 2. If. dim(W ) =
0, then.W = {0} and if .dim(W ) = 2, then.W = R

2. Now  let .dim(W ) = 1. Then. W
is spanned by some non-zero vector. Therefore .W is given by . W = {λv | λ ∈ R}
for some .v /= 0 ∈ R

2. That is, .W is a line passing through origin. Hence the only 
subspaces of .R2 are the zero space, lines passing through origin, and .R2 itself. 
Similarly, the only subspaces of .R3 are the zero space, lines passing through origin, 
planes passing through origin, and .R

3 itself. 

2.5 Sum and Direct Sum 

In the previous section, we have seen that the union of two subspaces need not 
necessarily be a subspace. Therefore analogous to union of subsets in set theory, we 
define a new concept called the sum of subspaces and analogous to disjoint union of 
subsets we introduce direct sums. 

Theorem 2.18 Let .W1,W2, . . . ,Wn be subspaces of a vector space over a field . K, 
then their sum .W1 + W2 + · · · + Wn = {w1 + w2 + · · · + wn | wi ∈ Wi } is a sub-
space of .V and it is the smallest subspace of .V containing .W1,W2, . . . ,Wn.



68 2 Vector Spaces

Proof Since .W1,W2, . . . ,Wn are subspaces of . V , .0 ∈ Wi for all .i = 1, 2, . . . , n. 
Then 

. 0 = 0 + 0 + · · · + 0 ∈ W1 + W2 + · · · + Wn

Now let .v,w ∈ W1 + W2 + · · · + Wn and .λ ∈ K, then .v = v1 + v2 + · · · + vn and 
.w = w1 + w2 + · · · + wn where .vi , wi ∈ Wi for all .i = 1, 2, . . . , n. As each .Wi is 
a subspace of . V , .vi + wi ∈ Wi and .λvi ∈ Wi for all .i = 1, 2, . . . , n. Hence 

. v + w =
nE

i=1

(vi + wi ) ∈ W1 + W2 + · · · + Wn

and 

. λv =
nE

i=1

λvi ∈ W1 + W2 + · · · + Wn

Therefore .W1 + W2 + · · · + Wn is a subspace of . V . Since .wi ∈ Wi can be writ-
ten as .wi = 0 + · · · + 0 + wi + 0 + · · · + 0 ∈ W1 + W2 + · · · + Wn , . W1 + W2 +
· · · + Wn contains each .Wi . Now to prove that .W1 + W2 + · · · + Wn is the small-
est subspace containing .W1,W2, . . . ,Wn , we will show that any subspace of . V
containing.W1,W2, . . . ,Wn contains .W1 + W2 + · · · + Wn . Let .W be any subspace 
containing.W1,W2, . . . ,Wn . Let. w = w1 + w2 + · · · + wn ∈ W1 + W2 + · · · + Wn

where .wi ∈ Wi for all .i = 1, 2, . . . , n. Since .W is a subspace of .V and .W contains 
.W1,W2, . . . ,Wn , .w ∈ W . 

Example 2.25 Let .V = R
2. Consider .W1 = {(x1, x2) | x1 = x2, x1, x2 ∈ R} and 

.W2 = {(x1, x2) | x1 = −x2, x1, x2 ∈ R}. Then .W1 and .W2 are subspaces of . V
(Fig. 2.6). 

Fig. 2.6 Observe that both.W1 and.W2 depicted in (a) and  (b) respectively are straight lines passing 
through origin and hence are subspaces of.R2
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Any vector .(x1, x2) ∈ R
2 can be written as a linear combination of elements of 

.W1 and .W2 as follows: 

. (x1, x2) =
(
x1 + x2

2
,
x1 + x2

2

)
+

(
x1 − x2

2
,
x2 − x1

2

)
∈ W1 + W2

As.W1 + W2 is a subspace of.R2, this implies that.W1 + W2 = R
2. Also observe that 

the representation of any vector as the sum of elements in.W1 and.W2 is unique here. 

Example 2.26 Let .V = M2×2(R). Consider 

. W1 =
{|

a11 a12
0 a22

|
| a11, a12, a22 ∈ R

}

and 

. W2 =
{|

a11 0
a21 a22

|
| a11, a21, a22 ∈ R

}

Then .W1 and .W2 are subspaces of .V (Verify). Also any vector in .M2×2(R) can be 
expressed as a sum of elements in.W1 and.W2. But here this expression is not unique. 
For example, 

. 

|
1 2
3 4

|
=

|
1 2
0 4

|
+

|
0 0
3 0

|
∈ W1 + W2

and 

. 

|
1 2
3 4

|
=

|
0 2
0 0

|
+

|
1 0
3 4

|
∈ W1 + W2

If the elements can be expressed uniquely, then it has particular importance and 
is called direct sum. That is, the sum .W1 + W2 is called direct sum denoted by 
.W1 ⊕ W2 if every element .w ∈ W1 + W2 can be uniquely written as .w = w1 + w2, 
where.w1 ∈ W1 and.w2 ∈ W2. That  is, if .w = v1 + v2, where.v1 ∈ W1 and.v2 ∈ W2, 
then .v1 = w1 and .v2 = w2. 

Definition 2.6 (Direct sum) Let  .V be a vector space over a field .K and 
.W1,W2, . . . ,Wn be subspaces of . V . If every element in .V can be uniquely rep-
resented as a sum of elements in .W1,W2, . . . ,Wn , then .V is called the direct sum 
of .W1,W2, . . . ,Wn and is denoted by .V = W1 ⊕ W2 ⊕ · · · ⊕ Wn . 

Suppose we have a vector space.V over a field. K and subspaces. W1,W2, . . . ,Wn

of. V . Then it is not easy to check whether every element in.V has a unique represen-
tation as the sum of elements of .W1,W2, . . . ,Wn . The following theorem provides 
a solution for this. 

Theorem 2.19 Let .V be a vector space over a field .K and .W1,W2, . . . ,Wn be sub-
spaces of . V . Then .V = W1 ⊕ W2 ⊕ · · · ⊕ Wn if and only if the following conditions 
are satisfied:
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(a) . V = W1 + W2 + · · · + Wn

(b) zero vector has only the trivial representation. 

Proof Let.V = W1 ⊕ W2 ⊕ · · · ⊕ Wn . Then by the definition of direct sum both. (a)

and .(b) hold. Conversely, suppose that both .(a) and .(b) hold. Let .v ∈ V have two 
representations namely, 

.v = v1 + v2 + · · · + vn (2.3) 

and 

.v = w1 + w2 + · · · + wn (2.4) 

where .vi , wi ∈ Wi for all .i = 1, 2, . . . , n. Then subtracting .(2) from.(1) gives 

. 0 = (v1 − w1) + (v2 − w2) + · · · + (vn − wn)

and as zero has trivial representation only,.vi − wi = 0 for all .i = 1, 2, . . . , n which 
implies .vi = wi for all .i = 1, 2, . . . , n. That is, every vector has a unique represen-
tation. Therefore .V = W1 ⊕ W2 ⊕ · · · ⊕ Wn . 

Example 2.27 Consider.V = R
2 and take.W1 and.W2 as in Example 2.25. Then. V =

W1 ⊕ W2. We already know that .V = W1 + W2. It is enough to prove that the zero 
vector has only the trivial representation. Let .(x1, x1) ∈ W1 and .(x2,−x2) ∈ W2 be 
such that.(x1, x1) + (x2,−x2) = (0, 0). This implies that. (x1 + x2, x1 − x2) = (0, 0)
and hence .x1 = x2 = 0. Thus zero vector has only the trivial representation. 

The following theorem gives a necessary and sufficient condition to check whether 
the sum of two subspaces is a direct sum or not. 

Theorem 2.20 Let .V be a vector space over a field . K. Let .W1 and .W2 be two 
subspaces of. V , then.V = W1 ⊕ W2 if and only if.V = W1 + W2 and.W1 ∩ W2 = {0}. 
Proof Let .V = W1 ⊕ W2, then by the definition of direct sum .V = W1 + W2. If  
.w ∈ W1 ∩ W2, then 

. w ∈ W1 ∩ W2 ⇒ w ∈ W1 and w ∈ W2 ⇒ −w ∈ W2

Now .0 = w + (−w) ∈ W1 + W2. Since .V = W1 ⊕ W2, this implies that .w = 0. 
That is, .W1 ∩ W2 = {0}. 

Conversely, suppose that .V = W1 + W2 and .W1 ∩ W2 = {0}. Let  . 0 = w1 + w2

where.w1 ∈ W1 and.w2 ∈ W2 be a non-trivial representation of the zero vector. Now 
.0 = w1 + w2 ⇒ −w1 = w2 ∈ W1, since .W1 is a subspace. As .W1 ∩ W2 = {0}, this  
implies that .w1 = w2 = 0.
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Fig. 2.7 Observe that any 
vector in.R2 can be written 
as a sum of elements of. W1
and.W2. Also observe that 
. W1 ∩ W2 = {0}

Example 2.28 Let .V = P3[a, b]. Let  

. W1 = {a0 + a2x
2 | a0, a2 ∈ R}

and 
. W2 = {a1x + a3x

3 | a1, a3 ∈ R}

Any element in .P3[a, b] is of the form .a0 + a1x + a2x2 + a3x3. Then clearly 
.P3[a, b] = W1 + W2. Also .W1 ∩ W2 = {0}, as polynomials in .W1 and .W2 have dif-
ferent orders. Therefore .P3[a, b] = W1 ⊕ W2. 

Example 2.29 Let .V = R
2. Let  .W1 = {(x1, 0) | x1 ∈ R} and . W2 = {(0, x2) | x2 ∈

R}. 

Then any vector .(x1, x2) ∈ R
2 can be written as . (x1, x2) = (x1, 0) + (0, x2) ∈

W1 + W2. Since .W1 + W2 is a subspace of .R2, we get .V = W1 + W2. Also  . W1 ∩
W2 = {0}. Therefore .R

2 = W1 ⊕ W2 (Fig. 2.7). 

The examples discussed deal with subspaces of finite dimensional vector spaces. 
Now let us give you an example from an infinite-dimensional vector space. 

Example 2.30 Let .V = C[a, b]. Take  

. W1 = { f (x) | f (−x) = − f (x)}

and 
. W2 = { f (x) | f (−x) = f (x)}

.W1 and .W2 are respectively the collection of all odd functions and even functions. 
(Verify that they are subspaces of .C[a, b].) Now, for any . f ∈ C[a, b], consider 
. f1(x) = f (x)− f (−x)

2 and . f2(x) = f (x)+ f (−x)
2 . We have
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. f1(−x) = f (−x) − f (−(−x))

2
= −( f (x) − f (−x))

2
= − f1(x)

and 

. f2(−x) = f (−x) + f (−(−x))

2
= f (−x) + f (x)

2
= f2(x)

Thus . f1 ∈ W1 and . f2 ∈ W2. Clearly, . f = f1 + f2 and hence .C[a, b] = W1 + W2. 
Also observe that.W1 ∩ W2 = {0}. For  if. f ∈ W1 ∩ W2,. f (−x) = − f (x) = f (x)∀x
∈ [a, b]. This gives. f (x) = 0 for all.x ∈ [a, b]. Thus we can conclude that. C[a, b] =
W1 ⊕ W2. 

Observe that the above proposition discusses the case of two subspaces only. When 
asking about a possible direct sum with more than two subspaces, it is not enough 
to check that the intersection of any two of the subspaces is .{0}. For example, con-
sider the subspaces of .R3 given by . W1 = {(x1, 0, 0) | x1 ∈ R},W2 = {(0, x2, x3) |
x2, x3 ∈ R},W3 = {(x1, x1, 0) | x1 ∈ R}. Clearly, .R3 = W1 + W2 + W3 and . W1 ∩
W2 = W1 ∩ W3 = W2 ∩ W3 = {0} (verify). But.R3 /= W1 ⊕ W2 ⊕ W3 as. (0, 0, 0) =
(0, 0, 0) + (0, 0, 0) + (0, 0, 0) and .(0, 0, 0) = (1, 0, 0) + (0, 1, 0) + (−1,−1, 0). 

Now we will discuss the dimension of the sum of two subspaces of a finite-
dimensional vector space. 

Theorem 2.21 Let. V be a finite-dimensional vector space over a field. K and. W1,W2

be two subspaces of . V , then 

. dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2)

Proof Let .W1,W2 be two subspaces of finite-dimensional vector space . V . Then 
.W1 ∩ W2 is also a subspace of. V . Let.{u1, u2, . . . , ul} be a basis for.W1 ∩ W2. Since 
.W1 ⊆ W1 ∩ W2, .{u1, u2, . . . , ul} is a linearly independent set in .W1, and hence 
it can be extended to a basis .{u1, u2, . . . , ul , v1, v2, . . . , vm} of .W1. Similarly, let 
.{u1, u2, . . . , ul , w1, w2, . . . , wn} be a basis of .W2. Clearly 

. B = {u1, u2, . . . , ul , , v1, v2, . . . , vm, w1, w2, . . . , wn}

is a spanning set of .W1 + W2. Now will show that .B is a basis for .W1 + W2. It is  
enough to show that . B is linearly independent. Let . λ1, . . . , λl, μ1, . . . , μm, ξ1, . . . ,

ξn ∈ K be such that 

.λ1u1 + · · · + λlul + μ1v1 + · · · + μmvm + ξ1w1 + · · · + ξnwn = 0 (2.5) 

This implies 

.ξ1w1 + · · · + ξnwn = −λ1u1 − · · · − λlul − μ1v1 − · · · − μmvm ∈ W1 ∩ W2
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as.{u1, u2, . . . , ul , v1, v2, . . . , vm} is basis for.W1 and.{w1, w2, . . . , wn} ⊆ W2. Now  
.{u1, u2, . . . , ul} is a basis for .W1 ∩ W2 implying there exist scalars . α1, α2, . . . , αl ∈
K such that 

. ξ1w1 + · · · + ξnwn = α1u1 + α2u2 + · · · + αlul

Since.{u1, u2, . . . , ul , w1, w2, . . . , wn} is a basis for.W2, the above equation implies 
that .ξ1 = · · · = ξn = α1 = · · · = αl = 0. Then .(3) changes to . λ1u1 + · · · + λlul +
μ1v1 + · · · + μmvm = 0. Since.{u1, u2, . . . , ul , v1, v2, . . . , vm} is a basis of.W1, this  
implies that.λ1 = · · · = λl = μ1 = · · · = μm = 0. That is,. B is linearly independent. 
Thus we have shown that . B is a basis for .W1 + W2. Now  

. dim(W1 + W2) = l + m + n

= (l + m) + (l + n) − l

= dim(W1) + dim(W2) − dim(W1 ∩ W2)

Example 2.31 Consider the vector space .M2×2(R) over the field . R. Let  

. W1 =
{|

a11 a12
a12 a22

|
| a11, a12, a22 ∈ R

}

and 

. W2 =
{|

a11 −a12
a12 0

|
| a11, a12 ∈ R

}

Verify that.W1 and.W2 are subspaces of.M2×2(R). Since.

{|
1 0
0 0

|
,

|
0 1
1 0

|
,

|
0 0
0 1

|}
is a 

basis for.W1, .dim(W1) = 3 and as.

{|
0 −1
1 0

|
,

|
1 0
0 0

|}
is a basis for.W2, . dim(W2) =

2. Now  

. W1 ∩ W2 =
{|

a11 0
0 0

|
| a11 ∈ R

}

Since .

{|
1 0
0 0

|}
is a basis for .W1 ∩ W2, .dim(W1 ∩ W2) = 1. Thus 

. dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2) = 4

Hence .W1 + W2 = M2×2(R). 

Example 2.32 Consider the vector space .P4[a, b]. Let  

. W1 = {λ0 + λ2x
2 + λ4x

4 | λ0, λ2, λ4 ∈ R}

and 
.W2 = {λ1x + λ3x

3 | λ1, λ3 ∈ R}
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Since .{1, x2, x4} is a basis for .W1, .dim(W1) = 3 and as .{x, x3} is a basis for .W2, 
.dim(W2) = 2. Clearly .dim(W1 ∩ W2) = 0 (How?) and hence 

. dim(W1 + W2) = dim(W1) + dim(W2) − dim(W1 ∩ W2) = 5

As .W1 + W2 = P4[a, b] and .W1 ∩ W2 = {0}, we have .P4[a, b] = W1 ⊕ W2. 

Theorem 2.22 Let .V be a finite-dimensional vector space over a field . K. Let 
.W1,W2, . . . ,Wn be subspaces of . V , such that .V = W1 + W2 + · · · + Wn and 
.dim(V ) = dim(W1) + dim(W2) + · · · + dim(Wn). Then . V = W1 ⊕ W2 ⊕ · · · ⊕
Wn. 

Proof Let .V be a finite-dimensional vector space with .W1,W2, . . . ,Wn as sub-
spaces of . V . Consider a basis .Bi for each .i = 1, 2, . . . , n and let .B = ∪n

i=1Bi . 
Since.V = W1 + W2 + · · · + Wn ,. B spans. V . Now suppose that. B is linearly depen-
dent. Then at least one of the vectors can be written as a linear combination of 
other vectors. Then .dim(V ) < dim(W1) + dim(W2) + · · · + dim(Wn), which is a 
contradiction. Therefore .B is linearly independent and hence .B is a basis of . V . 
Now let .0 = w1 + w2 + · · · + wn where .wi ∈ Wi . Since .Bi is a basis for .Wi , each 
.wi ∈ Wi can be expressed uniquely as a sum of elements in . Bi . i.e., 0 can be writ-
ten as a linear combination of elements of . B. As  .B is a basis for . V , this implies 
that the coefficients are zero. That is, .wi = 0 for all .i = 1, 2, . . . , n. Therefore 
.V = W1 ⊕ W2 ⊕ · · · ⊕ Wn . 

2.6 Exercises 

1. Show that the collections given in Examples 2.2–2.7 are vector spaces with 
respect to the given operations. 

2. Consider the vector space .R2 with usual addition and multiplication over . R. 
Give an example for a subset of .R2 which is 

(a) closed under addition but not closed under scalar multiplication. 
(b) closed under scalar multiplication but not closed under addition. 

3. Does .R2 over . R with operations defined by 

. (x1, x2) + (y1, y2) = (x1 + x2, y1 + y2) and λ(x1, x2) = (λx1, 0)

form a vector space? 
4. Check whether the following vectors are linearly dependent or not. 

(a) .{(1, 2), (2, 1)} in .R
2 over . R. 

(b) .{(1, 2, 1), (2, 1, 1), (1, 1, 2)} in .R
3 over . R. 

(c) .{(i,−i), (−1, 1)} in .C
2 over . R. 

(d) .{(i,−i), (−1, 1)} in .C
2 over . C.
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(e) .{1 + x, 1 + x2} in .P2[a, b] over . R. 
(f) .{2, x − 2, 1 + x + x2, x3 − x2} in .P3[a, b] over . R. 

(g) .

{|
1 2
0 1

|
,

|
1 0
2 1

|
,

|
0 1
2 1

|
,

|
1 1
2 0

|}
in .M2(R) over . R. 

(h) .

{|
1 −1
1 0

|
,

|
1 1
0 1

|
,

|
3 −1
2 1

|}
in .M2(R) over . R. 

5. Let .{v1, v2} be a linearly independent subset of a vector space .V over a field . K. 
Then show that .{v1 + v2, v1 − v2} is linearly independent only if characteristic 
of .K is not equal to 2. 

6. Check whether the following subsets of .R2 are subspaces of .R2 over . R. If yes, 
find its dimension and write down a basis. 

(a) . {(x1, x2) ∈ R
2 | x2 = 1}

(b) . {(x1, x2) ∈ R
2 | x1 + x2 = 0}

(c) . {(x1, x2) ∈ R
2 | x1

x2
= 1}

(d) . {(x1, x2) ∈ R
2 | x1, x2 ≤ 0}

(e) .{(x1, x2) ∈ R
2 | x21 + x22 = 0}. 

7. Check whether the following subsets of .M2 (K) are subspaces of .M2 (K) over 
. K. If yes, find its dimension and write down a basis. 

(a) . 

{|
a11 a12
a21 a22

|
∈ M2 (K) | a11 + a12 = 0

}

(b) . 

{|
a11 a12
a21 a22

|
∈ M2 (K) | a11 + a12 = 1

}

(c) . {A ∈ M2 (K) | det (A) = 0}
(d) . {A ∈ M2 (K) | det (A) /= 0}
(e) .

{|
a11 a12
a21 a22

|
∈ Mn (K) | a11 = a22

}
. 

8. Check whether the following subsets of .P2 (R) are subspaces of .P2 (R) over . R. 
If yes, find its dimension and write down a basis. 

(a) . {p(x) ∈ P2 (R) | p(0) = 0}
(b) . {p(x) ∈ P2 (R) | p(0) = 1}
(c) . {p(x) ∈ P2 (R) | p(0) = p(1) = 0}
(d) . {p(x) ∈ P2 (R) | p(x) ≥ 0}
(e) .{p(x) ∈ P2 (R) | p(x) = p(−x)}. 

9. State whether the following statements are true or false. 

(a) A non-trivial vector space over the fields. R or. C always has an infinite number 
of elements. 

(b) The set of all rational numbers. Q is a vector space over. R under usual addition 
and multiplication. 

(c) .{(x1, x2) | x21 + x22 = 0, x1, x2 ∈ C} is a subspace of .C2 over . C.
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(d) There exists a non-trivial subspace of .R over .R under usual addition and 
multiplication. 

(e) .{(i, 1), (−1, i)} is a linearly independent set in .C
2 over . C. 

(f) If .W1,W2,W are subspaces of a vector space .V such that . W1 + W = W2 +
W , then .W1 = W2. 

(g) If .W1,W2 are subspaces of .R7 with .dim (W1) = 4 and .dim (W2) = 4, then 
.dim (W1 ∩ W2) = 1. 

10. Show that .R with usual addition and multiplication over .Q is an infinite-
dimensional vector space. (Hint: Use the fact that. π is a transcendental number.) 

11. Find the row space and column space of .

|
1 −1
2 0

|
. 

12. Show that the rows of a .3 × 2 matrix are linearly dependent. 
13. Show that the columns of a .3 × 5 matrix are linearly dependent. 
14. Which of the following collection of vectors span .R

2 over . R? 

(a) . {(1, 1)}
(b) . {(1, 2), (0, 4)}
(c) . {(0, 0), (1,−1), (3, 2)}
(d) . {(2, 4), (4, 8)}
(e) .{(3, 2), (1, 4), (4, 6)}. 

15. Which of the following collection of vectors span .R
3 over . R? 

(a) . {(1, 1, 0), (0, 1, 1)}
(b) . {(0, 2, 0), (1, 0, 0), (1, 2, 0)}
(c) . {(0, 0,−1), (0, 1,−1), (−1, 1,−1)}
(d) . {(0, 4, 2), (0, 8, 4), (1, 12, 6)}
(e) .{(1, 3, 2), (1, 2, 3), (3, 2, 1), (2, 1, 3)}. 

16. Which of the following collection of vectors span .P
2[a, b] over . R? 

(a) . {x2 + 1, x2 + x, x + 1}
(b) . {x + 1, x − 1, x2 − 1}
(c) . {x2 + x + 1, 2x − 1}
(d) . {2x2 − x + 1, x2 + x, 2x − 3, x2 − 5}
(e) .{x + 1, 2x + 2, x2 + x}. 

17. Let .W1,W2 be subsets of a vector space .V over the field . K. Show that 

(a) .span (W1 ∩ W2) ⊆ span (W1) ∩ span (W2). 
(b) .span (W1) ∪ span (W2) ⊆ span (W1 ∪ W2). 

Does the converse hold in both .a) and . b)? 
18. Let .W1,W2 be subspaces of a vector space .V over the field . K. Show that 

.span (W1 + W2) = span (W1) + span (W2). 
19. Let .V1 = {v1, v2, . . . , vn}, .V2 = {v1, v2, . . . , vn, v} be subsets of a vector space 

. V . Then .span (V1) = span (V2) if and only if .v ∈ span (V1).
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20. Check whether the given collection of vectors form a basis for corresponding 
vector spaces. 

(a) .{(2, 1, 1), (1, 2, 1), (1, 1, 2)} for .R3 over . R. 
(b) .{1, x − 1, (x − 1)2} for .P2 (R) over . R. 
(c) .{1, x2 − 1, 2x2 + 5} for .P2 (R) over . R. 

(d) .

{|
1 0
0 −2

|
,

|
0 2
0 0

|
,

|
0 0
2 0

|
,

|
0 0
0 1

|}
for .M2 (R) over . R. 

21. Determine which of the given subsets forms a basis for .R3 over . R. Express the 
vector .(1, 2, 3) as a linear combination of the vectors in each subset that is a 
basis. 

(a) . {(1, 1, 1), (1, 1, 0), (1, 0, 0)}
(b) . {(1, 2, 1), (2, 1, 1), (1, 1, 2)}
(c) .{(2, 3, 1), (1,−2, 0), (1, 5, 1)}. 

22. Check whether the sets given in Questions.14 − 16 form a basis for the respective 
vector spaces. If not, find the dimension of their span. 

23. Find the dimension of span of the following collection of vectors: 

(a) .{(1,−2), (−2, 4)} in .R
2 over . R. 

(b) .{(−2, 3), (1, 2), (5, 6)} in .R
2 over . R. 

(c) .{(0, 3, 1), (−1, 2, 3), (2, 3, 0), (−1, 2, 4)} in .R
3 over . R. 

(d) .{1 + x, x2 + x + 1} in .P2[a, b] over . R. 
(e) .{1 − x, x2, 2x2 + x − 1} in .P2[a, b] over . R. 

(f) .

{|
1 1
0 0

|
,

|
1 −1
0 0

|
,

|
0 0
1 1

|
,

|
0 0

−1 1

|}
in .M2(R) over . R. 

(g) .

{|
1 1
1 0

|
,

|
1 1
0 1

|
,

|
1 0
1 1

|
,

|
0 1
1 1

|}
in .M2(R) over . R. 

Also, find a basis for the linear space spanned by the vectors. 
24. Consider two subspaces of .R4 given by 

. W1 = {(x1, x2, 2x1, x1 + x2) ∈ R
4 | x1, x2 ∈ R}

and 
. W2 = {(x1, 2x1, x2, x1 − x2) ∈ R

4 | x1, x2 ∈ R}

Find 

(a) .W1 + W2 and .W1 ∩ W2. 
(b) .dim (W1 + W2) and .dim (W1 ∩ W2). 

25. Let .V be a finite-dimensional vector space over a field .K and.W1 be a subspace 
of . V . Prove that there exists a subspace .W2 of .V such that .V = W1 ⊕ W2. 

26. Let .V be a vector space over a field .K and .W1,W2, . . . ,Wn be subspaces of . V
with.Wi ∩ Wj = {0} ∀ i /= j and.W1 + W2 + · · · + Wn = V . Is the sum a direct 
sum?
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27. Let .W1 = {A ∈ Mn (K) | Ai j = 0 ∀i ≥ j}, . W2 = {A ∈ Mn (K) | Ai j = 0 ∀
i ≤ j}, and .W3 = {A ∈ Mn (K) | Ai j = 0 ∀ i /= j}. Then show that . Mn (K) =
W1 ⊕ W2 ⊕ W3. 

28. Let 
. W1 = {A ∈ Mn (K) | AT = A}

and 
. W2 = {A ∈ Mn (K) | AT = −A}

Then show that .Mn (K) = W1 ⊕ W2. 

Solved Questions related to this chapter are provided in Chap. 9.



Chapter 3 
Linear Transformations 

In this chapter, we delve deeply into a key concept of linear transformations which 
map between vector spaces in linear algebra. It begins with the definition and key 
properties of linear transformations, emphasizing their significance as they preserve 
vector space operations. Examples such as the differential operator, which maps a 
function to its derivative, and the integral operator, which maps a function to its 
integral, are discussed. Both of these exhibit linearity qualities that are essential in 
calculus and mathematical analysis. The concepts of range spaces and null spaces are 
presented, providing an insight into the possible outputs and dependencies of linear 
transformations. The relationship between linear transformations and matrices is 
illustrated, showing how matrices can be used to represent these transformations 
and for ease of computations. It covers fundamental ideas like projection, rotation, 
reflection, shear, and other transformations that provide helpful insights into the 
geometric manipulation of vectors and shapes in two-dimensional spaces. Invertible 
linear transformations and isomorphism of vector spaces are discussed. The chapter 
also deals with the concept of changing coordinate bases, shedding light on how 
different bases can affect the representation of vectors and linear transformations. 
We further go into linear functionals, emphasizing their importance in dual spaces. 

3.1 Introduction 

In this chapter, we will be discussing functions on vector spaces that preserve the 
structure. This gives us an important class of functions called linear transformations. 
Vaguely, we can say that a linear transformation is a function between two vector 
spaces that preserve algebraic operations. When we discuss linear transformations 
from.R

2 to itself, we could see that the transformation has some interesting geometric 
properties. The term “transformation” just indicates that it transforms the input 
vector to give us an output vector and the term “linear” suggests that 
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(a) all lines must remain lines, without getting curved and 
(b) the origin must remain fixed. That is, the image of the origin must be the origin 

itself. 

These two ideas can be used to verify whether a function is linear or not when a 
transformation is defined from.R

2 to itself. 
To say geometrically that a function is a linear transformation, we must be able 

to say that conditions .(a) and .(b) as mentioned above must be satisfied, which is a 
tedious task. Also, we need a valid strategy to check whether a function defined on 
an arbitrary vector space is a linear transformation or not. To tackle such situations, 
we have the following definition for a linear transformation. 

Definition 3.1 (Linear Transformations) Let  .V and .W be vector spaces over the 
field . K. A linear transformation . T from.V into .W is a function such that 

(a) .T (v1 + v2) = T (v1) + T (v2) for all .v1, v2 ∈ V and 
(b) .T (λv) = λT (v) for all .v ∈ V and .λ ∈ K. 

.(a) is called the additive property and.(b) is called the homogeneity property, both of 
which can be written together as.T (λ1v1 + λ2v2) = λ1T (v1) + λ2T (v2) for. v1, v2 ∈
V and .λ1, λ2 ∈ K. This compact form is called the principle of superposition. A 
linear transformation from.V to itself is called a linear operator. 

Now that we have put forward algebraic conditions to check whether a function 
on a vector space is a linear transformation or not, we can look into some of the 
important examples. Many of the important functions that we use in pure and applied 
mathematics like differentiation and integration in calculus, rotations, reflections, and 
projection in geometry are in fact linear transformations. 

Example 3.1 Let .V = R
2 over the field . R. Define .T : V → V by 

. T (x1, y1) = (2x1 + 3y1, 5x1)

Let.λ ∈ R and.v1 = (x1, y1), v2 = (x2, y2) ∈ V . Then. λv1 + v2 = (λx1 + x2, λy1 +
y2), and 

. T (λv1 + v2) = T (λx1 + x2, λy1 + y2)

= (2(λx1 + x2) + 3(λy1 + y2), 5(λx1 + x2))

= (λ(2x1 + 3y1) + (2x2 + 3y2), λ(5x1) + 5x2)

= λ (2x1 + 3y1, 5x1) + (2x2 + 3y2, 5x2)

= λT (v1) + T (v2)

Therefore . T is a linear operator on . V .
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Fig. 3.1 Observe that the line.y = x is transformed to a curve.y = x2. Thus the above transforma-
tion is not linear 

Fig. 3.2 Observe that the line .y = x is transformed to a line .y = x + 1. But the origin is not 
mapped onto itself. Thus the above transformation is not linear 

Example 3.2 From Fig. 3.1, it is clear that the function .T1 : R2 → R
2 defined by 

.T1(x1, x2) = (x1, x2
1 ) is not a linear transformation. Now let us check the linearity of 

.T1 using Definition 3.1. That is, we have to check whether .T1 satisfies the principle 
of superposition for all vectors in .R

2 or not. Observe that 

. T1(1, 1) + T1(−1, 1) = (0, 2) /= T1((1, 1) + (−1, 1)) = T1(0, 2) = (0, 0)

Thus, our assertion that .T1 is not a linear transformation is confirmed. Similarly, we 
can check whether the function .T2 : R2 → R

2 defined by . T2(x1, x2) = (x1, x1 + 1)
is a linear transformation or not. As 

. T2(1, 1) + T2(−1, 1) = (0, 2) /= T2((1, 1) + (−1, 1)) = T2(0, 2) = (0, 1)

by Definition 3.1, .T2 is not a linear transformation, which we have already observed 
from Fig. 3.2. 

Example 3.3 Let .V = R
n and .W = R

m over the field . R. Define .T : V → W by 
.T (v) = Av, where.A ∈ Mm×n(R) is a fixed matrix. Then, for.v1, v2 ∈ R

n and.λ ∈ R,
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. T (λv1 + v2) = A(λv1 + v2) = λA(v1) + A(v2) = λT (v1) + T (v2)

Therefore . T is a linear transformation from.V to . W . 

Example 3.4 Let .V = Pn(R) and .W = Pn−1(R) over the field . R. Define . T : V →
W by .T (p(x)) = d

dx (p(x)). Then .T is a linear transformation from .V to . W . For  
.p(x), q(x) ∈ Pn(R) and .λ ∈ R, 

. T ((λp + q)(x)) = d

dx
((λp + q)(x))

= d

dx
(λp(x)) + d

dx
(q(x))

= λ
d

dx
(p(x)) + d

dx
(q(x))

= λT (p(x)) + T (q(x))

Therefore . T is a linear transformation from.V to . W . 

Example 3.5 Let .V = Pn−1(R) and .W = Pn(R) over the field . R. Define . T : V →
W by .(T p)(x) = { x

0 p(t)dt . Then .T is a linear transformation from .V to . W . For  
.p(x), q(x) ∈ Pn−1(R) and .λ ∈ R, 

. (T (λp + q)) (x) =
{ x

0
(λp + q)(t)dt = λ

{ x

0
p(t)dt +

{ x

0
q(t)dt = λ(T p)(x) + (T q)(x)

Therefore . T is a linear transformation from.V to . W . 

Example 3.6 Let .V = Mm×n(K) and .W = Mn×m(K) over the field . K. Define 
.T : V → W by .T (A) = AT . Then for .A, B ∈ Mm×n and . λ ∈ K

. T (λA + B) = (λA + B)T = λAT + BT = λT (A) + T (B)

Therefore . T is a linear transformation from.V to . W . 

Example 3.7 Let .V and .W be any two arbitrary vector spaces over a field . K. The  
linear transformation .I : V → V defined by .I (v) = v for all .v ∈ V is called the 
identity transformation. The linear transformation.O : V → W defined by. O(v) = 0
for all .v ∈ V is called the zero transformation. 

Now let us discuss some of the important properties of linear transformations. 

Theorem 3.1 Let . V and . W be vector spaces over the field . K and .T : V → W be a 
function 

(a) If . T is linear, then .T (0) = 0. 
(b) . T is linear if and only if .T (λv1 + v2) = λT (v1) + T (v2) for all .v1, v2 ∈ V and 

.λ ∈ K. 
(c) If . T is linear, then .T (v1 − v2) = T (v1) − T (v2) for all .v1, v2 ∈ V .
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(d) . T is linear if and only if, for.v1, v2, . . . , vn ∈ V and.λ1, λ2, . . . , λn ∈ K, we have 

. T

(
nE

i=1

λivi

)

=
nE

i=1

λi T (vi )

(e) Let .{v1, v2, . . . , vn} be a linearly dependent set in . V , then . {T (v1), T (v2), . . . ,

T (vn)} is a linearly dependent set in . W . 

Proof Suppose that .T : V → W is linear, then 

. T (0) = T (0 + 0) = T (0) + T (0) ⇒ T (0) = 0

Proof of .(b), (c), and .(d) are trivial from the definition of a linear transformation. 
Now let .{v1, v2, . . . , vn} be a linearly dependent set in . V , then there exists at least 
one vector in . V , say .vi such that 

. vi = λ1v1 + · · · + λi−1vi−1 + λi+1vi+1 + · · · + λnvn

where .λ1, . . . , λi−1, λi+1, . . . , λn ∈ K and are not all zero. Then 

. T (vi ) = T (λ1v1 + · · · + λi−1vi−1 + λi+1vi+1 + · · · + λnvn)

= λ1T (v1) + · · · + λi−1T (vi−1) + λi+1T (vi+1) + · · · + λnT (vn)

Therefore .{T (v1), T (v2), . . . , T (vn)} is a linearly dependent set in . W . 

Observe that Theorem 3.1(a) gives a necessary condition, not a sufficient one. 
That is, .T (0) = 0 need not imply that .T is a linear transformation. For example, 
consider .T : R → R such that .T (v) = v2. Clearly, .T (0) = 0. But  

. T (v1 + v2) = (v1 + v2)
2 = v2

1 + v2
2 + 2v1v2 /= v2

1 + v2
2 = T (v1) + T (v2)

That is, . T is not linear. But if .T (0) /= 0, then we can say that. T is not linear..(b) part 
of the above theorem is used to prove that a given function is a linear transformation. 

As linear transformations preserve linear combinations, to describe a linear trans-
formation on a vector space. V , it is enough to identify the images of the basis vectors 
of the domain under the linear transformation. 

Theorem 3.2 Let . V be a finite-dimensional vector space over the field . K with basis 
.{v1, v2, . . . , vn}. Let. W be a vector space over the same field. K and. {w1, w2, . . . , wn}
be an arbitrary set of vectors in. W , then there exists exactly one linear transformation 
.T : V → W such that .T (vi ) = wi , where .i = 1, 2, . . . , n. 

Proof Let .V be a finite-dimensional vector space over the field .K with basis 
.{v1, v2, . . . , vn}. Then for each .v ∈ V , there exist scalars .λ1, λ2, . . . , λn ∈ K such 
that .v = λ1v1 + λ2v2 + · · · + λnvn . Now define
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. T (v) = λ1w1 + λ2w2 + · · · + λnwn

for each .v ∈ V . Then .T is well defined and .T (vi ) = wi , for all .i = 1, 2, . . . , n. 
Now we have to prove  that  .T is a linear transformation. Take .u, v ∈ V . Then 
.u = μ1v1 + μ2v2 + · · · + μnvn and.v = ξ1v1 + ξ2v2 + · · · + ξnvn for some scalars 
.μ1, μ2, . . . , μn, ξ1, ξ2, . . . , ξn ∈ K. Now  for .λ ∈ K, 

. T (λu + v) = T (λ (μ1v1 + μ2v2 + · · · + μnvn) + ξ1v1 + ξ2v2 + · · · + ξnvn)

= T ((λμ1 + ξ1) v1 + (λμ2 + ξ2) v2 + · · · + (λμn + ξn) vn)

= (λμ1 + ξ1) w1 + (λμ2 + ξ2) w2 + · · · + (λμn + ξn) wn

= λ (μ1w1 + μ2w2 + · · · + μnwn) + ξ1w1 + ξ2w2 + · · · + ξnwn

= λT (u) + T (v)

Therefore . T is a linear transformation. Now suppose that there exists another linear 
transformation.T̃ : V → W such that.T̃ (vi ) = wi , where.i = 1, 2, . . . , n. Since. T̃ is 
linear, for each vector .v = λ1v1 + λ2v2 + · · · + λnvn ∈ V , 

. T̃ (v) = T̃ (λ1v1 + λ2v2 + · · · + λnvn)

= λ1T̃ (v1) + λ2T̃ (v2) + · · · + λn T̃ (vn)

= λ1w1 + λ2w2 + · · · + λnwn

= T (v)

That is, there exists exactly one linear transformation.T : V → W such that. T (vi ) =
wi , for all .i = 1, 2, . . . , n. 

Example 3.8 Let.V = R
2 and.W = R

3. Let.T : V → W be a linear transformation 
such that .T (1, 0) = (2, 1, 0) and.T (0, 1) = (1, 0, 3). Since.{(1, 0), (0, 1)} is a basis 
for.R2, from Theorem 3.2, there exists only one such. T . To find. T , take.(x1, y1) ∈ R

2. 
Since 

. (x1, y1) = x1(1, 0) + y1(0, 1)

we get 

. T (x1, y1) = x1T (1, 0) + y1T (0, 1)

= x1(2, 1, 0) + y1(1, 0, 3)

= (2x1 + y1, x1, 3y1)

In Example 3.3, we have seen that .T (v) = Av is a linear map from .Rn to .Rm , 
where .A ∈ Mm×n(R) is a fixed matrix. In particular, for .n = 2 and .m = 3, if we  

take .A =
⎡

⎣
2 1
1 0
0 3

⎤

⎦, we can say that .v → Av is a linear transformation. We can rep-

resent this linear transformation by . T̃ , i.e., .T̃ (v) = Av. What is the speciality of
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this transformation? Is there any similarity between the transformations .T̃ and the 
transformation . T defined in Example 3.8? 

We can observe that 

. T̃

(|
1
0

|)

=
⎡

⎣
2 1
1 0
0 3

⎤

⎦
|
1
0

|

=
⎡

⎣
2
1
0

⎤

⎦ and T̃

(|
0
1

|)

=
⎡

⎣
2 1
1 0
0 3

⎤

⎦
|
0
1

|

=
⎡

⎣
1
0
3

⎤

⎦

Then by Theorem 3.2, we can say that. T and. T̃ are the same. This is an interesting fact, 
isn’t it? This relation between the set of linear transformations from an. n dimensional 
space to an .m dimensional space and the set of all .m × n real matrices is worth 
exploring, and we will be studying this relation in detail in this chapter. 

3.2 Range Space and Null Space 

Considering that a linear transformation from V to W is a function that preserves 
structure, a linear transformation has two significant sets associated with it: the null 
set and the range set. In fact, they are subspaces of .V and.W respectively. The range 
space of a linear transformation consists of all possible output vectors that can be 
obtained by applying the transformation to input vectors. It represents the span of 
the transformed vectors in the co-domain. On the other hand, the null space of a 
linear transformation comprises all input vectors that are mapped to the zero vector 
in the co-domain, forming a subspace of the domain. Together, these spaces provide 
valuable insights into the behavior and properties of the linear transformation. In this 
section, we will discuss in detail these subspaces and some of the important results 
associated. 

Definition 3.2 (Range set and Null set) Let. V and.W be vector spaces over the field 
. K, and let .T : V → W be linear, then range set of . T , denoted by .R(T ), is a subset 
of .W consisting of all images of vectors in .V under . T . That is, 

. R(T ) = {T (v) | v ∈ V }

and the null set or kernel of. T , denoted by.N(T ), is the set of all vectors.v ∈ V such 
that .T (v) = 0. That is, 

. N(T ) = {v ∈ V | T (v) = 0}

Consider the following example. We can observe some interesting facts about the 
range set and null set associated with a linear transformation. 

Example 3.9 Consider a function .T : R2 → R
2 defined by 

.T (x1, x2) = (x1 − x2, x2 − x1)
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Fig. 3.3 Both range set and null set of . T ; plotted as (a) and  (b) respectively are straight lines 
passing through origin. Thus both.R(T ) and.N(T ) are subspaces of.R2 for the given. T

Clearly . T is a linear transformation (Verify). Now let us find the range set of . T . By  
definition, 

. R(T ) = {
T (x1, x2) | (x1, x2) ∈ R

2
} = {(x1 − x2, x2 − x1) | x1, x2 ∈ R}

which is the straight line .y = −x . And the null set of . T is given by 

. N(T ) = {
(x1, x2) ∈ R

2 | T (x1, x2) = 0
}

= {
(x1, x2) ∈ R

2 | (x1 − x2, x2 − x1) = (0, 0)
}

which is the straight line .y = x (Fig. 3.3). 
One of the interesting facts to observe here is that both .R(T ) and .N(T ) are 

subspaces of .R2 for the given . T , as we have seen in Fig. 3.3. Will this be true for 
every linear transformation.T : V → W , where. V and.W are any two arbitrary vector 
spaces? That is, will .R(T ) be a subspace of .W and .N(T ) be a subspace of . V ? The  
following theorem will give us an answer. 

Another interesting fact to observe here is that the lines .y = x and .y = −x are 
perpendicular to each other. So far, we haven’t defined the tools to analyze this fact. 
We will study this interesting observation in detail in Chap. 5. 

In the next theorem we will prove that if. T is a linear transformation between two 
vector spaces. V and. W , then.R(T ) and.N(T ) are subspaces of.W and. V , respectively. 

Theorem 3.3 Let . V and . W be vector spaces over the field . K, and let . T : V →
W be a linear transformation. Then .N(T ) and .R(T ) are subspaces of . V and . W
respectively.
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Proof Let .T : V → W be a linear transformation. We have . N(T ) =
{v ∈ V | T (v) = 0}. Clearly, .N(T ) ⊆ V . Now  for  .v1, v2 ∈ N(T ) and .λ ∈ K, we  
have 

. T (λv1 + v2) = λT (v1) + T (v2) = 0

Therefore .λv1 + v2 ∈ N(T ) for all .v1, v2 ∈ N(T ) and .λ ∈ K. Hence .N(T ) is a 
subspace of . V . 

Also we have .R(T ) = {T (v) | v ∈ V }. Clearly, .R(T ) ⊆ W . As  .R(T ) is range 
space, for.w1, w2 ∈ R(T ) there exists.v1, v2 ∈ V such that.T (v1) = w1 and. T (v2) =
w2. Since .v1, v2 ∈ V and .V is a vector space over the field . K, .λv1 + v2 ∈ V , where 
.λ ∈ K. Then 

. T (λv1 + v2) = λT (v1) + (v2) = λw1 + w2 ∈ R(T )

Hence .R(T ) is a subspace of . W . 

If .N(T ) and .R(T ) are finite dimensional, the dimensions of .N(T ) and .R(T ) are 
called Nullity.(T ) (read as nullity of. T ) and Rank.(T ) (read as rank of. T ), respectively. 
Now, let . T be a linear transformation from a finite-dimensional vector space .V to a 
vector space . W . From Theorem 3.2, it is clear that, if we know the images of basis 
elements of . V , it is easy to find .R(T ). If .B = {v1, v2, . . . , vn} is a basis for . V , then 

. R(T ) = span (T (B)) = span{T (v1), T (v2), . . . , T (vn)}

We can also conclude that, if .dim(V ) = n, then Rank.(T ) ≤ n. 

Remark 3.1 Let. A be an.m × n matrix with entries from the field. K. We have seen 
that the space spanned by the rows of. A is a subspace of.Kn called row space of. A and 
the space spanned by the columns of. A is a subspace of.Km , called the column space 
of . A. The dimensions of the row space and column space are called the row rank 
and column rank of . A, respectively. We will later show that row rank.(A)=column 
rank.(A) for any .m × n matrix . A. The column space of a matrix . A is also known as 
the image or range of . A, denoted by .I m(A) or .R(A)Col(A). That is, 

. I m(A) = {Ax | x ∈ K
n}

and the null space or kernel of . A, denoted by .K er A or .N(A), is given by 

. K er(A) = {x ∈ K
n | Ax = 0}

Now let us discuss an interesting example. The relation between linear transfor-
mations and matrices will become more evident in the following one. 

Example 3.10 Consider the linear transformation .T : R2 → R
3 in Example 3.8 

defined by .T (x1, y1) = (2x1 + y1, x1, 3y1). Then the range space of . T is given by 

.R(T ) = span (T (B)) = span{T (1, 0), T (0, 1)} = span{(2, 1, 0), (1, 0, 3)}
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As the vectors .(2, 1, 0) and .(1, 0, 3) are linearly independent, .Rank(T ) = 2. Now  
the null space of . T is 

. N(T ) = {x ∈ R
2 | T (x) = 0} = {x = (x1, y1) ∈ R

2 | (2x1 + y1, x1, 3y1) = (0, 0, 0)} = {(0, 0)}

Thus Nullity.(T ) = 0. Now, consider the matrix .A =
⎡

⎣
2 1
1 0
0 3

⎤

⎦. We can observe that 

the column space of . A is the span of .{(2, 1, 0), (1, 0, 3)} and kernel of . A is .{(0, 0)}. 
Does there exist any relation between the range space of a matrix and the range space 
of the corresponding linear transformation? 

Example 3.11 Let.V = P3(R) and.W = P2(R). Define.T : V → W by. T (p(x)) =
d

dx (p(x)). Consider the basis .B = {1, x, x2, x3} for . V . Then the range space of . T is 
given by 

. R(T ) = span (T (B)) = span{T (1), T (x), T (x2), T (x3)} = span{1, 2x, 3x2}

Therefore .Rank(T ) = 3 and 

. N(T ) =
{

p(x) ∈ P3(R) | d

dx
(p(x)) = 0

}

= {constant polynomials}

Hence Nullity.(T ) = 1. 

Example 3.12 Let .V = Mm×n(K) and .W = Mn×m(K) over the field . K. Define 
.T : V → W by .T (A) = AT . In Example 3.6, we have shown that .T is a linear 
transformation. Since for each .A ∈ Mn×m(K), there exists .AT ∈ Mm×n(K) such 
that .T

(
AT

) = (
AT

)T = A, .R(T ) = W and hence 

. Rank(T ) = dim(W ) = mn

Now 

. T (A) = 0 ⇒ AT = 0 ⇒ A = 0

Therefore .N(T ) = {0} and hence .Nulli t y(T ) = 0. 

Example 3.13 Let.V and.W be any two arbitrary vector spaces over a field. K. Con-
sider the identity transformation and zero transformation defined as in Example 3.7. 
Then .R(I ) = V and .N(I ) = {0}. Also .R(O) = {0} and .N(O) = V . 

Observe that in each of the above examples, if you consider the sum of rank and 
nullity of respective linear transformations, you will get the dimension of . V . Is this  
true in general? Now, we will prove one of the important results in the theory of 
linear transformations on a finite-dimensional vector space which will answer this 
question.
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Theorem 3.4 (Rank-Nullity Theorem) Let . V be a finite-dimensional vector space 
over a field . K and let . W be a vector space over the same field . K. Let . T : V → W
be a linear transformation, then 

. Nulli t y(T ) + Rank(T ) = dim(V )

Proof Let .V and .W be a finite-dimensional vector spaces over the field . K, and 
let . T be a linear transformation from.V to . W . Let .N(T ) be the null space of . T . As  
.N(T ) is a subspace of. V and. V is finite dimensional, by Theorem 2.17,.N(T ) is finite 
dimensional and hence it has a finite basis, say.{v1, v2, . . . , vk}. Since. {v1, v2, . . . , vk}
is a linearly independent set in . V , then by Theorem 2.14, it can be extended to a 
basis .B = {v1, v2, . . . , vn} of . V . We know that 

. R(T ) = span{T (v1), T (v2), . . . , T (vn)}

But as .T (v1) = T (v2) = · · · = T (vk) = 0, 

. R(T ) = span{T (vk+1), T (vk+2), . . . , T (vn)}

Now we will prove that .{T (vk+1), T (vk+2), . . . , T (vn)} is linearly independent. Let 
.λk+1, λk+2, . . . , λn ∈ K be such that 

. λk+1T (vk+1) + λk+2T (vk+2) + · · · + λnT (vn) = 0

which implies 
. T (λk+1vk+1 + λk+2vk+2 + · · · + λnvn) = 0

That is,.λk+1vk+1 + λk+2vk+2 + · · · + λnvn ∈ N(T ). Since.{v1, v2, . . . , vk} is a basis 
of .N(T ), there exists .λ1, λ2, . . . , λk ∈ K such that 

. λk+1vk+1 + λk+2vk+2 + · · · + λnvn = λ1v1 + λ2v2 + · · · + λkvk

Since .B is a basis for . V , this implies that .λi = 0 for all .i = 1, 2, . . . , n. Therefore 
.{T (vk+1), T (vk+2), . . . , T (vn)} is linearly independent and hence is a basis of.R(T ). 
Therefore Rank.(T ) = n − k. Now  

. Nulli t y(T ) + Rank(T ) = k + n − k = n = dim(V )

Hence the proof. 

We can verifyRank-Nullity Theorem for the linear transformations given in Exam-
ples 3.10–3.13. 

Corollary 3.1 Let . V and . W be finite-dimensional vector spaces over a field . K with 
.dim(V ) < dim(W ), then no linear transformation .T : V → W is onto.
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Proof Let .V and .W be finite-dimensional vector spaces over a field .K with 
.dim(V ) < dim(W ). By  Rank-Nullity theorem, we have  

. Rank(T ) = dim(V ) − Nulli t y(T ) ≤ dim(V ) < dim(W )

Therefore . T cannot be onto. 

Interestingly, the one-oneness of a linear transformation is closely related to its 
null space. The relation is explained in the following theorem. 

Theorem 3.5 Let . V and . W be vector spaces over a field . K and let .T : V → W be 
a linear transformation. Then . T is one-one if and only if .N(T ) = {0}. 
Proof Let .V and .W be vector spaces over a field .K and let .T : V → W be a linear 
transformation. Suppose that .T is one-one. That is, .T (v1) = T (v2) ⇒ v1 = v2 for 
all .v1, v2 ∈ V . Let .v ∈ N(T ). Then .T (v) = 0 = T (0) ⇒ v = 0. 

Conversely suppose that .N(T ) = {0}. Now  . T (v1) = T (v2) ⇒ T (v1 − v2) =
0 ⇒ v1 − v2 ∈ N(T ) = {0} ⇒ v1 = v2. Hence, .T is one-one. Therefore .T is one-
one if and only if .N(T ) = {0}. 

This gives an easy way to check whether a linear transformation is one-one or 
not. Also consider the following corollary, which is an immediate consequence of 
Rank-Nullity Theorem and the above theorem. 

Corollary 3.2 Let . V and . W be finite-dimensional subspaces over a field . K with 
.dim(V ) > dim(W ), then no linear transformation .T : V → W is one-one. 

Proof Let .V and.W be finite-dimensional subspaces over a field .K with. dim(V ) >

dim(W ). Since .R(T ) is a subspace of . W , we have  .Rank(T ) ≤ dim(W ). Now  by  
Rank-Nullity theorem 

. Nulli t y(T ) = dim(V ) − Rank(T )

≥ dim(V ) − dim(W )

> 0

Therefore . T cannot be one-one. 

Example 3.14 Observe that, by Theorem 3.5, the linear transformations defined in 
Examples 3.10 and 3.12 are one-one, whereas the linear transformation defined in 
Example 3.11 is not one-one. Also observe that the identity transformation is one-
one, but zero transformation is not one-one. 

Example 3.15 Let.V = M2×2(R) and.W = P2[a, b]. For a matrix. A =
|

a11 a12

a21 a22

|

∈
M2×2(R), define 

.T (A) = a11 + (a12 + a21) x + a22x2
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Consider the standard ordered basis, .{E11, E12, E21, E22} of .M2×2(R) as defined in 
Example 2.18. Then, we have 

. T (E11) = 1 T (E12) = T (E21) = x T (E22) = x2

Therefore .R(T ) = span{1, x, x2} = P2[a, b] and hence .Rank(T ) = 3. Then by 
Rank - Nullity Theorem, .Nulli t y(T ) = 4 − 3 = 1. Thus . T is not one-one. 

We have seen that if the dimension of the domain.V is greater than the dimension 
of the co-domain . W , there does not exist a one-one linear transformation from.V to 
. W . We have also seen that if the dimension of .V is less than dimension of . W , there 
does not exist an onto linear map from .V to . W . But, if the linear transformation is 
defined between two vector spaces of equal dimension, which is finite, there is no 
need to distinguish between one-one functions and onto functions. The following 
theorem states this fact. 

Theorem 3.6 Let . V and . W be vector spaces over a field . K with equal dimen-
sion(finite), and let .T : V → W be a linear transformation. Then . T is one-one if 
and only if . T is onto. 

Proof Let .V and .W be vector spaces over a field .K with .dim(V ) = dim(W ), and 
let .T : V → W be a linear transformation. Suppose that . T is one-one. Then by the 
above theorem .N(T ) = {0} and hence Nullity.(T ) = 0. By  Rank-Nullity theorem, 
.Rank(T ) = dim(V ) = dim(W ). That is, .R(T ) is a subspace of .V with dimension 
same as that of . W . Therefore .R(T ) = W and hence . T is onto. 

Conversely, suppose that .T is onto. Then .R(T ) = W and hence . Rank(T ) =
dim(W ) = dim(V ). Again  by  Rank-Nullity theorem, .N(T ) = {0} and hence Nul-
lity.(T ) = 0. Hence, . T is one-one. 

We have seen that a linear transformation maps linearly dependent sets to linearly 
dependent sets. But for a linearly independent set, this is not necessarily true. For 
example, let .T : R2 → R

2 be defined by.T (x1, y1) = (x1, 0). Consider the standard 
ordered basis, .B = {(1, 0), (0, 1)}, for  .R2. Then .T (1, 0) = (1, 0) and . T (0, 1) =
(0, 0). Clearly, .T (B) = {(1, 0), (0, 0)} is a linearly dependent set. Thus a linear 
transformation may map a linearly independent set to a linearly dependent set. 

Theorem 3.7 Let . V and . W be vector spaces over a field . K. Let .T : V → W be a 
linear transformation which is one-one. Then a subset . S of . V is linearly independent 
if and only if .T (S) is linearly independent. 

Proof Let .V and .W be vector spaces over a field .K and .T : V → W be a one-
one linear transformation. Then .N(T ) = {0}. Consider .S = {v1, v2, . . . , vn} ⊆ V . 
Suppose that . S is linearly independent. Let .λ1, λ2, . . . , λn ∈ K be such that 

.λ1T (v1) + λ2T (v2) + · · · + λnT (vn) = 0
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which implies 
. T (λ1v1 + λ2v2 + · · · + λnvn) = 0

That is, .λ1v1 + λ2v2 + · · · + λnvn ∈ N(T ) = {0}. Since . S is linearly independent, 
this implies that .λ1 = λ2 = · · · = λn = 0. 

Conversely, suppose that .T (S) = {T (v1), T (v2), . . . , T (vn)} is linearly indepen-
dent. If . S is linearly dependent, then there exist scalars .λ1, λ2, . . . , λn ∈ K (not all 
zero) such that 

. λ1v1 + λ2v2 + · · · + λnvn = 0

Then 
. T (λ1v1 + λ2v2 + · · · + λnvn) = T (0) = 0

That is, .λ1T (v1) + λ2T (v2) + · · · + λnT (vn) = 0, which is a contradiction, since 
.T (S) is linearly independent. Therefore . S is linearly independent. 

Now, we will prove that the column rank of a matrix is equal to its row rank and 
we can simply call it the rank of the matrix. 

Theorem 3.8 If .A ∈ Mn×n(K), then .column rank(A) = row rank(A). 

Proof Define.T : Rn → R
m by.T (v) = Av. In Example 3.3, we have seen that . T is 

a linear transformation. Then, the range set of .T is the set of all .b ∈ R
m such that 

.Ax = b, where.x =
⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦. If.A1, A2, . . . , An denote the columns of. A, we can write 

. Ax = x1A1 + x2 A2 + · · · + xn An

This implies that the range space of .T is spanned by the columns of . A. In other 
words, .R(T ) = I m(A). Thus, 

. Rank(T ) = column rank(A)

Also, observe that .N(T ) = K er(A). Then by Rank-Nullity Theorem, 

. dim (K er(A)) + column rank(A) = n

From Sect. 1.7, we have  

. dim (K er(A)) = n − row rank(A)

Thus, we have .column rank(A) = row rank(A).
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Earlier, we have observed some intriguing similarities between the matrix. 

⎡

⎣
2 1
1 0
0 3

⎤

⎦

and the linear transformation .T : R2 → R
3 defined by . T (x1, x2)=(2x1 + y1,

x1, 3y1), right? But we didn’t have any clue how a relation can be drawn between 
this matrix and the linear transformation. T . The next section will give us a good idea 
regarding this relation. 

3.3 Matrix Representation of a Linear Transformation 

Let .V be an . n dimensional vector space over a field .K and .W be an .m dimensional 
vector space over. K. Let.B1 = {v1, v2, . . . , vn} and.B2 = {w1, w2, . . . , wm} be bases 
of .V and . W , respectively. Now for each .v ∈ V , there exists a unique set of scalars 
.λ1, λ2, . . . , λn such that 

. v = λ1v1 + λ2v2 + · · · + λnvn

Then the matrix.[v]B1 =
⎡

⎢
⎣

λ1
...

λn

⎤

⎥
⎦

n×1

is called the coordinate representation of the vector 

. v with respect to the basis .B1. Let  . T be a linear transformation from .V to . W . Now  

.T (v1), T (v2), . . . , T (vn) are all vectors in .W and each can be expressed as a linear 
combination of basis vectors in .B2. In particular, 

. T (v1) = a11w1 + a21w2 + · · · + am1wm

for some scalars .a11, a21, . . . , am1. In general 

.T (v j ) = a1 j w1 + a2 j w2 + · · · + amj wm =
mE

i=1

ai j wi (3.1) 

for some scalars.a1 j , a2 j , . . . , amj ( j = 1, 2, . . . , m). Then the matrix representation 
of . T is 

. [T ]B2
B1

=

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤

⎥
⎥
⎥
⎦

m×n

Now let .v = λ1v1 + λ2v2 + · · · + λnvn ∈ V . Then
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. T (v) = λ1T (v1) + λ2T (v2) + · · · + λnT (vn)

= λ1

(
mE

i=1

ai1wi

)

+ λ2

(
mE

i=1

ai2wi

)

+ · · · + λn

(
mE

i=1

ainwi

)

=
mE

i=1

(ai1λ1 + ai2λ2 + · · · + ainλn) wi

Therefore 

. [T v]B2
=

⎡

⎢
⎢
⎢
⎣

a11λ1 + a12λ2 + · · · + a1nλn

a21λ1 + a22λ2 + · · · + a2nλn
...

am1λ1 + am2λ2 + · · · + amnλn

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

λ1

λ2
...

λn

⎤

⎥
⎥
⎥
⎦

= [T ]B2
B1

[v]B1

Example 3.16 Consider the linear transformation .T : R2 → R
3 in Example 3.8 

defined by .T (x1, y1) = (2x1 + y1, x1, 3y1). Consider the standard ordered bases 
.B1 = {(1, 0), (0, 1)} and .B2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for .R2 and .R

3, respec-
tively. Then 

. T (1, 0) = (2, 1, 0) = 2(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1)

T (0, 1) = (1, 0, 3) = 1(1, 0, 0) + 0(0, 1, 0) + 3(0, 0, 1)

Therefore the matrix of the linear transformation is 

. [T ]B2
B1

=
⎡

⎣
2 1
1 0
0 3

⎤

⎦

Consider the element.v1 = (2, 5) ∈ R
2. Then.T (v1) = (9, 2, 15).Consider the coor-

dinate representation for both.v1 and.T (v1). We have.[v1]B1 =
|
2
5

|

and. [T (v1)]B2 =
⎡

⎣
9
2
15

⎤

⎦. Then .[T ]B2
B1

[v1]B1 =
⎡

⎣
2 1
1 0
0 3

⎤

⎦
|
2
5

|

=
⎡

⎣
9
2
15

⎤

⎦ = [T (v1)]B2 . Similarly, for . v2 =

(1,−1) ∈ R
2, we have.T (v2) = (1, 1,−3). The coordinate representations for both
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.v2 and .T (v2) are .[v2]B1 =
|
1

−1

|

and .[T (v2)]B2 =
⎡

⎣
1
1

−3

⎤

⎦, respectively. Then 

.[T ]B2
B1

[v2]B1 =
⎡

⎣
2 1
1 0
0 3

⎤

⎦
|
1

−1

|

=
⎡

⎣
1
1

−3

⎤

⎦ = [T (v2)]B2 . 

Remark 3.2 Let .T : Rn → R
m be a linear transformation. Then the matrix repre-

sentation of .T is given by .[T ]B2
B1

=
⎡

⎣
| |

T (e1) . . . T (en)

| |

⎤

⎦ where .B1 and .B2 are the 

standard ordered bases for .Rn and .R
m , respectively. 

Example 3.17 Let.V = P3(R) and.W = P2(R). Define.T : V → W by. (T p)(x) =
d

dx (p(x)). Consider the bases .B1 = {1, x, x2, x3} and.B2 = {1, x, x2} for .V and. W , 
respectively: 

. T (1) = 0 = 0.1 + 0x + 0x2

T (x) = 1 = 1.1 + 0x + 0x2

T (x2) = 2x = 0.1 + 2x + 0x2

T (x3) = 3x2 = 0.1 + 0x + 3x2

Therefore the matrix of the linear transformation is 

. [T ]B2
B1

=
⎡

⎣
0 1 0 0
0 0 2 0
0 0 0 3

⎤

⎦

Now consider.v = 3x3 + 2x2 ∈ V . Then.T (v) = 9x2 + 4x . Consider the coordinate 

representation for both . v and .T (v). We have  .[v]B1 =

⎡

⎢
⎢
⎣

0
0
2
3

⎤

⎥
⎥
⎦ and .[T (v)]B2 =

⎡

⎣
0
4
9

⎤

⎦. 

Then .[T ]B2
B1

[v]B1 =
⎡

⎣
0 1 0 0
0 0 2 0
0 0 0 3

⎤

⎦

⎡

⎢
⎢
⎣

0
0
2
3

⎤

⎥
⎥
⎦ =

⎡

⎣
0
4
9

⎤

⎦ = [T (v)]B2 . 

Example 3.18 Let.V = R
2 and.W = P2[a, b]. Define.T : V → W by. T (α1, α2) =

2α1x2 + (α1 + α2)x + 3α2 (verify that .T is a linear transformation). Consider the 
bases .B1 = {(1, 1), (1,−1)} and .B2 = {1, x, x2} for .V and . W , respectively: 

.T (1, 1) = 2x2 + 2x + 3 = 3.1 + 2x + 2x2

T (1,−1) = 2x2 − 3 = (−3).1 + 0x + 2x2
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Therefore the matrix of the linear transformation is 

. [T ]B2
B1

=
⎡

⎣
3 −3
2 0
2 2

⎤

⎦

Consider.v = (5, 6) ∈ R
2. Then.T (v) = 10x2 + 11x + 18. Consider the coordinate 

representation for both . v and .T (v). We have  .[v]B1 =
| 11

2−1
2

|

and .[T (v)]B2 =
⎡

⎣
18
11
10

⎤

⎦. 

Then .[T ]B2
B1

[v]B1 =
⎡

⎣
3 −3
2 0
2 2

⎤

⎦
| 11

2−1
2

|

=
⎡

⎣
18
11
10

⎤

⎦ = [T (v)]B2 . 

Now that we have got a flavor of the relation between matrices and linear trans-
formations, let us discuss a bit the geometry of linear transformations. It will be easy 
to visualize the transformation, if it is defined on .R

2 or .R3. 

Geometry of Linear Transformations on . R2

In the realm of linear transformations in .R2, geometry plays a central role, serving 
as the primary framework for understanding how these transformations reshape the 
fundamental properties of points, lines, and shapes within the two-dimensional plane. 
For instance, rotations can change the orientation of objects, scaling can stretch or 
shrink them, and reflections can flip them across lines of symmetry. Linear transfor-
mations can also introduce shearing effects or map points to new locations entirely. 
Understanding the geometry of these transformations is crucial for applications in 
various fields of science and engineering, as it enables us to model and manipulate 
objects and phenomena in a mathematically rigorous manner. In this section, we will 
discuss the geometrical aspects of linear transformations in .R

2. 

1. Projection: Consider the linear transformations .T1, T2 : R2 → R
2 defined by 

. T1(x1, x2) = (x1, 0) and T2(x1, x2) = (0, x2)

The matrix representation of .T1 and .T2 with respect to standard ordered basis . B is 

. [T1]B =
|
1 0
0 0

|

and [T2]B =
|
0 0
0 1

|

Then .T1 is called projection to .x− axis and .T2 is called projection to .y− axis 
(Figs. 3.4).
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Fig. 3.4 Image of the shaded area under. a the map.T1 and. b the map.T2 respectively 

Fig. 3.5 . a shaded area . b image under the map .T3 and . c image under the map . T4(.λ = 1 in both 
cases) 

Fig. 3.6 . a shaded area and. b image of the shaded area when.θ = 45◦
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2. Shear: Consider the linear transformation .T3, T4 : R2 → R
2 defined by 

. T3(x1, x2) = (x1 + λx2, x2) andT4(x1, x2) = (x1, x1 + λx2)

where .λ ∈ R. Then .T1 and .T2 are called horizontal shear and vertical shear, respec-
tively (Fig. 3.5). 

3. Rotation: Consider the linear transformation defined by 

. Tθ (x1, x2) = (x1cos θ − x2sin θ, x1sin θ + x2cos θ)

Then.Tθ rotates every vector .(x1, x2) counter clockwise by. θ◦. The matrix represen-

tation of .Tθ is the matrix .

|
cos θ −sin θ

sin θ cos θ

|

(Fig. 3.6). 

Remark 3.3 a. .
|

cos θ −sin θ

sin θ cos θ

|n

= .

|
cos nθ −sin nθ

sin nθ cos nθ

|

for every positive integer 

.n ∈ Z. 
b. The basic rotation matrices in .R3 which rotates the vectors by an angle . θ about 

the .x, y, z axes in the clockwise directions are 

. Rx =
⎡

⎣
1 0 0
0 cos θ −sin θ

0 sin θ cos θ

⎤

⎦ , Ry =
⎡

⎣
cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ

⎤

⎦ ,

. Rz =
⎡

⎣
cos θ −sin θ 0
sin θ cos θ 0
0 0 1

⎤

⎦

4. Reflection: Consider the linear transformation defined by 

. T̃θ (x1, x2) = (x1cos 2θ + x2sin 2θ, x1sin 2θ − x2cos 2θ)

Then .T̃θ reflects every vector .(x1, x2) with respect to a line which makes an angle 
.θ◦ in the positive direction of .x−axis. The matrix representation of .T̃θ is the matrix 

.

|
cos 2θ sin 2θ
sin 2θ −cos 2θ

|

. For example the reflection matrix with respect to.x - axis is given 

by .

|
1 0
0 −1

|

, and the reflection matrix with respect to .y - axis is given by . 

|−1 0
0 1

|

(Fig. 3.7). 

5. Scaling and Contraction: Consider the linear transformation . T : R2 → R
2

defined by .T (x1, x2) = λ(x1, x2), where .λ ∈ R. Then .T is called scaling if . λ > 1
and is contraction if .0 < λ < 1 (Fig. 3.8).



3.3 Matrix Representation of a Linear Transformation 99

Fig. 3.7 a shaded area. b reflection of the shaded area with respect to.x-axis and. c reflection of the 
shaded area with respect to.y-axis 

Fig. 3.8 . a shaded area . b image of shaded portion under .T when .λ = 2 and . c image of shaded 
portion under. T when.λ = 1

2
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3.4 Algebra of Linear Transformations 

In this section, we will study vector space structure inherited by the set of all linear 
transformations on a vector space in detail. We will define addition and scalar mul-
tiplication in the set of all linear transformations from .V to .W as in the following 
theorem. Later, we will also prove that the set of all linear transformations from . V
to .W forms a vector space with respect to these operations. 

Theorem 3.9 Let. V and. W be vector spaces over the field. K. Let. T1 and. T2 be linear 
transformations from . V into . W . The function .(T1 + T2) defined by 

. (T1 + T2)(v) = T1(v) + T2(v)

is a linear transformation from . V into . W . If .ξ ∈ K, the function .(ξT ) defined by 
.(ξT )(v) = ξ (T (v)) is a linear transformation from . V into . W . 

Proof Let .v1, v2 ∈ V and .λ ∈ K. Then since .T1 and .T2 are linear transformations 
from.V into . W , 

. (T1 + T2)(λv1 + v2) = T1(λv1 + v2) + T2(λv1 + v2)

= λT1(v1) + T1(v2) + λT2(v1) + T2(v2)

= λ(T1(v1) + T2(v1)) + T1(v2) + T2(v2)

= λ(T1 + T2)(v1) + (T1 + T2)(v2)

Therefore.(T1 + T2) is a linear transformation. Now for any linear transformation. T
from.V into .W and .ξ ∈ K, 

. (ξT )(λv1 + v2) = ξ (T (λv1 + v2))

= ξ (λT (v1) + T (v2))

= (ξλ)T (v1) + ξT (v2)

= λ(ξT )(v1) + (ξT )(v2)

Therefore .ξT is a linear transformation from.V into . W . 

We have shown that a linear transformation can be represented by a matrix. Now 
let us discuss the relation between the matrices of the linear transformation . T1 + T2

with the matrices of the linear transformation.T1 and. T2. The following theorem also 
discusses the relation between the matrices of the linear transformations .ξT and . T , 
where.ξ ∈ K. We are slowly establishing a relationship between the collection of all 
linear transformations from an . n dimensional vector space .V to an .m dimensional 
vector space .W and .Mm×n(K). 

Theorem 3.10 Let . V and . W be finite-dimensional vector spaces over the field . K

with ordered bases . B1 and . B2 respectively, and let .T1, T2 : V → W be linear trans-
formations. Then
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(a) .[T1 + T2]
B2
B1

= [T1]
B2
B1

+ [T2]
B2
B1

and 

(b) .[λT ]B2
B1

= λ [T ]B2
B1

for all .λ ∈ K. 

Proof Let. V and.W be finite-dimensional vector spaces over the field. Kwith ordered 
bases .B1 = {v1, v2, . . . , vn} and .B2 = {w1, w2, . . . , wm}, respectively. 
(a) Let .T1, T2 : V → W be linear transformations. Then there exist scalars . ai j

and .bi j , where .1 ≤ i ≤ m and .1 ≤ j ≤ n such that .T1(v j ) = Em
i=1 ai j wi and 

.T2(v j ) = Em
i=1 bi j wi . Then 

. (T1 + T2)(v j ) = T1(v j ) + T2(v j ) =
mE

i=1

ai j wi +
mE

i=1

bi j wi =
mE

i=1

(
ai j + bi j

)
wi

Therefore 

. [T1 + T2]
B2
B1

=
⎡

⎢
⎣

a11 + b11 . . . a1n + b1n
...

. . .
...

am1 + bm1 . . . amn + bmn

⎤

⎥
⎦

=
⎡

⎢
⎣

a11 . . . a1n
...

. . .
...

am1 . . . amn

⎤

⎥
⎦ +

⎡

⎢
⎣

b11 . . . b1n
...

. . .
...

bm1 . . . bmn

⎤

⎥
⎦

= [T1]
B2
B1

+ [T2]
B2
B1

(b) Now consider .λT : V → W for .λ ∈ K. Since .(λT )(v j ) = λ
(
T (v j )

)
and. T is a 

linear transformation from. V to. W , there exist scalars.ai j , where.1 ≤ i ≤ m and 
.1 ≤ j ≤ n such that 

. (λT )(v j ) = λ
(
T (v j )

) = λ

(
mE

i=1

ai j wi

)

=
mE

i=1

λai j wi

Then 

. [λT ]B2
B1

=
⎡

⎢
⎣

λa11 . . . λa1n
...

. . .
...

λam1 . . . λamn

⎤

⎥
⎦ = λ

⎡

⎢
⎣

a11 . . . a1n
...

. . .
...

am1 . . . amn

⎤

⎥
⎦ = λ [T ]B2

B1

Example 3.19 Let.V = R
2 and.W = R

3. Let.T1, T2 : V → W be defined by. T1(x1,
x2) = (x2, x1, 0) and .T2(x1, x2) = (x1, x2, x1 + x2) (verify that .T1 and .T2 are lin-
ear transformations). Consider the basis .B1 = {(1, 0), (0, 1)} for .V and . B2 =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} for . W . Since
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. T1(1, 0) = (0, 1, 0) = 0(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1)

. T1(0, 1) = (1, 0, 0) = 1(1, 0, 0) + 0(0, 1, 0) + 1(0, 0, 1)

the matrix of .T1 with respect to .B1 and .B2 is .[T1]B2
B1

=
⎡

⎣
0 1
1 0
0 0

⎤

⎦. Since 

. T2(1, 0) = (1, 0, 1) = 1(1, 0, 0) + 0(0, 1, 0) + 1(0, 0, 1)

. T2(0, 1) = (0, 1, 1) = 0(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1)

the matrix of .T2 with respect to .B1 and .B2 is .[T2]B2
B1

=
⎡

⎣
1 0
0 1
1 1

⎤

⎦. Now  

.(T1 + T2)(x1, x2) = (x1 + x2, x1 + x2, x1 + x2). Since 

. (T1 + T2)(1, 0) = (1, 1, 1) = 1(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1)

. (T1 + T2)(0, 1) = (1, 1, 1) = 1(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1)

the matrix of .(T1 + T2) with respect to .B1 and .B2 is 

. [T1 + T2]B2
B1

=
⎡

⎣
1 1
1 1
1 1

⎤

⎦ = [T1]
B2
B1

+ [T2]
B2
B1

We have seen that .Mm×n(K) is vector space over the field .K with matrix addi-
tion and scalar multiplication. The above theorem relates the matrix addition and 
scalar multiplication with addition of linear transformations and multiplication of a 
linear transformation by a scalar. Now we will prove that the collection of all linear 
transformations from.V to .W is also a vector space. 

Theorem 3.11 Let . V and . W be vector spaces over a field . K. Then the set of all 
linear transformations from . V to . W , denoted by .L(V, W ), is a vector space with 
respect to the addition and scalar multiplication defined as in Theorem 3.9. 

Proof Let.T1, T2 ∈ L(V, W ) and.ξ ∈ K. Then by the above theorem.(V 1) and. (V 2)
are satisfied. 

(V3) For any .v ∈ V , 

. ((T1 + T2) + T3) (v) = (T1 + T2) (v) + T3(v)

= T1(v) + T2(v) + T3(v)

= T1(v) + (T2 + T3) (v)

= (T1 + (T2 + T3)) (v)
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That is, .(T1 + T2) + T3 = T1 + (T2 + T3). 
(V4) The linear transformation. O acts as the identity element in.L(V, W ). For any 

. T ∈ L(V, W )

. (O + T ) (v) = O(v) + T (v) = T (v)

That is, .O + T = T . 
(V5) For any.T ∈ L(V, W ), take.ξ = −1 ∈ K, then by.(V 2),.−T ∈ L(V, W ) and 

. (T + (−T )) (v) = T (v) + ((−T )(v)) = T (v) − T (v) = 0 = O(v)

That is, .T + (−T ) = O. 
(V6) For any .v ∈ V , 

. (T1 + T2)(v) = T1(v) + T2(v) = T2(v) + T1(v) = (T2 + T1)(v)

That is, .T1 + T2 = T2 + T1. 
(V7) For .T1, T2 ∈ L(V, W ) and .λ ∈ K, 

. λ [(T1 + T2)(v)] = λ [T1(v) + T2(v)] = λT1(v) + λT2(v) = [λT1 + λT2] (v)

That is, .λ(T1 + T2) = λT1 + λT2. 
(V8) For .λ,μ ∈ K and .T ∈ L(V, W ), 

. [(λ + μ) T ] (v) = (λ + μ) (T (v)) = λ(T (v)) + μ(T (v)) = (λT )(v) + (μT )(v) = (λT + μT )(v)

That is, .(λ + μ) T = λT + μT . 
(V9) For .λ,μ ∈ K and .T ∈ L(V, W ), 

. [(λμ) T ] (v) = (λμ) (T (v)) = λ [(μT )] (v)

That is, . (λμ) T = λ(μT )

(V10) Now.(1T )(v) = 1 (T (v)) = T (v) ⇒ (1T ) = 1(T ). 

Thus conditions .(V 1) − (V 10) are satisfied. Therefore .L(V, W ) is a vector space 
over the field . K. 

Theorem 3.12 Let .U, V , and . W be vector spaces over the field . K . Let . T1 be a 
linear transformation from . U into . V and . T2 a linear transformation from . V into 
. W . Then the composed function .T2T1 defined by .(T2T1)(u) = T2 (T1(u)) is a linear 
transformation from . U to . W . 

Proof Let .u1, u2 ∈ U and .λ ∈ K. Then
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. (T2T1)(λu1 + u2) = T2 (T1(λu1 + u2))

= T2 (λT1(u1) + T2(u2))

= λ [T2 (T1(u1))] + T2 (T1(u2))

= λ(T2T1)(u1) + (T2T1)(u2)

Therefore .T2T1 is a linear transformation from.V to . W . 

Now we will prove that the matrix of the composition of two linear transformations 
is analogous to the product of matrices of the transformations. 

Theorem 3.13 Let .U, V , and . W be finite-dimensional vector spaces with ordered 
bases .B1, B2, and . B3, respectively. Let .T1 : U → V and .T2 : V → W be linear 
transformations. Then 

. [T2T1]
B3
B1

= [T2]
B3
B2
[T1]

B2
B1

Proof Let.U, V , and.W be vector spaces over a field. Kwith bases. B1 = {u1, u2, . . . ,

um}, .B2 = {v1, v2, . . . , vn}, and.B3 = {w1, w2, . . . , wp}, respectively. Let. T1 : U →
V and .T2 : V → W be linear transformations. Then there exist scalars .ai j , where 
.1 ≤ i ≤ n and .1 ≤ j ≤ m such that .T1(u j ) = En

i=1 ai jvi . Now  

. (T2T1)(u j ) = T2
(
T1(u j )

) = T2

(
nE

i=1

ai jvi

)

=
nE

i=1

ai j T2(vi )

Now there exists scalars.bki , where.1 ≤ k ≤ p such that.T2(vi ) = Ep
k=1 bki wk . There-

fore 

. (T2T1)(u j ) =
nE

i=1

ai j T2(vi ) =
nE

i=1

ai j

( pE

k=1

bki wk

)

=
pE

k=1

(
nE

i=1

bki ai j

)

wk =
pE

k=1

ck j wk

where .ck j = En
i=1 bki ai j . Therefore 

. [T2T1]
B3
B1

=

⎡

⎢
⎢
⎢
⎣

En
i=1 b1i ai1

En
i=1 b1i ai2 . . .

En
i=1 b1i ainEn

i=1 b2i ai1
En

i=1 b2i ai2 . . .
En

i=1 b2i ain
...

... · · · ...En
i=1 bpi ai1

En
i=1 bpi ai2 . . .

En
i=1 bpi ain

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

b11 b12 . . . b1n

b21 b22 . . . b2n
...

... · · · ...

bp1 bp2 . . . bpn

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1m

a21 a22 . . . a2m
...

... · · · ...

an1 an2 . . . anm

⎤

⎥
⎥
⎥
⎦

= [T2]
B3
B2
[T1]

B2
B1

Example 3.20 Let .T1, T2 : R3 → R
3 be defined by .T1(x1, x2, x3) = (0, x1, x2) and 

.T2(x1, x2, x3) = (x2, x3, x1) (verify that .T1 and .T2 are linear transformations). Con-
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sider the standard ordered basis .B for .R3. Then .[T1]B =
⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦ and . [T2]B =
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦. Now.T2T1 : R3 → R
3 is given by 

. (T2T1)(x1, x2, x3) = T2 (T1(x1, x2, x3)) = T2 (0, x1, x2) = (x1, x2, 0)

Then .[T2T1]B =
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ = [T2]B [T1]B . And .T1T2 : R3 → R
3 is given by 

. (T1T2)(x1, x2, x3) = T1 (T2(x1, x2, x3)) = T1 (x2, x3, x1) = (0, x2, x3)

Also .[T1T2]B =
⎡

⎣
0 0 0
0 1 0
0 0 1

⎤

⎦ = [T1]B [T2]B . 

Example 3.21 Let .T1 : P2(R) → P3(R) and .T2 : P3(R) → P2(R) be the linear 
transformations defined by 

. (T1 p) (x) =
{ x

0
p(t)dt and (T2 p) (x) = d

dx
(p(x))(x)

Consider the bases .B1 = {1, x, x2} and .B2 = {1, x, x2, x3}. Then 

.[T1]
B2
B1

=

⎡

⎢
⎢
⎣

0 0 0
1 0 0
0 1

2 0
0 0 1

3

⎤

⎥
⎥
⎦ and .[T2]

B1
B2

=
⎡

⎣
0 1 0 0
0 0 2 0
0 0 0 3

⎤

⎦. Now  .T2T1 is a linear transformation 

from.P2(R) to .P2(R). From calculus, we know that .T2T1 = I . Also . [T2]
B1
B2
[T1]

B2
B1

=
I3. 

Now we will prove some properties of linear transformations which are analogous 
to properties satisfied by matrices. 

Theorem 3.14 Let . V be a vector space over the field . K. Let .T, T1, and . T2 be linear 
operators on . V , and let . λ be an element of . K. Then 

(a) .I T = T I = T . 
(b) .T (T1 + T2) = T T1 + T T2 and .(T1 + T2)T = T1T + T2T . 
(c) .λ(T1T2) = (λT1)T2 = T1(λT2).
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Proof (a) For any .v ∈ V , we have  

. (I T )(v) = I (T (v)) = T (v) = T (I (v)) = (T I )(v)

Hence, .I T = T I = T . 
(b) For any .v ∈ V , 

. [T (T1 + T2)] (v) = T [(T1 + T2)(v)]

= T [T1(v) + T2(v)]

= T (T1(v)) + T (T2(v))

= (T T1)(v) + (T T2)(v)

Hence, .T (T1 + T2) = T T1 + T T2. Also  

. [(T1 + T2)T ] (v) = (T1 + T2) (T (v))

= T1 (T (v)) + T2 (T (v))

= (T1T )(v) + (T2T )(v)

Hence, .(T1 + T2)T = T1T + T2T . 
(c) For any .v ∈ V , 

. [λ(T1T2)] (v) = λ [(T1T2)(v)] = λ [T1(T2(v))] = (λT1)(T2(v)) = [(λT1)T2] (v)

Hence, .λ(T1T2) = (λT1)T2. Also  

. T1 [(λT2)(v)] = T1 [λ (T2(v))] = λ [T1 (T2(v))] = λ [(T1T2) (v)] = [λ(T1T2)] (v)

Hence, .λ(T1T2) = T1(λT2). 

3.5 Invertible Linear Transformations 

Think of a magical device that can transform an object in space into any shape and 
rotate, squash, or stretch. This device is an illustration of a linear transformation. 
Now imagine that you stretched out a square into a rectangle with this machine. 
You would need a second magical device that works opposite to the first one if you 
wished to return to the initial square. All the spinning, stretching, and squashing 
that the first machine did can be undone by this amazing device. For these magical 
devices, the inverse of a linear transformation functions as the “undo” button. Being 
able to return to your starting point makes it an effective tool in mathematics and 
science, particularly when working with transformations in the realm of matrices 
and vectors (Fig. 3.9).
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Fig. 3.9 Consider the linear transformation.T : R2 → R
2 defined by.T (x1, x2) = 2(x1, x2). If we  

define.T̃ (x1, x2) = 1
2 (x1, x2), then we can “undo” the action of. T and vice versa 

Fig. 3.10 We can see that all 
the points on the line. x = 1
are mapped onto the point 
.(1, 0). Observe that reversing 
this action will not produce a 
function as.(1, 0) should be 
mapped onto all the points 
on the line. x = 1

Now, one crucial question that comes to our mind is whether it is possible to reverse 
the action of every linear transformation. For example, consider the projection map 
onto the .x-axis (Fig.3.10). 

From the above figure, it is clear that the transformation has to be one-one in 
order to discuss its inverse. Also, if . T is onto, we can take .W as the domain of our 
inverse function. Then, we have the following definition for the inverse of a linear 
transformation. 

Definition 3.3 (Inverse) Let  .V and .W be vector spaces over the field . K. Let  .T be 
a linear transformation from .V into . W . A function .T̃ from .W into .V is said to be 
an inverse of .T if .T̃ T = IV , the identity function on .V and .T T̃ = IW , the identity 
function on . W . Furthermore, .T is invertible if and only if .T is both one-one and 
onto. The inverse of a linear transformation . T is denoted by .T −1. 

Example 3.22 Let .V = R
2 with basis .B = {(1, 0), (0, 1)}. Define . T, T̃ : V → V

by .T (x1, x2) = (x1, x1 + x2) and .T̃ (x1, x2) = (x1, x2 − x1). Clearly both .T and . T̃
are linear transformations. Now 

.T T̃ (x1, x2) = T (x1, x2 − x1) = (x1, x2)
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. T̃ T (x1, x2) = T̃ (x1, x1 + x2) = (x1, x2)

Thus, .T̃ T = T T̃ = I . Therefore. T is an invertible linear transformation on.R
2 with 

.T −1 = T̃ . 

Now that we have defined the inverse of a linear transformation, other important 
questions to be answered are that if the inverse of a linear transformation exists, will 
it be linear and unique? 

Theorem 3.15 Let . V and . W be vector spaces over a field . K, and let . T : V → W
be an invertible linear transformation. Then .T −1 : W → V is linear and unique. 

Proof Let .w1, w2 ∈ W . Since .T is both one-one and onto, there exist unique vec-
tors .v1, v2 ∈ V such that .T (v1) = w1 and .T (v2) = w2. Then .T −1(w1) = v1 and 
.T −1(w2) = v2. Now  for  .λ ∈ K, .λw1 + w2 ∈ W , with .T (λv1 + v2) = λw1 + w2. 
Then 

. T −1 (λw1 + w2) = λv1 + v2 = λT −1(w1) + T −1(w2)

Therefore.T −1 is a linear transformation from.W to. V . Now suppose that there exists 
two functions .T̃1, T̃2 : W → V such that .T T̃1 = IW = T T̃2 and .T̃1T = IV = T̃2T . 
Now 

. T̃1 = T̃1 IW = T̃1(T T̃2) = (T̃1T )T̃2 = IV T̃2 = T̃2

That is, inverse of a linear transformation, if it exists, is unique. 

The idea of inverse of a linear transformation can be used to identify the similarity 
between vector spaces. For example, a vector.(x1, x2, x3, x4) ∈ R

4 can be observed as 

a.2 × 2 matrix.

|
x1 x2
x3 x4

|

in.M2×2 (R) as their vector addition and scalar multiplication 

can be associated in an identical manner. Such vector spaces are said to be isomor-
phic. An isomorphism of vector spaces is similar to discovering a link between two 
universes that allows them to be interpreted as identical despite their differences in 
appearance. This correspondence is more than just matching elements; it is a unique 
relationship in which operations such as addition and scalar multiplication in one 
space completely mirror those in the other. Isomorphisms, in essence, indicate that 
these seemingly separate vector spaces are fundamentally the same in terms of their 
underlying algebraic features, making them a valuable notion for reducing complex 
issues and integrating diverse areas of mathematics and science. 

Definition 3.4 (Isomorphism) Let .V and .W be vector spaces over the field . K, then 
.V is said to be isomorphic to .W if there exists an invertible linear transformation 
from.V to . W . That is, if there exists a one-one and onto linear transformation from 
.V to . W . 

Example 3.23 Let .V = P2(R) and .W = R
3 over the field . R. Define . T : V → W

by 
.T (ax2 + bx + c) = (a, b, c)
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Let .p(x) = a1x2 + b1x + c1, q(x) = a2x2 + b2x + c2 ∈ P2(R) and .λ ∈ R. Now  
.λp(x) + q(x) = (λa1 + a2)x2 + (λb1 + b2)x + (λc1 + c2) and 

. T (λp(x) + q(x)) = (λa1 + a2, λb1 + b2, λc1 + c2)

= λ(a1, b1, c1) + (a2, b2, c2) = λT (p(x)) + T (q(x))

Therefore . T is a Linear transformation from.V to . W . Now  

. N(T ) = {p(x) ∈ P2(R) | T (p(x)) = (0, 0, 0)}
= {p(x) ∈ P2(R) | (a1, b1, c1) = (0, 0, 0)} = {0}

Since.N(T ) = {0}, . T is one-one. Since.V and.W are of equal dimension, . T is onto. 
Hence, . T is an isomorphism from.P2(R) to .R

3. 

Now we will prove that any two finite-dimensional vector spaces with equal 
dimension are isomorphic. 

Theorem 3.16 Let. V and. W be finite-dimensional vector spaces over a field. K, then 
. V is isomorphic to . W if and only if dim.(V ) =dim.(W ). 

Proof Let .V and .W be vector spaces over a field . K. Suppose that .V is isomorphic 
to . W . Then there exists an invertible linear transformation . T from.V to . W . Since . T
is one-one, by Theorem 3.5, .Nulli t y(T ) = 0 and as . T is onto .R(T ) = W . Then by 
Rank-Nullity theorem, 

. dim(V ) = Rank(T ) = dim(W )

Conversely, suppose that .dim(V ) = dim(W ). Let  .B1 = {v1, v2, . . . , vn} and . B2 =
{w1, w2, . . . , wn} be bases for .V and . W , respectively. By Theorem 3.2, there exists 
a linear transformation .T : V → W such that .T (vi ) = wi for .i = 1, 2, . . . , n. Then 

. R(T ) = span{T (v1), T (v2), . . . T (vn)} = {w1, w2, . . . , wn} = W

Therefore .T is onto. Since .dim(V ) = dim(W ), .T is also one-one. Therefore .T is 
an isomorphism. 

Corollary 3.3 Let . V be a vector space over the field . K with .dim(V ) = n. Then . V
is isomorphic to . K

n over . K. 

Theorem 3.17 Let . V and . W be vector spaces over a field . K with bases . B1 and . B2, 
respectively. Let .T : V → W be a linear transformation. Then . T is invertible if and 
only if .[T ]B2

B1
is invertible. Furthermore, 

.
|
T −1|B1

B2
=

(
[T ]B2

B1

)−1
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Proof Let. V and.W be vector spaces over a field. K, and let.T : V → W be an invert-
ible linear transformation. Then there exists a linear transformation . T −1 : W → V
such that.T T −1 = IW , the identity transformation on.W and.T −1T = IV , the identity 
transformation on . V . Also by the above theorem, we have .dim(V ) = dim(W ) and 
hence .[T ]B2

B1
is an .n × n matrix. Therefore 

. In = [IV ]B1
= |

T −1T
|

B1
= |

T −1|B1

B2
[T ]B2

B1

Also 
. In = [IW ]B2

= |
T T −1|

B2
= [T ]B2

B1

|
T −1|B1

B2

Therefore .
|
T −1

|B1

B2
=

(
[T ]B2

B1

)−1
. Now suppose that .A = [T ]B2

B1
is invertible. Then 

there exists a matrix.B = |
bi j

|
such that.AB = In = B A. Let. B1 = {v1, v2, . . . , vn}

and.B2 = {w1, w2, . . . , wn}be bases for. V and. W , respectively. Now define. T̃ : W →
V such that .T̃ (w j ) = En

i=1 bi jvi for .i = 1, 2, . . . n. Then .

|
T̃

|B1

B2

= B. Therefore 

. 

|
T̃ T

|

B1

=
|
T̃

|B1

B2

[T ]B2
B1

= B A = In = [IV ]B1

and 

. 

|
T T̃

|

B1

= [T ]B2
B1

|
T̃

|B1

B2

= AB = In = [IW ]B1

Hence, . T is invertible with .T −1 = T̃ . 

Example 3.24 Consider Example 3.22. Now consider the matrix representation of 
both . T and . T̃ : 

. [T ]B =
|
1 0
1 1

|

and [T̃ ]B =
|
1 0

−1 1

|

Clearly .

|
T̃

|

B
= ([T ]B)−1. 

We have seen that corresponding to every linear transformation from an. n dimen-
sional vector space .V to an .m dimensional vector space . W , there exists a matrix 
representation.[T ]B2

B1
, where .B1 and.B2 are bases of .V and. W , respectively. Now we 

will prove that the space of all linear transformations from.V to.W is identical to the 
space of all .m × n matrices. 

Theorem 3.18 Let . V and .W be vector spaces over . K with bases . B1 =
{v1, v2, . . . , vn} and .B2 = {w1, w2, . . . , wm}, respectively. For each linear transfor-
mation . T from . V into . W , there is an .m × n matrix .[T ]B2

B1
with entries in . K such that 

.[T v]B2 = [T ]B2
B1

[v]B1 for all .v ∈ V . Then the function .0 : L(V, W ) → Mm×n(K), 

defined by .0(T ) = [T ]B2
B1

, is an isomorphism.
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Proof Let .V and .W be vector spaces over .K with bases . B1 = {v1, v2, . . . , vn}
and .B2 = {w1, w2, . . . , wm}, respectively. Define .0 : L(V, W ) → Mm×n(K) by 
.0(T ) = [T ]B2

B1
. By Theorem 3.10, .0 is a linear transformation. Now we have to 

prove that .0 is both one-one and onto. It is enough to show that, for any matrix 
.A ∈ Mm×n(K), there exists a unique .T ∈ L(V, W ) such that .0(T ) = A. Let  . M =|

ai j
| ∈ Mm×n(K). Define .T : V → W by .T (v j ) = Em

i=1 ai j wi where .1 ≤ j ≤ n. 
Then .[T ]B2

B1
= A, and hence .0(T ) = A. That is, .0 is onto. By Theorem 3.2, such a 

. T is unique. Hence .0 is one-one. Therefore .L(V, W ) is isomorphic to .Mm×n(K). 

Thus, the space of all linear transformations from an . n dimensional space .V to 
an .m dimensional space .W is a vector space of dimension .mn. 

3.6 Change of Coordinate Matrix 

We know that basis of a vector space is not unique. The coordinate representation 
of a vector depends on the basis that we are choosing, i.e., the same vector can have 
different representations when we are choosing different bases. Therefore the same 
linear transformation can be represented by different matrices depending upon the 
basis. In this section, we will discuss the relation between these representations. 

Theorem 3.19 Let. V be a finite-dimensional vector space over a field. Kwith ordered 
bases . B1 and . B2, and let .P = [IV ]

B2
B1

where . IV is the identity transformation on . V . 
Then 

(a) . P is invertible. 
(b) For any .v ∈ V, [v]B2

= P [v]B1
. 

(c) If . T is a linear operator on . V , then .[T ]B2
= P−1 [T ]B1

P. 

. P is called the change of coordinate matrix as . P changes . B1 coordinates into . B2

coordinates and .P−1 changes . B2 coordinates into . B1 coordinates. 

Proof (a) Since .IV is invertible, by Theorem 3.17, .P is invertible. 
(b) For any .v ∈ V , 

. [v]B2
= [IV (v)]B2

= [IV ]
B2
B1
[v]B1

= P [v]B1

(c) Since .IV T = T = T IV , by Theorem 3.13, we have  

. P [T ]B1
= [IV ]

B2
B1
[T ]B1

B1
= [IV T ]B2

B1
= [T IV ]

B2
B1

= [T ]B2
B2
[IV ]

B2
B1

= [T ]B2
P

Since .P is invertible, .[T ]B2
= P−1 [T ]B1

P . 

Example 3.25 Let .V = R
2. Consider the bases .B1 = {(1, 0), (0, 1)} , . B2 =

{(1, 1), (1,−1)} for .V and .v = (5, 2). Then .[v]B1
=

|
5
2

|

and .[v]B2
=

| 7
2
3
2

|

. Since
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. (1, 0) = 1

2
(1, 1) + 1

2
(1,−1)

. (0, 1) = 1

2
(1, 1) +

(

−1

2

)

(1,−1)

the change of coordinate matrix .P =
| 1
2

1
2

1
2 − 1

2

|

and .P−1 =
|
1 1
1 −1

|

. Clearly 

. P [v]B1
=

| 1
2

1
2

1
2 − 1

2

| |
5
2

|

=
| 7
2
3
2

|

= [v]B2

and 

. P−1 [v]B2
=

|
1 1
1 −1

| | 7
2
3
2

|

=
|
5
2

|

= [v]B1

Now consider the linear transformation .T : V → V defined by 

. T (x1, x2) = (x2, x1)

Since .T (1, 0) = (0, 1) = 0(1, 0) + 1(0, 1) and . T (0, 1) = (1, 0) = 1(1, 0) +
0(0, 1). The matrix of .T with respect to .B1 is .[T ]B1 =

|
0 1
1 0

|

. Since . T (1, 1) =
(1, 1) = 1(1, 1) + 0(1,−1) and .T (1,−1) = (−1, 1) = 0(1, 1) + (−1)(1,−1) The 

matrix of . T with respect to .B2 is .[T ]B2 =
|
1 0
0 −1

|

. Now  

. P−1 [T ]B1
P =

|
1 1
1 −1

| |
0 1
1 0

| | 1
2

1
2

1
2 − 1

2

|

=
|
1 0
0 −1

|

= [T ]B2

3.7 Linear Functionals and Dual Space 

So far, we have discussed linear transformations between vector spaces. In this 
section, we will discuss linear transformations which are defined from a vector space 
to the field associated with it. 

Definition 3.5 (Linear Functionals) Let  .V be a vector space over the field . K. A  
function . f : V → K is said to be a linear functional, if 

. f (λv1 + v2) = λ f (v1) + f (v2)

for all .v1, v2 ∈ V and .λ ∈ K. The set of all linear functionals on .V forms a vector 
space, called the dual space of . V , and is denoted by .V ∗.
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Example 3.26 Let .V be a vector space over the field . K. Clearly, the map. f defined 
by . f (v) = 0, ∀ v ∈ V is a linear functional on . V . 

Example 3.27 Let .V = Mn×n(R). Define a map . f : Mn×n(R) → R by . f (A) =
T r(A). As we have already seen that.T r is a linear function,.T r is a linear functional 
on .Mn×n(R). 

Example 3.28 Let.V = Pn[a, b]. Define a map. f : Pn[a, b] → R by. f (p) = p(0). 
As 

. f (λp + q) = (λp + q) (0) = λp(0) + q(0) = λ f (p) + f (q)

for all .p, q ∈ Pn[a, b] and .λ ∈ R, . f is a linear functional on .Pn[a, b]. 
Example 3.29 Let.V = C[a, b]. Define a map. f : C[a, b] → R defined by. f (p) ={ b

a p(x)dx . As  

. f (λp + q) =
{ b

a
(λp + q) (x)dx = λ

{ b

a
p(x)dx +

{ b

a
q(x)dx = λ f (p) + f (q)

for all .p, q ∈ C[a, b] and .λ ∈ R, . f is a linear functional on .C[a, b]. 
We already know that the set of all linear functionals on a vector space .V forms 

a vector space, called the dual space of . V . If .V is a finite-dimensional vector space, 
we can get a rather explicit description of the dual space. Consider the following 
theorem. 

Theorem 3.20 Let . V be a finite-dimensional vector space over the field . K, and 
let .B = {v1, v2, . . . , vn} be a basis of . V . Then there exists a unique basis . B∗ =
{ f1, f2, . . . fn} for . V ∗, where . fi is given by 

. fi (v j ) =
{
1, i f i = j

0, i f i /= j

Then for each linear functional . f on . V , we have . f = En
i=1 f (vi ) fi and for each 

vector .v ∈ V , we have .v = En
i=1 fi (v)vi . 

Proof First we will prove that .B∗ = { f1, f2, . . . fn}, where . fi is given by 

. fi (v j ) =
{
1, i f i = j

0, i f i /= j

is linearly independent. Let .λ1, λ2, . . . , λn ∈ K be such that 

.λ1 f1 + λ2 f2 + · · · + λn fn = 0
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i.e., .(λ1 f1 + λ2 f2 + · · · + λn fn) (v) = 0 for all .v ∈ V . Then, 

. (λ1 f1 + λ2 f2 + · · · + λn fn) (vi ) = 0 ⇒ λi = 0, ∀ i = 1, 2 . . . , n

Thus .{ f1, f2, . . . fn} is linearly independent. Also by Theorem 3.18, we have  
.dim(V ) = dim(V ∗). Hence .B∗ = { f1, f2, . . . fn} is a basis for .V ∗, called the dual 
basis of. B. By definition itself .B∗ is unique. Now, for any linear functional . f ∈ V ∗, 
there exists .λ1, λ2, . . . , λn ∈ K such that . f = En

i=1 λi fi . Then 

. f (v j ) =
nE

i=1

λi fi (v j ) = λ j , ∀ j = 1, 2, . . . , n

Thus for each linear functional . f on . V , we have  . f = En
i=1 f (vi ) fi . Similarly, for 

each .v ∈ V , there exist scalars .λ1, λ2, . . . , λn ∈ K such that .v = En
i=1 λivi . Then 

. f j (v) = f j

(
nE

i=1

λivi

)

=
nE

i=1

λi f j (vi ) = λ j , ∀ j = 1, 2, . . . , n

Hence for any .v ∈ V , we have .v = En
i=1 fi (v)vi . 

Consider the following example for a better understanding of the above theorem. 

Example 3.30 Let .V = R
2 and consider a basis .B = {(1, 2), (2, 2)}. Now, let  us  

find the dual basis .B∗ = { f1, f2} corresponding to . V . By definition, . f1(1, 2) = 1
and . f1(2, 2) = 0. Then 

. f1(1, 2) = 1 ⇔ f1 (1(1, 0) + 2(0, 1)) = f1(1, 0) + 2 f1(0, 1) = 1

. f1(2, 2) = 0 ⇔ f1 (2(1, 0) + 2(0, 1)) = 2 f1(1, 0) + 2 f1(0, 1) = 0

This implies that . f1(1, 0) = −1 and . f1(0, 1) = 1. Thus, we have  

. f1(x1, x2) = x1 f1(1, 0) + x2 f1(0, 1) = x2 − x1

Similarly, we have ,. f2(1, 2) = 0 and . f2(2, 2) = 1. Then 

. f2(1, 2) = 0 ⇔ f2 (1(1, 0) + 2(0, 1)) = f2(1, 0) + 2 f2(0, 1) = 0

. f2(2, 2) = 1 ⇔ f2 (2(1, 0) + 2(0, 1)) = 2 f2(1, 0) + 2 f2(0, 1) = 1

This implies that . f2(1, 0) = 1 and . f2(0, 1) = −1
2 . Thus, we have 

. f2(x1, x2) = x1 f2(1, 0) + x2 f2(0, 1) = x1 − x2
2
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Thus .B∗ = {x2 − x1, x1 − x2
2 } forms the dual basis corresponding to . B =

{(1, 2), (2, 2)}. Now consider a linear functional. f (x1, x2) = 2x1 − 3x2 on.R
2. Then 

we can write . f as a linear combination of the dual basis elements. Observe that 

. f (1, 2) f1 + f (2, 2) f2 = −4(x2 − x1) − 2
(

x1 − x2
2

)
= 2x1 − 3x2 = f (x1, x2)

Also, the coordinates of a vector relative to the basis can be obtained using the dual 
basis. For example, .(3, 4) ∈ R

2, 

. f1(3, 4)(1, 2) + f2(3, 4)(2, 2) = 1(1, 2) + 1(2, 2) = (3, 4)

The above theorem gives a good description of the dual basis.B∗ corresponding to 
a basis. B of. V . If.B = {v1, v2, . . . , vn} is an ordered basis for a vector space. V ,. B∗ =
{ f1, f2, . . . fn} is the dual basis, where. fi is the function which assigns to each vector 
. v in .V the .i th coordinate of . v relative to the ordered basis . B. Thus if . f ∈ V ∗, and 
we have . f (vi ) = μi , then for .v = En

i=1 λivi , we have . f (v) = En
i=1 λiμi . In other 

words, if .B = {v1, v2, . . . , vn} is an ordered basis for. V , and describe each vector in 
.V by its coordinates .(λ1, λ2, . . . , λn) relative to . B, then every linear functional on 
.V has the form. f (v) = En

i=1 λiμi . 

Example 3.31 Consider the basis.{(3, 2), (1, 1)} for.V = R
2. Then for any. (x1, x2) ∈

R
2 as 

. (x1, x2) = (x1 − x2)(3, 2) + (−2x1 + 3x2)(1, 1)

we get . f1(x1, x2) = x1 − x2 and . f (x1, x2) = −2x1 + 3x2. Thus . {x1 − x2,−2x1 +
3x2} is the dual basis corresponding to the basis .{(3, 2), (1, 1)}. 
Example 3.32 Consider the basis.{1, 1 + x, x + x2} for.V = P2[a, b]. Then for any 
.a0 + a1x + a2x2 ∈ R

2 as 

. a0 + a1x + a2x2 = (a0 − a1 + a2)1 + (a1 − a2)(1 + x) + a2(x + x2)

we get . f1(a0 + a1x + a2x2) = a0 − a1 + a2, . f2(a0 + a1x + a2x2) = a1 − a2 and 
. f3(a0 + a1x + a2x2) = a2. 

Now, let us discuss the range space and null space of a linear functional. If . f
is a non-zero linear functional, then the range space of . f is the scalar field itself. 
Then, by Rank-Nullity Theorem, we can say that .Nulli t y( f ) = n − 1, if  .V is an . n
dimensional space. In a vector space of dimension. n, a subspace of dimension. n − 1
is called a hyperspace. In fact we can say that every hyperspace is the null space of 
a linear functional (see Exercise 26).
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3.8 Exercises 

1. Check whether which of the following functions defines a linear transformation 
from.R

2 over . R to itself: 

(a) . T (x1, x2) = (x1 + 1, x2 + 1)
(b) . T (x1, x2) = (3x1, 7x2)
(c) . T (x1, x2) = (sin x, 0)
(d) . T (x1, x2) = (x1, x2

2 )

(e) . T (x1, x2) = (2x1,
1
2 x2)

(f) .T (x1, x2) = (x1, x1x2). 

2. Check which of the following functions define a linear transformation: 

(a) .T : R3 → P2[a, b] defined by . T (α1, α2, α3) = α1 + (α1 + α2) x +
(α1 + α2 + α3) x2. 

(b) .T : P(R) → P(R) defined by .(T p) (x) = x2 p(x) + d
dx (p(x)). 

(c) .T : R4 → M2 (R) defined by .T (x1, x2, x3, x4) =
|
1 + x1 x1 + x2
x2 + x3 x3 + x4

|

. 

(d) .T : P2[a, b] → M2 (R) defined by .(T p) (x) =
|

p(0) p(1) + p(2)
0 p(3)

|

. 

(e) .T : M2 (R) → M2 (R) defined by .T (A) = A + I , where .I ∈ M2 (R) is the 
identity matrix. 

(f) Fix .A ∈ Mn (R) and .b /=∈ R
n . Define .T : Rn → R

n by .T (x) = Ax + b. 
(g) Fix .A ∈ Mn (R). Define .T : Mn (R) → Mn (R) by .T (B) = A−1B A. 

3. Show that .T : Mn (R) → R defined by .T (A) = T r(A) is a linear transforma-
tion. What about .T (A) = det (A)? Here .T r(A) and .det (A) denote the trace of 
. A and determinant of . A, respectively. 

4. Let .V be a one-dimensional vector space over a field . K. Show that every linear 
transformation .T : V → V is of the form.T (v) = λv for some .λ ∈ K. 

5. Let .T1 : V → W be a linear map and .T2 : V → W be a non-linear map. Then 
what about .T1 + T2? Is it always non-linear? 

6. Find .T : R3 → R
3, if  .T (1, 0, 0) = (1, 0, 1), T (1, 1, 0) = (0, 2, 1), and 

.T (1, 1, 1) = (0, 0, 1). Is . T unique? 
7. Find the range space and null space of the following linear transformations: 

(a) .T : R3 → R
3 defined by .T (x1, x2, x3) = (x3, 0, x1). 

(b) .T : P2[a, b] → M2 (R) defined by .T (a0 + a1x + a2x2) =
|

a0 a1

a2 0

|

. 

(c) .T : M2 (R) → M2 (R) defined by .T (A) = A − AT . 

8. Find a linear transformation .T : R4 → R
3 for which the null space is spanned 

by .v1 = (1, 1, 1, 1), v2 = (1, 0, 0, 1), and the range space of .T is spanned by 
.w1 = (1, 1, 0) and .w2 = (1, 0, 1), if it exists. 

9. Show that if .A ∈ Mm×n(K), then row rank of . A= column rank of . A.
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10. Let .V be a vector space over a field . K. Does there exist linear transformations 
.T1, T2 on .V with 

(a) .R (T1) = R (T2) and . N (T1) = N (T2)

(b) .R (T1) = N (T2) and .N (T1) = R (T2). 

11. Let .T : R4 → R
4 be defined by 

. T (x1, x2, x3, x4) = (x1 − x2, x2 − x3, x3 − x4, 0)

Then 

(a) verify that . T is a linear transformation on .R
4. 

(b) find .R(T ) and .N(T ). 
(c) verify Rank-Nullity theorem. 
(d) Is . T invertible? 

12. Check whether the following statements are true or false: 

(a) There exists a linear transformation.T : R2 → R
2 such that. T (1, 0) = (1, 2),

T (1, 1) = (0, 3) and .T (2, 3) = (2, 5). 
(b) .T : Pn−1(R) → Pn(R) defined by .(T p) (x) = { x

0 p(t)dt is onto. 
(c) .T : Pn(R) → Pn−1(R) defined by .(T p) (x) = d

dx (p(x)) is one-one. 
(d) There exists a linear transformation.T : Rn → R

n with.R(T ) = N(T ) if and 
only if . n is even. 

(e) Let .T : V → V be a linear transformation with .R (T ) ∩ N (T ) = {0}, then 
.V = R (T ) ⊕ N (T ). 

(f) Let .T : V → V be a linear transformation on a finite-dimensional vector 
space .V and .A ∈ Mn (K) be its matrix representation. Then . A is unique. 

(g) Let .V and .W be finite-dimensional vector spaces over the field . K. Then an 
invertible linear transformation .T : V → W maps a basis of .V to a basis of 
. W . 

(h) Let.T1, T2 : V → W be isomorphisms from.V to. W . Then.T1 + T2 is also an 
isomorphism from.V to . W . 

13. Let .V be a finite-dimensional space and .T1, T2 : V → V be linear transforma-
tions such that .T1T2 = I . Then show that .T2 = T −1

1 . Also show that there exist 
linear transformations .T1, T2 such that .T1T2 = I and .T2T1 /= I , if .V is infinite-
dimensional. 

14. Let .V and .W be finite-dimensional vector spaces over the field . K, and let . T1 :
V → W be a linear transformation. Then 

(a) .T1 is one-one if and only if there exists .T2 : W → V such that .T2T1 is the 
identity map on . V . 

(b) .T1 is onto if and only if there exists.T2 : W → V such that.T1T2 is the identity 
map on . W .
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15. Let .V be a vector space over .K and .T : V → V be any linear transformation. 
Show that 

(a) .R (T ) ∩ N (T ) = {0} if and only if .N (
T 2

) ⊆ N (T ). 
(b) .T 2 is the zero transformation if and only if .R(T ) ⊆ N(T ). 

16. Consider the linear transformations .T1, T2, T3 : R3 → R
2 defined by 

. T1(x1, x2, x3) = (x1 + x2, x1 + x3), T2(x1, x2, x3) = (2x1, x1 + x2 + x3)

and 
. T3(x1, x2, x3) = (x1, x2)

Check whether .{T1, T2, T3} is linearly independent in .L
(
R

3,R2
)
. 

17. Let .T1 : Pn(R) → Pn−1(R) be defined by .(T1 p) (x) = d
dx (p(x)) and 

.T2 : Pn−1(R) → Pn(R) be defined by .(T2 p) (x) = xp(x). Show that . T1T2 −
T2T1 = I , where . I is the identity operator on .Pn−1(R). 

18. Fix .A ∈ Mn (R). Define .T : Rn → R
n by .T (v) = Av. Describe a situation 

where . T becomes an isomorphism, if it exists. 
19. Let .T : Rn → R

n be a linear transformation and.A ∈ Mn (R) be its matrix rep-
resentation. then what is the relation between .R(T ) and .I m(A), where . I m(A)

denotes the column space of . A. 
20. Let .T : R3 → P2[a, b] be defined by 

. T (α1, α2, α3) = (α2 + α3)x + (α1 + α3)x2

Find.[T ]B2
B1

where.B1 = {(2, 0, 1), (1, 2, 0), (0, 1, 2)} and. B2 = {1, 1 + x, (1 +
x)2}. 

21. Let.T : M2 (R) → M2 (R)be defined by.T (A) = 1
2

(
A + AT

)
. Find.[T ]B where 

.B =
{|

1 0
0 0

|

,

|
1 1
0 0

|

,

|
1 1
1 0

|

,

|
1 1
1 1

|}

. 

22. Let. V and.W be vector spaces over. Kwith.dim(V ) = dim(W ). Show that there 
exist bases, .B1 of .V and .B2 of .W such that .[T ]B2

B1
is a diagonal matrix. 

23. Let .B1 = {1, x, x2}, B2 = {1, 1 + 2x, 1 + 2x + 3x2}, and . B1 = {1, 2 + x, 1 +
x2} be three bases for .P2[a, b]. Then find 

(a) change of basis matrix from.B1 to .B2. 
(b) change of basis matrix from.B1 to .B3. 
(c) change of basis matrix from.B2 to .B3. 

Find the relation between them and generalize, if possible. 
24. Let .T : R2 → R

2 defined by .T (x1, x2) = (x1 + x2, 2x2). Consider the bases 
.B1 = {(1, 1), (1,−1)} and .B2 = {(1, 2), (0, 1)} of .R2. Then find 

(a) the matrix representation of . T with respect to .B1. 
(b) the matrix representation of . T with respect to .B2.
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(c) change of basis matrix from.B1 to .B2. 
(d) What is the relation between .[T ]B1

and .[T ]B2
? 

25. Show that every linear functional on .K
n is of the form 

. f (x1, x2, . . . , xn) = λ1x1 + λ2x2 + · · · + λn xn

for some scalars .λ1, λ2, . . . , λn ∈ K. 
26. Let.T : V → K be a linear transformation. Show that for an element.v ∈ V with 

.v /∈ N(T ), we have .V = span{v} ⊕ N(T ). 
27. Consider the basis.B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} for.R3. Find the dual basis 

.B∗ corresponding to . B. 
28. Let .V = P2[a, b]. Consider 3 distinct real numbers .λ1, λ2, λ3, and define 

. fi (p) = p(λi ). Then 

(a) Show that .B∗ = { f1, f2, f3} forms a dual basis for .V ∗. 
(b) Find the ordered basis . B of .V corresponding to .B∗. 

29. Let .V and .W be vector spaces over the field .K with respective dual spaces . V ∗
and .W ∗. Let .T : V → W be a linear transformation. 

(a) Show that the map .T̃ : W ∗ → V ∗ defined by .T̃ g = g ◦ T is a linear map. 
(The map . T̃ is called the Transpose of T.) 

(b) Suppose that.{ f1, f2, . . . , fn} in.V ∗ is a dual basis corresponding to the basis 
.{v1, v2, . . . , vn} in .V and that .{g1, g2, . . . , gn} in .V ∗ is a dual basis corre-
sponding to the basis.{w1, w2, . . . , wn} in. W . If. A is the matrix representation 
of . T , then show that .AT is the matrix representation of . T̃ with respect to the 
above dual bases. 

30. Find the matrix representation of transpose of the linear transformation, . T :
R

3 → R
2 defined by 

. T (x1, x2, x3) = (2x1 − x2 + 2x3, x1 + 2x2 − x3)

where the bases of .R3 and .R2 are, respectively, . {(2, 0, 1), (1, 2, 0), (0, 1, 0)}
and .{(3, 2), (1, 1)}. 

Solved Questions related to this chapter are provided in Chap. 9.



Chapter 4 
Eigenvalues and Eigenvectors 

In this chapter, we explore the foundational concepts of eigenvalues and eigenvec-
tors, providing a deep understanding of their definition, properties, and far-reaching 
applications of linear algebra. Eigenvalues and eigenvectors are introduced as cru-
cial properties of square matrices. Eigenvalues represent the scaling factors by which 
eigenvectors are stretched or compressed when the matrix operates on them. Matrix 
similarity is discussed as a fundamental concept, highlighting how similar matrices 
share the same eigenvalues. We delve into the importance of diagonalization, where 
a matrix is transformed into a diagonal matrix using its eigenvectors. This process 
simplifies matrix exponentiation and powers, which are crucial for solving differ-
ential equations and modeling dynamical systems and their stability analysis. The 
chapter provides a thorough grasp of when diagonalization is possible by examining 
the necessary and sufficient conditions for a matrix to be diagonalizable. To deal 
with non-diagonalizable matrices, generalized eigenvectors are introduced, leading 
to the Jordan Canonical Form notion. This form aids in the analysis of complicated 
systems by providing insight into the structure of non-diagonalizable matrices. From 
this point onwards, for convenience . λ is used both as a variable and as a scalar. The 
usage is evident from the context. 

4.1 Eigenvalues and Eigenvectors 

Consider a homogeneous linear system of differential equations of the form 

.

{
dy1
dx = a11y1 + a12y2
dy2
dx = a21y1 + a22y2

(4.1) 

where.a11, a12, a21, a22 are real constants. We shall represent the above system in an 
alternate form using matrices, as follows: 
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.

|
a11 a12

a21 a22

| |
y1
y2

|
=
| dy1

dx
dy2
dx

|
(4.2) 

If we name the matrices in Eq. (4.2) as,  

. A =
|

a11 a12

a21 a22

|
, y =

|
y1
y2

|
and

dy

dx
=
| dy1

dx
dy2
dx

|
,

Equation (4.2) can be written in a compact form as 

.Ay = dy

dx
(4.3) 

We seek non-trivial solutions of the form 

. y1 = μ1eλx and y2 = μ2eλx

for the system (4.1), where .μ1, μ2 and . λ are constants. That is, we need a solution 
of the form 

. y = veλx ,where v =
|
μ1

μ2

|

Substituting .y = veλx in Eq. (4.3), we get 

. λveλx = Aveλx

which then reduces to 

.λv = Av (4.4) 

That is, we need to find a non-zero vector. v and scalar. λ such that Eq. (4.4) is satisfied. 
In many practical cases, numerous mathematical problems can be formulated in the 
form of Eq. (4.4). Such problems are called Eigenvalue problems. We may rewrite 
Eq. (4.4) as  

.(A − λI )v = 0 (4.5) 

The matrix .(A − λI ) is called the characteristic matrix of. A and the Eq. (4.5) is the  
characteristic matrix equation. From Sect. 1.7, we know that Eq. (4.5) has a non-zero 
solution if and only if 

.det (A − λI ) = 0 (4.6) 

Observe that .det (A − λI ) will be a polynomial of order . n in . λ, if  .A is an . n ×
n matrix, and is referred to as characteristic polynomial of . A. Equation (4.6) is
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known as characteristic equation of . A. From Theorem 1.18, we know that over an 
algebraically closed field, such an equation will have . n solutions/roots. The roots 
are called characteristic values or eigenvalues of . A. If we denote the eigenvalues of 
. A by .λ1, λ2, . . . , λn , we have  .det (A − λi I ) = 0 for each .i = 1, 2, . . . , n. Then for 
each.λi there exists non-zero vectors .vi satisfying.(A − λi I )vi = 0. Such vectors . vi

are called characteristic vectors or eigenvectors of. A associated with the eigenvalue 
. λi . Consequently, we have .Av = λv. Thus we can have the following definition. 

Definition 4.1 (Eigenvalues and Eigenvectors) Let. A be an.n × n matrix with entries 
from the field. C. A non-zero vector.v ∈ C

n is said to be an eigenvector of. A, if there 
exists .λ ∈ C such that .Av = λv. The scalar . λ is called an eigenvalue of . A. In other 
words, .λ ∈ C is an eigenvalue of an.n × n matrix. A if there exists a non-zero vector 
.v ∈ C

n such that .Av = λv. 

Consider the following example for a better understanding of the ideas that we 
have discussed above. 

Example 4.1 Let .A =
|
1 2
2 1

|
. Then the characteristic polynomial of . A is 

. det (A − λI ) =
||||1 − λ 2

2 1 − λ

|||| = λ2 − 2λ − 3 = (λ + 1)(λ − 3)

and.det (A − λI ) = 0 implies that.λ1 = −1 and.λ2 = 3. Now to find the eigenvector 

associated with the eigenvalue.λ1 = −1, we have to find a non-zero vector. v =
|
v1
v2

|
satisfying .(A + I )v = 0. 

. (A + I )v = 0 ⇒
|
2 2
2 2

| |
v1
v2

|
=
|
0
0

|
⇒ v1 + v2 = 0

Thus any non-zero vector from the set .W1 = {(v1, v2) ∈ R
2 | v1 + v2 = 0} is an 

eigenvector of. A corresponding to the eigenvalue.λ1 = −1. In particular, we can say 

that.v =
|−1
1

|
is an eigenvector of. A corresponding to the eigenvalue.−1. Similarly, 

for . λ2 = 3

. (A − 3I )v = 0 ⇒
|−2 2
2 −2

| |
v1
v2

|
=
|
0
0

|
⇒ −v1 + v2 = 0

Thus any non-zero vector from the set .W2 = {(v1, v2) ∈ R
2 | −v1 + v2 = 0} is 

an eigenvector of .A corresponding to the eigenvalue .λ2 = 3. In particular, we can 

say that .v =
|
1
1

|
is an eigenvector of . A corresponding to the eigenvalue . 3. Now  let  

us plot the sets .W1 and .W2.
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Clearly both .W1 and.W2 are subspaces of .R2. Another interesting fact to observe 
is that the vector .(1,−1) spans .W1 and .(1, 1) spans .W2. Is this true in general? 

Remark 4.1 The geometrical significance of eigenvalues and eigenvectors of a 
matrix are of great importance in matrix theory and linear algebra. In Example 4.1, 

we have seen that the eigenvalue .−1 changed the direction of the eigenvector . 

|−1
1

|

and the eigenvalue 3 stretched the vector .

|
1
1

|
, three times. If the matrix . A has a real 

eigenvalue . λ, Definition 4.1 means that the eigenvector of .A associated with . λ is a 
vector that experiences a change in sign or magnitude or both and . λ is the amount 
of stretch or shrink, the eigenvector is subjected to by the action of . A. 

We know that a non-zero vector. v is an eigenvector of a matrix. A corresponding to 
the eigenvalue. λ if and only if. v is a solution of the matrix equation of.(A − λI )v = 0. 
That is, if and only if .v ∈ N (A − λI ), the null space of the matrix .A − λI . This  
justifies our observation in the Example 4.1 that the sets .W1 and .W2 are subspaces 
of .R2. The ideas that we have discussed so far can be summarized as follows to 
characterize the eigenvalues of a square matrix . A. 

Theorem 4.1 Let .A ∈ Mn×n(K) and .λ ∈ K, then the following are equivalent; 

(a) . λ is an eigenvalue of . A. 
(b) . N (A − λI ) /= {0}
(c) .det (A − λI ) = 0. 

Proof .(a) ⇒ (b) Let .A be an .n × n matrix with entries from a field . K. Let  . λ ∈ K

be an eigenvalue of . A. Then there exists a vector .v /= 0 ∈ K
n such that .Av = λv. 

Now 
. Av = λv ⇔ (A − λI )v = 0 ⇔ v ∈ N (A − λI )

Therefore .N (A − λI ) /= {0}. 
.(b) ⇒ (c) Suppose that .N (A − λI ) /= {0}. Let  .v /= 0 ∈ N (A − λI ). Then . (A −
λI )v = 0. That is, the homogeneous system of equations.(A − λI )v = 0 has a non-
trivial solution. This is true only if .det (A − λI ) = 0. 
.(c) ⇒ (a) Now suppose that .det (A − λI ) = 0. This implies that the homogeneous 
system of equations .(A − λI )x = 0 has a non-trivial solution, say .v ∈ R

n . That is, 
.(A − λI )v = 0. This implies that there exists a non-zero vector .v ∈ R

n such that 
.Av = λv. Therefore . λ is an eigenvalue of . A. 

Thus we have seen that the collection of all eigenvectors of a square matrix . A
associated with an eigenvalue . λ forms a vector space called as eigenspace of . A
corresponding to the eigenvalue. λ. The dimension of the eigenspace associated with 
. λ is called as the geometric multiplicity of . λ. By Rank–Nullity Theorem, geometric 
multiplicity of an eigenvalue . λ of .A is given by .n − Rank(A − λI ). Another term 
related to an eigenvalue . λ of a matrix .A is its algebraic multiplicity. The algebraic 
multiplicity of an eigenvalue. λ of. A is defined as the number of times. λ appears as a 
root of the characteristic polynomial.
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Example 4.2 In Example 4.1, we have seen that the matrix.

|
1 2
2 1

|
has two eigenval-

ues.−1 and. 3. As the characteristic polynomial of. A is.(λ + 1)(λ − 3), the algebraic 
multiplicity of both .−1 and . 3 (denoted by .AM(−1) and .AM(3), respectively) is 1. 
Also, we have observed that 

. N (A + I ) = {(v1, v2) ∈ R
2 | v1 + v2 = 0} = span{(−1, 1)}

and 
. N (A − 3I ) = {(v1, v2) ∈ R

2 | −v1 + v2 = 0} = span{(1, 1)}

Therefore the geometric multiplicity of both .−1 and . 3 (denoted by .G M(−1) and 
.G M(3) respectively) is also 1. 

