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Preface

Linear Algebra is one of the essential mathematical disciplines that undergraduate
science and engineering students need for their studies. The subject stays at the fore
of mathematics to date, be it in theory or applications as it provides an elegant and
effective framework for comprehending and controlling the fundamental structures
of space and transformation.

Our book is an exposition of basic linear algebra. We aim to present an introduction
to linear algebra and basic functional analysis in a simple manner that will be helpful
for readers regardless of their field of study. The book is self-contained, apt even for
an upper undergraduate in their first brush with the subject. Abstract concepts are
dealt with comparatively less rigor, keeping in mind a first-time reader.

The book aims mainly at graduate and engineering students and can be used as a
primary text in a suitable course in Linear Algebra or as a supplementary reading.
The subject matter is brought to life with numerous examples and solved problems,
included as terminal chapters. This feature of the book would help students famil-
iarize themselves with the subject matter faster and stimulate further interest in the
subject. The book is written in such a way that students who are attempting competi-
tive exams for higher studies can master the subject and attain problem-solving skills
in the subject matter.

The book contains 13 chapters, of which the first seven chapters in Part 1 deal
with the basic theory of linear algebra, basic functional analysis and a glimpse of
applications of linear algebra. The last six chapters include solved problems based
on the theory discussed in Part 1.

Chapter 1 sets the ground for the reader by dealing with preliminary topics. This
chapter provides a basic understanding of elementary set theory, metric spaces and
properties, and matrix theory, which is unavoidable in a linear algebra and func-
tional analysis study. Solutions to the system of linear equations are also discussed.
This chapter will motivate a beginner and help a proficient reader refresh the basics
required to learn the upcoming topics.

Chapter 2 introduces the primary object in Linear Algebra, viz. Vector Spaces.
Numerous examples follow the definition. Important notions of subspaces, linear

vii



viii Preface

dependence, basis, and dimension are given due respect and are elaborated. The
chapter concludes with a section on sums and direct sums.

Having dealt with vector spaces, Chap. 3 focuses on mappings between vector
spaces, particularly those which preserve the vector space structure, that is, linear
transformations. Important terminologies, including range space, null space, rank,
nullity, etc., are defined, followed by several important theorems. In order to bring a
parallelism with matrix theory, matrix representations of linear transformations are
discussed, and most of the abstract concepts related to linear transformations are
dealt with in terms of matrices. The algebra of linear transformations is discussed,
which would aid in constructing a vector space of linear transformations. This chapter
includes a geometrical overview of varied linear transformations in R2, which would
kindle the readers’ geometric intuition. Topics like the change of coordinate matrix,
linear functionals, dual space, etc. are also discussed in this chapter.

Chapter 4 is of paramount importance, as it discusses the spectral properties of
matrices. Here, we study linear operators between finite-dimensional vector spaces
in terms of matrices, employing matrix representations defined in Chap. 3. Important
notions like eigenvalues, eigenvectors, and some useful classes of polynomials arising
from matrices are defined. Important theorems like the Cayley—Hamiton theorem,
Schur triangularization theorem, etc. are stated and proved in this chapter. An entire
section is devoted to diagonalization. The idea of generalized eigenvectors and Jordan
canonical form are also studied in detail, along with the discussion of algebraic and
geometric multiplicities of eigenvalues of matrices.

We start Chap. 5 by introducing the distance notion by defining norms on arbitrary
vector spaces and discussing the properties of normed linear spaces. Further, we
discuss the idea of the usual dot product on R? to generalize the concept to arbitrary
vector spaces and obtain inner product spaces. Basic notions are introduced and
theorems on inner product are proved, followed by a discussion on orthonormal sets,
orthogonal projection, and the famous Gram—Schmidt Orthonormalization process.
In this chapter, we revisit the notion of completeness of abstract spaces (introduced
in Chap. 1), which helps to introduce Banach and Hilbert space notions. In short,
this chapter briefly introduces fundamental ideas of functional analysis, a major
mathematical discipline with roots in algebra and analysis.

Chapter 6 gives a flavor of operator theory by discussing bounded linear maps
and their properties. Also, fundamental theorems on the adjoint of an operator, self-
adjoint operators, normal operators, unitary operators, etc. are proved in this chapter.
Singular value decomposition (SVD) and pseudo-inverse of matrices are discussed
in detail. This chapter ends with a discussion on the least square solutions of system
of linear equations.

In Chap. 7, we delve into the intriguing world of real-life linear algebra applica-
tions. Although there are many applications, we discuss only a few to give an idea
on how the concepts in linear algebra are used in the real-world systems. As we
progress through this chapter, we will see how the diverse tools of linear algebra
open doors to innovation and new pathways for problem-solving across a wide range
of disciplines.
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Each chapter is provided with an ample number of examples and exercises. Solu-
tions to selected exercises are given at the end of Part I. Chapters 8—13 comprise more
than 500 solved problems of varying difficulty levels based on the topics discussed
in Chaps. 1-6. Detailed solutions are given for each question to provide a better
understanding of the ideas discussed. The following chapter-wise dependent chart
demonstrates the sequential progression of topics throughout the book.

Chapter 2

Chapter 9

Chapter 1 Chapter 3 Chapter 10

Chapter 4 -y Chapter 11

Chapter 5 Chapter 12 Section 7.3-7.5

We are deeply indebted to all the authors whose works on linear algebra and func-
tional analysis influenced our understanding of the subject. We take this opportunity
to express our sincere gratitude toward them. We wish to acknowledge the support we
received from our institution and the moral support from our colleagues and friends
during each stage of manuscript preparation. We thank our academic fraternity, who
have made valuable suggestions after reading through various parts of the manuscript.
We would especially like to thank Manilal K. (Professor, University College, Trivan-
drum), Thomas V. O. (Professor, The Maharaja Sayajirao University of Baroda),
Mahesh T. V. (Assistant Professor, MG College, Trivandrum), Mathew Thomas
(Assistant Professor, St. Thomas College, Thrissur), Aleena Thomas (Research
Scholar, Indian Institute of Space Space Science and Technology, Trivandrum), and
Anikha S. Kumar (Research Scholar, Indian Institute of Space Space Science and
Technology, Trivandrum) for their fruitful suggestions and constant support. Last but
not the least, we wish to thank our family members for their patience and support
during the preparation of this manuscript.
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No work is ever complete until it has had its fair share of criticism. Readers are
welcome to comment on our dispositions, which will help us improve the book.

Thiruvananthapuram, Kerala Raju K. George
October 2023 Abhijith Ajayakumar
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Chapter 1 ®)
Preliminaries Becit

We introduce a wide range of fundamental mathematical concepts and structures in
this chapter on foundation of mathematics. Understanding their fundamental opera-
tions and attributes, we start with sets and functions. We then delve into the metric
space universe, which offers a framework for comprehending distance and conver-
gence. Moving on to algebraic structures, we examine the distinctive qualities and
illustrative instances of groups, rings, and fields. Polynomial rings and their essential
properties are introduced, as are matrices and their rank, trace, and determinant, all
of which are highlighted as they have vital roles in the coming chapters. The latter
sections of the chapter provide an overview of Euclidean space and demonstrate how
to solve systems of linear equations using techniques like Cramer’s rule, LU decom-
position, Gauss elimination, etc. These fundamental ideas in mathematics serve as
the building blocks for more complex mathematical research and have numerous
applications in science and engineering.

1.1 Sets and Functions

Set theory is the core of modern mathematics and serves as a language for mathe-
maticians to discuss and organize their ideas. It is a crucial and elegant concept at
its core; a set is simply a collection of objects, similar to a bag containing multiple
objects. These objects can be anything from numbers, characters, shapes, or other
sets. The way set theory lets us classify, compare, and evaluate these collections is
what makes it so powerful. This section will discuss some of the essential concepts in
set theory. Though the notion of set is not well-defined in wide generality as it leads
to paradoxes like Russell’s Paradox, published by Bertrand Russell (1872—-1970) in
1901, we start with the following simple definition for a preliminary understanding
of a set.

Definition 1.1 (Ser) A set is a well-defined collection of objects. That is, to define
a set X, we must know for sure whether an element x belongs to X or not. If x is

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 3
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an element of X, then it is denoted by x € X and if x is not an element of X, then
it is denoted by x ¢ X. Two sets X and Y are said to be equal if they have the same
elements.

Definition 1.2 (Subser) Let X and Y be any two sets, then X is a subset of Y, denoted
by X C Y, if every element of X is also an element of Y. Two sets X and Y are equal
ifandonlyif X C Yand Y C X.

A set can be defined in a number of ways. Commonly, a set is defined by either listing
all the entries explicitly, called the Roster form, or by stating the properties that are
meaningful and unambiguous for elements of the set, called the Set builder form.

Example 1.1 Here are some familiar collection/sets of numbers.

N—the set of all natural numbers —{1, 2, 3, ...}

W —the set of all whole numbers —{0, 1,2, ...}

Z—the set of all integers —{..., —3,—-2,—1,0,1,2,3,...}
Q—the set of all rational numbers —{s | p.q €Z, q # 0}
R—the set of all real numbers

C—the set of all complex numbers.

Usually, in a particular context, we have to deal with the elements and subsets of
a basic set which is relevant to that particular context. This basic set is called the
“Universal Set” and is denoted by ¢/. For example, while studying the number system,
we are interested in the set of natural numbers, N, and its subsets such as the set of
all prime numbers, the set of all odd numbers, and so forth. In this case N is the
universal set. A null set, often known as an empty set, is another fundamental object
in set theory. It is a set with no elements, which means it has no objects or members.
In set notation, the null set is commonly represented by @ or {} (an empty pair of
curly braces).

Definition 1.3 (Cardinality) The cardinality of a set X is the number of elements
in X. A set X can be finite or infinite depending on the number of elements in X.
Cardinality of X is denoted by | X]|.

Example 1.2 All the sets mentioned in Example 1.1 are infinite sets. The set of
letters in the English alphabet is a finite set.

Set Operations

Set operations are fundamental mathematical methods for constructing, manipulat-
ing, and analyzing sets. They enable the combination, comparison, and modification
of sets in order to acquire insights and solve various mathematical and real-life
problems. Union (combining items from several sets), intersection (finding common
elements between sets), complement (identifying elements not in a set), and set dif-
ference (removing elements from one set based on another) are the fundamental set
operations.
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(@) (®)

Fig. 1.1 The shaded portions in a and b represents the union and intersection of the sets X and Y,
respectively

(a) (b)

Fig. 1.2 The shaded portion in a represents the difference of Y related to X and the shaded portion
in b represents the complement of a set

Definition 1.4 (Union and Intersection) Let X and Y be two sets. The union of X
and Y, denoted by X U Y, is the set of all elements that belong to either X or Y. The
intersection of X and Y, denoted by X NY, is the set of all elements that belong to
both X and Y.

The relationship between sets can be illustrated with the use of diagrams, known
as Venn diagrams. It was popularized by the famous mathematician John Venn (1834—
1923).In a Venn diagram, a rectangle is used to represent the universal set and circles
are used to represent its subsets. For example, the union and intersection of two sets
are represented in Fig. 1.1.

Definition 1.5 (Difference of Y relatedto X)) Let X and Y be two sets. The difference
of Y related to X, denoted by X \ Y, is the set of all elements in X which are not in
Y. The difference of a set X related to its universal set { is called the complement
of X and is denoted by X¢. That is, X¢ = U \ X. Keep in mind that /¢ = & and
¢ = U (Fig.1.2).

Definition 1.6 (Cartesian Product) Let X and Y be two sets. The Cartesian product
of X and Y, denoted by X x Y, is the set of all ordered pairs (x, y) such that x
belongs to X and y belongs to Y. Thatis, X x Y ={(x,y) |x € X,y e Y}.
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Example 1.3 Let X = {1,2,3} and Y = {3, 4, 5}. Then the union and intersection
of XandYare X UY = {1,2,3,4,5}and X N Y = {3}, respectively. The difference
of Y relatedto X is X \ ¥ = {1, 2}, and the Cartesian productof X and Yis X x ¥ =
{(1,3), (1,4), (1,5),(2,3),(2,4), (2,5), (3,3), (3,4), 3, 5)}.

Remark 1.1 Two sets X and Y are said to be disjoint, if their intersection is empty.
Thatis,if XNY = &.

We will now try to “connect” elements of distinct sets using the concept, “Rela-
tions”. A relation between two sets allows for the exploration and quantification
of links and relationships between elements of various sets. It essentially acts as a
link between elements of another set and elements from another, exposing patterns,
dependencies, or correspondences.

Definition 1.7 (Relation) A relation R from a non-empty set X to a non-empty set
Y is a subset of the Cartesian product X x Y. Itis obtained by defining a relationship
between the first element and second element (called the “image” of first element)
of the ordered pairs in X x Y.

The set of all first elements in a relation R is called the domain of the relation R,
and the set of all second elements is called the range of R. As we represent sets, a
relation may be represented either in the roster form or in the set builder form. In the
case of finite sets, a visual representation by an arrow diagram is also possible.

Example 1.4 Consider the sets X and Y from Example 1.3 and their Cartesian
product X x Y. Then R = {(1, 3), (2,4), (3,5)} is arelation between X and Y. The
set builder form of the given relation can be givenby R = {(x,y) | y=x+2,x €
X,y e Y} (Fig.1.3).

Remark 1.2 1If|X| = mand|Y| = n,then|X x Y| = mn and the number of possible
relations from set X to set Y is 2™".

Definition 1.8 (Equivalence Relations) A relation R on a set X is said to be an
equivalence relation if and only if the following conditions are satisfied:

(@) (x,x) € Rforall x € X (Reflexive)
(b) (x,y) € Rimplies (v, x) € R (Symmetric)
(¢) (x,y) € Rand (v, z) € R implies (x, z) € R (Transitive).

Example 1.5 Consider N with the relation R, where (x, y) € Rifandonly ifx — y
is divisible by n, where n is a positive integer. We will show that R is an equivalence
relation on N. For,

Fig. 1.3 Arrow diagram
for R
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(@) (x,x) e Rforall x € N. For, x — x = 01is divisible by n for all x € N.
(b) (x,y) € R implies (y, x) € R. For,

(x,¥) € R = x — yis divisible by n
= —(x — y) is divisible by n
= y — x is divisible by n
= (,x) €ER

(¢) (x,y) € Rand (y, z) € R implies (x, z) € R. For,

(x,5),(y,2) € R=x — yand y — z is divisible by n
= (x — y) + (y — 2) is divisible by n
= x — z is divisible by n
= (x,2) €R

Thus, R is reflexive, symmetric, and transitive. Hence, R is an equivalence relation.

Example 1.6 Consider the set X = {1, 2, 3}. Define a relation R on X by R =
{1, 1),(2,2),(1,2),(2,3)}. Is R an equivalence relation? Clearly, not! We can
observe that R is not reflexive as (3, 3) ¢ R. Also R is not transitive as (1, 2), (2, 3)
but (1, 3) ¢ R. What if we include the elements (3, 3) and (1, 3) to the relation and
redefine R as R = {(1, 1), (2,2), (3,3), (1,2),(2,3),(1,3)}. Then R is an equiva-
lence relation on X.

Relations define how elements from one set correspond to elements from another,
allowing for a broader range of relationships. However, there are specialized rela-
tions in which each element in the first set uniquely relates to one element in the
second. This connection gives these relations mathematical precision, making them
crucial for modeling precise transformations and dependencies in various mathe-
matical disciplines, ranging from algebra to calculus. We refer to such relations as
functions.

Functions

Function in mathematics is a rule or an expression that relates how a quantity (depen-
dent variable) varies with respect to another quantity (independent variable) asso-
ciated with it. They are ubiquitous in mathematics and they serve many purposes.

Definition 1.9 (Function) A function f from a set X to a set Y, denoted by f :
X — Y, is arelation that assigns to each element x € X exactly one elementy € Y.
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f
1 >3
2 4
3 >5

Fig.1.4 Observe that each element from set X is mapped to exactly one element in set Y. Therefore
the given relation is a function. X is called domain of f and Y is called the co-domain of f. 4 does
not belong to the range set of f, as it does not have a pre-image. The range set of f is {3, 5}

Fig. 1.5 Observe that 1 is R
mapped to both 3 and 4. Thus
R=1{(1,3),(1,4),(2,3)}is
not a function

Then y is called the image of x under f and is denoted by f (x). The set X is called
the domain of f and Y is called the co-domain of f. The collection of all images of
elements in X is called the range of f.

Example 1.7 Consider the sets X and Y from Example 1.3. Define a relation R from
the set X tothe set Y as R = {(1, 3), (2, 3), (3, 5)}. Then the relation R is a function
from X to Y (Fig.1.4).

From Definition 1.9, it is clear that any function from a set X to a set Y is a relation
from X to Y. But the converse need not be true. Consider the following example.

Example 1.8 Consider the sets X and Y from Example 1.3. Then the relation R =
{(1, 3), (1,4), (2, 3)} from the set X to the set Y is not a function as two distinct
elements of the set Y are assigned to the element 1 in X (Fig. 1.5).

It would be easier to understand the dependence between the elements if we
could geometrically represent a function. As a convention, the visual representation
is done by plotting the elements in the domain along the horizontal axis and the
corresponding images along the vertical axis.

Definition 1.10 (Graph of a Function) Let f: X — Y be a function. The set
{(x, f(x)) € X x Y | x € X} is called the graph of f.
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Yy
y
AN
[
/ S X
| ]
(a) function (b) not a function

Fig. 1.6 Observe that in the first graph any vertical line drawn in the domain will touch exactly
one point of the graph. However, in the second graph it may touch more than one point

Observe that the above-defined set is exactly the same as f, by Definition 1.9. Also
keep in mind that not all graphs represent a function. If any vertical line intersects a
graph at more than one point, the relation represented by the graph is not a function.
This is known as the vertical line test (Fig. 1.6).

Definition 1.11 (One-one function and Onto function) A function f from a set X
to a set Y is called a one-one (injective) function if distinct elements in the domain
have distinct images, that is, for every x|, x; € X, f(x;) = f(x;) implies x; = x».
f is called onto (surjective) if every element of Y is the image of at least one element
of X, thatis, for every y € Y, 3x € X such that f(x) = y. A function which is both
one-one and onto is called a bijective function.

Example 1.9 Consider the function f : R — Rdefinedby f(x) = x + 5forx € R.
First, we will check whether the function is one-one or not. We will start by assuming
f(x1) = f(xy) for some x;, x, € R. Then

G =fGx)=x1+5=x+5
= X] = X3

Therefore f is one-one. Now to check whether the function is onto, take any x € R,
then x — 5 € R with f(x —5) =x — 54 5 = x. That is, every element in R (co-
domain) has a pre-image in R (domain). Thus, f is onto and hence f is a bijective
function.

The graph of a function can also be used to check whether a function is one-one.
If any horizontal line intersects the graph more than once, then the graph does not
represent a one-one function as it implies that two different elements in the domain
have the same image. This is known as the horizontal line test (Fig. 1.7).

Definition 1.12 (Composition of two functions)Let f : X — Y andg:Y — Z be
any two functions, then the composition g o f is a function from X to Z, defined by

(g0 f)x) =g (f(x)) (Fig.1.8).
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V\/\
v
A
v

(@ fi(x)=x+5 ) fr(x) =x?

Fig.1.7 Consider the graphs of the functions fj, f>:R — Rdefinedby fi(x) = x + 5and fo(x) =
x2. Observe that if we draw a horizontal line parallel to the x-axis, it will touch exactly one point
on the graph of the function f;. But on the graph of the function f3, it touches two points. Then by
horizontal line test, the first function is one-one whereas the second one is not a one-one function

X/\y/—\z

Fig. 1.8 It is clear that the range set of f must be a subset of the domain of g, for the composition
function to be defined

Properties
Letf:X—Y,g:Y— Z,andh: Z — W, then

(@) ho(go f)=(hog)o f (Associative).
(b) If f and g are one-one, then g o f is one-one.
(c) If f and g are onto, then g o f is onto.

Example 1.10 Consider the functions f, g :R — R defined by f(x) =x? and
g) =2x+ 1. Then (fog)) = f(g)=f(2x+1)=Q2x+ 1> =4x>+
4x +land (g o f)(x) = g(f(x)) = g(x?) = 2x> + 1. Observe that f o g # g o f.
Therefore function composition need not necessarily be commutative.

Definition 1.13 (/nverse of a function) A function f : X — Y is said to be invert-
ible if there exists a function g : ¥ — X such that g (f(x)) = x for all x € X and
f (g(y)) =y forall y € Y. The inverse function of f is denoted by f~!.

The function f is invertible if and only if f is a bijective function. For, suppose
there exists an inverse function g for f. Then
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fx) =f)=g(f(x) =g (f(x) = x1 =x2

That is, f is injective. And f (g(y)) = y for all y € Y implies that f is onto.

Example 1.11 Consider a function f, defined as in Fig. 1.4. Indeed, from the figure
itself, it’s evident that function f is not bijective. Thus f is not invertible. Observe
that if we define f(2) = 4, then f is both one-one and onto. Then define a func-
tion,g:Y > XbygB =1,g4) =2,and g(5) =3. Now g (f(1)) =g (3) =1,
g(f2)=g@) =2,and g(f(3)) =g (5) =3. Thatis, g (f(x)) =x forall x €
X. Similarly, we can prove that f (g(y)) = yforally € Y.

Example 1.12 Consider the function f(x) = x + 5, defined as in Example 1.9. We
have already shown that the function is bijective. Now, we will find the inverse of
f. By definition, we can say that f~! is the function that will undo the operation of
f. That is, if a function f maps an element x from set X to y in set Y, its inverse
function f~! reverses this mapping, taking y from Y back to x in X. In this case,
X =Y = R. If we consider, a y € R(co-domain), then there exists x € R(domain)
such that y = x + 5 (Why?). Then x = y — 5. Thus, the function g(y) = y — 5 will
undo the action of f. We can verify this algebraically as follows:

g(fX)=gx+5=x+5-5=x

and
f@x)=fx—-=5=x—-5+5=x

Thus f~'(x) =x — 5.

Example 1.13 Now consider f : R — R defined by f(x) = x%. From Fig. 1.7, we
can clearly say that f is not bijective. Thus f does not have an inverse in R. But, if
we restrict the domain of f to [0, 00), f is a bijective function. Then the inverse of
£ is the function f~'(x) = /x. For, g (f(x)) = g(xz) =x2=xand fgk) =
FWD) = (V0P =x.

It is easy to check whether a real function is invertible or not, by just looking at
its graph. Consider Fig. 1.9.

Now we will discuss some of the important concepts related to functions defined
on the set of all real numbers to itself.

Definition 1.14 (Continuity at a point) Let X C R and f : X — R be a function.
We say that f iscontinuous at xo € X, if givenany e > Othereexistsad > 0 such that
if x is any point in X satisfying |x — xo| < &, then | f(x) — f(x9)| < €. Otherwise,
f is said to be discontinuous at x.

A function is continuous if it is continuous at each point of its domain. In graphical
terms, the continuity of a function on the set of all real numbers means that the graph
does not have any gaps or breaks. From Fig. 1.7, it is clear that both the functions
f(x) =x+5and f(x) = x? are continuous. Figure 1.10 gives an example for a
discontinuous function.
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f(x)=x4+5

//’fﬁl(x)=X—5 A (x) =x2

’
s

A
S
-

A

> v

~

Fig. 1.9 Observe that the graph of f~!(x) is the graph of f(x) reflected about the line y = x
(represented by the dotted line)

Fig. 1.10 Consider the y
signum function, defined by

1,ifx>0
fx) = 40,ifx=0
—1,ifx<0' X

Clearly, f is not continuous
atx =0

Observe that in the definition of continuity of a function at a point, the value of §
depends on both x( and €. If § does not depend on the point xg, then the continuity is
called uniform continuity. In other words, a function f is uniformly continuous on
a set X, if for every € > 0, there exists § > 0, such that for every element x, y € X,
| f(x) — f(y)| < e whenever |x — y| < §. Graphically, this means that given any
narrow vertical strip of width € on the graph, there exists a corresponding horizontal
strip of width & such that all points in the interval within § units of each other on
the x-axis map to points within € units of each other on the y-axis. Consider the
following example.

Example 1.14 Consider the function fj(x) = x + 5. We will show that f; is uni-
formly continuous. For, given any € > 0, choose § = €. Then, for any x, y € R with
|x — y| < &, we have

1A = fiDl=Ix+5-(+5)=k—yl <d=¢

Thus f;(x) = x + 5 is uniformly continuous over R. However, the function f,(x) =
x2 is not uniformly continuous on R. Suppose on the contrary that f; is uniformly
continuous. Fix € = 1. Then, there exists §yo > 0, such that for every element x, y €

R, |f(x) — f(»)| < I whenever |x — y| < 8. Now, take y = x + 2. Then,
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80\’
2_ —
X <x—|—2)

which is a contradiction as x can be chosen arbitrarily.

2

8
x30+zo

<1

Lf ) = fI =

Now, we will define continuity of a function using the notion of sequences of real
numbers.

Definition 1.15 (Real Sequence) A real sequence {x,} is a function whose domain
is the set N of natural numbers and co-domain is the set of all real numbers R. In
other words, a sequence in R assigns to each natural number n = 1, 2, . .. auniquely
determined real number. For example, the function f : N — R defined by f(n) = }l

. 11
determines the sequence {1, 305 }

Example 1.15 The list of numbers {r, r, r, ...}, where r is any real number, is a
sequence called constant sequence as we can define a function, f : N — R, by

f(n)=r.

Example 1.16 The list of numbers {r, r2,r3, ...}, where r is any real number, is
a sequence called geometric sequence as we can define a function, f : N — R, by

fn)=r".

Definition 1.16 (Convergent Sequence) A real sequence {x,} is said to converge to

x € R, or x is said to be a limit of {x,}, denoted by x, — x or lim x, = x, if for
n—0oQ

every € > 0, there exists a natural number N such that [x, — x| < € foralln > N.
Otherwise, we say that {x,} is divergent.
Theorem 1.1 A real sequence {x,} can have at most one limit.

Example 1.17 Consider the sequence {x,}, where x, = rll Clearly, x,, — 0. For,

given any € > 0, we have |x, — 0| = |%|.Ifwetaken > é,wehave |1/n]| < €. Thus
lim 1 =0.
n—0o0

Example 1.18 Consider the sequence {x,}, defined as in Example 1.15. It is easy to
observe that x, — r as |x, —r| =0foralln € N.

Example 1.19 Consider the sequence {x,}, defined as in Example 1.16. We can
observe that the convergence of this sequence depends on the value of r. First of all,
by the above example, for » = 0 and r = 1, {x,} converges to 0 and 1, respectively.
Now let 0 <r < 1. Then x, — 0. For any € > 0, if we take N > Z;—j we have
|x, — 0] =r" < eforalln > N. Similarly, for -1 <r <0, x, — 0.

Now for r = —1, the given sequence becomes x, = (—1)". Take € = %
Then there does not exist any point x € R such that |x, — x| < % as the interval
(x — %, x 4+ 1) must contain both 1 and —1. Therefore {x,} with x, = (—1)" does
not converge. Similarly, we can prove that the sequence {x,} with x, = " does not
converge outside the interval (—1, 1].
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As we have discussed convergent sequences, Cauchy sequences must be intro-
duced, which are a specific class of sequences in which the terms become arbitrarily
close to each other as the index increases, rather than approaching a single limit.

Definition 1.17 (Cauchy Sequence) A real sequence {x,} is said to be a Cauchy
sequence, if for any € > 0, there exists a natural number N such that |x,, — x,| < €
forallm,n > N.

For a real sequence, the terms convergent sequence and Cauchy sequence do not
make any difference. We have the following theorem stating this fact.

Theorem 1.2 A real sequence {x,} is convergent if and only if it is Cauchy.

However, this may not be true, if we are considering sequences in the set of rational
numbers, Q. That is, there exist sequences of rational numbers that are Cauchy but not
convergent in Q (the sequence may not converge to a rational number). For example,
consider the sequence 1.41, 1.412, 1.1421, .. .. This sequence will converge to V2
which is not a rational number (also, see Exercise 13 of this chapter). Now, we will
introduce the sequential definition for continuity.

Definition 1.18 (Sequential Continuity) A function f : X C R — R is said to be
sequentially continuous at point xy € X if for every {x,} in X with x, — x¢, we have
f(xy) = f(x0). Thatisif, lim x, = xo = lim f(x,) = f(x0).

n—o00

Then, we have the following result which asserts that sequential continuity and
continuity of a real function are the same.

Theorem 1.3 A function f : X C R — R is continuous if and only if it is sequen-
tially continuous.

Example 1.20 Consider the signum function as defined in Fig. 1.10. We know that
f is not continuous at x = 0. We can use the definition of sequential continuity
to prove this fact. Consider the sequence {%} In Example 1.17, we have seen that
% — 0. However, observe that f (%) =1— 1% f(0). Thus f is not sequentially
continuous at 0 and hence f is not continuous at 0.

Now, consider the function f(x) = x 4+ 5. We have already seen that f is con-
tinuous on R as its graph does not have any gaps or breaks. Let us check whether f
is sequentially continuous or not. Consider any real number » € R and a sequence
{rn} withr, — r asn — oo. For sequential continuity f (r,) must converge to f (r).

Observe that f(r,) =r, +5 — r +5asn — oo. Thus f is sequential continuous.

Remark 1.3 A set S is said to be countably infinite if there exists a bijective function
from N to S. A set which is empty, finite, or countably infinite is called a countable
set. Otherwise it is called uncountable set. For example Z is countable and R is
uncountable.
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Sequence of Functions

Now, we will combine the ideas of functions and sequences discussed so far and
define “sequence of functions”.

Definition 1.19 (Sequence of Functions) Let f, be real-valued functions defined
on an interval [a, b] for each n € N. Then { fi, f>, f3, ...} is called a sequence of
real-valued functions on [0, 1], and is denoted by { f;, }.

Example 1.21 For each n € N, let f, be defined on [0, 1] by f,(x) = x". Then
{x,x2,x3, .. }isa sequence of real-valued functions on [a, b].

For a sequence of functions, we have two types of convergences, namely point-
wise convergence and uniform convergence. We will discuss these concepts briefly
in this section.

Let { f,} be a sequence of functions on [a, b] and x( € [a, b]. Then the sequence
of real numbers, { f,, (xo)}, may be convergent. In fact, this may be true for all points
in [a, b]. The limiting values of the sequence of real numbers corresponding to each
point x € X define a function called the limit function or simply the limit of the
sequence { f,} of functions on [a, b].

Definition 1.20 (Point-wise convergence) Let {f,} be a sequence of real-valued
function defined on an interval [a, b]. If for each x € [a, b] and each € > 0, there
exists an N € N such that | f,,(x) — f(x)| < € for all n > N, then we say that { f,}
converges point-wise to the function f on [a, b] and is denoted by nlirgo fulx) =

fx), Yx €la,b].

Example 1.22 Let f,(x) = x" be defined on [0, 1]. By Example 1.19, the limit
function f(x) is given by

Fo) = tim fy(x) = 10 F 0D
n—oo l, x=1

Let € = % Then for each x € [0, 1], there exists a positive integer N such that
[fu(x) — f(0)] < % forall n > N. If x =0, f(x) =0 and f,(x) =0 for all n.
[fu(x) — f(0)] < % is true for all n > 1.

Ifx=1, f(x) =1and f,(x) = 1 foralln.|f,(x) — f(x)| < %istrueforalln > 1.
Ifx =2, f(x) =0and f,(x) = (3)" for all n. Then

1

3 n
[fi(x) — f)| = <4_1> <5

is true for all n > 2.
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Fig. 1.11 Point-wise IR I I I I I I 2
convergence of { f,}, where
fux) =x",x €0, 1]

0

Ifx = 5, f(x) =0and f,(x) = (s5)" for all n. Then

mv
(9" 1
|fn(x)—f(x)|_(m) -1

is true for all n > 6 (Fig. 1.11).

Observe that there is no value of N for which | f,,(x) — f(x)| < % is true for all
x € [0, 1]. N depends on both x and €. But, this is not the case for the following
example.

Example 1.23 Consider f,(x) =

X
,x > 0. Clearly,
1+nxx_ early

lim f,(x) = f(x) =0, Vx>0

Also, we have

X X 1
< — = —

14+nx = nx n

0<

Therefore, | f,(x) — f(x)| = | f,(x)] <1 < e forall x > 0, provided N > 1. That
is, if N > %, then |f,(x) — f(x)| <€ for all n > N and for all x > 0. Here

N depends only on €. Such type of convergence is called uniform convergence
(Fig. 1.12).

Definition 1.21 (Uniform convergence) Let { f,} be a real-valued function defined
on an interval [a, b]. Then { f,,} is said to converge uniformly to the function f on
[a, b], if for each € > 0, there exists an integer N (dependent on € and independent
of x) such that for all x € [a, b], | f,(x) — f(x)| < € foralln > N (Fig.1.13).

Clearly, we can observe that uniform convergence implies point-wise conver-
gence, but the converse does not hold true always. Also observe that, in Example 1.22,
all the functions in {f,} were continuous. However, their point-wise limit was not
continuous. In the case of uniform convergence, this is not possible. That is, if { f,}
is a sequence of continuous functions and f,, — f uniformly then f is continuous.
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Fig. 1.12 Uniform F(x)
convergence of { f,}, where

Sa(x) = , x>0

1+ nx

Fig. 1.13 If { f;,} converges

uniformly to a function f on

[a, b], for a given € > 0, 2
there exists a positive integer - S~ o

N such that the graph of -7 -

fa(x) forall n > N and for . )
all x € [a, b] lies between

the graphs of f(x) — € and T B

fx)+e 1 @

1.2 Metric Spaces

In R, we have the notion of usual distance provided by the modulus function, to
discuss the ideas like continuity of a function, convergence of a sequence, etc. These
concepts can also be extended to a wide range of sets by generalizing the notion
of “distance” to these sets by means of a function, called metric. A set with such
a distance notion defined on it is called as a metric space. Consider the following
definition.

Definition 1.22 (Metric Space) Let X be any non-empty set. A metric (or distance
function) on X is a function d : X x X — R™ which satisfies the following proper-
ties for all x, y, z € X:

(M1) d(x,y) > 0andd(x,y) = 0if and only if x = y. (Non-negativity)
(M2) d(x,y) =d(y, x). (Symmetry)
(M3) d(x,z7) <d(x,y)+d(y, 2). (Triangle Inequality)

If d is a metric on X, we say that (X, d) is a metric space.
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Example 1.24 Consider the set of all real numbers, R. For x, y € R, the function
defined by

d(x,y) =|x —y|

is the usual distance between two points on the real line.

(M1) Clearly d(x,y) =|x —y|>0and d(x, y) = |x — y| = 0if and only if x —
y = 0. That is, if and only if x = y.

(M2) d(x,y) =lx—yl=1ly —x|=d(y,x)

(M3) Also, by the properties of modulus

d(x,2) =|x —z|
=lx—-y+y-—z|
<lx—=yl+ly—1zI
=d(x,y)+d(,2)

Thus all the conditions for a metric are satisfied and hence (R, |.|) is a metric space.
This metric is known as the usual metric or Euclidean Distance.

Example 1.25 For any non-empty set X, define a function d by

1, x
d(x,y>={0 xfi

Clearly conditions (M 1) and (M?2) are satisfied. Now we will check (M3),

Casel x #y=z

Thend(x,y) =1,d(x,z) =1landd(y,z) =0
Case2 x =y #z2

Thend(x,y) =0,d(x,z) =landd(y,z) =1
Case3 x=y=z

Thend(x,y) =0,d(x,z) =0andd(y,z) =0
Cased x £y #z2

Thend(x,y) =1,d(x,z) = land d(y,z) = 1.

In all four cases, condition (M3) is clearly satisfied. Hence (X, d) is a metric space
for any non-empty set X. The given metric d is known as a discrete metric.

Definition 1.23 (Open Ball) Let (X, d) be a metric space. For any point xo € X and
€ e RT,
Bc(xo) = {x € X | d(x, x0) < €}

is called an open ball centered at x, with radius €.
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Fig. 1.14 Observe that if we take € less than both ¢ —a and b — ¢, B¢ (c¢) C (a, b)

‘ r ) 1
1y T 7 1
a-—€ a a+e b

Fig.1.15 Clearly Bc(a) ¢ [a, b] for any € > 0. Also, any open interval containing b is not a subset
of [a, b]

Definition 1.24 (Open Set and Closed Set) Let (X, d) be a metric space. A subset
Y C X issaid to be open if it contains an open ball about each of its elements. ¥ € X
is said to be closed if its complement Y is open.

Example 1.26 Consider the metric space (R, |.|). Then we can verify that every
open interval in the real line is an open set (see Exercise 8 of this chapter). Consider
an arbitrary open interval (a, b) C R and choose an arbitrary element ¢ € (a, b). We
have to show that there exists € > 0 such that B.(c) C (a, b) (Fig.1.14).

From Fig. 1.14, if we take € < min{c — a, b — c}, it is clear that B.(c) C (a, b)
for any ¢ € (a, b). Similarly, we can prove that the union of open intervals is also an
open set in R. But a closed interval [a, b] C R is not an open set as B, (a) Q [a, b]
for any € > 0 (Fig. 1.15).

As [a, b]® = (—o0, a) U (b, 00) is an open set, [a, b] is a closed set.

Example 1.27 Every singleton set in a discrete metric space X is an open set. It is
obvious from the fact that for any x € X, we have B.(x) = {x} whene < 1. Also it
is interesting to observe that every subset of a discrete metric space is open as every
open set can be written as a union of singleton sets. Therefore, every subset of a
discrete metric space X is a closed set also.

As we have defined sequences on R, we can define sequences on an arbitrary
metric space (X, d) as a function from the set of all natural numbers taking values
in X, and we can discuss their convergence based on the distance function d.

Definition 1.25 (Convergent Sequence) Sequence {x, } in a metric space (X, d) con-
verges to x € X if for every € > 0 there exists N € N such that x, € B.(x) for all
n > N and x is called the limit of the sequence {x,}. We denote this by x,, — x or

lim x, = x. In other words, we can say that d(x,, x) - Oasn — oo.
n—0oQ

Example 1.28 Consider the sequence {x,}, where x,, = r + %, n € N in the metric

space (R, |.|) for some r € R. We will show that x, — r in (R, |.|). For any € > 0,
if we take N > é

d(x,,r) = <eVn>N

r+-—-—r
n

That is, x, € Be(r) forall n > N. Therefore x, — r in (R, [.|).
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Example 1.29 Let {x,} be a sequence in a metric space (X, d), where d is the
discrete metric. We have seen in Example 1.27 that every singleton set in a discrete
metric space is open. Therefore for the sequence {x,} to converge to a point x € X,
the open set {x} must contain almost all terms of the sequence. In other words, a
sequence {x,} in a discrete metric space converges if and only if it is of the form
X1, X2, ..., XN, X, X, .... Thatis, if and only if {x,} is eventually constant.

Definition 1.26 (Cauchy Sequence) Sequence of points {x, } in a metric space (X, d)
is said to be a Cauchy sequence if for every € > 0, there exists an N, € N such that
d(x,, x,) < € forevery m,n > N..

Theorem 1.4 In a metric space, every convergent sequence is Cauchy.

The converse of the above theorem need not be true. That is, there exists metric
spaces where every Cauchy sequence may not be convergent.

Example 1.30 Consider the sequence {x,} with x, =a + % in the metric space
((a, b), |.]) where (a, b) is any open interval in R. We will show that this sequence
is Cauchy but not convergent. For an € > 0, if we choose N > %

1 1 1
d(x,, xm) = ’; - }’)_’l‘ < Ijl

That is, the given sequence is a Cauchy sequence. As we have seen in Example 1.28,
the given sequence converges to a asn — 00. As a ¢ (a, b), {x,} withx, =a + %
is not convergent in ((a, b), |.|) .

Definition 1.27 (Complete Metric Space) A metric space in which every Cauchy
sequence is convergent is called a complete metric space.

Example 1.31 By Theorem 1.2, (R, |.|) is a complete metric space and from Exam-
ple 1.30, ((a, b), |.|) is an incomplete metric space.

Definition 1.28 (Continuous Function) Let (X,d;) and (Y, d,) be two metric
spaces. A function f : X — Y is said to be continuous at a point xo € X if for every
€ > Othereisad > Osuchthatd, (f(x), f(x0)) < € whenever d; (x, xo) < 8. f is
said to be continuous on X if f is continuous at every point of X.

Theorem 1.5 Let (X, dy) and (Y, d,) be two metric spaces. Then a function f :
X — Y is said to be continuous if and only if the inverse image of any open set of
(Y, dp) is open in (X, dy).

The continuity of a function in metric spaces can also be discussed in terms of
sequences. Consider the following definition.

Definition 1.29 (Sequential Continuity) Let (X, d;) and (Y, d,) be two metric
spaces. A function f : X — Y issaid to be sequentially continuous at a point xy € X
if {x,} is any sequence in (X, d;) with x, — xo, then f(x,) — f(xo) in (¥, d>).
Theorem 1.6 Let (X, dy) and (Y, dy) be two metric spaces. Then a function f :
X — Y is continuous on X, if and only if it is sequentially continuous.
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1.3 Some Important Algebraic Structures

An algebraic structure consists of a non-empty set together with a collection of
operations defined on it satisfying certain conditions or axioms which are defined as
per the context under discussion. The operations are of great importance when the
resultant obtained by combining two elements in the set belongs to the same set.

Definition 1.30 (Binary Operation) Let G be any set. A binary operation "*" on G
is a function % : G x G — G defined by

* (81, 82) = 81 % &

Example 1.32 Let G = R, the set of all real numbers, and let + be the usual addition
of real numbers. Now + : R x R — IR such that +(a, b) =a + b € R defines a
binary operation. Similarly, the usual multiplication and subtraction of real numbers
are also binary operations on R. But as the division of a real number with O is not
defined, division is not a binary operation.

Definition 1.31 (Group) A non-empty set G together with a binary operation '’ is
said to be a group, denoted by (G, %), if "%’ satisfies the following properties:

(@) g1*(82%83) = (81 *82) * &3V &1, 82, 83 € G (Associative property)

(b) Thereexistse € G,suchthate x g = g = g *x e V g € G (Existence of Identity)

(c) Foreach g € G, there exists g~! € G suchthat g x g7! = e = g7! % g. (Exis-
tence of Inverse)

If '+’ satisfies g1 * go = g2 % g1 V g1, &2 € G (Commutative property) also, then
(G, %) is called an Abelian group.

Example 1.33 Consider R together with the binary operation '+’. Then R is an
Abelian group under the operation '+’. For,

(a) Addition is associative over R.

(b) Forallr € R, there exists 0 € Rsuchthatr +0=r =0+4r.

(c) Forall r € R, there exists —r € Rsuchthatr + (—r) =0 = (—r) +r.
(d) Addition is commutative over R.

Similarly, C, the set of all complex numbers, Q, the set of all rational numbers, and
Z, the set of all integers together with the binary operation '+’ is an Abelian group.
But (R, .) is not a group, where °.” denotes usual multiplication as there does not
exist any inverse element for 0.

Example 1.34 Consider R* = R \ {0} under usual multiplication. We can show that
(R*, .) is an Abelian group. Similarly, we can show that (Q*, .) and (C*, .) are also
Abelian groups where Q* = Q \ {0} and C* = C \ {0}. Observe that Z* with usual
multiplication is not a group as the inverse of every element does not exist in Z*.

Example 1.35 Consider R™, the set of all positive real numbers under usual multi-
plication. We can show that (R*, ) is an Abelian group. Similarly, we can show that
(QT,.) and (C*,.) are also Abelian groups.
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Example 1.36 The set Z,, = {0,1,2,...,n— 1}, for n > 1, is a group under the
operation addition modulo n, denoted by +,. The basic operation is usual addition
of elements, which ends by reducing the sum of the elements modulo r, that is,
taking the integer remainder when the sum of the elements is divided by n. This
group is usually referred to as the group of integers modulo n. Consider the following
examples:

+5o[1[2]3]4
+5)0[1]2 +4|0]1]2]3 0 [0[12[3]4

Hlol1 0 [0[12]3
0 ol1]2 T 112[34[0

0 [0[1 T12[3]0
il TT1[2[0 Sohlh > [2[3]a[0[1
2 121001 Tl 34012
A 1l0[12]3

The above group multiplication table is called Cayley table. A Cayley table, named
after the British mathematician Arthur Cayley (1821-1895) of the nineteenth century,
illustrates the structure of a finite group by arranging all the possible products of all
the group’s members in a square table resembling an addition or multiplication table.

Example 1.37 A one-one function from a set S onto itself is called a permutation.
Consider the set S = {1, 2, ..., n}. Let S, denote the set of all permutations on S
to itself. Then S, is a non-Abelian group under the operation function composi-
tion, called symmetric group on n letters. Permutations of finite sets are represented
by an explicit listing of each element of the domain and its corresponding image.

For example, the elements of S5 can be listed as {pg = G ; g) , Pl = (é g ?) ,

(123 (123 (123 (123
PP=\3q12) M1=\132) "= \321) " \213

Theorem 1.7 Let (G, *) be a group. Then

(a) the identity element is unique.
(b) each element in G has a unique inverse.

Definition 1.32 (Subgroup) A subset H of a group (G, %) is said to be a subgroup
of G, if H is a group with respect to the operation x in G. Let H < G denote that H
is a subgroup of G and H < G denote that H is a subgroup of G, but H # G.

Example 1.38 We have (Z,+) < (Q,+) < (R, +). But (Z,, +,) is a not a sub-
group of (R, +) even though as sets Z, C R, as the operations used are different.

Example 1.39 Consider the permutation group S3. Then {po}, {00, 11},
{po, 2}, {po, 13} and {po, p1, p2} are subgroups of Ss.

Definition 1.33 (Order of a Group) Let (G, *) be a group, then the order of G is
the number of elements in G.

Example 1.40 Observe that (Z, +), (Q, +) , (R, +), and (C, +) are groups of order
infinity and (Z,, +,) is a group of order n. Also observe that S, has order n!.
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Definition 1.34 (Order of an element) Let (G, *) be a group, then the order of an
element g € G, denoted by O(g), is the least positive integer n such that g" = e,
where e is the identity in G. Clearly, identity element in a group G has order 1.

Example 1.41 Consider the group (R, +). Then we get that no element other than
0 in R has finite order. This is because of the fact that repeated addition of a real
number will never give us 0.

Example 1.42 Consider a finite group, say (Zs,+4). Then O0) =1,0() =
4,02) =2, and O(3) = 4. It is easy to observe that, in a finite group G, every
element has finite order. Consider another example, S3. Then O (pg) = 1, O (p) =
O (p2) =3,and O (u1) = O (u2) = O (u3) = 2.

Remark 1.4 A set G together with a binary operation '+’ defined on it is called a
Groupoid or Magma. If %’ satisfies associative property also, then (G, %) is called a
Semi-group. A semi-group containing an identity element is called a Monoid.

Definition 1.35 (Group Homomorphism) Let (G, *) and (G', ') be any two groups.
A map ¢ from G to G’ satisfying ¢ (g1 * g2) = ¢ (g1) ¥ ¢ (g2), V g1, 82 € G is
called a group homomorphism. If ¢ is one-one and onto, we say that ¢ is an isomor-
phism or (G, *) and (G’, *’) are isomorphic, denoted by G = G'.

Definition 1.36 (Kernel of a Homomorphism) The kernel of a homomorphism of
a group G to a group G’ with identity ¢’ is the set of all elements in G which are
mapped to ¢’. Thatis, Ker (¢p) ={g € G | ¢ (g) = ¢'}.

Example 1.43 Consider the groups (R, +) and (R*, .). We will show that they are
isomorphic. Define ¢ : R — R* by ¢ (x) = e*. Then for x1, x, € R,

¢ (x1 +x2) =" = "6 =g (x1).0(x2)

Therefore ¢ is a homomorphism from R to R*. Also we can easily verify that ¢ is
both one-one and onto. Thus (R, +) = (R*, .). Now let us find the Kernel of ¢. By
definition, Ker (¢) is the set of all elements of the domain which are mapped to
the identity element in the co-domain, in this case, 1. Therefore Ker (¢) = {x € R |

¢(x) =e* =1} = {0}

Example 1.44 Consider (Z,+) and (Z,, +,). Define ¢ : Z — Z, by ¢p(m) =r,
where r is the remainder when m is divided by n. Let us check whether ¢ is a
homomorphism or not. Take two elements m;, m, € Z. By division algorithm, we
can write m; = g;n +r; with 0 <r; <n, where i = 1,2 and hence ¢ (m;) = ry
and ¢ (m,) = rp. Observe that m| + m, = (g1 + q2)n + r1 + r,. Therefore, we can
say that ¢ (m; + m,) is the remainder when r; + r, is divided by n. That is,
¢(my +my) =ry +, ra. Also ¢p(my) +, ¢(my) = ry +, r». Thus ¢ is a homomor-
phism. Now the set of all elements mapped to 0 € Z, are integer multiples of n. That
is, Ker (¢) =< n >.
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Example 1.45 Consider the map ¢ : (R, +) — (R*, .) defined by ¢ (x) = x%. Then
for x1, x, € R, we have

¢ (x1 +x2) = (x1 +x2)% £ x1.x5 = ¢ (x1) ¢ (x2)

Thus ¢ is not a homomorphism.

Example 1.46 Consider (R*,.). Define a map ¢ : R* — R* by ¢(x) = |x|. Then
for x;, x, € R* , we have

¢ (x1x2) = [x1x2| = [x1]]x2] = @ (x1) P (x2)

Thus ¢ is a homomorphism from R* to itself. Observe that Ker (¢) = {x € R* |
|x] = 1} = {—1, 1}. Thus ¢ is not one-one (Why?). Also ¢ is not onto as only positive
real numbers have pre-images. Therefore ¢ is not an isomorphism.

Theorem 1.8 Let ¢ be a homomorphism from a group (G, *) to (G/ ,* ) Then

(a) if e is the identity element in G, ¢ (e) is the identity element in G'.

(b) Ker (¢) is a subgroup of G.

(c) forany g € G, if O(g) is finite O (¢ (g)) divides O(g).

(d) for any subgroup H of G, ¢ (H) is a subgroup of ¢ (G) and if H is Abelian,
¢ (H) is also Abelian.

Two algebraic structures (G, *) and (G’, */) are isomorphic, if there exists a one-
one, onto homomorphism from G to G’. But it will be difficult to show that (G, %)
and (G’, *’) are not isomorphic, following the definition as it means that there is no
one-one homomorphism from G onto G'. It is not possible to check whether such a
function exists or not. In such cases, we could use the idea of structural properties of
an algebraic structure, which are properties that must be shared by any isomorphic
structure. Cardinality is an example for structural property.

Example 1.47 In Remark 1.3, we have seen that R is an uncountable set and Z is a
countable set. Hence (R, +) and (Z, +) are not isomorphic.

Theorem 1.9 (Cyclic subgroup) Let (G, *) be a group. Thenthe set{g" | g € G,n €
Z} is a subgroup of G called cyclic subgroup of G generated by g, denoted by < g >.

If the group G =< g > for some g € G, then G is called a cyclic group and g is
called a generator of G.

Example 1.48 (Z, +) is a cyclic group with two generators {1, —1}.

Example 1.49 (Z,,+,) is a cyclic group. The generators are the elements m € Z,
with ged(m, n) = 1, where gcd(m, n) denotes the greatest common divisor for m
and n (verify).

Theorem 1.10 Let (G, *) be a cyclic group with generator g. If O(G) is finite, then
(G, %) Z (Zy, +») and if O(G) is infinite, then (G, x) = (Z, +).
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Example 1.50 By Example 1.47, (R, +) is not a cyclic group.

Definition 1.37 (Coset) Let (G, *) be a group and H be a non-trivial subgroup
of G. Then gH = {gxh | h € H} is called left coset of H in G containing g and
Hg ={h*g|h e H}is called right coset of H in G containing g.

Example 1.51 Consider (Zg, +3) and the subgroup H = {0, 2, 4, 6} of Zg. Then
OH ={0,2,4,6} =2H =4H = 6H
1H ={1,3,5,7}=3H =5H=7H

Also observe that as (Zg, +g) is an Abelian group, the left and right cosets of each
element coincide.

Example 1.52 Consider the subgroup H = {pg, (1} in S3. Then
poH = {po, w1} = w1 H
p1H ={p1, u3} = us H

p2H ={p2, po} = uo H
are the distinct left cosets of H in G and
Hpo = {po, u1} = Hu,
Hpy = {p1, p2} = Hpo
Hpy = {p2, u3} = Hus
are the distinct right cosets of H in G
Theorem 1.11 (Lagrange’s Theorem) Let G be a finite group and H be a subgroup

of G, then O(H) divides O(G). Moreover, the number of distinct left/right cosets of
.. 006)
HinGis .
O(H)

Example 1.53 InExample 1.51, H = {0,2,4,6} and G = Zg. Wehave O (H) = 4
and O (G) = 8. Clearly, O(H) divides O(G) and the number of distinct left/right

O(G)

=2
O(H)

Example 1.54 In Example 1.52, H = {pg, 1} and G = S3. We have O (H) =2

and O (G) = 6. Clearly, O(H) divides O(G) and the number of distinct left/right
O(G)
=3

OH)

cosets of H in G is

cosets of H in G is



26 1 Preliminaries

Definition 1.38 (Normal Subgroup) A subgroup H of G is called a normal subgroup
of Gif gH = Hg forall g € G.

Example 1.55 From Example 1.51, H ={0,2,4, 6} is a normal subgroup of
(Zg, +3). In fact, every subgroup of an Abelian group is a normal subgroup (verify).

Example 1.56 From Example 1.52, H = {py, (¢} is not a normal subgroup of Sj.

Theorem 1.12 (Factor Group) Let (G, *) be a group and H be a normal subgroup.
Then the set G/H = {gH | g € G} is a group under the operation x', where %' is
defined by (g1 H) ¥’ (goH) = (g1 * g2)H.

Example 1.57 In Example 1.55 we have seen that H = {0, 2, 4, 6} is a normal
subgroup of (Zg, +g). From Example 1.51, G/H = {0H, 1H}. Then G/H is a
group, with the operation %' defined as (0H) * (0H) = (0H), (0H) ' (1H) =
(1H) %' (0H) = (1H),and (1H) ¥ (1H) = (0H).

Example 1.58 Consider the group (Z, +). Clearly 3Z ={..., —6,—-3,0, 3, 6} is
a normal subgroup of Z. Then G/H = {0 (3Z),1(3%Z),2 (37Z)} is a group, with
the operation x defined as 0 (3Z) ' 0 (3Z) =0(3%Z),0(3%) ¥ 1 (3Z) =1 (3Z)
03BZ)=103Z),032)*'2B%Z)=2BZ)* 03Z)=23Z),2(B%Z) ¥ 1(3Z) =
03%2),13BZ)+"2B3Z)=03Z),1(3Z)*'1(3%Z) =0(3Z)and2 (3Z) ¥’ 2 (3Z) =
1 (3%2).

Theorem 1.13 (First Isomorphism Theorem) Let ¢ be a homomorphism from
a group G to a group G'. Then the mapping V : G/Ker (¢p) — G’ given by
WU (gKer(¢)) = ¢ (g) is an isomorphism. That is, G/Ker (¢) = ¢ (G).

Example 1.59 InExample 1.44, we have seen that ¢ (m) = m mod n is a homomor-
phism from (Z,+) and (Z,,+,) with Ker (¢) =<n >. Therefore by
Theorem 1.13,Z/ < n >= Z,.

Definition 1.39 (Ring) A non-empty set R together with two operations '+’ and
'/, known as addition and multiplication, respectively, is called a ring (denoted by
(R, +, .)) if the following conditions are satisfied:

(@) (R, ) is an Abelian group.
(b) (R, .) is a semi-group.
(c) Forallry,r,r; € R

r1.(ry + r3) = ry.ry + ry.r3 (left distributive law)

(r1 + r2).r3 = ri.r3 + rp.r3 (right distributive law)

If there exists anon-zero element 1 € R such thatforeveryelementr € R,r.1 =r =
1.r,then (R, 4+, .) is called aring with unity and if multiplication is also commutative,
then the ring is called a commutative ring.
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Example 1.60 The set of all real numbers under usual addition and multiplication
is a commutative ring with unity. From Example 1.33, we have (R, +) is an Abelian
group. Clearly, the usual multiplication ".’ is closed, associative, and commutative
over R. Also 1 € R acts as unity and the distributive laws are satisfied. Similarly
(C, 4, ).(Q, +, .), and (Z, +, .) are commutative rings with unity.

Example 1.61 The set Z,, ={0,1,2,...,n — 1}, for n > 1, under the operations
addition and multiplication modulo n (taking the integer remainder when the product
is divided by n) is a ring with unity 1.

Definition 1.40 (Sub-Ring) A sub-ring of aring R is a subset of the R that is a ring
under the induced operations from .

Example 1.62 Clearly (Q, +, .) is a sub-ring of (Q, +, .). Also (Q, +, .) is a sub-
ring of (R, +, .) which is again a sub-ring of (C, +, .)

Example 1.63 Z,, for n > 1, is a ring under the operation addition modulo n and
multiplication modulo n (denoted by x ). The basic operation in X, is multiplication,
which ends by reducing the result modulo 7; that is, taking the integer remainder
when the result is divided by n as in +,,.

Definition 1.41 (Division Ring) Let (R, +, .) be a ring with unity '1’. An element
r € R is a unit of R if it has multiplicative inverse in R. That is, if there exists an
element 7! € R such that r.r~! = 1 = r~!.r. If every non-zero element in R is a
unit, then R is called a division ring or skew-field.

Example 1.64 (R, +, .) is a division ring as for any r(# 0) € R, there exists % eR
such that r - % =1= } -r.

Theorem 1.14 An element m € Z, is a unit if and only if gcd(m, n) = 1.
Corollary 1.1 7Z, is a division ring only if n is a prime.

Definition 1.42 (Field) A field is a commutative division ring. In other words,
(R, +, .) is a field if the following conditions are satisfied:

(@) (R, ) is an Abelian group.

(b) (R \ {0}, .) is an Abelian group.

Example 1.65 The set of all real numbers R under usual addition and multiplication
is a field. Similarly, the set of all complex numbers C and the set of all rational
numbers QQ under usual addition and multiplication are fields.

Example 1.66 From Corollary 1.1, the set Z, is a field under the operations addition
and multiplication modulo n, if and only if n is a prime (Why?). Clearly, (Z,,, 4+, X»)
is an example for a finite field.

Example 1.67 The set of all integers Z under usual addition and multiplication is
not a field as it is not a division ring. But Z is a commutative ring with unity.

Definition 1.43 (Sub-Field) A sub-field of a field is a subset of the field that is a
field under the induced operations from the field.
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Example 1.68 Clearly (Q, +, .) is a sub-field of (R, +, .) which is again a sub-field
of (C, +, .).

1.4 Polynomials

Polynomials are a type of mathematical expression built by combining variables by
the operations addition, subtraction, and multiplication. They are an important tool in
mathematics as many mathematical problems can be encoded into polynomial equa-
tions. In this section, we will discuss some of the important properties of polynomials
in one variable.

Definition 1.44 (Ring of polynomials) Let K be a field. Consider the set
Kix] = f{ao+aix +- -+ ap_1x" " +ax" |a; e K,n € Z)

a; € K are called coefficients of the polynomial, and the order of the highest power
of x with non-zero coefficient is called the degree of the polynomial. For f(x) =
ag+arx +---+ax", g(x) =by+ bix +---+ b,x" € K[x], define

) +8(x) = (ag + bo) + (a1 + b)x + - + (@1 + b—)x* " + (@ + bx*
where k = max(m,n),a; =0fori > nand b; = 0 fori > m. Also
f(x)g(x) =ctcx+---+ C'errlfl)CMJrr17l + Cm+nxm+”

where ¢, = axbg + ax_1by + - -+ + arby—1 + aoby for k =0,1,...,m 4+ n. Then
K[x] forms a ring with respect to the operations defined above, called the ring of
polynomials over K in the indeterminate x.

Remark 1.5 If the coefficient of the highest power of x is the multiplicative identity
of K, then the polynomial is called a monic polynomial. Two elements in K[x] are
equal if and only they have the same coefficients for all powers of x.

Theorem 1.15 (Division Algorithm) Let K be a field and let f(x), g(x) € K[x]
with g(x) # 0. Then there exists unique polynomials q(x), r(x) € K[x] such that
f(x) = gx)g(x) 4+ r(x) and either r(x) = 0 or deg[r(x)] < deglg(x)]. If r(x) =
0 we have f(x) = g(x)q(x) and we say that g(x) is a factor f(x).

Theorem 1.16 Let K be a field and let f(x), g(x) € K[x]. The greatest common
divisor of f(x) and g(x), denoted by (f (x), g(x)), is the unique monic polynomial
r(x) € K[x] such that

1. r(x) is afactor of both f(x) and g(x).
2. ifq(x) € K[x] is a factor of both f(x) and g(x), then r(x) is a factor of q(x).



1.5 Matrices 29

Moreover, there exists polynomials [ (x), m(x) € K[x] such that

r(x) =1(x) f(x) +m(x)g(x)

Remark 1.6 If (f(x), g(x)) = 1, then we say that f(x), g(x) € K[x] are relatively
prime.

Definition 1.45 (Zero of a polynomial) Let f(x) € K[x];anelement 1 € Kiscalled
a zero (or a root) of f(x) if f(u) =0.

Theorem 1.17 (Factor Theorem) Let K be a field and f(x) € K[x]. Then u € K is
a zero of f(x) if and only if x — u is a factor of f(x).

Definition 1.46 (Algebraically Closed Field) A field K is said to be an algebraically
closed field, if every non-constant polynomial in K[x] has a root in K.

Theorem 1.18 (Fundamental Theorem of Algebra) The field of complex numbers is
algebraically closed. In other words, every non-constant polynomial in C[x] has at
least one root in C.

From the above theorem, we can infer that every polynomial of degree n in C[x]
has exactly n roots in C.

Example 1.69 Consider x> + 1 € R[x]. As the given polynomial has no root in R,
the field of real numbers is not algebraically closed, whereas if we consider x? + 1
as a polynomial in C[x], it has roots in C.

Remark 1.7 (Vieta’s Formula) Let f(x) =ap+ajx+---+a,x" € K[x] with
roots xi, xa, ..., X,, then

ap—1
x1+xZ+...+xn:_

ay

ao
XiXp - Xy = (=1)"—
n

It is named after the French mathematician Francois Viete (1540—1603).

1.5 Matrices

A matrix in mathematics is a rectangular arrangement of numbers, symbols, or func-
tions in rows and columns. They are of great importance in mathematics and are
widely used in linear algebra to study linear transformations which will be discussed
in later chapters.
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Definition 1.47 Anm x n matrix A over a field K is a rectangular array of m rows
and n columns of entries from K:

ai dip ... diy
daz) dyy ... dyy
Am1 Am2 - -« Amn

Such a matrix, written as A = (a;;), where 1 <i <m, 1 < j < n is said to be of
size (or order) m x n. Two matrices are considered to be equal if they have the same
size and same corresponding entries in all positions. M, », (K) denotes the set of all
m X n matrices with entries from K.

Matrix Operations

Let us discuss some of the important operations that are used in the collection of all
matrices.

Definition 1.48 (Matrix Addition) Let A = (a;;) and B = (b;;), where 1 <i <
m, 1 < j <n be any two elements of M, (K). Then A+ B = (a;; + b;j) €
M, (K). Two matrices must have an equal number of rows and columns to be
added.

Properties
For any matrices A, B and C € M, (K)

1. A+ B = B + A. (Commutativity)

2. A+ (B+C)=(A+ B) + C. (Associativity)

3. There exists a matrix O € M,,,, (K) with all entries O such that A + O = A.
(Existence of Identity)

4. There exists a matrix —A such that A + (—A) = O. (Existence of Inverse)

Remark 1.8 M,,, (K) with matrix addition defined on it forms an Abelian group.

Definition 1.49 (Matrix Multiplication) Let A = (aif)mxn and B = (bif)nxp' Then

their product AB € M, , and its (7, j)th entry is given by
aj1byj + appboj + - - - + ajnby;

For A B to make sense, the number of columns of A must equal the number of rows of
B. Then we say that the size of matrices A and B are compatible for multiplication.
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Properties
For any matrices A, B and C € M, (K)

1. A(BC) = (AB)C (Associativity)
2. A(BB4+C)=AB+ AC and (A 4+ B)C = AC + BC. (Distributive laws)

Remark 1.9 1. Matrix multiplication need not be commutative. For example, if

1 -1 345 —-34 -3 .
A= 0 2 and B=<608> then AB:(IZO 16 . Note that BA is

undefined. It need not be commutative even if BA is defined. For example,

. 1 -1 34 -34 35
1fA:<O 2)andB:<6O> thenAB:(12 O> andAB:<6_6).

2. The set of all invertible matrices over the field K under matrix multiplication
forms a non-Abelian group, denoted by GL,, (K). Also observe that M, (K)
forms a ring under the operations matrix addition and multiplication.

Definition 1.50 (Scalar Multiplication) Let A = [a;;] € My« (K)and A € K, then
LA = [Aaij] € me” (K)

Properties
For any matrices A, B € M, (K) and A, u € K

1. \(A+ B)=AA+ AB

2. 0+ WA =LA+ uA

3. AM(pA) = Qw)A

4. AOLB) = L(AB) = (AA)B.

Definition 1.51 (Transpose of amatrix) The transpose of anm x n matrix A = [a;;]
is the n x m matrix (denoted by A”), given by A” = [a;;].

Properties
Let A and B be matrices of appropriate order, then

(A7) =4

. (A+ BT = AT + BT
. (AB)T = BT AT

. (kAT = kAT,

B W =

Definition 1.52 (Conjugate transpose of a matrix) The conjugate transpose of an
m X n matrix A = [aij] is the n x m matrix (denoted by A*) given by A* = [a_j,]
where bar denotes complex conjugation (if a;; = ¢ + id, then a;; = ¢ — id).

Properties
Let A and B be matrices of appropriate orders and A be a scalar, then

(A=A

. (A+B)"=A*"+ B*

. (AB)* = B*A*

. (LA)* = LA*, where 1 is the conjugate of A.

AWM =
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Definition 1.53 (Trace of a matrix) Let A = [a;;] be an n x n matrix. The trace of
A, denoted by tr(A), is the sum of diagonal entries; that is tr(A) = Y \_ a;;.

Properties
Foranyn x nmatrices A, B, C, and D and A € R, we have the following properties:

1. Trace is a linear function.

tr(A+ B) =tr(A) +tr(B)

tr(LA) = A tr(A)

tr(AT) = tr(A) and tr(A*) = (irA)

tr(AB) = tr(BA)

tr(ABCD) =tr(DABC) =tr(CDAB) = tr(BCDA)
tr(ABC) # tr(AC B) in general.

tr(AB) # tr(A).tr(B) in general.

ANk

Definition 1.54 (Determinant of a matrix) For each square matrix A with entries in
K (K =R or C), we can associate a single element of K called determinant of A,
denoted by det (A).

IfAisal x 1 matrix,i.e., A = [aj;], thenits determinant is defined by det (A) = ay;.
an a

If Aisa2 x 2 matrix, say A =

12| then its determinant is defined by
asy an

det(A) = ajjan — axap

The determinant for a square matrix with higher dimension n may be defined induc-
tively as follows:

det (A) =Y (=) ay; M;;
i=1

for a fixed j, where M;; is the determinant of the (n — 1) x (n — 1) matrix obtained
from A by deleting ith row and jth column, called minor of the element a;;.

Properties
Let A and B be any n x n matrices and A be any scalar, then

det (I,) = 1, where I, is the n x n identity matrix.

det (A7) = det (A) and det (A*) = det (A).

det (AB) =det (A) det (B).

det (AA) = A" det (A).

If B is a matrix obtained from A by multiplying one row (or column) by a scalar

A, then det (B) = A det (A).

6. If B is a matrix obtained from A by interchanging any two rows (or columns) of
A thendet (B) = — det (A).

7. If two rows of a matrix are identical then the matrix has determinant zero.

8. If B is a matrix obtained from A by adding A times one row (or column) of A to

another row (or column) of A, then det (B) = det (A).

M S
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Remark 1.10 Ann x n matrix with determinant zero is called singular matrix, oth-
erwise it is called a non-singular matrix.

De
by

finition 1.55 (Adjoint of a Matrix) The adjoint of a matrix A = [a;;],  (denoted

nx
adj (A)) is the transpose of the co-factor matrix, where co-factor matrix of A =

[aij], ., is [(=D" M;;] . where M;; is the determinant of the (n — 1) x (n — 1)
matrix obtained from A by deleting ith row and jth column, called minor of the i jth

ele

ment.

Properties
Let A and B be any n x n matrices, then

NN B WD =

adj(l,) =1,

adj(AB) = adj(B) adj(A)
adj(kA) = k" 'adj(A)

adj(A™) = (adj(A)"

adj(A") = (adj(A)"

Aadj(A) =det(A) I =adj(A) A
det (adj(A)) = (det(A))"!

adj (adj(A)) = (det (A))" % A.

Definition 1.56 (Inverse of a matrix) The inverse of a square matrix A,, if it

exi
1

sts is the matrix A, such that AA~' =1, = A~'A and is given by A~ =

T @dj (A).

Properties
Let A and B be any n x n matrices and A be any scalar, then

Nk w D=

The inverse of a matrix if it exists is unique.
A is invertible if and only if det A # 0.
(A=) = a.

(kA)™" = k~'A~!, where k # 0 is any scalar.
det (A7) = W-

(AB)"' = B~ 1A~

(a) "= (a)".

Remark 1.11 1. There are matrices for which AB = I but BA # [. For example

take
A= [1 2]andB= [1

0
ab
IfA_|:Cd

Set of all n x n non-singular matrices with entries from the field K under matrix

multiplication forms a non-Abelian group called general linear group, and is
denoted by GL, (K).

1. For any matrices A, B € GL, (K), AB € GL,, (K) (det(A),det(B) # 0 =
det(AB) # 0). (Closure property)

12
i|.ThenAB=[1]=IandBA=|:OOi|;é[.

. . d —b
. . -1 -1 __ 1
] is invertible, then A™" is given by A™" = adbe|—c q |
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2. Matrix multiplication is associative.
I, € GL, (K) acts as identity matrix.
4. For each A € GL, (K), we have det(A) # 0 and hence A~! exists. Also,

det (A™Y) = ﬁ, and thus A~! € GL, (K).

et

Definition 1.57 (Rank of a matrix) The rank of a matrix is the order of the highest
order sub-matrix having non-zero determinant.

Properties

1. Let A be an m x n matrix. Then Rank(A) < min{m, n}.

2. Only zero matrix has rank zero.

3. A square matrix A, is invertible if and only if Rank(A) = n.

4. Sylvester’s Inequality: If A is an m x n matrix and B is an n X p matrix, then

Rank(A) + Rank(B) —n < Rank(AB) < min{Rank(A), Rank(B)}

This result is named after the famous English mathematician James Joseph
Sylvester (1814—-1897).

5. Frobenius Inequality: Let A, B, and C be any matrices such that AB, BC, and
ABC exists, then

Rank(AB) + Rank(BC) < Rank(ABC) + Rank(B)

This result is named after the famous German mathematician Ferdinand Georg
Frobenius (1849-1917).

6. Rank is sub-additive. That is, Rank(A 4+ B) < Rank(A) + Rank(B).

7. Rank(A) = Rank(AT) = Rank(AT A).

8. Rank(kA) = Rank(A) if k # 0.

Definition 1.58 (Block Matrix) A block matrix or a partitioned matrix is a matrix
that is defined using smaller matrices called blocks.

. A B 20 213
Example 1.70 Consider X = [C D:|5><5 where A = |:O 2j|2X2, B = |:6 ) 7:|2><3,
10 198
C=152 ,and D =421
73 3x2 701 3x3

Properties

A B .
1. Let X = [C D} where A, xn, Busxm, Cxn, and D,, ., are matrices.

If A is invertible, then

det (X) = (det (A)) (det (D —CA™'B))
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Definition 1.59 (Block Diagonal Matrix) A block diagonal matrix is a block matrix
which is a square matrix such that all blocks except the diagonal ones are zero.

Properties
1. Consider a block diagonal matrix of the form
A; 0 .- 0
0 Ay--- 0
A= . . .|, where each Ags is a square matrix. Then
00 ---A4A,

(a) det(A) = det(Ay)det(As) - --det(A,)
() Tr(A) = Tr(A) +Tr(A) + -+ Tr(A,)
(¢) Rank(A) = Rank(A;) + Rank(As) + - - - + Rank(A,).

Definition 1.60 (Elementary Operations) There are three kinds of elementary matrix
operations:

(1) Interchanging two rows (or columns).

(2) Multiplying each element in a row (or column) by a non-zero number.

(3) Multiplying a row (or column) by a non-zero number and adding the result to
another row (or column).

When these operations are performed on rows, they are called elementary row oper-
ations; and when they are performed on columns, they are called elementary column
operations.

Definition 1.61 (Equivalent matrices) Two matrices A and B are said to be
row(column) equivalent if there is a sequence of elementary row(column) opera-
tions that transforms A into B and is denoted by A ~ B.

Definition 1.62 (Row Echelon form of a matrix) A matrix is said to be in row echelon
form when it satisfies the following conditions:

(a) Each leading entry (the first non-zero entry in a row) is in a column to the right
of the leading entry in the previous row.
(b) Rows with all zero elements, if any, are below rows having a non-zero element.

If the matrix also satisfies the condition
(c) The first non-zero element in each row, called the leading entry or pivot, is 1.

Then the matrix is in reduced row echelon form.

321 4
Example 1.71 Consider the matrix A= |12 3 4 [. Now
161112
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(321 47
A=1123 4 Rl(—)Rz
(161112

(123 4]
~1321 4
(161112

[1 2 3 4]
~|0—-4 -8 -8 R; — R34+ R,
04 8 8 |

[1 2 3 47
~10—-4-8-8 R2 — —%Rz
00 0 0|
(1234
~10122(=8B
10000

R2—>R2—3R1
R3—>R3—R1

Then B is called the reduced row echelon form of A.

Remark 1.12 1. A matrix is equivalent to any of its row echelon form and reduced
row echelon form. The reduced row echelon form of A is unique.
2. The rank of a matrix is equal to the number of non-zero rows in its row echelon

321 4
form. For example, the matrix A = | 1 2 3 4 | hasrank 2 as it is equivalent to
161112
1234
B =|0122]|, which is in the row echelon form.
0000

1.6 Euclidean Space R”

In a mathematical environment, Euclidean space is a geometric concept that contains
all conceivable positions and locations. It provides the theoretical framework for
many other mathematical fields, including classical geometry. We can use well-
defined connections and rules to describe points, lines, angles, and distances inside
this space. It acts as a foundational tool and gives a framework for comprehending
spatial relationships. Any point in R” is a list of n real numbers, denoted as v =
(v1, v2, ..., v,). For convenience, we may use this list as a matrix with one column
or one row called column vector and row vector, respectively. In the physical world,
a vector is a quantity which has both magnitude and direction, which can be easily
visualized when we work on R? or R?.
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Vectors in R?

Algebraically, a vector in R? is simply an ordered pair of real numbers. That is
R2? = {(v1, v2) | v1, v2 € R}. Two vectors (u1, us) and (v, vy) are equal if and only
if the corresponding components are equal. Thatis, ifand only ifu; = vy anduy = v,.
Now we can define some operations on R?.

Definition 1.63 (Vector Addition) The sum of two vectors u = (u;, up) and v =
(v1, v2), denoted by u + v, is given by u + v = (u; + vy, us + v2) € R2.

Properties
Letu = (uy, us), v = (v1, v2), w = (w1, wo) € R2. Then

1. u+v=(uy +vy,ur+v2) = (v; +uy, va +uy) = v+ u. (Commutative)

2. u+ (w+w) = (u + (v +wip), uz + (v2 +wa)) = ((u; +v1) +wy,
(uy + v2) + wy) = (u + v) + w. (Associative)

3. There exists 0 = (0, 0) such that v+ 0 = v for all v. (Existence of identity
element)

4. For each v € R?, there exists —v = (—v;, —v,) € R? such that v + (—v) = 0.
(Existence of inverse)

Remark 1.13 The set R? with vector addition forms an Abelian group.

Definition 1.64 (Scalar Multiplication) Let v = (v, v;) € R? and A € R, then
A = (Mg, Avy) € R2.

Properties
Let u = (u1, uz), v = (v, v) € R and A, u € R. Then

1. Au +v) = (A(uy + v1), AMuz + v2)) = A(uyg, uz) + A(vy, v2) = Au + Av
2. (A+ v = (A + vy, (A + wWvz) = Avy, v2) + u(vi, v2) = Av + po
3. A(pv) = Aw)v = pu(dv).

From the above properties, it is clear that Ov = 0 for any v € V and 0 € R. Also,
(=l)v=—vforanyv € Vand —1 € R.

The Geometric Notion of Vectors in R?

Corresponding to every vector in R?, there exists a point in the Cartesian plane, and
each point in the Cartesian plane represents a vector in R”. But the representation
of vectors in R? as points of Cartesian plane does not provide much information
about the operations like vector addition and scalar multiplication. So it is better to
represent a vector in R? as a directed line segment which begins at the origin and ends
at the point. Such a visualization of a vector v is called position vector of v. Then
as in the physical world, the vector possess both magnitude and direction. However,
to represent a vector in R?, the directed line segment need not start from the origin;
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Fig. 1.16 Triangle law of

vector addition
vi+wvy vy

Fig. 1.17 Parallelogram law
of vector addition

vtV

it may start at some point in R?, but the magnitude and direction cannot vary. For
convenience, the directed line segment is considered to be starting from the origin.

Theorem 1.19 (Triangle Law of Vector Addition) If two vectors are represented in
magnitude and direction by the two sides of a triangle, taken in order, then their sum
is represented in magnitude and direction by the third side of the triangle, taken in
the reverse order (Fig. 1.16).

Theorem 1.20 (Parallelogram Law of vector Addition) If two vectors are repre-
sented in magnitude and direction by the two adjacent sides of a parallelogram,
then their sum is represented in magnitude and direction by the diagonal of the
parallelogram through their common point (Fig. 1.17).

These ideas of vectors and vector operations in R? can be extended to general
Euclidean space R”.

1.7 System of Linear Equations

Solving simultaneous linear equations is one among the central problems in algebra.
In this section, we will get to know some of the methods that are used to solve the
system of linear equations. Let us start by discussing the solution of a system having
n equations in n unknowns. Consider the basic problem with n = 1, i.e., consider
an equation of the form, ax = b. We know that there are three possible numerical
realizations for this equation:

(1) a # 0 : In this case, we know that the equation have a unique solution, which is
b
x =2,
a
(2) a,b =0: Any numerical value for x will be a solution for this equation. That
is, there are infinite number of solutions.
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x1+x2:5/\ x1+x2:5/\ x1+x2=/5\
N N N
X1+Xx2 = 2
4,
Vi \ < \ <
A) \ (4 A) \ (4 N \ \ 7
xl—x2=} 2x142x, =10
hd v w
(a) unique solution (b) infinely many solutions (c) no solution

Fig. 1.18 Observe thatin a, the lines x; + xo = 5 and x; — x = 3 have a unique intersection point
(4, 1), in b both the equations x| + xp = 5 and 2x; 4+ 2x2 = 10 represent the same line and in c,
the lines x; 4+ x» = 5 and x| + x, = 2 are parallel to each other

(3) a=0,b # 0: Then it is clear that no numerical value of x would satisfy the
equation. That is, the system has no solutions.

Now consider a set of two equations in 2 unknowns x; and x,:
a1x1 + axxy = by
azxy + asxy = by

We know that these equations represent two lines on a plane and solution of this
system, if it exists, are the intersecting points of these two lines. If the lines are inter-
secting, either there will be a unique intersection point or there will be an infinite
number of intersection points and if the lines are non-intersecting, they must be par-
allel to each other. Thus, here also, there are only three possibilities. The possibilities
will be the same in the case of a system of n equations with n unknowns. The three
possibilities are demonstrated in the Fig. 1.18.

Now that we have seen the possibilities for the number of solutions of a system of
equations, we have to find a method to solve a system of linear equations. Consider
a system of n equations in n unknowns xi, x, ..., x, given by

anxy +apxs + - +apx, =b

ax Xy +anx; + - +apx, =b

an1 X1 + Ay X2 + -+ + Qup Xy = bn
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The system can be written in the form Ax = b, where

ap ap - day X b

axy axy -+ doy X2 by
= ,X = and b =

Apl Ap2 - App Xn bn

The matrix A is called the coefficient matrix. A method to solve this system is given
by Gabriel Cramer (1704-1752), using the determinants of the coefficient matrix and
matrices obtained from it by replacing one column by the column vector of right-hand
sides of the equations. Cramer’s rule states that if x = (xq, x2, ..., x,,) is a solution
of the system, x; = %, i=1,2,...,n, where A; is the matrix obtained by
replacing the ith column of A by the column vector b. Observe that this rule is
applicable only if det (A) # 0. For example, consider the equations x; + x, = 5 and

x1 — x = 3. The system can be expressed in the form,
L1 f|x] |5
L—1f|y]| |3

Asdet(A) = —2 # 0, we have
15
v (i3])
=1

“([5))

As we can see, Cramer’s rule is applicable only if the determinant of A is non-zero.
Even if the determinant of A is non-zero, this rule may cause computational difficul-
ties for higher values of n. Also it cannot be applied to a system of m equations in
n unknowns. Another method to find the solution of a system of equations is elimi-
nation, in which multiples of one equation is added or subtracted to other equations
so as to remove the unknowns from the equations till only one equation in one by
unknown remains, which can be solved easily. We can use the value of this unknown
to find the value of the remaining ones.
Consider a system of m equations in n unknowns x, x2, .. ., X, given by

anxy +apxy + -+ apx, =b;

axxy +apxs + - +amx, =b

A1 X1+ AuaX2 + - Qup Xy = bm
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ap ap - Ay
) ) apy ax -+ Ay
The system can be written in the form Ax = b, where A =| . . | . Lx=
Aml Am2 *** Amn
X b
X2 bz
. |and b= | . |. The matrix A is called the coefficient matrix, and the matrix
Xn by
ap ap -+ ap by
Ay axp - agy by | _
[A]b] = . . . . | is called the augmented matrix of the system. If
Aml Am2 " Amn bn

b = 0, then the system is called a homogeneous system. Otherwise, it is called non-
homogeneous system. A system is said to be consistent, if it has a solution. Otherwise,
itis called inconsistent. We will see that a homogeneous system is always consistent,
whereas a non-homogeneous system can be inconsistent (as given in Fig. 1.18c).

Gauss Elimination Method

Consider a system of equations given by Ax = b. We can solve the system using the
following method called Gauss elimination method, named after the famous German
mathematician Carl Friedrich Gauss (1777-1855).

1. Construct the augmented matrix for the given system of equations.

2. Use elementary row operations to transform the augmented matrix to its row
echelon form.

3. The system

e is consistent if and only if Rank [A | b] = Rank(A).

¢ has unique solution if and only if Rank [A | b] = Rank(A) = n.
¢ has an infinite number of solutions if Rank [A | b] = Rank(A) =r < n.

e is inconsistent if and only if Rank [A | b] # Rank (A).

4. If the system is consistent, write and solve the new set of equations corresponding
to the row echelon form of the augmented matrix.

If reduced row echelon form is used, the method is called Gauss—Jordan method.

Remark 1.14 A homogeneous system Ax =0 is always consistent (since
Rank [A | 0] = Rank(A) always). The system

e has a unique solution if Rank(A) = n.
e has infinite number of solutions if and only if Rank(A) =r < n.



42 1 Preliminaries
Example 1.72 Consider the system of equations
2x1 4+ 3x +5x3=9
Tx; +3xy —2x3 =8
2x1 4+ 3x0 + Xxz =1y

where A; and A, are some real numbers.
The above system can be written in the matrix form Ax = b as

235 X1 9
73 -2(|x| =138
23 )\.1 X3 )\.2

Now the augmented matrix [A | b] is given by

235 9 ;
[Alb]=|73-238 Ro = Ry =3 R,
23)” )\'2 R3—>R3—R1

23 5 9

—15 -39 —47

~05 5 T

00 M =51-9

As the first two rows in the reduced form are non-zero, both Rank(A) and
Rank [A | b] are greater than or equal to 2.

¢ The system has unique solution if and only if Rank [A | b] = Rank(A) = 3. That
is, if A} # 5 and for any arbitrary values A;.

¢ The system has an infinite number of solutions if Rank [A | b] = Rank(A) < 3.
If Ay =5and A, =9, we have Rank [A | b] = Rank(A) =2 < 3.

¢ The system has no solution when Rank [A | b] # Rank(A). Thatis, if A; =5
and Ay £ 9.

If b = 0 in the above system, then

© The homogeneous system has a unique solution if and only if Rank(A) = 3. That
is, if A} # 5 the given system has only the zero vector as solution.

o If Ay =5, then Rank(A) =2 < 3 and hence the given system has an infinite
number of solutions.

As we have identified the values of A; and A, for which the given system is consistent,
let us try to compute the solutions of the given system for some particular values of
A1 and A,. Take Ay = 1 and A, = 9. Then,
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23 5 9
[Alb]~ |02 52 =7
00 -4 0

That is, the given system is reduced to the following equivalent form:

2x1+3x+5x3=9
Is 39 47
2 TN TS

—4X3 = 0

Thus, we have x = as the unique solution for the given system. Similarly, if

oGlHv| L

we take Ay = 5 and A, = 9, we can show that set of all solutions of the given system

is {(xl,xz, x3) | x3eR,x = % and x, = 47_1%} (Verify!).

Remark 1.15 If the coefficient matrix A is an n x n non-singular matrix, then the
system Ax = b has a unique solution x = A~'b.

LU Decomposition

The LU decomposition method consists of factorizing A into a product of two
triangular matrices
A=LU

where L is the lower triangular and U is the upper triangular. We use the Doolittle
method to convert A into the form A = LU, where L and U are as mentioned above.
We initialize this process by setting A = I A and use Gaussian elimination procedure
to achieve the desired form. The pivot element is identified in each column during
this procedure, and if necessary, the rows are switched. We update the entries of
both 7 and A on the right-hand side in accordance with each column, using row
operations to remove elements below the main diagonal and multipliers to generate
L. We get a lower triangular matrix L with ones on its principal diagonals and an
upper triangular matrix U after iterating over all the columns. This decomposition
allows us to reduce the solution of the system Ax = b to solving two triangular
systems Ly = b and Ux = y. Generally, there are many such factorizations. If L is
required to have all diagonal elements equal to 1, then the decomposition, when it
exists, is unique. This method was introduced by the Polish mathematician Tadeusz
Julian Banachiewicz (1882—1954).

Example 1.73 Consider the system of equations

2)(1 —X2+3X3=9
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dx)1 +2x0+x3=9
—6x1 —x2 +2x3 =12

The above system can be written in the matrix form Ax = b as

2 =13 |x; 9
4 2 1||x|=1]9
—6—-12][x3 12

Consider the coefficient matrix A. We will use elementary row transformations to
convert A into the form LU. We have

2 —13 LOO T2 =137 o b R
A=[4 2 1/=010]4 21| 27 %" "0
-6-12| |o001][-6-12| T '

[100][2-13

=|210[[04 —5| Ry— Ry— (DR,
| —301[[0—411

(1 00]|[2-13

=2 10|04 -5|=LU
|-3-11][00 6

Now Ly = b implies

1 0 0] [n 9
2 10||wn|l=]9
311y 12

Solving the system, we get y; = 9, y» = —9, and y3 = 30. Now consider the system
Ux=y

2—-1 3 X1 9

04 =5([xx|=1|-9

00 6 X3 30
Solving the system, we get x; = —1, x, =4, and x3 = 5.

Theorem 1.21 Ify and z are two distinct solutions of Ax = b, then Ay + uz is also
a solution of Ax = b, for any scalars A, u e Kwith A +pu=1.1fb =0, Ly + uz
is a solution of Ax = 0, for any scalars », u € K.

Proof Suppose that b # 0 and y and z are two given solutions of Ax = b, then
Ay =band Az =b. Let A, u € Kbe such that A + u = 1. Then

A(\y 4 uz) = Ay + pAz = Ab+ ub = (A + )b = b
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Now let b = 0. If y and z are two given solutions of Ax =0, then Ay = 0 and
Az = 0. Then
A(Ay + uz) = 2Ay + nAz =0

Hence the proof.

1.8 Exercises

1. For any sets A and B, show that

(a) ANBC A,BC AUB.
(b) AC Bifandonlyif AN B = A.

2. Consider the relation R = {(0, 1), (0,2), (1,2)} on X ={0, 1, 2}. Check
whether R is an equivalence relation.
3. Let f: X — Yand g:Y — Z be any two functions. Then show that

(a) if f and g are one-one, then g o f is one-one.
(b) if f and g are onto, then g o f is onto.

4. Check whether the following functions are bijective or not.

(@) f:R — Rdefinedby f(x) =x2+1

(®) f:[0, 7] — [—1, 1] defined by f(x) = sin x
(©) f:R* — R*defined by f(x) = 1

(d) f:C — Cdefinedby f(z) =z

5. Let A;, u; € K, i € N. Then show that

(a) forl<p<ooand%+é=1,wehave

00 00 % 00 ql
> il < (Zw’) (Dm‘f)
i=1 i=1 i=1

(b) for 1 < p < oo, we have

~ |

o0 7 o0 ;
< (ZW‘V’) + (Z|Mz‘|p>
i=1 i1

These inequalities are called Holder’s inequality and Minkowski’s inequality,
respectively.
6. For 1 < p < oo, consider the following collections of sequences.

o0
(Zm + ;mp)
i=1
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10.
11.
12.
13.

14.
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i=1

o0
I’ = {v = (v1, v2,...) | v; € Kand Z|v,~|” < oo}

and
[* = {v = (v1, V2, ...) | v; € Kand sup|v;| < oo}
ieN
Show that for u = (uq, uz,...),v= (v, va,...) €l?

1
»

dy(u, v) = (Zw,- ~ v#’)
i=1

defines a metric on [” and for u = (uy, us,...),v = (v, vp,...) € [*,

doo(u, v) = suplu; — v;|
ieN

defines a metric on [*.
Let X be a metric space with respect to the metrics d; and d,. Then show that
each of the following:

(@ d(x,y) = dlgc,(y) v;dz(x, y)
_dilx,y

(b) d(x,y) = Trdi@y)

(©) d(x,y) =max{d|(x,y) +dr(x, y)}

also defines a metric on X.

. Let (X, d) be a metric space. Show that

(a) union of any number of open sets is open.
(b) finite intersection of open sets is open.

Also give an example to show that arbitrary intersection of open sets need not
necessarily be open.

Show that a set is closed if and only if it contains all its limit points.

Show that (17, d,) and (I°°, d) are complete metric spaces.

Show that a closed subspace of a complete metric space is complete.

Prove that if a sequence of continuous functions on [a, b] converges on [a, b]
and the convergence is uniform on [a, b], then the limit function f is continuous
on [a, b].

Let x € R. Show that the sequence {x,}, where x,, = L"rfj ,is a rational sequence
that converges to x. (| x| denotes the greatest integer less than or equal to x.)
Let (G, *) be a group. Then show that

(a) the identity element in G is unique.
(b) each element in G has a unique inverse.
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Exercises 47

Center of a group: Let (G, %) be group. The center of G, denoted by Z(G), is
the set of all elements of G that commute with every other element of G.

(a) Show that Z(G) is a subgroup of G.
(b) Show that Z(G) = G for an Abelian group.
(c) Find the center of GL, (K) and Sj3.

Find the order of the following elements in G L, (K)
10

(a) [o _ J
10

(b) [1 1]-

Let¢ : (G, x) — (G’, */) be a homomorphism. Then, prove the following:

(a) if e is the identity element in G, ¢ (e) is the identity element in G'.

(b) Ker (¢) is a subgroup of G.

(c) forany g € G, if O(g) is finite O (¢ (g)) divides O(g).

(d) for any subgroup H of G, ¢ (H) is a subgroup of ¢ (G) and if H is Abelian,
¢ (H) is also Abelian.

Consider ¢ : GL, (K) — (R*,.), defined by ¢(A) = det(A).

(a) Show that ¢ is a homomorphism.
(b) Find Ker (¢).

Show that every cyclic group is Abelian.

Find the normal subgroups of Ss.

Prove that (Q, +, .) , (R, +, .), and (C, +, .) are fields with respect to the given
algebraic operations. Also show that (Z, +, .) is not a field.