Now pick one eigenvector from each of the eigenspaces .N (A + I ) and . N (A −
3I ) of the matrix.

|
1 2
2 1

|
. Let us pick.

|−1
1

|
from.N (A + I ) and.

|
1
1

|
from.N (A − 3I ). 

We can clearly notice that these vectors are linearly independent. Our next theorem 
generalizes this fact. That is, we will prove that the eigenvectors of a matrix . A
corresponding to its distinct eigenvalues will be linearly independent. 

Theorem 4.2 Let .A ∈ Mn×n(K) and let .v1, v2, . . . , vm ∈ K
n be eigenvectors of 

. A corresponding to distinct eigenvalues .λ1, λ2, . . . , λm ∈ K respectively , then 

.{v1, v2, . . . , vm} is linearly independent. 

Proof Let . k be the smallest positive integer such that .v1, v2, . . . , vk are linearly 
independent. If .k = m, then there is nothing to prove. Now let .k < m. Then 
.{v1, v2, . . . , vk+1}⊂{v1, v2, . . . , vm} is linearly dependent. Hence, there exists scalars 
.μ1, μ2, . . . , μk such that 

. vk+1 = μ1v1 + μ2v2 + · · · + μkvk

Multiplying by . A on both sides, we get 

. Avk+1 = A(μ1v1 + μ2v2 + · · · + μkvk)

= μ1A(v1) + μ2 A(v2) + · · · + μk A(vk)

= μ1λ1v1 + μ2λ2v2 + · · · + μkλkvk

Since .vk+1 is a an eigenvector of . A corresponding to the eigenvalue .λk+1, we have  

.Avk+1 = λk+1vk+1

= λk+1(μ1v1 + μ2v2 + · · · + μkvk)

= μ1λk+1v1 + μ2λk+1v2 + · · · + μkλk+1vk
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From the above two equations, we get 

. μ1(λ1 − λk+1)v1 + μ2(λ2 − λk+1)v1 + · · · + μk(λk − λk+1)vk = 0

Since .v1, v2, . . . , vk are linearly independent, we get 

. μi (λi − λk+1) = 0 f or all i = 1, 2, . . . , k

Now as .λ1, λ2, . . . , λk+1 are distinct, we get .μi = 0 for all .i = 1, 2, . . . , k. This  
implies that .vk+1 is the zero vector which is a contradiction. 

Corollary 4.1 An .n × n matrix . A can have at most . n distinct eigenvalues. 

Proof Suppose that .A have .n + 1 distinct eigenvalues. Then as eigenvectors cor-
responding to distinct eigenvalues are linearly independent, .A has .n + 1 linearly 
independent eigenvectors which is a contradiction since .K

n is of dimension . n. 

Example 4.3 Consider the matrix 

. A =
⎡
⎣1 2 3
0 1 2
0 0 7

⎤
⎦

Then 

. det (A − λI ) = 0 ⇒
||||||
1 − λ 2 3
0 1 − λ 2
0 0 7 − λ

|||||| = 0 ⇒ (1 − λ)2 (7 − λ) = 0

Thus .(1 − λ)2(7 − λ) = 0 is the characteristic equation of .A and hence the eigen-
values of .A are .1, 1, 7. Since . 1 appears two times as a root of the characteristic 
equation, the algebraic multiplicity of. 1 is 2 and algebraic multiplicity of. 7 is. 1. That 
is, .AM(1) = 2 and .AM(7) = 1. 

Now let us find the eigenvectors corresponding to the eigenvalue, .λ1 = 1. 

. (A − I )v = 0 ⇒
⎡
⎣0 2 3
0 0 2
0 0 6

⎤
⎦
⎡
⎣v1

v2
v3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦⇒ v2 = v3 = 0

Therefore 

. N (A − I ) = {(v1, 0, 0) ∈ R
3 | v1 ∈ R} = span{(1, 0, 0)}

Hence geometric multiplicity of.λ1 = 1 is 1. That is, .G M(1) = 1. This fact can also 
be verified by Rank-Nullity Theorem, as  

.n − Rank(A − λ1 I ) = 3 − Rank(A − I ) = 3 − 2 = 1
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Now for .λ2 = 7, 

. (A − 7I )v = 0 ⇒
⎡
⎣−6 2 3

0 −6 2
0 0 0

⎤
⎦
⎡
⎣v1

v2
v3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦⇒ v1 = 11

6
v2, v3 = 3v2

Therefore 

. N (A − 7I ) =
{(

11

6
v2, v2, 3v2

)
∈ R

3 | v2 ∈ R

}
= span

{(
11

6
, 1, 3

)}

Hence geometric multiplicity of .λ2 = 7 is 1. That is, .G M(7) = 1. Verification by 
Rank-Nullity Theorem is as follows, 

. n − Rank(A − λI ) = 3 − Rank(A − 7I ) = 3 − 2 = 1

Also observe that the eigenvectors corresponding to 1 and 7 are linearly independent. 

An intriguing fact to keep in mind from the above example is that the geometric 
multiplicity and algebraic multiplicity of every eigenvalue need not be the same. 
Matrices having .AM(λ) = G M(λ) for all eigenvalues . λ are of greater importance 
in Mathematics. We will study about such matrices later in this chapter. Now let us 
give a definite form for the characteristic polynomial of an .n × n matrix. 

Theorem 4.3 The characteristic polynomial of an .n × n matrix . A is a polynomial 
of degree . n and is of the form 

. det (A − λI ) = (−1)n
|
λn + μn−1λ

n−1 + · · · + μ1λ + μ0
|

where .μ0, μ1, . . . , μn ∈ K. 

Proof We prove this by induction on . n. Suppose that .n = 1, then .A is of the 
form .A = [a11], where .a11 ∈ K. Then for .λ ∈ K, .det (A − λI ) = 0 implies that 
.a11 − λ = (−1)(λ − a11) = 0. This implies that the result is true for .n = 1. Now  
assume that the result is true for .n − 1. That is, the characteristic polynomial of 
an .(n − 1) × (n − 1) matrix is a polynomial of degree .n − 1 and is of the form 
.(−1)n−1

|
λn−1 + ξn−2λ

n−2 + · · · + ξ1λ + ξ0
|
where.ξ0, ξ1, . . . , ξn−2 ∈ K. Now con-

sider an .n × n matrix 

.A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦. Then.A − λI =

⎡
⎢⎢⎢⎣

a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
. . .

...

an1 an2 . . . ann − λ

⎤
⎥⎥⎥⎦. Now cal-

culate the determinant of .A − λI by expanding the matrix along a column or 
row. In either case, some .(−1)(λ − aii ) is multiplied with the determinant of an 
.(n − 1) × (n − 1) matrix, which is a polynomial of degree .n − 1 and is of the 
form .(−1)n−1

|
λn−1 + ξn−2λ

n−2 + · · · + ξ1λ + ξ0
|
where .ξ0, ξ1, . . . , ξn−2 ∈ K by
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our induction hypothesis. Therefore the characteristic polynomial of an.n × n matrix 
. A is a polynomial of degree . n with leading coefficient .(−1)n . 

Corollary 4.2 Let .A ∈ Mn×n(K). Then the product of eigenvalues of . A is equal to 
.det (A) and the sum of the eigenvalues of . A is equal to .T r (A). 

Proof From the above theorem, for an.n × n matrix. A, the characteristic polynomial 
.det (A − λI ) is of the form .(−1)n

|
λn + μn−1λ

n−1 + · · · + μ1λ + μ0
|
. Since the 

roots of the characteristic polynomial are eigenvalues, from Vieta’s Formula, we  
know that the product of eigenvalues is equal to the constant term in the polynomial 
and the sum of the eigenvalues is equal to the coefficient of .λn−1. Therefore product 
of eigenvalues of .A = (−1)nμ0 and the sum of the eigenvalues of .A = (−1)nμn−1. 
Also .det (A) = det (A − 0I ) = (−1)nμ0. Therefore the product of eigenvalues of 
an .n × n matrix .A is equal to .det (A). Now expanding .det (A − λI ) we get that 
.T r(A) = (−1)nμn . Therefore the sum of the eigenvalues of a matrix .A is equal to 
.T r (A). 

From the above corollary, we can conclude that .A ∈ Mn×n(K) is singular if and 
only if . 0 is an eigenvalue of . A. For,  .A is singular implies that .det (A) = 0. Since 
.det (A) is the product of eigenvalues of . A, atleast one of the eigenvalues of . A must 
be 0. Conversely, if . 0 is an eigenvalue of . A, then the product of eigenvalues of 
.A = det (A) = 0. 

Example 4.4 Consider the matrix 

. A =
|
1 2
2 1

|

from Example 4.1. We have seen the eigenvalues of. A are.−1 and. 3. Clearly, we can 
observe that sum of eigenvalues of .A = 2 = T r(A) and product of eigenvalues of 
.A = −3 = det (A). 

Example 4.5 Consider the matrix 

. A =
⎡
⎣1 2 3
0 1 2
0 0 7

⎤
⎦

given in Example 4.3. The eigenvalues of. A are.1, 1 and. 7. Clearly, sum of eigenvalues 
of .A = 9 = T r(A) and product of eigenvalues of .A = 7 = det (A). 

Remark 4.2 The characteristic equation of a .2 × 2 matrix is of the form 

.λ2 − tr(A)λ + det (A) = 0
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and the characteristic equation of a .3 × 3 matrix is of the form 

. − λ3 + tr(A)λ2 − [M11 + M22 + M33]λ + det (A) = 0

where .M11, M22 and .M33 are the minors of the diagonal elements. 

If we know the eigenvalues of an .n × n matrix . A, we could find the eigenvalues 
of some matrices associated or related with. A. The following theorem shows that, if 
. A is an invertible matrix, then the eigenvalues of .A−1 are the multiplicative inverses 
of eigenvalues of . A. 

Theorem 4.4 Let .A ∈ Mn×n(K) be a nonsingular matrix. If . λ is an eigenvalue of 
. A, then .λ−1 is an eigenvalue of .A−1 . 

Proof Let .A ∈ Mn×n(K) be a nonsingular matrix. Then by Corollary 4.2, all  
eigenvalues of .A are non-zero. If . λ is an eigenvalue of . A, there exists a non-
zero vector .v ∈ K

n such that .Av = λv. Multiplying both sides with .A−1 we get, 
.A−1(Av) = A−1(λv). That is, .v = λA−1v which implies that .A−1v = λ−1v. There-
fore .λ−1 is an eigenvalue of .A−1 with eigenvector . v. 

Likewise we can compute the eigenvalues of powers of . A, if we know the eigen-
values of . A. 

Theorem 4.5 Let .A ∈ Mn×n(K). Let . λ be an eigenvalue of . A with an eigenvector 
. v, then . λm is an eigenvalue of .Am with eigenvector . v, for any positive integer . m. 

Proof Let . λ be an eigenvalue of . A with an eigenvector . v. Then .Av = λv. We have  
to show that .Amv = λmv for any positive integer . m. Clearly this is true for .m = 1. 
Now assume that the result is true for .m − 1. i.e, .Am−1v = λm−1v. Now  

. Amv = A
(

Am−1v
) = A

(
λm−1v

) = λm−1A(v) = λmv

Hence, .λm is an eigenvalue of .Am with eigenvector . v, for any positive integer . m. 

Using the eigenvalues of an.n × n matrix. A, we have characterized the eigenvalues 
of .Am , where .m is a positive integer and .A−1, when . A is invertible. Now consider a 
polynomial of degree . m, given by 

. p(x) = a0 + a1x + · · · + am xm

If we evaluate this polynomial with .x = A, 

. p(A) = a0 I + a1A + · · · + am Am

we get a matrix polynomial. Again, using the eigenvalues of . A, we can compute the 
eigenvalues of .p(A). Consider the following theorem.
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Theorem 4.6 Let.p(x) = a0 + a1x + · · · + am xm ∈ K[x]be a polynomial of degree 
. m, where. K is an algebraically closed field. If. λ is an eigenvalue of.A ∈ Mn×n(K) with 
an eigenvector . v, then .p(λ) is an eigenvalue of . p(A) = a0 I + a1A + · · · + am Am

with the eigenvector . v. Conversely, if .m ≥ 1 and if . μ is an eigenvalue of .p(A), then 
there is some eigenvalue . λ of . A such that .p(λ) = μ. 

Proof Let . λ be an eigenvalue of . A with eigenvector . v. Then .Av = λv. Now  

. p(A)v = (a0 I + a1 A + · · · + am Am)v

= a0 Iv + a1Av + · · · + am Amv

= a0v + a1λv + · · · + amλmv

= (a0 + a1λ + · · · + amλm)v

= p(λ)v

Hence, .p(λ) is an eigenvalue of .p(A) with the eigenvector . v. 
Conversely for .m ≥ 1, if . μ is an eigenvalue of .p(A), then there exists a non-zero 

vector .v ∈ V such that .(p(A) − μI )v = 0. Then .det (p(A) − μI ) = 0. Since .K is 
an algebraically closed field, there exists scalars .λ1, λ2, . . . , λm ∈ K such that 

. p(x) − μ = (x − λ1)(x − λ2) · · · (x − λm)

Then 
. p(A) − μI = (A − λ1 I )(A − λ2 I ) · · · (A − λm I )

and as .det (p(A) − μI ) = 0, .det (A − λi I ) = 0 for atleast one . i . This implies that 
.λi is an eigenvalue of . A. Also  .p(λi ) − μ = 0. Hence, .λi is an eigenvalue of . A and 
.p(λi ) = μ. 

Thus Theorem 4.5 can be considered as a special case of Theorem 4.6. Consider 
the following example. 

Example 4.6 Let . A be the matrix 

. 

|
1 2
2 1

|

from Example 4.1. Consider a polynomial .q(λ) = λ2 + 2λ + 1. Then 

. q(A) = A2 + 2A + I =
|
5 4
4 5

|
+
|
2 4
4 2

|
+
|
1 0
0 1

|
=
|
8 8
8 8

|

Observe that the characteristic equation of .q(A) is .x2 − 16x = 0 and hence the 
eigenvalues of .q(A) are . 0 and . 16. By Theorem 4.6, the eigenvalues of .q(A) must 
be of the form .q(λ), where . λ is an eigenvalue of . A. We have already seen that the 
eigenvalues of . A are .−1 and . 3. Note that .q(−1) = 0 and .q(3) = 16.
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Now let us consider the characteristic polynomial of . A, given by 

. p(λ) = λ2 − 2λ − 3

It will be interesting to observe that 

. p(A) = A2 − 2A − 3I =
|
5 4
4 5

|
−
|
2 4
4 2

|
−
|
3 0
0 3

|
=
|
0 0
0 0

|

That is, we have 

.A2 − 2A = 3I (4.7) 

As all the eigenvalues of. A are non-zero,. A is invertible. Multiplying by.A−1 on both 
sides of Eq. (4.7), we have .3A−1 = A − 2I . Therefore 

. A−1 = 1

3
(A − 2I ) = 1

3

|−1 2
2 −1

|

That is, we can write .A−1 in terms of . A, when . A is invertible. Will this be possible 
always? We will discuss this in the next theorem. 

Observe that the characteristic equation of .A−1 is .λ2 + 2
3λ − 1

3 and hence the 
eigenvalues of .A−1 are .−1 and . 13 . Note that the eigenvalues of .A

−1 are the multi-
plicative inverses of the eigenvalues of . A. 

If we compute .p(A) for the matrix .A =
⎡
⎣1 2 3
0 1 2
0 0 7

⎤
⎦ given in Example 4.3, we will 

get .p(A) = 0, where.p(A) is the characteristic polynomial of . A. This is interesting, 
right? In the next theorem, we will prove that this will be true for every square 
matrix. That is, every square matrix satisfies its characteristic equation. This is one 
of the most important theorems in matrix theory, named after famous mathematicians, 
Arthur Cayley (1821–1895) and William R. Hamilton (1805–1865). 

Theorem 4.7 (Cayley–Hamilton Theorem) Let .A ∈ Mn×n(K), and let 

. p(λ) = det (A − λI ) = (−1)n
|
λn + μn−1λ

n−1 + · · · + μ1λ + μ0
|

be the characteristic polynomial of . A, then . A satisfies its own characteristic poly-
nomial. That is, 

.p(A) = (−1)n
|
An + μn−1 An−1 + · · · + μ1A + μ0 I

| = 0
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Proof We have 

.(A − λI )ad j (A − λI ) = det (A − λI )I = p(λ)I (4.8) 

where.ad j (A − λI ) = |pi j (λ)
|

n×n
, pi j (λ) is a polynomial of degree.n − 1 in. λ and 

.1 ≤ i, j ≤ n. Therefore, we can represent .ad j (A − λI ) as 

. ad j (A − λI ) = A0 + A1λ + · · · + An−1λ
n−1

where .A0, A1, . . . An−1 ∈ Mn×n(K). Then from Eq. 4.8, 

. (−1)n
|
λn + μn−1λ

n−1 + · · · + μ1λ + μ0

|
I = (A − λI )

(
A0 + A1λ + · · · + An−1λ

n−1
)

= AA0 + (AA1 − A0)λ + · · · + (−An−1)λ
n

Now comparing the coefficients of powers of . λ, we get 

. AA0 = (−1)nμ0 I

AA1 − A0 = (−1)nμ1 I

...

AAn−1 − An−2 = (−1)nμn−1 I

−An−1 = (−1)n I

Multiplying these equations on the left by .I, A, . . . , An respectively , we get 

. AA0 = (−1)nμ0 I

A2 A1 − AA0 = (−1)nμ1A

...

An An−1 − An−1 An−2 = (−1)nμn−1 An−1

−An An−1 = (−1)n An

By adding these equations, we get 

. p(A) = (−1)n
|
An + μn−1 An−1 + · · · + μ1A + μ0 I

| = 0

That is, . A satisfies its characteristic equation. 

Example 4.7 Consider the matrix 

.A =
⎡
⎣ 2 0 0

1 2 1
−1 0 1

⎤
⎦
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Then the characteristic equation of . A is 

. λ3 − 5λ2 + 8λ − 4 = (2 − λ)2(1 − λ) = 0

Observe that 

. A3 − 5A2 + 8A − 4I =
⎡
⎣ 8 0 0

7 8 7
−7 0 1

⎤
⎦− 5

⎡
⎣ 4 0 0

3 4 3
−3 0 1

⎤
⎦+ 8

⎡
⎣ 2 0 0

1 2 1
−1 0 1

⎤
⎦− 4

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ = 0

That is, .A satisfies its characteristic equation. Since .det (A) /= 0, .A is invertible. 
Now 

. A3 − 5A2 + 8A − 4I = 0 ⇒ 4I = A3 − 5A2 + 8A

Multiplying by .A−1 on both sides 

. A−1 = 1

4
[A2 − 5A + 8I ]

This is an important application of Cayley–Hamilton theorem. We can also see that 

. A2 − 3A + 2I =
⎡
⎣ 4 0 0

3 4 3
−3 0 1

⎤
⎦− 3

⎡
⎣ 2 0 0

1 2 1
−1 0 1

⎤
⎦+ 2

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ = 0

i.e., . A also satisfies the polynomial equation .λ2 − 3λ + 2 = 0. 

From this example, we get that for a matrix . A, there are polynomials .p(λ) other 
than the characteristic polynomial of . A for which .p(A) = 0. 

Definition 4.2 (Annihilating polynomial) Let  .A ∈ Mn×n(K). If for  . f (λ) ∈ K[λ], 
we have . f (A) = 0, then . f (λ) is called an annihilating polynomial of . A. 

Definition 4.3 (Minimal polynomial) Let.A ∈ Mn×n(K), then the minimal polyno-
mial of . A is the least degree monic polynomial .q(λ) ∈ K[λ] such that .q(A) = 0. 

Clearly, minimal polynomial and characteristic polynomial of a matrix. A are anni-
hilating polynomials of . A. The following theorems discusses the relation between 
these polynomials. 

Theorem 4.8 Let .A ∈ Mn×n(K). If .p(λ) ∈ K[λ] is an annihilating polynomial of 
. A, then the minimal polynomial divides .p(λ). 

Proof Let .A ∈ Mn×n(K) and .p(λ) ∈ K[λ] be such that .p(A) = 0. Let  .q(λ) be the 
minimal polynomial of . A. By division algorithm for polynomials, there exists poly-
nomials .m(λ) and .r(λ) such that 

.p(λ) = m(λ)q(λ) + r(λ)
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where .deq(r(λ)) < deq(q(λ)). Then .r(λ) = p(λ) − m(λ)q(λ). This implies that 
.r(A) = p(A) − m(A)q(A) = 0which is contradiction, since.q(λ) is the least degree 
polynomial that is satisfied by the matrix . A. Therefore .r(λ) = 0 and hence . p(λ) =
m(λ)q(λ). 

Corollary 4.3 Let .A ∈ Mn×n(K). Then minimal polynomial of . A divides charac-
teristic polynomial of . A. 

Proof Let.p(λ) be the characteristic polynomial of. A. ByCayley–Hamilton theorem, 
.p(λ) is an annihilating polynomial of . A and hence the result follows. 

Theorem 4.9 Let .A ∈ Mn×n(K). Then the minimal polynomial of . A and the char-
acteristic polynomial of . A have same roots except for multiplicities. 

Proof Let .A ∈ Mn×n(K). .p(λ) and .q(λ) be the characteristic and minimal poly-
nomial of .A respectively. Since minimal polynomial divides characteristic polyno-
mial, there exists.m(λ) ∈ K[λ] such that.p(λ) = m(λ)q(λ). Let.λ1 ∈ K be such that 
.q(λ1) = 0. Then .p(λ1) = m(λ1)q(λ1) = 0. Hence, .λ1 is a root of .p(λ). 

Now let .λ1 be a root of .p(λ). Then there exists an eigenvector .v /= 0 such that 
.Av = λ1v. Since .q(λ) is the minimal polynomial of . A, we have  .q(A)v = 0. Then 
by Theorem 4.6,.q(λ1)v = 0. Then as.v /= 0,.q(λ1) = 0. Hence,.λ1 is a root of.q(λ). 

Remark 4.3 Let .p(λ) = (λ − λ1)
n1(λ − λ2)

n2 · · · (λ − λk)
nk be the characteristic 

polynomial of a matrix . A, then the minimal polynomial is of the form . q(λ) =
(λ − λ1)

m1(λ − λ2)
m2 · · · (λ − λk)

mk where .mi ≤ ni for all .i = 1, 2, . . . , k. 

Example 4.8 Consider the matrix 

. A =
⎡
⎣ 2 0 0

1 2 1
−1 0 1

⎤
⎦

from Example 4.7. We have seen that the characteristic polynomial of .A is . (2 −
λ)2(1 − λ). Then by the above remark, the minimal polynomial has two possibilities, 
.(2 − λ)(1 − λ) and.(2 − λ)2(1 − λ). Since.A2 − 3A + 2I = (2I − A)(I − A) = 0, 
the minimal polynomial of . A is .(2 − λ)(1 − λ). 

Example 4.9 Consider the matrix 

. A =
|
1 2
2 1

|

from Example 4.1. The characteristic polynomial of .A is .(λ + 1)(λ − 3). As the  
characteristic polynomial and minimal polynomial must have the same roots the 
minimal polynomial of . A is also .(λ + 1)(λ − 3).
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Example 4.10 Consider the matrix 

. A =
⎡
⎣1 2 3
0 1 2
0 0 7

⎤
⎦

from Example 4.3. The characteristic polynomial of. A is.(1 − λ)2(7 − λ). Then there 
are two possibilities for the minimal polynomial of. A, which are.(1 − λ)(7 − λ) and 
.(1 − λ)2(7 − λ) it self. As we can see that .(I − A)(7I − A) /= 0, . (1 − λ)2(7 − λ)

is the minimal polynomial of . A. 

4.2 Diagonalization 

A matrix  .A ∈ Mn×n (K) is called a diagonal matrix if each of its non diagonal 
elements is zero. A diagonal matrix with all its main diagonal entries equal is called 
a scalar matrix. For a diagonal matrix . D, the eigenvalues are precisely its diagonal 
entries and .ei is an eigenvector of .D with eigenvalue .dii , where .dii denotes the 
.i th diagonal entry of .D and .ei is the .i th element in the standard ordered basis for 
.K

n . These properties of diagonal matrices can be used in many applications. In this 
section, we will be discussing whether every square matrix can be made similar to a 
diagonal matrix. 

Remark 4.4 The collection of all diagonal matrices, denoted by . D, under matrix 
addition forms an Abelian group where the zero matrix acts as the identity and 
inverse of each element . A is .−A. But under matrix multiplication, .D does not form 
a group, as a diagonal matrix is invertible if and only if all its diagonal entries are 
non-zero. 

Definition 4.4 (Similar matrices) Two.n × n matrices. A and. B are said to be  similar 
if there exists an invertible matrix .P such that .P−1 AP = B. 

Example 4.11 Consider the matrices 

. A =
|
1 2
2 1

|
and B =

|
3 0
6 −1

|

As for.P =
|
2 −1

−1 1

|
, .P−1 AP = B implies that. A and. B are similar. We know that 

the characteristic polynomial of . A is .(λ + 1)(λ − 3). Observe that the characteristic 
equation of. B is also.(λ + 1)(λ − 3). Thus. A and. B have same eigenvalues. Will this 
be true always? The next theorem will give us the answer. 

Theorem 4.10 Let .A, B ∈ Mn×n (K) be similar matrices. Then they have same 
characteristic polynomials.
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Proof Suppose that .A, B ∈ Mn×n (K) are similar matrices. Then there exists an 
invertible matrix .P such that .P−1 AP = B. The characteristic polynomial of .B is 
given by .det (B − λI ) where . λ is an indeterminate. Now, 

. det (B − λI ) = det (P−1 AP − λP−1P)

= det
|
P−1 (A − λI ) P

|
= det (P−1)det (A − λI )det (P)

= det (A − λI )

That is, . A and . B have the same characteristic polynomial. 

Corollary 4.4 Let .A, B ∈ Mn×n (K) be similar matrices, then they have same trace 
and determinant. 

Proof Since similar matrices have same characteristic polynomial, they have same 
eigenvalues with same algebraic multiplicities. Then by Corollary 4.2, they have  
same trace and determinant. 

Theorem 4.11 Let.A, B ∈ Mn×n (K) be similar matrices. Then they have same rank 
and nullity. 

Proof Suppose that .A, B ∈ Mn×n (K) are similar matrices. Then, there exist an 
invertible matrix. P such that.P−1 AP = B. Let.{v1, v2, . . . , vk} be a basis for.N (B), 
where .k ≤ n. Now  for .i = 1, 2, . . . , n, 

. 0 = Bvi = P−1 APvi ⇒ A(Pvi ) = 0

Hence, .{Pv1, Pv2, . . . , Pvk} is a subset of .N (A). We will prove that this set will 
form a basis of .N (A). Suppose that there exists scalars .μ1, μ2, . . . , μk ∈ K such 
that 

. μ1Pv1 + μ2Pv2 + · · · + μk Pvk = 0

which implies that 
. P(μ1v1 + μ2v2 + · · · + μkvk) = 0

Since .P is invertible, we have 

. μ1v1 + μ2v2 + · · · + μkvk = 0

As.{v1, v2, . . . , vk} is a basis, the set is linearly independent. This implies that . μ1 =
μ2 = · · · = μk = 0. Therefore .{Pv1, Pv2, . . . , Pvk} is a linearly independent set. 

Now let.v ∈ N (A). Then,.Av = 0. As.A = P B P−1, this gives.P B P−1v = 0 and 
.P is invertible implies that .B(P−1v) = 0. Hence, .P−1v ∈ N (B). Then there exist 
scalars .ξ1, ξ2, . . . , ξk ∈ K such that 

.P−1v = ξ1v1 + ξ2v2 + · · · + ξkvk
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which implies that 
. v = ξ1Pv1 + ξ2Pv2 + · · · + ξk Pvk

Thus, .{Pv1, Pv2, . . . , Pvk} spans .N (A). Therefore .Nulli t y(A) = Nulli t y(B). 
Now by Rank-Nullity theorem, we get .Rank(A) = Rank(B). 

Definition 4.5 (Diagonalizability) If.A ∈ Mn×n (K) is similar to a diagonal matrix, 
then .A is said to be diagonalizable. That is, .A is diagonalizable if there exists a 
diagonal matrix.D such that.P−1 AP = D for some invertible matrix.P ∈ Mn×n (K). 

Example 4.12 Consider the matrix 

. A =
|
1 2
2 1

|

from Example 4.1. For .P =
|−1 1
1 1

|
, we get . 

P−1AP = −1

2

|
1 −1

−1 −1

| |
1 2
2 1

| |−1 1
1 1

|
=
|−1 0
0 3

|
= D

Therefore .A is diagonalizable. But how to find .P such that .P−1AP is a diagonal 
matrix? Notice that the columns of. P are the eigenvectors of. A. Also observe that the 
diagonal entries of .D are not just any scalars but the eigenvalues of . A. Interesting!!! 

Example 4.13 Consider the matrix . 

A =
⎡
⎣ 2 0 0

1 2 1
−1 0 1

⎤
⎦

from Example 4.7. For .P =
⎡
⎣−1 0 0

0 1 −1
1 0 1

⎤
⎦, we get . 

P−1 AP =
⎡
⎣−1 0 0

1 1 1
1 0 1

⎤
⎦
⎡
⎣ 2 0 0

1 2 1
−1 0 1

⎤
⎦
⎡
⎣−1 0 0

0 1 −1
1 0 1

⎤
⎦ =

⎡
⎣2 0 0
0 2 0
0 0 1

⎤
⎦ = D

Therefore . A is diagonalizable. Here also, observe that the diagonal entries of .D the 
eigenvalues of. A. What about the columns of. P? Verify for yourself that the columns 
of .P are the eigenvectors of . A.
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What about the matrix .A =
⎡
⎣1 2 3
0 1 2
0 0 7

⎤
⎦ from Example 4.3? We will later see that 

there does not exist a matrix. P such that.P−1 AP is a diagonal matrix. What could be 
the reason for non-diagonalizability? In Example 4.3, we have seen that . A has only 
two linearly independent eigenvectors. Could this be the reason? The next theorem 
will provide us with an answer. The theorem establishes a necessary and sufficient 
condition for the diagonalizability of a square matrix. 

Theorem 4.12 Let .A ∈ Mn×n (K). Then . A is diagonalizable if and only if . A has . n
linearly independent eigenvectors. 

Proof Suppose that .A ∈ Mn×n (K) is diagonalizable. Then there exist a diagonal 
matrix. D, such that.P−1 AP = D for some nonsingular matrix.P ∈ Mn×n (K). Now  
. 

P−1 AP = D ⇒ AP = P D

We know that. ei is an eigenvector of.D with eigenvalue.dii , where.dii denotes the. i th
diagonal entry of .D and .ei is the .i th element in the standard ordered basis for .Kn . 
That is, .Dei = dii ei . We will show that .Pei is an eigenvector of . A with eigenvalue 
.dii for each .i = 1, 2, . . . , n. We have . 

A(Pei ) = (AP)ei = (P D)ei = P(Dei ) = dii (Pei ), ∀ i = 1, 2, . . . , n

which implies that .{Pe1, Pe2, . . . , Pen} are eigenvectors of . A. Now will show that 
this set is linearly independent. Suppose that there exist .μ1, μ2, . . . , μn ∈ K such 
that . 

μ1Pe1 + μ2Pe2 + · · · + μn Pen = 0

This implies that, . 
P(μ1e1 + μ2e2 + · · · + μnen) = 0

Since .P is invertible, multiplying by .P−1 on both sides, we get . 

μ1e1 + μ2e2 + · · · + μnen = 0

As.{e1, e2, . . . , en} is linearly independent, we get.μ1 = μ2 = · · · = μn = 0. There-
fore .{Pe1, Pe2, . . . , Pen} is linearly independent and hence .A has . n linearly inde-
pendent eigenvectors. 

Conversely, suppose that .A has .n linearly independent eigenvectors, say 
.v1, v2, . . . , vn . Then take .P as the .n × n matrix with .v1, v2, . . . , vn as its columns. 
That is, . 

P = |v1 v2 . . . vn
|

Let.λ1, λ2, . . . , λn be eigenvalues of. A. Take.D as the diagonal matrix with.dii = λi . 
Now.
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AP = |Av1 Av2 . . .  Avn
| = |λ1v1 λ2v2 . . .  λnvn

| = P D  

As the columns of. P are linearly independent,. P has.Rank n and hence is invertible. 
This implies that .P−1AP = D. Hence, . A is diagonalizable. 

Corollary 4.5 If.A ∈ Mn×n (K) has. n distinct eigenvalues, then. A is diagonalizable. 

Proof Suppose that.A ∈ Mn×n (K) has. n distinct eigenvalues. Then by Theorem 4.2, 
. A has . n linearly independent eigenvectors. Therefore . A is diagonalizable. 

Corollary 4.6 Let.A ∈ Mn×n (K). Then. A is diagonalizable if and only if there exists 
a basis of . Kn consisting of eigenvectors of . A. 

Proof Suppose that .A ∈ Mn×n (K) is diagonalizable. Then .A has . n distinct eigen-
vectors. Then the collection of these linearly independent eigenvectors of .A is a 
maximal linearly independent set in .K

n and hence is a basis of .Kn . 
Conversely, suppose that .Kn has a basis consisting of eigenvectors of . A. Then 

clearly, . A has . n linearly independent eigenvectors. Therefore . A is diagonalizable. 

Observe that the converse of Corollary 4.5 is not true. That is, A matrix is diag-
onalizable need not imply that it has . n distinct eigenvalues. For example, consider 

the matrix .A =
⎡
⎣ 2 0 0

1 2 1
−1 0 1

⎤
⎦. We have seen Example 4.13 that the matrix .A is diag-

onalizable. But .A has only two distinct eigenvalues. Another example is the . n × n
identity matrix,. I . As. I is a diagonal matrix, it is clearly diagonalizable (Why?). But 
it does not have . n distinct eigenvalues. 

Example 4.14 Consider the matrix . 

A =
⎡
⎣2 −1 0
3 −2 0
0 0 1

⎤
⎦

The characteristic polynomial of . A is .(1 − λ)2(−1 − λ). Therefore the eigenvalues 
of . A are 1 and .−1. Let us find the eigenspace corresponding to .λ1 = 1. . 

(A − I )v = 0 ⇒
⎡
⎣1 −1 0
3 −3 0
0 0 0

⎤
⎦
⎡
⎣v1

v2
v3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦⇒ v1 = v2

Thus .

N (A − I ) = {(v1, v2, v3) ∈ R
3 | v1 = v2} = span{(1, 1, 0), (0, 0, 1)}
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So we can pick two linearly independent eigenvectors of. A corresponding to.λ1 = 1, 

say .

⎡
⎣11
0

⎤
⎦ and .

⎡
⎣00
1

⎤
⎦. Now  for .λ2 = −1, . 

(A + I )v = 0 ⇒
⎡
⎣3 −1 0
3 −1 0
0 0 2

⎤
⎦
⎡
⎣v1

v2
v3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦⇒ 3v1 − v2 = 0, v3 = 0

Thus . 

N (A + I ) = {(v1, v2, v3) ∈ R
3 | v2 = 3v1, v3 = 0} = span{(1, 3, 0)}

As.N (A + I ) is one dimensional space, pick one eigenvector corresponding to. λ2 =

−1, say  .

⎡
⎣13
0

⎤
⎦. Thus .A has three linearly independent eigenvectors. Therefore, by 

Theorem 4.12, . A is diagonalizable. Note that, for .P =
⎡
⎣1 0 1
1 0 3
0 1 0

⎤
⎦, we get . 

P−1AP = 1

2

⎡
⎣ 3 −1 0

0 0 2
−1 1 0

⎤
⎦
⎡
⎣2 −1 0
3 −2 0
0 0 1

⎤
⎦
⎡
⎣1 0 1
1 0 3
0 1 0

⎤
⎦ =

⎡
⎣1 0 0
0 1 0
0 0 −1

⎤
⎦

Also, notice . A does not have three distinct eigenvalues. 

Although diagonalizability is an important property for matrices, every matrix 

need not be diagonalizable. The matrix.A =
⎡
⎣1 2 3
0 1 2
0 0 7

⎤
⎦ from Example 4.3 is not diag-

onalizable as it has only two linearly independent eigenvectors. Here is another 
example for a non-diagonalizable matrix. 

Example 4.15 Consider the matrix . 

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦

The characteristic polynomial of . A is .(2 − λ)2(3 − λ). Therefore the eigenvalues of 
. A are 2 and . 3. Let us find the eigenspace corresponding to .λ1 = 2. .

(A − 2I )v = 0 ⇒
⎡
⎣0 −1 2
0 0 −2
0 0 3

⎤
⎦
⎡
⎣v1

v2
v3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦⇒ v2 = v3 = 0
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Thus . 

N (A − 2I ) = {(v1, v2, v3) ∈ R
3 | v2 = v3 = 0} = span{(1, 0, 0)}

Therefore we can pick one eigenvector corresponding to.λ1 = 2 is.

⎡
⎣10
0

⎤
⎦ from. N (A −

I ). Now  for .λ2 = 3 . 

(A − 3I )v = 0 ⇒
⎡
⎣−1 −1 2

0 −1 −2
0 0 0

⎤
⎦
⎡
⎣v1

v2
v3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦⇒ v1 = −2v2, v3 = −1

2
v2

Thus . 

N (A − 3I ) =
{
(v1, v2, v3) ∈ R

3 | v1 = −2v2, v3 = −1

2
v2

}
= span{(4,−2, 1)}

Thus we can pick one eigenvector corresponding to .λ2 = 3, say  .

⎡
⎣ 4

−2
1

⎤
⎦. The given 

matrix does not have three linear independent eigenvectors and hence by Theo-
rem 4.12, . A is not diagonalizable. 

The next theorem gives a necessary and sufficient condition for diagonalizability 
of a square matrix. A in terms of algebraic multiplicity and geometric multiplicity of 
its eigenvalues. 

Theorem 4.13 Let.A ∈ Mn×n (K).. A is diagonalizable if and only if for every eigen-
value . λ of . A, the geometric multiplicity equals the algebraic multiplicity. 

Proof Suppose that. A is diagonalizable. Then there exists a diagonal matrix.D with 
.P−1AP = D, for some nonsingular matrix .P ∈ Mn (K). Let .λ1, λ2, . . . , λk be dis-
tinct eigenvalues of. Awith algebraic multiplicities.m1, m2, . . . , mk , respectively. The 
geometric multiplicity of an eigenvalue .λi is equal to 
.Nulli t y (A − λi I ). Since . 

D − λi I = P−1AP − λi I = P−1 AP − λi P−1P = P−1(A − λi I )P

.A − λi I and .D − λi I are similar. Then by Theorem 4.11, they have same nullity. 
Therefore the geometric multiplicity of an eigenvalue .λi is equal to 
.Nulli t y (D − λi I ) = mi = algebraic multiplicity of .λi as .D is a diagonal matrix 
with .λ1, λ2, . . . , λk as diagonal entries and each .λi repeats .mi times. That is, for 
every eigenvalue. λ of. A, the geometric multiplicity equals the algebraic multiplicity. 

Conversely, suppose that for every eigenvalue .λ of . A, the geometric multi-
plicity equals the algebraic multiplicity. Let .λ1, λ2, . . . , λk be distinct eigenval-
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ues of .A with algebraic multiplicities .m1, m2, . . . , mk respectively. Since the geo-
metric multiplicity equals the algebraic multiplicity for every eigenvalue of . A, 
.Nulli t y(A − λi I ) = mi for each . i . Now corresponding to each . λi , consider the 
basis .{v1

i , v
2
i , . . . v

mi
i } of .N (A − λi I ), where .mi is the geometric multiplicity of . λi

for .i = 1, 2, . . . , k. Now consider the set .B = {v1
1, v

2
1, . . . v

m1
1 , . . . , v1

k , v
2
k , . . . v

mk
k }. 

We will show that . B is a basis for .Kn . Since .m1 + m2 + · · · + mk = n, it is enough 
to prove that. B is linearly independent. Now let. μ1

1, μ
2
1, . . . μ

m1
1 , . . . , μ1

k, μ
2
k, . . . μ

mk
k

be scalars such that . 

μ1
1v

1
1 + μ2

1v
2
1 + · · · + μ

m1
1 v

m1
1 + · · · + μ1

kv
1
k + μ2

kv
2
k + · · · + μ

mk
k v

mk
k = 0

Consider the collection.χ = {Em1
i=1 μi

iv
i
i , . . . ,

Emk
i=1 μi

iv
i
i

}
. Since.{v1

i , v
2
i , . . . v

mi
i } is 

a basis of .N (A − λi I ), a linear combination of .v1
i , v

2
i , . . . v

mi
i is either zero vector 

or an eigenvector corresponding to . λi . This is true for every .i = 1, 2, . . . , k. For an 
element in . χ to be the zero vector, the coefficients must be zero since each element 
. χ is a linear combination of a linearly independent set. Now consider the remaining 
non-zero elements in. χ . Since eigenvectors corresponding to distinct eigenvalues are 
linearly independent, a linear combination of non-zero vectors in . χ implies that all 
the coefficients are zero. Therefore . B is linearly independent and hence is a basis of 
.R

n . Therefore . A is diagonalizable. 

Example 4.16 Consider the matrix . 

A =
⎡
⎣2 −1 0
3 −2 0
0 0 1

⎤
⎦

from Example 4.14. We have seen that .A has two eigenvalues . 1 and .−1. From  
Example 4.14, .AM(1) = G M(1) = 2 and .AM(−1) = G M(−1) = 1. As the alge-
braic multiplicity equals geometric multiplicity for every eigenvalue of. A, the matrix 
. A is diagonalizable. 

Example 4.17 Consider the matrix . 

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦

in Example 4.15. .A has two eigenvalues . 2 and . 3. From Example 4.15, we have  
.AM(2) = 2, but .G M(2) = 1. Therefore . A is not diagonalizable. 

The next theorem shows that an .n × n matrix .A is diagonalizable if and only if 
.K

n can be written as a direct sum of eigenspaces of . A.
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Theorem 4.14 Let .A ∈ Mn×n (K). Then . A is diagonalizable if and only if . 

K
n = N (A − λ1 I ) ⊕ N (A − λ2 I ) ⊕ · · · ⊕ N (A − λk I )

where .λ1, λ2, . . . , λk are distinct eigenvalues of . A. 

Proof Let .A ∈ Mn×n (K) and let .λ1, λ2, . . . , λk are distinct eigenvalues of . A, with 
algebraic multiplicities .m1, m2, . . . , mk , respectively. Suppose that . A is diagonaliz-
able. Then by Theorem 4.13,.m1 + m2 + · · · + mk = n and the union of basis vectors 
of.N (A − λi I ), where.i = 1, 2, . . . , k forms a basis for.Kn . Then by Theorem 2.22, 
.K

n = N (A − λ1 I ) ⊕ N (A − λ2 I ) ⊕ · · · ⊕ N (A − λk I ). 
Now suppose that .K

n = N (A − λ1 I ) ⊕ N (A − λ2 I ) ⊕ · · · ⊕ N (A − λk I ). 
Again the union of basis vectors of.N (A − λi I ), where.i = 1, 2, . . . , k forms a basis 
for .Kn . That is, .Kn has a basis consisting of eigenvectors. Then by Corollary 4.6, . A
is diagonalizable. 

Thus if .A has . n distinct eigenvalues, we can write .Kn as a direct sum of . n one 
dimensional spaces. Let us consider some examples to verify Theorem 4.14. 

Example 4.18 Consider the matrix . 

A =
⎡
⎣2 −1 0
3 −2 0
0 0 1

⎤
⎦

from Example 4.14 which is diagonalizable. We have seen that the eigenvalues of . A
are 1 and .−1. Also, . 

N (A − I ) = {(v1, v2, v3) ∈ R
3 | v1 = v2}

and . 

N (A + I ) = {(v1, v2, v3) ∈ R
3 | v2 = 3v1, v3 = 0}

Clearly, .N (A − I ) + N (A + I ) = R
3 and .N (A − I ) ∩ N (A + I ) = {0}(Verify). 

Then by Theorem 2.20, . 

N (A − I ) ⊕ N (A + I ) = R
3

which verifies Theorem 4.14. 

Example 4.19 Consider the matrix .

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦
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from Example 4.15, which is not diagonalizable. We have seen that the eigenvalues 
of . A are . 2 and . 3. Also . 

N (A − 2I ) = {(v1, v2, v3) ∈ R
3 | v2 = v3 = 0} = span{(1, 0, 0)}

and . 

N (A − 3I ) =
{
(v1, v2, v3) ∈ R

3 | v1 = −2v2, v3 = −1

2
v2

}
= span{(4,−2, 1)}

Both .N (A − 2I ) and .N (A − 3I ) are of dimension 1 each. Clearly . 

N (A − 2I ) + N (A − 3I ) /= R
3

We can also check whether a matrix is diagonalizable or not by finding its minimal 
polynomial. The next theorem states that a matrix . A is diagonalizable if and only if 
its minimal polynomial does not have any repeated roots. 

Theorem 4.15 Let .A ∈ Mn×n (K). Then . A is diagonalizable if and only if the min-
imal polynomial of . A has no repeated roots. 

Proof Suppose that .A is diagonalizable. Let .λ1, λ2, . . . , λk be distinct eigenvalues 
of . A. Then by the above theorem, . 

K
n = N (A − λ1 I ) ⊕ N (A − λ2 I ) ⊕ · · · ⊕ N (A − λk I )

Therefore .K
n have a basis consisting of eigenvectors of . A. We will show that . 

q(λ) = (λ − λ1)(λ − λ2) · · · (λ − λk)

is the minimal polynomial of . A.Since characteristic polynomial and minimal poly-
nomial have same roots it is enough to show that . 

q(A) = (A − λ1 I )(A − λ2 I ) · · · (A − λk I ) = 0

Let . v be an eigenvector of . A, then .(A − λi I )v = 0 for some . i . Since the matrices 
.(A − λi I ) commutes with each other, .q(A)v = 0 for every eigenvector of . A and as 
collection of all eigenvectors forms a basis,.q(A) = 0. Therefore.q(λ) is the minimal 
polynomial of . A and it has no repeated roots. 

Conversely, suppose that the minimal polynomial of . A has no repeated roots. Let 
. 

q(λ) = (λ − λ1)(λ − λ2) · · · (λ − λk)

be the minimal polynomial of . A. Then.λ1, λ2, . . . , λk are the distinct eigenvalues of 
. A. We will show that .
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K
n = N (A − λ1 I ) ⊕ N (A − λ2 I ) ⊕  · · ·  ⊕  N (A − λk I ) 

We have already shown that the union of basis vectors of .N (A − λi I ), where . i =
1, 2, . . . , k is a linearly independent set. Now it is enough to show that . 

K
n = N (A − λ1 I ) + N (A − λ2 I ) + · · · + N (A − λk I )

Now consider the polynomials . 

fi (λ) = q(λi )/(λ − λi ) = | j /=i (λ − λi )

Since .λ'
i s are distinct, by Theorem 1.16, there exists polynomials . g1(λ), g2(λ), . . . ,

gk(λ) ∈ K[λ] such that . 
kE

i=1

gi (λ) fi (λ) = 1

Then . 

g1(A) f1(A)v + g2(A) f2(A)v + · · · + g2(A) f2(A)v = v

for any .v ∈ K
n . Also . 

(A − λi I ) fi (A)v = q(A)v = 0

for each . i . This implies that . fi (A)v ∈ N (A − λi I ) for each . i . That is, any . v ∈ K
n

can be written as a linear combination of elements in .N (A − λi I ). Therefore . 

K
n = N (A − λ1 I ) + N (A − λ2 I ) + · · · + N (A − λk I )

and hence . A is diagonalizable. 

Example 4.20 Consider the matrix . 

A =
⎡
⎣2 −1 0
3 −2 0
0 0 1

⎤
⎦

from Example 4.14. The characteristic polynomial of .A is .(1 − λ)2(−1 − λ). The  
minimal polynomial has possibilities, .(1 − λ)(−1 − λ) and .(1 − λ)2(−1 − λ). As . 

(I − A)(−I − A) =
⎡
⎣1 −1 0
3 −3 0
0 0 0

⎤
⎦
⎡
⎣3 −1 0
3 −1 0
0 0 2

⎤
⎦ =

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦

.(1 − λ)(−1 − λ) is the minimal polynomial of . A. Clearly, minimal polynomial has 
no repeated roots. We have already seen that . A is diagonalizable.
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Example 4.21 Consider the matrix . 

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦

from Example 4.15. The characteristic polynomial of .A is .(2 − λ)2(3 − λ). The  
minimal polynomial of .A has two possibilities, .(2 − λ)(3 − λ) and . (2 − λ)2(3 −
λ). As . 

(2I − A)(3I − A) =
⎡
⎣0 −1 2
0 0 −2
0 0 −1

⎤
⎦
⎡
⎣1 1 −2
0 1 2
0 0 0

⎤
⎦ =

⎡
⎣0 1 −2
0 0 0
0 0 0

⎤
⎦

.(2 − λ)2(3 − λ) is the minimal polynomial. Clearly, minimal polynomial has repeated 
roots. We have seen that . A is not diagonalizable. 

4.3 Schur Triangularization Theorem 

We have seen that for a matrix . A, there may not exist . n linearly independent eigen-
vectors. In this case, . A is not diagonalizable. But we may obtain an almost diagonal 
representation for . A in such cases. Next, we will be discussing the almost diagonal 
representation of a non-diagonalizable matrix . A. 

Definition 4.6 (Triangular Matrix) A square matrix is called upper (lower) triangu-
lar if all the entries below(above) the main diagonal are zero. A square matrix which 
is either upper triangular or lower triangular is called a triangular matrix. 

Remark 4.5 The collection of all upper (lower) triangular matrices forms a vector 
space under matrix addition and scalar multiplication. Under matrix multiplication, 
it does not form a group, since the eigenvalues of an upper triangular matrices are its 
diagonal entries, an upper triangular matrix is invertible if and only if the diagonal 
entries are non-zero. 

Definition 4.7 (Triangularizable Matrix) A square matrix is called triangularizable 
if it is similar to an upper(lower) triangular matrix. 

Definition 4.8 (Unitary matrix) A matrix .A ∈ Mn×n(C) is called a unitary matrix 
if .AA∗ = I = A∗ A. That  is, if .A∗ = A−1. If  .A ∈ Mn×n(R) and .AT A = I = AAT , 
then . A is called an orthogonal matrix. 

Theorem 4.16 (Schur Triangularization Theorem) Let .A ∈ Mn×n(C), then there 
exists a unitary matrix .U ∈ Mn×n(C) such that .U ∗ AU is upper triangular.
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Proof The proof is by induction on. n. If.n = 1, then clearly. A is an upper triangular 
matrix. Now suppose that the result is true for all .(n − 1) × (n − 1) matrices. Now 
let .A ∈ Mn×n(C). Let  .λ1 ∈ C be an eigenvalue of .A (Such an eigenvalue exists, 
by Fundamental theorem of Algebra) and .v ∈ C

n be the corresponding eigenvector. 
Take .u = v

||v|| . Then .|| u ||= 1. Let  .U1 ∈ Mn×n(C) be a unitary matrix with . u as 
its first column. The existence of such a matrix is guaranteed by Gram–Schmidt 
Orthonormalization (which will be discussed later) process. Then consider the matrix 
.U ∗

1 AU1. Its first column is given by, . 

U ∗
1 AU1e1 = U ∗

1 Au = λ1U
∗
1 u = λ1U

∗
1 U1e1 = λ1e1

Therefore .U ∗
1 AU1 is of the form.

|
λ1 ∗
0 A1

|
, where .A1 is an .(n − 1) × (n − 1) matrix 

and. 0 is an.(n − 1) column vector. Now by induction hypothesis, there exists a unitary 
matrix .Ũ1 ∈ Mn×n(C) such that .Ũ1

∗
A1Ũ1 is an upper triangular matrix. Take . 

U2 =
|
1 0T

0 Ũ1

|

Then .U2 is unitary and . 

U2
∗(U ∗

1 AU1)U2 =
|
λ1 ∗
0 Ũ1

∗
A1Ũ1

|

which is an upper triangular matrix. Take .U = U1U2. Then . 

UU ∗ = U1U2(U1U2)
∗ = U1U2U

∗
2 U ∗

1 = I

and . 

U ∗U = (U1U2)
∗U1U2 = U ∗

2 U ∗
1 U1U2 = I

Therefore .U is unitary and .U ∗ AU is upper triangular. 

Corollary 4.7 Let .A ∈ Mn×n(R) be with all its eigenvalues are real. Then there 
exists an orthogonal matrix .Q ∈ Mn×n(R) such that .QT AQ is an upper triangular 
matrix. 

4.4 Generalized Eigenvectors 

In Sect. 4.2, we have seen some necessary and sufficient conditions for the diago-
nalizability of an .n × n matrix . A. We can summarize these conditions as follows. 
.A ∈ K

n is diagonalizable if and only if
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(1) . A has . n linearly independent eigenvectors. 
(2) for every eigenvalue . λ of . A, the geometric multiplicity equals the algebraic 

multiplicity. 
(3) .Kn = N (A − λ1 I ) ⊕ N (A − λ2 I ) ⊕ · · · ⊕ N (A − λk I ) where . λ1, λ2, . . . , λk

are distinct eigenvalues of . A. 
(4) the minimal polynomial of . A has no repeated roots. 

We can say that each eigenspace .W is invariant under the action of . A. By the  term  
invariant, we mean that if . A acts on any element in. W , we get the image in.W itself. 
Thus the diagonalizability of a matrix.A ∈ K

n , could mean that.Kn can be represented 
as the direct sum of its subspaces that are invariant under the action of. A. Or it could 
mean that .Kn has a basis consisting of eigenvectors of . A. Remember that, we have 
also seen examples for matrices that are not diagonalizable. If. A is not diagonalizable, 
is it possible to represent.Kn as a direct sum of subspaces that are invariant under the 
action of the matrix . A? In this section, for a given non-diagonalizable matrix . A, we  
will find subspaces of .Kn that invariant under the action of . A and we will represent 
.K

n as a direct sum of these invariant subspaces. In order to achieve this goal, we 
will introduce the concept of generalized eigenvectors for a matrix. Let us start by 
an example. 

Example 4.22 Consider the matrix . 

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦

from Example 4.15. We have seen that . 3 and . 2 are the eigenvalues of . A with corre-

sponding eigenvectors .u =
⎡
⎣ 4

−2
1

⎤
⎦ and.v =

⎡
⎣10
0

⎤
⎦ respectively. In Example 4.17, we  

have noted that.AM(2) is 2, but.G M(2) is 1. That is,.G M(2) is one less than.AM(2). 

Now let us find a vector .w =
⎡
⎣w1

w2

w3

⎤
⎦ ∈ R

3 such that .(A − 2I )w = v. Now  

.(A − 2I )w = v ⇒
⎡
⎣0 −1 2
0 0 −2
0 0 1

⎤
⎦
⎡
⎣w1

w2

w3

⎤
⎦ =

⎡
⎣10
0

⎤
⎦⇒ w2 = −1, w3 = 0 (4.9) 

Let us denote the set of all .w ∈ R
3 which satisfy .(A − 2I )w = v by . W . Then by 

Eq. 4.9, we have . 

W = {(w1, w2, w3) ∈ R
3 | w2 = −1, w3 = 0}

Observe that, for any .w ∈ W , .(A − 2I )w = v and .(A − 2I )2w = (A − 2I )v = 0. 
Take the vector .w̃ ∈ W and consider the span of .{v,w}, which is the subspace
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.U = {(u1, u2, 0) ∈ R
3 | u1, u2 ∈ R} (Verify). Then for any vector.ũ ∈ U , there exists 

scalars .μ1, μ2 ∈ R such that . 
ũ = μ1v + μ2w̃

Then 
.Aũ = A (μ1v + μ2w̃) = μ1Av + μ2 Aw̃ (4.10) 

As .(A − 2I )w̃ = v, we have  .Aw̃ = v + 2w̃. Also  .Av = 2v, as  . v is an eigenvector 
of . A corresponding to the eigenvalue . 2. Substituting this in Eq. (4.10), we get . 

Aũ = 2μ1v + μ2v + 2μ2w̃ = (2μ1 + μ2)v + 2μ2w̃ ∈ span{v, w̃} = U

Therefore we can say that .U is invariant under . A. 

Now let. Ũ denote the span of.u =
⎡
⎣ 4

−2
1

⎤
⎦. Then we can observe that. U + Ũ = R

3

and .U ∩ Ũ = {0}. Hence .U ⊕ Ũ = R
3 and .{u, v, w̃} is a basis for .R3. Thus .U is a 

subspace of.R3 that can be associated with. A and satisfying all our requirements. This 
idea motivates the definition of generalized eigenvector associated with a matrix. 

Definition 4.9 (Invariant Subspace) Let .A ∈ Mn×n(K) and let .W be a subspace of 
.K

n , then .W is called .A− invariant if .Aw ∈ W for each vector .w ∈ W . Clearly the 
one dimensional invariant subspaces correspond to eigenvectors. 

Example 4.23 Let.A ∈ Mn×n(K). Then, clearly.{0},Kn,N (A) and.R(A) are invari-
ant subspaces of . A.(Verify) 

The geometrical significance of an eigenvector . v of a matrix . A corresponding to 
a real eigenvalue . λ was that the vector under action by A will remain on its span. 

We have observed this fact for the eigenvectors of the matrix .A =
|
1 2
2 1

|
in Fig. 4.1. 

Thus we can say that the eigenspaces of a matrix . A are invariant under the action of 
. A. Consider the following example. 

Example 4.24 Let. A be an.n × n matrix with an eigenvalue. λ. To prove. N (A − λI )
is invariant under. A, it is enough to show that for any.v ∈ N (A − λI ),.Av = λv also 
belongs to .N (A − λI ). We already know that for any scalar .μ ∈ K, . 

A(μv) = μ(Av) = μ(λv) = λ(μv)

Clearly .Av ∈ N (A − λI ) for any.v ∈ N (A − λI ). Therefore .N (A − λI ) is invari-
ant under . A. 

Definition 4.10 (Generalized Eigenvector) Let  .A ∈ Mn×n(K). A vector .v ∈ K
n is 

said to be a generalized eigenvector of rank. m of the matrix. A and the corresponding 
eigenvalue .λ ∈ K, if  .(A − λI )mv = 0 but .(A − λI )m−1v /= 0. Clearly, an ordinary 
eigenvector is a generalized eigenvector of rank . 1.
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Fig. 4.1 As we can see, the vector .(−1, 1) is mapped to .(1,−1) = (−1)(−1, 1) and .(1, 1) is 
mapped to.(3, 3) = 3(1, 1). It is interesting to observe that the eigenvalue.−1 changes the direction 
of any vector that lies on the line.y = −x and the eigenvalue. 3 scales the magnitude of any vector 
that lies on the line.y = x , three times 

The generalized eigenspace of. A corresponding to. λ is denoted by.Eλ and is given 
by .Eλ = ∪∞

i=1N (A − λI )i . 

Definition 4.11 (Chain) Let  .A ∈ Mn×n(K) and let .λ ∈ K be an eigenvalue of . A, 
then a set of non-zero vectors .v1, v2, . . . , vm ∈ K

n is called a chain of generalized 
eigenvectors of length .m corresponding to . λ if 

. (A − λI )vi =
{

vi+1, when i < m

0, when i = m

Remark 4.6 Let.v1, v2, . . . , vm ∈ K be a chain of generalized eigenvectors of length 
.m of the matrix .A ∈ Mn×n(K) corresponding to the eigenvalue . λ, then by def-
inition .(A − λI )iv1 = vi+1 if .i < m and .(A − λI )mv1 = 0. Therefore the chain 
of generalized eigenvectors of length .m corresponding to . λ can also be written 
as .v1, (A − λI )v1, . . . (A − λI )m−1v1. Also  .(A − λI )kvi = 0 for all .k ≥ m for all 
.i = 1, 2, . . . , m. 

Example 4.25 Consider the matrix . 

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦

From Example 4.22, the chain of generalized eigenvectors associated with the eigen-

value . 2 is .

⎡
⎣ 0

−1
0

⎤
⎦ ,

⎡
⎣10
0

⎤
⎦ and the chain associated with the eigenvalue . 3 is .

⎡
⎣ 4

−2
1

⎤
⎦.
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Observe that the chain of generalized eigenvectors corresponding to . 2 is linearly 
independent. This will be true for every eigenvalue. Consider the following theorem. 

Theorem 4.17 Let .A ∈ Mn×n(K) and let .λ ∈ K be an eigenvalue of . A, then the 
chain of generalized eigenvectors corresponding to . λ is linearly independent. 

Proof Let .A ∈ Mn×n(K) and .λ ∈ K is an eigenvalue of . A. Let  . v1, v2, . . . , vm ∈
K

n be the chain of generalized eigenvectors of length .m corresponding to . λ. Let  
.μ1, μ2, . . . , μm ∈ K be scalars such that . 

μ1v1 + μ2v2 + · · · + μmvm = 0

Then we have 

.μ1v1 + μ2(A − λI )v1 + · · · + μm(A − λI )m−1v1 = 0 (4.11) 

Now multiplying both sides with .(A − λI )m−1, we get . 

μ1(A − λI )m−1v1 = 0

as.(A − λI )kvi = 0 for all.k ≥ m. Since.(A − λI )m−1v1 /= 0, this implies that. μ1 =
0. Now multiply Eq. (4.11) by .(A − λI )m−2. Then we will get . 

μ2(A − λI )m−1v1 = 0

which implies that.μ2 = 0. Proceeding like this, we get.μi = 0 for all.i = 1, 2, . . . , m. 
Therefore .{v1, v2, . . . , vm} is linearly independent. 

The following theorem gives the relation between the null spaces of the powers 
of a matrix . A. 

Theorem 4.18 Let .A ∈ Mn×n(K). Then . 

{0} = N (A0) ⊆ N (A1) ⊆ N (A2) ⊆ · · ·

If .N (Am) = N (Am+1), for some integer . m, then . 

N (Am) = N (Am+1) = N (Am+2) = N (Am+3) = · · ·
Proof Suppose that .v ∈ N (Ak) for some positive integer . k, then . 

Ak+1v = A(Akv) = 0 ⇒ v ∈ N (Ak+1)

Therefore .N (Ak) ⊆ N (Ak+1) for any positive integer . k. Now  let  . N (Am) =
N (Am+1), for some integer . m. Let  .v ∈ N (Am+k+1) for some positive integer . k, 
then .
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Am+k+1 v = Am+1 ( Ak v) = 0 ⇒ Ak v ∈ N ( Am+1 ) = N (Am ) ⇒ Am+k (v) = 0 

Therefore .N (Am+k+1) ⊆ N (Am+k) for every positive integer . k. This implies that 
.N (Am) = N (Am+1) = N (Am+2) = N (Am+3) = · · · . 
Remark 4.7 Let .A ∈ Mn×n(K). Then . 

V = R(A0) ⊇ R(A1) ⊇ R(A2) ⊇ · · ·

Also, by Rank-Nullity Theorem, .Rank(Ai ) = n − Nulli t y(Ai ) for all . i . Since 
.N (Ai ) form an increasing sequence of subspaces of a finite-dimensional space 
. V , it will eventually stop increasing at some point . j . Then we have proven that 
.N (Ai ) = N (A j ) for all.i ≥ j . At this point, the sequence.R(Ai ) also stops decreas-
ing and .Rank(Ai ) = n − Nulli t y(A j ) for all .i ≥ j . 

In Example 4.24, we have shown that the eigenspaces of a matrix . A are invariant 
under . A. Now we will show that the generalized eigenspace is also an invariant 
subspace of . A. 

Theorem 4.19 Let .A ∈ Mn×n(K) and .λ ∈ K be an eigenvalue of . A, then 

(a) .Eλ = N ((A − λI )n). 
(b) . Eλ is invariant under . A. 

Proof (a) Assume that .N ((A − λI )n) /= N (
(A − λI )n+1

)
, for all . n, then by the 

previous theorem. 

{0} = N (A − λI )0 ⊂ N (A − λI )1 ⊂ N (A − λI )2 ⊂ · · · ⊂ N (A − λI )n+1

Then . 

0 < Nulli t y(A − λI ) < Nulli t y(A − λI )2 < · · · < Nulli t y(A − λI )n+1 ≤ dim(V ) = n

which is not possible, since it implies that. Nulli t y(A − λI ), . . . , Nulli t y(A −
λI )n+1 are .n + 1 distinct integers in .{1, 2, . . . , n}. Therefore . 

N (
(A − λI )n

) = N (
(A − λI )n+1

)
and hence .Eλ = N ((A − λI )n). 

(b) Let .v ∈ Eλ = N ((A − λI )n), then . 

(A − λI )n(Av) = A
(
(A − λI )nv

) = A(0) = 0

Therefore .Av ∈ Eλ = N ((A − λI )n). That is, .Eλ is invariant under . A.
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Example 4.26 Consider the matrix . 

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦

from Example 4.15. We have already seen that . 

N (A − 2I ) = {(v1, v2, v3) ∈ R
3 | v2 = v3 = 0}

Now.(A − 2I )2 =
⎡
⎣0 0 4
0 0 −2
0 0 1

⎤
⎦ and hence 

. 

(A − 2I )2v = 0 ⇒
⎡
⎣0 0 4
0 0 −2
0 0 1

⎤
⎦
⎡
⎣v1

v2
v3

⎤
⎦ =

⎡
⎣00
0

⎤
⎦⇒ v3 = 0

Therefore .N (A − 2I )2 = {(v1, v2, v3) ∈ R
3 | v3 = 0}. Observe that . (A − 2I )2 =

(A − 2I )3. Thus we have .N (A − 2I )2 = N (A − 2I )3. Therefore the generalized 
eigenspace associated with the eigenvalue . 2 is . 

E2 = {(v1, v2, v3) ∈ R
3 | v3 = 0}

Also, as.N (A − 3I )=N (A − 3I )2 = {(v1, v2, v3) ∈ R
3 | v1 = −2v2, v3 = − 1

2v2
}
, 

we get . 

E3 =
{
(v1, v2, v3) ∈ R

3 | v1 = −2v2, v3 = −1

2
v2

}

as we have seen in Example 4.22. 

Theorem 4.20 Let .A ∈ Mn×n(K). Let . f (λ), g(λ) ∈ K[λ] be polynomials such that 
.( f, g) = 1 and . f (A)g(A) = 0. Then .K

n = N ( f (A)) ⊕ N (g(A)). 

Proof Let . f (λ) and .g(λ) be polynomials such that .( f, g) = 1 and . f (A)g(A) = 0. 
Then by Theorem 1.16, there exists.r(λ), s(λ) ∈ K[λ], such that.r f + sg = 1. Now,  
for .v ∈ K

n , define . 

v1 = s(A)g(A)v and v2 = r(A) f (A)v

Then . 

v = Iv = (s(A)g(A) + r(A) f (A))v = v1 + v2

Also, .

f (A)v1 = f (A)s(A)g(A)v = 0 and g(A)v2 = g(A)r(A) f (A)v = 0
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Thus, for .v ∈ K
n there exists .v1 ∈ N ( f (A)) and.v2 ∈ N (g(A)) such that . v = v1 +

v2. 
Now we have to prove that, this expression is unique. Suppose that . v = w1 +

w2 where .w1 ∈ N ( f (A)) and.w2 ∈ N (g(A)). Then, since . f (A)(v1 − w1) = 0 and 
.g(A)(v2 − w2) = 0, we have .v1 − w1 ∈ N ( f (A)) and .v2 − w2 ∈ N (g(A)). Now. 

v1 − w1 = I (v1 − w1) = (s(A)g(A) + r(A) f (A))(v1 − w1) = 0

and . 

v2 − w2 = I (v2 − w2) = (s(A)g(A) + r(A) f (A))(v2 − w2) = 0

Hence, .v1 = w1 and .v2 = w2. Therefore for every .v ∈ K
n , there exists a unique 

expression as a sum of elements from .N ( f (A)) and .N (g(A)) and hence . Kn =
N ( f (A)) ⊕ N (g(A)). 

Corollary 4.8 Let .A ∈ Mn×n(K) and . f (λ) ∈ K[λ]. Let . f1(λ), f2(λ), . . . , fk(λ) ∈
K[λ] be such that .( fi , f j ) = 1 for all .i /= j , . f = f1 f2 · · · fk and . f (A) = 0. Then 
.K

n = N ( f1(A)) ⊕ N ( f2(A)) ⊕ · · · ⊕ N ( fk(A)). 

The following theorem shows that for any matrix. A, we can write.Kn as the direct 
sum of generalized eigenspaces associated with . A. 

Theorem 4.21 Let .A ∈ Mn×n(K) and . p(λ) = (λ − λ1)
n1(λ − λ2)

n2 · · · (λ − λk)
nk

be the characteristic polynomial of . A, then . 

K
n = N ((A − λ1 I )n1) ⊕ N ((A − λ2 I )n2) ⊕ · · · ⊕ N ((A − λk I )nk )

Proof Let .A ∈ Mn×n(K) and .p(λ) = (λ − λ1)
n1(λ − λ2)

n2 · · · (λ − λk)
nk be the 

characteristic polynomial of . A. Now, take  . f = p and . fi = (λ − λi )
ni where . i =

1, 2, . . . , k. Then .( fi , f j ) = 1 for all .i /= j and . f = f1 f2 · · · fk . Also  . f (A) =
p(A) = 0. Therefore . Kn = N ((A − λ1 I )n1) ⊕ N ((A − λ2 I )n2) ⊕ · · · ⊕ N ((A −
λk I )nk ) by the above corollary. 

Corollary 4.9 Let .A ∈ Mn×n(K). Let .λ1, λ2, . . . , λk ∈ K be distinct eigenvalues of 
.A with algebraic multiplicities .n1, n2, . . . , nk, respectively, then 
.dim (N (A − λi I )n) = ni . 

Proof By Theorem 4.19, as.λi is the only eigenvalue of. A when.N (A − λi I )n is con-
sidered as domain. Therefore .dim (N (A − λi I )n) ≤ ni and by the above theorem, 
.
Ek

i=1 dim (N (A − λi I )n) = n =Ek
i=1 ni . Hence .dim (N (A − λi I )n) = ni . 

In Theorem 4.2, we have seen that the eigenvectors associated with distinct eigen-
values are linearly independent. This result is squarely applicable for generalized 
eigenvectors also. Consider the following corollary. 

Corollary 4.10 Let .A ∈ Mn×n(K). Let .v1, v2, . . . , vk be generalized eigenvectors 
of. A corresponding to distinct eigenvalues.λ1, λ2, . . . , λk ∈ K. Then. {v1, v2, . . . , vk}
is linearly independent.
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Example 4.27 Consider the matrix . 

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦

In Example 4.21, we have seen that the minimal polynomial of. A is.(2 − λ)2(3 − λ). 
Also, from Example 4.26, . 

N (A − 2I )2 = {(v1, v2, v3) ∈ R
3 | v3 = 0}

and . 

N (A − 3I ) =
{
(v1, v2, v3) ∈ R

3 | v1 = −2v2, v3 = −1

2
v2

}

Clearly, .R3 = N (A − 2I )2 ⊕ N (A − 3I ). 

Theorem 4.22 Let .A ∈ Mn×n(K) and .λ1, λ2, . . . , λk ∈ K be the distinct eigenval-
ues of . A. Let . ri be the least positive integer such that .(A − λi I )ri v = 0 for every 
.v ∈ N ((A − λi I )n). Let .m(λ) = (λ − λ1)

r1(λ − λ2)
r2 · · · (λ − λk)

rk , then .m(λ) is 
the minimal polynomial of . A. 

Proof Let .A ∈ Mn×n(K) and .q(λ) = (λ − λ1)
m1(λ − λ2)

m2 · · · (λ − λk)
mk be the 

minimal polynomial of. A. Then by the previous theorem,. Kn = N ((A − λ1 I )m1) ⊕
N ((A − λ2 I )m2) ⊕ · · · ⊕ N ((A − λk I )mk ). Therefore for every .v ∈ K

n , we get 
.m(A)v = 0. But as .q(λ) is the least degree polynomial such that .q(A) = 0, .m = q. 

4.5 Jordan Canonical Form 

In this section, using the idea of similar matrices, we will reduce a square matrix 
to a block diagonal matrix form, where each diagonal blocks are upper triangular 
matrices. 

Definition 4.12 (Jordan Block) A Jordan block corresponding to . λ of size .m is an 

.m × m matrix of the form .J m
λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 1
λ 1

. . .
. . .

. . . 1
λ

⎞
⎟⎟⎟⎟⎟⎟⎠
, where . λ lies on the diagonal 

entries, 1 lies on the super-diagonal (some authors prefer sub-diagonal) and the 
missing entries are all zero. 

Definition 4.13 (Jordan Form) A square matrix is said to be in Jordan form, if it is 
a block diagonal matrix with each block as a Jordan block.
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Theorem 4.23 Let.A ∈ Mn×n(K)with characteristic polynomial. p(λ) = (λ − λ1)
n1

· · · (λ − λk)
nk and minimal polynomial .q(λ) = (λ − λ1)

m1 · · · (λ − λk)
mk . Then . A is 

similar to a matrix . J with Jordan blocks along the main diagonal. All other elements 
of . J are zero. Corresponding to each eigenvalue . λi of . A, there exists atleast one 
Jordan block of size . mi and other Jordan blocks corresponding to . λi have size less 
than or equal to. mi . Also, the sum of size of each Jordan blocks corresponding to. λi is 
. ni . The number of Jordan blocks corresponding to an eigenvalue . λi is the geometric 
multiplicity of . λi . 

Proof Let .A ∈ Mn(K) with characteristic polynomial . 

p(λ) = (λ − λ1)
n1 · · · (λ − λk)

nk

and minimal polynomial . 

q(λ) = (λ − λ1)
m1 · · · (λ − λk)

mk

Then by Theorem 4.21, . 

K
n = N ((A − λ1 I )n1) ⊕ N ((A − λ2 I )n2) ⊕ · · · ⊕ N ((A − λk I )nk )

Let .l1, l2, . . . , lk be the geometric multiplicities the eigenvalues . λ1, λ2, . . . , λk

respectively. Now we can construct a basis for .N ((A − λi I )ni ) for each . i =
1, 2, . . . , k. Let  .v1

i1, v
2
i1, . . . , v

li
i1 be the linearly independent generalized eigenvec-

tors of .A with rank .ri1, ri2, . . . , rili corresponding to . λi . Then .ri j ≤ mi for all 
. j = 1, 2, . . . , li and at least one of .ri1, ri2, . . . , rili must be equal to .mi , since . mi

is the least positive integer such that .(A − λi I )mi v = 0 for all .v ∈ N ((A − λi I )ni ). 
Now consider the Jordan chain associated with each of these generalized eigenvectors 
and let . 

Bi = {v1
i1, v

1
i2, . . . v

1
iri1

, v2
i1, v

2
i2, . . . v

2
iri2

, . . . , v
li
i1, v

li
i2, . . . v

li
irili

}

denote the union of these Jordan chains. By Theorem 4.17 and Corollary 4.9, . Bi

forms a basis for .N ((A − λi I )ni ). Now  let  .B = ∪k
i=1Bi . Then .B forms a basis for 

.K
n . Now consider the matrix .P with elements from .B as its columns. Since .B is a 

basis for .Kn , .P is invertible. i.e., Let 
. 

P =
|
v1
11 · · · v1

1r11 v2
11 · · · v2

1r12 · · · v
lk
k1 · · · v

lk
krklk

|
Then
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. AP =
|

Av1
11 · · · Av1

1r11 Av2
11 · · · Av2

1r12 · · · Av
lk
k1 · · · Av

lk
krklk

|
=
|
λ1v

1
11 + v1

12 · · · λ1v
2
1r11 λ1v

2
11 + v2

12 · · · λ1v
2
1r12 · · · λkv

lk
k1 + v

lk
k2 · · · λkv

lk
knk

|

= P

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr11
λ1

Jr12
λ1

. . .

J
r1l1
λ1

. . .

J
rklk
λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

i.e., .P−1 AP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jr11
λ1

Jr12
λ1

. . .

J
r1l1
λ1

. . .

J
rklk
λk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= J . Then . J satisfies all the require-

ments mentioned in the theorem. 

Example 4.28 Consider the matrix . 

A =
⎡
⎣2 −1 2
0 2 −2
0 0 3

⎤
⎦

From Example 4.17, the eigenvalues of. A are 2 and 3 with. AM(2) = 2, G M(2) = 1

and.AM(3) = G M(3) = 1. From Example 4.15,.v1 =
⎡
⎣10
0

⎤
⎦ and.v3 =

⎡
⎣ 4

−2
1

⎤
⎦ are the 

linearly independent eigenvectors of .A with respect to 2 and 3, respectively. From 

Example 4.25, the Jordan chain associated with the eigenvalue 2 is .

⎡
⎣ 0

−1
0

⎤
⎦ ,

⎡
⎣10
0

⎤
⎦. 

Take .P =
⎡
⎣1 0 4
0 −1 −2
0 0 1

⎤
⎦. Then .P−1B P =

⎡
⎣2 1 0
0 2 0
0 0 3

⎤
⎦. 

Example 4.29 Suppose that the characteristic and minimal polynomial of a matrix 
. A is given by . 

p(A) = (λ − 3)4(λ − 1)3 and m(A) = (λ − 3)2(λ − 1)3

As the eigenvalues . 3 and . 1 have multiplicity . 2 and . 3 in the minimal polynomial, 
the Jordan canonical form must have a Jordan block of order . 2 corresponding to the
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eigenvalue . 3 and a Jordan block of order . 3 corresponding to the eigenvalue . 1. As  
the multiplicity of. 1 in both minimal and characteristic polynomial of. A is the same, 
there exists only one Jordan block corresponding to. 1. The number of Jordan blocks 
corresponding to the eigenvalue . 3 depends on the number of linearly independent 
eigenvectors corresponding to . 3. Then there are two possible Jordan forms for . A. 

(1) If .A has two linearly independent eigenvectors belonging to the eigenvalue 3. 
Then the Jordan form of . A is given by . 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 1 0 0 0
0 0 0 3 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2) If . A has three independent eigenvectors belonging to the eigenvalue 3. Then the 
Jordan form of . A is given by . 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.6 Exercises 

1. Let .A, B ∈ Mn×n (K). If  . μ is an eigenvalue of .A and . ν is an eigenvalue of . B, 
give an example such that 

(a) .μ + ν need not be an eigenvalue of .A + B. 
(b) .μν need not be an eigenvalue of .AB. 

2. Find the characteristic polynomial of the following matrices 

. a)

|
1 5
7 3

|
b)

|
4 −1
11 7

|
c)

⎡
⎣2 3 1
5 0 4
6 −1 7

⎤
⎦

Also, verify Cayley–Hamilton theorem.
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3. Find a matrix .A ∈ M2×2 (R) with . 2 and . 3 as eigenvalues and .

|
1
1

|
,

|
2
1

|
as 

corresponding eigenvectors. 
4. Let. V be a finite-dimensional vector space over. Kwith a basis. B and. T : V → V

be a linear transformation. Show that .λ ∈ K is an eigenvalue of . T if and only if 
. λ is an eigenvalue of .[T ]B . 

5. (Gerschgorin’s Theorem) Let  . λ be an eigenvalue of a matrix . A = [ai j ] ∈
Mn×n(K). Then for some integer . j, (1 ≤ j ≤ n), show that . 

|a j j − λ| ≤ |a j1| + |a j2| + · · · + |a j ( j−1)| + |a j ( j+1)| + · · · + |a jn|

6. Let .A, B ∈ M9×9(K) be such that .Rank(A) = 3 and.Rank(B) = 5. Show that 
there exists .v ∈ R

9 such that .Av = Bv = 0. 
7. Let .A ∈ Mn×n (K) be such that the sum of elements in each row are the same, 

say. λ. Show that . λ is an eigenvalue of . A. Will this be true if sum of elements in 
each column are the same? 

8. Let.A ∈ M2×2 (K) be such that.tr(A) = 8 and.det (A) = 15. Find the eigenval-
ues of . A. 

9. Let.A ∈ Mn×n (K). Let. λ be an eigenvalue of. Awith eigenvectors.v1, v2, . . . , vk . 
Show that .λ1v1 + λ2v2 + · · · + λkvk is an eigenvector of . A corresponding to . λ

for any scalars .λ1, λ2, . . . , λk ∈ K. 
10. Let .A, B ∈ Mn×n (K). Show that .AB and .B A have the same characteristic 

polynomial. Does they have the same minimal polynomial? 
11. Let .A, B ∈ Mn×n (R). Check which of the following statements are true. 

(a) . A and .AT have the same eigenvalues. 
(b) If .Rank(A) = k, then . A has at most .k + 1 distinct eigenvalues. 
(c) If . A is singular, then .A + I is nonsingular, where . I is the identity matrix. 
(d) If every .v ∈ R

n is an eigenvector of . A, then .A = λI for some .λ ∈ R. 
(e) Let . f (x) ∈ R[x]. Then . λ̃ is an eigenvalue of . f (A) if and only if . λ̃ = f (λ)

for some eigenvalue . λ of . A. 
(f) If .A satisfies the equation .A3 = A, then the characteristic equation of .A is 

.x3 − x . 
(g) If . A and. B have the same eigenvalues, then they have the same characteristic 

and minimal polynomials. 
(h) .{0} and.R

n itself are the only subspaces of.Rn which are invariant under every 
. A. 

(i) .N (A − λI ) is an invariant subspace of . A for any .λ ∈ R. 
(j) If . A is diagonalizable, then there exists one dimensional invariant subspaces 

.V1, V2, . . . , Vn of . A such that .Rn = V1 ⊕ V2 ⊕ · · · ⊕ Vn . 

12. Let.A ∈ Mn×n (K) be such that.Ak = 0 for some. k (. A is called nilpotent matrix). 
Then show that . 0 is the only eigenvalue of . A. Can . A be diagonalizable? 

13. Let .A be a square matrix with real entries such that .A2022 = 0. Then what are 
the possible values of .T r(A2)?
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14. Check whether the following matrices are diagonalizable over . C or not. 

. a)

|
0 1

−1 0

|
b)

|
2 1
0 2

|
c)

|
2 1
0 1

|
d)

⎡
⎣ 3 1 2

−1 1 6
1 0 5

⎤
⎦ e)

⎡
⎣3 2 0
0 −1 6
0 0 5

⎤
⎦

15. Let .A ∈ Mn×n (K) be such that .A2 = I (.A is called involutory matrix). Then 
show that 

(a) . 1 and .−1 are the only possible eigenvalues of . A. 
(b) . A is diagonalizable. 

16. Let .A ∈ Mn×n (K) be such that .A2 = A(.A is called idempotent matrix). Then 
show that 

(a) . 0 and . 1 are the only possible eigenvalues of . A. 
(b) .Kn = I m(A) ⊕ K er(A). 
(c) . A is diagonalizable. 

17. Let .A, B ∈ Mn×n (K) be such that .B = P−1 AP . Then show that if . v is an 
eigenvector of . A corresponding to the eigenvalue . λ, .P−1v is an eigenvector of 
. B corresponding to the eigenvalue . λ. 

18. Find the characteristic and minimal polynomial of the matrix .

⎡
⎢⎣
1 . . . 1
...

. . .
...

1 . . . 1

⎤
⎥⎦

n×n

. 

19. Show that if . A is a block diagonal matrix, then the minimal polynomial of . A is 
the least common multiple of minimal polynomials of the diagonal blocks. 

20. Let.A ∈ M7×7 (R) have three distinct eigenvalues.λ1, λ2 and. λ3. The eigenspace 
corresponding to.λ1 is two dimensional and the eigenspace corresponding to one 
of the other two eigenvalue is three dimensional. Is . A diagonalizable? 

21. Let.A, B ∈ Mn×n (K) be such that.AB = B A. Show that if. A is diagonalizable, 
then . B is also diagonalizable. 

22. Show that if .A ∈ M3×3 (R) is not triangularizable over . R, then it is diagonaliz-
able over . C. 

23. Let.V1, V2, . . . , Vk be invariant subspaces under.A ∈ Mn×n (K). Show that. V1 +
V2 + · · · + Vk is also an invariant subspace under . A. 

24. How many invariant subspaces does the zero matrix and identity matrix of order 
. n have? 

25. Consider a matrix .A ∈ Mn×n (R) given by . 

A =
⎡
⎣ 2 0 0

1 2 1
−1 0 1

⎤
⎦

(a) Find the eigenvalues and eigenvectors of . A.
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(b) Find matrix .P such that .P AP−1 = D, where .D is a diagonal matrix, if it 
exists. 

(c) Find all invariant subspaces of . A. 

26. Find the possible Jordan Canonical forms of .A ∈ M8×8 (R) if the characteristic 
and minimal polynomials are given by . 

p(A) = (λ − 3)2(λ − 2)3(λ + 1)3

and . 

m(A) = (λ − 3)2(λ − 2)(λ + 1)2

27. Let. A be a real.n × n matrix with eigenvalues.λ1, λ2, . . . , λn repeated according 
to their multiplicities. Then show that there exist a basis of generalized eigenvec-
tors .v1, v2, . . . , vn with .P = |v1 v2 . . . vn

|
invertible and .A = S + N , where 

.P−1S P = diag{λ1, . . . , λn} (.diag{λ1, . . . , λn} denotes the diagonal matrix 
with diagonal entries .λ1, λ2, . . . , λn). Further, the matrix .N = A − S is nilpo-
tent of order .k ≤ n and . S and .N commute. 

Solved Questions related to this chapter are provided in Chap. 10.



Chapter 5 
Normed Spaces and Inner Product 
Spaces 

This chapter delves into the fundamental mathematical structures of normed linear 
spaces and inner product spaces, providing a solid comprehension of these essential 
mathematical structures. Normed spaces are defined as vector spaces that have been 
reinforced with a norm function that quantifies the magnitude or length of a vector 
from the origin. Several examples, such as Euclidean space with the well-known 
Euclidean norm, demonstrate the use of normed spaces. Building on this, inner 
product spaces are investigated, with the goal of broadening the concept of normed 
spaces by integrating an inner product that generalizes the dot product. Euclidean 
space is one example, where the inner product can characterize orthogonality and 
angle measurements. The chapter expands on the importance of orthogonality in inner 
product spaces, providing insights into geometric relationships and applications in a 
variety of domains. Gram–Schmidt orthogonalization technique is introduced, which 
provides a mechanism for constructing orthogonal bases from any bases of an inner 
product space. The concept of orthogonal complement and projection onto subspaces 
broadens our understanding by demonstrating the geometrical interpretation and 
practical application of these fundamental mathematical constructs. Proficiency in 
these topics is essential for advanced mathematical study and a variety of real-world 
applications in a variety of areas. 

5.1 Normed Linear Spaces 

In this section, we will introduce a metric structure called a norm on a vector space 
and then study in detail the resultant space. A vector space with a norm defined on 
it is called normed linear space. A norm, which intuitively measures the magnitude 
or size of a vector in a normed space, enables the definition of distance and conver-
gence. Normed spaces provide an adaptive environment for various mathematical 
and scientific applications, providing a deeper understanding of vector spaces and 
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accommodating numerous norm functions to meet various needs. Let us start with 
the following definition. 

Definition 5.1 (Normed linear space) Let. V be a vector space over the field. K, where 
.K is either .R or . C. Norm is a real-valued function on .V .(||.|| : V → R) satisfying 
the following three conditions for all .u, v ∈ V and .λ ∈ K: 

(N1) .||v|| ≥ 0, and .||v|| = 0 if and only if . v = 0
(N2) . ||λv|| = |λ| ||v||
(N3) .||u + v|| ≤ ||u|| + ||v||.(Triangle Inequality) 
Then .V together with a norm defined on it, denoted by .(V, ||.||), is called a Normed 
linear space. 

Example 5.1 Consider the vector space .R over . R. Define .||v||0 = |v| for .v ∈ R. 
Then by the properties of modulus function, .||.||0 is a norm on . R. 

Example 5.2 Consider the vector space .R
n over . R. For .v = (v1, v2, . . . , vn) in .R

n , 

define .||v||2 = (En
i=1|vi |2

) 1
2 . This norm is called the 2-norm. 

(N1) Clearly .||v||2 = (En
i=1|vi |2

) 1
2 ≥ 0 and . ||v||2 = (En

i=1|vi |2
) 1

2 = 0 ⇔
.|vi |2 = 0 for all .i = 1, 2, . . . , n ⇔ v = 0. 

(N2) For .λ ∈ R and .v ∈ R
n , 

. ||λv||2 =
(

nE

i=1

|λvi |2
) 1

2

=
(

nE

i=1

|λ|2|vi |2
) 1

2

=
(

|λ|2
nE

i=1

|vi |2
) 1

2

= |λ|
(

nE

i=1

|vi |2
) 1

2

= |λ| ||v||2

(N3) For .u, v ∈ R
n , 

.

nE

i=1

(|ui | + |vi |)2 =
nE

i=1

(|ui | + |vi |) (|ui | + |vi |)

=
nE

i=1

|ui | (|ui | + |vi |) +
nE

i=1

|vi | (|ui | + |vi |)

≤
(

nE

i=1

|ui |2
) 1

2
(

nE

i=1

(|ui | + |vi |)2
) 1

2

+
(

nE

i=1

|vi |2
) 1

2
(

nE

i=1

(|ui | + |vi |)2
) 1

2

=
(

nE

i=1

(|ui | + |vi |)2
) 1

2

⎡

⎣
(

nE

i=1

|ui |2
) 1

2

+
(

nE

i=1

|vi |2
) 1

2

⎤

⎦



5.1 Normed Linear Spaces 165

which implies 

. 

(
nE

i=1

(|ui | + |vi |)2
) 1

2

≤
(

nE

i=1

|ui |2
) 1

2

+
(

nE

i=1

|vi |2
) 1

2

Since .|ui + vi | ≤ |ui | + |vi |, we have  

. 

(
nE

i=1

|ui + vi |2
) 1

2

≤
(

nE

i=1

|ui |2
) 1

2

+
(

nE

i=1

|vi |2
) 1

2

Therefore .Rn is a normed linear space with respect to .2 − norm. In general, 
.R

n is a normed linear space with respect to the .p − norm defined by . ||v||p =
(En

i=1|vi |p
) 1

p , p ≥ 1.(Verify) 

Example 5.3 Consider the vector space .Rn over . R. For  .v = (v1, v2, . . . , vn) in 
.R

n , define.||v||∞ = max {|v1|, |v2|, . . . , |vn|} = max
i∈{1,...,n}{|vi |}. This norm is called the 

infinity norm. 

Example 5.4 Let .V = C[a, b], the space of continuous real-valued functions on 
.[a, b]. For. f ∈ V , define.|| f || = max

x∈[a,b]| f (x)|. This norm is called supremum norm. 

(N1) Clearly .|| f || = max
x∈[a,b]| f (x)| ≥ 0. Also, .|| f || = max

x∈[a,b]| f (x)| = 0 ⇔ . | f (x)| =
0 for all .x ∈ [a, b] ⇔ f (x) = 0 for all .x ∈ [a, b]. 

(N2) For .λ ∈ R and . f ∈ C[a, b], 

. ||λ f || = max
x∈[a,b]|(λ f )(x)| = max

x∈[a,b]|λ ( f (x))| = max
x∈[a,b]|λ|| f (x)| = |λ| max

x∈[a,b]| f (x)| = |λ| || f ||

(N3) Since .|a + b| ≤ |a| + |b|, for . f, g ∈ C[a, b] we have 
. || f + g|| = max

x∈[a,b]|( f + g)(x)| = max
x∈[a,b]| f (x) + g(x)| ≤ max

x∈[a,b]| f (x)| + max
x∈[a,b]|g(x)| = || f || + ||g||

Then .C[a, b] is a normed linear space with the supremum norm (Fig. 5.1). 

We have shown that .|| f || = max
x∈[a,b]| f (x)| defines a norm in .C[a, b]. Now  let us  

define .|| f || = min
x∈[a,b]| f (x)|. Does that function defines a norm on .C[a, b]? No,  it  

doesn’t! Clearly, we can observe that.|| f || = 0 does not imply that. f = 0. For exam-
ple, consider the function . f (x) = x2 in .C[−4, 4]. Then .|| f || = min

x∈[−4,4]| f (x)| = 0, 

but . f /= 0. As  .(N1) is violated, .|| f || = min
x∈[−4,4]| f (x)| does not defines a norm on 

.C[−4, 4].
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Fig. 5.1 Consider the functions . f (x) = x2 and .g(x) = cos x in .C[−4, 4]. Then  . || f || =
max

x∈[−4,4]|x
2| = 16 and. ||g|| = max

x∈[−4,4]|cos x | = 1

Definition 5.2 (Subspace) Let .(V, ||.||) be a normed linear space. A subspace of . V
is a vector subspace .W of .V with the same norm as that of . V . The norm on .W is 
said to be induced by the norm on . V . 

Example 5.5 Consider.C[a, b]with the supremum norm, then.P[a, b] is a subspace 
of .C[a, b] with supremum norm as the induced norm. 

We will now show that every normed linear space is a metric space. Consider the 
following theorem. 

Theorem 5.1 Let .(V, ||.||) be a normed linear space. Then .d(v1, v2) = ||v1 − v2|| is 
a metric on . V . 

Proof Let .v1, v2, v3 ∈ V . Then 

(M1) By .(N1), we have  
. d(v1, v2) = ||v1 − v2|| ≥ 0

and 
. d(v1, v2) = ||v1 − v2|| = 0 ⇔ v1 − v2 = 0 ⇔ v1 = v2

(M2) By .(N2), we have  

. d(v1, v2) = ||v1 − v2|| = ||v2 − v1|| = d(v2, v1)

(M3) Now we have to prove the triangle inequality. 

.d(v1, v2) = ||v1 − v2||
= ||v1 − v3 + v3 − v2||
≤ ||v1 − v3|| + ||v3 − v2|| (By(N3))

= d(v1, v3) + d(v3, v2)
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The metric defined in the above theorem is called metric induced by the norm. 
The above theorem implies that every normed linear space is a metric space with 
respect to the induced metric. Is the converse true? Consider the following example. 

Example 5.6 In Example 1.25, we have seen that for any non-empty set . X , the  
function . d defined by 

. d(x, y) =
{
1 , x /= y

0 , x = y

defines a metric on . X . Let  .V be a vector space over the field . K. Clearly .(V, d) is a 
metric space. If .V is a normed linear space, by Theorem 5.1, we have  

. ||v|| = d(v, 0) =
{
1 , v /= 0

0 , v = 0

As you can observe that, for any .λ /= 0 ∈ K, 

. ||λv|| =
{
1 , v /= 0

0 , v = 0
/= |λ| ||v|| =

{
|λ| , v /= 0

0 , v = 0

the discrete metric cannot be obtained from any norm. Therefore, every metric space 
need not be a normed linear space. 

Now that you have understood the link between normed spaces and metric spaces, 
let us discuss a bit more in detail about defining a distance notion on vector spaces. 
In Example 5.2, we have defined a number of norms on.R

n . What is the significance 
of defining several norms on a vector space? Consider a simple example as depicted 
in Fig. 5.2. 

In real life, we can justify the significance of defining various notions of distances 
on vector spaces with many practical applications. Therefore, while dealing with a 
normed linear space we choose the norm which meets our need accordingly (Fig. 5.3). 

Now we understand that different norms on a vector space can give rise to different 
geometrical and analytical structures. Now we will discuss whether these structures 
are related or not. As a prerequisite for the discussion, let us define the “fundamental 
sets” on a normed linear space 

Definition 5.3 (Open ball) Let  .(V, ||.||) be a normed linear space. For any point 
.v0 ∈ V and .e ∈ R

+, 
. Be(v0) = {v ∈ V | ||v − v0|| < e}

is called an open ball centered at .v0 with radius . e. The  set  .{v ∈ V | ||v|| = 1} is 
called the unit sphere in . V

We can see that this definition follows from the Definition 1.23 of an open ball in 
a metric space.
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Fig. 5.2 Suppose that you have to move a chess piece from.A1 to.D4 in least number of moves. If 
the piece is a bishop we can move the piece directly from.A1 to.D4. If the piece is a rook, first we will 
have to move the piece either to.A4 or.D1 and then to.D4. Now, if the piece is king, the least number 
of moves would be 3.(A1 → B2 → C3 → D4). Observe that the path chosen by different pieces to 
move from.A1 to.D4 in least number of moves are different. Now try to calculate the distance traveled 
by the piece in each of these cases. Are they the same? We need different notions of distances, right? 
Interestingly, the metric induced from the infinity norm,.d(u, v) = maxi {|ui − vi |} is known as the 
chess distance or Chebyshev distance (In honor of the Russian mathematician, Pafnuty Chebyshev 
(1821–1894)) as the Chebyshev distance between two spaces on a chess board gives the minimum 
number of moves required by the king to move between them 

Fig. 5.3 Consider.R2 with 
different norms defined on it. 
If we are using the. 2-norm, 
the distance from the origin 
to the point.(1, 2) is 
.
/|1|2 + |2|2 = √

5 as it is 
length of the hypotenuse of a 
triangle with base. 1 and 
height. 2. If we are  using  
. 1-norm the distance will be. 3
as it is the sum of the 
absolute values of the 
coordinates and if we are 
using infinity norm, the 
distance will be. 2 as it is the 
maximum of absolute values 
of the coordinates 

Example 5.7 Consider.(R, ||.||0). In Example 1.26, we have seen that the open balls 
in .(R, ||.||0) are open intervals in the real line. Now, consider the set . S = {(v1, 0) |
v1 ∈ R, 1 < v1 < 4} in .(R2, ||.||2). Is . S an open ball in .(R2, ||.||2)? Is there any  way  
to generalize the open balls in .(R2, ||.||2)? Yes, we can!! Take an arbitrary point 
.w = (w1,w2) ∈ R

2, and .e ∈ R
+. Then
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Fig. 5.4 The open balls in.(R2, ||.||2) are open circles as given in.(a). Clearly,. S is not an open ball 
in. (R2, ||.||2)

Fig. 5.5 Unit spheres in. R2

with respect to.1− norm, 
. 2-norm and infinity norm. 
Observe that the interior 
portion of the unit spheres 
represents the open unit ball, 
. B1(0) = {v ∈ V | ||v|| < 1}
in each of the norms 

. Be(w) = {v = (v1, v2) ∈ R
2 | ||v − w|| < e}

= {v = (v1, v2) ∈ R
2 | (v1 − w1)

2 + (v2 − w2)
2 < e2}

That is, open balls in .(R2, ||.||2) are “open circles” (Fig. 5.4). 
Example 5.8 Let us compute the open unit balls centered at the origin in . R2

with respect to 1-norm, 2-norm and infinity norm. Let  .Bp
e denote the open ball 

in .
(
R

2, ||.||p

)
. Then 

. B1
1 = {

(v1, v2) ∈ R
2 | |v1| + |v2| < 1

}

B2
1 = {

(v1, v2) ∈ R
2 | |v1|2 + |v2|2 < 1

}

and (Fig. 5.5) 
.B∞

1 = {
(v1, v2) ∈ R

2 | max{|v1|, |v2|} < 1
}
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Fig. 5.6 Consider a function . f in .C[−4, 4] with supremum norm. Continuous functions that lie 
between the dotted lines constitute. B1( f ) = {g ∈ C[−4, 4] | || f − g|| < 1}

Fig. 5.7 Clearly, we can observe that every point in an open ball generated by the infinity norm is 
inside an open ball generated by. 2-norm and vice versa 

Observe that the open balls in .R
2 corresponding to different norms may not have 

the same shape even if the center and radius are the same. Now, let us give you an 
example of open ball in .C[−4, 4] with supremum norm (Fig. 5.6). 

Earlier, we have posed a question, does there exist any link between the topology 
generated by the different norms defined on a vector space? It is interesting to note 
that the topology generated by any norms on a finite-dimensional space is the same. 
That is, the open sets defined by these norms are topologically same. The following 
figure illustrates this idea by taking the open balls in .R2 generated by the infinity 
norm and . 2-norm as an example (Fig. 5.7). 

Now we will prove algebraically that, in a finite-dimensional space the open 
sets generated by any norms are topologically the same. For that, we will have the 
following definition.
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Definition 5.4 (Equivalence of norms) A norm.||.|| on a vector space. V is equivalent 
to .||.||0 on .V if there exists positive scalars . λ and . μ such that for all .v ∈ V , we have  

. λ ||v||0 ≤ ||v|| ≤ μ ||v||0
Example 5.9 Let us consider the . 1-norm, . 2-norm and infinity norm in .R

n . For any 
element .v = (v1, v2, . . . , vn) ∈ R

n , we have  

. ||v||∞ = max
i∈{1,2,...,n}{|vi |} ≤ |v1| + |v2| + · · · + |vn| = ||v||1

Also by Holder’s inequality (Exercise 5, Chap. 1), we have 

. ||v||1 =
nE

i=1

|vi | =
nE

i=1

|vi |.1 ≤
(

nE

i=1

|vi |2
) 1

2
(

nE

i=1

12
) 1

2

= √
n ||v||2

and finally, 

. ||v||2 =
(

nE

i=1

|vi |2
) 1

2

≤
(

nE

i=1

(
max

i∈{1,2,...,n}{|vi |}|vi |
)2
) 1

2

= (
n ||v||2∞

) 1
2 = √

n ||v||∞

Thus .1− norm, . 2-norm and infinity norm in .R
n are equivalent. 

In fact, we can prove that every norm in a finite-dimensional space is equivalent. 
But this is not the case if the space is infinite- dimensional. Consider the following 
example. 

Example 5.10 Consider the linear space .C[0, 1] over the field . R. In  
Example 5.4, we have seen that .|| f || = max

x∈[0,1]| f (x)| defines a norm on .C[0, 1], 
called the supremum norm. Also, we can show that .|| f ||1 = { 1

0 | f (x)|dx defines 
a norm on .C[0, 1](Verify!). We will show that there doesn’t exist any scalar . λ such 
that .|| f || ≤ || f ||1 for all . f ∈ C[0, 1]. For example, consider a function defined as 
in Fig. 5.8. Then we can observe that .|| fn|| = 1 and.|| fn||1 = 1

2n (How?). Clearly, we 
can say that there doesn’t exists any scalar . λ such that .1 ≤ λ

2n for all . n. 

We have discussed the equivalence of norms in terms of defining topologically 
identical open sets. This can also be discussed in terms of sequences. In Chap. 1, we  
have seen that the addition of metric structure to an arbitrary set enables us to discuss 
the convergence or divergence of sequences, limit and continuity of functions, etc., 
in detail. The same happens with normed linear spaces also. The difference is that 
we are adding the metric structure not just to any set, but a vector space. All these 
notions can be discussed in terms of induced metric as well as norm. We will start 
by defining a Cauchy sequence in a normed linear space.
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Fig. 5.8 Define 

as 

shown in the figure. Clearly 
. fn(x) belongs to..C[0, 1] for 
all . n

Definition 5.5 (Cauchy Sequence) A sequence.{vn} in a normed linear space. (V, ||.||)
is said to be Cauchy if for every.e > 0 there exists an.Ne ∈ N such that. ||vn − vm|| < e

for all .m, n > N . 

Definition 5.6 (Convergence) Let .{vn} be a sequence in .(V, ||.||), then.vn → v in. V
if and only if .||vn − v|| → 0 as .n → ∞. 

In Chap. 1, we have seen that in a metric space every Cauchy sequence need not 
necessarily be convergent. Now the important question of whether a Cauchy sequence 
is convergent or not in a normed linear space pops up. The following example gives 
us an answer. 

Example 5.11 Consider the normed linear space.P[0, 1] over. Rwith the supremum 
norm. Consider the sequence, .{pn(x)}, where 

. pn(x) = 1 + x

1! + x2

2! + · · · + xn

n!
Is the sequence convergent? If so, is the limit function a polynomial? Clearly, not! 
We know that.pn(x) → ex , x ∈ [0, 1](Verify!). Is it the only sequence in.P[0, 1] over 
.R that converge to a function which is not a polynomial? Let us consider another 
sequence .{qn(x)}, where 

. qn(x) = 1 + x

2
+ x2

4
+ · · · + xn

2n

First we will prove that .{qn} is a Cauchy sequence. For .n > m, 

. ||qn(x) − qm(x)|| = max
x∈[0,1]

||||
|

nE

i=0

xi

2i
−

mE

i=0

xm

2m

||||
|

= max
x∈[0,1]

|||
|
|

nE

i=m+1

xi

2i

|||
|
|

≤ 1

2m
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Fig. 5.9 As.|| fn − fm|| is 
the area of the triangle 
depicted in the figure, it is 
easy to observe that.{ fn} is 
Cauchy 

which shows that .{qn(x)} is a Cauchy sequence. Now for any .x ∈ [0, 1], we have  

.qn(x) → q(x) as .n → ∞ where .q(x) = 1

1 − x
2

(How?) and clearly . q(x) /∈ P[0, 1]
as it is not a polynomial function. Hence .{qn(x)} is not convergent in .P[0, 1]. What 
about .Pn[0, 1]? Is it complete? 

Here is another example of an incomplete normed linear space. 

Example 5.12 Consider.C[0, 1]with.|| f || = { 1
0 | f (x)|dx for. f ∈ C[0, 1]. Consider 

the sequence of functions . fn ∈ C[0, 1] where 

. fn(x) =
{
nx, x ∈ |

0, 1
n

}

1, x ∈ |
1
n , 1

}

We will show that .{ fn} is Cauchy but not convergent (Fig. 5.9). 
For .n > m, 

. | fn(x) − fm(x)| =

⎧
⎪⎨

⎪⎩

nx − mx, x ∈ |
0, 1

n

}

1 − mx, x ∈ |
1
n ,

1
m

}

0, x ∈ |
1
m , 1

}

Then 

. 

{ 1

0
| fn(x) − fm(x)|dx =

{ 1
n

0
(n − m) x .dx +

{ 1
m

1
n

(1 − mx) dx

= (n − m)
1

2n2
+ 1

m
− 1

n
− 1

2m
+ m

2n2

= 1

2

|
1

m
− 1

n

|

Now for any .e > 0, take .N > 2
e
. Then for .m, n > N , 

.

{ 1

0
| fn(x) − fm(x)|dx = 1

2

|
1

m
− 1

n

|
<

1

m
+ 1

n
<

e

2
+ e

2
= e
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Therefore the sequence is Cauchy. Now consider 

. f (x) =
{
0, x = 0

1, x ∈ (0, 1]

Then .|| fn − f || = 1
n → 0 as .n → ∞. That is, . fn converges to . f but . f /∈ C[0, 1]. 

Normed linear spaces where every Cauchy sequence is convergent are of greater 
importance in Mathematics. Such spaces are named after the famous Polish math-
ematician Stefan Banach (1892–1945) who started a systematic study in this area. 

Definition 5.7 (Banach Space) A complete normed linear space is called a Banach 
space. 

Example 5.13 Consider the normed linear space .Rn over . R with 2-norm. We will 
show that this space is a Banach space. Let.{vk} be a Cauchy sequence in.R

n . As. vk ∈
R

n , we can take .vk = (
vk1, v

k
2, . . . , v

k
n

)
for each . k. Since .{vk} is a Cauchy sequence, 

for every .e > 0 there exists an .N such that 

. ||vk − vm||2 =
nE

i=1

(
vki − vmi

)2
< e2

for all .k,m ≥ N . This implies that .
(
vki − vmi

)2
< e2 for each .i = 1, 2, . . . , n and 

.k,m ≥ N and hence.|vki − vmi | < e for each.i = 1, 2, . . . , n and.k,m ≥ N . Thus for 
a fixed  . i , the sequence .v1i , v

2
i , . . . forms a Cauchy sequence of real numbers. Since 

. R is complete, .vki → vi as .k → ∞ for each. i . Take.v = (v1, v2, . . . , vn) ∈ R
n . Then 

. ||vk − v||2 =
nE

i=1

(
vki − vi

)2 → 0 as n → ∞

Hence, .||vk − v|| → 0 as n → ∞. Therefore .Rn over .R with 2-norm is a Banach 
space. What about .Cn over . C with 2-norm? 

In fact, we can prove that every finite-dimensional normed linear space is com-
plete. We have seen that this is not true when the normed linear space is infinite-
dimensional. Here is an example of infinite-dimensional Banach space. 

Example 5.14 Consider .C[a, b] with supremum norm. Let .{ fn} be a Cauchy 
sequence in .C[a, b]. Then for every .e > 0 there exists an .N such that 

. || fn − fm|| = max
x∈[a,b]| fn(x) − fm(x)| < e (5.1)
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Hence for any fixed .x0 ∈ [a, b], we have  

. | fn(x0) − fm(x0)| < e

for all .m, n > N . This implies that . f1(x0), f2(x0), f3(x0), . . . is a Cauchy sequence 
of real numbers. Since .R is complete (by Theorem 1.2), this sequence converges, 
say. fn(x0) → f (x0) as.n → ∞. Proceeding like this for each point in.[a, b], we can 
define a function. f (x) on.[a, b]. Now we have to prove that. fn → f and. f ∈ C[a, b]. 
Then from, Equation 5.1, as .m → ∞, we have  

. max
x∈[a,b]| fm(x) − f (x)| ≤ e

for all .m > N . Hence for every .x ∈ [a, b], 

. | fm(x) − f (x)| ≤ e

for all .m > N . This implies that .{ fm(x)} converges to . f (x) uniformly on .[a, b]. 
Since. f '

ms are continuous on.[a, b] and the convergence is uniform, the limit function 
is continuous on .[a, b](See Exercise 12, Chap. 1). Thus . f ∈ C[a, b] and . fn → f . 
Therefore .C[a, b] is complete. 

5.2 Inner Product Spaces 

In the previous section, we have added a metric structure to vector spaces which 
enabled as to find the distance between any two vectors. Now we want to study the 
geometry of vector spaces which will be useful in many practical applications. In 
this section, we will give another abstract structure that will help us to study the 
orthogonality of vectors, projection of one vector over another vector, etc. 

.R
2 and Dot product 

.R
2 and Dot product First we will discuss the properties of the dot product in the 

space .R
2 and then generalize these ideas to abstract vector spaces. 

Definition 5.8 (Dot Product) Let.v = (v1, v2),w = (w1,w2) ∈ R
2. The dot product 

of . v and . w is denoted by .
' v.w ' and is given by 

.v.w = v1w1 + v2w2
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Theorem 5.2 For .u, v,w ∈ R
2 and .λ ∈ K, 

(a) .v.v ≥ 0 and .v.v = 0 if and only if .v = 0. 
(b) .u.(v + w) = u.v + u.w (distributivity of dot product over addition) 
(c) . (λu).v = λ(u.v)
(d) .u.v = v.u (commutative) 

Proof (a) Let .v = (v1, v2) ∈ R
2. Clearly, .v.v = v21 + v22 ≥ 0 and 

. v.v = v21 + v22 = 0 ⇔ v1 = v2 = 0 ⇔ v = 0

(b) For .u = (u1, u2), v = (v1, v2),w = (w1,w2) ∈ R
2, 

. u.(v + w) = u1(v1 + w1) + u2(v2 + w2)

= u1v1 + u2v2 + u1w1 + u2w2

= u.v + u.w

(c) For .u = (u1, u2), v = (v1, v2) ∈ R
2 and .λ ∈ K, 

. (λu).v = (λu1, λu2).(v1, v2)

= λu1v1 + λu2v2
= λ(u1v1 + u2v2) = λ(u.v)

(d) For .u = (u1, u2), v = (v1, v2) ∈ R
2, 

. u.v = u1v1 + u2v2 = v1u1 + v2u2 = v.u

Definition 5.9 (Length of a vector) Let.v = (v1, v2) ∈ R
2. The length of. v is denoted 

by .|v| and is defined by .|v| = √
v.v =

/
v21 + v22. 

Theorem 5.3 Let .u, v ∈ R
2, then .u.v = |u||v| cos θ where .0 ≤ θ ≤ π is the angle 

between . u and . v. 

Proof Let .u = (u1, u2), v = (v1, v2) ∈ R
2. If either . u or . v is the zero vector, say 

.u = 0, then 
. u.v = 0v1 + 0v2 = 0

Then as .|u| = 0, .|u||v| cos θ = 0. Therefore, the theorem holds. Now suppose that, 
both .u, v /= 0. Consider the triangle with sides .u, v and . w. Then .w = v − u and by 
the law of cosines of triangle, 

.|w|2 = |u|2 + |v|2 − 2|u||v| cos θ (5.2)
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Fig. 5.10 Orthogonal 
projection of. v on. u

where .0 ≤ θ ≤ π is the angle between . u and . v. Also,  

. |w|2 = w.w = (v − u).(v − u) = (v − u).v − (v − u).u = v.v + u.u − 2u.v
(5.3) 

Then equating (5.2) and (5.3), we get, .u.v = |u||v| cos θ . 

Remark 5.1 Let . u and. v be two vectors in .R
2 and let . θ be the angle between. u and 

. v. Then 

1. .θ = cos−1

(
u.v

|u||v|
)
. 

2. If .θ = π
2 , then .u.v = 0. Then we say that . u is orthogonal to . v and is denoted by 

.u ⊥ v. 

Let .v ∈ R
2 be any vector and .u ∈ R

2 be a vector of unit length. We want to find 
a vector in .span ({u}) such that it is near to . v than any other vector in . span ({u})
(Fig. 5.10). We know that the shortest distance from a point to a line is the segment 
perpendicular to the line from the point. We will proceed using this intuition. From 
the above figure, we get 

. πu(v) = (|v| cos θ) u

From Theorem 5.3, .cos θ = u.v
|u||v| . Substituting this in the above equation, we get 

.πu(v) = (u.v)u. The vector .πu(v) is called the orthogonal projection of . v on . u as 

.v − πu(v) is perpendicular to .span ({u}). 
Definition 5.10 (Projection) Let  .v ∈ R

2 be any vector and .u ∈ R
2 be a vector of 

unit length. Then the projection of . v onto .span ({u}) (a line passing through origin) 
is defined by .πu(v) = (u.v)u.
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Inner Product Spaces 

Norm defined on a vector space generalizes the idea of the length of a vector in .R
2. 

Likewise, we will generalize the idea of the dot product in .R2 to arbitrary vector 
spaces to obtain a more useful structure, where we can discuss the idea of orthogo-
nality, projection, etc. 

Definition 5.11 (Inner product space) Let  .V be a vector space over a field . K. 
An inner product on .V is a function that assigns, to every ordered pair of vectors 
.u, v ∈ V , a scalar in . K, denoted by .<u, v>, such that for all .u, v and . w in .V and all 
.λ ∈ K, the following hold: 

(IP1) .<v, v> ≥ 0 and . <v, v> = 0 ⇔ v = 0
(IP2) . <u + w, v> = <u, v> + <w, v>
(IP3) . <λu, v> = λ<u, v>
(IP4) .<u, v> = <v, u>, where the bar denotes complex conjugation. 

Then. V together with an inner product defined on it is called an Inner product space. 
If .K = R, then .(I P4) changes to .<u, v> = <v, u>. 
Remark 5.2 1. If .λ1, λ2, . . . , λn ∈ K and .w, v1, v2, . . . , vn ∈ V , then 

. 

/
nE

i=1

λi vi ,w

\

=
nE

i=1

λi <vi ,w>

2. By .(I P2) and .(I P3), for  a fixed .v ∈ V , .<u, v> is a linear transformation on . V . 
3. Dot product is an inner product on the vector space .R

2 over . R. 

Example 5.15 Consider the vector space .K
n over . K. For .u = (u1, u2, . . . , un) and 

.v = (v1, v2, . . . , vn) in .Kn , define .<u, v> = En
i=1 uivi , here . v denote the conjugate 

of . v. This inner product is called standard inner product in .K
n . 

(IP1) We have 

. <u, u> =
nE

i=1

uiui =
nE

i=1

|ui |2 ≥ 0

and 

. <u, u> =
nE

i=1

|ui |2 = 0 ⇔ |ui |2 = 0,∀i = 1, 2, . . . , n ⇔ ui = 0,∀i = 1, 2, . . . , n ⇔ u = 0

(IP2) For, .w = (w1,w2, . . . ,wn) ∈ K
n
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. <u + w, v> =
nE

i=1

(ui + wi )vi

=
nE

i=1

uivi +
nE

i=1

wivi = <u, v> + <u,w>

(IP3) .<λu, v> = En
i=1 λuivi = λ

En
i=1 uivi = λ<u, v>, where .λ ∈ K. 

(IP4) . <u, v> = En
i=1 uivi = En

i=1 uivi = En
i=1 viui = <v, u>

Therefore .Kn is an inner product space with respect to the standard inner product. 
Observe that if.K = R, the inner product,.<u, v> = En

i=1 uivi is the usual dot product 
in .R

n . 

Example 5.16 Let .V = C[a, b], the space of real-valued functions on .[a, b]. For  
. f, g ∈ V , define .< f, g> = { b

a f (x)g(x)dx . Then .V is an inner product space with 
the defined inner product. 

(IP1) We have 

. < f, f > =
{ b

a
f (x) f (x)dx =

{ b

a
[ f (x)]2 dx ≥ 0

and 

. < f, f > =
{ b

a
[ f (x)]2 dx = 0 ⇔ f (x) = 0,∀ x ∈ [a, b]

(IP2) For, . h ∈ C[a, b]

. < f + h, g> =
{ b

a
[ f (x) + h(x)] g(x)dx

=
{ b

a
f (x)g(x)dx +

{ b

a
h(x)g(x)dx = < f, g> + <h, g>

(IP3) .<λ f, g> = { b
a λ f (x)g(x)dx = λ

{ b
a f (x)g(x)dx = λ< f, g> where .λ ∈ R. 

(IP4) .< f, g> = { b
a f (x)g(x)dx = { b

a g(x) f (x)dx = <g, f >. 
Thus .C[a, b] is an inner product space with respect to the inner product . < f, g> ={ b
a f (x)g(x)dx . Let us consider a numerical example here for better understanding. 
Consider . f (x) = x2 − 1, g(x) = x + 1 ∈ C[0, 1]. Then 

. < f, g> =
{ 1

0
(x3 + x2 − x − 1)dx =

|
x4

4
+ x3

3
− x2

2
− x

|1

0

= −11

12

.< f, f > =
{ 1

0
(x4 − 2x2 + 1)dx =

|
x5

5
− 2

x3

3
+ x

|1

0

= 8

15
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and 

. <g, g> =
{ 1

0
(x2 + 2x + 1)dx =

|
x3

3
+ x2 + x

|1

0

= 7

3

What if we define,.< f, g> = { 1
0 f (x)g(x)dx − 1 for. f, g ∈ C[0, 1]? Does it define 

an inner product on.C[0, 1]? No, it doesn’t! Observe that, for. f (x) = x2 − 1, we get 
.< f, f > = 8

15 − 1 = −7
15 < 0. This is not possible for an inner product as it violates 

.(I P1). Now, let us discuss some of the basic properties of inner product spaces. 

Theorem 5.4 Let .V be an inner product space. Then for .u, v,w ∈ V and .λ ∈ K, 
the following statements are true. 

(a) . <u, v + w> = <u, v> + <u,w>
(b) . <u, λv> = λ<u, v>
(c) . <u, 0> = <0, u> = 0
(d) If .<u, v> = <u,w> for all .u ∈ V , then .v = w. 

Proof For .u, v,w ∈ V and .λ ∈ K, 

(a) . <u, v + w> = <v + w, u> = <v, u> + <w, u> = <v, u> + <w, u> = <u, v> + <u,w>
(b) . <u, λv> = <λv, u> = λ<v, u> = λ <v, u> = λ<u, v>
(c) .<u, 0> = <u, 0 + 0> = <u, 0> + <u, 0> ⇒ <u, 0> = 0. Similarly . <0, u> = <0 + 0,

u> = <0, u> + <0, u> = 0. 
(d) Suppose that .<u, v> = <u,w> for all .u ∈ V . 

. <u, v> = <u,w> ⇒ <u, v> − <u,w> = 0 ⇒ <u, v − w> = 0

That is, .<u, v> = <u,w> for all .u ∈ V implies that .<u, v − w> = 0 ∀ u ∈ V . In  
particular, .<v − w, v − w> = 0. This implies .v − w = 0. That is, .v = w. 

The following theorem gives one of the most important and widely used inequal-
ities in mathematics, called the Cauchy-Schwarz Inequality, named after the French 
mathematician Augustin-Louis Cauchy (1789–1857) and the German mathematician 
Hermann Schwarz (1843–1921). 

Theorem 5.5 (Cauchy-Schwarz Inequality) Let .V be an inner product space. For 
.v,w ∈ V , 

. |<v,w>|2 ≤ <v, v><w,w>

where equality holds if and only if .{v,w} is linearly dependent. 
Proof Let .v,w ∈ V . Consider 

.u = <w,w>v − <v,w>w
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Then 

. 0 ≤ <u, u> = <<w,w>v − <v,w>w, <w,w>v − <v,w>w>
= |<w,w>|2<v, v> − <w,w>|<v,w>|2 − <w,w>|<v,w>|2 + <w,w>|<v,w>|2
= <w,w> |<v, v><w,w> − |<v,w>|2}

Now suppose that .<w,w> > 0, then.<v, v><w,w> − |<v,w>|2 ≥ 0, which implies that 
.|<v,w>|2 ≤ <v, v><w,w>. If.<w,w> = 0, then by.(I P4),.w = 0. Therefore by Theorem 
5.4.(c), .<v,w> = 0 and hence .<v, v><w,w> = 0 = |<v,w>|2. 

Now suppose that equality holds. That is,.|<v,w>|2 = <v, v><w,w>. Then. <u, u> =
0. Then.<w,w>v = <v,w>w and hence.{v,w} is linearly dependent. Conversely, sup-
pose that.{v,w} is linearly dependent. Then by Corollary 2.1, one is a scalar multiple 
of the other. That is, there exists .λ ∈ K such that .v = λw or .w = λv. Then 

. <v, v><w,w> = <λw, λw><w,w> = |λ|2|<w,w>|2 = |<v,w>|2

Hence the proof. 

Example 5.17 Consider .R
n with standard inner product. For . (u1, . . . , un),

(v1, . . . , vn) ∈ R
n , by Cauchy-Schwarz inequality, we have 

. (u1v1 + u2v2 + · · · + unvn)
2 ≤ (u1 + u2 + · · · + un)

2(v1 + v2 + · · · + vn)
2

That is,.
(En

i=1 uivi
)2 ≤ (En

i=1 ui
)2 (En

i=1 vi
)2
. If we consider,.C[a, b]with the inner 

product, .< f, g> = { b
a f (x)g(x)dx , then by Cauchy-Schwarz inequality, we have 

. 

|{ b

a
f (x)g(x)dx

|2
≤
{ b

a
f 2(x)dx

{ b

a
g2(x)dx

That is,.|< f, g>|2 ≤ < f, f ><g, g>. Consider. f, g ∈ C[0, 1] as defined in Example 5.16. 
We have seen that .< f, g> = −11

12 , < f, f > = 8
15 and .<g, g> = 7

3 . Clearly, 

. |< f, g>|2 = 121

144
≤ 56

45
= < f, f ><g, g>

In the previous section, we have seen that every normed linear space is a metric 
space. Now, we will show that every inner product space is a normed linear space. 
The following theorem gives a method to define a norm on an inner product space 
using the inner product. 

Theorem 5.6 Let .V be an inner product space. For .v ∈ V , .||v|| = √<v, v> is a norm 
on . V . 

Proof(N1) Let .v ∈ V . Since .<v, v> ≥ 0, we have  .||v|| = √<v, v> ≥ 0. Also  
.<v, v> = 0 ⇔ v = 0, implies that .||v|| = √<v, v> = 0 ⇔ v = 0.
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(N2) .||λv|| = √<λv, λv> =
/

λλ<v, v> =
/

|λ|2 ||v||2 = |λ| ||v||, where .λ ∈ K. 
(N3) For .u, v ∈ V , 

. ||u + v||2 = <u + v, u + v>
= <u, u> + <u, v> + <v, u> + <v, v>
= ||u||2 + ||v||2 + 2Re(<u, v>)
≤ ||u||2 + ||v||2 + 2|<u, v>|
≤ ||u||2 + ||v||2 + 2 ||u|| ||v|| (Cauchy − Schwarz)

= (||u|| + ||v||)2

Hence .||u + v|| ≤ ||u|| + ||v||. 
Therefore .||v|| = √<v, v> is a norm on . V . 

Remark 5.3 The norm defined in the above theorem is called the norm induced by 
the inner product. Every inner product space is a normed linear space with respect 
to the induced norm. 

Example 5.18 Consider .Rn with standard inner product. Observe that for . v =
(v1, v2, . . . , vn) ∈ R

n , we get 

. ||v|| = /<v, v> =
(

nE

i=1

v2i

) 1
2

= ||v||2

Thus the standard inner product on .R
n induces . 2-norm. Similarly, the inner product 

.< f, g> = { b
a f (x)g(x)dx on .C[a, b] induces the norm, 

. || f || = /< f, f > =
({ b

a
f 2(x)dx

) 1
2

This norm is called, energy norm. 

The following inclusion can be derived between the collections of these abstract 
spaces. 

. {Inner product spaces} ⊂ {Normed spaces} ⊂ {Metric spaces}

Now we have to check whether the reverse inclusion is true or not. The following 
theorem gives a necessary condition for an inner product space. 

Theorem 5.7 (Parallelogram Law) Let .V be an inner product space. Then for all 
.u, v ∈ V , 

. ||u + v||2 + ||u − v||2 = 2
(||u||2 + ||v||2)
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Fig. 5.11 Parallelogram law 

Proof For all .u, v ∈ V , 

. ||u + v||2 = <u + v, u + v> = <u, u> + <u, v> + <v, u> + <v, v>
||u − v||2 = <u − v, u − v> = <u, u> − <u, v> − <v, u> + <v, v>

Therefore .||u + v||2 + ||u − v||2 = 2
(||u||2 + ||v||2) (Fig. 5.11). 

Example 5.19 In Example 5.4, we have seen that .C[a, b], the space of continuous 
real-valued functions on .[a, b] is a normed linear space with the supremum norm 
given by, .|| f || = max

x∈[a,b]| f (x)| where . f ∈ C[a, b]. This space gives an example of 

a normed linear space which is not an inner product space. Consider the elements 

. f1(x) = 1 and . f2(x) = (x − a)

(b − a)
in .C[a, b]. Then .|| f1|| = 1 and .|| f2|| = 1. We have  

. ( f1 + f2)(x) = 1 + (x − a)

(b − a)
and ( f1 − f2)(x) = 1 − (x − a)

(b − a)

Hence .|| f1 + f2|| = 2 and .|| f1 − f2|| = 1. Now  

. || f1 + f2||2 + || f1 − f2||2 = 5 but 2
(|| f1||2 + || f2||2

) = 4

Clearly, parallelogram law is not satisfied. Thus supremum norm on .C[a, b] cannot 
be obtained from an inner product. 

From the above example, we can conclude that not all normed linear spaces are 
inner product spaces. Now, we will prove that a normed linear space is an inner 
product space if and only if the norm satisfies parallelogram law. 

Theorem 5.8 Let .(V, ||.||) be a normed linear space. Then there exists an inner 
product .<, > on .V such that .<v, v> = ||v||2 for all .v ∈ V if and only if the norm 
satisfies the parallelogram law.
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Proof Suppose that we have an inner product on. V with.<v, v> = ||v||2 for all.v ∈ V . 
Then by Theorem 5.7, parallelogram law is satisfied. 

Conversely, suppose that the norm on .V satisfies parallelogram law. For any 
.u, v ∈ V , define 

. 4<u, v> = ||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2

Now we will prove that the inner product defined above will satisfy the conditions 
.(I P1) − (I P4). 

(IP1) For any .v ∈ V , we have  

. 4<v, v> = ||v + v||2 − ||v − v||2 + i ||v(1 + i)||2 − i ||v(1 − i)||2
= 4 ||v||2 + i |1 + i |2 ||v||2 − i |1 − i |2 ||v||2
= 4 ||v||2 + 2i ||v||2 − 2i ||v||2
= 4 ||v||2

This implies that .<v, v> = ||v||2 for all .v ∈ V . Hence .<v, v> ≥ 0 for all . v ∈ V
and .<v, v> = 0 if and only if .v = 0. 