Give an example of a finite field.

Show that K[x]={ao+aix+ - +a_1x" ' +a,x" |a; e K,n eZ}
forms a ring with respect to the operations defined in Definition 1.44.

Prove the Fundamental Theorem of Algebra.

Show that the set of all n x n matrices with entries in K, denoted by M,, (K)
with matrix addition and scalar multiplication, forms a ring with unity.

12-13
Find therank of thematrix A = [ 45 3 6 | using row reduced echelon form.
01 2 —1

Show that the set of all solutions of a homogeneous system of equations forms
a group with respect to coordinate-wise addition and scalar multiplication.
Consider the system of equations
2x1+x2+3x3=9
3x1 +2x3 + 5x3 =15

dx1 —2x0 + Tx3 = 16
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Solve the above system of equations using

(a) Gauss Elimination method
(b) LU Decomposition method.

Is it possible to solve this system using Cramer’s rule? If yes, find the solution
using Cramer’s rule.

Solved Questions related to this chapter are provided in Chap. 8.



Chapter 2 ®)
Vector Spaces oo

This chapter explores one of the fundamental topics in linear algebra. It starts by
defining vector spaces, highlighting their importance as mathematical structures with
essential qualities such as closure under addition and scalar multiplication. Subspaces
are introduced as vector space subsets with their vector space features, followed by
an in-depth analysis of linear dependence and independence of vectors, which are
critical for constructing bases. The ideas of span and basis are emphasized as critical
tools for understanding the structure of vector spaces, with dimension serving as
a quantitative measure of their complexity. Finally, the chapter looks into vector
space sums and the particular case of the direct sum, providing a more in-depth
understanding of vector space composition.

2.1 Introduction

In Chap. 1, we have called an element of Euclidean space R” a “vector”. From this
chapter onwards, we will be using the term “vector” with a broader meaning. An
element of a vector space is called a vector. Roughly speaking, a vector space is
a collection of objects which are closed under vector addition and scalar multipli-
cation and are subjected to some reasonable rules. The rules are chosen so that we
can manipulate the vectors algebraically. We can also consider a vector space as a
generalization of the Euclidean space. In this chapter, we will be discussing vector
spaces in detail.

Definition 2.1 (Vector space) A vector space or linear space V over a field K is a
non-empty set together with two operations called vector addition (denoted by ‘+)
and scalar multiplication (as the elements of K are called scalars) satisfying certain
conditions:

(V1) vi+vye Vioralv, v, eV.
(V2) aweVforallAe Kandv e V.
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(V1) and (V2) respectively imply that V is closed under both vector addition and
scalar multiplication. The following properties are familiar as we have seen these in
Chap. 1, associated with another algebraic structure, Group.

(V3) (vi +vp) +v3=v; + (va +v3) forall v, vy, v3 € V.
(V4) thereisanelement0 € V suchthatv+ 0 =vforallv e V.
(V5) foreach v € V there exists an element —v € V such that v + (—v) = 0.

Thus we can say that V under vector addition must be a group. Now (V 6) imply that
(V, +) is not just any group, it must be an Abelian group.

(V6) vi+vy=v,+vforallvy, v, € V.

Along with closure properties and (V, +) being an Abelian group, the following
properties also must be satisfied for V to be a vector space over the field K under the
given operations.

(VT Avi+v) =Avy +Avy forall A € Kand vy, v, € V.
(V8 A+wmwv=rw+puvforallA,u e Kandv € V.
V9 (v = A(uv) forall A, u € Kandv € V.

(V10) lv=vforallv e V.

Now let us get familiar with some of the important vector spaces that we will see
throughout this book. Let us start with a basic one.

Example 2.1 Consider V as the set of all real numbers, R under usual addition as
vector addition and usual multiplication as scalar multiplication, the scalars being
taken from the field R itself. In Chap. 1, we have seen that (R, 4) is an Abelian
group. Scalar multiplication in this case is the usual multiplication of real numbers,
which is closed. Properties (V7) — (V'10) are easy to verify. Thus R over R is a
vector space. Similarly, we can show that C over C is a vector space. What about C
over R and R over C?

Example 2.2 Let K be any field. Then K" is a vector space over K, where n is a
positive integer and

K”:{(xl,xz,...,x,,) | X1, x2, ..., Xp G]K}

Addition and scalar multiplication are defined component-wise as we have seen in
the previous chapter:

(X1, %2, s X)) + (VY20 ) = (1 H YL X2 4 V2 X+ V)
A(xrxo, o x) = (A, Axg, L Ax), A €K

In particular, R" is a vector space over R and C" is a vector space over C (Verify).
Is R" a vector space over C?

Example 2.3 The collection of all m x n matrices, M, «, (KK), with the usual matrix
addition and scalar multiplication is a vector space over K.
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Example 2.4 If [F is a sub-field of a field K, then K is a vector space over [, with
addition and multiplication just being the operations in K. Thus, in particular, C is a
vector space over R and R is a vector space over Q.

Example 2.5 Let P,[a, b] denote the set of all polynomials of degree less than or
equal to n defined on [a, b] with coefficients from the field K. For p, g € P,[a, b],
and A € K the addition and scalar multiplication are defined by

(P +q)(x) = p(x) +q(x) = (ay + by)x" + - + (a1 + by)x + (ao + bo)
where p(x) = a,x" +---+a1x +apand g(x) = b,x" +--- 4+ b1x + by and
(Ap)(x) = A (p(x)) = (Aay)x" + -+ + (Aar)x + (Aap)

P,[a, b] along with zero polynomial forms a vector space over K. Denote by P[a, b]
the collection of all polynomials defined on [a, b] with coefficients from K. Then
Pla, b] is a vector space over K with respect to the above operations for polynomials.

Example 2.6 Let C[a, b] denote the set of all real-valued continuous functions on
the interval [a, b]. If f and g are continuous functions on [a, b], then the vector
addition and scalar multiplication are defined by

(f +9) () = f(x) + g(x) and (A f)(x) = Af (x)

where A € R. Then Cla, b] is a vector space with respect to the above operations
over the field R.

Example 2.7 Let K be any field. Let V consist of all sequences {a,} in K that have
only a finite number of non-zero terms a,,. If {a, } and {b,} arein V and A € K, define

{an} + {bn} = {an + bu} and AMa,} = {Xay}
With the above operations V forms a vector space over K.

Example 2.8 V = {0} over the field K is a vector space called the zero space.

Now, we will establish some of the basic properties of vector spaces.

Theorem 2.1 Let V be a vector space over a field K. Then the following statements
are true.

(a) Ov =0 foreachv eV.

(b) A0 = 0 for each » € K.

(c) ForveVandi €K if \v =0, then either . =0 orv = 0.

(d) If vy, v, and v3 are vectors in a vector space V such that vi + vy = v, + v3,
then v, = vs.

(e) (—X)v = —(Av) = A(—v) foreach > € Kand eachv € V.
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Proof (a) For v e V, by (V2), 0v € V. By (V5), for Ov € V there exists (—0v)
such that Ov 4+ (—0v) = 0. And by using (V8),

Ov=0+0v=0W+0v=00=0

(b) For 2 € Kby (V2) A0 € V. By (V5), for A0 € V there exists (—A0) such that
A0 4+ (—A0) = 0. And by using (V7),

AM=20+0)=20+20=20=0

(c) Let Av = 0. From (1), if A = 0, then Av = 0. Now suppose that A # 0, then
there exists ,]T € Kand %(Av) = ,]TO =v=0.

(d) Suppose that vy, vy, v3 € V be such that v; + v3 = v, + v3. Since v; € V, by
(V5) there exists —v3 € V such that v3 + (—v3) = 0. Then

Vi +v3 =2+ vz = (U1 +v3) + (—v3) = (v2 +v3) + (—v3)
= v1 + (13 + (=v3)) = v2 + (v3 + (—v3)) (using (V3))
= v; = v, (using (V6))

(e) By (V5), we have Av + (—(Av)) = 0. Also Av + (—AM)v = (A + (—A))v = 0.
By the uniqueness of additive inverse, this implies that (—A)v = —(Av). In par-
ticular, (—1)v = —v. Now by (V9),

A(=v) = Al(=Dv] = [A(=D]v = (=)v

From the next section, we will use O for zero vector, instead of 0.

2.2 Subspaces

For vector spaces, there may exist subsets which themselves are vector spaces under
the same operations as defined in the parent space. Such subsets of a vector space
are called subspaces. We will define the subspace of a vector space as follows.

Definition 2.2 (Subspace) A subset W of a vector space V over a field K is called
a subspace of V if W is a vector space over K with the operations of addition and
scalar multiplication defined on V.

If V is a vector space, then V and {0} are subspaces of V called trivial subspaces.
The latter is also called the zero subspace of V. A subspace W of V is called a
proper subspace if V # W. Otherwise it is called an improper subspace (if it exists).
Can you find any subspaces for the vector space R over R other than R and {0}? By
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definition, a subspace is a vector space in its own right. To check whether a subset is
a subspace, we don’t have to verify all the conditions (V1) — (V' 10). The following
theorem gives the set of conditions that are to be verified.

Theorem 2.2 Let V be a vector space over a field K. A subset W of V is a subspace
if and only if the following three conditions hold for the operations defined in V.

(a) 0 e W.
(b) wy + wy, € W whenever wy, wy, € W.
(c) Aw € W whenever A € Kand w € W.

Proof Suppose that W is asubspace of V. Then W is a vector space with the operation
addition and scalar multiplication defined on V. Therefore (b) and (c) are satisfied.
And by the uniqueness of identity element in a vector space 0 € W.

Conversely suppose that the conditions (a), (b), and (c) are satisfied. We have
to show that W is a vector space with the operations defined on V. Since W is a
subset of the vector space V, the conditions (V3), (V5) — (V10) are automatically
satisfied by the elements in W. Therefore W is a subspace of V.

Certainly, we can observe that Condition (a) in the above theorem need not be
checked separately, as it can be obtained from Condition (c¢) with A = 0. But Con-
dition (a) can be used to identify subsets which are not subspaces as shown in the
following example.

Example 2.9 Let V =R? = {(x, x2) | x1, x» € R}. We have seen that R? is a
vector space over R. Consider W) = {(x, x2) | x; +x2 = 0} and W, = {(x1, x2) |
x1 + xp = 1}. Then Wj is a subspace of V. For,

(a) Clearly, the additive identity (0, 0) is in W;.

(b) Take two elements (x1, x2), (y1, y2) € Wi. Then x; + x, =0 and y; + y, = 0.
This implies that (x1, x2) + (y1, ¥2) = (x1 + y1, X2+ y2) € Wy as x; +x2 +
yi+y=0.

(c) Take (x1, xp) € Wy and A € R. Then x| 4+ x, = 0. This implies that A(xy, x;) =
(Ax1, Axp) € Wy as Axyp 4+ Axo = A(x; + x2) = 0.

But W, is not a subspace of R? as zero vector does not belong to W,. Now let us
discuss the geometry of W, and W, a bit. W; and W, represent two lines on the plane
as shown in the figure (Fig.2.1).

Later, we will see that the only non-trivial proper subspaces of R? are straight
lines passing through origin.

Example 2.10 Let V = M,,,(K) and W = {A € M,,(K) | AT = A}. That is,
W is the set of all n x n symmetric matrices over K. We will check whether the
conditions in Theorem 2.2 are satisfied or not.
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Fig. 2.1 Observe that W depicted in (a) (straight line passing through origin) is a subspace and
W> depicted in (b) (straight line not passing through origin) is not a subspace

(a) The zero matrix is equal to its transpose and hence belongs to W.

(b) By the properties of symmetric matrices, the sum of two symmetric matrices is
again a symmetric matrix. Thatis, A + B € W whenever A, B € W.

(c) AlsorA € W whenever A € W and A € K, since (AA)T = AAT = AAas AT =
A.

Therefore, the set of all n x n symmetric matrices over K is a subspace of M, ., (K).
What about the set of all n x n skew-symmetric matrices over K?

Example 2.11 Let V = P,[a, b]. Consider W = {p € P;[a, b] | p(0) = 0}.

(a) Since p(0) = 0 for zero polynomial, zero polynomial belongs to W.

(b) Take p,q € W, then p(0) = ¢g(0) = 0 and hence (p + ¢)(0) = p(0) + q(0) =
0. Thus p + g € W whenever p,g € W.

(¢c) Let p € W and A € R, then (Ap)(0) = Ap(0) = 0. That is, Ap € W whenever
pe€WandxeR.

Therefo~re {p € Pyla, b] | p(0) = 0} is a subspace of P;[a, b]. Now, consider the
subset W = {p € P,[a, b] | p(0) = 1}.Isitasubspace of P;[a, b]? Itisnot!! (Why?)

Remark 2.1 To check whether a subset of a vector space is a subspace, we verify
only the closure properties of vector addition and scalar multiplication in the given
set. Therefore Theorem 2.2 can also be stated as follows:

e A subset W of a vector space V is a subspace of V if and only if Aw; + pwr € W,
whenever wy, w, € Wand A, u € K

e A subset W of a vector space V is a subspace of V if and only if Aw; + wy € W,
whenever wy, w, € W and A € K.



2.2 Subspaces 55

Example 2.12 In the previous chapter, we have seen that the collection of all
solutions to the system Ax = O satisfies the conditions in Remark?2.1 where A €
M, x» (K) and hence they form a subspace of K”. That is, the solutions of a homo-
geneous system form a vector space under the operations defined on K”. But the
solutions of a non-homogeneous system does not form a vector space as zero vector
is never a solution for a non-homogeneous system.

The next theorem gives a method to construct new subspaces from known sub-
spaces.

Theorem 2.3 Let Wy and W, be two subspaces of a vector space V over a field K ,
then their intersection Wi N Wy = {w | w € W and w € W,} is a subspace of V.

Proof Since W, and W, are subspaces of V, 0 € W, and 0 € W,. Therefore 0 €
Wi N W,. Now let v, w € Wi N W,, then

vvweWnNnW,=>v,we Wiandv, w € W,
=v+we Wy and v+ w € W, as W; and W, are subspaces
sv+weW NWwW,

For A e Kand w € W; N W,,

weWnNW,=>weW andw e W,
= Aw € W; and Aw € W, as W, and W, are subspaces
= iw e WiNnw,

Therefore W N W, is a subspace of V.

The above result can be extended to any number of subspaces. As we have shown
that the intersection of subspaces is again a subspace, it is natural to ask whether the
union of subspaces is again a subspace. It is clear that the union of two subspaces
need not be a subspace of V (Fig.2.2).

The following theorem gives a scenario in which union of two subspaces of a
vector space is again a subspace of the same.

Theorem 2.4 Let V be a vector space over the field K and let Wi and W, be
subspaces of V. Then W U W, is a subspace of V if and only if either W; C W, or
W, C W;.

Proof Let W, and W, be subspaces of V. Suppose that either W, € W or W; C W,.
Then W, U W, is either W; or W,. In either cases, W; U W, is a subspace of V.
Conversely, suppose that W; U W, is a subspace of V, W; ¢ W, and W, € W;.
Then there exists at least one element w; € W such that w; ¢ W, and w, € W, such
that w, ¢ W;. As W, W, € W; U W, both wy, w, € Wi U W,. Since Wy U W is a
subspace of V, w; + w, € W; U W,. Then either w; + w, € Wy or wy + wy € Ws.
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Fig. 2.2 Consider V = R2, take W| = x — axis and W, = y —axis (depicted as (a) and (b)
respectively). Then W and W, are subspaces of V but W; U W, is not a subspace of V, since
(1,0) € Wy, (0,1) € Wa, but (1,0) + (0, 1) = (1, 1) ¢ W U W5, as we can observe from (c)

Suppose w; + w, € Wj. Since w; € Wy and W is a subspace, —w; € W; and hence
(—wy) + wi; + wy = (—w; + wy) + wy = wy € W; which is a contradiction. Now
suppose wi + w, € W. Since w, € W, and W, is a subspace, —w, € W, and hence
wi + wy + (—wy) = w; + (W, — wy) = w; € W, which is again a contradiction.
Therefore our assumption is wrong. That is, Wi U W, is a subspace of V if and only
if either W; € W, or W, C W;.

Example 2.13 Let V be the vector space R? over R. Consider W; = {(x1, x2, 0) |
X1, X2 € R} and W, = {(0, x2, 0) | x, € R}. Clearly, W; U W, = W, is a subspace.
Observe that W, C Wj.

2.3 Linear Dependence and Independence

Let V be avector spaceoverafield K. Letvy, va, ..., v, € Vand Ay, Ag, ..., A, € K.
Then the vector
V=iV + A4+ AL,

is called a linear combination of the vectors and the scalars A, Ao, ..., A, are called
the coefficients of the linear combination. If all the coefficients are zero, then v = 0,
which is trivial. Now suppose that there exists a non-trivial representation for 0, that
is, there exists scalars Ay, A,, ..., A, not all zero such that a linear combination of the
given vectors equals zero . Then we say that the vectors vy, vy, ..., v, are linearly
dependent. In other words, the vectors vy, vy, ..., v, are linearly dependent if and
only if there exist scalars A, A2, ..., A, not all zero such that

AMur+ v+ -+ A0, =0
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The vectors vy, va, . .., v, are linearly independent if they are not linearly dependent.
That is,

if vy +Av+---+A,0, =0, thenii =l =---=1,=0

Clearly, any subset of a vector space V containing zero vector is linearly dependent
as 0 can be written as 0 = 1.0. Since Av = 0 implies either A = 0 or v = 0, any
singleton subset of V containing a non-zero vector is linearly independent.

Example 2.14 Consider the vector space V=R and the subset S; = {(1, 0), (1, 1)}.
To check whether S| is linearly dependent or not, consider a linear combination of
vectors in S; equals zero for some scalars A; and A,. Then

A(1,0) + A2(1, 1) = (0,0) = (A1 + A2, 42) = (0, 0)
S AM+2=0,Xx=0
=2 =0,2,=0

That is, there does not exist non-trivial representation for zero vector in R2 using
vectors of S;. Thus S is linearly independent. Note that (1, 0) cannot be obtained
by scaling (1, 1) or vice verse.

Now consider a subset S, = {(1, 0), (2, 0)} of R? and a linear combination of the
vectors in S, equals zero. Then

A1(1,0) +A2(2,0) = (0,0) = (A1 + A2, A2) = (0,0)
= A +20 =0

Then there are infinitely many possibilities for A and X,. For example, A; = 2 and
Ay = —1 is one such possibility. Clearly, 2(1, 0) 4+ (—1)(2, 0) = (0, 0). Thus the
zero vector in R? has a non-trivial representation using the vectors of S,. Thus S, is
linearly dependent. Note that (2, 2) = 2(1, 1) is a scaled version of (1, 1) (Fig.2.3).

Using the above geometrical idea, try to characterize the linearly independent sets
in R and R2. Also observe that the equation, A1(1,0) + A2(1, 1) = (A + Az, A2) =
(0, 0) formed by vectors in S, from the above example, can be written in the form of

a system of homogeneous equation as |:(1) }] Bl:| = [8:| We have seen in Section
2

1.7 that a n x n homogeneous system Ax = 0 has a non-trivial solution when the

11
[ 01 = 2. Therefore
the system does not have a non-trivial solution. Thatis, A; = A, = 0. Now, for vectors

coefficient matrix A has rank less than #. In this case, rank

in S,, observe that the coefficient matrix A = |:(1) 3:| has rank 1, which implies that

there exists a non-trivial representation for the zero vector. Using this idea, can we
say something about the linear dependency/independency of a collection of vectors
in R? Is it possible to generalize this idea to R"? Think!!!
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Fig. 2.3 Examples for a linearly independent vectors in R? and b linearly dependent vectors in
R2. Observe that the linearly independent vectors lie on two distinct straight lines passing through
origin and the linearly dependent vectors lie on the same line passing through origin. We will soon
prove that a set of two vectors is linearly dependent if and only if one vector is a scalar multiple of
the other

Remark 2.2 We can say that the number of linearly independent vectors in a collec-
tion S of m vectors of K" is the rank of the n x m matrix A formed by the vectors in
S as columns. As the rank of a matrix and its transpose is the same, we may redefine
the rank of a matrix as the number of linearly independent rows or columns of that
matrix.

Example 2.15 Consider the vector space V = P;[a, b] and the subset S§;={1, x, x2}.
Now, for Ay, Ao, A3 € K,

)\«1-1+)sz+)»3)€2=0:>)\,1=)n2=)»3=0

Thus S is linearly independent.
Now consider the subset S» = {1 — x, 1 4+ x2,3 — 2x + x?} of P5[a, b]. As

20 —x)+ 10 +x>) =3 —2x +x2

S is linearly dependent.

100
As we have seen in the previous example, consider the matrices | 0 1 0 | and
001
113
—1 0 =2 |. Is there any relation between the rank of these matrices and the linear
011
dependency/independency of vectors in S; and S, given in Example 2.15?
The following results are some of the important consequences of definitions of
linear dependence and independence.



2.4 Basis and Dimension 59

Theorem 2.5 Let V be avector space over a field K and W = {w;, w, ..., w,} be
a subset of V, where n > 2. Then W is linearly dependent if and only if at least one
vector in W can be written as a linear combination of the remaining vectors in W.

Proof Suppose that W is linearly dependent. Then there exists scalars
A, A2, ..., A, € K, not all zero such that

Mwy+Awy + -+ A,w, =0

Without loss of generality, assume that A; # 0. Thensince A; € K, % € Kand hence

Conversely suppose that one vector in W can be written as a linear com-
bination of the remaining vectors in W. Without loss of generality, take w; =
lwy + -+ -+ A,w,. Then wy — Awy + - - - + A, w, = 0. That is, there exists a non-
trivial representation for zero. Therefore W is linearly dependent.

Corollary 2.1 A subset of a vector space V containing two non-zero vectors is
linearly dependent if and only if one vector is a scalar multiple of the other.

Proof Suppose that {v;, v,} C V be linearly dependent. Then there exists scalars
A1, A2 € K not both zero such that 1jv; + Arvy = 0. Without loss of generality, let
M #0.Thenv; = —j\\—fvz. The converse part is trivial.

Theorem 2.6 LetV be avector space over a field K, and let W, € W, C V. If Wy is
linearly dependent, then W, is linearly dependent and if W, is linearly independent,
then Wy is linearly independent.

Proof Suppose that W, is linearly dependent and W; € W,. Then there exists
Vi, V2, ...,0, € Wiand Ay, Ay, ..., A, € K, notallOsuchthat A;v; + Ayvp +--- +
Anv, = 0. Since W € W,, W, is linearly dependent.

Now suppose that W, is linearly independent. Then from above W, is linearly
independent. For if W, is linearly dependent, then W, must be linearly dependent.

Thus we can say that any super set of a linearly dependent set is linearly dependent
and any subset of a linearly independent set is linearly independent.

2.4 Basis and Dimension

In this section, we will study the basic building blocks of vector spaces known as
basis. A basis of a vector space is a subset of the vector space which can be used
to uniquely represent each vector in the given space. We will start by the following
definition.
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Fig. 2.4 Observe that both Span(S1) and Span(S,) are straight lines passing through origin

Definition 2.3 (Span of a set) Let S = {vy, v2, ..., v,} be a subset of a vector space
V. Then the span of S, denoted by span(S), is the set consisting of all linear com-
binations of the vectors in S. That is,

span(S) = {Mvy + v+ -+ X0, | A, Ao, .., Ay €KY

For convenience, we define span{¢} = {0}. A subset S of a vector space V spans
(or generates) V if span(S) = V. If there exists a finite subset S of V such that
span(S) = V,then V is called finite-dimensional vector space. Otherwise it is called
infinite-dimensional vector space.

Example 2.16 Consider S; = {(1,0)} and S, = {(1, 1)} in R?. Then (Fig.2.4)
Span(S)) = {A(1,0) | L € R} ={(X,0) | A € R} = x — axis

and
Span($;) ={A(1, 1) [ A e R} ={(A,A) | A € R}

In fact, span of any non-zero vector of the form (x;, 0) in R? will be the x —axis
and span of any non-zero vector of the form (x;, x;) in R? will be the line y = x. In
general, we can say that span of any single non-zero vector in R? will be a straight
line passing through that vector and the origin. This can be generalized to R”" also.
Now consider the set S3 = {(1, 0, 0), (0, 1, 0)} in R?. Then (Fig.2.5)

Span(Ss) = {A1(1,0,0) + 22(0,1,0) | A1, A, € R}
={(X1,22,0) | A1, 22 € R} = x — y plane

Theorem 2.7 Let V be a vector space over a field K. Let S = {v1, v2, ..., v,} bea
subset of V, then span(S) is a subspace of V and any subspace of V that contains S
must also contain span (S).



2.4 Basis and Dimension 61

N

Fig. 2.5 The span of
S3=1{(1,0,0), (0, 1,0)} in
RR3 is the entire x — y plane

=

Proof Clearly, 0 = Ov; 4+ Ovy + - - - + Ov,, € span(S). Let v, w € span(S). Then
there exists Ay, Ay, ..., Ay, 1, U2, ..., by € Ksuchthat v = Ajv; + Ao +--- +
vy and v = pyvy + wpvy + - - - + w,v,. Then

u+v=_~0 +u)vr + A+ p)vz + - -+ Ay + wp)v, € span(S)
and for u € K,
no = p(rvy +A2v2 + -+ Apvp) = (RADVL + (RA2)v2 + -+ (RAy) s € span(S)

Therefore span(S) is a subspace of V. Now let W be any subspace of V containing
S = {v1, v2, ..., v,}. Then for any scalars Ay, A, ..., A, € K, as W is a subspace
of V, vy + Aovy + -+ - 4+ Ayv, € W. That is, span(S) C W.

Remark 2.3 Consider a matrix A € M, «,, (K). We can view each row(column) as
a vector in K" (K™). The span of the row vectors of A is called row space of A and
the span of the column vectors of A is called column space of A.

Definition 2.4 (Basis) Let V be a vector space over a field K. If aset B C V is
linearly independent and span(B) = V, then B is called a basis for V. If the basis
has some specific order, then it is called an ordered basis.

Theorem 2.8 Let V be a finite-dimensional vector space over a field K and
S={vy, v2, ..., v,} spans V. Then S can be reduced to a basis B of V.

Proof Let V be afinite-dimensional vector space overafield K and S = {vy, v, ...,
vp}spans V.Let Sy = {Vs,, Vg, - - - , Uo, } denote the set of all non-zero elements of S.
Now, we will construct a linearly independent set B from S, with span(B) = S. Pick
the element v,, € S, to B. If v,, = Avg,, for some A € K, then v,, ¢ B, otherwise
Vs, € B. Now consider vy, € Sy. If vy, = AjUs, + A20,, for some A1, A, € K, then
Vs, ¢ B, otherwise v,, € B. Proceeding like this, after oy steps we will get a linearly
independent set with span(B) = V.

Corollary 2.2 Every finite-dimensional vector space V has a basis.
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Proof Let V be a finite-dimensional vector space. Then there exists a finite subset
S of V with span(S) = V. Then by S can be reduced to a basis.

Example 2.17 Consider the set
B={e =(,0,0,...,0),eo=(0,1,0,...,0),...,e, =(0,0,0,..., 1)}

in K" over K. We will show that B is a basis for K". Let us consider an element
a=(ay,a,...,a,) € K" arbitrarily, then we have a = aje; + azer + - - - + a,e,.
That is, every element in K" can be written as a linear combination of elements in B
with coefficients from K. Thus B spans K" over K. Also

aer+mer+---+ae, =0=>a1=a=---=a, =0

That is, B is linearly independent. Therefore B is a basis for K" over K and is called
the standard ordered basis for K" over K.

Example 2.18 Consider the set B = {En = [(1) 8] ,Epp = [8 (1):| ,Ey = |:(1) 8j| ,

Exn = in May2(K) over the field K. Consider an element |“'! 12
01 a1 axn
szz(K). Then

ayy agn _ 1 O O 1 0 0 0 0
[azl azz] =ap [0 O] +app |:O 0:| + as [1 0:| + ax |:0 1:|
That is, B spans M, (K) over the field K. Also
10 01 00 00 00
M [00]4”2 [00} +k3[1 0} + [o 1} = [00}

N Al |00
A3 As| |00
Therefore B is a basis for M, (K) over K.

= A1 = Ap = A3 = Aq = 0. Thatis, B is linearly independent.

Example 2.19 Consider the set B = {1, x, ..., x"} in P,[a, b] over R. Then B is
linearly independent as

k1.0+A1x+~-~+Anx"=0=>)u0=)»1=-~-=A,l=0

and clearly B spans P,[a, b]. Therefore B is a basis for P,[a, b] over R

Example 2.20 Now consider asubset S = {(1, 1, 2), (2, 1, 1), (3,2, 3), (—1,0, 1)}
of R3 over R. We know that span(S) is a subspace of R3. Can you find a basis
for span(S)? To find a basis for span(S), we have to find a linearly independent
subset S of R such that span(S) = span(S‘). We may observe that the span(S) is
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1 12
. 2 11 .
the same as the row space of the matrix A = 3923 Thus to find a basis for
—-101
span(S), it is enough to find the linearly independent rows of A. We can reduce
11 2
0-1-3 .
A to the row reduced form as A = 00 0| From this we can say that the set
00 O

S= {(1,1,2), (0, —1, —3)} forms a basis for span(S).

Theorem 2.9 Let V be a vector space over a field K. If B = {vy, vp,...,v,} is a
basis for V, then any v € V can be uniquely expressed as a linear combination of
vectors in B.

Proof Let B be abasis of V and v € V. Suppose that v can be expressed as a linear
combination of vectors in B as

V=AMV + A4+ AL,

and as

V= WUv + QUova + - Uy
where A;, u; € K forall i =1,2,...,n. Subtracting the second expression from
first, we get

0= —p)vr + A2 — pu2)va + - -+ + (A — wp)Vy

Since B is linearly independent, this implies that ,; — u; = Oforalli = 1,2, ..., n.
Thatis, A;, = u; foralli =1,2,...,n.

Theorem 2.10 Let V be a finite-dimensional vector space over a field K and B be
a basis of V. Then basis is a minimal spanning set in V. That is, if B is a basis of V,
there does not exist a proper subset of B that spans V.

Proof Let V be a finite-dimensional vector space over a field K and
B = {vl, vy, ...,vn} be a basis of V. Let S be a proper subset of B that spans

V.Since § C B and S # B, there exists at least one element v such that v € B and
v ¢ S. Rearrange the elements of B so that the first £ elements are also elements
of S and the remaining n — k elements belong to B only. Now take any element
Vk+i € Bwherei € {1,2,...n — k}. Since span(S) = V and vi4; € V, there exists
A, A2, ..., A € K such that vgi; = Ajv; + Apvp + - - - + Axvr. This can also be
written as vgy; = A v + Aovp + -+ + Agvg + Ovggy + - - - + Ov,. Alsoas vgy; € B,
vr+; can be represented as a linear combination of elements of B by taking 1 as the
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coefficient to viy; and O as the coefficient for all elements in B other than vy,;. This
is a contradiction to the fact that representation for any element with respect to a
basis must be unique.

Theorem 2.11 Let V be a finite-dimensional vector space and S be a minimal
spanning set of V, then S is a basis.

Proof Let S = {vy, v, ..., v,} be a minimal spanning set of V. To prove that S is a
basis, it is enough to show that S is linearly independent. Suppose that it is linearly
dependent, then by Theorem 2.5, at least one element say v; € S can be written as a
linear combination of the remaining vectors. Then S \ {v;} is a spanning set for V.
This is a contradiction to the fact that S is a minimal spanning set.

Theorem 2.12 Let V be a vector space over a field K and B = {v, vy, ..., v,} be
a basis of V. Let W = {w1, wy, ..., w,} be a linearly independent set in V, then
m < n.

Proof Since B = {v;, vy, ..., v,} is a basis of V, B spans V and B is linearly
independent. Since w; € V, by the previous theorem w; has a unique representation
using the vectors in B, say

w; = AV + A0 + -+ A0, (2.1)

Now we can express one of the v;, say v, in terms of w; and the remaining v;s. That
is,

Uk = UW1 + L1V F - g1V F U1 Ukl T+ LU (2.2)

where u = ;—:and,uj = %’,j * k.

Now we will show that the set By = {wy, vi, va, ..., Vk—1, Ug+1, - - - , Uy } Obtained
by replacing vy by w; is a basis for V. That is, we will prove that B; is linearly
independent and B; spans V. Suppose that they are linearly dependent. Then by
Theorem 2.5 at least one of the vectors in B; can be written as a linear combination
of the remaining vectors. Since (2.1) is the unique representation for w;, we cannot

express w; in terms of vy, va, ..., Uk—1, Vk+1, - - - » Uy. Therefore some v; € B can
be written as a linear combination of the remaining vectors in B;. That is, there exist
scalars o, oy, ..., 01, 01y« ooy Op—1, Okt 1, - - -, 0y € K such that

vy =oawy + vy V-1 F 01V s 1 Vk—1 F Qg1 Vk1 s 0 Up

Now substituting (2.1) in the above equation we get that v; can be expressed as a
linear combination of vectors in B, which is a contradiction as B is linearly inde-
pendent. Therefore B; is linearly independent. Since v, can be expressed as in (2.2),
span(By) = span(B) = V. Therefore B is a basis of V. We repeat this process by
replacing some v; € By, by w,, and so on.
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Now if m <n, B, = {w, wa, ..., Wy, Vi, Vi, ..., V;,_,} is a basis for V. If
m > n, B, = {w;, wy, ..., w,}is abasis for V. Then w,+; € W can be written as
a linear combination of vectors in B,,, which is a contradiction to the fact that W is
linearly independent. Therefore m < n.

Basis of a vector space is not unique. For example, consider R?. Clearly B, =
{(1,0), (0, 1)} is a basis for R? as any vector (xi,x;) € R? can be written as
(x1,x2) = x1(1,0) + x2(0, 1), x1, x € R and B; is linearly independent. Now con-
sider the set B; = {(1, 0), (0, A)}. Then B; is a basis for R? for any A #0 € R as
any vector (x1, xp) € R2 can be written as (x;, x2) = x;(1,0) + ’%(0, A, x,x eR
and B, is linearly independent for any A # 0 € R. The following corollary shows
that any two bases for a vector space have the same cardinality.

Corollary 2.3 For a finite-dimensional vector space V over K, any two bases for
V have the same cardinality.

Proof Let By = {v, va,...,v,} and B, = {wy, wy, ..., wy,} be any two bases for
V. Consider B; as a basis and B, as a linearly independent set, then by the above
theorem, m < n. Now consider B, as a basis and B; as a linearly independent set,
then n < m. Therefore m = n.

Corollary 2.4 Let V be a vector space over a field K and B be a basis of V. Then
basis is a maximal linearly independent set in V. That is, if B is a basis of V, there
does not exist a linearly independent set S such that B C S C V.

Proof Let B be a basis of V and S be a linearly independent set in V. By the
Theorem 2.12, the cardinality of S is less than or equal to cardinality of B. Therefore
there does not exist a linearly independent set S such that B C S C V.

In the above corollary, we have shown that every basis is a maximal linearly
independent set. Now we will prove that the converse is also true.

Theorem 2.13 Let V be a finite-dimensional vector space over a field K. Let S =
{vi, va, ..., v,} be a maximal linearly independent set in V, then S is a basis.

Proof Let S be a maximal linearly independent set in V. To show that S is a basis, it
is enough to prove that span(S) = V. Suppose that this is not true. Then there exists
anon-zero vector v € V such that v ¢ span(S). Now consider the set S} = S U {v}.
We will show that S is linearly independent, which will be a contradiction to the fact
that S is maximal. Now let A, A1, A, ..., A, € Kbe such that Av + Ajv; + Aqvy +
-+ + Ayv, = 0.If A = 0, then as S is linearly independent A} = A, = --- =X, = 0.
If A #0,as v ¢ span(S), the expression Av + Ajv; + Ajvp + - -+ + A,v, = 0isnot
possible. Therefore S is linearly independent.

Theorem 2.14 Let V be a finite-dimensional vector space over a field K and S be
a linearly independent subset of V. Then S can be extended to a basis.
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Proof Let V be a finite-dimensional vector space over a field K. Let
B={vy, va, ..., v,} be a basis of V. Let S be a linearly independent subset of V.
Now S U B is a spanning set of V. By Theorem 2.8, it can be reduced to a basis. If
|S| = n, then by Theorem2.12, S is a maximal linearly independent set and hence
a basis. Suppose that | S| < n. Then take the vector v; € B. If v; ¢ span(S), then
S1 = S U {v} is a linearly independent set. If |S;| = n, then as above S is a basis.
If v; € span(S), discard v;. Then choose v, € V and proceed in the same way. By
repeating this process, we obtain a basis for V which is an extension of S.

The following theorem summarizes the results from Theorems2.10-2.14.

Theorem 2.15 Let V be a finite-dimensional vector space over a field K and B =
{vi, va, ..., v,}. Then the following are equivalent:

(a) Bisabasisof V.
(b) B is a minimal spanning set.
(c¢) B is a maximal linearly independent set.

In Corollary 2.3, we have seen that any basis for a vector space has the same
cardinality. Therefore, we can uniquely define a quantity to express the cardinality
of a basis for a vector space.

Definition 2.5 (Dimension) Let V be a vector space over a field K and B be basis of
V. The number of elements of B is called dimension of V. It is denoted by dim (V).
For convenience, the dimension of {0} is defined as 0.

Example 2.21 From Example2.17, it is easy to observe that K" over K has dimen-
sion n.

Example 2.22 From Example?2.18, M., (K) over K has dimension 4. In general,
M, (K) over K has dimension n>.

Example 2.23 From Example?2.19, P, [a, b] over R has dimension n + 1.

What about the dimension of P[a, b]? Does there exist a finite set which is linearly
independent and spans P[a, b]? If such a finite set does not exist, such vector spaces
are called infinite-dimensional vector spaces. Can you give another example for an
infinite-dimensional vector space? What about C[a, b]? Now, the following remark
discusses some interesting facts about the importance of field K, while considering
a vector space V (K).

Remark 2.4 One set can be a vector space over different fields and their dimension
may vary with the field under consideration. For example C = the set of all complex
numbers is a vector space over both the fields R and C. Since every elementa + bi €
C can be written as

a+bi = (a+bi)l

where a + bi € C (field under consideration) and 1 € C (set under consideration),
{1} is a basis for C (C) and dim¢ (C) = 1. If R is the field under consideration, then
a + bi € C can be written as
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a—+bi =a(l)+b®)

wherea, b € Rand 1, i € C. Therefore {1, i} is a basis for C (R) and dimp (C) = 2.
Theorem 2.16 Let V be a finite-dimensional vector space, then

(a) Every spanning set of vectors in V with cardinality the same as that of dim (V')
is a basis of V.

(b) Every linearly independent set of vectors in V with cardinality the same as that
of dim(V) is a basis of V.

Proof (a) Let V be a finite-dimensional vector space with dim(V) = n. Then by
Corollary 2.3, any basis of V have cardinality n. Let S be subset of V with
span(S) = V and |S| = n. By Theorem 2.8 any spanning set can be reduced to
a basis. Therefore S is a basis for V.

(b) Let V be a finite-dimensional vector space with dim (V) = n. Let S be a linearly
independent subset of V with | S| = n. By Theorem 2.14 any linearly independent
set S can be extended to a basis. Therefore S is a basis for V.

Theorem 2.17 Let V be a finite-dimensional vector space over a field K. Let W be
a subspace V. Then W is finite-dimensional and dim(W) < dim (V). Moreover, if
dim(W) =dim(V), then V = W.

Proof Let W be a subspace of V. Then W is a vector space with the operations
defined on B. Consider a basis B for W. Then B is a linearly independent set in
V. Then by Theorem2.12, dim(W) < dim (V). If dim(W) = dim(V), then by the
previous theorem, B is a basis for V also and hence V = W.

Example 2.24 Consider the vector space R? over R. Let W be a subspace of R?.
Since dim(R?) = 2 the only possible dimensions for W are 0, 1, and 2. If dim (W) =
0, then W = {0} and if dim(W) = 2, then W = R?. Now let dim(W) = 1. Then W
is spanned by some non-zero vector. Therefore W is given by W = {Av | A € R}
for some v # 0 € R?. That is, W is a line passing through origin. Hence the only
subspaces of R? are the zero space, lines passing through origin, and R? itself.
Similarly, the only subspaces of R* are the zero space, lines passing through origin,
planes passing through origin, and R? itself.

2.5 Sum and Direct Sum

In the previous section, we have seen that the union of two subspaces need not
necessarily be a subspace. Therefore analogous to union of subsets in set theory, we
define a new concept called the sum of subspaces and analogous to disjoint union of
subsets we introduce direct sums.

Theorem 2.18 Let Wy, W,, ..., W, be subspaces of a vector space over a field K,
then their sum Wy + Wy + -+ W, ={w; +wy +--- 4+ w, | w; € W;} is a sub-
space of V and. it is the smallest subspace of V containing Wi, W, ..., W,.
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Proof Since W, W, ..., W, are subspaces of V,0e€ W; foralli =1,2,...,n.
Then
0=04+0+4+---4+0eW +Wo +---+ W,

Nowletv,we Wi+ Wo +---+W,and A e K, thenv =v; + v, +--- 4+ v, and
w=w; +wy+---+ w, where v;, w; € W; foralli =1,2,...,n. Aseach W, is
a subspace of V, v; + w; € W; and Av; € W; foralli =1, 2, ..., n. Hence

vhw=Y itw)eW +Wot- W,

i=1
and

)\U:Z)\U[EW1+W2+"'+W11

i=1

Therefore W) + W, + --- 4+ W, is a subspace of V. Since w; € W; can be writ-
ten as w; =04+---4+0+w; +04+---+0e W, + Wy 4+ -+ W,, W) + W, +
.-+ + W, contains each W;. Now to prove that W; + W, + - - - + W, is the small-
est subspace containing Wy, W, ..., W,, we will show that any subspace of V
containing Wy, W, ..., W, contains W; + W, + --- + W,,. Let W be any subspace
containing Wy, W, ..., W.letw =w +w +---+w, e Wi+ Wo+---+ W,
where w; € W; foralli = 1,2, ...,n. Since W is a subspace of V and W contains
Wi, Wo, ..., W, weW.

Example 2.25 Let V = R?. Consider W) = {(x1, x2) | X; = x2, X1, x, € R} and
Wy = {(x1, x2) | x1 = —x2, x1,x, € R}. Then W, and W, are subspaces of V
(Fig.2.6).

AN W] ‘4]2 AN

¢ > ¢ >
2 ~+
(a) (b)

Fig. 2.6 Observe that both W| and W, depicted in (a) and (b) respectively are straight lines passing
through origin and hence are subspaces of R?
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Any vector (x1, xp) € R2 can be written as a linear combination of elements of
W, and W, as follows:

X1 +x2 x1+x2 X1 — X2 X2 — X1
) = 3 5 W W
(%1, x2) < > 5 )+< 5 : )e 1+ W,

As W, + W, is a subspace of R2, this implies that Wy + W, = R2. Also observe that
the representation of any vector as the sum of elements in W; and W, is unique here.

Example 2.26 Let V = M., (R). Consider

a ap
Wy = | air, apn, axn € R
0 ax

a; O
W2={|:11 :||011,0217022€R}

and
asy axn

Then W, and W, are subspaces of V (Verify). Also any vector in M., (R) can be
expressed as a sum of elements in W; and W,. But here this expression is not unique.

For example,
12 12 00
L4=b4+LJem+%

12 02 10
3] =[o5]+[54] e m+w

If the elements can be expressed uniquely, then it has particular importance and
is called direct sum. That is, the sum W; + W, is called direct sum denoted by
W, @& W, if every element w € W| + W, can be uniquely written as w = w; + wy,
where w; € Wy and w, € W,. That s, if w = v; + vy, where v € W, and v, € W,
then v; = w; and v, = w,.

Definition 2.6 (Direct sum) Let V be a vector space over a field K and
Wi, Wa, ..., W, be subspaces of V. If every element in V can be uniquely rep-
resented as a sum of elements in Wy, W,, ..., W, , then V is called the direct sum
of Wi, W,,..., W, andisdenotedby V=W, @ W, & --- D W,.

Suppose we have a vector space V over a field K and subspaces Wi, W,, ..., W,
of V. Then it is not easy to check whether every element in V has a unique represen-
tation as the sum of elements of Wy, W,, ..., W,,. The following theorem provides
a solution for this.

Theorem 2.19 Let V be a vector space over a field K and Wy, W», ..., W, be sub-
spaces of V. Then V.= W, @ W, @ - - - @ W, if and only if the following conditions
are satisfied:
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(@ V=Wi+Wot +W,
(b) zero vector has only the trivial representation.

Proof LetV =W, & W, & --- & W,. Then by the definition of direct sum both (a)
and (b) hold. Conversely, suppose that both (a) and (b) hold. Let v € V have two
representations namely,

v=v +tuv+---+v, (2.3)
and
v=w;+wr+ -+ w, 2.4)
where v;, w; € W; foralli = 1,2, ..., n. Then subtracting (2) from (1) gives
0= —w)+ W2—w2)+ -+ (v — wy)
and as zero has trivial representation only, v; — w; = Oforalli = 1, 2, ..., n which
implies v; = w; foralli = 1, 2, ..., n. That is, every vector has a unique represen-

tation. Therefore V=W, e W, & --- d W,.

Example 2.27 Consider V = R? and take W, and W, as in Example 2.25. Then V =
Wi @& W,. We already know that V = W; 4+ W,. It is enough to prove that the zero
vector has only the trivial representation. Let (x;, x1) € W; and (x,, —x,) € W, be
suchthat (x, x;) + (x2, —x2) = (0, 0). Thisimplies that (x; + x, x; — x3) = (0, 0)
and hence x; = x, = 0. Thus zero vector has only the trivial representation.

The following theorem gives a necessary and sufficient condition to check whether
the sum of two subspaces is a direct sum or not.

Theorem 2.20 Let V be a vector space over a field K. Let Wi and W be two
subspaces of V,thenV = W; @ W, ifand onlyif V.= Wy + W and W, N W, = {0}.

Proof Let V = W, @ W,, then by the definition of direct sum V = W; 4+ W,. If
w € Wi N W, then

weWnNW,=>weWandwe Wy, = —w e W,

Now 0 = w + (—w) € W) + W,. Since V = W| @ W,, this implies that w = 0.
That is, W; N W, = {0}.

Conversely, suppose that V.= W; + W, and Wy N W, = {0}. Let 0 = w; 4+ w;
where w; € W and w, € W, be a non-trivial representation of the zero vector. Now
0=w +w, = —w; = w, € Wy, since W is a subspace. As W; N W, = {0}, this
implies that w; = w, = 0.
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Fig. 2.7 Observe that any A
vector in R? can be written (0,5 F=--1(2,9)
as a sum of elements of W 1
and W,. Also observe that :
Wi N Ws = {0} (=1,3) -4(0,3)
1 1
1 1
(30 NN
o (=1,0] (2,00
1 1
1 1
1 1
(_3,_3) ____________ (4’ _3)
0’ _3)
N

Example 2.28 Let V = Ps[a, b]. Let
Wi = {ap + axx? | ag, as € R}

and
Ws = {aix + a3x® | a1, a3 € R}

Any element in Ps[a, b] is of the form ag+ a;x 4+ ax*> + azx3. Then clearly
Psla, b] = Wy 4+ W,. Also W, N W, = {0}, as polynomials in W, and W, have dif-
ferent orders. Therefore P3[a, b] = W, & W,.

Example 2.29 LetV = R2. Let W, = {(x1,0) | x; € R} and W, = {(0, x,) | x €
R}.

Then any vector (xi, xo) € R? can be written as (x;, x3) = (x1,0) + (0, xp) €
W, + W,. Since W) 4+ W, is a subspace of R2, we get V.=W; + W,. Also W; N
W, = {0}. Therefore R> = W, @& W, (Fig.2.7).

The examples discussed deal with subspaces of finite dimensional vector spaces.
Now let us give you an example from an infinite-dimensional vector space.

Example 2.30 Let V = Cla, b]. Take
Wi ={f) | f(=x)=—=f)}

and

Wo = {f(x) | f(=x) = f(0)}

W, and W, are respectively the collection of all odd functions and even functions.
(Verify that they are subspaces of C[a, b].) Now, for any f € Cla, b], consider
Sfilx) = —f(x)’zf(”‘) and f>(x) = —f("Hzf(*X). We have
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Fi(ex) = Jf(=x —2f(—(—x)) _ (& g fG=) _ A

and
_ f(=x)+ f(=(—=x)) _ f(=x)+ f(x)
2 2

fa(=x) = fa(x)

Thus f; € Wy and f> € W,. Clearly, f = f1 + f» and hence Cla, b] = W) + W>.
Also observe that Wy N W, = {0}.Forif f €¢ Wi N W, f(—x) = —f(x) = f(x)Vx
€ [a, b]. This gives f(x) = Oforall x € [a, b]. Thus we can conclude that C[a, b] =
W, & Ws,.

Observe that the above proposition discusses the case of two subspaces only. When
asking about a possible direct sum with more than two subspaces, it is not enough
to check that the intersection of any two of the subspaces is {0}. For example, con-
sider the subspaces of R3 given by Wi = {(x1,0,0) | x; € R}, W, = {(0, x2, x3) |
X2, x3 € R}, W3 = {(x1, x1,0) | x; € R}. Clearly, R} =W, + W, + W3 and W; N
W, =W NW; =W,nNW; = {0} (verify).But]R3 =W & W, d W;as(0,0,0) =
(0,0,0) + (0,0,0) + (0,0,0) and (0,0,0) = (1,0,0) + (0, 1,0) + (—1, —1, 0).

Now we will discuss the dimension of the sum of two subspaces of a finite-
dimensional vector space.

Theorem 2.21 Let V be a finite-dimensional vector space over a field K and Wy, W,
be two subspaces of V, then

dim(Wy + W) =dim(W;) +dim(W,) — dim(W; N Wy)

Proof Let W;, W, be two subspaces of finite-dimensional vector space V. Then
Wi N W, is also a subspace of V. Let {uy, us, ..., u;} be abasis for W; N W,. Since
Wy € Wi N Wy, {uy,us,...,u;} is a linearly independent set in Wy, and hence
it can be extended to a basis {u, us, ..., u;, vy, V2, ..., v, } of W;. Similarly, let
{ui,us, ..., u;, wy, wy, ..., w,} be abasis of W,. Clearly

B ={uj,uy, ..., u;,,v1,02,..., Uy, W, W, ..., W)}
is a spanning set of W; 4+ W,. Now will show that B is a basis for W; + W,. It is
enough to show that B is linearly independent. Let Ay, ..., A;, (1, -y s E1s oo vy
&, € K be such that
}\lul +- 4+ )\lul + (m1vy s U Uy +$lwl +-+ snwn =0 (25)
This implies

Siwp + -+ Ew, = =AUy — - — MUy — (V] — - — Uy € Wi NW),
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as{uy, uy, ..., u;, vy, v, ..., Uy,}isbasis for W; and {w;, wa, ..., w,} € W,. Now
{ui, us, ..., u}is abasis for W N W, implying there exist scalars «y, o, ..., €
K such that

Siwy + -+ Eyw, = aquy +opur + - oy

Since {uy, us, ..., u;, wy, wo, ..., w,} is a basis for W, the above equation implies
thaté =..-=§, =a; =--- = o = 0. Then (3) changes to Aju; + - - - + Mju; +
wivy + -+ v, = 0. Since {uy, us, ..., u;, vy, V2, ..., vy} is abasis of Wy, this
impliesthatA; = --- =X, = u; = --- = u, = 0. Thatis, B islinearly independent.

Thus we have shown that B is a basis for W; + W,. Now

dim(Wy + W) =l+m+n
=(l+m+U+n)—1
=dim(Wy) +dim(W) —dim(W; N W>)

Example 2.31 Consider the vector space M, (R) over the field R. Let

ay apn
W, = | a1, arz, a2 € R
ayp ax

and

_ app —a
W, = {|:a12 0 :| | aii, ai ER}

Verify that W| and W, are subspaces of M., (R). Since { |:(l) 8i| , [(1) (1)] , |:8 (l)i| } isa

basis for Wy, dim(W;) = 3 and as {|:(1) _01:| , |:(1) 8]} is a basis for W,, dim(W,) =

W10W2={|:a61 8} lan GR}

Since {|:(1) 8j|} is a basis for W; N W,, dim(W; N W,) = 1. Thus

2. Now

dim(Wy + W) =dim(Wy) +dim(W,) —dim(W;NW,) =4
Hence Wy + W, = My, (R).
Example 2.32 Consider the vector space P4[a, b]. Let
Wi = {Ao + Aax? + Aax* | Xo, Ao, Ay € R}

and
Wy = {Ax —‘1-)\,3)63 | A1, A3 € R}
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Since {1, x2, x*} is a basis for W;, dim(W;) = 3 and as {x, x3} is a basis for Wa,
dim(W,) = 2. Clearly dim(W; N W,) = 0 (How?) and hence

dim(Wy + Ws) = dim(Wy) + dim(W») — dim(W, N W») = 5

As Wi + W, = Pyla, b] and W; N W, = {0}, we have P4[a, b] = W, & W,.

Theorem 2.22 Let V be a finite-dimensional vector space over a field K. Let
Wi, Wa, ..., W, be subspaces of V, such that V=W, + W, +---+ W, and
dim(V) =dim(Wy) +dim(W,) + ---+dim(W,)). Then V=W, &W,H--- D
W,.

Proof Let V be a finite-dimensional vector space with Wy, W, ..., W, as sub-
spaces of V. Consider a basis B; for each i =1,2,...,n and let B =U!_| B;.
Since V.= W; + W, +--- + W,, B spans V. Now suppose that B is linearly depen-
dent. Then at least one of the vectors can be written as a linear combination of
other vectors. Then dim (V) < dim(W;) +dim(W5) + - - - + dim(W,), which is a
contradiction. Therefore B is linearly independent and hence B is a basis of V.
Now let 0 = w; + wy + - - - + w, where w; € W;. Since B; is a basis for W;, each
w; € W; can be expressed uniquely as a sum of elements in B;. i.e., 0 can be writ-
ten as a linear combination of elements of B. As B is a basis for V, this implies
that the coefficients are zero. That is, w; =0 for all i =1, 2, ..., n. Therefore
V=WeWe - -& W,.

2.6 Exercises

1. Show that the collections given in Examples2.2-2.7 are vector spaces with
respect to the given operations.

2. Consider the vector space R? with usual addition and multiplication over R.
Give an example for a subset of R? which is

(a) closed under addition but not closed under scalar multiplication.
(b) closed under scalar multiplication but not closed under addition.

3. Does R? over R with operations defined by
(X1, %2) + (y1, y2) = (X1 + X2, y1 + y2) and A(x1, x2) = (Axy, 0)

form a vector space?
4. Check whether the following vectors are linearly dependent or not.

(@) {(1,2), (2, 1)} in R? over R.

) {(1,2, 1), 2, 1,1). (1, 1,2)} in R3 over R.
(©) {@, —i), (—1, 1)} in C? over R.

@) {@, —i), (=1, 1} in C? over C.
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(e) {1 +x,1+x2}inP,[a, b] over R.
@) {2,x —2,14+x+x%, x> —x?} in P3[a, b] over R.

© H:(l) %] ’ B (1):| ’ |:g }:| ’ B (1)” in M (R) over R.
® H} _01] ’ |:(1) }] ’ B _111“ in M(R) over R.

5. Let {v;, vy} be a linearly independent subset of a vector space V over a field K.
Then show that {v; + v, v; — v,} is linearly independent only if characteristic
of K is not equal to 2.

6. Check whether the following subsets of R? are subspaces of R? over R. If yes,
find its dimension and write down a basis.

@ {(x1,x) € R* | xp = 1}

(®) {(x1,x2) € R? | x; +x, = 0}
© {(x1,x) eR* [ L =1)

(d) {(x1, x2) € R? | x1, x, < 0}
) {(x1,xy) € R? |x12 —l—x% = 0}.

7. Check whether the following subsets of M, (K) are subspaces of M, (K) over
K. If yes, find its dimension and write down a basis.
@ 1|92 e My (K) | an +an = 0}
[ 421 a2 |
®) 2 e My (K) [ any +an = 1}
| 421 a22 |
(¢) {A € M, (K) | det(A) = 0}
(d) {A € M (K) | det(A) # 0}
ap ap
e M, (K = .
(e) |21 an | (K) | any dzz}
8. Check whether the following subsets of P, (R) are subspaces of PP, (R) over R.
If yes, find its dimension and write down a basis.

@ {p(x) e P, (R) | p(0) =0}

() {p(x) e P, (R) | p(0) =1}

© {p(x) e P (R) | p(0) = p(1) =0}
d {px) e P, (R) | p(x) = 0}

© {p(x) € P2 (R) | p(x) = p(—x)}.

9. State whether the following statements are true or false.

(a) Anon-trivial vector space over the fields R or C always has an infinite number
of elements.

(b) The set of all rational numbers Q is a vector space over R under usual addition
and multiplication.

©) {(x1,x2) | )cl2 + x% =0, x1, x, € C} is a subspace of C? over C.
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(d) There exists a non-trivial subspace of R over R under usual addition and
multiplication.

(e) {(i, 1), (=1, i)} is a linearly independent set in C? over C.

() If Wi, W,, W are subspaces of a vector space V such that W, + W = W, +
W, then W, = W,.

(g) If W;, W, are subspaces of R” with dim (W,) = 4 and dim (W,) = 4, then
dim (Wi NW,) =1.

10. Show that R with usual addition and multiplication over QQ is an infinite-
dimensional vector space. (Hint: Use the fact that 77 is a transcendental number.)

1 -1

20 [

12. Show that the rows of a 3 x 2 matrix are linearly dependent.

13. Show that the columns of a 3 x 5 matrix are linearly dependent.

14. Which of the following collection of vectors span R? over R?

(@) {(1, D}

() {(1,2),(0,4)}

(©) {(0,0), (1, =1), 3,2)}
@ {(2,4), (4, 8)}

() {(3.,2),(1,4), (4,6)}.

15. Which of the following collection of vectors span R? over R?

(@) {(1,1,0), (0,1, D}

(b) {(0,2,0),(1,0,0),(1,2,0)}

() {(0,0,-1),(0,1,-1), (—=1,1,-1)}
(d) {(0,4,2),(0,8,4),(1,12,6)}

(e) {(1,3,2),(1,2,3),(3,2,1),(2,1,3)}.

11. Find the row space and column space of

16. Which of the following collection of vectors span P*[a, b] over R?

@ {(x2+1,x*4+x,x+1}

®) x+1,x—1,x2—-1}

© {(x2+x+1,2x -1}

d 2x2—x+1,x>+x,2x —3,x2 -5}
() {x+1,2x +2,x*+x}.

17. Let Wy, W, be subsets of a vector space V over the field K. Show that

(a) span (W, N W,) C span (Wy) Nspan (W).
(b) span (Wy) U span (W) C span (W; U Wy).

Does the converse hold in both a) and b)?

18. Let W;, W, be subspaces of a vector space V over the field K. Show that
span (W + Wy) = span (W)) + span (W>).

19. Let Vi = {vy, va, ..., .}, Vo = {vy, va, ..., vy, v} be subsets of a vector space
V. Then span (Vi) = span (V,) if and only if v € span (V}).
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20. Check whether the given collection of vectors form a basis for corresponding
vector spaces.

(@ {(2,1,1),1,2,1),(,1,2)} for R? over R.
) {I,x — 1, (x — 1)?} for P, (R) over R.
(c) {1,x*—1,2x% + 5} for P, (R) over R.

@ H:O —2i| ’ [0 0:| ’ [2 ()] ’ |:() 1j|} for M, (R) over R.

21. Determine which of the given subsets forms a basis for R* over R. Express the
vector (1,2, 3) as a linear combination of the vectors in each subset that is a
basis.

(@ {(1,1,1),(1,1,0),(1,0,0)}
b {1,2,1),2,1,1),(1,1,2)}
(© {(2,3,1),(1,-2,0), (1,5, 1)}

22. Check whether the sets given in Questions 14 — 16 form a basis for the respective
vector spaces. If not, find the dimension of their span.
23. Find the dimension of span of the following collection of vectors:

(@ {(1,=2), (=2,4)} in R? over R.

®) {(=2,3),(1,2), (5, 6)} in R? over R.

(©) {(0,3,1),(—1,2,3),(2,3,0), (—1,2,4)} in R? over R.
@ {1+ x,x%+x+1}inPs[a, b] over R.

(e) {1 —x,x% 2x%+x — 1}inP,[a, b] over R.

® H:(l) (1)] ’ |:(1) _Oli| ’ [(1) (]):| ’ |:_01 (l)i|} in M (RR) over R.
© H} (1)] ' |:(1) }] ’ |:} (1)] ’ |:(1) i]} in M (R) over R.

Also, find a basis for the linear space spanned by the vectors.
24. Consider two subspaces of R* given by

Wi = {(x1, X2, 2x1, X1 +x2) € R* | x4, %, € R}

and
Wa = {(x1, 2x1, X2, X1 — x2) € R* | x4, x, € R}

Find

(a) Wi+ W, and W; N W,.
() dim (Wi + W,) and dim (W N W,).

25. Let V be a finite-dimensional vector space over a field K and W; be a subspace
of V. Prove that there exists a subspace W, of V such that V = W; & W,.

26. Let V be a vector space over a field K and Wy, W, ..., W, be subspaces of V
with W; " W; ={0} Vi # jand W, + W, + .- + W,, = V.Is the sum a direct
sum?
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27. Let Wi ={A eM, (K) | A;; =0 Vi>j}, Wa ={AeM,(K)|A; =0V
i <j},and W3 ={A € M, (K) | A;; =0V i # j}. Then show that M, (K) =
Wi W, Ws.

28. Let

W ={AeM, K | A" = A}

and
Wr={A eM, XK)| A" =—-A}

Then show that M, (K) = W; & W,.

Solved Questions related to this chapter are provided in Chap.9.



Chapter 3 ®)
Linear Transformations Check for

In this chapter, we delve deeply into a key concept of linear transformations which
map between vector spaces in linear algebra. It begins with the definition and key
properties of linear transformations, emphasizing their significance as they preserve
vector space operations. Examples such as the differential operator, which maps a
function to its derivative, and the integral operator, which maps a function to its
integral, are discussed. Both of these exhibit linearity qualities that are essential in
calculus and mathematical analysis. The concepts of range spaces and null spaces are
presented, providing an insight into the possible outputs and dependencies of linear
transformations. The relationship between linear transformations and matrices is
illustrated, showing how matrices can be used to represent these transformations
and for ease of computations. It covers fundamental ideas like projection, rotation,
reflection, shear, and other transformations that provide helpful insights into the
geometric manipulation of vectors and shapes in two-dimensional spaces. Invertible
linear transformations and isomorphism of vector spaces are discussed. The chapter
also deals with the concept of changing coordinate bases, shedding light on how
different bases can affect the representation of vectors and linear transformations.
We further go into linear functionals, emphasizing their importance in dual spaces.

3.1 Introduction

In this chapter, we will be discussing functions on vector spaces that preserve the
structure. This gives us an important class of functions called linear transformations.
Vaguely, we can say that a linear transformation is a function between two vector
spaces that preserve algebraic operations. When we discuss linear transformations
from R? to itself, we could see that the transformation has some interesting geometric
properties. The term “transformation” just indicates that it transforms the input
vector to give us an output vector and the term “linear” suggests that

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 79
R. K. George and A. Ajayakumar, A Course in Linear Algebra, University Texts in the
Mathematical Sciences, https://doi.org/10.1007/978-981-99-8680-4_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8680-4_3&domain=pdf
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3
https://doi.org/10.1007/978-981-99-8680-4_3

80 3 Linear Transformations

(a) all lines must remain lines, without getting curved and
(b) the origin must remain fixed. That is, the image of the origin must be the origin
itself.

These two ideas can be used to verify whether a function is linear or not when a
transformation is defined from R? to itself.

To say geometrically that a function is a linear transformation, we must be able
to say that conditions (a) and (b) as mentioned above must be satisfied, which is a
tedious task. Also, we need a valid strategy to check whether a function defined on
an arbitrary vector space is a linear transformation or not. To tackle such situations,
we have the following definition for a linear transformation.

Definition 3.1 (Linear Transformations) Let V and W be vector spaces over the
field K. A linear transformation 7 from V into W is a function such that

(@ T +v) =T+ T(vy) forall vy, v € V and
(b) T(Av) =AT(v) forallv e Vand A € K.

(a) is called the additive property and (b) is called the homogeneity property, both of
which can be written together as T (A1v; 4+ A2v2) = AT (vy) + AT (v2) for vy, vy €
V and Ay, X, € K. This compact form is called the principle of superposition. A
linear transformation from V to itself is called a linear operator.

Now that we have put forward algebraic conditions to check whether a function
on a vector space is a linear transformation or not, we can look into some of the
important examples. Many of the important functions that we use in pure and applied
mathematics like differentiation and integration in calculus, rotations, reflections, and
projection in geometry are in fact linear transformations.

Example 3.1 Let V = R? over the field R. Define 7 : V — V by
T (x1, y1) = (2x1 + 3y1, 5x1)

Let A € Rand vy = (x1, ¥1), v2 = (x2, ¥2) € V.Then Av; + v, = (Ax] + x2, Ay; +
¥2), and

T (Avy + v2) = T(Ax; + x2, Ay; + y2)
= (2(Ax1 + x2) + 301 + ¥2), S(Ax1 + x2))
= (A(2x1 +3y1) + 2x2 + 3y2), A(5x1) + 5x2)
= A (2x1 +3y1, 5x1) + (2x2 + 3y2, Sx2)
= AT (vy) + T (vp)

Therefore T is a linear operator on V.
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Fig. 3.1 Observe that the line y = x is transformed to a curve y = x2. Thus the above transforma-
tion is not linear

y=x

y=x+1
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Fig. 3.2 Observe that the line y = x is transformed to a line y = x + 1. But the origin is not
mapped onto itself. Thus the above transformation is not linear

Example 3.2 From Fig.3.1, it is clear that the function 7} : R*> — R? defined by
Ti(x1, x2) = (xq, xlz) is not a linear transformation. Now let us check the linearity of
T} using Definition 3.1. That is, we have to check whether T satisfies the principle
of superposition for all vectors in R? or not. Observe that

N, H+Ti(=1, 1) =(0,2) # T, 1)+ (-1,1)) =T1(0,2) = (0,0)

Thus, our assertion that 77 is not a linear transformation is confirmed. Similarly, we
can check whether the function 75 : R* — R? defined by Tr(x1, x2) = (x1, x1 + 1)
is a linear transformation or not. As

LA, D +T(=1,1)=(0,2) # T((1, 1) + (=1, 1)) = T2(0,2) = (0, 1)

by Definition 3.1, 75 is not a linear transformation, which we have already observed
from Fig.3.2.

Example 3.3 Let V =R" and W = R" over the field R. Define 7 : V — W by
T (v) = Av, where A € M,,+,,(R) is a fixed matrix. Then, for vy, v; € R" and A € R,
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T (Av1 +v2) = A(Avy +v2) = AA(v) + A(v2) = AT (v1) + T (v2)

Therefore T is a linear transformation from V to W.

Example 3.4 LetV =P,(R) and W = P,_;(R) over the field R. Define T : V —
Wby T(p(x)) = %(p(x)). Then T is a linear transformation from V to W. For
p(x),q(x) € P,(R) and A € R,

d
T(Op+9)x) = - ((Ap + q)(x))
— L openr L
= 77 Ap)) + - (g(x))

= A d d
=A— (p(x)) + T (g(x))
= AT (p(x)) + T(q(x))

Therefore T is a linear transformation from V to W.

Example 3.5 Let V =P,_1(R) and W = P, (R) over the field R. Define 7 : V —
Wby (Tp)(x) = fox p(t)dt. Then T is a linear transformation from V to W. For
px),q(x) € P1(R) and 2 € R,

X

(TGp+q)(x) = /o p+q)Ddr = A/o p(n)di +/0 qOdt = A(Tp)(x) + (Tq)(x)

Therefore T is a linear transformation from V to W.

Example 3.6 Let V =M,,,,(K) and W = M,,,,,(K) over the field K. Define
T:V — Wby T(A) = AT. Thenfor A, B € M, and A € K

TOA+B) = (A + B) =2AT + BT = AT(A) + T(B)

Therefore T is a linear transformation from V to W.

Example 3.7 Let V and W be any two arbitrary vector spaces over a field K. The
linear transformation I : V — V defined by /(v) = v for all v € V is called the
identity transformation. The linear transformation O : V — W defined by O(v) = 0
for all v € V is called the zero transformation.

Now let us discuss some of the important properties of linear transformations.

Theorem 3.1 Let V and W be vector spaces over the field K and T : V. — W be a
function

(a) If T is linear, then T(0) = 0.

(b) T islinear if and only if T (Av; 4+ v3) = AT (vy) + T (vy) for all vy, v, € V and
re kK

(c) If T is linear, then T (vy — vp) = T (v1) — T (v2) forall vy, v, € V.
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(d) T islinearifand onlyif, for vy, va, ..., v, € Vand iy, ry, ..., Ay € K we have

T <i)\,~vi> = ikiT(Ui)
i—1 i—1

(e) Let {vi,vy,...,v,} be alinearly dependent set in V, then {T (vy), T (v2), ...,
T (v,)} is a linearly dependent set in W.

Proof Suppose that T : V — W is linear, then
TO)=TO+0=T0O)+T0O)=T0)=0

Proof of (b), (¢), and (d) are trivial from the definition of a linear transformation.
Now let {v}, va, ..., v,} be a linearly dependent set in V, then there exists at least
one vector in V, say v; such that

Vi = Aur o AimiVion + A1 Vign o A
where Ay, ..., Ai_1, Ait1, ..., A, € Kand are not all zero. Then

Tj) =T @G+ -+ A_1vicg + g Vg + -+ A,0,)
=MT)+--+ 24 a9T@i—1) + i TWip) + -+ AT (v,)

Therefore {T (vy), T (v2), ..., T (v,)} is a linearly dependent set in W.

Observe that Theorem 3.1(a) gives a necessary condition, not a sufficient one.
That is, 7(0) = 0 need not imply that 7T is a linear transformation. For example,
consider 7 : R — R such that T'(v) = v?. Clearly, T(0) = 0. But

T +v2) = (v +v2)> = v} + 3 + 2010, # v] +v3 =T (V) + T (v2)

That s, T is not linear. But if 7(0) # 0, then we can say that T is not linear. (b) part
of the above theorem is used to prove that a given function is a linear transformation.

As linear transformations preserve linear combinations, to describe a linear trans-
formation on a vector space V, it is enough to identify the images of the basis vectors
of the domain under the linear transformation.

Theorem 3.2 Let V be a finite-dimensional vector space over the field K with basis
{vi, va, ..., v,}. Let W be a vector space over the same field K and {wy, wa, ..., w,}
be an arbitrary set of vectors in W, then there exists exactly one linear transformation
T:V — Wsuchthat T (v;) = w;, wherei =1,2,...,n.

Proof Let V be a finite-dimensional vector space over the field K with basis
{vi, va, ..., v,}. Then for each v € V, there exist scalars A, A, ..., A, € K such
that v = Ajv; + Ava + - - - + A, v,. Now define
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T() =Awi +2dowy + -+ 4+ A,w,

for each v € V. Then T is well defined and T (v;) =w;, forall i =1,2,...,n.
Now we have to prove that T is a linear transformation. Take u#, v € V. Then
U= vy + movy + - -+ + wpv, and v = vy + &y + - - - + &, v, for some scalars
Wiy 2y ooy n, €1, 62, ..., &, € K. Now for A € K,

T(hu+v) =T A (L1v1 + pova + - -+ + tatn) + 5101 + 5202 + -+ + §,0,)
=T (A1 +ED)vi+ Qua +E) v+ -+ Ay + &) vn)
= @Ap1 +E) w1+ Apz +E)wo + -+ + (Akn + ) W
=A(iwy + powa + -+ pawn) 5w + 5w + -+ 5wy
= AT )+ T(v)

Therefore T is a linear transformation. Now suppose that there exists another linear
transformation T : V — W such that T (v;) = w;, wherei = 1,2, ..., n.Since T is
linear, for each vector v = A vy + Avp +---+ A0, €V,

T@) =T (v + Aava + - + Agvy)
=MT @)+ T W)+ + AT (vy)
=Awy + Aawa + -+ AWy
=T(v)

That is, there exists exactly one linear transformation 7 : V. — W such that T'(v;) =
wi,foralli =1,2,...,n.

Example 3.8 LetV =R*>and W = R*>.Let T : V — W be a linear transformation
such that 7(1,0) = (2, 1,0) and T (0, 1) = (1, 0, 3). Since {(1, 0), (0, 1)} is a basis
for R?, from Theorem 3.2, there exists only one such T'. To find T, take (x;, y;) € R2.
Since

(x1, y1) = x1(1,0) + (0, 1)
we get

T(xi,y) =xT(1,0) +y,T(0, 1)
=x1(2,1,0) + y1(1, 0, 3)
= (2x1 + y1, x1, 301)

In Example 3.3, we have seen that T'(v) = Av is a linear map from R” to R™,

where A € M,,»,(R) is a fixed matrix. In particular, for n = 2 and m = 3, if we
21

take A = | 1 0 |, we can say that v — Av is a linear transformation. We can rep-
03

resent this linear transformation by T,ie., T(v) = Av. What is the speciality of



3.2 Range Space and Null Space 85

this transformation? Is there any similarity between the transformations 7 and the
transformation 7 defined in Example 3.8?
‘We can observe that

(D=3l (af o 7 ED =[] -

Then by Theorem 3.2, we can say that 7 and T are the same. This is an interesting fact,
isn’t it? This relation between the set of linear transformations from an n dimensional
space to an m dimensional space and the set of all m x n real matrices is worth
exploring, and we will be studying this relation in detail in this chapter.

3.2 Range Space and Null Space

Considering that a linear transformation from V to W is a function that preserves
structure, a linear transformation has two significant sets associated with it: the null
set and the range set. In fact, they are subspaces of V and W respectively. The range
space of a linear transformation consists of all possible output vectors that can be
obtained by applying the transformation to input vectors. It represents the span of
the transformed vectors in the co-domain. On the other hand, the null space of a
linear transformation comprises all input vectors that are mapped to the zero vector
in the co-domain, forming a subspace of the domain. Together, these spaces provide
valuable insights into the behavior and properties of the linear transformation. In this
section, we will discuss in detail these subspaces and some of the important results
associated.

Definition 3.2 (Range set and Null set) Let V and W be vector spaces over the field
K,andlet T : V — W be linear, then range set of 7', denoted by R(T), is a subset
of W consisting of all images of vectors in V under T'. That is,

R(T)={T(v) |veV}
and the null set or kernel of 7', denoted by N (T'), is the set of all vectors v € V such
that 7' (v) = 0. That is,
N(T)={veV|Tw) =0}

Consider the following example. We can observe some interesting facts about the
range set and null set associated with a linear transformation.

Example 3.9 Consider a function 7 : R?> — R? defined by

T (x1,x2) = (X1 — X2, X2 — X1)
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N(T)
(T)
(a) (b)

Fig. 3.3 Both range set and null set of T'; plotted as (a) and (b) respectively are straight lines
passing through origin. Thus both R(T') and N (T) are subspaces of R? for the given T

Clearly T is a linear transformation (Verify). Now let us find the range set of 7. By
definition,

R(T) = {T (x1,x2) | (x1,x%2) € R*} = {(x1 — x2, %2 — x1) | x1, %2 € R}
which is the straight line y = —x. And the null set of T is given by

N(T) ={(x1,x2) € R* | T(x1, x3) = 0}
={(x1.x) € R* | (x; — x2,.5 — x1) = (0, 0)}

which is the straight line y = x (Fig.3.3).

One of the interesting facts to observe here is that both R(T) and N(T) are
subspaces of R? for the given T, as we have seen in Fig.3.3. Will this be true for
every linear transformation 7 : V. — W, where V and W are any two arbitrary vector
spaces? That is, will R(T') be a subspace of W and N (T) be a subspace of V? The
following theorem will give us an answer.

Another interesting fact to observe here is that the lines y = x and y = —x are
perpendicular to each other. So far, we haven’t defined the tools to analyze this fact.
We will study this interesting observation in detail in Chap. 5.

In the next theorem we will prove that if T is a linear transformation between two
vector spaces V and W, then R(T') and N (T') are subspaces of W and V, respectively.

Theorem 3.3 Let V and W be vector spaces over the field K, and let T : V —
W be a linear transformation. Then N(T) and R(T) are subspaces of V and W
respectively.
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Proof Let T:V — W be a linear transformation. We have N(T) =
{veV|T()=0}. Clearly, N(T) € V. Now for v, v; € N(T) and A € K, we
have

TAvi+v) =AT () +T(w) =0

Therefore Av; + v, € N(T) for all vy, v, € N(T) and A € K. Hence N(T) is a
subspace of V.

Also we have R(T) = {T'(v) | v € V}. Clearly, R(T) € W. As R(T) is range
space, for wi, wy € R(T) there exists vy, v, € V suchthat T (v;) = wy and T (v;) =
wy. Since vy, v; € V and V is a vector space over the field K, Av; 4+ v, € V, where
A € K. Then

T(Avi +v2) = AT (v1) + (v2) = Aw; +wr € R(T)

Hence R(T) is a subspace of W.

If N(T) and R(T) are finite dimensional, the dimensions of N'(T') and R(T) are
called Nullity(T') (read as nullity of T') and Rank(T') (read as rank of T'), respectively.
Now, let T’ be a linear transformation from a finite-dimensional vector space V to a
vector space W. From Theorem 3.2, it is clear that, if we know the images of basis
elements of V, itis easy to find R(T). If B = {vy, v, ..., v,} is a basis for V, then

R(T) = span (T (B)) = span{T (v1), T (v2), ..., T (vy)}

We can also conclude that, if dim(V) = n, then Rank(T) < n.

Remark 3.1 Let A be an m x n matrix with entries from the field K. We have seen
that the space spanned by the rows of A is a subspace of K" called row space of A and
the space spanned by the columns of A is a subspace of K", called the column space
of A. The dimensions of the row space and column space are called the row rank
and column rank of A, respectively. We will later show that row rank(A)=column
rank(A) for any m x n matrix A. The column space of a matrix A is also known as
the image or range of A, denoted by Im(A) or R(A)Col(A). That is,

Im(A) = {Ax | x e K"}
and the null space or kernel of A, denoted by Ker A or N(A), is given by
Ker(A) ={x e K" | Ax =0}

Now let us discuss an interesting example. The relation between linear transfor-
mations and matrices will become more evident in the following one.

Example 3.10 Consider the linear transformation T : R?> — R? in Example 3.8
defined by T (x1, y1) = (2x1 + y1, x1, 3y1). Then the range space of T is given by

R(T) = span (T (B)) = span{T(1,0), T(0, 1)} = span{(2, 1,0), (1, 0, 3)}
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As the vectors (2, 1, 0) and (1, 0, 3) are linearly independent, Rank(T) = 2. Now
the null space of T is

N(T) = {x € R* | T(x) =0} = {x = (x1, y1) € R? | 2x1 + y1,x1,3y1) = (0,0,0)} = {(0, 0)}

21
Thus Nullity(T) = 0. Now, consider the matrix A = | 1 0 |. We can observe that
03
the column space of A is the span of {(2, 1, 0), (1, 0, 3)} and kernel of A is {(0, 0)}.
Does there exist any relation between the range space of a matrix and the range space
of the corresponding linear transformation?

Example 3.11 LetV =P3(R)and W = P,(R). Define 7 : V — Wby T(p(x)) =
%(p(x)). Consider the basis B = {1, x, x2, x*} for V. Then the range space of T is
given by

R(T) = span (T (B)) = span{T (1), T (x), T(xz), T(x3)} = span{l, 2x, 3x2}

Therefore Rank(T) = 3 and
d .
N(T) = {p(x) e P3(R) | d—(p(x)) = O} = {constant polynomials}
X

Hence Nullity(T) = 1.

Example 3.12 Let V = M,,,(K) and W = M, ,,(K) over the field K. Define
T:V — W by T(A) = A”. In Example 3.6, we have shown that T is a linear
transformation. Since for each A € M,,,,(K), there exists A7 € M,,,,(K) such

that T (AT) = (AT)T = A, R(T) = W and hence
Rank(T) = dim(W) = mn

Now

T(A)=0=AT=0=2A4=0
Therefore N(T') = {0} and hence Nullity(T) = 0.

Example 3.13 Let V and W be any two arbitrary vector spaces over a field K. Con-
sider the identity transformation and zero transformation defined as in Example 3.7.
Then R(I) = V and N(I) = {0}. Also R(O) = {0} and N(O) = V.

Observe that in each of the above examples, if you consider the sum of rank and
nullity of respective linear transformations, you will get the dimension of V. Is this
true in general? Now, we will prove one of the important results in the theory of
linear transformations on a finite-dimensional vector space which will answer this
question.
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Theorem 3.4 (Rank-Nullity Theorem) Let V be a finite-dimensional vector space
over a field K and let W be a vector space over the same field K. Let T : V — W
be a linear transformation, then

Nullity(T) + Rank(T) = dim(V)

Proof Let V and W be a finite-dimensional vector spaces over the field K, and
let T be a linear transformation from V to W. Let N(T") be the null space of T'. As
N (T)is asubspace of V and V is finite dimensional, by Theorem 2.17, N'(T') is finite
dimensional and hence it has a finite basis, say {vy, va, ..., v}. Since {vy, va, ..., vt}
is a linearly independent set in V, then by Theorem 2.14, it can be extended to a
basis B = {vy, vp, ..., v,} of V. We know that

R(T) = span{T (v1), T (v2), ..., T(v,)}
Butas T(v)) =T () =---=T(v) =0,
R(T) = span{T (vi41), T (vk12), - .., T(vy)}

Now we will prove that {T (vk+1), T (Vg+2), - - ., T (v,)} is linearly independent. Let
Met1s Aet2, - - -5 A € K be such that

At T (Ue1) + A2 T (eg2) + -+ + 2, T (0,) =0

which implies
T (Aer1Vig1 + Apg2Via + -+ A,0,) =0

Thatis, Agy1Vka1 + AkaaVki2 + - - - + v, € N(T). Since {vy, va, ..., v} isabasis
of N(T), there exists Aq, Ay, ..., A € K such that

M1 V41 + MoV + - -+ AUy = Mg + Aovp + -+ Ak

Since B is a basis for V, this implies that A; = 0 for alli = 1, 2, ..., n. Therefore
{T (vg+1), T (Vk+2), - - ., T (vy,)} is linearly independent and hence is a basis of R(T').
Therefore Rank(T) = n — k. Now

Nullity(T) + Rank(T) =k +n—k =n=dim(V)

Hence the proof.

We can verify Rank-Nullity Theorem for the linear transformations given in Exam-
ples 3.10-3.13.

Corollary 3.1 Let V and W be finite-dimensional vector spaces over a field K with
dim(V) < dim(W), then no linear transformation T : V — W is onto.
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Proof Let V and W be finite-dimensional vector spaces over a field K with
dim(V) < dim(W). By Rank-Nullity theorem, we have

Rank(T) =dim(V) — Nullity(T) < dim(V) < dim(W)
Therefore T cannot be onto.

Interestingly, the one-oneness of a linear transformation is closely related to its
null space. The relation is explained in the following theorem.

Theorem 3.5 Let V and W be vector spaces over a field K and let T : V. — W be
a linear transformation. Then T is one-one if and only if N(T) = {0}.

Proof Let V and W be vector spaces over a field K and let 7 : V — W be a linear
transformation. Suppose that 7' is one-one. That is, T'(v;) = T (v2) = v; = v, for
allvy,v, e V.Letv e N(T). ThenT(v) =0=T(0) = v =0.

Conversely suppose that N(T) = {0}. Now T(v)) =T (v) = T(v; — 1) =
0= v, —v, € N(T) = {0} = vy = v,. Hence, T is one-one. Therefore T is one-
one if and only if N(T) = {0}.

This gives an easy way to check whether a linear transformation is one-one or
not. Also consider the following corollary, which is an immediate consequence of
Rank-Nullity Theorem and the above theorem.

Corollary 3.2 Let V and W be finite-dimensional subspaces over a field K with
dim(V) > dim(W), then no linear transformation T : V — W is one-one.

Proof Let V and W be finite-dimensional subspaces over a field K with dim(V) >
dim(W). Since R(T) is a subspace of W, we have Rank(T) < dim(W). Now by
Rank-Nullity theorem

Nullity(T) = dim(V) — Rank(T)
>dim(V) —dim(W)
>0

Therefore T cannot be one-one.

Example 3.14 Observe that, by Theorem 3.5, the linear transformations defined in
Examples 3.10 and 3.12 are one-one, whereas the linear transformation defined in
Example 3.11 is not one-one. Also observe that the identity transformation is one-
one, but zero transformation is not one-one.

Example 3.15 LetV = My (R) and W = P;[a, b]. Foramatrix A = |:a11 a12} €

ary ax
M > (R), define
T(A) = ai + (a2 + az1) x + anx’
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Consider the standard ordered basis, {E11, E12, E21, Ex} of M. (R) as defined in
Example 2.18. Then, we have

T(En) =1 T(Epn) =T(Ey) =x T(Exp)=x’

Therefore R(T) = span{l, x, x>} = P,[a, b] and hence Rank(T) = 3. Then by
Rank - Nullity Theorem, Nullity(T) =4 —3 = 1. Thus T is not one-one.

We have seen that if the dimension of the domain V is greater than the dimension
of the co-domain W, there does not exist a one-one linear transformation from V to
W. We have also seen that if the dimension of V is less than dimension of W, there
does not exist an onto linear map from V to W. But, if the linear transformation is
defined between two vector spaces of equal dimension, which is finite, there is no
need to distinguish between one-one functions and onto functions. The following
theorem states this fact.

Theorem 3.6 Let V and W be vector spaces over a field K with equal dimen-
sion(finite), and let T : V. — W be a linear transformation. Then T is one-one if
and only if T is onto.

Proof Let V and W be vector spaces over a field K with dim (V) = dim(W), and
let T : V — W be a linear transformation. Suppose that T is one-one. Then by the
above theorem N(T) = {0} and hence Nullity(T) = 0. By Rank-Nullity theorem,
Rank(T) = dim(V) = dim(W). That is, R(T) is a subspace of V with dimension
same as that of W. Therefore R(T) = W and hence T is onto.

Conversely, suppose that T is onto. Then R(T) = W and hence Rank(T) =
dim(W) = dim(V). Again by Rank-Nullity theorem, N(T) = {0} and hence Nul-
lity(T) = 0. Hence, T is one-one.

We have seen that a linear transformation maps linearly dependent sets to linearly
dependent sets. But for a linearly independent set, this is not necessarily true. For
example, let T : R? — R? be defined by T (x;, y1) = (x1, 0). Consider the standard
ordered basis, B = {(1,0), (0, 1)}, for R%. Then 7T'(1,0) = (1,0) and T7(0, 1) =
(0,0). Clearly, T(B) = {(1,0), (0,0)} is a linearly dependent set. Thus a linear
transformation may map a linearly independent set to a linearly dependent set.

Theorem 3.7 Let V and W be vector spaces over a field K. Let T : V. — W be a
linear transformation which is one-one. Then a subset S of 'V is linearly independent
if and only if T (S) is linearly independent.

Proof Let V and W be vector spaces over a field K and 7 : V — W be a one-
one linear transformation. Then N(T) = {0}. Consider S = {vy, vp,...,v,} C V.
Suppose that S is linearly independent. Let A1, A5, ..., A, € K be such that

MT ) +xTWw)+ -+ A1, Tw,) =0
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which implies
T(Avy +Xovp+ -+ 2,0,) =0

That is, Ajv; + vy + -+ + X,v, € N(T) = {0}. Since S is linearly independent,

this implies that A; = A, = --- =&, = 0.
Conversely, suppose that T7(S) = {T (v), T (v2), ..., T (v,)} is linearly indepen-
dent. If S is linearly dependent, then there exist scalars Ay, A;, ..., A, € K (not all

zero) such that
M+ + -+ A, =0

Then
Tvr + v+ +4,0,) =T(0) =0

That is, AT (vy) + AT (v2) + - - - + X, T (v,) = 0, which is a contradiction, since
T (S) is linearly independent. Therefore S is linearly independent.

Now, we will prove that the column rank of a matrix is equal to its row rank and
we can simply call it the rank of the matrix.

Theorem 3.8 If A € M, (K), then column rank(A) = row rank(A).

Proof Define T : R" — R" by T'(v) = Av. In Example 3.3, we have seen that T is
a linear transformation. Then, the range set of T is the set of all b € R™ such that
X

Ax = b,wherex = | . [.If Ay, Az, ..., A, denote the columns of A, we can write

Xn
Ax =XIA] +x2A2+ +ann

This implies that the range space of T is spanned by the columns of A. In other
words, R(T) = Im(A). Thus,

Rank(T) = column rank(A)
Also, observe that N(T') = Ker(A). Then by Rank-Nullity Theorem,
dim (Ker(A)) + column rank(A) = n
From Sect. 1.7, we have
dim (Ker(A)) =n —row rank(A)

Thus, we have column rank(A) = row rank(A).
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21
Earlier, we have observed some intriguing similarities between the matrix | 1 0
03
and the linear transformation 7 : R? — R3 defined by T (xy,x)=Q2x; + yi,
X1, 3y1), right? But we didn’t have any clue how a relation can be drawn between
this matrix and the linear transformation 7. The next section will give us a good idea
regarding this relation.

3.3 Matrix Representation of a Linear Transformation

Let V be an n dimensional vector space over a field K and W be an m dimensional
vector space over K. Let B; = {vy, va, ..., vy} and By = {wy, wy, ..., w,} be bases
of V and W, respectively. Now for each v € V, there exists a unique set of scalars
A, Ao, ..., Ay such that

V=MV +Avy+ -+ A,

M
Then the matrix [v]p, = | is called the coordinate representation of the vector

An nx1
v with respect to the basis Bj. Let T be a linear transformation from V to W. Now
T (v1), T(v2), ..., T(v,) are all vectors in W and each can be expressed as a linear

combination of basis vectors in B,. In particular,

T(v)) = anwy +anwr + -+ @uiwpy

for some scalars ay, as1, - . ., ay1. In general
m
T()) =a;wi+ayjwr+ -+ apjwy = E a;jwi 3.1
i=1
for some scalars ayj, azj, ..., an;(j = 1,2, ..., m). Then the matrix representation
of T is
ay ayp ... Ay
da) ax ... dy
[T]BZ —
B =
Aml Am2 - -« Amn

mxn

Now let v = Ajvy + Ayvo + - - - 4+ A,v, € V. Then
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T()=MT W) + 2T W) + -+ AT (vy)

= (Z ailwi) + A2 <Z aiZWi) to A (Z ClinWi)
i=1 i=1 i=1

m

= Z (@itA1 + apho + - - -+ ainhy) wi

i=1

Therefore

[ anh +ank + -+ aphy

a1 +anky + -+ ayphy,
[Tv]g, = .

_aml)"l + amar2 + -+ pnAn

[an an ... an, Al
ax ayp ... ay || A

_aml Am2 - .. Amn )\n

= [T13[v]s,

Example 3.16 Consider the linear transformation T : R> — R? in Example 3.8
defined by T (x1, y1) = (2x1 + y1, x1, 3y1). Consider the standard ordered bases
B; = {(1,0), (0, 1)} and B, = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} for R? and R3, respec-
tively. Then

T(1,0) = (2,1,0) = 2(1,0,0) + 1(0, 1,0) + 0(0, 0, 1)
T(0,1) = (1,0,3) = 1(1,0,0) + 0(0, 1,0) +3(0,0, 1)

Therefore the matrix of the linear transformation is

21
[Tz =110
03

Consider the element v; = (2, 5) € R%. Then T (v;) = (9, 2, 15). Consider the coor-

2| and [T (v1)]s, =

dinate representation for both v; and 7' (v;). We have [v;]5, = 5

9 21 5 9

2 |. Then [T]gf [vilg, =10 |:51| = | 2 | =[T(v1)]p,. Similarly, for v, =
15 03 15

(1, —1) € R?, we have T(vy) = (1, 1, —3). The coordinate representations for both
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1
v, and T (vy) are [va]p, = |:_11:| and [T (v2)lg, = | 1 |, respectively. Then

-3
21 1
(T1 [vals, = | 10 [_11]= 1| = [T @),
03 -3

Remark 3.2 Let 7 : R” — R™ be a linear transformation. Then the matrix repre-

| |
sentation of 7' is given by [T]gf = |T(ey) ... T(e,) | where B; and B, are the

standard ordered bases for R" and R™, respectively.