(IP2) For any .u, v,w ∈ V , we have  

. 4<u + w, v> = ||(u + w) + v||2 − ||(u + w) − v||2 + i ||(u + w) + iv||2 − i ||(u + w) − iv||2

rewriting .u + w + v as .
(
u + v

2

) + (
w + v

2

)
and applying parallelogram law, 

we have 

. 

|
||
|
||
(
u + v

2

)
+
(
w + v

2

)|||
|
||
2 +

|
||
|
||
(
u + v

2

)
−
(
w + v

2

)|||
|
||
2 = 2

|
||
|
||u + v

2

|
||
|
||
2 + 2

|
||
|
||w + v

2

|
||
|
||
2

This implies 

. ||u + w + v||2 = 2
|
||
|
||u + v

2

|
||
|
||
2 + 2

|
||
|
||w + v

2

|
||
|
||
2 − ||u − w||2

Similarly, 

. ||u + w − v||2 = 2
|||
|||u − v

2

|||
|||
2 + 2

|||
|||w − v

2

|||
|||
2 − ||u − w||2

Then 

. ||u + w + v||2 − ||u + w − v||2 = 2

||||
|||u + v

2

|||
|||
2 −

|||
|||u − v

2

|||
|||
2 +

|||
|||w + v

2

|||
|||
2 −

|||
|||w − v

2

|||
|||
2
|

(5.4)
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Multiplying both sides by . i and replacing . v by .iv in the above equation, 

. i
|||u + w + iv||2 − ||u + w − iv||2} = 2i

|||
||

||
||u + iv

2

||
||

||
||

2

−
||
||

||
||u − iv

2

||
||

||
||

2

+
||
||

||
||w + iv

2

||
||

||
||

2

−
||
||

||
||w − iv

2

||
||

||
||

2
|

(5.5) 
adding (5.4) and (5.5),we get 

. 4<u + w, v> = 2

||
||
|
||u + v

2

|
||
|
||
2 −

|
||
|
||u − v

2

|
||
|
||
2 + i

|
|||

|
|||u + iv

2

|
|||

|
|||

2

− i

|
|||

|
|||u − iv

2

|
|||

|
|||

2
|

+ 2

||||
|||w + v

2

|||
|||
2 −

|||
|||w − v

2

|||
|||
2 + i

|||
|

|||
|w + iv

2

|||
|

|||
|

2

− i

|||
|

|||
|w − iv

2

|||
|

|||
|

2
|

= 8
|/
u,

v

2

\
+
/
w,

v

2

\|

No taking .w = 0 and then .u = 0 separately in the above equation, we get 
.<u, v> = 2

<
u, v

2

>
and .<w, v> = 2

<
w, v

2

>
. Thus we get, . 4<u + w, v> = 4<u, v> +

4<w, v> for all .u, v,w ∈ V . 
(IP3) Now we will prove that .<λu, v> = λ<u, v>. We will prove this as four separate 

cases. 

(a) . λ is an integer. 
For all .u, v,w ∈ V , we have  

. <u + w, v> = <u, v> + <w, v>

Replacing. w by. u, we get.<2u, v> = 2<u, v>. Thus the result is true for.λ = 2. 
Suppose that the result is true for any positive integer . n. That is, . <nu, v> =
n<u, v> for all .u, v ∈ V . Now  

. <(n + 1)u, v> = <nu + u, v> = <nu, v> + <u, v> = (n + 1)<u, v>

hence by the principle of mathematical induction, the result is true for all 
positive integers . n. Now, to prove this for any negative integer . n, first we 
prove that .<−u, v> = −<u, v>, for any .u, v ∈ V . We have  

. 4<u, v> = ||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2

Replacing . u by .−u, we get 

.4<−u, v> = ||−u + v||2 − ||−u − v||2 + i ||−u + iv||2 − i ||−u − iv||2
= ||−(u − v)||2 − ||−(u + v)||2 + i ||−(u − iv)||2 − i ||−(u + iv)||2
= ||u − v||2 − ||u + v||2 + i ||u − iv||2 − i ||u + iv||2
= −4<u, v>
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Thus we have .<−u, v> = −<u, v> for any .u, v ∈ V . Let  .λ = −μ be any 
negative integer, where .μ > 0. Then we have, 

. <λu, v> = <−μu, v> = <−(μu), v> = −<μu, v> = −μ<u, v> = λ<u, v>

Thus the result is true for any integer . λ. 
(b) .λ = p

q is a rational number, where .p, q /= 0 are integers. 
Then we have 

. p<u, v> = <pu, v> =
/
q

(
p

q

)
u, v

\
= q

/
p

q
u, v

\

Thus we have .

/
p
q u, v

\
= p

q <u, v> for all .u, v ∈ V . Thus the result is true for 

all rational numbers. 
(c) . λ is a real number. 

Then there exists a sequence of rational numbers .{λn} such that .λn → λ as 
.n → ∞ (See Exercise 13, Chap. 1). Observe that, as . n → ∞

. |λn<u, v> − λ<u, v>| = |(λn − λ)<u, v>| = |λn − λ||<u, v>| → 0

Hence, .λn<u,w> → λ<u, v> as .n → ∞. Now, by  .(b), .λn<u, v> = <λnu, v>. 
Also, 

. 4<λnu, v> = ||λnu + v||2 − ||λnu − v||2 + i ||λnu + iv||2 − i ||λnu − iv||2
→ ||λu + v||2 − ||λu − v||2 + i ||λu + iv||2 − i ||λu − iv||2
= 4<λu, v>

That is, .<λnu, v> → <λu, v> as .n → ∞. This implies that . <λu, v> = λ<u, v>
for any .u, v ∈ V . 

(d) . λ is a complex number. 
First we will show that .<iu, v> = i<u, v>. We have  

. 4<u, v> = ||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2

Replacing . u by . iu, we have  

.4<iu, v> = ||iu + v||2 − ||iu − v||2 + i ||iu + iv||2 − i ||iu − iv||2
= ||i(u − iv)||2 − ||i(u + iv)||2 + i ||i(u + v)||2 − i ||i(u − v)||2
= ||u − iv||2 − ||u + iv||2 + i ||u + v||2 − i ||u − v||2
= −i2 ||u − iv||2 + i2 ||u + iv||2 + i ||u + v||2 − i ||u − v||2
= i

|||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2}
= i4<u, v>
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which implies that .<iu, v> = i<u, v>. Now, for any complex number . λ =
a + ib, then 

. <λu, v> = <(a + ib)u, v>
= <au + ibu, v>
= <au, v> + <ibu, v>
= a<u, v> + ib<u, v>
= (a + ib)<u, v> = λ<u, v>

Thus .<λu, v> = λ<u, v> for all .u, v ∈ V and for all scalars . λ. 

(IP4) For any .u, v ∈ V , we have  

. 4<u, v> = ||u + v||2 − ||u − v||2 + i ||u + iv||2 − i ||u − iv||2
= ||v + u||2 − ||v − u||2 + i ||i(v − iu)||2 − i ||(−i)(v + iu)||2
= ||v + u||2 − ||v − u||2 + i |i |2 ||v − iu||2 − i |−i |2 ||v + iu||2
= ||v + u||2 − ||v − u||2 − i ||v − iu||2 + i ||v + iu||2
= 4<v, u>

Hence, .<u, v> = <v, u> for all .u, v ∈ V . 

Thus all the conditions for an inner product are satisfied and hence .(V, <, >) is an 
inner product space. 

Similar to what we have done in normed linear spaces, the concept of convergence 
of sequences in inner product spaces follows from the definition of convergence in 
metric spaces as given below. 

Definition 5.12 (Convergence) Let .{vn} be a sequence in an inner product space. V , 
then .vn → v if and only if .<vn, v> → 0 as .n → ∞. 

Again the question of completeness rises. The following example shows that every 
inner product space need not necessarily be complete. 

Example 5.20 Consider .C[0, 1] with the inner product .< f, g> = { 1
0 f (x)g(x)dx . 

We have already seen that.C[0, 1] is an inner product space with respect to the given 
inner product. Now, consider the sequence, 

. fn =

⎧
⎪⎨

⎪⎩

0, x ∈ |
0, 1

2

}

n
(
x − 1

2

)
, x ∈ |

1
2 ,

1
2 + 1

n

}

1, x ∈ |
1
2 + 1

n , 1
}

If we proceed as in Example 5.12, we can show that.{ fn} is Cauchy but not convergent. 
Complete inner product spaces are named after the famous German mathematician 

David Hilbert (1862–1943) who started a systematic study in this area.
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Definition 5.13 (Hilbert Space) A complete inner product space is called a Hilbert 
space. 

Example 5.21 Consider .Kn over .K with standard inner product. Then . ||v|| =√<v, v> = (En
i=1|vi |2

) 1
2 for .v = (v1, v2, . . . , vn) ∈ K

n . Then from Example 5.13, 
.K

n over .K with standard inner product is a Hilbert space. In fact, we can prove that 
every finite-dimensional space over the fields . R or . C is complete(Prove). Is .Q over 
the field .Q complete? 

5.3 Orthogonality of Vectors and Orthonormal Sets 

Orthogonality of vectors in vector spaces is one of the important basic concepts in 
mathematics which is generalized from the idea that the dot product of two vectors 
is zero implies that the vectors are perpendicular in .R

2 (Fig. 5.12). 
Orthogonal/orthonormal bases are of great importance in functional analysis, 

which we will be discussing in the coming sections. We will start with the defi-
nition of an orthogonal set. 

Definition 5.14 (Orthogonal set) Let. V be an inner product space. Vectors. v,w ∈ V
are orthogonal if.<v,w> = 0. A subset. S of. V is orthogonal if any two distinct vectors 
in . S are orthogonal. 

We are all familiar with the fundamental relation from Euclidean geometry that, 
“in a right-angled triangle, the square of the hypotenuse is equal to the sum of 
squares of the other two sides”, named after the famous Greek mathematician, 
Pythagoras(570-495 BC) (Fig. 5.13). 

This relation can be generalized to higher-dimensional spaces, to spaces that are 
not Euclidean, to objects that are not right triangles, and to objects that are not even 
triangles. Consider the following theorem. 

Theorem 5.9 (Pythagoras Theorem) Let .V be an inner product space and 
.{v1, v2, . . . , vn} be an orthogonal set in . V . Then 

. ||v1 + v2 + · · · + vn||2 = ||v1||2 + ||v2||2 + · · · + ||v2||2

Fig. 5.12 Example for 
orthogonal vectors in.R2
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Fig. 5.13 Pythagoras 
theorem illustrated in. R2

Proof As .{v1, v2, . . . , vn} is an orthogonal set in . V , we have  .<vi , v j > = 0, ∀i /= j . 
Then 

. ||v1 + v2 + · · · + vn||2 = <v1 + v2 + · · · + vn, v1 + v2 + · · · + vn>

=
nE

i, j=1

<vi , v j >

=
nE

i=1

<vi , vi >

= ||v1||2 + ||v2||2 + · · · + ||v2||2

Definition 5.15 (Orthonormal set) A vector .v ∈ V is a unit vector if .||v|| = 1. A  
subset. S of. V is orthonormal if. S is orthogonal and consists entirely of unit vectors. A 
subset of. V is an orthonormal basis for. V if it is an ordered basis that is orthonormal. 

Example 5.22 Consider the set .S = {v1, v2, v3} in .C[−1, 1], where 

. v1 = 1√
2
, v2 =

/
3

2
x and v3 =

/
5

8
(3x2 − 1)

Then 

. <v1, v1> =
{ 1

−1

1

2
dx = 1, <v2, v2> = 3

2

{ 1

−1
x2dx = 1, <v3, v3> = 5

8

{ 1

−1
(9x4 − 6x2 + 1)dx = 1

and 

. <v1, v2> =
√
3

2

{ 1

−1
xdx = 0, <v1, v3> =

√
5

4

{ 1

−1
(3x2 − 1)dx = 0,

. <v2, v3> =
√
15

4

{ 1

−1
(3x3 − x)dx = 0

Thus . S is an orthonormal set in .C[−1, 1]. As  .P2[−1, 1] is a subspace of . C[−1, 1]
with dimension . 3, . S can be considered as an orthonormal basis for .P2[−1, 1].
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Example 5.23 Consider the standard ordered basis .S = {e1, e2, . . . , en} in .R
n with 

standard inner product. Clearly .<ei , e j > = 0 for .i /= j and .||ei|| = √<ei , ei > = 1 for 
all .i = 1, 2, . . . , n. Therefore the standard ordered basis of .Rn is an orthonormal 
basis. 

In the previous chapters, we have seen that bases are the building blocks of a 
vector space. Now, suppose that this basis is orthogonal. Do we have any advantage? 
Consider the following example. 

Example 5.24 Consider the vectors .v1 = (2, 1, 2), v2 = (−2, 2, 1) and . v3 = (1,
2,−2) in.R

3. Clearly, we can see that.{v1, v2, v3} is an orthogonal basis for.R3(verify). 
Then we know that any non-zero vector in .R3 can be written as a linear com-
bination of .{v1, v2, v3} in a unique way. That is, any .v ∈ R

3 can be expressed as 
.v = λ1v1 + λ2v2 + λ3v3 for some scalars.λ1, λ2, λ3. Because of the orthogonality of 
basis vectors, here we can observe that, 

. <v, v1> = <λ1v1 + λ2v2 + λ3v3, v1> = λ1<v1, v1> = λ1 ||v1||2

Hence, .λ1 = <v,v1>
||v1||2 . Similarly, we can compute .λ2 and .λ3 as .

<v,v2>
||v1||2 and . <v,v3>||v1||2 , respec-

tively. This is interesting! right? Let us consider a numerical example. Take . v =
(6, 12,−3) ∈ R

3. We have  

. (6, 12,−3) = 2(2, 1, 2) + 1(−2, 2, 1) + 4(1, 2,−2)

Observe that. <v,v1>||v1||2 = 2, <v,v2>
||v2||2 = 1 and.

<v,v3>
||v3||2 = 4. Is this possible in any arbitrary inner 

product space? Yes, it is possible!! That is, if we have an orthogonal basis for an inner 
product space . V , it is easy to represent any vector .v ∈ V as a linear combination of 
the basis vectors. For, if .{v1, v2, . . . , vn} is an orthogonal basis for an inner product 
space . V , then for any .v ∈ V , we have  

. v = <v, v1>
||v1||2

v1 + <v, v2>
||v2||2

v2 + · · · + <v, vn>
||vn||2

vn

and if .{v1, v2, . . . , vn} is an orthonormal basis for . V , we have  

. v = <v, v1>v1 + <v, v2>v2 + · · · + <v, vn>vn
This fact is formulated as the following theorem. 

Theorem 5.10 Let .V be an inner product space and .S = {v1, v2, . . . , vn} be an 
orthogonal subset of .V consisting of non-zero vectors. If .w ∈ span(S), then 

. w =
nE

i=1

<w, vi >
||vi||2

vi

Further if . S is an orthonormal set,
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. w =
nE

i=1

<w, vi >vi

Proof Since .w ∈ span(S), there exists scalars .λ1, λ2, . . . , λn ∈ K such that . w =
λ1v1 + λ2v2 + · · · + λnvn . Now  for .i = 1, 2, . . . , n, we have  

. <w, vi > = <λ1v1 + λ2v2 + · · · + λnvn, vi >
= λ1<v1, vi > + λ2<v2, vi > + · · · + λn<vn, vi >

Since .S = {v1, v2, . . . , vn} is an orthogonal set, .<vi , v j > = 0 for all .i /= j and 
.<vi , vi > = ||vi||2 /= 0. Therefore 

. <w, vi > = λi ||vi||2

and hence.λi = <w, vi >
||vi||2

for.i = 1, 2, . . . , n. This implies that.w =
nE

i=1

<w, vi >
||vi||2

vi . If. S

is orthonormal,.v1, v2, . . . , vn are unit vectors and hence.||vi|| = 1 for.i = 1, 2, . . . , n. 
Therefore .w = En

i=1<w, vi >vi . 

Remark 5.4 The coefficients .
<w, vi >
||vi||2

is called the Fourier coefficients of . v with 

respect to the basis .{v1, v2, . . . , vn}, named after the French mathematician Jean-
Baptiste Joseph Fourier (1768–1830). 

The following corollary shows that the matrix representation of a linear operator 
defined on a finite-dimensional vector space with orthonormal basis can be easily 
computed using the idea of an inner product. 

Corollary 5.1 Let .V be an inner product space, and let .B = {v1, v2, . . . , vn} be 
an orthonormal basis of . V . If  .T is a linear operator on . V , and .A = [T ]B. Then 
.Ai j = <T (v j ), vi >, where .1 ≤ i, j ≤ n. 

Proof Since . B is a basis of .V and as . T is from.V to . V , from the above theorem 

. T (v j ) =
nE

i=1

<T (v j ), vi >vi

which clearly implies that .Ai j = <T (v j ), vi >, where .1 ≤ i, j ≤ n. 

Example 5.25 Consider.P2[−1, 1] with the basis defined in Example 5.22. Take an  
arbitrary element, say .w = x2 + 2x + 3 ∈ P2[−1, 1]. Then we have, 

.<w, v1> = 1√
2

{ 1

−1
(x2 + 2x + 3)dx = 10

√
2

3
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. <w, v2> =
/
3

2

{ 1

−1
(x3 + 2x2 + 3x)dx = 2

√
6

3

and 

. <w, v3> = 1√
2

{ 1

−1
(3x2 − 1)(x2 + 2x + 3)dx =

√
40

15

Observe that .w = 10
√
2

3 v1 + 2
√
2√
3
v2 +

√
40
15 v3. 

Define .T : V → V by 
. (T p) (x) = p'(x)

Then 

. T (v1) = 0, T (v2) =
/
3

2
and T (v3) =

√
15

2
x

Clearly .<T (v1), vi > = 0 where .i = 1, 2, 3. Also  

. <T (v2), v1> =
√
3

2

{ 1

−1
dx = √

3, <T (v2), v2> = 3

2

{ 1

−1
xdx = 0,

. <T (v2), v3> =
√
15

4

{ 1

−1
(3x2 − 1)dx = 0

And 

. <T (v3), v1> =
√
15

2
√
2

{ 1

−1
xdx = 0, <T (v3), v2> = 3

√
5

2
√
2

{ 1

−1
x2dx =

/
5

2
,

. <T (v3), v3> = 5
√
3

4
√
2

{ 1

−1
(3x3 − x)dx = 0

Therefore 

. [T ]B =
⎡

⎣
0

√
3 0

0 0
√
15

0 0 0

⎤

⎦

Corollary 5.2 Let .V be an inner product space, and .S = {v1, v2, . . . , vk} be an 
orthogonal subset of. V consisting of non-zero vectors. Then. S is linearly independent. 

Proof Let .λ1, λ2, . . . , λk ∈ K be such that .
Ek

i=1 λi vi = 0. Then for .v j ∈ S, 

.0 =
/

kE

i=1

λi vi , v j

\

= λ j

||||v j
||||2
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Since .S is a collection of non-zero vectors, this implies that .λ j = 0 for all 
. j = 1, 2, . . . , k. Therefore . S is linearly independent. 

Gram–Schmidt Orthonormalization 

Corollary 5.2 shows that any orthogonal set of non-zero vectors is linearly inde-
pendent. In this section, we will show that from a linearly independent set, we can 
construct an orthogonal set. In fact, we can construct an orthonormal set from a lin-
early independent set, with the same span using Gram–Schmidt Orthonormalization 
process. The process is named after the Danish mathematician Jørgen Pedersen Gram 
(1850–1916) and Baltic-German mathematician Erhard Schmidt (1876–1959). 

Theorem 5.11 (Gram–Schmidt Orthonormalization) Let .{v1, v2, . . . vn} be a 
linearly independent subset of an inner product space . V . Define 

. w1 = v1, u1 = w1

||w1||

. w2 = v2 − <v2, u1>u1, u2 = w2

||w2||

. w3 = v3 − <v3, u1>u1 − <v3, u2>u2, u3 = w3

||w3||

. 
...

. wn = vn − <vn, u1>u1 − · · · − <vn, un−1>un−1, un = wn

||wn||
Then .{u1, u2, . . . un} is an orthonormal set in .V and 

. span{u1, u2, . . . , un} = span{v1, v2, . . . , vn}
Proof Since .{v1, v2, . . . vn} is linearly independent, .vi /= 0 for all .i = 1, 2, . . . , n. 
We prove by induction on . i . Consider .{v1}. Clearly .{v1} is linearly independent. 

Take .w1 = v1 and .u1 = w1

||w1|| . Then .||u1|| = ||w1||
||w1|| = 1 and . span{u1} = span{v1}

(Fig. 5.14). 
For .0 ≤ i ≤ n − 1, define 

.wi = vi − <vi , u1>u1 − · · · − <vi , ui−1>ui−1, ui = wi

||wi||
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Fig. 5.14 Geometrical 
representation of first two 
steps of Gram–Schmidt 
process 

and suppose that .{u1, u2, . . . un−1} is an orthonormal set with 

. span{u1, u2, . . . , un−1} = span{v1, v2, . . . , vn−1}

Now define, 
. wn = vn − <vn, u1>u1 − · · · − <vn, un−1>un−1

Since .{v1, v2, . . . vn} is a linearly independent set . vn /∈ span{v1, v2, . . . , vn−1} =
span{u1, u2, . . . , un−1}. Since .wn /= 0, take  .un = wn

||wn|| . Then clearly .||un|| = 1. 

Now for .i ≤ n − 1, we have  

. <wn, ui > = <vn − <vn, u1>u1 − · · · − <vn, un−1>un−1, ui >
= <vn, ui > − <vn, u1><u1, ui > − · · · − <vn, un−1><un−1, ui >
= <vn, ui > − <vn, ui >
= 0

as.{u1, u2, . . . un−1} is an orthonormal set. Therefore.<wn,wi > = 0 for. 0 ≤ i ≤ n − 1
and hence .{u1, u2, . . . un} is an orthonormal set. Also 

. span{u1, u2, . . . un} = span{v1, v2, . . . , vn−1, un}
= span

{
v1, v2, . . . , vn−1,

wn

||wn||
}

= span{v1, v2, . . . , vn}

Hence the proof. 

Example 5.26 Let .V = R
4 and 

.S = {v1 = (0, 1, 1, 0), v2 = (1, 2, 1, 0), v3 = (1, 0, 0, 1)}
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Since .

⎡

⎣
0 1 1 0
1 2 1 0
1 0 0 1

⎤

⎦ is of rank 3, . S is linearly independent. Also as . <v1, v2> = 2 + 1 =

3, . S is not orthogonal. Now we may apply, Gram–Schmidt process to obtain an 

orthonormal set. Take .w1 = v1 = (1, 0, 1, 0). Then .u1 = w1

||w1|| = 1√
2
(0, 1, 1, 0). 

Now 

. w2 = v2 − <v2, u1>u1
= (1, 2, 1, 0) − <(1, 2, 1, 0), 1√

2
(0, 1, 1, 0)> 1√

2
(0, 1, 1, 0)

= 1

2
(2, 1,−1, 0)

and hence .u2 = w2

||w2|| = 1√
6
(2, 1,−1, 0). Finally, 

. w3 = v3 − <v3, u1>u1 − <v3, u2>u2
= (1, 0, 0, 1) − <(1, 0, 0, 1), 1√

2
(0, 1, 1, 0)> 1√

2
(0, 1, 1, 0)

− <(1, 0, 0, 1), 1
3
(2, 1,−1, 0)>1

3
(2, 1,−1, 0)

= 1

3
(1,−1, 1, 3)

and hence.u3 = w3

||w3|| = 1
2
√
3
(1,−1, 1, 3). The  set.{u1, u2, u3} is an orthonormal set 

and .span{u1, u2, u3} = span{v1, v2, v3}. 
Remark 5.5 Consider a matrix . A with columns .v1, v2, v3 from the above example. 

That is, .A =

⎡

⎢⎢
⎣

0 1 1
1 2 0
1 1 0
0 0 1

⎤

⎥⎥
⎦. Then 

. A =

⎡

⎢⎢⎢⎢
⎣

0
/

2
3

√
3
6√

2
2

1√
6

−
√
3
6√

2
2 − 1√

6

√
3
6

0 0
√
3
2

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

√
2 3

√
2

2

√
2
2

0
/

3
2

/
2
3

0 0 2
√
3

3

⎤

⎥⎥
⎦ = QR

Clearly, the columns of the matrix .Q forms an orthonormal set and .R is an upper 
triangular matrix with entries .Rii = ||wi|| ∀ i = 1, 2, 3 and . Ri j = <v j , ui > ∀ j >

i(i, j = 1, 2, 3). This decomposition of a matrix with linearly independent columns
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into the product of an upper triangular matrix and a matrix whose columns form an 
orthonormal set is called the .QR- decomposition. 
Example 5.27 Consider .V = P2[−1, 1] and .S = {

1, x, x2
}
. We have already seen 

that. S is a basis of. V and hence is linearly independent. Also as.
{ 1
−1 1.x

2dx = 2
3 ,. S is 

not orthogonal. Therefore take .w1 = 1. As .||w1||2 = { 1
−1 1dx = 2, we get .u1 = 1√

2
. 

Now 

. w2 = v2 − <v2, u1>u1 = x − 1

4

{ 1

−1
xdx = x, u2 =

/
3

2
x

and 

. w3 = v3 − <v3, u1>u1 − <v3, u2>u2 = x2 −
{ 1

−1
x2dx, u3 =

/
5

8
(3x2 − 1)

Thus .
{

1√
2
,

/
3
2 x,

/
5
8 (3x

2 − 1)
}
is an orthonormal basis for .P2[−1, 1]. 

The above example makes it clear that given a basis, one could construct an 
orthonormal basis from it. Hence, we could assure that “Every finite-dimensional 
vector space has an orthonormal basis”. 

5.4 Orthogonal Complement and Projection 

In Sect. 5.2, we have discussed about orthogonal projection on .R2. We will extend 
this idea to the general inner product space structure here. Representing an inner 
product space as the direct sum of a closed subspace and its orthogonal complement 
has many useful applications in mathematics. 

Definition 5.16 Let . S be a non-empty subset of an inner product space . V , then the 
set.{v ∈ V | <v, s> = 0,∀s ∈ S},i.e., the set of all vectors of.V that are orthogonal to 
every vector in . S is called the orthogonal complement of . S and is denoted by .S⊥. 
Clearly .{0}⊥ = V and .V⊥ = {0}. Also .S ∩ S⊥ = {0}. 
Remark 5.6 .S⊥ is a subspace of .V for any subset of . V . For  

. <λs1 + s2, s> = λ<s1, s> + <s2, s> = 0

for all .s1, s2 ∈ S⊥ and .λ ∈ K (Fig. 5.15). 

Example 5.28 Consider .V = R
3 and let .S1 = {(1, 2, 3)}. Then 

.S⊥
1 = {(v1, v2, v3) ∈ R

3 | <(v1, v2, v3), (1, 2, 3)> = 0}
= {(v1, v2, v3) ∈ R

3 | v1 + 2v2 + 3v3 = 0}
= plane passing through origin and perpendicular to the point (1, 2, 3)



5.4 Orthogonal Complement and Projection 197

Fig. 5.15 Suppose. v is a 
non-zero vector in.R3. Then  
.v⊥ is the plane passing 
through origin. O and 
perpendicular to the vector. v

Take .S2 = {(1, 0, 1), (1, 2, 3)}. Then 

. S⊥
2 = {(v1, v2, v3) ∈ R

3 | <(v1, v2, v3), (1, 0, 1)> = 0, <(v1, v2, v3), (1, 2, 3)> = 0}
= {(v1, v2, v3) ∈ R

3 | v1 + v3 = 0, v1 + 2v2 + 3v3 = 0}
= {(v1, v2, v3) ∈ R

3 | v1 = v2 = −v3}
= line passing through origin and passing through the point (1, 1,−1)

Observe that if . S is a singleton set (with non-zero element), .S⊥ will be a plane 
passing through the origin as we will have to solve a homogeneous equation of three 
variables to find .S⊥. Similarly, if . S is a set with two linearly independent elements, 
.S⊥ will be a line passing through the origin. 

Example 5.29 Consider .V = P2[0, 1] and let .S = {x}. Then 

. S⊥ = {ax2 + bx + c ∈ P2[0, 1] | <x, ax2 + bx + c> = 0}
= {ax2 + bx + c ∈ P2[0, 1] |

{ 1

0
(ax3 + bx2 + cx)dx = 0}

= {ax2 + bx + c ∈ P2[0, 1] | 3a + 4b + 6c = 0}

Given a subspace of an inner product space . V , it is not always easy to find the 
orthogonal complement. The following theorem simplifies our effort in finding the 
orthogonal complement of a subspace. 

Theorem 5.12 Let .V be an inner product space and .W be a finite-dimensional 
subspace of . V . Then for any .v ∈ V , .v ∈ W⊥ if and only if .<v,wi > = 0 for all .wi ∈ B, 
where .B is a basis for . W. 

Proof Let .B = {w1,w2, . . . ,wk} be a basis for . W . Then for .w ∈ W , there exists 
scalars .λ1, λ2, . . . , λk such that .w = λ1w1 + λ2w2 + · · · + λkwk . Then for any 
.v ∈ V ,
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. <v,w> = <v, λ1w1 + λ2w2 + · · · + λkwk>

=
kE

i=1

λi <v,wi >

Therefore .<v,wi > = 0 for all .wi ∈ B implies that .<v,w> = 0. Hence, .v ∈ W⊥. Con-
versely, suppose that .v ∈ W⊥. Then by the definition of orthogonal complement 
.<v,wi > = 0 for all .wi ∈ B. 

In Sect. 5.2, we have introduced the concept of projection of a vector to a one-
dimensional subspace of .R2. We have seen that a vector .v ∈ R

2 can be written as 
a sum of vectors, .(u.v)u ∈ span{u} where . u is a unit vector and .v − (u.v)u which 
is orthogonal to .(u.v)u. That is, .v − (u.v)u is an element of .span{u}⊥. The vector 
.(u.v)u is called the projection of . v on .span{u}. We will extend this result to any 
finite-dimensional subspace .W of an inner product space . V . We will proceed by 
considering an orthonormal basis.{w1,w2, . . . ,wk} for. W , projecting.v ∈ V on each 
one-dimensional subspace.span{wi } of.W and taking the sum. That is, the projection 

of .v ∈ V on .W will be .w =
kE

i=1
<v,wi >wi . 

Theorem 5.13 Let .V be an inner product space and .W be a finite-dimensional 
subspace of . V . Then for any .v ∈ V , there exist unique vectors .w ∈ W and . w̃ ∈ W⊥
such that .v = w + w̃. Furthermore, .w ∈ W is the unique vector that has the shortest 
distance from . v. 

Proof Let .B = {w1,w2, . . . ,wk} be an orthonormal basis for .W and consider . w =Ek
i=0<v,wi >wi ∈ W . Take .w̃ = v − w. Then for any .wj ∈ B, 

. <w̃,wj > =
/

v −
kE

i=0

<v,wi >wi ,wj

\

= <v,wj > −
kE

i=1

<v,wi ><wi ,wj >

= <v,wj > − <v,wj > = 0

That is, .<w̃,wj > = 0 for all .wj ∈ B. Then by Theorem 5.12, .w̃ ∈ W⊥. Also,  . v =
w + w̃. To prove the uniqueness of. w and. w̃ suppose that.v = w + w̃ = u + ũ where 
.u ∈ W and.ũ ∈ W⊥. This implies that.v = w − u = ũ − w̃. Then as.w − u ∈ W and 
.ũ − w̃ ∈ W⊥, v ∈ W ∩ W⊥ = {0}. Hence, .w = u and .w̃ = ũ. 

Now we have to prove that.w = Ek
i=1<v,wi >wi in.W is the unique vector that has 

the shortest distance from. v. Now  for any .w' ∈ W , 

. 

||||v − w'||||2 = ||||w + w̃ − w'||||2 = ||||(w − w') + w̃
||||2

As .w − w' ∈ W and .w̃ ∈ W⊥, by  Pythagoras theorem,
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. 

||||v − w'||||2 = ||||(w − w')
||||2 + ||w̃||2 ≥ ||w̃||2 = ||v − w||2

Thus for any .w' ∈ W , we get .
||||v − w'|||| ≥ ||w̃||2 = ||v − w||. 

Corollary 5.3 Let .V be an inner product space and .W be a finite-dimensional 
subspace of . V . Then .V = W ⊕ W⊥. 

Proof From the above theorem, clearly.V = W + W⊥. Also,.W ∩ W⊥ = {0}. Then 
by Theorem 2.20, .V = W ⊕ W⊥. 

The above decomposition is called the orthogonal decomposition of .V with 
respect to the subspace . W . In general, .W can be any closed subspace of . V . 

Definition 5.17 (Orthogonal Projection) Let. V be an inner product space and.W be 
a finite-dimensional subspace of . V . Then the orthogonal projection .πW of .V onto 
.W is the function.πW (v) = w, where.v = w + w̃ is the orthogonal decomposition of 
. v with respect to . W . 

Example 5.30 Consider .R3 over . R with standard inner product. Let 

. W = {(v1, v2, v3) ∈ R
3 | v1 = 0}

That is, the.yz-.plane. Consider the vector.v1 = (2, 4, 5) ∈ R
3. Now we will find the 

projection of . v on . W . Clearly .{(0, 1, 0) , (0, 0, 1)} is an orthonormal basis for . W . 
Then the projection of .v1 on .W is given by 

. πW (v1) = <(2, 4, 5), (0, 1, 0)>(0, 1, 0) + <(2, 4, 5), (0, 0, 1)>(0, 0, 1) = (0, 4, 5)

For an arbitrary vector . v = (a, b, c) ∈ R
3

. πW (v) = <(a, b, c), (0, 1, 0)>(0, 1, 0) + <(a, b, c), (0, 0, 1)>(0, 0, 1) = (0, b, c)

Also observe that.W⊥ = {(v1, v2, v3) ∈ R
3 | v2 = v3 = 0}, i.e., the.x-.axis and hence 

.(a, b, c) = (0, b, c) + (a, 0, 0) is the orthogonal decomposition of . v with respect 
to . W . 

Example 5.31 Consider .P2[−1, 1]. Let  .W = {a + bx | a, b ∈ R}. Clearly .W is a 

subspace of .P2[0, 1] and we have already seen that .
{

1√
2
,

/
3
2 x
}
is an orthonor-

mal basis for . W . Consider the element .v = x2 + 2x + 3 ∈ P2[−1, 1]. Then from 
Example 5.25, 

. 

/
1√
2
, x2 + 2x + 3

\
= 10

√
2

3
and

//
3

2
x, x2 + 2x + 3

\

= 2
√
6

3

Therefore the projection of . v on .W is .πW (v) = 10

3
+ 2x .
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Now we will discuss some of the important properties of projection map in the 
following theorem. 

Theorem 5.14 Let .W be a finite-dimensional subspace of an inner product space 
. Vand let .πW be the orthogonal projection of .V onto . W. Then 

(a) .πW is linear. 
(b) .R (πW ) = W and . N (πW ) = W⊥
(c) . π2

W = πW

Proof (a) Let .v1, v2 ∈ V . Then by Theorem 5.13, there exists unique vectors 
.w1,w2 ∈ W and.w̃1, w̃2 ∈ W⊥ such that.v1 = w1 + w̃1 and.v2 = w2 + w̃2. Then 
.πW (v1) = w1 and .πW (v2) = w2. Now  for .λ ∈ K, 

. λv1 + v2 = λ (w1 + w̃1) + (w2 + w̃2) = (λw1 + w2) + (λw̃1 + w̃2)

where .λw1 + w2 ∈ W and .λw̃1 + w̃2 ∈ W⊥ as .W and .W⊥ are subspaces of . V . 
Therefore 

. πW (λv1 + v2) = λw1 + w2 = λπW (v1) + πW (v2)

therefore, .πW is linear. 
(b) From Theorem 5.13, we have.V = W ⊕ W⊥ and any vector .v ∈ V can be writ-

ten as.v = πW (v) + (v − πW (v)). Clearly.R (πW ) ⊆ W . Now we have prove the 
converse part. Let .w ∈ W , then .πW (w) = w as .w = w + 0 ∈ W + W⊥. There-
fore .R (πW ) = W . 
Similarly, it is clear that .N (πW ) ⊆ W⊥. Now  let  .w̃ ∈ W⊥. As  .w̃ = 0 + w̃, we  
have .πW (w̃) = 0 and hence .N (πW ) = W⊥. 

(c) Take any .v ∈ V . By Theorem 5.13, there exists unique vectors .w ∈ W and . w̃ ∈
W⊥ such that .v = w + w̃. Then 

. π2
W (v) = πW (πW (v)) = πW (w) = w = πW (v)

Therefore .π2
W = πW . 

In Theorem 5.13, we decomposed. V as the direct sum of two subspaces where one 
is the orthogonal complement of the other. There may exist decompositions of .V as 
the direct sum of two subspaces where one subspace is not the orthogonal complement 
of the other. For example, consider.R3. Let.W1 = span{(1, 0, 0), (0, 1, 0)} and. W2 =
span{(1, 1, 1)}. Observe that .V = W1 ⊕ W2 and .W1 /⊥ W2. In such cases also we 
can define a linear map. 

Theorem 5.15 Let . V be an inner product space and .W1,W2 be subspaces of . V with 
.V = W1 ⊕ W2. Then the map .P defined by .P(v) = w1, where .v = w1 + w2 is the 
unique representation of .v ∈ V is linear. 

Proof Similar to the proof of Theorem 5.14(a).
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Fig. 5.16 Observe that 
.R(P1) /⊥ N(P1). Therefore 
.P1 is not an orthogonal 
projection 

The above defined map .P is called projection map. Observe that an orthogonal 
projection map is a projection map .P with .[R(P)]⊥ = N (P). 

Example 5.32 Consider .R2 over . R with standard inner product. Let . P1 : R2 → R
2

be a linear map defined by 
. P1(v1, v2) = (v1, 0)

Observe that .R(P1) is the straight line .y = x and .N(P1) is the .y− axis. Clearly, 
.R

2 = R(P1) ⊕ N(P1). Thus .P1 is a projection but not an orthogonal projection 
(Fig. 5.16). 

Example 5.33 Consider .P2[0, 1] with the inner product .<p, q> = { 1
0 p(x)q(x)dx . 

Let .P2 : P2[0, 1] → P2[0, 1] be a linear map defined by 

. P2(a0 + a1x + a2x
2) = a1x

We have .R(P2) = span{x} and .N(P2) = span{1, x2}. Observe that . P2[0, 1] =
R(P2) ⊕ N(P2), but.R(P2) /⊥ N(P2). Therefore.P2 is a projection but not an orthog-
onal projection. 

The following theorem gives an algebraic method to check whether a linear oper-
ator is a projection map or not. 

Theorem 5.16 Let .V be a finite-dimensional inner product space and . T be a linear 
operator on . V . Then . T is a projection of .V if and only if .T 2 = T . 

Proof Suppose that .T is a projection on . V , then clearly .T 2 = T by definition. 
Now suppose that .T is a linear operator on .V such that .T 2 = T . We will show 
that .V = R(T ) ⊕ N(T ). Let  .v ∈ R(T ) ⊕ N(T ). Then there exists .ṽ ∈ V such that 
.T (ṽ) = v. Also.T (v) = 0. Now.T 2(ṽ) = T (v) = 0 = T (ṽ) = v as.T 2 = T . Thus. T
is a projection on . V . 

Example 5.34 Consider the linear operators .P1 and .P2 from Examples 5.32 and 
5.33 respectively. Clearly, we can see that .P2

1 = P1 and .P2
2 = P2.
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5.5 Exercises 

1. Show that .(R, d) is a metric space, where .d : R × R → R is defined by 

(a) .d(x, y) = |ex − ey | for .x, y ∈ R. 
(b) .d(x, y) = |x−y|

1+|x−y| for .x, y ∈ R. 

Check whether . d is induced by any norm on . R? 
2. Let .v = (v1, v2, . . . vn) ∈ R

n . Show that 

(a) .||v||∞ = max{|v1|, . . . , |vn|} defines a norm on .R
n called infinity norm. 

(b) for .p ≥ 1, .||v||p = (En
i=1|vi |p

) 1
p defines a norm on .R

n called p-norm. 

3. Show that the following functions define a norm on.Mm×n (R). Let. A = |
ai j

} ∈
Mm×n (R). 

(a) . ||A||1 = max
1≤ j≤n

Em
i=1|ai j |

(b) . ||A||∞ = max
1≤i≤m

En
j=1|ai j |

(c) .||A||2 = /
λmax (AT A), where .λmax denotes the highest eigenvalue of . A. 

4. Show that in a finite-dimensional space. V every norm defined on it are equivalent. 
5. Show that every finite-dimensional normed linear space is complete. 
6. Show that 

(a) .||v||p = (E∞
i=1|vi |p

) 1
p defines a norm on . l p. 

(b) .||v||∞ = sup
i∈N

|vi | defines a norm on .l∞. 

(c) for .1 ≤ p < r < ∞, .l p ⊂ lr . Also .l p ⊂ l∞. 

7. Show that the following collections 

. c = {v = (v1, v2, . . .) ∈ l∞ | vi → λ ∈ K as i → ∞}
c0 = {v = (v1, v2, . . .) ∈ l∞ | vi → 0 as i → ∞}
c00 = {v = (v1, v2, . . .) ∈ l∞ | all but finitely many v'

i s are equal to 0}

are subspaces of .l∞. 
8. Show that .c, c0 are complete, whereas .c00 is not complete with respect to the 

norm defined on .l∞. 
9. Let .V be a vector space over a field . K. A set .B ⊂ V is a Hamel basis for .V if 

.span(B) = V and any finite subset of .B is linearly independent. Show that if 

.(V, ||.||) is an infinite-dimensional Banach space with a Hamel basis . B, then . B
is uncountable. (Hint: Use  Baire’s Category theorem.) 

10. Let .u = (u1, u2), v = (v1, v2) ∈ R
2. Check whether the following defines an 

inner product on .R
2 or not. 

(a) . <u, v> = v1(u1 + 2u2) + v2(2u1 + 5v2)
(b) .<u, v> = v1(2u1 + u2) + v2(u1 + v2)
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11. Show that .<z1, z2> = Re(z1z2) defines an inner product on . C, where . Re(z)
denotes the real part of the complex number .z = a + ib. 

12. Show that .<A, B> = Tr (B∗A) defines an inner product on .Mm×n (K). 
13. Prove or disprove: 

(a) The sequence spaces .l p with .p /= 2 are not inner product spaces. 
(b) . l2 with.<u, v> = E∞

i=1 uivi , where.u = (u1, u2, . . .), v = (v1, v2, . . .) ∈ l2 is 
a Hilbert space. 

14. Let .(V, <, >) be an inner product space . Then show that for all . u, v ∈ V

. <u, v> = 1

4
[<u + v, u + v> − <u − v, u − v>>]

if .K = R. Also show that if .K = C, we have  

. <u, v> = 1

4
[<u + v, u + v> − <u − v, u − v> + i<u + iv, u + iv> − i<u − iv, u − iv>]

15. Show that in an inner product space . V , .un → u and .vn → v implies that 
.<un, vn> → <u, v>. 

16. Show that .l p with .<u, v> = E∞
n=1 unvn is a Hilbert space. 

17. Let. V be an inner product space with an orthonormal basis.{v1, v2, . . . , vn}. Then 
for any .v ∈ V , show that .||v||2 = En

i=1|<v, vi >|2. 
18. (Bessel’s Inequality) Let . S be a countable orthonormal set in an inner product 

space . V . Then for every .v ∈ V , show that .
E

ui∈S|<v, ui >|2 ≤ ||v||2. 
19. Let . S be an orthonormal set in an inner product space. V . Then for every.v ∈ V , 

show that the set.Sv = {u ∈ S | <v, u> = 0} is a countable set. (Hint: Use  Bessel’s 
Inequality) 

20. Construct an orthonormal basis using Gram–Schmidt orthonormalization pro-
cess 

(a) for .R3 with standard inner product, using the basis . 

⎧
⎨

⎩

⎡

⎣
1
2
2

⎤

⎦ ,

⎡

⎣
−1
0
2

⎤

⎦ ,

⎡

⎣
0
0
1

⎤

⎦

⎫
⎬

⎭

(b) for .P3[0, 1] with .< f, g> = { 1
0 f (x)g(x)dx , using the basis . {1, x, x2}

21. Show that, for .A ∈ Mn×n (R), .AAT = I if and only if the rows of .A form an 
orthonormal basis for .Rn . 

22. Consider .R2 with standard inner product. Find .S⊥, when . S is 

(a) .{u}, where . u = (u1, u2) /= 0
(b) .{u, v}, where u,v are two linearly independent vectors. 

23. Let.S1, S2 be two non-empty subsets of an inner product space. V , with.S1 ⊂ S2. 
Then show that 
(a) .S1 ⊂ S⊥⊥

1 (b) .S⊥
2 ⊂ S⊥

1 (c) .S⊥⊥⊥
1 = S⊥

1
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24. Let .S = {(3, 5,−1)} ⊂ R
3. 

(a) Find an orthonormal basis . B for .S⊥. 
(b) Find the projection of .(2, 3,−1) onto .S⊥. 
(c) Extend . B to an orthonormal basis of .R3. 

25. Let .V be a finite-dimensional inner product space. Let .W1,W2 be subspaces of 
. V . Then show that 

(a) . (W1 + W2)
⊥ = W⊥

1 ∩ W⊥
2

(b) . (W1 ∩ W2)
⊥ = W⊥

1 + W⊥
2

26. Prove or disprove: Let .W be any subspace of .Rn and let .S ⊂ R
n spans . W . 

Consider a matrix . A with elements of . S as columns. Then .W⊥ = ker(A). 
27. Find the orthogonal projection of the given vector . v onto the given subspace . W

of an inner product space . V . 

(a) .v = (1, 2), . W = {(x1, x2) ∈ R
2 | x1 + x2 = 0}

(b) .v = (3, 1, 2), . W = {(x1, x2, x3) ∈ R
3 | x3 = 2x1 + x2}

(c) .v = 1 + 2x + x2, . W = {a0 + a1x + a2x2 ∈ P2[0, 1] | a2 = 0}
28. Let .V be an inner product space and .W be a finite-dimensional subspace of 

. V . If  . T is an orthogonal projection of .V onto . W , then .I − T is the orthogonal 
projection of .V onto .W⊥. 

29. Consider.C[−1, 1]with the inner product.< f, g> = { 1
−1 f (s)g(s)ds, for all. f, g ∈

C[0, 1]. Let .W be the subspace of .C[0, 1] spanned by .{x + 1, x2 + x}. 
(a) Find an orthonormal basis for .span (W ). 
(b) What will be the projection of .x3 onto .span (W )? 

30. Show that a bounded linear operator on a Hilbert space .V is an orthogonal 
projection if and only if .P is self-adjoint and .P is idempotent.(P2 = P). 

Solved Questions related to this chapter are provided in Chap. 11.



Chapter 6 
Bounded Linear Maps 

In this chapter, the exploration of advanced linear algebra and functional analy-
sis unfolds the notion of bounded linear maps, which elegantly combine linearity 
and boundedness, crucial in various mathematical applications. The concept of the 
adjoint operator which is introduced, enabling the study of self-adjoint, normal, 
and unitary operators, each possessing for distinct properties and widespread utility. 
Singular value decomposition (SVD) emerges as a powerful factorization method, 
revolutionizing linear equation solving. When standard matrix inverses do not exist, 
generalized inverses, such as the Moore–Penrose inverse, provide a flexible structure 
for solving systems of linear equations, enabling least square solutions to otherwise 
ill-posed problems in a number of mathematical and practical situations. Banach con-
traction principle offers a profound insight into mappings on metric spaces, underpin-
ning algorithms across disciplines. Lastly, iterative methods, including Gauss–Jacobi 
and Gauss–Seidel, are introduced for solving linear systems, catering to large-scale 
numerical problems. 

6.1 Bounded Linear Maps 

As a linear map is a function, the question of continuity arises naturally. Because 
every normed space is a metric space, the definition of a continuous function in a 
normed space follows from Definition 1.28. We have seen that a function . f from 
a metric space .(X, d1) to a metric space .(Y, d2) is said to be continuous at a point 
.x0 ∈ X , if for every .e > 0 there is a .δ > 0 such that 

. d2( f (x), f (x0)) < e whenever d1(x, x0) < δ

Then, by Theorem 5.1, we have the following definition for continuity of a linear 
operator. 
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Definition 6.1 (Continuous Linear Operator) Let .V and.W be normed spaces and 
.T ∈ L (V,W ) be a linear operator, then . T is said to be continuous at .v0 ∈ V , if for  
every .e > 0 there exists .δ > 0 such that 

. |T v − T v0| < e whenever |v − v0| < δ

. T is said to be continuous on .V if . T is continuous at every .v ∈ V . 

Now that we have defined the continuity of a linear map, we will give some 
alternate characterizations of continuity in the following theorem. 

Theorem 6.1 Let .V and .W be normed linear spaces and let .T ∈ L (V,W ). Then 
the following are equivalent: 

(a) . T is continuous. 
(b) . T is continuous at 0. 
(c) There exist .λ > 0 such that .|T v| ≤ λ |v| for all .v ∈ V . 

Proof The implication .(a) ⇒ (b) is obvious. To prove .(b) ⇒ (c), suppose that . T
is continuous at 0. Then by Definition 6.1, for  .e = 1, there exists .δ > 0 such that 
.|T v| < 1 when.|v| < δ. Now  take .u = δ

2
v

|v| for .v /= 0. Then .|u| = δ
2 < δ and by 

continuity of . T at 0, 

. T (u) = T

(
δ

2

v

|v|
)

= δ

2 |v|T (v) < 1

which implies that .|T (v)| ≤ 2
δ
|v| for all .v ∈ V \ {0}. Also  .|T (0)| = 0 ≤ 2

δ
|0|. 

Take .λ = 2
δ
. Then .|T v| ≤ λ |v| for all .v ∈ V . 

Now to prove .(c) ⇒ (a), suppose that such a . λ exists. Since .T is a linear trans-
formation 

. |T (u) − T (v)| = |T (u − v)| ≤ λ |u − v|

for all.u, v ∈ V . Let.e > 0 and.δ = e
λ
. Then for.u, v ∈ V with.|u − v| < δ, we have  

. |T (u) − T (v)| ≤ λ |u − v| < λ
( e

λ

)
= e

Therefore, . T is continuous. 

As every normed space is a metric space, sequential continuity can also be con-
sidered as an alternative criterion for the continuity of a linear map. Let. T be a linear 
map between two normed linear spaces .V and . W . .T is sequentially continuous if 
.{vn} is a sequence in .V with .vn → v, then .T (vn) → T (v). 

Example 6.1 Consider.C[0, 1]with supremum norm. Define. T : C[0, 1] → C[0, 1]
by .T ( f ) = { 1

0 f (x)dx . We have already seen that .T is linear (See, Example 3.5). 
Now
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. |T ( f )| = max
x∈[0,1]

||||
{ 1

0
f (x)dx

||||
≤ max

x∈[0,1]

{ 1

0
| f (x)|dx

≤ max
x∈[0,1]| f (x)|

{ 1

0
dx

= | f |

for all . f ∈ C[0, 1]. Hence, the integral operator is a continuous linear operator. 
Example 6.2 Consider.C[0, 1]with supremum norm. Define. T : C[0, 1] → C[0, 1]
by .T ( f (x)) = d

x ( f (x)). We have already seen that .T is linear (See, Example 3.4). 
Consider . fn(x) = xn . Then 

. |T ( fn)| = max
x∈[0,1]|nx

n−1| = n max
x∈[0,1]|x

n−1| = n

As.n → ∞, |T ( fn)| → ∞. That is, there does not exists.λ > 0 such that. |T ( f )| ≤
λ | f | for all . f ∈ C[0, 1]. Therefore differential operator is an example of a linear 
operator which is not continuous. 

Theorem 6.2 Let .V and .W be normed spaces where .V is finite- dimensional and 
.T ∈ L (V,W ). Then . T is continuous. 

Proof Suppose that. V is finite-dimensional. We will show that for any sequence. {vn}
with .vn → v in . V , .T (vn) → T (v). Then by Theorem 1.6, . T is continuous. As .V is 
finite-dimensional, it has a finite basis, say .{v1, v2, . . . , vn}. Thus for each .n ∈ N, 
.vn ∈ V can be represented as 

. vn = λn
1v1 + λn

2v2 + · · · + λn
mvm

where .λn
i ∈ K, i = 1, 2, . . . ,m. Also, as .v ∈ V , .v = λ1v1 + λ2v2 + · · · + λmvm , 

where .λi ∈ K, i = 1, 2, . . . ,m. Now  .vn → v implies that .λn
i → λi for each . i =

1, 2, . . . ,m. Therefore 

. T (vn) = T
(
λn
1v1 + λn

2v2 + · · · + λn
mvm

)
= λn

1T (v1) + λn
2T (v2) + · · · + λn

mT (vm)

→ λ1T (v1) + λ2T (v2) + · · · + λmT (vm) = T (v)

by linearity of . T . Therefore, . T is continuous. 

Consider condition.(c) in Theorem 6.1. Always keep in mind that two different norms 
are used. One is from. V and the other from. W . For simplicity, no distinction is made. 
Maps satisfying this condition are of great importance in the field of Mathematics. 

Definition 6.2 (Bounded Linear Operator) Let. V and.W be normed spaces and. T ∈
L (V,W ), then. T is said to be bounded, if there exists.λ ∈ R such that.|T v| ≤ λ |v|.
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By Theorem 6.1, for a linear transformation the term continuous and bounded can 
be used interchangeably. Bounded linear transformations essentially maps a bounded 
set to a bounded set. Note that a bounded linear map does not demand a bounded range 
set. For example, consider .T : R → R defined by .T (v) = v. As .|T v| = |v| for all 
.v ∈ V , . T is a bounded linear operator, but the range set is . R, which is unbounded. 

Now observe that the definition of a bounded linear operator can also be stated as 
follows. A linear operator between the normed spaces .V and .W is bounded if and 
only if there exists a real number . λ such that . |Tv||v| ≤ λ for all .v ∈ V \ {0}. That  is, if  
and only if the set .

{
|T v|
|v| | v ∈ V \ {0}

}
is bounded. Now consider the supremum of 

this set. We will show that this gives us a norm on the vector space of all bounded 
linear operators from.V to . W , denoted by .B (V,W ). 

Theorem 6.3 Let . V and.W be normed spaces and.T : V → W be a bounded linear 
operator. Then 

. |T | = sup
v∈V \{0}

|T v|
|v| (6.1) 

defines a norm on .B (V,W ) called as operator norm. 

Proof Consider the norm defined as above. 

(N1) Clearly .|T | ≥ 0 for all .T ∈ B (V,W ) as we are taking supremum of the set 

.

{
|T v|
|v| | v ∈ V \ {0}

}
, which contains non-negative elements only. Also 

. |T | = 0 ⇔ sup
v∈V \{0}

|T v|
|v| = 0

⇔ |T v| = 0 ∀ v ∈ V (∵ T (0) = 0)

⇔ T = 0

where . 0 is the zero operator on . V . Thus .(N1) is satisfied. 
(N2) Now for any .λ ∈ K, 

. |λT | = sup
v∈V \{0}

|(λT )(v)|
|v|

= sup
v∈V \{0}

|λ(T v)|
|v|

= sup
v∈V \{0}

|λ| |T v|
|v|

= |λ| |T |

Thus .(N2) is satisfied.
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(N3) Now for any .T1, T2 ∈ B (V,W ), 

. |T1 + T2| = sup
v∈V \{0}

|(T1 + T2)(v)|
|v|

≤ sup
v∈V \{0}

{|T1v|
|v| + |T2v|

|v|
}

≤ sup
v∈V \{0}

|T1v|
|v| + sup

v∈V \{0}
|T2v|
|v|

= |T1| + |T2|

Thus .(N3) is also satisfied. 

Therefore .B (V,W ) is a normed linear space with the norm defined as in (6.1) 

So if .T ∈ B (V,W ) is a bounded linear operator, we can write, 

. |T v| ≤ |T | |v|

for all .v ∈ V . 

Remark 6.1 For .T ∈ B (V,W ), the norm defined as 

. |T | = sup
v∈V,|v|≤1

|T v|

gives an alternating way of calculating operator norm. 

Example 6.3 Consider.C[0, 1]with supremum norm. Define. T : C[0, 1] → C[0, 1]
as in Example 6.1. We have proved that  .|T ( f )| ≤ | f | for all . f ∈ C[0, 1]. This  
implies that .|T | ≤ 1. Now for the function . f (x) = 1, .|T ( f )| = 1. Therefore 
.|T | = 1. 

We have seen that every linear map from a finite-dimensional space is bounded. Now 
we will give an example for a linear map which is not bounded, otherwise called as 
an unbounded linear map. As boundedness and continuity are synonyms for linear 
operators, the differential operator on.C[0, 1] is an example of an unbounded operator. 

In Chap. 4, we have defined eigenvalues and eigenvectors for square matrices. We 
have already seen that a .n × n matrix is nothing but a linear operator from a finite-
dimensional space to itself. The same definition can be used for linear operators on 
infinite-dimensional spaces. 

Definition 6.3 Let.T : V → V be a linear operator on a vector space.V over a field 
. K. A vector .v /= 0 is said to be an eigenvector of . T if there exists .λ ∈ K, such that 
.T (v) = λv. 

The set of all eigenvalues of .T is called as the eigen spectrum of . T . There are 
other sets of scalars that are closely related to operators and are beyond the scope of 
this book.
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6.2 Adjoint of a Bounded Linear Map 

Let .T be a linear map from .Rn to .Rm . We know that there exists a corresponding 
matrix .A = [ai j ]m×n ∈ Mm×n (R) such that 

. T (v) = |En
j=1 a1 j v j

En
j=1 a2 j v j . . .

En
j=1 amjv j

|

Then 

. <Av,w>Rm = <|En
j=1 a1 j v j

En
j=1 a2 j v j . . .

En
j=1 amjv j

|
,
|
w1,w2, . . . wm

|>
Rm

=
(

mE
i=1

ai1wi

)
v1 +

(
mE
i=1

ai2wi

)
v2 + · · · +

(
mE
i=1

ainwi

)
vn

= <|
v1, v2, . . . vn

|
,
|Em

i=1 ai1wi
Em

i=1 ai2wi . . .
Em

i=1 ainwi
|>
Rn

= <v, ATw>Rn

Therefore we can say that for every linear map from.R
n to .R

m , there exists a linear 
map.T ∗ from.R

m to .R
n with corresponding matrix .AT . If . C is considered instead of 

. R, the matrix corresponding to.T ∗ will be.A∗. In this section, we will generalize this 
idea to abstract spaces. 

Let us start by establishing a connection between a Hilbert space and its dual 
space. The following theorem asserts a one-one correspondence between an element 
in a Hilbert space and its corresponding dual space. 

Theorem 6.4 (Riesz Theorem) Let. V be a Hilbert space and. f : V → K be a linear 
transformation, then . f can be represented in terms of 

. f (v) = <v,w>

where . w is uniquely determined by . f and has norm .|w| = | f |. 
Proof If. f = 0, take.w = 0. Clearly, all conditions of the theorem are satisfied. Now 
if . f /= 0, .N( f ) /= V and hence by Theorem 5.13, .N( f )⊥ /= {0}. Then there exists 
at least one element in .N( f )⊥ say .w0 /= 0. Now  take,  

. w̃ = f (v)w0 − f (w0) v

where .v ∈ V . Then 

. f (w̃) = f (v) f (w0) − f (w0) f (v) = 0

which implies that .w̃ ∈ N( f ). Since .w0 ∈ N( f )⊥, we have  

.0 = <w̃,w0> = < f (v)w0 − f (w0) v,w0> = f (v) <w0,w0> − f (w0) <v,w0>



6.2 Adjoint of a Bounded Linear Map 211

As .<w0,w0> = |w0| /= 0, we get 

. f (v) = f (w0)

<w0,w0> <v,w0>

If we take.w = f (w0)

<w0,w0>w0 , we get. f (v) = <v,w> for any.v ∈ V . Now to prove that 

such an element .w ∈ V is unique, suppose that there exists .w1 ∈ V such that 

. f (v) = <v,w> = <v,w1>

for all .v ∈ V . Then by Theorem 5.4(d), we have .w1 = w. 
Now to prove that .|w| = | f |. We have  

. |w|2 = <w,w> = f (w) ≤ | f | |w|

Therefore .|w| ≤ | f |. Also  

. | f | = sup
v∈V,|v|≤1

| f (v)| = sup
v∈V,|v|≤1

|<v,w>| ≤ |w|

by Schwarz inequality. Thus .|w| = | f |. 
Example 6.4 Let . f : R3 → R be defined by . f (v1, v2, v3) = v1 + 2v2 + 3v3. 
Clearly . f is a linear map. Now consider the standard ordered basis . B = {e1, e2, e3}
for .R3 which is orthonormal. Take .v = f (e1)e1 + f (e2)e2 + f (e3)e3 = (1, 2, 3). 
Then .<(v1, v2, v3), (1, 2, 3)> = v1 + 2v2 + 3v3 = T (v1, v2, v3). 

Definition 6.4 (Sesquilinear function) Let. V and.W be vector spaces over the same 
field . K. A sesquilinear function is a mapping . f : V × W → K such that for all 
.v, v1, v2 ∈ V , .w,w1,w2 ∈ W and . λ ∈ K

. f (λv1 + v2,w) = λ f (v1,w) + f (v2,w)

and 
. f (v, λw1 + w2) = λ f (v,w1) + f (v,w2)

In other words, we can say that . f : V × W → K is sesquilinear if it is linear in 
first variable and conjugate linear in second variable. Clearly, the inner product is a 
sesquilinear function. 

Definition 6.5 (Boundedness) Let. V and.W be normed spaces over the same field. K

and let. f be a sesquilinear mapping from.V × W . Then. f is said to be bounded if there 
exists .λ ∈ K such that for all .v ∈ V and .w ∈ W , we have  .| f (v,w)| ≤ λ |v| |w|, 
and the number
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. | f | = sup
v /=0∈V,w /=0∈W

| f (v,w)|
|v| |w| = sup

|v|=|w|=1
| f (v,w)|

is called norm of . f . 

Example 6.5 Let .V be an inner product space over the field . K. We have already 
seen that the inner product is an example of a sesquilinear function. Now we will 
show that it is bounded. By Schwarz inequality, we have  .|<v,w>| ≤ |v| |w| for all 
.v,w ∈ V . Therefore. f (v,w) = <v,w> is a bounded sesquilinear function on.V × V . 

Now let us discuss a more general version of Theorem 6.4. We will  use the  
following theorem to prove the existence of an adjoint map for a bounded linear map 
in a Hilbert space. 

Theorem 6.5 (Riesz Representation Theorem) Let. V be Hilbert space and.W be an 
inner product space over the field. K and. f : V × W → K be a sesquilinear function. 
Then . f has a representation . f (v,w) = <F (v),w>, where .F : V → W is a bounded 
linear map. .F is uniquely determined by . f and .|F | = | f |. 
Proof Fix .v ∈ V . Define .g : W → K by.g(w) = f (v,w). Then for all . w1,w2 ∈ W
and .λ ∈ K, we have  

. g (λw1 + w2) = f (v, λw1 + w2)

= λ f (v,w1) + f (v,w2)

= λ f (v,w1) + f (v,w2)

= λg(w1) + g(w2)

Thus, . g is linear. By Theorem 6.4, there exists a unique element, .w̃ ∈ W such that 
.g(w) = f (v,w) = <w, w̃>. Therefore . f (v,w) = <w̃,w>. Clearly . w̃ depends on . v ∈
V . Now using this fact, define .F : V → W by .F (v) = w̃. Now  for  .v1, v2 ∈ V and 
.λ ∈ K, we have  

. <F (λv1 + v2) ,w> = f (λv1 + v2,w)

= λ f (v1,w) + f (v2,w)

= λ<F (v1),w> + <F (v2),w>
= <λF (v1) + F (v2),w>

which is true for  all  .w ∈ W . Then by Theorem 5.4(d), . F (λv1 + v2) = λF (v1) +
F (v2) for all .v1, v2 ∈ V and .λ ∈ K. Therefore .F is linear. Now we have to prove 
that .|F | = | f |. If . f = 0, then .F = 0 and .|F | = | f |. Otherwise,
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. | f | = sup
v /=0∈V,w /=0∈W

| f (v,w)|
|v| |w|

= sup
v /=0∈V,w /=0∈W

|<F (v),w>|
|v| |w|

≥ sup
v /=0∈V,F (v)/=0∈W

|<F (v),F (v)>|
|v| |F (v)|

= sup
v /=0∈V

|F (v)|
|v| = |F |

That is, .|F | ≤ | f |. Thus .F is bounded. By Schwarz inequality, we have 
.|<F (v),w>| ≤ |F (v)| |w|. Using this, we have 

. | f | = sup
v /=0∈V,w /=0∈W

|<F (v),w>|
|v| |w| ≤ sup

v /=0∈V,w /=0∈W
|F (v)| |w|

|v| |w| = |F |

Thus .|F | = | f |. Now to prove the uniqueness part, suppose that there exists . F1 :
V → W such that 

. f (v,w) = <F (v),w> = <F1(v),w>

for all .v ∈ V and .w ∈ W . Then by Theorem 5.4(d), .F (v) = F1(v) for all .v ∈ V . 
Thus .F = F1. 

Now we will show that every bounded linear map on a Hilbert space will have an 
adjoint map and it is unique. If the domain is not a Hilbert space, a bounded linear 
map need not have an adjoint (See Example 6.8). 

Theorem 6.6 Let .V be Hilbert space and .W be an inner product space over the 
same field . K. Let .T : V → W be a bounded linear map. Then, there exists a unique 
bounded linear map .T ∗ : W → V such that .<T (v),w> = <v, T ∗(w)> for all . v ∈ V
and .w ∈ W with .|T | = |T ∗|. 
Proof Define . f : W × V → K by . f (w, v) = <w, T (v)>. Now  for  . v ∈ V,w1,w2 ∈
W and .λ ∈ K, we have  

. f (λw1 + w2, v) = <λw1 + w2, T (v)> = λ<w1, T (v)> + <w2, T (v)> = λ f (w1, v) + f (w2, v)

and for .v1, v2 ∈ V,w ∈ W, λ ∈ K, we have  

. f (w, λv1 + v2) = <w, T (λv1 + v2)> = λ<w, T (v1)> + <w, T (v2)> = λ f (w, v1) + f (w, v2)

Thus, . f is a sesquilinear function. Also, by Cauchy–Schwarz inequality, we have 

.| f (w, v)| = |<w, T (v)>| ≤ |w| |T (v)| ≤ |T | |v| |w|
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Thus 

. | f | = sup
v /=0∈V,w /=0∈W

| f (w, v)|
|w| |v| ≤ |T |

Also 

. | f | = sup
v /=0∈V,w /=0∈W

| f (w, v)|
|w| |v|

= sup
v /=0∈V,w /=0∈W

|<w, T (v)>|
|w| |v|

≥ sup
v /=0∈V,T (v)/=0∈W

|<T (v), T (v)>|
|T (v)| |v| = |T |

That is, .| f | = |T |. Thus . f is a bounded sesquilinear function. Then by Theo-
rem 6.5, there exists a unique bounded linear map .T ∗ from.W to .V with . f (w, v) =
<w, T (v)> = <T ∗(w), v> and .| f | = |T | = |T ∗|. Taking conjugates, we get 
.<T (v),w> = <v, T ∗(w)> for all .v ∈ V and .w ∈ W . 

Definition 6.6 (Adjoint of a Bounded Linear Map) Let  .V be Hilbert space and . W
be an inner product space over the same field . K. and .T : V → W be a bounded 
linear map. Then the linear map.T ∗ : W → V satisfying.<T (v),w> = <v, T ∗(w)> for 
all .v ∈ V and .w ∈ W is called adjoint of . T . 

Remark 6.2 Let .V be a Hilbert space and .W be an inner product space over the 
same field .K and .T : V → W be a bounded linear map and .T ∗ : W → V be its 
adjoint, then .<T ∗(w), v> = <w, T (v)> for all .v ∈ V and .w ∈ W . For,  

. <T ∗(w), v> = <v, T ∗(w)> = <T (v),w> = <w, T (v)>

is true for all .v ∈ V and .w ∈ W . Also, if .W is a Hilbert space, as 

. <v, T (w)> = <T ∗(v),w> = <v, (T ∗)∗ (w)>

by Theorem 5.4(d), we get .(T ∗)∗ = T . 

Example 6.6 Let.V be a Hilbert space over the field. K. Define the identity operator 
.I : V → V ,.I (v) = v for all.v ∈ V and the zero operator,.O : V → V , by.O(v) = 0. 
Then for all .v,w ∈ V , 

. <v, I ∗(w)> = <I (v),w> = <v,w> = <v, I (v)>

and 
. <v,O∗(w)> = <O(v),w> = <0,w> = 0 = <v, 0> = <v,O(w)>

Thus .I ∗ = I and .O∗ = O.
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Example 6.7 Let .T : Rn → R
n be defined by 

. T (v1, v2, . . . , vn) = (0, v1, v2, . . . , vn−1)

Then for .v = (v1, v2, . . . , vn),w = (w1,w2, . . . ,wn) ∈ R
n , we have  

. <T (v),w> = <(0, v1, v2, . . . , vn−1), (w1,w2, . . . ,wn)>
= v1w2 + v2w3 + · · · + vn−1wn

= v1w2 + v2w3 + · · · + vn−1wn + vn.0

= <(v1, v2, . . . , vn), (w2,w3, . . . ,wn, 0)

Define .T ∗(w) = (w2,w3, . . . ,wn, 0). Clearly .T ∗ is linear and . <T (v),w> =
<v, T ∗(w)> for all .v,w ∈ V . .T and .T ∗ are called right and left shift opera-
tors, respectively. Observe that the matrices of these operators are given by . [T ] =⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦
and.[T ∗] =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
, respectively. Clearly, .[T ∗] = [T ]T as we 

have seen in the introduction. 

For a bounded linear map between two general inner product spaces, the existence 
of an adjoint is not assured. But if we are considering the bounded linear map from 
a Hilbert space to an inner product space, there definitely exists an adjoint. 

Example 6.8 Consider .c00, the linear space of all real sequences having only a 
finite number of non-zero terms with the inner product .<v,w> = E∞

n=1 vnwn . Then 
.c00 is an incomplete space with respect to the given inner product (Why?). Define 
.T : c00 → c00 by 

. T (v) =
( ∞E

n=1

vn
n

, 0, 0, . . .

)

Clearly, . T is linear (verify!). Also, 

. |T | ≤
|||| ∞E

n=1

1

n2
= π√

6

Thus . T is a bounded linear operator on .c00. We will show that there does not exists 
an operator .T̃ such that .<T (v),w> = <v, T̃ (w)>. Consider the sequence .{en}, where 
.en = (0, 0, . . . , 0, 1, 0) (1 is in the.nth position and all other entries are zero). Clearly, 
.{en} ∈ c00 (is it?). If.(T̃ (v))n denotes the element in the.nth position of.T̃ (v), we have  

.(T̃ (e1))n = <en, T̃ (e1)> = <T (en), e1> = 1

n
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Thus.T̃ (e1) = (
1, 1

2 ,
1
3 , . . . ,

1
n , . . .

)
. This is not possible as.T̃ (e1)must be an element 

of .c00. Therefore .T does not have an adjoint operator on .c00. What if we define . T
on. l2 with the given inner product? Remember that. l2 is complete with respect to the 
given inner product (See, Exercise 13, Chap. 5). 

Now, let us discuss some properties of the adjoint of a bounded linear map. 

Theorem 6.7 Let .V be a Hilbert space and .W be an inner product space over the 
same field . K. Let .T, T̃ : V → W be bounded linear maps. Then 

(a) .(λT + T̃ )∗ = λT ∗ + T̃ ∗, where .λ ∈ K. 

(b) .
(
T T̃

)∗ = T̃ ∗T ∗. 

(c) .|T ∗T | = |T T ∗| = |T |2. 
(d) .T ∗T = 0 if and only if .T = 0. 

Proof (a) For all .v,w ∈ V and .λ ∈ K, we have  

. <(λT + T̃ )(v),w> = <λT (v) + T̃ (v),w>
= λ<T (v),w> + <T̃ (v),w>
= λ<v, T ∗(w)> + <v, T̃ ∗(w)>
= <v, λT ∗(w) + T̃ ∗(w)>

As the adjoint of a linear operator is unique, we get .(λT + T̃ )∗ = λT ∗ + T̃ ∗, 
where .λ ∈ K. 

(b) For all . v,w ∈ V

. <(T T̃ )(v),w> = <T
(
T̃ (v)

)
,w> = <T̃ (v), T ∗(w)> = <v, T̃ ∗T ∗(w)>

Therefore .

(
T T̃

)∗ = T̃ ∗T ∗. 
(c) We have .T ∗T : V → V . Now,  

. 

||T ∗T (v)
|| ≤ ||T ∗|| |T v| ≤ ||T ∗|| |T | |v| = |T |2 |v|

for all .v ∈ V . Thus .|T ∗T | ≤ |T |2. Also  

. |T (v)|2 = <T v, T v> = <(T ∗T
)
(v), v> ≤ ||(T ∗T

)
(v)

|| |v| ≤ ||T ∗T
|| |v|2

Taking supremum over all .v ∈ V with .|v| = 1, we get .|T |2 ≤ |T ∗T |. Thus 
.|T ∗T | = |T |2. Similarly, we can prove that .|T T ∗| = |T |2. 

(d) Suppose that .T = 0. That is, .T (v) = 0 for all .v ∈ V . Then . (T ∗T )(v) = T ∗
(T (v)) = 0 for all .v ∈ V and hence.T ∗T = 0. Conversely, suppose that . T ∗T =
0. Then from.(c), we have .|T ∗T | = |T |2 = 0. Therefore .T = 0.
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Now we will use the concept of adjoint operators to define some special class of 
bounded linear operators. 

6.3 Self-adjoint Operators 

In this section, we will study a special class of bounded linear maps which are of 
great importance in applications of linear operator theory and are defined using the 
adjoint of a linear operator. 

Definition 6.7 (Self-adjoint Operators) Let .H be a Hilbert space and . T : H → H
be a bounded linear operator. Then . T is self-adjoint if .T = T ∗. 

Theorem 6.8 Let .T1, T2 : H → H be self-adjoint operators on a Hilbert space . H. 
Then.T1 + T2 is self-adjoint and.T1T2 is self-adjoint if and only if.T1 and.T2 commute. 

Proof Let.T1, T2 : H → H be self-adjoint operators. Then for all.v,w ∈ H , we have  

. <(T1 + T2) (v),w> = <T1(v),w> + <T2(v),w>
= <v, T1(w)> + <v, T2(w)>
= <v, (T1 + T2) (w)>

Thus .T1 + T2 is self-adjoint. Also 

. <(T1T2) (v),w> = <T2(v), T ∗
1 (w)> = <T2(v), T1(w)> = <v, (T2T1) (w)>

Thus .(T1T2)
∗ = T2T1 ⇔ T2T1 = T1T2. 

Example 6.9 Let. V be a Hilbert space. From Example 6.6, the identity operator and 
the zero operator on .V are self-adjoint operators. 

Example 6.10 Let .T : R2 → R
2 be defined by 

. T (v1, v2) = (2v1 + v2, v1 + 3v2)

Then for all .(v1, v2), (u1, u2) ∈ R
2, we have  

. <T (v1, v2), (u1, u2)> = <(2v1 + v2, v1 + 3v2), (u1, u2)>
= (2v1 + v2)u1 + (v1 + 3v2)u2
= v1(2u1 + u2) + v2(u1 + 3u2)

= <(v1, v2), T ∗(u1, u2)>

That is, .T ∗(v1, v2) = (2v1 + v2, v1 + 3v2) = T (v1, v2) for all .(v1, v2) ∈ R
2. Thus . T

is self-adjoint.
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Example 6.11 Let.T : C[0, 1] → C[0, 1] be defined by.(T f ) (x) = x ( f (x)). Then 
for all . f, g ∈ C[0, 1], we have  

. <T ( f ) , g> =
{ 1

0
(x f (x)) g(x)dx =

{ 1

0
f (x) (xg(x)) dx = < f, T ∗(g)>

That is, .(T ∗ f )(x) = x f (x) = (T f )(x) for all . f ∈ C[0, 1]. Therefore .T is self-
adjoint. 

Observe that the above linear operator does not have an eigenvalue. For, let . λ be an 
eigenvalue of .T with eigenvector . f ∈ C[0, 1]. That is, . T ( f (x)) = x f (x) = λ f (x)
for all .x ∈ [0, 1]. Then .(x − λ) f (x) = 0 which implies that . f (x) = 0 for all . x ∈
[0, 1]. This is a contradiction as, an eigenvector must be a non-zero element. Thus 
the existence of eigenvalues, is not guaranteed even for bounded linear self-adjoint 
operators. Now in the following theorem, we will prove that if.H is a complex Hilbert 
space, the eigenvalues of a bounded linear self-adjoint operator are real numbers if 
they exist. 

Theorem 6.9 Let.T : H → H be a self-adjoint operator on a complex Hilbert space 
. H. Then 

(a) the eigenvalues of . T , if they exist, are real numbers. 
(b) the eigenvectors corresponding to distinct eigenvalues are orthogonal. 

Proof Let .T : H → H be a self-adjoint operator on a complex Hilbert space . H . 
That is, .<T (v), v> = <v, T (v)> for all .v ∈ H . 

(a) Let . λ be an eigenvalue of . T with eigenvector . v. Then, 

. λ<v, v> = <λv, v> = <T (v), v> = <v, T (v)> = <v, λv> = λ<v, v>

gives .
(
λ − λ

) <v, v> = 0. As .<v, v> /= 0, we get .λ = λ. Hence, . λ is real. 
(b) Let .λ1 and .λ2 be two distinct eigenvalues of .T with eigenvectors . v1, v2 ∈ H

respectively. From.(a), both .λ1 and .λ2 are real. Then 

. λ1<v1, v2> = <λ1v1, v2> = <T (v1), v2> = <v1, T (v2)> = <v1, λ2v2> = λ2<v1, v2>

gives .(λ1 − λ2) <v1, v2> = 0. As  .λ1 /= λ2, we get .<v1, v2> = 0. Thus, the eigen-
vectors corresponding to distinct eigenvalues are orthogonal. 

The existence of an eigenvalue is not guaranteed in the above theorem. But the 
following lemma guarantees that a linear operator. T on a finite-dimensional complex 
vector space .V has at least one eigenvalue. 

Lemma 6.1 Let .T : V → V be a linear operator on a finite-dimensional complex 
vector space . V . Then . T has at least one eigenvalue.
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Proof Consider a basis. B for. V . Let. A be the matrix representation of. T with respect 
to . B. Let .p (λ) be the characteristic polynomial of . A. Then.p (λ) is a polynomial of 
finite degree, say . n. Then by Fundamental theorem of algebra, .A has at least one 
eigenvalue. That is, . T has at least one eigenvalue. 

Now we will discuss one of the important theorem in the theory of self-adjoint 
operators. 

Theorem 6.10 Let .T : V → V be a self-adjoint linear operator on a finite- dimen-
sional complex vector space . V . Then, there exists an orthonormal basis for .V that 
consists only of eigenvectors of . T and the matrix representation of . T with respect to 
.B is diagonal. 

Proof Let .T : V → V be a self-adjoint linear operator on a finite- dimensional 
complex vector space . V . Let  . S denote the span of eigenvectors of . T . First, we will 
prove that.S⊥ = {0}. Let.v ∈ S⊥ and.vi ∈ S be an eigenvector of. T corresponding to 
the eigenvalue . λi . Then 

. <T (v), vi > = <v, T (vi )> = <v, λi vi > = λi <v, vi > = 0

Thus, for every .v ∈ S⊥, we have  .T (v) ∈ S⊥. In other words .S⊥ is invariant under 
. T . If  .S⊥ /= {0}, so that its dimension is one or more, then, by Lemma 6.1, .T has 
an eigenvalue . λ and with .v ∈ S⊥ being its corresponding eigenvector. But then . v, 
being an eigenvector, is also in . S. As  .S ∩ S⊥ = {0}, we get .v = 0. Then by Corol-
lary 5.3, .S = V . That is, we have .V as the span of eigenvectors of . T . Now using, 
Gram–Schmidt orthonormalization process, we will get an orthonormal basis for . V
consisting of eigenvectors of . T . Clearly, the matrix representation of . T with respect 
to . B is diagonal. 

In matrix terms, the above theorem states that for a self-adjoint matrix . A, there 
exists a matrix . P , with the eigenvectors (orthonormal) of .A as columns such that 
.PAP−1 = D, where .D is a diagonal matrix with the eigenvalues of .A as diagonal 
entries. Now we will characterize self-adjoint operators in complex Hilbert spaces. 

Theorem 6.11 Let .T : H → H be a bounded linear operator on a Hilbert space 
. H. If . T is self-adjoint, then .<T (v), v> is real for all .v ∈ H. In particular, if a complex 
Hilbert space is considered , .<T (v), v> is real for all .v ∈ H implies . T is self-adjoint. 

Proof Since . T is self-adjoint, for all .v ∈ H , we have  

. <T (v), v> = <v, T (v)> = <T (v), v>

That is, .<T (v), v> is equal to its complex conjugate for all .v ∈ H . Thus .<T (v), v> is 
real for all .v ∈ H . 

Now, suppose that.H is a complex Hilbert space. Then, for all.v,w ∈ H , we have  
.v + iw ∈ H . As .<T (v), v> is real for all .v ∈ H , we get .<v, T (v)> = <T (v), v> for all 
.v ∈ H . In particular,
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. <T (v + iw), v + iw> = <v + iw, T (v + iw)>

This implies that 

. − i<T (v),w> + i<T (w), v> = −i<v, T (w)> + i<w, T (v)>

and hence 
. <T (v),w> + <w, T (v)> = <T (w), v> + <v, T (w)>

Then by using .(I P4), we get .Re (<T (w), v>) = Re (<v, T (w)>) for all .v,w ∈ V . 
Now, to prove that .Im (<T (w), v>) = Im (<v, T (w)>), it is enough to consider the 
element .v + w ∈ V instead of .v + iw, where .v,w ∈ V . Thus we have . <T (w), v> =
<v, T (w)> for all .v,w ∈ V . 

We have defined the norm of an operator in Sect. 6.1. Let.T : V → W be a bounded 
linear map between two inner product spaces .V and .W . For  .v ∈ V , . |<T (v),w>| ≤
|T (v)| |w| by Schwarz inequality for all .w ∈ W . Also,  for  .T (v) /= 0, if we take  
.w = T (v)

|T (v)| , we get .<T (v),w> = |T (v)|. Thus 

. |T (v)| = Sup{|<T (v),w>| : w ∈ W, |w| ≤ 1}

Then .|T | can also be defined as 

. |T | = Sup{|<T (v),w>| : v ∈ V, w ∈ W, |v| ≤ 1, |w| ≤ 1}

The following theorem shows that if we are considering a self-adjoint operator, we 
need not have to take the supremum of such a big set. 

Theorem 6.12 Let .T : H → H be a bounded self-adjoint operator on a Hilbert 
space . H. Then .|T | = Sup{|<T (v), v>| : v ∈ V, |v| ≤ 1}. 
Proof Let .T : H → H be a bounded self-adjoint operator on a Hilbert space . H . 
Take 

. α = Sup{|<T (v),w>| : v,w ∈ H, |v| ≤ 1, |w| ≤ 1}

and 
. β = Sup{|<T (v), v>| : v ∈ H, |v| ≤ 1}

Clearly, .β ≤ α. Now, observe that for every .v,w ∈ V , we have  

. <T (v + w), v + w> = <T (v), v> + <T (v),w> + <T (w), v> + <T (w),w>

.<T (v − w), v − w> = <T (v), v> − <T (v),w> − <T (w), v> + <T (w),w>
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Then 

. <T (v + w), v + w> − <T (v − w), v − w> = 2<T (v),w> + 2<T (w), v>
= 2<T (v),w> + 2<w, T (v)>
= 2<T (v),w> + 2<T (v),w>
= 4Re (<T (v),w>)

As. v+w
|v+w| has norm 1, we have 

. |<T (v + w), v + w>| ≤ α |v + w|2

Similarly, 
. |<T (v − w), v − w>| ≤ α |v − w|2

Thus we have 

. 4Re (<T (v),w>) ≤ |<T (v + w), v + w>| + |<T (v − w), v − w>|
≤ α

(|v + w|2 + |v − w|2)
≤ 2α

(|v|2 + |w|2)

by using Parallelogram law. Now for.v,w ∈ H with.|v| , |w| ≤ 1, the above inequal-
ity implies that .4Re (<T (v),w>) ≤ 4α. Now, if  .T (v) /= 0, take  .w = T (v)

|T (v)| , then 
.|w| = 1 and .|T (v)| = <T (v),w> = Re (<T (v),w>) so that .β ≤ α. Therefore, we 
have .|T | = Sup{|<T (v), v>| : v ∈ V, |v| ≤ 1}. 
Corollary 6.1 Let .T : H → H be a bounded self-adjoint operator on a Hilbert 
space . H. Then .T = 0 if and only if .<T (v), v> = 0 for all .v ∈ H. 

Proof Let .T : H → H be a bounded self-adjoint operator on a HIlbert space . H . 
Then, we have .T = 0 if and only if .|T | = Sup{|<T (v), v>| : v ∈ V, |v| ≤ 1} = 0. 
That is, if and only if .<T (v), v> = 0 for all .v ∈ H . 

This is an important consequence of Theorem 6.12, which will be used later to 
characterize normal operators. 

Positive Operators 

Theorem 6.11 establishes an important property of self-adjoint operators, which will 
be used for further classification of self- adjoint operators. In this section, we will be 
classifying self-adjoint operators on finite-dimensional inner product spaces based 
on the first part of Theorem 6.11 which will give as an important class of self-adjoint 
operators.
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Definition 6.8 (Positive Definite) Let  .T : V → V be a self-adjoint linear operator 
on a finite- dimensional inner product space . V , then .T is called positive definite 
operator if .<T (v), v> > 0 for all non-zero .v ∈ V . .T is called positive semi-definite 
operator if .<T (v), v> ≥ 0 for all non-zero .v ∈ V . 

Example 6.12 Let .V be a Hilbert space and . I be the identity operator on . V . In  
Example 6.9, we have seen that . I is self-adjoint. Also, 

. <I (v), v> = <v, v> = |v|2 > 0

for all non-zero .v ∈ V . Therefore . I is positive definite. 

Example 6.13 Let .T1 : R2 → R
2 be defined by .T1(v1, v2) = (v1, 2v2). Clearly, . T1

is a self- adjoint linear operator on .R2(Verify). Also, . <T1(v1, v2), (v1, v2)> = v21 +
2v22 > 0 for all non-zero .(v1, v2) ∈ R

2. Thus, .T1 is positive definite. 
Now define .T2 : R2 → R

2 be defined by .T2(v1, v2) = (0, 2v2). Clearly, .T2 is a 
self-adjoint linear operator on .R2(Verify). Observe that, .<T2(v1, 0), (v1, 0)> = 0 for 
all.v1 ∈ R and.<T2(v1, v2), (v1, v2)> = 2v22 ≥ 0 otherwise. Hence,.T2 is positive semi-
definite. 

In Sect. 5.4, we have defined orthogonal projection operator on an inner product 
space projecting a vector to a finite- dimensional subspace. In the next example, we 
will show that orthogonal projection operators are positive operators. 

Example 6.14 Let .V be a finite-dimensional vector space and .W be a subspace 
of . V . By Theorem 5.13, for any .v ∈ V , there exists .w ∈ W and .w̃ ∈ W⊥ such that 
.v = w + w̃. We define .T : V → V by .πW (v) = w. Let  . v1 = w1 + w̃1, v2 = w2 +
w̃2 ∈ V . Then, 

. <πW (v1), v2> = <w1,w2 + w̃2> = <w1,w2> = <w1 + w̃1,w2> = <v1, πW (v2)>

Thus, .πW is self-adjoint. Now for every non-zero .v = w + w̃ ∈ V , we have  

. <πW (v), v> = <w,w + w̃> = <w,w> > 0

Therefore .πW is positive definite. 

Now, we will characterize positive operators on finite-dimensional inner product 
spaces. 

Theorem 6.13 Let .T : V → V be a self-adjoint linear operator on a finite- dimen-
sional inner product space . V . Then . T is positive definite if and only if all the eigen-
values of .T are positive. Similarly, .T is positive semi-definite if and only if all the 
eigenvalues of . T are non-negative. 

Proof Suppose that .T : V → V is positive definite. Let . λ be an eigenvalue of . T
with eigenvector . v. As . T is positive definite, we have
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. <T (v), v> = <λv, v> = λ<v, v> > 0

Clearly, .λ > 0. Now  let  .λ1, λ2, . . . , λn be the eigenvalues of .T without count-
ing multiplicity. Suppose that they are all positive. As .T is self-adjoint, by The-
orem 6.10, we know that .V has a basis consisting of eigenvectors of . T , say  
.B = {v1, v2, . . . , vn}, where .vi is an eigenvector of . λi . Then, for any .v ∈ V , there 
exists scalars .α1, α2, . . . , αn ∈ K such that .v = En

i=1 αi vi . Therefore, for all .v ∈ V , 
we have 

. <T (v), v> =
/
T

(
nE

i=1

αi vi

)
,

nE
i=1

αi vi

\
=

nE
i=1

λi <αi vi , αi vi > > 0

Thus, . T is positive definite. Proof is similar for positive semi-definite operators. 

In matrix terms, the above theorem means that, an .n × n matrix .A is positive 
definite (or positive semi-definite) if and only if all the eigenvalues are positive(or 
non-negative). 

Theorem 6.14 Let .V and .W finite-dimensional inner product spaces over the same 
field . K. Let .T : V → W be a linear map. Then 

(a) .T ∗T and .T T ∗ are positive semi-definite. 
(b) .Rank (T ∗T ) = .Rank (T T ∗) = . Rank (T )

Proof We have, .T ∗T : V → V and .T T ∗ : W → W . As  

. <(T ∗T
)
(v), v> = <T (v), T (v)> = <v, T ∗T (v)>

for all .v ∈ V , .T ∗T is self-adjoint. Similarly, .T T ∗ is also self-adjoint. 

(a) Now for .v ∈ V , .<(T ∗T ) (v), v> = <T (v), T (v)> ≥ 0 and for .w ∈ W , . <(T T ∗)
(v), v> = <T ∗(v), T ∗(v)> ≥ 0. Thus both .T ∗T and .T T ∗ are positive semi-
definite. 

(b) By Theorem 6.7, .N(T ) = N(T ∗T ) = N(T T ∗). Then by Rank–Nullity theo-
rem, .Rank (T ∗T ) = .Rank (T T ∗) = .Rank (T ). 

We will be using the positive semi-definiteness of the operator .T ∗T later in this 
chapter. 

6.4 Normal, Unitary Operators 

In the previous section, we have discussed one of the important class of linear oper-
ators, called self-adjoint operators. Although the scope of this book covers linear 
operators on finite-dimensional spaces mostly, we will discuss two more important 
classes of linear operators defined using adjoint operator, namely, unitary operators 
and normal operators.
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Definition 6.9 (Normal, Unitary Operators) Let  .H be a Hilbert space and . T :
H → H be a bounded linear operator. Then. T is normal if .T T ∗ = T ∗T and unitary 
if .T T ∗ = T ∗T = I . 

Example 6.15 Consider the operator defined in Example 6.10, Observe that. T T ∗ =
T T ∗ /= I . Thus. T is normal, but not unitary. Similarly, the operator defined in Exam-
ple 6.11 is normal, but not unitary. 

Example 6.16 Define .T : R2 → R
2 by .T (v1, v2) = (v2, v1). Then for all . (v1, v2),

(u1, u2) ∈ R
2, we have  

. <T (v1, v2), (u1, u2)> = <(v2, v1), (u1, u2)> = v2u1 + v1u2 = <(v1, v2), (u2, u1)>

Thus .T ∗ = T . Also .T T ∗ = T ∗T = I . Thus . T is normal and unitary. 

Remark 6.3 Observe that both self-adjoint operators and unitary operators are nor-
mal operators. But a normal operator need not be either of them. For, consider 
the operator .T : R2 → R

2 defined by .T (v1, v2) = (v1 + v2, v2 − v1). Then for all 
.(v1, v2), (u1, u2) ∈ R

2, we have  

. <T (v1, v2), (u1, u2)> = <(v1 + v2, v2 − v1), (u1, u2)>
= (v1 + v2)u1 + (v2 − v1)u2
= v1(u1 − u2) + v2(u1 + u2)

= <(v1, v2), (u1 − u2, u1 + u2)>
= <(v1, v2), T ∗(u1, u2)>

Therefore.T ∗ : R2 → R
2 is defined by.T ∗(v1, v2) = (v1 − v2, v1 + v2). Here. T T ∗ =

2(v1, v2) = T ∗T . Therefore .T is normal. As .T /= T ∗, .T is not self-adjoint and as 
.T T ∗ = T ∗T = 2I /= I , . T is not unitary. 

We have characterized self-adjoint operators on complex Hilbert spaces in Theo-
rem 6.11. In the following theorem, we will characterize normal and unitary opera-
tors. 

Theorem 6.15 Let .T : H → H be a bounded linear operator, where .H is a Hilbert 
space. Then, 

(a) . T is normal if and only if .|T (v)| = |T ∗(v)| for all .v ∈ H. 
(b) . T is unitary if and only if . T is onto and .|T (v)| = |v| for all .v ∈ H. 

Proof Let . T be a bounded linear operator on a Hilbert space . H . 

(a) Suppose that . T is normal. Then for all .v ∈ H , we have  

. |T (v)|2 = <T (v), T (v)> = <T ∗T (v), v> = <T T ∗(v), v> = <T ∗(v), T ∗(v)> = ||T ∗(v)
||2

Now, suppose that .|T (v)| = |T ∗(v)| for all .v ∈ H . Then
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. <T ∗T (v), v> = <T T ∗(v), v> ∀ v ∈ H

Thus, .<(T ∗T − T T ∗) (v), v> = 0 for all .v ∈ H . Then by Corollary 6.1, we have  
.T ∗T = T T ∗. Therefore . T is normal. 

(b) Suppose that . T is unitary. Then as . T is invertible, . T is onto. Also 

. |T (v)|2 = <T (v), T (v)> = <T ∗T (v), v> = <v, v> = |v|2

for all .v ∈ H . Now, suppose that .T is onto and .|T (v)| = |v| for all .v ∈ H . 
Then .<(T ∗T ) (v), v> = <I (v), v> for all .v ∈ H . This implies that 

. <(T ∗T − I
)
(v), v> = 0 ∀ v ∈ H

As both,.T ∗T and. I are self-adjoint operators, by Corollary 6.1,.T ∗T = I . Now,  
for all .v,w ∈ H , as  

. |T (v) − T (w)| = |T (v − w)| = |v − w|

.T is one-one. Thus .T is an invertible operator and hence by the uniqueness of 
the inverse operator .T−1 = T ∗. Therefore . T is normal. 

Now we will check whether the sum and product of normal and unitary operators 
are respectively normal and unitary. 

Theorem 6.16 Let .H is a Hilbert space. 

(a) Let .T1, T2 : H → H be normal operators, then .T1 + T2 and .T1T2 is normal if 
.T1 commutes with .T ∗

2 and .T ∗
1 commutes with . T2. 

(b) Let .T1, T2 : H → H be unitary operators, then .T1T2 is unitary and .T1 + T2 is 
unitary if it is onto and.Re (<T1(v), T2(v)>) = − 1

2 for every.v ∈ H with.|v| = 1. 

Proof (a) Let .T1, T2 : H → H be normal operators, where .H is a Hilbert space. 
Suppose that .T1T ∗

2 = T ∗
2 T1 and .T ∗

1 T2 = T2T ∗
1 . Then 

. (T1 + T2) (T1 + T2)
∗ = (T1 + T2)

(
T ∗
1 + T ∗

2

)
= T1T

∗
1 + T1T

∗
2 + T2T

∗
1 + T2T

∗
2

= T ∗
1 T1 + T ∗

1 T2 + T ∗
2 T1 + T ∗

2 T2
= (T1 + T2)

∗ (T1 + T2)

Thus .T1 + T2 is normal. As, 

. (T1T2)
(
T ∗
2 T

∗
1

) = T1
(
T2T

∗
2

)
T ∗
1 = (

T1T
∗
2

) (
T2T

∗
1

) = (
T ∗
2 T1

) (
T ∗
1 T2

) = (
T ∗
2 T

∗
1

)
(T1T2)

we get .(T1T2) (T1T2)
∗ = (T1T2)

∗ (T1T2). Thus, .T1T2 is normal. 
(b) Let .T1, T2 : H → H be unitary operators, where .H is a Hilbert space. Now for 

all .v ∈ H , we have
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. <(T1 + T2) (v), (T1 + T2) (v)> = <T1(v), T1(v)> + <T1(v), T2(v)> + <T2(v), T1(v)> + <T2(v), T2(v)>

By Theorem 6.15(b), .<T1(v), T1(v)>=<T2(v), T2(v)>=<v, v> and . <T2(v),
T1(v)> = <T1(v), T2(v)>. Therefore, 

. <(T1 + T2) (v), (T1 + T2) (v)> = 2<v, v> + 2Re (<T1(v), T2(v)>)

Again by Theorem 6.15(b), we have .T1 + T2 is unitary if and only if it is 
onto and .<(T1 + T2) (v), (T1 + T2) (v)> = <v, v>. This happens only if . <v, v> +
2Re (<T1(v), T2(v)>) = 0. Hence, .Re (<T1(v), T2(v)>) = − 1

2 for every . v ∈ H
with .|v| = 1. As,  

. (T1T2) (T1T2)
∗ = T1

(
T2T

∗
2

)
T ∗
1 = T1 I T

∗
1 = I

. (T1T2)
∗ (T1T2) = T ∗

2

(
T ∗
1 T1

)
T2 = T ∗

2 I T2 = I

.T1T2 is unitary. 

Now let us discuss some of the properties regarding the eigenvalues and eigen-
vectors of a normal operator. Keep in mind that as both self-adjoint operators and 
unitary operators are normal operators, they will also possess these properties. 

Theorem 6.17 Let .T : H → H be a normal operator, where .H is a Hilbert space. 
Then, 

(a) If . λ is an eigenvalue of . T with eigenvector . v, then . λ is an eigenvalue of .T ∗ with 
. v as eigenvector. 

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal. 

Proof Let .T : H → H be a normal operator. 

(a) Let . λ be an eigenvalue of .T with eigenvector . v. Then .(T − λI ) (v) = 0. Now,  
by Theorem 6.15(a), 

. |(T − λI ) (v)| = ||(T − λI )∗ (v)
|| = ||(T ∗ − λI

)
(v)

|| = 0

Therefore, .T ∗(v) = λv. 
(b) Let.v1, v2 ∈ H be eigenvectors corresponding to eigenvalues.λ1, λ2 respectively, 

where .λ1 /= λ2. Now,  

. λ1<v1, v2> = <λ1v1, v2> = <T (v1), v2> = <v1, T ∗(v2)>

Now, from .(a), we have  .λ2 is an eigenvalue of . T , with .v2 as an eigenvector. 
Therefore.λ1<v1, v2> = <v1, λ2v2> = λ2<v1, v2>. Then.(λ1 − λ2) <v1, v2> = 0. As  
.λ1 /= λ2, we get .<v1, v2> = 0.
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For general linear operators, the above results need not be true. Consider the right 
and left shift operators defined as in Example 6.7, observe that . 0 is an eigenvalue of 
left shift operator with eigenvector .(1, 0, . . . , 0) ∈ R

n . But . 0 is not an eigenvalue of 
right shift operator. 

6.5 Singular Value Decomposition 

In earlier chapters, we have seen some decompositions of matrices which exist only 
for square matrices. In this section, we will generalize the concept of decomposition 
of matrices to general .m × n matrices. 

Theorem 6.18 Let .T : V → W be a linear transformation of rank . r , where . V
and .W are finite-dimensional inner product spaces. Then there exists orthonormal 
bases .{v1, v2, . . . , vn}, {w1,w2, . . . ,wm} of .V,W respectively and unique scalars 
.σ1 ≥ σ2 ≥ · · · ≥ σr > 0 such that 

. T (vi ) =
{

σiwi , if 1 ≤ i ≤ r

0, if i > r

Proof For any linear map .T : V → W , by Theorem 6.14, .T ∗T is a positive defi-
nite operator of rank . r on . V . Now by Theorem 6.10, there is an orthonormal basis 
.{v1, v2, . . . , vn} of. V consisting of eigenvectors of.T ∗T with corresponding eigenval-
ues .λi where .λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and .λi = 0 for .i > r . Now, define . σi = √

λi

and .wi = 1
σi
T (vi ) where .1 ≤ i ≤ r . First, we will prove that .{w1,w2, . . . ,wr } is an 

orthonormal subset of . W . For .i ≤ i, j ≤ r , we have  

. <wi ,wj > =
/
1

σi
T (vi ),

1

σi
T (vi )

\
= 1

σiσ j
<T ∗T (vi ), v j > = 1

σiσ j
<λi vi , v j >

As .σi = √
λi and .{v1, v2, . . . , vn} is an orthonormal basis for .V this implies that 

.<wi ,wj > =
{
1, if i = j

0, if i /= j
. Thus .{w1,w2, . . . ,wr } is an orthonormal set in . W . By  

Theorem 2.14 and Gram–Schmidt orthonormalization process, we can extend this set 
to an orthonormal basis,.{w1,w2, . . . ,wm}, of. W . Then,.T (vi ) = σiwi for.1 ≤ i ≤ r . 
For .i > r , we have  .(T ∗T )(vi ) = 0. Then by Theorem 6.7(d), we have .T (vi ) = 0, 
where .i > r . Thus, we have 

. T (vi ) =
{

σiwi , if 1 ≤ i ≤ r

0, if i > r

Now we have to prove that the scalars .σ1, σ2, . . . , σr are unique. For .1 ≤ i ≤ m and 
.1 ≤ j ≤ n, we have
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. <T ∗(wi ), v j > = <wi , T (v j )> =
{

σi , if i = j ≤ r

0, otherwise

And by Theorem 5.10, for any .1 ≤ i ≤ m, 

. T ∗(wi ) =
nE
j=1

<T ∗(wi ), v j >v j =
{

σi vi , if i = j ≤ r

0, otherwise

Now, for .i ≤ r , .(T ∗T )(vi ) = T ∗(σiwi ) = σi T ∗(wi ) = σ 2
i wi and for .i > r , 

.(T ∗T )(vi ) = T ∗(0) = 0. Thus each. vi is an eigenvector of .T ∗T with corresponding 
eigenvalue .σ 2

i if .i ≤ r and . 0 if .i > r . 

Definition 6.10 (Singular Value Decomposition) The unique scalars . σ1 ≥ σ2 ≥
· · · ≥ σr > 0 defined in Theorem 6.18 are called singular values of a linear trans-
formation and the above decomposition is called Singular Value Decomposition. If 
.r < min{m, n}, then .σr+1 = · · · = σl = 0 are also considered as singular values, 
where .l = min{m, n}. 
Example 6.17 Consider a linear transformation . T : P2 [−1, 1] → P1 [−1, 1]

defined by .T ( f ) = f ''. We have already seen that . õ =
{

1√
2
,

/
3
2 x,

/
5
8 (3x

2 − 1)
}

is an orthonormal basis for .P2 [−1, 1]. Hence .ũ =
{

1√
2
,

/
3
2 x
}
is an orthonormal 

basis for .P1 [−1, 1]. Then .A = [T ]ũ
õ

=
|
0 0 3

√
5

0 0 0

|
and hence .A∗A =

⎡
⎣0 0 0
0 0 0
0 0 45

⎤
⎦. 

Here.λ1 = 45, λ2 = 0 and.λ3 = 0. Corresponding eigenvectors are. (1, 0, 0), (0, 1, 0)
and .(0, 0, 1). Observe here that .r = 1 < min{2, 3}. Therefore the singular val-
ues are .σ1 = 3

√
5 and .σ2 = 0. Translating this to the given context, we get . v1 =/

5
8 (3x

2 − 1), v2 =
/

3
2 x and.v3 = 1√

2
. Then.w1 = 1

σ1
T (v1) = 1√

2
. Take.w2 =

/
3
2 x . 

.{w1,w2} forms an orthonormal basis for .P1 [−1, 1]. 

From Theorem 6.18, it is clear that the scalars .σ1, σ2, . . . , σr are determined 
uniquely by . T . Now, we know that, for every linear transformation .T : V → W , 
there exists a corresponding matrix .A = [T ]ũ

õ
, where .õ is a basis of .V and .ũ is 

a basis for . W . Take  .o as the matrix with the above orthonormal basis elements 
.v1, v2, . . . , vn as columns. That is, the matrix with eigenvectors of .A∗A as columns 
in the decreasing order of their corresponding eigenvalues. Take.u as the matrix with 
the orthonormal basis elements .w1,w2, . . . ,wm of as columns, where .wi = 1

σi
Avi . 

Then in matrix terms, the above theorem can be stated as follows. 

Theorem 6.19 Let .A be an .m × n matrix with rank . r . Then there exists an . m × m
unitary matrix .u and an .n × n unitary matrix .o such that .A = uEo∗, where
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. Ei j =
{

σi , i f i = j ≤ r

0, otherwise

and .σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are scalars such that .σi = √
λi where . λi , i =

1, 2, . . . , r are the non-zero eigenvalues of .A∗A. 

Example 6.18 Consider a matrix.A =
|
1 0 0
0 1 0

|
. Then, .A∗A =

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦, which has 

eigenvalues .λ1 = λ2 = 1 and .λ3 = 0. Observe here that the corresponding eigen-
vectors are .v1 = (1, 0, 0), v2 = (0, 1, 0) and .v3 = (0, 0, 1) respectively. Thus . o =⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦. The non-zero singular values are.σ1 = σ2 = 1. Also,. u1 = 1

σ1
Av1 = (1, 0)

and .u2 = 1
σ2
Av2 = (0, 1). Therefore .u =

|
1 0
0 1

|
. Now, observe that 

. uEo∗ =
|
1 0
0 1

| |
1 0 0
0 1 0

|⎡⎣1 0 0
0 1 0
0 0 1

⎤
⎦ = A

Example 6.19 Consider the matrix .A =
⎡
⎣1 3
3 1
2 2

⎤
⎦. We have  .A∗A =

|
14 10
10 14

|
, which 

has eigenvalues .λ1 = 24 and .λ2 = 4 with eigenvectors .v1 = 1√
2
(1, 1) and . v2 =

1√
2
(1,−1) respectively. Then .u1 = 1

σ1
Av1 = 1√

3
(1, 1, 1) and . u2 = 1

σ2
Av2 = 1√

2

(−1, 1, 0). Choose .u3 = 1√
6
(1, 1,−2). Observe that, 

. uEo∗ =
⎡
⎢⎣

1√
3

− 1√
2

1√
6

1√
3

1√
2

1√
6

1√
3

0 − 2√
6

⎤
⎥⎦
⎡
⎣

√
24 0
0 2
0 0

⎤
⎦
|

1√
2

1√
2

1√
2

− 1√
2

|
= A

6.6 Generalized Inverse of a Matrix 

We know that every .n × n non-singular matrix .A has a unique inverse denoted by 
.A−1. What about singular matrices and rectangular matrices? There is a need for 
partial inverse or generalized inverse for such matrices having some properties of the 
usual inverse in numerous mathematical problems. One of the vital applications is in 
solving a system of linear equations. For example, consider the system .Ax = b. If  
. A is non-singular, the given system has a unique solution for . x given by .x = A−1b. 
When. A is singular or rectangular, the system can have no solution or infinitely many
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solutions. Suppose that there exists a matrix .X having the property that .AX A = A. 
Take .x = Xb. Then, we have 

.Ax = A(Xb) = AX (Ax) = (AX A)x = Ax = b (6.2) 

That is, .x = Xb solves the system .Ax = b. This implies that to solve a system of 
linear equations, .Ax = b, a matrix .X having the property that .AX A = A is really 
useful. For a given matrix . A, we characterize all matrices .X having the property 
.AX A = A as the generalized inverses of. A, which helps to solve the system.Ax = b. 
Likewise, we may need other “relationships” of. A and. X to solve different problems. 
This will give us more restricted classes of generalized inverses. When .A is non-
singular, .A−1 trivially satisfies these “relationships”. One of the interesting facts to 
observe here is that the generalized inverse for a matrix need not be unique. Consider 
the following example. 

Example 6.20 Let .A = |
2 3

|
. A generalized inverse for .A is a matrix . X =

|
a
b

|

with .AX A = A. We have,  

. AX A = |
2 3

| |a
b

| |
2 3

| = (2a + 3b)
|
2 3

| = |
4a + 6b 6a + 9b

|

Now.AX A = A implies that any matrix.X =
|
a
b

|
with.2a + 3b = 1 is a generalized 

inverse of . A. 

Now, we will show that if .X is a generalized inverse of . A, then both.AX and. X A
are projection matrices onto the column space of .A and .AT respectively. Consider 
the following theorem. 

Theorem 6.20 Let .A ∈ Mm×n (K) with generalized inverse .X ∈ Mn×m (K), then 
.AX ∈ Mm×m (K) is an orthogonal projection onto the column space of . A

Proof First, we will prove that .AX and .A have the same column space. Let . w ∈
Im(A). Then there exists .v ∈ K

n such that .Av = w. We have  

. w = Av = (AX A)v = (AX)(Av)

Therefore .w ∈ Im(AX). 
Conversely, let .w ∈ Im(AX). Then there exists .v ∈ K

n such that .(AX)v = w. 
Clearly, .w = A(Xv) ∈ Im(A). Thus, both . A and .AX have the same column space. 
Now to prove that .AX is an orthogonal projection, it is enough to show that .AX is 
both self-adjoint and idempotent (See, Excercise 5.30). We have 

.(AX)(AX) = (AX A)X = AX
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and by condition 6.5, .(AX)∗ = AX . Thus, .AX is an orthogonal projection onto the 
column space of . A. 

Similarly, we can prove that .X A is also a projection matrix onto the column 
space of .A∗. We have already seen that the generalized inverse of a matrix need 
not be unique. In 1955, Roger Penrose 1 proved that for every matrix .A (square or 
rectangular), there exists a unique matrix .X satisfying the following conditions. 

.AX A = A (6.3) 

.X AX = X (6.4) 

.(AX)∗ = AX (6.5) 

.(X A)∗ = X A (6.6) 

For, suppose .X and . Y satisfy conditions (6.3)–(6.6). Then, 

. X = X AX = X (AX)∗ = XX∗A∗ = XX∗(AY A)∗ = X (AX)∗(AY )∗

= X (AX A)Y = X AY = X A(Y AY ) = (X A)∗(Y A)∗Y = A∗X∗A∗Y ∗Y (6.7) 

= (AX  A)∗Y ∗Y = A∗Y ∗Y = (Y A)∗Y = Y AY  = Y 

The conditions (6.3)–(6.6) are collectively known as Penrose conditions. Based on 
these conditions, some classifications are made for generalized inverses. Generalized 
inverse of a matrix. A satisfying conditions (6.3)–(6.6) are named after the American 
mathematician Eliakim Hastings Moore (1862–1932) and the English mathematician 
Roger Penrose (1931–). 

Definition 6.11 (Moore–Penrose Inverse) Let. A be a.m × n matrix. If.X is a matrix 
such that it satisfies condition (6.3), then it is a generalized inverse of. A. If. X satisfies 
both conditions (6.3) and (6.4), then it is a reflexive generalized inverse of . A. If  . X
satisfies all the four conditions, then it is the Moore–Penrose inverse of . A, denoted 
by .A†. 

Example 6.21 Consider the matrix .A = |
2 3

|
as given in Example 6.20. We have  

seen that any element of the set 

. X =
{|

a
b

|
| 2a + 3b = 1

}

is a generalized inverse of . A. Consider .X1 =
|
1
2
0

|
∈ X . Then, we can observe that

1 Penrose, R. (1955, July). A generalized inverse for matrices. In Mathematical proceedings of the 
Cambridge philosophical society (Vol. 51, No. 3, pp. 406–413). Cambridge University Press. 
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. AX1A = |
2 3

| | 1
2
0

| |
2 3

| = |
2 3

| = A

. X1AX1 =
|
1
2
0

| |
2 3

| | 1
2
0

|
=
|
1
2
0

|
= X1

. (AX1)
∗ = |

1
| = AX1

and 

. (X1A)∗ =
|
1 0
3
2 0

|
/=

|
1 3

2
0 0

|
= X1A

That is, .X1 satisfies conditions (6.3)–(6.5) but not condition (6.6). Thus .X1 is a 
reflexive generalized inverse but not Moore–Penrose inverse. So, how do we find the 
Moore–Penrose inverse of. A? Clearly, conditions (6.3) and (6.4) are trivially satisfied 

for any element in . X . Observe here that, for a matrix .X̃ =
|
a
b

|
∈ X to satisfy 

. (X̃ A)∗ =
|
2a 2b
3a 3b

|
=
|
2a 3a
2b 3b

|
X̃ A

. a and . b must be .
2
13 and .

3
13 respectively. Consider, .X2 =

| 2
13
3
13

|
∈ X . Then, 

. X2AX2 =
| 2
13
3
13

| |
2 3

| | 2
13
3
13

|
=
| 2
13
3
13

|
= X2 and (X2A)∗ =

| 4
13

6
13

6
13

9
13

|
= X2A

Thus .X2 =
| 2
13
3
13

|
satisfies conditions (6.3)–(6.6) and is the Moore–Penrose inverse 

for . A. That is, .A† =
| 2
13
3
13

|
. 

Now, we will define a generalized inverse for an .m × n matrix using singular 
value decomposition. Consider the following definition. 

Theorem 6.21 Let . A be an .m × n matrix with rank . r . Let .A = uEo∗ be the singu-
lar decomposition of . A, where . u, .E and .o are as described in Theorem 6.19. Then 
the matrix, .X = oE+u∗ satisfies conditions (6.3)–(6.6), where .E+ is an . n × m
matrix with 

. E+
i j =

{
1
σi

, i f i = j ≤ r

0, otherwise

and .σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are singular values of . A.
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Proof We have, 

. AX A = (
uEo∗) (oE+u∗) (uEo∗) = u

(
EE+) (u∗u

)
Eo∗ = uEo∗ = A

Also, 

. X AX = (
oE+u∗) (uEo∗) (oE+u∗) = o

(
E+E

) (
o∗o

)
E+u∗ = oE+u∗ = X

Observe that 
. AX = uE

(
o∗o

)
E+u∗ = u

(
EE+)u∗

and 
. X A = oE+ (

u∗u
)
Eo∗ = o

(
E+E

)
o∗

where .EE+ and .E+E are diagonal matrices with 1 as first . r diagonal entries and 
the remaining entries zero. Therefore,.(AX)∗ = AX and.(X A)∗ = X A. This implies 
that .X = oE+u∗ satisfies conditions the Penreose conditions, (6.3)–(6.6). 

The matrix.X = oE+u∗ is known as the pseudo inverse of. A, and is denoted by 
.A†. By  (6.7), we can observe that .A† is unique. Obviously, if .A ∈ Mn×n(K) is an 
invertible matrix, then .A† = A−1. 

Example 6.22 Consider the matrix.A =
|
1 0 0
0 1 0

|
from Example 6.18. We have seen 

that the singular value decomposition of . A is 

. uEo∗ =
|
1 0
0 1

| |
1 0 0
0 1 0

|⎡⎣1 0 0
0 1 0
0 0 1

⎤
⎦

Therefore, the pseudo inverse for . A is 

. A† = oE+u∗ =
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣1 0
0 1
0 0

⎤
⎦|

1 0
0 1

|
=
⎡
⎣1 0
0 1
0 0

⎤
⎦

Example 6.23 In Example 6.19, we have seen that the singular value decomposition 

of the matrix .A =
⎡
⎣1 3
3 1
2 2

⎤
⎦ is 

.uEo∗ =
⎡
⎢⎣

1√
3

− 1√
2

1√
6

1√
3

1√
2

1√
6

1√
3

0 − 2√
6

⎤
⎥⎦
⎡
⎣

√
24 0
0 2
0 0

⎤
⎦
|

1√
2

1√
2

1√
2

− 1√
2

|
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Then 

. A† = oE+u∗ =
|

1√
2

1√
2

1√
2

− 1√
2

|| 1√
24

0 0

0 1
2 0

|⎡⎢⎣
1√
3

1√
3

1√
3

− 1√
2

1√
2

0
1√
6

1√
6

− 2√
6

⎤
⎥⎦ = 1

12

|−2 4 1
4 −2 1

|

Consider a system.Ax = b, where . A is a .m × n matrix and .b ∈ R
m . 

Pseudo Inverse and System of Linear Equations 

Consider the system of linear equations .Ax = b, where .A ∈ Mm×n(K) and.b ∈ K
n . 

We have seen that three possibilities can occur while solving the system. It can have 
a unique solution, an infinite number of solutions, or no solutions. The system has 
a unique solution when .A is invertible, and the solution is given by .x = A−1b. We  
know that, if. A is invertible.A−1 = A†, and hence the solution can also be represented 
as .x = A†b. From  (6.2), we know that .x = A†b is a solution to the given system if 
the system is consistent (either the system has a unique solution or has an infinite 
number of solutions). Now the question arises: What is the meaning of .A†b when 
the system does not have any solution? 

Suppose that the system is inconsistent with .A having rank . n. That is, . b lies 
outside the column space of . A. So we will try to get as “close” as to . b. As  . Im(A)

is a subspace of .Rm , by Theorem 5.13, we can consider the orthogonal projection of 
. b to .Im(A) (say . b̃) for this purpose. Since . b̃ lies in the column space of . A, we can 
solve .Ax = b̃. Let . x̃ be the solution for this equation. Then, 

. (b − Ax̃) ⊥ Im(A)

This implies that 
. AT (b − Ax̃) = 0

and hence 
. AT b = AT Ax̃

If . A has rank . n, then .AT A is invertible. Then we get 

. x̃ = (AT A)−1AT b

That is, if the system .Ax = b is inconsistent, .x̃ = (AT A)−1AT b gives us a best 
approximate to the solution. Interesting! Now, is there any relation between .A and 
.(AT A)−1AT ? or between .A† and .(AT A)−1AT ? The following theorem provides an 
answer.
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Theorem 6.22 Let .A ∈ Mm×n(K),m ≥ n be a matrix with .Rank(A) = n. Then 

. A† = (
A∗A

)−1
A∗

Proof As.A ∈ Mm×n(K), by  Sylvester inequality .A∗A has rank. n. Therefore.A∗A is 
invertible and.X = (A∗A)−1 A∗ is well defined. To show that. X is the pseudo inverse 
of . A, it is enough to prove that .X satisfies (6.3)–(6.6). We have 

. AX A = A
(
A∗A

)−1
A∗A = (

AA−1
) (

(A∗)−1A∗) A = A

and 

. X AX = (
(A∗A)−1A∗) A(A∗A)−1A∗

= (
(A∗A)−1A∗) (AA−1) ((A∗)−1A∗)

= (
A∗A

)−1
A∗ = X

Also 

. (AX)∗ = (
A(A∗A)−1A∗)∗ = A(A∗A)−1A∗ = AX

(X A)∗ = (
(A∗A)−1A∗A

)∗ = I = (A∗A)−1A∗A = X A

Thus .A† = (A∗A)−1 A∗. 

This result has significant role in solving least square problems, which will be 
discussed later in this chapter. Let us consider an example first. 

Example 6.24 Consider the matrix .A =
⎡
⎣1 3
3 1
2 2

⎤
⎦ from Example 6.19. Clearly . A has 

rank 2. Then by Theorem 6.22, we have  

. A† = (
A∗A

)−1
A∗ = 1

96

|
14 −10

−10 14

| |
1 3 2
3 1 2

|
= 1

12

|−2 4 1
4 −2 1

|

which we have obtained in Example 6.23. Thus, if the matrix. A has full column rank, 
we can compute the psuedo inverse easily using Theorem 6.22. 

Remark 6.4 If. A is an.m × nmatrix with.m ≥ n and.Rank(A) = n, then the pseudo 
inverse of . A is 

. A† = (A∗A)−1A∗

and if . A is an.m × n matrix with.m ≤ n and.Rank(A) = m, then the pseudo inverse 
of . A is 

.A† = A∗(AA∗)−1
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Fig. 6.1 Consistent system 

Fig. 6.2 Inconsistent system 

Theorem 6.23 Consider the system of linear equations .Ax = b, where 
.A ∈ Mm×n(K) and .b ∈ K

n. If .x̃ = A†b, then the following statements are true. 

(i) If the system is consistent, then . x̃ is the unique solution of the system having 
minimum norm (Fig. 6.1). 

(ii) If the system is inconsistent, then. x̃ is the unique best approximation of a solution 
having minimum norm (Fig. 6.2). 

Proof .(i) If the system is consistent . b lies in the column space of . A. 
We have seen in (6.2) that, if the system is consistent then .x = Xb is a solution 
for.Ax = b, where. X is any generalized inverse of. A. Thus.x̃ = A†b is a solution 
of .Ax = b. We have to show that .|x̃| ≤ ||x̂|| for any solution of .Ax = b. Now  
suppose that . x̂ is a solution of the given system. Then 

. A†Ax̂ = A†b = x̃

By Theorem 6.20, we can say that . x̃ is the orthogonal projection of . x̂ to the 
column space of . A. Then by Theorem 5.13, we have .|x̃| ≤ ||x̂||. 

.(i i) Suppose that the system is inconsistent. By Theorem 6.20, .Ax̃ = AA†b is the 
orthogonal projection of . b to the column space of . A. Then by Theorem 5.13,
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then the image of . x̃ is the vector in .Im(A) “closest” to . b. That is, . x̃ is the best 
approximation of a solution of .Ax = b. 
To prove the uniqueness part, suppose that there exists a vector .x̂ ∈ K

n with 
.Ax̃ = Ax̂ = b̃. Then, 

. A†b̃ = A†Ax̃ = A†AA†b = A†b = x̃

That is, both. x̃ and. x̂ are two independent solutions of the system.Ax = b̃ with 
.x̃ = A†b̃. Then by part .(i), .|x̃| ≤ ||x̂||. 

Example 6.25 Consider the system of equations, 

. 2x1 + x2 − x3 = 1

4x1 + 2x2 − 2x − 3 = 2 (6.8) 

The system can be converted into the form .Ax = b, where .A =
|
2 1 −1
4 2 −2

|
and . b =|

1
2

|
. We can observe the system has an infinite number of solutions. Suppose we 

want to find the solution of the system (6.8) with minimum norm. Here, 

. A† = 1

30

⎡
⎣ 2 4

1 2
−1 −2

⎤
⎦

By Theorem 6.23, we can say that 

. x = A†b = 1

30

⎡
⎣ 2 4

1 2
−1 −2

⎤
⎦
|
1
2

|
= 1

6

⎡
⎣ 2

1
−1

⎤
⎦

is the required solution. 

Now, suppose that . b is changed to .b̃ =
|
1
3

|
. Then the system .Ax = b̃ is incon-

sistent. Here, 

. x = A†b̃ = 1

30

⎡
⎣ 2 4

1 2
−1 −2

⎤
⎦
|
1
3

|
= 1

30

⎡
⎣14

7
−7

⎤
⎦

is not a solution of the system, but it is the best approximation to a solution and 
having minimum norm.
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Least Square Problems 

A researcher is collecting data on marine food exports from India to Europe 
over a particular period. Given .n points, suppose that the data is of the form 
.(x1, y1), (x2, y2), . . . , (xn, yn) and he/she wants to represent the data using a curve. 
Suppose the data are plotted as points on a plane, as shown in the figure below. 

From this plot, suppose that the researcher feels a linear relation exists between. x '
i s 

and. y'
i s. That is, there may exist a line, say.y = ax + b, that fits the data appropriately, 

or we may be able to find a line that represents the data with less error. As we can 
observe from Fig. 6.3, the distance from .(xi , yi ) to .(xi , axi + b) is .|yi − axi − b|, 
which is the error between the actual output and the computed output. The sum of 
squares of the errors for the entire data is 

. e =
nE

i=1

(yi − axi − b)2

As . e depends on . a and . b, a necessary condition for . e to be minimum is 

.

⎧⎪⎪⎨
⎪⎪⎩

∂e
∂a = −2

mE
i=1

xi (yi − axi − b) = 0

∂e
∂b = −2

mE
i=1

(yi − axi − b) = 0
(6.9) 

This implies that 

.

⎧⎪⎪⎨
⎪⎪⎩
a

mE
i=1

x2i + b
mE
i=1

xi =
mE
i=1

xi yi

a
mE
i=1

xi + bm =
mE
i=1

yi
(6.10) 

Fig. 6.3 fitting the data 
points on a straight line
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These equations are called normal equations corresponding to our problem. Observe 
that (6.10) can be written in the compact form 

.

⎡
⎢⎢⎣

mE
i=1

x2i
mE
i=1

xi
mE
i=1

xi m

⎤
⎥⎥⎦
|
a
b

|
=

⎡
⎢⎢⎣

mE
i=1

xi yi
mE
i=1

yi

⎤
⎥⎥⎦ (6.11) 

We solve this system for. a and. b which will provide the straight line which has least 
deviation from the given data. 

Example 6.26 Let the data collected be .(1, 4), (2, 4), (3, 5), (4, 6) and .(5, 7). To  
obtain the normal equations consider the following table. 

Tabular representation of data to obtain normal equations 

.xi .yi .xi yi . x2i
1 4 4 1 
2 4 8 4 
3 5 15 9 
4 6 24 16 
5 7 35 25 

.
5E

i=1
xi = 15 .

5E
i=1

yi = 15 .
5E

i=1
xi yi = 86 . 

5E
i=1

x2i = 55

Then the normal equations are 

.

{
55a + 15b = 86

15a + 5b = 26
(6.12) 

Solving (6.12), we get .a = 0.8 and .b = 2.8. Thus the line .y = 0.8x + 2.8 best fits 
the given data. Also, we can compute the error, .e = 0.4. 

We can also get the least square solution by using the Moore–Penrose inverse 
method. Our aim was to fit the data.(x1, y1), (x2, y2), . . . (xn, yn) to a line.y = ax + b. 
Then, the data must satisfy the following equations: 

. y1 = ax1 + b

y2 = ax2 + b

...

yn = axn + b

This can be written in the form.Ax = y, where
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. A =

⎡
⎢⎢⎢⎣
x1 1
x2 1
...

...

xn 1

⎤
⎥⎥⎥⎦ , x =

|
a
b

|
, y =

⎡
⎢⎢⎢⎣
y1
y2
...

yn

⎤
⎥⎥⎥⎦

We know that if the number of unknowns is less than the number of equations, the 
system is overdetermined. Thus we will be finding an approximate solution in such 
cases. First, let us multiply both sides of the equation.Ax = y by.AT . Then, we have 

. (AT A)x = AT y

As . x '
i s are all different .Rank(A

T A) = 2 by Sylvester’s Inequality and hence . AT A
is invertible. Hence we have the approximate solution .x̃ = (AT A)−1AT y. From the  
previous section, we know that.(AT A)−1A is the Moore–Penrose inverse of. A. Con-
sider the following example. 

Example 6.27 Consider the data given in Example 6.26. Then 

. A =

⎡
⎢⎢⎢⎢⎣

1 1
2 1
3 1
4 1
5 1

⎤
⎥⎥⎥⎥⎦ and y =

⎡
⎢⎢⎢⎢⎣

4
4
5
6
7

⎤
⎥⎥⎥⎥⎦

Now, 

. AT A =
|
1 2 3 4 5
1 1 1 1 1

|
⎡
⎢⎢⎢⎢⎣

1 1
2 1
3 1
4 1
5 1

⎤
⎥⎥⎥⎥⎦ =

|
55 15
15 5

|

and 

. 
(
AT A

)−1 = 1

50

|
5 −15

−15 55

|
= 1

10

|
1 −3

−3 11

|

Therefore 

. x̃ =
|
a
b

|
= 1

10

|
1 −3

−3 11

| |
1 2 3 4 5
1 1 1 1 1

|
⎡
⎢⎢⎢⎢⎣

4
4
5
6
7

⎤
⎥⎥⎥⎥⎦ = 1

10

|
8
28

|

It follows that the line .y = 0.8x + 2.8 best fits the data as we have seen in 
Example 6.26. This line is called as the least square line.
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Observe that.(AT A)x = AT y is nothing but the compact form of normal equations 

as given in Eq. (6.11). Also, observe that .e =
nE

i=1
(yi − axi − b)2 = |y − Ax|22. 

This method also can be used to fit the data to a polynomial of degree.k < n − 1, 
i.e., .p(x) = a0 + a1x + · · · + akxk . Suppose we need to fit the data to a quadratic 
polynomial.p(x) = a0 + a1x + a2x2 (i.e.,.k = 2). Then, the sum of the squared error 
. e is given by 

. e =
nE

i=1

(yi − p(xi ))
2

and the coefficients .a0, a1 and .a2 that minimize the sum of the squared error can be 
obtained by solving the time equations 

. 
∂e

∂a0
= 0,

∂e

∂a1
= 0,

∂e

∂a2
= 0

This gives rise to the normal equations: 

.

⎧⎪⎨
⎪⎩
a0m + a1

En
i=1 xi + a2

En
i=1 x

2
i = En

i=1 yi
a0

En
i=1 xi + a1

En
i=1 x

2
i + a2

En
i=1 x

3
i = En

i=1 xi yi
a0

En
i=1 x

2
i + a1

En
i=1 x

3
i + a2

En
i=1 x

4
i = En

i=1 x
2
i yi

(6.13) 

and in the matrix form 

.

⎡
⎢⎢⎢⎢⎢⎢⎣

m
mE
i=1

xi
mE
i=1

x2i
mE
i=1

xi
mE
i=1

x2i
mE
i=1

x3i
mE
i=1

x2i
mE
i=1

x3i
mE
i=1

x4i

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣a0a1
a2

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

mE
i=1

yi
mE
i=1

xi yi
mE
i=1

x2i yi

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.14) 

which can be solved for .a0, a1 and . a2. Let  .A =
⎡
⎣1 x1 x21
1 x2 x22
1 x3 x23

⎤
⎦. Again, observe that 

.(AT A)x = AT y is the normal equations given by (6.14) and the least square solution 
is given by the Moore–Penrose inverse as 

. x = (AT A)−1AT y = A†y

Let us generalize the ideas we have discussed so far with the following theorem. 
Given an .m × n matrix . A, we can find.x̃ ∈ R

n such that .|y − Ax̃| ≤ |y − Ax| for 
all.x ∈ R

n . We can use this method to find a polynomial of degree at most.k < n − 1, 
for any positive integer . k that best fits the data.
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Theorem 6.24 Let .A ∈ Mm×n (R) ,m ≥ n and .y ∈ R
m. Then there exists . x̃ ∈ R

n

such that.
(
AT A

)
x̃ = AT y and.|y − Ax̃| ≤ |y − Ax| for all.x ∈ R

n. Furthermore, 

if .Rank(A) = n, then .x̃ = (
AT A

)−1
AT y. 

Proof Let .W = {Ax | x ∈ R
n}. Clearly, .W is a subspace of .Rm . Then by Theorem 

5.13, there exists a unique vector .w̃ ∈ W , with .|y − w̃| ≤ |y − w| for all .w ∈ W . 
As.w̃ ∈ W , .w̃ = Ax for some.x ∈ R

n . Call this vector. x as our. x̃ . Then. |y − Ax̃| ≤
|y − Ax| for all .x ∈ R

n . 
To find. x̃ , we have.y − Ax̃ ∈ W⊥ so that. <Ax, y − Ax̃> = <x, AT (y − Ax̃)> = 0

for all .x ∈ R
n . This implies that, .AT (y − Ax̃) = 0 and hence .AT y = AT Ax̃ . Then, 

if .Rank(A) = n, we have .x̃ = (
AT A

)−1
AT y. 

Remark 6.5 Consider the system.Ax = y, where.y ∈ R
m , . A is a real.m × n matrix 

with.m ≥ n and.Rank(A) < n. Then the given system has infintely many least square 
solutions. 

Now, suppose that we need to fit the data 

. (θ1, y1), (θ2, y2), . . . , (θn, yn)

to a trigonometric curve, say .y = asin θ + bcos θ . Can we convert this to a least 
square problem? Yes, we can!! Observe that, if we take 

. A =

⎡
⎢⎢⎢⎣
sin θ1 cos θ1
sin θ2 cos θ2

...

sin θn cos θn

⎤
⎥⎥⎥⎦ , x =

|
a
b

|
, and y =

⎡
⎢⎢⎢⎣
y1
y2
...

yn

⎤
⎥⎥⎥⎦

we can convert the problem to the form .Ax = y and solve it for . x to obtain the 
desired trigonometric curve that best fit the given data. Another situation where 
the least square problem comes handy is when we have to fit a data of the form 
.(x11 , x

1
2 , x

1
3), (x

2
1 , x

2
2 , x

2
3 ), . . . , (x

n
1 , x

n
2 , x

n
3 ) to a plane.x3 = a + bx1 + cx2. Here also, 

if we take 

. A =

⎡
⎢⎢⎢⎣
1 x11 x12
1 x21 x22
...

1 xn1 xn2

⎤
⎥⎥⎥⎦ , x =

⎡
⎣ab
c

⎤
⎦ , and y =

⎡
⎢⎣
x13
x23
...xn3

⎤
⎥⎦

we can convert the problem to the form .Ax = y and solve it for . x to obtain the 
plane that best fits the given data. Due to their effectiveness in handling challenging 
data fitting and optimization problems, these adaptable approaches have applications 
across a wide range of fields.
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6.7 Iterative Methods for System of Linear Equations 

There are two approaches to solving systems of linear equations: direct meth-
ods and iterative methods. Direct approaches like Gauss elimination method, .LU-
decomposition method, etc. seek an exact solution in a finite number of steps, with 
guaranteed convergence. They are computationally demanding, especially for large 
systems, and necessitate a huge amount of memory. Iterative approaches, on the 
other hand, begin with an initial guess and repeatedly refine the solution, providing 
computational efficiency and lower memory requirements for big and sparse systems. 
Iterative approaches, on the other hand, provide approximate solutions that may need 
various numbers of iterations to achieve a desired degree of precision, making them 
ideal in situations when exact solutions are not required and computational resources 
are limited. Consider an equation of the form: 

.Ax = b (6.15) 

where .A = [ai j ] is .n × n matrix and . b is an .n × 1 matrix. First we will write . A =
M − N , where .M is an invertible matrix. Then, (6.15) becomes of the form; 

. Mx = Nx + b

As.M is invertible, we can write it as 

.x = M−1(Nx + b) = M−1Nx + M−1b (6.16) 

Let us define a function .T : Rn → R
n by 

.T (x) = M−1Nx + M−1b (6.17) 

If there exists an element .x0 ∈ R
n with.T (x0) = x0, then we can observe that .x0 is a 

solution for the system (6.15). For, 

. T (x0) = x0 ⇒ M−1Nx0 + M−1b = x0
⇒ Nx0 + b = Mx0
⇒ (M − N )x0 = b ⇒ Ax0 = b

Thus we can conclude that any element in .R
n which is mapped onto itself by . T is a 

solution to the system (6.15). Such elements are called fixed points of. T in.R
n . Now,  

let us define fixed points of functions defined on arbitrary sets. Let .X be a given set 
and . f be any function defined from .X to itself. Then fixed points of . f are points 
in .X that remains unchanged under the action of . f . We have the following formal 
definition.
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Definition 6.12 (Fixed Point) A fixed point of a function . f : X → X is a point 
.x ∈ X which is mapped onto itself. That is, . f (x) = x . 

Example 6.28 Consider . f1, f2 : R → R defined by . f1(x) = −x and . f2(x) = x +
1. Then . f1 has exactly one fixed point, which is . 0. For,  

. f1(x) = x ⇒ x = −x ⇒ 2x = 0 ⇒ x = 0

Clearly, . f2 has no fixed points as it translates any number on the real line to one unit 
right of it. 

Example 6.29 Let .V be any vector space and .T : V → V be any linear transfor-
mation. Then the zero element in .V is a fixed point for . T . 

Example 6.30 Let .T1, T2 : R2 → R
2 be defined by .T1(x1, x2) = (x1, 0) and 

.T2(x1, x2) = (x2, x1). Then all the points on the.x-axis are fixed points for.T1 and all 
the points on the line .y = x are fixed points for . T2. 

Now, consider the system (6.15) and function .T as defined in (6.17). We have 
seen that a fixed point of. T is a solution for the system (6.15). The essential question 
now is whether we can guarantee the existence of such an element for the function 
. T . Will it be unique if it exists? We can guarantee the existence of fixed points for 
functions having certain characteristics. In this section, we will be focusing on the 
existence of one particular class of functions called “contractions”. 

Definition 6.13 (Contraction) Let.(X, |.|) be a normed space. A function. f : X →
X is said to be a contraction on .X if there exists a positive real number .α < 1 such 
that 

. | f (x) − f (y)| ≤ α |x − y|

In other words, the distance between any two points in the domain will always 
be greater than the distance between their respective images, that is, a contraction 
brings points closer together. Consider the following example. 

Example 6.31 Consider the normed space.(R, |.|0). Define. f1 : R → Rby. f1(x) =
1
2 x . Then . f is a contraction with .α = 1

2 . For,  

. | f1(x) − f1(y)| =
||||12 x − 1

2
y

|||| = 1

2
|x − y| = 1

2
|x − y|

Now, define . f2 : R → R by . f2(x) = x . Is  . f2 a contraction? Does there exists a 
positive real number. α with.α < 1 such that .|x − y| ≤ α|x − y|? Clearly, such an. α

with .0 < α < 1 does not exists. Thus . f2 is not a contraction.
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Example 6.32 Consider the metric space .([−1, 1], |.|0). Define . f : [−1, 1] →
[−1, 1] defined by . f (x) = cos x . By  Mean-Value Theorem 2, there exists a point 
.p ∈ (−1, 1) with 

. |cos x − cos y| = |sin p||x − y|, ∀x, y ∈ [−1, 1]

As the sine function does not achieve its maximum value(which is 1) in this interval, 
we have .|cos x − cos y| < |x − y|, ∀x, y ∈ [−1, 1]. Thus . f is a contraction on 
.[−1, 1]. What if we change the domain to . R? 

We will now prove one of the fundamental results in mathematics that provides 
the conditions under which a contraction mapping from a normed space to itself has 
a unique fixed point. 

Banach Contraction Principle 

Banach contraction principle is a crucial mathematical result that guarantees the 
existence of a fixed point for contraction mapping defined on a Banach space. Essen-
tially, it provides a powerful mathematical instrument for establishing the existence 
and uniqueness of solutions in a variety of contexts, including optimization prob-
lems, differential equations, and iterative numerical approaches. The importance of 
this theorem stems from its broad applicability across mathematics as well as its 
function in illustrating the convergence of iterative algorithms in solving real-world 
issues. 

Theorem 6.25 (Banach Contraction Principle) Let .(X, |.|) be a Banach space and 
. f : X → X be a contraction on . X. Then . f has exactly one fixed point. 

Proof We will start the proof by defining a Cauchy sequence .{xn} in .X using the 
function. f . As.X is complete.{xn} will converge to a point.x ∈ X . We will show that 
. x is the unique fixed point for . f in . X . Choose an .x0 ∈ X and define 

. xn+1 = f (xn), n = 1, 2, 3, . . .

First we will show that this sequence is Cauchy. As . f is a contraction, we have

2 Mean-Value Theorem: Suppose . f : [a, b] → R be a continuous function on .[a, b] and that . f
has a derivative in the open interval .(a, b). Then there exists atleast one point .c ∈ (a, b) such that 
. f (b) − f (a) = f '(c)(b − a), where. f ' denotes the derivative of. f . 
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. |xm+1 − xm| = | f (xm) − f (xm−1)| ≤ α |xm − xm−1|
≤ α | f (xm−1) − f (xm−2)|
≤ α2 |xm−1 − xm−2|
...

≤ αm |x1 − x0|

By Triangle inequality and summation formula for geometric series, for .n > m we 
have 

. |xm − xn| ≤ |xm − xm+1| + |xm+1 − xm+2| + · · · + |xn−1 − xn|
≤ (

αm + αm+1 + · · · + αn−1
) |x1 − x0|

= αm 1 − αn−m

1 − α
|x1 − x0|

As. α is a positive real number with .α < 1, we have .1 − αn−m < 1 and hence for all 
. n > m

. |xm − xn| ≤ αm

1 − α
|x1 − x0|

Since .0 < α < 1 and .|x1 − x0| is fixed if we choose .m sufficiently large, we can 
make .|xm − xn| as small as possible. Thus .{xn} is Cauchy and as .X is complete 
.xn → x ∈ X . 

Now, we will show that . x is a fixed point of . f . By Triangle Inequality, we have 

. |x − f (x)| ≤ |x − xn| + |xn − f (x)|
= |x − xn| + | f (xn−1) − f (x)|
≤ |x − xn| + α |xn−1 − x|

As .xn → x we can make this distance as small as possible by choosing .m as suffi-
ciently large. Thus.|x − f (x)| = 0 and hence we can conclude that. f (x) = x . That 
is, . x is a fixed point of . f . 

Now we will prove that . x is the only fixed point of . x . Suppose that there exists 
another fixed point for . f in . X , say . x̃ . That  is, we have . f (x̃) = x̃ . Then 

. |x − x̃| = | f (x) − f (x̃)| ≤ α |x − x̃|

and this implies .|x − x̃| = 0. Thus .x = x̃ and hence . f has exactly one fixed point. 

Graphically identifying fixed points of a function requires identifying the points 
on the graph where the function intersects the line.y = x . We have seen examples for 
contractions on complete metric spaces in Example 6.31 and Example 6.32. Then 
by Banach Fixed Point Theorem, we can say that both these functions have exactly 
one fixed point and it can be visualized as follows (Fig. 6.4).
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Fig. 6.4 Observe that the line.y = x(represented by the dotted line) touches the graph of. (a) f (x) =
1
2 x and. f (x) = cos x exactly once in their respective domains as mentioned in Examples 6.31 and 
6.32 

Table 6.1 Fixed-point 
iteration for. f (x) = cos(x)
with. x0 = 0.7

Iteration (. n) Approximation (. xn) 

0 0.7 

1 . 0.7648

2 . 0.7215

3 . 0.7508

.
.
.
. . 

.

.

.

16 . 0.7392

17 . 0.7390

18 . 0.7391

19 . 0.7391

We can clearly identify .x = 0 is the unique fixed point for . f (x) = 1
2 x . Now  let  

us find the fixed point of . f (x) = cos x using fixed point iteration method. Consider 
the following example. 

Example 6.33 Consider . f : [−1, 1] → [−1, 1] defined by . f (x) = cos x as given 
in Example 6.32. Choose .x0 = 0.7(an initial approximation can be identified from 
the Figure .6.4(b)). Now, define .xn+1 = cos xn (Table 6.1). 
Proceeding like this, we can approximate the fixed point of . f (x) = cos x as . x ≈
0.739 after a certain number of iterations. The more the number of iterations, the 
less will be the error associated with it. Keep in mind that any initial point will give 
us the fixed point, however, the number of iterations required may vary. 

Remark 6.6 To prove the Banach contraction principle, we use only the properties 
of distance notion on. X provided by the infinity norm, but we do not use any properties 
of vector space structure of . X . We can prove that this result is valid in a complete 
metric space also. That is, if .(X, d) is a complete metric space and . f : X → X is a 
contraction on . X , then . f has exactly one fixed point.
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Gauss–Jacobi Method and Gauss–Siedel Method 

The Banach contraction principle plays a vital role in iterative algorithms for solving 
systems of linear equations, such as the Gauss–Jacobi and Gauss–Seidel methods. 
These methods reduce a complex problem to a series of simpler ones, with each 
iteration attempting to get the solution closer to the actual solution. The Banach 
contraction principle establishes a theoretical basis for their convergence by ensuring 
that, under specific conditions, the iterations converge to a single fixed point that 
corresponds to the solution of the original problem. This theorem guarantees that, 
when used correctly, iterative approaches will produce accurate solutions for linear 
systems. 

Theorem 6.26 Consider the system 

.x = Cx + b̃ (6.18) 

of . n linear equations in . n unknowns, say .x1, x2, . . . , xn. Here  .C = |
ci j
|
n×n, . x =⎡

⎢⎣
x1
...

xn

⎤
⎥⎦ and .b̃ =

⎡
⎢⎣
b̃1
...

b̃n

⎤
⎥⎦ is a fixed vector. If .C satisfies 

.

nE
j=1

|ci j | < 1, ∀i = 1, 2, . . . , n (6.19) 

the system (6.18) has exactly one solution and this can be obtained by the iterative 
scheme 

.xm+1 = Cxm + b̃ (6.20) 

where .x0 is arbitrary. 

Proof Consider .Rn with the infinity norm, .|x|∞ = max
i∈{1,...,n}|xi |, where . x =

⎡
⎢⎣
x1
...

xn

⎤
⎥⎦

is an elements in .Rn . Then .(Rn, |.|∞) is a complete metric space(Verify!). Define 
.T : Rn → R

n by 
.y = T (x) = Cx + b̃ (6.21) 

where.y =
⎡
⎢⎣
y1
...

yn

⎤
⎥⎦ ∈ R

n . Then for.i = 1, 2, . . . , n, we have.yi =
nE
j=1

ci j x j + b̃i . Take  

.w =
⎡
⎢⎣
w1
...

wn

⎤
⎥⎦ , z =

⎡
⎢⎣
z1
...

zn

⎤
⎥⎦ ∈ R

n with .Tw = z. Now,
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. |y − z|∞ = |T (x) − T (w)|∞ = max
i∈{1,...,n}|yi − zi |

= max
i∈{1,...,n}

||||||
nE
j=1

ci j (x j − wj )

||||||
≤ max

i∈{1,...,n}

nE
j=1

|ci j | max
j∈{1,...,n}|x j − wj |

= max
i∈{1,...,n}

nE
j=1

|ci j | |x − w|∞

Then by (6.19), we have 

. |T (x) − T (w)|∞ < |x − w|∞

Thus. T is a contraction on.R
n . Then by Banach contraction principle, . T has exactly 

one fixed point. 

Observe that the condition (6.19) which helped us in proving that .T is a con-
traction is useful only when we are using the infinity norm on .Rn . What if we use 
another metric? (Think!) Now we will discuss Gauss–Jacobi method and Gauss– 
Siedel method which are popular iterative techniques for solving systems of linear 
equations. First, we will discuss the Gauss–Jacobi method named after the German 
mathematicians Johann Carl Friedrich Gauss (1777–1855) and Carl Gustav Jacob 
Jacobi (1804–1851). 

Theorem 6.27 (Gauss–Jacobi Iteration) Let.x =
⎡
⎢⎣
x1
...

xn

⎤
⎥⎦denote an approximate solu-

tion for (6.15). If  

.

nE
j=1, j /=i

|ai j | < |aii | (6.22) 

for all .i = 1, 2, . . . , n, then the iteration method defined by 

.xm+1
i = 1

aii

⎛
⎝bi −

nE
j=1, j /=i

ai j x
m
j

⎞
⎠ (6.23) 

converges to . x. 

Proof Consider the system (6.15). Write .A = L + D +U , where . L and .U are the 
strict lower and upper triangular part of . A and.D is the diagonal part of . A. Then, we 
can write (6.15) in the form (6.18), where
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. C = −D−1(L +U ) =

⎡
⎢⎢⎢⎢⎣

1
a11

0 . . . 0
0 1

a22
. . . 0

...
...

. . .
...

0 0
... 1

aii

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 a12 . . . a1n
a22 0 . . . a2n
...

...
. . .

...

an1 an2 . . . 0

⎤
⎥⎥⎥⎦

and 

. b̃ = D−1b =

⎡
⎢⎢⎢⎢⎣

1
a11

0 . . . 0
0 1

a22
. . . 0

...
...

. . .
...

0 0
... 1

aii

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
b1
b2
...

bn

⎤
⎥⎥⎥⎦

Then .cii = 0 for all .i = 1, 2, . . . , n and .ci j = ai j
aii

otherwise. As . 
nE

j=1, j /=i
|ai j | < |aii |

for all.i = 1, 2, . . . , nwe have.
nE
j=1

|ci j | < 1.∀i = 1, 2, . . . , n. Then, by Theorem 6.26, 

the iteration scheme converges. 

A matrix .A = [ai j ] satisfying condition (6.24) is called strictly diagonally dom-
inant matrix. Thus, if the matrix . A is strictly diagonally dominant, then we can say 
that the Gauss–Jacobi iteration scheme converges. 

Example 6.34 Consider the system, 

. 

⎡
⎣4 1 2
1 5 1
2 1 4

⎤
⎦
⎡
⎣x1x2
x3

⎤
⎦ =

⎡
⎣−1

5
3

⎤
⎦

Let us solve this system using Gauss–Jacobi iteration method with initial condition 

.x1 = x2 = x3 = 0. Clearly, the matrix.A =
⎡
⎣4 1 2
1 5 1
2 1 4

⎤
⎦ is strictly diagonally dominant. 

Now, 

. C = −D−1(L +U ) =
⎡
⎣ 0 − 1

4 − 1
2− 1

5 0 − 1
5− 1

2 − 1
4 0

⎤
⎦

and 

.b̃ = D−1b =
⎡
⎣

1
4 0 0
0 1

5 0
0 0 1

4

⎤
⎦
⎡
⎣−1

5
3

⎤
⎦ =

⎡
⎣− 1

4
1
3
4

⎤
⎦
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Table 6.2 The table contains 
the first 10 iterations of the 
Gauss–Jacobi iteration 
method. Clearly, at each step 
the solution approaches the 
actual solution. (−1, 1, 1)

.m . xm

0 . (0, 0, 0)

1 . (−0.25, 1, 0.75)

2 . (−0.875, 0.9, 0.625)

3 . (−0.7875, 1.05, 0.9625)

4 . (−0.9938, 0.965, 0.8812)

5 . (−0.9319, 1.0225, 1.0056)

6 . (−1.0084, 0.9852, 0.9603)

7 . (−0.9765, 1.0096, 1.0079)

8 . (−1.0064, 0.9937, 0.9858)

9 . (−0.9913, 1.0041, 1.0048)

10 . (−1.0034, 0.9973, 0.9946)

Table 6.3 The table contains 
the first 7 iterations of the 
Gauss–Siedel iteration 
method. Observe that these 
iterates approaches to 
.(−1, 1, 1) faster than the 
Gauss–Jacobi iterates 

.m . xm

0 . (0, 0, 0)

1 . (−0.25, 1.05, 0.6125)

2 . (−0.8188, 1.0412, 0.8991)

3 . (−0.9598, 1.0122, 0.9769)

4 . (−0.9915, 1.0029, 0.995)

5 . (−0.9982, 1.0006, 0.999)

6 . (−0.9996, 1.0001, 0.9998)

7 . (−0.9999, 1, 1)

Then the Gauss–Jacobi iteration scheme is given by, 

. xm+1 =
⎡
⎣ 0 − 1

4 − 1
2− 1

5 0 − 1
5− 1

2 − 1
4 0

⎤
⎦ xm +

⎡
⎣− 1

4
1
3
4

⎤
⎦

Observe that in Gauss–Jacobi iteration method the values of the variables are 
updated simultaneously using the values of the previous iterations. However, in 
Gauss–Siedel iteration method, the values of the variables are updated one at a 
time using updated values within the same iteration. This method is named after 
the German mathematicians Johann Carl Friedrich Gauss (1777–1855) and Philipp 
Ludwig von Seidel (1821–1896) (Tables 6.2 and 6.3). 

Theorem 6.28 (Gauss–Siedel Iteration) Let.x =
⎡
⎢⎣
x1
...

xn

⎤
⎥⎦ denote an approximate solu-

tion for (6.15). If
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.

nE
j=1, j /=i

|ai j | < |aii | (6.24) 

for all .i = 1, 2, . . . , n, then the iteration method defined by 

.xm+1
i = 1

aii

⎛
⎝bi −

i−1E
j=1

ai j x
m+1
j −

nE
j=i+1

ai j x
m
j

⎞
⎠ (6.25) 

converges to . x. 

The proof this theorem is similar to the proof of Theorem 6.27. Here, we take 
.C = −(L + D)−1U and .b̃ = (L + D)−1b. 

Example 6.35 Consider the system.Ax = b as given in Example 6.34. Then, Now, 

. C = −(L + D)−1U =
⎡
⎣0 − 1

4 − 1
2

0 1
20 − 1

10
0 1

8
11
40

⎤
⎦

and 

. b̃ = (L + D)−1U =
⎡
⎣− 1

4
21
20
49
80

⎤
⎦ .

6.8 Exercises 

1. Let .V,W be normed spaces and .T : V → W be a linear operator. Show that if 
. T is continuous at one point, then it is continuous. 

2. Fix.A = |
ai j

| ∈ Mm×n . Define.T : Rn → R
m by.T (v) = Av. Show that. |T v| ≤

λ |v|, where .λ =
/Em

i=1

En
j=1 a

2
i j . 

3. Check whether the following statements are true or false. 

(a) Let .V,W be normed spaces and .T : V → W be a bounded linear operator. 
Then .vn → v in .V implies that .T (vn) → T (v). 

(b) Let .V be an inner product space over . C, then the set of all self-adjoint 
operators on .V forms a subspace of . B(V )

(c) Let . T be a linear operator on .R
3 such that there is a basis of .R3 consisting 

of eigenvectors of . T , then . T is self-adjoint. 
(d) Let . T be a self-adjoint operator on a finite-dimensional inner product space 

over . R. Then the matrix representation of .T with respect to any basis is 
symmetric. 

(e) Let .T1, T2 be two positive operators on a Hilbert space . H . Then .T1T2 is 
positive.
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(f) Let .T be a linear map on a Hilbert space .H with .T 2 = T . Then .T is self-
adjoint. 

4. Let.V,W be normed spaces and.T : V → W be a bounded linear operator. Then 

(a) Show that .N(T ) is closed. 
(b) Give an example to show that .R(T ) need not necessarily be closed. 

5. If.W is a Banach space, show that.B(V,W ) with operator norm is also a Banach 
space. 

6. Let.U, V,W be normed linear spaces and.T1 : U → V, T2 : V → W be bounded 
linear maps. Then show that .T2T1 : U → W is a bounded linear map and 
.|T2T1| ≤ |T2| |T1|. 

7. Let .H be a Hilbert space and . T be a bounded linear map on . H . Then show that 
.N(T ) = [R(T ∗)]⊥ and . N(T ∗) = [R(T )]⊥

8. Let .V and .W be normed linear spaces and .T : V → W be a linear operator. 
Then show that there exists.α > 0 such that.|T v| ≥ α |v| , ∀ v ∈ V if and only 
if. T is injective. Also show that.T−1 : R(T ) → V is continuous and. 

||T−1w
|| ≤

1
α

|w| ∀ w ∈ R(T ). 
9. Let.H be a Hilbert space and.T : H → H be a bounded linear map whose inverse 

is bounded. Show that .(T ∗)−1 = (
T−1

)∗
. 

10. Does there exists a self-adjoint linear operator .T on .R3 with . T (1, 0, 1) =
(0, 0, 0) and .T (1, 2, 0) = (2, 4, 0)? 

11. If. T is a bounded self-adjoint linear operator on a complex Hilbert space. H , then 
show that the.T 2 cannot have a negative eigenvalue. Which theorem on matrices 
does this generalize to? 

12. Let .H be a Hilbert space and .P : H → H be a bounded linear map. Then .P is 
an orthogonal projection if and only if .P2 = P and .P is self-adjoint. 

13. Let .T : l2 → l2 be defined by .(T x)n = xn−1, where, .x = {xn} ∈ l2. Then show 
that . T is unitary but not self-adjoint. 

14. Let .T : C2 → C
2 be defined by .T (z1, z2) = (λz1, μz2), where .λ,μ ∈ C. Then 

show that 

(a) . T is normal. 
(b) . T is self-adjoint if and only if . λ and . μ are real numbers. 
(c) . T is unitary and only if .|λ| = |μ| = 1. 

15. Let.T : Rn → R
n be defined by.T (v) = En

i=1 λi <v, ei >ei , where. {e1, e2, . . . , en}
is an orthonormal basis for .Rn and .λ1, λ2, . . . , λn ∈ R are some fixed scalars. 
Then show that 

(a) . T is normal. 
(b) . T is self-adjoint. 
(c) . T is unitary and only if .λi = 1 or .−1. 

16. Does there exists a linear map . T with .T T ∗ = I but .T ∗T /= I? 
17. Let .T be a linear map on a Hilbert space .H which is normal. If .T 2 = T , then 

show that . T is self-adjoint.
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18. Let. T be a normal operator on a finite-dimensional inner product space. V . Show 
that if. B is an orthonormal basis for. V , .T (B) is also an orthonormal basis for. V . 

19. Let .H be a complex Hilbert space and .T be a bounded linear operator on . H . 
Then show that there exists unique operators.T1, T2 on.H such that.T = T1 + iT2. 
Also, show that: 

(a) . T is normal if and only if .T1T2 = T2T1. 
(b) . T is self-adjoint if and only if .T2 = 0. 
(c) . T is unitary and only if .T1T2 = T2T1 and .T 2

1 + T 2
2 = I . 

20. Find the singular value decomposition of the following matrices 

a) .

|
4 0
3 −5

|
b) .

|
3 2 2
2 3 −2

|
c) .

⎡
⎣−3 1

6 −2
6 −2

⎤
⎦ d) . 

⎡
⎣ 1 −1 0

0 1 −1
−1 0 1

⎤
⎦

21. Show that .A ∈ Mm×n(R maps the 2-norm unit sphere in .Rn to an ellipsoid in 
.R

r , where .r ≤ min{m, n}. 
22. Show that if .A is a positive semi-definite matrix, then the singular values of . A

are the eigenvalues of . A. 
23. Let .A be a positive definite matrix with singular value decomposition . A =

uEo∗. Then show that .u = o. 
24. Let .A ∈ M2×2(R) be a fixed matrix. Show that .<u, v> = uT Av defines an inner 

product on .R
2 if and only if . A is positive definite. 

25. Let .A ∈ Mm×n(R) be a matrix with rank . r . Then show that 

(a) (Full-Rank factorization) There exists an.m × r matrix. P with full column 
rank and .r × n matrix .Q with full row rank such that .A = PQ. 

(b) .A† = Q∗(P∗AQ∗)P∗, where .P and .Q are as described in part .(a). 

26. Find the Psuedo inverse of each of the following matrices. 

(a) .

|
1 1 −1
1 1 −1

|
(b) .

⎡
⎣ 1 2

2 1
−1 2

⎤
⎦ (c) .

|
3 2 3
3 −2 3

|
(d) . 

⎡
⎣ 1 1 0 −1

0 1 −1 0
−1 0 1 1

⎤
⎦

27. Show that for every matrix . A: 
(a) .(A†)† = A (b) .(A∗)† = (A†)∗ (c) . (AT )† = (A†)T

Also, give example to show that for matrices . A and . B with .AB defined, . (AB)†

need not be equal to .B†A†. 
28. For each of the following system of equations; if the system is consistent, find 

the solution with minimum norm, otherwise, find the best approximation to a 
solution having minimum norm 

(a) 
. 2x1 + 3x2 − x3 + 2x4 = 5

. x1 + x2 + 2x3 − 2x4 = 7

.4x1 + 5x2 + 3x3 − 2x4 = 12
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(b) 
. x1 + 3x2 = 2

. 2x1 + x2 = 5

. x1 − 2x2 = 3

29. Suppose that a manufacturing company produces circular-shaped products. The 
company wants to ensure that the manufactured items match industrial require-
ments, therefore it employs sensors to capture the coordinates of numerous points 
on the perimeter of the manufacturing goods. Suppose we have the measured 
data 

. ((x1, y1), (x2, y2), . . . , (xn, yn)

where .n ≥ 4, with respect to any manufactured product of the company. We 
would like to fit a circle of the form 

. (x − a)2 + (y − b)2 = r2

to the observed data .(xi , yi ), i = 1, 2, . . . , n. Model this situation to a linear 
least square problem of the form.Ax = y. 

30. Fit a straight line to the given points by the method of least squares. 

(a) . (1, 2), (2, 5), (3, 3), (4, 8), (5, 7)
(b) . (−1, 0), (0, 2), (1, 4), (2, 5)
(c) . (0, 12), (1, 19), (2, 29), (3, 37), (4, 45)

31. Find a plane .x3 = a + bx1 + cx2, that best fits the following data; 

. (1,−1, 3), (2,−4, 5), (3, 8, 10), (2, 8, 12), (1, 6, 10)

32. Find a trigonometric curve .y = asin θ + bcos θ , which best fits the points 
.(θi , yi ), i = 1, 2, 3, 4 as given below. 

. 

(π

6
, 1
)

,
(π

4
,−1

)
,
(π

3
, 1
)

,

(
3π

4
,−1

)

33. Ohm’s law states that the voltage across a conductor is directly proportional to 
the current flowing through it, provided all physical conditions and temperature, 
remain constant. Mathematically, this relation is represented by.V = I R, where 
.V is the voltage across the conductor, . I is the current flowing through the con-
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ductor and . R is the resistance provided by the conductor to the flow of current. 
Estimate . R from the given data using least square approximation method. 

.I . V
3 162 
5 255 
7 360 
10 495 

34. Let .(X, d) be a metric space and. f : X → X be a contraction. Show that . f is a 
continuous function. 

35. Find the fixed points for the following functions. 

(a) . f : R → R defined by . f (x) = x3. 
(b) . f : R2 → R2 defined by . f (x, y) = (x, x2). 
(c) .T : R2 → R2 defined by .T (x, y) = (x, −y). 

36. Using Banach fixed point theorem, show that the equation. x3 + x2 − 6x + 1 = 0 
has a unique solution in the interval .[−1, 1]. 

37. (Newton-Raphson Method) Let. f : [a, b] →  R be a twice continuously differ-
entiable function and let. x̃ be a simple zero of. f in.(a, b). Show that the iteration 
defined by 

. xn+1 = g(xn), g(xn) = xn − 
f (xn) 
f '(xn) 

is a contraction on some neighborhood of . x̃ and it converges to . x̃ . 
38. Show that if in Theorem 6.26 if we use .d1 metric or .d2 metric instead of . d∞ 

metric, then we obtain the sufficient conditions given by 

. 

nE
i=1 

|ci j | < 1, ∀ j = 1, 2, . . .  n 

and 

. 

nE
i=1 

nE
j=1 

c2 i j  < 1, ∀ j = 1, 2, . . .  n 

respectively, for convergence of the iterative scheme (6.20). 
39. Consider the integral equations of the form 

. f (x) = λ
{ b 

a 
k(x, y) f (y)dy  + g(x) (6.26) 

where. f : [a, b] →  R is an unknown function,.k : [a, b] × [a, b] →  R is a given 
function with .|k(x, y)| ≤  α for all .(x, y) ∈ [a, b] × [a, b] and. λ is a parameter. 
Consider .C[a, b] with supremum norm. Define .T : C[a, b] →  C[a, b] by 
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. (T f  )(x) = λ
{ b 

a 
k(x, y) f (y)dy  + g(x) 

Now, solvability of (6.26) follows from the existence of fixed point of the operator 
. T . Show that . T is a contraction when .|λ| < 1 

α(b−a) . 
40. Set up .(i) Gauss–Jacobi .(i i  ) Gauss–Siedel iterative schemes for the following 

system of equations and compute the first four iterations. 

(a) . 

⎡ 

⎣6 1 2  
1 4 3  
2 1 8  

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
6 

−4 
8 

⎤ 

⎦ (b) . 

⎡ 

⎣4 1  2  
0 4  2  
4 5 10  

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣−3 
6 
11 

⎤ 

⎦ 

Solved Questions related to this chapter are provided in Chap. 12. 



Chapter 7 
Applications 

This chapter explores the numerous applications of linear algebra in diverse domains, 
demonstrating its tremendous impact on real-world problem-solving. Linear algebra 
is used in economics to support models of supply and demand, optimize resource 
allocation, analyze economic systems, etc. It facilitates the investigation of chem-
ical reactions in chemistry, which is critical for drug development and materials 
science. Linear algebra is essential in Markov processes, assisting in the model-
ing of stochastic systems, predicting future states, and studying phenomena such as 
population dynamics and financial markets. It is the foundation of circuit analysis 
and signal processing in electrical engineering, making it easier to build electronic 
systems. Furthermore, linear algebra is used in control theory to understand dynam-
ical systems and design control algorithms. These broad applications demonstrate 
linear algebra’s prevalence and versatility as a foundational tool for addressing com-
plicated challenges across a wide range of scientific and engineering disciplines, 
linking theory and practice. It has been shown that the general regression models can 
be implemented as a problem of finding the learning weights of an artificial neural 
network (ANN) with linear transfer functions. 

7.1 Applications Involving System of Equations 

A system of linear equations serves as a fundamental mathematical framework appli-
cable across numerous domains. These systems, consisting of multiple linear equa-
tions with common variables, are employed to model a wide array of real-world 
problems. Whether in economics, engineering, physics, or social sciences, solving 
systems of linear equations helps us make informed decisions, optimize processes, 
and understand complex relationships. Linear algebra provides powerful techniques 
for solving these systems, revealing unique solutions, infinite solutions, or incon-
sistency, depending on the underlying equations. This mathematical tool is indis-
pensable for problem-solving and decision-making in various fields, making it a 
cornerstone of applied mathematics. 
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R. K. George and A. Ajayakumar, A Course in Linear Algebra, University Texts in the 
Mathematical Sciences, https://doi.org/10.1007/978-981-99-8680-4_7 

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8680-4_7&domain=pdf
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7
https://doi.org/10.1007/978-981-99-8680-4_7


260 7 Applications

Fig. 7.1 Electrical circuit 

Electrical Circuit Problem 

Consider an electrical circuit as given in the following figure (Fig. 7.1). 
We have the following fundamental principles in electrical circuit theory to rep-

resent the given circuit: 

. • Kirchhoff’s Voltage Law—The voltage around a loop equals the sum of every 
voltage drop in the same loop for any closed network and equals zero. 

. • Kirchhoff’s Current Law—The total current entering a junction or a node is equal 
to the charge leaving the node as no charge is lost. 

Using the above laws, we have the following system of equations: 

. I1 + I2 − I3 = 0

4I1 + I3 = 8

4I2 + I3 = 16

This can be represented in the general form, .AX = B as 

. 

⎡
⎣
1 1 −1
4 0 1
0 4 1

⎤
⎦
⎡
⎣

I1
I2
I3

⎤
⎦ =

⎡
⎣
0
8
16

⎤
⎦

Solving this, we get .I1 = 1A, I2 = 3A and .I3 = 4A. 

Leontief Input–Output Models in Economics 

Soviet-American economist, Wassily Wassilyevich Leontief (1905–1999) employed 
matrices to simulate economic systems. His models, also known as input-output mod-
els, segment the economy into different sectors, each of which generates commodities 
and services both for itself and for other sectors. Because of their interdependence,
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the total input and total output are always equal. For his contributions in this area, 
he received the Nobel Prize in Economics in 1973. 

Closed Leontief Model: Leontief closed model is especially useful for understanding 
the relationships and dependencies within a self-contained economy. However, it 
does not take into account the external factors that can have an impact on demand. 
For example, consider an economy consisting of 3 industries, namely .A, B and 
. C . Suppose that each of the industries produces for internal consumption among 
themselves only. Suppose that, 

.• . A itself consumes 40% of its product and gives 40% to . B, and 20% to . C . 

.• . B itself consumes 30% of its product and gives 40% to . A, and 30% to . C . 

.• . C itself consumes 50% of its product and gives 30% to . A, and 20% to . B. 

The above data can be represented by the following table. 

Tabular representation of the data 

Proportion produced by.A Proportion pro-
duced by. B

Proportion pro-
duced by. C

Proportion used by.A 0.4 0.4 0.3 
Proportion used by.B 0.4 0.3 0.2 
Proportion used by.C 0.2 0.3 0.5 

We can observe that a matrix representation would be more convenient to represent 
this data. In the matrix form, it can be written as 

. N =
⎡
⎣
0.4 0.4 0.3
0.4 0.3 0.2
0.2 0.3 0.5

⎤
⎦

This matrix is called the input coefficient matrix. Now, suppose that .A, B and . C
gets paid .x, y and . z dollars, respectively. Let us now look at . A’s expenses. .A uses 
up 40% of its own production, that is, of the . x dollars he gets paid, .A pays itself 
.0.40x dollars, pays .0.40y dollars to the . B, and .0.30z to . C . As this economy is self 
contained, it can be modeled as 

.

⎡
⎣

x
y
z

⎤
⎦ =

⎡
⎣
0.4 0.4 0.3
0.4 0.3 0.2
0.2 0.3 0.5

⎤
⎦
⎡
⎣

x
y
z

⎤
⎦ (7.1) 

Observe that, if we denote .X =
⎡
⎣

x
y
z

⎤
⎦, we can write (7.1) in the form of a homoge-

neous system of linear equations as follows: 

. X − N X = (I − N )X = 0

Solving this, we get .x = 29
26α, y = 12

13α and .z = α, where .α ∈ R.
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Open Leontief Model: In an open economy, interactions occur not only between dif-
ferent sectors within the economy, but also with the rest of the world. This means that 
imports and exports, as well as internal sector interactions, are taken into account. For 
example, consider a simple economy, where there are only three sectors: Agriculture 
(A), Manufacturing (M), and Services (S). Suppose that 

. • Agriculture (A) requires 20% of its own output, 30% of Manufacturing’s output, 
and 10% of Services’ output as inputs. 

. • Manufacturing (M) requires 40% of Agriculture’s output, 20% of its own output, 
and 20% of Services’ output as inputs. 

. • Services (S) requires 10% of Agriculture’s output, 30% of Manufacturing’s output, 
and 40% of its own output as inputs. 

Then the input coefficient matrix is, 

. N =
⎡
⎣
0.2 0.3 0.1
0.4 0.2 0.2
0.1 0.3 0.4

⎤
⎦

Let the final demand values be; Agriculture(A)-$30 million, Manufacturing 
(M)-$50 million and Services (S)-$70 million. Denote the final demand values by 

the vector.Y =
⎡
⎣
30
50
70

⎤
⎦. “Final demand” denotes the external demand for the output of 

each sector, which originates from sources outside the modeled economy. It indicates 
the entire amount of products and services that are used up outside of the sectors that 
are being analyzed through consumption, investment, or other means. For example, 
spending on agricultural products by consumers, businesses, and government bodies 
that are not part of the Agriculture sector itself could be included in the final demand 
for Agriculture. 

Let .X =
⎡
⎣

X A

X M

X S

⎤
⎦ represent the equilibrium outputs of the sectors in the Leontief 

model. These variables represent optimum output levels for each sector that meet 
both internal input-output relationships and external final demand. Then we can set 
up the equations in the form as follows: 

.

⎡
⎣

X A

X M

X S

⎤
⎦ =

⎡
⎣
0.2 0.3 0.1
0.4 0.2 0.2
0.1 0.3 0.4

⎤
⎦
⎡
⎣

X A

X M

X S

⎤
⎦+

⎡
⎣
30
50
70

⎤
⎦ (7.2) 

We can see that, (7.2) can be re-written in the form of a system of linear equations 
as follows: 

.(I − N )X = Y
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Then 
. X = (I − N )−1Y

Solving this system of equations gives us the equilibrium outputs for each sector: 

. X =
⎡
⎣
138.2353
190.3361
234.8739

⎤
⎦ .

Some Problems in Chemistry 

Now, let us give you some problems in Chemistry involving a system of linear 
equations. 

Example 7.1 A chemical substance is created by combining three separate con-
stituents, A, B, and C. Before they may interact to form the chemical, A, B, and C 
must be dissolved in water separately. Suppose that a .2.6 g/cm3 solution of A cou-
pled with a .2.7 g/cm3 solution of B combined with a .3.7 g/cm3 solution of C yields 
.21.2 g/cm3 of the chemical. If the percentages of A, B, and C in these solutions 
are altered to .2.4 g/cm3, .3.75 g/cm3, and .4 g/cm3 respectively (keeping the volumes 
same), .22.7 g/cm3 of chemical is produced. Finally, .23.6 g/cm3 of chemical is pro-
duced if the proportions are .2.75 g/cm3, .3.4 g/cm3, and .3.85 g/cm3, respectively. 
Suppose that we have to find the volumes of the solutions containing A, B, and C. 
How will you proceed? Again, the techniques of linear algebra come in handy. The 
above scenario can be represented as, 

. 2.6A + 2.7B + 3.7C = 21.2

2.4A + 3.75B + 4C = 22.7

2.75A + 3.4B + 3.85C = 23.6

which can be converted into the form .AX = B, where .A =
⎡
⎣
2.6 2.7 3.7
2.4 3.75 4
2.75 3.4 3.85

⎤
⎦ and 

.B =
⎡
⎣
21.2
22.7
23.6

⎤
⎦. Solving, we get A. = 5.0403.cm3, B. = 2.2281.cm3 and C. = 0.5620.cm3. 

Another instance of employing a system of linear equations can be found in the 
balancing of chemical equations. When considering chemical reactions, we want 
to look at how much of each element was there at the start and how much of each 
element is present in the end result.
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Example 7.2 Consider the combustion reaction of Isooctane.(C8H18) given by 

.C8H18 + O2 → CO2 + H2O (7.3) 

Carbon dioxide and water are produced as a result of the combustion of Isooctane. 
Now, the question is, What exactly is a balanced chemical equation? A balanced 
chemical equation is a description of a chemical reaction that indicates the relative 
quantities of reactants and products involved in the reaction using chemical formulas 
and symbols. The phrase “balanced” denotes that the equation follows the law of 
conservation of mass, which stipulates that matter in a chemical reaction cannot be 
generated or destroyed, just rearranged. For an equation to be balanced, the following 
conditions must be met: 

.• The number of atoms of each element on the left side of the equation must be 
equal to the number of atoms of the same element on the right side. 

.• The total mass of the reactants must be equal to the total mass of the products. 

We can see that (7.3) is not balanced, for the number of carbon, hydrogen, and 
oxygen atoms on the right side of the equation is not the same as the number of 
carbon, hydrogen, and oxygen atoms on the left side of the equation. To balance the 
equation, re-write (7.3) as  

.xC8H18 + yO2 → zCO2 + wH2O (7.4) 

Then, we have 

. 8x = z

18x = 2w

2y = 2z + w

which implies 

. 8x − z = 0

18x − 2w = 0

2y − 2z − w = 0

This can be written in the form of .AX = B as 

.

⎡
⎣
8 0 −1 0
8 0 0 −2
0 2 −2 −1

⎤
⎦

⎡
⎢⎢⎣

x
y
z
w

⎤
⎥⎥⎦ =

⎡
⎣
0
0
0

⎤
⎦
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Solving, we get .x = α, y = 25
2 α, z = 8α and .w = 9α. If we take  .α = 2, we get 

.y = 25, z = 16 and .w = 18. Clearly, 

. 2C8H18 + 25O2 → 16CO2 + 18H2O

is a balanced chemical equation for (7.4). 

Traffic Flow 

Consider a traffic network as given in the following figure. The streets are all one-
way, with arrows showing the traffic flow direction. The traffic flow in and out is 
measured in units of vehicles per hour.(v/h). Let us construct a mathematical model 
to analyze this network (Fig. 7.2). 

The traffic at junction . A can be represented by .x1 + x2 = 525. Similarly, 
at junction . B, .x1 + x4 = 375. 
at junction . C , .x3 + x4 = 700. 
at junction . D, .x2 + x3 = 850. 

Fig. 7.2 Traffic network
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This can be modeled into the form.AX = B as 

. 

⎡
⎢⎢⎣
1 1 0 0
1 0 0 1
0 0 1 1
0 1 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
525
375
700
850

⎤
⎥⎥⎦

and it can be reduced into 

. 

⎡
⎢⎢⎣
1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
375
150
700
0

⎤
⎥⎥⎦

Clearly, the system has an infinite number of solutions. This implies here that there 
are an infinite number of possible traffic flows. There are certain options available to 
drivers at intersections. As you can see, a driver has two options at junction. A. Same 
at other intersections as well. 

This model can be used to analyze and obtain more information about the traffic 
flow. Suppose Street 3 needs to undergo a mandatory road maintenance. Then, it 
would be preferable if street 3 had the least amount of traffic feasible. That is, . x3
must be as small as possible. The question that arises then becomes, what is the 
smallest value of .x3 that will not cause traffic congestion? As the streets are all one-
way, all the traffic flows should be non-negative. Now, from the reduced form, we 
can see that 

. x3 + x4 = 700

which implies that .x3 is minimum when .x4 is maximum. From the first and second 
equations in the reduced form, we can see that the maximum value of . x4, without. x1
and.x2 being negative, is.375. Therefore, the minimum value of.x3 is.325. That is, any 
road repair work on Street 3 should be done only after the appropriate arrangements 
for a traffic flow of .325v/h have been made. 

7.2 Cryptography 

In an increasingly interconnected digital world, providing secure communication and 
data security through the use of matrices in cryptography is essential. The translation 
of plain text into ciphertext and vice verse is made possible by the use of matrices, 
which provide the mathematical foundation for a wide variety of encryption and 
decryption procedures. Matrix-based encryption techniques, such as the Hill Cipher, 
which uses matrices to describe the encryption process, and more recent algorithms 
like the Advanced Encryption Standard (AES), which uses matrices to manipulate 
data blocks, all significantly influence cryptographic strategies. Matrix-based codes
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Fig. 7.3 Encryption and decryption process 

Table 7.1 Numbers assigned to English alphabets 

A B C D E F G H I J K L M 

1 2 3 4 5 6 7 8 9 10 11 12 13 

N O P Q R S T U V W X Y Z 

14 15 16 17 18 19 20 21 22 23 24 25 26 

are used in public-key cryptography to create secure key pairs, and by error detection 
and correction methods to protect data integrity (Fig. 7.3). 

In this section, we look at a matrix multiplication and matrix inverse-based encryp-
tion technique. Lester S. Hill (1896–1961), a math professor who worked on military 
encryption and lectured at various US institutions, developed this technique, which 
is referred to as the Hill Algorithm. Modern mathematical theory and techniques 
entered the realm of cryptography with the development of the Hill algorithm. The 
Hill Algorithm is no longer regarded as a safe encryption technique because it is 
extremely simple to defeat using current technology. However, contemporary com-
puting technology did not exist in 1929 when it was created. With hand computations, 
this procedure was too time-consuming to employ but is simple to use with today’s 
technology. The secret message is first encoded by randomly assigning a number to 
each letter, creating an integer string. Let’s encrypt the phrase “LINEAR ALGEBRA” 
by allocating a position number to each letter of the alphabet. A space is represented 
by the number 27, and punctuation is ignored (Table 7.1). 

We divide the message’s letters into two-letter groups as follows: 

. L I N E AR _A LG B E R A

We assign the numbers from the above table to these letters and turn each pair of 
numbers into .2 × 1 matrices.
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. 

|
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|
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|
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|
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|
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|
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R

|
=
|
1
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|
,

|
_
A

|
=
|
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1

|
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. 

|
L
G

|
=
|
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7

|
,

|
E
B

|
=
|
5
2

|
,

|
R
A

|
=
|
18
1

|

So, at this point, our message is expressed using .2 × 1 matrices as follows: 

.

|
12
9

|
,

|
14
5

|
,

|
1
18

|
,

|
27
1

|
,

|
12
7

|
,

|
5
2

|
,

|
18
1

|
(7.5) 

The next step is to multiply this string of numbers by an inverse square matrix of 
our choice in order to create a new set of numbers. The coded message is represented 

by this new set of digits. In this, let us consider the matrix.

|
2 5
1 3

|
. Then, our first pair 

.

|
L
I

|
will be represented by 

. 

|
2 5
1 3

| |
12
9

|
=
|
69
39

|

Multiplying each .2 × 1 message in (7.5), our message can be encrypted as follows, 

.

|
69
39

|
,

|
53
29

|
,

|
92
55

|
,

|
59
30

|
,

|
59
33

|
,

|
20
11

|
,

|
41
21

|
(7.6) 

To convert them into the alphabet form, we have to use the .mod(27) arithmetic. 
Then, the matrices in (7.6), will be of the form 

.

|
15
12

|
,

|
26
2

|
,

|
11
1

|
,

|
5
3

|
,

|
5
6

|
,

|
20
11

|
,

|
14
21

|
(7.7) 

and the encoded message is “QMACNCGDGGTKOU”. The matrix.

|
2 5
1 3

|
is the key 

to this encoded message. Let us decode this message. For decoding, we will use the 

inverse of the key matrix, given by .

|
3 −5

−1 2

|
. Let us multiply each .2 × 1 matrix in 

(7.7) by the inverse of the key matrix. Then, we obtain the following matrices, 

.

|−15
9

|
,

|
68

−22

|
,

|
28
−9

|
,

|
0
1

|
,

|−15
7

|
,

|
5
2

|
,

|−63
28

|
(7.8) 

Applying.mod(27) arithmetic on (7.8), we will get back our original message(verify). 
Also, try to encode this message using a .3 × 3 matrix as key and then decode it.



7.3 Markov Process 269

7.3 Markov Process 

A Markov chain or Markov process is a stochastic model that illustrates a series 
of potential occurrences where the likelihood of each event is solely determined 
by the state it reached in the preceding event. Numerous real-world processes can 
be statistically modeled using Markov chains, including the dynamics of animal 
populations, queues or lines of passengers at airports, and cruise control systems in 
automobiles. In computer science, physics, biology, economics, and finance Markov 
chains are crucial tools for comprehending, describing, and forecasting occurrences. 
It is named after the Russian mathematician Andrey Andreyevich Markov (1856– 
1922). 

Markov processes are concerned with the fixed probabilities of transitioning 
between a finite number of states. We start by defining probability vector and then 
probability transition matrix/stochastic matrix. 

Definition 7.1 A probability vector .p =
⎡
⎢⎣

p1
...

pn

⎤
⎥⎦ is a vector with each component 

.pi ≥ 0 and the sum of components equal to one. That is, .
En

i=1 pi = 1. 

Definition 7.2 Amatrix.M = |mi j
|

n×n with real entries is called a stochastic matrix 
or probability transition matrix provided that each column of .M is a probability 
vector, where .mi j denote the probability of transition from the . j th state to the . i th
state. As the total probability of transition from the state . j to any other state is 1, 
.0 ≤ mi j ≤ 1 and .

En
i=1 mi j = 1. That is, each column sum of .M is 1. 

Let .M = |mi j
|

n×n be a stochastic matrix and .xq =
⎡
⎢⎣

xq
1
...

xq
n

⎤
⎥⎦ denote the state of the 

system at time. q. Assume that.xq denote the amount of some materials spread among 
. n states. Then,.xq

i denote the amount of material in.i th state at time. q. The transition 
of material from the . j th state at time 0 to the .i th state at time 1 is given by .mi j x0

j . 
Then the total amount of material at the .i th state would be the sum of the material 
from all the states to state . i . That is, 

. x1
i =

nE
j=1

mi j x
0
j

Therefore, we have 
. x1 = Mx0

and in general, we can write 
.xq = Mxq−1
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As the amount of material at each state. i at time. q depends on the amount of material 
in . i at the time .q − 1, this can also be represented as, 

. xq = Mq x0

Clearly, we can observe that the total amount of material at time . q is the same as at 
time .q − 1. For,  

. 

nE
i=1

xq
i =

nE
i=1

⎛
⎝

nE
j=1

mi j x
q−1
j

⎞
⎠

=
nE

j=1

(
nE

i=1

mi j

)
xq−1

j

and as.
En

i=1 mi j = 1, we get.
En

i=1 xq
i =En

j=1 xq−1
i . Let this amount be denoted by 

. α. Then the proportion of the material in the .i th state at time . q is given by, 

. pq
i = xq

i

α

Then the probability vector at time . q is, 

. pq =
⎡
⎢⎣

pq
1
...

pq
n

⎤
⎥⎦ = 1

α

⎡
⎢⎣

xq
1
...

xq
n

⎤
⎥⎦ = 1

α
xq

Also, 

. pq
i = 1

α
xq == 1

α
Mxq−1 = M

(
1

α
xq−1

)
= Mpq−1

That is, the probability vectors also transform through multiplication by the matrix 
. M . For a stochastic matrix. M , the transformation.pq = Mpq−1 on probability vectors 
is called a Markov process. A  Markov Chain is the sequence of iterates. pq = Mq p0

obtained for a given initial probability vector, .p0. 

Example 7.3 Let’s consider an example of a Markov chain representing the weather 
states, sunny,cloudy and rainy. The transition probabilities are defined as follows; 

.• If it’s sunny today, there’s a 70% chance it will be sunny tomorrow, a 20% chance 
it will be cloudy, and a 10% chance it will be rainy. 

.• If it’s cloudy today, there’s a 50% chance it will be cloudy tomorrow, a 30% 
chance it will be sunny, and a 20% chance it will be rainy. 

.• If it’s rainy today, there’s a 60% chance it will be rainy tomorrow, a 20% chance 
it will be cloudy, and a 20% chance it will be sunny.
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We can represent this Markov chain with a transition probability matrix, 

. M =
⎡
⎣
0.7 0.3 0.2
0.2 0.5 0.2
0.1 0.2 0.6

⎤
⎦

Now, consider the initial condition.x0 =
⎡
⎣
1
0
0

⎤
⎦, which means that initially the weather 

state is sunny with 100% certainty, and the probabilities of rainy and cloudy are both 
zero. Then, for day 1, we have 

. x1 = Mx0 =
⎡
⎣
0.7 0.3 0.2
0.2 0.5 0.2
0.1 0.2 0.6

⎤
⎦
⎡
⎣
1
0
0

⎤
⎦ =

⎡
⎣
0.7
0.2
0.1

⎤
⎦

So the likelihood of a sunny day is 0.7, a cloudy day is 0.2, and a rainy day is 0.1 
the following day. For day 2, we have 

. x2 = Mx1 =
⎡
⎣
0.7 0.3 0.2
0.2 0.5 0.2
0.1 0.2 0.6

⎤
⎦
⎡
⎣
0.7
0.2
0.1

⎤
⎦ =

⎡
⎣
0.57
0.26
0.17

⎤
⎦

and for day 3, 

. x3 = Mx2 =
⎡
⎣
0.7 0.3 0.2
0.2 0.5 0.2
0.1 0.2 0.6

⎤
⎦
⎡
⎣
0.57
0.26
0.17

⎤
⎦ =

⎡
⎣
0.511
0.278
0.211

⎤
⎦

proceeding like this, for day 14, we have 

. x14 = Mx13 =
⎡
⎣
0.7 0.3 0.2
0.2 0.5 0.2
0.1 0.2 0.6

⎤
⎦
⎡
⎣
0.4572
0.2857
0.2571

⎤
⎦ =

⎡
⎣
0.4572
0.2857
0.2571

⎤
⎦

That is, the sequence of vectors have converged to the vector.

⎡
⎣
0.4572
0.2857
0.2571

⎤
⎦. This vector 

is called the steady state vector. The steady state vector in this example indicates 
the equilibrium distribution of the weather. It informs us how much of the time we 
can expect the weather to be sunny, cloudy, or rainy in the long run, providing the 
transition probabilities remain constant. 

From the above example, we can observe that the steady state vector is the eigen-
vector corresponding to the eigenvalue 1 (Clearly, 1 is an eigenvalue of .M as the 
column sum of .M is 1).
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Page Rank Algorithm 

Page Rank is an algorithm created by Google founders Larry Page and Sergey Brin 
to rank web pages in search engine results. It transformed the way search engines 
give relevant and authoritative results by utilizing the structure of the web graph and 
linear algebra concepts. 

The internet is modeled as a directed graph in the context of Page Rank, which 
is commonly referred to as the “web graph”. In the graph, web sites are represented 
as nodes, while connections between pages are represented as directed edges. Each 
link from page A to page B represents a vote of confidence or recommendation from 
page A to page B. Page Rank simulates the behavior of a random online surfer who 
navigates the web graph by clicking on hyperlinks using a Markov chain model. The 
web surfer begins on a random website and, at each step, either follows a hyperlink 
on the current page or, with a given chance, teleports to a random page. This random 
surfer model is based on the idea that users frequently navigate across online sites by 
clicking on links.A transition probability matrix is created to quantitatively depict the 
unpredictable movement of the surfer. Based on the hyperlinks, this matrix depicts 
the odds of navigating from one page to another. Each row of the matrix represents 
a source page, while each column represents a destination page. The entries of this 
matrix represent the likelihoods of transiting from the source page to each destination 
page. Finding the stationary distribution of the Markov chain, which depicts the long-
term probability of the arbitrary surfer being on each web page, is the key to Page 
Rank Algorithm. This stationary distribution corresponds to the Page Rank scores 
of the pages. The Page Rank vector is the dominant eigenvector of the transition 
probability matrix, with an eigenvalue 1. 

In Summary, the Page Rank Algorithm uses linear algebra principles, namely 
eigenvectors, eigenvalues, and matrix operations, to rank online sites based on their 
relevance and authority within the linked web graph. This sophisticated method illus-
trates how linear algebra may be used to solve real-world challenges in information 
retrieval and ranking. 

7.4 Coupled Harmonic Oscillators 

Let’s now give you an illustration of how eigenvalues and eigenvectors can be 
employed in real-life applications. Consider an oscillator as shown in the figure 
(Fig. 7.4). 

Two bodies of mass. m are coupled by springs with spring constants. k and slide on 
a smooth plane. The .x1 and .x2 displacements are measured from their equilibrium 
positions and are positive when to the right.Hooke’s law andNewton’s laws of motion, 
when combined with these conventions, yield the differential equations given below.
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Fig. 7.4 Coupled Harmonic oscillators 

.
mẍ1 = −kx1 + k(x2 − x1) = k(x2 − 2x1)

mẍ2 = −k(x2 − x1) − kx2 = k(x1 − 2x2)
(7.9) 

This can be written as 

.

|
ẍ1
ẍ2

|
= k

m

|−2 1
1 −2

| |
x1
x2

|
(7.10) 

In this case, since there is no damping, we choose a purely oscillatory solution as we 
have seen in Sect. 4.1. Let  

. 

|
x1(t)
x2(t)

|
=
|
μ1eiαt

μ2eiαt

|

be a solution of (7.10). Then 

.

|
ẍ1
ẍ2

|
= −α2

|
μ1eiαt

μ2eiαt

|
= −α2

|
x1
x2

|
(7.11) 

From (7.10) and (7.11), we have 

. 
k

m

|−2 1
1 −2

| |
x1
x2

|
= −α2

|
x1
x2

|

Clearly, this is an eigenvalue problem .Ax = λx , where .A = k

m

|−2 1
1 −2

|
and 

.λ = −α2. 

Now, let’s find the value of . α when .m = k = 1. Then, we have .A =
|−2 1
1 −2

|
. 

Clearly, the eigenvalues of . A are .−1 and.−3 with respective eigenvectors . v1 =
|
1
1

|

and .v2 =
|
1

−1

|
. Therefore, .α2 = 1 or .α2 = 3 and the general solution is
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. x(t) = c1v1eit + c2v1e−i t + c3v2e
√
3t + c4v2e−√

3t

=
|

c1eit + c2e−i t + c3e
√
3t + c4e−√

3t

c1eit + c2e−i t − c3e
√
3t − c4e−√

3t

|
.

7.5 Satellite Control Problem 

Linear algebra is an essential building block in control theory, supporting the analysis 
and design of dynamic systems for a variety of applications. It provides a strong math-
ematical framework for modeling, interpreting, and managing systems that evolve 
over time. Linear algebra allows us to formulate complicated systems as matrices 
and vectors using ideas such as state-space representation, matrix transformations, 
and eigenvalue analysis. This, in turn, makes it easier to investigate system stabil-
ity, controllability, observability, and performance. The impact of linear algebra is 
profound, whether designing control algorithms for aerospace, robotics, industrial 
processes, or economic systems, as it enables control theorists to harness the elegance 
of matrices and eigenvectors to unravel the intricate behavior of dynamic systems, 
paving the way for sophisticated control strategies that improve stability, optimize 
performance, and achieve desired outcomes. Let us give you an example. Consider 
a satellite revolving around the earth. Due to various forces, a satellite injected into 
orbit may slightly deviate from the predicted orbit or alter orientation. To correct the 
deviation, the satellites include built-in control mechanisms in the form of thrusters 
in the radial and tangential directions. 

Consider a satellite of unit mass orbiting around the earth under inverse square 
law field. It is convenient to choose polar coordinates, with .r(t) the radius from the 
origin to the mass, and .θ(t) the angle from.x- axis. We can assume that the satellite 
has thrusting capacity with radial thrust .u1(t) and tangential thrust .u2(t) (Fig. 7.5). 

Then by Newton’s law, the equations of motion have the form 

.

d2r

dt2
= r(t)

(
dθ

dt

)2

− β

r2(t)
+ u1(t)

d2θ

dt2
= − 2

r(t)

dθ

dt

dr

dt
+ u2(t)

r(t)

(7.12) 

With .u1 = u2 = 0, and the initial conditions .r(0) = σ, ṙ(0) = 0, θ(0) = 0 and 

.θ̇ (0) = ω, where .ω =
(

β

σ 3

) 1
2
, the coupled Eq. (7.12) have solutions given by 

.
r(t) = σ

θ(t) = ωt
(7.13)
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Fig. 7.5 A unit mass.m in 
gravitational orbit 

If we make the following change of variables, 

. x1 = r − θ, x2 = ṙ , x3 = σ(θ − ωt), x4 = σ(θ̇ − ω)

Equation (7.12) will reduce to the form; 

.

⎡
⎢⎢⎣

dx1
dt

dx2
dt

dx3
dt

dx4
dt

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2
(x1 + σ)

( x4
σ

+ ω
)2 − β

(x1+σ)2
+ u1

x4
−2σ

( x4
σ

+ ω
) x2

(x1+σ)
+ u2σ

(x1+σ)

⎤
⎥⎥⎦ (7.14) 

This is a system of non-linear ordinary differential equations involving the forcing 
functions (controls) .u1 and. u2, which can be represented in compact vector notation 
as follows: 

.
dx

dt
= f (x, u), x(t) ∈ R

4, u(t) ∈ R
2 (7.15) 

Here . f is a vector with components . f1, . f2, . f3, . f4 given by 

. 

⎡
⎢⎢⎣

f1(x1, x2, x3, x4, u1, u2)

f2(x1, x2, x3, x4, u1, u2)

f3(x1, x2, x3, x4, u1, u2)

f4(x1, x2, x3, x4, u1, u2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x2
(x1 + σ)

( x4
σ

+ ω
)2 − β

(x1+σ)2
+ u1

x4
−2σ

( x4
σ

+ ω
) x2

(x1+σ)
+ u2σ

(x1+σ)

⎤
⎥⎥⎦

We now linearize the non-linear system about the zero equilibrium solution to obtain 
the system in the form .ẋ(t) = Ax(t) + Bu(t). By linearizing the function . f (x, u), 
about .x = 0, u = 0, we have
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. f̂ (x, u) = f '
x (0, 0)x + f '

u(0, 0)u = Ax + Bu

where, 

.A = f '
x (0, 0) =

⎡
⎢⎢⎢⎣

∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4

⎤
⎥⎥⎥⎦

(0,0)

=

⎡
⎢⎢⎣

0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0

⎤
⎥⎥⎦ (7.16) 

and 

.B = f '
u(0, 0) =

⎡
⎢⎢⎢⎣

∂ f1
∂u1

∂ f1
∂u2

∂ f2
∂u1

∂ f2
∂u2

∂ f3
∂u1

∂ f3
∂u2

∂ f4
∂u1

∂ f4
∂u2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ (7.17) 

Here, . σ is normalized to 1. The representation of the system in the form 

.ẋ(t) = Ax(t) + Bu(t) (7.18) 

is called the state-space representation. Dynamical systems can often be seen in state-
space form, with the behavior of the systems described by a set of linear differential 
equations. The state vector indicates the internal variables of the system, and matrices 
describe how these variables change over time. This is a time-invariant linear system 
and the matrix.eAt forms the state transition matrix of the linear homogeneous system. 
Now, by using the variation of parameter method the solution of (7.18) with initial 
condition .x(t0) = x0 can be written in the form; 

.x(t) = eA(t−t0)x0 +
{ t

t0

eA(t−τ) Bu(τ )dτ. (7.19) 

Computation of . eAt

Computation of state transition matrix in the form of the exponential of a square 
matrix is a key concept in linear algebra which have wide applications in solving dif-
ferential equations, analyzing dynamic systems, and understanding transformations 
induced by matrices on vectors in diverse fields. It involves extending the notion of 
exponential function from numbers to matrices through a power series expansion: 

.eAt := I + A + 1

2! A2 + · · · + 1

n! An + · · · (7.20)
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This expansion parallels the Taylor series for the regular exponential function. In 
practice, the matrix exponential calculation can be challenging, especially for bigger 
matrices. It can be computed quickly and precisely with the aid of methods like 
matrix diagonalization and Jordan form. 

We know that if the matrix. A is diagonalizable, then there exists a matrix .P such 
that, 

. A = P D P−1

where, .D is a diagonal matrix containing eigenvalues of . A. Then, 

. eAt = I + At + t2

2! A2 + · · · + tn

n! An + · · ·

= I + P D P−1t + t2

2! P D2P−1 + · · · + tn

n! P Dn P−1 + · · ·

= P

|
I + Dt + t2

2! D2 + · · · + tn

n! Dn + · · ·
|

P−1

= PeDt P−1

That is, if . A is diagonalizble, we can compute .eA in a simple manner. This can also 
be generalized as follows. From Exercise 27, Chap. 4 we know that for any real. n × n
matrix . A, there exists a matrix .P consisting of generalized eigenvectors of . A, such 
that.A = S + N where.S = P−1diag{λ1, . . . , λn}P and.N is a nilpotent matrix. By 
using this representation, we can write 

. eAt = |Pdiag
{
eλ1t , . . . , eλn t

}
P−1

| |
I + Nt + N 2t2

2! + · · · + N k−1t k−1

(k − 1)!
|

(7.21) 
Using this formula, let us compute the state transition matrix for the satellite system 
discussed above. We can observe that the eigenvalues of .A are .0, 0,±iω and . A
is not diagonalizable. The eigenvectors corresponding to the eigenvalue .λ = 0 are 
.
(
1, 0, 0,− 3ω

2

)
and .(0, 0, 1, 0) and the eigenvectors corresponding to the complex 

eigenvalues .λ = ±iω are .(1, 0, 0, 2ω) and .(0, ω, 2, 0). This gives, 

. P =

⎡
⎢⎢⎣

1 0 1 0
0 0 0 ω

0 1 0 2
− 3ω

2 0 −2ω 0

⎤
⎥⎥⎦ and P−1 =

⎡
⎢⎢⎣

4 0 0 2
ω

0 − 2
ω
1 0

−3 0 0 − 2
ω

0 1
ω

0 0

⎤
⎥⎥⎦

and hence, 

.N = A − S = A − P−1diag{0, 0, iω,−iω}P =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

−6ω 0 0 −3
0 0 0 0

⎤
⎥⎥⎦
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Then we can compute .eA(t−t0) as 

. 

⎡
⎢⎢⎣

4 − 3cos ω(t − t0)
1
ω

sin ω(t − t0) 0 2
ω

(1 − cos ω(t − t0))
3ωsin ω(t − t0) cos ω(t − t0) 0 2sin ω(t − t0)

−6ω(t − t0) + 6sin ω(t − t0)
2
ω
[cos ω(t − t0) − 1] 1 4

ω
sin ω(t − t0) − 3(t − t0)

6ω [cos ω(t − t0) − 1] −2sin ω(t − t0) 0 4cos ω(t − t0) − 3

⎤
⎥⎥⎦

Now, let us define the controllability of a dynamical system. 

Controllability of Linear Systems 

The concept of controllability analysis is crucial in the study of dynamical systems. It 
considers whether a system can be steered from an arbitrary initial state to any desired 
final state using appropriate control inputs within a given time frame. Controllability 
in linear systems is governed by the qualities of the system’s state matrix and control 
matrix. A system is considered controllable if the reachable states can span its state 
space under the effect of control inputs. This feature is critical in engineering and 
control theory because it underpins the design and execution of successful control 
techniques for a wide range of applications, including robotics and aerospace, as 
well as economics and chemical processes. Let us give a formal definition for con-
trollability first and then we will discuss on the conditions that are used to verify the 
controllability of a dynamical system. 

Definition 7.3 (Controllability) The system.ẋ(t) = Ax(t) + Bu(t)with initial con-
dition .x(t0) = x0 is said to be controllable in the interval .[t0, t1] if for every 
.x0, x1 ∈ R

n there exists a control input .u ∈ L2 ([t0, t1];Rm) such that the corre-
sponding solution starting from.x(t0) = x0 also satisfies .x(t1) = x1. 

From Eq. 7.19 it follows that the system (7.18) is controllable if and only if there 
exists a control function .u ∈ L2([t0, t1];Rm) such that 

. x(t1) = x1 = eA(t1−t0)x0 +
{ t1

t0

eA(t1−τ) Bu(τ )dτ

That is, 

. x1 − eA(t1−t0)x0 =
{ t1

t0

eA(t1−τ) Bu(τ )dτ

If we take.x1 − eA(t1−t0)x0 = w, system  (7.18) is controllable if and only if . ∀w ∈ R
n

there exists a control function .u ∈ L2([t0, t1];Rm) such that 

.w =
{ t1

t0

eA(t1−t0) Bu(τ )dτ
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Define an operator .C : L2([t0, t1] : Rm) → R
n by 

.Cu =
{ t1

t0

eA(t1−τ) Bu(τ )dτ (7.22) 

Observe that. C is a bounded linear operator(Verify!) and system (7.18) is controllable 
if and only if .Cu = w has a solution for every .w ∈ R

n . That is, controllability of 
system (7.18) is equivalent to the ontoness of the operator. C . The operator. C defines 
its adjoint .C∗ : Rn → L2([t0, t1] : Rm) in the following way: 

. <Cu, v>Rn = <
{ t1

t0

eA(t1−τ) Bu(τ )dτ, v>
Rn

=
{ t1

t0

<eA(t1−τ) Bu(τ ), v>
Rn

dτ

=
{ t1

t0

<u(τ ), BT eAT (t1−τ)v>
Rn

dτ

= <u(τ ), BT eAT (t1−τ)v>L2

= <u, C∗v>L2

That is, 
.(C∗v)(τ ) = BT eAT (t1−τ)v (7.23) 

The following theorem explains the relation between controllability of the system 
(7.18) with the operators . C and .C∗. 

Theorem 7.1 System (7.18) is controllable if and only if one of the following is 
satisfied. 

(a) the operator . C is onto. 
(b) the operator . C∗ is onto. 
(c) the Gramian matrix 

. W (t0, t1) = CC∗ =
{ t1

t0

eA(t1−τ) B BT eAT (t1−τ)dτ

is non-singular. 

Thus, we have observed that system (7.18) is controllable if and only if there 
exists a control function .u ∈ L2([t0, t1];Rm) such that 

.w = Cu =
{ t1

t0

eA(t1−τ) Bu(τ )dτ
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By Cayley–Hamilton Theorem, we can write the above equation as 

. w =
{ t1

t0

|P0(τ )In + P1(τ )A + · · · + Pn−1(τ )An−1
|

Bu(τ )dτ,∀w ∈ R
n

= |B AB . . . An−1B
|

⎡
⎢⎢⎢⎢⎣

{ t1
t0
P0(τ )u(τ )dτ{ t1

t0
P1(τ )u(τ )dτ

...{ t1
t0
Pn−1(τ )u(τ )dτ

⎤
⎥⎥⎥⎥⎦

where.Pi (τ ), i = 1, 2, . . . , n − 1 are polynomial functions that appears in the expan-
sion of .eA(t1−τ). Thus, we can say that system (7.18) is controllable if and only if 
.R (|B AB . . . An−1B

|) = R
n . that is, if and only if . Rank

(|
B AB . . . An−1B

|) =
n. This result is proposed by the Hungarian-American electrical engineer and math-
ematician Rudolf Emil Kalman (1930–2016) and is known as Kalman’s Rank Con-
dition for controllability. 

Theorem 7.2 (Kalman’s Rank Condition) System (7.18) is controllable if and only 
if the controllability matrix 

. Q = [B | AB | A2B | · · · | An−1B]

has full rank; that is, .Rank(Q) = n. 

Now, suppose that there exists a vector .v ∈ R
n such that .v A = λv and .vB = 0. 

Then observe that 
. v
|
B AB . . . An−1B

| = 0

and hence .Rank
(|

B AB . . . An−1B
|)

< n which implies that system (7.18) is not 
controllable. Thus for the controllability of system (7.18), no vector .v ∈ R

n with 
.v A = λv should be orthogonal to the columns of . B. This method is known after the 
mathematicians Vasile M. Popov (1928-), Vitold Belevitch (1921–1999) and Malo L. 
J. Hautus (1940–). 

Theorem 7.3 System (7.18) is controllable if and only if one of the following is 
satisfied. 

(a) PBH Rank Condition: .Rank[s In − A, B] = n, ∀ s ∈ C. 
(b) PBH Eigenvector Condition: the relationship .vT A = λvT implies .vT B /= 0, 

where . v is a left eigenvector of . A associated with the eigenvalue . λ. 

Using Theorem 7.2, we can verify the controllability of the satellite system. The 
controllability matrix .Q for the given satellite system is 

.

⎡
⎢⎢⎣
0 0 1 0 0 2ω −ω2 0
1 0 0 2ω −ω2 0 0 −2ω3

0 0 0 1 −2ω 0 0 −4ω2

0 1 −2ω 0 0 −4ω2 2ω3 0

⎤
⎥⎥⎦
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and we can observe that .Q has rank 4. This means that the given satellite system is 
controllable. 

It is interesting to ask the following question: What happens when one of the 
controllers or thrusters become inoperative? Suppose that the tangential thruster fails. 

Then .u2 = 0 and hence .B in (7.17) will reduce to .B1 =

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦. The controllability 

matrix is given by 

. Q1 =

⎡
⎢⎢⎣
0 1 0 −ω2

1 0 −ω2 0
0 0 −2ω 0
0 −2ω 0 2ω3

⎤
⎥⎥⎦

We can observe that .Q1 has rank. 3 and hence the system is not controllable. What if 
the Radial Thruster become inoperative? Try to find it out yourself! 

Linear algebra is also essential in analyzing the observability and stability of 
dynamical systems. Linear algebraic techniques aid in determining whether all sys-
tem states can be accurately determined from available measurements, allowing 
monitoring of the entire system’s activity. Conditions for observability can be derived 
along the same lines as that of controllability. Stability analysis to evaluate the behav-
ior of the system over time can also be done using tools from linear algebra. Stability 
conditions can be derived by studying the eigenvalues of the system matrix, indicat-
ing if the system converges or diverges. With the help of these tools, we may examine 
the behavior, predictability, and robustness of systems, which will enable us to make 
well-informed decisions in numerous real-life applications. 

7.6 Artificial Neural Network as Linear Regression Model 

Linear algebra is foundational in artificial neural networks and machine learning, 
serving as the mathematical framework that underpins their operations. Matrices and 
vectors represent data, weights, etc., enabling efficient information manipulation and 
transformation. Matrix multiplication, dot products, and vector addition are crucial 
to neural network training, allowing signals to propagate through layers of neurons 
and model parameters to be adjusted during optimization. Linear algebra allows 
complex mathematical operations to be expressed clearly and serves as the foundation 
for understanding the fundamental concepts and behavior of these robust learning 
systems, making it a vital component of the subject.
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Fig. 7.6 Linear regression network 

Let us consider a network that works as regression network for mapping input-
output data from an experiment. The data can be used to train a linear regression 
network as shown in the following figure (Fig. 7.6). 

The output of the neuron is given by 

. y =
mE

i=0

xi wi

Let.
{(

x1, y1
)
,
(
x2, y2

)
, . . . , (xm, ym)

}
, xi ∈ R

n+1, yi ∈ R be a set of training data 

for determining a linear regression model in a feature space. Here.xi =

⎛
⎜⎜⎜⎜⎜⎝

1
xi
1

xi
2
...

xi
n

⎞
⎟⎟⎟⎟⎟⎠

is the 

input including constant input 1 for the bias .w0 and .yi is the corresponding output. 
We use the following notations; 

.W =

⎛
⎜⎜⎜⎝

w0

w1
...

wn

⎞
⎟⎟⎟⎠ , y =

⎛
⎜⎜⎜⎝

y1

y2

...

ym

⎞
⎟⎟⎟⎠
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Using the training data define a matrix .X =

⎡
⎢⎢⎢⎣

1 x1
1 x1

2 . . . x1
n

1 x2
1 x2

2 . . . x2
n

...
...

... . . .
...

1 xm
1 xm

2 . . . xm
n

⎤
⎥⎥⎥⎦. Our objective is 

to find a weight vector .W satisfying .X W = y. Here, .X is a rectangular matrix and 
hence we look for a .W which minimizes the error(residue) given by, 

. e = |y − X W|2 = <y − X W, y − X W >

Now, by using least square techniques .W can be computed as follows: 

. 
∂e

∂W
= 0 ⇒ <−Xh, y − X W > + <y − X W,−Xh> = 0 for h ∈ R

n+1

⇒ −<Xh, y> + <Xh, X W > − <y, Xh> + <X W, Xh> = 0

⇒ −2<h, X T y> + 2<h, X T X W > = 0 for h ∈ R
n+1

⇒ X T X W = X T y

If .X T X is invertible, then 

. W = (X T X
)−1

X T y = X†y

Hence 
. W = X T X

(
X T X

)−2
X T y = X T α

where.α = X
(
X T X

)−2
X T y. That is, the weight vector.W can be written as a linear 

combination of the input vector . X .
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Solutions for Selected Problems 

Chapter 1 

2. not an equivalence relation. 
4. (a) not a bijection. (b) not a bijection. (c) not a bijection. (d) is a bijection. 

15. (c).Z (GL2(F)) = Set of all non-zero scalar matrices and.Z(S3) =
{(

1 2 3
1 2 3

)}
. 

16. (a) .O
(|

1 0
0 −1

|)
= 2 (b) . O

(|
1 0
1 1

|)
= ∞

20. . 

{(
1 2 3
1 2 3

)}
, A3, S3

22. .Zp for any prime . p. 
26. . Rank(A) = 3
28. . x1 = 1, x2 = 1, x3 = 2

Chapter 2 

2. (a) .{(x1, 0) ∈ R
2 | x1 ≥ 0} (b) . {(x1, x2) ∈ R

2 | x1 = 0 or x2 = 0}
3. not a vector space. 
4. (a) linearly independent (b) linearly independent (c) linearly independent 

(d) linearly dependent (e) linearly independent (f) linearly independent (g) 
linearly independent (h) linearly dependent 

6. (a) not a subspace (b) is a subspace, .B = {(1,−1)}, dimension is 1 (c) not a 
subspace (d) not a subspace (e) is a subspace, dimension is 0 

7. (a) is a subspace, .B =
{|

1 −1
0 0

|
,

|
0 0
1 0

|
,

|
0 0
0 1

|}
, dimension is 3 (b) not a 

subspace (c) not a subspace (d) not a subspace (e) is a subspace, . B ={|
1 0
0 1

|
,

|
0 0
1 0

|
,

|
0 1
0 0

|}
, dimension is 3 

8. (a) is a subspace, .B = {x, x2}, dimension is 2 (b) not a subspace (c) is a 
subspace,.B = {x − x2}, dimension is 2 (d) not a subspace (e) is a subspace, 
.B = {1, x2}, dimension is 2 

9. (a) True (b) False (c) False (d) False (e) False (f) False (g) False 
11. Row space .= R

2, Column space . = R
2

14. (a) doesn’t span.R
2 (b) span.R

2 (c) span.R
2 (d) doesn’t span.R

2 (e) span 
. R

2

15. (a) doesn’t span .R3 (b) doesn’t span .R3 (c) span .R3 (d) doesn’t span . R3

(e) span . R
3

16. (a) span .P2 (b) span .P2 (c) doesn’t span .P2 (d) span .P2 (e) doesn’t span 
. P2

20. (a) is a basis (b) is a basis (c) not a basis (d) is a basis
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21. (a) is a basis,  .(1, 2, 3) = 3(1, 1, 1) − 1(1, 1, 0) − 1(1, 0, 0) (b) is a basis  
.(1, 2, 3) = 1

2 (1, 2, 1) − 1
2 (2, 1, 1) + 3

2 (1, 1, 2) (c) not a basis 
23. (a) dimension is 1, span is the line .y = −2x , basis . = {(1,−2)}

(b) dimension is 2, span is .R2, basis . = {(−2, 3), (1, 2)}
(c) dimension is 3, span is .R3, basis . = {(0, 3, 1), (−1, 2, 3), (2, 3, 0)}
(d) dimension is 2, span is .{a0 + a1x + a2x2 ∈ P2 | a0 = a1}, basis . = {1 +
x, x2 + x + 1}
(e) dimension is 2, span is .{a0 + a1x + a2x2 ∈ P2 | a0 = −a1}, basis . = {1 −
x, x2}
(f) dimension is 4, span is .M2(R), basis . =

{|
1 1
0 0

|
,

|
1 −1
0 0

|
,

|
0 0
1 1

|
,

|
0 0

−1 1

|}

(g) dimension is 4, span is .M2(R), basis . =
{|

1 1
1 0

|
,

|
1 1
0 1

|
,

|
1 0
1 1

|
,

|
0 1
1 1

|}

24. (a) .W1 + W2 = R
4 and . W1 ∩ W2 = {0}

(b) .dim (W1 + W2) = 4 and . dim (W1 ∩ W2) = 0

Chapter 3 

1. (a) not a linear transformation. (b) is a linear transformation. (c) not a linear 
transformation. (d) not a linear transformation. (e) is a linear transformation. 
(f) not a linear transformation. 

2. (a) is a linear transformation. (b) is a linear transformation. (c) not a linear 
transformation. (d) is a linear transformation. (e) not a linear transformation. 
(f) not a linear transformation. (g) is a linear transformation. 

3. Take .A = I2 and .B = −I2, where .I2 is the identity matrix of order . 2. Check 
whether, .det (A + B) = det (A) + det (B) and .det (λA) = λdet (A). 

5. .T1 + T2 will always be a non-linear map. 
6. As .(x1, y1, z1) = (x1 − y1)(1, 0, 0) + (y1 − z1)(1, 1, 0) + z1(1, 1, 1), 

. T (x1, y1, z1) = (x1 − y1)T (1, 0, 0) + (y1 − z1)T (1, 1, 0) + z1T (1, 1, 1)

= (x1 − y1, 2y1 − 2z1, x1)

7. (a) .R(T ) = {(x1, x2, x3) ∈ R
3 | x2 = 0} and . N(T ) = {(x1, x2, x3) ∈ R

3 | x1 =
x3 = 0}. (b) .R(T )=span

{|
1 0
0 0

|
,

|
1 1
0 0

|
,

|
1 1
1 0

|}
and . N(T ) =

{zero polynomial}. 
(c) .R(T ) = span

{|
1 0

−1 0

|
,

|
0 −1
1 0

|}
and .N(T ) = Set of all .2 × 2 symmetric 

matrices. 
8. Choose .v3, v4 ∈ R

4 such that . B = {v1 = (1, 1, 1, 1), v2 = (1, 0, 0, 1), v3, v4}
forms a basis for .R4. Then define .T (v1) = T (v2) = 0 and .T (v3) = (1, 1, 0), 
.T (v4) = (1, 0, 1).
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10. (a) Yes. .T1, T2 : R2 → R
2 defined by .T1(x1, x2) = (x1, 0) and . T2(x1, x2) =

(2x1, 0). (b)  Yes.  .T1, T2 : R2 → R
2 defined by .T1(x1, x2) = (x1, 0) and . T2

(x1, x2) = (0, x2). 
11. (b) .R(T ) = span{(x1, x2, x3, x4) ∈ R

4 | x4 = 0} and . N(T ) = span{(x1, x2,
x3, x4) ∈ R

4 | x1 = x2 = x3 = x4}. 
12. (a) False (b) False (c) False (d) True (e) True (f) False (g) True (h) 

False 

20. . [T ]B2
B1

=
⎡
⎣

2 −1 −3
−5 0 1
3 1 2

⎤
⎦

21. . [T ]B =

⎡
⎢⎢⎣
1 1

2 0 0
0 0 0 0
0 1

2 1 0
0 0 0 1

⎤
⎥⎥⎦

23. (a) .

⎡
⎣
1 − 1

2 0
0 1

2 − 1
3

0 0 1
3

⎤
⎦ (b) .

⎡
⎣
1 −2 −1
0 1 0
0 0 1

⎤
⎦ c) . 

⎡
⎣
1 −3 −4
0 2 2
0 0 3

⎤
⎦

24. (a) .

|
2 −1
0 1

|
(b) .

|
3 1

−2 0

|
c) . 

|
3 1

−2 0

|

27. . {x1 − x2, x2 − x3, x3}

30. . 

⎡
⎣

5 −9
−5 15
−3 8

⎤
⎦

Chapter 4 

2. (a) .λ2 − 4λ − 32 (b) .λ2 − 11λ + 39 c) . −λ3 + 9λ2 − 3λ − 30

3. . 

|
4 −2
1 1

|

8. 3,5 
11. (a) True (b) False (c) False (d) True (e) True (f) False (g) False (h) 

True (i) True (j) True 
13. 0 
14. (a) diagonalizable (b) not diagonalizable (c) diagonalizable (d) diagonal-

izable (e) diagonalizable 
18. Characteristic polynomial.= λn−1(λ − n) and Minimal polynomial.= λ(λ − n). 
25. (a) The eigenvalues are .2, 2, 1 with eigenvectors .(−1, 0, 1), (0, 1, 0) and 

.(0,−1, 1) respectively. (b).

⎡
⎣

−1 0 0
0 1 −1
1 0 1

⎤
⎦ (c).{(0, 0, 0)},R3, span. {(−1, 0, 1)},

span. {(0, 1, 0)},
span.{(0,−1, 1)}, span.{(−1, 0, 1), (0, 1, 0)}, span.{(−1, 0, 1), (0,−1, 1)} and 
span.{(0, 1, 0), (0,−1, 1)}.
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26. . 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0
0 0 3 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Chapter 5 

20. (a) .
{
1
3 (1, 2, 2),

1
3 (−2,−1, 2), 1

3 (2,−2, 1)
}

(b) . 

{
1, 2

√
3
(
x − 1

2

)
,

6
√
5
(
x2 − x + 1

6

)}

22. (a) .{v | v = λ(−u2, u1), λ ∈ R} (b) . {(0, 0)}
24. (a) .

{
1√
10

(1, 0, 3),
1√
14

(−3, 2, 1)

}
(b) . 
(− 1

35 ,−1,− 13
35

)

27. (a) . 12 (−1, 1) (b) . 115 (11, 25, 47) (c) . 83 + √
2x

Chapter 6 

3. (a) True (b) False (c) False (d) False (e) False (f) False 
10. No 

20. (a) . 

|− 1√
5

2√
5

− 2√
5

− 1√
5

||√
40 0
0

√
10

||− 1√
2

1√
2

1√
2

1√
2

|

(b) . 

|
1√
2

1√
2

1√
2

− 1√
2

||
5 0 0
0 3 0

|⎡⎢⎣
1√
2

1√
2

0
1√
18

− 1√
18

4√
18

2
3 − 2

3
1
3

⎤
⎥⎦

(c) . 

⎡
⎢⎣

1
3

2√
5

2√
5

− 2
3

1√
5

0

− 2
3 0 1√

5

⎤
⎥⎦
|
3
√
10 0
0 0

| |−3
√
10 1

√
10

1
√
10 3

√
10

|

(d) .

⎡
⎢⎢⎣

− 1√
6

− 1√
2

1√
3

1√
6

1√
2

1√
3/

2
3 0 1√

3

⎤
⎥⎥⎦

⎡
⎣

√
3 0 0
0

√
3 0

0 0 0

⎤
⎦

⎡
⎢⎢⎣

− 1√
2

− 1√
6

1√
3

0
/

2
3

1√
3

1√
2

− 1√
6

1√
3

⎤
⎥⎥⎦
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26. (a) . 16

⎡
⎣

1 1
1 1

−1 −1

⎤
⎦ (b) . 150

|
5 16 −13
10 2 14

|
(c) . 112

⎡
⎣
1 1
3 −3
1 1

⎤
⎦ (d) . 14

⎡
⎢⎢⎣

1 −1 −1
2 2 2
2 −2 2

−1 1 1

⎤
⎥⎥⎦

28. (a) inconsistent, . 1
225

⎡
⎢⎢⎣

93
−35
−26
−35

⎤
⎥⎥⎦ (b) consistent, . 115

|
39
−3

|

29. .

⎡
⎢⎢⎢⎣

2x1 2y1 1
2x2 2y2 1
...

...
...

2xn 2yn 1

⎤
⎥⎥⎥⎦

⎡
⎣

a
b
c

⎤
⎦ =

⎡
⎢⎢⎢⎣

x2
1 + y21

x2
2 + y22

...

x2
n + y2n

⎤
⎥⎥⎥⎦, where .c = r2 − a2 − b2. 

30. (a) .y = 1.3x + 1.1 (b) .y = 1.7x + 1.9 (c) . y = 8.4x + 11.6
31. . x3 = 5.2171 + 0.4053x1 + 0.6039x2
32. . y = −0.3937sin θ + 0.8535cos θ

33. .V = 18.7 + 47.9I



Part II 
Solved Problems



Chapter 8 
Solved Problems—Preliminaries 

(1) Let .A =
|1
2

1

4
0 1

|
and .X =

|
3
4

|
. Then . lim

n→∞ AnX

(a) does not exist (b) .

|
1
2

|
(c) .

|
2
4

|
(d) . 

|
3
4

|

Ans. Option c 
We have 

AX  =
|
1 
2 

1 
4 

0 1

| |
3 
4

|
=
|
5 
2 
4

|
=
|
2 + 1 2 
4

|

A2 X =
|
1 
2 

1 
4 

0 1

| |
5 
2 
4

|
=
|
9 
4 
4

|
=
|
2 + 1 4 
4

|

A3 X =
|
1 
2 

1 
4 

0 1

| |
9 
4 
4

|
=
|
17 
8 
4

|
=
|
2 + 1 8 
4

|

Proceeding like this we get .AnX =
|
2 + 1

2n

4

|
and hence . lim

n→∞ AnX =
|
2
4

|

(2) Let.A =
⎡
⎣ 0 1 −2

−1 0 α

2 −α 0

⎤
⎦ , α ∈ R \ {0} and. b a non-zero vector such that. Ax = b

for some .x ∈ R
3. Then the value of .xT b is 

(a) .−α (b) .α (c) 0 (d) 1 

Ans. Option c 

Let .x =
⎡
⎣x1x2
x3

⎤
⎦ and .b =

⎡
⎣b1b2
b3

⎤
⎦. Then 
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. Ax = b ⇒ x2 − 2x3 = b1,−x1 + αx3 = b2, 2x1 − αx2 = b3
⇒ x1x2 − 2x1x3 = b1x1, −x1x2 + αx2x3 = b2x2, 2x1x3 − αx2x3 = b3x3

Adding these, we get .b1x1 + b2x2 + b3x3 = 0 = xT b. 

(3) Let 

S = 

⎧⎨ 

⎩A : A = |
ai j

|
5×5 , ai j  = 0 or  1  ∀ i, j,

E
j 

ai j  = 1 ∀ i and
E
i 

ai j  = 1 ∀ j 

⎫⎬ 

⎭ 

Then the number of elements of . S is 
(a) .52 (b) .55 (c) .5! (d) 55 

Ans. Option c 
Since .ai j = 0 or 1 ∀ i, j,

E
j
ai j = 1 ∀ i and .

E
i
ai j = 1 ∀ j the first row has 5 

possibilities. 

. 5 possibilities

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

Then the second row has 4 possibilities, third row has 3 possibilities, fourth row 
has 2 possibilities and the fifth row has only 1 possibility. Thus the number of 
elements of . S is . 5!. 

(4) Let . p be a prime number and let .Zp denote the field of integers modulo. p. Find  
the number of .2 × 2 invertible matrices with entries from this field. 

Ans. Let .GL2
(
Zp
)
denote the set of all .2 × 2 invertible matrices with entries 

from .Zp. Let .M ∈ GL2
(
Zp
)
. Then the first row of .M has .p2 − 1 possibilities 

as first row cannot be .
|
0 0

|
. Now the second row has .p2 − p possibilities since 

it cannot be a scalar multiple of the first row. So the number of .2 × 2 invertible 
matrices with entries from .Zp is .(p2 − 1)(p2 − p). 

(5) The order of the matrix .

|
2 3
1 2

|
in .GL2 (Z5) is . . . . . . .

Ans. We know that the order of the matrix .A =
|
2 3
1 2

|
in .GL2 (Z5) is the least 

positive integer . n such that .An =
|
2 3
1 2

|n
=
|
1 0
0 1

|
. We have 

A2 =
|
2 3  
1 2

| |
2 3  
1 2

|
=
|
7 12  
4 7

|
=
|
2 2  
4 2

|
in G L2 (Z5)
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and 

A3 =
|
2 2  
4 2

| |
2 3  
1 2

|
=
|
6 10  
10 16

|
=
|
1 0  
0 1

|
in G L2 (Z5) 

Therefore order of .H is 3. 

(6) Let. G be a subgroup of.GL2(R) generated by.

|
0 1
1 0

|
and.

|
0 −1
1 −1

|
. Then the order 

of .G is . . . . . . .

Ans. Let .A =
|
0 1
1 0

|
and .B =

|
0 −1
1 −1

|
. We have 

A2 =
|
0 1  
1 0

| |
0 1  
1 0

|
= I and  B3 =

|
0 −1 
1 −1

| |
0 −1 
1 −1

| |
0 −1 
1 −1

|
= I 

Also 

B2 =
|−1 1  
−1 0

|
, AB  =

|
1 −1 
0 −1

|
= B2 A and  AB2 =

|−1 0  
−1 1

|
= BA  

Thus .G = {I, A, B, B2, AB, A2B} and hence order of .G is 6. 

(7) Consider the following group under matrix multiplication: 

G = 

⎧⎨ 

⎩ 

⎡ 

⎣1 p q  
0 1  r 
0 0  1  

⎤ 

⎦ : p, q, r ∈ R 

⎫⎬ 

⎭ 

Then the center of the group, .Z(G) is isomorphic to 
(a) .(R \ {0} ,×) (b) .(R,+) (c) .

(
R

2,+) (d) . (R,+) ⊗ (R \ {0} ,×)

Ans. Option b 

Let .

⎡
⎣1 x y
0 1 z
0 0 1

⎤
⎦ ∈ Z(G). Then for any .

⎡
⎣1 p q
0 1 r
0 0 1

⎤
⎦ ∈ G, we have 

⎡ 

⎣1 p q  
0 1  r 
0 0  1  

⎤ 

⎦ 

⎡ 

⎣1 x y  
0 1  z 
0 0  1  

⎤ 

⎦ = 

⎡ 

⎣1 x y  
0 1  z 
0 0  1  

⎤ 

⎦ 

⎡ 

⎣1 p q  
0 1  r 
0 0  1  

⎤ 

⎦ 

This implies that 

⎡ 

⎣1 x + p q  + xr  + y 
0 1 z + r 
0 0 1  

⎤ 

⎦ = 

⎡ 

⎣1 x + p q  + pz + y 
0 1 z + r 
0 0 1  

⎤ 

⎦
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Therefore .pz = xr for any .p, r ∈ R, which is possible only if .x = z = 0. Thus 
center of .G is given by 

Z(G) = 

⎧⎨ 

⎩ 

⎡ 

⎣1 0  y 
0 1  0  
0 0  1  

⎤ 

⎦ : y ∈ R 

⎫⎬ 

⎭ 

Now define .φ : Z(G) → (R,+) by .φ

⎛
⎝
⎡
⎣1 0 y
0 1 0
0 0 1

⎤
⎦
⎞
⎠ = y. Clearly . φ is both one-

one and onto. Take .A =
⎡
⎣1 0 y1
0 1 0
0 0 1

⎤
⎦ , B =

⎡
⎣1 0 y2
0 1 0
0 0 1

⎤
⎦ ∈ Z(G). Then 

φ(AB) = 

⎡ 

⎣1 0  y1 + y2 
0 1 0  
0 0 1  

⎤ 

⎦ = y1 + y2 = φ(  A) + φ(B) 

Thus, . φ is a homomorphism. Therefore . φ is an isomorphism. 

(8) Let .F = {
ω ∈ C : ω2020 = 1

}
. Consider the group 

G =
{(

ω z 
0 1

)
: ω ∈ F, z ∈ C

}
and H =

{(
1 z 
0 1

)
: z ∈ C

}

under matrix multiplication. Then the number of cosets of .H in .G is 
(a) 1010 (b) 2019 (c) 2020 (d) infinite 

Ans. Option c 
Define .φ : G → F by .φ(A) = det (A). Since 

φ(AB) = det  (AB) = det  (A)det  (B) = φ(  A)φ(B) ∀ A, B ∈ G 

. φ is a homomorphism from .G to .F with 

K er  (φ) = {A ∈ G : det  (A) = 1} =  H 

Then by First Isomorphism Theorem.G \ H ∼= Im(φ) = F. Therefore the num-
ber of cosets of .H in .G is 2020. 

(9) Let.G denote the group of all .2 × 2 invertible matrices with entries from. R. Let  

.H1 = {A ∈ G : det (A) = 1} and H2 = {A ∈ G : A is upper triangular}
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Consider the following statements: 
.P : H1 is a normal subgroup of . G
.Q : H2 is a normal subgroup of . G
Then 
(a) Both .P and .Q are true (b) .P is true but .Q is not true 
(c) .P is false and .Q is true (d) Both .P and .Q are false 

Ans. Option b 
Let .H ∈ H1, and .A ∈ G. Then .AH A−1 ∈ H1 since 

det  (AH A−1 ) = det  (A)det  (H ) 
1 

det  (A) 
= 1 

Therefore .H1 is a normal subgroup of . G. 

Consider the matrix .B =
(
1 −1
1 1

)
∈ G and .K =

(
1 2
0 3

)
∈ H2. Then 

BK  B−1 = 
1 

2

(
1 −1 
1 1

)(
1 2  
0 3

)(
1 1  

−1 1

)
=
(

1 0  
−2 3

)
/∈ H2 

Therefore .H2 is not a normal subgroup of . G. 

(10) Let .A, B be .n × n matrices. Which of the following equals .tr(A2B2)? 
(a) .(tr(AB))2 (b) .tr(AB2A) (c) .tr

(
(AB)2

)
(d) . tr(BABA)

Ans. Option b 
Since .tr(AB) = tr(BA), .tr(A2B2) = tr(BA2B) = tr(AB2A). 

(11) Pick out the true statements: 
(a) Let .A and .B be two arbitrary .n × n matrices. Then . (A + B)2 = A2 +
2AB + B2. 
(b) There exist .n × n matrices . A and . B such that .AB − BA = I . 
(c) Let. A and. B be two arbitrary.n × nmatrices. If. B is invertible, then. tr(A) =
tr(B−1AB). 

Ans. Option c 
(a) .(A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 since .AB /= BA, 
.(A + B)2 need not be equal to .A2 + 2AB + B2. 
(b) Suppose there exists .n × n matrices . A and . B such that .AB − BA = I . Then 
.tr (AB − BA) must be equal to .tr(I ) = n. Since .tr(AB) = tr(BA),. tr(AB −
BA) = 0. So there does not exists such matrices . A and . B. 
(c) Since .tr(AB) = tr(BA), .tr(B−1AB) = tr(BB−1A) = tr(A). 

(12) If .A ∈ M2×2(R) with .det (A + I ) = 1 + det (A), then we can conclude that 
(a) .det (A) = 0 (b) .A = 0 (c) .Tr(A) = 0 (d) . A is non-singular
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Ans. Option c 

(a) & (b) Take .A =
|
1 0
0 −1

|
. Then .A + I =

|
2 0
0 0

|
and . det (A + I ) = 1 +

det (A). Here .A /= 0 and .det (A) /= 0. 

(c) Let .A =
|
a b
c d

|
. Then .A + I =

|
a + 1 b
c d + 1

|
. 

. det (A + I ) = 1 + det (A) ⇒ (a + 1)(d + 1) − bc = 1 + ad − bc

⇒ ad + a + d + 1 − bc = 1 + ad − bc

⇒ a + d = 0

This gives, .Tr(A) = a + d = 0. 

(d) Take .A =
|
0 1
0 0

|
. Then .A + I =

|
1 1
0 1

|
and .det (A + I ) = 1 + det (A). But  

. A is singular. 

(13) It is known that .X = X0 ∈ M2×2(Z) is a solution of .AX − X A = A for some 

.A ∈
{|

1 1
−1 −1

|
,

|−1 1
1 −1

|
,

|
1 −1

−1 1

|}
. Which of the following values are 

not possible for the determinant of .X0? 
(a) .0 (b) .2 (c) .6 (d) . 10

Ans. Option d 
Consider the equation .AX − X A = A. As .tr(AX) = tr(X A), 

. tr(AX − X A) = tr(A) ⇒ tr(A) = 0

Therefore, .A =
|
1 1

−1 −1

|
. Take .X =

|
a b
c d

|
. Then 

. AX − X A = A ⇒
|
1 1

−1 −1

| |
a b
c d

|
−
|
a b
c d

| |
1 1

−1 −1

|
=
|
1 1

−1 −1

|

⇒
|

b + c 2b + d − a
−a − 2c + d −(b + c)

|
=
|
1 1

−1 −1

|
⇒ b + c = 1, 2b + d − a = 1, −a − 2c + d = −1

The equations .2b + d − a = 1 and .−a − 2c + d = −1 are the same as . c =
1 − b. Then, 

. b = 1, d = 0, a = 1, c = 0 ⇒ det (X0) = 0

. b = 1, d = 1, a = 2, c = 0 ⇒ det (X0) = 2

. b = 1, d = 2, a = 3, c = 0 ⇒ det (X0) = 6

Thus .det (X0) = 10 is not possible.
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(14) Let .A and .B be .n × n matrices. Suppose that the sum of elements of .A in 
any row is 2 and the sum of elements in any column of .B is 2. Which of the 
following matrices is necessarily singular? 
(a) .I − 1

2 BAT (b) .I − 1
2 AB (c) .I − 1

4 AB (d) . I − 1
4 BAT

Ans. Option d 

Take .A =
|
2 0
1 1

|
and .B =

|
2 1
0 1

|
. Then, 

I − 
1 

2 
BAT =

|
1 0  
0 1

|
− 

1 

2

|
2 1  
0 1

| |
2 1  
0 1

|
=
|−1 −3 

2 
0 1 

2

|

I − 
1 

2 
AB  =

|
1 0  
0 1

|
− 

1 

2

|
2 0  
1 1

| |
2 1  
0 1

|
=
|−1 −1 
−1 0

|

I − 
1 

4 
AB  =

|
1 0  
0 1

|
− 

1 

4

|
2 0  
1 1

| |
2 1  
0 1

|
=
|
0 −1 

2−1 
2 

1 
2

|

I − 
1 

4 
BAT =

|
1 0  
0 1

|
− 

1 

4

|
2 1  
0 1

| |
2 1  
0 1

|
=
|
0 −3 

4 
0 3 

4

|

It can be observed that .I − 1
4 BAT is singular. 

(15) The number of distinct real values of . x for which .A =
⎡
⎣x 1 1
1 x 1
1 1 x

⎤
⎦ is singular is 

(a) 1 (b) 2 (c) 3 (d) infinite 

Ans. Option b 

Let .A =
⎡
⎣x 1 1
1 x 1
1 1 x

⎤
⎦. We have . A is singular if and only if .det (A) = 0. Now,  

det  (A) = 0 ⇒ x3 − 3x + 2 = (x − 1)2 (x + 2) = 0 ⇒ x = 1, 1, −2 

Hence, . A is singular, when . x is either . 1 or .−2. 

(16) Let . A be a .3 × 3 matrix with integer entries such that .det (A) = 1. What is the 
maximum possible number of entries of . A that are even? 
(a) 2 (b) 3 (c) 6 (d) 8 

Ans. Option c 

Consider the .3 × 3 matrix .A =
⎡
⎣a11 a12 a13a21 a22 a23
a31 a32 a33

⎤
⎦. Then,
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det  (A) = a11 (a22a33 − a32a23) − a12 (a21a33 − a31a23) + a13 (a21a32 − a31a22) 

Clearly, the maximum number of even entries cannot be equal to 8 as the deter-
minant would become an even number. Now consider the .3 × 3 identity matrix, 
. I . We know that .det (I ) = 1. Hence the maximum possible number of entries of 
. A that are even is 6. 

(17) For .t ∈ R, define .A(t) =
⎛
⎝1 t 0
1 1 t2

0 1 1

⎞
⎠. Then which of the following statements 

is true? 
(a) .det (A(t)) is a polynomial function of degree 3 in . t . 
(b) .det (A(t)) = 0 for all .t ∈ R. 
(c) .det (A(t)) is zero for infinitely many .t ∈ R. 
(d) .det (A(t)) = 0 for exactly two .t ∈ R. 

Ans. Option d 
We have.det (A(t)) = 1 − t2 − t = 0. Since.discriminant = 5,. det (A(t)) = 0
for exactly two .t ∈ R. 

(18) A permutation matrix. A is a non-singular square matrix in which each row has 
exactly one entry equals . 1, the other entries being all zeros. If .A is an . n × n
permutation matrix, what are the possible values of determinant of . A? 

Ans. A permutation matrix is obtained by interchanging rows(columns) of iden-
tity matrix. If odd number of interchanges are made, then the determinant of the 
permutation matrix is .−1 and if even number of interchanges are made, then the 
determinant of the permutation matrix is . 1. 

(19) The determinant of the .n × n permutation matrix . 

⎡
⎢⎢⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎥⎥⎦

(a) .(−1)n (b) .(−1)| n
2 | (c) .−1 (d) 1 

Here .|x| denotes the greatest integer not exceeding . x . 

Ans. Option b 
Consider .2 × 2 and .5 × 5 permutation matrices of the given form. All the options 
except Option b are false. 

(20) For . j = 1, 2, . . . , 5 let .A j be the matrix of order .5 × 5 obtained by replacing 
the . j th column of the identity matrix of order .5 × 5 with the column vector 
.v = |

5 4 3 2 1
|T
. Then the determinant of the matrix product . A1A2A3A4A5

is .. . . . . .
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Ans. We have 

. det (A1A2A3A4A5) = det (A1)det (A2)det (A3)det (A4)det (A5)

= 5 × 4 × 3 × 2 × 1

= 120

(We can calculate the determinant easily as the first row in each of these matrices 
has only two non-zero entry and the determinant with the second non zero entry 
will be zero since the .4 × 4 matrix has one column zero) 

(21) Let .A = (ai j ) ∈ Mn×n(R), where . ai j =
{
1, if i + j = n + 1

0, otherwise
What is the value of .det (A) when .(i) n = 10 and .(i i) n = 100? 

Ans. The given matrix is 

A = 

⎡ 

⎢⎢⎢⎣ 

0 0  · · ·  1 
0 0  · · ·  0 
... 

... 
. . . 

... 
1 0  0  0  

⎤ 

⎥⎥⎥⎦ 

n×n 

The given matrix is obtained by interchanging the rows of the identity matrix 
and hence .det (A) = (−1)| n

2 | where .| n
2 | denotes the greatest integer less than 

or equal to . 
n
2 . Therefore .det (A) when .(i) n = 10 is .−1 and .(i i) n = 100 is 1. 

(22) Let . A be a .4 × 4 matrix whose determinant is 10. Then .det (−3A) is 
(a) .−810 (b) .−30 (c) .30 (d) . 810

Ans. Option d 
As .det (λA) = λndet (A) for an .n × n matrix . A, we have 

det  (−3A) = (−3)4 det  ( A) = 810 

(23) Let .A =

⎡
⎢⎢⎣
9 2 7 1
0 7 2 1
0 0 11 6
0 0 −5 0

⎤
⎥⎥⎦. Then the value of .det ((8I − A)3

)
is . . . . . . .

Ans. We have .8I − A =

⎡
⎢⎢⎣

−1 −2 −7 −1
0 1 −2 −1
0 0 −3 −6
0 0 5 8

⎤
⎥⎥⎦. Then 

det
(
(8I − A)3

) = [det  (8I − A)]3 = −216
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(24) The determinant of the matrix 

⎛ 

⎜⎜⎜⎜⎜⎜⎝ 

1 0 0 0 0 2  
0 1  0 0 2 0  
0 0 1 2 0 0  
0 0 2 1 0 0  
0 2 0 0 1 0  
2 0 0 0 0 1  

⎞ 

⎟⎟⎟⎟⎟⎟⎠ 

(a) 0 (b) .−9 (c) .−27 (d) 1 

Ans. Option c 

Let .M =
|
A B
C D

|
, where .A, B,C and .D are square matrices. Then 

det  (M) = det
(
A − BD−1 C

)
det  (D) 

Take.A = D = I3 and.B = C =
⎡
⎣0 0 2
0 2 0
2 0 0

⎤
⎦. Then determinant of the given matrix 

is .−27. 

(25) Let .D1 = det

⎡
⎣a b c
x y z
p q r

⎤
⎦ and .D2 = det

⎡
⎣−x a −p

y −b q
z −c r

⎤
⎦. Then 

(a) .D1 = D2 (b) .D1 = 2D2 (c) .D1 = −D2 (d) . 2D1 = D2

Ans. Option c 

.A =
⎡
⎣a b c
x y z
p q r

⎤
⎦ R1 ↔ C1

R2 ↔ C2

R3 ↔ C3

∼
⎡
⎣a x p
b y q
c z r

⎤
⎦ R1 → −R1

∼
⎡
⎣−a −x −p

b y q
c z r

⎤
⎦ C1 → −C1

∼
⎡
⎣ a −x −p

−b y q
−c z r

⎤
⎦ C1 ←→ C2

∼
⎡
⎣−x a −p

y −b q
z −c r

⎤
⎦
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As .det (A) = det
(
AT
)
, taking transpose of a does not make any changes in .D1. 

However, multiplying by .−1 on row. / columns and interchanging the columns 
will result in multiplying .D1 by .(−1)3(as 3 such changes are made). Therefore 
.D2 = −D1. 

Or 

Let .D1 = det

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦, then .D2 = det

⎡
⎣0 1 0
1 0 0
0 0 1

⎤
⎦. Clearly, .D1 = −D2. Options 

a,b and d are incorrect. 

(26) If .ad − bc = 2 and .ps − qr = 1, then the determinant

||||||||
a b  0 0  
3 10  2  p q  
c d  0 0  
2 7  2r s

||||||||

equals . . . . . . .
Ans. We have 

. 

||||||||
a b 0 0
3 10 2p q
c d 0 0
2 7 2r s

||||||||
= a

||||||
10 2p q
d 0 0
7 2r s

||||||− b

||||||
3 2p q
c 0 0
2 2r s

||||||
= a[−2pds + 2qdr ] − b[−2pcs + 2qcr ]
= 2ad[qr − ps] − 2bc[−ps + qr ]
= 2[ad − bc][qr − ps] = −4

(27) The determinant .

||||||
1 1 + x 1 + x + x2

1 1 + y 1 + y + y2

1 1 + z 1 + z + z2

|||||| is equal to 
(a) .(z − y)(z − x)(y − x) (b) . (x − y)(x − z)(y − z)
(c) .(x − y)2(y − z)2(z − x)2 (d) . (x2 − y2)(y2 − z2)(z2 − x2)

Ans. Option a 
We have||||||

1 1  + x 1 + x + x2 
1 1  + y 1 + y + y2 
1 1  + z 1 + z + z2

|||||| ∼
||||||
1 x x2 

1 y y2 

1 z z2

|||||| ∼ (y − x)(z − x)

||||||
1 x x2 

0 1  y + x 
0 1  z + x

||||||

Therefore .

||||||
1 1 + x 1 + x + x2

1 1 + y 1 + y + y2

1 1 + z 1 + z + z2

|||||| = (z − y)(z − x)(y − x).
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(28) Let .a1, a2, . . . , an ∈ R. Evaluate the determinant:||||||||
1 + a1 a2 · · · an 
a1 1 + a2 · · · an 
· · · · · ·  · · ·  · · ·  
a1 a2 · · ·  1 + an

||||||||

Ans. We have 

. 

|||||||||

1 + a1 a2 · · · an
a1 1 + a2 · · · an
...

...
. . .

...

a1 a2 · · · 1 + an

|||||||||
=

|||||||||

1 + a1 + a2 + · · · + an a2 · · · an
1 + a1 + a2 + · · · + an 1 + a2 · · · an

...
...

. . .
...

1 + a1 + a2 + · · · + an a2 · · · 1 + an

|||||||||

= (1 + a1 + a2 + · · · + an)

|||||||||

1 a2 · · · an
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

|||||||||
= 1 + a1 + a2 + · · · + an

(29) Let . f1(x), f2(x), g1(x), g2(x) be differentiable functions on . R. Let  . F(x) =|||| f1(x) f2(x)
g1(x) g2(x)

|||| be the determinant of the matrix .

|
f1(x) f2(x)
g1(x) g2(x)

|
. Then .F '(x) is 

equal to 

(a) .

|||| f '
1(x) f '

2(x)
g1(x) g2(x)

||||+ .

|||| f1(x) g'
1(x)

f '
2(x) g2(x)

|||| (b) .

|||| f '
1(x) f '

2(x)
g1(x) g2(x)

||||+ . 

|||| f1(x) g'
1(x)

f2(x) g'
2(x)

||||
(c) .

|||| f '
1(x) f '

2(x)
g1(x) g2(x)

||||− .

|||| f1(x) g'
1(x)

f2(x) g'
2(x)

|||| (d) . 

|||| f '
1(x) f '

2(x)
g'
1(x) g'

2(x)

||||
Ans. Option b 
We have 

F(x) =
|||| f1(x) f2(x) g1(x) g2(x)

|||| = f1(x)g2(x) − g1(x) f2(x) 

Then 

.F '(x) = f1(x)g
'
2(x) + f '

1(x)g2(x) − g1(x) f
'
2(x) − g'

1(x) f2(x)

= f '
1(x)g2(x) − g1(x) f

'
2(x) + f1(x)g

'
2(x) − g'

1(x) f2(x)

=
|||| f '

1(x) f '
2(x)

g1(x) g2(x)

||||+
|||| f1(x) g'

1(x)
f2(x) g'

2(x)

||||
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(30) Let .A = (
(ai j )

)
be a .3 × 3 complex matrix. Identify correct statements. 

(a) .det
(
(−1)i+ j A

) = det (A) (b) . det
(
(−1)i+ j A

) = −det (A)

(c) .det
((

(
√−1)i+ j

)
A
) = det (A) (d) . det

((
(
√−1)i+ j

)
A
) = −det (A)

Ans. Options a and c 

Let .A =
⎡
⎣a11 a12 a13a21 a22 a23
a31 a32 a33

⎤
⎦. Then 

.det (A)=a11 (a22a33−a32a23) − a12 (a21a33 − a31a23) + a13 (a21a32 − a31a22). 

Let .B =
⎡
⎣ a11 −a12 a13

−a21 a22 −a23
a31 −a32 a33

⎤
⎦. Then 

. det (B) = a11 (a22a33 − a32a23) + a12 (−a21a33 + a31a23) + a13 (a21a32 − a31a22)

= a11 (a22a33 − a32a23) − a12 (a21a33 − a31a23) + a13 (a21a32 − a31a22)

= det (A)

Let .C =
⎡
⎣−a11 −ia12 a13

−ia21 a22 ia23
a31 ia32 −a33

⎤
⎦. Then 

. det (C) = −a11 (−a22a33 + a32a23) + ia12 (ia21a33 − ia31a23) + a13 (a21a32 − a31a22)

= a11 (a22a33 − a32a23) − a12 (a21a33 − a31a23) + a13 (a21a32 − a31a22)

= det (A)

(31) The number of matrices in .GL2 (Z3) with determinant 1 is . . . . . . .
(a) 24 (b) 60 (c) 20 (d) 30 

Ans. Option a 
Let .SL2(Z3) denote .2 × 2 matrices over .Z3 with determinant 1. 
Define .φ : GL2(Z3) → Z3 by 

φ(A) = det  (A) 

Then .kernel (φ) = SL2(Z3) and hence by First Isomorphism Theorem, 

GL2(Z3)/SL2(Z3) ∼= Z3 \ {0} 

This implies .
O (GL2(Z3))

O (SL2(Z3))
= 2. Also we have 

O (GL2(Z3)) = (32 − 1)(32 − 3) = 48 

Therefore .O (SL2(Z3)) = 24.
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(32) Write down the inverse of the matrix . 

⎡
⎢⎢⎢⎢⎣
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

Ans. The given matrix is an elementary matrix. The inverse is its transpose. 

(33) Write down the inverse of the following matrix: . 

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 2 1 0
0 0 3 0 1

⎤
⎥⎥⎥⎥⎦

Ans. The given matrix is an atomic triangular matrix. An atomic triangular 
matrix is a special type of upper(lower) triangular matrix where all its diagonal 
entries are 1’s and all off-diagonal entries except a single column are zeros. 
The inverse of an atomic triangular matrix is again an atomic triangular matrix 
where the signs of the entries in the non-zero column are reversed. Therefore the 

inverse of the given matrix is .

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −2 1 0
0 0 −3 0 1

⎤
⎥⎥⎥⎥⎦. 

(34) Let .M be the set of all invertible .5 × 5 matrices with entries 0 and 1. For each 
.A ∈ M, let.n1(A) and.n0(A) denote the number of 1’s and 0’s in. A, respectively. 
Then . min

A∈M
|n1(A) − n0(A)| =

(a) 1 (b) 3 (c) 5 (d) 15 

Ans. Option a 

Consider the matrix .A =

⎡
⎢⎢⎢⎢⎣
1 1 1 0 1
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦. Then, .|n1(A) − n0(A)| = 1which is the 

minimum. 

(35) Let .α, β, γ be real numbers such that .β /= 0 and .γ /= 0. Suppose .A = . 

|
α β

γ 0

|
and .A−1 = A. Then 
(a) .α = 0 and .βγ = 1 (b) .α /= 0 and . βγ = 1
(c) .α = 0 and .βγ = 2 (d) .α = 0 and .βγ = −1
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Ans. Option a 
We have 

A−1 = 1 

det  (A) 
ad j  (A) = 1 

−βγ

|
0 −β 

−γ α

|
=
|
0 1 

γ 
1 
β − α 

βγ

|
=
|
α β  
γ 0

|

This implies .α = 0 and .βγ = 1. 

(36) Let .A = (ai j ) be a .2 × 2 lower triangular matrix with diagonal entries. a11 = 1
and .a22 = 3. If .A−1 = (bi j ), what are the values of .b11 and .b22? 

Ans. The inverse of a.2 × 2matrix.A =
|
a11 a12
a21 a22

|
is given by..

1

det (A)
.

|
a22 −a12

−a21 a11

|
. 

The determinant of a lower triangular matrix is product of its diagonal entries. 
Hence .det (A) = 3. Therefore .b11 = 1 and .b22 = 1

3 . 

(37) Let .A = [ai j ] be an .n × n matrix such that .ai j is an integer for all .i, j . Let  
.AB = I with.B = [bi j ], where. I is the identity matrix. Which of the following 
statements is true? 
(a) If .det (A) = 1 then .det (B) = 1. 
(b) A sufficient condition for each .bi j to be an integer is that .det (A) is an 
integer. 
(c) . B is always an integer matrix. 
(d) A necessary condition for each .bi j to be an integer is .det (A) ∈ {+1,−1}. 
Ans. Options a and d 
(a) .AB = I ⇒ det (AB) = det (A)det (B) = 1. Therefore if .det (A) = 1 then 
.det (B) = 1. 

(b) & (c) Let .A =
|
2 0
0 2

|
and .B =

| 1
2 0
0 1

2

|
. Then .AB = I and hence options . b

and . c are false. 
(d) Let .det (A) ∈ {+1,−1}. Since . A and . B are square matrices .AB = I implies 

.B is the inverse of . A. Therefore .B = 1

det (A)
Ad j (A) = ±Ad j (A). Since .A is 

an integer matrix, .Ad j (A) is an integer matrix and hence .B is also an integer 
matrix. 

(38) Consider the matrix .A =
|
0 1
1 0

|
. Which one of the following matrices are of 

the form.PT AP for a suitable .2 × 2 invertible matrix .P over . Q? 

(a) .

(
2 0
0 −2

)
(b) .

(
2 0
0 2

)
(c) .

(
1 0
0 −1

)
(d) . 

(
3 4
4 5

)

Ans. Options a, c and d 
Let .PT AP = B, then applying determinant on both sides, we get 

det  (PT AP) = (det  (P))2 (det  (A)) = det  (B)
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As .det (A) is negative, .det (B) must also be negative. Therefore option . b is 

false. Now let .P =
(
a b
c d

)
. Then .PT AP =

(
2ab ad + bc

ad + bc 2cd

)
. From this,  if  

we take .P =
(

1 1
−1 1

)
, then .PT AP =

(
2 0
0 −2

)
. If we take  .P =

( 1
2 1
1
2 −1

)
, then 

.PT AP =
(
1 0
0 −1

)
. If we take .P =

(
1 3

2
1 5

2

)
, then .PT AP =

(
3 4
4 5

)
. 

(39) Given the permutation.σ =
(
1 2 3 4 5
3 1 2 5 4

)
, the matrix. A is defined to be the one 

whose .i th column is the .σ(i)th column of the identity matrix . I . Which of the 
following is correct? 
(a) .A = A−2 (b) .A = A−4 (c) .A = A−5 (d) . A = A−1

Ans. Option c 
Since .σ is of order 6, .σ 6 = e, where .σ is the identity permutation and hence 
.σ = σ−5. Hence, .A = A−5. 

(40) The matrix .A =
⎛
⎝5 9 8
1 8 2
9 1 0

⎞
⎠ satisfies 

(a) . A is invertible and the inverse has all integer entries. 
(b) .det (A) is odd. 
(c) .det (A) is divisible by 13. 
(d) .det (A) has at least two prime divisors. 

Ans. Options c and d 
We have .det (A) = −416 = 25 × 13. Therefore .A is invertible but the inverse 
does not have integer entries. 

(41) Let .A, B be .n × n matrices such that .BA + B2 = I − BA2 where . I is the 
.n × n identity matrix. Which of the following is always true? 
(a) . A is non-singular (b) . B is non-singular 
(c) .A + B is non-singular (d) .AB is non-singular 

Ans. Option b 
(a) & (d) Let .A = 0 and .B = I , then .BA + B2 = I − BA2, but . A and .AB are 
singular. 
(b) Now .BA + B2 = I − BA2 ⇒ B(A2 + A + B) = I . Taking determinant on 
both sides, 

det  (B)det  (A2 + A + B) = 1 ⇒ det  (B) /= 0 

Therefore .B is non-singular. 
(c) Let .A = −I and .B = I , then .BA + B2 = I − BA2, but .A + B is singular. 

(42) Let . S denote the set of all prime numbers . p such that the following matrix is 
invertible when considered as a matrix with entries in .Zp.
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A = 

⎛ 

⎝ 
1 2 0  
0 3  −1 

−2 0  2  

⎞ 

⎠ 

which of the following statements are true? 
(a) . S contains all the prime numbers. 
(b) . S contains all the prime numbers greater than 10. 
(c) . S contains all the prime numbers other than 2 and 5. 
(d) . S contains all the odd prime numbers. 

Ans. Options b and c 
Since the determinant of the given matrix is .det (A) = 10 = 2 × 5, the matrix is 
invertible when considered as a matrix with entries from other than .Z2 and .Z5. 

(43) Let. S denote the set of all the prime numbers. pwith the property that the matrix 

.

⎡
⎣91 31 0
29 31 0
79 23 59

⎤
⎦ has an inverse in the field .Zp. Then 

(a) .S = {31} (b) .S = {31, 59} (c) .S = {7, 13, 59} (d) . S is infinite 

Ans. Option d 
Determinant of the given matrix is.2 × 31 × 31 × 59 is zero only when. p = 2, 31
or 59. Therefore . S is infinite. 