Example 3.17 LetV = P3;(R) and W = P,(R). Define T : V — W by (Tp)(x) =
<L (p(x)). Consider the bases By = {1, x, x?,x*} and B, = {1, x, x*} for V and W,
respectively:

T(1) =0=0.1+ Ox + 0x>
T(x)=1=1.140x+ 0x2

T(x*) =2x = 0.1 4+ 2x + 0x>
T(x%) = 3x> = 0.1 4+ 0x + 3x2

Therefore the matrix of the linear transformation is

0100
[T13 = (0020
0003

Now consider v = 3x3 4+ 2x2 € V. Then T (v) = 9x? + 4x. Consider the coordinate

0
0
representation for both v and T (v). We have [v]p, = (2) and [T (v)]g, = | 4.
3 9
0100 g 0
Then [T15 [v]g, = [0020 S| =4 =Tl
0003 3 9

Example 3.18 Let V =R?>and W = P[a, b]. Define T : V — Wby T(a;, @) =
200 x% + (o1 + a)x + 3ary (verify that T is a linear transformation). Consider the
bases By = {(1, 1), (1, —1)} and B, = {1, x, x*} for V and W, respectively:

T(1,1) =2x*+2x +3 =3.142x +2x2
T(1,—=1)=2x>=3=(=3).140x + 2x2
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Therefore the matrix of the linear transformation is

-3
(T]y = 0
2

NN W

Consider v = (5, 6) € R?. Then T (v) = 10x% + 11x + 18. Consider the coordinate
18

11
representation for both v and 7 (v). We have [v]p, = |:_21:| and [T (v)]p, = | 11
2 10

3-3]ru 18
Then [T15 [v]g, = [2 O [ﬁ} = | 11| =[T )]s,
22 |L2 10

Now that we have got a flavor of the relation between matrices and linear trans-
formations, let us discuss a bit the geometry of linear transformations. It will be easy
to visualize the transformation, if it is defined on R? or R?.

Geometry of Linear Transformations on R?

In the realm of linear transformations in R?, geometry plays a central role, serving
as the primary framework for understanding how these transformations reshape the
fundamental properties of points, lines, and shapes within the two-dimensional plane.
For instance, rotations can change the orientation of objects, scaling can stretch or
shrink them, and reflections can flip them across lines of symmetry. Linear transfor-
mations can also introduce shearing effects or map points to new locations entirely.
Understanding the geometry of these transformations is crucial for applications in
various fields of science and engineering, as it enables us to model and manipulate
objects and phenomena in a mathematically rigorous manner. In this section, we will
discuss the geometrical aspects of linear transformations in R?.

1. Projection: Consider the linear transformations 7}, 7> : R> — R? defined by
Ti(x1, x2) = (x1,0) and T2(x1, x2) = (0, x2)

The matrix representation of 7} and 7, with respect to standard ordered basis B is

= |g o] ana 17215 = o ]

Then T is called projection to x— axis and 7, is called projection to y— axis
(Figs.3.4).
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2. Shear: Consider the linear transformation T3, T} : R?> — R? defined by
T5(x1, x2) = (x1 + Axz, x2) andTy(xy, x2) = (x1, X1 + Ax2)
where A € R. Then T} and 7, are called horizontal shear and vertical shear, respec-

tively (Fig.3.5).

3. Rotation: Consider the linear transformation defined by
Ty(x1, x2) = (x1cos 0 — xp8in 0, x15in 6 + x>cos 6)

Then T rotates every vector (x;, x») counter clockwise by 6°. The matrix represen-

cos 0 —sin 9] (Fig. 3.6).

tation of Ty is the matrix | .
sin @ cos 0

Remark 3.3 a. |:c0s 0 —sin 6] _ |:cos nd —sin no

. . for every positive integer

sin6 cos 6 sin n@ cos no i| P g
n € 7.

b. The basic rotation matrices in R which rotates the vectors by an angle  about

the x, y, z axes in the clockwise directions are

1 0 0 cos @ 0sin6
R, =|0cos0 —sin® |, R,= 0O 1 0 ,
0sind cos6 —sin 6 0 cos 6

cos 0 —sin6 0
R, =|sin6 cosf 0
0 0 1

4. Reflection: Consider the linear transformation defined by
fg (x1, x2) = (x1c0s 20 4 xp8in 260, x15in 260 — x,cos 20)

Then fg reflects every vector (x;, x) with respect to a line which makes an angle
0° in the positive direction of x —axis. The matrix representation of 7y is the matrix
|:cos 20 sin 20

. . For example the reflection matrix with respect to x - axis is given
sin 20 —cos 29] p P g

by |:(l) _01:|, and the reflection matrix with respect to y - axis is given by |:_Ol (1):|

(Fig.3.7).
5. Scaling and Contraction: Consider the linear transformation 7 : R* — R?

defined by T (xy, x2) = A(x], x2), where A € R. Then T is called scaling if A > 1
and is contraction if 0 < A < 1 (Fig.3.8).
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3.4 Algebra of Linear Transformations

In this section, we will study vector space structure inherited by the set of all linear
transformations on a vector space in detail. We will define addition and scalar mul-
tiplication in the set of all linear transformations from V to W as in the following
theorem. Later, we will also prove that the set of all linear transformations from V
to W forms a vector space with respect to these operations.

Theorem 3.9 Let V and W be vector spaces over the field K. Let T\ and T, be linear
transformations from V into W. The function (T + T3) defined by

(M + T)(v) =T (v) + T2 (v)

is a linear transformation from V into W. If & € K, the function (§T) defined by
(&T)(v) = & (T (v)) is a linear transformation from V into W.

Proof Let vy, v, € V and A € K. Then since T; and T5 are linear transformations
from V into W,

(Th + T) vy + v2) = T1(Avy + v2) + Ta(Avy + v2)
= ATi(v1) + T1(v2) + A T2 (v1) + T2(v2)
= AMT1(v1) + Ta(v1)) + T1(v2) + T2 (v2)
= MT1 + To)(v1) + (T1 + T2)(v2)

Therefore (T} + T) is a linear transformation. Now for any linear transformation 7
from V into W and & € K,

ET)(Avy +v2) =& (T (Avy + 12))
=& (T (v) + T (v2)
= @EMNT () + 8T (v2)
=ArET)(v1) + (ET)(v2)

Therefore £ T is a linear transformation from V into W.

We have shown that a linear transformation can be represented by a matrix. Now
let us discuss the relation between the matrices of the linear transformation 77 + 7>
with the matrices of the linear transformation 7 and 7,. The following theorem also
discusses the relation between the matrices of the linear transformations €7 and T,
where & € K. We are slowly establishing a relationship between the collection of all
linear transformations from an n dimensional vector space V to an m dimensional
vector space W and M, (K).

Theorem 3.10 Let V and W be finite-dimensional vector spaces over the field K
with ordered bases By and B, respectively, and let T\, T, : V — W be linear trans-
formations. Then
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(a) [T+ Ty = [T\]y + [} and
(b) AT1 = A[T1y forall A e K.

Proof LetV and W be finite-dimensional vector spaces over the field K with ordered
bases B; = {vy, va, ..., v,} and B, = {wy, wy, ..., wy,}, respectively.

(a) Let Ty, T, : V — W be linear transformations. Then there exist scalars a;;
and b;j, where 1 <i <m and 1 < j <n such that T|(v;) = Z;":l a;jw; and
Tz(vj) = Z:‘nzl b,‘jwi. Then

m

(Ty + T (W) = Ty () + Ta(v) = Y aywi + Y bijwi = Y (aij + bij) wi

i=1 i=1 i=1
Therefore

[ a4+ b1 ... a, + b
[T} + 215 Lo :

| Am1 + bml e Omp + bmn
_(111 ... Ap b11 bln
ol IEERE

aml - -« Ayn bml -~~bmn

= [T} + D]}

(b) Now consider AT : V. — W for A € K. Since (AT)(v;) = A (T(vj)) and T is a
linear transformation from V to W, there exist scalars a;;, where 1 <i < m and
1 < j < n such that

m

()\T)(Uj) =A (T(Uj)) =A (Z Cl,'le'> = Z)»a,-jwi
i=1

i=1
Then

Aall kaln ayn ... Aip
DTl ={ & o 1 | = & o [ =AITly

Ay ... Ay, aml - .. Qup

Example 3.19 LetV =R?>and W = R3.Let T}, T» : V — W be defined by T (x1,
x2) = (x2,x1,0) and Tr(xy, x2) = (x1, X2, x; + x2) (verify that 7} and 7, are lin-
ear transformations). Consider the basis By = {(1,0), (0, 1)} for V and B, =
{(1,0,0), (0, 1,0), (0,0, 1)} for W. Since
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T,(1,0) = (0, 1,0) = 0(1, 0, 0) + 1(0, 1, 0) + 0(0, 0, 1)
1:(0,1)=(1,0,0) =1(1,0,0) +0(0,1,0) + 1(0,0, 1)

01
the matrix of 7} with respect to B; and B; is [Tl]gf = |10]. Since
00

17(1,0) = (1,0, 1) = 1(1,0, 0) + 0(0, 1, 0) 4+ 1(0, O, 1)

7>(0,1) = (0,1, 1) =0(1,0,0) + 1(0, 1, 0) + 1(0, 0, 1)

the matrix of 7, with respect to B; and B, is [Tz]gf =|01]. Now
(T + Tr)(x1, x2) = (x1 4+ x2, x1 + x2, x1 + x2). Since

(T + 11,00 =(1,1,1) =1(1,0,0) + 1(0, 1, 0) + 1(0, 0, 1)

(Ih +T)0,1)=(1,1,1) =1(1,0,0) + 1(0, 1,0) + 1(0,0, 1)

the matrix of (77 + T5) with respect to By and B, is
11
11+ D)y = | 11| =[TI]g + [T2]3
11

We have seen that M, ., (K) is vector space over the field K with matrix addi-
tion and scalar multiplication. The above theorem relates the matrix addition and
scalar multiplication with addition of linear transformations and multiplication of a
linear transformation by a scalar. Now we will prove that the collection of all linear
transformations from V to W is also a vector space.

Theorem 3.11 Let V and W be vector spaces over a field K. Then the set of all
linear transformations from V to W, denoted by L(V, W), is a vector space with
respect to the addition and scalar multiplication defined as in Theorem 3.9.

Proof LetT;, T, € L(V, W) and ¢ € K. Then by the above theorem (V1) and (V2)
are satisfied.

(V3) Foranyv e V,

(M + 1)+ T3) (v) = (T + To) (v) + T3(v)
=Ti(v) + L(v) + T3(v)
=Ti(v) + (T2 + T3) (v)
=N+ (> + 13)) (v)
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Thatis, (T\ + T2) + T3 = T + (1 + T3).
(V4) The linear transformation O acts as the identity element in £(V, W). For any
T e L(V,W)

O+T)w)=0Ww)+Tw) =T()

Thatis, O+ T =T.
(VS5) Forany T € L(V, W),take & = —1 € K, thenby (V2),—-T € L(V, W) and

T+ =TO) +(=T)@) =T —T) =0=0()

Thatis, T + (-T) = O.
(V6) Foranyv e V,

(N + T)(v) =T (v) + To(v) = T2 (v) + T1(v) = (T2 + T1) ()

That iS, T| + T2 = T2 + T].
(V7) For T\, T, € L(V,W)and A € K,

MM+ )] = A[Ti(v) + ()] = ATi(v) + AT2(v) = [AT) + AT2] (v)

That is, A(Ty; + T5) = ATy + AT>.

(V8) ForA,u e Kand T € L(V, W),

[(A+wW)TI@) = A+ w) (TW) =AT W)+ uTWw)=AT)W) + uT)() = AT + uT)(v)

Thatis, (A +p) T = AT + uT.

(V9) For ., u e Kand T € L(V, W),

[(Ap) T](v) = () (T (v)) = A [(LT)] (v)
Thatis, Auw) T = A(uT)
(V10) Now (1T)(v) =1 (T(v)) =T () = (1T) = 1(T).

Thus conditions (V1) — (V 10) are satisfied. Therefore L(V, W) is a vector space
over the field K.

Theorem 3.12 Let U, V, and W be vector spaces over the field K . Let Ty be a
linear transformation from U into V and T a linear transformation from V into
W. Then the composed function T, T defined by (T,T1)(u) = T, (T\(u)) is a linear
transformation from U to W.

Proof Letu;,u; € U and A € K. Then
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(ToT)(Auy + uz) = T (T1(Auy + us))
=T, (AT (uy) + T2(u2))
= A T2 (T1 (u1))] + T2 (T1(u2))
= ML T)(uy) + (T2 T1) (u2)

Therefore 757 is a linear transformation from V to W.

Now we will prove that the matrix of the composition of two linear transformations
is analogous to the product of matrices of the transformations.

Theorem 3.13 Let U, V, and W be finite-dimensional vector spaces with ordered
bases Bi, By, and Bs, respectively. Let Ty : U — V and T, : V — W be linear

transformations. Then
(LT3 = [T]5 [T1]5

Proof LetU, V,and W be vector spaces over a field K with bases B| = {uy, us, ...,
Up}, By = {v1,v2,...,v,},and B3 = {wy, wy, ..., w,}, respectively. Let Ty : U —
V and T; : V — W be linear transformations. Then there exist scalars a;;, where
l<i<nandl < j <msuchthat T\ (u;) = > }_, a;;v;. Now

(LT w)) =To (Ti(w) =T (Zm;w) = ai;To(v)
i=1 i=1

Now there exists scalars by;, where 1 < k < psuchthat 75 (v;) = Z,’(’:, by;wg. There-
fore

n n P P n r
) =3 as T = 3 (zbk,w) _y (z b) we= Y e
i=1 i=1 k=1 k=1 \i=1 k=1
where ¢; = Y _, by;a;j. Therefore
[ buiain Yoy budia <. Y i budi

B Yo baan Y i byai ... Y i byai,
[T g, = . . :

n n n
| > imi bpidin Dy bpidia <. 3y bpidin
b]] b12...b1n ay adpp ... Ay
b21 b22 e bzn ajy) Az ... Ayy

Lbp1 Dpo - Dpy Ayl Apo - .. Qum
B B
= D15 (115

Example 3.20 Let Ty, T» : R? — R3 be defined by Ti(xy, x2, x3) = (0, x1, x2) and
T>(x1, X2, x3) = (x2, X3, x1) (verify that T; and 7, are linear transformations). Con-
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000
sider the standard ordered basis B for R3. Then [T1]; = [ 100 | and [T]p =
010
010
001 |.Now T»T; : R® — R3 is given by
100

(I Th)(x1, x2, x3) = T (T1 (x1, X2, x3)) = T» (0, x1, x2) = (x1, x2, 0)
100

Then [T>Ty]; = | 010 | = [T1]5 [T1]z. And T; T : R®* — R3 is given by
000

(T 1) (x1, x2, x3) = T1 (Ta(x1, X2, x3)) = T1 (%2, X3, x1) = (0, X2, X3)
000

Also [T' Tl =010 | =[T1]5[T>]5.
001

Example 3.21 Let T, : P,(R) —» P3(R) and 75 : P3(R) — P,(R) be the linear
transformations defined by

* d
(T p) (x) =/ p()dt and (Trp) (x) = E(P(X))(X)
0

Consider the bases B; = {1, x, x?} and B, = {1, x, x%, x3}. Then

. (1) 8 8 . 0100
[T1]p = 0lo and [T2]p, = 0020 |. Now T>7; is a linear transformation
0 (2) 1 0003
3

from P, (R) to P, (R). From calculus, we know that 7,7, = I. Also [Tz]g [Tl]gf =
L.

Now we will prove some properties of linear transformations which are analogous
to properties satisfied by matrices.

Theorem 3.14 Let V be a vector space over the field K. Let T, T, and T, be linear
operators on 'V, and let A be an element of K. Then

(@) IT =TI =T.
(b) T(Ty+To) =TT, + TTy and (T, + T)T = T,T + T»T.
(c) M(TW'Tr) = AT)T, = T1(AT3).
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Proof (a) Forany v € V, we have
UT)w) =IT W) =TWw) =TU W) =(TI)()

Hence, IT =TI =T.
(b) Foranyv € V,

(T(T\ + )] (v) =T [(Ty + T2)(v)]
=T[T1(v) + T2 (v)]
=T (T(v) + T (T2 (v))
= (TT)H(w) + (TT)(v)

Hence, T(T\ + T;) =TT, + TT,. Also

[(T1 + T)T] (v) = (T1 + T2) (T (v))
=T (T(W) + T> (T (v))
= (T)(w) + (I,T)(v)

Hence, (T + T,)T = Th' T + T,T.
(c) Foranyv e V,

AN T)] (v) = A [(Ti ) (V)] = A[Ti(T2(v)] = AT)(T2(v) = [AT)T2] (v)

Hence, A(T1T,) = (AT;)T>. Also

N [AT) ()] =Ty (A (T2(w)] = A[T1 (T2(v)] = A [(T1T2) (V)] = [M(T1T2)] (v)

HCIICC, )»(T] Tz) = T1 ()»Tz).

3.5 Invertible Linear Transformations

Think of a magical device that can transform an object in space into any shape and
rotate, squash, or stretch. This device is an illustration of a linear transformation.
Now imagine that you stretched out a square into a rectangle with this machine.
You would need a second magical device that works opposite to the first one if you
wished to return to the initial square. All the spinning, stretching, and squashing
that the first machine did can be undone by this amazing device. For these magical
devices, the inverse of a linear transformation functions as the “undo” button. Being
able to return to your starting point makes it an effective tool in mathematics and
science, particularly when working with transformations in the realm of matrices
and vectors (Fig.3.9).
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Fig. 3.9~ Consider the linear transformation 7' : R? — R? defined by T'(x1, x2) = 2(x1, x2). If we
define T (x1, xp) = %(xl, x3), then we can “undo” the action of 7' and vice versa

Fig. 3.10 We can see that all A !
the points on the line x = 1 :
are mapped onto the point |
(1, 0). Observe that reversing |
this action will not produce a I
|
I
I
|
|

function as (1, 0) should be yi JAA \
mapped onto all the points N \(1 O) 4
on the linex =1 >

Now, one crucial question that comes to our mind is whether it is possible to reverse
the action of every linear transformation. For example, consider the projection map
onto the x-axis (Fig.3.10).

From the above figure, it is clear that the transformation has to be one-one in
order to discuss its inverse. Also, if 7' is onto, we can take W as the domain of our
inverse function. Then, we have the following definition for the inverse of a linear
transformation.

Definition 3.3 (Inverse) Let V and W be vector spaces over the field K. Let 7 be
a linear transformation from V into W. A function T from W into V is said to be
an inverse of T if TT = Iy, the identity function on V and TT = Iy, the identity
function on W. Furthermore, T is invertible if and only if T is both one-one and
onto. The inverse of a linear transformation T is denoted by 7~!.

Example 3.22 Let V = R? with basis B = {(1, 0), (0, 1)}. Define T, T:V—> 4
by T (x1, x2) = (x1, x1 + x2) and T (xy, x2) = (x1, x» — x1). Clearly both 7 and T
are linear transformations. Now

TT(x1,x) = T (x1, %2 — x1) = (x1, X2)
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TT(x1,x2) = T(x1, x1 + x2) = (X1, X2)

Thus, TT = TT = I. Therefore T is an invertible linear transformation on R? with
T-'=T.

Now that we have defined the inverse of a linear transformation, other important
questions to be answered are that if the inverse of a linear transformation exists, will
it be linear and unique?

Theorem 3.15 Let V and W be vector spaces over a field K, and let T : V — W
be an invertible linear transformation. Then T™' : W — V is linear and unique.

Proof Let wi,w, € W. Since T is both one-one and onto, there exist unique vec-
tors vy, v, € V such that T(v;) = w; and T (v3) = wp. Then T~'(w;) = v; and
T~ '(wy) = vy. Now for A € K, Aw; +wp € W, with T(Avy + v2) = Aw; + ws.
Then

T~ Qwi +w2) = Avi + vy = AT (1) + T~ (w2)

Therefore 7! is a linear transformation from W to V. Now suppose that there exists

two functions fl, fz : W — V such that Tfl =1Iy = sz and flT =1y = sz.

Now _ _ L o _ _
h=Tly=T({TTH) =NTh=KVL=T1T

That is, inverse of a linear transformation, if it exists, is unique.

The idea of inverse of a linear transformation can be used to identify the similarity
between vector spaces. For example, a vector (x1, X2, X3, X4) € R* can be observed as

1

EESEZ . ... .
a2 x 2 matrix [x x2:| in M, > (R) as their vector addition and scalar multiplication
3 X4

can be associated in an identical manner. Such vector spaces are said to be isomor-
phic. An isomorphism of vector spaces is similar to discovering a link between two
universes that allows them to be interpreted as identical despite their differences in
appearance. This correspondence is more than just matching elements; it is a unique
relationship in which operations such as addition and scalar multiplication in one
space completely mirror those in the other. Isomorphisms, in essence, indicate that
these seemingly separate vector spaces are fundamentally the same in terms of their
underlying algebraic features, making them a valuable notion for reducing complex
issues and integrating diverse areas of mathematics and science.

Definition 3.4 (Isomorphism) Let V and W be vector spaces over the field K, then
V is said to be isomorphic to W if there exists an invertible linear transformation
from V to W. That is, if there exists a one-one and onto linear transformation from
VitoW.

Example 3.23 Let V = P,(R) and W = R? over the field R. Define 7 : V — W
by
T(ax2 +bx +c¢) =(a,b,c)
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Let p(x) = aix> +bix + ¢, q(x) = a)x*> + box + ¢ € P,(R) and A € R. Now
Ap(x) +q(x) = (ha; + a)x% + by + by))x + (Acy + ¢2) and

T (Ap(x) +q(x)) = (hay + az, Aby + b2, Aey + ¢2)
= Aa1, b1, c1) + (az, b, c2) = AT (p(x)) + T(g(x))

Therefore T is a Linear transformation from V to W. Now

N(T) = {p(x) e B(R) | T(p(x)) = (0,0, 0)}
= {p(x) e ;2(R) | (a1, b1, c1) = (0,0,0)} = {0}

Since N(T) = {0}, T is one-one. Since V and W are of equal dimension, 7 is onto.
Hence, T is an isomorphism from P, (R) to R3.

Now we will prove that any two finite-dimensional vector spaces with equal
dimension are isomorphic.

Theorem 3.16 Let V and W be finite-dimensional vector spaces over a field K, then
V is isomorphic to W if and only if dim(V) =dim(W).

Proof Let V and W be vector spaces over a field K. Suppose that V is isomorphic
to W. Then there exists an invertible linear transformation 7 from V to W. Since T
is one-one, by Theorem 3.5, Nullity(T) = 0 and as T is onto R(T) = W. Then by
Rank-Nullity theorem,

dim(V) = Rank(T) = dim(W)

Conversely, suppose that dim(V) = dim(W). Let B; = {vy, v2, ..., v,} and B, =
{wi,wa, ..., w,} be bases for V and W, respectively. By Theorem 3.2, there exists
a linear transformation 7 : V — W such that T (v;) = w; fori = 1,2, ..., n. Then

R(T) = span{T (v1), T(v2), ... Ty} ={wi,wa, ..., w,} =W

Therefore T is onto. Since dim(V) = dim(W), T is also one-one. Therefore T is
an isomorphism.

Corollary 3.3 Let V be a vector space over the field K with dim(V) = n. Then V
is isomorphic to K" over K.

Theorem 3.17 Let V and W be vector spaces over a field K with bases By and By,
respectively. Let T : V. — W be a linear transformation. Then T is invertible if and
only if [T]g? is invertible. Furthermore,

[0 = (1712
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Proof Let V and W be vector spaces overa field K, andlet 7 : V. — W be an invert-
ible linear transformation. Then there exists a linear transformation T~' : W — V
suchthat TT~! = Iy, the identity transformation on W and T-'T = Iy, the identity
transformation on V. Also by the above theorem, we have dim (V) = dim(W) and
hence [T]gf is an n x n matrix. Therefore

L =Uylg, = [T7'T], =[]} (T15;

Also R
In = [IW]32 = [TT_1]32 = [T]gf [T_l]B;

-1
Therefore [T’l]g; = ([T]g?) . Now suppose that A = [T]gf is invertible. Then
there exists a matrix B = [b;;] suchthat AB = I, = BA.Let B; = {vy, vy, ..., U}
and B, = {w;, wa, ..., w,}bebases for V and W, respectively. Now define T:W—

- 1B
V such that T'(w;) = Zle bijv; fori =1,2,...n. Then [T] - B. Therefore
By

(7], =[7], 11 = BA =1 = 11015,

and
~1Bi

[TT]BI = (T2 [T]32 = AB =1, = Iyl

Hence, T is invertible with 7~! = 7.

Example 3.24 Consider Example 3.22. Now consider the matrix representation of

both T and T
10 ~ 10
[T1s = [1 1] and [Tz = [_1 J

Clearly [T]B = ([T1s)"".

We have seen that corresponding to every linear transformation from an n dimen-
sional vector space V to an m dimensional vector space W, there exists a matrix
representation [T]gf, where B and B; are bases of V and W, respectively. Now we
will prove that the space of all linear transformations from V to W is identical to the
space of all m x n matrices.

Theorem 3.18 Let V and W be vector spaces over K with bases B =
{vi, v2, ..., vy} and B, = {wy, wa, ..., wy}, respectively. For each linear transfor-
mation T from V into W, there is an m X n matrix [T]gf with entries in K such that
[Tv]s, = [T]gf[v]g1 for all v € V. Then the function ® : L(V, W) — M, «, (K),
defined by ®(T) = [T]gf, is an isomorphism.
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Proof Let V and W be vector spaces over K with bases B} = {vy, v, ..., U}
and B, = {wy, wa, ..., wy}, respectively. Define & : L(V, W) — M,,,(K) by
d(T) = [T]gf. By Theorem 3.10, @ is a linear transformation. Now we have to
prove that @ is both one-one and onto. It is enough to show that, for any matrix
A € M, 4, (K), there exists a unique T € L(V, W) such that ®(T) = A. Let M =
[aij] € M« (K). Define T : V. — W by T(v;) = > -, a;;w; where 1 < j <n.
Then [T]gf = A, and hence ®(T) = A. That is, ® is onto. By Theorem 3.2, such a
T is unique. Hence & is one-one. Therefore L(V, W) is isomorphic to M, ., (K).

Thus, the space of all linear transformations from an n dimensional space V to
an m dimensional space W is a vector space of dimension mn.

3.6 Change of Coordinate Matrix

We know that basis of a vector space is not unique. The coordinate representation
of a vector depends on the basis that we are choosing, i.e., the same vector can have
different representations when we are choosing different bases. Therefore the same
linear transformation can be represented by different matrices depending upon the
basis. In this section, we will discuss the relation between these representations.

Theorem 3.19 Let V be afinite-dimensional vector space over a field K with ordered
bases By and By, and let P = [I V]gf where Iy is the identity transformation on V.
Then

(a) P is invertible.
(b) Foranyv €V, [v]g, = P [v]g,.
(c) If T is a linear operator on'V, then [T |5, = P! [T]g, P

P is called the change of coordinate matrix as P changes By coordinates into B,
coordinates and P~ changes B, coordinates into B) coordinates.

Proof (a) Since Iy is invertible, by Theorem 3.17, P is invertible.
(b) Foranyv € V,

[1g, = [Iv ()], = [Iv]} V], = P [Vl
(c) Since IyT =T = Ty, by Theorem 3.13, we have
P[T)p =[IVF [Ty = [IvT1y =(TIyly =[T13 [Iv]y =(Tls P

Since P is invertible, [T']p, = p-! [T]g, P

Example 3.25 Let V =R?. Consider the bases B; = {(1,0), (0, 1)} ,
7

{(1, 1), (1, =D} for V and v = (5, 2). Then [v]g, = |:§i| and [v |:%i| Since
2
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1 1
1,0) = 5(1, 1)+ 5(1, -1

1 1
0.D=2-0D+ (—§> 1, =D

1

L 17T5 7
<[} 4]
a4 (-1

Now consider the linear transformation 7 : V — V defined by

L1
the change of coordinate matrix P = |:i 2 1] and P~! = |:1 _11j| Clearly
2

and

T (x1, x2) = (x2, x1)

Since T(1,0)=(0,1) =0(1,0)+ 1(0,1) and T(0,1)=(1,0) = 1(1,0) +

0(0, 1). The matrix of T with respect to By is [T]p, = (1)(1) . Since T(1,1) =
(1,1) =11, +0(1, -1 and T (1, —1) = (=1, 1) = 0(1, 1) + (=1)(1, —1) The
matrix of 7 with respect to B, is [T], = |:(1) —01i| Now

N—

. [t 170174 [ro]_
= [0 A]-f 0 e

3.7 Linear Functionals and Dual Space

So far, we have discussed linear transformations between vector spaces. In this
section, we will discuss linear transformations which are defined from a vector space
to the field associated with it.

Definition 3.5 (Linear Functionals) Let V be a vector space over the field K. A
function f : V — Kis said to be a linear functional, if

JQvr+v) = Af (v) + f(v2)

for all v, v, € V and A € K. The set of all linear functionals on V forms a vector
space, called the dual space of V, and is denoted by V*.
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Example 3.26 Let V be a vector space over the field K. Clearly, the map f defined
by f(v) =0, Yv € V is alinear functional on V.

Example 3.27 Let V = M,,,,,(R). Define a map f : M, «,(R) = R by f(A) =
Tr(A). As we have already seen that T'r is a linear function, T'r is a linear functional
on M., (R).

Example 3.28 LetV = P,[a, b]. Defineamap f : P,[a, b] — Rby f(p) = p(0).
As

FOp+q)=Op+q)0)=2rp0)+q0) =1f(p)+ f(q)
for all p,q € P,[a, b] and A € R, f is a linear functional on P, [a, b].

Example 3.29 LetV = Cla, b]. Define amap f : Cla, b] — R defined by f(p) =
f: p(x)dx. As

b b b
FOp+q) = / (p + q) ()dx = & / p()dx + f g)dx = 1f(p) + f(q)

for all p, g € Cla,b] and A € R, f is a linear functional on Cla, b].

We already know that the set of all linear functionals on a vector space V forms
a vector space, called the dual space of V. If V is a finite-dimensional vector space,
we can get a rather explicit description of the dual space. Consider the following
theorem.

Theorem 3.20 Let V be a finite-dimensional vector space over the field K, and
let B ={vy,va,...,v,} be a basis of V. Then there exists a unique basis B* =
{f1, f2, ... fu} for V*, where f; is given by

L, ifi=j

Jitvy) = {o, if i # ]

Then for each linear functional f on 'V, we have f =Y ', f(v;) f; and for each
vector v € V, we have v = Z:’:l fi()v;.

Proof First we will prove that B* = {f1, f2, ... fu}, where f; is given by

L, ifi=j

fiwp) = {0, if i #J

is linearly independent. Let A1, A7, ..., A, € K be such that

MA+Mf+ -+ A fa=0
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ie, Mfi+rfo+---+ A fy)(v) =0forallv € V. Then,
MA+Mh+ - FMf)W)=0=1=0,Vi=1,2...,n

Thus {fi, f2,... fu} is linearly independent. Also by Theorem 3.18, we have

dim(V) = dim(V*). Hence B* = {f1, f2, ... fu} is a basis for V*, called the dual

basis of B. By definition itself B* is unique. Now, for any linear functional f € V*,
there exists A1, Az, ..., A, € Ksuchthat f = Z?:l i fi. Then

f@) = "Nifiw) =2, ¥j=12..n
i=1

Thus for each linear functional f on V, we have f = >"_, f(v;) f;. Similarly, for
each v € V, there exist scalars A1, Aa, ..., A, € Ksuchthatv =)""_, A;v;. Then

fiw) = f; (inv,) =Y Mfi) =1, Vji=12....n
i=1 i=1

Hence forany v € V, wehave v = )_/_, fi(v)v;.

Consider the following example for a better understanding of the above theorem.

Example 3.30 Let V = R? and consider a basis B = {(1, 2), (2, 2)}. Now, let us
find the dual basis B* = {f], f»} corresponding to V. By definition, f(1,2) =1
and f;(2,2) = 0. Then
HL2) =1« f1(11,00+20, 1)) = f1(1,0) +2/(0, 1) =1
f12,2)=0< £i1(2(1,0) +2(0, 1)) =2/1(1,0) +2£(0,1) =0
This implies that f;(1,0) = —1 and f;(0, 1) = 1. Thus, we have
Silx, x2) = x1 fi(1,0) +x2 f1(0, 1) = x2 — xy
Similarly, we have , f>(1,2) = 0 and f>(2,2) = 1. Then
£1,2) =0« f2(1(1,0) + 20, 1)) = /(1,00 +2/2(0,1) =0
£2.2) =1« £2(1,00+20, 1) =2/1,0) +2/0,1) =1
This implies that f>(1,0) = 1and f5(0, 1) = 5. Thus, we have

Solx1, x2) = x1 f2(1,0) + X2 £2(0, 1) = x1 — x_22
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Thus B* = {x, — x1,x1 — %2} forms the dual basis corresponding to B =
{(1, 2), (2, 2)}. Now consider a linear functional f(x;, x) = 2x; — 3x, on R2. Then
we can write f as a linear combination of the dual basis elements. Observe that

FULDfi+ Q.2 f = —4(xs — x1) — 2 (xl - x2_2) =2x1 — 352 = f(x1,%2)

Also, the coordinates of a vector relative to the basis can be obtained using the dual
basis. For example, (3,4) € R2,

HG,H(A,2)+ £3,42,2) =1(1,2) +12,2) = (3,4)

The above theorem gives a good description of the dual basis B* corresponding to
abasis Bof V.If B = {vy, vy, ..., v,} is an ordered basis for a vector space V, B* =
{f1, f2, ... fn}is the dual basis, where f; is the function which assigns to each vector
v in V the ith coordinate of v relative to the ordered basis B. Thus if f € V*, and
we have f(v;) = p;, then forv =" | A;v;, we have f(v) = > |, A;i;. In other
words, if B = {vy, vy, ..., v,}is an ordered basis for V, and describe each vector in
V by its coordinates (A, Az, ..., A,) relative to B, then every linear functional on
V has the form f(v) = Y| Aipt;.

Example 3.31 Considerthe basis {(3,2), (1, 1)} for V.= R%. Thenforany (x|, x,) €
R? as
(x1, x2) = (x1 — x2)(3,2) + (=2x1 + 3x2)(1, 1)

we get f] (xl, X2) = X1 — X2 and f(xl,xz) = —2X1 + 3)(2. Thus {xl — X2, —2X1 +
3x,} is the dual basis corresponding to the basis {(3, 2), (1, 1)}.

Example 3.32 Consider the basis {1, 1 + x, x + x2}for V = P,[a, b]. Then for any
ap + a\x + arx* € R? as

ap + arx + axx® = (ap — a1 + @)1 + (a1 — a2)(1 + x) + ax(x + x%)

we get fi(ap + arx + axx?) = ap — ay + az, fr(ap + a1x + axx?) = a; — ap and
falao + a1x + axx?) = a.

Now, let us discuss the range space and null space of a linear functional. If f
is a non-zero linear functional, then the range space of f is the scalar field itself.
Then, by Rank-Nullity Theorem, we can say that Nullity(f) =n — 1,if Visann
dimensional space. In a vector space of dimension n, a subspace of dimension n — 1
is called a hyperspace. In fact we can say that every hyperspace is the null space of
a linear functional (see Exercise 26).
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3.8 Exercises

1. Check whether which of the following functions defines a linear transformation
from R? over R to itself:

@ T(x,x)=0+1,x+1)
(b) T (x1, x2) = (3x1, 7x2)

(©) T(x1,x3) = (sin x,0)

(d) T(x1,x2) = (x1,x3)

(@) T(x1,x2) = (2x1, 3x2)

(f) T(x1,x2) = (x1, X1X2).

2. Check which of the following functions define a linear transformation:

(@ T:R>— Pyla,b] defined by T (a1, 00, 3) =0+ (@ +a)x+
(a1 + o + az) x2
(b) T : P(R) — P(R) defined by (Tp) (x) = x>p(x) + <= (p(x)).
14+x1 x1 +x2
.4 =
(¢) T :R* — My (R) defined by T'(x1, x2, x3, x4) = |:x2 + x3 X3 +x4j|'

d) T : Psla, b] — M, (R) defined by (Tp) (x) = [" 5)0) p (1)113)1) (2)].

(e) T : M, (R) - M, (R) defined by T(A) = A + I, where I € M, (R) is the
identity matrix.

(f) Fix A e M, R) and b #€ R". Define T : R" — R" by T(x) = Ax + b.

(2) Fix A € M, (R). Define 7 : M, (R) — M, (R) by T(B) = A~'BA.

3. Show that T : M,, (R) — R defined by T'(A) = Tr(A) is a linear transforma-
tion. What about T (A) = det(A)? Here Tr(A) and det (A) denote the trace of
A and determinant of A, respectively.

4. Let V be a one-dimensional vector space over a field K. Show that every linear
transformation 7' : V — V is of the form T (v) = Av for some A € K.

5. Let Ty : V — W be alinear map and 7, : V. — W be a non-linear map. Then
what about 77 + 757 Is it always non-linear?

6. Find T:R?®— R3 if 7(1,0,0)=(1,0,1),T(1,1,0)=(0,2,1), and
T{,1,1)=1(0,0,1).Is T unique?

7. Find the range space and null space of the following linear transformations:

(@) T :R® — R3 defined by T (x;, x2, x3) = (x3, 0, x1).

(b) T : Psla, b] — M, (R) defined by T (ap + arx + arx?) = [ZO ‘8]
2

(¢) T : M, (R) = M, (R) definedby T(A) = A — AT

8. Find a linear transformation 7 : R* — R? for which the null space is spanned
by vy =(1,1,1,1),v; = (1,0,0, 1), and the range space of T is spanned by
wi = (1,1,0) and wp, = (1, 0, 1), if it exists.

9. Show that if A € M, ., (K), then row rank of A= column rank of A.
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10. Let V be a vector space over a field K. Does there exist linear transformations
Ti, T, on V with

(@) R(T) =R(T2) and N (T1) = N (T2)
(d) R(T1) =N (T2) and N (T1) = R(T2).

11. Let T : R* — R* be defined by
T (x1, x2, X3, X4) = (X1 — X2, X3 — X3, X3 — X4, 0)

Then

(a) verify that T is a linear transformation on R*.
(b) find R(T) and N(T).

(c) verify Rank-Nullity theorem.

(d) Is T invertible?

12. Check whether the following statements are true or false:

(a) There exists a linear transformation T : R? — R2 such that 7'(1, 0) = (1, 2),
T{1,1)=(0,3)and T(2,3) =(2,5).

®) T:P,_1(R) - P,(R) defined by (Tp) (x) = fox p(t)dt is onto.

© T:P,(R) - P,_1(R) defined by (Tp) (x) = %(p(x)) is one-one.

(d) There exists a linear transformation 7 : R* — R" with R(T) = N(T) if and
only if n is even.

(e) Let T : V — V be a linear transformation with R (T) N N (T) = {0}, then
V=RT) & NT).

(f) Let T : V — V be a linear transformation on a finite-dimensional vector
space V and A € M, (K) be its matrix representation. Then A is unique.

(g) Let V and W be finite-dimensional vector spaces over the field K. Then an
invertible linear transformation 7' : V. — W maps a basis of V to a basis of
w.

(h) Let Ty, T, : V. — W be isomorphisms from V to W. Then T; + T is also an
isomorphism from V to W.

13. Let V be a finite-dimensional space and 77, 7 : V — V be linear transforma-
tions such that 717> = I. Then show that 7, = Tl_l. Also show that there exist
linear transformations 77, T, such that 717, = I and T, T} # I, if V is infinite-
dimensional.

14. Let V and W be finite-dimensional vector spaces over the field K, and let 77 :
V — W be a linear transformation. Then

(a) T, is one-one if and only if there exists 7, : W — V such that 75T is the
identity map on V.

(b) T isontoif and only if there exists 7> : W — V such that T T is the identity
map on W.
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15. Let V be a vector space over Kand 7 : V — V be any linear transformation.
Show that

(a) R(TYNN (T) = {0} if and only if N (Tz) CN(T).
(b) T? is the zero transformation if and only if R(7") € N(T).

16. Consider the linear transformations T;, T», T3 : R® — R? defined by
Ti(x1, x2, x3) = (X1 + x2, X1 + x3), Ta(x1, X2, x3) = (2x1, X1 + X2 + X3)

and
T3(x1, x2, x3) = (x1, X2)

Check whether {T}, T», T3} is linearly independent in £ (R3, Rz).

17. Let T, :P,(R) > P,_;(R) be defined by (Tip)(x)= %(p(x)) and
T, :P,_1(R) - P,(R) be defined by (T>p) (x) = xp(x). Show that T\ T, —
T,T, = I, where [ is the identity operator on P, _; (R).

18. Fix A € M,, (R). Define T : R* — R" by T(v) = Av. Describe a situation
where T becomes an isomorphism, if it exists.

19. Let T : R* — R” be a linear transformation and A € M, (R) be its matrix rep-
resentation. then what is the relation between R(T) and Im(A), where Im(A)
denotes the column space of A.

20. Let T : R — P,[a, b] be defined by

T (a1, o2, a3) = (0 + a3)x + (0 + a3)x?

Find [T]gf where B = {(2,0,1),(1,2,0),(0,1,2)}and B, = {1, 1+ x, (1 +
x)2).

21. LetT : M, (R) - M; (R) bedefinedby T (A) =
o= {loo]-[so]-[1o]- 1 1]}

oop’joo’jro’{r1|f

22. Let V and W be vector spaces over K with dim (V) = dim(W). Show that there
exist bases, By of V and B, of W such that [T]gf is a diagonal matrix.

23. Let By = {1, x,x%},Bo ={1,14+2x,1 +2x +3x%},and B, = {1,2 4+ x, 1 +
x?} be three bases for P[a, b]. Then find

(A+ AT).Find[T] where

=

(a) change of basis matrix from B; to B;.
(b) change of basis matrix from B; to Bs.
(c) change of basis matrix from B; to Bj.

Find the relation between them and generalize, if possible.
24. Let T : R?> — R? defined by T(x1, x) = (x; + x2, 2x,). Consider the bases
B ={(,1),(1,-1)}and B, = {(1,2), (0, 1)} of R?. Then find

(a) the matrix representation of 7' with respect to Bj.
(b) the matrix representation of 7" with respect to B;.
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(c) change of basis matrix from B; to B;.
(d) What is the relation between [T']p, and [T]p,?

2

25. Show that every linear functional on K" is of the form
FOa, X, oo ) = Aixy + Aaxz + -0+ Ay

for some scalars Ay, Ay, ..., A, € K.

26. LetT : V — Kbe alinear transformation. Show that for an element v € V with
v ¢ N(T),wehave V = span{v} ® N(T).

27. Consider the basis B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} for R3. Find the dual basis
B* corresponding to B.

28. Let V = P,[a, b]. Consider 3 distinct real numbers A, A», A3, and define
Ji(p) = p(A;). Then

(a) Show that B* = { fi, f>, f3} forms a dual basis for V*.
(b) Find the ordered basis B of V corresponding to B*.

29. Let V and W be vector spaces over the field K with respective dual spaces V*
and W*. Let T : V — W be a linear transformation.

(a) Show that the map T : W* — V* defined by Tg = g o T is a linear map.
(The map T is called the Transpose of T.)

(b) Suppose that { f1, f2, ..., fu}in V*is a dual basis corresponding to the basis
{vi,v2,...,v,} in V and that {g, g2, ..., g,} in V* is a dual basis corre-
sponding to the basis {wy, wy, ..., w,}in W.If A is the matrix representation
of T, then show that A7 is the matrix representation of 7' with respect to the
above dual bases.

30. Find the matrix representation of transpose of the linear transformation, 7 :
R?® — R? defined by

T (x1, x2,x3) = (2x1 — X2 + 2x3, X1 + 2Xx2 — X3)

where the bases of R? and R? are, respectively, {(2,0, 1), (1,2, 0), (0, 1, 0)}
and {(3,2), (1, D}.

Solved Questions related to this chapter are provided in Chap.9.



Chapter 4 ®)
Eigenvalues and Eigenvectors i

In this chapter, we explore the foundational concepts of eigenvalues and eigenvec-
tors, providing a deep understanding of their definition, properties, and far-reaching
applications of linear algebra. Eigenvalues and eigenvectors are introduced as cru-
cial properties of square matrices. Eigenvalues represent the scaling factors by which
eigenvectors are stretched or compressed when the matrix operates on them. Matrix
similarity is discussed as a fundamental concept, highlighting how similar matrices
share the same eigenvalues. We delve into the importance of diagonalization, where
a matrix is transformed into a diagonal matrix using its eigenvectors. This process
simplifies matrix exponentiation and powers, which are crucial for solving differ-
ential equations and modeling dynamical systems and their stability analysis. The
chapter provides a thorough grasp of when diagonalization is possible by examining
the necessary and sufficient conditions for a matrix to be diagonalizable. To deal
with non-diagonalizable matrices, generalized eigenvectors are introduced, leading
to the Jordan Canonical Form notion. This form aids in the analysis of complicated
systems by providing insight into the structure of non-diagonalizable matrices. From
this point onwards, for convenience A is used both as a variable and as a scalar. The
usage is evident from the context.