(44) Let.m, n, r be natural numbers. Let. A be an.m × n matrix with real entries such 
that .(AAt )r = I , where . I is the .m × m identity matrix and.At is the transpose 
of the matrix . A. we conclude that 
(a) .m = n (b) .AAt is invertible 
(c) .At A is invertible (d) if .m = n, then . A is invertible 

Ans. Options b and d 

Consider the matrix.A =
|
1 0 0
0 1 0

|
. Then.At =

⎡
⎣1 0
0 1
0 0

⎤
⎦,.AAt =

|
1 0
0 1

|
and. At A =

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦. Therefore .m need not be equal to . n and .At A need not be invertible. 

Since .(AAt )r = I , .det (AAt ) /= 0. Therefore .AAt is invertible and if .m = n, 
then . A is invertible. 

(45) Let .A, B be .n × n real matrices such that .det (A) > 0 and .det (B) < 0. For  
.0 ≤ t ≤ 1, consider .C(t) = t A + (1 − t)B. Then 
(a) .C(t) is invertible for each .t ∈ [0, 1]. 
(b) There is a .t0 ∈ (0, 1) such that .C(t0) is not invertible. 
(c) .C(t) is not invertible for each .t ∈ [0, 1]. 
(d) .C(t) is invertible for only finitely many .t ∈ [0, 1].
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Ans. Option b 
Define . f : [0, 1] → R by . f (t) = det [C(t)]. Then 

f (0) = det  [C(0)] = det  (B) <  0 and f  (1) = det  [C(1)] = det  (A) >  0 

Since determinant is a continuous function, . f is continuous. Then by Interme-
diate Value Theorem 1 there exists .t0 ∈ (0, 1) such that .C(t0) = 0. Thus, . C(t0)
is not invertible. 

Or 

Take.n = 3,.A = I and.B = −I . Then.det (A) > 0 and.det (B) < 0 and. C(t) =
(2t − 1)I . .C(t) is invertible for every .t ∈ [0, 1] except for .t = 1

2 . Option . a, c
and . d are false. 

(46) The rank of the matrix .A =

⎡
⎢⎢⎣
1 1 1 1
1 2 3 2
2 5 6 4
2 6 8 5

⎤
⎥⎥⎦ is . . . . . . .

Ans. We have .A =

⎡
⎢⎢⎣
1 1 1 1
1 2 3 2
2 5 6 4
2 6 8 5

⎤
⎥⎥⎦ ∼ .

⎡
⎢⎢⎣
1 1 1 1
0 1 2 1
0 0 −2 −1
0 0 0 0

⎤
⎥⎥⎦. Therefore .Rank(A) = 3. 

(47) Let 

.A =

⎡
⎢⎢⎣

1 2 0 2
−1 −2 1 1
1 2 −3 −7
1 2 −2 −4

⎤
⎥⎥⎦. Then .Rank(A) equals 

(a) 4 (b) 3 (c) 2 (d) 1 
Ans. Option c 

We have .

⎡
⎢⎢⎣

1 2 0 2
−1 −2 1 1
1 2 −3 −7
1 2 −2 −4

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣
1 2 0 2
0 0 1 3
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦. Therefore .Rank(A) = 2. 

(48) Let .A = .

⎡
⎢⎢⎣
1 5 7 9
0 1 3 5
1 6 10 14
1 4 4 γ

⎤
⎥⎥⎦. Find . γ so that the rank of . A is two.

1 Intermediate Value Theorem: Let . f : [a, b] → R be a continuous function on .[a, b]. If . k ∈ R

satisfies. f (a) < k < f (b), then there exists a point.c ∈ [a, b] such that. f (c) = k. 
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Ans. We have.

⎡
⎢⎢⎣
1 5 7 9
0 1 3 5
1 6 10 14
1 4 4 γ

⎤
⎥⎥⎦ ∼.

⎡
⎢⎢⎣
1 5 7 9
0 1 3 5
0 0 0 0
0 −1 −3 γ − 9

⎤
⎥⎥⎦. Then. A has rank 2 if.γ = 4. 

(49) Let.A=E4
i=1 Xi XT

i , where.X
T
1 = |

1 −1 1 0
|
,.XT

2 = |
1 1 0 1

|
,.XT

3 = |
1 3 1 0

|
, 

.XT
4 = |

1 1 1 0
|
. Then .Rank(A) equals . . . . . . .

Ans. We have, .A=

⎡
⎢⎢⎣
4 4 3 1
4 12 3 1
3 3 3 0
1 1 0 1

⎤
⎥⎥⎦∼

⎡
⎢⎢⎣
4 4 3 1
0 1 0 0
0 0 1 −1
1 0 0 1

⎤
⎥⎥⎦∼

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦. Thus . Rank

(A) = 3. 

(50) Let.A, B be.n × n real matrices. Which of the following statements is correct? 
(a) . Rank(A + B) = Rank(A) + Rank(B)

(b) . Rank(A + B) ≤ Rank(A) + Rank(B)

(c) . Rank(A + B) = min{Rank(A), Rank(B)}
(d) . Rank(A + B) = max{Rank(A), Rank(B)}
Ans. Option b 
Take .A = I and .B = −I . Then option .a, c and . d are false. 

(51) Let .A be a non-zero .n × n real matrix with .n ≥ 2. Which of the following 
implications is valid? 
(a) .det (A) = 0 implies .Rank(A) = 0. 
(b) .det (A) = 1 implies .Rank(A) /= 1. 
(c) .Rank(A) = 1 implies .det (A) /= 0. 
(d) .Rank(A) = n implies .det (A) /= 1. 

Ans. Option b (a) Consider the matrix .
|
1 0
0 0

|
. .det (A) = 0 but .Rank(A) /= 0. 

(b).det (A) /= 0 implies. A has full rank. Clearly.Rank(A) /= 1. (c). Rank(A) = 1
implies .det (A) = 0. (d) Consider the .n × n identity matrix. .Rank(A) = n but 
.det (A) = 1. 

(52) Let .A be an .n × m matrix with each entry equal to .+1,−1 or 0 such that 
every column has exactly one .+1 and exactly one .−1. We can conclude that 
(a) Rank.(A) ≤ n − 1 (b) Rank.(A) = m (c) .n ≤ m (d) . n − 1 ≤ m

Ans. Option a 

Consider the matrix .

⎡
⎢⎢⎣

1 1
−1 −1
0 0
0 0

⎤
⎥⎥⎦. Then options .b, c and . d are false.
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(53) Let .A be a .5 × 5 matrix and let .B be obtained by changing one element of 
. A. Let  . r and . s be the ranks of .A and .B respectively. Which of the following 
statements is/are correct? 
(a) .s ≤ r + 1 (b) .r − 1 ≤ s (c) .s = r − 1 (d) . s /= r

Ans. Options a and b 
By changing one element of . A we can either reduce the rank of . A by 1, increase 
by 1 or the rank will be the same. Therefore .r − 1 ≤ s ≤ r + 1. 

(54) Let .A = |
ai j
|
be a .50 × 50 matrix, where .ai j = min(i, j); i, j = 1, . . . , 50. 

Then the rank of . A equals 
(a) 1 (b) 2 (c) 25 (d) 50 

Ans. Option d 

We have .A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 . . . 3
...

...
...

. . .
...

1 2 3 . . . 50

⎤
⎥⎥⎥⎥⎥⎦ ∼ .

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦. Therefore .Rank(A) is 50. 

(55) Let . J denote the matrix of order .n × n with all entries 1 and let . B be a . (3n) ×

(3n) matrix given by .B = det

⎡
⎣0 0 J
0 J 0
J 0 0

⎤
⎦. Then the rank of . B is 

(a) .2n (b) .3n − 1 (c) 2 (d) 3 

Ans. Option d 

By suitable row transformations .B = det

⎡
⎣ 0 0 K
0 K 0
K 0 0

⎤
⎦, where .K =

⎡
⎣1 1 1
0 0 0
0 0 0

⎤
⎦. 

Therefore .B has rank 3. 

(56) Let .An be the real .n × n matrix.(n ≥ 2) whose entry in position.(i, j) is .i − j . 
What is the rank of .An as a function of . n? 

Ans. We have . A2 =
|
0 −1
1 0

|
, A3 =

⎡
⎣0 −1 −2
1 0 −1
2 1 0

⎤
⎦ , . . . ,

.An =
⎡
⎢⎣

0 −1 . . . −(n − 1)
...

...
. . .

...

n − 1 n − 2 . . . 0

⎤
⎥⎦. Reducing to row-echelon form we can iden-

tify that .An has rank 2 for all . n. 

(57) Let . x and . y in .Rn be non-zero column vectors and .A = xyt , where .yt is the 
transpose of . y. Then the rank of . A is 
(a) 2 (b) 0 (c) at least . n2 . (d) None of the above.



8 Solved Problems—Preliminaries 311

Ans. Option d 
Since . x and . y are non-zero column vectors in .Rn, both have .rank 1. Then by 
Sylvester’s inequality .Rank(A) is less than or equal to 1. 

(58) Let .A and .B be two real matrices of size .4 × 6 and .5 × 4, respectively. If 
.Rank(B) = 4 and .Rank(BA) = 2, then .Rank(A) is equal to . . . . . . .

Ans. By Sylvester’s inequality, we have 

4 + Rank(A) − 4 ≤ Rank(BA) = 2 ≤ min {4, Rank(A)} 

This implies that 
Rank (A) ≤ 2 ≤ Rank (A) 

Therefore, .Rank(A) = 2. 

(59) Let .A be a .m × n matrix and .B be a .n × m matrix over real numbers with 
.m < n. Then 
(a) .AB is always non-singular 
(b) .AB is always singular 
(c) .BA is always non-singular 
(d) .BA is always singular 

Ans. Option d 
We have 

Rank(A), Rank(B) ≤ min{m, n} =  m 

Since .BA is an .n × n matrix, by Sylvester’s inequality, 

Rank(BA) ≤ min{Rank(B), Rank( A)} ≤  m < n 

Therefore .BA is always singular. 

(60) Let .m, n ∈ N, m < n, A ∈ Mn×m(R), B ∈ Mm×n(R).Then which of the fol-
lowing is(are) NOT possible? 
(a) . Rank(AB) = n
(b) . Rank(BA) = m
(c) . Rank(AB) = m
(d) .Rank(BA) = |m+n

2 |, the smallest integer larger than or equal to .
m+n
2 . 

Ans. Option a and d 
The maximum possible rank of both . A and .B are .m since 

Rank(A), Rank(B) ≤ min {m, n} < n 

Then by Sylvester’s inequality, if .Rank(A) = Rank(B) = m, . Rank(AB) = m
and .Rank(BA) = m. Clearly, .Rank(AB) = n is not possible. Also .. Rank
.(BA) = |m+n

2 | is not possible since .m < |m+n
2 |.
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(61) Let . A be a .3 × 3 non zero real matrix. If there exists a .3 × 2 real matrix. B and 
a .2 × 3 real matrix . C such that .A = BC , then 
(a) .Ax = 0 has a unique solution, where . 0 ∈ R

3

(b) there exists .b ∈ R
3 such that .Ax = b has no solution 

(c) there exists a non zero .b ∈ R
3 such that .Ax = b has a unique solution 

(d) there exists a non zero .b ∈ R
3 such that .AT x = b has a unique solution 

Ans. Option b 
We have 

Rank (A) ≤ min {Rank (B), Rank (C)} ≤ 2 

Therefore .A is not invertible and hence the homogeneous system has infinite 
number of solutions. The system .Ax = b has a unique solution if 

Rank [A | b] =  Rank (A) = 3 

which is not possible. Similarly for the system .AT x = b. As we can choose 
.Rank [A | b] = 3 there exists .b ∈ R

3 such that .Ax = b has no solution. 

(62) If .A is a .5 × 4 matrix with real entries such that .Ax = 0 if and only if . x = 0
where . x is a .4 × 1 vector and 0 is a null vector. Then .Rank(A) is 
(a) 5 (b) 4 (c) 2 (d) 1 

Ans. Option b 
The system .Ax = b has unique solution if and only if 

Rank[A | b] =  Rank(A) = number o f unknowns = 4 

(63) Let .A be a .n × m matrix and . b be a .n × 1 vector(with real entries). Suppose 
the equation.Ax = b, x ∈ R

m admits a unique solution. Then we can conclude 
that (a) .m ≥ n (b) .n ≥ m (c) .n = m (d) . n > m

Ans. Option b 
The system has a unique solution if and only if 

Rank [A | b] = Rank(A) = m 

Also 
m = Rank(A) ≤ min {m, n} ≤ n 

(64) Let .A be an .m × n matrix of rank . n with real entries, Choose the correct 
statement. 
(a) .Ax = b has a solution for any . b. 
(b) .Ax = 0 does not have a solution. 
(c) If .Ax = b has a solution, then it is unique. 
(d) .xT A = 0 for some non zero . x .
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Ans. Option c 
If the system is consistent.Rank(A) = n imply unique solution. Consider. A = I2

and .x =
|
a
b

|
for option d. 

(65) Let .A = .

⎡
⎣ 2 0 5

1 2 3
−1 5 1

⎤
⎦. The system of linear equations .Ax = b has a solution 

(a) only for .b =
⎛
⎝x1
0
0

⎞
⎠ , x1 ∈ R. 

(b) only for .b =
⎛
⎝ 0
x2
0

⎞
⎠ , x2 ∈ R. 

(c) only for .b =
⎛
⎝ 0
x2
x3

⎞
⎠ , x2, x3 ∈ R. 

(d) for all .b ∈ R
3. 

Ans. Option d 

As .

||||||
2 0 5
1 2 3

−1 5 1

|||||| /= 0, the given system has unique solution for any .b ∈ R
3. 

(66) The equations 

x1 + 2x2 + 3x3 = 1, x1 + 4x2 + 9x3 = 1, x1 + 8x2 + 27x3 = 1 

have 
(a) only one solution. 
(b) two solutions. 
(c) infinitely many solutions. 
(d) no solutions. 

Ans. Option a 
The above system of equations can be written in the form of .Ax = b as 

⎡ 

⎣1 2  3  
1 4  9  
1 8 27  

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣1 1 
1 

⎤ 

⎦ 

Since . A is invertible the given system has unique solution. 

(67) Consider the system of equations 

.x1 + x2 + x3 = 3, x1 − x2 + x3 = 4, x1 − 5x2 + λx3 = 6
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Then the value of . λ for which this system has an infinite number of solutions 
is (a) .λ = −5 (b) .λ = 0 (c) .λ = 1 (d) . λ = 3

Ans. Option c 
The above system can be represented in the form .Ax = b as 

⎡ 

⎣1 1  1  
1 −1 1  
1 −5 λ 

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣3 4 
6 

⎤ 

⎦ 

Then . [A | b] =
⎡
⎣1 1 1 3
1 −1 1 4
1 −5 λ 6

⎤
⎦ ∼

⎡
⎣1 1 1 3
0 −2 0 1
0 0 λ − 1 0

⎤
⎦

The given system has an infinite number of solutions, when . Rank[A | b] =
Rank(A) = 2. Therefore .λ = 1. 

(68) The system of equations: 

. 1.x + 2.x2 + 3.xy + 0.y = 6

2.x + 1.x2 + 3.xy + 1.y = 5

1.x − 1.x2 + 0.xy + 1.y = 7

(a) has solutions in rational numbers (b) has solutions in real numbers 
(c) has solutions in complex numbers (d) has no solution 

Ans. Option d 
When we add the first and third equation, we get the LHS of the second equation 
but the RHS is different. Therefore the system has no solution. 

(69) Let .A = .

⎡
⎢⎢⎣
2 0 3 2 0 −2
0 1 0 −1 3 4
0 0 1 0 4 4
1 1 1 0 1 1

⎤
⎥⎥⎦, .b1 = .

⎡
⎢⎢⎣
5
1
1
4

⎤
⎥⎥⎦ and .b2 = .

⎡
⎢⎢⎣
5
1
3
3

⎤
⎥⎥⎦. Then which of the 

following are true? 
(a) Both systems .Ax = b1 and .Ax = b2 are inconsistent. 
(b) Both systems .Ax = b1 and .Ax = b2 are consistent. 
(c) The system.Ax = b1 − b2 is consistent. 
(d) The system.Ax = b1 − b2 is inconsistent. 

Ans. Options a and c 

The augmented matrix .[A | b1]=

⎡
⎢⎢⎣
2 0 3 2 0 −2 5
0 1 0 −1 3 4 1
0 0 1 0 4 4 1
1 1 1 0 1 1 4

⎤
⎥⎥⎦ .∼ . 

⎡
⎢⎢⎣
2 0 3 2 0 −2 5
0 1 0 −1 3 4 1
0 0 1 0 4 4 1
0 0 0 0 0 0 2

⎤
⎥⎥⎦

⇒ Rank [A | b1] /= Rank(A). Thus, the system .Ax = b1 is inconsistent. Sim-
ilarly, we can show that the system .Ax = b2 is inconsistent.
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Let .b = b1 − b2 =

⎡
⎢⎢⎣

0
0

−2
1

⎤
⎥⎥⎦. Then the augmented matrix .. [A | b] =

.

⎡
⎢⎢⎣
2 0 3 2 0 −2 0
0 1 0 −1 3 4 0
0 0 1 0 4 4 −2
1 1 1 0 1 1 2

⎤
⎥⎥⎦ .∼ .

⎡
⎢⎢⎣
2 0 3 2 0 −2 0
0 1 0 −1 3 4 0
0 0 1 0 4 4 2
0 0 0 0 0 0 0

⎤
⎥⎥⎦ ⇒ Rank [A | b] = Rank(A). 

Thus, the system .Ax = b1 − b2 is consistent. 

(70) Let .A be .4 × 5 real matrix. Consider the system .Ax = b of linear equations 
where . x is a .5 × 1 column matrix of indeterminates and . b is some fixed . 4 × 1
column matrix with real entries. Given that 

.< . A is row equivalent to the matrix.M below (which means that the rows of . A are 
all linear combinations of the rows of .M and vice versa), and 
.< . C and .D below are both solutions to .Ax = b, 

what is the value of . y? 

M = 

⎡ 

⎢⎢⎣ 

1 −2 −1 −3 0  
0 0 0 0  1  
0 0 0 0  0  
0 0 0 0  0  

⎤ 

⎥⎥⎦ , C = 

⎡ 

⎢⎢⎢⎢⎣ 

1 
2 
3 
4 
5 

⎤ 

⎥⎥⎥⎥⎦ , D = 

⎡ 

⎢⎢⎢⎢⎣ 

y 
3 
4 
5 
5 

⎤ 

⎥⎥⎥⎥⎦ 

Ans. Since .C and .D below are both solutions to .Ax = b, . y − 25 = −18 ⇒
y = 7. 

(71) Consider the system of linear equations 

. x1 + x2 + 5x3 = 3, x1 + 2x2 + μx3 = 5, x1 + 2x2 + 4x3 = λ

The system is consistent if 
(a) .μ /= 4 (b) .λ /= 5 (c) .μ = 4 (d) . λ = 5

Ans. Option a and d 
The above system can be represented in the form of .Ax = b as 

⎡ 

⎣1 1  5  
1 2  μ 
1 2  4  

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣3 5 
λ 

⎤ 

⎦ 

Then 

[A | b] =  

⎡ 

⎣1 1  5  3  
1 2  μ 5 
1 2  4  λ 

⎤ 

⎦ ∼ 

⎡ 

⎣1 1 5 3  
0 1  μ − 5 2  
0 0 4  − μ λ  − 5 

⎤ 

⎦
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(a) When .μ /= 4, .Rank[A | b] = Rank(A) = 3, the system is consistent. 
(b) & (c) When .λ /= 5, μ = 4, .Rank[A | b] = 3 /= Rank(A) = 2, the system is 
not consistent. 
(d) When .λ = 5, .Rank[A | b] = Rank(A) = 2 or 3 which depends upon the 
value of . μ, then the system is consistent. 

(72) Suppose .α, β, γ ∈ R. Consider the following system of linear equations. 

. x1 + x2 + x3 = α, x1 + βx2 + x3 = γ, x1 + x2 + αx3 = β

If this system has atleast one solution, then which of the following statements 
is(are) TRUE? 

(a) If .α = 1 then .γ = 1 (b) If .β = 1 then . γ = α

(c) If .β /= 1 then .α = 1 (d) If .γ = 1 then . α = 1

Ans. Option a and b 
The above system can be represented in the form of .Ax = b as 

⎡ 

⎣1 1  1  
1 β 1 
1 1  α 

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣α 
γ 
β 

⎤ 

⎦ 

Then 

[A | b] =  

⎡ 

⎣1 1  1  α 
1 β 1 γ 
1 1  α β  

⎤ 

⎦ ∼ 

⎡ 

⎣1 1 1 α 
0 β − 1 0 γ − α 
0 0 α − 1 β − α 

⎤ 

⎦ 

(a) If .α = 1, we have 

[A | b] =  

⎡ 

⎣1 1 1 1  
0 β − 1 0  γ − 1 
0 0 0  β − 1 

⎤ 

⎦ 

As the given system is consistent, .Rank[A | b] = Rank(A) for any .α, β, γ ∈ R. 
Therefore if .β /= 1, then the given system does not have a solution as otherwise, 

Rank[A | b] =  3 /= Rank(A) = 2 

Therefore .β = 1.Then 

[A | b] =  

⎡ 

⎣1 1 1 1  
0 0 0  γ − 1 
0 0 0 0  

⎤ 

⎦ ⇒ γ = 1 

(b) If .β = 1, then
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[A | b] =  

⎡ 

⎣1 1 1 α 
0 0 0 γ − α 
0 0  α − 1 1  − α 

⎤ 

⎦ 

If .γ /= α, then .Rank[A | b] /= Rank(A). Now suppose that .α = γ . Then 

[A | b] =  

⎡ 

⎣1 1 1 1  
0 0 0 0  
0 0  α − 1 1  − α 

⎤ 

⎦ 

The given system is consistent. 
(c) If .β /= 1 and .α = 1, then 

Rank[A | b] =  3 /= Rank(A) = 2 

Then the system is not consistent. 
(d) If .γ = α = 1, then 

[A | b] =  

⎡ 

⎣1 1 1 1  
0 β − 1 0 0  
0 0 0  β − 1 

⎤ 

⎦ 

Clearly, the system need not be consistent. 

(73) For two non zero real numbers. λ and. μ, consider the system of linear equations

|
λ μ  
μ λ

| |
x1 
x2

|
=
|

μ 
2 
λ 
2

|

Which of the following statements is(are) TRUE? 
(a) If .λ = μ, the solutions of the system lie on the line .x1 + x2 = 1

2 . 
(b) If .λ = −μ, the solutions of the system lie on the line .x2 − x1 = 1

2 . 
(c) If .λ /= ±μ, the system has no solution. 
(d) If .λ /= ±μ, the system has a unique solution. 

Ans. Options a, b and d 
(a) If .λ = μ then the given system written in the form .Ax = b is

|
μ μ  
μ μ

| |
x1 
x2

|
=
|

μ 
2 
μ 
2

|

Then 

[A | b] =
|
μ μ  μ 

2 
μ μ  μ 

2

|
∼
|
μ μ  μ 

2 
0 0  0

|
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Clearly, .Rank[A | b] = Rank(A) = 1. The system is consistent and the solu-
tions of the system lies on . x1 + x2 = 1

2
(b) If .λ = −μ then the given system written in the form .Ax = b is

|−μ μ  
μ −μ

| |
x1 
x2

|
=
|

μ 
2−μ 
2

|

Then 

[A | b] =
|−μ μ  μ 

2 
μ −μ −μ 

2

|
∼
|−μ μ  μ 

2 
0 0  0

|

Clearly, .Rank[A | b] = Rank(A) = 1. The system is consistent and the solu-
tions of the system lies on .x2 − x1 = 1

2 . 

(c) If .λ /= ±μ, then .det (A) = λ2 − μ2 /= 0. Therefore 

Rank[A | b] =  Rank(A) = 2 = number o f unknowns 

Thus the system has a unique solution. 

(74) The system of equations 

x1 + x2 + 2x3 = 2, 2x1 + 3x2 − x3 = 5, 4x1 + 7x2 + λx3 = 6 

does NOT have a solution. Then, the value of . λ must be equal to . . . . . . .

Ans. The given system can be represented in the form .Ax = b as 

⎡ 

⎣1 1  2  
2 3  −1 
4 7  λ 

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣2 5 
6 

⎤ 

⎦ 

We have ⎡ 

⎣1 1  2  2  
2 3  −1 5  
4 7  λ 6 

⎤ 

⎦ ∼ 

⎡ 

⎣1 1 2 2  
0 1  −5 1  
0 0  λ + 7 −5 

⎤ 

⎦ 

Therefore, the system has no solution if .λ + 7 = 0. That is, if .λ = −7. 

(75) Consider the following system of three linear equations in four unknowns 
.x1, x2, x3 and . x4

. x1 + x2 + x3 + x4 = 4, x1 + 2x2 + 3x3 + 4x4 = 5, x1 + 3x2 + 5x3 + λx4 = 5

If the system has no solutions, then .λ = · · · · · ·
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Ans. The given system can be represented in the form .Ax = b as 

⎡ 

⎣1 1 1  1  
1 2  3  4  
1 3 5  λ 

⎤ 

⎦ 

⎡ 

⎢⎢⎣ 

x1 
x2 
x3 
x4 

⎤ 

⎥⎥⎦ = 

⎡ 

⎣4 5 
5 

⎤ 

⎦ 

We have 

[A | b] =  

⎡ 

⎣1 1 1  1  4  
1 2 3  4  5  
1 3 5  λ 5 

⎤ 

⎦ ∼ 

⎡ 

⎣1 1 1 1 4  
0 1  2 3 1  
0 0 0  λ − 7 −1 

⎤ 

⎦ 

When.λ = 7,.Rank[A | b] = 2 /= Rank(A) = 3. Therefore the given system has 
no solution. 

(76) Consider the following system of linear equations 

. λx1 + 2x2 + x3 = 0, x2 + 5x3 = 1, μx2 − 5x3 = −1

Which one of the following statements is true? 
(a) The system has unique solution for . λ = 1, μ = −1
(b) The system has unique solution for . λ = −1, μ = 1
(c) The system has no solution for . λ = 1, μ = 0
(d) The system has infinitely many solutions for . λ = 0, μ = 0

Ans. Option b 
The above system can be represented in the form .Ax = b as 

⎡ 

⎣λ 2 1  
0 1  5  
0 μ −5 

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
0 
1 

−1 

⎤ 

⎦ 

Then 

[A | b] =  

⎡ 

⎣λ 2 1 0  
0 1  5 1  
0 μ −5 −1 

⎤ 

⎦ ∼ 

⎡ 

⎣λ 2 1 0  
0 1 5 1  
0 0  −5 − 5μ −1 − μ 

⎤ 

⎦ 

(a) When .λ = 1, μ = −1, 

Rank(A) = Rank[A | b] =  2 < number of unknowns 

Therefore the system has infinitely many solution. 
(b) When .λ = −1, μ = 1, 

Rank(A) = Rank[A | b] =  3 = number of unknowns
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Therefore the system has unique solution. 
(c) When .λ = 1, μ = 0, 

Rank(A) = Rank[A | b] =  3 = number of unknowns 

Therefore the system has unique solution. 
(d) When .λ = 0, μ = 0, 

Rank[A | b] =  3 /= Rank(A) = 2 

Therefore the system has no solution. 

(77) In which case the system of equations 

. x1 − 2x2 + x3 = 3, 2x1 − 5x2 + 2x3 = 2, x1 + 2x2 + λx3 = μ

has infinite number of solutions? (a) .λ = 1, μ = −19 (b) . λ = −1, μ = 19
(c) .λ = 2, μ = 18 (d) . λ = 1, μ = 19

Ans. Option d 
The above system can be represented in the form .Ax = b as 

⎡ 

⎣1 −2 1  
2 −5 2  
1 2  λ 

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣3 
2 
μ 

⎤ 

⎦ 

Then 

[A | b] =  

⎡ 

⎣1 −2 1  3  
2 −5 2  2  
1 2  λ μ  

⎤ 

⎦ ∼ 

⎡ 

⎣1 −2 1 3  
0 −1 0 −4 
0 0  λ − 1 μ − 19 

⎤ 

⎦ 

(a) When .λ = 1, μ = −19, 

Rank[A | b] =  3 /= Rank( A) = 2 

Therefore the system has no solutions. 
(b) When .λ = −1, μ = 19, 

Rank[A | b] =  Rank(A) = 3 = number of unknowns 

Therefore the system has unique solution. 
(c) When .λ = 2, μ = 18, 

Rank[A | b] =  Rank( A) = 3 = number of unknowns
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Therefore the system has unique solution. 
(d) When .λ = 1, μ = 19, 

Rank[A | b] =  Rank(A) = 2 < number of unknowns 

Therefore the system has infinite number of solutions. 

(78) Consider the linear system 

. x1 + x2 + 2x3 = λ, x1 + 4x2 + x3 = 4, 3x2 − x3 = μ

If the above system always has a solution then the value of .λ + μ is equal to 
. . . . . . .

Ans. The above system can be represented in the form .Ax = b as 

⎡ 

⎣1 1  2  
1 4  1  
0 3  −1 

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣λ 
4 
μ 

⎤ 

⎦ 

Then ⎡ 

⎣1 1  2  λ 
1 4  1  4  
0 3  −1 μ 

⎤ 

⎦ ∼ 

⎡ 

⎣1 1  2 λ 
0 3  −1 4  − λ 
0 0  0  λ + μ − 4 

⎤ 

⎦ 

The given system has a solution when .Rank[A | b] = Rank(A) = 2. That is, 
when .λ + μ − 4 = 0. Therefore .λ + μ = 4. 

(79) The system of equations 

. x1 + 3x2 + 2x3 = λ, 2x1 + x2 − 4x3 = 4, 5x1 − 14x3 = 10

(a) has unique solution for .λ = 2 (b) has infinitely many solutions for . λ = 2
(c) has no solution for .λ = 2 (d) has unique solution for any . λ /= 2

Ans. Option b 
The above system can be represented in the form .Ax = b as 

⎡ 

⎣1 3  2  
2 1  −4 
5 0  −14 

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣ 
λ 
4 
10 

⎤ 

⎦ 

Then 

[A | B] =  

⎡ 

⎣1 3  2 λ 
2 1  −4 4  
5 0  −14 10 

⎤ 

⎦ ∼ 

⎡ 

⎣1 3 2 λ 
0 −5 −8 4  − 2λ 
0 0 0  λ − 2 

⎤ 

⎦
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When .λ = 2, .Rank[A | b] = Rank(A) = 2 < number of unknowns. Therefore 
the given system has infinitely many solutions. 
When .λ /= 2, .Rank[A | b] = 3 /= Rank(A) = 2. Therefore the system has no 
solution. 

(80) Find the value(s) of . λ for which the following system of linear equations 

⎛ 

⎝λ 1 1  
1 λ 1 
1 1  λ 

⎞ 

⎠ 

⎛ 

⎝x1 
x2 
x3 

⎞ 

⎠ = 

⎛ 

⎝1 
1 
1 

⎞ 

⎠ 

(a) has a unique solution 
(b) has infinitely many solutions 
(c) has no solution 

Ans. Since the determinant of the given matrix is . λ3 − 3λ + 2 = (λ − 1)2(λ +
2), the given matrix is invertible for all . λ other than 1 and .−2. When .λ = 1, the  
given system is ⎛ 

⎝1 1 1  
1 1 1  
1 1 1  

⎞ 

⎠ 

⎛ 

⎝x1 
x2 
x3 

⎞ 

⎠ = 

⎛ 

⎝1 
1 
1 

⎞ 

⎠ 

Then .Rank[A | b] = Rank(A) = 1 < number of unknowns. So the system has 
infinitely many solutions when .λ = 1. 
When .λ = −2, the given system is 

⎛ 

⎝−2 1 1  
1 −2 1  
1 1  −2 

⎞ 

⎠ 

⎛ 

⎝x1 
x2 
x3 

⎞ 

⎠ = 

⎛ 

⎝1 
1 
1 

⎞ 

⎠ 

Then 

[A | b] =  

⎛ 

⎝−2 1 1  1  
1 −2 1  1  
1 1  −2 1  

⎞ 

⎠ ∼ 

⎛ 

⎝−2 1 1  1  
0 −3 3 3  
0 0  0  6  

⎞ 

⎠ 

Clearly, .Rank[A | B] = 3 /= Rank(A) = 2 and hence the given system has no 
solution when .λ = −2. 

(81) Let .A = .

⎡
⎣1 −1 1
1 1 1
2 3 λ

⎤
⎦ and .b = .

⎡
⎣1
3
μ

⎤
⎦. Then the system .Ax = b over the real 

numbers has 
(a) no solution whenever .μ /= 7. 
(b) an infinite number of solutions whenever .λ /= 2. 
(c) an infinite number of solutions if .λ = 2 and .μ /= 7. 
(d) a unique solution if .λ /= 2.
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Ans. Option d 
Consider the augmented matrix 

[A | b] = 

⎡ 

⎣1 −1 1  1  
1 1  1  3  
2 3  λ μ  

⎤ 

⎦ ∼ 

⎡ 

⎣1 −1 1 1  
0 2 0 2  
0 5  λ − 2 μ − 2 

⎤ 

⎦ ∼ 

⎡ 

⎣1 −1 1 1  
0 1 0 1  
0 0  λ − 2 μ − 7 

⎤ 

⎦ 

When.λ /= 2,.Rank[A | b] = Rank(A) = 3, the given system has a unique solu-
tion. 
When.λ = 2 and.μ /= 7,.Rank[A | b] = 3 /= Rank(A) = 2 implies that the sys-
tem is inconsistent. 

(82) Consider the system of simultaneous equations 

2x1 − 2x2 − 2x3 = α, −2x1 + 2x2 − 3x3 = β, 4x1 − 4x2 + 5x3 = γ 

Write down the condition to be satisfied by.α, β, γ for this system NOT to have 
a solution. 

Ans. The above system can be written in the form of .Ax = b as 

⎡ 

⎣ 
2 −2 −2 

−2 2  −3 
4 −4 5  

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣α 
β 
γ 

⎤ 

⎦ 

Then 

[A | b] =  

⎡ 

⎣ 
2 −2 −2 α 

−2 2  −3 β 
4 −4 5  γ 

⎤ 

⎦ ∼ 

⎡ 

⎢⎣ 

2 −2 −2 α 
0 0  −5 α + β 

0 0 0  
−α + 9β + 5γ 

9 

⎤ 

⎥⎦ 

The system has no solution when.Rank[A | b] /= Rank(A). Here.Rank(A) = 2. 
So when .−α + 9β + 5γ /= 0 the system has no solution. 

(83) Let.A ∈ M2×2(R) be a singular matrix. Let .x0 and. b be vectors in.R
n such that 

.Ax0 = b. Which of the following statements are true? 
(a) There exists .y0 ∈ R

n such that .AT y0 = b. 
(b) There exist infinitely many solutions to the equation .Ax = b. 
(c) If .AT x = 0, then it follows that .bT x = 0. 

Ans. Option b and c 
(a) Consider the system ⎡ 

⎣0 0 1  
0 1  0  
0 0 0  

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣1 2 
0 

⎤ 

⎦ 

Then .
|
0 2 1

|T
is a solution for the given system. But the system
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⎡ 

⎣0 0 0  
0 1  0  
1 0 0  

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣1 2 
0 

⎤ 

⎦ 

does not have solution as the rank of the augmented matrix is 3 and the rank of 
the coefficient matrix is 2. 
(b) Since . A is singular, 

Rank[A | b] =  Rank( A) <  number of unknowns 

Therefore there exist infinitely many solutions to the equation .Ax = b. 
(c) .AT x = 0 ⇒ x0T AT x = 0 ⇒ bT x = 0. 

(84) The system of equations 

x1 − x2 + 2x3 = α, x1 + 2x2 − x3 = β, 2x2 − 2x3 = γ 

is inconsistent when .(α, β, γ ) equals 
(a) .(2, 2, 0) (b) .(0, 3, 2) (c) .(2, 2, 1) (d) . (2,−1,−2)

Ans. Option c 
The above system can be represented in the form of .Ax = b as 

⎡ 

⎣1 −1 2  
1 2  −1 
0 2  −2 

⎤ 

⎦ 

⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ = 

⎡ 

⎣α 
β 
γ 

⎤ 

⎦ 

Then 

[A | b] =  

⎡ 

⎣1 −1 2  α 
1 2  −1 β 
0 2  −2 γ 

⎤ 

⎦ ∼ 

⎡ 

⎢⎢⎢⎣ 

1 −1 2 α 

0 1  −1 
β − α 
3 

0 0 0  
3γ − 2β + 2α 

3 

⎤ 

⎥⎥⎥⎦ 

Since the system is inconsistent .Rank[A | b] /= Rank(A) = 2. Therefore 

.Rank[A | b] = 3. Hence, .
3γ − 2β + 2α

3
must be non-zero. 

(85) Let.u, v ∈ R
4 be such that.u = |

1 2 3 5
|T

and.v = |
5 3 2 1

|T
. Then the equa-

tion .uvT x = v has 
(a) infinitely many solutions (b) no solution 
(c) exactly one solution (d) exactly two solutions 

Ans. Option b 
We have
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[uvT | v] =  

⎡ 

⎢⎢⎣ 

5 3 2  1  5  
10 6 4 2 3 
15 9 6 3 2 
25 15 10 5 1 

⎤ 

⎥⎥⎦ ∼ 

⎡ 

⎢⎢⎣ 

5 3 2 1  5  
0 0 0 0  −7 
0 0 0 0  −13 
0 0 0 0  −24 

⎤ 

⎥⎥⎦ 

Then 
. Rank [uvT | v] = 2 /= Rank (uvT ) = 1

Thus the equation .uvT x = v has no solutions. 

(86) If .x1, x2 and .x3 are real numbers such that .4x1 + 2x2 + x3 = 31 and . 2x1 +
4x2 − x3 = 19, then the value of . 9x1 + 7x2 + x3
(a) equals . 8213 (b) equals . 2813 (c) equals . 1823 (d) equals . 2183

Ans. Option d 
The given system can be written in the form .Ax = b as

|
4 2  1  
2 4  −1

|⎡ 

⎣x1 x2 
x3 

⎤ 

⎦ =
|
31 
19

|

Then 

[A | b] =
|
4 2  1  31  
2 4  −1 19

|
∼
|
4 2  1  31  
0 6  −3 7

|

and 
Rank [A | b] =  Rank ( A) = 2 < number of unknowns 

Therefore the system has infinite number of solutions. The general form of the 

solutions is given by .z = λ, y = 7 + 3λ

6
and .x = 43 − 3λ

6
. If we take  .λ = 0, 

we have .x = 43
6 , y = 7

6 , z = 0. Then .9x1 + 7x2 + x3 = 218
3 . 

(87) Let.A =
⎡
⎣α 1 1
1 β 1
1 1 γ

⎤
⎦ , αβγ = 1, α, β, γ ∈ R and.x =

⎡
⎣x1x2
x3

⎤
⎦ ∈ R

3. Then. Ax = 0

has infinitely many solutions if .tr(A) is . . . . . . .

Ans. The homogeneous system has infinitely many solutions when .det (A) = 0. 
Here 

det  (A) = 3 − (α + β + γ )  = 0 ⇒ tr(A) = α + β + γ = 3 

(88) Let a unit vector .v = |
v1 v2 v3

|T
be such that .Av = 0 where 

.A = .

⎡
⎣ 5

6
−1
3

−1
6−1

3
1
3

−1
3−1

6
−1
3

5
6

⎤
⎦. Then the value of .√6(|v1| + |v2| + |v3|) equals .. . . . . .
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Ans. We have 

A = 

⎡ 

⎣ 
5 
6 

−1 
3 

−1 
6−1 

3 
1 
3 

−1 
3−1 

6 
−1 
3 

5 
6 

⎤ 

⎦ = 
1 

6 

⎡ 

⎣ 
5 −2 −1 

−2 2  −2 
−1 −2 5  

⎤ 

⎦ 

Then ⎡ 

⎣ 
5 −2 −1 

−2 2  −2 
−1 −2 5  

⎤ 

⎦ ∼ 

⎡ 

⎣ 
0 0 0  
0 1  −2 

−1 −2 5  

⎤ 

⎦ ⇒ v2 = 2v3, v1 = v3 

Since . v is a unit vector, .
/

|v2
1 | + |v2

2 | + |v2
3 | = 1. Consider .v = 1√

6

|
1 2 1

|T
. 

Then .
√
6(|v1| + |v2| + |v3|) = 4. 

(89) Let .p be a prime and consider the field .Zp. List the primes for which the 
following system of linear equations DOES NOT have a solution in .Zp: 

. 5x1 + 3x2 = 4

. 3x1 + 6x2 = 1

Ans. The system can be written as

|
5 3  
3 6

| |
x1 
x2

|
=
|
4 
1

|

Then 

[A | b] =
|
5 3 4  
6 3 1

|
∼
|
5 3  4  
0 21  −7

|

The system of equations.Ax = b is inconsistent when.Rank[A | b] /= Rank(A). 
If .Rank(A) = 2 then clearly .Rank[A | b] = Rank(A). So here .Rank(A) must 
be equal to 1. Hence .det (A) = 0 ⇒ p = 3 or .p = 7. When .p = 7, . Rank[A |
b] = Rank(A) = 1and when.p = 3,.Rank[A | b] = 2 /= Rank(A) = 1. There-
fore .p = 3 is the only possibility. 

(90) Check whether the following statements are true or false. 
(a) If. A and. B are.3 × 3matrices and. A is invertible, then there exists an integer 
. n such that .A + nB is invertible. 

(b) The.10 × 10matrix.

⎛
⎜⎜⎜⎝

v1w1 · · · v1w10

v2w1 · · · v2w10
...

. . .
...

v10w1 · · · v10w10

⎞
⎟⎟⎟⎠ has rank 2, where.vi , wi /= 0 ∈ C. 

(c) Let . S be the set of all .n × n real matrices whose entries are only 0, 1, or 2. 
Then the average determinant of a matrix in . S is greater than or equal to 1.
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(d) Every .2 × 2 matrix over . C is a square of some matrix. 
(e) For all positive integers .m and . n, if . A is an .m × n real matrix, and .B is an 
.n × m real matrix such that .AB = I , then .BA = I . 
(f) Suppose .A1, . . . , Am are distinct .n × n real matrices such that . Ai A j = 0
for all .i /= j . Then .m ≤ n. 
(g) Let .A, B,C ∈ M3×3(R) be such that .A commutes with . B, .B commutes 
with . C and . B is not a scalar matrix. Then . A commutes with . C . 
(h) Let .A, B ∈ Mn×n(R) be such that .A + B = AB. Then .AB = BA. 
(i) Suppose .A, B,C are .3 × 3 real matrices with .Rank(A) = 2, . Rank(B) =
1,.Rank(C) = 2. Then .Rank(ABC) = 1. 

Ans. (a) True. .det (A + x B) is a polynomial of degree 3. It is either zero for all 
. x or equal to zero for all but finitely many . x. When .x = 0, .det (A + x B) /= 0 as 
. A is invertible. So there exists an integer . n such that .A + nB is invertible. 

(b) False. The .i th row of the given matrix can be obtained by multiplying .
vi

v1
to 

the first row. So the given matrix is of rank 1. 
(c) False. The given set contains.3n

2
elements as each entry has three possibilities. 

Now suppose that .A ∈ S and .det (A) = λ then by interchanging one row we get 
another matrix in . S which has determinant .−λ. Then the average determinant 
of a matrix in . S is zero. 

(d) False. Let.A =
|
0 1
0 0

|
. Suppose that there exists a matrix.B =

|
a11 a12
a21 a22

|
such 

that .B2 = A. This gives,

|
a2 11 + a12a21 a12(a11 + a22) 
a21(a11 + a22) a21a12 + a2 22

|
=
|
0 1  
0 0

|

Then .a211 + a12a21 = a21a12 + a222 = 0 which implies that .a11 = ±a22. And  
.a12(a11 + a22) = 1 ⇒ a11 = a22 for if.a11 = −a22 then.a12(a11 + a22) = 0. Now  
.a21(a11 + a22) = 2a21a11 = 0 ⇒ a21 = 0 or a11 = 0. Now suppose .a21 = 0, 
then.a21a12 + a222 = 0 ⇒ a22 = a11 = 0. But this is not possible since. a12(a11 +
a22) = 1. By the same reason .a11 = 0 is not possible. So there does not exist a 
matrix .B such that .B2 = A. 

(e) False. Consider the matrix.A = |
1 0

|
and.B =

|
1
2

|
, Then.AB = [1] = I1×1. 

But .BA =
|
1 0
2 0

|
/= I . 

(f) False. Consider the set.

{|
0 0
0 0

|
,

|
1 0
0 0

|
,

|
0 0
0 1

|}
. Then.Ai A j = 0 for all.i /= j . 

But .m > n. 

(g) False. Let .A =
⎡
⎣1 2 0
0 0 0
0 0 0

⎤
⎦, .B =

⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦, .C =

⎡
⎣1 0 0
2 0 0
0 0 0

⎤
⎦. Then .A commutes 

with . B, .B commutes with .C and .B is not a scalar matrix. But . A does not com-
mutes with . C.



328 8 Solved Problems—Preliminaries

(h) True. For, we have 

. A + B = AB ⇒ A + (B − I ) + I = AB

⇒ I = AB − A − (B − I )

⇒ I = A(B − I ) − (B − I )

⇒ I = (A − I )(B − I )

i.e., .(A − I ) and .(B − I ) are inverses of each other. Now 

. I = (B − I )(A − I ) ⇒ I = BA − B − A + I

⇒ BA = A + B

⇒ AB = BA

(i) False. Consider the matrices.A=
⎡
⎣1 0 0
0 1 0
0 0 0

⎤
⎦ , B=

⎡
⎣1 0 0
0 0 0
0 0 0

⎤
⎦, and.C =

⎡
⎣0 0 0
1 0 0
0 1 0

⎤
⎦. 

Then .ABC is the zero matrix.



Chapter 9 
Solved Problems—Vector Spaces 

(1) Let .p(x) = αx2 + βx + γ be a polynomial, where .α, β, γ ∈ R. Fix  .x0 ∈ R. 
Let.S = {(a, b, c) ∈ R

3 | p(x) = a(x − x0)2 + b(x − x0) + c ∀ x ∈ R}. Then 
the number of elements in . S is 
(a) 0 (b) 1 (c) strictly greater than 1 but finite (d) infinite 

Ans. Option b 
Fix .x0 ∈ R. Then 

. p(x) = a(x − x0)
2 + b(x − x0) + c ⇒ αx2 + βx + γ = a(x − x0)

2 + b(x − x0) + c

⇒ a = α, b = β + 2αx0, c = γ + (β + 2αx0)x0 + x20

(2) If .V is a vector space over the field .Z5 and .dimZ5(V ) = 3, then .V has 
(a) 125 elements. (b) 15 elements. (c) 243 elements. (d) None of the above. 

Ans. Option a 
Let .{v1, v2, v3} be a basis of . V . Then 

. V = {a1v1 + a2v2 + a3v3 : a1, a2, a3 ∈ Z5}

Therefore .V has 125 elements. 

(3) Which of the following matrices has the same row space as the matrix.

⎛
⎝
4 8 4
3 6 1
2 4 0

⎞
⎠? 

(a) .

(
1 2 0
0 0 1

)
(b) .

(
1 1 0
0 0 1

)
(c) .

(
0 1 0
0 0 1

)
(d) . 

(
1 0 0
0 1 0

)

Ans. Option a 

By suitable elementary transformations, we get .

⎛
⎝
4 8 4
3 6 1
2 4 0

⎞
⎠ ∼

⎛
⎝
1 2 0
0 0 1
0 0 0

⎞
⎠. 
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(4) Let. A be an.m × nmatrix with rank. r . If the linear system.Ax = b has a solution 
for each .b ∈ R

m , then 

(a) . m = r
(b) the column space of . A is a proper subspace of .Rm . 
(c) the null space of . A is a non trivial subspace of .Rm whenever .m = n. 
(d) .m ≥ n implies .m = n. 

Ans. Options a and d 
The system.Ax = b has a solution for each.b ∈ R

m implies that the column space 
of . A is .Rm and since .Rank(A) = r , .m = r . As .Rank(A) ≤ min{m, n}, . m ≥ n
implies .m = n. If .m = n the null space of . A is the trivial subspace of .Rm. 

(5) Let .V be the set of .2 × 2 matrices .

|
a11 a12
a21 a22

|
with complex entries such that 

.a11 + a22 = 0. Let  .W be the set of matrices in .V with .a12 + a21 = 0. Then, 
under usual matrix addition and scalar multiplication, which of the following 
is (are) true? 
(a) .V is a vector space over .C (b) .W is a vector space over . C
(c) .V is a vector space over .R (d) .W is a vector space over . R

Ans. Options a, c and d 

An element in .V is of the form .

|
a + ib c + id
e + i f −a − ib

|
. Let . A =

|
a1 + ib1 c1 + id1
e1 + i f1 −a1 − ib1

|
, B =

|
a2 + ib2 c2 + id2
e2 + i f2 −a2 − ib2

|
∈ V . Then.λA + B ∈ V as 

. λ(a1 + ib1) + (a2 + ib2) + λ(−a1 − ib1) + (−a2 − ib2) = 0

for any .λ ∈ C(or R) and .A, B ∈ V . 

An element in .W is of the form .

|
a + ib c + id

−c + id −a − ib

|
. Then 

. i

|
a + ib c + id

−c + id −a − ib

|
=
|
ia − b ic − d

−ic − d −ia + b

|
/∈ W

But .W is a vector space over . R. 

(6) Let . A be an .m × n real matrix and .b ∈ R
m with .b /= 0. 

(a) The set of all real solutions of .Ax = b is a vector space. 
(b) If .x1 and .x2 are two solutions of .Ax = b, then .λx1 + (1 − λ)x2 is also a 

solution of .Ax = b for any . λ ∈ R

(c) For any two solutions .x1 and .x2 of .Ax = b, the linear combination . λx1 +
(1 − λ)x2 is also a solution of .AX = B only when .0 ≤ λ ≤ 1. 

(d) If rank of . A is . n, then .Ax = b has at most one solution
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Ans. Options b and d 

(a) Since . 0 vector is not a solution of the given system Option a is false. 
(b) & (c) .x1 and .x2 are solutions .⇒ Ax1 = b and .Ax2 = b. Now  

. A (λx1 + (1 − λ)x2) = λAx1 + (1 − λ)Ax2 = b

for any .λ ∈ R. 
(d) If the system is consistent .Rank(A) = n imply unique solution. 

(7) Which of the following is a subspace of the vector space .R
3? 

(a) . 
{
(x, y, z) ∈ R

3 : x + 2y = 0, 2x + 3z = 0
}

(b) . 
{
(x, y, z) ∈ R

3 : 2x + 3y + 4z − 3 = 0, z = 0
}

(c) . 
{
(x, y, z) ∈ R

3 : x ≥ 0, y ≥ 0
}

(d) . 
{
(x, y, z) ∈ R

3 : x − 1 = 0, y = 0
}

Ans. Option a 

(a) Let 
. W1 = {

(x, y, z) ∈ R
3 : x + 2y = 0, 2x + 3z = 0

}

Take .(x1, y1, z1), (x2, y2, z2) ∈ A. Then .x1 + 2y1 = 0, 2x1 + 3z1 = 0 and 
.x2 + 2y2 = 0, 2x2 + 3z2 = 0. For .λ ∈ R, we have 

. λ(x1, y1, z1) + (x2, y2, z2) = (λx1 + x2, λy1 + y2, λz1 + z2) ∈ W1

as 
. λx1 + x2 + 2(λy1 + y2) = λ(x1 + 2y1) + (x2 + 2y2) = 0

and 

. 2(λx1 + x2) + 3(λz1 + z2) = λ(2x1 + 3z1) + (2x2 + 3z2) = 0

Therefore .W1 is a subspace. 
(b) Let 

. W2 = {
(x, y, z) ∈ R

3 : 2x + 3y + 4z − 3 = 0, z = 0
}

Then .W2 is not a subspace since .(0, 0, 0) /∈ W2. 
(c) Let 

. W3 = {
(x, y, z) ∈ R

3 : x ≥ 0, y ≥ 0
}

Then.(1, 1, 0) ∈ W3. Take.−1 ∈ R..−1(1, 1, 0) = (−1,−1, 0) /∈ W3. There-
fore .W3 is not a subspace. 

(d) Let 
.W4 = {

(x, y, z) ∈ R
3 : x − 1 = 0, y = 0

}
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Then .W4 is not a subspace since .(0, 0, 0) /∈ W4. 

(8) Which of the following are subspaces of the vector space .R
3? 

(a) .{(x, y, z) : x + y = 0} (b) . {(x, y, z) : x − y = 0}
(c) .{(x, y, z) : x + y = 1} (d) . {(x, y, z) : x − y = 1}
Ans. Options a and b 
Since the possible subspaces of .R3 are either .{0}, lines passing through origin, 
planes passing through origin and .R3, options . c and . d are not subspaces as 
they does not pass through origin and . a and . b represents planes passing through 
origin. 

(9) Which of the following sets of functions from. R to. R is a vector space over. R? 

. W1 = { f | lim
x→3

f (x) = 0}, W2 = {g | lim
x→3

g(x) = 1}, W3 = {h | lim
x→3

h(x) exists}

(a) Only . W1

(b) Only . W2

(c) .W1 and .W3 but not . W2

(d) All the three are vector spaces 

Ans. Option c 
Let . f1, f2 ∈ W1 and .λ ∈ R. Since 

. lim
x→3

λ( f1(x) + f2(x)) = λ lim
x→3

f1(x) + lim
x→3

f2(x) = 0

.W1 is a vector space over . R. 
Let .h1, h2 ∈ W3 and .λ ∈ R. Since 

. lim
x→3

λ(h1(x) + h2(x)) = λ lim
x→3

h1(x) + lim
x→3

h2(x)

exists, .W3 is a vector space over . R. Since 0 element does not belong to .W2, it is  
not a vector space over . R. 

(10) Consider .Mn×n (R). Among the following subsets of .Mn×n (R), decide which 
are linear subspaces. 

(a) . W1 = {A ∈ Mn×n (R) : A is nonsingular}
(b) . W2 = {A ∈ Mn×n (R) : det (A) = 0}
(c) . W3 = {A ∈ Mn×n (R) : tr(A) = 0}
(d) .W4 = {BA : A ∈ Mn×n (R)} where . B is some fixed matrix in .Mn×n (R). 

Ans. Options c and d 

(a) We have .I,−I ∈ W1, where . I is the identity matrix. But their sum is the 
zero matrix which does not belong to .W1. Therefore .W1 is not a linear 
subspace.
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(b) Take .A1 =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦ (.aii = 1 ∀ i = 1, 2, . . . , n − 1, .ann = 0 and all 

other entries are zero) and .A2 =

⎡
⎢⎢⎢⎣

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎦ (. aii = 0 ∀ i = 1, 2, . . . ,

n − 1, .ann = 1 and all other entries are zero). Then .A1, A2 ∈ W2 and 
.A1 + A2 = I /∈ W2. Therefore .W2 is not a linear subspace. 

(c) Let .A1, A2 ∈ W3 and .λ ∈ R. Then 

. tr(λA1 + A2) = λtr(A1) + tr(A2) = 0

Therefore .W3 is a linear subspace. 
(d) Let .BA1, BA2 ∈ W4 where .A1, A2 ∈ Mn×n (R) and let .λ ∈ R. Then 

. λ(BA1 + BA2) = B(λA1 + A2) ∈ W4

Therefore .W4 is a linear subspace. 

(11) Fix .A =
⎛
⎝
2 1 0
0 2 0
0 0 3

⎞
⎠ ∈ M3×3 (R). Which of the following are subspaces of 

.M3×3 (R)? 
(a) . W1 = {B ∈ M3×3 (R) : BA = AB}
(b) . W2 = {B ∈ M3×3 (R) : B + A = A + B}
(c) . W3 = {B ∈ M3×3 (R) : tr(AB) = 0}
(d) . W4 = {B ∈ M3×3 (R) : det (AB) = 0}
Ans. Options a, b and c 

(a) Let .B1, B2 ∈ W1, then .AB1 = B1A and .AB2 = B2A. Now for any .λ ∈ R, 

. (λB1 + B2)A = λB1A + B2A = λAB1 + AB2 = A(λB1 + B2)

Hence, .λB1 + B2 ∈ W1 for any .B1, B2 ∈ W1 and .λ ∈ R. Therefore .W1 is 
a subspace. 

(b) Let .B1, B2 ∈ W2, then .B1 + A = A + B1 and .B2 + A = A + B2. Now  for  
any .λ ∈ R. Then 

. (λB1 + B2) + A = λB1 + (B2 + A) = (λB1 + A) + B2 = A + (λB1 + B2)

Hence, .λB1 + B2 ∈ W2 for any .B1, B2 ∈ W2 and .λ ∈ R. Therefore .W2 is 
a subspace.
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(c) Let .B1, B2 ∈ W3, then .tr (AB1) = tr (AB2) = 0. Now for any .λ ∈ R, 

. tr [A (λB1 + B2)] = tr (λAB1 + AB2) = λ[tr (AB1)] + tr (AB2) = 0

Hence, .λB1 + B2 ∈ W3 for any .B1, B2 ∈ W3 and .λ ∈ R. Therefore .W3 is 
a subspace. 

(d) Let .B1 =
⎛
⎝
1 0 0
0 0 0
0 0 0

⎞
⎠ and .B2 =

⎛
⎝
0 0 0
0 1 0
0 0 1

⎞
⎠. Then .B1, B2 ∈ W4. But  . B1 +

B2 = I /∈ W4. Therefore .W4 is not a subspace. 

(12) Let. V be a finite-dimensional vector space and let.W1,W2 and.W3 be subspaces 
of . V . Which of the following statements are true? 

(a) . W1 ∩ (W2 + W3) = W1 ∩ W2 + W1 ∩ W3

(b) . W1 ∩ (W2 + W3) ⊂ W1 ∩ W2 + W1 ∩ W3

(c) . W1 ∩ (W2 + W3) ⊃ W1 ∩ W2 + W1 ∩ W3

Ans. Option c 
Let .V = R

2, .W1 = {
(x, y) ∈ R

2 : y = x
}
, .W2 = x− axis, and .W3 = y− axis. 

Then .W1,W2 and .W3 are subspaces of .R2. Also  

. W1 ∩ (W2 + W3) = W1 ∩ R
2 = W1

and 
. W1 ∩ W2 + W1 ∩ W3 = {(0, 0)}

Therefore .(a) and .(b) are false. Now let .v ∈ W1 ∩ W2 + W1 ∩ W3, then 

. v ∈ W1 ∩ W2 + W1 ∩ W3 ⇒ v = v1 + v2, v1 ∈ W1 ∩ W2 and v2 ∈ W1 ∩ W3

⇒ v1, v2 ∈ W1, v1 ∈ W2 and v2 ∈ W3

⇒ v = v1 + v2 ∈ W1 and v = v1 + v2 ∈ W2 + W3

⇒ v ∈ W1 ∩ (W2 + W3)

Therefore .W1 ∩ (W2 + W3) ⊃ W1 ∩ W2 + W1 ∩ W3. 

(13) For arbitrary subspaces.U, V and.W of a finite-dimensional vector space, which 
of the following hold: 

(a) . U ∩ (V + W ) ⊂ U ∩ V +U ∩ W
(b) . U ∩ (V + W ) ⊃ U ∩ V +U ∩ W
(c) . (U ∩ V ) + W ⊂ (U + W ) ∩ (V + W )

(d) .(U ∩ V ) + W ⊃ (U + W ) ∩ (V + W )
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Ans. Options b and c 
Consider .R2. Let .U = x-axis, .V = y-axis and .W = {(x, y) ∈ R

2 : y = x}. 
Then.U ∩ (V + W ) = U, but.U ∩ V +U ∩ W = {0}. Also. (U ∩ V ) + W = W
and .(U + W ) ∩ (V + W ) = R

2. Therefore options . a and . d are false. 

. v ∈ U ∩ V +U ∩ W ⇒ v = v1 + v2, where v1 ∈ U ∩ V and v2 ∈ U ∩ W

⇒ v1 ∈ U, V and v2 ∈ U,W

⇒ v1 + v2 ∈ U and v1 + v2 ∈ V + W

⇒ v ∈ U ∩ (V + W )

Therefore .U ∩ (V + W ) ⊃ U ∩ V +U ∩ W. 

. v ∈ (U ∩ V ) + W ⇒ v = v1 + v2, where v1 ∈ (U ∩ V ) and v2 ∈ W

⇒ v = v1 + v2 ∈ (U + W ) and (V + W )

⇒ v ∈ (U + W ) ∩ (V + W )

Therefore .(U ∩ V ) + W ⊂ (U + W ) ∩ (V + W ). 

(14) Let.{v1, v2, v3} is a linearly independent set of vectors in a vector space over. R, 
then which one of the following sets is also linearly independent? 

(a) . {v1 + v2 − v3, 2v1 + v2 + 3v3, 5v1 + 4v2}
(b) . {v1 − v2, v2 − v3, v3 − v1}
(c) . {v1 + v2 − v3, v2 + v3 − v1, v3 + v1 − v2, v1 + v2 + v3}
(d) . {v1 + v2, v2 + 2v3, v3 + 3v1}

Ans. Option d 
Suppose that .{v1, v2, v3} is linearly independent. Then 

. λ1v1 + λ2v2 + λ3v3 = 0 ⇔ λ1 = λ2 = λ3 = 0

Now 

. α(v1 + v2 − v3) + β(2v1 + v2 + 3v3) + γ (5v1 + 4v2) = 0

⇒ (α + 2β + 5γ ) v1 + (α + β + 4γ ) v2 + (−α + 3β) v3 = 0

Since .{v1, v2, v3} is linearly independent, 

. α + 2β + 5γ, α + β + 4γ = 0, −α + 3β = 0

We have to check whether .α = β = γ = 0. It is enough to check whether the 
homogeneous system has unique solution or not. The homogeneous system has 
unique solution when the determinant of the coefficient matrix is not equal to zero.
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Since .

||||||
1 2 5
1 1 4

−1 3 0

||||||
= 0, option a is not correct. Similarly, since .

||||||
1 0 −1

−1 1 0
0 −1 1

||||||
= 0, 

option b is not correct. Since .

||||||
1 0 3
1 1 0
0 2 1

||||||
/= 0 option d is correct. For option c we 

get .4 × 3 coefficient matrix which ensures the existence of infinite number of 
solutions. 

(15) Let .n be an integer, .n ≥ 3, and .u1, u2, . . . , un be .n linearly independent 
elements in a vector space over . R. Set .u0 = 0 and .un+1 = u1. Define . vi =
ui + ui+1 and .wi = ui−1 + ui for .i = 1, 2, . . . , n. Then 

(a) .v1, v2, . . . , vn are linearly independent, if .n = 2010. 
(b) .v1, v2, . . . , vn are linearly independent, if .n = 2011. 
(c) .w1,w2, . . . ,wn are linearly independent, if .n = 2010. 
(d) .w1,w2, . . . ,wn are linearly independent, if .n = 2011. 

Ans. Options b, c and d 
Let .λ1, λ2, . . . , λn ∈ R such that .

En
i=1 λi vi = 0. 

. 

nE
i=1

λi vi = 0 ⇒
nE

i=1

λi (ui + ui+1) =
nE

i=1

λi ui +
nE

i=1

λi ui+1 = 0

⇒ (λ1 + λn) u1 +
n−1E
i=1

(λi + λi+1) ui+1 = 0

⇒ λ1 = −λn and λi+1 = −λi since {ui | i = 1, . . . , n} is L I

⇒ λ1 = −λn and λi = (−1)i−1λ1 f or i = 2, 3, . . . , n

When . n is odd, this gives .λ1 = −λn = λn. Therefore, .λ1 = λn = 0. This implies 
.λi = 0 ∀ i = 1, 2, . . . , n when . n is odd. Therefore .v1, v2, . . . , vn are linearly 
independent, if .n = 2011 and linearly dependent, if .n = 2010. 
Now let .μ1, μ2, . . . , μn ∈ R such that .

En
i=1 μiwi = 0. 

. 

nE
i=1

μiwi = 0 ⇒
nE

i=1

μi (ui−1 + ui ) =
nE

i=1

μi ui−1 +
nE

i=1

μi ui = 0

⇒
n−1E
i=1

(μi + μi+1) ui + μnun = 0

⇒ μi = 0 ∀ i = 1, 2, . . . , n

Therefore.w1,w2, . . . ,wn are linearly independent, if.n = 2010 and if.n = 2011.
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(16) Let .A be a .4 × 3 real matrix and let .{e1, e2, e3} be the standard basis of .R3. 
Which of the following is true? 

(a) If .Rank(A) = 1, then .{Ae1, Ae2} is a linearly independent set. 
(b) If .Rank(A) = 2, then .{Ae1, Ae2} is a linearly independent set. 
(c) If .Rank(A) = 2, then .{Ae1, Ae3} is a linearly independent set. 
(d) If .Rank(A) = 3, then .{Ae1, Ae2} is a linearly independent set. 

Ans. Option d 

(a) Let .A =

⎡
⎢⎢⎣
1 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦. Then .A is matrix of .Rank 1. But  .{Ae1, Ae2} is not a 

linearly independent set as .Ae2 is the zero vector. 

(b) Let .A =

⎡
⎢⎢⎣
1 0 0
0 0 0
0 0 1
0 0 0

⎤
⎥⎥⎦. Then .A is matrix of .Rank 2. But  .{Ae1, Ae2} is not a 

linearly independent set as .Ae2 is the zero vector. 

(c) Let .A =

⎡
⎢⎢⎣
1 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥⎦, Then .A is matrix of .Rank 2. But  .{Ae1, Ae3} is not a 

linearly independent set as .Ae3 is the zero vector. 
(d) Now consider the matrix .B with .{e1, e3} as its columns. Then .B is matrix 

with .Rank 2. Then by Sylvester’s inequality, 

. Rank(A) + Rank(B) − 3 ≤ Rank(AB) ≤ min {Rank(A), Rank(B)}

which implies .Rank(AB) = 2.Therefore .{Ae1, Ae3} is a linearly indepen-
dent set. 

(17) Let .A =
⎡
⎣
1 3 5 λ 13
0 1 7 9 μ

0 0 1 11 15

⎤
⎦ where .λ,μ ∈ R. Choose the correct statement. 

(a) There exists values of . λ and .μ for which the columns of .A are linearly 
independent. 

(b) There exists values of . λ and . μ for which .Ax = 0 has .x = 0 as the only 
solution. 

(c) For all values of . λ and. μ the rows of . A span a three-dimensional subspace 
of .R5. 

(d) There exists values of . λ and . μ for which .Rank(A) = 2.
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Ans. Option c 
Since .R3 cannot have a linearly independent set of 5 vectors, there does not 
exists values of . λ and . μ for which the columns of .A are linearly independent. 

Since .A contains the sub matrix .

⎡
⎣
1 3 5
0 1 7
0 0 1

⎤
⎦ of rank 3, .Rank(A) = 3 < number 

of unknowns, the system has infinitely many solutions for any values of . λ and 
. μ. Since .Rank(A) = 3, for all values of . λ and .μ the rows of .A span a three-
dimensional subspace of .R5. 

(18) Let .x = (x1, x2, x3), y = (y1, y2, y3) ∈ R
3 be linearly independent. Let . δ1 =

x2y3 − y2x3, δ2 = x1y3 − y1x3, δ3 = x1y2 − y1x2. If  .V is the span of .x, y, 
then 
(a) . V = {(u, v,w) : δ1u − δ2v + δ3w = 0}
(b) . V = {(u, v,w) : −δ1u + δ2v + δ3w = 0}
(c) . V = {(u, v,w) : δ1u + δ2v − δ3w = 0}
(d) . V = {(u, v,w) : δ1u + δ2v + δ3w = 0}
Ans. Option a 
Take .x = (1, 0, 0) and .y = (0, 1, 1). Then 

. V = span{x, y} = {(u, v,w) ∈ R
3 : v = w}

and .δ1 = 0, .δ2 = 1 and .δ3 = 1. Then options . b and . d are incorrect. 
Now take .x = (1, 1, 0) and .y = (0, 0, 1). Then 

. V = span{x, y} = {(u, v,w) ∈ R
3 : u = v}

and .δ1 = 1, .δ2 = 1 and .δ3 = 0. Then options . c is incorrect. 

(19) Let. V denote a vector space over a field. K and with a basis.B = {e1, e2, . . . , en}. 
Let.λ1, λ2, . . . , λn ∈ K. Let. C = {λ1e1, λ1e1 + λ2e2, . . . , λ1e1 + λ2e2 + . . . +
λnen}. Then 
(a) . C is a linearly independent set implies that.λi /= 0 for every.i = 1, 2, . . . , n. 
(b) .λi /= 0 for every .i = 1, 2, . . . , n implies that .C is a linearly independent 

set. 
(c) The linear span of . C is .V implies that .λi /= 0 for every .i = 1, 2, . . . , n. 
(d) .λi /= 0 for every .i = 1, 2, . . . , n implies that the linear span . C is . V . 

Ans. Options a, b, c and d 

(a) Suppose that . C is a linearly independent. Then .λ1e1 /= 0 ⇒ λ1 /= 0. Like-
wise, 

. λ1e1 + λ2e2 /= 0 ⇒ λ2 /= 0

For if .λ2 = 0,
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. λ1e1 + λ2e2 = λ1e1

which implies .C is linearly dependent. Proceeding like this we get . λi /= 0
for every .i = 1, 2, . . . , n. 

(b) Let .μ1, μ2, . . . , μn ∈ K and consider 

. μ1λ1e1 + μ2 (λ1e1 + λ2e2) + · · · + μn (λ1e1 + λ2e2 + · · · + λnen) = 0

That is, 

. (μ1 + . . . + μn) λ1e1 + (μ2 + · · · + μn) λ2e2 + · · · + μnλnen = 0

Since .B is a basis, 

. (μ1 + · · · + μn) λ1 = (μ2 + · · · + μn) λ2 = · · · = μnλn = 0

As .λi /= 0 for every .i = 1, 2, . . . , n this implies .μn = 0. Now,  

. (μn−1 + μn) λn−1 = 0 ⇒ μn−1 + μn = 0 ⇒ μn−1 = 0

Proceeding like this we get .μi = 0 for every .i = 1, 2, . . . , n. 
(c) Suppose that the linear span of .C is . V . Since .V is of dimension . n, every 

element in .C is non-zero. Then .λ1e1 /= 0 ⇒ λ1 /= 0. Also,  

. λ1e1 + λ2e2 /= 0 ⇒ λ2 /= 0

For if, . λ2 = 0
. λ1e1 + λ2e2 = λ1e1

which implies .C is linearly dependent. Proceeding like this we get . λi /= 0
for every .i = 1, 2, . . . , n. 

(d) As.λi /= 0 for every.i = 1, 2, . . . , n implies. C is a linearly independent set, 
we get the linear span of .C is . V . 

(20) Let .p(x) = a0 + a1x + · · · + anxn be a non-constant polynomial of degree 
.n ≥ 1. Consider the polynomial 

. q(x) =
{ x

0
p(t)dt, r(x) = d

dx
p(x)

Let .V denote the real vector space of all polynomials in . x . Then which of the 
following are true? 

(a) . q and . r are linearly independent in . V . 
(b) . q and . r are linearly dependent in . V .
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(c) .xn belongs to the linear span of . q and . r . 
(d) .xn+1 belongs to the linear span of . q and . r . 

Ans. Option a 
Let .p(x) = a0 + a1x + · · · + anxn. Then . q(x) = a0x + a1

x2

2 + · · · + an
xn+1

n+1

and.r(x) = a1 + 2a2x + + · · · + nanxn−1. Since.q(x) and.r(x) are polynomials 
of different degrees they are linearly independent. 
Let .p(x) = xn + 1. Then .q(x) = xn+1

n+1 + x and .r(x) = nxn−1. Clearly both . xn

and .xn+1 cannot be written as a linear combination of . q and . r . 

(21) (a) Find a value of. λ such that the following system of linear equations has no 
solution: . x + 2y + 3z = 1, 3x + 7y + λz = 2, 2x + λy + 12z = 3

(b) Let. V be the vector space of all polynomials with real coefficients of degree 
at most. n, where.n ≥ 2. Considering elements of.V as functions from. R to 
. R, define 

. W =
{
p ∈ V :

{ 1

0
p(x)dx = 0

}

Show that .W is a subspace of .V and .dim (W ) = n. 

Ans. (a) The above system can be represented in the form .Ax = b as 

. 

⎡
⎣
1 2 3
3 7 λ

2 λ 12

⎤
⎦
⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎣
1
2
3

⎤
⎦

Then 

. [A | B] =
⎡
⎣
1 2 3 1
3 7 λ 2
2 λ 12 3

⎤
⎦ ∼

⎡
⎣
1 2 3 1
0 λ − 4 (λ − 4)(λ − 9) λ − 4
0 0 6 − (λ − 4)(λ − 9) 5 − λ

⎤
⎦

Now 

. 6 − (λ − 4)(λ − 9) = 0 ⇒ λ2 − 13λ + 30 = 0 ⇒ λ = 10 or λ = 3

When .λ = 10 or λ = 3, .Rank[A | B] = 2 and .Rank(A) = 3, the system 
has no solution. 

(b) Let .p1(x), p2(x) ∈ W, then 

. 

{ 1

0
(λp1(x) + p2(x))dx = 0

for any .λ ∈ R. Therefore .W is a subspace. Consider the set
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. 

{
x − 1

2
, x2 − 1

3
, x3 − 1

4
, . . . , xn − 1

n + 1

}

which is a subset of . W, as  

. 

{ 1

0

(
xk − 1

k + 1

)
dx =

|
xk+1

k + 1
− 1

k + 1

|1
0

= 0 ∀ k = 1, . . . , n

Also the set is linearly independent, for 

. λ1

(
x − 1

2

)
+ λ2

(
x2 − 1

3

)
+ λ3

(
x3 − 1

4

)
+ · · · + λn

(
xn − 1

n + 1

)
= 0

⇒ λ1 = λ2 = λ3 = · · · = λn = 0

For constant polynomials .
{ 1
0 p(x)dx /= 0. Therefore .dim (W ) = n. 

(22) Which of the following sets of vectors form a basis for .R3? 

(a) . {(−1, 0, 0), (1, 1, 1)(1, 2, 3)}
(b) . {(0, 1, 2), (1, 1, 1)(1, 2, 3)}
(c) . {(−1, 1, 0), (2, 0, 0)(0, 1, 1)}

Ans. Options a and c 
Any linearly independent set which has cardinality as that of dimension is a 
basis. So it is enough to check whether the set is linearly independent or not. 

(a) We have.

||||||
−1 0 0
1 1 1
1 2 3

||||||
= −1 /= 0. Therefore the given set is linearly independent 

and hence is a basis. 

(b) We have.

||||||
0 1 2
1 1 1
1 2 3

||||||
= 0. Therefore the given set is linearly dependent and hence 

is not a basis. 

(c) We have .

||||||
2 0 0

−1 1 0
0 1 1

||||||
= 2 /= 0. Therefore the given set is linearly independent 

and hence is a basis. 

(23) Which of the following subsets of .R4 is a basis of .R4? 

. B1 = {(1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1)}

. B2 = {(1, 0, 0, 0), (1, 2, 0, 0), (1, 2, 3, 0), (1, 2, 3, 4)}

.B3 = {(1, 2, 0, 0), (0, 0, 1, 1), (2, 1, 0, 0), (−5, 5, 0, 0)}
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(a) .B1 and .B2 but not .B3 (b) .B1, B2 and . B3

(c) .B1 and .B3 but not .B2 (d) Only . B1

Ans. Option a 
It is enough to check whether which of the above sets are linearly independent. 
Since the elements of .B1, when written as the rows of a .4 × 4 matrix forms a 
lower triangular matrix with non-zero diagonal entries, the matrix is invertible 
and hence the rows are linearly independent. Similarly, .B2 is also a linearly 
independent set. As, .5(1, 2, 0, 0) + (−5)(2, 1, 0, 0) = (−5, 5, 0, 0), .B3 is lin-
early dependent. 

(24) A basis of 

. V = {(x, y, z,w) ∈ R
4 : x + y − z = 0, y + z + w = 0, 2x + y − 3z − w = 0}

is 
(a) .{(1,−1, 0, 1)} (b) . {(1, 1,−1, 0), (0, 1, 1, 1), (2, 1,−3, 1)}
(c) .{(1, 0, 1,−1)} (d) . {(1,−1, 0, 1), (1, 0, 1,−1)}
Ans. Option d 
We have 

. V = {(x, y, z,w) ∈ R
4 : x + y − z = 0, y + z + w = 0, 2x + y − 3z − w = 0}

= {(x, y, z,w) ∈ R
4 : x = z − y, w = −y − z}

= span {(1,−1, 0, 1), (1, 0, 1, −1)}

Clearly the set .{(1,−1, 0, 1), (1, 0, 1,−1)} is linearly independent. 
(25) Write down a basis for the following subspace of .R4 : 

. V = {
(x, y, z, t) ∈ R

4 : z = x + y, x + y + t = 0
}

Ans. We have 

. V = {
(x, y, z, t) ∈ R

4 : z = x + y, x + y + t = 0
}

= {
(x, y, z, t) ∈ R

4 : z = x + y, t = −(x + y)
}

= span {(1, 0, 1,−1), (0, 1, 1,−1)}

Therefore .{(1, 0, 1,−1), (0, 1, 1,−1)} is a basis. 
(26) Let.W ⊂ R

4 be the subspace defined by.W = {
x ∈ R

4 : Ax = 0
}
, where. A =|

2 1 2 3
1 1 3 0

|
. Write down a basis for . W .



9 Solved Problems—Vector Spaces 343

Ans. By suitable elementary transformations we get 

. A =
|
2 1 2 3
1 1 3 0

|
∼
|
2 0 −2 6
0 1 4 −3

|

and hence 

. W = {
(x, y, z,w) ∈ R

4 : x − z + 3w = 0, y + 4z − 3w = 0
}

Therefore .{(−3, 3, 0, 1) , (1,−4, 1, 0)} forms a basis for . W. 

(27) Let .W be the subspace of .M2(R) consisting of matrices such that the entries 
of the first row add up to zero. Write down a basis for . W . 

Ans. The general form of a matrix in .W is .

|
a11 −a11
a21 a22

|
where .a11, a21, a22 ∈ R. 

Therefore .

{|
1 −1
0 0

|
,

|
0 0
1 0

|
,

|
0 0
0 1

|}
is a basis for . W. 

(28) Let .W be the subspace of .M2(R) consisting of all matrices with trace zero and 
such that the entries of the first row add up to zero. Write down a basis for . W . 

Ans. The general form of a matrix in .W is .

|
a11 −a11
a21 −a11

|
where .a11, a21 ∈ R. 

Therefore .

{|
1 −1
0 −1

|
,

|
0 0
1 0

|}
is a basis for . W. 

(29) Let.W ⊂ M2(R) be the subspace of all matrices such that the entries of the first 
column add up to zero. Write down a basis for . W . 

Ans. The general form of an element in .W is .

|
a11 a12

−a11 a22

|
where . a11, a12, a22 ∈

R. Therefore .

{|
1 0

−1 0

|
,

|
0 1
0 0

|
,

|
0 0
0 1

|}
is a basis for . W. 

(30) Let .W = {
A ∈ M3(R) : A = AT and tr(A) = 0

}
. Write down a basis for . W . 

Ans. The general form of a matrix in .W is .

⎡
⎣
a11 a12 a13
a12 a22 a23
a13 a23 − (a11 + a22)

⎤
⎦. Then 

.

⎧⎨
⎩

⎡
⎣
1 0 0
0 0 0
0 0 −1

⎤
⎦ ,

⎡
⎣
0 0 0
0 1 0
0 0 −1

⎤
⎦ ,

⎡
⎣
0 1 0
1 0 0
0 0 0

⎤
⎦ ,

⎡
⎣
0 0 1
0 0 0
1 0 0

⎤
⎦ ,

⎡
⎣
0 0 0
0 0 1
0 1 0

⎤
⎦
⎫⎬
⎭ forms a basis 

for . W.
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(31) Let .{v1, v2, v3} be be a basis of .R3. Consider the following statements .P and 
. Q: 
.P : .{v1 + v2, v2 + v3, v1 − v3} is a basis of .R3. 
.Q : .{v1 + v2 + v3, v1 + 2v2 − v3, v1 − 3v3} is a basis of .R3. 
Which of the above statements hold TRUE? 
(a) both .P and .Q (b) only . P
(c) only .Q (d) Neither .P nor . Q

Ans. Option c 

P: Since 
. v1 + v2 − (v2 + v3) = v1 − v3

the given set is linearly dependent and hence is not a basis of .R3. 
Q: It is enough to check whether the given set is linearly independent or 

not, as the given set has cardinality same as the dimension of .R3. For  
.λ1, λ2, λ3 ∈ R, 

. λ1(v1 + v2 + v3) + λ2(v1 + 2v2 − v3) + λ3(v1 − 3v3) = 0

⇒ (λ1 + λ2 + λ3) v1 + (λ1 + 2λ2) v2 + (λ1 − λ2 − 3λ3) v3 = 0

⇒ (λ1 + λ2 + λ3) = 0, (λ1 + 2λ2) = 0, (λ1 − λ2 − 3λ3) = 0

⇒ λ1 = λ2 = λ3 = 0

Thus the given set is linearly independent and hence is a basis for .R3. 

(32) Let .V be a vector space of dimension .d < ∞, over . R. Let  .W be a vector 
subspace of. V . Let. S be a subset of. V . Identify which of the following statements 
is true: 

(a) If . S is a basis of .V then .W ∩ S is a basis of . W . 
(b) If.W ∩ S is a basis of.W and.{s + W ∈ V \ W | s ∈ S} is a basis of.V \ W . 

Then . S is a basis of . V . 
(c) If . S is a basis of .W as well as .V then the dimension of .W is . d. 

Ans. Option c 

(a) Let .V = R
2 and .W = x−axis. Then .W is a subspace of . V . Consider . S =

{(1, 1), (1,−1)}. Then clearly . S is a basis for .R2. But .W ∩ S = φ is not a 
basis for . W. 

(b) Let .V = R
2, .W = x−axis and .S = {(1, 0), (1, 1), (2, 1)}. Clearly . W ∩

S = {(1, 0)} is a basis of . W. Also  .{s + W ∈ V \ W | s ∈ S} is a basis of 
.V \ W. But . S is not a basis of . V . 

(c) .W and .V have same basis means they have same dimension. Therefore, 
.dim(W ) = dim(V ) = d.
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(33) Consider the following row vectors: 

. v1 = (1, 1, 0, 1, 0, 0) v2 = (1, 1, 0, 0, 1, 0) v3 = (1, 1, 0, 0, 0, 1)

. v4 = (1, 0, 1, 1, 0, 0) v5 = (1, 0, 1, 0, 1, 0) v6 = (1, 0, 1, 0, 0, 1)

The dimension of the vector space spanned by these row vectors is 
(a) 6 (b) 5 (c) 4 (d) 3 

Ans. Option c 
By suitable elementary transformations, we have 

. 

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

∼

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0
0 0 0 −1 1 0
0 0 0 −1 0 1
1 0 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Therefore the dimension of the vector space spanned by these row vectors is 4. 

(34) Consider the subspace 

. W = {
(x1, x2, . . . x10) ∈ R

10 : xn = xn−1 + xn−2 for 3 ≤ n ≤ 10
}

of the vector space .R
10. The dimension .W is 

(a) 2 (b) 3 (c) 9 (d) 10 

Ans. Option a 
Since every vector can be written in terms of .x1 and . x2, the dimension .W is 2. 
(For example, .x4 = x2 + x3 = 2x2 + x1) 

(35) Consider the real vector space.P2020 = {En
i=0 ai x

i : ai ∈ R and 0 ≤ n ≤ 2020
}
. 

Let .W be the subspace given by 

. W =
{

nE
i=0

ai x
i ∈ P2020 : ai = 0 for all odd i

}

Then, the dimension of .W is . . . . . . .

Ans. .P2020 is a vector space of dimension 2021. There are 1011 even integers 
upto 2020 starting from 0. Therefore the dimension of .W is 1011. 

(36) Consider the subspace .W = {[ai j ] : ai j = 0 if i is even
}
of all .10 × 10 real 

matrices. Then the dimension of .W is 
(a) 25 (b) 50 (c) 75 (d) 100
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Ans. Option b 
Since the entries are zero on even rows there are only 50 non-zero entries and 
no other restrictions are given. Hence the dimension of .W is 50. 

(37) Let .V be the vector space of all .6 × 6 real matrices over the field . R. Then the 
dimension of the subspace of .V consisting of all symmetric matrices is 
(a) 15 (b) 18 (c) 21 (d) 35 

Ans. Option a 
The general form of a .6 × 6 symmetric matrix is 

. 

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 a14 a15 a16
a12 a22 a23 a24 a25 a26
a13 a23 a33 a34 a35 a36
a14 a24 a34 a44 a45 a46
a15 a25 a35 a45 a55 a56
a16 a26 a36 a46 a56 a66

⎤
⎥⎥⎥⎥⎥⎥⎦

Therefore .V is of dimension 21. In general, if .V is the vector space of all . n × n
real matrices over the field . R, the dimension of the subspace of .V consisting of 
all symmetric matrices is . n(n+1)

2 . 

(38) The dimension of the vector space 

. V =
{
A = (

ai j
)
n×n : ai j ∈ C, ai j = −a ji

}

over the field . R is 

(a) .n2 (b) .n2 − 1 (c) .
n(n − 1)

2
(d) . n

2

2

Ans. Option c 
Since .aii = −aii ∀ i , .aii = 0 ∀ i and hence the general form of an element in . V

is .

⎡
⎢⎢⎢⎢⎢⎣

0 a12 a13 · · · a1n
−a12 0 a23 · · · a2n
−a13 −a23 0 · · · a3n

...
...

...
. . .

...

−a1n −a2n −a3n · · · 0

⎤
⎥⎥⎥⎥⎥⎦
. So the dimension of .V is the number of elements 

above the main diagonal which is .
n(n − 1)

2
. 

(39) The dimension of the vector space of all symmetric matrices of order. n × n(n ≥
2) with real entries and trace equal to zero is 

(a) .
(n2 − n)

2
− 1 (b) . 

(n2 − 2n)

2
− 1

(c) .
(n2 + n)

2
− 1 (d) .

(n2 + 2n)

2
− 1
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Ans. Option c 
The general form of an .n × n matrix is 

. 

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 . . . a1n
a12 a22 a23 . . . a2n
a13 a32 a33 . . . a3n
...

...
...

. . .
...

a1n a2n a3n . . . − (
a11 + · · · a(n−1)(n−1)

)

⎤
⎥⎥⎥⎥⎥⎦

Therefore dimension of the given subspace is .
(n2 + n)

2
− 1. 

(40) The dimensions of the vector space of all symmetric matrices .A = (
ai j
)
of 

order .n × n(n ≥ 2) with real entries, .a11 = 0 and trace zero is 

(a) .
(n2 + n − 4)

2
(b) .

(n2 − n + 4)

2
(c) .

(n2 + n − 3)

2
(d) . 

(n2 − n + 3)

2

Ans. Option b 
The general form of an .n × n matrix is 

. 

⎡
⎢⎢⎢⎢⎢⎣

0 a12 a13 . . . a1n
a12 a22 a23 . . . a2n
a13 a32 a33 . . . a3n
...

...
...

. . .
...

a1n a2n a3n . . . − (
a22 + · · · + a(n−1)(n−1)

)

⎤
⎥⎥⎥⎥⎥⎦

Therefore dimension of the given subspace is .
(n2 + n − 4)

2
. 

(41) Let 

. W =
⎧⎨
⎩
(
ai j
) ∈ M4×4 (R) |

E
i+ j=k

ai j = 0, f or k = 2, 3, 4, 5, 6, 7, 8,

⎫⎬
⎭

then .dim(W ) is 
(a) 7 (b) 8 (c) 9 (d) 10 

Ans. Option c 
The general form of an element in .W is 

.

⎡
⎢⎢⎣

0 a12 a13 a14
−a12 a22 a23 a24

−(a13 + a22) a32 a33 a34
−(a14 + a23 + a32) −(a24 + a33) −a34 0

⎤
⎥⎥⎦



348 9 Solved Problems—Vector Spaces

Therefore .dim(W ) = 9. 

(42) Let.V ⊂ Mn×n(R) be the subspace of all matrices such that the entries in every 
row add up to zero and the entries in every column also add up to zero. What 
is the dimension of . V ? 

Ans. The general form of a matrix in .V is 

.

⎡
⎢⎢⎢⎢⎣

a11 a12 · · · −(a11 + · · · + a1(n−1))

a21 a22 · · · −(a21 + · · · + a2(n−1))

.

.

.

.

.

.
. . .

.

.

.

−(a11 + · · · + a(n−1)1) −(a12 + · · · + a(n−1)2) · · · (a11 + · · · + a1(n−1) + · · · + a(n−1)1 + · · · + a(n−1)(n−1)

⎤
⎥⎥⎥⎥⎦
. 

As the last row and column of the above matrix can be represented as a linear 

combination of other elements, dimension of .V is .(n − 1)2. 

(43) Let .W be the subset of .Mn×n (R) consisting . 
{
(ai j ) | a11 + a22 + · · · +

ann = 0}. Is it true that .W is a vector subspace of .V over . R? If so what is 
its dimension? 

Ans. .W consists of set of all .n × n matrices with trace . 0. Let .A, B ∈ W and 
.λ ∈ R, then 

. tr(λA + B) = λtr(A) + tr(B) = 0 ⇒ λA + B ∈ W

So .W is a vector subspace of .V over . R. General form of a matrix in .W is 

.

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

a11 a11 . . . −(a11 + a22 + · · · + a(n−1)(n−1))

⎤
⎥⎥⎥⎦ and hence the. dim(W ) = n2 −

1. 

(44) Consider the following subspace of . R3

. W =
{
(x, y, z) ∈ R

3 : 2x + 2y + z = 0, 3x + 3y − 2z = 0, x + y − 3z = 0
}

The dimension of .W is 
(a) 0 (b) 1 (c) 2 (d) 3 

Ans. Option b 
.W is the solution space of the system 

. 2x + 2y + z = 0, 3x + 3y − 2z = 0, x + y − 3z = 0

The above system can be written in the form .AX = B as 

.

⎡
⎣
2 2 1
3 3 −2
1 1 −3

⎤
⎦
⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦
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Then 

. 

⎡
⎣
2 2 1
3 3 −2
1 1 −3

⎤
⎦ ∼

⎡
⎣
2 2 1
0 0 −7
0 0 0

⎤
⎦

Therefore . A has .rank 2 and hence the dimension of .W is .3 − 2 = 1. 

(45) Let.A =
⎡
⎣
1 1 1
2 2 3
x y z

⎤
⎦ and let.V = {(x, y, z) ∈ R

3 : det (A) = 0}. Then the dimen-

sion of .V equals 
(a) 0 (b) 1 (c) 2 (d) 3 

Ans. Option c 
We have 

. V = {(x, y, z) ∈ R
3 : det (A) = 0}

= {(x, y, z) ∈ R
3 : x = y}

Clearly .V is a two-dimensional subspace. 

(46) Let.A =
⎡
⎣
1 1 1
3 −1 1
1 5 3

⎤
⎦ and.V be the vector space of all .x ∈ R

3 such that.Ax = 0. 

Then .dim (V ) is 
(a) 0 (b) 1 (c) 2 (d) 3 

Ans. Option b 
We have 

. A =
⎡
⎣
1 1 1
3 −1 1
1 5 3

⎤
⎦ ∼

⎡
⎣
1 1 1
0 −4 −2
1 0 0

⎤
⎦

is of .rank 2. Therefore .dim (V ) = 3 − 2 = 1. 

(47) Let .V be a subspace of .M2×2 (R) defined by 

. V =
{
A ∈ M2×2 (R) : A

|
0 2
3 1

|
=
|
0 2
3 1

|
A

}

Then the dimension of .V is . . . . . . .

Ans. Let .A =
|
x y
z w

|
. Then
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. A

|
0 2
3 1

|
=
|
0 2
3 1

|
A ⇒

|
x y
z w

| |
0 2
3 1

|
=
|
0 2
3 1

| |
x y
z w

|

⇒ 3y = 2z, 2x + y = 2w, 3w = 3x + z

⇒ y = 2

3
z, w = x + 1

3
z

Therefore the dimension of .V is 2. 

(48) Consider the set .V = {|
x y z

| ∈ R
3 : αx + βy + z = γ, α, β, γ ∈ R

}
. For  

which of the following choice(s) the set. V becomes a two dimensional subspace 
of .R3 over . R? 
(a) .α = 0, β = 1, γ = 0 (b) . α = 0, β = 1, γ = 1
(c) .α = 1, β = 0, γ = 0 (d) . α = 1, β = 1, γ = 0

Ans. Options a, c and d 
When .α = 0, β = 1, γ = 0, .V = {|

x y z
| ∈ R

3 : z = −y
}
which is a .2 -

dimensional subspace. 
When .α = 0, β = 1, γ = 1, .V = {|

x y z
| ∈ R

3 : y + z = 1
}
which is not a 

subspace since .(0, 0, 0) ∈ V . 
When .α = 1, β = 0, γ = 0, .V = {|

x y z
| ∈ R

3 : z = −x
}
which is a .2 -

dimensional subspace. 
When .α = 1, β = 1, γ = 0, .V = {|

x y z
| ∈ R

3 : z = −(x + y)
}
which is a .2

- dimensional subspace. 

(49) Let .v1 =
⎡
⎣
1
1
0

⎤
⎦ and .v2 =

⎡
⎣
0
1
1

⎤
⎦. Let  . A be the matrix whose columns are . v1, v2,

2v1 − v2, v1 + 2v2 in that order. Then the number of linearly independent solu-
tions of the homogeneous system of linear equations .Ax = 0 is . . . . . . .

Ans. .v1 and .v2 are linearly independent vectors and hence .A has rank . 2(as 
.2v1 − v2 and .v1 + 2v2 can be written as a linear combination of both .v1 and 
. v2). . A is of order .3 × 4. So it has 4 unknowns and hence the solution space has 
dimension .4 − Rank(A) = 4 − 2 = 2. 

(50) Consider a homogeneous system of linear equations .Ax = 0, where .A is an 
.m × n real matrix and .n > m. Then which of the following statements are 
always true? 

(a) .Ax = 0 has a solution. 
(b) .Ax = 0 has no non-zero solution. 
(c) .Ax = 0 has a non-zero solution. 
(d) Dimension of the space of all solution is atleast .n − m. 

Ans. Options a, c and d 
A homogeneous system is always consistent. Since Number of unknowns is 
greater than number of equations the given system has infinite number of solu-
tions and dimension of the space of all solution is atleast .n − m.
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(51) Let .x =
⎡
⎣
x1
x2
x3

⎤
⎦ ∈ R

3 be a non-zero vector and .A = xxT

xT x
. Then the dimension 

of the vector space .
{
y ∈ R

3 : Ay = 0
}
over . R is . . . . . . .

Ans. Since . x and .xT are of rank 1, by Sylvester’s inequality .A = xxT

xT x
has rank 

1. Therefore the solution space of homogeneous system has dimension.3 − 1 = 2. 

(52) Let .W be the subspace of .C[0, 1] spanned by .{sin(x), cos(x), tan(x)}. Then 
the dimension of .W over . R is 
(a) 1 (b) 2 (c) 3 (d) infinite 

Ans. Option c 
The set .S = {sin(x), cos(x), tan(x)} is linearly independent. For, let 

. p(x) = λ1sin(x) + λ2cos(x) + λ3tan(x) = 0 ∀ x ∈ [0, 1]

Then .p(0) = 0 ⇒ λ2 = 0. Now,  

. p
(π

6

)
= 0 ⇒ λ1sin

(π

6

)
+ λ3tan

(π

6

)
= 0 ⇒ 1

2
λ1 + 1√

3
λ3 = 0

p
(π

4

)
= 0 ⇒ λ1sin

(π

4

)
+ λ3tan

(π

4

)
= 0 ⇒ 1√

2
λ1 + λ3 = 0

Thus we get a system of two equations in two unknowns, namely .λ1 and . λ3. This 

system has unique solution .λ1 = λ3 = 0, as the coefficient matrix .

|
1
2

1√
3

1√
2

1

|
is 

invertible. Therefore .S = {sin(x), cos(x), tan(x)} is linearly independent and 
hence the dimension of .W over . R is 3. 

(53) Let .V denote the vector space .C5[a, b] over . R and 

. W =
{
f ∈ V : d

4 f

dt4
+ 2

d2 f

dt2
− f = 0

}

Then 
(a) .dim(V ) = ∞ and .dim(W ) = ∞ (b) .dim(V ) = ∞ and . dim(W ) = 4
(c) .dim(V ) = 6 and .dim(W ) = 5 (d) .dim(V ) = 5 and . dim(W ) = 4

Ans. Option b 
.C5[a, b] is an infinite-dimensional space and the given differential equation is 
a fourth order ODE with constant coefficients. It has 4 linearly independent 
solutions. Therefore .dim(V ) = ∞ and .dim(W ) = 4.
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(54) Consider the subspaces 

. W1 = {(x1, x2, x3) ∈ R
3 : x1 = x2 + 2x3}

. W2 = {(x1, x2, x3) ∈ R
3 : x1 = 3x2 + 2x3}

of .R3. Then the dimension of .W1 + W2 equals . . . . . . .

Ans. Clearly .dim(W1) = 2 and .dim(W2) = 2. Now  

. W1 ∩ W2 = {(x1, x2, x3) ∈ R
3 : x2 = 0, x1 = 2x3}

Therefore .dim(W1 + W2) = 2 + 2 − 1 = 3. 

(55) Let 

. W1 = {(u, v,w, x) ∈ R
4 | u + v + w = 0, 2v + x = 0, 2u + 2w − x = 0}

. W2 = {(u, v,w, x) ∈ R
4 | u + w + x = 0, u + w − 2x = 0, v − x = 0}

Then which among the following is true? 
(a) .dim(W1) = 1 (b) .dim(W2) = 2 (c) .dim(W1 ∩ W2) = 1 (d) . dim(W1 +
W2) = 3

Ans. Option c 
We have 

. W1 = {(u, v,w, x) ∈ R
4 | u + v + w = 0, 2v + x = 0, 2u + 2w − x = 0}

= {(u, v,w, x) ∈ R
4 | v = −(u + w), x = 2(u + w)}

= span{(1,−1, 0, 2), (0,−1, 1, 2)}

. W2 = {(u, v,w, x) ∈ R
4 | u + w + x = 0, u + w − 2x = 0, v − x = 0}

= {(u, v,w, x) ∈ R
4 | v = x = 0, u = −w}

= span{(1, 0,−1, 0)}

Therefore .dim(W1) = 2 and .dim(W2) = 1. Since 

. (1, 0,−1, 0) = (1,−1, 0, 2) − (0,−1, 1, 2)

.W2 is a subspace of .W1. Hence .dim(W1 ∩ W2) = 1 and .dim(W1 + W2) = 2. 

(56) Let.W1,W2,W3 be three distinct subspaces of.R10 such that each.Wi has dimen-
sion 9. Let .W = W1 ∩ W2 ∩ W3. Then we can conclude that
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(a) .dim(W ) ≤ 3 (b) . dim(W ) ≤ 8
(c) .dim(W ) ≥ 7 (d) .W may not be a subspace of . R10

Ans. Options b and c 
Since 

. dim(W1 ∩ W2) = dim W1 + dim W2 − dim(W1 + W2)

and the possible dimension of .W1 + W2 is 10 (since .W1 and .W2 are distinct), we 
get .dim(W1 ∩ W2) = 8. Now  

. dim(W1 ∩ W2 ∩ W3) = dim(W1 ∩ W2) + dim W3 − dim(W1 ∩ W2 + W3)

and the possible dimension of .W1 ∩ W2 + W3 are 9 and 10. Therefore the pos-
sible dimensions of .W is 7 and 8. 

(57) Let.vi = (v(1)
i , v(2)

i , v(3)
i , v(4)

i ) be four vectors in.R
4 such that.

E4
i=1 v

( j)
i = 0, for  

each . j = 1, 2, 3, 4. Let  .W be the subspace of .R4 spanned by .{v1, v2, v3, v4}. 
Then the dimension of .W over . R is always 
(a) either equal to 1 or equal to 4. (b) less than or equal to 3. 
(c) greater than or equal to 2. (d) either equal to 0 or equal to 4. 

Ans. Option b 
Since .

E4
i=1 v

( j)
i = 0, for each . j = 1, 2, 3, 4, the  set  .{v1, v2, v3, v4} is linearly 

dependent as we can write .v4 as a linear combination of .{v1, v2, v3}. Therefore 
the dimension of .W over . R is always less than or equal to 3. 

(58) Let. V be the vector space of all polynomials of degree at most equal to.2n with 
real coefficients. Let .V0 stand for the vector subspace 

. V0 = {P ∈ V : P(1) + P(−1) = 0}

and.Ve stand for the subspace of polynomials which have terms of even degree 
alone. Find .dim(V0) and .dim (V0 ∩ Ve). 

Ans. Let .p(x) = a0 + a1x + a2x2 + · · · + a2nx2n ∈ V . Then 

. p(1) + p(−1) = 0 ⇒ a0 + a1 + a2 + · · · + a2n + a0 − a1 + a2 − · · · + a2n = 0

⇒ 2a0 + 2a2 + · · · + 2a2n = 0

⇒ a2n = −(a0 + a2 + · · · + a2n−2)

Since . V is vector space of dimension .2n + 1, .V0 is a subspace of . V of dimension 
.2n. Now  .V0 ∩ Ve contains all those polynomials in .V0 which have terms of 
even degree alone. The dimension of .Ve is .n + 1 and hence . dim(V0 ∩ Ve) =
n + 1 − 1 = n.
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(59) Let .V be the real vector space of all polynomials in one variable with real 
coefficients and of degree less than, or equal to, 5. Let .W be the subspace 
defined by 

. W = {
p ∈ V : p(1) = p'(2) = 0

}

What is the dimension of . W? 

Ans. Let .p(x) = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 ∈ V . Then, . p'(x) =
a1 + 2a2x + 3a3x2 + 4a4x3 + 5a5x4. 

. p'(2) = 0 ⇒ a1 + 4a2 + 12a3 + 32a4 + 80a5 = 0

⇒ a1 = −(4a2 + 12a3 + 32a4 + 80a5)

. p(1) = 0 ⇒ a0 + a1 + a2 + a3 + a4 + a5 = 0

⇒ a0 = −(a1 + a2 + a3 + a4 + a5)

⇒ a0 = 3a2 + 11a3 + 31a4 + 79a5

Therefore dimension of .W is 4. 

(60) Let. V be the vector space of all polynomials in one variable with real coefficients 
and having degree at most 20. Define the subspaces 

. W1 =
{
p ∈ V : p(1) = 0, p

(
1

2

)
= 0, p(5) = 0, p(7) = 0

}

. W2 =
{
p ∈ V : p

(
1

2

)
= 0, p(3) = 0, p(4) = 0, p(7) = 0

}

Then the dimension of .W1 ∩ W2 is . . . . . . .

Ans. We have 

. W1 ∩ W2 =
{
p ∈ V : p(1) = p

(
1

2

)
= p(3) = p(4) = p(5) = p(7) = 0

}

.V is a vector space of dimension 21. Since six independent conditions are given, 
we can represent 6 coefficients in terms of the remaining 15 coefficients. There-
fore the dimension of .W1 ∩ W2 = 15. 

(61) If .U and .V are the null spaces of .

|
1 1 0 0
0 0 1 1

|
and .

|
1 2 3 2
0 1 2 1

|
respectively. Then 

the dimension of the subspace .U + V equals .. . . . . ..
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Ans. Since both matrices have rank 2, by Rank-Nullity theorem, we have 
.dim(U ) = dim(V ) = 2. Now the dimension of .U ∩ V is the dimension of the 

null space of the matrix.

⎡
⎢⎢⎣
1 1 0 0
0 0 1 1
1 2 3 2
0 1 2 1

⎤
⎥⎥⎦. Since this matrix has rank 3,. dim(U ∩ V ) =

1. Then the dimension of the subspace .U + V equals 3. 

(62) Let .V be the vector space of all .3 × 3 matrices with complex entries over the 
real field. If 

. W1 = {A ∈ V : A = A∗} and W2 = {A ∈ V : tr(A) = 0}

then the dimension of .W1 + W2 is equal to . . . . . . .

Ans. The general form of an element in .W1 is 

. 

⎡
⎣
a11 a12 a13
a11 a22 a23
a13 a23 a13

⎤
⎦

where .a11, a22, a33 are real numbers as the diagonal entries of a Hermitian 
matrix is always real and the other entries are complex numbers. Therefore 
.dim(W1) = 9. 
Now general form of an element in .W2 is 

. 

⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 −(a11 + a22)

⎤
⎦

where all the entries are complex numbers. Therefore .dim(W2) = 16. 
Also an element in .W1 ∩ W2 will be of the form 

. 

⎡
⎣
a11 a12 a13
a11 a22 a23
a13 a23 −(a11 + a22)

⎤
⎦

where .a11, a22 are real numbers and the other entries are complex numbers. 
Therefore .dim(W1 ∩ W2) = 8 Then the dimension of .W1 + W2 is . 16 + 9 − 8 =
17. 

(63) Let.W1 be be the real vector space of all.5 × 2 matrices such that the sum of the 
entries in each row is zero. Let.W2 be the real vector space of all.5 × 2 matrices 
such that the sum of the entries in each column is zero. Then the dimension of 
the space .W1 ∩ W2 is .. . . . . .
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Ans. The elements of .W1 and .W2 are respectively of the form 

. 

⎡
⎢⎢⎢⎢⎣

a11 −a11
a21 −a21
a31 −a31
a41 −a41
a51 −a51

⎤
⎥⎥⎥⎥⎦

and

⎡
⎢⎢⎢⎢⎣

a11 a12
a21 a22
a31 a32
a41 a42

− (a11 + a21 + a31 + a41) − (a12 + a22 + a32 + a42)

⎤
⎥⎥⎥⎥⎦

Therefore elements of .W1 ∩ W2 are of the form 

. 

⎡
⎢⎢⎢⎢⎣

a11 −a11
a21 −a21
a31 −a31
a41 −a41

− (a11 + a21 + a31 + a41) (a11 + a21 + a31 + a41)

⎤
⎥⎥⎥⎥⎦

Then the dimension of the space .W1 ∩ W2 is 4. 

(64) Let.V be the vector space of all .2 × 2 matrices over. R. Consider the subspaces 

. W1 =
{|

a −a
c d

|
: a, c, d ∈ R

}
and W2 =

{|
a b

−a d

|
: a, b, d ∈ R

}

If .m = dim (W1 ∩ W2) and .n = dim (W1 + W2), then the pair .(m, n) is 
(a) .(2, 3) (b) .(2, 4) (c) .(3, 4) (d) . (1, 3)

Ans. Option b 
Clearly, .dim (W1) = 3 and .dim (W2) = 3. Every element of .W1 ∩ W2 is of the 

form .

|
a −a

−a d

|
. Therefore .m = dim (W1 ∩ W2) = 2 and hence 

. n = dim (W1 + W2) = dim (W1) + dim (W2) − dim (W1 ∩ W2) = 4

(65) Let .A =
|
1 −1 1
1 −1 −1

|
. If  

. V =
⎧⎨
⎩(x, y, 0) ∈ R

3 : A
⎡
⎣
x
y
0

⎤
⎦ =

|
0
0

|⎫⎬
⎭ and W =

⎧⎨
⎩(x, y, z) ∈ R

3 : A
⎡
⎣
x
y
z

⎤
⎦ =

|
0
0

|⎫⎬
⎭

Then 
(a) the dimension of .V equals 2 (b) the dimension of .W equals 2 
(c) the dimension of .V equals 1 (d) .V ∩ W = {(0, 0, 0)}
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Ans. Option c 
We have 

. 

|
1 −1 1
1 −1 −1

|
∼
|
1 −1 1
0 0 −2

|

Then 

. A

⎡
⎣
x
y
0

⎤
⎦ =

|
0
0

|
⇒ x − y = 0 ⇒ x = y

Hence, .V = {(x, y, 0) : x = y, x, y ∈ R}. Therefore .V has dimension 1. Now 

. A

⎡
⎣
x
y
z

⎤
⎦ =

|
0
0

|
⇒ x − y + z = 0, −2z = 0 ⇒ z = 0, x = y

Thus, .W = {(x, y, z) : x = y z = 0, x, y, z ∈ R} = V . 

(66) Let .A ∈ Mn×n(R) be such that .A /= 0 but .A2 = 0. Which of the following 
statements are true? 

(a) If . n is even, then .dim(Col(A)) > dim(Null(A)). 
(b) If . n is even, then .dim(Col(A)) ≤ dim(Null(A)). 
(c) If . n is odd, then .dim(Col(A)) < dim(Null(A)). 
(d) If . n is odd, then .dim(Col(A)) > dim(Null(A)). 

Ans. Options b and c 
Let .v ∈ Col(A). Then there exists .u ∈ R

n such that .Au = v. Now,  

. 0 = A2u = A(Au) = Av

That is, .v ∈ Null(A). Therefore .dim(Col(A)) ≤ dim(Null(A)). As, rank of . A
is same as the dimension of the column space of . A, by Rank-Nullity Theorem, 
.dim(Col(A)) < dim(Null(A)). For  if,.dim(Col(A)) = dim(Null(A)),. n must 
be even. 

(67) Let. V be a vector space of dimension 4 over the field.Z3 with 3 elements. What 
is the number of one-dimensional vector subspaces of . V ? 

Ans. .V is a vector space with cardinality .34 = 81. Consider the non-zero ele-
ments in . V , each non-zero vector spans a one-dimensional subspace and each 
subspace has 2 non-zero elements and hence the number of one-dimensional 
vector subspaces of .V is . 802 = 40. 

(68) Let. V be a vector space such that.dim(V ) = 5. Let.W1 and.W2 be subspaces of 
.V such that .dim(W1) = 3 and .dim(W2) = 4. Write down all possible values 
of .dim (W1 ∩ W2).
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Ans. The possible values of.dim(W1 ∩ W2) are 0,1,2 and 3. Suppose. dim(W1 ∩
W2) = 0, then .W1 + W2 will be a subspace of dimension .4 + 3 = 7 which is not 
possible since .V is a vector space of dimension 5. Suppose .dim (W1 ∩ W2) = 1, 
then .W1 + W2 will be a subspace of dimension .4 + 3 − 1 = 6 which is not 
possible since .V is a vector space of dimension 5. But if .dim (W1 ∩ W2) = 2, 
then.W1 + W2 will be a subspace of dimension.4 + 3 − 2 = 5, which is possible. 
Similarly if .dim (W1 ∩ W2) = 3, then .W1 + W2 will be a subspace of dimension 
.4 + 3 − 3 = 4, which is possible. Therefore the possible dimensions of. W1 ∩ W2

are 2 and 3. 

(69) Let.{v1, v2, . . . , vn} be a linearly independent subset of a vector space.V where 
.n ≥ 4. Set .wi j = vi − v j . Let .W be the span of .{wi j : 1 ≤ i, j ≤ n}. Then 
(a) .{wi j : 1 ≤ i, j ≤ n} spans . W . 
(b) .{wi j : 1 ≤ i, j ≤ n} is a linearly independent subset of . W . 
(c) .{wi j : 1 ≤ i ≤ n − 1, j = i + 1} spans . W . 
(d) dim.W = n. 

Ans. Options a and c 
Since .wji = v j − vi = −(vi − v j ) = −wi j , .{wi j : 1 ≤ i, j ≤ n} is a linearly 
dependent subset of .W and .{wi j : 1 ≤ i ≤ n − 1, j = i + 1} spans . W. Also  
.wi j = w1 j − w1i and since .{v1, v2, . . . , vn} is a linearly independent set, 
.dim(W ) = n − 1. 

(70) Check whether the following statements are true or false. 

(a) Let . S be a finite subset of .R3 such that any three elements in . S span a two  
dimensional subspace. Then . S spans a two dimensional space. 

(b) The polynomials. (x − 1)(x − 2), (x − 2)(x − 3), (x − 3)(x − 4), (x − 4)
(x − 6) ∈ R[x] are linearly independent. 

(c) There exists an infinite subset .S ⊂ R
3 such that any three vectors in . S are 

linearly independent. 
(d) The set of nilpotent matrices in.Mn×n(R) spans.Mn×n(R) considered as an 

.R-vector space(a matrix. A is said to be nilpotent if there exists.n ∈ N such 
that .An = 0). 

Ans. (a) True. Clearly .span(S) has dimension .≥ 2. Suppose .span(S) has 
dimension 3, then there exists a subset .W of . S with three linearly indepen-
dent vectors and this is not possible as any three elements in . S span a two  
dimensional subspace. 

(b) False. Since the dimension of set of all polynomials of degree at most 2 is 
3. So we cannot find a collection of 4 linearly independent second degree 
polynomials. 

(c) True. Consider the set .S = {
(1, x, x2) : x ∈ R

}
. Then take any three vec-

tors .
{
(1, r, r2), (1, s, s2), (1, t, t2) : r, s, t ∈ R

}
. Now
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. 

||||||
1 r r2

1 s s2

1 t t2

||||||
= (t − r)(s − r)(t − s)

Since .(t − r)(s − r)(t − s) = 0 only if any two of them are equal or . r =
s = t . So any three vectors in . S are linearly independent. 

(d) False. Since we cannot span matrices with non-zero trace using the set of 
nilpotent matrices in .Mn×n(R), the given statement is false.



Chapter 10 
Solved Problems—Linear 
Transformations 

(1) Which of the following is NOT a linear transformation? 
(a) .T : R3 → R

2 defined by . T (x, y, z) = (x, z)
(b) .T : R3 → R

3 defined by . T (x, y, z) = (x, y − 1, z)
(c) .T : R2 → R

2 defined by . T (x, y) = (2x, y − x)
(d) .T : R2 → R

2 defined by .T (x, y) = (y, x). 

Ans. Option b 

(a) Let .v1 = (x1, y1, z1), v2 = (x2, y2, z2) ∈ R
3, and .α ∈ R. Then 

. T (αv1 + v2) = (αx1 + x2, αy1 + y2, αz1 + z2)

= (αx1 + x2, αz1 + z2)

= α(x1, z1) + (x2, z2)

= αT (v1) + T (v2)

. T is a linear transformation. 
(b) .T (0, 0, 0) = (0,−1, 0). Therefore . T is not a linear transformation. (Since 

a linear transformation maps identity to identity.) 

(c) Let .v1 = (x1, y1), v2 = (x2, y2) ∈ R
2, and .α ∈ R. Then 

. T (αv1 + v2) = (2(αx1 + x2), αy1 + y2 − αx1 − x2)

= α(2x1, y1 − x1) + (2x2, y2 − x2)

= αT (v1) + T (v2)

. T is a linear transformation. 
(d) Let .v1 = (x1, y1), v2 = (x2, y2) ∈ R

2, and .α ∈ R. Then 
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. T (αv1 + v2) = T (αx1 + x2, αy1 + y2)

= (αy1 + y2, αx1 + x2)

= α(y1, x1) + (y2, x2)

= αT (v1) + T (v2)

. T is a linear transformation. 

(2) Let the mappings .T1,T2,T3,T4 from.R
3 to .R

3 be defined by 

. T1(x, y, z) = (x2 + y2, x + z, x + y + z) T2(x, y, z) = (y + z, x + z, x + y)

. T3(x, y, z) = (x + y, xy, x − z) T4(x, y, z) = (x, 2y, 3z)

Then which of these are linear transformations of .R3 over . R? 
(a) .T1 and .T2 (b) .T2 and .T3 (c) .T2 and .T4 (d) .T3 and . T4. 

Ans. Option c 

(a) We have .T1(1, 0, 0) = (1, 1, 1). As  

. T1(2, 0, 0) = (4, 2, 2) /= 2T1(1, 0, 0)

.T1 is not a linear transformation. 
(b) Let .v1 = (x1, y1, z1), v2 = (x2, y2, z2) ∈ R

3, and .α ∈ R. Then 

. T2(αv1 + v2) = T2(αx1 + x2, αy1 + y2, αz1 + z2)

= (α(y1 + z1) + y2 + z2, α(x1 + z1) + x2 + z2, α(x1 + y1) + x2 + y2)

= α(y1 + z1, x1 + z1, x1 + y1) + (y2 + z2, x2 + z2, x2 + y2)

= αT2(v1) + T2(v2)

.T2 is a linear transformation. 
(c) We have .T3(1, 0, 0) = (1, 0, 1) and .T3(0, 1, 0) = (1, 0, 0). As  

. T3(1, 1, 0) = (2, 1, 1) /= T3(1, 0, 0) + T3(0, 1, 0)

.T3 is not a linear transformation. 
(d) Let .v1 = (x1, y1, z1), v2 = (x2, y2, z2) ∈ R

3, and .α ∈ R. Then 

. T4(αv1 + v2) = T4(αx1 + x2, αy1 + y2, αz1 + z2)

= (αx1 + x2, 2(αy1 + y2), 3(αz1 + z2))

= α(x1, 2y1, 3z1) + (x2, 2y2, 3z2)

= αT4(v1) + T4(v2)

.T4 is a linear transformation.
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(3) Which of the following is a linear transformation from.R
3 to .R

2? 

(1) .T1

⎛
⎝
x
y
z

⎞
⎠ =

(
4

x + y

)
(2) .T2

⎛
⎝
x
y
z

⎞
⎠ =

(
xy

x + y

)
(3) . T3

⎛
⎝
x
y
z

⎞
⎠ =

(
z − x
x + y

)

(a) only .T1 (b) only .T2 (c) only .T3 (d) all the transformations .T1,T2, 
and . T3. 

Ans. Option c 

Since .T1

⎛
⎝
0
0
0

⎞
⎠ =

(
4
0

)
/=
(
0
0

)
, .T1 is not a linear transformation. We have 

.T2

⎛
⎝
1
0
0

⎞
⎠ =

(
0
1

)
and .T2

⎛
⎝
0
1
0

⎞
⎠ =

(
0
1

)
. But  . T2

⎛
⎝
1
1
0

⎞
⎠ =

(
1
2

)
/= T2

⎛
⎝
1
0
0

⎞
⎠+

T2

⎛
⎝
0
1
0

⎞
⎠. .T2 is not a linear transformation. But 

. T3

⎛
⎝

λx1 + x2
λy1 + y2
λz1 + z2

⎞
⎠ =

(
λ(z1 − x1) + (z2 − x2)
λ(x1 + y1) + x2 + y2

)
= λT3

⎛
⎝
x1
y1
z1

⎞
⎠+ T3

⎛
⎝
x2
y2
z2

⎞
⎠

Therefore .T3 is a linear transformation. 

(4) Let .a, b, c, d ∈ R and let .T : R2 → R
2 be the linear transformation defined by 

. T

(|
x
y

|)
=
|
ax + by
cx + dy

|
for

|
x
y

|
∈ R

2

Let .S : C → C be the corresponding map defined by 

. S(x + iy) = (ax + by) + i(cx + dy) for x, y ∈ R

Then 
(a) . S is always .C− linear, that is .S(z1 + z2) = S(z1) + S(z2) for all . z1, z2 ∈ C

and .S(αz) = αS(z) for all .α ∈ C and .z ∈ C. 
(b) . S is .C− linear if .b = −c and .d = a. 
(c) . S is .C− linear only if .b = −c and .d = a. 
(d) . S is .C− linear if and only if . T is the identity transformation.



364 10 Solved Problems—Linear Transformations

Ans. Options b and c 
Let .z1 = x1 + iy1 and .z2 = x2 + iy2 ∈ C. Then 

. S(z1 + z2) = S ((x1 + x2) + i(y1 + y2))

= a(x1 + x2) + b(y1 + y2) + i (c(x1 + x2) + d(y1 + y2))

= ax1 + by1 + i (cx1 + dy1) + ax2 + by2 + i (cx2 + dy2)

= S(z1) + S(z2)

Also 

. S(iz) = S (i(x + iy)) = S(−y + ix) = −ay + bx + i (−cy + dx)

and 

. iS(z) = i (ax + by + i (cx + dy)) = i(ax + by) − (cx + dy) /= S(iz)

Therefore, . S need not be .C− linear. Now let .α = c1 + ic2 ∈ C and .b = −c and 
.d = a. 

. S(αz) = S (c1x − c2y + i(c2x + c1y))

= a(c1x − c2y) + b(c2x + c1y) + i (−b(c1x − c2y) + a(c2x + c1y))

= c1(ax + by + i(−bx + ay)) + ic2(ax + by + i(−bx + ay))

= αS(z)

Now suppose that .S(αz) = αS(z). 

. S(αz) = S (c1x − c2y + i(c2x + c1y))

= a(c1x − c2y) + b(c2x + c1y) + i (c(c1x − c2y) + d(c2x + c1y))

= c1(ax + by + i(−bx + ay)) + ic2(ax + by + i(−bx + ay))

. αS(z) = (c1 + ic2)
|
(ax + by + i(cx + dy))

|

= c1
|
(ax + by + i(cx + dy))

|+ ic2
|
(ax + by + i(cx + dy))

|

Comparing, we get .b = −c and .d = a. 

(5) Consider the vector space .C[0, 1] over . R. Consider the following statements: 

.P : If the set .{xf1, x2f2, x3f3} is linearly independent, then the set .{f1, f2, f3} is lin-
early independent, where .f1, f2, f3 ∈ C[0, 1] and .xn represents the polynomial 
function .x |→ xn, n ∈ N. 

.Q : If .T : [0, 1] → R is given by .T (f ) = { 1
0 f (x2)dx for each .f ∈ C[0, 1], then . T

is a linear map.
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Which of the above statements hold true? 
(a) Only .P (b) Only . Q (c) Both . P and .Q (d) Neither . P nor . Q. 

Ans. Option b 
Let .f1 = f2 = f3 = 1. Then the set .{xf1, x2f2, x3f3} = {x, x2, x3} is linearly inde-
pendent. But the set .{f1, f2, f3} is not linearly independent. For . f , g ∈ C[0, 1]
and .λ ∈ R, 

. T (λf + g) =
{ 1

0
(λf + g)(x2)dx = λ

{ 1

0
f (x2)dx +

{ 1

0
g(x2)dx = λT (f ) + T (g)

Therefore . P is false and .Q is true. 

(6) Let .T : R2 → R
2 be a linear transformation such that .T (1, 2) = (2, 3) and 

.T (0, 1) = (1, 4). Then .T (5, 6) is 

(a) .(6,−1) (b) .(−6, 1) (c) .(−1, 6) (d) .(1,−6). 

Ans. Option a 
Since .(5, 6) = 5(1, 2) + (−4)(0, 1), we have 

. T (5, 6) = 5 T (1, 2) + (−4) T (0, 1) = (6,−1)

(7) Let .T : R3 → R
4 be a linear transformation. If . T (1, 1, 0) = (2, 0, 0, 0),

T (1, 0, 1) = (2, 4, 0, 0),T (0, 1, 1) = (0, 0, 2, 0), then .T (1, 1, 1) equals 

(a) .(1, 1, 1, 0) (b) .(0, 1, 1, 1) (c) .(2, 2, 1, 0) (d) .(0, 0, 0, 0). 

Ans. Option c 
Since . (1, 1, 1) = 1

2 (1, 1, 0) + 1
2 (1, 0, 1) + 1

2 (0, 1, 1)

. T (1, 1, 1) = 1

2
T (1, 1, 0) + 1

2
T (1, 0, 1) + 1

2
T (0, 1, 1)

= 1

2
(2, 0, 0, 0) + 1

2
(2, 4, 0, 0) + 1

2
(0, 0, 2, 0)

= (1, 0, 0, 0) + (1, 2, 0, 0) + (0, 0, 1, 0)

= (2, 2, 1, 0)

(8) Let .T : R2 → R
2 be a linear transformation such that .T (1, 2) = (1, 0) and 

.T (2, 1) = (0, 1). Suppose that .(3,−2) = α (1, 2) + β (2, 1) and . T (3,−2) =
(a, b). Then .α + β + a + b equals 

(a) .
2

3
(b) .

4

3
(c) .

5

3
(d) . 

7

3
.
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Ans. Option a 
We have 

. (3,−2) = α (1, 2) + β (2, 1) = (α + 2β, 2α + β) ⇒ α = −7

3
, β = 8

3

Since . T is linear transformation, 

. T (3,−2) = −7

3
T (1, 2) + 8

3
T (2, 1) =

(−7

3
,
8

3

)
= (a, b)

Therefore .α + β + a + b = 2

3
. 

(9) Consider the vector space . P2[x] = {a0 + a1x + a2x2 : ai ∈ R, for i = 0, 1, 2}
of polynomials of degree at most 2. Let .f : P2[x] → R be a linear functional 
such that .f (1 + x) = 0, f (1 − x2) = 0 and .f (x2 − x) = 2. Then . f (1 + x + x2)
equals . . . . . . .

Ans. Since .(1 + x + x2) = 3
2 (1 + x) + (− 1

2

)
(1 − x2) + 1

2 (x
2 − x), 

. f (1 + x + x2) = 3

2
f (1 + x) +

(
−1

2

)
f (1 − x2) + 1

2
f (x2 − x) = 1

(10) Let .S = {T : R3 → R
3 : T (1, 0, 1) = (1, 2, 3),T (1, 2, 3) = (1, 0, 1)

}
where 

. T denotes a linear transformation. Then . S is 
(a) a singleton set 
(b) a finite set containing more than one element 
(c) a countably infinite set 
(d) an uncountable set. 

Ans. Option d 
The set .{(1, 0, 1), (1, 2, 3)} is a linearly independent set in .R

3. Then we choose 
a third vector .v ∈ R

3 such that .{(1, 0, 1), (1, 2, 3), v} forms a basis for .R3 and 
we can assign any vector in .R

3 for . v. So . S is an uncountable set. 

(11) Let .T : Rn → R
n be a linear transformation, where .n ≥ 2. For .k ≤ n, let  

. E = {v1, v2, . . . , vk} ⊆ R
n and F = {Tv1,Tv2, . . . ,Tvk}

Then 
(a) If . E is linearly independent, then . F is linearly independent. 
(b) If . F is linearly independent, then . E is linearly independent. 
(c) If . E is linearly independent, then . F is linearly dependent. 
(d) If . F is linearly independent, then . E is linearly dependent.
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Ans. Option b 
Suppose that . E is linearly independent, consider the zero transformation, then 
.F is not linearly independent. If we consider the identity transformation .F is 
linearly independent. Now suppose that . F is linearly independent, i.e., 

. λ1Tv1 + λ2Tv2 + · · · + λkTvk = 0 ⇒ λ1 = λ2 = · · · = λk = 0

Now for .μ1, μ2, . . . , μk ∈ R, 

. μ1v1 + μ2v2 + · · · + μkvk = 0 ⇒ T (μ1v1 + μ2v2 + · · · + μkvk) = 0

⇒ μ1Tv1 + μ2Tv2 + · · · + μkTvk = 0

⇒ μ1 = μ2 = · · · = μk = 0

Therefore . E is linearly independent. 

(12) Let .V be a non-zero vector space over a field . K. Let  .S ⊂ V be a non-empty 
set. Consider the following properties of . S :
(I) For any vector space .W over . K, any  map  .T1 : S → W extends to a linear 

map from. V to . W . 
(II) For any vector space .W over .K and any two linear maps . T1,T2 : V → W

satisfying.T1(s) = T2(s) for all .s ∈ S, we have.T1(v) = T2(v) for all .v ∈ V . 
(III) . S is linearly independent. 
(IV) The span of . S is . V . 

Which of the following statement(s) is(are) true? 

(a) (I) implies (IV) (b) (I) implies (III) 

(c) (II) implies (III) (d) (II) implies (IV). 
Ans. Option d 
(I) need not imply (IV) 
Consider.V = W = R

2, S = {(1, 0)}. Define.T1 : S → W by.T1(1, 0) = (1, 0). 
This map can be extended to a linear map from . V to .W as .T1(x, y) = (x, y). But  
the span of . S is not . V . 
(I) need not imply (III) 
Consider .V = W = R

2, S = {(1, 0), (0, 1), (1, 1)}. Define .T1 : S → W by 
.T1(1, 0) = (1, 0),T1(0, 1) = (0, 1),T1(1, 1) = (1, 1). This map can be extended 
to a linear map from .V to .W as .T1(x, y) = (x, y). But . S is linearly dependent. 
If (II) is satisfied . S need not be a linearly independent set. For example, if 
.V = W = R

2, S = {(1, 0), (0, 1), (1, 1)}. We can define .T1 and .T2 satisfying 
the above conditions. But . S is not linearly independent. Also for .T1 and .T2 to be 
equal for all .v ∈ V , . S must span . V .
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(13) Consider the basis.{v1, v2, v3} of.R3, where. v1 = (1, 0, 0), v2 = (1, 1, 0), v3 =
(1, 1, 1). Let  .{f1, f2, f3} be the dual basis of .{v1, v2, v3} and . f be a linear func-
tional defined by .f (x, y, z) = x + y + z, (x, y, z) ∈ R

3. If  . f = λ1f1 + λ2f2 +
λ3f3, then .(λ1, λ2, λ3) is 

(a) .(1, 2, 3) (b) .(1, 3, 2) (c) .(2, 3, 1) (d) .(3, 2, 1). 

Ans. Option a 
Since . fi is linear 

. fi(x, y, z) = xfi(1, 0, 0) + yfi(0, 1, 0) + zfi(0, 0, 1)

Also we have . f1(1, 0, 0) = 1, f1(1, 1, 0) = 0, f1(1, 1, 1) = 0
.⇒ f1(0, 1, 0) = −1 and .f1(0, 0, 1) = 0. Therefore, .f1(x, y, z) = x − y. 
Similarly, . f2(1, 0, 0) = 0, f2(1, 1, 0) = 1, f2(1, 1, 1) = 0
.⇒ f2(0, 1, 0) = 1 and .f2(0, 0, 1) = −1. Therefore, .f2(x, y, z) = y − z, 
and . f3(1, 0, 0) = 0, f3(1, 1, 0) = 0, f3(1, 1, 1) = 1
.⇒ f3(0, 1, 0) = 0 and .f3(0, 0, 1) = 1. Therefore, .f3(x, y, z) = z. Now,  

. f = λ1f1 + λ2f2 + λ3f3 ⇒ f (x, y, z) = λ1f1(x, y, z) + λ2f2(x, y, z) + λ3f3(x, y, z)

⇒ x + y + z = λ1(x − y) + λ2(y − z) + λ3(z)

⇒ λ1 = 1, λ2 = 2, λ3 = 3

(14) Let . S be the set of all .2 × 3 real matrices each of whose entries is .1, 0, or . −1
(there are .36 matrices in . S). Recall that the column space of a matrix . A in . S is 
the subspace of.R2 spanned by the three columns of. A. For two elements. A and 
. B in . S, let us write .A ∼ B if . A and. B have the same column space. Note that . ∼
is an equivalence relation. How many equivalence classes are there in . S? 

Ans. The possible columns of elements in . S are .
|
0 0
|T
,.
|
0 1
|T
,.
|
0 −1

|T
, .
|
1 0
|T
, 

.
|−1 0

|T
, .
|
1 1
|T
, .
|
1 −1

|T
, .
|−1 1

|T
, .
|−1 −1

|T
. So the only possible column 

spaces are .{0},R2, <(1, 0)>, <(0, 1)>, <(1, 1)>, <(1,−1)>, where .<v> denote the 
span of . v. Therefore there exist 6 equivalence classes. 

(15) Let .V be a finite-dimensional vector space over . R, and .W ⊂ V a subspace. 
.W ∩ T (W ) /= 0 for every linear isomorphism.T : V → V if and only if 

(a) .W = V (b) . dim W < 1
2dim V

(c) .dim W = 1
2dim V (d) .dim W > 1

2dim V . 

Ans. Option d 
Since . T is an isomorphism we have .dim W = dim T (W ). Let .dim V = n. Sup-
pose that .dim W ≤ n

2 . Then define a linear isomorphism which maps .W to its 
complement .W '. Then .W ∩ T (W ) = {0}. Now suppose that .dim W > 1

2dim V . 
Then .W ∩ T (W ) /= 0 for if .W ∩ T (W ) = {0},
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. dim (W + T (W )) = dim W + dim T (W ) − dim (W ∩ T (W ))

= dim W + dim W, since dim W = dim T (W )

= 2dim W

> dimV , since dim W >
1

2
dim V

which is not possible. 

(16) Let.T : R2 → R
2 be the linear transformation given by.T (x, y) = (−x, y). Then 

(a) .T 2k = T for all . k ≥ 1
(b) .T 2k+1 = −T for all . k ≥ 1
(c) .R(T 2) is a proper subspace of . R(T )

(d) .R(T 2) = R(T ). 

Ans. Option d 
We have 

. T 2(x, y) = T (T (x, y)) = T (−x, y) = (x, y) /= T (x, y)

Since.T 2 = I , we have.T 2k = I and.T 2k+1 = T for all.k ≥ 1.. T 2 = I ⇒ R(T 2) =
R

2 and .T (1, 0) = (−1, 0),T (0, 1) = (0, 1) ⇒ R(T ) = R
2. 

(17) Let . V be a vector space over . R and let .T : R6 → V be a linear transformation 
such that.S = {Te2,Te4,Te6} spans. V . Which one of the following must be true? 

(a) . S is a basis of . V . (b) .T (R6) /= V . 
(c) .{Te1,Te3,Te5} spans . V . (d) .N(T ) contains more than one element. 

Ans. Option d 
. S need not be a basis. . S should be linearly independent also. For example, let 
.T : R6 → R

2, defined by 

. T (e2) = (1, 0), T (e4) = (0, 1), T (e6) = (1, 1)

and 
. T (e1) = T (e3) = T (e5) = 0

Then .{Te2,Te4,Te6} spans .V = R
2. But . S is not a basis of .W as . S is not linearly 

independent. Also .{Te1,Te3,Te5} does not span .V and .T (R6) = W. By Rank-
nullity theorem, .Rank(T ) + Nullity(T ) = 6 and .Rank(T ) ≤ 3. Therefore . N(T )

contains more than one element.
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(18) If .T : Mn×n(R) → Mn×n(R) is a linear transformation such that . T (A) = 0
whenever .A ∈ Mn×n(R) is symmetric or skew-symmetric, then the rank of 
. T is 

(a) .
n(n + 1)

2
(b) .

n(n − 1)

2
(c) .n (d) 0. 

Ans. Option d 
Since every matrix .A ∈ Mn×n(R) can be written as a sum of a symmetric and 
skew-symmetric matrix and . T is a linear transformation .T (A) = 0 for all . A ∈
Mn×n(R). 

(19) If .T : Pn[x] → Pn+1[x] is defined by 

. (Tp) (x) = p'(x) −
{ x

0
p(t)dt

then the dimension of null space of . T is 

(a) .0 (b) .1 (c) .n (d) .n + 1. 

Ans. Option a 
Let .p(x) ∈ N(T ), then 

. (Tp) (x) = 0 ⇒ p'(x) =
{ x

0
p(t)dt ⇒ p(x) = 0

Therefore .N(T ) = {0} and hence dimension of null space of . T is . 0. 

(20) If the nullity of the matrix .

⎡
⎣

λ 1 2
1 −1 −2
1 1 4

⎤
⎦ is 1, then the value of . λ is 

(a) .−1 (b) .0 (c) .1 (d) . 2. 

Ans. Option a 
Since the nullity of the given matrix is 1, determinant of the given matrix is zero. 
Therefore, .−2λ − 2 = 0 ⇒ λ = −1. 

(21) Let . A be a .5 × 4 matrix with real entries such that the space of all solutions of 
the linear system.AX T = |1 2 3 4 5

|T
is given by 

. 

{|
1 + 2 s 2 + 3 s 3 + 4 s 4 + 5 s

|t : s ∈ R

}

Then the rank of . A is equal to 

(a) 4 (b) 3 (c) 2 (d) 1. 
Ans. Option b 
Since the solution space is of dimension 1, the rank of the matrix is 3.
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(22) Let .A =
⎡
⎣
1 2 3 6
2 6 9 18
1 2 6 12

⎤
⎦. Find a basis for the null space of . A. 

Ans. By suitable elementary transformations, we have 

. A =
⎡
⎣
1 2 3 6
2 6 9 18
1 2 6 12

⎤
⎦ ∼

⎡
⎣
1 2 3 6
0 4 3 6
0 0 3 6

⎤
⎦

Therefore 

. N(A) = {(x, y, z,w) ∈ R
4 : z = −2w

} = span {(0, 0,−2, 1)}

Hence .{(0, 0,−2, 1)} is a basis for .N(A). 

(23) Let . V be an.n− dimensional vector space and let .T : V → V be a linear trans-
formation such that.Rank (T ) ≤ Rank

(
T 3
)
. Then which of the following state-

ment is necessarily true? 
(a) . N(T ) = R((T )

(b) . N(T ) ∩ R(T ) = {0}
(c) There exists a non-zero subspace .W of . V such that . N(T ) ∩ R(T ) = W
(d) .N(T ) ⊆ R(T ). 

Ans. Option b 
Since .R(T ) ⊃ R(T 2), .Rank(T ) ≤ Rank

(
T 3
)⇒ Rank(T ) = Rank

(
T 3
)
. 

Therefore .dim [N(T )] = dim
|N(T 3)

|
. Since .N(T ) ⊂ N(T 3), . N(T ) =

N(T 3). Now, let .v ∈ R(T ) ∩ N(T ), then there exists .w such that .Tw = v and 
.Tv = 0. Then, 

. T 3w = T 2(Tw) = T 2v = 0 ⇒ w ∈ N(T 3) = N(T )

Therefore .Tw = v = 0. Hence .N(T ) ∩ R(T ) = {0}. 
(24) Let . V be a finite-dimensional vector space over . R. Let .T : V → V be a linear 

transformation such that .Rank(T 2) = Rank(T ). Then, 

(a) .N(T 2) = N(T ) (b) . R(T 2) = R(T )

(c) .N(T ) ∩ R(T ) = {0} (d) .N(T 2) ∩ R(T 2) = {0}. 
Ans. Options a, b, c, and d 

(a) By Rank-Nullity theorem, .Nullity(T 2) = Nullity(T ). Since . N(T ) ⊆
N(T 2) we get .N(T 2) = N(T ). 

(b) Since .R(T 2) ⊆ R(T ) and .Rank(T 2) = Rank(T ), we get .R(T 2) = R(T ).
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(c) Let . w ∈ N(T ) ∩ R(T )

. w ∈ N(T ) ∩ R(T ) ⇒ T (w) = 0 and ∃ v ∈ V such that T (v) = w

⇒ T 2(v) = T (T (v)) = T (w) = 0

⇒ v ∈ N(T 2) = N(T )

⇒ Tv = 0 = w

(d) From .(a), (b), and .(c), .N(T 2) ∩ R(T 2) = {0}. 
(25) Let .L(Rn) be the space of .R− linear maps from .R

n to .R
n. Then which of the 

following are true? 
(a) There exists .T ∈ L(R5) \ {0} such that .R(T ) = N(T ). 
(b) There does not exist .T ∈ L(R5) \ {0} such that .R(T ) = N(T ). 
(c) There exists .T ∈ L(R6) \ {0} such that .R(T ) = N(T ). 
(d) There does not exist .T ∈ L(R6) \ {0} such that .R(T ) = N(T ). 

Ans. Options b and c 
By Rank-Nullity theorem, 

. dim(V ) = dim [R(T )] + dim [N(T )]

If .dim [R(T )] = dim [N(T )], .dim(V ) = 2dimR(T ) is even. Therefore there does 
not exist .T ∈ L(R5) \ {0} such that .R(T ) = N(T ). 
Now define .T : R6 → R

6 by 

. T (e1) = T (e2) = T (e3) = 0,T (e4) = e1,T (e5) = e2,T (e6) = e3

Then .R(T ) = N(T ) = span{e1, e2, e3}. That is, there exists . T ∈ L(R6) \ {0}
such that .R(T ) = N(T ). 

26) Let .A =
|
1 2 0

−1 5 2

|
, .B =

⎡
⎣

1 2
−1 0
3 1

⎤
⎦. Then the dimension of .N(A) ∩ R(B) over 

. R is . . . . . . .

Ans. The null space of . A is 

. N(A) = {x ∈ R
3 : Ax = 0

}

= {x ∈ R
3 : x + 2y = 0, 7y + 2z = 0

}

= span {(−4, 2,−7)}

.R(B) = span {(1,−1, 3), (2, 0, 1)}. Also the  set  . {(−4, 2,−7), (1,−1, 3),
(2, 0, 1)} is linearly dependent. Therefore .N(A) ∩ R(B) = N(A) and hence the 
dimension of .N(A) ∩ R(B) = 1.
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(27) Let.T : Rn → R
n be a linear transformation. Which of the following statements 

implies that . T is bijective? 

(a) .Nullity(T ) = n (b) . Rank(T ) = Nullity(T ) = n
(c) .Rank(T ) + Nullity(T ) = n (d) .Rank(T ) − Nullity(T ) = n. 

Ans. Option d 

(a) & (b) A linear transformation T is one-one if and only if .N(T ) = {0}. That 
is, if and only if .Nullity(T ) = 0. 

(c) Consider.T : R2 → R
2 given by.T (x, y) = (x, 0). Clearly. Rank(T ) +

Nullity(T ) = 2, but . T is not bijective. 
(d) By Rank-Nullity theorem, we have.Rank(T ) + Nullity(T ) = n and for 

. T to be one-one, .Nullity(T ) = 0 ⇒ Rank(T ) − Nullity(T ) = n. 

(28) Consider non-zero vector spaces .V1,V2,V3,V4 and linear transformations 
.T1 : V1 → V2, .T2 : V2 → V3, .T3 : V3 → V4, such that . N(T1) = {0},R(T1) =
N(T2),R(T2) = N(T3),R(T2) = V4. Then 

(a) .
E4

i=1(−1)idim Vi = 0 (b) . 
E4

i=2(−1)idim Vi > 0
(c) .
E4

i=1(−1)idim Vi < 0 (d) .
E4

i=i(−1)idim Vi /= 0. 

Ans. Options a and b 
Since .N(T1) = {0}, we have .N(T1) = {0}. As  .R(T1) = N(T2) and . R(T2) =
N(T3), we get  .Rank(T1) = Nullity(T2) and .Rank(T2) = Nullity(T3). Also  
.dim(V4) = Rank(T2) as .R(T2) = V4. Now,  

. dim(V1) = Rank(T1) + Nullity(T1)

= Rank(T1) since N(T1) = {0}
dim(V2) = Rank(T2) + Nullity(T2)

= Rank(T2) + dim(V1) since Rank(T1) = Nullity(T2)

dim(V3) = Rank(T3) + Nullity(T3)

= Rank(T3) + dim(V2) − dim(V1) since Rank(T2) = Nullity(T3)

dim(V4) = Rank(T3) = dim(V3) − dim(V2) + dim(V1)

(29) Let .T : R4 → R
4 be a linear map defined by 

. T (x, y, z,w) = (x + z, 2x + y + 3z, 2y + 2z,w)

Then the rank of . T is equal to .. . . . . .
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Ans. We have 

. T (x, y, z,w) = (x + z, 2x + y + 3z, 2y + 2z,w) = (0, 0, 0, 0)

⇒ x = y = −z, w = 0

Therefore 

. N(T ) = {(x, y, z,w) ∈ R
4 : x = y = −z and w = 0}

= span{(1, 1,−1, 0)}

Since .dim [N(T )] = 1 by Rank-Nullity theorem, rank of . T is 3. 

(30) Let .T be a .4 × 4 real matrix such that .T 4 = 0. Let  .ki = dim
|N (T i

)|
for 

.1 ≤ i ≤ 4. Which of the following is NOT a possibility for the sequence 

.k1 ≤ k2 ≤ k3 ≤ k4? 

(a) .3 ≤ 4 ≤ 4 ≤ 4 (b) . 1 ≤ 3 ≤ 4 ≤ 4
(c) .2 ≤ 4 ≤ 4 ≤ 4 (d) .2 ≤ 3 ≤ 4 ≤ 4. 

Ans. Option b 
Suppose that .k1 = dim [N(T )] = 1, then .dim [R(T )] = 3. Then by Sylvester’s 
inequality, .3 + 3 − 4 = 2 ≤ Rank(T 2) ≤ 3 and hence .1 ≤ k2 ≤ 2. 

(31) Let .T : R7 → R
7 be a linear transformation with .nullity(T ) = 2. Then, the 

minimum possible value for .Rank(T 2) is . . . . . . .

Ans. By Rank-Nullity theorem, we have .Rank(T ) = 7 − 2 = 5 and by 
Sylvester’s inequality, 

. 5 + 5 − 7 = 3 ≤ Rank(T 2) ≤ min {5, 5} = 5

That is, minimum possible value for .Rank(T 2) is 3. 

(32) Let .T1,T2 : R5 → R
3 be linear transformations such that .Rank(T1) = 3 and 

.Nullity(T2) = 3. Let  .T3 : R3 → R
3 be a linear transformation such that . T3 ◦

T1 = T2. Then .Rank(T3) is . . . . . . .

Ans. Since .Nullity(T2) = 3, .Rank(T2) = 2 = Rank(T3 ◦ T1) (By 
Rank-Nullity theorem). By Sylvester’s inequality, 

. Rank(T3) + Rank(T1) − 3 ≤ Rank(T3 ◦ T1) = 2 ≤ min{Rank(T3),Rank(T1)}

Since .Rank(T1) = 3, this gives .Rank(T3) ≤ 2 ≤ Rank(T3). Thus, 
.Rank(T3) = 2.
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(33) Let .V be a vector space (over . R) of dimension 7 and let .f : V → R be 
a non-zero linear functional. Let .W be a linear subspace of .V such that 
.V = N(f ) ⊕ W . What is the dimension of . W? 
Ans. By Rank-Nullity theorem, 

. 7 = dim(V ) = Rank(f ) + Nullity(f ) = 1 + Nullity(f ) ⇒ Nullity(f ) = 6

Since .V = N(f ) ⊕ W, 

. 7 = dim(V ) = Nullity(f ) + dim(W ) = 6 + dim(W ) ⇒ dim(W ) = 1

(34) Let. A and. B be.n × n real matrices such that.AB = BA = 0 and.A + B is invert-
ible. Which of the following is always true? 
(a) .Rank(A) = Rank(B). (b) .Rank(A) + Rank(B) = n. 
(c) .Nullity(A) + Nullity(B) = n. (d) .A − B is invertible. 

Ans. Option b, c, and d 

(a) Let .A =
⎡
⎣
1 0 0
0 0 0
0 0 0

⎤
⎦ and .B =

⎡
⎣
0 0 0
0 1 0
0 0 1

⎤
⎦. Then .AB = BA = 0 and .A + B is 

invertible, but .Rank(A) /= Rank(B). 
(b) Since .A + B is invertible, 

. n = Rank(A + B) ≤ Rank(A) + Rank(B)

By Sylvester’s inequality, 

. Rank(A) + Rank(B) − n ≤ Rank(AB) = 0 ⇒ Rank(A) + Rank(B) ≤ n

Therefore .Rank(A) + Rank(B) = n. 
(c) By Rank-Nullity theorem, 

. Nullity(A) = n − Rank(A) and Nullity(B) = n − Rank(B)

Therefore 

. Nullity(A) + Nullity(B) = 2n − (Rank(A) + Rank(B)) = n

(d) Since .AB = BA = 0, 

. (A − B)2 = A2 − AB − BA + B2 = A2 + B2 = (A + B)2

Therefore .A + B is invertible implies that .A − B is invertible.
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(35) Let . A be a .4 × 7 real matrix and . B be a .7 × 4 real matrix such that .AB = I4. 
Which of the following is/are always true? 

(a) .Rank(A) = 4 (b) . Rank(B) = 7
(c) .Nullity(B) = 0 (d) .BA = I7. 

Ans. Options a and c 
We have .Rank(A),Rank(B) ≤ min{4, 7} = 4. By Sylvester’s inequality, 

. Rank(AB) = 4 ≤ min{Rank(A),Rank(B)} ⇒ Rank(A) = Rank(B) = 4

By Rank-Nullity theorem, .Nullity(B) = 0 and again by Sylvester’s inequality, 
.Rank(BA) ≤ 4. 

(36) Let .Mn×n(R) be the set of all .m × n matrices with real entries. Which of the 
following statements is correct? 
(a) There exists .A ∈ M2×5(R) such that the dimension of null space of . A is 2. 
(b) There exists .A ∈ M2×5(R) such that the dimension of null space of . A is 0. 
(c) There exists .A ∈ M2×5(R) and .B ∈ M5×2(R) such that .AB is the . 2 × 2
identity matrix. 
(d) There exists .A ∈ M2×5(R) whose null space is . {(x1, x2, x3, x4, x5) ∈ R

5 :
x1 = x2, x3 = x4 = x5}. 
Ans. Option c 
.A ∈ M2×5(R) implies that it is a linear transformation from a five-dimensional 
space to a two-dimensional space. By Rank-Nullity theorem, the dimension of the 
null space of a cannot be 2 and 0. For, then the dimension of the range space will 
be 3 and 5 respectively. Since a two-dimensional space cannot have subspaces 

of dimension 3 and 5 this is not possible. Take .A =
|
1 0 0 0 0
0 1 0 0 0

|
and .B = AT , 

then .AB = I2. Now the set . {(x1, x2, x3, x4, x5) ∈ R
5 : x1 = x2, x3 = x4 = x5} =

span{(1, 1, 0, 0, 0), (0, 0, 1, 1, 1)} has dimension 2 and it cannot be the null 
space of . A. 

(37) Let . A be a .4 × 4 matrix. Suppose that 

. N(A) = {(x, y, z,w) ∈ R
4 : x + y + z = 0, x + y + w = 0}

Then 

(a) .dim(column space(A)) = 1 (b) . Rank(A) = 1
(c) .dim(column space(A)) = 2 (d) .S = {(1, 1, 1, 0), (1, 1, 0, 1)} is a basis of 
.N(A).
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Ans. Option c 
Since 

. N(A) = {(x, y, z,w) ∈ R
4 : x + y + z = 0, x + y + w = 0}

= span{(1, 0,−1,−1), (0, 1,−1,−1)}

As .{(1, 0,−1,−1), (0, 1,−1,−1)} is a linearly independent set, it is a basis for 
.N(A). Therefore .Nullity(A) = 2. By Rank-Nullity theorem, 

. dim(column space(A)) = 4 − 2 = 2

That is, .Rank(A) = 2. 

(38) Let .U,V , and .W be finite-dimensional real vector spaces, and . T1 : U →
V ,T2 : V → W , and .T3 : W → U be linear transformations. If . R(T2T1) =
N(T3), N(T2T1) = R(T3), and .Rank(T1) = Rank(T2), then which one of the 
following is true? 
(a) .N(T1) = N(T2). 
(b) .dim(U ) /= dim(W ). 
(c) If .dim(V ) = 3, .dim(U ) = 4, then .T3 is not identically zero. 
(d) If .dim(V ) = 4, .dim(U ) = 3 and .T1 is one-one, then .T3 is identically zero. 

Ans. Option c 

(a) We know that.N(T1) is a subspace of.U and.N(T2) is a subspace of. V . Since 
.U and .V need not be the same space, .N(T1) need not be equal to .N(T2). 

(b) Since .T2T1 : U → W, by Rank-Nullity theorem, 

. dim U = dim range(T2T1) + Nullity(T2T1)

= Nullity(T3) + Rank(T3)

= dim W

(c) Let .dim(V ) = 3 and .dim(U ) = 4. Then from option .(b), .dim(W ) = 4. We  
have .N(T2T1) = R(T3). We know that .Nullity(T2T1) is minimum when 
.Rank(T2T1) is maximum. Since the maximum possible dimension for . R(T2)
and .R(T1) is 3, the maximum possible dimension of .R(T2T1) is 3. Therefore 
by Rank-Nullity theorem, .N(T2T1) has dimension .≥ 1. Hence, .R(T3) is of 
dimension .≥ 1. Hence .T3 is not identically zero. 

(d) As in option .(c), .R(T3) is of dimension .≥ 1. Hence .T3 is not identically zero.
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(39) If . A is a .5 × 5 matrix and the dimension of the solution space of .Ax = 0 is at 
least two, then 

(a) .Rank(A2) ≤ 3 (b) .Rank(A2) ≥ 3 (c) .Rank(A2) = 3 (d) .det(A2) = 0. 

Ans. Options a and d 
If .Nullity(A) = 2, by Rank-Nullity theorem, .Rank(A) = 5 − 2 = 3. Then by 
Sylvester’s inequality, .1 ≤ Rank(A2) ≤ 3. Therefore if .Nullity(A) > 2, . Rank(A)

will be less than . 3 and hence .Rank(A2) ≤ 3. Since .Rank(A) is always less than 
5, .det(A) = 0. Therefore .det(A2) = 0. 

(40) The row space of a .20 × 50 matrix. A has dimension 13. What is the dimension 
of the space of solutions of .Ax = 0? 
(a) 7 (b) 13 (c) 33 (d) 37. 

Ans. Option d 
. A is the matrix representation of a linear transformation from .R50 to .R20. The 
dimension of the space of solutions of.Ax = 0 is the dimension of null space of. A. 
Then by Rank-Nullity theorem, the dimension of the space of solutions of . Ax = 0
is 37. 

(41) Let. A be an.m × nmatrix with rank. r. If the linear system.Ax = b has a solution 
for each .b ∈ R

m, then 
(a) .m = r. 
(b) the column space of . A is a proper subspace of .Rm. 
(c) the null space of . A is a non-trivial subspace of .Rm whenever .m = n. 
(d) .m ≥ n implies .m = n. 

Ans. Options a and d 
The system .Ax = b has a solution for each .b ∈ R

m implying that the column 
space of .A is .Rm and since .Rank(A) = r, .m = r. As  .Rank(A) ≤ min{m, n}, 
.m ≥ n implies .m = n. If  .m = n, the null space of .A is the trivial subspace 
of .Rm. 

(42) For.n /= m, let.T1 : Rn → R
m and.T2 : Rm → R

n be linear transformations such 
that .T1T2 is bijective 

(a) .Rank(T1) = n and .Rank(T2) = m (b) .Rank(T1) = m and . Rank(T2) = n
(c) .Rank(T1) = n and .Rank(T2) = n (d) .Rank(T1) = m and .Rank(T2) = m. 

Ans. Option d 
If.T1 : Rn → R

m and.T2 : Rm → R
n, then.T1T2 : Rm → R

m. Since.T1T2 is bijec-
tive .Rank(T1T2) = m. By Sylvester’s inequality, 

. Rank(T1T2) = m ≤ min {Rank(T1),Rank(T2)}

This implies that .Rank(T1),Rank(T2) ≥ m. Also,  . Rank(T1),Rank(T2) ≤
min {m, n} implies .Rank(T1),Rank(T2) ≤ m. Hence .Rank(T1) = m and 
.Rank(T2) = m.
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(43) Let .T1 : R3 → R
4 and .T2 : R4 → R

3 be linear transformations such that 
.T2 ◦ T1 is the identity map of .R3. Then 

(a) .T1 ◦ T2 is the identity map of .R4. (b) .T1 ◦ T2 is one-one, but not onto. 
(c) .T1 ◦ T2 is onto, but not one-one. (d) .T1 ◦ T2 is neither one-one nor onto. 

Ans. Option d 
The matrix of .T1 is of order .4 × 3 and .T2 is of order .3 × 4. Therefore . Rank(T1),
Rank(T2) ≤ 3. Then by Sylvester’s inequality, .Rank(T1T2) ≤ 3. Therefore . T1 ◦
T2 is neither one-one nor onto. 

(44) If a linear transformation .T : P2(R) → M2×2(R) is defined as 

. T (p) =
|
p(0) − p(2) 0

0 p(1)

|

then 

(a) . T is one-one but not onto (b) . T is onto but not one-one 

(c) .R(T ) = span

{|
0 0
0 1

|
,

|−2 0
0 1

|}
(d) .N(T ) = span

{
x2 − 2x, 1 − x

}
. 

Ans. Option c 
Consider the standard basis for .P2(R). We have 

. T (1) =
|
0 0
0 1

|
, T (x) =

|−2 0
0 1

|
,T (x2) =

|−4 0
0 1

|

Then the matrix of .T is .

⎡
⎢⎢⎣
0 −2 −4
0 0 0
0 0 0
1 1 1

⎤
⎥⎥⎦, which is of rank . 2. Therefore . R(T ) =

span

{|
0 0
0 1

|
,

|−2 0
0 1

|}
and .N(T ) has dimension 1 by Rank-Nullity theorem. 

Hence . T is not one-one. 

(45) Let .T : C → C be the map defined by .T (z) = z + z̄. For  a  .C-vector space . V , 
consider the map 

. φ : {f : V → C | f is C − linear} → {g : V → R | g is R − linear}

defined by .φ(f ) = T ◦ f . Then this map is
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(a) injective, but not surjective. (b) surjective, but not injective. 
(c) bijective. (d) neither injective nor surjective. 

Ans. Option c 
Let .f ∈ N (φ). 

. f ∈ N (φ) ⇒ (T ◦ f )(z) = 0 ∀ z ∈ V

⇒ T (f (z)) = 0 ∀ z ∈ V

⇒ f (z) + f (z) = 0 ∀ z ∈ V ⇒ Re(f (z)) = 0

Therefore .f (z) is of the form .f (z) = ih(z). Now .f (iz) = −1h(z) = −h(z). Since 
.Re(f ) = 0, we get .h(z) = 0. Therefore .f (z) = 0 and hence . φ is one-one. 
Now let .g ∈ {g : V → R | g is R − linear}. Define 

. f (x) = g(x) − ig(ix)

2

Since 

. f (ix) = g(ix) − ig(−x)

2
= g(ix) + ig(x)

2
= if (x)

. f is .C − linear. Also .f (x) + f (x) = g(x) ⇒ φ is onto. Therefore . φ is bijective. 

(46) Let .T : C → M2×2(R) be the map given by 

. T (z) = T (x + iy) =
|
x y

−y x

|

Then which of the following statements is false? 
.P : T (z1z2) = T (z1)T (z2) for all .z1, z2 ∈ C. 
.Q : T (z) is singular if and only if .z = 0. 
.R : There does not exist non-zero.A ∈ M2×2(R) such that the trace of .T (z)A is 
zero for all .z ∈ C. 
.S : T (z1 + z2) = T (z1) + T (z2) for all .z1, z2 ∈ C. 

(a) .P (b) .Q (c) .R (d) . S. 

Ans. Option c 

Let .z1 = x1 + iy1, z2 = x2 + iy2 ∈ C. Then .T (z1) =
|
x1 y1

−y1 x1

|
and . T (z2) =

|
x2 y2

−y2 x2

|
.
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(a) We have 

. T (z1z2) = T ((x1x2 − y1y2) + i(x1y2 + x2y1))

=
|

x1x2 − y1y2 x1y2 + x2y1
−(x1y2 + x2y1) x1x2 − y1y2

|
= T (z1)T (z2)

. P is true. 
(b) .T (z) is singular .⇒ x2 + y2 = 0 ⇒ x = 0, y = 0 ⇒ z = 0. The converse is 

trivial. .Q is true. 

(c) Take .A =
|
a b
b −a

|
. Then 

. T (z)A =
|
x y

−y x

| |
a b
b −a

|

Clearly, trace of .T (z)A is zero for all .z ∈ C. . R is false. 
(d) We have 

. T (z1 + z2) = T ((x1 + x2) + i(y1 + y2))

=
|

x1 + x2 y1 + y2
−(y1 + y2) x1 + x2

|

=
|
x1 y1

−y1 x1

|
+
|
x2 y2

−y2 x2

|
= T (z1) + T (z2)

. S is true. 

(47) Let .V be a finite-dimensional vector space over . R and .T : V → V be a linear 
map. Can you always write.T = T2 ◦ T1 for some linear maps.T1 : V → W ,. T2 :
W → V , where .W is some finite-dimensional vector space and such that 

(a) both .T1 and .T2 are onto. (b) both .T1 and .T2 are one-one. 
(c) .T1 is onto, .T2 is one-one. (d) .T1 is one-one, .T2 is onto. 

Ans. Options c and d 

(a) If both .T1 and .T2 are onto, then .T = T2 ◦ T1 must also be onto. So it need 
not be true. 

(b) If both .T1 and .T2 are one-one, then .T = T2 ◦ T1 must also be one-one. So it 
need not be true. 

(c) Let .W = V \ N(T ). Define .T1 : V → W by .T1(v) = v + N(T ) and . T2 :
W → V by .T2(v + N(T )) = T (v). Then 

.(T2 ◦ T1)(v) = T2(v + N(T )) = T (v)
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Clearly .T1 is onto. Now 

. T2(v + N(T )) = 0 ⇒ T (v) = 0

⇒ v ∈ N(T )

⇒ v + N(T ) = N(T )

⇒ N(T2) = N(T )

⇒ T2 is one − one

(d) Let .W = V ⊕ V . Define .T1 : V → W by .T1(v) = (v,T (v)) and . T2 : W →
V by .T2(v1, v2) = v2. Then 

. (T2 ◦ T1)(v) = T2 (v,T (v)) = T (v)

Since .T2 is the projection map, clearly .T2 is onto. Now 

. T1(v1) = T1(v2) ⇒ (v1, T (v1)) = (v2,T (v2)) ⇒ v1 = v2 ⇒ T1 is one − one

(48) On .R2, consider the linear transformation which maps the point .(x, y) to the 
point .(2x + y, x − 2y). Write down the matrix of this transformation with 
respect to the basis .{(1, 1), (1,−1)}. 
Ans. We have 

. T (1, 1) = (3,−1) = 1(1, 1) + 2(1,−1)

and 
. T (1,−1) = (1, 3) = 2(1, 1) + (−1)(1,−1)

Therefore the matrix of . T is .

|
1 2
2 −1

|
. 

(49) A linear transformation. T rotates each vector in.R
2 clockwise through.90◦. The  

matrix of . T with respect to the standard ordered basis .

{|
1
0

|
,

|
0
1

|}
is 

(a) .

|
0 −1

−1 0

|
(b) .

|
0 1

−1 0

|
(c) .

|
0 1
1 0

|
(d) .

|
0 −1
1 0

|
. 

Ans. Option b 

Since .T rotates the vectors through .90◦, .T
(|

1
0

|)
=
|
0

−1

|
and . T

(|
0
1

|)
=

|
1
0

|
. Therefore the matrix of . T with respect to the standard basis is .

|
0 1

−1 0

|
.
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(50) Let .B =
{(

1
2

)
,

(
2
1

)}
be a basis of .R2 and .T : R2 → R

2 be defined by 

. T

(
x
y

)
=
(
x + y
x − 2y

)

Then the matrix of . T with respect to . B is . [T ]B = · · · · · ·

(a) .

|−3 −2
3 1

|
(b) .

|
3 −2

−3 1

|
(c) .

|−3 −1
3 2

|
(d) .

|
3 −1

−3 2

|
. 

Ans. Option c 
We have 

. T

(
1
2

)
=
(

3
−3

)
= (−3)

(
1
2

)
+ 3

(
2
1

)

and 

. T

(
2
1

)
=
(
3
0

)
= (−1)

(
1
2

)
+ 2

(
2
1

)

Therefore the matrix of. T with respect to the basis. B is given by.[T ]B =
|−3 −1
3 2

|
. 

(51) Let .T : R3 → R
3 be a linear transformation defined by 

. T (x, y, z) = (x + y − z, x + y + z, y − z)

Then the matrix of the linear transformation . T with respect to ordered basis 
.B = {(0, 1, 0), (0, 0, 1), (1, 0, 0)} of .R3 is 

(a) .

⎡
⎣
1 1 −1
1 1 1
0 1 −1

⎤
⎦ (b) .

⎡
⎣
1 1 0
1 1 1
1 0 −1

⎤
⎦ (c) .

⎡
⎣
1 1 1
1 −1 0
1 −1 1

⎤
⎦ (d) .

⎡
⎣
1 −1 1
1 1 1
1 −1 0

⎤
⎦. 

Ans. Option c 
We have 

. T (0, 1, 0) = (1, 1, 1) = 1(0, 1, 0) + 1(0, 0, 1) + 1(1, 0, 0)

T (0, 0, 1) = (−1, 1,−1) = 1(0, 1, 0) + (−1)(0, 0, 1) + (−1)(1, 0, 0)

T (1, 0, 0) = (1, 1, 0) = 1(0, 1, 0) + 0(0, 0, 1) + 1(1, 0, 0)

Therefore the matrix of . T with respect to . B is .

⎡
⎣
1 1 1
1 −1 0
1 −1 1

⎤
⎦.
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(52) Let .T : P3[0, 1] → P2[0, 1] be defined by 

. (Tp)(x) = d2

dx2
|
p(x)

|+ d

dx

|
p(x)

|

Then the matrix representation of .T with respect to bases .{1, x, x2, x3} and 
.{1, x, x2} of .P3[0, 1] and .P2[0, 1] respectively is 

(a) .

⎡
⎢⎢⎣
0 0 0
1 0 0
2 2 0
0 6 3

⎤
⎥⎥⎦ (b) .

⎡
⎣
0 1 2 0
0 0 2 6
0 0 0 3

⎤
⎦ (c) .

⎡
⎣
0 2 1 0
6 2 0 0
3 0 0 0

⎤
⎦ (d) .

⎡
⎢⎢⎣
0 0 0
0 0 1
0 2 2
3 6 0

⎤
⎥⎥⎦. 

Ans. Option b 
We have 

. T (1) = 0 = 0.1 + 0x + 0x2

. T (x) = 1 = 1.1 + 0x + 0x2

. T (x2) = 2 + 2x = 2.1 + 2x + 0x2

. T (x3) = 6x + 3x2 = 0.1 + 6x + 3x2

Therefore the matrix of . T with respect to the given bases is .

⎡
⎣
0 1 2 0
0 0 2 6
0 0 0 3

⎤
⎦. 

(53) Define the linear transformation .T : P3 (R) → P3 (R) by 

. T (a0 + a1x + a2x
2 + a3x

3) = (a0 + a1 + a2 + a3) + (a1 + 2a2 + 3a3)x

+ (a2 + 3a3)x
2 + a3x

3

Write down the matrix of T with respect to the basis.
{
1, 1 + x, 1 + x2, 1 + x3

}
. 

Ans. We have 

. T (1) = 1 = 1.1 + 0(1 + x) + 0(1 + x2) + 0(1 + x3)

. T (1 + x) = 2 + x = T (1) = 1 = 1.1 + 1(1 + x) + 0(1 + x2) + 0(1 + x3)

. T (1 + x2) = 2 + 2x + x2 = (−1).1 + 2(1 + x) + 1(1 + x2) + 0(1 + x3)

.T (1 + x3) = 2 + 3x + 3x2 + x3 = (−5).1 + 3(1 + x) + 3(1 + x2) + 1(1 + x3)
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Therefore the matrix of . T with respect to the given basis is .

⎡
⎢⎢⎣
1 1 −1 −5
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦. 

(54) Consider the vector space .P3(R) over . R. Define 

. (Tp)(x) = a0 + a1(x + 1) + a2(x + 1)2 + a3(x + 1)3

where.p(x) = a0 + a1x + a2x2 + a3x3. Write down the matrix representing the 
linear transformation . T with respect to the standard basis. 

Ans. We have 
. T (1) = 1 = 1.1 + 0x + 0x2 + 0x3

. T (x) = x + 1 = 1.1 + 1x + 0x2 + 0x3

. T (x2) = (x + 1)2 = x2 + 2x + 1 = 1.1 + 2x + 1x2 + 0x3

. T (x3) = (x + 1)3 = x3 + 3x2 + 3x + 1 = 1.1 + 3x + 3x2 + 1x3

Therefore the matrix of . T with respect to the standard basis is .

⎡
⎢⎢⎣
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦. 

(55) Define .T : P2(R) → P3(R) by 

. (Tp)(x) =
{ x

0
p(t)dt + d

dx

|
p(x)

|

Then the matrix representation of .T with respect to the bases .{1, x, x2} and 
.{1, x, x2, x3} is 

(a) .

⎛
⎝
0 1 0 0
1 0 1

2 0
0 2 0 1

3

⎞
⎠ (b) .

⎛
⎜⎜⎝
0 1 0
1 0 2
0 1

2 0
0 0 1

3

⎞
⎟⎟⎠ (c) .

⎛
⎝
0 1 0 0
1 0 2 0
0 1

2 0 1
3

⎞
⎠ (d) .

⎛
⎜⎜⎝
0 1 0
1 0 1

2
0 2 0
0 0 1

3

⎞
⎟⎟⎠. 

Ans. Option b 
We have 

. T (1) = x = 0.1 + 1x + 0x2 + 0x3

.T (x) = x2

2
+ 1 = 1.1 + 0x + 1

2
x2 + 0x3
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. T (x2) = x3

3
+ 2x = 0.1 + 2x + 0x2 + 1

3
x3

The matrix of . T with respect to the given bases is .

⎛
⎜⎜⎝
0 1 0
1 0 2
0 1

2 0
0 0 1

3

⎞
⎟⎟⎠. 

(56) Consider the linear transformation .T : P3 (R) → P3 (R) defined by 

. (Tp)(x) = x
d2

dx2
|
p(x)

|+ 3x
d

dx

|
p(x)

|+ 2p(x), ∀ p ∈ P3 (R)

Write down the corresponding matrix of . T with respect to the standard basis. 

Ans. Consider the standard ordered basis .{1, x, x2, x3}. Then 

. T (1) = 2 = 2.1 + 0x + 0x2 + 0x3

. T (x) = 5x = 0.1 + 5x + 0x2 + 0x3

. T (x2) = 8x2 + 2x = 0.1 + 2x + 8x2 + 0x3

. T (x3) = 11x3 + 6x2 = 0.1 + 0x + 6x2 + 11x3

The matrix of . T with respect to the standard basis is given by .

⎡
⎢⎢⎣
2 0 0 0
0 5 2 0
0 0 8 6
0 0 0 11

⎤
⎥⎥⎦. 

(57) With the notations and definitions of the problem above, find .p ∈ P3 (R) such 
that 

. x
d2

dx2
|
p(x)

|
) + 3x

d

dx

|
p(x)

|+ 2p(x) = 11x3 + 14x2 + 7x + 2

Ans. Let .p(x) = a0 + a1x + a2x2 + a3x3 ∈ V . Then
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. x
d2

dx2
|
p(x)

|+ 3x
d

dx

|
p(x)

|+ 2p(x) = 2a0 + (5a1 + 2a2)x + (8a2 + 6a3)x
2 + 11a3x

3

⇒ a0 = 1, 5a1 + 2a2 = 7, 8a2 + 6a3 = 14, a3 = 1

⇒ a0 = a1 = a2 = a3 = 1

Therefore .p(x) = 1 + x + x2 + x3. 

(58) Define .T : P3 (R) → P3 (R) by 

. (Tp)(x) = p(x + 1), p ∈ P3 (R)

Then the matrix of . T in the basis .{1, x, x2, x3} is given by 

(a) .

⎡
⎢⎢⎣
1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎤
⎥⎥⎦ (b) .

⎡
⎢⎢⎣
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦ (c) .

⎡
⎢⎢⎣
1 1 2 3
1 1 2 3
2 2 2 3
3 3 3 3

⎤
⎥⎥⎦ (d) .

⎡
⎢⎢⎣
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦. 

Ans. Option b 

We have 
. T (1) = 1 = 1.1 + 0x + 0x2 + 0x3

. T (x) = x + 1 = 1.1 + 1x + 0x2 + 0x3

. T (x2) = x2 + 2x + 1 = 1.1 + 2x + 1x2 + 0x3

. T (x3) = x3 + 3x2 + 3x + 1 = 1.1 + 3x + 3x2 + 1x3

The matrix of . T with respect to standard basis is .

⎡
⎢⎢⎣
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦. 

(59) Let .A = .

⎡
⎣
1 0 0
1 1 0
1 1 1

⎤
⎦. Then the matrix of the linear transformation . T : R3 → R

3

defined by .T (x) = Ax with respect to the basis . B =
⎧⎨
⎩

⎛
⎝
1
0
0

⎞
⎠ ,

⎛
⎝
1
1
0

⎞
⎠ ,

⎛
⎝
1
1
1

⎞
⎠
⎫⎬
⎭

over . R is 

(a) .

⎡
⎣
0 −1 −1
0 0 −1
1 2 3

⎤
⎦ (b) .

⎡
⎣
0 1 1
0 0 1
1 2 3

⎤
⎦ (c) .

⎡
⎣
0 1 1
1 0 1
1 2 3

⎤
⎦ (d) .

⎡
⎣

0 −1 1
−1 0 2
3 2 1

⎤
⎦.
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Ans. Option a 
We have 

. T

⎛
⎝
⎡
⎣
1
0
0

⎤
⎦
⎞
⎠ =

⎡
⎣
1 0 0
1 1 0
1 1 1

⎤
⎦
⎡
⎣
1
0
0

⎤
⎦ =

⎡
⎣
1
1
1

⎤
⎦ = 0

⎡
⎣
1
0
0

⎤
⎦+ 0

⎡
⎣
1
1
0

⎤
⎦+ 1

⎡
⎣
1
1
1

⎤
⎦

. T

⎛
⎝
⎡
⎣
1
1
0

⎤
⎦
⎞
⎠ =

⎡
⎣
1 0 0
1 1 0
1 1 1

⎤
⎦
⎡
⎣
1
1
0

⎤
⎦ =

⎡
⎣
1
2
2

⎤
⎦ = (−1)

⎡
⎣
1
0
0

⎤
⎦+ 0

⎡
⎣
1
1
0

⎤
⎦+ 2

⎡
⎣
1
1
1

⎤
⎦

. T

⎛
⎝
⎡
⎣
1
1
1

⎤
⎦
⎞
⎠ =

⎡
⎣
1 0 0
1 1 0
1 1 1

⎤
⎦
⎡
⎣
1
1
1

⎤
⎦ =

⎡
⎣
1
2
3

⎤
⎦ = (−1)

⎡
⎣
1
0
0

⎤
⎦+ (−1)

⎡
⎣
1
1
0

⎤
⎦+ 3

⎡
⎣
1
1
1

⎤
⎦

The matrix of . T with respect to . B is .

⎡
⎣
0 −1 −1
0 0 −1
1 2 3

⎤
⎦. 

(60) If .T : P3[x] → P4[x] is the linear transformation defined by 

. (Tp) (x) = x2
d

dx

|
p(x)

|+
{ x

0
p(t)dt

and.A = |aij
|
5×4 is the matrix of . T with respect to standard bases of .P3[x] and 

.P4[x], then 

(a) .a32 = 3
2 and .a33 = 7

3 . (b) .a32 = 3
2 and .a33 = 0. 

(c) .a32 = 0 and .a33 = 7
3 . (d) .a32 = 0 and .a33 = 0. 

Ans. Option b 
Consider the standard ordered basis for both .P3[x] and .P4[x]: 

. T (1) = x = 0.1 + 1x + 0x2 + 0x3 + 0x4

. T (x) = 3x2

2
= 0.1 + 0x + 3

2
x2 + 0x3 + 0x4

. T (x2) = 7x3

3
= 0.1 + 0x + 0x2 + 7

3
x3 + 0x4

.T (x3) = 13x4

4
= 0.1 + 0x + 0x2 + 0x3 + 13

4
x4
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The matrix of . T with respect to the given bases is given by .

⎡
⎢⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 3

2 0 0
0 0 7

3 0
0 0 0 13

4

⎤
⎥⎥⎥⎥⎦
. 

(61) Consider the linear transformation .T : P3 (R) → P3 (R) defined by 

. T (a0 + a1x + a2x
2 + a3x

3) = a3 + a2x + a1x
2 + a0x

3

Then the matrix representation .A of .T with respect to the ordered basis 
.
{
1, x, x2, x3

}
satisfies 

(a) .A2 + I4 = 0 (b) .A2 − I4 = 0 (c) .A − I4 = 0 (d) .A + I4 = 0. 

Ans. Option b 
We have 

. T (1) = x3 = 0.1 + 0x + 0x2 + 1x3

. T (x) = x2 = 0.1 + 0x + 1x2 + 0x3

. T (x2) = x = 0.1 + 1x + 0x2 + 0x3

. T (x3) = 1 = 1.1 + 0x + 0x2 + 0x3

Then .A =

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ and .A2 = I4. 

(62) Let .T : P3 (R) → P3 (R) be the map given by 

. (Tp)(x) =
{ x

1
p'(t)dt

where .p'(t) denotes the derivative of .p(t). If the matrix of .T relative to the 
standard basis of .P3 (R) is . A, then .A + AT is
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(a) .

⎡
⎢⎢⎣

0 −1 −1 −1
−1 2 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ (b) . 

⎡
⎢⎢⎣

−1 0 0 2
0 −1 1 0
0 1 −1 0
2 0 2 −1

⎤
⎥⎥⎦

(c) .

⎡
⎢⎢⎣

2 0 0 −1
0 2 1 0
0 1 2 −1

−1 0 −1 0

⎤
⎥⎥⎦ (d) .

⎡
⎢⎢⎣

0 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2

⎤
⎥⎥⎦. 

Ans. Option d 
We have 

. T (1) = 0 = 0.1 + 0x + 0x2 + 0x3

. T (x) = x − 1 = (−1).1 + 1x + 0x2 + 0x3

. T (x2) = x2 − 1 = (−1).1 + 0x + 1x2 + 0x3

. T (x3) = x3 − 1 = (−1).1 + 0x + 0x2 + 1x3

Therefore .A =

⎡
⎢⎢⎣
0 −1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ and .AT =

⎡
⎢⎢⎣

0 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤
⎥⎥⎦. Hence . A + AT =

⎡
⎢⎢⎣

0 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2

⎤
⎥⎥⎦. 

(63) Define a linear transformation .T : M2×2(R) → M2×2(R) by 

. T (A) = 2A + At

where .At denotes the transpose of the matrix . A. Then the trace of .T equals 
. . . . . . .

Ans. We have 

. T

(|
1 0
0 0

|)
=
|
3 0
0 0

|
= 3

|
1 0
0 0

|
+ 0

|
0 1
0 0

|
+ 0

|
0 0
1 0

|
+ 0

|
0 0
0 1

|

. T

(|
0 1
0 0

|)
=
|
0 2
1 0

|
= 0

|
1 0
0 0

|
+ 2

|
0 1
0 0

|
+ 1

|
0 0
1 0

|
+ 0

|
0 0
0 1

|

.T

(|
0 0
1 0

|)
=
|
0 1
2 0

|
= 0

|
1 0
0 0

|
+ 1

|
0 1
0 0

|
+ 2

|
0 0
1 0

|
+ 0

|
0 0
0 1

|



10 Solved Problems—Linear Transformations 391

. T

(|
0 0
0 1

|)
=
|
0 0
0 3

|
= 0

|
1 0
0 0

|
+ 0

|
0 1
0 0

|
+ 0

|
0 0
1 0

|
+ 3

|
0 0
0 1

|

Therefore the matrix of . T is .

⎡
⎢⎢⎣
3 0 0 0
0 2 1 0
0 1 2 0
0 0 0 3

⎤
⎥⎥⎦ and hence trace of . T is 10. 

(64) Let .T : M2×2(R) → M2×2(R) be the linear transformation defined by 

. T (A) = 2A + 3At

Write down the matrix of this transformation with respect to the basis 

.{Ei : 1 ≤ i ≤ 4} where .E1 =
|
1 0
0 0

|
, .E2 =

|
0 1
0 0

|
, .E3 =

|
0 0
1 0

|
, .E4 =

|
0 0
0 1

|
. 

Ans. We have 

. T (E1) = 2E1 + 3E1
t =

|
5 0
0 0

|
= 5E1 + 0E2 + 0E3 + 0E4

. T (E2) = 2E2 + 3E2
t =

|
0 2
3 0

|
= 0E1 + 2E2 + 3E3 + 0E4

. T (E3) = 2E3 + 3E3
t =

|
0 3
2 0

|
= 0E1 + 3E2 + 2E3 + 0E4

. T (E4) = 2E1 + 3E1
t =

|
0 0
0 5

|
= 0E1 + 0E2 + 0E3 + 5E4

The matrix of . T with respect to the given basis is .

⎡
⎢⎢⎣
5 0 0 0
0 2 3 0
0 3 2 0
0 0 0 5

⎤
⎥⎥⎦. 

65) Let .B1 = {(1, 2), (2,−1)} and .B2 = {(1, 0), (0, 1)} be ordered bases of .R2. If  

.T : R2 → R
2 is a linear transformation such that.[T ]B2

B1
=
|
4 3
2 −4

|
, then. T (5, 5)

is equal to .. . . . . .. 

(a) .(−9, 8) (b) .(9, 8) (c) .(−15,−2) (d) .(15, 2). 

Ans. Option d 

.[T ]B2
B1

=
|
4 3
2 −4

|
⇒ T (x, y) = aT (1, 2) + bT (2,−1) where . (x, y) =

a(1, 2) + b(2,−1). Then
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. T (1, 2) = 4(1, 0) + 2(0, 1) = (4, 2)

and 
. T (2,−1) = 3(1, 0) − 4(0, 1) = (3,−4)

Thus .(5, 5) = 3(1, 2) + 1(2,−1) ⇒ T (5, 5) = 3(4, 2) + 1(3,−4) = (15, 2). 

(66) Let.D : Pn (R) → Pn (R) and.T : Pn (R) → Pn+1 (R) be the linear transforma-
tions defined by 

. D(a0 + a1x + a2x
2 + · · · + anx

n) = a1 + 2a2x + · · · + nanx
n−1

. T (a0 + a1x + a2x
2 + · · · + anx

n) = a0x + a1x
2 + a2x

3 + · · · + anx
n+1

respectively. If . A is the matrix representation of the transformation. DT − TD :
Pn (R) → Pn (R) with respect to the standard basis of .Pn (R), then . tr(A) =
· · · · · · . 

(a) .−n (b) .n (c) .n + 1 (d) .−(n + 1). 

Ans. Option c 
We have 

. DT (a0 + a1x + a2x
2 + · · · + anx

n) = D(a0x + a1x
2 + a2x

3 + · · · + anx
n+1)

= a0 + 2a1x + · · · + (n + 1)anx
n

and 

. TD(a0 + a1x + a2x
2 + · · · + anx

n) = T (a1 + 2a2x + · · · + nanx
n−1)

= a1x + 2a2x
2 + · · · + nanx

n

Therefore 

. (DT − TD)(a0 + a1x + · · · + anx
n) = a0 + a1x + a2x

2 + · · · + anx
n = I

Hence .tr(A) = tr(I) = n + 1. 

(67) Let .V be a vector space of dimension 3 over . R. Let  .T : V → V be a lin-

ear transformation, given by the matrix .A =
⎛
⎝

1 −1 0
1 −4 3

−2 5 −3

⎞
⎠ with respect to an 

ordered basis.{v1, v2, v3} of. V . Then which of the following statements are true? 

(a) .T (v3) = 0 (b) . T (v1 + v2) = 0
(c) .T (v1 + v2 + v3) = 0 (d) .T (v1 + v3) = T (v2).
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Ans. Option c 
Since . A is the matrix of the linear transformation . T , .T (v1) = v1 + v2 − 2v3, 
.T (v2) = −v1 − 4v2 + 5v3, and .T (v3) = 3v2 − 3v3. 

(a) .T (v3) = 0 ⇒ 3v2 − 3v3 = 0 ⇒ v2 = v3, which is not possible. 
(b) .T (v1 + v2) = 0 ⇒ T (v1) + T (v2) = −3v2 + 3v3 = 0 ⇒ v2 = v3, which  

is not possible. 
(c) .T (v1 + v2 + v3) = T (v1) + T (v2) + T (v3) = 0. 
(d) .T (v1 + v3) = −T (v2). 

(68) Let.T : R2 → R
2 be the linear map which maps each point in.R

2 to its reflection 
on the .x−axis. What is the determinant of . T? What is its trace? 

Ans. .T : R2 → R
2 is defined by .T (x, y) = (x,−y). Since . T (1, 0) = (1, 0),

T (0, 1) = (0,−1), the matrix of . T is given by .

|
1 0
0 −1

|
. Therefore .tr(T ) = 0 and 

.det(T ) = −1. 

(69) Let .T : P3 (R) → P3 (R) be defined by 

. (Tp)(x) = p(x) − x
d

dx

|
p(x)

|

Then the .Rank(T ) is 

(a) 1 (b) 2 (c) 3 (d) 4. 

Ans. Option c 
Consider the standard basis .

{
1, x, x2, x3

}
for . V . We have 

. T (1) = 1, T (x) = 0, T (x2) = −x2, T (x3) = −2x3

Therefore the matrix of . T with respect to the standard basis is . 

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −2

⎤
⎥⎥⎦

which has rank.= 3. 

(70) Let .T : R3 → R
2 be a linear transformation defined by 

. T (x, y, z) = (x + y, x − z)

Then .dim [N(T )] is 

(a) 0 (b) 1 (c) 2 (d) 3.
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Ans. Option b 
We have 

. T (1, 0, 0) = (1, 1),T (0, 1, 0) = (1, 0),T (0, 0, 1) = (0,−1)

Then the matrix of. T is.

|
1 1 0
1 0 −1

|
. Clearly,.Rank(T ) = 2. Hence by Rank-Nullity 

theorem, .dim [N(T )] = 1. 

(71) Consider the linear transformation 

. T (x, y, z) = (2x + y + z, x + z, 3x + 2y + z)

The rank of . T is . . . . . . .
Ans. Consider the standard ordered basis of .R3. Then 

. T (1, 0, 0) = (2, 1, 3), T (0, 1, 0) = (1, 0, 2) T (0, 0, 1) = (1, 1, 1)

Therefore the matrix of . T is .

⎡
⎣
2 1 1
1 0 1
3 2 1

⎤
⎦. Clearly, .Rank(T ) = 2. 

(72) Let .T : R3 → R
3 be the linear transformation defined by 

. T (x, y, z) = (x + y, y + z, z + x)

for all .(x, y, z) ∈ R
3. Then 

(a) . Rank(T ) = 0, Nullity(T ) = 3
(b) . Rank(T ) = 2, Nullity(T ) = 1
(c) . Rank(T ) = 1, Nullity(T ) = 2
(d) .Rank(T ) = 3, Nullity(T ) = 0. 

Ans. Option d 
Consider the standard ordered basis for .R3. Then we have 

. T (1, 0, 0) = (1, 0, 1), T (0, 1, 0) = (1, 1, 0), T (0, 0, 1) = (0, 1, 1)

Therefore the matrix of. T is.

⎡
⎣
1 1 0
0 1 1
1 0 1

⎤
⎦which is of rank 3.By Rank-Nullity theorem, 

.Nullity(T ) = 0. 

(73) Let .T : R3 → R
3 be the linear transformation defined by 

.T (x, y, z) = (x + 3y + 2z, 3x + 4y + z, 2x + y − z)
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(i) The dimension of the .R (T 2
)
is 

(a) 0 (b) 1 (c) 2 (d) 3. 

(ii) The dimension of the .N (T 3
)
is 

(a) 0 (b) 1 (c) 2 (d) 3. 

Ans. We have 

. T (1, 0, 0) = (1, 3, 2) = 1(1, 0, 0) + 3(0, 1, 0) + 2(0, 0, 1)

. T (0, 1, 0) = (3, 4, 1) = 3(1, 0, 0) + 4(0, 1, 0) + 1(0, 0, 1)

. T (0, 0, 1) = (2, 1,−1) = 2(1, 0, 0) + 1(0, 1, 0) + (−1)(0, 0, 1)

The matrix of . T is given by .

⎡
⎣
1 3 2
3 4 1
2 1 −1

⎤
⎦. 

(i) The matrix of .T 2 is given by .

⎡
⎣
14 17 3
17 26 9
3 9 6

⎤
⎦. Therefore .dimR (T 2

) = 2. 

Option c 

(ii) The matrix of .T 3 is given by .

⎡
⎣
71 113 42
113 164 51
42 51 9

⎤
⎦. Therefore .dimR (T 3

) = 2. 

Hence by Rank-Nullity theorem, .Nullity(T 3) = 1. 
Option b 

(74) Let.T : Pn (R) → Pn (R) be the map.(Tp)(x) = p'(1), x ∈ C. Which of the fol-
lowing are correct? 

(a) .Nullity(T ) = n (b) . Rank(T ) = 1
(c) .Nullity(T ) = 1 (d) .Rank(T ) = n + 1. 
Ans. Options a and b 
We have 

.

T (1) = 0 = 0.1 + 0x + 0x2 + · · · + 0xn

T (x) = 1 = 1.1 + 0x + 0x2 + · · · + 0xn

T (x2) = 2 = 2.1 + 0x + 0x2 + · · · + 0xn

...

T (xn) = n = n.1 + 0x + 0x2 + · · · + 0xn
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The matrix of .T is .

⎡
⎢⎢⎢⎣

0 1 2 . . . n
0 0 0 . . . 0
...

...
...

... 0
0 0 0 . . . 0

⎤
⎥⎥⎥⎦ which is of dimension .(n + 1) × (n + 1). 

Clearly .Rank(T ) = 1 and .Nullity(T ) = n. 

(75) Consider the map .T : P2 (R) → P4 (R) defined by .(Tp)(x) = p(x2). Then 
(a) . T is a linear transformation and .Rank(T ) = 5. 
(b) . T is a linear transformation and .Rank(T ) = 3. 
(c) . T is a linear transformation and .Rank(T ) = 2. 
(d) . T is not a linear transformation. 

Ans. Option b 
Let .p, q ∈ P2 (R) and .λ ∈ R. Then 

. 
|
T (λp + q)

|
(x) = (λp + q)(x2) = λp(x2) + q(x2) = λ(Tp)(x) + (Tq)(x)

Therefore . T is a linear transformation. Now consider the standard order basis 
for both .P2 (R) and .P4 (R): 

. T (1) = 1 = 1.1 + 0x + 0x2 + 0x3 + 0x4

. T (x) = x2 = 0.1 + 0x + 1x2 + 0x3 + 0x4

. T (x2) = x4 = 0.1 + 0x + 0x2 + 0x3 + 1x4

Then the matrix of .T is given by .

⎡
⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎦
. Since rank of matrix of .T is 3, 

.Rank(T ) = 3. 

(76) Let .T : R4 → R
4 be the linear map satisfying 

. T (e1) = e2, T (e2) = e3, T (e3) = 0, T (e4) = e3

where .{e1, e2, e3, e4} is the standard basis of .R4. Then 

(a) . T is idempotent. (b) . T is invertible. 
(c) .Rank T = 3. (d) . T is nilpotent. 

Ans. Option d 
We have 

.T (e1) = e2 = 0e1 + 1e2 + 0e3 + 0e4



10 Solved Problems—Linear Transformations 397

. T (e2) = e3 = 0e1 + 0e2 + 1e3 + 0e4

. T (e3) = 0 = 0e1 + 0e2 + 0e3 + 0e4

. T (e4) = e3 = 0e1 + 0e2 + 1e3 + 0e4

Therefore the matrix of . T with respect to the standard basis is .

⎡
⎢⎢⎣
0 0 0 0
1 0 0 0
0 1 0 1
0 0 0 0

⎤
⎥⎥⎦. Since 

.T 2 /= T , .T is not idempotent. .T has rank 2 and hence is not invertible. Since 

.T 3 = 0, . T is nilpotent. 

(77) Let. n be a positive integer and. V be an.(n + 1)-dimensional vector space over. R. 
If.{e1, e2, . . . , en+1} is a basis of. V and.T : V → V is the linear transformation 
satisfying 

. T (ei) = ei+1 for i = 1, 2, . . . , n and T (en+1) = 0

then 

(a).tr(T ) /= 0 (b).Rank(T ) = n (c).Nullity(T ) = 1 (d).Tn is the zero map. 

Ans. Options b and c 
We have 

. T (e1) = e2 = 0e1 + 1e2 + 0e3 + · · · + 0en+1

. T (e2) = e3 = 0e1 + 0e2 + 1e3 + · · · + 0en+1

. 
...

. T (en) = en+1 = 0e1 + 0e2 + 0e3 + · · · + 1en+1

. T (en+1) = 0 = 0e1 + 0e2 + 0e3 + · · · + 0en+1

Therefore the matrix of. T is of the form,.T =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

... 0
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦
. Then. Rank(T ) = n

and by Rank-Nullity theorem, .Nullity(T ) = 1. Clearly, .tr(T ) = 0 and .Tn /= 0. 

(78) Given a .4 × 4 real matrix . A. For which choices of . A given below do .R(T ) and 
.R(T 2) have respective dimensions 2 and 1? ( . ∗ denotes a non-zero entry)
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(a) .

⎡
⎢⎢⎣
0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

⎤
⎥⎥⎦ (b) .

⎡
⎢⎢⎣
0 0 ∗ 0
0 0 ∗ 0
0 0 0 ∗
0 0 0 ∗

⎤
⎥⎥⎦ (c) .

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 ∗
0 0 ∗ 0

⎤
⎥⎥⎦ (d) .

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 ∗ ∗
0 0 ∗ ∗

⎤
⎥⎥⎦. 

Ans. Options a and b 

(a) Since .Rank(A) = 2 and .Rank(A2) = 1, .R(T ) and .R(T 2) have respective 
dimensions 2 and 1. 

(b) Since .Rank(A) = 2 and .Rank(A2) = 1, .R(T ) and .R(T 2) have respective 
dimensions 2 and 1. 

(c) Since .Rank(A) = 2 and .Rank(A2) = 2, .R(T ) and .R(T 2) have respective 
dimension 2 each. 

(d) Since .Rank(A) = 1 and .Rank(A2) = 1, .R(T ) and .R(T 2) have respective 
dimension 1 each. 

(79) Fix a non-singular matrix .A = (aij
) ∈ Mn×n(K), and consider the linear map 

.T : Mn×n(K) → Mn×n(K) given by .T (X ) = AX . Then 

(a) .tr(T ) = n
En

i=1 aii. (b) .tr(T ) =En
i=1

En
j=1 aij. 

(c) Rank of . T is . n2. (d) . T is non-singular. 

Ans. Options a, c, and d 

Take .n = 2 and fix .A =
(
a11 a12
a21 a22

)
. Then 

. T

((
1 0
0 0

))
=
(
a11 0
a21 0

)
= a11

(
1 0
0 0

)
+ 0

(
0 1
0 0

)
+ a21

(
0 0
1 0

)
+ 0

(
0 0
0 1

)

. T

((
0 1
0 0

))
=
(
0 a11
0 a21

)
= 0

(
1 0
0 0

)
+ a11

(
0 1
0 0

)
+ 0

(
0 0
1 0

)
+ a21

(
0 0
0 1

)

. T

((
0 0
1 0

))
=
(
a12 0
a22 0

)
= a12

(
1 0
0 0

)
+ 0

(
0 1
0 0

)
+ a22

(
0 0
1 0

)
+ 0

(
0 0
0 1

)

. T

((
0 0
0 1

))
=
(
0 a12
0 a22

)
= 0

(
1 0
0 0

)
+ a12

(
0 1
0 0

)
+ 0

(
0 0
1 0

)
+ a22

(
0 0
0 1

)

Therefore the matrix of . T is .

⎡
⎢⎢⎣
a11 0 a12 0
0 a11 0 a12
a21 0 a22 0
0 a21 0 a22

⎤
⎥⎥⎦. Then 

. det(A) = a211a
2
22 − 2a11a22a12a21 + a212a

2
21 = (a11a22 − a12a21)

2 /= 0

and
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. tr(T ) = 2a11 + 2a22 = 2 (a11 + a22) = 2
2E

i=1

aii

Therefore rank of . T is .n2 and . T is non-singular. 

(80) Let .T ∈ Mm×n(R). Let . V be the subspace of .Mn×p(R) defined by 

. V = {X ∈ Mn×p(R) : TX = 0
}

Then the dimension of . V is 

(a) .pn − Rank(T ) (b) . mn − pRank(T )

(c) .p (m − Rank (T )) (d) .p (n − Rank (T )). 

Ans. Option d 
Consider .X = |x1 | x2 | · · · | xp

| ∈ Mn×p(R) where . xi ∈ Mn×1, i =
1, 2, . . . , p. Then 

. TX = 0 ⇔ Txi = 0 ∀ i = 1, 2, . . . , p ⇔ xi ∈ N(T ) ∀ i = 1, 2, . . . , p

As .N(T ) has dimension .n − Rank(T ), .V has dimension .p (n − Rank (T )). 

OR 

Take .Mm×n(R) = M3×2(R) and .Mn×p(R) = M2×2(R). Fix  .T =
⎡
⎣
1 0
0 1
0 0

⎤
⎦. Let 

.X =
|
a b
c d

|
∈ M2×2(R). Then .TX = 0 ⇒ X = 0. Here  .Rank(T ) = 2 and 

.dim(V ) = 0. Therefore options .(a), (b), and .(c) are false. 

(81) Let a linear transformation .T : P2 (R) → P2 (R) be defined by 

. T (a0 + a1x + a2x
2) = (a0 + a1) + (a1 − a2)x + (a0 + a2)x

2

Consider the following statements: 

.I . The null space of . T is .{λ(−1 + x + x2); λ ∈ R}. 
.II . The range space of . T is spanned by the set .{1 + x2, 1 + x}. 

.III . .T (T (1 + x)) = 1 + x2. 

.IV . If. A is the matrix representation of. T with respect to the standard basis. {1, x, x2}
of .P2 (R), then the trace of the matrix . A is 3. 

Which of the following statements are TRUE? 

(a) . I and .II only. (b) .I , III , and .IV only. 
(c) .I , II , and .IV only. (d) .II and .IV only.
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Ans. Option c 
We have 

. T (1) = 1 + x2 = 1.1 + 0x + 1x2

. T (x) = 1 + x = 1.1 + 1x + 0x2

. T (x2) = −x + x2 = 0.1 + (−1)x + 1x2

The matrix of . T is given by .A =
⎡
⎣
1 1 0
0 1 −1
1 0 1

⎤
⎦. 

.I . Observe that.

⎡
⎣
1 1 0
0 1 −1
1 0 1

⎤
⎦ ∼

⎡
⎣
1 1 0
0 1 −1
0 0 0

⎤
⎦. Therefore the null space of. T is given 

by 

. N(T ) = {a0 + a1x + a2x
2 ∈ P2 (R) : −a0 = a1 = a2, a0, a1, a2 ∈ R}

= {λ(−1 + x + x2); λ ∈ R}

.II . Since the third column of . A can be spanned by the first two columns, the 
range space of . T is spanned by the set .{1 + x2, 1 + x}. 

.III . We have 

. T (T (1 + x)) = T (2 + x + x2) = 3 + 3x2 = 3(1 + x2)

.IV . Clearly, .tr(A) = 3. 

(82) For .p(x) = a0 + a1x + · · · + anxn ∈ Pn[x], define a linear transformation . T :
Pn[x] → Pn[x] by 

. (Tp)(x) = an + an−1x + · · · + a0x
n

Then which of the following are correct? 

(a) . T is one-one. (b) . T is onto. 
(c) . T is invertible. (d) .det(T ) = ±1. 

Ans. Options a, b, c, and d
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We have 
. T (1) = xn = 0.1 + 0x + · · · + 0xn−1 + 1xn

. T (x) = xn−1 = 0.1 + 0x + · · · + 1xn−1 + 0xn

. 
...

. T (xn) = 1 = 1 + 0x + · · · + 0xn−1 + 0xn

The matrix of . T is .

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦
. Since . T can be obtained by interchanging the 

rows of identity matrix, .det(T ) = ±1. . T is one-one, onto, and invertible. 

(83) For .p(x) = a0 + a1x + · · · + anxn ∈ Pn[x], define a linear transformation . T :
Pn[x] → Pn[x] by 

. (Tp)(x) = a0 − a1x + a2x
2 − · · · + (−1)nanx

n

Then which of the following are correct? 

(a) . T is one-one. (b) . T is onto. 
(c) . T is invertible. (d) .det(T ) = 0. 

Ans. Options a, b, and c 

We have 
. T (1) = 1 = 1.1 + 0x + · · · + 0xn−1 + 0xn

. T (x) = −x = 0.1 + (−1)x + · · · + 1xn−1 + 0xn

. 
...

. T (xn) = (−1)n = 0.1 + 0x + · · · + 0xn−1 + (−1)nxn

Therefore the matrix of . T is 

.

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 −1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . (−1)n

⎤
⎥⎥⎥⎥⎥⎦

(n+1)×(n+1)
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Clearly . T is one-one, onto, and invertible. Also .det(T ) = ±1. 

(84) Let . V be the space of twice differentiable functions on . R satisfying 

. f '' − 2f ' + f = 0

Define .T : V → R
2 by .T (f ) = (f '(0), f (0)

)
. Then . T is 

(a) one-one and onto. (b) one-one but not onto. 
(c) onto but not one-one. (d) neither one-one nor onto. 

Ans. Option a 
The auxiliary equation of the given matrix is .m2 − 2m + 1 = 0 ⇒ m = 1, 1. 
Therefore the general solution is given by .y(x) = λ1ex + λ2xex. That is, the 
solution space .V is spanned by .{ex, xex}. As  

. T (ex) = (1, 1) = 1(1, 0) + 1(0, 1)

. T (xex) = (1, 0) = 1(1, 0) + 0(0, 1)

thematrix of. T is given by.T =
|
1 1
1 0

|
. Since. T has rank 2,.N(T ) = {0}. Therefore 

. T is both one-one and onto. 

(85) The least positive integer. n such that.

|
cos π

4 sin π
4−sin π

4 cos π
4

|n
is the identity matrix of 

order 2 is 

(a) 4 (b) 8 (c) 12 (d) 16. 

Ans. Option a 

Since .

|
cos θ sin θ

−sin θ cos θ

|n
= .

|
cos nθ sin nθ
−sin nθ cos nθ

|
, n = 4. 

(86) Let. A be the.2 × 2 matrix.

(
sin π

18 −sin 4π
9

sin 4π
9 sin π

18

)
. Then the smallest number. n ∈ N

such that .An = I is 

(a) 3 (b) 9 (c) 18 (d) 27. 

Ans. Option b 

Since .cos ( π
2 − θ) = sin θ , .sin π

18 = cos 4π
9 and hence .A =

(
cos 4π

9 −sin 4π
9

sin 4π
9 cos 4π

9

)
. 

We know that 

.

(
cos θ −sin θ

sin θ cos θ

)n

=
(
cos nθ −sin nθ
sin nθ cos nθ

)
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Therefore .n = 9. 

(87) Consider the matrix .A =
(
cos θ sin θ

−sin θ cos θ

)
, where .θ = 2π

31
. Then .A2015 equals 

(a) .A (b) .I (c) .

(
cos 13θ sin 13θ
−sin 13θ cos 13θ

)
(d) .

(
0 1

−1 0

)
. 

Ans. Option b 

Since .

(
cos θ sin θ

−sin θ cos θ

)n

=
(
cos nθ sin nθ
−sin nθ cos nθ

)
, we have 

. A2015 =
(
cos 130θ sin 130θ
−sin 130θ cos 130θ

)
= I

(88) For the matrix . A as given below, which of the them satisfy .A6 = I? 

(a) .A =
⎛
⎝

cos π
4 sin π

4 0
−sin π

4 cos π
4 0

0 0 1

⎞
⎠ (b) . A =

⎛
⎝
1 0 0
0 cos π

3 sin π
3

0 −sin π
3 cos π

3

⎞
⎠

(c) .A =
⎛
⎝

cos π
6 0 sin π

6
0 1 0

−sin π
6 0 cos π

6

⎞
⎠ (d) .A =

⎛
⎝

cos π
2 sin π

2 0
−sin π

2 cos π
2 0

0 0 1

⎞
⎠. 

Ans. Option c 

.A =
⎛
⎝

cos π
6 0 sin π

6
0 1 0

−sin π
6 0 cos π

6

⎞
⎠ is the rotation matrix in .R3 about .y-axis. Therefore 

.A6 = I . 

(89) Let . A be a .5 × 3 real matrix of rank 2. Let .b ∈ R
5 be a non-zero vector that is 

in the column space of . A. Let  .S = {x ∈ R
3 : Ax = b

}
. Define the translation 

of a subspace . V of .R3 by .x0 ∈ R
3 as the set .x0 + V = {x0 + v : v ∈ V }. Then 

(a) . S is the empty set 
(b) . S has only one element 
(c) . S is a translation of a one-dimensional subspace 
(d) . S is a translation of a two-dimensional subspace. 

Ans. Option c 
Given that the system has a solution. Therefore . Rank [A | b] = Rank (A) = 2 <

number of unknowns. Therefore .dim (S) = 3 − 2 = 1.
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(90) Check whether the following statements are true or false? 
(a) Consider the map .T : P5 → R

2, given by .(Tp)(x) = (p(3), p'(3)). Then 
.Nullity(T ) = 3. 
(b) Consider the map .T : P2 → P2, given by .(Tp)(x) = p(x) + p'(x). Then . T
is invertible. 
(c) Let .V be the vector space over . R consisting of polynomials of degree less 
than or equal to 3. Let .T : V → V be the operator sending .f (x) to .f (x + 1), 
and.D : V → V the operator sending.f (x) to.

d
dx

|
f (x)

|
. Then. T is a polynomial 

in . D. 
(d) An invertible linear map from.R

2 to itself takes parallel to parallel lines. 

Ans. (a) False. We know that.P5 is of dimension 6. Suppose that.Nullity(T ) = 3. 
Then by Rank-Nullity Theorem, 

. 6 = dim(V ) = Rank(T ) + Nullity(T ) ⇒ Rank(T ) = 3

which is not possible as .R2 is a vector space of dimension 2 and it cannot 
have a subspace of dimension 3. 

(b) True. Consider the standard ordered basis for .P2. Then 

. T (1) = 1, T (x) = x + 1, T (x2) = x2 + 2x

Hence the matrix of . T is given by .

⎡
⎣
1 1 0
0 1 2
0 0 1

⎤
⎦. Clearly . T is invertible. 

(c) True. Consider the standard ordered basis for . V . Then 

. T (1) = 1, T (x) = x + 1, T (x2) = x2 + 2x + 1, T (x3) = x3 + 3x2 + 3x + 1

and the matrix of . T is .T =

⎡
⎢⎢⎣
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤
⎥⎥⎦. Also 

. D(1) = 0, D(x) = 1, D(x2) = 2x, D(x3) = 3x2

and the matrix of . D is .D =

⎡
⎢⎢⎣
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥⎥⎦. Then .T = 1

6D
3 + 1

2D
2 + D + I .
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(d) True. Consider two parallel lines in .R
2 given by . L1 = {λ−→x + −→y1 | λ ∈ R}

and .L2 = {λ−→x + −→y2 | λ ∈ R} passing through .−→y1 ,
−→y2 ∈ R

2 and . −→x ∈ R
2

is its direction vector. 
.T (L1) = {λT (

−→x ) + T (
−→y1 ) | λ ∈ R} and . T (L2) = {λT (

−→x ) + T (
−→y2 ) | λ ∈

R}. Since .T is invertible .T (
−→x ) /= 0 if .−→x /= 0 and .T (L1) and .T (L2) are 

parallel lines with direction vector .T (
−→x ) and passing through .T (

−→y1 ) and 
.T (

−→y2 ), respectively.



Chapter 11 
Solved Problems—Eigenvalues 
and Eigenvectors 

(1) Which of the following is an eigenvector of the matrix . A =
⎛
⎝
2 1 0
0 2 1
0 0 2

⎞
⎠?

(a) .

⎛
⎝
1
0
0

⎞
⎠ (b) .

⎛
⎝
0
1
0

⎞
⎠ (c) .

⎛
⎝
0
0
1

⎞
⎠ (d) .

⎛
⎝
2
2
2

⎞
⎠. 

Ans. Option a 
As. A is an upper triangular matrix, the eigenvalues of . A are its diagonal entries. 

Therefore the only eigenvalue of . A is 2. Also .

⎛
⎝
2 1 0
0 2 1
0 0 2

⎞
⎠ .

⎛
⎝
1
0
0

⎞
⎠ = 2 .

⎛
⎝
1
0
0

⎞
⎠. 

(2) The imaginary parts of the eigenvalues of the matrix .A =
⎡
⎣
3 2 5
2 −3 6
0 0 −3

⎤
⎦ are 

(a) 0, 0, 0 (b) 2, . −2, 0 (c) 1, . −2, 0 (d) 3, . −3, 0. 

Ans. Option a 
The characteristic equation of . A is given by .(3 + λ)(λ2 − 13) = 0. Therefore it 
has no complex eigenvalues. 

(3) The number of linearly independent eigenvectors of the matrix .

⎡
⎢⎢⎣
2 2 0 0
2 1 0 0
0 0 3 0
0 0 1 4

⎤
⎥⎥⎦ is 

(a) 1 (b) 2 (c) 3 (d) 4.  

Ans. Option d 
Since the given matrix is a block diagonal matrix, the eigenvalues of the given 
matrices are precisely the eigenvalues of the sub-block matrices. That is, in 
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this case the eigenvalues of the given matrix are eigenvalues of the matrices 

.

|
2 2
2 1

|
and .

|
3 0
1 4

|
. Therefore the given matrix has 4 distinct eigenvalues. Since 

eigenvectors corresponding to different eigenvalues are linearly independent, 
there are 4 linearly independent eigenvectors for the given matrix. 

(4) Let .p(λ) = a0 + a1λ + a2λ2 + · · · + anλn be the characteristic polynomial 
of a.n × n matrix. A with entries in. R. Then which of the following statements 
is true? 

(a) .p(λ) has no repeated roots. 
(b) .p(λ) can be expressed as a product of linear polynomials with real coef-

ficients. 
(c) If .p(λ) can be expressed as a product of linear polynomials with real 

coefficients, then there is a basis of .Rn consisting of eigenvectors of . A. 

Ans. Option c 

(a) Consider the identity matrix. Then the characteristic polynomial is . (λ −
1)n which has repeated roots. 

(b) Consider the matrix.

|
0 1

−1 0

|
. Then the characteristic polynomial is. λ2 + 1

which cannot be expressed as a product of linear polynomials with real 
coefficients. 

(c) .p(λ) can be expressed as a product of linear polynomials with real coeffi-
cients implying that it has. n distinct eigenvalues. Since eigenvalues corre-
sponding to distinct eigenvalues are linearly independent, the collection 
of all eigenvectors is a linearly independent set of cardinality . n in .Rn. 
Therefore .R

n has a basis consisting of eigenvectors of . A. 

(5) If .

⎡
⎣
2
y
z

⎤
⎦ (y, z ∈ R) is an eigenvector corresponding to a real eigenvalue of the 

matrix .

⎡
⎣
0 0 2
1 0 −4
0 1 3

⎤
⎦, then .z − y is equal to .. . . . . .. 

Ans. The characteristic equation of the above matrix is 

. λ3 − 3λ2 + 4λ − 2 = (λ − 1)(λ2 − 2λ + 2) = 0 ⇒ λ = 1 or λ = 1 ± i

The only real eigenvalue of . A is 1. Then, 

.

⎡
⎣
0 0 2
1 0 −4
0 1 3

⎤
⎦

⎡
⎣
2
y
z

⎤
⎦ = 1

⎡
⎣
2
y
z

⎤
⎦ ⇒ 2z = 2 and 2 − 4z = y ⇒ z = 1, y = −2
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Therefore .z − y = 3. 

(6) Let .A =
⎡
⎣
1 0 0
0 cos θ −sin θ

0 sin θ cos θ

⎤
⎦, where .0 < θ < π

2 . Let  . V = {v ∈ R
3 : AvT =

vT }. Then the dimension of .V is 
(a) 0 (b) 1 (c) 2 (d) 3.  

Ans. Option b 
.V is the eigenspace of . A with respect to the eigenvalue 1. Thus, 

. V = {v ∈ R
3 : AvT = vT }

= {v ∈ R
3 : (A − I )vT = 0}

= N(A − I )

Since .0 < θ < π
2 , .Rank(A − I ) = 2 and hence .dim [N(A − I )] = 3 − 2 = 1. 

(7) Let .T : R
3 → R

3 be a linear transformation such that 

. T (1, 2, 3) = (1, 2, 3), T (1, 5, 0) = (2, 10, 0) and T (−1, 2,−1) = (−3, 6,−3)

Then dimension of the vector space spanned by all the eigenvectors of . T is 
(a) 0 (b) 1 (c) 2 (d) 3.  

Ans. Option d 
Since 

. T (1, 2, 3) = (1, 2, 3) = 1(1, 2, 3)

. T (1, 5, 0) = (2, 10, 0) = 2(1, 5, 0)

. T (−1, 2,−1) = (−3, 6,−3) = 3(−1, 2,−1)

.1, 2, and . 3 are eigenvalues of . T . Since . T has three distinct eigenvalues, eigen-
vectors of . T are linearly independent. As .R3 has dimension 3, the eigenvectors 
of . T spans .R3. 

(8) Let.D : P4[x] → P4[x] be the linear operator that takes any polynomial. p(x)
to its derivative .p'(x). Then the characteristic polynomial . f (x) of .D is 
(a) .x4 (b) .x5 (c) .x3(x − 1) (d) .x4(x − 1). 

Ans. Option b 
Consider the standard basis .{1, x, x2, x3, x4}. Then 

. D(1) = 0 = 0.1 + 0x + 0x2 + 0x3 + 0x4

.D(x) = 1 = 1.1 + 0x + 0x2 + 0x3 + 0x4
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. D(x2) = 2x = 0.1 + 2x + 0x2 + 0x3 + 0x4

. D(x3) = 3x2 = 0.1 + 0x + 3x2 + 0x3 + 0x4

. D(x4) = 4x3 = 0.1 + 0x + 0x2 + 4x3 + 0x4

Then the matrix of .T is .

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
. Then the characteristic polynomial . f (x)

of .D is . x5. 

(9) Let. n be an odd number.≥ 7. Let.A = [ai j ] be an.n × nmatrix with. ai(i+1) = 1
for all .i = 1, 2, . . . , n − 1 and .an1 = 1. Let  .ai j = 0 for all other pairs .(i, j). 
Then we can conclude that 
(a) . A has 1 as an eigenvalue (b) . A has .−1 as an eigenvalue 
(c). A has no real eigenvalues (d). A has at least one eigenvalue with.AM ≥ 2. 

Ans. Option a 
We have 

. A =

⎡
⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . .
...

1 0 0 . . . 0

⎤
⎥⎥⎥⎦

The matrix is obtained by interchanging the rows of the identity matrix of order 
. n and hence the characteristic polynomial is .λn − 1. The eigenvalues of .A are 
precisely the .nth roots of unity. 

(10) Let.PA(λ) denote the characteristic polynomial of a matrix. A. Then for which 
of the following matrices .PA(λ) − PA−1(λ) is a constant? 

(a) .

(
3 3
2 4

)
(b) .

(
4 3
2 4

)
(c) .

(
3 2
4 3

)
(d) .

(
2 3
3 4

)
. 

Ans. Option c 
Let .λ1 and .λ2 be two eigenvalues of . A, then the eigenvalues of .A−1 are . 1

λ1
and . 

1
λ2

(since . A is invertible). Hence the characteristic polynomials for . A and .A−1 are 
given by .PA(λ) = λ2 − (λ1 + λ2)λ + λ1λ2 and . PA−1(λ) = λ2 − ( 1

λ1
+ 1

λ2
)λ +

1
λ1λ2

. Now .PA(λ) − PA−1(λ) is a constant only if 

.λ1 + λ2 = 1

λ1
+ 1

λ2
⇒ (λ1 + λ2)

(
1 − 1

λ1λ2

)
= 0

⇒ λ1 + λ2 = 0 or λ1λ2 = 1

⇒ trace = 0 or determinant = 1



11 Solved Problems—Eigenvalues and Eigenvectors 411

Only .

(
3 2
4 3

)
satisfy one of these conditions. 

(11) Let. ω be a complex number such that.ω3 = 1, but.ω /= 1. If.A =
⎡
⎣

1 ω ω2

ω ω2 1
ω2 ω 1

⎤
⎦, 

then which of the following statements are true? 

(a) . A is invertible. 
(b) .Rank(A) = 2. 
(c) 0 is an eigenvalue of . A. 
(d) there exist linearly independent vectors .v,w ∈ C

3 such that 
.Av = Aw = 0. 

Ans. Options b and c 

Since.det (A) = 0,. A is not invertible and 0 is an eigenvalue of. A. As.

||||
1 ω

ω ω2

|||| /= 0, 

.Rank(A) = 2 and hence .Ax = 0 has only one linearly independent solution. 

(12) Let .M =
{
A =

(
a b
c d

)
| a, b, c, d ∈ Z and the eigenvalues of A be in Q

}
. 

Then 

(a) .M is empty 

(b) . M =
{
A =

(
a b
c d

)
| a, b, c, d ∈ Z

}

(c) if .A ∈ M then the eigenvalues of . A are in . Z

(d) if .A, B ∈ M are such that .AB = I then .det (A) ∈ {+1,−1}. 

Ans. Options c and d 

(a) Let .A = I . Then clearly .A ∈ M. Thus, .M is non-empty. 

(b) Consider the matrix .B =
|
0 1

−1 0

|
∈

{
A =

(
a b
c d

)
| a, b, c, d ∈ Z

}
. 

Clearly, .B /∈ M. Therefore .M /=
{
A =

(
a b
c d

)
| a, b, c, d ∈ Z

}
. 

(c) The characteristic polynomial has rational roots implying that it is 
reducible over .Q which gives the reducibility of the characteristic poly-
nomial over . Z. Therefore if .A ∈ M then the eigenvalues of . A are in . Z. 

(d) If .A, B ∈ M, then their determinant must be an integer (as . det (A) =
ad − bc). Now .AB = I ⇒ det (AB) = det (A)det (B) = 1. Therefore 
.det (A) ∈ {+1,−1}. 

(13) Let .{u1, . . . , un} and .{v1, . . . , vn} be two bases of .Rn . Let  .A be an . n × n
matrix with real entries such that .Aui = vi , i = 1, 2, . . . , n. Suppose that 
every eigenvalue of . A is either .−1 or 1. Let .B = I + 2A. Then which of the 
following statements are true?
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(a) .{ui + 2vi | i = 1, 2, . . . , n} is also a basis of . V . 
(b) . B is invertible. 
(c) Every eigenvalue of . B is either 3 or .−1. 
(d) .det (B) > 0 if .det (A) > 0. 

Ans. Options a, b, c, and d 
Let .c1, . . . , cn ∈ R be such that 

. c1(u1 + 2v1) + · · · + cn(un + 2vn) = 0

Since .Aui = vi this implies that 

. c1u1 + · · · + cnun + 2A(c1u1 + · · · + cnun) = 0

. ⇒ A(c1u1 + · · · + cnun) = −1

2
(c1u1 + · · · + cnun)

Since every eigenvalue of .P is either .−1 or 1, this is possible only when . c1u1 +
· · · + cnun = 0. .{u1, . . . , un} is a basis implying that 

. c1 = c2 = · · · = cn = 0

Hence.{ui + 2vi | i = 1, 2, . . . , n} is also a basis of. V . Since every eigenvalue of 
. A is either.−1 or 1, the eigenvalues of. B are either.2(1) + 1 = 3 or. 2(−1) + 1 =
−1. Since 0 is not an eigenvalue . B is invertible. Since the algebraic multiplicity 
of.−1 as an eigenvalue of. A and as an eigenvalue of. B are the same,. det (B) > 0
if .det (A) > 0. 

(14) Let .T : R
n → R

n be a linear transformation of .Rn , where .n ≥ 3, and let 
.λ1, λ2, . . . , λn be the eigenvalues of. T . Which of the following statements are 
true? 

(a) If .λi = 0, for  some.i = 1, 2, . . . , n, then . T is not surjective. 
(b) If . T is injective, then .λi = 1 for some .i, 1 ≤ i ≤ n. 
(c) If there is a three-dimensional subspace .W of .V such that .T (W ) = W , 

then .λi ∈ R for some .i, 1 ≤ i ≤ n. 

Ans. Options a and c 

(a) If one of the eigenvalues is zero, then .Rank(T ) < n. Therefore . T cannot 
be surjective. 

(b) . T is injective need not imply .λi = 1 for some . i . For example, consider the 
linear transformation .T : R

3 → R
3 given by .T (x, y, z) = (2x, 3y, 4z). 

. T is injective but 1 is not an eigenvalue of . T . 
(c) If we consider .T as a linear transformation from .W to itself, the char-

acteristic polynomial of .T will be of degree 3 with real coefficients. It 
always has a real root.
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(15) Let .A be a .5 × 5 matrix with real entries such that the sum of the entries in 
each row of . A is 1. Then the sum of all the entries in .A3 is 
(a) 3 (b) 15 (c) 5 (d) 125. 

Ans. Option c 
Since the sum of all entries in each row of .A is 1, 1 is an eigenvalue of . A
with eigenvector .

|
1 1 1 1 1

|T
. Then 1 is an eigenvalue of .A3 with the same 

eigenvector and hence the sum of entries in each row is 1. Therefore the sum of 
all the entries in .A3 is 5. 

(16) Let .A be an invertible .10 × 10 matrix with real entries such that the sum of 
each row is 1. Then 

(a) The sum of entries of each row of the inverse of . A is 1. 
(b) The sum of entries of each column of the inverse of . A is 1. 
(c) The trace of the inverse of . A is non-zero. 
(d) None of the above. 

Ans. Option a 

(a) We have 

. 

⎡
⎢⎢⎢⎣

a11 a12 · · · a110
a21 a22 · · · a210
...

...
. . .

...

a101 a102 · · · a1010

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 + a12 + · · · + a110
a21 + a22 + · · · + a210

...

a101 + a102 + · · · + a1010

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦

Therefore 1 is an eigenvalue of . A with eigenvector .
|
1 1 · · · 1|T . Hence 1 

is an eigenvalue of .A−1 with eigenvector .
|
1 1 · · · 1|T (Theorem 4.4). So 

sum of entries of each row of the inverse of . A is 1. 

(b) Consider .B =
|
1
2

1
2

0 1

|
. Observe that .B−1 =

|
2 −1
0 1

|
. Take  . A =

|
B 02×8

08×2 I8

|
R. Then. A is invertible with sum of entries in each row being 

1. Also, .A−1 =
|
B−1 02×8

08×2 I8

|
. Clearly, sum of entries of each column of 

the inverse of . A need not be 1. 
(c) Consider the matrix 

. A =

⎡
⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

1 0 · · · 0 0

⎤
⎥⎥⎥⎦

Then .A−1 = A and hence .tr(A−1) = 0.
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(17) Let .A be a .3 × 3 matrix with real entries which commutes with all . 3 × 3
matrices with real entries. What is the maximum number of distinct roots that 
the characteristic polynomial of . A can have? 

Ans. Let .A =
⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ be a matrix which commutes with all .3 × 3matri-

ces with real entries. In particular, 

. A

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦ =

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦ A ⇒

⎡
⎣
a13 a12 a11
a23 a22 a21
a33 a32 a31

⎤
⎦ =

⎡
⎣
a31 a32 a33
a21 a22 a23
a11 a12 a13

⎤
⎦ ⇒ A =

⎡
⎣
a11 a12 a13
a21 a22 a21
a13 a12 a11

⎤
⎦

Also . A commutes with .

⎡
⎣
0 1 0
1 0 0
0 0 0

⎤
⎦ which gives 

. A

⎡
⎣
0 1 0
1 0 0
0 0 0

⎤
⎦ =

⎡
⎣
0 1 0
1 0 0
0 0 0

⎤
⎦ A ⇒

⎡
⎣
a12 a11 0
a22 a21 0
a12 a13 0

⎤
⎦ =

⎡
⎣
a21 a22 a21
a11 a12 a13
0 0 0

⎤
⎦ ⇒ A =

⎡
⎣
a11 0 0
0 a11 0
0 0 a11

⎤
⎦

Hence, . A must be a scalar matrix and hence it has only one eigenvalue. 

(18) Let .A =
⎡
⎣
a b c
b d e
c e f

⎤
⎦ be a real matrix with eigenvalues 1, 0, and 3. If the eigen-

vectors corresponding to 1 and 0 are .(1, 1, 1)T and .(1,−1, 0)T respectively, 
then the value of .3 f is equal to .. . . . . .. 

Ans. Since 0 is an eigenvalue of . A with eigenvector .(1,−1, 0)t , 

. 

⎡
⎣
a b c
b d e
c e f

⎤
⎦

⎡
⎣

1
−1
0

⎤
⎦ =

⎡
⎣
0
0
0

⎤
⎦ ⇒ a = b = d, c = e

And as .(1, 1, 1)t is an eigenvector of . A, corresponding to the eigenvalue . 1, 

. 

⎡
⎣
a b c
b d e
c e f

⎤
⎦

⎡
⎣
1
1
1

⎤
⎦ =

⎡
⎣
1
1
1

⎤
⎦ ⇒ 2a + c = 2c + f = 1 ⇒ 2a + 3c + f = 2

Since.tr(A) = 4,.a + d + f = 4 ⇒ 2a + f = 4. Substituting this in. 2a + 3c +
f = 2, we get .c = −2

3 and hence . f = 7
3 . Therefore .3 f = 7. 

(19) The matrix .A = .

⎡
⎣
1 2 3
0 4 5
0 0 6

⎤
⎦
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(a) is an elementary matrix 
(b) can be written as a product of elementary matrices 
(c) does NOT have linearly independent eigenvectors 
(d) is a nilpotent matrix. 

Ans. Option b 
.A is not an elementary matrix as an elementary matrix is obtained by a single 
row(column) transformation on the identity matrix. The given matrix is invertible 
and hence can be written as a product of elementary matrices. . A is an upper tri-
angular matrix hence the eigenvalues are its diagonal entries. Since . A has three 
distinct eigenvalues it has three linearly independent eigenvectors. A nilpotent 
matrix is never invertible as zero is an eigenvalue. 

(20) Let .A, B be complex .n × n matrices. Which of the following are true? 

(a) If .A, B and .A + B are invertible, then .A−1 + B−1 is invertible. 
(b) If .A, B and .A + B are invertible, then .A−1 − B−1 is invertible. 
(c) If .AB is nilpotent, then .BA is nilpotent. 
(d) Characteristic polynomials of .AB and .BA are equal if . A is invertible. 

Ans. Options a, c, and d 

(a) Since .(A + B) is invertible, we have 

. (A + B)(A + B)−1 = I ⇒ A
(
A−1 + B−1

)
B(A + B)−1 = I

⇒ A−1 + B−1 is invertible

(b) If .A = B = In, then .A, B, and .A + B are invertible, but .A−1 − B−1 is 
not invertible. 

(c) .AB is nilpotent .⇒ (AB)k = 0 for some positive integer . k. That is, 

. (AB)(AB) . . . (AB)(k times) = 0

Multiplying by .B from left and . A from right, we get 

. B(AB)(AB) . . . (AB)A = (BA)k+1 = 0

Therefore .BA is nilpotent. 
(d) The characteristic equation of .AB is given by .det (λI − AB) = 0. Since 

. A is invertible, 

.det (λI − AB) = det
(
λAA−1 − ABAA−1

)

= det
|
A (λI − BA) A−1

|

= det (A)det (λI − BA) det
(
A−1

)

= det (λI − BA)
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Therefore characteristic polynomials of .AB and .BA are equal if .A is 
invertible. 

(21) Let .a, b, c, d be distinct non-zero real numbers with .a + b = c + d. Then an 

eigenvalue of the matrix .

⎡
⎣
a b 1
c d 1
1 −1 0

⎤
⎦ is 

(a) .a + c (b) .a + b (c) .a − b (d) .b − d. 

Ans. Option b 
The characteristic polynomial of the above matrix is 

. λ3 − (a + d)λ2 + (ad − bc)λ = 0 ⇒ λ2 − (a + d)λ + (ad − bc) = 0

⇒ λ = (a + d) ±
/

(a + d)2 − 4(ad − bc)

2

⇒ λ = (a + d) ±
/

(a − d)2 − 4bc

2

⇒ λ = (a + d) ±
/

(c − b)2 − 4bc

2
since a − d = c − b

⇒ λ = (a + d) ±
/

(b + c)2

2

⇒ λ = a + b + c + d

2
= a + b or λ = a + d − c − b

2

(22) Let . A and. B be two.n × n matrices and.C =
|
A B
B A

|
. Which of the following 

statements are true? 

(a) If . λ is an eigenvalue of .A + B, then . λ is an eigenvalue of . C . 
(b) If . λ is an eigenvalue of .A − B, then . λ is an eigenvalue of . C . 
(c) If . λ is an eigenvalue of . A or . B, then . λ is an eigenvalue of . C . 
(d) All the eigenvalues of . C are real. 

Ans. Options a and b 

(a) Let . λ be an eigenvalue of .A + B. Then there exists .v /= 0 ∈ R
n such that 

.(A + B)v = λv. Now, consider .V =
|
v
v

|
∈ R

2n. Observe that 

. CV =
|
A B
B A

| |
v
v

|
=

|
(A + B)v
(A + B)v

|
=

|
λv
λv

|
= λ

|
v
v

|
= λV

That is, . λ is an eigenvalue of . C. 
(b) Let . λ be an eigenvalue of .A − B. Then there exists .v /= 0 ∈ R

n such that 

.(A − B)v = λv. Now, consider .V =
|
v

−v

|
∈ R

2n. Observe that
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. CV =
|
A B
B A

| |
v

−v

|
=

|
(A − B)v

−(A − B)v

|
=

|
λv

−λv

|
= λ

|
v

−v

|
= λV

That is, . λ is an eigenvalue of . C. 

(c) Consider .n = 2. Take  .A = B =
|
1 1
1 1

|
. Then the eigenvalues of .A and 

.B are 0 and 2. Observe that . 2 is not an eigenvalue of .C (eigenvalues of 

.C are . 0 and . 4). Therefore, every eigenvalue of .A or .B need not be an 
eigenvalue of . C. 

(d) Consider.n = 2. Take.A =
|
0 1

−1 0

|
and.B =

|
0 0
0 0

|
. Then the eigenvalues 

of .C are . i and .−i , each repeated twice. Therefore, all the eigenvalues of 
.C need not be real. 

(23) Write down a necessary and sufficient condition, in terms of .a, b, c, and . d

(which are assumed to be real numbers), for the matrix .

|
a b
c d

|
not to have a 

real eigenvalue. 

Ans. The characteristic equation of a.2 × 2matrix is given by . λ2 − (tr(A))λ +
det (A) = 0. Therefore the characteristic equation of the given matrix is . λ2 −
(a + d)λ + (ad − bc) = 0. Then the equation does not have a real eigenvalue 
when .(a + d)2 − 4(ad − bc) < 0. 

(24) Let .A be a .3 × 3 matrix such that .A

⎛
⎝

−2
1
0

⎞
⎠ =

⎛
⎝

6
−3
0

⎞
⎠ and suppose that 

.A3

⎛
⎝

1
−1
2
0

⎞
⎠ =

⎛
⎝

α

β

γ

⎞
⎠ for some .α, β, γ ∈ R. Then .|α| is equal to .. . . . . .. 

Ans. If . λ is an eigenvalue of . A with eigenvector .v /= 0, then .λn is an eigenvalue 
of .An with eigenvector . v (Theorem 4.5). In this case, as 

. A

⎛
⎝

−2
1
0

⎞
⎠ =

⎛
⎝

6
−3
0

⎞
⎠ = (−3)

⎛
⎝

−2
1
0

⎞
⎠

.−3 is an eigenvalue of .A with eigenspace .E = span{(−2, 1, 0)t }. Clearly 

.
(
1, −1

2 , 0
)t ∈ E. Therefore 

. A3

⎛
⎝

1
−1
2
0

⎞
⎠ = 27

⎛
⎝

1
−1
2
0

⎞
⎠

and hence .|α| = 27.
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(25) If a .3 × 3 real skew-symmetric matrix has an eigenvalue . 2i , then one of the 
remaining eigenvalues is 
(a) . 12i (b) .−1

2i (c) .0 (d) . 1. 

Ans. Option c 
. A is skew-symmetric implies . AT = −A

. AT = −A ⇒ det (AT ) = (−1)3det (A)

⇒ det (A) = (−1)det (A) since det (AT ) = det (A)

⇒ det (A) = 0

Therefore 0 is one of the remaining eigenvalues. Since the complex roots of a 
polynomial with real coefficients occur in conjugate pairs, the third eigenvalue 
is .−2i . 

(26) Let . A be an .n × n non-null skew-symmetric matrix, where . n is even. Which 
of the following statements is (are) always true? 

(a) .Ax = 0 has infinitely many solutions, where .0 ∈ R
n . 

(b) .Ax = λx has a unique solution for every non-zero .λ ∈ R. 
(c) If .B = (In + A)(In − A)−1, then .BT A = In . 
(d) The sum of all eigenvalues of . A is zero. 

Ans. Options c and d 

Consider the matrix .A =
|
0 −1
1 0

|
. Then . A is skew-symmetric. Since . A is invert-

ible the system .Ax = 0 has a unique solution. The characteristic equation of . A
is.λ2 + 1 = 0. As. A has no real eigenvalues,.Ax = λx has no solutions for every 
non-zero .λ ∈ R. 

. BT = |
(In + A)(In − A)−1

|T

= |
(In − A)−1

|T
(In + A)T

= (In − AT )−1(In + AT )

= (In + A)−1(In − A)

Since .(In + A) and .(In − A) commutes, .BT B = In. Also since the diagonal 
entries of a skew-symmetric matrix is zero, .tr(A) = the sum of all eigenvalues 
of .A = 0. 

(27) let .A =
|

0 1 − i
−1 − i i

|
and .B = AT Ā. Then 

(a) an eigenvalue of . B is purely imaginary (b) an eigenvalue of . A is zero 
(c) all eigenvalues of . B are real (d) . A has a non-zero real eigenvalue.
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Ans. Option c 

We have .B = AT Ā =
|

2 i − 1
−i − 1 3

|
. The characteristic polynomial of .B is 

.λ2 − 5λ + 2 = 0 and hence the eigenvalues are .λ = 5 ± √
17

2
. The character-

istic polynomial of . A is .λ2 − iλ + 2 = 0 and hence the eigenvalues of . A are . −i
and . 2i . 

(28) Let .v ∈ R
n with .vT v /= 0. Let  .A = I − 2

vvT

vT v
. Then which of the following 

statements is(are) true? 
(a) .A−1 = I − A. (b) .−1 and 1 are eigenvalues of . A. 
(c) .A−1 = A. (d) .(I + A)v = v. 

Ans. Options b and c 
We have 

. A2 =
(
I − 2

vvT

vT v

) (
I − 2

vvT

vT v

)
= I − 4

vvT

vT v
+ 4

(
vvT

vT v

)2

= I − 4
vvT

vT v
+ 4

vvT

vT v
= I

Thus .A−1 = A. We know that .vvT is a matrix of rank 1 and the eigenvalues of 
.vvT are .vT v and 0. For, 

. (vvT )v = v(vT v) = (vT v)v

and if we take .w ∈ R
n with .vTw = 0, we have 

. (vvT )w = v(vTw) = 0

As we can choose .n − 1 such as . w's from  .Rn, the only eigenvalues of .vvT are 

.vT v and 0. Therefore the eigenvalues of .2
vvT

vT v
are 2 and 0. This implies that the 

eigenvalues of . A are .−1 and 1. Also 

. (I + A)v =
(
I + I − 2

vvT

vT v

)
v = 2v − 2

v(vT v)

vT v
= 2v − 2v = 0

(29) Let . A be an invertible.4 × 4 real matrix. Which of the following are not true? 
(a) .Rank(A) = 4. (b) .Ax = b has exactly one solution .∀ b ∈ R

4. 
(c) .dim [N(A)] ≥ 1. (d) 0 is an eigenvalue of . A. 

Ans. Options c and d 
Since .A is invertible .Rank(A) = 4 and 0 is not an eigenvalue of . A. For every 
vector .B ∈ R

4, Ax = b has exactly one solution .x = A−1b. By Rank–Nullity 
theorem, .dim [N(A)] = 0.
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(30) Which of the following statements is true? 

(a) Any matrix .A ∈ M4×4(R) has a real eigenvalue. 
(b) Any matrix .A ∈ M5×5(R) has a real eigenvalue. 
(c) Any matrix .A ∈ M2×2(R) has a real eigenvalue. 

Ans. Option b 
Since any odd degree polynomial with real coefficients has at least one real root, 

any matrix.A ∈ M5×5(R) has a real eigenvalue. Consider the matrices. 

|
0 1

−1 0

|
∈

M2×2(R) and .

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦ ∈ M4×4(R). Both do not have real eigenvalues as 

their characteristic polynomials are respectively .λ2 + 1 and .(λ2 + 1)2. 

(31) Let . A be a .5 × 5 matrix with real entries, then . A has 

(a) an eigenvalue which is purely imaginary. 
(b) at least one real eigenvalue. 
(c) at least two eigenvalues which are not real. 
(d) at least 2 distinct real eigenvalues. 

Ans. Option b 
Since any odd degree polynomial with real coefficients has at least one real root, 
any .5 × 5matrix with real entries has a real eigenvalue. Consider . I5. It has only 
one eigenvalue which has algebraic multiplicity 5 and is also real. 

(32) Let .A(θ) =
|
cos θ sin θ

−sin θ cos θ

|
, where .θ ∈ [0, 2π ]. Mark the correct statement 

below. 

(a) .A(θ) has eigenvectors in .R
2 for all .θ ∈ (0, 2π). 

(b) .A(θ) does not have an eigenvector in .R
2 for any .θ ∈ (0, 2π). 

(c) .A(θ) has eigenvectors in .R
2 for exactly one value of .θ ∈ (0, 2π). 

(d) .A(θ) has eigenvectors in .R
2 for exactly 2 values of .θ ∈ (0, 2π). 

Ans. Option c 
The characteristic equation of .A(θ) is 

. λ2 − 2(cos θ)λ + 1 = 0

Therefore, the eigenvalues of .A(θ) are 

.λ1 = 2cos θ + √
4cos 2θ − 4

2
= cos θ + isin θ
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and 

. λ2 = 2cos θ − √
4cos 2θ − 4

2
= cos θ − isin θ

.λ1 and .λ2 are real when .sin θ = 0. In the interval .(0, 2π), .sin θ = 0 only for 

.θ = π . 

(33) Let .A =
⎡
⎣

a 2 f 0
2 f b 3 f
0 3 f c

⎤
⎦ where .a, b, c, f are real numbers and . f /= 0. The  

geometric multiplicity of the largest eigenvalue of . A equals .. . . . . .. 

Ans. Take.a = b = c = 0 and. f = 1. Then the matrix is given by.A =
⎡
⎣
0 2 0
2 0 3
0 3 0

⎤
⎦. 

Then the characteristic equation of the matrix is.λ3 − 13λ = 0. Since this matrix 
has 3 distinct eigenvalues, the geometric multiplicity of the largest eigenvalue 
of . A is 1. 

(34) Consider the matrix .A = I9 − 2vT v with .v = 1
3

|
1 1 1 1 1 1 1 1 1

|
. If . λ and 

. μ are two distinct eigenvalues of . A, then .|λ − μ| = · · · · · · . 
Ans. The eigenvalues of.vT v where. v is a row vector are.vvT and 0 with algebraic 
multiplicity 1 and.n − 1 respectively (see Question 31). Therefore the eigenvalues 
of . A are .λ = 1 and .μ = −1 and hence .|λ − μ| = 2. 

(35) Let .A be the matrix .

|
2 3
1 −1

|
. Which one of the following matrix equations 

does . A satisfy? 
(a) . A2 + 3A + 5I = 0
(b) . A3 − A2 − 5A = 0
(c) . A2 − 3A + I = 0
(d) .A2 − A + 5I = 0. 

Ans. Option b 
The given matrix. A has trace 1 and determinant.−5. Therefore the characteristic 
polynomial of .A is .λ2 − λ − 5 = 0 and hence by Cayley–Hamilton Theorem, 
.A2 − A − 5I = 0. 

(36) Let .A = .

| 1
4

3
4

3
5

2
5

|
. Then 

(a) .20A2 − 13A + 7I = 0 (b) . 20A2 − 13A − 7I = 0
(c) .20A2 + 13A + 7I = 0 (d) .20A2 + 13A − 7I = 0. 

Ans. Option b 
Since .tr(A) = 13

20 and .det (A) = − 7
20 the characteristic equation of . A is 

.λ2 − 13

20
λ − 7

20
= 0
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By Cayley–Hamilton Theorem, we have.A2 − 13
20 A − 7

20 = 0. Therefore,. 20A2 −
13A − 7I = 0. 

(37) Given a .n × n matrix . A, define .eA by 

. eA =
∞E
j=0

A j

j |

Let . p be the characteristic polynomial of . A. Then the matrix .ep(A) is 
(a) .In (b) .0n (c) .eIn (d) .π In . 

Ans. Option a 
By Cayley–Hamilton theorem, every matrix satisfies its characteristic equation. 
Therefore .p(A) = 0n×n and hence .ep(A) = In×n. 

(38) Let .A be a .4 × 4 matrix with entries from the set of rational numbers. If 
.
√
2 + i , with .i = √−1, is a root of the characteristic polynomial of . A and . I

is the .4 × 4 identity matrix, then 
(a) . A4 = 4A2 + 9I
(b) . A4 = 4A2 − 9I
(c) . A4 = 2A2 − 9I
(d) .A4 = 2A2 + 9I . 

Ans. Option c 
The characteristic polynomial of . A is a polynomial with real coefficients. Since 
.
√
2 + i is a root, the other roots are .

√
2 − i,−√

2 + i and .−√
2 − i . There-

fore the characteristic equation of . A is .λ4 − 2λ2 + 9 = 0. By Cayley–Hamilton 
theorem .A4 − 2A2 + 9I = 0. 

(39) If the roots of the characteristic polynomial of a .4 × 4 matrix .A are 

.±
/
1 ± √

5

2
, then . A8 =

(a) .I + A2 (b) .2I + A2 (c) .2I + 3A2 (d) .3I + 2A2. 

Ans. Option c 

Since the roots of the characteristic polynomial of . A are .±
/
1 ± √

5

2
, the char-

acteristic equation is 

. 

⎛
⎝λ +

/
1 + √

5

2

⎞
⎠

⎛
⎝λ −

/
1 + √

5

2

⎞
⎠

⎛
⎝λ +

/
1 − √

5

2

⎞
⎠

⎛
⎝λ −

/
1 − √

5

2

⎞
⎠ = λ4 − λ2 − 1 = 0

By Cayley–Hamilton theorem, . A must satisfy its characteristic equation. Then, 

.A4 = A2 + I ⇒ A8 = (A2 + I )(A2 + I ) = A4 + 2A2 + 1 = 3A2 + 2I
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(40) Let. A be a.3 × 3 singular matrix such that.Av = v for a non-zero vector. v and 

. A

⎡
⎣

1
0

−1

⎤
⎦ =

⎡
⎣

2
5
0
−2
5

⎤
⎦

Then 
(a) .A3 = 1

5 (7A
2 − 2A) (b) . A3 = 1

4 (7A
2 − 2A)

(c) .A3 = 1
3 (7A

2 − 2A) (d) .A3 = 1
2 (7A

2 − 2A). 

Ans. Option a 

.Av = v for a non-zero vector . v implies that 1 is an eigenvalue of . A. . A

⎡
⎣

1
0

−1

⎤
⎦ =

2

5

⎡
⎣

1
0

−1

⎤
⎦ implies that .

2

5
is an eigenvalue of . A. Since .A is singular, 0 is also an 

eigenvalue. Therefore characteristic polynomial of . A is given by . λ3 − 7/5λ2 +
2/5λ. Hence, by Cayley–Hamilton Theorem, .A3 = 1

5 (7A
2 − 2A). 

(41) Let.A ∈ M10×10 (C). Let.WA be the subspace of.M10×10 (C) spanned by. {An |
n ≥ 0}. Choose the correct statements. 
(a) For any . A, .dim(WA) ≤ 10. (b) For some . A, .10 < dim(WA) < 100. 
(c) For any . A, .dim(WA) < 10. (d) For some . A, .dim(WA) = 100. 

Ans. Option a 
By Cayley–Hamilton Theorem, any matrix of order can be represented as a linear 
combination of .{An | 0 ≤ n ≤ 9}, for any . A, .dim(WA) ≤ 10. 

(42) Let .A be an .n × n real matrix. Let .V be the vector space spanned by 
.{I, A, A2, . . . , A2n}. The dimension of the vector space .V is 
(a) .2n (b) at most .n (c) .n2 (d) at most .2n. 

Ans. Options b and d 
By Cayley–Hamilton Theorem, every matrix of order. n can be written as a linear 
combination of .{I, A, A2, . . . , An−1}. The dimension of the vector space .V is . n. 

(43) Let .V = {p(A) : p is a polynomial with real coefficients}, where 

.A =
⎛
⎝
0 1 0
0 0 1
1 0 0

⎞
⎠. The dimension of the vector space .V satisfies 

(a) .4 ≤ d ≤ 6 (b) .6 ≤ d ≤ 9 (c) .3 ≤ d ≤ 8 (d) .3 ≤ d ≤ 4. 

Ans. Options c and d 
By Cayley–Hamilton Theorem, every matrix of degree greater than 3 can be 
written as a linear combination of .{I, A, A2, A3}. Here  .A3 = I and hence . V
can be spanned by .{I, A, A2}.
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(44) Let . A be a .3 × 3 upper triangular matrix whose diagonal entries are 1, 2, and 
.−3. Express .A−1 as a linear combination of .I, A, and .A2. 

Ans. The characteristic equation of the given matrix is 

. (λ − 1)(λ − 2)(λ + 3) = λ3 − 7λ + 6 = 0

By Cayley–Hamilton Theorem, 

. A3 − 7A + 6I = 0 ⇒ A−1 = 7

6
I − 1

6
A2

(45) Let . A be a .3 × 3 matrix and suppose that 1, 2, and 3 are eigenvalues of . A. If  

. A−1 = 1

α
A2 − A + 11

α
I

for some scalar .α /= 0, then . α is equal to .. . . . . .. 

Ans. Since 1, 2, and 3 are eigenvalues of . A, the characteristic equation of . A is 

. (λ − 1)(λ − 2)(λ − 3) = λ3 − 6λ2 + 11λ − 6 = 0

By Cayley–Hamilton Theorem, .A−1 = 1

6
A2 − A + 11

6
I . Therefore .α = 6. 

(46) Let. A be a.3 × 3 matrix with complex entries, whose eigenvalues are.1, i , and 
.−2i . If .A−1 = aA2 + bA + cI , with .a, b, c ∈ C, what are the values of .a, b, 
and . c? 

Ans. Since .1, i and .−2i are the eigenvalues of . A, the characteristic equation 
of . A is 

. (λ − 1)(λ − i)(λ + 2i) = λ3 − (1 − i)λ2 − (i − 2)λ − 2 = 0

By Cayley–Hamilton Theorem, 

. λ3 − (1 − i)λ2 − (i − 2)λ − 2 = 0 ⇒ A3 + (i − 1)A2 = (2 − i)A − 2I = 0

⇒ A−1 = 1

2
A2 + (i − 1)

2
A + (2 − i)

2
I

Therefore .a = 1
2 , b = (i − 1)

2
, and .c = (2 − i)

2
. 

(47) Let. A be a.3 × 3 upper triangular matrix with real entries. If.a11 = 1, a22 = 2, 
and .a33 = 3, determine .α, β, and . γ such that 

.A−1 = αA2 + βA + γ I



11 Solved Problems—Eigenvalues and Eigenvectors 425

Ans. The eigenvalues of an upper triangular matrices are its diagonal entries. 
Therefore its characteristic equation is 

. (λ − 1)(λ − 2)(λ − 3) = λ3 − 6λ2 + 11λ − 6 = 0

By Cayley–Hamilton theorem, 

. A3 − 6A2 + 11A − 6I = 0 ⇒ A−1 = 1

6
A2 − A + 11

6
I

Therefore .α = 1
6 , β = −1, and .γ = 11

6 . 

(48) Let .A =
⎡
⎣
1 0 2
1 −2 0
0 0 −3

⎤
⎦. If  .6A−1 = aA2 + bA + cI for .a, b, c ∈ R then 

.(a, b, c) equals 
(a) .(1, 2, 1) (b) .(1,−1, 2) (c) .(4, 1, 1) (d) .(1, 4, 1). 

Ans. Option d 
The characteristic equation of . A is 

. λ3 − (1 − 2 − 3)λ2 + (6 − 3 − 2)λ − 6 = λ3 + 4λ2 + λ − 6 = 0

By Cayley–Hamilton Theorem, .6A−1 = A2 + 4A + I . Therefore . (a, b, c) =
(1, 4, 1). 

(49) If.A = .

⎡
⎣
1 0 1
0 2 1
2 0 −1

⎤
⎦ and.6A−1 = aI + bA − A2, then the ordered pair.(a, b) is 

(a) .(3, 2) (b) .(2, 3) (c) .(4, 5) (d) .(5, 4). 

Ans. Option a 
The characteristic equation of . A is 

. λ3 − (1 + 2 − 1)λ2 + (−2 − 3 + 2)λ − (−6) = λ3 − 2λ2 − 3λ + 6 = 0

By Cayley–Hamilton Theorem, .6A−1 = 3I + 2A − A2. Therefore . (a, b) =
(3, 2). 

(50) Let .A =
⎡
⎣
1 2 0
0 2 1
1 0 1

⎤
⎦. If  .A−1 = 5

4
I + k A + 1

4
A2, find the value of . k. Hence or 

otherwise, solve the system of equations .A

⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎣
1
0
0

⎤
⎦.
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Ans. The characteristic equation of . A is 

. λ3 − (1 + 2 + 1)λ2 + (2 + 1 + 2) − 4 = λ3 − 4λ2 + 5λ − 4 = 0

By Cayley–Hamilton Theorem, we have .A3 − 4A2 + 5A − 4I = 0. Now,  

. A3 − 4A2 + 5A − 4I = 0 ⇒ A−1 = 5

4
I + (−1)A + 1

4
A2 ⇒ k = −1

Also, we get .A−1 =

⎡
⎢⎢⎢⎢⎢⎣

1

2

−1

2

1

2
1

4

1

4

−1

4
−1

2

1

2

1

2

⎤
⎥⎥⎥⎥⎥⎦
. Since .A is invertible the system of equa-

tions is unique and the solution is .A−1

⎡
⎣
1
0
0

⎤
⎦ =

⎡
⎢⎣

1
2
1
4

− 1
2

⎤
⎥⎦. 

(51) Let .A =
|
0 1

−1 1

|
. Then the smallest positive integer . n such that .An = I is 

(a) 1 (b) 2 (c) 4 (d) 6.  

Ans. Option d 
The characteristic equation of the given matrix is 

. λ2 − tr(A) + det (A) = λ2 − λ + 1 = 0

By Cayley–Hamilton Theorem, .A2 = A − I . Therefore, 

. A4 = A2 − 2A + I = −A and A6 = A4A2 = −A(A − I ) = I

(52) Let . A be the matrix .A =
|

1
√
2

−√
2 −1

|
. Compute the matrix 

. B = 3A − 2A2 − A3 − 5A4 + A6

Ans. The characteristic equation of . A is 

. λ2 − tr(A) + det (A) = λ2 + 1 = 0

By Cayley–Hamilton Theorem, we have .A2 + I = 0. Thus, .A2 = −I and hence 
.A3 = −A, A4 = I, A6 = −I . Therefore
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. B = 3A − 2A2 − A3 − 5A4 + A6 = 3A + 2I + A − 5I − I =
|

0 4
√
2

−4
√
2 −8

|

(53) Denote by.U the set of all.n × n complex matrices. A(.n ≥ 2) having the prop-
erty that 4 is the only eigenvalue of. A. Consider the following four statements. 
.(i) .(A − 4I )n = 0, .(i i) .An = 4n I , 
.(i i i) .(A2 − 5A + 4I )n = 0, .(iv) .An = 4nI . 
How many of the above statements are true for all .A ∈ U? 
(a) 0 (b) 1 (c) 2 (d) 3.  

Ans. Option c 
Since .A is of order . n and 4 is the only eigenvalue of . A, the characteristic 
polynomial of. A is.(λ − 4)n. Then by Cayley–Hamilton theorem .(A − 4I )n = 0. 
As 

. A2 − 5A + 4I = (A − 4I )(A − I )

we have 
. (A2 − 5A + 4I )n = (A − I )n(A − 4I )n = 0

Thus statements .(i) and .(i i i) are true for all .A ∈ U. 

Let .A =
|
4 1
0 4

|
. Then .A2 =

|
16 8
0 16

|
. In this case .A2 /= 16I and .A2 /= 8I . Thus 

statements .(i i) and .(iv) need not be true for all .A ∈ U. 

(54) Let .V be a vector space over. C with dimension. n. Let.T : V → V be a linear 
transformation with only 1 as eigenvalue. Then which of the following must 
be true? 
(a).T − I = 0 (b).(T − I )n−1 = 0 (c).(T − I )n = 0 (d).(T − I )2n = 0. 

Ans. Options c and d 
Since 1 is the only eigenvalue of the matrix, the characteristic polynomial is. (λ −
1)n and hence by Cayley–Hamilton Theorem .(T − I )n = 0 and .(T − I )2n = 0. 

Now for .n = 3 consider . T with the matrix .

⎡
⎣
1 1 0
0 1 1
0 0 1

⎤
⎦. Then both options a and b 

are false. 

(55) Let .T : C
n → C

n be a linear transformation, .n ≥ 2. Suppose 1 is the only 
eigenvalue of . T . Which of the following statements are true? 
(a) .T k /= I for any .k ∈ N (b) . (T − I )n−1 = 0
(c) .(T − I )n = 0 (d) .(T − I )n+1 = 0. 

Ans. Options c and d 

(a) Consider the identity transformation. Then .T k = I for any .k ∈ N.
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(b) Consider the linear transformation with matrix.T =

⎡
⎢⎢⎢⎣

1 1 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦. Clearly 

1 is the only eigenvalue of . T . Then, .(T − I )n−1 /= 0. 
(c) Since 1 is the only eigenvalue of . T , the characteristic equation of .T is 

.(λ − 1)n = 0. Then by Cayley–Hamilton Theorem .(T − I )n = 0. 
(d) Since .(T − I )n = 0, .(T − I )n+1 = 0. 

(56) Consider a real vector space.V of dimension n and a non-zero linear transfor-
mation.T : V → V . If .dim [T (V )] < n and.T 2 = λT , for  some.λ ∈ R \ {0}, 
then which of the following statements is true? 

(a) .det (T ) = |λ|n . 
(b) There exists a non-trivial subspace .W of .V such that .T (v) = 0 for all 

.v ∈ W . 
(c) . T is invertible. 
(d) . λ is the only eigenvalue of . T . 

Ans. Option b 
Consider the transformation .T (x1, x2) = (x1, 0). Then Range.(T ) = x− axis. 
Therefore .dim [T (V )] < 2 = n. Also  

. T 2(x1, x2) = T (x1, 0) = (x1, 0) = T (x1, x2)

Since .T is not onto, it is not invertible. Therefore .det (T ) = 0 and 0 is also  
an eigenvalue. Hence options .(a), (c), (d) are false. Since .dim [T (V )] < n, by  
Rank-Nullity Theorem, there exists a non-trivial subspace .W of .V such that 
.T (v) = 0 for all .v ∈ W. 

(57) Let .A =
⎛
⎝
a b c
0 a d
0 0 a

⎞
⎠ be a .3 × 3 matrix where .a, b, c, d are integers. Then, we 

must have 

(a) If .a /= 0, there is a polynomial .p ∈ Q[λ] such that .p(A) is the inverse of 
. A. 

(b) For each polynomial .q ∈ Z[λ], the matrix .q(A) =
⎛
⎝
q(a) q(b) q(c)
0 q(a) q(d)

0 0 q(a)

⎞
⎠. 

(c) If .An = 0 for some positive integer .n, then .A3 = 0. 

(d) A commutes with every matrix of the form.

⎛
⎝
a' 0 c'
0 a' 0
0 0 a'

⎞
⎠.
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Ans. Options a, c, and d 

(a) Since the characteristic polynomial of the given matrix is 

. (λ − a)3 = λ3 − 3aλ2 + 3a2λ − a3

By Cayley–Hamilton Theorem, we get 

. A−1 = 1

a3
(
A2 − 3aA + 3a2 I

)

If .a /= 0, there is a polynomial .p ∈ Q[x] such that .p(A) is the inverse of 
. A. 