4.1 Eigenvalues and Eigenvectors

Consider a homogeneous linear system of differential equations of the form

ayn

=anyr +any:
& (4.1)
2 = aay1 tany

where a1, a1z, a1, a; are real constants. We shall represent the above system in an
alternate form using matrices, as follows:
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anap | (yr| _
az ax || 2

If we name the matrices in Eq. (4.2) as,

d AN
A= audu’y: Y aa & = |
az| an »2 dx i

Equation (4.2) can be written in a compact form as

XU
~

=
[

g } @.2)

X

&

_dy

Ay =
Y dx

4.3)
We seek non-trivial solutions of the form

yi = wie™ and y, = ppe™

for the system (4.1), where w1, u, and A are constants. That is, we need a solution
of the form

y = ve™, where v = [Ml]
K2
Substituting y = ve™* in Eq. (4.3), we get
rvett = Ave™™
which then reduces to
Av = Av 4.4
That s, we need to find a non-zero vector v and scalar A such that Eq. (4.4) is satisfied.
In many practical cases, numerous mathematical problems can be formulated in the
form of Eq. (4.4). Such problems are called Eigenvalue problems. We may rewrite
Eq. (4.4) as
(A—ADHv=0 4.5)
The matrix (A — A1) is called the characteristic matrix of A and the Eq. (4.5) is the

characteristic matrix equation. From Sect. 1.7, we know that Eq. (4.5) has a non-zero
solution if and only if

det(A—11)=0 (4.6)

Observe that det (A — AI) will be a polynomial of order n in A, if A is an n X
n matrix, and is referred to as characteristic polynomial of A. Equation (4.6) is
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known as characteristic equation of A. From Theorem 1.18, we know that over an
algebraically closed field, such an equation will have n solutions/roots. The roots
are called characteristic values or eigenvalues of A. If we denote the eigenvalues of
Aby Ay, Az, ..., Ay, we have det (A — A;1) =0foreachi = 1,2, ..., n. Then for
each A; there exists non-zero vectors v; satisfying (A — ;I)v; = 0. Such vectors v;
are called characteristic vectors or eigenvectors of A associated with the eigenvalue
A;. Consequently, we have Av = Av. Thus we can have the following definition.

Definition 4.1 (Eigenvalues and Eigenvectors)Let Abeann x n matrix with entries
from the field C. A non-zero vector v € C" is said to be an eigenvector of A, if there
exists A € C such that Av = Av. The scalar X is called an eigenvalue of A. In other
words, A € C is an eigenvalue of an n x n matrix A if there exists a non-zero vector
v € C" such that Av = Av.

Consider the following example for a better understanding of the ideas that we
have discussed above.

Example 4.1 Let A = [; ﬂ Then the characteristic polynomial of A is

det(A — Al) = 'lgk 131‘ — 22 —3=0+D(-23)
and det (A — AI) = O implies that Ay = —1 and A, = 3. Now to find the eigenvector
associated with the eigenvalue A; = —1, we have to find a non-zero vector v = [z':|
2

satisfying (A + I)v = 0.

22 U1 0
o[22 -[]

=Sv+v,=0
Thus any non-zero vector from the set W; = {(v;, v2) € R? | v; + v, = 0} is an
eigenvector of A corresponding to the eigenvalue A; = —1. In particular, we can say

thatv = [_ 1j| is an eigenvector of A corresponding to the eigenvalue —1. Similarly,

1
for A, =3

_ -2 2 vi| |0

acmn=v= 2 [

= —v+v,=0

Thus any non-zero vector from the set W = {(vy, v2) € R? | —v; + vy = 0} is
an eigenvector of A corresponding to the eigenvalue A, = 3. In particular, we can

} is an eigenvector of A corresponding to the eigenvalue 3. Now let
us plot the sets Wi and W,.

say that v =
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Clearly both W; and W5 are subspaces of R?. Another interesting fact to observe
is that the vector (1, —1) spans W; and (1, 1) spans W5. Is this true in general?

Remark 4.1 The geometrical significance of eigenvalues and eigenvectors of a
matrix are of great importance in matrix theory and linear algebra. In Example 4.1,

we have seen that the eigenvalue —1 changed the direction of the eigenvector |:_11i|

. 1 . .
and the eigenvalue 3 stretched the vector [1:|, three times. If the matrix A has a real
eigenvalue X, Definition 4.1 means that the eigenvector of A associated with A is a
vector that experiences a change in sign or magnitude or both and X is the amount
of stretch or shrink, the eigenvector is subjected to by the action of A.

‘We know that a non-zero vector v is an eigenvector of a matrix A corresponding to
the eigenvalue A if and only if v is a solution of the matrix equation of (A — Al)v = 0.
That is, if and only if v € /(A — AI), the null space of the matrix A — A[. This
justifies our observation in the Example 4.1 that the sets W, and W, are subspaces
of R?. The ideas that we have discussed so far can be summarized as follows to
characterize the eigenvalues of a square matrix A.

Theorem 4.1 Let A € M, (K) and A € K, then the following are equivalent;

(a) M\ is an eigenvalue of A.
(b) N(A—21I) # {0}
(c) det(A—XI)=0.

Proof (a) = (b) Let A be an n x n matrix with entries from a field K. Let A € K
be an eigenvalue of A. Then there exists a vector v # 0 € K" such that Av = Av.
Now

Av=mw o A-IDv=0sveNA-AI

Therefore N'(A — AI) # {0}.

(b) = (¢) Suppose that N'(A — AI) # {0}. Let v #0 € N (A — AI). Then (A —
AT)v = 0. That is, the homogeneous system of equations (A — AI)v = 0 has a non-
trivial solution. This is true only if det (A — A1) = 0.

(c¢) = (a) Now suppose that det (A — A1) = 0. This implies that the homogeneous
system of equations (A — AI)x = 0 has a non-trivial solution, say v € R". That is,
(A — AI)v = 0. This implies that there exists a non-zero vector v € R” such that
Av = Av. Therefore X is an eigenvalue of A.

Thus we have seen that the collection of all eigenvectors of a square matrix A
associated with an eigenvalue A forms a vector space called as eigenspace of A
corresponding to the eigenvalue A. The dimension of the eigenspace associated with
A is called as the geometric multiplicity of . By Rank—Nullity Theorem, geometric
multiplicity of an eigenvalue A of A is given by n — Rank(A — AI). Another term
related to an eigenvalue A of a matrix A is its algebraic multiplicity. The algebraic
multiplicity of an eigenvalue A of A is defined as the number of times A appears as a
root of the characteristic polynomial.
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é % has two eigenval-
ues —1 and 3. As the characteristic polynomial of A is (A 4+ 1)(A — 3), the algebraic
multiplicity of both —1 and 3 (denoted by AM (—1) and AM (3), respectively) is 1.

Also, we have observed that

Example 4.2 In Example 4.1, we have seen that the matrix

NA+1) ={(v1, 1) € R? | v; + vy =0} = span{(—1, 1)}

and
N(A =31) = {(vi, v2) € R? | —v; 4+ vy = 0} = span{(1, 1)}

Therefore the geometric multiplicity of both —1 and 3 (denoted by GM (—1) and
G M (3) respectively) is also 1.

Now pick one eigenvector from each of the eigenspaces N (A + I) and N'(A —
31) of the matrix [; ﬂ .Letus pick |:_11] from N (A + I) and [}] from N (A — 31).

We can clearly notice that these vectors are linearly independent. Our next theorem
generalizes this fact. That is, we will prove that the eigenvectors of a matrix A
corresponding to its distinct eigenvalues will be linearly independent.

Theorem 4.2 Let A € M, (K) and let vy, va, ..., v, € K" be eigenvectors of
A corresponding to distinct eigenvalues Ai, A, ..., Ay € K respectively , then
{vi, va, ..., vy} is linearly independent.

Proof Let k be the smallest positive integer such that vy, vy, ..., v; are linearly
independent. If k = m, then there is nothing to prove. Now let k < m. Then
{vi, v2, ..., Vg1 }C{vy, V2, . . ., v, }islinearly dependent. Hence, there exists scalars
Ui, U2, ..., g such that

Uk+1 = U1V1 + (UoV2 + - - + Ug U
Multiplying by A on both sides, we get

Aviyr = A(1vr + pova + -+ W)
= u1A(v1) + w2A(W2) + -+ - + wr Avr)
= wiA1vr + UoA2vy + - -+ UpArvg

Since vy is a an eigenvector of A corresponding to the eigenvalue Ay, we have

AVl = A1V
= M1 (v + povy + - -+ g vg)
= U1 Ak+1V1 + UoAkp V2 + - Ak Vg
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From the above two equations, we get
H1(Ar — Ar)vr + w2 = Agr)vr + - -+ pe(Ae — A1) =0
Since vy, vy, ..., v; are linearly independent, we get
wii —Agr1) =0 foralli=1,2,...,k

Now as Ay, Az, ..., Agq are distinct, we get u; =0 for all i = 1,2, ..., k. This
implies that vy is the zero vector which is a contradiction.

Corollary 4.1 Ann x n matrix A can have at most n distinct eigenvalues.

Proof Suppose that A have n + 1 distinct eigenvalues. Then as eigenvectors cor-
responding to distinct eigenvalues are linearly independent, A has n + 1 linearly
independent eigenvectors which is a contradiction since K” is of dimension 7.

Example 4.3 Consider the matrix

123
A=]012
007
Then
-2 2 3
det A—A)=0=] 0 1—x 2 |=0=>(1-1)*T-1)=0
0 0 7-2x

Thus (1 — A)%(7 — &) = 0 is the characteristic equation of A and hence the eigen-
values of A are 1, 1, 7. Since 1 appears two times as a root of the characteristic
equation, the algebraic multiplicity of 1 is 2 and algebraic multiplicity of 7 is 1. That
is, AM(1) =2and AM(7) = 1.

Now let us find the eigenvectors corresponding to the eigenvalue, A; = 1.

023 v 0
A-—DHv=0=1002 v |=(0]=>v=v;=0
006 [vs 0

Therefore
NA=1) ={(v,0,0eR|v eR} = span{(1,0,0)}

Hence geometric multiplicity of A; = 1is 1. Thatis, GM (1) = 1. This fact can also
be verified by Rank-Nullity Theorem, as

n— Rank(A — A1) =3—Rank(A—-1)=3-2=1
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Now for A, =7,
-6 2 3 v 0 1
(A—7I)U=0$ 0 —62 V| = 0 $U1=—U2,U3=3U2
0 0 0] 0 6
Therefore

11 X 11
NA =TI = gvg,v2,3v2 e€R’ | v, e R} = span g,l,?)

Hence geometric multiplicity of A, = 7 is 1. That is, GM (7) = 1. Verification by
Rank-Nullity Theorem is as follows,

n— Rank(A —Al) =3 — Rank(A—-71)=3-2=1
Also observe that the eigenvectors corresponding to 1 and 7 are linearly independent.

An intriguing fact to keep in mind from the above example is that the geometric
multiplicity and algebraic multiplicity of every eigenvalue need not be the same.
Matrices having AM (L) = GM (}) for all eigenvalues A are of greater importance
in Mathematics. We will study about such matrices later in this chapter. Now let us
give a definite form for the characteristic polynomial of an n x n matrix.

Theorem 4.3 The characteristic polynomial of an n X n matrix A is a polynomial
of degree n and is of the form

det(A—AD) = (=1)" [M" + poi A"+ -+ id + o)

where (g, (1, ..., Uy € K.

Proof We prove this by induction on n. Suppose that n = 1, then A is of the
form A = [a;;], where a;; € K. Then for A € K, det(A — AI) = 0 implies that
aj; — A = (—1)(A —ay;) = 0. This implies that the result is true for n = 1. Now
assume that the result is true for n — 1. That is, the characteristic polynomial of
an (n — 1) x (n — 1) matrix is a polynomial of degree n — 1 and is of the form
(=D AT £ A R 4+ E A+ & where &, &1, ..., &,—» € K. Now con-
sider an n X n matrix

apn ap ... ay ap — A apn . aiy,
azy Az ... Ay, anq azy — A azy,

A= . . . |.Then A — Al = . . ) . . Now cal-
Ay Apo ... App anl Ay ... Ay — A

culate the determinant of A — Al by expanding the matrix along a column or
row. In either case, some (—1)(A — a;;) is multiplied with the determinant of an
(n — 1) x (n — 1) matrix, which is a polynomial of degree n — 1 and is of the
form (—1)" 1 [A771 4 &, 22" 4 -+ 4 £1) + £] where £, &1, ..., &2 € K by
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our induction hypothesis. Therefore the characteristic polynomial of ann x n matrix
A is a polynomial of degree n with leading coefficient (—1)".

Corollary 4.2 Let A € M, (K). Then the product of eigenvalues of A is equal to
det (A) and the sum of the eigenvalues of A is equal to Tr (A).

Proof From the above theorem, for an n x n matrix A, the characteristic polynomial
det(A — Al) is of the form (—1)" [)J’ + ;Ln_lk"’l 4+ A+ ,u()]. Since the
roots of the characteristic polynomial are eigenvalues, from Vieta’s Formula, we
know that the product of eigenvalues is equal to the constant term in the polynomial
and the sum of the eigenvalues is equal to the coefficient of A"~!. Therefore product
of eigenvalues of A = (—1)"uo and the sum of the eigenvalues of A = (—1)" i, ;.
Also det(A) = det (A — 0I) = (—1)" . Therefore the product of eigenvalues of
an n X n matrix A is equal to det(A). Now expanding det(A — Al) we get that
Tr(A) = (—1)"u,. Therefore the sum of the eigenvalues of a matrix A is equal to
Tr (A).

From the above corollary, we can conclude that A € M, (K) is singular if and
only if O is an eigenvalue of A. For, A is singular implies that det(A) = 0. Since
det (A) is the product of eigenvalues of A, atleast one of the eigenvalues of A must
be 0. Conversely, if 0 is an eigenvalue of A, then the product of eigenvalues of
A =det(A) =0.

Example 4.4 Consider the matrix

2=l

from Example 4.1. We have seen the eigenvalues of A are —1 and 3. Clearly, we can
observe that sum of eigenvalues of A =2 = Tr(A) and product of eigenvalues of
A = -3 =det(A).

Example 4.5 Consider the matrix

123
A=1012
007

givenin Example 4.3. The eigenvalues of A are 1, 1 and 7. Clearly, sum of eigenvalues
of A =9 = Tr(A) and product of eigenvalues of A =7 = det(A).

Remark 4.2 The characteristic equation of a 2 x 2 matrix is of the form

A2 —tr(A)r +det(A) =0
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and the characteristic equation of a 3 x 3 matrix is of the form
— A 4+ r(AA? = [My; + My + M33]h + det(A) =0

where M|, M, and M33 are the minors of the diagonal elements.

If we know the eigenvalues of an n x n matrix A, we could find the eigenvalues
of some matrices associated or related with A. The following theorem shows that, if
A is an invertible matrix, then the eigenvalues of A~! are the multiplicative inverses
of eigenvalues of A.

Theorem 4.4 Let A € M, (K) be a nonsingular matrix. If A is an eigenvalue of
A, then =" is an eigenvalue of A7" .

Proof Let A € M4, (K) be a nonsingular matrix. Then by Corollary 4.2, all
eigenvalues of A are non-zero. If A is an eigenvalue of A, there exists a non-
zero vector v € K" such that Av = Av. Multiplying both sides with A~! we get,
A7'(Av) = A7'(v). That is, v = LA~ v which implies that A~'v = A~'v. There-
fore 1! is an eigenvalue of A~! with eigenvector v.

Likewise we can compute the eigenvalues of powers of A, if we know the eigen-
values of A.

Theorem 4.5 Let A € M,,(K). Let A be an eigenvalue of A with an eigenvector
v, then A™ is an eigenvalue of A™ with eigenvector v, for any positive integer m.

Proof Let X be an eigenvalue of A with an eigenvector v. Then Av = Av. We have
to show that A™v = A™v for any positive integer m. Clearly this is true for m = 1.
Now assume that the result is true for m — 1.1i.e, A" v = A1y, Now

A"v = A (A" ) = AW ) = A" TTAQ) = A
Hence, A™ is an eigenvalue of A” with eigenvector v, for any positive integer m.

Using the eigenvalues of ann x n matrix A, we have characterized the eigenvalues
of A™, where m is a positive integer and A~1, when A is invertible. Now consider a
polynomial of degree m, given by
p(x)=aotaix +- -+ aux"
If we evaluate this polynomial with x = A,

p(A) =apl +a1A+---+a, A"

we get a matrix polynomial. Again, using the eigenvalues of A, we can compute the
eigenvalues of p(A). Consider the following theorem.
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Theorem 4.6 Let p(x) =ag+ ajx + --- + anx™ € K[x]beapolynomial of degree
m, where K is an algebraically closed field. If ). is an eigenvalue of A € M, (K) with
an eigenvector v, then p(A) is an eigenvalue of p(A) = apl + ;A + -+ -+ a,, A™
with the eigenvector v. Conversely, if m > 1 and if u is an eigenvalue of p(A), then
there is some eigenvalue A of A such that p(A) = u.

Proof Let X be an eigenvalue of A with eigenvector v. Then Av = Av. Now

p(Av = (apl +a1A+ -+ a,A™)v
=aylv+aAv+---+a,A"v
=agv + aiAv + - +a,M"v
= (ap +aiA+---+a,\")v
=pv

Hence, p(}) is an eigenvalue of p(A) with the eigenvector v.

Conversely for m > 1, if u is an eigenvalue of p(A), then there exists a non-zero
vector v € V such that (p(A) — ul)v = 0. Then det (p(A) — ul) = 0. Since K is
an algebraically closed field, there exists scalars Ay, Aj, ..., A, € K such that

px)—p =@ =AD& —=2A) - (x —Ayp)

Then
pPA) —ul = (A =M DA —=X0)--- (A= Anl)

and as det(p(A) — ul) =0, det(A — A;I) = 0 for atleast one i. This implies that
A; is an eigenvalue of A. Also p(A;) — n = 0. Hence, }; is an eigenvalue of A and

p(Ai) = .

Thus Theorem 4.5 can be considered as a special case of Theorem 4.6. Consider
the following example.
12
21

from Example 4.1. Consider a polynomial g (1) = A% + 2A + 1. Then

2 _[54] . [24],[10]_[88
aw = +2a+1= 13+ [35] 4[5 V] < [§4]

Observe that the characteristic equation of g(A) is x> — 16x = 0 and hence the
eigenvalues of g(A) are 0 and 16. By Theorem 4.6, the eigenvalues of g(A) must
be of the form g (1), where A is an eigenvalue of A. We have already seen that the
eigenvalues of A are —1 and 3. Note that g(—1) = 0 and ¢ (3) = 16.

Example 4.6 Let A be the matrix
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Now let us consider the characteristic polynomial of A, given by
p(A) =A12—20-3

It will be interesting to observe that

o o . [54] [24] [30]_Too
plA) =4"-24 31—[45} [42} [03}_[00}

That is, we have
A? —2A =31 4.7)

As all the eigenvalues of A are non-zero, A is invertible. Multiplying by A~! on both
sides of Eq. (4.7), we have 3A~!' = A — 21. Therefore

1 I[{-12
,1__ _ -
A —3(A 21)__3[2—1}

That is, we can write A~! in terms of A, when A is invertible. Will this be possible
always? We will discuss this in the next theorem.

Observe that the characteristic equation of A~! is A2 + %A - % and hence the
eigenvalues of A~! are —1 and % Note that the eigenvalues of A~! are the multi-
plicative inverses of the eigenvalues of A.

123
If we compute p(A) for the matrix A = | 0 1 2 | given in Example 4.3, we will
007
get p(A) = 0, where p(A) is the characteristic polynomial of A. This is interesting,
right? In the next theorem, we will prove that this will be true for every square
matrix. That is, every square matrix satisfies its characteristic equation. This is one
of the most important theorems in matrix theory, named after famous mathematicians,
Arthur Cayley (1821-1895) and William R. Hamilton (1805—-1865).

Theorem 4.7 (Cayley—Hamilton Theorem) Let A € M, (K), and let
P = det(A — A1) = (=) [\ + g d" - e + o]

be the characteristic polynomial of A, then A satisfies its own characteristic poly-
nomial. That is,

p(A) = (=D)"[A" + ptu 1 A" 4 At oI ] =0
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Proof We have
(A—ADadj(A—AI) =det(A— AT = p)I 4.8)

where adj(A — Al) = [pij ()»)]nxn , pij(A) is a polynomial of degree n — 1 in A and
1 <i, j < n. Therefore, we can represent adj (A — AI) as

adj(A—xI)=Ag+ Ah+ -+ A, A"7!
where Ag, Ay, ... A,—1 € M, «, (K). Then from Eq.4.8,

D" [A 4 e e 0| 1= (A= AD (Ao Ak -+ A
=AAo + (AA — Apr + -+ (A, DA"

Now comparing the coefficients of powers of A, we get

AAg = (—=1)"uol
AAL— Ao = (=D)"wi1

AA, 1 — A0 = (_1)’1//«/1711
A= (=D

Multiplying these equations on the left by 1, A, ..., A" respectively , we get

AAg = (=1)"uol
A’A; — AAg = (=D A

A"Au = A A = (=) a1 A
—A"A,_1 = (=14,

By adding these equations, we get
p(A) = (=D" [A" + pu A" At ol ] = 0
That is, A satisfies its characteristic equation.
Example 4.7 Consider the matrix
200

A= 1 21
—101
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Then the characteristic equation of A is
P52+ 8 —4=2-221=-2) =0
Observe that
8 00 4 00 2 00 100
A3 —5A24+8A—41=| 7 87|53 43| +8| 1 21|-4]010]|=0
-701 =301 —-101 001

That is, A satisfies its characteristic equation. Since det(A) # 0, A is invertible.
Now
A3 —5A74+8A—41 =0=4] = A> —5A% + 84

Multiplying by A~! on both sides
a_ 1o
A7l = Z[A —5A+8I]

This is an important application of Cayley—Hamilton theorem. We can also see that

400 200 100
A —3A+2I=| 3 43(=3|121|+2|010]|=0
-301 -101 001

i.e., A also satisfies the polynomial equation 1> — 31 +2 = 0.

From this example, we get that for a matrix A, there are polynomials p(1) other
than the characteristic polynomial of A for which p(A) = 0.

Definition 4.2 (Annihilating polynomial) Let A € M, (K). If for f(A) € K[)],
we have f(A) = 0, then f(}) is called an annihilating polynomial of A.

Definition 4.3 (Minimal polynomial) Let A € M, (K), then the minimal polyno-
mial of A is the least degree monic polynomial g(1) € K[A] such that g(A) = 0.

Clearly, minimal polynomial and characteristic polynomial of a matrix A are anni-
hilating polynomials of A. The following theorems discusses the relation between
these polynomials.

Theorem 4.8 Let A € M., (K). If p(A) € K[A] is an annihilating polynomial of
A, then the minimal polynomial divides p(}.).

Proof Let A € M,,,,(K) and p(}) € K[)] be such that p(A) = 0. Let g (1) be the
minimal polynomial of A. By division algorithm for polynomials, there exists poly-
nomials m (1) and r (1) such that

p(A) =m@)g() +r)
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where deq(r())) < deq(q(A)). Then r(A) = p(A) — m(A)q(X). This implies that
r(A) = p(A) —m(A)q(A) = 0 which is contradiction, since g (1) is the least degree
polynomial that is satisfied by the matrix A. Therefore r(A) = 0 and hence p(A) =
m(r)q(A).

Corollary 4.3 Let A € M, (K). Then minimal polynomial of A divides charac-
teristic polynomial of A.

Proof Let p(1) be the characteristic polynomial of A. By Cayley—Hamilton theorem,
p(A) is an annihilating polynomial of A and hence the result follows.

Theorem 4.9 Let A € M, «,,(K). Then the minimal polynomial of A and the char-
acteristic polynomial of A have same roots except for multiplicities.

Proof Let A € M,,,(K). p(}) and g(A) be the characteristic and minimal poly-
nomial of A respectively. Since minimal polynomial divides characteristic polyno-
mial, there exists m(A) € K[A] such that p(A) = m(X)g()L). Let A; € K be such that
q(A1) = 0. Then p(A;) = m(r1)g(A;) = 0. Hence, XA, is a root of p(}).

Now let A be a root of p(A). Then there exists an eigenvector v # 0 such that
Av = Ajv. Since g()) is the minimal polynomial of A, we have g(A)v = 0. Then
by Theorem 4.6, g(A;)v = 0. Then as v # 0, g(A;) = 0. Hence, 1, is aroot of g (A).

Remark 4.3 Let p(A) = (A — A))" (A — A2)™ - -- (A — Ax)™ be the characteristic
polynomial of a matrix A, then the minimal polynomial is of the form g(A) =
A=A (A —A)"™ oo (A — A)™ where m; < n; foralli =1,2,...,k.

Example 4.8 Consider the matrix

200
A= 1 21
—-101

from Example 4.7. We have seen that the characteristic polynomial of A is (2 —
A)%(1 — 1). Then by the above remark, the minimal polynomial has two possibilities,
2 =2 (1 —A)and (2 — A)%(1 — 1).Since A2 —3A +21 = (21 — A)(I — A) =0,
the minimal polynomial of A is (2 — A)(1 — A).

4= 1s7]

from Example 4.1. The characteristic polynomial of A is (A 4+ 1)(A — 3). As the
characteristic polynomial and minimal polynomial must have the same roots the
minimal polynomial of A is also (A 4+ 1)(A — 3).

Example 4.9 Consider the matrix
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Example 4.10 Consider the matrix

123
A=1012
007

from Example 4.3. The characteristic polynomial of A is (1 — 1)?(7 — A). Then there
are two possibilities for the minimal polynomial of A, which are (1 — A)(7 — A) and
(1 — A)%(7 — A) it self. As we can see that (I — A)(7] — A) #0, (1 - N — 1)
is the minimal polynomial of A.

4.2 Diagonalization

A matrix A € M, (K) is called a diagonal matrix if each of its non diagonal
elements is zero. A diagonal matrix with all its main diagonal entries equal is called
a scalar matrix. For a diagonal matrix D, the eigenvalues are precisely its diagonal
entries and e; is an eigenvector of D with eigenvalue d;;, where d;; denotes the
ith diagonal entry of D and e; is the ith element in the standard ordered basis for
K”. These properties of diagonal matrices can be used in many applications. In this
section, we will be discussing whether every square matrix can be made similar to a
diagonal matrix.

Remark 4.4 The collection of all diagonal matrices, denoted by D, under matrix
addition forms an Abelian group where the zero matrix acts as the identity and
inverse of each element A is —A. But under matrix multiplication, D does not form
a group, as a diagonal matrix is invertible if and only if all its diagonal entries are
non-zero.

Definition 4.4 (Similar matrices) Twon x n matrices A and B are said to be similar
if there exists an invertible matrix P such that P~"'AP = B.

Example 4.11 Consider the matrices

12 30
a= 2] wan=[0 ]
2 -1

Asfor P =| = |, P~'AP = B implies that A and B are similar. We know that

the characteristic polynomial of A is (A 4 1)(A — 3). Observe that the characteristic
equation of B is also (A 4+ 1)(A — 3). Thus A and B have same eigenvalues. Will this
be true always? The next theorem will give us the answer.

Theorem 4.10 Let A, B € M, (K) be similar matrices. Then they have same
characteristic polynomials.
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Proof Suppose that A, B € M, (K) are similar matrices. Then there exists an
invertible matrix P such that P~' AP = B. The characteristic polynomial of B is
given by det (B — AI) where A is an indeterminate. Now,

det(B—Al) =det(P"'AP —AP'P)
=det[P™' (A—AI) P]
=det (P~ Ydet(A — AI)det (P)
=det(A—Al)

That is, A and B have the same characteristic polynomial.

Corollary 4.4 Let A, B € M, «,, (K) be similar matrices, then they have same trace
and determinant.

Proof Since similar matrices have same characteristic polynomial, they have same
eigenvalues with same algebraic multiplicities. Then by Corollary 4.2, they have
same trace and determinant.

Theorem 4.11 Let A, B € M, ., (K) be similar matrices. Then they have same rank
and nullity.

Proof Suppose that A, B € M, (K) are similar matrices. Then, there exist an
invertible matrix P such that P"'AP = B.Let {v;, va, ..., vt} be a basis for N'(B),
where k < n.Now fori =1,2,...,n,

0= Bv; =P 'APv; = A(Pv;) =0

Hence, {Pvy, Pv,, ..., Pv} is a subset of A/(A). We will prove that this set will
form a basis of N(A). Suppose that there exists scalars wp, iz, ..., ux € K such
that

uiPvy+ purPvp+ -+ ug Popy =0

which implies that
P(uivy + povy + -+ + pgvr) =0

Since P is invertible, we have
H1V1 + Uov2 + -+ U = 0
As {vy, vp, ..., vt} is a basis, the set is linearly independent. This implies that ;t; =
uo = --- = pg = 0. Therefore { Pv;, Pvy, ..., Pvi} is a linearly independent set.
Now letv € N(A). Then, Av = 0. As A = PBP~!, this gives PBP v =0and

P is invertible implies that B(P~'v) = 0. Hence, P~'v € N/(B). Then there exist
scalars &1, &, ..., & € K such that

P v =& +Ev + -+ G
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which implies that
v=§Puv +&Puv+ -+ 5Py

Thus, {Pvy, Pvy, ..., Pv;} spans N(A). Therefore Nullity(A) = Nullity(B).
Now by Rank-Nullity theorem, we get Rank(A) = Rank(B).

Definition 4.5 (Diagonalizability) If A € M, (K) is similar to a diagonal matrix,
then A is said to be diagonalizable. That is, A is diagonalizable if there exists a
diagonal matrix D such that P~' AP = D for some invertible matrix P € M, ., (K).

Example 4.12 Consider the matrix

[1]

from Example 4.1. For P = [ | i:|, we get

rar =3[ S RAN] =05 =

Therefore A is diagonalizable. But how to find P such that P~'AP is a diagonal
matrix? Notice that the columns of P are the eigenvectors of A. Also observe that the
diagonal entries of D are not just any scalars but the eigenvalues of A. Interesting!!!

Example 4.13 Consider the matrix

200
A=1|121
—-101
—-10 0
from Example 4.7.For P =| 0 1 —1 |, we get
101
-100 2 00[|-100 200
P'AP=| 1 11||[121|[01-1|=|020|=D
1 01)]|-101 1 01 001

Therefore A is diagonalizable. Here also, observe that the diagonal entries of D the
eigenvalues of A. What about the columns of P? Verify for yourself that the columns
of P are the eigenvectors of A.
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123
What about the matrix A = [ 0 1 2 | from Example 4.3? We will later see that
007
there does not exist a matrix P such that P~' A P is a diagonal matrix. What could be
the reason for non-diagonalizability? In Example 4.3, we have seen that A has only
two linearly independent eigenvectors. Could this be the reason? The next theorem
will provide us with an answer. The theorem establishes a necessary and sufficient
condition for the diagonalizability of a square matrix.

Theorem 4.12 Let A € M, (K). Then A is diagonalizable if and only if A has n
linearly independent eigenvectors.

Proof Suppose that A € M., (K) is diagonalizable. Then there exist a diagonal
matrix D, such that P~'AP = D for some nonsingular matrix P € M, (K). Now

P'AP=D= AP =PD
We know that e; is an eigenvector of D with eigenvalue d;;, where d;; denotes the ith
diagonal entry of D and e; is the ith element in the standard ordered basis for K”".
That is, De; = d;;e;. We will show that Pe; is an eigenvector of A with eigenvalue

d;; foreachi =1, 2,...,n. We have

A(Pe;) = (AP)e; = (PD)e; = P(De;) = dii(Pe;), Vi=1,2,...,n

which implies that { Pe;, Pes, ..., Pe,} are eigenvectors of A. Now will show that
this set is linearly independent. Suppose that there exist (y, ua, ..., u, € K such
that

ui1Per + uaPer + -+ p,Pe, =0

This implies that,
P(uier + poer + -+ ppe,) =0

Since P is invertible, multiplying by P~! on both sides, we get
nier + poer + - -+ pupe, =0

As{ey, es, ..., e,}is linearly independent, we get ;u; = pp = --- = wu,, = 0. There-
fore {Pey, Pey, ..., Pe,} is linearly independent and hence A has n linearly inde-
pendent eigenvectors.

Conversely, suppose that A has n linearly independent eigenvectors, say
Vi, U2, ..., U,. Then take P as the n x n matrix with vy, va, ..., v, as its columns.
That is,

P = [Ul Vg ... Un]

Let Ay, A2, ..., A, be eigenvalues of A. Take D as the diagonal matrix with d;; = A;.
Now



4.2 Diagonalization 139
AP = [Av1 Avy ... Avn] = [klvl vy ... knvn] =PD

As the columns of P are linearly independent, P has Rank n and hence is invertible.
This implies that P~'AP = D. Hence, A is diagonalizable.

Corollary 4.5 IfA € M, «,, (K) has n distinct eigenvalues, then A is diagonalizable.

Proof Suppose that A € M, ,, (K) has n distinct eigenvalues. Then by Theorem 4.2,
A has n linearly independent eigenvectors. Therefore A is diagonalizable.

Corollary 4.6 Let A € M, (K). Then A is diagonalizable if and only if there exists
a basis of K" consisting of eigenvectors of A.

Proof Suppose that A € M, ., (K) is diagonalizable. Then A has n distinct eigen-
vectors. Then the collection of these linearly independent eigenvectors of A is a
maximal linearly independent set in K" and hence is a basis of K".

Conversely, suppose that K" has a basis consisting of eigenvectors of A. Then
clearly, A has n linearly independent eigenvectors. Therefore A is diagonalizable.

Observe that the converse of Corollary 4.5 is not true. That is, A matrix is diag-
onalizable need not imply that it has » distinct eigenvalues. For example, consider
200
the matrix A = | 1 2 1 |. We have seen Example 4.13 that the matrix A is diag-
—-101
onalizable. But A has only two distinct eigenvalues. Another example is the n x n
identity matrix, /. As [ is a diagonal matrix, it is clearly diagonalizable (Why?). But
it does not have n distinct eigenvalues.

Example 4.14 Consider the matrix

2-10
A=1]3-20
001

The characteristic polynomial of A is (1 — 1)?(—1 — A). Therefore the eigenvalues
of A are 1 and —1. Let us find the eigenspace corresponding to A = 1.

1-10 U1 0
A—DNHv=0=|3-30||vn|=|0=v =1
00O0|]uvs 0

Thus

N(A=T)={(v1, v2, 13) € R} | v; = o} = span{(1, 1, 0), (0,0, 1)}
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So we can pick two linearly independent eigenvectors of A correspondingto A1 = 1,

1 0
say | 1 | and [ O |[. Now for A, = —1,
0 1
3-10] (v 0
A4+DNDv=0=|3-10]|v|=]0|=3v—v,=0,v13=0
002|]|v; 0

Thus
N(A+ 1) = {(v1, v2, v3) € R? | vy = 3vy, v3 = 0} = span{(1, 3, 0)}

As N(A + 1) is one dimensional space, pick one eigenvector corresponding to A, =

1
—1, say | 3 |. Thus A has three linearly independent eigenvectors. Therefore, by
0
101
Theorem 4.12, A is diagonalizable. Note that, for P = | 1 0 3 |, we get
010
1 3 -10]12-10 101 100
P'AP=-]10 02||3-20]||103|=|010
2111 0floo1f]oto 00—1

Also, notice A does not have three distinct eigenvalues.

Although diagonalizability is an important property for matrices, every matrix
123
need not be diagonalizable. The matrix A = | 0 1 2 | from Example 4.3 is not diag-
007
onalizable as it has only two linearly independent eigenvectors. Here is another
example for a non-diagonalizable matrix.

Example 4.15 Consider the matrix

2-12
A=1]0 2 -2
00 3

The characteristic polynomial of A is (2 — A)?(3 — A). Therefore the eigenvalues of
A are 2 and 3. Let us find the eigenspace corresponding to A; = 2.

0—-1 2 U1 0
A-2DHv=0= (00 2| |wvw|[=]|0|=v,=vs;=0
00 3 U3 0
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Thus
N(A =21) = {(v1, v2,13) € R? | v = v3 = 0} = span{(1, 0, 0)}
1
Therefore we can pick one eigenvector corresponding to Ay = 2is | 0 | from /(A —
0
I). Now for A, =3
-1-12 vy 0 |
(A=-3Dv=0= 0 —-1-2 =10 :v1=—2v2,v3=—5v2
0 0 O U3 0

Thus
3 1
NA=31)={(i,v,v3) €R’ | vy = 20, 03 = (= span{(4, =2, 1)}

4
Thus we can pick one eigenvector corresponding to A, = 3, say | —2 |. The given
1
matrix does not have three linear independent eigenvectors and hence by Theo-
rem 4.12, A is not diagonalizable.

The next theorem gives a necessary and sufficient condition for diagonalizability
of a square matrix A in terms of algebraic multiplicity and geometric multiplicity of
its eigenvalues.

Theorem 4.13 Let A € M, (K). A is diagonalizable if and only if for every eigen-
value A of A, the geometric multiplicity equals the algebraic multiplicity.

Proof Suppose that A is diagonalizable. Then there exists a diagonal matrix D with
P~'AP = D, for some nonsingular matrix P € M, (K). Let A1, Ay, ..., A be dis-
tinct eigenvalues of A with algebraic multiplicities m, m,, ..., my, respectively. The
geometric multiplicity of an eigenvalue A is equal to
Nullity (A — X\;I). Since

D—aI=P'AP -1 =P 'AP — 1P 'P =P A= 1DP

A — A; I and D — A; I are similar. Then by Theorem 4.11, they have same nullity.
Therefore the geometric multiplicity of an eigenvalue A; is equal to
Nullity (D — A;1) = m; = algebraic multiplicity of A; as D is a diagonal matrix
with A1, Ao, ..., A as diagonal entries and each X; repeats m; times. That is, for
every eigenvalue A of A, the geometric multiplicity equals the algebraic multiplicity.

Conversely, suppose that for every eigenvalue A of A, the geometric multi-
plicity equals the algebraic multiplicity. Let A, A, ..., Ax be distinct eigenval-
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ues of A with algebraic multiplicities m, m,, ..., m; respectively. Since the geo-
metric multiplicity equals the algebraic multiplicity for every eigenvalue of A,
Nullity(A — A;1) = m; for each i. Now corresponding to each A;, consider the

basis {v], vZ, ... v/"} of N'(A — A;I), where m; is the geometric multiplicity of A;
fori =1,2,...,k Now consider the set B = {v}, v7,...v{", ..., v}, v}, ... 0"}
We will show that B is a basis for K”. Since m| + my + - - - + m; = n, it is enough
to prove that B is linearly independent. Now let ,u%, u%, o ,uﬁ"‘, e, u,i, u,%, . ;LZ”

be scalars such that
vt + vl e g g e gt =0

Consider the collection x = {d_7) pivl, ..., Y% uivi}. Since {v}, v}, ... v/"} is
a basis of A'(A — A;I), a linear combination of vil, vl.z, .. vim" is either zero vector
or an eigenvector corresponding to ;. This is true for everyi = 1, 2, ..., k. For an
element in x to be the zero vector, the coefficients must be zero since each element
X is a linear combination of a linearly independent set. Now consider the remaining
non-zero elements in x . Since eigenvectors corresponding to distinct eigenvalues are
linearly independent, a linear combination of non-zero vectors in x implies that all
the coefficients are zero. Therefore B is linearly independent and hence is a basis of

R". Therefore A is diagonalizable.

Example 4.16 Consider the matrix

2-10
A=13-20
001

from Example 4.14. We have seen that A has two eigenvalues 1 and —1. From
Example 4.14, AM(1) = GM(1) =2 and AM(—1) = GM(—1) = 1. As the alge-
braic multiplicity equals geometric multiplicity for every eigenvalue of A, the matrix
A is diagonalizable.

Example 4.17 Consider the matrix

2-12
A=102 =2
00 3

in Example 4.15. A has two eigenvalues 2 and 3. From Example 4.15, we have
AM2) =2,but GM(2) = 1. Therefore A is not diagonalizable.

The next theorem shows that an n x n matrix A is diagonalizable if and only if
K" can be written as a direct sum of eigenspaces of A.
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Theorem 4.14 Let A € M, (K). Then A is diagonalizable if and only if
K'=NA-MDONA-LDD---DNA — 1)

where A1, Ao, ..., A are distinct eigenvalues of A.

Proof Let A € M, (K) and let A}, Ay, ..., A are distinct eigenvalues of A, with
algebraic multiplicities m, mo, ..., my, respectively. Suppose that A is diagonaliz-
able. Then by Theorem 4.13,m| 4+ m, + - - - + m; = n and the union of basis vectors
of N(A — A; 1), wherei = 1,2, ..., k forms a basis for K". Then by Theorem 2.22,
K'=NA-MDONA - D - BNA - AD).

Now suppose that K" = N(A— A1) ONA—l)D--- DN(A — A ).
Again the union of basis vectors of N'(A — A;I), wherei = 1,2, ..., k forms a basis
for K”. That is, K" has a basis consisting of eigenvectors. Then by Corollary 4.6, A
is diagonalizable.

Thus if A has n distinct eigenvalues, we can write K" as a direct sum of n one
dimensional spaces. Let us consider some examples to verify Theorem 4.14.

Example 4.18 Consider the matrix

2-10
A=13-20
001

from Example 4.14 which is diagonalizable. We have seen that the eigenvalues of A
are 1 and —1. Also,

NA =1 = {(v1,v2,v3) € R | v = v3}

and
N(A+ 1) = {(vi, vz, v3) € R? | vy = 30y, v3 = 0}

Clearly, N(A —I) + N(A+ 1) =R? and N(A — I) N N(A + I) = {0}(Verify).
Then by Theorem 2.20,

NA-DSNA+ID) =R
which verifies Theorem 4.14.

Example 4.19 Consider the matrix
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from Example 4.15, which is not diagonalizable. We have seen that the eigenvalues
of A are 2 and 3. Also

N(A =21) = {(v1, v2, v3) € R | v, = v3 = 0} = span{(l, 0, 0)}

and
3 1
N(A=31) = (v, v, v3) € R | v) = =205, 03 = —yu( = span{(4, =2, 1)}

Both N'(A — 21I) and N'(A — 31) are of dimension 1 each. Clearly
N(A=2)+N(A -3 #R

We can also check whether a matrix is diagonalizable or not by finding its minimal
polynomial. The next theorem states that a matrix A is diagonalizable if and only if
its minimal polynomial does not have any repeated roots.

Theorem 4.15 Let A € M,,,, (K). Then A is diagonalizable if and only if the min-
imal polynomial of A has no repeated roots.

Proof Suppose that A is diagonalizable. Let A1, A7, ..., Ax be distinct eigenvalues
of A. Then by the above theorem,

K'=NA-MDONA-MD D DN(A — M)
Therefore K" have a basis consisting of eigenvectors of A. We will show that
gq) = A = A)* —22) -+ (A — k)

is the minimal polynomial of A.Since characteristic polynomial and minimal poly-
nomial have same roots it is enough to show that

q(A) =(A=MD(A—=2d)--- (A= 1I) =0

Let v be an eigenvector of A, then (A — A;/)v = 0 for some i. Since the matrices
(A — A;I) commutes with each other, g(A)v = 0 for every eigenvector of A and as
collection of all eigenvectors forms a basis, g (A) = 0. Therefore ¢ (1) is the minimal
polynomial of A and it has no repeated roots.

Conversely, suppose that the minimal polynomial of A has no repeated roots. Let

gA) = A=A —22) -+ (A — )

be the minimal polynomial of A. Then A;, A,, ..., A are the distinct eigenvalues of
A. We will show that
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K'=NA-MDONA-D & &N(A— M)

We have already shown that the union of basis vectors of N'(A — A;I), where i =
1,2, ..., kis alinearly independent set. Now it is enough to show that

K'=NA—-MD+NA =D+ +NA =)
Now consider the polynomials
i) =q)/(k — 1) = T jzi (A — Ay)

Since A}s are distinct, by Theorem 1.16, there exists polynomials g; (1), g2(A), ...,
gr(A) € K[A] such that

k
Y s i) =1

i=1

Then
g1(A) fi(A)v + g2(A) fo(A)v + - - + g2(A) L(A)v =

for any v € K". Also
(A=XD fi(Av=q(Av =0

for each i. This implies that f; (A)v € N'(A — A;I) for each i. That is, any v € K"
can be written as a linear combination of elements in A'(A — A;I). Therefore

K'=NA-MD+NA =MD+ -+NA =MD

and hence A is diagonalizable.

Example 4.20 Consider the matrix

from Example 4.14. The characteristic polynomial of A is (1 — 1)2(—1 — 1). The
minimal polynomial has possibilities, (1 — A)(—1 — A) and (1 — M2(—=1—2). As

1-10][3-10 000
(I—A(—I-A)=|3-30|]|3-10]|=]000
000[[0o02 000

(1 — A)(—1 — &) is the minimal polynomial of A. Clearly, minimal polynomial has
no repeated roots. We have already seen that A is diagonalizable.
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Example 4.21 Consider the matrix

2-12
A=102 =2
00 3

from Example 4.15. The characteristic polynomial of A is (2 — A)?(3 — A). The
minimal polynomial of A has two possibilities, (2 —1)(3 —A) and (2 — 23—
A). As

0-1 2 11-2 01 -2
21 -A)@I-A)=(00 -2||01 2 |=]000
00 —-1|(00 O 000

(2 — A)%(3 — A) is the minimal polynomial. Clearly, minimal polynomial has repeated
roots. We have seen that A is not diagonalizable.

4.3 Schur Triangularization Theorem

We have seen that for a matrix A, there may not exist n linearly independent eigen-
vectors. In this case, A is not diagonalizable. But we may obtain an almost diagonal
representation for A in such cases. Next, we will be discussing the almost diagonal
representation of a non-diagonalizable matrix A.

Definition 4.6 (Triangular Matrix) A square matrix is called upper (lower) triangu-
lar if all the entries below(above) the main diagonal are zero. A square matrix which
is either upper triangular or lower triangular is called a triangular matrix.

Remark 4.5 The collection of all upper (lower) triangular matrices forms a vector
space under matrix addition and scalar multiplication. Under matrix multiplication,
it does not form a group, since the eigenvalues of an upper triangular matrices are its
diagonal entries, an upper triangular matrix is invertible if and only if the diagonal
entries are non-zero.

Definition 4.7 (Triangularizable Matrix) A square matrix is called triangularizable
if it is similar to an upper(lower) triangular matrix.

Definition 4.8 (Unitary matrix) A matrix A € M,,,,,(C) is called a unitary matrix
if AA* =1 = A*A. Thatis,if A* = A~ . If A € M,.,»(R) and ATA =T = AAT,
then A is called an orthogonal matrix.

Theorem 4.16 (Schur Triangularization Theorem) Let A € M, (C), then there
exists a unitary matrix U € M, ,,(C) such that U*AU is upper triangular.
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Proof The proof is by induction on n. If n = 1, then clearly A is an upper triangular
matrix. Now suppose that the result is true for all (n — 1) x (n — 1) matrices. Now
let A € M,»,(C). Let A; € C be an eigenvalue of A (Such an eigenvalue exists,
by Fundamental theorem of Algebra) and v € C" be the corresponding eigenvector.
Take u = ﬁ Then || u ||= 1. Let U; € M, (C) be a unitary matrix with u as
its first column. The existence of such a matrix is guaranteed by Gram—Schmidt
Orthonormalization (which will be discussed later) process. Then consider the matrix

UfAU,. Its first column is given by,

UI*AUlel = UI*AM = AlUf‘u = AlUf‘Ulel = )\161
% . Al ok
Therefore U AU, is of the form 0 A
1
and Qis an (n — 1) column vector. Now by induction hypothesis, there exists a unitary
matrix U; € M, ., (C) such that U I*Al U, is an upper triangular matrix. Take

107
V2= [0 Ul]

], where Ajisan (n — 1) x (n — 1) matrix

Then U, is unitary and

U (UFAUDU, = | 2
2 AEUEZ =0 0,7 A, 0,

which is an upper triangular matrix. Take U = U, U,. Then
UU* = U, U(UUy)* = U000 =1

and
U*U = (U1U2)*U1U, = U, U ULUy = 1

Therefore U is unitary and U*AU is upper triangular.

Corollary 4.7 Let A € M, (R) be with all its eigenvalues are real. Then there
exists an orthogonal matrix Q € M, ., (R) such that QT AQ is an upper triangular
matrix.

4.4 Generalized Eigenvectors

In Sect.4.2, we have seen some necessary and sufficient conditions for the diago-
nalizability of an n x n matrix A. We can summarize these conditions as follows.
A € K" is diagonalizable if and only if



148 4 Eigenvalues and Eigenvectors

(1) A has n linearly independent eigenvectors.

(2) for every eigenvalue A of A, the geometric multiplicity equals the algebraic
multiplicity.

(3) K" ZN(A —)\.11)@./\[(14 _)\,21)@"'®N(A_)\,k1) wherekl,)\z,...,kk
are distinct eigenvalues of A.

(4) the minimal polynomial of A has no repeated roots.

We can say that each eigenspace W is invariant under the action of A. By the term
invariant, we mean that if A acts on any element in W, we get the image in W itself.
Thus the diagonalizability of amatrix A € K", could mean that K" can be represented
as the direct sum of its subspaces that are invariant under the action of A. Or it could
mean that K" has a basis consisting of eigenvectors of A. Remember that, we have
also seen examples for matrices that are not diagonalizable. If A is not diagonalizable,
is it possible to represent K” as a direct sum of subspaces that are invariant under the
action of the matrix A? In this section, for a given non-diagonalizable matrix A, we
will find subspaces of K” that invariant under the action of A and we will represent
K" as a direct sum of these invariant subspaces. In order to achieve this goal, we
will introduce the concept of generalized eigenvectors for a matrix. Let us start by
an example.

Example 4.22 Consider the matrix

2-12
A=102 =2
00 3
from Example 4.15. We have seen that 3 and 2 are the eigenvalues of A with corre-
4 1
sponding eigenvectors # = | —2 | and v = | O | respectively. In Example 4.17, we
1 0
have noted that AM (2) is 2, but GM (2) is 1. Thatis, GM (2) is one less than AM (2).
wi
Now let us find a vector w = | wy | € R3 such that (A — 2w = v. Now
w3
0-12 wi 1
A-2hw=v=|00 2||w | =[0|=w=—-1,w;=0 4.9)
00 1 w3 0

Let us denote the set of all w € R which satisfy (A — 2I)w = v by W. Then by
Eq.4.9, we have

W = {(wy, w2, w3) € R? | wy = —1, w3 = 0}

Observe that, for any w € W, (A —21)w = v and (A — 2w = (A —2Dv =0.
Take the vector w € W and consider the span of {v, w}, which is the subspace
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U = {(u;,u,0) € R?|uy,u, € R} (Verify). Then for any vector i € U, there exists
scalars uy, wy € R such that
U= v+ pHow

Then
Al = A (U1v + pow) = (1 Av + (AW (4.10)

As (A — 21w = v, we have Aw = v + 2w. Also Av = 2v, as v is an eigenvector
of A corresponding to the eigenvalue 2. Substituting this in Eq. (4.10), we get

Al =210 + pov + 2w = Quy 4+ w2)v 4+ 2uaw € spanfv, w} = U

Therefore we can say that U is invariant under A.
4
Now let U denote the spanofu = | —2 [. Then we can observe that U + U=R>
1
and U NU = {0}. Hence U @ U = R? and {u, v, W} is a basis for R3. Thus U is a
subspace of R? that can be associated with A and satisfying all our requirements. This
idea motivates the definition of generalized eigenvector associated with a matrix.

Definition 4.9 (Invariant Subspace) Let A € M, (K) and let W be a subspace of
K", then W is called A— invariant if Aw € W for each vector w € W. Clearly the
one dimensional invariant subspaces correspond to eigenvectors.

Example 4.23 Let A € M., (K). Then, clearly {0}, K", A'(A) and R(A) are invari-
ant subspaces of A.(Verify)

The geometrical significance of an eigenvector v of a matrix A corresponding to
a real eigenvalue A was that the vector under action by A will remain on its span.

We have observed this fact for the eigenvectors of the matrix A = [é ﬂ in Fig.4.1.

Thus we can say that the eigenspaces of a matrix A are invariant under the action of
A. Consider the following example.

Example 4.24 Let A be ann x n matrix with an eigenvalue A. To prove N (A — AI)
is invariant under A, it is enough to show that for any v € A’ (A — A1), Av = Av also
belongs to N'(A — A1). We already know that for any scalar u € K,

A(uv) = n(Av) = pu(dv) = A(uv)

Clearly Av € N'(A — A[I) for any v € N'(A — AI). Therefore N'(A — A[) is invari-
ant under A.

Definition 4.10 (Generalized Eigenvector) Let A € M, (K). A vector v € K" is
said to be a generalized eigenvector of rank m of the matrix A and the corresponding
eigenvalue A € K, if (A — AI)™v = 0 but (A — AI)"~'v # 0. Clearly, an ordinary
eigenvector is a generalized eigenvector of rank 1.
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W, Wi

\
L4

AN

Fig. 4.1 As we can see, the vector (—1, 1) is mapped to (1, —1) = (—=1)(—=1,1) and (1, 1) is
mapped to (3, 3) = 3(1, 1). Itis interesting to observe that the eigenvalue —1 changes the direction
of any vector that lies on the line y = —x and the eigenvalue 3 scales the magnitude of any vector
that lies on the line y = x, three times

The generalized eigenspace of A corresponding to A is denoted by E; and is given
by E; = U2, N (A — D).

Definition 4.11 (Chain) Let A € M, «,,(K) and let A € K be an eigenvalue of A,
then a set of non-zero vectors vy, v, ..., v, € K" is called a chain of generalized
eigenvectors of length m corresponding to A if

(A — il = Vitl, u)hen.i <m
0, wheni=m
Remark 4.6 Letvy, vy, ..., v, € Kbeachain of generalized eigenvectors of length

m of the matrix A € M,,,,(K) corresponding to the eigenvalue A, then by def-
inition (A — AI)'vy = viy; if i <m and (A — AI)"™v; = 0. Therefore the chain
of generalized eigenvectors of length m corresponding to A can also be written
as v, (A — ADvy, ... (A =AD" 'v,. Also (A — AI*v; = 0 for all k > m for all
i=1,2,...,m.

Example 4.25 Consider the matrix

2-12
A=10 2 =2
00 3
From Example 4.22, the chain of generalized eigenvectors associated with the eigen-
0 1 4
value 2is | —1 |, | O | and the chain associated with the eigenvalue 3 is | —2

0 0 1
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Observe that the chain of generalized eigenvectors corresponding to 2 is linearly
independent. This will be true for every eigenvalue. Consider the following theorem.

Theorem 4.17 Let A € M,,.,(K) and let A € K be an eigenvalue of A, then the
chain of generalized eigenvectors corresponding to ) is linearly independent.

Proof Let A € M,»,(K) and A € K is an eigenvalue of A. Let vy, vy, ..., Uy, €
K" be the chain of generalized eigenvectors of length m corresponding to A. Let
Ui, L2, ..., m € K be scalars such that

M1V + oV + -+ Uy =0
Then we have
pvr + p2(A = ADvr + -+ (A =AD" oy =0 (4.11)
Now multiplying both sides with (A — AI)"~!, we get
Hi(A =" oy =0

as (A — AI)*v; = Oforall k > m. Since (A — A1)" v, # 0, this implies that | =
0. Now multiply Eq. (4.11) by (A — AI)"~2. Then we will get

pa(A =AD" 'y =0

whichimpliesthat u, = 0.Proceedinglike this, we get u; = Oforalli = 1,2, ..., m.
Therefore {vy, v, ..., vy} is linearly independent.

The following theorem gives the relation between the null spaces of the powers
of a matrix A.

Theorem 4.18 Let A € M, ,,(K). Then
0} =N(@A") cN@A) SN@A?) S -
IfFN(A™) = N (A", for some integer m, then
N(A™) = N(A™) = N(A" ) = N (A" ) = - ..
Proof Suppose that v € N'(AX) for some positive integer k, then
Ay = A(ARY) = 0 = v e N(AFHY)
Therefore N (A¥) € N(A¥1) for any positive integer k. Now let N(A™) =

N (A™1), for some integer m. Let v € N (A™+*1) for some positive integer k,
then
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ATy = A (ARY) = 0 = Afv e N(A™T) = N(A™) = A" (1) =0

Therefore N/ (A™+*+1) € N(A™+*) for every positive integer k. This implies that
N(Am) — N(Am-H) — N(A771+2) — N(AHH-S) E———

Remark 4.7 Let A € M, ,,(K). Then
V=R(A")2RA)D2RMA* D

Also, by Rank-Nullity Theorem, Rank(A") =n — Nullity(A?) for all i. Since
N (A") form an increasing sequence of subspaces of a finite-dimensional space
V, it will eventually stop increasing at some point j. Then we have proven that
N (A" = N'(AY) foralli > j. At this point, the sequence R(A’) also stops decreas-
ing and Rank(A') =n — Nullity(A7) foralli > j.

In Example 4.24, we have shown that the eigenspaces of a matrix A are invariant
under A. Now we will show that the generalized eigenspace is also an invariant
subspace of A.

Theorem 4.19 Let A € M, (K) and A € K be an eigenvalue of A, then
(a) Ex =N ((A—ArD").

(b) Ej is invariant under A.

Proof (a) Assume that N ((A — A1)") # N ((A — AI)"™), for all n, then by the
previous theorem

0} =NA-ACNA-A)' CNA—-AD*C--- CN(A— 1D

Then
0 < Nullity(A — AI) < Nullity(A — A)? < --- < Nullity(A —AD)"*! <dim(V) =n

which is not possible, since it implies that Nullity(A — AI), ..., Nullity(A —
AD™ ! are n + 1 distinct integers in {1, 2, ..., n}. Therefore

N((A=aD") =N ((A—2rD")

and hence E; = N ((A — AD)"Y).
(b) Letv € E; = N ((A — AI)"), then

(A —AD)"(Av) = A ((A = A1)"v) = A(0) =0

Therefore Av € E; =N ((A — AI)"). That is, E, is invariant under A.
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Example 4.26 Consider the matrix

from Example 4.15. We have already seen that

N(A =21) = {(v1, v2, v3) € R? | v, = v3 = 0}

00 4
Now (A —2I)> = | 00 —2 | and hence
00 1
00 4 V] 0
(A=20%v=0={00-=2||wn|=|0=v=0
00 1 U3 0

Therefore N (A —21)? = {(v1, v2, v3) € R® | v3 = 0}. Observe that (A — 21)*> =
(A —21I)3. Thus we have N'(A —21)?> = N'(A — 21)>. Therefore the generalized
eigenspace associated with the eigenvalue 2 is

E> = {(v1, v2, v3) € R? | v3 = 0}

Also,as V(A —3D)=N(A — 30> = {(v1, v2,v3) € R® | v = —2v5, v3 = —Lwo},
we get

1
E; = {(Ul, v2,v03) € R? [ vy = =205, 03 = —Evz}

as we have seen in Example 4.22.

Theorem 4.20 Let A € M, ,,(K). Let f(L), g(A) € K[A] be polynomials such that
(f. 8) = land f(A)g(A) = 0. Then K" = N'(f(A)) ® N (g(A)).

Proof Let f()) and g(A) be polynomials such that (f, g) = 1 and f(A)g(A) =0.
Then by Theorem 1.16, there exists (1), s(1) € K[A], such thatrf + sg = 1. Now,
for v € K", define

v = s(A)g(A)vand v, =r(A) f(A)v

Then
v=1Iv=(s(A)g(A) +r(A)f(A)v = v + 12

Also,

f(Av = f(A)s(A)g(A)v =0 and g(A)vy = g(A)r(A) f(A)v =0
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Thus, for v € K" there exists v; € N (f(A)) and v, € N'(g(A)) such that v = v +
Vo,

Now we have to prove that, this expression is unique. Suppose that v = w; +
wy where w; € N(f(A)) and wy, € N'(g(A)). Then, since f(A)(v; — w;) = 0 and
g(A)(v2 — wy) =0, we have v; — w; € N (f(A)) and v, — w,r € N(g(A)). Now

v —wy = Iy —wp) = (s(A)g(A) +r(A) f(A) (v —wy) =0

and
vy —wy = I(vy —wy) = (s(A)g(A) +r(A) f(A)(va —wr) =0

Hence, v; = w; and v, = w,. Therefore for every v € K", there exists a unique
expression as a sum of elements from A'(f(A)) and N (g(A)) and hence K" =
N(f(A) ® N(g(A)).

Corollary 4.8 Let A € M, (K) and f(X) € K[A]. Let fi(A), fo(X), ..., fr(X) €
K[A] be such that (f;, ;) =1foralli # j, f = fifa--- fx and f(A) = 0. Then
K" = N(fi(A) @ N(f2(A) @ - -- © N (fi(A)).

The following theorem shows that for any matrix A, we can write K" as the direct
sum of generalized eigenspaces associated with A.

Theorem 4.21 Let A € M, (K) and p(L) = (A — A)" (A — Xp)™ -+ - (A — M)
be the characteristic polynomial of A, then

K'=N(A-1uD") @N(A =D& @N(A - 1D™)

Proof Let A € M,,,,(K) and p(A) = (A — A)""(A — Xp)™ -+ (A — Ag)™ be the
characteristic polynomial of A. Now, take f = p and f; = (A — ;)" where i =
1,2,...,k. Then (f;, fj)=1forall i #j and f = fifo--- fx. Also f(A) =
p(A) = 0. Therefore K" = N(A — A D") DN (A —DD))D---BN((A—
M 1)™) by the above corollary.

Corollary 4.9 Let A € M, (K). Let Ay, Ay, ..., A € K be distinct eigenvalues of
A with  algebraic  multiplicities  ny,ny, ..., ng, respectively, then

dim (N(A - )\ZI)") = n;.

Proof By Theorem4.19, as A; is the only eigenvalue of A when N'(A — ;)" is con-
sidered as domain. Therefore dim (N (A — A;1)") < n; and by the above theorem,
K dim (W(A=0D") =n =), n. Hence dim (N (A — A, 1)") = n,.

In Theorem 4.2, we have seen that the eigenvectors associated with distinct eigen-
values are linearly independent. This result is squarely applicable for generalized
eigenvectors also. Consider the following corollary.

Corollary 4.10 Let A € M, «,,(K). Let vy, va, ..., vx be generalized eigenvectors
of A corresponding to distinct eigenvalues L, Ly, ..., A, € K. Then {vy, va, ..., vt}
is linearly independent.
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Example 4.27 Consider the matrix

2-12
A=102 =2
00 3

In Example 4.21, we have seen that the minimal polynomial of A is (2 — A)2(3 — A).
Also, from Example 4.26,

N(A =21 = {(v1, v2, v3) € R? | v3 = 0}

and |
N(A =3I = {(vl, v2,03) € R? [ vy = =205, 03 = —Evz}

Clearly, R> = V(A — 21)> @ N'(A — 31).

Theorem 4.22 Let A € M, (K) and Ay, Aa, ..., M € K be the distinct eigenval-
ues of A. Let r; be the least positive integer such that (A — A; 1) v = 0 for every
vENWA =MD, Let m(A) = (A — A" (A — A2)2 - - (A — Ap)™, then m()) is
the minimal polynomial of A.

Proof Let A € M,,,,(K) and g(A) = (A — X )™ (X — Xp)™ -+« (A — A)™ be the
minimal polynomial of A. Then by the previous theorem, K" = N ((A — A1 1)™) &
NUA = 2D)™)® - ®N((A — A I)™). Therefore for every v € K", we get
m(A)v = 0. But as g(A) is the least degree polynomial such that g(A) =0, m = q.

4.5 Jordan Canonical Form

In this section, using the idea of similar matrices, we will reduce a square matrix
to a block diagonal matrix form, where each diagonal blocks are upper triangular
matrices.

Definition 4.12 (Jordan Block) A Jordan block corresponding to A of size m is an
Al
Al

m x m matrix of the form J;" = .. |, where 1 lies on the diagonal

1

A
entries, 1 lies on the super-diagonal (some authors prefer sub-diagonal) and the
missing entries are all zero.

Definition 4.13 (Jordan Form) A square matrix is said to be in Jordan form, if it is
a block diagonal matrix with each block as a Jordan block.



156 4 Eigenvalues and Eigenvectors

Theorem 4.23 Let A € M, «,,(K) with characteristic polynomial p(A) = (A — X)™
oo (A — Ap)™ and minimal polynomial g(A) = (A — )™ -+ - (A — A)™. Then A is
similar to a matrix J with Jordan blocks along the main diagonal. All other elements
of J are zero. Corresponding to each eigenvalue A; of A, there exists atleast one
Jordan block of size m; and other Jordan blocks corresponding to \; have size less
than or equal to m;. Also, the sum of size of each Jordan blocks corresponding to A; is
n;. The number of Jordan blocks corresponding to an eigenvalue X; is the geometric
multiplicity of A;.

Proof Let A € M, (K) with characteristic polynomial
p) =G =" - (A =A™
and minimal polynomial
gy = =)™ (b= 2™
Then by Theorem 4.21,
K'=N((A=1D") @N(A=2D") & @N({(A = 1D™)

Let /1,15, ..., be the geometric multiplicities the eigenvalues i, A, ..., At
respectively. Now we can construct a basis for N ((A — A;1)") for each i =
1,2,...,k. Let vi'l, vizl, R vf’l be the linearly independent generalized eigenvec-
tors of A with rank 7, 72, ..., 7y corresponding to A;. Then r;; < m; for all
j=12,...,1; and at least one of r;y, ri2, ..., ry, must be equal to m;, since m;
is the least positive integer such that (A — A; 1) v = 0 forall v € N'((A — A, 1)™).
Now consider the Jordan chain associated with each of these generalized eigenvectors
and let
B = (v, vh,...v) v vk, v vf’l, vf’z, e vf‘r }
il i2 il

denote the union of these Jordan chains. By Theorem 4.17 and Corollary 4.9, B;
forms a basis for N'((A — A;1)"). Now let B = Uf:, B;. Then B forms a basis for
K”. Now consider the matrix P with elements from B as its columns. Since B is a
basis for K”, P is invertible. i.e., Let

_ 1 1 2 2 Ik I
P = [Un T Uy, VT VY, Yyt Ukruk]

Then
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1 1 2 2 I I
AP o I:Avll Avlr” Avll Avlrlz Avkl Avkr“k:l

— 1 1 2 2 2 2 I Ik Ik
= |:)‘1vll F U e Ay, AV U e AU, e AU g e Ay ]

knk
AL -
e
=P ) J)Tl”]
L Vi
_J)Lr]ll —
bt
ie, P'AP = ' 7 = J. Then J satisfies all the require-
Al
_ L
ments mentioned in the theorem.
Example 4.28 Consider the matrix
2 -1 2
A=102 =2
00 3
From Example 4.17, the eigenvalues of A are2 and 3 with AM(2) =2,GM(2) =1
1 4]
and AM(3) = GM(3) = 1. From Example 4.15,v; = | 0 | and v3 = | —2 | are the
0 1
linearly independent eigenvectors of A with respect to 2 and 3, respectively. From
0] [1
Example 4.25, the Jordan chain associated with the eigenvalue 2 is | —1 [, [ O |.
0] |O
10 4 210
Take P = [0 —1 —2 . Then P"'BP = [020 |.
00 1 003

Example 4.29 Suppose that the characteristic and minimal polynomial of a matrix
A is given by

p(A) =0 -=3*n—-17 and m(A) =K -3 —1)°

As the eigenvalues 3 and 1 have multiplicity 2 and 3 in the minimal polynomial,
the Jordan canonical form must have a Jordan block of order 2 corresponding to the



158 4 Eigenvalues and Eigenvectors

eigenvalue 3 and a Jordan block of order 3 corresponding to the eigenvalue 1. As
the multiplicity of 1 in both minimal and characteristic polynomial of A is the same,
there exists only one Jordan block corresponding to 1. The number of Jordan blocks
corresponding to the eigenvalue 3 depends on the number of linearly independent
eigenvectors corresponding to 3. Then there are two possible Jordan forms for A.

(1) If A has two linearly independent eigenvectors belonging to the eigenvalue 3.
Then the Jordan form of A is given by

31000007
0300000
0031000
0003000
0000110
0000011

(0000001 |

(2) If A has three independent eigenvectors belonging to the eigenvalue 3. Then the
Jordan form of A is given by

[3100000]
0300000
0030000
0003000
0000110
0000011

0000001 |

4.6 Exercises

1. Let A, B € M, (K). If u is an eigenvalue of A and v is an eigenvalue of B,
give an example such that

(a) © + v need not be an eigenvalue of A + B.
(b) wv need not be an eigenvalue of AB.

2. Find the characteristic polynomial of the following matrices
2

15 4 —1
a)[73] b)[ll 7 ] ©) 2

Also, verify Cayley—Hamilton theorem.

31
04
—-17
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10.

11.

12.

13.

. Find a matrix A € M, (R) with 2 and 3 as eigenvalues and [i] , |:2i| as
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1
corresponding eigenvectors.

. Let V be a finite-dimensional vector space over K withabasis Band 7 : V — V

be a linear transformation. Show that A € K is an eigenvalue of T if and only if
A is an eigenvalue of [T']p.

. (Gerschgorin’s Theorem) Let A be an eigenvalue of a matrix A = [a;;] €

M, «,, (K). Then for some integer j, (1 < j < n), show that

lajj — Al < lajil + laj2| + -+ +laj-pl +lajg+nl + -+ lajnl

. Let A, B € Mg,9(K) be such that Rank(A) = 3 and Rank(B) = 5. Show that

there exists v € R such that Av = Bv = 0.

. Let A € M,,», (K) be such that the sum of elements in each row are the same,

say A. Show that A is an eigenvalue of A. Will this be true if sum of elements in
each column are the same?

. Let A € M4, (K) be such that 17 (A) = 8 and det (A) = 15. Find the eigenval-
ues of A.
. Let A € M, (K).Let A be an eigenvalue of A with eigenvectors vy, vy, . .., Ug.

Show that Ajv; + Apva + - - - + Ag v is an eigenvector of A corresponding to A
for any scalars Ay, Ay, ..., Ar € K.

Let A, B € M, «, (K). Show that AB and BA have the same characteristic
polynomial. Does they have the same minimal polynomial?

Let A, B € M, «, (R). Check which of the following statements are true.

(a) A and AT have the same eigenvalues.

(b) If Rank(A) = k, then A has at most k + 1 distinct eigenvalues.

(c) If A is singular, then A 4 I is nonsingular, where [ is the identity matrix.

(d) If every v € R" is an eigenvector of A, then A = LI for some A € R.

(e) Let f(x) € R[x]. Then X is an eigenvalue of f(A) if and only if x= )
for some eigenvalue A of A.

(f) If A satisfies the equation A3 = A, then the characteristic equation of A is
x —x.

(g) If A and B have the same eigenvalues, then they have the same characteristic
and minimal polynomials.

(h) {0} and R" itself are the only subspaces of R” which are invariant under every
A.

(i) M (A — A[) is an invariant subspace of A for any A € R.

(j) If A is diagonalizable, then there exists one dimensional invariant subspaces
Vi,Vo, ..., V,of Asuchthat R" =V, &V, ®--- D V,.

Let A € M, (K) be such that A¥ = 0 for some k (A is called nilpotent matrix).
Then show that 0 is the only eigenvalue of A. Can A be diagonalizable?

Let A be a square matrix with real entries such that A?>? = 0. Then what are
the possible values of Tr(A?)?
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14. Check whether the following matrices are diagonalizable over C or not.

312 320
a)|:_01(1)] b)[gﬂ c)|:(2)£| d|—-116]| e|0-16
105 005

15. Let A € M, (K) be such that A> = I (A is called involutory matrix). Then
show that

(a) 1 and —1 are the only possible eigenvalues of A.
(b) A is diagonalizable.

16. Let A € M, (K) be such that A> = A(A is called idempotent matrix). Then
show that

(a) 0and 1 are the only possible eigenvalues of A.
(b) K" =1Im(A) & Ker(A).
(c) A isdiagonalizable.

17. Let A, B € M., (K) be such that B = P~'AP. Then show that if v is an
eigenvector of A corresponding to the eigenvalue A, P~'v is an eigenvector of

B corresponding to the eigenvalue A.
1...1

18. Find the characteristic and minimal polynomial of the matrix

1...1

19. Show that if A is a block diagonal matrix, then the minimal polynomial (,;F A is
the least common multiple of minimal polynomials of the diagonal blocks.

20. Let A € My, (R) have three distinct eigenvalues A, A, and A3. The eigenspace
corresponding to X is two dimensional and the eigenspace corresponding to one
of the other two eigenvalue is three dimensional. Is A diagonalizable?

21. Let A, B € M,,,«,, (K) be such that AB = B A. Show that if A is diagonalizable,
then B is also diagonalizable.

22. Show that if A € M35 (R) is not triangularizable over R, then it is diagonaliz-
able over C.

23. Let Vy, Va, ..., Vi beinvariant subspaces under A € M, (K). Show that V| +
V3 + -+ - 4 V; is also an invariant subspace under A.

24. How many invariant subspaces does the zero matrix and identity matrix of order
n have?

25. Consider a matrix A € M, (R) given by

200
A= 1 21
—-101

(a) Find the eigenvalues and eigenvectors of A.
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(b) Find matrix P such that PAP~! = D, where D is a diagonal matrix, if it

exists.

(c) Find all invariant subspaces of A.

26. Find the possible Jordan Canonical forms of A € Mg,s (R) if the characteristic

27.

and minimal polynomials are given by
p(A) = 0.=3G. -2+ 1)’

and
m(A) = (A —3)*(h —2)(A + 1)?

Let A beareal n x n matrix with eigenvalues A, A,, ..., A, repeated according
to their multiplicities. Then show that there exist a basis of generalized eigenvec-
tors vy, va, ..., v, with P = [vl vy ... v,,] invertible and A = S + N, where
P7'SP =diag{h\,..., .} (diag{ri, ..., X,} denotes the diagonal matrix
with diagonal entries Aq, A2, ..., A,,). Further, the matrix N = A — § is nilpo-
tent of order kK < n and S and N commute.

Solved Questions related to this chapter are provided in Chap. 10.



Chapter 5 ®)
Normed Spaces and Inner Product e
Spaces

This chapter delves into the fundamental mathematical structures of normed linear
spaces and inner product spaces, providing a solid comprehension of these essential
mathematical structures. Normed spaces are defined as vector spaces that have been
reinforced with a norm function that quantifies the magnitude or length of a vector
from the origin. Several examples, such as Euclidean space with the well-known
Euclidean norm, demonstrate the use of normed spaces. Building on this, inner
product spaces are investigated, with the goal of broadening the concept of normed
spaces by integrating an inner product that generalizes the dot product. Euclidean
space is one example, where the inner product can characterize orthogonality and
angle measurements. The chapter expands on the importance of orthogonality in inner
product spaces, providing insights into geometric relationships and applications in a
variety of domains. Gram—Schmidt orthogonalization technique is introduced, which
provides a mechanism for constructing orthogonal bases from any bases of an inner
product space. The concept of orthogonal complement and projection onto subspaces
broadens our understanding by demonstrating the geometrical interpretation and
practical application of these fundamental mathematical constructs. Proficiency in
these topics is essential for advanced mathematical study and a variety of real-world
applications in a variety of areas.

5.1 Normed Linear Spaces

In this section, we will introduce a metric structure called a norm on a vector space
and then study in detail the resultant space. A vector space with a norm defined on
it is called normed linear space. A norm, which intuitively measures the magnitude
or size of a vector in a normed space, enables the definition of distance and conver-
gence. Normed spaces provide an adaptive environment for various mathematical
and scientific applications, providing a deeper understanding of vector spaces and
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accommodating numerous norm functions to meet various needs. Let us start with
the following definition.

Definition 5.1 (Normed linear space) Let V be a vector space over the field K, where
K is either R or C. Norm is a real-valued function on V (||.|| : V — R) satisfying
the following three conditions for all u,v € V and A € K:

(N1) [lv]l > 0,and ||v]| = 0 if and only if v = 0
(N2) [[avll = [ALlIv]
(N3) lu + vl < llull + lIvll.(Triangle Inequality)

Then V together with a norm defined on it, denoted by (V, ||.|]), is called a Normed
linear space.

Example 5.1 Consider the vector space R over R. Define |v||, = |v| for v € R.
Then by the properties of modulus function, |||, is a norm on R.

Example 5.2 Consider the vector space R” over R. For v = (vi, v2, ..., v,) in R",

1
define [[vll; = (3_7_;|vi|*)?. This norm is called the 2-norm.

1 " 1
(N1) Clearly [Ivll, = (X7 [vil*)* = 0and [vl, = (37, vil*)* =0 &
[vi?=0foralli =1,2,...,n < v=0.
(N2) ForA € Randv € R”,

1

1
n 2 n 2 n 2
Ivlly = (Zl)\vi|2> = (Zm%mz) = (MPZW)
i=1 i=1 i=1

1

n 2
= || (ZW) =l Ivl,
i=1
(N3) Foru,v e R",

D Quil + i =Y (uil + vil) Quel + vil)
i=1 i=1
= Y lwil Quil 4 vil) + vl (il + i)
i=1 i=1

< (ZW) (Z(|ui|+|vi|>2>
i=1 i=1

4 (ZW)“ (Z (il + |vl-|>2>
i=1

i=I

(Z(|u,-|+|v,<|>2>' (ZW) +<Z|w|2)
i=1 i=1 i=1
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which implies

1 1

(Zum + |v,~|)2)_ < (ZW) + (Zw)
i=1 i=1 i=1

Since |u; + v;| < |u;| + |vi|, we have

; o Yo 4
<Z|u,-+v,-|2) < (ZW) +<Z|vi|2)
i=1 i=1 i=1

Therefore R” is a normed linear space with respect to 2 — norm. In general,
R" is a normed linear space with respect to the p —norm defined by |v||, =

1
(3 vilP) 7, p = 1.(Verify)

Example 5.3 Consider the vector space R" over R. For v = (v, v2,...,v,) in

R”, define ||v]l,c = max {|vil], [val, ..., [val} = I{IllaX }{|v,~|}.This norm is called the
ie{l,..., n

infinity norm.

Example 5.4 Let V = Cla, b], the space of continuous real-valued functions on
[a, b]. For f € V,define | f|| = m[a);)]|f(x)|. This norm is called supremum norm.
X€la,

(N1) Clearly [[f]| = max |£(x)] 2 0. Also, | /| = max | ()] =0 | /()| =

Oforall x € [a,b] & f(x) =0forall x € [a, b].
(N2) For A € Rand f € Cla, b],

IAfl = Xlg[%]l(kf)(X)l = Xg%JIMf(X))I = xren[gf(b]l?»llf()c)l = Iklxrer}gz]lf(ﬂ\ = [A[1fI
(N3) Since |a + b| < |a| + |b], for f, g € Cla, b] we have

If+ gl = max |(f +g)(x)| = max |f(x)+g(x)| < max |f(x)|+ max [g()| = [fI+ gl
x€la,b] x€la,b)] x€la,b] x€la,b]

Then Cla, b] is a normed linear space with the supremum norm (Fig.5.1).

We have shown that || || = m[a)é]lf(x)| defines a norm in Cla, b]. Now let us
X€la,
define | f|| = rr[nri ]I f(x)|. Does that function defines a norm on Cl[a, b]? No, it
x€la,

doesn’t! Clearly, we can observe that || || = 0 does not imply that f = 0. For exam-
ple, consider the function f(x) = x? in C[—4, 4]. Then | f|| = r[rliil4]|f(x)| =0,
xXe|—4,

but f # 0. As (N1) is violated, || f] = r%1i41‘14]|f(x)| does not defines a norm on
xXe|—4,
C[—4,4].
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:4 -2 2 ; -2
Fig. 5.1 Consider the functions f(x)=x2 and g(x) =cosx in C[—4,4]. Then |f| =

max |x?| =16and | gl = max |cosx| =1
x€[—4.,4] x€[—4.,4]

Definition 5.2 (Subspace) Let (V, ||.]|) be a normed linear space. A subspace of V
is a vector subspace W of V with the same norm as that of V. The norm on W is
said to be induced by the norm on V.

Example 5.5 Consider C[a, b] with the supremum norm, then P[a, b] is a subspace
of Cla, b] with supremum norm as the induced norm.

We will now show that every normed linear space is a metric space. Consider the
following theorem.

Theorem 5.1 Let (V, ||.||) be a normed linear space. Then d(vi, v;2) = ||vi — v2|| is
a metricon V.

Proof Letvy,v,,v3 € V. Then

(M1) By (N1), we have
dvi,v) = llvi =l =0

and
dvi,v)=Ivi—=—nl=0&vi—1»n=0&vi=1n

(M2) By (N2), we have
d(vi,v2) = lvi = v2ll = llva = will = d(v2, v1)
(M3) Now we have to prove the triangle inequality.

d(vi, v2) = [lvi — vl
= lvi =v3+v3 =
< v —vall +llvs = wall  (By(N3))
=d(vi,v3) +d(v3, )
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The metric defined in the above theorem is called metric induced by the norm.
The above theorem implies that every normed linear space is a metric space with
respect to the induced metric. Is the converse true? Consider the following example.

Example 5.6 In Example 1.25, we have seen that for any non-empty set X, the
function d defined by

1, x
dx,y) = { bl

0, x=y
defines a metric on X. Let V be a vector space over the field K. Clearly (V,d) is a
metric space. If V is a normed linear space, by Theorem 5.1, we have

1, v#0
=d®v,0) =
Ivll = d(v.0) h,v:o

As you can observe that, for any A # 0 € K,

1, v#£0 A, v#£0
)\. = )\_ =
vl L,v:o A1Vl h,v:o

the discrete metric cannot be obtained from any norm. Therefore, every metric space
need not be a normed linear space.

Now that you have understood the link between normed spaces and metric spaces,
let us discuss a bit more in detail about defining a distance notion on vector spaces.
In Example 5.2, we have defined a number of norms on R”. What is the significance
of defining several norms on a vector space? Consider a simple example as depicted
in Fig.5.2.

In real life, we can justify the significance of defining various notions of distances
on vector spaces with many practical applications. Therefore, while dealing with a
normed linear space we choose the norm which meets our need accordingly (Fig. 5.3).

Now we understand that different norms on a vector space can give rise to different
geometrical and analytical structures. Now we will discuss whether these structures
are related or not. As a prerequisite for the discussion, let us define the “fundamental
sets” on a normed linear space

Definition 5.3 (Open ball) Let (V, ||.||) be a normed linear space. For any point
vo€Vande € RT,
Bc(vo) ={ve V] |v—wl <e}

is called an open ball centered at vy with radius €. The set {v e V | ||v| =1} is
called the unit sphere in V

We can see that this definition follows from the Definition 1.23 of an open ball in
a metric space.
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Fig. 5.2 Suppose that you have to move a chess piece from Al to D4 in least number of moves. If
the piece is a bishop we can move the piece directly from A to Dy. If the piece is arook, first we will
have to move the piece either to A4 or D1 and then to D4. Now, if the piece is king, the least number
of moves would be 3(A; — B, — C3 — D). Observe that the path chosen by different pieces to
move from Ay to D4 in least number of moves are different. Now try to calculate the distance traveled
by the piece in each of these cases. Are they the same? We need different notions of distances, right?
Interestingly, the metric induced from the infinity norm, d(u, v) = max;{|u; — v;|} is known as the
chess distance or Chebyshev distance (In honor of the Russian mathematician, Pafnuty Chebyshev
(1821-1894)) as the Chebyshev distance between two spaces on a chess board gives the minimum
number of moves required by the king to move between them

Fig. 5.3 Consider R? with A~ (1,2)
different norms defined on it.
If we are using the 2-norm,
the distance from the origin
to the point (1, 2) is 2
V2 + 22 =S asitis
length of the hypotenuse of a
triangle with base 1 and
height 2. If we are using
1-norm the distance will be 3 (1,0)
as it is the sum of the
absolute values of the
coordinates and if we are
using infinity norm, the
distance will be 2 as it is the
maximum of absolute values
of the coordinates

A
-

Example 5.7 Consider (R, ||.||o). In Example 1.26, we have seen that the open balls
in (R, ||.|ly) are open intervals in the real line. Now, consider the set S = {(v;, 0) |
vi € R, 1 <v; <4}in (R?, I.12). Is S an open ball in (R?, I.112)? Is there any way
to generalize the open balls in (R?, II.1,)? Yes, we can!! Take an arbitrary point
w = (w;, ws) € R% and € € R*. Then
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(a) (b)

Fig. 5.4 The open balls in (RZ, . [l,) are open circles as given in (a). Clearly, S is not an open ball
in (R, [.1l»)

Fig. 5.5 Unit spheres in R? 4

with respect to 1 — norm,

2-norm and infinity norm. v =1

Observe that the interior T Vil =1
portion of the unit spheres

represents the open unit ball, ¢ S

Bi(0)={veV]| vl <1}
in each of the norms

vl =1

B.w)={v=(,m) eR||v-w|<e)

==, eR*| (v —w)* + (n —w)? < €}

That is, open balls in (R?, ||.||,) are “open circles” (Fig.5.4).

Example 5.8 Let us compute the open unit balls centered at the origin in R?
with respect to /-norm, 2-norm and infinity norm. Let B? denote the open ball
in (R?, [.1l,,). Then

Bl = {(1.v2) € B | vi| + 2] < 1}
B} = {(vi,v)) € R | i + 2 < 1}

and (Fig.5.5)
By = {1, v2) € R” | max{|vi, |} < 1}
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Fig. 5.6 Consider a function f in C[—4, 4] with supremum norm. Continuous functions that lie
between the dotted lines constitute By (f) = {g € C[—4,4]| | f —gll < 1}

24 2 4
s b EEE .
- ,,_\ . | ;TN !
y 755 \ I \ Vol
/ Lo R | ~_7 !
l \
y) L L \ y) | ! \
\2 * ] ? < ] ] [
- R 3 -2 =1 1 2
N ’ I I
S - | I
s lee- e J
oY _2¥

Fig. 5.7 Clearly, we can observe that every point in an open ball generated by the infinity norm is
inside an open ball generated by 2-norm and vice versa

Observe that the open balls in R? corresponding to different norms may not have
the same shape even if the center and radius are the same. Now, let us give you an
example of open ball in C[—4, 4] with supremum norm (Fig.5.6).

Earlier, we have posed a question, does there exist any link between the topology

generated by the different norms defined

on a vector space? It is interesting to note

that the topology generated by any norms on a finite-dimensional space is the same.
That is, the open sets defined by these norms are topologically same. The following
figure illustrates this idea by taking the open balls in R? generated by the infinity
norm and 2-norm as an example (Fig.5.7).

Now we will prove algebraically that, in a finite-dimensional space the open
sets generated by any norms are topologically the same. For that, we will have the

following definition.
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Definition 5.4 (Equivalence of norms) A norm ||.|| on a vector space V is equivalent
to ||.|lp on V if there exists positive scalars A and u such that for all v € V, we have

Avilo = vl = vl
Example 5.9 Let us consider the 1-norm, 2-norm and infinity norm in R". For any
elementv = (vi, v, ...,v,) € R", we have

.....

IVlloo = max {[vi[} < [vi] + 2l + -+ [val = VIl
i€{l,2,...,n}

Also by Holder’s inequality (Exercise 5, Chap. 1), we have

n n n % n %
iy =Y "lvil =) il < (Zw) (Z 12> = Vn vl
i=1 i=1 i=1 i=1

and finally,

n % n 2 % 1
vil, = (ZIWP) < (Z (ie{llnzax n}{|v,~|}|v,-|> ) = (n ||v||go)7 = vl
i=1 ’

i=1 N
Thus 1— norm, 2-norm and infinity norm in R" are equivalent.

In fact, we can prove that every norm in a finite-dimensional space is equivalent.
But this is not the case if the space is infinite- dimensional. Consider the following
example.

Example 5.10 Consider the linear space C[0,1] over the field R. In
Example 5.4, we have seen that || f| = m{g)i]|f(x)| defines a norm on C[O0, 1],
x€l0,

called the supremum norm. Also, we can show that || f|; = f01| f(x)|dx defines
a norm on C[0, 1](Verify!). We will show that there doesn’t exist any scalar A such
that || fI| < || fll; for all f € C[O, 1]. For example, consider a function defined as
in Fig.5.8. Then we can observe that || f,,|| = 1 and || f, ||, = ﬁ(How?). Clearly, we
can say that there doesn’t exists any scalar A such that 1 < % for all n.

We have discussed the equivalence of norms in terms of defining topologically
identical open sets. This can also be discussed in terms of sequences. In Chap. 1, we
have seen that the addition of metric structure to an arbitrary set enables us to discuss
the convergence or divergence of sequences, limit and continuity of functions, etc.,
in detail. The same happens with normed linear spaces also. The difference is that
we are adding the metric structure not just to any set, but a vector space. All these
notions can be discussed in terms of induced metric as well as norm. We will start
by defining a Cauchy sequence in a normed linear space.
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Fig. 5.8 Define ™

nx, x 1 T
fn<x>={ e 0l 1

*n
1
Lxelpn1]
shown in the figure. Clearly
fn(x) belongs to C[0, 1] for
alln

AN

(e
Sy

Definition 5.5 (Cauchy Sequence) A sequence {v, } inanormed linear space (V, ||.||)
is said to be Cauchy if for every € > 0 there existsan N, € Nsuchthat ||v, — v, | < €
forallm,n > N.

Definition 5.6 (Convergence) Let {v,} be a sequence in (V, ||.||), thenv, — vin V
if and only if ||v, — v| - O asn — oo.

In Chap. 1, we have seen that in a metric space every Cauchy sequence need not
necessarily be convergent. Now the important question of whether a Cauchy sequence
is convergent or not in a normed linear space pops up. The following example gives
us an answer.

Example 5.11 Consider the normed linear space P[0, 1] over R with the supremum
norm. Consider the sequence, {p, (x)}, where

2 n

X X

X

pnx) =147

Is the sequence convergent? If so, is the limit function a polynomial? Clearly, not!
We know that p, (x) — €%, x € [0, 1](Verify!). Is it the only sequence in P[0, 1] over
R that converge to a function which is not a polynomial? Let us consider another
sequence {g,(x)}, where

2 X"

W=l+2+> 4.4
nx = — _— —_
9 2% 2

First we will prove that {g,} is a Cauchy sequence. For n > m,

n _Xi m xm
2y L
i=0 i=0

n i

X
2 5

i=m+1

||Qn(x) —d4m (X)” = xlél[%.)%]

max
x€[0,1]
1

2}”

IA
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Fig. 5.9 As | fo — fullis
the area of the triangle T
depicted in the figure, it is : :
easy to observe that { f,,} is Iaf V' fin
Cauchy ‘ :
| |
| |
! !
! !
< — %
0 1 1 1
n m

which shows that {g,(x)} is a Cauchy sequence. Now for any x € [0, 1], we have
1
gn(x) = g(x) asn — oo where g(x) = T_= (How?) and clearly ¢ (x) ¢ P[0, 1]

2
as it is not a polynomial function. Hence {g, (x)} is not convergent in P[0, 1]. What
about P, [0, 1]7 Is it complete?

Here is another example of an incomplete normed linear space.

Example 5.12 Consider C[0, 1] with || f|| = fol | f(x)]|dx for f € C[O, 1]. Consider
the sequence of functions f,, € C[0, 1] where

nx, xe[O l]
e [ 1]

We will show that { f,,} is Cauchy but not convergent (Fig.5.9).

Salx) =

Forn > m,
nx —mx, x € [0%]
/o) = fu@)] = {1 —mx, x e [1 1]
O, X € [;, 1]
Then

1 nl mL
/ |fn(x)_fm(x)|dx=/ (H—M)X-dX+/ (I —mx)dx
0 0 1

1 1 1 1 m

Now for any € > 0, take N > % Then form,n > N,

! 1IT1 17 1 1 e «
/Ifn(x)—fm(x)|dx—§|:———:|<—+—<—+_:5
0

n|l m n 2 2
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Therefore the sequence is Cauchy. Now consider

0, x=0
FOO=11 re o]

Then || f, — fIl = % — 0 asn — oo. Thatis, f, converges to f but f ¢ C[O0, 1].

Normed linear spaces where every Cauchy sequence is convergent are of greater
importance in Mathematics. Such spaces are named after the famous Polish math-
ematician Stefan Banach (1892-1945) who started a systematic study in this area.

Definition 5.7 (Banach Space) A complete normed linear space is called a Banach
space.

Example 5.13 Consider the normed linear space R” over R with 2-norm. We will
show that this space is a Banach space. Let {v;} be a Cauchy sequence in R". As v, €
R", we can take v; = (v{, V4, ..., k) for each k. Since {v;} is a Cauchy sequence,
for every € > 0 there exists an N such that

n

2 2 2
e = val? = (v =) <€

i=1

for all k,m > N. This implies that (v — v;'")2 <eXforeachi=1,2,...,n and
k, m > N and hence |va‘ —Vv"| <eforeachi =1,2,...,nand k,m > N.Thus for
a fixed i, the sequence vi1 s viz, ... forms a Cauchy sequence of real numbers. Since

R is complete, vl’F — v; ask — oo foreachi. Take v = (vq, vo, ..., v,) € R". Then

n
2
||vk—v||2=2(vl]f—v,~) —0asn—> o0

i=1

Hence, ||[vy — v|| = 0 as n — o0. Therefore R” over R with 2-norm is a Banach
space. What about C" over C with 2-norm?