(b) Let .q(λ) = λ + 1. Then, 

. q(A) = A + I =
⎛
⎝
a + 1 b c
0 a + 1 d
0 0 a + 1

⎞
⎠

But 

. 

⎛
⎝
q(a) q(b) q(c)
0 q(a) q(d)

0 0 q(a)

⎞
⎠ =

⎛
⎝
a + 1 b + 1 c + 1
0 a + 1 d + 1
0 0 a + 1

⎞
⎠ /= q(A)

Therefore option . b is false. 
(c) .An = 0 ⇒ A is a nilpotent matrix. Since the degree of nilpotency of a 

nilpotent matrix is always less than or equal to its order, .A3 = 0. 
(d) We have 

. 

⎛
⎝
a' 0 c'
0 a' 0
0 0 a'

⎞
⎠

⎛
⎝
a b c
0 a d
0 0 a

⎞
⎠ =

⎛
⎝
a'a a'b a'c + c'a
0 a'a a'd
0 0 a'a

⎞
⎠ =

⎛
⎝
a b c
0 a d
0 0 a

⎞
⎠

⎛
⎝
a' 0 c'
0 a' 0
0 0 a'

⎞
⎠

Clearly, . A commutes with every matrix of the form .

⎛
⎝
a' 0 c'
0 a' 0
0 0 a'

⎞
⎠. 

(58) Let .V be the vector space of all real polynomials of degree .≤ 10. Let  
.(T p)(x) = p'(x) for .p ∈ V be a linear transformation from .V to . V . Con-
sider the basis .{1, x, x2, . . . x10} of . V . Let . A be the matrix of . T with respect 
to this basis. Then 
(a) .tr(A) = 1 (b) there is no .m ∈ N such that . Am = 0
(c) .det (A) = 0 (d) . A has a non-zero eigenvalue.
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Ans. Option c 

The matrix of . T is .A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 10
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
. Then .T 11 = 0, .tr(A) = 0, . det (A) = 0

and 0 is the only eigenvalue. 

(59) Suppose that . A is a .5 × 5 matrix with real entries and .p(λ) = det (λI − A). 

(a) .p(0) = det (A). 
(b) every eigenvalue of . A is real if .p(1) + p(2) = 0 = p(2) + p(3). 
(c) .A−1 is necessarily a polynomial in . A of degree 4 if . A is invertible. 
(d) . A is not invertible if .A2 − 2A = 0. 

Ans. Option c 

(a) .p(0) = det (−A) = (−1)5det (A) = −det (A). 
(b) Let .p(λ) = λ5 + a4λ4 + a3λ3 + a2λ2 + a1λ + a0. Then 

. p(1) + p(2) = 0 ⇒ 33 + 17a4 + 9a3 + 5a2 + 3a1 + 2a0 = 0

and 

. p(1) + p(3) = 0 ⇒ 275 + 97a4 + 35a3 + 13a2 + 5a1 + 2a0 = 0

Let .a2 = a3 = a4 = 0. Then solving for .a0 and . a1, we get  . a0 = 165
and .a1 = −121. Then .p(λ) = λ5 − 121λ + 165. Then .p(λ) has 2 sign 
changes and one sign change for .p(−λ). Then by Descarte’s Rule of 
Signs, .p(λ) has at most 3 real roots. Therefore . p has complex roots even 
if .p(1) + p(2) = 0 = p(2) + p(3). 

(c) By Cayley–Hamilton Theorem, .A−1 is necessarily a polynomial in .A of 
degree 4 if . A is invertible. 

(d) Consider .A = 2I . Then .A2 − 2A = 0. But . A is invertible. 

(60) Let .α, β, γ, δ be the eigenvalues of the matrix .A =

⎡
⎢⎢⎣
0 0 0 0
1 0 0 −2
0 1 0 1
0 0 1 2

⎤
⎥⎥⎦. Then . α2 +

β2 + γ 2 + δ2 = · · · · · · . 
Ans. Let .α, β, γ, δ be the eigenvalues of the matrix . A, then .α2, β2, γ 2, δ2 be 
the eigenvalues of the matrix .A2. Then .α2 + β2 + γ 2 + δ2 is the trace of .A2. 
Therefore .α2 + β2 + γ 2 + δ2 = 6.
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(61) Let .A =
|
1 1
1 0

|
and let .αn and .βn denote the two eigenvalues of .An such that 

.αn ≥ βn . Then 
(a) .αn → ∞ as .n → ∞ (b) as .n → ∞, . βn → 0
(c) .βn is positive if . n is even. (d) .βn is negative if . n is odd. 

Ans. Options a, b, c, and d 
Let . α and . β denote the two eigenvalues of .A with .α ≥ β. Then .αn = (α)n and 
.βn = (β)n. The characteristic polynomial of .A is .λ2 − λ − 1 and hence . αn =(
1 + √

5

2

)n

and .βn =
(
1 − √

5

2

)n

. 

(62) Let . A be a .3 × 3 singular matrix and suppose that 2 and 3 are eigenvalues of 
. A. Then the number of linearly independent eigenvectors of .A3 + 2A + I is 
equal to .. . . . . .. 

Ans. Since . A is singular 0 is also an eigenvalue of . A. Therefore the eigenvalues 
of.A3 + 2A + I are 1, 13, and 34. Since it has distinct eigenvalues,. A3 + 2A + I
has three linearly independent eigenvectors. 

(63) Consider the matrix .A =
⎡
⎣
1 0 0
0 3 2
0 1 4

⎤
⎦. Let .P be a non-singular matrix such that 

.P−1AP is a diagonal matrix. Then the trace of the matrix .P−1A3P equals 

.. . . . . .. 

Ans. Eigenvalues of . A are 5, 2, and 1. Therefore eigenvalues of .A3 are 125, 8, 
and 1. Since .tr(AB) = tr(BA), 

. tr(P−1A3P) = tr(A3) = 134

(64) Let .λ,μ be distinct eigenvalues of a .2 × 2 matrix . A. Then which of the 
following statements must be true? 

(a) .A2 has distinct eigenvalues. 

(b) .A3 = λ3 − μ3

λ − μ
A − λμ(λ + μ)I . 

(c) trace of .An is .λn + μn for every positive integer . n. 
(d) .An is not a scalar multiple of identity for any positive integer . n. 

Ans. Options b and c 
As .λ,μ are the eigenvalues of . A, .tr(A) = λ + μ and .det (A) = λμ. Then, the 
characteristic equation of . A is 

.x2 − tr(A)x + det (A) = x2 − (λ + μ)x + λμ = 0
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By Cayley–Hamilton theorem, we get 

. A2 = (λ + μ)A − λμI

Multiplying by . A on both sides and substituting for .A2, we have 

. A3 = (λ2 + λμ + μ2)A − λμ(λ + μ)I = λ3 − μ3

λ − μ
A − λμ(λ + μ)I

Since the eigenvalues of .A are . λ and . μ, the eigenvalues of .An are .λn and .μn. 
Hence trace of.An is.λn + μn for every positive integer. n (Theorem 4.5 and Corol-

lary 4.2). Consider the matrix .A =
|
1 0
0 −1

|
, then . A has distinct eigenvalues, but 

.A2 = I does not have distinct eigenvalues. 

(65) Let .A be a .3 × 3 matrix. Suppose that the eigenvalues of .A are . −1, 0, 1
with respective eigenvectors .(1,−1, 0)T , (1, 1,−2)T , and .(1, 1, 1)T . Then 
.6A equals 

(a) .

⎡
⎣

−1 5 2
5 −1 2
2 2 2

⎤
⎦ (b) .

⎡
⎣
1 0 0
0 −1 0
0 0 0

⎤
⎦ (c) .

⎡
⎣
1 5 3
5 1 3
3 3 3

⎤
⎦ (d) .

⎡
⎣

−3 9 0
9 −3 0
0 0 6

⎤
⎦. 

Ans. Option a 
Since the eigenvalues of. A are.−1, 0, 1with respective eigenvectors.(1,−1, 0)T , 
.(1, 1,−2)T , and .(1, 1, 1)T , the eigenvalues of .6A are .−6, 0, 6 with respective 
eigenvectors .(1,−1, 0)T , (1, 1,−2)T , and .(1, 1, 1)T (Theorem 4.6). Therefore 
.6A has trace 0 and determinant 0. Thus options .(c) and .(d) are false. Since . 6 is 
an eigenvalue with eigenvector .(1, 1, 1)T , the row sum of .6A must be the same. 
Hence option .(b) is false. 

(66) Let .α = e
2π i
5 . Consider the matrix 

. A =

⎡
⎢⎢⎢⎢⎣

1 α α2 α3 α4

0 α α2 α3 α4

0 0 α2 α3 α4

0 0 0 α3 α4

0 0 0 0 α4

⎤
⎥⎥⎥⎥⎦

Then .tr
(
I + A + A2

)
is . . . . . . .

(a) .−5 (b) .0 (c) .3 (d) . 5. 

Ans. Option d 
Since.α = e

2π i
5 , the  set.{1, α, α2, α3, α4} is fifth roots of unity. Hence. tr(A) = 1 +

α + α2 + α3 + α4 = 0. Also the diagonal entries of .A2 are .{1, α, α2, α3, α4}. 
Therefore .tr(A2) = 0 and .tr(I + A + A2) = tr(I ) = 5.
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(67) If 

. A =

⎡
⎢⎢⎢⎣

1 0 0

i
−1 + i

√
3

2
0

0 1 + 2i
−1 − i

√
3

2

⎤
⎥⎥⎥⎦

then .tr
(
A102

)
is . . . . . . .

(a) 0 (b) 1 (c) 2 (d) 3.  

Ans. Option d 
Since the given matrix is lower triangular, the eigenvalues of . A are precisely the 
diagonal elements of. A and the diagonal elements of. A are the cube roots of unity. 
Therefore the only possible eigenvalue of .A102 is 1. Therefore .tr

(
A102

) = 3. 

(68) Consider the matrix .A(λ) =
⎛
⎝
1 + λ2 7 11
3λ 2λ 4
8λ 17 13

⎞
⎠ , λ ∈ R. Then 

(a) .A(λ) has eigenvalue 0 for some. λ ∈ R

(b) 0 is not an eigenvalue of .A(λ) for any . λ ∈ R

(c) .A(λ) has eigenvalue 0 for all . λ ∈ R

(d) .A(λ) is invertible for all .λ ∈ R. 

Ans. Option a 
.det [A(λ)] = 26λ3 + 108λ2 + 538λ − 68 is a polynomial of degree 3 and hence 
must have a real root. Therefore .A(λ) has eigenvalue 0 for some .λ ∈ R. 

(69) Let. A be a.2 × 2 complex matrix such that.tr(A) = 1 and.det (A) = −6. Then 
.tr(A4 − A3) is .. . . . . .. 

Ans. Let .λ1 and .λ2 be the eigenvalues of . A. Then .λ1 + λ2 = 1 and . λ1λ2 =
−6. Therefore .λ1 = 3 and .λ2 = −2. Hence, the eigenvalues of .A4 are 81, 16 
and that of .A3 are 27, .−8. This gives .tr(A4) = 97 and .tr(A3) = 19. Therefore 
.tr(A4 − A3) = 97 − 19 = 78. 

(70) Let .A ∈ M3×3(R) be such that .det (A − I ) = 0. If the  .tr(A) = 13 and 
.det (A) = 32, then the sum of squares of the eigenvalues of . A is .. . . . . .. 

Ans. Since .det (A − I ) = 0, 0 is an eigenvalue of .(A − I ) and hence 1 is an 
eigenvalue of. A. Let.λ1 and.λ2 be the other two eigenvalues of. A. Then. λ1 + λ2 =
12 and .λ1λ2 = 32. Therefore .λ1 = 8 and .λ2 = 4. Then the sum of squares of the 
eigenvalues of . A is 81. 

(71) The trace of the matrix .

⎛
⎝
2 1 0
0 2 0
0 0 3

⎞
⎠

20

is 

(a) .720 (b) .220 + 320 (c) .2.220 + 320 (d) .220 + 320 + 1.
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Ans. Option c 

The matrix .A =
⎛
⎝
2 1 0
0 2 0
0 0 3

⎞
⎠ is upper triangular. The eigenvalues of the matrix are 

2, 2, and 3. The eigenvalues of .A20 are .220, 220, and .320. Therefore the trace of 
the given matrix is .2.220 + 320. 

(72) The set of eigenvalues of which one of the following matrices is not equal to 

the set of eigenvalues of .

|
1 2
4 3

|
? 

(a) .

|
1 4
2 3

|
(b) .

|
3 2
4 1

|
(c) .

|
3 4
2 1

|
(d) .

|
2 3
1 4

|
. 

Ans. Option d 
As trace is the sum of eigenvalues and determinant is the product of eigenvalues, 
it is enough to check which of the given matrices do not have the same trace and 

determinant as that of .

|
1 2
4 3

|
. The given matrix has trace 4 and determinant .−5. 

All matrices except option .(d) have trace 4 and determinant .−5. 

(73) Let .A =
⎡
⎣
a −1 4
0 b 7
0 0 3

⎤
⎦ be a matrix with real entries. If the sum and the product 

of all the eigenvalues of . A are 10 and 30 respectively, then .a2 + b2 equals 
(a) 29 (b) 40 (c) 58 (d) 65. 

Ans. Option a 
As . A is an upper triangular matrix, the eigenvalues of . A are .a, b, and . 3. Then 

. tr(A) = a + b + 3 = 10 ⇒ a + b = 7 and det (A) = 3ab = 30 ⇒ ab = 10

Solving, we get .a = 5, b = 2. Therefore .a2 + b2 = 29. 

(74) Let. A be a.3 × 3 matrix with.tr(A) = 3 and.det (A) = 2. If 1 is an eigenvalue 
of . A, then the eigenvalues of the matrix .A2 − 2I are 
(a) .1, 2(i − 1), −2(i + 1) (b) . −1, 2(i − 1), 2(i + 1)
(c) .1, 2(i + 1), −2(i + 1) (d) .−1, 2(i − 1), −2(i + 1). 

Ans. Option d 
Let .λ1 and .λ2 be the eigenvalues of . A, Then 

. tr(A) = λ1 + λ2 + 1 = 3 ⇒ λ1 + λ2 = 2 and det (A) = 2 ⇒ λ1λ2 = 2

Then the eigenvalues of. A are.1, 1 + i, 1 − i and hence the eigenvalues of.A2 are 
.1, 2i,−2i . Therefore the eigenvalues of .A2 − 2I are .−1, 2(i − 1), −2(i + 1).
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(75) Let .A be a .3 × 3 matrix having characteristic roots .λ1 = − 2
3 , .λ2 = 0, and 

.λ3 = 1. Define .B = 3A3 − A2 − A + I3 and .C = 3A3 − 2A. If . a = det (B)

and .b = tr(C), then .a + b equals .. . . . . .. 

Ans. Since .λ1 = − 2
3 , .λ2 = 0, and .λ3 = 1 are the eigenvalues of . A, the eigen-

values of .B are . 13 , 1, 2 and the eigenvalues of .C are . 49 , 1, 0. Therefore . a =
det (B) = 2

3 and .b = tr(C) = 13
9 and .a + b = 19

9
. 

(76) Given that the matrix.A =
(
a 1
2 3

)
has 1 as an eigenvalue, compute.tr(A) and 

its .det (A). 

Ans. Let . λ be the second eigenvalue. We have 

. tr(A) = a + 3 = λ + 1 ⇒ λ = a + 2 and det (A) = 3a − 2 = λ

Now 
. 3a − 2 = a + 2 ⇒ 2a = 4 ⇒ a = 2

Therefore .tr(A) = 5 and .det (A) = 4. 

(77) Find the values of .a ∈ R such that the matrix .A =
|
3 a
a 5

|
has 2 as an eigen-

value. 

Ans. Let . λ be the second eigenvalue of the given matrix. Then 

. tr(A) = λ + 2 = 8 ⇒ λ = 6

Therefore 
. det (A) = 15 − a2 = 2 × 6 = 12 ⇒ a = ±√

3

(78) The largest eigenvalue of the matrix .A =
⎡
⎣
1 4 16
4 16 21
16 1 4

⎤
⎦ is 

(a) 16 (b) 21 (c) 48 (d) 64. 

Ans. Option b 
Since the sum of entries in each row are 21, 21 is an eigenvalue of the given matrix. 
Now .tr(A) = 21 implies that one of the eigenvalues is negative of the other. The 
determinant of . A is .3969 < 213, which implies that the largest eigenvalue is 21. 

(79) Let .A =
⎡
⎣
1 1 2
1 −2 5
2 5 −3

⎤
⎦. Then the eigenvalues of . A are 

(a) .−4, 3,−3 (b) .4, 3, 1 (c) .4,−4 ± √
13 (d) .4,−2 ± 2

√
7.
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Ans. Option c 
Since .tr(A) = −4 and .det (A) = 12, the eigenvalues of . A are .4,−4 ± √

13. 

(80) Let . A be a .3 × 3 real matrix with eigenvalues 1, 2, 3 and let .B = A−1 + A2. 
Then the trace of the matrix . B is equal to 

(a) .
91

6
(b) .

95

6
(c) .

97

6
(d) .

101

6
. 

Ans. Option b 

The eigenvalues of .A−1 are .1,
1

2
,
1

3
and the eigenvalues of .A2 are .1, 4, 9. There-

fore .tr(B) = tr(A−1) + tr(A2) = 1 + 1

2
+ 1

3
+ 1 + 4 + 9 = 95

6
. 

(81) Suppose that .A =
⎛
⎝

40 −29 −11
−18 30 −12
26 24 −50

⎞
⎠ has a certain complex number .λ /= 0. 

Which of the following numbers must also be an eigenvalue of . A? 
(a) .λ + 20 (b) .λ − 20 (c) .20 − λ (d) .−20 − λ. 

Ans. Option c 
Since the third column is the negative of the sum of first and second columns, 
determinant of the given matrix is zero and hence 0 is an eigenvalue of . A. Now  
trace of the matrix is 20 gives that the third eigenvalue is .20 − λ. 

(82) If . A is a .5 × 5 real matrix with .tr(A) = 15 and if 2 and 3 are eigenvalues of 
. A, each with algebraic multiplicity 2, then .det (A) is equal to . . . . . . .

(a) 0 (b) 24 (c) 120 (d) 180. 

Ans. Option d 
Let . λ be the fifth eigenvalue. Since .tr(A) =sum of eigenvalues . = 2 + 2 + 3 +
3 + λ = 15, we get .λ = 5. Then .det (A) = product of eigenvalues .= 180. 

(83) Let . A be a .4 × 4 matrix with real entries such that .−1, 1, 2,−2 are its eigen-
values. If .B = A4 − 5A2 + 5I , then which of the following statements are 
correct? 
(a) .det (A + B) = 0 (b) . det (B) = 1
(c) .tr(A − B) = 0 (d) .tr(A + B) = 4. 

Ans. Options a, b, and d 
Let . λ be an eigenvalue of . A, then .p(λ) is an eigenvalue of .p(A). Therefore 1 is 
the only eigenvalue of .B and hence .det (B) = 1. Since .−1 is an eigenvalue of 
. A, 0 is an eigenvalue of .A + B. Therefore .det (A + B) = 0. Also  

. tr(A − B) = tr(A) − tr(B) = 0 − 4 = −4

and 
.tr(A + B) = tr(A) + tr(B) = 0 + 4 = 4
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(84) Let .A be a .4 × 4 matrix such that.−1, 1, 1,−2 are its eigenvalues. If . B =
A4 − 5A2 + 5I , then .tr(A + B) equals 
(a) .0 (b) .−12 (c) .3 (d) . 9. 

Ans. Option c 
We have.A + B = A4 − 5A2 + A + 5I = p(A), as a polynomial in. A. Then the 
eigenvalues of .A + B are .p(λ), where . λ is an eigenvalue of . A. Therefore, the 
eigenvalues of .A + B are .0, 2, 2,−1 and hence .tr(A + B) = 3. 

(85) If the determinant of an .n × n matrix . A is zero, then 
(a) .Rank(A) ≤ n − 2 (b) .tr(A) is zero 
(c) 0 is an eigenvalue of .A (d) .x = 0 is the only solution of .Ax = 0. 

Ans. Option c 

Consider.A =
|
1 1

−2 −2

|
. Then.det (A) = 0. But.Rank(A) < n − 2and. tr(A) /=

0. Since determinant is equal to the product of eigenvalues, determinant is zero 
implies one eigenvalue is 0. Since .A is not invertible the homogeneous system 
has an infinite number of solutions. 

(86) Let . A be a .10 × 10 matrix with complex entries such that all its eigenvalues 
are non-negative real numbers, and at least one eigenvalue is positive. Which 
of the following statements is always false? 

(a) There exists a matrix . B such that .AB − BA = B. 
(b) There exists a matrix . B such that .AB − BA = A. 
(c) There exists a matrix . B such that .AB + BA = A. 
(d) There exists a matrix . B such that .AB + BA = B. 

Ans. Option b 
For any given. A, take.B = 0. Then.AB − BA = B. Suppose there exists a matrix 
.B such that .AB − BA = A. Then .tr(AB − BA) = 0 = tr(A). But .tr(A) can-
not be 0 since all the eigenvalues of . A are non-negative. For any given . A, take . B
as the diagonal matrix with diagonal entries . 12 . Then .AB + BA = A. For any 
given . A, take .B = 0. Then .AB + BA = B. 

(87) Let.A = (
ai j

)
be a.10 × 10matrix such that.ai j = 1 for.i /= j and.aii = α + 1, 

where .α > 0. Let  . λ and . μ be the largest and the smallest eigenvalues of . A, 
respectively. If .λ + μ = 24, then . α equals .. . . . . .. 

Ans. The given matrix is of the form .A = α I + B where .B is the matrix with 
.bi j = 1 ∀ i, j . Then the eigenvalue of .B are 10 and zero with algebraic multi-
plicities 1 and 9, respectively. Therefore the eigenvalues of . A are .10 + α and . α

with algebraic multiplicities 1 and 9, respectively. Since .α > 0, .λ = 10 + α and 
.μ = α. Therefore .λ + μ = 24 ⇒ 10 + 2α = 24 ⇒ α = 7.
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(88) Let. v be a real.n × 1 vector satisfying.vT v = 1. Define.A = I − 2vvT . Which 
of the following statements are true? 
(a) . A is singular. (b) .A2 = A. (c) .tr(A) = n − 2. (d) .A2 = I . 

Ans. Options c and d 
Since .(vvT )v = v(vT v) = v and .vvT is a matrix of rank 1, the eigenvalues of 
.vvT are 0 and 1. Therefore the eigenvalues of .A are 1 and .−1. Therefore .A is 
non-singular. Now, 

. A2 = (I − 2vvT )(I − 2vvT ) = I − 4vvT + 4vvT vvT = I

and 
. tr(A) = tr(I − 2vvT t) = tr(I ) − 2(tr(vvT )) = n − 2

(89) Let.A ∈ M2×2(R) such that.tr(A) = 2 and.det (A) = 3. Write down the char-
acteristic polynomial of .A−1. 

Ans. Let .λ1 and .λ2 be the eigenvalues of . A, then .tr(A) = λ1 + λ2 = 2 and 
.det (A) = λ1λ2 = 3. Then .λ1 = 1 + √

2i and .λ2 = 1 − √
2i . The eigenvalues 

of .A−1 are .
1
λ1

= 1−√
2i

3 and .
1
λ2

= 1+√
2i

3 and hence the characteristic polynomial 

of .A−1 is .λ2 − 2
3λ + 1

3 . 

(90) Let .A be a real .6 × 6 matrix. Let . 2 and . 1 be two eigenvalues of . A. If  . A5 =
aI + bA, where .a, b ∈ R, then 
(a) .a = 10, b = 11 (b) . a = −11, b = 10
(c) .a = −10, b = 11 (d) .a = 10, b = −11. 

Ans. Option a 
The given matrix satisfies the equation .A5 = aI + bA. Therefore . p(λ) = λ5 −
bλ − a is an annihilating polynomial for . A. Since . 2 and .−1 are two eigenvalues 
of . A, we have 

. p(2) = 32 − 2b − a = 0 and p(−1) = −1 + b − a = 0

Solving, we get .a = 10, b = 11. 

(91) Let .A be a .3 × 3 matrix with real entries such that .A2 = A + 2I . If  .α, β, 
and . γ are eigenvalues of . A such that .αβγ = −4, then .α + β + γ is equal to 
.. . . . . .. 

Ans. As .A satisfies the equation .A2 = A + 2I , .λ2 − λ − 2 = 0 is an annihi-
lating polynomial of . A. Then 2 and .−1 are the possible eigenvalues. Since 
.αβγ = −4, the eigenvalues must be .2, 2,−1. Therefore .α + β + γ = 3. 

(92) Let 

.S = {x ∈ R | x = tr(A) for some A ∈ M4×4(R) such that A2 = A}
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Then which of the following describes . S? 
(a) .S = {0, 2, 4} (b) . S = {0, 1

2 , 1,
3
2 ,

5
2 , 3,

7
2 , 4}

(c) .S = {0, 1, 2, 3, 4} (d) .S = [0, 4]. 
Ans. Option c 
Since .A satisfies .A2 = A, .λ2 − λ is an annihilating polynomial of the given 
matrix. Hence the possible eigenvalues are 0 and 1. Since .A is of order 4 and 
trace is the sum of eigenvalues, .S = {0, 1, 2, 3, 4}. 

(93) Let . A be an .n × n matrix (with .n > 1) satisfying .A2 − 7A + 12I = 0. Then 
which of the following statements are true? 

(a) . A is invertible 
(b) .μ2 − 7μ + 12n = 0 where . μ = tr(A)

(c) .d2 − 7d + 12 = 0 where . d = det (A)

(d) .λ2 − 7λ + 12 = 0 where . λ is an eigenvalue of . A. 

Ans. Options a and d 
Since .A satisfies .A2 − 7A + 12I = 0, .(λ − 3)(λ − 4) = 0 is an annihilating 
polynomial of the given matrix. Since 0 cannot be an eigenvalue of . A, the  
matrix is invertible and an eigenvalue of .A satisfies .λ2 − 7λ + 12 = 0. Con-

sider the matrix .A =
|
4 0
0 3

|
. Then . A satisfies the given equation but . tr(A) = 7

and .det (A) = 12 are not solutions of .λ2 − 7λ + 12 = 0. 

(94) Let .T : R
n → R

n be a linear map that satisfies .T 2 = T − I . Then which of 
the following are true? 
(a) . T is invertible. (b) .T − I is not invertible. 
(c) . T has a real eigenvalue. (d) .T 3 = −I . 

Ans. Options a and d 
Since .T satisfies .T 2 = T − I , .λ2 − λ + 1 is an annihilating polynomial and 

hence its possible eigenvalues are .
1 ± √

3i

2
. As . 0 is not an eigenvalue of . T , it is  

invertible and as 1 is not an eigenvalue of .T − I is also invertible. Now 

. T 2 = T − I ⇒ T 3 = T 2 − T = (T − I ) − T = −I

(95) Let. A be a non-zero linear transformation on a real vector space. V of dimension 
. n. Let the subspace.W ⊂ V be the image of. V under. A. Let. k = dim(W ) < n
and suppose that for some.λ ∈ R, A2 = λA. Then 

(a) .λ = 1. 
(b) .det (A) = |λ|n . 
(c) . λ is the only eigenvalue of . A. 
(d) There is a non-trivial subspace.W1 ⊂ V such that .Av = 0 for all .v ∈ W1.
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Ans. Option d 
Since .A satisfies .A2 = λA, .x2 − λx = x(x − λ) is an annihilating polynomial 
of . A. Since .dim [R(A)] < n, .A is not of full rank. Therefore 0 is an eigenvalue 
of . A. Also  .dim [N(A)] ≥ 1. Therefore there is a non-trivial subspace . W1 ⊂ V
such that .Av = 0 for all .v ∈ W1. 

(96) Let .A be an .n × n matrix with real entries such that .A3 = I . Suppose that 
.Av /= v for any non-zero vector . v. Then which of the following statements 
is/are TRUE? 
(a) . A has real eigenvalues (b) .A + A−1 has real eigenvalues 
(c) . n is divisible by 2 (d) . n is divisible by 3. 

Ans. Options b and c 
Since .A3 = I , .λ3 − 1 is an annihilating polynomial of . A. Thus the possible 
eigenvalues of . A are .1, ω, ω2. Since .Av /= v for any non-zero vector . v, 1 is not 
an eigenvalue of. A. Hence the only possible eigenvalues of. A are.ω,ω2.. A + A−1

has only one eigenvalue .ω + ω2 = −1, which is real. As .A has only complex 
eigenvalues and complex eigenvalues occur in conjugate pairs, . n is divisible 
by 2. 

(97) (a) Let . A be a .3 × 3 real matrix with .det (A) = 6. Then find .det (ad j A). 
(b) Let.v1 and.v2 be non-zero vectors in.R

n, n ≥ 3, such that.v2 is not a scalar 
multiple of. v1. Prove that there exists a linear transformation. T : R

n → R
n

such that.T 3 = T, T v1 = v2, and. T has at least three distinct eigenvalues. 

Ans. (a) We have 
. A (ad j (A)) = det (A)I

Taking determinant on both sides, 

. det (A)det (ad j (A)) = (det (A))3 = 216 ⇒ det (ad j (A)) = 36

(b) Let.{v1, v2, . . . , vn} be a basis for.Rn. Define.T (v1) = v2, T (v2) = v1, and 
.T (v j ) = v j ∀ j = 3, . . . , n. Then 

. T 3(v1) = T 2 (T (v1)) = T 2(v2) = T (T (v2)) = T (v1)

and 
. T 3(v2) = T 2 (T (v2)) = T 2(v1) = T (T (v1)) = T (v2)

Clearly.T 3(v j ) = T (v j ) ∀ j = 3, . . . , n. Therefore. T is a linear transfor-
mation such that .T 3 = T and .T v1 = v2. Now since .λ3 − λ is an annihi-
lating polynomial of. T and. T is not the identity transformation. Therefore 
. T has at least three distinct eigenvalues.
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(98) How many elements of .M2×2(Z7) are similar to the following matrix? 

. 

|
0 0
0 1

|

Ans. The characteristic polynomial of the given matrix is .λ2 − λ = 0. It has  

.trace = 1 and .determinant = 0. The general form of an element is . 

|
a b
c 1 − a

|

where .a(1 − a) = bc, a, b, c ∈ Z7. There are 56 such matrices. 

(99) Let . A and . B be real invertible matrices such that .AB = −BA. Then 
(a) .tr(A) = tr(B) = 0 (b) . tr(A) = tr(B) = 1
(c) .tr(A) = 0, tr(B) = 1 (d) .tr(A) = 1, tr(B) = 0. 

Ans. Option a 
Let .AB = −BA. Since .A is invertible, multiplying by .A−1 gives . B =
A−1(−B)A. Thus, .B and .−B are similar. Therefore they have the same trace 
(Corollary 4.4). That is, .tr(B) = tr(−B) ⇒ tr(B) = 0. Similarly multiplying 
by .B−1 gives .tr(A) = 0. 

(100) Let . A and . B be .n × n matrices over . C. Then, 

(a) .AB and .BA always have the same set of eigenvalues. 
(b) If .AB and .BA have the same set of eigenvalues then .AB = BA. 
(c) If .A−1 exists then .AB and .BA are similar. 
(d) The rank of .AB is always the same as the rank of .BA. 

Ans. Options a and c 

(a) Let 0 be an eigenvalue of .AB. Then 

. 0 = det (AB) = det (A)det (B) = det (B)det (A) = det (BA)

This implies that 0 is also an eigenvalue of.BA. Now  let. λ be an eigenvalue 
of .AB, then there exists .v /= 0 such that 

. (AB)v = A(Bv) = λv ⇒ B(AB)v = (BA)(Bv) = λ(Bv)

Clearly .Bv /= 0, since .Bv = 0 implies that either .λ = 0 or .v = 0, which  
are not possible. Therefore . λ is an eigenvalue of .BA with eigenvector . Bv
where . v is an eigenvector of .AB with respect to the eigenvalue . λ.
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(b) Let .A =
⎡
⎣
1 0 0
0 0 0
0 0 0

⎤
⎦ and .B =

⎡
⎣
0 0 0
1 0 0
0 0 0

⎤
⎦. Then .AB =

⎡
⎣
0 0 0
0 0 0
0 0 0

⎤
⎦ and . BA =

⎡
⎣
0 0 0
1 0 0
0 0 0

⎤
⎦. .AB and .BA have the same set of eigenvalues (only 0). But 

.AB /= BA. 
(c) Since . A is invertible 

. AB = (AB)I = (AB)(AA−1) = A(BA)A−1

.AB and .BA are similar. 
(d) Consider. A and. B in option. b. Then.Rank(AB) = 0 and.Rank(BA) = 1. 

(101) The minimal polynomial associated with the matrix .

⎡
⎣
0 0 3
1 0 2
0 1 1

⎤
⎦ is 

(a) . λ3 − λ2 − 2λ − 3
(b) . λ3 − λ2 + 2λ − 3
(c) . λ3 − λ2 − 3λ − 3
(d) .λ3 − λ2 + 3λ − 3. 

Ans. Option a 
Since the characteristic polynomial of a .3 × 3 matrix .A is given by . λ3 −
[tr(A)]λ2 + [M11 + M22 + M33]λ − det (A), the characteristic and minimal 
polynomial of the given matrix is .λ3 − λ2 − 2λ − 3. 

(102) The minimal polynomial of the matrix .

⎡
⎣
3 3 0
3 3 0
0 0 6

⎤
⎦ is 

(a) .λ(λ − 1)(λ − 6) (b) .λ(λ − 3) (c) .(λ − 3)(λ − 6) (d) .λ(λ − 6). 

Ans. Option d 
Since the given matrix has determinant zero, zero is an eigenvalue. Since it has 
trace 12, the sum of the eigenvalues must be 12. From the given options, this is 
possible only when the minimal polynomial is .λ(λ − 6). 

(103) The minimal polynomial of .

⎛
⎜⎜⎝
2 1 0 0
0 2 0 0
0 0 2 0
0 0 1 5

⎞
⎟⎟⎠ is 

(a).(λ − 2)(λ − 5) (b).(λ − 2)2(λ − 5) (c).(λ − 2)3(λ − 5) (d).(λ − 2)4. 

Ans. Option b 
Since the given matrix is a block diagonal matrix, the characteristic polyno-
mial of the given matrix is .(λ − 2)3(λ − 5) and the minimal polynomial is 
.(λ − 2)2(λ − 5).
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(104) Let. A be a non-diagonal.2 × 2matrix with complex entries such that.A = A−1. 
Write down its characteristic and minimal polynomials. 

Ans. As .A = A−1, we get .A2 = I . Since . A is a .2 × 2 matrix, the characteristic 
polynomial of .A is .λ2 − 1 = (λ + 1)(λ − 1). Since each eigenvalue is a root 
of the minimal polynomial, minimal polynomial is same as the characteristic 
polynomial. 

(105) Let . f (λ) be the minimal polynomial of the .4 × 4 matrix 

. A =

⎡
⎢⎢⎣
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

then the rank of the .4 × 4 matrix . f (A) is 
(a) 0 (b) 1 (c) 2 (d) 4.  

Ans. Option a 
Since the minimal polynomial of a matrix. A is the least degree monic polynomial 
. f (λ) such that . f (A) = 0, rank of . f (A) is 0. 

(106) If.A ∈ Mn×n(R) (with.n ≥ 2) has rank 1, then show that the minimal polyno-
mial of . A has degree 2. 

Ans. .A ∈ Mn×n(R) implies that there exists a linear transformation . T : R
n →

R
n. Let .R(T ) denote the range space of .T and .N(T ) denote the null space of 

. T . Since 
. Rank(A) = dim [R(T )] = 1

.R(T ) is spanned by some non-zero vector .v ∈ R
n. Since .v ∈ R(T ) there exists 

.v1 ∈ R
n such that .T v1 = v. Since .dim [N(T )] = n − 1, null space of .T is 

spanned by a set .{v2, v3, . . . , vn}. Then .{v1, v2, v3, . . . , vn} forms a basis for 
.R

n. Now we have .T (v1) = v and .T (vi ) = 0 for all .i = 2, . . . , n and there are 
two possibilities for .T (v1). Either .T (v1) ∈ N(T ) or .T (v1) /∈ N(T ). 
Suppose that .T (v1) ∈ N(T ), then .v = T (v1) = c2v2 + · · · + cnvn since 
.N(T ) = span{v1, v2, v3, . . . , vn}. Then the matrix of . T is given by 

. 

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
c2 0 · · · 0
c3 0 · · · 0
...

...
. . .

...

cn−1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

Then clearly .T 2 = 0. Now suppose that .T (v1) /∈ N(T ), then .T (v1) ∈ span{v}. 
That is, .T (v1) = c1v for some .c1 /= 0 ∈ R. In this case the matrix of .T corre-
sponding to the basis .{v, v2, v3, . . . , vn} is
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. 

⎡
⎢⎢⎢⎢⎢⎣

c1 0 · · · 0
0 0 · · · 0
0 0 · · · 0
0

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

Clearly the matrix of . T is diagonalizable. In both cases, the minimal polynomial 
of .A is of degree 2 (since the matrix corresponding to a linear transformation 
with respect to different basis is similar). 

(107) Let A be a real.2 × 2matrix such that.A6 = I . The total number of possibilities 
for the characteristic polynomial of . A is .. . . . . .. 

Ans. Since . A satisfies .A6 = I , .λ6 − 1 is an annihilating polynomial of . A. Now  

. λ6 − 1 = (λ3 − 1)(λ3 + 1) = (λ + 1)(λ − 1)(λ2 + λ + 1)(λ2 − λ + 1)

So the possible minimal polynomials are 

. (λ + 1), (λ − 1), (λ + 1)(λ − 1), (λ2 + λ + 1), (λ2 − λ + 1)

and hence the possible characteristic polynomials are 

. (λ + 1)2, (λ − 1)2, (λ + 1)(λ − 1), (λ2 + λ + 1), (λ2 − λ + 1)

Therefore, the total number of possibilities for the characteristic polynomial of 
. A is 5. 

(108) Consider a matrix.A = (
ai j

)
n×n with integer entries such that.ai j = 0 for. i > j

and .ai j = 1 for .i = 1, 2, . . . , n. Which of the following properties must be 
true? 

(a) .A−1 exists and it has integer entries. 
(b) .A−1 exists and it has some entries that are not integers. 
(c) .A−1 is a polynomial function of . A with integer coefficients. 
(d) .A−1 is not a power of . A unless . A is the identity matrix. 

Ans. Options a, c, and d 

The matrix is of the form .

⎡
⎢⎢⎢⎣

1 1 . . . 1
0 1 . . . 1
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦. Since the matrix is upper triangular, the 

characteristic polynomial of the given matrix is .(λ − 1)n. As the determinant 
is 1, .A−1 exists and it has integer entries and by Cayley–Hamilton Theorem, 
.A−1 is a polynomial function of .A with integer coefficients. Now suppose that
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.A−1 = Ak for some positive integer . k, then .Ak+1 = I . Thus, .λk+1 − 1 is an 
annihilating polynomial of . A. Since the minimal polynomial divides the charac-
teristic polynomial and every annihilating polynomial, the minimal polynomial 
is .λ − 1. 

(109) Consider the linear map .T : P3[a, b] → P3[a, b] defined by 

. (T p)(x) = p(x + 1) + p(x − 1)

Which of the following properties does the matrix of .T (with respect to the 
standard basis .B = {1, x, x2, x3} of .P3[a, b]) satisfy? 
(a) . det (T ) = 0
(b) .(T − 2I )4 = 0 but . (T − 2I )3 /= 0
(c) .(T − 2I )3 = 0 but . (T − 2I )2 /= 0
(d) 2 is an eigenvalue with multiplicity 4. 

Ans. Option d 
We have 

. T (1) = 2 = 2.1 + 0x + 0x2 + 0x3

. T (x) = 2x = 0.1 + 2x + 0x2 + 0x3

. T (x2) = 2x2 + 2 = 2.1 + 0x + 2x2 + 0x3

. T (x3) = 2x3 + 6x = 0.1 + 6x + 0x2 + 2x3

Therefore the matrix of .T is .A =

⎡
⎢⎢⎣
2 0 2 0
0 2 0 6
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦. The characteristic polynomial of 

. A is .(λ − 2)4 and the minimal polynomial is .(λ − 2)2. Clearly .det (T ) = 16. 

(110) Let .A ∈ M3×3(R) be such that .A8 = I . Then 

(a) minimal polynomial of . A can only be of degree 2. 
(b) minimal polynomial of . A can only be of degree 3. 
(c) either .A = I or .A = −I . 
(d) there are uncountably many . A satisfying the above. 

Ans. Option d 
Consider .A = I . Then .A8 = I . But the minimal polynomial is of degree 1. Now 

consider the matrix .

⎡
⎣
1 0 0
0 1 0
0 0 −1

⎤
⎦. Then .A8 = I . But  .A /= I or .A /= −I . In fact 

any matrix with minimal polynomial .(λ − 1)(λ + 1) = 0 satisfies .A8 = I .
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(111) Let.V and.W be finite dimensional vector spaces over. R, and let . T1 : V → V
and .T2 : W → W be linear transformations whose minimal polynomials are 
given by 

. f1(λ) = λ3 + λ2 + λ + 1 and f2(λ) = λ4 − λ2 − 2

Let .T : V ⊕ W → V ⊕ W be the linear transformation defined by 

. T (v,w) = (T1(v), T2(w)) f or (v,w) ∈ V ⊕ W

and let . f (λ) be the minimal polynomial of . T . Then 
(a) .deg [ f (λ)] = 7 (b) . deg [ f (λ)] = 5
(c) .Nulli t y(T ) = 1 (d) .Nulli t y(T ) = 0. 

Ans. Options b and d 
As . f1(λ) = λ3 + λ2 + λ + 1 = (λ + 1)(λ2 + 1) and . f2(λ) = λ4 − λ2 − 2 =
(λ2 − 2)(λ2 + 1), we have 

. f (λ) = lcm
(
λ3 + λ2 + λ + 1, λ4 − λ2 − 2

)

= (λ + 1)(λ2 + 1)(λ2 − 2)

= λ5 + λ4 − λ3 − λ2 − 2λ − 2

.deg [ f (λ)] = 5 and since 0 is not an eigenvalue of . f (λ), .Nulli t y(T ) = 0. 

(112) Let . A be an .n × n matrix over . C such that every non-zero vector of .Cn is an 
eigenvector of . A. Then 

(a) All eigenvalues of . A are equal. 
(b) All eigenvalues of . A are distinct. 
(c) .A = λI for some .λ ∈ C, where . I is the .n × n identity matrix. 
(d) If .χA and.mA denote the characteristic polynomial and the minimal poly-

nomial respectively, then .χA = mA. 

Ans. Options a and c 
Suppose that .λ1 and .λ2 are two distinct eigenvalues of .A with eigenvectors . v1
and . v2. Since eigenvectors corresponding to distinct eigenvalues are linearly 
independent, .{v1, v2} is linearly independent. Now as every vector in .Cn is an 
eigenvector of . A, there exists . λ such that .A(v1 + v2) = λ(v1 + v2). But . A(v1 +
v2) = Av1 + Av2 = λ1v1 + λ2v2, we get  

.λ(v1 + v2) = λ1v1 + λ2v2 ⇒ (λ − λ1)v1 = (λ2 − λ)v2
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Since .λ1 /= λ2 at least one of .(λ − λ1) and .(λ2 − λ) is non-zero. This implies 
.{v1, v2} is linearly dependent which is a contradiction. Therefore all eigenvalues 
of . A are equal. 
Since .Av = λv for all .v ∈ C

n and for some .λ ∈ C, 

. (A − λI )v = 0 ∀ v ∈ C
n

This gives .(A − λI ) is the zero operator and hence .A = λI for some .λ ∈ C. The 
characteristic polynomial is given by .χA = (x − λ)n, and the minimal polyno-
mial is given by .mA = (x − λ). 

(113) Given two.n × n matrices . A and. B with entries in . C. Consider the following 
statements: 
.P : If . A and . B have the same minimal polynomial, then . A is similar to . B. 
.Q : If .A has .n distinct eigenvalues, then there exists .v ∈ C

n such that 
.v, Av, . . . , An−1v are linearly independent. 
Which of the above statements hold TRUE? 
(a) both .P and .Q (b) only . P
(c) only .Q (d) Neither .P nor . Q. 

Ans. Option c 

(a) Consider the matrices .

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ and .

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦. They have the same 

minimal and characteristic polynomial. But they are not similar. 
(b) Since .A has . n distinct eigenvalues .λ0, λ1, . . . , λn−1, .A has . n linearly 

independent eigenvectors, say.v0, v1, v2, . . . vn−1. Consider the vector. v =
v0 + v1 + · · · + vn−1. Then 

. Akv = Akv0 + Akv1 + · · · + Akvn−1 = λk
0v0 + λk

1v1 + · · · + λk
n−1vn−1

where .k = 1, 2, . . . n − 1. Now consider . c0v + c1Av + · · · + cn−1

An−1v = 0. This implies that . (c0 + c1λ0 + c2λ2
0 + · · · + cn−1λ

n−1
0 )v0 +

(c0 + c1λ1 + c2λ2
1 + · · · + cn−1λ

n−1
1 )v1 + · · · + (c0 + c1λn−1 + c2λ2

n−1

+ · · · + cn−1λ
n−1
n−1)vn−1 = 0. Since .v0, v1, v2, . . . vn−1 is linearly inde-

pendent, this implies .c0 + c1λi + c2λ2
i + · · · + cn−1λ

n−1
i = 0 for all . i =

0, 1, . . . , n − 1. This can be written in the matrix form .AX = B as 

.

⎡
⎢⎢⎢⎣

1 λ0 λ2
0 . . . λn−1

0
1 λ1 λ2

1 . . . λn−1
1

...
...

...
. . .

...

1 λn−1 λ2
n−1 . . . λn−1

n−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c0
c1
c2
...

cn−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦
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Since the coefficient matrix is a Vandermonde matrix, 1 with. λi /= λ j ∀ i /=
j , it is invertible and the given system has trivial solution only. Hence, 

.c0 = c1 = · · · = cn−1 = 0. Therefore the set.v, Av, . . . , An−1v is linearly 
independent. 

(114) .A non-zero matrix .A ∈ Mn×n(R) is said to be nilpotent if .Ak = 0 for some 
positive integer.k ≥ 2. If. A is nilpotent, which of the following statements are 
true? 

(a) Necessarily, .k ≤ n for the smallest such . k
(b) The matrix .I + A is invertible 
(c) All eigenvalues of . A are zero. 

Ans. Options a, b, and c 

(a) Since . A satisfies if .Ak = 0 for some positive integer .k ≥ 2, .λk is an anni-
hilating polynomial of . A. Since the minimal polynomial divides annihi-
lating polynomial, it is of the form .λr for some .r ≤ n as it divides the 
characteristic polynomial also. 

(b) Since the minimal polynomial is of the form .λr for some .r ≤ n, all eigen-
values of .A are zero. Then the eigenvalues of .I + A are 1. Therefore 
.I + A is invertible. 

(c) All eigenvalues of . A are zero. 

(115) Let .V be the vector space of polynomials of degree at most 3 in a variable 
. x with coefficients in . R. Let  .T = d

dx be the linear transformation of .V into 
itself given by differentiation. Which of the following are correct? 

(a) . T is invertible. 
(b) 0 is an eigenvalue of . T . 
(c) There is a basis with respect to which the matrix of . T is nilpotent. 
(d) The matrix of . T with respect to the basis . {1, 1 + x, 1 + x + x2, 1 + x +

x2 + x3} is diagonal. 

Ans. Options b and c 
Consider the standard ordered basis .{1, x, x2, x3} for . V . Now

1 A Vandermonde matrix, named after the French Mathematician Alexandre-Théophile Vander-

monde (1735–1796), is a matrix of the form.A =

⎡
⎢⎢⎢⎣

1 x0 . . . xn0
1 x1 . . . xn1
.
.
.

.

.

.
. . .

.

.

.

1 xm . . . xnm

⎤
⎥⎥⎥⎦. The determinant of the Vander-

monde matrix is given by.det (A) = |
0≤i< j≤n

(
x j − xi

)
. 
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. T (1) = 0 = 0 + 0x + 0x2 + 0x3

. T (x) = 1 = 1 + 0x + 0x2 + 0x3

. T (x2) = 2x = 0 + 2x + 0x2 + 0x3

. T (x3) = 3x2 = 0 + 0x + 3x2 + 0x3

Then the matrix of .T is .

⎡
⎢⎢⎣
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥⎥⎦. Clearly it is a nilpotent matrix as . T 4 =

0 and 0 is an eigenvalue of . T . Since the matrices of a linear transformation 
corresponding to different basis are similar, the matrix of .T with respect to the 
basis .{1, 1 + x, 1 + x + x2, 1 + x + x2 + x3} is not diagonal. 

(116) Let .A =
⎡
⎣
2 0 −3
3 −1 −3
0 0 −1

⎤
⎦. A matrix .P such that .P−1AP is a diagonal matrix is 

(a) .

⎡
⎣
1 1 1
0 1 1
1 1 0

⎤
⎦ (b) .

⎡
⎣

−1 1 1
0 1 1
1 1 0

⎤
⎦ (c) .

⎡
⎣
1 −1 1
0 1 1
1 1 0

⎤
⎦ (d) .

⎡
⎣

−1 −1 1
0 −1 1
1 1 0

⎤
⎦. 

Ans. Option a 
The characteristic polynomial of the given matrix . A is 

. λ3 − 3λ − 2 = (λ + 1)2(λ − 2)

.−1 is an eigenvalue of the given matrix with eigenvectors . (1, 0, 1)T , (1, 1, 1)T

and 2 is an eigenvalue with eigenvector .(1, 1, 0)T . 

(117) Which of the following matrices is NOT diagonalizable? 

(a) .

(
1 1
1 2

)
(b) .

(
1 0
3 2

)
(c) .

(
0 −1
1 0

)
(d) .

(
1 1
0 1

)
. 

Ans. Option d 

(a) The characteristic equation of the given matrix is.λ2 − 3λ + 1 = 0. Since 
it has 2 distinct roots, the given matrix is diagonalizable. 

(b) The given matrix is a lower triangular matrix and hence the eigenvalues 
are its diagonal entries. Since it has 2 distinct eigenvalues, the given 
matrix is diagonalizable. 

(c) The characteristic equation of the given matrix is.λ2 + 1 = 0. Since it has 
two distinct complex roots, the given matrix is diagonalizable over . C. 

(d) The characteristic and minimal polynomial of the given matrix is.(λ − 1)2. 
Since the minimal polynomial of the given matrix is not of linear factors, 
the given matrix is not diagonalizable.
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(118) Which of the following matrices is not diagonalizable over . R? 

(a) .

⎛
⎝
2 0 1
0 3 0
0 0 2

⎞
⎠ (b) .

(
1 1
1 1

)
(c) .

⎛
⎝
2 1 0
0 3 0
0 0 3

⎞
⎠ (d) .

(
1 −1
2 4

)
. 

Ans. (a) The given matrix is an upper triangular matrix and hence its diag-
onal entries are its eigenvalues. Hence its characteristic polynomial is 
.(λ − 2)2(λ − 3). The minimal polynomial is the same as the characteris-
tic polynomial. Since minimal polynomial does have non-linear factors, 
the matrix is not diagonalizable. 

(b) Since the given matrix is a .2 × 2 matrix with distinct eigenvalues, it is 
diagonalizable. (Its characteristic polynomial is .λ2 − 2λ = λ(λ − 2).) 

(c) The characteristic polynomial of the given matrix is .(λ − 2)2(λ − 3) and 
its minimal polynomial is .(λ − 2)(λ − 3). Since the minimal polynomial 
is of linear factors only, the matrix is diagonalizable. 

(d) Since the given matrix is a .2 × 2 matrix with distinct eigenvalues, it 
is diagonalizable. (Its characteristic polynomial is . λ2 − 5λ + 6 = (λ −
2)(λ − 3).) 

Option a 

(119) Let.A =
⎡
⎣

1 −1 1
2 1 4

−2 1 −4

⎤
⎦. Given that 1 is an eigenvalue of. A, which among the 

following are correct? 
(a) The minimal polynomial of. A is.(λ − 1)(λ + 4) (b). A is not diagonalizable 
(c) The minimal polynomial of . A is .(λ − 1)2(λ + 4) (d) .A−1 = 1

4 (A + 3I ). 

Ans. Options b and c 
Let.λ1 and.λ2 be the two eigenvalues of. A. Since.tr(A) = −2 and.det (A) = −4, 
.λ1 + λ2 = −3 and .λ1λ2 = −4. Thus we get .λ1 = −4 and .λ2 = 1. Therefore the 
characteristic polynomial of . A is .(λ − 1)2(λ + 4). Since .(A − I )(A + 4I ) /= 0, 
the minimal polynomial of . A is .(λ − 1)2(λ + 4). Since the minimal polynomial 
consists of non-linear factors, . A is not diagonalizable. 

(120) Let. A be a non-zero.2 × 2matrix with real entries. Pick out the true statements: 

(a) If .A2 = A, then . A is diagonalizable. 
(b) If .A2 = 0, then . A is diagonalizable. 
(c) If . A is invertible, then .A = (tr(A))I − (det (A))A−1. 

Ans. Options a and c 

(a) .A2 = A implies that . A satisfies the polynomial equation 

.λ2 − λ = λ(λ − 1)
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Then the possibilities of minimal polynomial are.λ, (λ − 1) and.λ(λ − 1). 
. λ is not the minimal polynomial since. A is not zero. Therefore the possible 
minimal polynomials are .(λ − 1) and .λ(λ − 1). In either case, minimal 
polynomial consists of linear factors. Therefore . A is diagonalizable. 

(b) Consider the matrix .A =
|
0 1
0 0

|
. Then .A2 =

|
0 0
0 0

|
. But  .A is not diago-

nalizable as the minimal polynomial of . A is . λ2. 

(c) Let .A =
|
a b
c d

|
, then the characteristic equation of . A is 

. λ2 − (a + d)λ + (ad − bc) = 0 ⇒ A2 − (a + d)A + (ad − bc)I = 0

⇒ A2 = tr(A)A + (det (A))I

⇒ A = (tr(A))I − (det (A))A−1.

(121) Let. A be an.n × n matrix with real entries. Which of the following is correct? 

(a) If .A2 = I , then . A is diagonalizable over real numbers. 
(b) If .A2 = A, then . A is diagonalizable only over complex numbers. 
(c) The only matrix of size. n satisfying the characteristic polynomial of . A is 

. A. 

Ans. Option b 

(a) Since .A satisfies .A2 = I , .λ2 − 1 = (λ − 1)(λ + 1) is an annihilating 
polynomial of . A. Since the minimal polynomial of .A divides annihilat-
ing polynomial, the possible minimal polynomials are .λ − 1, λ + 1, and 
.(λ − 1)(λ + 1). Since each of them are of linear factors, .A is diagonal-
izable over real numbers. 

(b) Since .A satisfies .A2 = A, .λ2 − λ = λ(λ − 1) is an annihilating polyno-
mial of . A. The possible minimal polynomials are .λ, λ − 1, and .λ(λ − 1). 
Since each of them are of linear factors, .A is diagonalizable over real 
numbers and complex numbers. 

(c) Every matrix similar to .A has the same characteristic polynomial. For 

example, .A =
|
0 1
0 0

|
and .B =

|
0 0
1 0

|
have the same characteristic poly-

nomial. 

(122) An .n × n complex matrix .A satisfies .Ak = I , where . k is a positive integer 
greater than . 1. Suppose 1 is not an eigenvalue of . A. Then which of the fol-
lowing statements are necessarily true? 
(a) . A is diagonalizable. 
(b) .A + A2 + · · · + Ak−1 = 0. 
(c) .tr(A) + tr(A2) + · · · + tr(Ak−1) = −n. 
(d) .A−1 + A−2 + · · · + A−(k−1) = −In .
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Ans. Options a, c, and d 
Since .A satisfies .Ak = I , .λk − 1 is an annihilating polynomial of the given 
matrix. Since . 1 is not an eigenvalue of . A and as 

. λk − 1 = (λ − 1)(1 + λ + λ2 + · · · + λk−1)

.1 + λ + λ2 + · · · + λk−1 is an annihilating polynomial of . A. Therefore 

. A + A2 + · · · + Ak−1 = −I

and hence 
. tr(A) + tr(A2) + · · · + tr(Ak−1) = −n

Since the annihilating polynomial can be linearly factorized using .kth roots of 
unity, .A is diagonalizable over . C. Since .I + A + A2 + · · · + Ak−1 = 0, multi-
plying .A−(k−1) on both sides 

. A−1 + A−2 + · · · + A−(k−1) = −In

(123) Let . A be a .2 × 2 matrix with real entries which is not a diagonal matrix and 
which satisfies .A3 = I . Pick out the true statements: 

(a) .tr(A) = −1. 
(b) . A is diagonalizable over . R. 
(c) .λ = 1 is an eigenvalue of . A. 

Ans. Option a 
Since. A satisfies.A3 = I ,.λ3 − 1 = (λ − 1)(λ2 + λ + 1) is an annihilating poly-
nomial of. A. Therefore the possibilities of the minimal polynomial are .λ − 1 and 
.λ2 + λ + 1. As . A is not a diagonal matrix, .λ − 1 cannot be the minimal polyno-
mial of . A. Thus the minimal polynomial of . A is .λ2 + λ + 1. Since . A is of order 
2, the characteristic polynomial is the same as the minimal polynomial. .A is 
not diagonalizable over .R and .λ = 1 is not an eigenvalue of . A. Also  . tr(A) =
coefficient of .λ = −1. 

(124) Let .A be a non-zero .3 × 3 matrix with the property .A2 = 0. Which of the 
following is/are true? 
(a) . A is not similar to a diagonal matrix 
(b) . A is similar to a diagonal matrix 
(c) . A has one non-zero eigenvector 
(d) . A has 3 linearly independent eigenvectors. 

Ans. Options a and c 
Since .A is a non-zero .3 × 3 matrix that satisfies .A2 = 0, .λ2 is the minimal 
polynomial of .A and hence .A is not similar to a diagonal matrix. 0 is the only 
eigenvalue of . A. Since . A has rank 1 (. A is not of rank 3 as . A is not invertible. If
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.Rank(A) = 2, .Rank(A2) ≥ 1), the solution space of .Ax = 0 has dimension 2. 
Therefore . A has one non-zero eigenvector. 

(125) Let.A ∈ Mn(R)with the property.An = 0. Which of the following is/are true? 
(a) . A has . n distinct eigenvalues (b) . A has one eigenvalue of multiplicity . n
(c) 0 is an eigenvalue of .A (d) . A is similar to a diagonal matrix. 

Ans. Options b and c 
Clearly .A is a nilpotent matrix. 0 is the only eigenvalue of .A with multiplicity 

. n. Consider the matrix .A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦
. Clearly .A is not similar to a diag-

onal matrix. Since the characteristic polynomial of a nilpotent matrix is . λn, its 
minimal polynomial is of the form .λr where .r ≤ n. Therefore a nilpotent matrix 
is diagonalizable implies that the matrix is zero matrix. 

(126) Let .A be an .n × n(n ≥ 2) non-zero real matrix with .A2 = 0, and let . α ∈
R \ {0}. Then 
(a) . α is the only eigenvalue of .(A + α I ) and . (A − α I )
(b) . α is the only eigenvalue of .(A + α I ) and . (α I − A)

(c) .−α is the only eigenvalue of .(A + α I ) and . (A − α I )
(d) .−α is the only eigenvalue of .(A + α I ) and .(α I − A). 

Ans. Option b 
As .A2 = 0, .A is a nilpotent matrix and hence .A has 0 as the only eigenvalue. 
Also if . λ is an eigenvalue of . A, .λ + k is an eigenvalue of .A + k I . Therefore the 
only eigenvalue of .(A + α I ) and .(α I − A) is . α. Also .−α is the only eigenvalue 
of .(A − α I ). 

(127) Let. A be a.3 × 3 real non-diagonal matrix with.A−1 = A. Show that. tr(A) =
det (A) = ±1. 

Ans. . A satisfies the polynomial equation.λ2 − 1 = 0. Therefore the possibilities 
for minimal polynomial of. A are.λ − 1, λ + 1, λ2 − 1. Since. A is a non-diagonal 
matrix, the minimal polynomial is .λ2 − 1. Thus the possible eigenvalues are 
.1,−1, 1 or .1,−1,−1. In the first case .tr(A) = 1, det (A) = −1 and in the 
second case .tr(A) = −1, det (A) = 1. 

(128) Let . A be an .n × n matrix with real entries such that .A2 = A. Show that 

.Rank(A − I ) = Nulli t y(A)



454 11 Solved Problems—Eigenvalues and Eigenvectors

Ans. Since. A satisfies.A2 = A,. A is diagonalizable and the only possible eigen-
values of. A are 0 and 1. If. A is diagonalizable, then.A − I is also diagonalizable. 
For,. A is diagonalizable implies that there exists an invertible matrix. P such that 
.P−1AP = D, where .D is a diagonal matrix. Now 

. P−1 (A − I ) P = P−1AP − P−1P = D − I

Thus the only possible eigenvalues of .A − I are .−1 and 0. Also, as .A − I is 
diagonalizable 

. Rank(A − I ) = AM(−1) = AM(0)( f or A) = n − AM(1) = n − Rank(A) = Nulli t y(A)

(129) Let . A be an .n × n real matrix with .A2 = A. Then 

(a) the eigenvalues of . A are either 0 or 1 
(b) . A is a diagonal matrix with diagonal entries 0 or 1 
(c) . Rank(A) = tr(A)

(d) .Rank(I − A) = tr(I − A). 

Ans. Options a, c, and d 
Since . A satisfies .A2 = A, .λ2 − λ is an annihilating polynomial of . A and hence 
the only possible eigenvalues of .A are 0 and 1. The possibilities for minimal 
polynomial are .λ, λ − 1, λ(λ − 1). In any case, the minimal polynomial has 
only linear factors. Hence . A is diagonalizable. Therefore 

. Rank(A) = number of nonzero eigenvalues of A = A.M(1) = tr(A)

The possible eigenvalues of .I − A are 0 and 1 and as above, . Rank(I − A) =
tr(I − A). Now consider the matrix .A =

|
1 1
0 0

|
. Then .A2 = A, but  .A is not a 

diagonal matrix. 

(130) Let.A /= I be an.n × nmatrix such that.A2 = A, where. I is the identity matrix 
of order . n. Which of the following statements is false? 
(a) .(I − A)2 = I − A (b) . tr(A) = Rank(A)

(c) .Rank(A) + Rank(I − A) = n (d) The only eigenvalue of . A is 1. 

Ans. Option d 

(a) Since .A2 = A, we have 

. (I − A)2 = I − 2A + A2 = I − A

(b) Since .A2 = A, .λ2 − λ is an annihilating polynomial of the given matrix. 
Therefore only possible eigenvalues of .A are 1 and 0. As 1 is the only 
possible non-zero eigenvalue of . A and . A is diagonalizable,
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. tr(A) = algebraic multi plici t y o f 1 = Rank(A)

(c) The possible eigenvalues for .I − A are again 1 and 0. First, we will show 
that .I − A is diagonalizable. For, as . A is diagonalizable, there exists an 
invertible matrix. P such that.P−1AP = D, where.D is a diagonal matrix. 
Then 

. I − A = P−1P − P−1DP = P−1(I − D)P

and as .I − D is a diagonal matrix, .I − A is diagonalizable. Then,we 
have 

. Rank(I − A) = AM(1) f or I − A = AM(0) f or A

Therefore 

. Rank(A) + Rank(I − A) = AM(1) f or A + AM(0) f or A = n

(d) Consider the matrix .A =
|
1 0
0 0

|
. Then .A2 = A, but . A has 0 as an eigen-

value. 

(131) Let.A ∈ M2(R)with.A /= 0, I but.A2 = A. Which of the following statements 
are true? 

(a) .N(A) is the eigenspace of . A corresponding to the eigenvalue . 0. 
(b) Let .v /= 0 ∈ Col(A), then . v is an eigenvector of . A corresponding to the 

eigenvalue . 1. 
(c) Let .v /∈ N(A), then . v is an eigenvector of . A for the eigenvalue . 1. 
(d) .Rn = Col(A) + N(A). 

Ans. Options a, b, and d 

(a) Let .v ∈ N(A). Then .Av = 0 = 0.v implies that .N(A) is the eigenspace 
of . A corresponding to the eigenvalue . 0. 

(b) Let .v /= 0 ∈ Col(A), then .v = Au for some .u /= 0 ∈ R
n. Now,  

. Av = A(Au) = A2u = Au = v

That is, . v is an eigenvector of . A corresponding to the eigenvalue . 1. 

(c) Consider the matrix .A =
|
1 0
0 0

|
. Clearly, .A2 = A. Let .v =

|
1
1

|
. As . Av =

|
1 0
0 0

| |
1
1

|
=

|
1
0

|
/=

|
0
0

|
, .v /∈ N(A). Also,  . v is not an eigenvector of . A

corresponding to the eigenvalue . 1. 
(d) Let .v ∈ Col(A) ∩ N(A). Then .Av = 0 and there exists .u ∈ R

n such that 
.Au = v. Now,
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. v = Au = A2u = A(Au) = Av = 0

That is, .Col(A) ∩ N(A) = {0}. Then by Rank-Nullity theorem, . Rn =
Col(A) + N(A). 

(132) Let .A be a .100 × 100 matrix such that .ai j =
{
i, i f i + j = 101

0, otherwise
. Which 

of the following statements are true about . A? 

(a) . A is similar to a diagonal matrix over . R. 
(b) . A is not similar to a diagonal matrix over . C. 
(c) One of the eigenvalues of . A is 10. 
(d) None of the eigenvalues of . A exceeds 51. 

Ans. Options a, c, and d 

The matrix .A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 1
0 0 . . . 2 0
...

...
...

...

0 99 . . . 0 0
100 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎦
. Then, . A2 =

⎡
⎢⎢⎢⎢⎢⎣

1.100 0 . . . 0 0
0 2.99 . . . 0 0
...

...
. . .

...
...

0 0 . . . 2.99 0
0 0 . . . 0 1.100

⎤
⎥⎥⎥⎥⎥⎦

is a diagonal matrix. Thus, the eigenvalues of .A2 are . 1.100, 2.99, . . . , 50.51
each repeating twice. Therefore, the possible eigenvalues of .A are . ±√

1.100,
±√

2.99, . . . ,±√
50.51. As .trace(A) = 0, . ±√

1.100,±√
2.99, . . . ,±√

50.51
are the eigenvalues of. A and hence. A is diagonalizable. Also, 10 is an eigenvalue 
of . A and none of the eigenvalues of . A exceeds 51. 

(133) Let .n ≥ 1 and .α, β ∈ R with .α /= β. Suppose .An(α, β) = [ai j ]n×n be such 
that 

. ai j =
{

α, i f i = j

0, otherwise

Let.Dn denote the determinant of.An(α, β). Which of the following statements 
are true? 

(a) .Dn = (α − β)Dn−1 + β for .n ≥ 2. 
(b) . Dn

(α−β)n−1 = Dn−1

(α−β)n−2 + β for .n ≥ 2. 

(c) .Dn = (α + (n − 1)β)n−1(α − β) for .n ≥ 2. 
(d) .Dn = (α + (n − 1)β)(α − β)n−1 for .n ≥ 2.
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Ans. The matrix 

An(α, β) = 

⎡ 

⎢⎢⎢⎣ 

α β  .  .  .  β  
β α  .  .  .  β  
... 

... 
. . . 

... 
β β .  .  .  α  

⎤ 

⎥⎥⎥⎦ 
= 

⎡ 

⎢⎢⎢⎣ 

β β .  .  .  β  
β β .  .  .  β  
... 

... 
. . . 

... 
β β .  .  .  β  

⎤ 

⎥⎥⎥⎦ 
+ 

⎡ 

⎢⎢⎢⎣ 

α − β 0 . . . 0 
0 α − β  . . . 0 
... 

... 
. . . 

... 
0 0 . . .  α  − β 

⎤ 

⎥⎥⎥⎦ 
. 

That is, .An(α, β) = B + (α − β)I , where . B is the .n × n matrix with all entries 
equal to . β. As  .B is a symmetric matrix, it is diagonalizable. Hence, . Rank(B)

is the number of non-zero eigenvalues of . B. As the sum of each row of .B is 
.nβ, the eigenvalues of .B are .nβ and . 0 with multiplicities . 1 and .n − 1, respec-
tively. Therefore, the eigenvalues of .An(α, β) are .α + (n − 1)β and .α − β with 
multiplicities . 1 and .n − 1, respectively. Thus, for . n ≥ 2

. Dn = (α + (n − 1)β)(α − β)n−1

and 

. 
Dn

(α − β)n−1
= Dn−1

(α − β)n−2
+ β

Options b and d 

(134) Let .A ∈ M2(R). Which of the following statements are true? 

(a) If .(tr(A))2 > 4det (A), then . A is diagonalizable over . R. 
(b) If .(tr(A))2 = 4det (A), then . A is diagonalizable over . R. 
(c) If .(tr(A))2 < 4det (A), then . A is diagonalizable over . R. 

Ans. Option a 
The characteristic polynomial of a.2 × 2matrix is.λ2 − (tr(A))λ + det (A) = 0. 
The given system has distinct roots when .(tr(A))2 − 4det (A) > 0. Therefore if 
.(tr(A))2 > 4det (A), then . A is diagonalizable over . R. 

(135) If . A and .B are .n × n matrices with real entries, then which of the following 
is/are TRUE? 

(a) If .P−1AP is diagonal for some real invertible matrix. P , then there exists 
a basis for .Rn consisting of eigenvectors of . A. 

(b) If . A is diagonal with distinct entries and .AB = BA, then . B is also diag-
onal. 

(c) If .A2 is diagonal, then . A is diagonal. 
(d) If . A is diagonal and.AB = BA for all . B, then.AB = λI for some.λ ∈ R. 

Ans. Options a, b, and d
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(a) .P−1AP is diagonal implies that . A is diagonalizable. Therefore .R
n has a 

basis consisting of eigenvectors of . A. 

(b) Let .A =
|
a11 0
0 a22

|
with .a11 /= a22 and .B =

|
b11 b12
b21 b22

|
. Then 

. AB = BA ⇒
|
a11b11 a11b12
a22b21 a22b22

|
=

|
a11b11 a22b12
a11b21 a22b22

|
⇒ b12 = b21 = 0

since .a11 /= a22. Thus, .B is diagonal. 

(c) Let .A =
|
1 0

−1 1

|
, then .A2

.=
|
1 0
0 1

|
. But . A is not diagonal. 

(d) Let .A =
|
a11 0
0 a22

|
. Since .A commutes with every matrix, it commutes 

with .

|
0 0
1 0

|
. Now  

. 

|
a11 0
0 a22

| |
0 0
1 0

|
=

|
0 0
1 0

| |
a11 0
0 a22

|
⇒ a11 = a22

(136) Let .A ∈ Mn×n(C). Then .

(
A A
0 A

)
is diagonalizable if and only if 

(a) .A = 0 (b) .A = I (c) .n = 2 (d) None of the above. 

Ans. Option a 

Let .A = [1]. Consider the matrix .B =
|
1 1
0 1

|
. Then .B is not diagonalizable. So 

option.(b) is false. Consider the matrix.

|
1 0
0 0

|
. Then clearly the matrix. 

⎡
⎢⎢⎣
1 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦

is not diagonalizable. The characteristic polynomial of the given matrix is the 
square of the characteristic polynomial of . A, Then for the matrix to be diago-
nalizable, . A must be equal to zero matrix for otherwise the minimal polynomial 
won’t be of linear factors. 

(137) Consider .Mn×n(R). Which of the following are true for every .n ≥ 2? 

(a) there exists .A, B ∈ Mn×n(R) such that .AB − BA = I . 
(b) if .A, B ∈ Mn×n(R) and .AB = BA, then .A is diagonalizable over .R if 

and only if . B is diagonalizable over . R. 
(c) if.A, B ∈ Mn×n(R), then.AB and.BA have the same minimal polynomial. 
(d) if .A, B ∈ Mn×n(R), then .AB and .BA have the same eigenvalues in . R. 

Ans. Option d
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(a) Suppose there exists .A, B ∈ Mn×n(R) such that .AB − BA = I . Taking 
trace on both sides, 

. tr(AB − BA) = tr(In) = n

But .tr(AB − BA) = tr(AB) − tr(BA) = 0. Thus our assumption is 
incorrect. 

(b) Let .A =
⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ and .B =

⎡
⎣
0 1 0
0 0 0
0 0 0

⎤
⎦. Then .AB = BA = B. . A is diago-

nalizable but .B is not diagonalizable. 

(c) Let.A =
|
0 1
0 0

|
and.B =

|
0 0
0 1

|
. Then.AB = A and.BA = 0. The minimal 

polynomial for . A is .λ2 and for .AB the minimal polynomial is . λ. 
(d) Let. λbe an eigenvalue of.AB. Then there exists.v /= 0 such that. (AB)(v) =

λv. Let .Bv = w, then 

. (BA)(w) = (BA)(Bv) = B[(AB)v] = λBv = λw

Thus, . λ is an eigenvalue of .BA. 

(138) Let .T : R
3 → R

3 be the linear transformation whose matrix with respect to 

the standard basis .{e1, e2, e3} of .R3 is .

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦. Then . T

(a) maps the subspaces spanned by .e1 and .e3 into itself 
(b) has distinct eigenvalues 
(c) has eigenvectors that span . R

3

(d) has a non-zero null space. 

Ans. Options a and c 

(a) Since 

. 

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦

⎡
⎣
1
0
0

⎤
⎦ =

⎡
⎣
0
0
1

⎤
⎦ and

⎡
⎣
0 0 1
0 1 0
1 0 0

⎤
⎦

⎡
⎣
0
0
1

⎤
⎦ =

⎡
⎣
1
0
0

⎤
⎦

.span{e1, e3} is mapped onto itself. 
(b) The characteristic polynomial of the given matrix is .(λ − 1)2(λ + 1). So  

it does not have distinct eigenvalues. 
(c) Since the minimal polynomial of the given matrix is.(λ − 1)(λ + 1) (linear 

factors only), the matrix is diagonalizable and hence it has eigenvectors 
that span .R

3. 
(d) As the given matrix has rank. 3by Rank-Nullity Theorem,.Nulli t y(T ) = 0.
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(139) Let .T1 : R
n → R

n be given by .v |→ αv for a fixed .α ∈ R, α /= 0. Let  . T2 :
R

n → R
n be a linear transformation such that .B = {v1, v2, . . . , vn} is a set of 

linearly independent eigenvectors of . T . Then 

(a) The matrix of .T2 with respect to . B is diagonal. 
(b) The matrix of .(T2 − T1) with respect to . B is diagonal. 
(c) The matrix of .T2 with respect to . B is not necessarily diagonal, but upper 

triangular. 
(d) The matrix of.T2 with respect to. B is diagonal, but the matrix of. (T2 − T1)

with respect to . B is not diagonal. 

Ans. Options a and b 
Since .T1(v) = αv for all .v ∈ R

n, the matrix of .T1 = α I . Since .T2 has . n linearly 
independent eigenvectors, the matrix of .T2 with respect to . B is diagonal (Corol-
lary 4.6). Also the matrix of.(T2 − T1)with respect to. B is diagonal (see Question 
134). 

(140) Let.A ∈ M2×2(R) be of trace 2 and determinant.−3. Identifying.M2×2(R)with 
.R

4, consider the linear transformation .T : M2×2(R) → M2×2(R) defined by 
.T (B) = AB. Then which of the following statements are true? 
(a) . T is diagonalizable. (b) 2 is an eigenvalue of . T . 
(c) . T is invertible. (d) .T (B) = B for some .0 /= B in .M2(R). 

Ans. Options a and c 

Take .A =
|
a b
c d

|
. Then .a + d = 2 and .ad − bc = −3. Now  

. T

(|
1 0
0 0

|)
=

|
a 0
c 0

|
= a

|
1 0
0 0

|
+ 0

|
0 1
0 0

|
+ c

|
0 0
1 0

|
+ 0

|
0 0
0 1

|

. T

(|
0 1
0 0

|)
=

|
0 a
0 c

|
= 0

|
1 0
0 0

|
+ a

|
0 1
0 0

|
+ 0

|
0 0
1 0

|
+ c

|
0 0
0 1

|

. T

(|
0 0
1 0

|)
=

|
b 0
d 0

|
= b

|
1 0
0 0

|
+ 0

|
0 1
0 0

|
+ d

|
0 0
1 0

|
+ 0

|
0 0
0 1

|

. T

(|
0 0
0 1

|)
=

|
a 0
c 0

|
= 0

|
1 0
0 0

|
+ b

|
0 1
0 0

|
+ 0

|
0 0
1 0

|
+ d

|
0 0
0 1

|

Then the matrix of . T is .

⎡
⎢⎢⎣
a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

⎤
⎥⎥⎦.
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(a) As .trace(A) = 2 and .det (A) = −3, the eigenvalues of . A are .−1 and . 3. 

Let .V1 =
|
v1
v2

|
and .V2 =

|
v3
v4

|
be the respective eigenvectors of . A. That 

is, 

. AV1 =
|
a b
c d

| |
v1
v2

|
=

|
av1 + bv2
cv1 + dv2

|
= (−1)

|
v1
v2

|

and 

. AV2 =
|
a b
c d

| |
v3
v4

|
=

|
av3 + bv4
cv3 + dv4

|
= 3

|
v3
v4

|

From this, we can see that .u1 =

⎡
⎢⎢⎣
v1
0
v2
0

⎤
⎥⎥⎦ and .u2 =

⎡
⎢⎢⎣
0
v1
0
v2

⎤
⎥⎥⎦ are eigenvectors 

of matrix of .T corresponding to the eigenvalue .−1. Also,  . u3 =

⎡
⎢⎢⎣
v3
0
v4
0

⎤
⎥⎥⎦

and .u4 =

⎡
⎢⎢⎣
0
v3
0
v4

⎤
⎥⎥⎦ are eigenvectors of matrix of .T corresponding to the 

eigenvalue . 3. As  .V1 and .V2 are linearly independent eigenvectors of . A, 
the set .{u1, u2, u3, u4} is linearly independent and hence forms a basis 
for .R4. Therefore, . T is diagonalizable. 

(b) The eigenvalues of . T are the eigenvalues of . A repeated twice. Clearly, 2 
is not an eigenvalue of . T . 

(c) As . 0 is not an eigenvalue of . T , . T is invertible. 
(d) Suppose there exists .B such that .T (B) = AB = B. Then . det (AB) =

det (B) ⇒ det (A) = 1, which is a contradiction. 
Observe that the properties of . T are exactly the same as that of the prop-
erties of . A. 

(141) Suppose .A is a real .n × n matrix of rank . r . Let  .V be the vector space of all 
.n × n matrices .X such that .AX = 0. What is the dimension of . V ? 
(a) .r (b) .nr (c) .n2r (d) .n2 − nr . 

Ans. Consider the map .T : Mn×n(R) → Mn×n(R) defined by .T (B) = AB. 
Then .V = {X ∈ Mn(R) | AX = 0} is the null space of . T . As .Rank(A) = r , by  
Rank-Nullity Theorem, .Nulli t y(A) = n − r and hence . Nulli t y(T ) = n(n −
r) = n2 − nr. 
Option d
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(142) Consider the linear transformation .T : R
7 → R

7 defined by 

. T (x1, x2, . . . , x6, x7) = (x7, x6, . . . , x2, x1)

Which of the following statements must be true? 

(a) the determinant of . T is 1. 
(b) there is a basis of . T with respect to which . T is a diagonal matrix. 
(c) .T 7 = I . 
(d) The smallest . n such that .T n = I is even. 

Ans. Options b and d 
The matrix of the given linear transformation . T is 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since .T 2 = I , .λ2 − 1 = (λ − 1)(λ + 1) is an annihilating polynomial of . T . As  
the minimal polynomial divides annihilating polynomial, minimal polynomial 
of .T is of linear factors. Therefore .T is diagonalizable (Theorem 4.15). That 
is, there is a basis of .T with respect to which .T is a diagonal matrix. Clearly 
.det (T ) = −1 and .T 7 = T . 

(143) Let . A be a .3 × 3 matrix with real entries. Identify the correct statements. 

(a) . A is necessarily diagonalizable over . R. 
(b) if . A has distinct real eigenvalues then it is diagonalizable over . R. 
(c) if . A has distinct eigenvalues then it is diagonalizable over . C. 
(d) if all eigenvalues of . A are non-zero then it is diagonalizable over . C. 

Ans. Options b and c 

Consider the matrix .A =
⎡
⎣
1 1 0
0 1 1
0 0 1

⎤
⎦. Then all the eigenvalues of . A are non-zero. 

But it is not diagonalizable over . R or . C as its minimal polynomial is .(λ − 1)3. 
If . A has distinct real eigenvalues then it is diagonalizable over both . R and . C. 

(144) Which of the following statements is correct for every linear transformation 
.T : R

3 → R
3 such that .T 3 − T 2 − T + I = 0? 

(a) . T is invertible as well as diagonalizable.
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(b) . T is invertible but not necessarily diagonalizable. 
(c) . T is diagonalizable, but not necessarily invertible. 
(d) None of the other three statements. 

Ans. Option b 
The given matrix satisfies the polynomial .λ3 − λ2 − λ + 1 = 0. Since the con-

stant term is not zero,. T is invertible. Consider the matrix.

⎡
⎣
1 1 0
0 1 0
0 0 −1

⎤
⎦. The matrix 

satisfies the given polynomial equation and is not diagonalizable. 

(145) Let . A be a .4 × 4 matrix with .dim [N(A − 2I )] = 2, . dim [N(A − 4I )] = 1
and .Rank(A) = 3. Then 
(a) 0, 2, and 4 are eigenvalues of . A. (b) .det (A) = 0. 
(c) . A is not diagonalizable. (d) .tr(A) = 8. 

Ans. Options a, b, and d 
Since .Rank(A) = 3, 0 is an eigenvalue of . A. Also, . A has three non-zero eigen-
values. As.dim [N(A − 2I )] = 2 and.dim [N(A − 4I )] = 1, 2 is an eigenvalue 
with geometric multiplicity 2 and 4 is an eigenvalue with geometric multiplicity 
1. Thus in the Jordan canonical form there must be 4 Jordan blocks. Therefore 
. A is diagonalizable. 

(146) Let.A ∈ M3×3(R) and let.X = {P ∈ GL3(R) | PAP−1 is tr iangular}. Then 
(a) . X /= φ

(b) If .X = φ, then . A is not diagonalizable over . C. 
(c) If .X = φ, then . A is diagonalizable over . C. 
(d) If .X = φ, then . A has no real eigenvalue. 

Ans. Option c 
Since every odd degree matrix with real coefficient has at least one real root, . A
has at least one real eigenvalue and the complex eigenvalues occur as conjugate 
pairs. Thus .X can be empty if . A has complex eigenvalues and if .X = φ, then . A
is diagonalizable over . C. 

(147) Which of the following matrices have Jordan canonical form equal 

to .

⎡
⎣
0 1 0
0 0 0
0 0 0

⎤
⎦? 

(a) .

⎡
⎣
0 0 1
0 0 0
0 0 0

⎤
⎦ (b) .

⎡
⎣
0 0 1
0 0 1
0 0 0

⎤
⎦ (c) .

⎡
⎣
0 1 1
0 0 0
0 0 0

⎤
⎦ (d) .

⎡
⎣
0 1 1
0 0 1
0 0 0

⎤
⎦.



464 11 Solved Problems—Eigenvalues and Eigenvectors

Ans. Options a, b, and c 
The characteristic polynomial of the given matrix is .λ3 and minimal polynomial 
is . λ2. Matrices .(a), (b), and .(c) also have the same characteristic and minimal 
polynomials as that of the given matrix. .λ3 is both characteristic and minimal 
polynomial for matrix .(d). 

(148) Let .T : R
4 → R

4 be a linear transformation with characteristic polynomial 
.(λ − 2)4 and minimal polynomial .(λ − 2)2. Jordan canonical form of .T can 
be 

(a) .

⎛
⎜⎜⎝
2 0 0 0
1 2 0 0
0 0 2 0
0 0 1 2

⎞
⎟⎟⎠ (b) .

⎛
⎜⎜⎝
2 0 0 0
0 2 0 0
0 0 2 0
0 0 1 2

⎞
⎟⎟⎠ (c) .

⎛
⎜⎜⎝
2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ (d) .

⎛
⎜⎜⎝
2 0 0 0
1 2 0 0
0 1 2 0
0 0 0 2

⎞
⎟⎟⎠. 

Ans. Options a and b 
Since the minimal polynomial has a factor of degree 2, it has at least one Jordan 
block of order 2. 

(149) Let. A be a.6 × 6matrix over. Rwith characteristic polynomial. = (λ − 3)2(λ −
2)4 and minimal polynomial.= (λ − 3)(λ − 2)2. Then Jordan canonical form 
of . A can be 

(a).

⎛
⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 1 0 0
0 0 0 2 1 0
0 0 0 0 2 1
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(b).

⎛
⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(c).

⎛
⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 2 1
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(d).

⎛
⎜⎜⎜⎜⎜⎜⎝

3 1 0 0 0 0
0 3 0 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 2 1
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠
. 

Ans. Options b and c 
The given matrix has two eigenvalues 3 and 2. The algebraic multiplicity of 
.λ1 = 3 is 2 and geometric multiplicity is 1, and algebraic multiplicity of . λ2 = 2
is 4 and geometric multiplicity is 2. Therefore there exists at least one Jordan 
block of order 2 for .λ2 = 2 and the possible Jordan forms are 

. 

⎛
⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0
0 3 0 0 0 0
0 0 2 1 0 0
0 0 0 2 0 0
0 0 0 0 2 1
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

(150) Which of the following matrices is not diagonalizable over . R? 

(a) .

⎡
⎣
1 1 0
0 2 0
0 0 1

⎤
⎦ (b) .

⎡
⎣
1 1 0
0 2 1
0 0 3

⎤
⎦ (c) .

⎡
⎣
1 1 0
0 1 0
0 0 2

⎤
⎦ (d) .

⎡
⎣
1 0 1
0 2 0
0 0 3

⎤
⎦.
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Ans. Option c 

(a) The characteristic polynomial of the given matrix is .(λ − 1)2(λ − 2) and 
the minimal polynomial is .(λ − 1)(λ − 2) and hence it is diagonalizable. 

(b) The given matrix is an upper triangular matrix with distinct eigenvalues 
(diagonal elements are the eigenvalues) and hence it is diagonalizable. 

(c) The given matrix contains a Jordan block of order 2 and hence is not 
diagonalizable. 

(d) The given matrix is an upper triangular matrix with distinct eigenvalues 
(diagonal elements are the eigenvalues) and hence it is diagonalizable. 

(151) Let .A =

⎡
⎢⎢⎣
0 0 0 −4
1 0 0 0
0 1 0 5
0 0 1 0

⎤
⎥⎥⎦. Then the Jordan Canonical form of . A is 

(a) .

⎡
⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 −2

⎤
⎥⎥⎦ (b) .

⎡
⎢⎢⎣

−1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 −2

⎤
⎥⎥⎦ (c) .

⎡
⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 2 0
0 0 0 −2

⎤
⎥⎥⎦ (d) .

⎡
⎢⎢⎣

−1 1 0 0
0 −1 0 0
0 0 2 0
0 0 0 −2

⎤
⎥⎥⎦. 

Ans. Option a 

Since determinant of the given matrix is 4 and trace is 0, .

⎡
⎢⎢⎣

−1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 −2

⎤
⎥⎥⎦ is the 

required Jordan Canonical form. 

(152) Consider the matrices .A =
⎡
⎣
2 2 1
0 2 −1
0 0 3

⎤
⎦ and . B =

⎡
⎣
2 1 0
0 2 0
0 0 3

⎤
⎦

(a) . A and . B are similar over the field of rational numbers . Q. 
(b) . A is diagonalizable over the field of rational numbers . Q. 
(c) . B is the Jordan canonical form of . A. 
(d) The minimal polynomial and the characteristic polynomial of .A are the 

same. 

Ans. Options a, c, and d 
The characteristic and minimal polynomial of .A and .B is .(λ − 2)2(λ − 3). 
Clearly it factors over . Q. Since they have the same minimal and character-
istic polynomial, . A and . B are similar over the field of rational numbers . Q. . A is 
not diagonalizable since the minimal polynomial has non-linear factors. Since 
the minimal polynomial is .(λ − 2)2(λ − 3), .B is the Jordan canonical form of 
. A. 

(153) Let . A be a .7 × 7 matrix such that .2A2 − A4 = I . If . A has two distinct eigen-
values and each eigenvalue has geometric multiplicity 3, then the total number 
of non-zero entries in the Jordan canonical form of . A equals .. . . . . ..
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Ans. Since .A satisfies .A4 − 2A2 + I = 0, . λ4 − 2λ2 + 1 = (λ2 − 1)2 = (λ +
1)2(λ − 1)2 is an annihilating polynomial of. A. Therefore the two distinct eigen-
values of .A are 1 and .−1. Since geometric multiplicity of each eigenvalue is 3, 
each eigenvalue has 3 Jordan blocks and since . A is of order 7, one of the Jordan 
blocks must be of order 2. Therefore the total number of non-zero entries in the 
Jordan canonical form of . A is 8. 

(154) Let .D : P3[x] → P3[x] be the linear operator given by differentiation with 
respect to . x . Let  .A be the matrix representation of .D with respect to some 
basis for .P3[x]. Which of the following are true? 

(a) . A is a nilpotent matrix. 
(b) . A is a diagonalizable matrix. 
(c) the rank of . A is 2. 

(d) the Jordan canonical form of . A is .

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦. 

Ans. Options a and d 
Consider the standard ordered basis .{1, x, x2, x3} for . V . Now  

. D(1) = 0 = 0 + 0x + 0x2 + 0x3

. D(x) = 1 = 1 + 0x + 0x2 + 0x3

. D(x2) = 2x = 0 + 2x + 0x2 + 0x3

. D(x3) = 3x2 = 0 + 0x + 3x2 + 0x3

Then .A =

⎡
⎢⎢⎣
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤
⎥⎥⎦. Clearly .A is a nilpotent matrix as .A4 = 0. The charac-

teristic and minimal polynomial of . A are . λ4. Therefore . A is not diagonalizable. 

The rank of . A is 3 and the Jordan canonical form of . A is .

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦. 

(155) Let .T : P2[x] → P2[x] be the linear transformation given by 

. T (p) = 2p + p' f or p ∈ V

where .p' is the derivative of . p. Then the number of non-zero entries in the 
Jordan canonical form of a matrix of . T equals .. . . . . ..
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Ans. Consider the standard ordered basis for .P2[x]. Then, we have 

. T (1) = 2 = 2.1 + 0x + 0x2

. T (x) = 2x + 1 = 1.1 + 2x + 0x2

. T (x2) = 2x2 + 2x = 0.1 + 2x + 2x2

Therefore the matrix of .T is given by .

⎡
⎣
2 1 0
0 2 2
0 0 2

⎤
⎦. Since the minimal polynomial 

is .(λ − 2)3, the number of non-zero entries in the Jordan canonical form of a 
matrix of . T is 5. 

(156) Let .A be a complex .3 × 3 matrix with .A3 = −I . which of the following 
statements are correct? 
(a) . A has three distinct eigenvalues. (b) . A is diagonalizable over . C. 
(c) . A is triangularizable over . C. (d) . A is non-singular. 

Ans. Options b, c, and d 
Since . A satisfies .A3 = −I , .λ3 + 1 is an annihilating polynomial of . A. Also  

. λ3 + 1 = (λ + 1)(λ2 − λ + 1) = (λ + 1)

(
λ −

(
1 + i

√
3

2

)) (
λ −

(
1 − i

√
3

2

))

As 0 is not an eigenvalue of . A, it is non-singular. Since the minimal polynomial 
divides annihilating polynomial, minimal polynomial has linear factors only. 
Thus .A is diagonalizable over . C. Also  .A is triangularizable over . C. Take  . A =
−I , then .A3 = −I , but .−1 is the only eigenvalue. 

(157) Let. A be a real matrix with characteristic polynomial.(λ − 1)3. Pick the correct 
statements from below 

(a) . A is necessarily diagonalizable. 
(b) If the minimal polynomial of . A is .(λ − 1)3, then . A is diagonalizable. 
(c) Characteristic polynomial of .A2 is .(λ − 1)3. 
(d) If . A has exactly two Jordan blocks, then .(A − I )2 is diagonalizable. 

Ans. Options c and d 

Consider the matrix .A =
⎡
⎣
1 1 0
0 1 1
0 0 1

⎤
⎦. Then the characteristic and minimal poly-

nomial of .A are .(λ − 1)3. Clearly .A is not diagonalizable. Since 1 is the only 
eigenvalue of . A, .A2 has only one eigenvalue 1 with algebraic multiplicity 3. 
Therefore characteristic polynomial of .A2 is .(λ − 1)3. Since .A has two Jor-
dan blocks and 1 is the only eigenvalue of .A implying .(A − I )2 = 0, therefore 
.(A − I )2 is diagonalizable.
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(158) Let .A be a .4 × 4 matrix over .C such that .Rank(A) = 2 and .A3 = A2 /= 0. 
Suppose that . A is not diagonalizable. Then 

(a) One of the Jordan blocks of the Jordan Canonical form of . A is .

|
0 1
0 0

|
. 

(b) .A2 = A /= 0. 
(c) There exists a vector . v such that .Av /= 0 but .A2v = 0. 
(d) The characteristic polynomial of . A is .λ4 − λ3. 

Ans. Options a, c, and d 
Since. A satisfies.A3 = A2,.λ3 − λ2 = λ2(λ − 1) is an annihilating polynomial of 
. A. Therefore the possible minimal polynomials of . A are .λ, λ2, λ − 1, λ(λ − 1), 
and .λ2(λ − 1). Since .A2 /= 0, .x2 is not the minimal polynomial of . A. As  .A is 
not diagonalizable .λ, λ − 1, and .λ(λ − 1) cannot be the minimal polynomial of 
. A. Therefore .λ2(λ − 1) is its minimal polynomial and hence one of the Jordan 

blocks of the Jordan Canonical form of . A is .

|
0 1
0 0

|
and . A does not satisfy . A2 =

A. For  if  .A2 = A, .λ2 − λ = λ(λ − 1) is its annihilating polynomial and hence 
diagonalizable as it has linear factors only. Since.A3 = A2,.A2(A − I )v = 0 for 
every. v. But.A(A − I )v /= 0 for every. v as.A2 /= A. So there exists a vector. v such 
that .Av /= 0 but .A2v = 0. The possible characteristic polynomials are . λ2(λ −
1)2 and .λ3(λ − 1). But  .λ2(λ − 1)2 is not possible since .Rank(A) = 2 and the 
minimal polynomial is .λ2(λ − 1). Therefore the characteristic polynomial of . A
is .λ4 − λ3. 

(159) For an .n × n real matrix . A, .λ ∈ R and a non-zero vector .v ∈ R
n suppose 

that.(A − λI )kv = 0 for some positive integer. k. Then which of the following 
is/are always true? 
(a) .(A − λI )k+r v = 0, ∀r ∈ R

+. (b) .(A − λI )k−1v = 0. 
(c) .(A − λI ) is not injective. (d) . λ is an eigenvalue of . A. 

Ans. Options a, c, and d 

(a) Since .(A − λI )kv = 0, .(A − λI )k+r v = (A − λI )k(A − λI )r v = 0 for 
all positive integers . r . 

(b) Consider .A =
|
1 1
0 1

|
. Take  .λ = 1. Then .(A − λI )2v = 0 for every non-

zero vector .v ∈ R
n, but .(A − λI )v /= 0 for every non-zero vector .v ∈ R

n. 
(c) We know that there exists a non-zero vector .v ∈ R

n such that . (A −
λI )kv = 0 for some positive integer . k. Now  

. (A − λI )kv = 0 ⇒ det (A − λI )k = 0 ⇒ det (A − λI ) = 0

Therefore there exists a non-zero vector .v ∈ R
n such that . (A − λI )v = 0

and hence .(A − λI ) is not injective. 
(d) From option . c, . λ is an eigenvalue of . A.
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(160) Check whether the following statements are true or false. 

(a) Let . A be an.n × n matrix whose row sums equal 1. Then for any positive 
integer .m the row sums of the matrix .Am equal 1. 

(b) Let. A be a.2 × 2matrix with complex entries. The number of.2 × 2matri-
ces . A with complex entries satisfying the equation .A3 = A is infinite. 

(c) The matrix .

⎡
⎣
1 π 3
0 2 4
0 0 3

⎤
⎦ is diagonalizable. 

(d) If . A and .B are similar matrices then every eigenvector of . A is an eigen-
vector of . B. 

(e) Let .V be the subspace of the real vector space of real-valued functions 
on . R, spanned by .cos x and .sin x . Let  .D : V → V be the linear map 
sending . f (x) ∈ V to .

d f (x)
dx . Then .D has a real eigenvalue. 

(f) Any linear transformation .A : R
4 → R

4 has a proper non-zero invariant 
subspace. 

(g) Let.A ∈ Mn×n(R) be upper triangular with all diagonal entries 1 such that 
.A /= I . Then . A is not diagonalizable. 

(h) If . A is a .2 × 2 complex matrix that is invertible and diagonalizable, and 
such that. A and.A2 have the same characteristic polynomial, then. A is the 
.2 × 2 identity matrix. 

(i) The matrices .

⎛
⎝
0 i 0
0 0 1
0 0 0

⎞
⎠ and .

⎛
⎝

0 0 0
−i 0 0
0 1 0

⎞
⎠ are similar. 

(j) For any matrix. C with entries in. C, let .m(C) denote the minimal polyno-
mial of . C , and .p(C) its characteristic polynomial. Then for any .n ∈ N, 
two matrices .A, B ∈ Mn×n(C) are similar if and only if . m(A) = m(B)

and .p(A) = p(B). 

(k) Let .A, B ∈ M3×3(R). Then .det (AB − BA) = tr [(AB − BA)3]
3

. 

(l) For any .n ≥ 2, there exists .n × n real matrix .A such that the set . {Ap |
p ≥ 1} spans the .R- vector space .Mn×n(R). 

(m) The matrices .

(
x 0
0 y

)
and .

(
x 1
0 y

)
, x /= y for any .x, y ∈ R are conju-

gate/similar in .M2×2(R). 

Ans. (a) True. We will prove this by induction on. m. Let. A be an.n × n matrix 
whose row sums equal 1. Then 1 is an eigenvalue of. Awith the eigenvector 
.
|
1 1 . . . 1

|T
n×1. Now  

.A

⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

=
⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

⇒ A2

⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

= A

⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

=
⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1
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Thus the statement is true for .m = 2. Now suppose that the statement is 
true for .m = k − 1. That is, the row sum of .Ak−1 is 1. Then as above, 

. Ak−1

⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

=
⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

⇒ Ak

⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

= A

⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

=
⎡
⎢⎣
1
...

1

⎤
⎥⎦

n×1

Thus the statement is true for every positive integer . m. 
(b) True. Since . A satisfies .A3 = A, 

. λ3 − λ = λ(λ − 1)(λ + 1)

is an annihilating polynomial of. A. Then the possible minimal polynomials 
are 

. λ, λ − 1, λ + 1, λ(λ − 1), λ(λ + 1) and (λ − 1)(λ + 1)

If the minimal polynomial is . λ, then .A = 0. If the minimal polynomial is 
.λ − 1, then .A = I and if the minimal polynomial is .λ + 1, then .A = −I . 
Now if the minimal polynomial is .λ(λ − 1), any matrix with . trace =
−1 and .determinant = 0 satisfies this. So there exist infinitely many 
matrices such that .A3 = A. 

(c) True. The eigenvalues of an upper triangular matrix are its diagonal 
entries. So the given matrix has three distinct eigenvalues. Therefore the 
matrix is diagonalizable. 

(d) False. Consider the matrix .A =
|
0 1
1 0

|
. Take .P = 1√

2

|−1 1
1 1

|
. Then 

. PAP−1 = 1√
2

|−1 1
1 1

| |
0 1
1 0

|
1√
2

|
1 −1

−1 −1

|
=

|−1 0
0 1

|
= B

Also .A

|
1
1

|
=

|
1
1

|
.Therefore .

|
1 1

|t
is an eigenvector of . A. But  .

|
1 1

|t
is 

not an eigenvector of .B as .B

|
1
1

|
=

|−1
1

|
. 

(e) False. We have 

. D(sin x) = cos x = 0(sin x) + 1(cos x)

and 
. D(cos x) = −sin x = (−1)(sin x) + 0(cos x)

Then the matrix of . T is given by .

|
0 1

−1 0

|
and it has no real eigenvalue.
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(f) True. If .T has a real eigenvalue, then clearly .T has a proper non-zero 
invariant subspace. Suppose .T has complex eigenvalues only, then the 
complex eigenvalues occur as conjugate pairs. Then consider the real 
Jordan form of . T . Then we get that any linear transformation . A : R

4 →
R

4 has a proper non-zero invariant subspace. 
(g) True. Since . A is an upper triangular with all diagonal entries 1, its char-

acteristic polynomial is given by .(λ − 1)n and its minimal polynomial is 
of the form .(λ − 1)r where .r ≤ n. Since .A /= I , .r ≥ 2. Therefore . A is not 
diagonalizable. 

(h) False. Consider the matrix .A =
|
ω 0
0 ω2

|
where .ω ∈ C3 where .C3 denotes 

the cube root of unity. Then .A is invertible and diagonalizable. Also . A
and .A2 have the same characteristic polynomial. 

(i) True. .n × n matrices having the same characteristic and minimal poly-
nomial are similar when .n ≤ 3. 

(j) False. Let. A and. B be two matrices of order .n ≤ 3;. A and. B are similar if 
and only if they have the same minimal and characteristic polynomial. For 

.n ≥ 3, this is not true. For example, consider the matrices.

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ and 

.

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦. They have the same minimal and characteristic polynomial. 

but they are not similar. 
(k) True. Consider the characteristic equation of the matrix .(AB − BA). It  

will be of the form 

. λ3 − tr(AB − BA)λ2 + cλ − det (AB − BA) = 0

where. c is some real number. Since. tr(AB − BA) = tr(AB) − tr(BA) =
0, this implies.λ3 + cλ − det (AB − BA) = 0. Then by Cayley–Hamilton 
Theorem, 

. det (AB − BA)I = (AB − BA)3 + c(AB − BA)

Taking trace on both sides, we get 

.3det (AB − BA) = tr [(AB − BA)3]



472 11 Solved Problems—Eigenvalues and Eigenvectors

(l) False. By Cayley–Hamilton theorem any matrix of power .≥ n can be 
written as a linear combination of .{I, A, A2, . . . An−1}. So the dimension 
of span of .{Ap | p ≥ 1} is less than or equal to . n. But the vector space of 
all .n × n real matrices has dimension . n2. So the  set  .{Ap | p ≥ 1} does 
not span .Mn×n(R). 

(m) False. Since the given matrices have the same characteristic and minimal 
polynomial, they are similar.



Chapter 12 
Solved Problems—Normed Spaces 
and Inner Product Spaces 

(1) Consider the vector space. V of real polynomials of degree less than or equal to. n. 
Fix distinct real numbers .a0, a1, . . . , ak . For .p ∈ V , . max{|p(a j )| : 0 ≤ j ≤ k}
defines a norm on . V
(a) only if .k < n (b) only if .k ≥ n (c) if .k + 1 ≤ n (d) if . k ≥ n + 1

Ans. Options b and d 
Given that .|p| = max{|p(a j )| : 0 ≤ j ≤ k}. 
Clearly .|p| ≥ 0. 

. |p| = 0 ⇒ max{|p(a j )| : 0 ≤ j ≤ k} = 0

⇒ |p(a j )| = 0, 0 ≤ j ≤ k

This implies.p = 0 only if.k ≥ n or if.k ≥ n + 1 as.{a0, a1, . . . , ak} is a collection 
of.k + 1 elements and by Fundamental Theorem of Algebra.p = 0 if it has greater 
than . n zeros. 

. |kp| = max{|kp(a j )| : 0 ≤ j ≤ k}
= |k|max{|p(a j )| : 0 ≤ j ≤ k} = |k| |p|

Also 

. |p + q| = max{|p(a j ) + q(a j )| : 0 ≤ j ≤ k}
≤ max{|p(a j )| : 0 ≤ j ≤ k} + max{|q(a j )| : 0 ≤ j ≤ k} = |p| + |q|

(2) Consider the real vector space .V of polynomials of degree less than or equal to 
. d. For.p ∈ V define.|p|k = max{|p(0)|, |p'(0)| . . . , |p(k)(0)|}where.p(i)(0) is 
the.i th derivative of. p evaluated at 0. Then.|p|k defines a norm on. V if and only 
if 
(a) .k ≥ d − 1 (b) .k < d (c) .k ≥ d (d) . k < d − 1
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Ans. Option c 
Clearly .|p|k ≥ 0 since .|p(i)(0)| ≥ 0 for all . i . 

. |p|k = 0 ⇒ |p(i)(0)| = 0 ∀ i = 1, 2, . . . , k

⇒ p = 0 only i f k ≥ d

This is because .p(i)(0) is the co-efficient of . xi . 

(3) Consider the following statements: 

P: Let .V be any normed space. Then 

. ||u| − |v|| ≤ |u − v| , ∀ u, v ∈ V

Q: For any .v = (v1, v2, . . . , vn) ∈ R
n , 

. |v|∞ ≤ |v|2 ≤ |v|1 ≤ n |v|∞

Then 
(a) both .P and .Q are TRUE. (b) .P is TRUE and .Q is FALSE. 
(c) .P is FALSE and .Q is TRUE. (d) both .P and .Q are FALSE. 

Ans. Option a 
For .u, v ∈ V , we have 

. |v| = |v − u + u| ≤ |v − u| + |u|

This implies that .|v| − |u| ≤ |v − u|. Similarly, we can show that . |u| −
|v| = − [|v| − |u|] ≤ |v − u|. Therefore 

. ||u| − |v|| ≤ |u − v| , ∀ u, v ∈ V

Now for any .v = (v1, v2, . . . , vn) ∈ R
n, 

. |v|∞ = sup
i

|vi | = sup
i

(|vi |2
) 1

2 ≤
(

nE

i=1

|vi |2
) 1

2

= |v|2

Also, 

. |v|22 =
nE

i=1

|vi |2 ≤
(

nE

i=1

|vi |
)2

≤ |v|21

and
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. |v|1 =
nE

i=1

|vi | ≤
nE

i=1

sup
i

|vi | = n sup
i

|vi | = n |v|∞

Therefore .|v|∞ ≤ |v|2 ≤ |v|1 ≤ n |v|∞. 

(4) Which of the following statements about the spaces .l p and .L p[0, 1] is true? 
(a) .l3 ⊂ l7 and .L6[0, 1] ⊂ L9[0, 1] (b) .l3 ⊂ l7 and . L9[0, 1] ⊂ L6[0, 1]
(c) .l7 ⊂ l3 and .L6[0, 1] ⊂ L9[0, 1] (d) .l7 ⊂ l3 and . L9[0, 1] ⊂ L6[0, 1]
Ans. Option b 
For .1 ≤ p ≤ q, we have .l p ⊆ lq and .Lq ⊆ L p. 

(5) The space .C[0, 1] of continuous functions on .[0, 1] is complete with respect to 
the norm 
(a) . | f |∞ = sup{| f (x)| : x ∈ [0, 1]}
(b) . | f |1 = { 1

0 | f (x)|dx
(c) . | f |0,1∞ = | f |∞ + | f (0)| + | f (1)|
(d) . | f |2 =

/{ 1
0 | f (x)|2dx

Ans. Option a and c 

(a) Let .{ fn} be a Cauchy sequence in .C[0, 1]. Then, for any .e > 0, there is an 
.N such that 

. | fm − fn| = sup{| fm(x) − fn(x)| : x ∈ [0, 1]} < e, ∀ m, n > N
(12.1) 

Then for a fixed. x, say.x0 ∈ [0, 1], we have. | fm(x0) − fn(x0)| < e, ∀m, n >

N. Therefore .{ fn(x0)} is a Cauchy sequence of real numbers for each . x0 ∈
[0, 1]. Since .R is complete, .{ fn(x0)} converges to a real number, which is 
unique. Thus we can define a function . f on .[0, 1], pointwise. From Eq. 
(12.1), as .n → ∞, we have 

. sup{| fm(x) − f (x)| : x ∈ [0, 1]} ≤ e, ∀ m > N

Therefore .| fm(x) − f (x)| ≤ e, ∀ m > N. This implies that .{ fn(x)} con-
verges to . f (x) uniformly on .[0, 1]. Since the convergence is uniform . f is 
continuous. Hence, . f ∈ C[0, 1]. Thus .C[0, 1] with the norm .|.|∞ is com-
plete. 

(b) Consider the sequence .{ fn; n ≥ 3} ∈ C[0, 1], where 

. fn(x) =

⎧
⎪⎨

⎪⎩

0, 0 ≤ x ≤ 1
2 − 1

n

nx − n
2 + 1, 1

2 − 1
n ≤ x ≤ 1

2

1, 1
2 ≤ x ≤ 1

Then for .m ≥ n ≥ 3,
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. | fn − fm|1 =
{ 1

2

1
2 − 1

n

| fn(x) − fm(x)|dx ≤ 1

n

This implies that, as .n → ∞, .| fn − fm|1 → 0. Therefore .{ fn} is a Cauchy 
sequence in .C[0, 1]. 
Suppose that. fn → f in.C[0, 1]. Fix.α ∈ (

0, 1
2

)
. Take. n such that. 12 − 1

n ≥ α. 
Then 

. 0 ≤
{ α

0
| f (x)|dx =

{ α

0
| f (x) − fn(x)|dx ≤ | fn − f |1 → 0

as .n → ∞. Therefore .
{ α

0 | f (x)|dx = 0. Since . f ∈ C[0, 1], this implies that 
. f (x) = 0 for .x ∈ [0, α] for every .α < 1

2 . Therefore . f
(
1
2

) = 0. Also,  we  
have 

. 0 ≤
{ 1

1
2

| f (x) − 1|dx =
{ 1

1
2

| f (x) − fn(x)|dx ≤ | fn − f |1 → 0

as .n → ∞. Therefore .
{ 1

1
2
| f (x) − 1|dx = 0 and by the continuity of . f , 

. f (x) = 1 for .x ∈ [ 12 , 1]. This is a contradiction. 
(c) Using .(a), we can prove that .C[0, 1] is complete with respect to the norm 

.|.|0,1∞ . 
(d) Using the sequence in .(b) we can prove that .C[0, 1] is incomplete with 

respect to the norm .|.|2. 
(6) If .V is the class of all polynomials on .[0, 1], then 

(a) .V is complete when given the sup norm. 
(b) .V is complete when given the .L1 norm. 
(c) .V is not complete under any norm 
(d) .V is complete when given the .L1 norm. 

Ans. Option c 
We know that the Hamel basis of an infinite-dimensional Banach space must 
be uncountable. As .{1, x, x2, . . .} is a countable Hamel basis for . V , .V is not 
complete with respect to any norm. 

(7) Which of the following is not complete in any norm? 
(a).c00, the space of all sequences of real numbers having finitely many non-zero 
terms. 
(b) .l∞, the space of all bounded sequences of real numbers. 
(c) .C[0, 1], the space of all real valued continuous functions on .[0, 1]. 
(d) .Rn , where . R is the field of real numbers.
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Ans. Option a 

(a) Consider the sequence .vn = (
1, 1

2 ,
1
3 , . . . ,

1
n , 0, . . .

) ∈ c00. For  .m > n, we  
have 

. |vm − vn| =
|
|||

(
0, . . . , 0,

1

n + 1
, . . . ,

1

n
, 0, . . .

)|||| = 1

n + 1

Now for any .e > 0, choose .N ∈ N such that . 1N < e. Then for all . m >

n > N, we have, .|vm − vn| = 1
n+1 < 1

N+1 < 1
N < e. Thus .{vn} is a Cauchy 

sequence. But .vn → v = (
1, 1

2 ,
1
3 , . . .

)
/∈ c00. Therefore .c00 is not complete. 

(b) Consider .(l∞, |.|), where .|.| is defined by .|v| = supi |vi | for 
.v = (v1, v2, . . .) ∈ l∞. Let .{vn} be a Cauchy sequence in .l∞, where . vn =(
v(n)
1 , v(n)

2 , . . .
)
. Then for any .e > 0, there exists .N such that 

. |vm − vn| = supi |v(m)
i − v(n)

i | < e, ∀ m, n > N

Thus, for every fixed . i , 

.|v(m)
i − v(n)

i | < e, ∀ m, n > N (12.2) 

Therefore the sequence.
(
v(1)
i , v(2)

i , . . .
)
is a Cauchy sequence of real numbers 

and hence is convergent, say.v(n)
i → vi as.n → ∞. Consider the element. v =

(v1, v2, . . .). Letting .n → ∞ in (12.2), we get .|v(m)
i − vi | < e, ∀m > N. As  

.{vn} ∈ l∞, there exists .λn ∈ R such that .|x (n)
i | < λn for all . i . Therefore, 

. |vi | = |vi − v(n)
i + v(n)

i | ≤ |vi − v(n)
i | + |v(n)

i | < e + λn, ∀ n > N , ∀ i

Thus .vn → v and .v ∈ l∞. 
(c) .C[0, 1] is complete with respect to supremum norm. 
(d) As every finite-dimensional space is complete, .Rn is complete. 

(8) Let . α be a primitive fifth root of unity. Define 

. A =

⎡

⎢⎢
⎢⎢
⎣

α−2 0 0 0 0
0 α−1 0 0 0
0 0 1 0 0
0 0 0 α 0
0 0 0 0 α2

⎤

⎥⎥
⎥⎥
⎦

For a vector .v = (v1, v2, v3, v4, v5) ∈ R
5, define .| v |A=

/| vAvT |. If  . w =
(1,−1, 1, 1,−1), then . | w |A= · · · · · ·
(a) .0 (b) .1 (c) .−1 (d) .2
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Ans. Option a 
We have 

. wAwT = |
1 −1 1 1 −1

|

⎡

⎢⎢⎢
⎢
⎣

α−2 0 0 0 0
0 α−1 0 0 0
0 0 1 0 0
0 0 0 α 0
0 0 0 0 α2

⎤

⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢
⎣

1
−1
1
1

−1

⎤

⎥⎥⎥
⎥
⎦

= α−2 + α−1 + 1 + α + α2

= 1 + α + α2 + α3 + α4 = 0

(9) Let .A be an .n × n matrix with real entries. Define . <x, y>A = <Ax, Ay>, x, y ∈
R

n . Then .<x, y>A defines an inner-product if and only if 
(a) . Ker(A) = {0}
(b) . Rank(A) = n
(c) All eigenvalues of . A are positive. 
(d) All eigenvalues of . A are non-negative. 

Ans. Options a and b 
Clearly .<x, y>A = <Ax, Ay> ≥ 0. Also  

. <x, y>A = 0 ⇒ <Ax, Ay> = 0 ⇒ x = y ⇐⇒ A is one − one

That is, if and only if.Ker(A) = {0}. Then by Rank-Nullity Theorem,. Rank(A) =
n. Since . A can be any matrix, options .(c) and .(d) are false. 

(10) Which of the following is an inner product on the vector space.V of.n × n real 
symmetric matrices? 
(a) .<A, B>1 = (tr(A))(tr(B)) (b) . <A, B>2 = tr(AB)

(c) .<A, B>3 = det (AB) (d) . <A, B>4 = tr(A) + tr(B)

Ans. Option b 

As . A is symmetric, . A is of the form .A =

⎡

⎢⎢⎢
⎣

a11 a12 . . . a1n
a12 a22 . . . a2n
...

...
. . .

...

a1n a2n . . . ann

⎤

⎥⎥⎥
⎦
. 

(a) For .n = 2, consider .A =
|
1 0
0 −1

|
. Then, 

. <A, A>1 = (tr(A))2 = 0

But .A /= 0. As .(I P1) is violated, .<, >1 is not an inner product on . V . 
(b) (IP1) For any .A ∈ V , we have
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. <A, A>2 = tr(A2) =
nE

i, j=1

a2i j ≥ 0

and 

. <A, A>2 = 0 ⇔
nE

i, j=1

a2i j = 0 ⇔ a2i j = 0, ∀i, j ⇔ A = 0

(IP2) For any .A, B,C ∈ V , we have 

. <A + B,C>2 = tr [(A + B)C] = tr(AC + BC) = tr(AC) + tr(BC)

= <A, B>2 + <B,C>2
(IP3) For any .A, B ∈ V and .λ ∈ R, we have 

. <λA, B>2 = tr(λAB) = λtr(AB) = λ<A, B>2
(IP4) For any .A, B ∈ V , we have 

. <A, B>2 = tr(AB) = tr(BA) = <B, A>2

Therefore, .<, >2 defines an inner product on . V . 

(c) For .n = 2, consider .A =
|
1 0
0 0

|
. Then 

. <A, A>3 = det (A2) = 0

But .A /= 0. As .(I P1) is violated, .<, >3 is not an inner product on . V . 

(d) For .n = 2, consider .A =
|
1 0
0 −1

|
. Then, 

. <A, A>4 = 2.tr(A) = 0

But .A /= 0. As .(I P1) is violated, .<, >4 is not an inner product on . V . 

(11) Which of the following are inner products on .R
2? 

(a) . <(u1, u2), (v1, v2)>1 = u1v1 + 2u1v2 + 2u2v1 + u2v2
(b) . <(u1, u2), (v1, v2)>2 = u1v1 + u1v2 + u2v1 + 2u2v2
(c) . <(u1, u2), (v1, v2)>3 = u1v1 + u1v2 + u2v1 + u2v2
(d) . <(u1, u2), (v1, v2)>4 = u1v1 − 1

2u1v2 − 1
2u2v1 + u2v2

Ans. Option b and d 
We know that, for .u, v ∈ R

2 and a fixed matrix .A ∈ M2×2(R), . <u, v> = uT Av
defines an inner product on .R

2 if and only if . A is positive definite.
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(a) We have 

. <(u1, u2), (v1, v2)>1 = u1v1 + 2u1v2 + 2u2v1 + u2v2 = |
u1 u2

| |1 2
2 1

| |
v1
v2

|

Here .A =
|
1 2
2 1

|
. As the eigenvalues of .A are 3 and .−1, .A is not positive 

definite and hence .<, >1 does not define an inner product on .R
2. 

(b) We have 

. <(u1, u2), (v1, v2)>2 = u1v1 + u1v2 + u2v1 + 2u2v2 = |
u1 u2

| |1 1
1 2

| |
v1
v2

|

Here .A =
|
1 1
1 2

|
. As the eigenvalues of .A are . 3±

√
5

2 , .A is positive definite 

and hence .<, >2 defines an inner product on .R
2. 

(c) We have 

. <(u1, u2), (v1, v2)>3 = u1v1 + u1v2 + u2v1 + u2v2 = |
u1 u2

| |1 1
1 1

| |
v1
v2

|

Here .A =
|
1 1
1 1

|
. As the eigenvalues of .A are . 0 and . 2, .A is not positive 

definite and hence .<, >3 does not define an inner product on .R
2. 

(d) We have 

. <(u1, u2), (v1, v2)>4 = u1v1 − 1

2
u1v2 − 1

2
u2v1 + u2v2 = |

u1 u2
|
|

1 − 1
2− 1

2 1

| |
v1
v2

|

Here .A =
|
1 − 1

2− 1
2 1

|
. As the eigenvalues of .A are . 12 and . 32 , .A is positive 

definite and hence .<, >4 defines an inner product on .R
2. 

(12) Define .<, > : C[0, 1] × C[0, 1] → R by 

. < f, g> =
{ 1

0
f (t) (g(t))2 dt

Then which of the following statements is true? 
(a) .<, > is an inner product on .C[0, 1]. 
(b) .<, > is a bilinear form on .C[0, 1] but is not an inner product on .C[0, 1]. 
(c) .<, > is not a bilinear form on .C[0, 1]. 
(d) .< f, f > ≥ 0 for all . f ∈ C[0, 1]. 
Ans. Option c 
Take the constant function . f (t) = −1 for all .t ∈ [0, 1]. Clearly . f ∈ C[0, 1] and
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. < f, f > =
{ 1

0
(−1)3dt = −1 < 0

Thus .<, > is not an inner product on .C[0, 1]. .<, > is a bilinear form on . C[0, 1]
if it is linear on both first and second variable. Clearly .<, > is not linear on the 
second variable. Thus, .<, > is not a bilinear form on .C[0, 1]. 

(13) Which of the following normed spaces are inner product spaces? 

(a) .l p, 1 ≤ p < ∞ with .|v| = (E∞
i=1|vi |p

) 1
p , for .v = (v1, v2, . . .) ∈ l p. 

(b) .C[0, 1] with .| f | =
({ 1

0 | f (x)|pdx
) 1

p
, for . f ∈ C[0, 1]. 

(c) .L p[0, 1], 1 ≤ p < ∞ with .| f | =
({ 1

0 | f (x)|pdx
) 1

p
, for . f ∈ L p[0, 1]. 

(d) None of the above. 

Ans. Option d 

(a) Take.u = (1, 1, 0, . . .), v = (1,−1, 0, . . .) ∈ l p. Then. u + v = (2, 0, 0, . . .)
and .u − v = (0, 2, 0, . . .) with 

. |u + v| = |u − v| = 2

Observe that 

. |u| = |v| =
{
2

1
p , i f 1 ≤ p < ∞

1, i f p = ∞

Clearly parallelogram law is satisfied only when .p = 2. Therefore, . l p, p /=
2 are not inner product spaces. 

(b) Consider . f (x) = 1, g(x) = 1 − x ∈ C[0, 1]. Then .( f + g) (x) = 1 and 
.( f − g) (x) = 2x − 1 with .| f + g| = 1 and 

. | f − g| =
{ 1

0
|2x − 1|pdx =

{
1

(1+p)
1
p
, i f 1 ≤ p < ∞

1 , i f p = ∞

Also 

. | f | = |g| =
{ 1

0
|2x − 1|pdx =

{
1

(1+p)
1
p
, i f 1 ≤ p < ∞

1 , i f p = ∞

Clearly parallelogram law is satisfied only when .p = 2. Therefore, . C[0, 1]
is not an inner product spaces. 

(c) Consider the same example as above. .L p, p /= 2 are not inner product 
spaces.
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(14) The space .l p is a Hilbert space if and only if 
(a) .p > 1 (b) . p is even (c) .p = ∞ (d) . p = 2

Ans. Option d 
The space .l p is a Hilbert space if and only if .p = 2. 

(15) Let .V be an inner product space and .u, v ∈ V be such that 

. |<u, v>| = |u| |v|

Then . . . . . . .

(a) . u and . v are linearly independent. (b) . u and . v are orthogonal. 
(c) . u and . v are linearly dependent. (d) None of these. 

Ans. Option c 
By Cauchy-Schwartz inequality, .|<u, v>| = |u| |v| if and only if . u and . v are 
linearly dependent. 

(16) Let.c0 = {(vn) : vn ∈ R, vn → 0} and. M = {(vn) ∈ c0 : v1 + v2 + · · · + v10 =
0}. Then, .dim (c0/M) is equal to . . . . . . .

Ans. Define .T : c0 → R by 

. T (v) = v1 + v2 + · · · + v10

where .v = (v1, . . . , vn, . . .) ∈ c0. Then, for . u = (u1, . . . , un, . . .), v = (v1, . . . ,
vn, . . .) ∈ c0 and .λ ∈ R, 

. T (λu + v) = (u1 + λv1) + (u2 + λv2) + · · · + (u10 + λv10)

= u1 + u2 + · · · + u10 + λ(v1 + v2 + · · · + v10)

= T (u) + λT (v)

Clearly, . T is an onto homomorphism from .c0 to . R with 

. Ker(T ) = {(vn) ∈ c0 : v1 + v2 + · · · + v10 = 0}

Therefore by First Isomorphism Theorem, .c0/M ∼= R. Therefore dim. (c0/M)

= 1. 

(17) Let .<., .> : Rn × R
n → R be an inner product on the vector space .Rn over . R. 

Consider the following statements: 

P: .|<u, v>| ≤ 1
2 [<u, u> + <v, v>] for all .u, v ∈ R

n . 
Q: If .<u, v> = <2u,−v> for all .v ∈ R

n , then .u = 0. 

Then 
(a) both .P and .Q are TRUE. (b) .P is TRUE and .Q is FALSE. 
(c) .P is FALSE and .Q is TRUE. (d) both .P and .Q are FALSE.
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Ans. Option a 
For all .u, v ∈ R

n, we have 

. (|u| − |v|)2 = |u|2 + |v|2 − 2 |u| |v| ≥ 0

which implies that 

. |u| |v| ≤ 1

2

||u|2 + |v|2| = 1

2
[<u, u> + <v, v>]

Then by Cauchy-Schwartz inequality, we have 

. |<u, v>| ≤ |u| |v| ≤ 1

2
[<u, u> + <v, v>]

for all .u, v ∈ R
n. Now  .<u, v> = <2u,−v> for all .v ∈ R

n implies that . <u, v> =
−2<u, v>. That is, .3<u, v> = 0 for all .v ∈ R

n. Hence .u = 0. 

(18) Let .H be a complex Hilbert space. Let .u, v ∈ H be such that .<u, v> = 2. Then 

. 
1

2π

{ 2π

0

||u + eit v
||2 eitdt = · · · · · · · · ·

Ans. We have 

. 

||u + eit v
||2 = <u + eit v, u + eit v>

= <u, u> + <u, eit v> + <eit v, u> + <eit v, eit v>
= |u|2 + eit <u, v> + e−i t <v, u> + |v|2
= |u|2 + 2eit + 2e−i t + |v|2

Therefore 

. 
1

2π

{ 2π

0

|
||u + eit v

|
||
2
eit dt = 1

2π

{ 2π

0

|
|u|2 + 2eit + 2e−i t + |v|2

|
eit dt

= 1

2π

|(
|u|2 eit

i

)2π

0
+ 2

(
ei2t

2i

)2π

0
+ 2(t)2π0 +

(
|v|2 eit

i

)2π

0

|

= 1

2π
[4π]

(
since e2π = e4π = 1

)

= 2

(19) Let .H be a Hilbert space. Consider the following statements: 

P: If .{ei : i ∈ N} is an orthonormal set and .x ∈ H , then the set . E = {ei :
<x, ei > /= 0} is denumerable.
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Q: If .{ei : i ∈ N} is an orthonormal set, then for any .x ∈ H , .<x, en> → 0 as 
.n → ∞. 

Then 
(a) both .P and .Q are TRUE. (b) .P is TRUE and .Q is FALSE. 
(c) .P is FALSE and .Q is TRUE. (d) both .P and .Q are FALSE. 

Ans. Option a 
For .n ∈ N and .x ∈ H, define 

. En =
{
ei : |<x, ei >|2 >

1

n
|x|2

}

Suppose that .En contains . n or more than . n elements, then for .ei ∈ En, 

. 

E
|<x, ei >|2 > n

(
1

n
|x|2

)
= |x|2

But by Bessel’s inequality, we must have .
E|<x, ei >|2 ≤ |x|2 for any .x ∈ H. 

Therefore .En contains at most .n − 1 elements. Thus .En is finite for all . n ∈ N

Clearly, .En ⊂ E for all .n ∈ N. Now  let .ei ∈ E. Then .<x, ei > /= 0. We can always 
choose an . n, say  .n0 such that .|<x, ei >|2 > 1

n0
|x|2. Then .ei ∈ En0 . Therefore 

.E = ∪∞
n=1En. Since each .En is finite, .E is countable. 

If .{ei : i ∈ N} is an orthonormal set in a Hilbert space . H, by Bessel’s inequality, 
we have .

E|<x, ei >|2 ≤ |x|2. Therefore .|<x, ei >|2 converges as . n tends to .∞. 
Thus .<x, en> → 0 as .n → ∞ for any .x ∈ H. 

(20) Suppose .{v1, . . . , vn} are unit vectors in .R
n such that 

. |v|2 =
nE

i=1

|<vi , v>|2, ∀ v ∈ R
n

Then decide the correct statements in the following 
(a) .v1, . . . , vn are mutually orthogonal. 
(b) .{v1, . . . , vn} is a basis for .Rn . 
(c) .v1, . . . , vn are not mutually orthogonal. 
(d) At most .n − 1 of the elements in the set .{v1, . . . , vn} can be orthogonal. 
Ans. Options a and b 
Take .v = v j . Then 

. 

||v j
||2 =

nE

i=1

|<vi , v j >|2 = |<v j , v j >|2 ⇒ |<vi , v j >| = 0 ∀ i /= j

Therefore .v1, . . . , vn are mutually orthogonal and hence .{v1, . . . , vn} is a basis 
for .Rn.
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(21) Let .(V, <., .>) be an inner product space. Consider the following statements; 

P: If .un → u and .vn → v in . V , then .<un, vn> → <u, v> in . V . 
Q: If .vn → v and .u ⊥ vn, ∀ n, then .u ⊥ v. 

Then 
(a) both .P and .Q are TRUE. (b) .P is TRUE and .Q is FALSE. 
(c) .P is FALSE and .Q is TRUE. (d) both .P and .Q are FALSE. 

Ans. Option a 
We have 

. |<un, vn> − <u, v>| = |<un, vn> − <un, v> + <un, v> − <u, v>|
≤ |<un, vn> − <un, v>| + |<un, v> − <u, v>|
≤ |un| |vn − v| + |un − u| |v|
→ 0 as un → u and vn → v

Since .vn → v, from above we have .<u, vn> → <u, v>. As  .u ⊥ vn, ∀ n, we have 
.<u, vn> = 0, ∀ n. Therefore .<u, v> = limn→∞<u, vn> = 0. Hence .u ⊥ v. 

(22) Let .A =
⎡

⎣
1 1 2
0 1 1
0 1 1

⎤

⎦ and .V = {AxT : x ∈ R
1×3}. Then an orthonormal basis for 

. V . 

(a).
{
(1, 0, 0)T ,

(
0, 2√

5
, 1√

5

)T
,
(

2√
6
, 1√

6
, 1√

6

)T}
(b). 

{
(1, 0, 0)T ,

(
0, 1√

2
, 1√

2

)T}

(c).

{
(1, 0, 0)T ,

(
1√
3
, 1√

3
, 1√

3

)T
,
(

2√
6
, 1√

6
, 1√

6

)T
}

(d). 
{
(1, 0, 0)T , (0, 0, 1)T

}

Ans. Option d 

Here .V is clearly the column space of . A. Since .A =
⎡

⎣
1 1 2
0 1 1
0 1 1

⎤

⎦ ∼
⎡

⎣
1 0 0
0 1 0
0 1 0

⎤

⎦ (Col-

umn reduced form), .
{
(1, 0, 0)T , (0, 0, 1)T

}
gives an orthonormal basis. 

(23) Consider the subspaces .W1 and .W2 of .R3 given by 

. W1 = {(x, y, z) ∈ R
3 : x + y + z = 0}

. W2 = {(x, y, z) ∈ R
3 : x − y + z = 0}

If .W is a subspace of .R3 such that 

(i) . W ∩ W2 = span{(0, 1, 1)}
(ii) .W ∩ W1 is orthogonal to.W ∩ W2 with respect to the usual inner product of 

.R
3
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then 
(a) .W = {(0, 1,−1), (0, 1, 1)} (b) . W = {(1, 0,−1), (0, 1,−1)}
(c) .W = {(1, 0,−1), (0, 1, 1)} (d) . W = {(1, 0,−1), (1, 0, 1)}
Ans. Option a 
We have 

. W1 = {(x, y, z) ∈ R
3 : x + y + z = 0}

= span{(1, 0,−1), (0, 1,−1)}

and 

. W2 = {(x, y, z) ∈ R
3 : x − y + z = 0}

= span{(1, 0,−1), (0, 1, 1)}

Since .W ∩ W2 = span{(0, 1, 1)} and .W ∩ W1 is orthogonal to .W ∩ W2, . W =
{(0, 1,−1), (0, 1, 1)}. 

(24) Let .U be an orthonormal set in a Hilbert space .H and let .v ∈ H be such that 
.|v| = 2. Consider the set 

. E = {u ∈ U : |<v, u>| ≥ 1

4
}

Then the maximum possible number of elements in .E is . . . . . . .

Ans. Suppose that .E contains .n distinct elements, say .u1, u2, . . . , un. As  
.|<v, u>| ≥ 1

4 for each .u ∈ E, we have .
En

i=1|<v, ui >|2 ≥ n
16 . Also by Bessel’s 

inequality, we get .
En

i=1|<v, ui >|2 ≤ |v|2 = 4. Therefore, the maximum possi-
ble number of elements in .E is .64. 

(25) The application of Gram-Schmidt process of orthonormalization to 

. u1 = (1, 1, 0), u2 = (1, 0, 0), u3 = (1, 1, 1)

yields 

(a).
{

1√
2
(1, 1, 0), (1, 0, 0), (0, 0, 1)

}
(b). 

{
1√
2
(1, 1, 0), 1√

2
(1,−1, 0), 1√

2
(1, 1, 1)

}

(c) .{(0, 1, 0), (1, 0, 0), (0, 0, 1)} (d) . 
{

1√
2
(1, 1, 0), 1√

2
(1,−1, 0), (0, 0, 1)

}

Ans. Option d 
Let .v1 = u1 = (1, 1, 0). Then 

. v2 = u2 − <u2, v1>
<v1, v1> v1 = (1, 0, 0) − 1

2
(1, 1, 0) = 1

2
(1,−1, 0)

Take .v2 = (1,−1, 0). Then
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. v3 = u3 − <u3, v1>
<v1, v1> v1 − <u3, v2>

<v2, v2> v2 = (1, 1, 1) − (1, 1, 0) = (0, 0, 1)

Therefore .

{
1√
2
(1, 1, 0), 1√

2
(1,−1, 0), (0, 0, 1)

}
is the required set. 

(26) Consider .R3 with the standard inner product. Let . S = {(1, 1, 1), (2,−1, 2),
(1,−2, 1)}. For a subset.W of.R3, let .L(W ) denote the linear span of.W in.R

3. 
Then an orthonormal set . T with .L(S) = L(T ) is 
(a) .{ 1√

3
(1, 1, 1), 1√

6
(1,−2, 1)} (b) . {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

(c) .{ 1√
3
(1, 1, 1), 1√

2
(1,−1, 0)} (d) . { 1√

3
(1, 1, 1), 1√

2
(0, 1,−1)}

Ans. Option a 
Since .(1,−2, 1) = −(1, 1, 1) + (2,−1, 2), 

. L(S) = span{(1, 1, 1), (2,−1, 2)}

Now we construct an orthogonal basis using Gram-Schmidt Orthogonalisation 
process from the set .{v1 = (1, 1, 1), v2 = (2,−1, 2)}. 
Take .u1 = v1, then 

. u2 = v2 − <v2, v1>
<v1, v1>v1 = (1,−2, 1)

and 

. 

{
u1

|u1| = 1√
3
(1, 1, 1),

u2
|u2| = 1√

6
(1,−2, 1)

}

is an orthonormal set . T with .L(S) = L(T ). 

(27) Let. V be the inner product space consisting of linear polynomials,. p : [0, 1] →
R(.V consists of polynomials . p of the form .p(x) = ax + b, a, b ∈ R), with 
the inner product defined by 

. <p, q> =
{ 1

0
p(x)q(x)dx f or p, q ∈ V

An orthonormal basis of .V is 
(a) .{1, x} (b) .{1, x√3} (c) .{1, (2x − 1)

√
3} (d) . {1, x − 1

2 }
Ans. Option c 
Consider the standard ordered basis .{1, x}. Take .u1 = 1 and 

. u2 = v2 − <v2, v1>
<v1, v1>v1 = x − <x, 1>

<1, 1> = x − 1

2

Then .
{
1, x − 1

2

}
forms an orthogonal basis. Now
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. 
u2

|u2| = (2x − 1)
√
3

as .|u2| = (<u2, u2>) 1
2 = 2

√
3. 

(28) Consider .R3 with standard inner product. Let .W = span{(1, 0,−1)}. Then, 
which of the following is a basis for the orthogonal complement of . W? 
(a) .{(1, 0, 1), (0, 1, 0)} (b) . {(1, 2, 1), (0, 1, 1)}
(c) .{(2, 1, 2), (4, 2, 4)} (d) . {(2,−1, 2), (1, 3, 1), (−1,−1,−1)}
Ans. Option a 
As .R3 can be written as a direct sum of .W and its orthogonal complement, . W⊥
is a two-dimensional subspace of .R3. 

(a) Observe that.<(1, 0, 1), (1, 0,−1)> = 0and.<(1, 0,−1), (0, 1, 0)> = 0. Also,  
the set .{(1, 0, 1), (0, 1, 0)} is linearly independent and hence is a basis of 
.W⊥. 

(b) We have .<(0, 1, 1), (1, 0,−1)> = −1 /= 0. Therefore .(0, 1, 1) /∈ W⊥. 
(c) Clearly, .<(2, 1, 2), (1, 0,−1)> = 0 and .<(4, 2, 4), (1, 0,−1)> = 0. But, the 

set.{(2, 1, 2), (4, 2, 4)} is linearly dependent and hence is not a basis of.W⊥. 
(d) As .W⊥ is a two-dimensional subspace of .R3, . {(2,−1, 2), (1, 3, 1),

(−1,−1,−1)} cannot be a basis of .W⊥. 

(29) For . f, g ∈ P2[x], define 

. < f, g> =
{ 1

0
f (t)g(t)dt

Let.W = {1 − t2, 1 + t2}. Which of the following conditions is satisfied for all 
.h ∈ W⊥? 
(a) . h is an even function. 
(b) . h is an odd function. 
(c) .h(t) = 0 has a real solution. 
(a) .h(0). 

Ans. Option c 
We have, 

. W⊥ =
{
h ∈ P2[x] |

{ 1

0
f (t)h(t)dt = 0, ∀ f ∈ W

}

= {
h ∈ P2[x] | <(1 − t2), h> = 0 and <(1 + t2), h> = 0

}

Take .h(t) = a + bt + ct2 ∈ P2[x]. Then,
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. <(1 − t2), h> = 0 ⇒
{ 1

0

(
1 − t2

) (
a + bt + ct2

)
dt = 0

⇒
{ 1

0

(
a + bt + (c − a)t2 − bt3 − ct4

)
dt = 0

⇒ 2a

3
+ b

4
+ 2c

15
= 0

and 

. <(1 + t2), h> = 0 ⇒
{ 1

0

(
1 + t2

) (
a + bt + ct2

)
dt = 0

⇒
{ 1

0

(
a + bt + (c + a)t2 + bt3 + ct4

)
dt = 0

⇒ 4a

3
+ 3b

4
+ 8c

15
= 0

Solving these equations, we get .a = 3c
15 and .b = 16c

15 . Therefore, 

. W⊥ = span
{
3 + 16t + 15t2

}

Any element .h ∈ W⊥ is of the form .3k + 16kt + 15kt2 for some .k ∈ R. Clearly, 
. h is neither an odd function nor an even function. Also .h(0) /= 0. As,  

. (16k)2 − 4(3k)(15k) = 256k2 − 180k2 = 76k2 > 0

for all .k ∈ R, .h(t) = 0 has a real solution for any .h ∈ W⊥. 

(30) Consider .L2[0, 2π ] with inner product 

. < f, g> =
{ 2π

0
f (x)g(x)dx

Which of the following is an orthogonal sequence in .L2[0, 2π ]? 
(a) .{xn : n ∈ N} (b) . {cos nx : n ∈ N}
(c) .{einx : n ∈ N} (d) . {sin nx : n ∈ N}
Ans. Options b, c and d 

(a) We have 

. <x, x2> =
{ 2π

0
x3dx =

|
x4

4

|2π

0

/= 0

Therefore .{xn : n ∈ N} is not an orthogonal sequence in .L2[0, 2π ]. 
(b) For .n1 /= n2, we have
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. <cos n1x, cos n2x> =
{ 2π

0
cos n1x cos n2xdx

=
|
sin (n1 + n2) x

2 (n1 + n2)
+ sin (n1 − n2) x

2 (n1 − n2)

|2π

0

= 0

Therefore .{cos nx : n ∈ N} is an orthogonal sequence in .L2[0, 2π ]. 
(c) For .n1 /= n2, 

. <ein1x , ein2x > =
{ 2π

0
ei(n1−n2)xdx =

|
1

i (n1 − n2)
ei(n1−n2)x

|2π

0

= 0

Therefore .{einx : n ∈ N} is an orthogonal sequence in .L2[0, 2π ]. 
(d) For .n1 /= n2, we have 

. <sin n1x, sin n2x> =
{ 2π

0
sin n1x sin n2xdx

=
|
sin (n1 − n2) x

2 (n1 − n2)
− sin (n1 + n2) x

2 (n1 + n2)

|2π

0

= 0

Therefore .{sin nx : n ∈ N} is an orthogonal sequence in .L2[0, 2π ]. 
(31) Let.{v1, v2, . . . , vn} be an orthonormal basis of.Cn as column vectors. Let. M =|

v1 v2 . . . vk
|
,.N = |

vk+1 vk+2 . . . vn
|
and. P be the diagonal.k × k matrix with 

diagonal entries .α1, α2, . . . , αk ∈ R. Then which of the following are true? 
(a) .Rank(MPM∗) = k whenever .αi /= α j , 1 ≤ i, j ≤ k. 
(b) . tr(MPM∗) = Ek

i=1 αi

(c) . Rank(M∗N ) = min(k, n − k)
(d) . Rank(MM∗ + NN ∗) < n

Ans. Option b 
If .Rank(P) < k, then by Sylvester’s inequality .Rank(MPM∗) < k. Also  

. tr(MPM∗) = tr(MM∗P) = tr(P) =
kE

i=1

αi

Take .M = |
e1 e2

|
and .N = |

e3 e4
|
. Then .M∗N = 0. Also .MM∗ + NN ∗ = I4. 

(32) Which of the following statements are true? 
(a) There exists .A ∈ M2×2(R) which is orthogonal and has 2 as an eigenvalue. 
(b) There exists .A ∈ M2×2(R) which is orthogonal and has . i as an eigenvalue. 
(c) If .A ∈ M2×2(R) is orthogonal, then .|Av| = |v| for every .v ∈ M2×2(R), 
where .|.| denotes the usual euclidean norm on .R

2.
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Ans. Options b and c 

(a) Let . λ be an eigenvalue of . A. Then there exists .v /= 0 ∈ R
2 such that . Av =

λv.We have 

. |Av|2 = (Av)T (Av) = vT AT Av = vT v = |v|2

Also 
. |Av|2 = <λv, λv> = |λ|2 |v|2 ⇒ |λ|2 = 1 ⇒ |λ| = 1

Therefore 2 is not an eigenvalue of . A. 

(b) Consider the matrix .A =
|
0 1

−1 0

|
. Then 

. AAT =
|
0 1

−1 0

| |
0 −1
1 0

|
=

|
1 0
0 1

|

Also the eigenvalues of . A are . i and .−i . 
(c) From .(a) we get .|Ax|2 = |x|2. Since .|Ax| and .|x| are positive, . |Ax| =

|x|. 
(33) Let . A be an orthogonal .3 × 3 matrix with real entries. Pick out the true state-

ments: 
(a) The determinant of . A is a rational number. 
(b) .d (Au, Av) = d (u, v) for any two vectors . u and .v ∈ R

3, where . d (u, v)
denotes the usual Euclidean distance vectors . u and . v ∈ R

3

(c) All the entries of . A are positive. 
(d) All the eigenvalues of . A are real. 

Ans. Options a and b 
. A is orthogonal .⇒ AAT = I ⇒ det (AAT ) = 1 ⇒ (det A) = ±1. Since . A is 
orthogonal, geometrically it is either a rotation or reflection. Hence. d (Au, Av) =
d (u, v) for any two vectors . u and .v ∈ R

3. Consider the matrix .A =
|
0 1

−1 0

|
. 

Clearly .A is orthogonal. But all the entries are not positive and it has complex 
eigenvalues. 

(34) Let. S be the set of all.3 × 3matrices. Awith integer entries such that the product 
.AAT is the identity matrix. Then . |S| = . . .

(a) 12 (b) 24 (c) 48 (d) 60 

Ans. Option c 
Note that . S consists of all matrices having orthonormal rows. Since . A has only 
integer entries, a row of length one has only one non-zero entry which is equal to 
.−1 or 1. Therefore there are 6 choices for the first row. The second row has to be 
perpendicular to the first. Therefore there are only 4 choices for the second row.
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(i.e, if first row is.
|
1 0 0

|
, the second row cannot be.

|
1 0 0

|
or.

|−1 0 0
|
). Finally 

for the last row there are only two choices. Therefore . |S| = 6 × 4 × 2 = 48
choices. 

(35) Let .A be a real .n × n orthogonal matrix is, .AT A = AAT = I . Which of the 
following statements are necessarily true? 
(a) . <Au, Av> = <u, v> ∀ u, v ∈ R

n

(b) All eigenvalues of . A are either .+1 or . −1
(c) The rows of . A form an orthonormal basis of .Rn . 
(d) . A is diagonalizable over . R. 

Ans. Options a and c 
As .AT A = AAT = I , we have 

. <Au, Av> = <u, AT Av> = <u, v> ∀ u, v ∈ R
n

Consider the matrix .A =
|
0 −1
1 0

|
. Then .AT A = AAT = In. The eigenvalues of 

.A are either . i or .−i . .A is not diagonalizable over . R. The .i th diagonal element 
of .AAT is the length of the .i th row of . A. Therefore the rows of .A form an 
orthonormal basis of .Rn. 

(36) Let . n be an integer .≥ 2 and .B ∈ Mn×n(R) be an orthogonal matrix. Consider 
.WB = {BT AB : A ∈ Mn×n(R)}. Which of the following are necessarily true? 
(a) .WB is a subspace of .Mn×n(R) and .dim WB ≤ Rank(B). 
(b) .WB is a subspace of .Mn×n(R) and .dim WB = Rank(B)Rank(Bt ). 
(c) .WB = Mn×n(R). 
(d) .WB is not a subspace of .Mn×n(R). 

Ans. Options b and c 
Let .C1,C2 ∈ WB. Then there exists .A1, A2 ∈ Mn×n(R) such that . C1 = BT A1B
and .C2 = BT A2B. Then .λC1 + C2 = BT (λA1 + A2)B ∈ WB. Therefore .WB is 
a subspace of .Mn×n(R) and .dim WB = n2 = Rank(B)Rank(BT ). Define . TB :
Mn(R) → Mn(R) as .TB(A) = BT ABTB(A) = 0 if and only if .A = 0. Hence 
.N(T ) = 0 and by Rank-Nullity theorem, .R(T ) = Mn(R). 

(37) Let .A =
⎡

⎣
3 0 0
0 6 2
0 2 6

⎤

⎦ and let .λ1 ≥ λ2 ≥ λ3 be the eigenvalues of . A. 

(a) The triple .(λ1, λ2, λ3) equals 
(i) .(9, 4, 2) (ii) .(8, 4, 3) (iii) .(9, 3, 3) (iv) .(7, 5, 3)
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(b) The matrix .P such that . PT AP =
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦

(i) .

⎡

⎢
⎣

1√
3

0 −2√
6

1√
3

1√
2

1√
6

1√
3

−1√
2

1√
6

⎤

⎥
⎦ (ii) . 

⎡

⎢
⎣

1√
3

−2√
6

0
1√
3

1√
6

1√
2

1√
3

1√
6

−1√
2

⎤

⎥
⎦

(iii) .

⎡

⎢
⎣

0 0 1
1√
2

1√
2
0

1√
2

−1√
2
0

⎤

⎥
⎦ (iv) . 

⎡

⎢
⎣

0 1 0
1√
2
0 1√

2
1√
2
0 −1√

2

⎤

⎥
⎦

Ans. (a) Option ii is correct. 
Since .det (A) = 96, the eigenvalues of . A are 8, 4 and 3. 

(b) Option iii is correct. 
Since .8, 4, 3 are eigenvalues of . A with eigenvectors . (0, 1, 1)T , (0, 1,−1)T ,

(1, 0, 0)T , . P =
⎡

⎢
⎣

0 0 1
1√
2

1√
2
0

1√
2

−1√
2
0

⎤

⎥
⎦

(38) Let 

. A =
⎡

⎣
3
5

−4
5 0

4
5

3
5 0

0 0 1

⎤

⎦

(a) Then . A is 
i. non-invertible ii. skew-symmetric 
iii. symmetric iv. orthogonal 

(b) If . B is any .3 × 3 real matrix, then .tr(ABAt ) is equal to 
i. .[tr(A)]2tr(B) ii. . 2tr(A) + tr(B)

iii. .tr(B) iv. . [tr(A)]2 + tr(B)

Ans. (a) Option iv is correct. 
Since .det (A) /= 0, .N is invertible. Also 

. AT =
⎡

⎣
3
5

4
5 0

−4
5

3
5 0

0 0 1

⎤

⎦ /= A /= −A

But .AAT =
⎡

⎣
3
5

−4
5 0

4
5

3
5 0

0 0 1

⎤

⎦

⎡

⎣
3
5

4
5 0

−4
5

3
5 0

0 0 1

⎤

⎦ = I = AT A. 

Therefore . A is orthogonal.
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(b) Option iii is correct. 
Since .tr(ABAT ) = tr(AT AB) = tr(B). 

(39) Let . A be an .n × n non-zero skew-symmetric matrix. The matrix . (I − A)(I +
A)−1 is always 
(a) singular (b) symmetric (c) orthogonal (d) idempotent 

Ans. Option c 

Consider .A =
|
0 −2
2 0

|
. Then 

. (I − A)(I + A)−1 = 1

5

|−3 4
−4 −3

|

is non-singular, not symmetric and is not idempotent. Now 

. 
|
(I − A)(I + A)−1

|T = |
(I + A)T

|−1
(I − A)T

= (I + AT )−1(I − AT )

= (I − A)−1(I + A)

Since 
. (I − A)(I + A) = I − A2 = (I + A)(I − A)

we get 
. [(I − A)(I + A)]−1 = [(I + A)(I − A)]−1

Therefore 

. 
|
(I − A)(I + A)−1

| |
(I − A)(I + A)−1

|T = I

(40) If .

⎡

⎢⎢⎢
⎢
⎣

√
5

3

−2

3
γ

2

3

√
5

3
δ

α β 1

⎤

⎥⎥⎥
⎥
⎦

is a real orthogonal matrix, then .α2 + β2 + γ 2 + δ2 equals 

. . . . . . .

Ans. We have 

. 

⎡

⎢⎢⎢⎢
⎣

√
5

3

−2

3
γ

−2

3

√
5

3
δ

α β 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

√
5

3

2

3
α

−2

3

√
5

3
β

γ δ 1

⎤

⎥⎥⎥⎥
⎦

=
⎡

⎣
1 + γ 2

1 + δ2

α2 + β2 + 1

⎤

⎦ = I

.Trace = α2 + β2 + 1 + 1 + δ2 + 1 + γ 2 = 3 ⇒ α2 + β2 + γ 2 + δ2 = 0
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(41) For real constants . α and . β, let  

. A =
⎡

⎣
1√
2

1√
2

α β

⎤

⎦

be an orthogonal matrix. Then which of the following statements is/are always 
true? 
(a) .α + β = 0 (b) .β = √

1 − α2 (c) .αβ = 1
2 (d) . A2 = I

Ans. Options a and d 
We have 

. AAt =
⎡

⎢
⎣

1
α + β√

2
α + β√

2
α2 + β2

⎤

⎥
⎦ = I ⇒ α + β = 0 and α2 + β2 = 1

⇒ α = 1√
2
, β = − 1√

2
or α = − 1√

2
, β = 1√

2

Therefore .β = −√
1 − α2 and .αβ = − 1

2 . Also .A2 = I . 

(42) Let .P = vvT

vT v
be an.n × n(n > 1) matrix, where. v is a non zero column vector. 

Then which one of the following statements is FALSE? 
(a) .P is idempotent (b) .P is orthogonal 
(c) .P is symmetric (d) Rank of .P is one 

Ans. Option b 

.P2 = vvT

vT v

vvT

vT v
= v(vT v)vT

(vT v)2
= vvT

vT v
= P ⇒ P is idempotent. 

.PT =
(
vvT

vT v

)T

= (vT )T vT

vT v
= vvT

vT v
= P ⇒ P is symmetric. 

By Sylvester’s inequality .Rank(P) = 1. .P is not orthogonal. 

(43) Find an orthogonal matrix .P such that .PAP−1 = B, where 

.A =
⎡

⎣
0 0 1
1 0 0
0 0 0

⎤

⎦ and . B =
⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦

Ans. . A is nilpotent matrix since .A3 = 0. Then, 

.Av = 0 ⇒ v1 =
⎡

⎣
0
1
0

⎤

⎦ is an eigenvector of . A. 

.Ax = v1 ⇒ v2 =
⎡

⎣
1
0
0

⎤

⎦ is generalized eigenvector of . A.
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.Ax = v2 ⇒ v3 =
⎡

⎣
0
0
1

⎤

⎦ is generalized eigenvector of . A. 

Now take .P =
⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦. Then .P−1 = P and .PAP−1 = B. 

(44) Let .N ≥ 2. Let  .v ∈ R
N , v /= 0, be a column vector. Find the condition on . v

such that the matrix .I − 2vvT is orthogonal. 

Ans. 
. (I − 2vvT )(I − 2vvT ) = I ⇒ 4vvT (1 − vT v) = 0

.vT v is a scalar and .vvT /= 0. Hence the required condition is .vT v = 1. 

(45) Let .A : Rm → R
n be a linear transformation. If .W is a subspace of .Rn , define 

.W⊥ = {v ∈ R
n : <u, v> = 0 ∀ u ∈ W }.Which of the following statements are 

true? 
(a) .R(A) ⊂ |N(AT )

|⊥
. 

(b) .R(A) = |N(AT )
|⊥
. 

(c) Neither of the above statements need be necessarily true. 

Ans. Option a and b 
Let .v ∈ N(AT ). Then since .AT v = 0 if and only if .<v, Au> = <AT v, u> = 0 for 
all .u ∈ R

m. Therefore .R(A) = |N(AT )
|⊥
. 

(46) Let .V be the column space of the matrix .A =
⎛

⎝
1 −1
1 2
1 −1

⎞

⎠. Then the orthogonal 

projection of .

⎛

⎝
0
1
0

⎞

⎠ on .V is 

(a) .(0, 1, 0)T (b) .(0, 0, 1)T (c) .(1, 1, 0)T (d) . (1, 0, 1)T

Ans. Option a 
Since the columns .v1, v2 of . A are orthogonal, the projection of the given vector 
. v on .V is .= projv1(v) + projv2(v). Now,  

. projv1(v) = vT v1
vT1 v1

v1 = 1

3

⎛

⎝
1
1
1

⎞

⎠

and 

.projv2(v) = vT v2
vT2 v2

v2 = 1

3

⎛

⎝
−1
2

−1

⎞

⎠
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Therefore . projV (v) =
⎛

⎝
0
1
0

⎞

⎠

(47) Let.W = span
{

1√
2
(0, 0, 1, 1), 1√

2
(1,−1, 0, 0)

}
be a subspace of the Euclidean 

space.R
4. Then the square of the distance from the point.(1, 1, 1, 1) to the sub-

space .W is equal to . . . . . . .

Ans. The projection of the given vector . v on .W is .= projw1(v) + projw2(v). 
Now 

.projw1(v) = vTw1

wT
1 w1

w1 =

⎛

⎜⎜
⎝

0
0
1
1

⎞

⎟⎟
⎠ and .projw2(v) = vTw2

wT
2 w2

w2 =

⎛

⎜⎜
⎝

0
0
0
0

⎞

⎟⎟
⎠. Therefore 

.projW (v) =

⎛

⎜⎜
⎝

0
0
1
1

⎞

⎟⎟
⎠ Now the square of the distance from the point .(1, 1, 1, 1) to 

the subspace .W is the square of the length of the vector. i.e, 2. 

(48) Let.A ∈ Mn×n(R) be a non-zero singular matrix. Consider the following prob-
lem: find .X ∈ Mn×n(R) such that 

. (i) AX A = A (i i) X AX = X and (i i i) AX = X A

Which of the following statements are true? 
(a) If a solution to the above problem exists, then . A is not nilpotent. 
(b) If . A represents a projection, then the above problem admits a solution. 
(c) If .n = 2 and if a solution to the above problem exists, then A is diagonal-
izable over . R. 

Ans. Options a, b and c 

(a) . A = AX A = AAX = A2X = A2X AX = A3X2 = A5X4 = · · · = A2n+1

X2n for every .n ∈ N. Suppose that .A is nilpotent, then .Am = 0 for some 
.m ∈ N. Then by the above equation, this implies that .A = 0, which  is  a  
contradiction. Therefore . A is not nilpotent. 

(b) If . A is a projection .A2 = A. Then take .X = A. 
(c) When .n = 2, Since A is singular and . A is not nilpotent, clearly . A is diago-

nalizable over . R. 

(49) Let .A ∈ Mn×n(R) be a non-zero singular matrix that .tr(A) /= 0. Which of the 
following statements are true? 
(a) For every such matrix. A, the problem stated in the preceding exercise need 
not have a solution. 
(b) For every such matrix . A, the problem stated in the preceding exercise has
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a solution given by .X = 1

tr(A)
A. 

(c) For every such matrix . A, the problem stated in the preceding exercise has 

a solution given by .X = 1

(tr(A))2
A. 

Ans. Option c 
The characteristic polynomial of. A is.λ2 − tr(A)λ = 0. That is,. A satisfies. A2 =
tr(A)A which implies .X = 1

(tr(A))2
A is a solution for the given equations with 

such . A. 

(50) Let . A be an .n × n matrix with rank . k. Consider the following statements: 

(i) If . A has real entries, then .AAT necessarily has rank . k. 
(ii) If . A has complex entries, then .AAT necessarily has rank . k. 

Then 
(a) (i) and (ii) are true. (b) (i) and (ii) are false. 
(c) (i) is true and (ii) is false. (d) (i) is false and (ii) is true. 

Ans. Option c 
First we prove that .N(AT ) = N(AAT ). Let .v ∈ N(AT ). 

. v ∈ N(AT ) ⇒ AT v = 0

⇒ AAT v = 0

⇒ v ∈ N(AAT )

Therefore .N(AT ) ⊂ N(AAT ). Now  

. v ∈ N(AAT ) ⇒ AAT v = 0

⇒ vT AAT v = 0

⇒ (AT v)T AT v = 0

⇒ ||AT v
|| = 0 i f A has real entries

⇒ AT v = 0

⇒ v ∈ N(AT )

Therefore .N(AT ) ⊃ N(AAT ). Thus .N(AT ) = N(AAT ). As  . Rank(A) =
Rank(AT ), by Rank-Nullity theorem, If .A has real entries, then .AAT neces-
sarily has rank . k. 
But if .A has complex entries, then .AAT need not have rank . k. For example, 

consider the matrix .

|
1 i
0 0

|
, then .AAT =

|
0 0
0 0

|
.
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(51) Let . A be an .n × n real matrix. Pick the correct answer(s) from the following 
(a) . A has at least one real eigenvalue 
(b) For all non-zero vectors . v,w ∈ R

n, (Aw)T (Av) > 0
(c) Every eigenvalue of .AT A is a non-negative real number. 
(d) .I + AT A is invertible 

Ans. Options c and d 

Consider the matrix .

|
0 1
1 0

|
. The given matrix has no real eigenvalues. Take 

.w =
|
1
0

|
and .v =

|
0
1

|
. Then .(Aw)T (Av) = 0. Let . λ be an eigenvalue of . AT A

with eigenvector . u, then 

. λ |u|2 = <λu, u> = <AT Au, u> = <Au, Au> ≥ 0

Therefore every eigenvalue of .AT A is a non-negative real number. Hence every 
eigenvalue of .I + AT A is a non-negative real number. 

(52) Let.T1, T2 be two linear transformations from.R
n to.R

n . Let.{v1, v2, . . . , vn} be a 
basis of.Rn . Suppose that.Tivi /= 0 for every.i = 1, 2, . . . , n and. vi ⊥ Ker(T2)
for every .i = 1, 2, . . . , n. Which of the following is/are necessarily true? 
(a) .T1 is invertible. (b) .T2 is invertible. 
(c) Both .T1, T2 are invertible. (d) Neither .T1 nor .T2 is invertible. 

Ans. Option b 
Since.{v1, v2, . . . , vn} is a basis for.Rn and.vi ⊥ Ker(T2) for every.i = 1, 2, . . . , n, 
.Ker(T2) = φ ⇒ T2 is one-one. Since .T2 is from .R

n to .R
n, .T2 is invertible. Con-

sider the linear transformation. T by.T (v1) = · · · = T (vn) = v1. Then. T (vi ) /= 0
for every .i = 1, 2, . . . , n, but . T is not invertible. 

(53) Let .T : R3 → R
3 be a linear transformation defined by 

. T (x, y, z) = (x + y, y + z, z − x)

Then an orthonormal basis for the range of . T is 

(a) .
{(

1√
2
, 1√

2
, 0

)
,
(

1√
3
, −1√

3
, 1√

3

)}
(b) . 

{(
1√
2
, −1√

2
, 0

)
,
(

1√
6
, 1√

6
, 2√

6

)}

(c) .
{(

1√
2
, 1√

2
, 0

)
,
(

1√
6
, −1√

6
, −2√

6

)}
(d) . 

{(
1√
2
, 1√

2
, 0

)
,
(

1√
3
, −1√

3
, −1√

3

)}

Ans. Option c 
We have 

. T (1, 0, 0) = (1, 0,−1) = 1(1, 0, 0) + 0(0, 1, 0) + (−1)(0, 0, 1)

.T (0, 1, 0) = (1, 1, 0) = 1(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1)
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. T (0, 0, 1) = (0, 1, 1) = 0(1, 0, 0) + 1(0, 1, 0) + 1(0, 0, 1)

Therefore the matrix of .T is given by .

⎡

⎣
1 1 0
0 1 1

−1 0 1

⎤

⎦. Since the third column is the 

linear combination of first and second column, 

. R(T ) = span{(1, 1, 0), (1, 0,−1)}

As .{(1, 1, 0), (1, 0,−1)} is not orthonormal we have to use Gram-Schmidt 
Orthonormalization. Take .u1 = (1, 1, 0) and then 

. u2 = (1, 0,−1) − <(1, 1, 0), (1, 0,−1)>
<(1, 1, 0), (1, 1, 0)> (1, 1, 0) =

(
1

2
,
−1

2
,−1

)

Therefore .(1,−1,−2) is an orthogonal vector to .(1, 1, 0) and 

. span{(1, 1, 0), (1, 0,−1)} = span{(1, 1, 0), (1,−1,−2)}

Therefore .

{(
1√
2
, 1√

2
, 0

)
,
(

1√
6
, −1√

6
, −2√

6

)}
is an orthonormal basis for the range 

space of . T . 

(54) Let .A be an .m × n matrix of rank .m with .n > m. If for some non-zero real 
number . α, we have .uT AAT u = αuT u for all .u ∈ R

m then .AT A has 
(a) exactly two distinct eigenvalues 
(b) 0 as an eigenvalue with multiplicity . n − m
(c) . α as a non-zero eigenvalue 
(d) exactly two non-zero distinct eigenvalues 

Ans. Options a, b and c 
Since . A is a matrix of rank . m, by Sylvester’s inequality .AT A is a matrix of rank 
.m and hence 0 as an eigenvalue with multiplicity .n − m. Let . λ be a non-zero 
eigenvalue of.AT A. Then there exists.v /= 0 such that.AT Av = λv. Take.Av = u. 
Then .AT u = AT Au = λv and .AAT u = λAv = λu. Multiplying with.uT , we get  

. uT AAT u = αuT u = λuT u ⇒ α |u| = λ |u|

Since .|u| /= 0 this gives .α = λ. Therefore . α is the only non-zero eigenvalue of 
.AT A. 

(55) Suppose. V is a finite-dimensional non-zero vector space over. C and. T : V → V
is a linear transformation such that.R(T ) = N(T ). Then which of the following 
statements is false? 
(a) The dimension of .V is even. 
(b) 0 is the only eigenvalue of . T .
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(c) Both 0 and 1 are eigenvalues of . T . 
(d) . T 2 = 0

Ans. Option c 
We have .N(T ) ⊂ N(T 2). Now  let .v ∈ (N(T ))⊥. Then .0 /= T (v) ∈ R(T ). Since 
.R(T ) = N(T ), .T 2(v) = T (T v) = 0. That is, .v ∈ N(T 2). As  . V = N(T ) ⊕
N(T 2), .T 2 = 0. Therefore 0 is the only eigenvalue of . T . Also Since . R(T ) =
N(T ), By Rank-Nullity Theorem, the dimension of .V is even. 

(56) Let .V be a closed subspace of .L2[0, 1] and let . f, g ∈ L2[0, 1] be given by 
. f (x) = x and .g(x) = x2. If .V⊥ = span{ f } and .Pg is the orthogonal projec-
tion of . g on . V , then .(g − Pg)(x), x ∈ [0, 1] is 
(a) . 34 x (b) . 14 x (c) . 34 x

2 (d) . 14 x
2

Ans. Option a 
We know that if .P is a projection on . V , .I − P is a projection on .V⊥. We have 
.| f |2 = { 1

0 x2dx = 1
3 . Then 

.(g − Pg)(x) = <g, f >
| f |2 f = 3<x2, x>x = 3

4
x



Chapter 13 
Solved Problems—Bounded Linear Maps 

(1) If . f : l∞ → R be defined by . f ({v}) = v2, then the norm of . f is 
(a) 1 (b) 0 (c) 2 (d) . 12

Ans. Option a 
For .v = (v1, v2, . . .) ∈ l∞, we have 

. | f (v)| = |v2| ≤ sup
i

|vi | = |v|

Therefore .| f | ≤ 1. Also, for .e2 = (0, 1, . . .) ∈ l∞, we have . f (e2) = 1. Hence 
.| f | = 1. 

(2) Let .T : (C[0, 1], |.|∞) → R be defined by .T ( f ) = { 1
0 2x f (x)dx for all . f ∈

C[0, 1]. Then .|T | equals . . . . . . .

Ans. We have 

. |T | = sup
| f |=1

|
|
|
|

{ 1

0
2x f (x)dx

|
|
|
| ≤ 2 sup

| f |=1

{ 1

0
|x || f (x)|dx ≤ 2

{ 1

0
xdx = 1

Thus.|T | ≤ 1. Now  for. f (x) = 1, we have.| f | = 1 and. |T ( f )| = { 1
0 2xdx =

1. Therefore .|T | = 1. 

(3) Let .C[0, 1] be the real vector space of all continuous real valued functions on 
.[0, 1], and let . T be a linear operator on .C[0, 1] given by 

. (T f )(x) =
{ 1

0
sin(x + y) f (y)dy, x ∈ [0, 1]

Then the dimension of range space of . T equals . . . . . . .
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Ans. We have .sin(x + y) = sin x cos y + cos x sin y. Then 

. (T f )(x) = sin x
{ 1

0
cos y f (y)dy + cos x

{ 1

0
sin y f (y)dy

Therefore,.T ( f ) ∈ span{sin x, cos x}. As .{sin x, cos x} is linearly independent 
the dimension of range space of . T equals 2. 

(4) Let.V be a real normed linear space of all real sequences with finitely many non 
zero terms, with supremum norm and .T : V → V be a one-one and onto linear 
operator defined by 

. T (v1, v2, v3, . . .) =
(
v1,

v2
22

,
v3
32

, . . .
)

Then which of the following is TRUE? 
(a) . T is bounded but .T−1 is not bounded. 
(b) . T is not bounded but .T−1 is bounded. 
(c) Both . T and .T−1 are bounded. 
(d) Neither . T nor .T−1 is not bounded. 

Ans. Option a 
We have, 

. |T (v1, v2, v3, . . .)| = sup
{
|v1|,

|
|
|
v2
22

|
|
| , . . .

}
≤ sup{|v1|, |v2|, . . .} = |v|

Thus . T is bounded. Now consider the map .T1 : V → V defined by 

. T1 (v1, v2, v3, . . .) = (
v1, 2

2v2, 3
2v3, . . .

)

Observe that .T1T = T T1 = I . That is, .T1 = T−1. Also,  

. |T1 (v1, v2, v3, . . .)| = sup
{|v1|, 22|v2|, 32|v3|, . . .

}

Clearly, .T1 is not bounded. 

(5) Let .T : l2 → l2 be defined by 

. T ((v1, v2, . . . , vn, . . .)) = (v2 − v1, v3 − v2, . . . , vn+1 − vn, . . .)

Then 
(a) .|T | = 1 (b) .|T | > 2 but bounded. 
(c) .1 < |T | ≤ 2 (d) .|T | is unbounded. 

Ans. Option c 
Since .(a − b)2 = a2 + b2 − 2ab ≤ 2(a2 + b2) for .a, b ∈ R, for any 
.v = (v1, v2, . . . , vn, . . .) ∈ l2 with .|v| = 1, we have
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. |T (v)|2 =
∞E

n=1

|vn+1 − vn|2 ≤ 2

( ∞E

n=1

|vn+1|2 +
∞E

n=1

|vn|2
)

≤ 4

Therefore .|T | ≤ 2. Also for  .v = (2, 0, . . . , 0, . . .), .|T (v)| = 2. Therefore 
.|T | = 2. 

(6) Let .{(en) : n = 1, 2, 3, . . .} be an orthonormal basis of a complex Hilbert space 
. H . Consider the following statements: 

P: There exists a bounded linear functional . f : H → C such that . f (en) = 1
n

for . n = 1, 2, 3, . . .
Q: There exists a bounded linear functional .g : H → C such that . g(en) = 1√

n
for . n = 1, 2, 3, . . .

Then 
(a) both .P and .Q are TRUE. (b) .P is TRUE and .Q is FALSE. 
(c) .P is FALSE and .Q is TRUE. (d) both .P and .Q are FALSE. 

Ans. Option b 
For any .x ∈ H, we have .x = E

n<x, en>en. Then 

. f (x) =
E

n

<x, en> f (en) =
E

n

<x, en>1
n

and by Holder’s inequality, 

. | f (x)|2 ≤
(
E

n

|<x, en>|2
)(

E

n

1

n2

)

≤ π2

6
|x|2

Therefore . f is a bounded linear functional on . H. Now consider .H = l2 with the 
inner product .<v,w> = E

n vnwn, where . v = (v1, v2, . . .),w = (w1,w2, . . .) ∈
l2. Suppose that there exists a bounded linear functional .g : l2 → C such that 
.g(en) = 1√

n
for .n = 1, 2, 3, . . .. Then by Riesz representation theorem, there 

exists .v = (v1, v2, . . .) ∈ l2 such that .g(x) = <x, v>. Then, we have 

. g(en) = <en, v> = vn = 1√
n

∀ n = 1, 2, 3, . . .

But .v =
(

1√
n

)
/∈ l2 as .

E
n|vn|2 = E

n
1
n diverges. Therefore such a bounded 

linear functional . g need not exist. 

(7) Let .C[0, 1] be the Banach space of real valued continuous functions on . [0, 1]
equipped with supremum norm. Define .T : C[0, 1] → C[0, 1] by 

.(T f )(x) =
{ x

0
x f (t)dt
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Let .R(T ) be the range space of . T . Consider the following statements: 

P: . T is a bounded linear operator. 
Q: .T−1 : R(T ) → C[0, 1] exists and is bounded. 
Then 
(a) both .P and .Q are TRUE. (b) .P is TRUE and .Q is FALSE. 
(c) .P is FALSE and .Q is TRUE. (d) both .P and .Q are FALSE. 

Ans. Option b 
For all . f ∈ C[0, 1], we have 

. |T ( f )| = sup
x∈[0,1]

|
|
|
|

{ x

0
x f (t)dt

|
|
|
| ≤ sup

x∈[0,1]

{ x

0
|x f (t)|dt = sup

x∈[0,1]
|x |
{ x

o
| f (t)|dt ≤ | f |

Consider . fn(x) = xn ∈ C[0, 1]. Clearly, .| fn| = 1. Now  

. |T ( fn)| = sup
x∈[0,1]

|
|
|
|

{ x

0
xtndt

|
|
|
| = sup

x∈[0,1]

|
|
|
|
xn+2

n + 1

|
|
|
| = 1

n + 1

Thus there does not exist .λ ∈ K such that .|T ( f )| ≥ λ | f | for all . f ∈ C[0, 1]. 
Therefore . T is not injective. 

(8) Let 

. L2[0, 10] = { f : [0, 10] → R : f is Lebesgue measurable and
{ 10

0
f 2dx < ∞}

equipped with the norm .| f | =
({ 10

0 f 2dx
) 1

2
and let .T be a linear functional 

on .L2[0, 10] given by 

. T ( f ) =
{ 2

0
f (x)dx −

{ 10

3
f (x)dx

Then .|T | equals . . . . . . .

Ans. Since .L2[0, 10] is a Hilbert space, by Riesz representation theorem, there 
exists .g ∈ L2[0, 10] such that .T ( f ) = < f, g> = { 10

0 f (x)g(x)dx and . |T | =
|g|. Take . f1(x) =

{
1, i f 0 ≤ x ≤ 2

0, 2 < x ≤ 10
. Then 

. T ( f1) =
{ 2

0
1dx = 2 =

{ 2

0
g(x)dx

Now take . f2(x) =
{
0, i f 0 ≤ x < 3

−1, 3 ≤ x ≤ 10
. Then
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. T ( f2) =
{ 10

3
1dx = 7 = −

{ 10

3
g(x)dx

Take .g(x) =

⎧
⎪⎨

⎪⎩

1, i f 0 ≤ x ≤ 2

0, 2 < x < 3

−1, 3 ≤ x ≤ 10

. Then, clearly 

. T ( f ) =
{ 2

0
f (x)dx −

{ 10

3
f (x)dx = < f, g>

As 

. |g|2 =
{ 10

0
| g(x) |2 dx =

{ 2

0
1.dx + 0 +

{ 10

3
1.dx = 9

we get, .|T | = |g| = 3. 

(9) Consider .C[−1, 1] equipped with supremum norm given by 

. | f |∞ = sup{| f (x)| : x ∈ [−1, 1]}

for . f ∈ C[−1, 1]. Define a linear functional . T on .C[0, 1] by 

. T ( f ) =
{ 0

−1
f (x)dx −

{ 1

0
f (x)dx

for all . f ∈ C[−1, 1]. Then the value of .|T | is . . . . . . .

Ans. We have 

. |T ( f )| = sup
x∈[−1,1]

|
|
|
|

{ 0

−1
f (x)dx −

{ 1

0
f (x)dx

|
|
|
|

≤ sup
x∈[−1,1]

|
|
|
|

{ 0

−1
f (x)dx +

{ 1

0
f (x)dx

|
|
|
|

= sup
x∈[−1,1]

|
|
|
|

{ 1

−1
f (x)dx

|
|
|
|

≤ 2

({ 1

−1
| f (x)|dx

) 1
2

= 2 | f |

Now consider . f ∈ C[−1, 1] defined by . f (x) = −2x for all .x ∈ [−1, 1]. Then 

. T ( f ) =
{ 0

−1
−2xdx +

{ 1

0
2xdx = 2

and hence .|T | = 2.
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(10) Let .c00 be the vector space of all complex sequences having finitely many 
non-zero terms. Equip .c00 with the inner product .<u, v> = E∞

n=1 unvn for all 
.u = (un) and .v = (vn) in .c00. Define . f : c00 → C by . f (v) = E∞

n=1
vn
n . Let . N

be the kernel of . f . 

(I) Which of the following is FALSE? 
(a) . f is a continuous linear functional. 
(b) . | f | ≤ π√

6
(c) There does not exist any.u ∈ c00 such that. f (v) = <v, u> for all .v ∈ c00. 
(d) . N⊥ /= {0}

(II) Which of the following is FALSE? 
(a) .c00 /= N (b) .c00 is not a complete inner product space. 
(c) .N is closed. (d) . c00 = N ⊕ N⊥

Ans. (I) Option d 
For .u = (un) and .v = (vn) in .c00, we have 

. f (u + v) =
∞E

n=1

un + vn
n

=
∞E

n=1

un
n

+
∞E

n=1

vn
n

= f (u) + f (v)

Also by Holders inequality, we have 

. | f (v)| =
|
|
|
|
|

∞E

n=1

vn
n

|
|
|
|
|

≤
( ∞E

n=1

1

n2

) 1
2
( ∞E

n=1

|vn|2
) 1

2

= π√
6

|v|

Therefore . f is a continuous linear functional with .| f | ≤ π√
6
. 

Suppose there exist .u ∈ c00 such that . f (v) = E∞
n=1

vn
n = <v, u> = E∞

n=1
vnun for all .v ∈ c00. Let .en denote the vector with . 1 as the .nth entry and all 
other entries zero. Clearly, .en ∈ c00. Then 

. un = <en, u> = f (en) = 1

n

This is a contradiction, since .u = (
1, 1

2 ,
1
3 , . . .

)
/∈ c00. Therefore there does 

not exist any .u ∈ c00 such that . f (v) = <v, u> for all .v ∈ c00. 
Now let.v = (vn) ∈ N⊥. Since.v ∈ c00, there exists. m such that.vn = 0 for all 
.n > m. For a fixed . j ∈ {1, 2, . . .m}, consider the element . u j = (un) ∈ c00
with 

.un =

⎧
⎪⎨

⎪⎩

v j , i f n = j
−(m+1)

j v j , i f n = m + 1

0, otherwise
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As . f (u j ) = 0 for all . j = 1, 2, . . . ,m, .u j ∈ N⊥ for all . j = 1, 2, . . . ,m. 
Then .<v, u> = |v j |2 = 0 which implies that .v j = 0 for all . j = 1, 2, . . . ,m. 
Therefore .N⊥ = {0}. 

(II) Option d 
As . f (e1) /= 0, .c00 /= N. We know that kernel of a linear operator is closed 
and .c00 is not a complete inner product space. As .N⊥ = {0}, . N ⊕ N⊥ =
N /= c00. 

(11) Let .V be the Banach space of all complex .n × n matrices equipped with the 
norm.|A| = max

1≤i, j≤n
|ai j |. If . f : V → C is defined by . f (A) = tr(A), then 

(a) . f is not linear. 
(b) . f is linear but not continuous. 
(c) . f is bounded linear functional with .| f | = 1. 
(d) . f is bounded linear functional with .| f | = n. 

Ans. Option d 
Take .A, B ∈ V and .λ ∈ C, then 

. f (λA + B) = tr (λA + B) = λtr(A) + tr(B) = λ f (A) + f (B)

Therefore . f is linear. Now 

. f (A) = tr(A) = a11 + a22 + · · · + ann ≤ n

(

max
1≤i, j≤n

|ai j |
)

= n |A|

Therefore . f is bounded and .| f | ≤ n. Also for  .A = In, we have . f (A) = n. 
Therefore .| f | = n. 

(12) Let .H be a Hilbert space and let .{en : n ≥ 1} be an orthonormal basis of . H . 
Suppose that.T : H → H is a bounded linear operator. Which of the following 
cannot be true? 
(a) .T (en) = e1 for all .n ≥ 1 (b) .T (en) = en+1 for all . n ≥ 1

(c) .T (en) =
/

n+1
n en for all .n ≥ 1 (d) .T (en) = en−1 for all .n ≥ 2 and . T (e1)

= 0

Ans. Option a 
Since .{en : n ≥ 1} is an orthonormal basis of . H, any element .v ∈ H can 
be written as .v = E∞

n=1 λnen, where .λi ∈ K, i = 1, 2, . . . ∈ N. Also, we have 
.
E∞

n=1 λnen ∈ H if and only if .
E∞

n=1|λn|2 < ∞. 

(a) Suppose that .T (en) = e1 for all .n ≥ 1. Then 

.T (v) = T

( ∞E

n=1

λnen

)

=
∞E

n=1

λnT (en) =
∞E

n=1

λne1
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Take .λn = 1
n . Since .

E∞
n=1

|
| 1
n

|
|2 < ∞, we have .v0 = E∞

n=1
1
n en ∈ H. But  

. T (v0) =
∞E

n=1

1

n
e1 /∈ H

as .
E∞

n=1
1
n diverges. Therefore a bounded linear operator with . T (en) = e1

for all .n ≥ 1 is not possible. 
(b) Suppose that .T (en) = en+1 for all .n ≥ 1. Then as above 

. T (v) =
∞E

n=1

λnen+1 =
∞E

n=2

λn−1en

As .v = E∞
n=1 λnen ∈ H, we have .

E∞
n=1|λn|2 < ∞. Hence . 

E∞
n=2|λn−1|2 <

∞. Thus a linear operator with.T (en) = en+1 for all.n ≥ 1 exists. For bound-
edness, we have 

. |T (v)|2 =
|
|
|
|
|

∞E

n=2

λn−1en

|
|
|
|
|

2

=
∞E

n=1

|λn|2 = |v|2

(c) Suppose that .T (en) =
/

n+1
n en for all .n ≥ 1. Then 

. T (v) =
∞E

n=1

λn

/
n + 1

n
en

Since .
E∞

n=1|λn|2 < ∞, we have 

. 

∞E

n=1

|
|
|
|
|
λn

/
n + 1

n

|
|
|
|
|

2

=
∞E

n=1

|λn|2 n + 1

n
≤ 2

∞E

n=1

|λn|2 < ∞

Thus a linear operator with.T (en) =
/

n+1
n en for all.n ≥ 1 exists. For bound-

edness, we have 

. |T (v)|2 =
|
|
|
|
|

∞E

n=2

λn

/
n + 1

n
en

|
|
|
|
|

2

=
∞E

n=1

|λn|2 n + 1

n
≤ 2

∞E

n=1

|λn|2 = 2 |v|2

(d) Suppose that .T (en) = en−1 for all .n ≥ 2 and .T (e1) = 0. Then 

.T (v) =
∞E

n=2

λnen−1 =
∞E

n=1

λn+1en
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Since .
E∞

n=1|λn|2 < ∞, we have .
E∞

n=1|λn+1|2 < ∞. Thus a linear operator 
with .T (en) = en−1 for all .n ≥ 2 and .T (e1) = 0 exists. For boundedness, we 
have 

. |T (v)|2 =
|
|
|
|
|

∞E

n=1

λn+1en

|
|
|
|
|

2

=
∞E

n=2

|λn|2 ≤
∞E

n=1

|λn|2 = |v|2

(13) Let .ei = (0, . . . , 0, 1, 0, . . .)(.ei is the sequence with . 1 at the .i th place and . 0
elsewhere) for .i = 1, 2, . . .. Consider the following statements: 

P: .{ f (ei )} converges for every continuous linear functional on . l2. 
Q: .{ei } converges on . l2. 

Then which of the following holds? 
(a) Both .P and .Q are TRUE. (b) .P is TRUE and .Q is not TRUE. 
(c) .P is not TRUE and .Q is TRUE. (d) Neither .P nor .Q is TRUE. 

Ans. Option b 
Since .l2 is a Hilbert space, by Riesz representation theorem, there exists . u ∈ l2

with. f (v) = <v, u> for all.v ∈ l2. Then. f (ei ) = <ei , u>. Then by Bessel’s inequal-
ity, we have.

E∞
n=1|<en, u>|2 ≤ |u|2. Therefore the series.E∞

n=1<en, u> converges. 
Hence .<ei , u> = f (ei ) → 0 on . l2. As .

|
|ei − e j

|
| = 2 for all .i /= j , .{ei } does not 

converges on . l2. 

(14) Let.T : C3 → C
3 be defined by.T

⎛

⎝
z1
z2
z3

⎞

⎠ =
⎛

⎝
z1 − i z2
i z1 + z2

z1 + z2 + i z3

⎞

⎠. Then adjoint. T ∗

of . T is given by . T ∗

⎛

⎝
z1
z2
z3

⎞

⎠ =

(a).

⎛

⎝
z1 + i z2

−i z1 + z2
z1 + z2 − i z3

⎞

⎠ (b).

⎛

⎝
z1 − i z2 + z3

−i z1 + z2 + z3
i z3

⎞

⎠ (c).

⎛

⎝
z1 − i z2 + z3
i z1 + z2 + z3

−i z3

⎞

⎠ (d). 

⎛

⎝
i z1 + z2
z1 − i z2

z1 − z2 − i z3

⎞

⎠

Ans. Option c 
We have 

. T

⎡

⎣
1
0
0

⎤

⎦ =
⎡

⎣
1
i
1

⎤

⎦ = 1

⎡

⎣
1
0
0

⎤

⎦+ i

⎡

⎣
0
1
0

⎤

⎦+ 1

⎡

⎣
0
0
1

⎤

⎦

.T

⎡

⎣
0
1
0

⎤

⎦ =
⎡

⎣
−i
1
1

⎤

⎦ = (−i)

⎡

⎣
1
0
0

⎤

⎦+ 1

⎡

⎣
0
1
0

⎤

⎦+ 1

⎡

⎣
0
0
1

⎤

⎦
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. T

⎡

⎣
0
0
1

⎤

⎦ =
⎡

⎣
0
0
i

⎤

⎦ = 0

⎡

⎣
1
0
0

⎤

⎦+ 0

⎡

⎣
0
1
0

⎤

⎦+ i

⎡

⎣
0
0
1

⎤

⎦

Therefore the matrix of . T is given by .

⎡

⎣
1 −i 0
i 1 0
1 1 i

⎤

⎦. Hence the matrix of .T ∗ is given 

by .

⎡

⎣
1 −i 1
i 1 1
0 0 −i

⎤

⎦ and .T ∗

⎛

⎝
z1
z2
z3

⎞

⎠ =
⎛

⎝
z1 − i z2 + z3
i z1 + z2 + z3

−i z3

⎞

⎠. 

(15) Consider .Rn with standard inner product. For a non-zero .w ∈ R
n , define . Tw :

R
n → R

n by 

. Tw(v) = v − 2<v,w>
<w,w> w

Which of the following are true? 
(a) .det (Tw) = 1 (b) . Tw = T−1

w
(c) .T2w = 2Tw (d) .<Tw(v1), Tw(v2)> = <v1, v2> for all . v1, v2 ∈ R

n

Ans. Option b and c 

(a) Take .n = 2. Then, 

. Tw(w) = w − 2<w,w>
<w,w> w = w − 2w = −w

Therefore .−1 is an eigenvalue of .Tw. Now, take any non-zero element from 
.u ∈ (span{w})⊥. Then, .<u,w> = 0 and hence 

. Tw(u) = u − 2<u,w>
<w,w> w = u

Thus .−1 and 1 are the eigenvalues of .Tw. Hence .det (Tw) = −1, when 
.n = 2. 

(b) We have, 

.Tw (Tw(v)) = Tw

(

v − 2<v,w>
<w,w> w

)

= v − 2<v,w>
<w,w> w −

2
/
v − 2<v,w>

<w,w> w,w
\

<w,w> w

= v − 2<v,w>
<w,w> w − 2

<w,w>
|

<v,w> − 2<v,w>
<w,w> <w,w>

|

w

= v − 2<v,w>
<w,w> w + 2<v,w>

<w,w> w = v
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(c) For all .v ∈ R
n, 

. T2w(v) = v − 2<v, 2w>
<2w, 2w> (2w) = v − 8<v,w>

4<w,w>w = v − 2<v,w>
<w,w> w = Tw(v)

(d) For .v1, v2 ∈ R
n, 

. <Tw(v1), Tw(v2)> =
/

v1 − 2<v1,w>
<w,w> w, v2 − 2<v2,w>

<w,w> w

\

= <v1, v2> −
/

v1,
2<v2,w>
<w,w> w

\

−
/
2<v1,w>
<w,w> w, v2

\

+
/
2<v1,w>
<w,w> w,

2<v2,w>
<w,w> w

\

= <v1, v2> − 2<v2,w>
<w,w> <v1,w> − 2<v1,w>

<w,w> <w, v2>

+ 4<v1,w><v2,w>
<w,w><w,w> <w,w>

= <v1, v2>

(16) Let .A be a .2 × 2 complex matrix such that .A∗A is the identity matrix, where 
.A∗ is the conjugate transpose of . A. Then the eigenvalues of . A are 
(a) real (b) complex conjugates of each other 
(c) of modulus 1 (d) reciprocals of each other 

Ans. Option c 

Consider the matrix .A =
|
i 0
0 i

|

. Then .AA∗ = I , but the eigenvalues are not 

real, eigenvalues are not complex conjugates of each other and eigenvalues are 
not reciprocals of each other. 
Now let . A be a .2 × 2 complex matrix such that .A∗A = I . Let . λ be an eigenvalue 
of . A. Then there exists .v /= 0 such that .Av = λv. 

. Av = λv ⇒ v∗A∗Av = v∗A∗λv ⇒ v∗v = λλv∗v ⇒ |v|2 = |λ|2 |v|2

Since .|v|2 /= 0, we get .|λ| = 1. 

(17) Consider the following statements .P and . Q :
.P : If . A is an .n × n complex matrix, then .R(A) = [N(A∗)]⊥. 
.Q : There exists unitary matrix with an eigenvalue . λ such that .|λ| < 1. 
Which of the above statements hold TRUE? 
(a) both .P and .Q (b) only .P (c) only .Q (d) Neither .P nor . Q

Ans. Option b
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.P : Let H be a Hilbert space and.A ∈ BL(H). Then we have.R(A) = [N(A∗)]⊥. 
.Q : From the above problem, .|λ| = 1. 

(18) For the matrix 

. A =
⎡

⎣
2 3 + 2i −4

3 − 2i 5 6i
−4 −6i 3

⎤

⎦

which of the following statements are correct? 
.P : A is skew-Hermitian and .i A is Hermitian. 
.Q : A is Hermitian and .i A is skew-Hermitian. 
.R : eigenvalues of . A are real. 
.S : eigenvalues of .i A are real. 
(a) .P and . R only. (b) .Q and . R only. 
(c) .P and . S only. (d) .Q and . S only. 

Ans. Option b 

We have .A∗ =
⎡

⎣
2 3 + 2i −4

3 − 2i 5 6i
−4 −6i 3

⎤

⎦ = A, .A is Hermitian. Since 

.i A =
⎡

⎣
i2 3i − 2 −4i

3i + 2 5i −6
−4i 6 3i

⎤

⎦, .(i A)∗ =
⎡

⎣
−i2 −3i + 2 4i

−3i − 2 −5i 6
4i −6 −3i

⎤

⎦ = −i A, .i A is 

skew-Hermitian.The eigenvalues of a Hermitian matrix are always real. 
Let . λ be an eigenvalue of a Hermitian matrix . A, then .Ax = λx. Now  

. Ax = λx ⇒ x∗Ax = x∗λx ⇒ x∗Ax = λ |x|2

Now taking conjugate transpose on both sides, 

. x∗A∗x = λ |x|2 ⇒ x∗Ax = λ |x|2

Now, .λ |x|2 = λ |x|2 ⇒ λ = λ. Hence, . λ is real. Similarly we can prove that 
The eigenvalues of a skew-Hermitian matrix are always either zero or purely 
imaginary. 

(19) Let . A be an invertible Hermitian matrix and let .a, b ∈ R be such that .a2 < 4b. 
Then 
(a) both .A2 + aA + bI and .A2 − aA + bI are singular. 
(b) .A2 + aA + bI is singular but .A2 − aA + bI is non-singular. 
(c) .A2 + aA + bI is non-singular but .A2 − aA + bI is singular. 
(d) both .A2 + aA + bI and .A2 − aA + bI are non-singular. 

Ans. Option d 
Let . λ be an eigenvalue of . A, then since .A is Hermitian, . λ must be real. Also 
.λ2 + aλ + b is an eigenvalue of .A2 + aA + bI . Now .A2 + aA + bI is singular
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if .λ2 + aλ + b = 0 for some .λ ∈ R. Since .a2 < 4b, .λ2 + aλ + b = 0 ⇒ λmust 
be complex, which is a contradiction. Similarly for .A2 − aA + bI is singular if 
.λ2 − aλ + b = 0 for some.λ ∈ R. In this case also since.a2 < 4b,. λ2 + aλ + b =
0 ⇒ λmust be complex, which is a contradiction. Therefore both. A2 + aA + bI
and .A2 − aA + bI are non-singular. 

(20) The matrix .A =
|
cos α sin α

i sin α i cos α

|

is a unitary matrix when . α is 

(a) .(2n + 1) π
2 , n ∈ Z (b) . (3n + 1) π

3 , n ∈ Z

(c) .(4n + 1) π
4 , n ∈ Z (d) . (5n + 1) π

5 , n ∈ Z

Ans. Option a 
. A is unitary when .AA∗ = I . Now,  

. AA∗ = I ⇒
|
cos α sin α

i sin α i cos α

| |
cos α −i sin α

sin α −i cos α

|

=
|
1 0
0 1

|

⇒
|

1 −isin 2α
isin 2α 1

|

=
|
1 0
0 1

|

⇒ α ∈
{
(2n + 1)

π

2
, n ∈ Z

}

(21) Pick out the true statements: 
(a) The eigenvalues of a unitary matrix are all equal to .±1. 
(b) The determinant of real orthogonal matrix is always .±1. 

Ans. . A is orthogonal if .AAT = I . Taking determinant on both sides we get, 

. det (AAT ) = det (I ) ⇒ det (A)det (AT ) = 1 ⇒ (det (A))2 = 1 ⇒ det (A) = ±1

Consider the matrix .A =
|
i 0
0 i

|

, then .AA∗ = I . Clearly, .A is unitary but the 

eigenvalues are not .±1. 

(22) Let . A be an .n × n matrix with real entries. Pick out the true statements: 
(a) There exists a real symmetric .n × n matrix . B such that .B2 = A∗A. 
(b) If .A is symmetric, there exists a real symmetric .n × n matrix .B such that 
.B2 = A. 
(c) If .A is symmetric, there exists a real symmetric .n × n matrix .B such that 
.B3 = A. 

Ans. Option a and c 

(a) Since . A is a matrix with real entries, .A∗ = AT and .AT A is a real symmetric 
matrix. Also.AT A is positive semi definite. As every real symmetric matrix is 
diagonalizable there exists an orthonormal matrix .P such that . PDP−1 =
PDPT = AT A, where .D is a diagonal matrix with eigenvalues of . AT A
as diagonal entries. Now take .B = PD

1
2 PT . .B is well defined since the 

diagonal entries of .D are non negative real numbers. Then 

.B2 = PD
1
2 PT PD

1
2 PT = PDPT = AT A
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(b) Consider .A =
|−1 0
0 −1

|

. Then there does not exists a real symmetric . 2 × 2

matrix. B such that.B2 = A. For  if.B =
|
a b
b d

|

. Then.B2 =
|
a2 + b2 ab + bd
ab + bd b2 + d2

|

. 

As .a, b ∈ R, .a2 + b2 is a non-negative real number. 
(c) Since. A is real symmetric matrix, there exists an orthonormal matrix. P such 

that.PDP−1 = PDPT = A, where.D is a diagonal matrix with eigenvalues 
of .A as diagonal entries. Now take .B = PD

1
3 PT . then .B is well-defined 

and .B3 = A. 

(23) Let .S = {λ1, . . . λn} be an ordered set of . n real numbers, not all equal, but not 
all necessarily distinct. Pick out the true statements: 
(a) There exists an.n × nmatrix with complex entries, which is not self-adjoint, 
whose set of eigenvalues is given by . S. 
(b) There exists an.n × n self-adjoint, non-diagonal matrix with complex entries 
whose set of eigenvalues is given by . S. 
(c) There exists an .n × n symmetric, non-diagonal matrix with real entries 
whose set of eigenvalues is given by . S. 

Ans. Options a, b and c 

(a) Consider .A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ1 α 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, where .α ∈ C. Then . A is an .n × n matrix 

with complex entries, which is not self-adjoint, whose set of eigenvalues is 
given by . S. 

(b) Consider .A =

⎡

⎢
⎢
⎢
⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤

⎥
⎥
⎥
⎦
. Now take a matrix .P such that its columns 

form an orthonormal basis for .Rn and .P does not commute with . A. Now  
consider the matrix .B = PAPT . Clearly .B is a self-adjoint matrix which 
is non-diagonal and the set of eigenvalues of .B is . S. 

(c) Consider the matrix .B as above. 

(24) Pick out the true statements: 
(a) Let .A be a hermitian .n × n positive definite matrix. Then, there exists a 
hermitian positive definite .n × n matrix . B such that .B2 = A. 
(b) Let .B be a non-singular .n × n matrix with real entries. Then .BT B is a 
symmetric and positive definite matrix. 

Ans. (a) A hermitian matrix is unitary diagonalizable. That is, there exists 
a unitary matrix .U such that .UDU ∗ = A. Since .A is positive definite, the
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diagonal entries must be positive. Now define the matrix. B as.B = UD
1
2U ∗. 

Then .B2 = UD
1
2U ∗UD

1
2U ∗ = UDU ∗ = A. 

(b) Since .(BT B)T = BT (BT )T = BT B, .BT B is symmetric. Also, 

. vT BT Bv = (Bv)T Bv = |Bv|2 ≥ 0

Therefore .BT B is a positive definite matrix. 

(25) A.3 × 3 real symmetric matrix. A admits.(1, 2, 3)T and.(1, 1,−1)T transpose as 
eigenvectors. The transpose of which of the following is surely an eigenvector 
for . A? Choose all the correct options. 
(a) .(1,−1, 0) (b) .(−5, 1, 1) (c) .(3, 2, 1) (d) none of the above 

Ans. Option d is correct 
Since the eigenvectors corresponding different eigenvalues of a symmetric matri-
ces are orthogonal, none of the above three vectors can be an eigenvector of . A
for sure. 

(26) Let .A be a .3 × 3 real symmetric matrix with eigenvalues 0,2 and . a with the 
respective eigenvectors .u = (4, b, c)T , v = (−1, 2, 0)T and .w = (1, 1, 1)T . 
Consider the following statements: 

I. . a + b − c = 10
II. The vector .x = (

0, 3
2 ,

1
2

)t
satisfies .Ax = v + w. 

III. For any .d ∈ span{u, v,w}, Ax = d has a solution. 
IV. The trace of the matrix .A2 + 2A is 8. 

Which of the following statements are TRUE? 
(a) .I, I I and .I I I only. (b) . I and .I I only. 
(c) .I I and .I V only. (d) .I I I and .I V only. 

Ans. Option b 

(I) Since the eigenvectors of a real symmetric matrix corresponding to dis-
tinct eigenvalues are orthogonal, .u.v = −4 + 2b = 0 ⇒ b = 2. As  . v.w =
−1 + 2 = 1, .a = 2. Now  .u.w = 6 + c = 0 ⇒ c = −6. Therefore . a + b −
c = 10. 

(II) Clearly .x = (
0, 3

2 ,
1
2

)T = 1
2 (v + w). Therefore 

. Ax = 1

2
A(v + w) = 1

2
(Av + Aw) = 1

2
(2v + 2w) = v + w

(.Av = 2v and.Aw = 2w, since. v and. ware eigenvectors of. Awith eigenvalue 
. 2.) 

(III) Since .{u, v,w} is linearly independent .span{u, v,w} = R
3 and as . 0 is an 

eigenvalue of. A,.Rank(A) = 2. Therefore for any. d ∈ span{u, v,w}, Ax =
d need not have a solution.
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(IV) Since the eigenvalues of . A are .0, 2 and . 2, the eigenvalues of .A2 are .0, 4 and 
. 4. Now  

. tr(A2 + 2A) = tr(A2) + 2tr(A) = 8 + 8 = 16

(27) Let. A be a real symmetric.n × n matrix whose eigenvalues are 0 and 1. Let the 
dimension of the null space of .A − I be . m. Pick out the true statements : 
(a) The characteristic polynomial of . A is .(λ − 1)mλm−n . 
(b) .Ak = Ak+1 for all positive integers . k. 
(c) The rank of . A is . m. 

Ans. Options a and c 
Dimension of null space of .A − I is .m ⇒ 1 is an eigenvalue with multiplicity 
. m. Consider .A = [ 12 ]. Then Option .(b) is incorrect. As . A is real symmetric, it is 
diagonalizable. Therefore, .Rank(A) = number of non zero eigenvalues .= m. 

(28) Let .A be an .n × n complex matrix. Assume that .A is self-adjoint and let . B
denote the inverse of .A + i In . Then all eigenvalues of .(A − i In)B are 
(a) purely imaginary (b) real 
(c) of modulus one (d) of modulus less than one 

Ans. Option c 
Since .A is self-adjoint, every eigenvalue of .A is real. Let . λ be an eigenvalue 
of . A, then .λ + i is an eigenvalue of .A + i In and .λ − i is an eigenvalue of 
.(A − i In).(As .Av = λv ⇒ (A + i In)v = λv + iv = (λ + i)v) Also . 1

λ−i is an 
eigenvalue of .(A − i In)−1. Now  

. (A + i In)(A − i In)
−1v = (A + i In)

1

λ − i
v = λ + i

λ − i
v

Hence, . λ+i
λ−i v is an eigenvalue of .(A + i In)(A − i In)−1 and it has modulus one. 

(29) Let . A be a real symmetric matrix and .B = I + i A, where .i2 = −1. Then 
(a) . B is invertible if and only if . A is invertible 
(b) all eigenvalues of . B are necessarily real 
(c) .B − I is necessarily invertible 
(d) . B is necessarily invertible 

Ans. Option d 

Let .A =
|
1 0
0 0

|

. Then .B = I + i A =
|
1 + i 0
0 1

|

. Then options a, b and c are are 

false. The eigenvalue of a real symmetric matrix are always real. Therefore the 
eigenvalues of .B = I + i A are of the form .1 + iλ where .λ ∈ R is an eigenvalue 
of . A. This cannot be zero. Therefore .B is necessarily invertible.
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(30) Which of the following .3 × 3 matrices are diagonalizable over . R? 

(a) .

⎡

⎣
1 2 3
0 4 5
0 0 6

⎤

⎦ (b) .

⎡

⎣
0 1 0

−1 0 0
0 0 1

⎤

⎦ (c) .

⎡

⎣
1 2 3
2 1 4
3 4 1

⎤

⎦ (d) . 

⎡

⎣
0 1 2
0 0 1
0 0 0

⎤

⎦

Ans. Options a and c 

(a) Since the eigenvalues of an upper triangular matrices are its diagonal 
entries, the given matrix has distinct eigenvalues and hence is diagonal-
izable. 

(b) The characteristic polynomial of the given matrix is 

. x3 − x2 + x − 1 = (x − 1)(x2 + 1)

Since it has complex roots the given matrix is not diagonalizable over . R. 
(c) Since a real symmetric matrix is always diagonalizable, the given matrix is 

diagonalizable. 
(d) The characteristic polynomial of the given matrix is .x3 as it is an upper 

triangular matrix with all diagonal entries zero. The minimal polynomial is 
also .x3 and hence the given matrix is not diagonalizable. 

(31) Let . A be a real symmetric matrix. Then we can conclude that 
(a) . A does not have 0 as an eigenvalue 
(b) All eigenvalues of . A are real 
(c) If .A−1 exists, then .A−1 is real and symmetric 
(d) . A has at least one positive eigenvalue 

Ans. Options b and c 

Consider the matrix .A =
|−1 0
0 0

|

. Then . A is real symmetric an the eigenvalues 

of .A are 0 and .−1. Eigenvalues of a real symmetric matrix .A are always real. 
Also .(A−1)T = (AT )−1 = A−1. 

(32) The distinct eigenvalues of the matrix .

⎡

⎣
1 1 0
1 1 0
0 0 0

⎤

⎦ are 

(a) 0 and 1 (b) 1 and –1 (c) 1 and 2 (d) 0 and 2 

Ans. Option d 
As the given matrix is symmetric, it is diagonalizable. Therefore it has only one 
non-zero eigenvalue, as the given matrix has rank 1. Also the matrix has trace 
2. Therefore the distinct eigenvalues are 0 and 2. 

(33) The number of distinct eigenvalues of the matrix . 

⎡

⎢
⎢
⎣

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤

⎥
⎥
⎦

(a) 1 (b) 2 (c) 3 (d) 4
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Ans. Option b 
As the given matrix is symmetric, it is diagonalizable. Since the matrix has rank 
. 1, the matrix has only one non zero eigenvalue. As the eigenvalues of a real 
symmetric matrix are real, the number of distinct eigenvalues is 2. 

(34) Let. J denote a.101 × 101 matrix with all the entries equal to 1, and let. I denote 
the identity matrix of order 101. Then the determinant of .J − I is 
(a) 101 (b) 1 (c) 0 (d) 100 

Ans. Option d 
From the above problem, the only eigenvalues of. A are 0 and 1 with multiplicities 
100 and 1 respectively. Therefore the eigenvalues of .J − I are .−1 and 100 with 
multiplicities 100 and 1 respectively . Therefore the determinant of .J − I is 100. 

(35) The possible set of eigenvalues of a .4 × 4 skew-symmetric orthogonal real 
matrix is 
(a) .{±i} (b) .{±i,±1} (c) .{±1} (d) . {0,±i}
Ans. Option a 
The eigenvalues of a skew-symmetric matrix are either zero or purely imaginary 
and the eigenvalues of an orthogonal matrix is of modulus 1. hence the possible 
set of eigenvalues of a skew-symmetric orthogonal real matrix is .{±i}. 

(36) Let.An×n = (ai j ),.n ≥ 3, where.ai j = (bi
2 − b j

2).(i, j = 1, 2, 3, . . .) for some 
distinct real numbers .b1, b2, b3, . . . , bn . Then .det (A) is 
(a) .|i< j (bi − b j ) (b) .|i< j (bi + b j ) (c) 0 (d) 1 

Ans. Option c 

The matrix is given by .A = .

⎡

⎢
⎢
⎢
⎣

0 b1
2 − b2

2 · · · b12 − bn
2

b2
2 − b1

2 0 · · · b22 − bn
2

...
...

. . .
...

bn
2 − b1

2 bn
2 − b2

2 · · · 0

⎤

⎥
⎥
⎥
⎦
. Clearly . A is 

a skew-symmetric matrix. Since the determinant of the odd order skew symmetric 
matrix is zero, from the given options, option .(c) is correct. 

(37) Let . A be a .3 × 3 non zero, skew-symmetric real matrix. Then 
(a) . A is invertible. 
(b) the matrix .I + A is invertible. 
(c) there exists a non-zero real number . α such that .α I + A is not invertible. 
(d) all eigenvalues of . A are real. 

Ans. Option b 
A skew-symmetric matrix of odd order is always singular, hence not invert-
ible.The characteristic polynomial of .A is of degree 3. Since the eigenvalues 
of a skew-symmetric matrix are either purely imaginary or 0. Clearly, 0 is an 
eigenvalue of . A. Also the eigenvalues of .I + A is of the form . 1, 1 + ai, 1 − ai
where .a ∈ R. As their product is never zero .I + A is invertible.The eigenvalues
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of .α I + A is of the form .α, α + ai, α − ai where .a ∈ R. Their product is zero 
only if .α = 0. 

(38) Let.A = (ai j ) ∈ M3(R) be such that.ai j = −a ji for all .1 ≤ i , . j ≤ 3. If.3i is an 
eigenvalue of . A, find its other eigenvalues. 

Ans. The given matrix is an odd order skew symmetric matrix. Hence its deter-
minant is zero which implies zero is an eigenvalue of the given matrix. Since the 
characteristic polynomial has real coefficients complex roots occur as conjugate 
pairs. Therefore its other eigenvalues are . −3i, 0

(39) Which of the following are non-singular? 
(a) .I + A where .A /= 0 is a skew symmetric real .n × n matrix, .n ≥ 2. 
(b) Every skew symmetric non zero real .5 × 5 matrix. 
(c) Every skew symmetric non zero real .2 × 2 matrix. 
(d) All the above. 

Ans. Options a and c 

(a) The eigenvalues of a skew symmetric matrix are either zero or purely imag-
inary. Since the matrix is real, complex eigenvalues occur in conjugate pair. 
So eigenvalues of .I + A are of the form .1 + ai, 1 − ai, 1. Therefore . I + A
is non singular. 

(b) The characteristic polynomial is of odd degree with real coefficients. Hence it 
has atleast one real eigenvalue which will be 0. Therefore, it will be singular. 

(c) Since the diagonal entries of a skew symmetric matrix must be zero, 
every skew symmetric non zero real .2 × 2 matrix will be of the form 

.A =
|

0 a + bi
−a + bi 0

|

. Clearly they are non singular. 

(40) Let . A be a .5 × 5 skew-symmetric matrix with entries in . R and . B be the . 5 × 5

symmetric matrix whose .(i, j)th entry is the binomial coefficient .

(
i
j

)

for 

.1 ≤ i ≤ j ≤ 5. Consider the .10 × 10 matrix, given in the block form by . C =(
A A + B
0 B

)

. Then 

(a) .det (C) = 1 or .−1 (b) .det (C) = 0 (c) .Tr(C) = 0 (d) . Tr(C) = 5

Ans. Option b and d 
Since the determinant of a odd order skew symmetric matrix is zero, . det (A) = 0
and hence .det (C) = det (A)det (B) = 0. Since the diagonal entries of a skew 
symmetric matrix are zero, .tr(A) = 0 and the diagonal entries of .B are all 1. 
Therefore .tr(C) = tr(A) + tr(B) = 5. 

(41) Let .T : R3 → R
3 be the linear transformation whose matrix with respect to 

the standard basis of .R3 is .

⎡

⎣
0 a b

−a 0 c
−b −c 0

⎤

⎦, where .a, b, c are real numbers not all
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zero. Then . T
(a) is one-one (b) is onto 
(c) has .rank 1 (d) does not map any line through origin to itself 

Ans. Option d 
Since . T is an odd order skew-symmetric matrix, it has determinant 0 and hence 
has.rank < 3. Therefore. T is not both one-one and onto. Consider the square sub 

matrices.

|
0 a

−a 0

|

,

|
0 b

−b 0

|

and.

|
0 c

−c 0

|

. As not all.a, b, c are zero, atleast one of 

these matrices have non-zero determinant and hence . T can have .rank 2. Since 
the matrix is skew-symmetric the eigenvalues are zero or purely imaginary and 
any line in .R

3 is of the form .{λv : λ ∈ R} for some non-zero vector . v. Therefore 
. T does not map any line through origin to itself. 

(42) Let .A = (
ai j
)
be an .n × n complex matrix and let .A∗ denote the conjugate 

transpose of . A. Which of the following statements are true? 
(a) If . A is invertible, then .tr(A∗A) /= 0. 
(b) If .tr(A∗A) /= 0, then . A is invertible. 
(c) If .|tr(A∗A)| < n2, then .|ai j | < 1 for some .i, j . 
(d) .tr(A∗A) = 0, then . A is the zero matrix. 

Ans. Options a, c and d 

Let .A =

⎡

⎢
⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤

⎥
⎥
⎥
⎦
. Then .A∗ =

⎡

⎢
⎢
⎢
⎣

a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤

⎥
⎥
⎥
⎦
and hence . tr(AA∗)

= En
i, j=1|ai j |2. 

(a) Suppose that . A is invertible. If .tr(AA∗) = En
i, j=1|ai j |2 = 0, then . |ai j | = 0

for all . i and . j and hence the matrix is the zero matrix and is not invertible. 
Therefore .tr(A∗A) /= 0, if . A is invertible. 

(b) Consider the matrix .A =
|
1 0
0 0

|

, then .A∗ =
|
1 0
0 0

|

and .AA∗ =
|
1 0
0 0

|

. Here  

.tr(A∗A) /= 0, but . A is not invertible. 
(c) .|tr(A∗A)| = En

i, j=1|ai j |2. If.|ai j | > 1 for all.i, j , then.tr(A∗A) > n2. There-
fore if .|tr(A∗A)| < n2, then .|ai j | < 1 for some .i, j . 

(d) By option .(a) if .tr(A∗A) = 0, then . A is the zero matrix. 

(43) Let . A be a real .3 × 4 matrix of rank 2. Then the rank of .AT A is: 
(a) exactly 2 (b) exactly 3 
(c) exactly 4 (d) at most 2 but not necessarily 2 

Ans. Option a 
Since .Rank(A) = Rank(AT A), rank of .AT A is 2.
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(44) Let . S be the set of .3 × 3 real matrices . A with .AT A =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠. Then the set 

. S contains 
(a) a nilpotent matrix. (b) a matrix of rank one. 
(c) a matrix of rank two. (d) a non-zero skew-symmetric matrix. 

Ans. Option a and b 

Consider the matrix .A =
⎛

⎝
0 0 0
0 0 0
1 0 0

⎞

⎠, then .AT A =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ ⇒ A ∈ S. Clearly 

.A is nilpotent and has rank one. Since .Rank(AT A) = Rank(A), . S does not 
contain a set with rank two. For a non-zero skew symmetric matrix . B, . BT B =
(−B)B = −B2 and hence. S does not contain a non-zero skew-symmetric matrix. 

(45) Let .A =
⎡

⎣
3 1 2
1 2 3
2 3 1

⎤

⎦ and .Q(X) = XT AX for .X ∈ R
3. Then 

(a) . A has exactly two positive eigenvalues 
(b) all the eigenvalues of . A are positive 
(c) .Q(X) ≥ 0 for all . X ∈ R

3

(d) .Q(X) < 0 for some . X ∈ R
3

Ans. Options a and d 
The characteristic polynomial of the given matrix is 

. x3 − 6x2 − 3x + 18 = (x − 6)(x2 − 3)

Therefore the eigenvalues of . A are .6,±√
3. 

(46) The matrix .

⎛

⎝
3 −1 0

−1 2 −1
0 −1 3

⎞

⎠ is 

(a) positive definite. 
(b) non-negative definite but not positive definite. 
(c) negative definite. 
(d) neither negative definite nor positive definite. 

Ans. Option a 
The characteristic polynomial of the given matrix is 

. x3 − 8x2 + 19x − 12 = (x − 1)(x − 3)(x − 4)

Since all the eigenvalues of the given matrix are positive, the given matrix is 
positive definite.
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(47) Let..V={ f : [0, 1] → R | f is a polynomial o f degree less than or equal to n}. 
Let. f j (x) = x j for.0 ≤ j ≤ n and let. A be the.(n + 1) × (n + 1) matrix given 
by .ai j = { 1

0 fi (x) f j (x)dx . Then which of the following is/are true? 
(a).dim(V ) = n (b).dim(V ) > n (c).det (A) > 0 (d). A is non-negative definite 

Ans. Options b, c and d 
.vT Av = E

i, j

{ 1
0 vi fi (x)v j f j (x)dx = { 1

0

(E
i vi fi (x)

)2
dx > 0 for any .v /= 0. 

(48) Which of the following matrices are positive definite? 

(a) .

|
2 1
1 2

|

(b) .

|
1 2
2 1

|

(c) .

|
4 −1

−1 4

|

(d) . 

|
0 4
4 0

|

Ans. Options a and c 

(a) The characteristic polynomial of the given matrix is 

. x2 − 4x + 3 = (x − 3)(x − 1)

Clearly the matrix is positive definite. 
(b) The characteristic polynomial of the given matrix is 

. x2 − 2x − 3 = (x − 3)(x + 1)

The matrix is not positive definite. 
(c) The characteristic polynomial of the given matrix is 

. x2 − 8x + 15 = (x − 5)(x − 3)

The matrix is positive definite. 
(d) The characteristic polynomial of the given matrix is 

. x2 − 16 = (x + 4)(x − 4)

The matrix is not positive definite. 

(49) Let .A be a symmetric .n × n matrix with real entries, which is positive semi-
definite, i.e.,.vT Av ≥ 0 for every (column) vector. v. Pick out the true statements: 
(a) the eigenvalues of . A are all non-negative; 
(b) . A is invertible. 
(c) the principal minor of . A (i.e., the determinant of the .k × k matrix obtained 
from the first . k rows and first . k columns of . A) is non-negative for each . 1 ≤
k ≤ n. 

Ans. Option a and c 
Option.(a)and.(c)are alternative definitions for positive semi-definiteness. Since 
eigenvalues of . A can be zero, . A need not be invertible.
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(50) Let . J be the .3 × 3 matrix all of whose entries are 1. Then: 
(a) 0 and 3 are the only eigenvalues of A. 
(b) . J is positive semi-definite. i.e., .<Jv, v> ≥ 0 for all .v ∈ R

3. 
(c) . J is diagonalizable. 
(d) . J is positive definite. i.e., .<Jv, v> > 0 for all .v ∈ R

3 with .v /= 0. 

Ans. Options a, b and c are true. 
The characteristic polynomial of the given matrix is .x2(x − 3) and the minimal 
polynomial is .x(x − 3). 

(51) Let .a, b, c be positive real numbers such that .b2 + c2 < a < 1. Consider the 
.3 × 3 matrix 

. A =
⎡

⎣
1 b c
b a 0
c 0 1

⎤

⎦

(a) All the eigenvalues of . A are negative real numbers. 
(b) All the eigenvalues of . A are positive real numbers. 
(c) . A can have a positive as well as a negative eigenvalue. 
(d) Eigenvalues of . A can be non-real complex numbers. 

Ans. Option b 
Clearly . A is symmetric. Also the minors of the diagonal elements are . a, 1 − c2

and.a − b2, which are all greater than zero. Thus. A is positive definite and hence 
all the eigenvalues of . A are positive real numbers. 

(52) Let .A ∈ Mm×n(R). Consider the following statements: 

.I : If .X AY = 0 for all .X ∈ M1×m(R) and .Y ∈ Mn×1(R), then .A = 0. 
.I I. If .m = n, . A is symmetric and .A2 = 0, then .A = 0. 

Then 
(a) both . I and .I I are true. (b) . I is true but .I I is false. 
(c) . I is false but .I I is true. (d) both . I and .I I are false. 

Ans. Option a 

(a) Let .A =
|
a b c
d e f

|

, Take  .X1 = |
1 0
|
, .X2 = |

0 1
|
, .Y1 =

⎡

⎣
1
0
0

⎤

⎦, .Y2 =
⎡

⎣
0
1
0

⎤

⎦, 

and .Y3 =
⎡

⎣
0
0
1

⎤

⎦. Then considering .Xi AY j = 0 for all .i = 1, 2 and . j =

1, 2, 3 we get .A = 0. We can use this idea for all .m and . n. 
(b) Let .A be symmetric and .A2 = 0. The diagonal entries of .A2 are the length 

of the vectors in the corresponding row. This means each entry must be zero. 

Consider for example .A =
|
a b
b c

|

. Then . A2 =
|
a2 + b2 ab + bc
ab + bc b2 + c2

|

⇒ a =
b = c = 0.
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(53) For every .4 × 4 real symmetric non-singular matrix . A, there exists a positive 
integer . k such that 
(a) .k I + A is positive definite (b) .Ak is positive definite 
(c) .A−k is positive definite (d) .exp(k A) − I is positive definite 

Ans. Options a, b and c 
Since every eigenvalue of .k I + A is of the form .k + λi where .λi is an eigenvalue 
of . A, if we choose .k > maxi |λi |, .k I + A is positive definite. As every eigenvalue 
of.Ak is of the form.(λi )

k if we choose. k as an even number,.Ak is positive definite. 
Similarly since every eigenvalue of .A−k is of the form .

1
(λi )k

(as . A is non-singular) 

if we choose . k as an even number, .A−k is positive definite. 

(54) Let .A be a .n × n real symmetric non-singular matrix. Suppose there exists 
.v ∈ R

n such that .vT Av < 0. Then we can conclude that 
(a) .B = −A is positive definite. (b) . det (A) < 0
(c) there exists .u ∈ R

n : uT A−1u < 0 (d) . ∀ u ∈ R
n : uT A−1u < 0

Ans. Option c 

Consider the matrix.A =
⎡

⎣
−1 0 0
0 −1 0
0 0 1

⎤

⎦. Then. A is a real symmetric non-singular 

matrix with .det (A) = 1 and .A−1 = A. Clearly .B = −A is not positive definite. 
Now let .u = (u1, u2, u3) ∈ R

3 be an arbitrary element. Then . uT A−1u = −u21 −
u22 + u23 < 0 only when .u23 < u21 + u22. 

(55) Suppose . A is a .3 × 3 symmetric matrix such that 

. 
|
x y 1

|
A

⎡

⎣
x
y
1

⎤

⎦ = xy − 1

Let . p be the number of positive eigenvalues of .A and let .q = Rank(A) − p. 
Then 
(a) .p = 1 (b) .p = 2 (c) .q = 2 (d) . q = 1

Ans. Options b and d 

Take .A =
⎡

⎣
a b c
b d e
c e f

⎤

⎦. Then, 

.
|
x y 1

|
A

⎡

⎣
x
y
1

⎤

⎦ = xy − 1 ⇒ ax2 + 2bxy + c2x + dy2 + 2ey + f = xy − 1

⇒ a = c = d = e = 0, b = 1

2
, f = −1
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Therefore .A =
⎡

⎣
0 1

2 0
1
2 0 0
0 0 −1

⎤

⎦. The characteristic polynomial of the given matrix 

is .x3 + x2 − 1
4 x − 1

4 = (
x2 − 1

4

)
(x + 1). Therefore .p = 2 and .q = 1. 

(56) Suppose .A, B are .n × n positive definite matrices and . I be the .n × n identity 
matrix. Then which of the following are positive definite. 
(a) .A + B (b) .ABA∗ (c) .A2 + I (d) . AB

Ans. Options a, b and c 

(a) Suppose that .A and .B are positive definite, then .v∗Av > 0 and . v∗Bv > 0
for all . v. Therefore 

. v∗(A + B)v = v∗Av + v∗Bv > 0 ∀ v

Therefore .A + B is positive definite. 
(b) Since .B is positive definite, .v∗ABA∗v = (A∗v)∗B(A∗v) > 0. Therefore 

.ABA∗ is positive definite. 
(c) Since the eigenvalues of .A2 + I are of the form .λ2 + 1 where . λ is an eigen-

value of . A, .A2 + I is positive definite. 

(d) Consider the matrix .A =
|
2 1
1 1

|

and .B =
|
5 2
2 1

|

. Then . A and . B are positive 

definite, but .AB =
|
12 5
7 3

|

is not symmetric. 

(57) Consider a matrix .A = (
ai j
)
5×5 , 1 ≤ i, j ≤ 5 such that .ai j = 1

ni + n j + 1
, 

where .ni , n j ∈ N. Then in which of the following cases .A is positive definite 
matrix? 
(a) .ni = i for all .i = 1, 2, 3, 4, 5 (b) . n1 < n2 < n3 < n4 < n5
(c) .n1 = n2 = n3 = n4 = n5 (d) . n1 > n2 > n3 > n4 > n5

Ans. Options a, b and d 

A Cauchy matrix is an .m × n matrix with elements of the form . ai j = 1

xi − y j
;

xi − y j /= 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n where.(xi ) and.(y j ) have distinct elements. 
Every sub-matrix of a Cauchy matrix is itself a Cauchy matrix. The determinant 

of a Cauchy matrix is .

|n
i=2

|i−1
j=1(xi − x j )(y j − yi )

|n
i=2

|n
j=1(xi − y j )

. The given matrix is a 

Cauchy matrix with .xi = ni and .y j = −(n j + 1). Then the determinant of each 
minor is strictly greater than 0 by the above formula for options .a, b and . d. 

(58) Which of the following statements are true? 
(a) If . A is a complex .n × n matrix with .A2 = A, then .Rank(A) = tr(A). 
(b) Let . A be a .3 × 3 real symmetric matrix such that .A6 = I . Then .A2 = I . 
(c) There exists .n × n matrices . A and . B with real entries such that
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. (I − (AB − BA))n = 0

(d) If . A is a symmetric positive definite (All eigenvalues are positive) matrix, 
then 

. (tr (A))n ≥ nndet (A)

Ans. Options a, b and d 

(a) Since .A2 = A, .A is diagonalizable.0 and 1 are the only possible eigenval-
ues. For a diagonalizable matrix, rank = number of non zero eigenvalues. 
Therefore .Rank(A) = tr(A). 

(b) Suppose .A6 = I . Then the matrix satisfies the polynomial equation .x6 − 1. 
Since the matrix is real symmetric its eigenvalues are real. Now, 

. x6 − 1 = (x3 − 1)(x3 + 1) = (x − 1)(x + 1)(x2 + x + 1)(x2 − x + 1)

Both .(x2 + x + 1) and .(x2 − x + 1) have complex roots. Therefore the only 
possible eigenvalues are 1 and .−1 and the possible minimal polynomials 
are .(x − 1), .(x + 1) and .(x − 1)(x + 1). For all these cases .A2 = I . 

(c) .(I − (AB − BA))n = 0 ⇒ C = (I − (AB − BA)) is nilpotent which 
implies .C must have trace.= 0. But .tr (C) = tr (I ) = n. 

(d) Let .λ1, λ2, · · · , λn be the eigenvalues of . A.Since .AM ≥ GM we have 

. 
λ1 + λ2 + · · · + λn

n
≥ n
/

λ1.λ2. · · · .λn

which implies .(tr (A))n ≥ nndet (A). 

(59) Let .P1 and .P2 be two projection operators on a vector space. Then 
(a) .P1 + P2 is a projection if .P1P2 = P2P1 = 0. 
(b) .P1 − P2 is a projection if .P1P2 = P2P1 = 0. 
(c) .P1 + P2 is a projection. 
(d) .P1 − P2 is a projection. 

Ans. Option a 

(a) Since .P1 and .P2 are projection operators .P2
1 = P1 and .P2

2 = P2. 

. (P1 + P2)
2 = P2

1 + P1P2 + P2P1 + P2
2 = P1 + P2 i f P1P2 = P2P1 = 0

Therefore .P1 + P2 is a projection if .P1P2 = P2P1 = 0. 
(b) As above 

.(P1 − P2)
2 = P2

1 − P1P2 − P2P1 + P2
2 = P1 + P2 i f P1P2 = P2P1 = 0.
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(c) Let .P1(x, y) = P2(x, y) = (x, 0), then both .P1 and .P2 are projection oper-
ators. Observe that .(P1 + P2)(x, y) = (2x, 0) is not a projection as 

. (P1 + P2)
2(x, y) = (P1 + P2)(2x, 0) = (4x, 0) /= (P1 + P2)(x, y)

(d) Let.P1(x, y) = (x, 0) and.P2(x, y) = (0, y), then both.P1 and.P2 are projec-
tion operators. Observe that .(P1 − P2)(x, y) = (x,−y) is not a projection 
as 

.(P1 − P2)
2(x, y) = (P1 − P2)(x,−y) = (x, y)



Appendix 

A.1 Determinants 

Permutations 

In Chap. 1, we got familiarized with the symmetric group of n letters. We have seen 
that a permutation on a set .S = {1, 2, . . . ,  n} is a rearrangement of the members 
among themselves. In other words, a permutation . σ is a one-one map from . S onto 
itself. Such an element is represented in the form, 

. σ =
(

1 2 . . . i . . .  n 
σ(1) σ  (2) .  .  .  σ  (i ) .  .  .  σ  (n)

)

We have seen that the set of all permutations on . S forms a group with .n! elements 
under the operation function composition. For example consider . S3. The elements 
of .S3 can be listed as 

. 

{
ρ0 =

(
1 2 3  
1 2 3

)
, ρ1 =

(
1 2 3  
2 3 1

)
, ρ2 =

(
1 2  3  
3 1 2

)
, μ1 =

(
1 2  3  
1 3 2

)
, μ2 =

(
1 2  3  
3 2  1

)
, μ3 =

(
1 2 3  
2 1  3

)}

Then the Cayley table for .S3 is 
.◦ .ρ0 .ρ1 .ρ2 .μ1 .μ2 . μ3 

.ρ0 .ρ0 .ρ1 .ρ2 .μ1 .μ2 . μ3 

.ρ1 .ρ1 .ρ2 .ρ0 .μ3 .μ1 . μ2 

.ρ2 .ρ2 .ρ0 .ρ1 .μ2 .μ3 . μ1 

.μ1 .μ1 .μ2 .μ3 .ρ0 .ρ1 . ρ2 

.μ2 .μ2 .μ3 .μ1 .ρ2 .ρ0 . ρ1 

.μ3 .μ3 .μ1 .μ2 .ρ1 .ρ2 . ρ0 

Now, take .μ1 =
(
1 2  3  
1 3 2

)
. This permutation represents the following mapping 

(Fig. A.1). 
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Fig. A.1 Schematic 
representation of. μ1 

Then, we can can alternatively represent.μ1 as.
(
2 3

) ◦ (
1
)
or.

(
2 3

)
. This represen-

tation of.μ1 is called cyclic representation of.μ1, where.
(
2 3

)
represents the mapping 

.2 ←→ 3 and .
(
1
)
represents .1 ←→ 1. Then using the cyclic representation .S3 can 

be expressed as 

. S3
{
e,

(
1 2  3

)
,
(
1 3 2

)
,
(
2 3

)
,
(
1 3

)
,
(
1 2

)}

Now, we will show that every permutation can be written as a cycle or as a product 
of disjoint cycles. 

Theorem A.1 Every permutation on the set . S can be written as a cycle or as a 
product of disjoint cycles. 

Proof Let. σ be a permutation on. Sn . For.n = 1, the proof is trivial. For.n > 1, choose 
any member.s1 of. S. Construct a sequence.s1, s2, s3, . . ., where.si = σ i−1(s1). As. Sn 

is finite, this sequence is finite and there exists .m such that .σ m(s1) = s1. If all the 
members of the set have become a part of the sequence, we can write 

. σ = (
s1 s2 . . .  sm

)

Otherwise, 
. σ = (

s1 s2 . . .  sm
)
. . .  

where three dots at the end suggest that we may not have exhausted set . S during 
this process. Then choose another element .r1 in . S which is not a member of the 
previous cycle and construct a new cycle as before. The new cycle will not contain 
any element from the previous cycle. If so, then .σ i (s1) = σ j (r1) and this would 
imply .r1 = σ i− j (s1), which is not possible. As the set . S is finite, continuing this 
process, every element in . S will be a part of some cycle and 

. σ = (
s1 s2 . . .  sm

) (
r1 r2 . . .  rk

)
. . .

(
q1 q2 . . .  qp

)

Hence every permutation can be written as a cycle or as a product of disjoint cycles. 

Theorem A.2 Every permutation on .Sn, n > 1 is a product of 2- cycles (transposi-
tions). 

Proof From Theorem A.1, we have seen that any element .σ ∈ Sn can be written as 

.σ = (
s1 s2 . . .  sm

) (
r1 r2 . . .  rk

)
. . .

(
q1 q2 . . .  qp

)
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Clearly, we can see that this representation is same as 

. σ = (
s1 sm

) (
s1 sm−1

)
. . .

(
s1 s2

) (
r1 rk

) (
r1 rk−1

)
. . .

(
r1 r2

)
. . .

(
q1 qp

) (
q1 qp−1

)
. . .

(
q1 q2

)

Hence the proof. 

Now, we will prove that if the identity transformation.(e) is written as a product 
of . k transpositions, then . k must be even. This idea will be later used to prove that 
whenever a permutation is written as a product of transpositions, the number of 
transpositions will be either always even or always odd. 

Theorem A.3 If .e = σ1σ2 . . . σk , where, . σi ’s are transpositions, then . k is even. 

Proof Suppose on the contrary that . k is odd. Clearly, we can say that .k = 1 is 
not possible as the identity permutation must fix every element. Now suppose that 
.σk =

(
s1 s2

)
. 

Case 1: .σk−1 =
(
s1 s2

)
. Then, 

. e = σ1σ2 . . . σk−1σk = σ1σ2 . . . σk−2
(
s1 s2

) (
s1 s2

) = σ1σ2 . . . σk−2e = σ1σ2 . . . σk−2 

That is, . e can be written as a product of .k − 2 transpositions. 

Case 2: .σk−1 =
(
s1 s3

)
. Then 

. e = σ1σ2 . . . σk−1σk = σ1σ2 . . . σk−2
(
s1 s3

) (
s1 s2

) = σ1σ2 . . . σk−2
(
s1 s2

) (
s2 s3

)

Case 3: .σk−1 =
(
s3 s2

)
. Then 

. e = σ1σ2 . . . σk−1σk = σ1σ2 . . . σk−2
(
s3 s2

) (
s1 s2

) = σ1σ2 . . . σk−2
(
s1 s3

) (
s2 s3

)

Case 4: .σk−1 =
(
s3 s4

)
. Then 

. e = σ1σ2 . . . σk−1σk = σ1σ2 . . . σk−2
(
s3 s4

) (
s1 s2

) = σ1σ2 . . . σk−2
(
s1 s2

) (
s3 s4

)

Consider the element .s1 in . σk . Observe that in case 2, 3 and 4 we shifted it from . σk 

to .σk−1. We can continue this process till we must have a case 1. For, if that is not 
the case, we will reach a stage where, 

. e = (
s1 s5

)
σ2 . . . σk 

which is not possible as the permutation on the right hand side of the above equation 
does not fix . s1. Therefore we will eventually reach case 1. 

We have now shown that if identity is represented as a product of odd number 
of transpositions, then we can delete 2 transpositions from this expression and still 
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we will be having the identity permutation. That is, identity permutation is again 
expressed as a product of.m − 2 transpositions which is again an odd number. Again, 
repeating this elimination process, we will eventually have that identity equals a 
single transposition which is a contradiction. Hence . k must be even. 

Theorem A.4 Let . σ be a permutation in . Sn. If . σ can be represented as a product of 
even(odd) number of transpositions, then every decomposition of. σ must also contain 
even(odd) number of transpositions. 

Proof Let .σ = α1α2 . . . αr and .σ = β1β2 . . . βk be two different decomposition of 
. σ . Then, 

. e = α1α2 . . . αr β
−1 
k . . . β−1 

2 β−1 
1 

As a transposition is its own inverse we have 

. e = α1α2 . . . αr βk . . . β2β1 

Then, by Theorem A.3, .k + r is even. This implies that either both . k and . s must be 
even or both must be odd. 

We can also prove that the collection of all even permutations on. S = {1, 2, . . . ,  n} 
forms a group called Alternating group of n letters denoted by .An . What about the 
collection of all odd permutations? 

Definition A.1 (Sign of a permutation) Let . σ be a permutation in. Sn . Then the sign 
of . σ is defined as 

. sgn(σ ) =
{
1, i f  σ is  even 

−1, i f  σ is  odd 

Example A.1 Consider the permutation .σ = (
2 3 5 1 4

)
in . S5. We have,  

. σ = (
2 3 5  1  4

) = (
2 4

) (
2 1

) (
2 5

) (
2 3

)

Thus . σ is even and .sgn(σ ) = 1. 

Example A.2 Consider .S2 = {e, σ  = (
1 2

)}. We have already shown that identity 
permutation is even. Hence.sgn(e) = 1. Clearly, .sgn(σ ) = 1 as it is a transposition. 

Example A.3 Consider .S3 = {ρ0, ρ1, ρ2, μ1, μ2, μ3}. As  .ρ0 is the identity ele-
ment.sgn (ρ0) = 1. Verify that.sgn (ρ1) = sgn (ρ2) = 1 and. sgn (μ1) = sgn (μ2) = 
sgn (μ3) = −1. 

By the definition of sign of a permutation, it is easy to verify the following prop-
erties. (Verify!) 
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Theorem A.5 Let .σ, τ ∈ Sn. Then 

(a) . sgn(σ ◦ τ)  = sgn(σ )sgn(τ ) 
(b) . sgn

(
σ −1

) = sgn(σ ) 
(c) . sgn(e) = 1 
(d) .sgn(σ ) = 1, where . σ is any transposition. 
(e) .sgn(τ ) = (−1)k−1, where . τ is any cycle of length . k. 

Now, we will define the determinant for a square matrix and discuss its properties. 

Determinant of an .n × n Matrix 

Consider a .2 × 2 matrix, .A1 =
[

a11 a12 

a21 a22

]
. We have,  

. det (A1) = a11a22 − a12a21 

For a .3 × 3 matrix .A2 = 

⎡ 

⎣a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

⎤ 

⎦, 

. det (A2) = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31 

Keep in mind that just one element comes from each row and only one element 
comes from each column in each term of the expressions above. These are the only 
conceivable combinations of those, as well. If you observe the pattern of the column 
numbers in each term of the above two expressions, you can see that they are exactly 
.S2 and . S3. What about the sign of each terms in the expression? Does it have any 
relation with sign of the corresponding permutation? With these observations in our 
mind, we will define a function on .Mn×n (K) as follows. 

. f ( A) =
Σ
σ∈Sn 

[sgn(σ )]a1σ(1)a2σ(2) . . .  anσ(n) (A.1) 

Is this function well-defined? (Think!) Then, we can have the following theorem 
which tells us that the function . f is nothing but the determinant function. 

Theorem A.6 Let .A = [
ai j

]
be an .n × n matrix and .Mi j  denote the minor of . A 

obtained by deleting its . i th row and . j th column. Then, 

. f ( A) = 
NΣ

j=1 

(−1)i+ j ai j  Mi j  

where, . f is as defined in (A.1). 
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Now, we will prove the following properties of determinant function. 

Theorem A.7 Let .A = [
ai j

]
be an .n × n matrix over the field . K. 

(a) . det (A) = det (AT ) 
(b) If . B is a matrix obtained from . A by multiplying a row(column) by a scalar . k, 

then .det (B) = kdet (A). Also, if .B = k A, then .det (B) = kndet ( A). 
(c) If two rows (columns) of . A are equal, then .det ( A) = 0. 
(d) If . B is a matrix obtained from . A by interchanging any two rows (columns) of . A, 

then .det (B) = −det ( A). 
(e) If . B is a matrix obtained from . A by adding a multiple of one row(column) to 

another, then .det (B) = det (A). 

Proof (a) We have, 

. det (A) =
Σ
σ∈Sn 

[sgn(σ )]a1σ(1)a2σ(2) . . .  anσ(n) 

and 
. det (AT ) =

Σ
σ∈Sn 

[sgn(σ )]aσ(1)1aσ(2)2 . . .  aσ(n)n 

If.τ = σ −1,we have.aσ(1)1aσ(2)2 . . .  aσ(n)n = a1τ(1)a2τ(2) . . .  anτ(n) (Why?). Then, 

. det ( AT ) =
Σ
τ ∈Sn 

[sgn(τ )]a1τ(1)a2τ(2) . . .  anτ(n) 

As,.SN is a group and. σ runs through all elements of .SN , . τ also runs through all 
elements of . Sn . Hence .det (A) = det (AT ). 

(b) Each term in the expression (A.1) of  .det (A) contains just one element from 
each row(column) of . A. Therefore, multiplying a row(column) by a scalar . k 
induces the factor. k in each term of.det (A). Thus.det (B) = kdet (A). Similarly, 
.det (B) = kndet ( A). 

(c) The matrix obtained from. A by interchanging the two equal rows identical with 
. A. However, by the previous result the sign of the determinant must change. This 
implies that .det (A) = 0. 

(d) Let .τ = (
i j

)
be the transposition that interchanges the .i th and . j th rows 

(columns) of . A. This interchanging has the effect of replacing each permuta-
tion . σ by .σ ◦ τ . We have,  

. σ ◦ τ(i ) = σ (τ (i )) = σ(  j) 

. σ ◦ τ(  j ) = σ (τ (  j)) = σ(i ) 

and for all .k ∈ {1, 2, . . . ,  n} except . i and . j , .σ ◦ τ(k) = σ(k). Also,  

.sgn(σ ◦ τ)  = sgn(σ )sgn(τ ) = −sgn(σ ) 
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Thus, 

. det (B) =
Σ

σ◦τ∈Sn 

[sgn(σ ◦ τ)]a1σ◦τ(1) . . .  ai σ◦τ(i ) . . .  a j σ◦τ(  j ) . . .  anσ◦τ(n) 

= −
Σ
σ∈Sn 

[sgn(σ )]a1σ(1) . . .  a(i−1)σ (i−1)ai σ(  j )a(i+1)σ (i+1) . . .  

× a( j−1)σ ( j−1)a jσ(i )a( j+1)σ ( j+1) . . .  anσ(n) 

= −det (A) 

(e) Let .B be the matrix obtained from .A by changing its .i th row by a sum of  . i th 
row and a multiple of . j th row. Then, 

. det (B) =
Σ
σ ∈Sn 

[sgn(σ )]a1σ(1) . . .
(
ai σ(i) + ka j σ(  j)

)
. . .  a jσ(  j) . . .  anσ(n) 

=
Σ
σ ∈Sn 

[sgn(σ )]a1σ(1) . . .  ai σ(i) . . .  a j σ(  j ) . . .  anσ(n) 

+ k
Σ
σ ∈Sn 

[sgn(σ )]a1σ(1) . . .  a j σ(  j ) . . .  a jσ(  j) . . .  anσ(n) 

The second sum on the right side of this equation is zero, as it is the determinant 
of a matrix whose two rows are equal. Thus, .det (B) = det (A). 

A.1.0.1 Elementary Operations and Elementary Matrices 
Elementary matrices are essential linear algebra tools that play an important role 
in matrix operations and transformations. These are square matrices obtained by 
performing a single elementary row(column) operation on an identity matrix. Ele-
mentary row operations include scaling a row, swapping rows, or adding a multiple 
of one row to another. These basic matrices serve as the foundation for comprehend-
ing more advanced matrix operations including row reduction, matrix inverses, and 
solving systems of linear equations. They are an essential notion in linear algebra 
because they give a systematic approach to trace changes in a matrix caused by basic 
row or column operations. 

Example A.4 Consider the matrices .E1 = 

⎡ 

⎣0 1  0  
1 0 0  
0 0 1  

⎤ 

⎦ , E2 = 

⎡ 

⎣1 0 0  
0 4 0  
0 0 1  

⎤ 

⎦ and .. E3 = 

. 

⎡ 

⎣ 
1 0  0  

−5 1 0  
0 0  1  

⎤ 

⎦. Clearly .E1, E2 and .E3 are elementary matrices as they are obtained 

from identity matrix by interchanging first and second row, multiplying the second 
row by . 4 and adding .−5 times the first row to the second row respectively. 
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Remark A.1 Elementary matrices obtained by interchanging the rows of identity 
matrix are also called permutation matrices. 

Now, consider a matrix .A = 

⎡ 

⎣0 1  −1 
1 0  1  
1 0  0  

⎤ 

⎦. Observe the changes to . A, when .A is 

multiplied by .E1, E2 and .E3. We have,  

. E1A = 

⎡ 

⎣0 1  0  
1 0 0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣0 1  −1 
1 0  1  
1 0  0  

⎤ 

⎦ = 

⎡ 

⎣1 0  1  
0 1  −1 
1 0  0  

⎤ 

⎦ , E2 A = 

⎡ 

⎣1 0 0  
0 4 0  
0 0 1  

⎤ 

⎦ 

⎡ 

⎣0 1  −1 
1 0  1  
1 0  0  

⎤ 

⎦ = 

⎡ 

⎣0 1  −1 
4 0  4  
1 0  0  

⎤ 

⎦ 

and 

. E3A = 

⎡ 

⎣ 
1 0  0  

−5 1 0  
0 0  1  

⎤ 

⎦ 

⎡ 

⎣0 1  −1 
1 0  1  
1 0  0  

⎤ 

⎦ = 

⎡ 

⎣0 1  −1 
1 −5 6  
1 0 0  

⎤ 

⎦ 

From this, we can clearly say that to conduct any of the three elementary row opera-
tions on a matrix. A, take the product.E A, where. E is the elementary matrix generated 
by performing the required elementary row operation on the identity matrix. Now, 
consider the following result. 

Theorem A.8 Let . A be an .n × n non-singular matrix. Then . A can be written as a 
product of elementary matrices. 

Proof As .A is non-singular, atleast one element in the first column of .A is non-
zero. If .a11 = 0, we can interchange rows to bring a non-zero element as .a11. Then, 
we multiply the first row by .a−1 

11 . Thus in the reduced matrix .a11 = 1 and using 
this fact, we can add .−ai1 times the first row to the .i th row to make every other 
element in the first row zero. Observe that, we have applied only the elementary row 
transformations. Hence the resulting matrix is still non-singular. 

Now, we wish to do the same to the second row. At least one element in second 
column other than .a12 must be non-zero. For, otherwise the first two columns will 
be linearly dependent. Thus, if we repeat the elementary operations as we have 
applied previously, we can have the .a22 = 1 and .ai2 = 0 for all .i /= 2. Continuing 
this process we will finally obtain the.n × n identity matrix. Thus, if. E1, E2, . . . ,  Ek 

are the elementary matrices representing the elementary operations applied on . A 
successively, we have 

. I = Ek . . .  E2E1A 

Hence 
. A = E−1 

1 E−1 
2 . . .  E−1 

k 

Example A.5 Consider a matrix .A = 

⎡ 

⎣0 1  −1 
1 0  1  
1 0  0  

⎤ 

⎦. 
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Step I: Interchange the rows 1 and 3. That is, Multiply. A by.E1 = 

⎡ 

⎣0 0 1  
0 1  0  
1 0 0  

⎤ 

⎦. Then, 

.E1A = 

⎡ 

⎣1 0  0  
1 0  1  
0 1  −1 

⎤ 

⎦. 

Step II: Subtract the first row from the second row. That is, Multiply .A by . E2 =⎡ 

⎣ 
1 0  0  

−1 1 0  
0 0  1  

⎤ 

⎦. Then, .E2E1A = 

⎡ 

⎣1 0  0  
0 0  1  
0 1  −1 

⎤ 

⎦. 

Step III: Interchange the rows 2 and 3. That is, Multiply. A by.E3 = 

⎡ 

⎣1 0 0  
0 0 1  
0 1  0  

⎤ 

⎦. Then, 

.E3E2E1A = 

⎡ 

⎣1 0  0  
0 1  −1 
0 0  1  

⎤ 

⎦. 

Step IV: Add the second row to the third row. That is, Multiply. A by.E4 = 

⎡ 

⎣1 0 0  
0 1 1  
0 0 1  

⎤ 

⎦. 

Then, .E4E3E2E1A = 

⎡ 

⎣1 0 0  
0 1  0  
0 0 1  

⎤ 

⎦. 

We can clearly observe that .A = E−1 
1 E−1 

2 E−1 
3 E−1 

4 . 
Theorem A.9 Let . A be an .n × n matrix. If . E is an elementary matrix, then 

. det (E A) = det (E)det (A) = det (AE) 

The above theorem is an immediate consequence of Theorems A.7 .(b), (d) and .(e). 
Now, by using Theorems A.8 and A.9, we can have the following result. 

Theorem A.10 Let . A and . B be two .n × n matrices. Then, 

. det (AB) = det (A)det (B) = det (B A) 

A.2 Fourier Series 

Consider the set of all functions in .[−π, π ] that satisfy the condition 

. 

{ π 

−π 
| f (x)|2 dx < ∞ 

Clearly, this collection will form a vector space under point-wise addition of functions 
and standard scalar multiplication (Verify!). Also, 
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. [ f, g] =
{ π 

−π 
f (x)g(x)dx 

defines an inner product on this space (Verify!). Consider the following set of func-
tions; 

. 

{
1√
π 

sin nx | 1 ≤ n < ∞
}

∪
{

1√
π 

cos nx | 1 ≤ n < ∞
}

We will show that this set is an orthonormal set. For .m /= n, 

. [cos nx, cos mx] =
{ π 

−π 
cos nxcos mxdx 

= 
1 

2

{ π 

−π 
[cos(m + n)x + cos(m − n)x] dx 

= 
1 

2

[
sin(m + n)x 

m + n
+ 

sin(m − n)x 

m − n

]π 

pi 

= 0 

Similarly, for . m /= n 

. [sin nx, sin mx] =  0 

and for all .m and . n 

. [cos nx, sin mx] =  0 

Also, 

. ||sin nx||2 =
{ π 

−π 
[sin nx]2 dx = 

1 

2

{ π 

−π 
2 [sin nx]2 dx 

= 
1 

2

{ π 

−π 
(1 − cos 2nx)dx = 

1 

2

[
x − 

sin 2nx 

2nx

]π 

−π 
= π 

and 
. ||cos nx||2 = π 

Therefore, the set 

. 

{
1√
π 

sin nx | 1 ≤ n < ∞
}

∪
{

1√
π 

cos nx | 1 ≤ n < ∞
}

is an orthonormal set. Our objective is to obtain a trigonometric series representation 
to every periodic function . f (x) defined on .[−π, π ]. Let us assume that 
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. f (x) = a0 + 
∞Σ

n=1 

(ancos nx + bnsin nx) (A.2) 

Integrating on both sides from.−π to . π , 

. 

{ π 

−π 
f (x)dx =

{ π 

−π

[
a0 + 

∞Σ
n=1 

(ancos nx + bnsin nx)

]
dx 

= a0

{ π 

−π 
dx + 

∞Σ
n=1

(
an

{ π 

−π 
cos nxdx + bn

{ π 

−π 
sin nxdx

)
= 2π a0 

This gives, 

.a0 = 
1 

2π

{ π 

−π 
f (x)dx (A.3) 

Now, consider .cos(mx), where .m is a fixed integer. Multiply both sides of (A.6) by  
.cos(mx) and integrate from.−π to . π , 

. 

{ π 

−π 
f (x)cos mxdx =

{ π 

−π 

⎡ 

⎣a0 + 
∞Σ

n=1 

(ancos nx + bnsin nx) 

⎤ 

⎦ cos mxdx 

= a0
{ π 

−π 
cos mxdx + 

∞Σ
n=1

(
an

{ π 

−π 
cos nxcos mxdx + bn

{ π 

−π 
sin nxcos mxdx

)

= am

{ π 

−π 
[cos mx]2dx = am π 

This gives, 

.am = 
1 

π

{ π 

−π 
f (x)cos mxdx, m = 1, 2, . . . (A.4) 

Similarly, we get 

.bm = 
1 

π

{ π 

−π 
f (x)sin mxdx, m = 1, 2, . . . (A.5) 

The coefficients .{an}∞n=0 and .{bn}∞n=1 are called the Fourier coefficients and the 
trigonometric series given in (A.6) is called the Fourier series expansion of . f (x) 
named after the famous French Mathematician Jean–Baptiste Joseph Fourier (1786– 
1830). While Fourier series are well-known for their ability to approximate a wide 
range of functions, it’s crucial to remember that they may not converge for all sorts 
of signals or functions. In such circumstances, rigorous analysis and consideration 
of convergence concerns are required to verify the approximation’s accuracy. The 
following theorem gives sufficient conditions for the convergence of series (A.2) 
with coefficients given by Eqs. (A.3), (A.4) and (A.5). 
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Fig. A.2 Graph of. f (x) 

Theorem A.11 If a periodic function . f (x) with period . 2π is piecewise continuous 
in the interval.−π ≤ x ≤ π and has a left-hand derivative and right-hand derivative 
at each point of that interval, then the series 

.a0 + 
∞Σ

n=1 

(ancos nx + bnsin nx) (A.6) 

with coefficients 

. a0 = 
1 

2π

{ π 

−π 
f (x)dx 

an = 
1 

π

{ π 

−π 
f (x)cos nxdx, n = 1, 2, . . .  

bn = 
1 

π

{ π 

−π 
f (x)sin nxdx, n = 1, 2, . . .  

is convergent. The sum of the series (A.6) is . f (x), except at a point . x0 at which . f (x) 
is discontinuous. At . x0, sum of the series is the average of the left and right hand 
limits of . f (x) at . x0. 

Example A.6 Consider the function (Fig. A.2) 

. f (x) =
{

−1, x ∈ [−π, 0) 
1, x ∈ (0, π  ] (A.7) 

Let us find the Fourier coefficients for . f (x). We have,  
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. a0 = 
1 

2π

{ π 

−π 
f (x)dx = 

1 

2π

(
−

{ 0 

−π 
dx +

{ π 

0 
dx

)
= 0 

Now, 

. an = 
1 

π

{ π 

−π 
f (x)cos nxdx 

= 
1 

π

[{ 0 

−π 
−cos nxdx +

{ π 

0 
cos nxdx

]

= 
1 

π

[(
− sin nx 

n

)0 

−π 
+

(
sin nx 

n

)π 

0

]
= 0 

and 

. bn = 
1 

π

{ π 

−π 
f (x)sin nxdx 

= 
1 

π

[{ 0 

−π 
−sin nxdx +

{ π 

0 
sin nxdx

]

= 
1 

π

[)cos nx 

n

(0 

−π 
−

)cos nx 

n

(π 

0

]
= 

2 

nπ 
(1 − cos nπ)  

Then (Fig. A.3) 

. f (x) = 
4 

π

(
sin x + 

1 

3 
sin 3x + 

1 

5 
sin 5x

)
+ . . .  

Observe that .x = 0 is a point of discontinuity of . f (x) all partial sums have the 
value zero, the arithmetic mean of values .−1 and . 1 of the given function. 

Remark A.2 The Fourier series of an even function of period.2L is a Fourier cosine 
series, 

. f (x) = a0 + 
∞Σ

n=1 

ancos 
nπ 
L 

x 

with coefficients 

. a0 = 
1 

L

{ L 

0 
f (x)dx, an = 

2 

L 
f (x)cos 

nπ 
L 

xdx, n = 1, 2, . . .  

Similarly, the Fourier series of an odd function of period.2L is a Fourier sine series, 

. f (x) = 
∞Σ

n=1 

bnsin 
nπ 
L 

x 
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Fig. A.3 First three partial sums of the Fourier series for a square wave 

with coefficients 

. bn = 
2 

L

{ L 

0 
f (x)sin 

nπ 
L 

x 

The Fourier series expansion is a powerful mathematical tool with numerous 
applications in a variety of domains. Signal processing relies on the Fourier series 
extensively. It is used to examine and manipulate signals, including electromagnetic 
waves, audio, and video. For instance, it is used in data compression methods like 
filtering to eliminate undesirable frequencies. Engineers investigate the vibrations 
and resonances of mechanical systems using Fourier analysis. This is essential for 
constructing machines, vehicles, and structures to stop or reduce vibrations. Fourier’s 
law outlines how heat propagates through materials in the study of heat transfer. In a 
variety of engineering applications, the Fourier series can be used to address difficult 
heat conduction problems. Wave functions are frequently used in quantum physics 
and can be described as superpositions of multiple energy states using the Fourier 
series. This is critical for understanding particle behavior at the quantum level. These 
are just a few instances, and as technology progresses and our understanding of 
mathematical tools grows, so will the uses of Fourier series expansion. It is a useful 
and necessary tool in a wide range of scientific and engineering disciplines. 
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Cauchy, 14, 20, 172 
convergent, 13, 19, 172 
divergent, 13 
functions, 15 
limit of, 13, 19 
real, 13 

Set builder form, 4, 6 
Sets, 3 
closed, 18 
complement of, 5 
countable, 14 
difference of, 5 
disjoint, 6 
finite, 4 
infinite, 4 
intersection of, 5 
open, 18 
uncountable, 14 
union of, 5 
universal, 4 

Shear, 98 
horizontal, 98 
vertical, 98 

Singular value decomposition, 227 
Skew-field, 27 
Space 
Banach space, 174 
Hilbert Space, 188 
inner product space, 178 
metric space, 17 
normed linear space, 163 
vector space, 49 

Span, 60 
State-space representation, 276 
Steady state vector, 271 
Sub-field, 27 
Subgroup, 22 
normal, 25, 294 

Sub-ring, 27 
Subset, 3 
Subspaces, 52, 166, 331 
direct sum of, 69, 154 
invariant, 148, 149 
sum of, 67 

Sylvester’s inequality, 34, 311, 337 
System of linear equations, 38, 259, 312, 

330 
consistent, 41 
homogeneous, 41, 350, 377 
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inconsistent, 41 
non-homogeneous, 41 

T 
Theorem, 25 
Banach fixed point, 245 
Cayley–Hamilton, 131, 280, 421 
Factor, 29 
First isomorphism, 26, 294, 303 
Fundamental theorem of algebra, 29, 147, 

473 
Gerschgorin’s, 158, 159 
intermediate value, 308 
Lagrange’s, 25 
Pythagoras, 188, 198 
Rank–Nullity, 89, 109, 137, 369, 419, 501 

Riesz, 210 
Riesz Representation, 212 

Schur Triangularization, 146 
Traffic flow, 265 
Triangle inequality, 17, 164 

V 
Vector, 36, 49 
characteristic, 123 
coordinate representation of, 93, 111 
dot product, 175, 178 
length of, 176 
orthogonal, 177 
position, 37 

Vector addition, 36 
parallelogram law of, 38 
triangle law of, 37 

Vector space, 49, 80, 175, 329 
Venn diagram, 5 
Vertical line test, 9 
Vieta’s formula, 29, 128 
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