In fact, we can prove that every finite-dimensional normed linear space is com-
plete. We have seen that this is not true when the normed linear space is infinite-
dimensional. Here is an example of infinite-dimensional Banach space.

Example 5.14 Consider C[a, b] with supremum norm. Let {f,} be a Cauchy
sequence in C[a, b]. Then for every € > 0 there exists an N such that

I = Fll = max | £,) = fin ()] < € 5.1
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Hence for any fixed xy € [a, b], we have

| fu(x0) = fin(x0)| < €

for all m, n > N. This implies that f;(xo), f2(x0), f3(x0), ... is a Cauchy sequence
of real numbers. Since R is complete (by Theorem 1.2), this sequence converges,
say fn(x9) = f(x0) asn — oo. Proceeding like this for each point in [a, b], we can
define a function f (x) on [a, b]. Now we have to prove that f, — f and f € Cla, b].
Then from, Equation5.1, as m — oo, we have

xrer}%]lfm(X) —f)=<e

for all m > N. Hence for every x € [a, b],

| fn(X) = f(X)| <€

for all m > N. This implies that {f,,(x)} converges to f(x) uniformly on [a, b].
Since f,,s are continuous on [a, b] and the convergence is uniform, the limit function
is continuous on [a, b](See Exercise 12, Chap. 1). Thus f € Cla, b] and f, — f.
Therefore Cla, b] is complete.

5.2 Inner Product Spaces

In the previous section, we have added a metric structure to vector spaces which
enabled as to find the distance between any two vectors. Now we want to study the
geometry of vector spaces which will be useful in many practical applications. In
this section, we will give another abstract structure that will help us to study the
orthogonality of vectors, projection of one vector over another vector, etc.

R? and Dot product

R? and Dot product First we will discuss the properties of the dot product in the
space R? and then generalize these ideas to abstract vector spaces.

Definition 5.8 (Dot Product) Letv = (v, v2), w = (wy, wy) € R?. The dot product
of v and w is denoted by ' v.w ’ and is given by

VW = viw) + vowy



176 5 Normed Spaces and Inner Product Spaces

Theorem 5.2 Foru,v,w € R2and » € K,

(a) v.v=0andv.v =0ifand only ifv = 0.

(b) u.(v+w)=u.v+ u.w (distributivity of dot product over addition)
(c) (Au).v = A(u.v)

(d) u.v =v.u (commutative)

Proof (a) Letv = (vi, v;) € R% Clearly, v.v = v{ +v3 > 0 and
v.v=v12+v§=0<:>v1 =v»=0&v=0
(b) Foru = (uy, u2),v = (vi,v2), w = (wy, wp) € R?,

u.(v+w) =u(vi +wi) +us(va +wy)
=uvy + usva + uiwy + uowy

=uv—+uw
(c) Foru = (uy, uz),v = (v1,v) € R?and A € K,

(Au).v = (Auy, Auz).(vi, v2)
= Auvy + Auprv,
= AMuvy + uzvy) = Au.v)

(d) Foru = (uy, uz),v= (vi,v) € R%,

UV = UV] + UrVy) = VU] + ValUpy = V.U

Definition 5.9 (Length of avector)Letv = (vi, v;) € R%. The length of v is denoted
by [v| and is defined by |v| = \/v.v = /v + V3.

Theorem 5.3 Let u,v € R?, then u.v = |u||v|cos@ where 0 < 6 < 7 is the angle
between u and v.

Proof Let u = (u1, us),v = (v, v2) € R%. If either u or v is the zero vector, say
u = 0, then
uv=0;4+01n=0

Then as |u| = 0, |u||v]| cos @ = 0. Therefore, the theorem holds. Now suppose that,
both u, v # 0. Consider the triangle with sides u, v and w. Then w = v — u and by

the law of cosines of triangle,

wi? = |ul)® + [v]* = 2|u||v| cos O (5.2)
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Fig. 5.10 Orthogonal 4
projection of v on u

A~
Y

Y
~

u 7 (v)

where 0 < 6 < & is the angle between u and v. Also,

WP =ww=@0—u).v—u)=—u)yv—@—u)u=v.v+uu—2uv
(5.3)

Then equating (5.2) and (5.3), we get, u.v = |ul||v|cos 6.

Remark 5.1 Let « and v be two vectors in R? and let 6 be the angle between u and
v. Then

1. 9=c0s_1< s >
|uel[v]

2. 1f @ = 7, then u.v = 0. Then we say that u is orthogonal to v and is denoted by
u L.

Let v € R? be any vector and u € R? be a vector of unit length. We want to find
a vector in span ({u}) such that it is near to v than any other vector in span ({u})
(Fig.5.10). We know that the shortest distance from a point to a line is the segment
perpendicular to the line from the point. We will proceed using this intuition. From
the above figure, we get

7, (v) = (lv| cos 0) u
From Theorem 5.3, cosf = % Substituting this in the above equation, we get
7w, (v) = (u.v)u. The vector m,(v) is called the orthogonal projection of v on u as
v — m,(v) is perpendicular to span ({u}).

Definition 5.10 (Projection) Let v € R? be any vector and u € R? be a vector of
unit length. Then the projection of v onto span ({u}) (a line passing through origin)
is defined by 7, (v) = (u.v)u.
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Inner Product Spaces

Norm defined on a vector space generalizes the idea of the length of a vector in R?.
Likewise, we will generalize the idea of the dot product in R? to arbitrary vector
spaces to obtain a more useful structure, where we can discuss the idea of orthogo-
nality, projection, etc.

Definition 5.11 (Inner product space) Let V be a vector space over a field K.
An inner product on V is a function that assigns, to every ordered pair of vectors
u,v € V, ascalar in K, denoted by (u, v), such that for all , v and w in V and all
A € K, the following hold:

IP1) (v,v) >0and (v,v) =0 v=0
aP2) (u+w,v) =(u,v)+ (w,v)
aP3) (Au,v) = Au,v)

(IP4) (u,v) = (v, u), where the bar denotes complex conjugation.

Then V together with an inner product defined on it is called an Inner product space.
If K = R, then (I P4) changes to {(u, v) = (v, u).

Remark 5.2 1. If)»],)\z, ’)\n € K and W, Vi, V2, ...,V € V,then

<i)hiviv W> = i)ﬁ("i, w)
i—1 i—1

2. By (IP2) and (I P3), for afixedv € V, (u, v) is a linear transformation on V.
3. Dot product is an inner product on the vector space R? over R.

Example 5.15 Consider the vector space K" over K. For u = (uy, us, ..., u,) and
v= (v, Vv2,...,v,) in K", define (u,v) = 27:1 u;v;, here v denote the conjugate
of v. This inner product is called standard inner product in K”".

(IP1) We have

n n
(w,u) = wi; =y |ui]> =0
i=1 i=1

and

n
(wu) =Y |ui]* =0 |u|*=0,¥i=1,2,..., neu=0Vvi=12..., neu=

i=1

(IP2) For,w = (wi,wa,...,w,) € K"
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(U +w,v) Z(ul + w;)v;

—Zuv,—l—Zw,v,: (u, v) + (u, w)

(IP3) (hu,v) =Y i Auivi = A Y i u;iv; = Au, v), where A € K.
(AP4) (u,v) = Yooy wivi = 2oy wivi = Dy vitki = (v, u)
Therefore K” is an inner product space with respect to the standard inner product.

Observe that if K = R, the inner product, (u, v) = Y _;_, u;v; is the usual dot product
in R".

Example 5.16 Let V = Cla, b], the space of real-valued functions on [a, b]. For
f,g €V, define (f, g) = fab f(x)g(x)dx. Then V is an inner product space with
the defined inner product.

(IP1) We have

b b
o f) = / FOOF()dx = / F@Pdx =0

and

b
o f) = / P dy =0 f(x)=0,Vx ¢ [a,b]

(IP2) For, h € Cla, b]

b
(f+h. g :/ Lf(x) +h(x)] g(x)dx

b b
:/ f(X)g(X)dX+f h(x)g(x)dx = (f, g) + (h. &)

Ip3) (rf,g) = fab Af(x)gx)dx = Afab f(x)g(x)dx = A(f, g) where A € R.
(IP4) (f,¢) = [” fF)g)dx = [” g(x) f(x)dx = (g, f).

Thus Cla, b] is an inner product space with respect to the inner product (f, g) =
fab f(x)g(x)dx. Let us consider a numerical example here for better understanding.
Consider f(x) = x> —1, g(x) =x + 1 € C[0, 1]. Then

12

xt X3 x? 1_—11
4 3 2 0

1
<f,g)=/ (X3+x2—x—l)dx:[—+____x
0

1 y s ¥ 3 1 3
) = —oxl 4 Ddx = |2 2L ==
= [ ot =20 s [5 3+xi|0 kit
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and |

1 3 7
(g,g)z/ (x2+2x+1)dx:[_+x2+x] _ !
0 3 o 3

What if we define, (f, g) = fol f(x)gx)dx — 1for f, g € C[0, 1]? Does it define
an inner product on C[0, 1]? No, it doesn’t! Observe that, for f(x) = x2—1,we get
(f, )= % —-1= T—57 < 0. This is not possible for an inner product as it violates
(I P1). Now, let us discuss some of the basic properties of inner product spaces.

Theorem 5.4 Let V be an inner product space. Then for u,v,w € V and A € K,
the following statements are true.

(a) (u,v+w)=(u,v)+ (u,w)

(b) (u, ) = Alu,v)

(c) (u,0)=(0,u)=0

(d) If (u,v) = (u,w) forallu € V, thenv = w.

Proof Foru,v,w e V and A € K,

@ (w,v+w)=p+wu)=v,u)+ wu) = vu) +wu) = uv)+uw

() (u, Av) = (Av,u) = Av,u) = A (v,u) = Xu, v)

() (u,0) = (u,0+4+0) = (u, 0) + (u, 0) = (u, 0) = 0. Similarly (0, u) = (0 + 0,
u)y =(0,u) + (0,u) =0.

(d) Suppose that (i, v) = (u, w) forallu € V.

(u,v) = w,w) = u,v) — u,w)=0= u,v—w) =0

That is, (u, v) = (u, w) for all u € V implies that (u,v —w) =0V u € V.In
particular, (v — w, v — w) = 0. This implies v — w = 0. That is, v = w.

The following theorem gives one of the most important and widely used inequal-
ities in mathematics, called the Cauchy-Schwarz Inequality, named after the French
mathematician Augustin-Louis Cauchy (1789-1857) and the German mathematician
Hermann Schwarz (1843-1921).

Theorem 5.5 (Cauchy-Schwarz Inequality) Let V be an inner product space. For
v,wevV,

(v, w)I? < (v, v) {w, w)
where equality holds if and only if {v, w} is linearly dependent.

Proof Letv,w € V. Consider

u = {(w,w)yv — (v, w)w
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Then

0 < (u,u) = {
= [{(w, w)[F (v, v) — (w, w)[(v, w) 2 — (w, w) [ (v, w) 2 + (w, w) [ (v, w)?
{

|
= w,w)[vv (w, w) — [{v, W)|]

(w, w)v — (v, ww, (w, w)v — (v, w)w)

Now suppose that (w, w) > 0, then (v, v)(w, w) — |(v, w)|> > 0, which implies that

[(v, w)]? < (v, v)(w, w).If (w, w) = 0, thenby (I P4),w = 0. Therefore by Theorem
5.4(c), (v, w) = 0 and hence (v, v){(w, w) = 0 = [{v, w)|%.

Now suppose that equality holds. That is, | (v, w)|?> = (v, v)(w, w). Then (u, u) =
0. Then (w, w)v = (v, w)w and hence {v, w} is linearly dependent. Conversely, sup-
pose that {v, w} is linearly dependent. Then by Corollary 2.1, one is a scalar multiple
of the other. That is, there exists A € K such that v = Aw or w = Av. Then

W, V) w, w) = (w, Aw) (w, w) = [A]*[(w, w)[* = [(v, w)]?

Hence the proof.

Example 5.17 Consider R" with standard inner product. For (uj,...,u,),
1, ..., v,) € R*, by Cauchy-Schwarz inequality, we have

(uqvy +u2vz+~-~+unvn)2 < (uq +u2+-~-+u,,)2(v1 +vz+-~-+v,1)2

Thatis, (}/_, u,‘v,-)2 < (X, u,-)2 (>, v,»)z.Ifwe consider, C[a, b] with the inner
product, (f, g) = fa b f(x)g(x)dx, then by Cauchy-Schwarz inequality, we have

b 2 b b
[ / f(x)g(x)dx} < / F20)dx f £ (x)dx

Thatis, [(f, g)|*> < (f, f){g, g). Considerf g € C[0, 1] asdefined in Example 5.16.
1

We have seen that (f, g) = % (f, f) == and (g,8) = % Clearly,
1(f. &) = E<§—<f g 8)
BT g =g T VNe 8

In the previous section, we have seen that every normed linear space is a metric
space. Now, we will show that every inner product space is a normed linear space.
The following theorem gives a method to define a norm on an inner product space
using the inner product.

Theorem 5.6 Let V be an inner product space. Forv € V, |[v|| = +/(v, v) is a norm
onV.

Proof(N1) Let v e V. Since (v,v) >0, we have [v|]=+(v,v)>0. Also
(v,v) =0 < v =0, implies that ||v|]| = «/(v,v) =0< v =0.
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(N2) [[wvll = /v, 2v) = VAr(, v) = VA2 [v]* = |A] [v], where A € K.
(N3) Foru,veV,
lu +v)> = w+v,u+v)

= (u,u)+ (u,v) + (v,u) + (v, v)

= [lull® + [VII* + 2Re((u, v))

< lull® + 1> 4 21w, v)|

< lull® + [II* 4+ 2 lull v (Cauchy — Schwarz)

= (lull + IIvI)?

Hence [lu + v < llull + lIv]l.
Therefore ||v|| = 4/{v,v) isanormon V.

Remark 5.3 The norm defined in the above theorem is called the norm induced by
the inner product. Every inner product space is a normed linear space with respect
to the induced norm.

Example 5.18 Consider R" with standard inner product. Observe that for v =
i, va, ..., v) € R, we get

vl = Vv, v) = (Z v?) = vl
i=1

Thus the standard inner product on R” induces 2-norm. Similarly, the inner product
(f.g) = fab f(x)g(x)dx on Cla, b] induces the norm,

b 3
£l =V ) = ( f fz(x)dx)

This norm is called, energy norm.

The following inclusion can be derived between the collections of these abstract
spaces.

{Inner product spaces} C {Normed spaces} C {Metric spaces}

Now we have to check whether the reverse inclusion is true or not. The following
theorem gives a necessary condition for an inner product space.

Theorem 5.7 (Parallelogram Law) Let V be an inner product space. Then for all
u,vev,
e+ 1% 4l = vI? =2 (llul® + Iv11%)



5.2 Inner Product Spaces 183

Fig. 5.11 Parallelogram law

fleell

Proof Forallu,veV,

||u+v||2=(u+v,u+v): (u, u) + (u,v) + (v, u) + (v, v)

||u—v||2=(u—v,u—v):(u,u)—(u,v)—(v,u)+(v,v)

Therefore [|u + v[|* + lu — v[I* = 2 (lull* + ||v||*) (Fig.5.11).

Example 5.19 In Example 5.4, we have seen that C[a, b], the space of continuous

real-valued functions on [a, b] is a normed linear space with the supremum norm

given by, || || = m[a>l<7]| f(x)| where f € Cla, b]. This space gives an example of
x€la,

a normed linear space which is not an inner product space. Consider the elements

filx) =1and fo(x) = g:Z; in Cla, b]. Then [| fi[| = T and || f2]| = 1. We have
Ut DW= g and G = £ =1 = =0

Hence | fi + f2ll =2 and || fi — f2/l = 1. Now

Ifi+ LI+ 1A = AIF=5but2 (1A + 1 %) =4

Clearly, parallelogram law is not satisfied. Thus supremum norm on C[a, b] cannot
be obtained from an inner product.

From the above example, we can conclude that not all normed linear spaces are
inner product spaces. Now, we will prove that a normed linear space is an inner
product space if and only if the norm satisfies parallelogram law.

Theorem 5.8 Ler (V, ||.||) be a normed linear space. Then there exists an inner
product (,) on V such that (v,v) = ||v||2 for all v € V if and only if the norm
satisfies the parallelogram law.
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Proof Suppose that we have an inner product on V with (v, v) = Iv||? forallv € V.
Then by Theorem 5.7, parallelogram law is satisfied.

Conversely, suppose that the norm on V satisfies parallelogram law. For any
u,v €V, define

2 2 . . 2 . . 2
Hu,v) = lu+v[I” = llu =" +illu+ivll” —illu—iv|

Now we will prove that the inner product defined above will satisfy the conditions
(IP1)— (IP4).

(IP1) For any v € V, we have
4w, vy = v+ = llv = vII> +i A+ D> =i vl =)
=4I +ill+ilvI> =il —i* vl
= 4|vII* +2i [v)I* = 2i [vII?
= 4|
This implies that (v, v) = ||v||2 forall v € V. Hence (v,v) >0 forallve V
and (v, v) = 0 if and only if v = 0.

(IP2) For any u, v, w € V, we have

Au+wvy=w+w) +vI>=ll@+w) —vI>+ill@+w) +iv)®—illu+w) —iv|?

rewriting u +w 4+ v as (u + %) + (w + %) and applying parallelogram law,

we have
e 5)+ Gt DI 1ot 3) = o ) =2l 51 2o 5
This implies
-t =2 2| 2o 2] w?
Similarly,
-t w = w1 = 2| = 2| 2| = 2| = e = i
Then

llu 4w+ vl|* - ||u+w—VH2=2[Hu+%H2—H”_ %“2+Hw+g“2_ Hw_ gHz]
5.4
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Multiplying both sides by i and replacing v by iv in the above equation,

. L2 12T = 20 ivl|[? iv||? iv||? iv]|?
1[Hu+w+tv|l —Hu+w—tv|\]_l u+? — u—j +Hw+5 —Hw—?
(5.5)
adding (5.4) and (5.5),we get
V|2 V|2 iv]|? iv]|?
[ I ] ] R
V|2 V|2 iv]]? iv]|?
[

=[5+ e 3)]

No taking w = 0 and then u = O separately in the above equation, we get
(u,v) =2(u, %) and (w,v) = 2(w, %). Thus we get, 4(u + w, v) = 4(u, v) +
4{w,v) forall u,v,w e V.

(IP3) Now we will prove that (Lu, v) = A(u, v). We will prove this as four separate
cases.

(a) A is an integer.
For all u,v,w € V, we have

(u+w,v) = (u,v)+ (w,v)
Replacing w by u, we get (2u, v) = 2(u, v). Thus the result is true for A = 2.

Suppose that the result is true for any positive integer n. That is, (nu, v) =
n(u,v) forallu,v € V. Now

((m4+ Du,v) = (nu+u,v) = (nu,v) + (u,v) = m+ Du,v)
hence by the principle of mathematical induction, the result is true for all
positive integers n. Now, to prove this for any negative integer n, first we
prove that (—u, v) = —(u, v), for any u, v € V. We have

2 2 . . 2 . . 2
Au,v) = lu+vlI”—llu—v[I*+illu+ivll—illu—iv|

Replacing u by —u, we get

M=, vy = |—u+vI* = ll—u —v|* +ill—u+iv]* —ill—u—iv|?
== —=I? ==+ +ill=@— i) =i ll—+iv)]?
= lu—vI* = llu+vII* +illu—iv)* —illu+iv|?

= —4{u,v)
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(b)

()

(d)

5 Normed Spaces and Inner Product Spaces

Thus we have (—u,v) = —(u,v) for any u,v € V. Let A = —u be any
negative integer, where i > 0. Then we have,

(A, v) = (—pu,v) = (=(uu), v) = —(uu, v) = —ufu, v) = Au, v)

Thus the result is true for any integer A.
A = £ is a rational number, where p, ¢ # 0 are integers.
Then we have

plu,v) = (pu,v) = <q <£) u, v> =q <£u, v>
q q

Thus we have <§u, v> = g(u, v) for all u, v € V. Thus the result is true for

all rational numbers.

) is a real number.

Then there exists a sequence of rational numbers {1, } such that A, — A as
n — oo (See Exercise 13, Chap. 1). Observe that, as n — oo

|An (s v) = Au, v)| = |(An — 2)(u, V)| = [k — Al[(u, V)] = O

Hence, A, (u, w) — A{u,v) as n — oco. Now, by (D), A, (1, v) = (Ayu, v).
Also,

400, v) = At + V1> = g = VII* + i (A + VI — i | 2gu — iv]|?
— |lAu 4+ v|? = A —v|* + i [|Au 4 iv]|> — i |Au —iv]?
= 4(Au,v)
That is, (A,u, v) — (\u,v) as n — oo. This implies that (Au, v) = A(u, v)
forany u,v e V.

X is a complex number.
First we will show that (iu, v) = i{u, v). We have

Hu, vy = lu +vI* = llu —vII* +illu+iv)* —iu—iv]?
Replacing u by iu, we have

Aiu,v) = lliu+ v = lliu — vI* + i lliu +ivl|* — i lliu —iv]?
= lliu — iV = i+ iv) 1>+ i+ I =i lli@—w)]?
= llu—ivI® = llu+ivI* +illu+vI*—ilu—v|?
=i u—ivIP+i2u+ivl>+illu+vI>—ilu—v|?
=i[lu4vI>=llu—vI*+illu+ivl*—ilu—iv]?]
= i4{u,v)
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which implies that (iu, v) = i{(u, v). Now, for any complex number A =
a + ib, then

(Au, v) (a +ib)u,v)
au + ibu, v)
(au,v) + (ibu, v)
al{u,v) +ib{u,v)

= (a +ib){u,v) = Au,v)

= (
= (

Thus (Au, v) = A(u, v) forall u, v € V and for all scalars A.

(IP4) For any u,v € V, we have

A, v) = llu 4+ vI? =l = vI? + i llu 4+ iv)® =i llu —iv)?
=+ ul®> = llv—ul® +illiv = iwl* =i (=) +iw)|?
=+ ul® = llv —ul® +ili? v = iul® =il =i lv + iul®
=+ ul® = llv—ul® = illv—iul® +illv +iul?
=4(v, u)

Hence, (1, v) = (v,u) forallu,v e V.

Thus all the conditions for an inner product are satisfied and hence (V, (,)) is an
inner product space.

Similar to what we have done in normed linear spaces, the concept of convergence
of sequences in inner product spaces follows from the definition of convergence in
metric spaces as given below.

Definition 5.12 (Convergence) Let {v,} be a sequence in an inner product space V,
then v, — v if and only if (v,,v) - O asn — oo.

Again the question of completeness rises. The following example shows that every
inner product space need not necessarily be complete.

Example 5.20 Consider C[0, 1] with the inner product (f, g) = fol f(x)g(x)dx.
We have already seen that C[0, 1] is an inner product space with respect to the given
inner product. Now, consider the sequence,

0, xe0,1
fo=n(c=3) re b+ 1]
L, xe[i+11]

If we proceed as in Example 5.12, we can show that { £, } is Cauchy but not convergent.

Complete inner product spaces are named after the famous German mathematician
David Hilbert (1862—1943) who started a systematic study in this area.
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Definition 5.13 (Hilbert Space) A complete inner product space is called a Hilbert
space.

Example 5.21 Consider K" over K with standard inner product. Then ||v| =

S, vy = (Z?=1|vi|2)% for v= (vi,v2,...,v,) € K". Then from Example 5.13,
K" over K with standard inner product is a Hilbert space. In fact, we can prove that
every finite-dimensional space over the fields R or C is complete(Prove). Is Q over
the field Q complete?

5.3 Orthogonality of Vectors and Orthonormal Sets

Orthogonality of vectors in vector spaces is one of the important basic concepts in
mathematics which is generalized from the idea that the dot product of two vectors
is zero implies that the vectors are perpendicular in R? (Fig.5.12).

Orthogonal/orthonormal bases are of great importance in functional analysis,
which we will be discussing in the coming sections. We will start with the defi-
nition of an orthogonal set.

Definition 5.14 (Orthogonal set) Let V be an inner product space. Vectorsv, w € V
are orthogonal if (v, w) = 0. A subset S of V is orthogonal if any two distinct vectors
in S are orthogonal.

We are all familiar with the fundamental relation from Euclidean geometry that,
“in a right-angled triangle, the square of the hypotenuse is equal to the sum of
squares of the other two sides”, named after the famous Greek mathematician,
Pythagoras(570-495 BC) (Fig.5.13).

This relation can be generalized to higher-dimensional spaces, to spaces that are
not Euclidean, to objects that are not right triangles, and to objects that are not even
triangles. Consider the following theorem.

Theorem 5.9 (Pythagoras Theorem) Let V be an inner product space and
{vi, va, ..., vy} be an orthogonal set in V. Then

Vi +va+ A vall> = il + 12l + - + [l

Fig. 5.12 Example for
orthogonal vectors in R?
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Fig. 5.13 Pythagoras AN
theorem illustrated in R2

vi+vy
V2

~

Vi

Proof As {vi,vs,...,v,} is an orthogonal set in V, we have (v;,v;) =0, Vi # j.
Then

w2 vl = v va v v v )

= (viv))

ij=1

= Z(Vivvi>
i=1
= vill® + vall? + - - + vl

Definition 5.15 (Orthonormal set) A vector v € V is a unit vector if ||v|| = 1. A
subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors. A
subset of V' is an orthonormal basis for V if it is an ordered basis that is orthonormal.

Example 5.22 Consider the set S = {v{, v», v3} in C[—1, 1], where

L S
= —, = — d = -3 —1
Vi 7 Vs 2)cam V3 8(x )

Then

! 25 _5 ! 4 2 _
X dx-l,(V3,V3)—§ Ox" —6x“+ Ddx =1
_ -1

| 3
(VlaVl)Z/; de=1,(V2,V2)=§ ]

and

3 ! 5 (!
(o1, va) = %/ xdx = 0, (v, v3) = %/ (3x* — Ddx =0,
_ 1

1 _
J15 !

(v2,v3) = Tf (Bx* —x)dx =0
-1

Thus S is an orthonormal set in C[—1, 1]. As P,[—1, 1] is a subspace of C[—1, 1]
with dimension 3, S can be considered as an orthonormal basis for P,[—1, 1].
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Example 5.23 Consider the standard ordered basis S = {ej, e2, ..., €,} in R" with
standard inner product. Clearly (e;, e;) = 0 fori # j and |le;|| = +/{e;, ¢;) = 1 for
alli =1,2,...,n. Therefore the standard ordered basis of R” is an orthonormal
basis.

In the previous chapters, we have seen that bases are the building blocks of a
vector space. Now, suppose that this basis is orthogonal. Do we have any advantage?
Consider the following example.

Example 5.24 Consider the vectors vi = (2, 1,2),v, = (=2,2,1) and vz = (1,
2, —2)inR3. Clearly, we can see that {v, v,, v3} is an orthogonal basis for R3 (verify).
Then we know that any non-zero vector in R* can be written as a linear com-
bination of {v|, v, 3} in a unique way. That is, any v € R? can be expressed as
v = A1v; + Aova 4 Azvs for some scalars A, A, A3. Because of the orthogonality of
basis vectors, here we can observe that,

o v1) = (v + Aava + Azva, vi) = A (v, vi) = A 12

Hence, 1| = ilvl V|;2> . Similarly, we can compute A, and A3 as <HVVVH22) and ilvvvliz , respec-
1 1 1

tively. This is interesting! right? Let us consider a numerical example. Take v =
(6, 12, —3) € R3. We have

Observe that T‘VVIV“‘Z) =2, <va;\\22) = land i“’vzvﬁz) = 4.Is this possible in any arbitrary inner
product space? Yes, it is possible!! That is, if we have an orthogonal basis for an inner
product space V, it is easy to represent any vector v € V as a linear combination of
the basis vectors. For, if {v{, v2, ..., v,} is an orthogonal basis for an inner product

space V, then for any v € V, we have

_ v v1>v (v, Vz)v (v, vn>v
— P 1 P 2 e 7 vn
vl [[v2ll Vel
and if {vy, v», ..., v,} is an orthonormal basis for V, we have

V=V, v)vi + (v, v)va - (v, V)V

This fact is formulated as the following theorem.

Theorem 5.10 Let V be an inner product space and S = {vi,va,...,v,} be an
orthogonal subset of V consisting of non-zero vectors. If w € span(S§), then

n
(W,Vi)
v=2 TR

Further if S is an orthonormal set,
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n

w= Z(w, Vi)YV

i=1

Proof Since w € span(S), there exists scalars Ay, A, ..., A, € K such that w =
Avi+dovo+ -+ A,v,. Nowfori = 1,2, ..., n, we have

(W, vi) = (Avi + Aava + - - -+ AV, Vi)
= Ar(vi, vi) + Aa(va, vi) + - Ay (v, Vi)

Since S = {v(,v2,...,v,} is an orthogonal set, (v;,v;) =0 for all i # j and
(vi, vi) = |Ivi|* # 0. Therefore

w,vi) = A lvill?

w, Vi . .. . (W, v
and hence A; = (” ”’2) fori = 1,2, ..., n. This implies thatw = }_ (” ”’2) v . If S
Vi i=1 ||Vi
is orthonormal, vy, v, ..., v, are unit vectors and hence ||v;|| = 1 fori = 1,2, ..., n.

Therefore w = Y (w, v;)v;.

. w, Vi) . . . .
Remark 5.4 The coefficients (| '2) is called the Fourier coefficients of v with
Vi
respect to the basis {vi, vz, ..., v,}, named after the French mathematician Jean-

Baptiste Joseph Fourier (1768-1830).

The following corollary shows that the matrix representation of a linear operator
defined on a finite-dimensional vector space with orthonormal basis can be easily
computed using the idea of an inner product.

Corollary 5.1 Let V be an inner product space, and let B = {v{,v2, ..., Vv,} be
an orthonormal basis of V. If T is a linear operator on V, and A = [T]g. Then
Ay =(T(vj),v;), where 1 <i,j <n.

Proof Since B is a basis of V and as T is from V to V, from the above theorem

n

T(vj) = Z(T(Vj), Vi)vi

i=1
which clearly implies that A;; = (T'(v;), v;), where 1 < i, j < n.

Example 5.25 Consider P;[—1, 1] with the basis defined in Example 5.22. Take an
arbitrary element, say w = x4+ 2x +3 € P,[—1, 1]. Then we have,

1, 1072
w,v) = — x“4+2x 4+ 3)dx = ——
(w, v1) \/5/_1( ) 3
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3! 2./6
W, va) = \/;/ (x® +2x% + 3x)dx = Tf
—1

{w, v3) / Gx® = D(x* +2x+3)dx_@

and

Observe that w = 10‘[v + 2\/[\/ + ‘/7
Define 7 : V — be
(Tp) (x) = p'(x)

Then
3 V15
T(vi)=0,T() = \/;and T(v3) = %

Clearly (T (vy), v;) = 0 where i = 1, 2, 3. Also

1 1
(T(v),v1) = —f/ dx = \/g, (T (), va) = %/ xdx =0,
-1 —1

/ 1
(T (2),v3) = %/‘ (Bx?> = 1dx =0
—1

And
(T(»),v1) = /xdx AT (v3), vp) = / x2dx \/g
3), V1 3), V2) =
242 f 2
53 (!
T(v3),v3) = —— 3x} —x)dx =0
(T'(v3),v3) W5 _1( )
Therefore
03 0
[Tlg =10 0 /15
00 O
Corollary 5.2 Let V be an inner product space, and S = {v{,v,, ..., v} be an

orthogonal subset of V consisting of non-zero vectors. Then S is linearly independent.

Proof Let Ay, Ay, ..., Ax € Kbe such that Zf;l Aiv; = 0. Then forv; € §,

k
o= (Srmen )=
i=1
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Since § is a collection of non-zero vectors, this implies that A; =0 for all
Jj=1,2,..., k. Therefore § is linearly independent.

Gram-Schmidt Orthonormalization

Corollary 5.2 shows that any orthogonal set of non-zero vectors is linearly inde-
pendent. In this section, we will show that from a linearly independent set, we can
construct an orthogonal set. In fact, we can construct an orthonormal set from a lin-
early independent set, with the same span using Gram—Schmidt Orthonormalization
process. The process is named after the Danish mathematician Jorgen Pedersen Gram
(1850-1916) and Baltic-German mathematician Erhard Schmidt (1876—1959).

Theorem 5.11 (Gram—Schmidt Orthonormalization) Let {vi,v,,...v,} be a
linearly independent subset of an inner product space V. Define

wi
wip =V, Uy =
lwrll
w2
Wy =V — (Vo, up)uy, Uy =
lw2 |

w3
w3 =v3 — (v3, up)uy — (v3, us)ua, U3 =
[lwsll
Wa
Wy =Vy — <an ul)”l - <Vn9 un—l)un—h Uy, =
llwal
Then {uy, uy, ...u,} is an orthonormal set in V and
span{uy, us, ..., u,} = span{vi, va, ..., vy}
Proof Since {v{, v, ...v,} is linearly independent, v; 2 0 for all i = 1,2, ..., n.
We prove by induction on i. Consider {v,}. Clearly {v,} is linearly independent.
w w
Take w; = vy and u; = ”—1” Then |ju;|| = :: 1:: = 1 and span{u,} = span{v;}
wi wi

(Fig.5.14).
For0 <i <n — 1, define
Wi

wi = Vi — (i unur — - — Vi, Uim)Ui—1, Ui = il
1
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Fig. 5.14 Geometrical V2
representation of first two wa = v — (o, u1 )1 -
steps of Gram—Schmidt
process
(v, u1)uy
and suppose that {u;, u,, ...u,—1} is an orthonormal set with
span{uy, uz, ..., uy_1} = span{vi,va, ..., v,_1}
Now define,
Wp =Vp — (Vm ul)”l - (an un—l)”n—]
Since {vi, vp,...v,} is a linearly independent set v, ¢ span{vi, v, ..., v,_1} =
. w
span{uy, us, ..., u,_1}. Since w, # 0, take u, = ”—"” Then clearly ||u,| = 1.
Wn
Now fori < n — 1, we have
(Wn’ ui) = (Vn <Vna ul>u1 — (Vn’ un—l)”n—l, ui)
= (Vns 1) (V}’ls btl)(ul, ui> -t <an Mn71><un717 ui)
:(an l) (an i)
=0

as{uy, us, ...u,_1}1is an orthonormal set. Therefore (w,, w;) = 0for0 <i <n —1
and hence {uy, us, ...u,} is an orthonormal set. Also

span{uy, us, ... u,} = span{vy, va, ..., Vu_1, Un}
Wn
=Span \vi, va, ..., Vp—1, 7
lwall
=span{vi,va, ..., v}

Hence the proof.

Example 5.26 Let V = R* and

S={m=0110),vn=(,210),v;=(1,0,0, D}
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0110
Since | 1 2 1 0| is of rank 3, S is linearly independent. Also as (vi, ;) =241 =
1001
3, S is not orthogonal. Now we may apply, Gram—Schmidt process to obtain an
orthonormal set. Take wy = v; = (1,0, 1,0). Then u; = ”W_1” = LZ(O, 1,1,0).
w1
Now
Wy = vy — (o, up)ug
1 1
= (1725 1’0) - (15 27 150)5 _(0’ 17 15 0) _(Oa 17 130)
< 7 "7
1
=-2,1,-1,0
2( )
dh "2 L 2.1.-1,0). Finall
and hence u, = = —(2,1, —1, 0). Finally,
wall ~ V6 Y
w3 =v3 — (v3, u)u; — (v3, U2)u
1 1
=(1,0,0,1) — ((1,0,0,1), —(0, 1, 1,0))—(0, 1, 1, 0)
V2 V2
1 1
- <(1, 07 Ov 1)9 5(29 17 _19 O)>§(21 19 _11 0)
= 1(1 1,1,3)
- 3 9 9 9
w3

and hence uz = —” = ig(l, —1,1, 3). The set {u, uy, us} is an orthonormal set

llw3

and span{u, uy, uz} = span{vy, vo, v3}.

Remark 5.5 Consider a matrix A with columns vy, v, v3 from the above example.

011
. 120
Thatis, A = 11O.Then
001
2 V3
0 V5 % ([ &
Y2 1L _\3 23 22
— 2 6 2 £ =
ASIE D A0 Vays|=ek
3
0 0 %

Clearly, the columns of the matrix Q forms an orthonormal set and R is an upper
triangular matrix with entries Ry; = ||w;||V i =1,2,3 and R;; = (v;,u;) ¥V j >
i(i, j = 1,2,3). This decomposition of a matrix with linearly independent columns
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into the product of an upper triangular matrix and a matrix whose columns form an
orthonormal set is called the Q R- decomposition.
Example 5.27 Consider V =P,[—1,1]and S = {l, X, xz}. We have already seen

that S is a basis of V and hence is linearly independent. Also as f_ll l.x%dx = %, Sis

not orthogonal. Therefore take w; = 1. As ||w; ||2 = f_ll ldx =2, we getu; = £

72
Now
! 3
= — , = —_ - d =X, = -
Wy =vy — (W, u)u; = x 4[_1x X =X,U 2x

and

1
5
w3 = vy — (v3, ur)ug — (v, up)uy = x* — / x*dx, uz = \/g(3x2 =)

1

Thus {% \/gx, \/§(3x2 — 1)} is an orthonormal basis for P,[—1, 1].

The above example makes it clear that given a basis, one could construct an
orthonormal basis from it. Hence, we could assure that “Every finite-dimensional
vector space has an orthonormal basis”.

5.4 Orthogonal Complement and Projection

In Sect. 5.2, we have discussed about orthogonal projection on R%. We will extend
this idea to the general inner product space structure here. Representing an inner
product space as the direct sum of a closed subspace and its orthogonal complement
has many useful applications in mathematics.

Definition 5.16 Let S be a non-empty subset of an inner product space V, then the
set{veV|(v,s)=0,Vs € S},ie., the set of all vectors of V that are orthogonal to
every vector in S is called the orthogonal complement of S and is denoted by S+.
Clearly {0} = V and V+ = {0}. Also S N S+ = {0}.

Remark 5.6 S+ is a subspace of V for any subset of V. For
(As1 + 52, 8) = A(s1,8) + (s2,8) =0
for all 51, s, € S* and A € K (Fig.5.15).

Example 5.28 Consider V = R3 and let S; = {(1, 2, 3)}. Then

St = {1, v2,v3) € R [ ((v1,v2,v3), (1,2, 3)) = 0}
= {1, v2,v3) € R [ vy + 205 4 3v; = 0}
= plane passing through origin and perpendicular to the point (1, 2, 3)
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Fig. 5.15 Suppose v is a ™
non-zero vector in R3. Then

vt is the plane passing .NJ—
through origin O and

perpendicular to the vector v

~

Take S» = {(1,0, 1), (1,2, 3)}. Then

Sy = {1, v2,v3) € R? | (1, v2,v3), (1,0, 1)) = 0, ((v1, v2, v3), (1, 2,3)) = 0}
= {1, v2,v3) € R | vy +v3 =0, v +2v, +3v3 = 0}
= {1, v2,v3) € R? | v = vy = —v3}
= line passing through origin and passing through the point (1, 1, —1)

Observe that if S is a singleton set (with non-zero element), S* will be a plane
passing through the origin as we will have to solve a homogeneous equation of three
variables to find S*. Similarly, if S is a set with two linearly independent elements,
S+ will be a line passing through the origin.

Example 5.29 Consider V = P;[0, 1] and let S = {x}. Then
St ={ax®> + bx +c € P,0,1] | (x, ax> + bx +¢) = 0}
= {ax2 + bx +c € P[0, 1] | /1(ax3 + bx? + cx)dx = 0}
= {ax’ + bx + c € P,[0, 1] | 3(c)z+4b+6c=0}

Given a subspace of an inner product space V, it is not always easy to find the
orthogonal complement. The following theorem simplifies our effort in finding the
orthogonal complement of a subspace.

Theorem 5.12 Let V be an inner product space and W be a finite-dimensional
subspace of V. Then foranyv € V, v € W ifand only if (v, w;) = O for allw; € B,
where B is a basis for W.

Proof Let B = {wy, w,, ..., w;} be a basis for W. Then for w € W, there exists
scalars Ay, Az, ..., Ar such that w = Ayw; 4+ Aywp + - - - + Awy. Then for any
veV,
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(v, w) = (v, Aywy + Aowp + -+ - + Apwi)

Ai{v, wi)

I
M-

Therefore (v, w;) = 0 for all w; € B implies that (v, w) = 0. Hence, v € W+. Con-
versely, suppose that v € W+, Then by the definition of orthogonal complement
(v,w;) =0forall w; € B.

In Sect.5.2, we have introduced the concept of projection of a vector to a one-
dimensional subspace of R?. We have seen that a vector v € R? can be written as
a sum of vectors, (u.v)u € span{u} where u is a unit vector and v — (u.v)u which
is orthogonal to (u.v)u. That is, v — (u.v)u is an element of span{u}*. The vector
(u.v)u is called the projection of v on span{u}. We will extend this result to any
finite-dimensional subspace W of an inner product space V. We will proceed by
considering an orthonormal basis {wy, w,, ..., wi} for W, projecting v € V on each
one-dimensional subspace span{w;} of W and taking the sum. That is, the projection

k

ofve VonWwillbew =Y (v, w)w;.

i=1
Theorem 5.13 Let V be an inner product space and W be a finite-dimensional
subspace of V. Then for any v € V, there exist unique vectors w € W and w € W+
such thatv = w + w. Furthermore, w € W is the unique vector that has the shortest
distance from v.

Proof Let B = {wy, w,, ..., w;} be an orthonormal basis for W and consider w =
Zfzo(v, wi)w; € W.Take w = v — w. Then for any w; € B,

k
(w,wj) = <v - Z(v, wilw;, wj>
i=0
k
)= D (v, wi) (wi, w

i=1

=, wj)—(v,wj) =

That is, (W, w;) = 0 for all w; € B. Then by Theorem 5.12, w € WL, Also, v =
w + w. To prove the uniqueness of w and w suppose that v = w 4+ w = u + u where
u € Wandit € W, This implies thatv = w — u = it —w. Thenasw — u € W and
i—we Wt veWnW, ={0}. Hence, w = u and w = .

Now we have to prove that w = Zf:l (v, wi)w; in W is the unique vector that has
the shortest distance from v. Now for any w' € W,

[y =wI* = w =" = v = w) + [

Asw —w' € Wandw € W, by Pythagoras theorem,
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[v=w'|* = v =wH " + 1917 = 1912 = llv — wi?

Thus for any w' € W, we get [[v —w'|| > W] = [[v — wl|.

Corollary 5.3 Let V be an inner product space and W be a finite-dimensional
subspace of V. Then V. =W & W+,

Proof From the above theorem, clearly V = W + W+, Also, W N W+ = {0}. Then
by Theorem 2.20, V = W & W,

The above decomposition is called the orthogonal decomposition of V with
respect to the subspace W. In general, W can be any closed subspace of V.

Definition 5.17 (Orthogonal Projection) Let V be an inner product space and W be
a finite-dimensional subspace of V. Then the orthogonal projection 7y, of V onto
W is the function ry (v) = w, where v = w + W is the orthogonal decomposition of
v with respect to W.

Example 5.30 Consider R* over R with standard inner product. Let
W ={(v1,v2,v3) e R’ | vy =0}

That is, the yz-plane. Consider the vector vi = (2,4, 5) € R3. Now we will find the
projection of v on W. Clearly {(0, 1,0), (0,0, 1)} is an orthonormal basis for W.
Then the projection of v; on W is given by

aw(v1) = {((2,4,5),(0,1,0))(0,1,0) + ((2,4,5), (0,0, 1))(0,0,1) = (0,4, 5)
For an arbitrary vector v = (a, b, ¢) € R3
aw(v) = {(a, b, ¢), (0, 1,0))(0, 1,0) + ((a, b, ¢), (0,0, 1))(0,0,1) = (0, b, ¢)

Also observe that W = {(v{, v», v3) € R? | v, = v3 = 0}, 1i.e., the x-axis and hence
(a,b,c) =(0,b,c) + (a,0,0) is the orthogonal decomposition of v with respect
to W.

Example 5.31 Consider P,[—1, 1]. Let W ={a + bx | a,b € R}. Clearly W is a
subspace of P,[0, 1] and we have already seen that {% \/gx} is an orthonor-

mal basis for W. Consider the element v = x> 4+ 2x + 3 € P,[—1, 1]. Then from
Example 5.25,

1 1042 3 2/6
—,x2+2x+3 = fand \/jx,x2+2x+3 :i
V2 3 2 3

10
Therefore the projection of v on W is wy (v) = 3 + 2x.
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Now we will discuss some of the important properties of projection map in the
following theorem.

Theorem 5.14 Let W be a finite-dimensional subspace of an inner product space
Vand let wyw be the orthogonal projection of V onto W. Then

(a) mw is linear.
(b) R(w) =W and N (my) = W+
(c) w3, = 7w

Proof (a) Let vi,v, € V. Then by Theorem 5.13, there exists unique vectors
wi, wo € W and Wy, W, € W such that vi = w; + w; and v, = wy + W,. Then
w(v1) = wy and Ty (v2) = wy. Now for A € K,

AV 4 v = A (wy +wy) + (W +wa) = (Awy +wa) + (Aw; + wp)

where Aw; +w, € W and M) 4+ W, € Wt as W and W+ are subspaces of V.
Therefore
w (Avi +v2) = Awy +wy = Ay (vi) + Tw (v2)

therefore, mryy is linear.

(b) From Theorem 5.13, we have V = W @ W+ and any vector v € V can be writ-
tenasv = my (v) + (v — mw (v)). Clearly R (7)) S W. Now we have prove the
converse part. Let w € W, then ry(w) =wasw=w+0e W + W+. There-
fore R (my) = W.

Similarly, it is clear that N () € W. Now let w € Wt. As w = 0 4w, we
have mw (W) = 0 and hence N (y) = W.

(c) Take any v € V. By Theorem 5.13, there exists unique vectors w € W and w €

W+ such that v = w + w. Then

() = (Tw () = Tw (W) = w = T (v)

Therefore 73, = my.

In Theorem 5.13, we decomposed V as the direct sum of two subspaces where one
is the orthogonal complement of the other. There may exist decompositions of V as
the direct sum of two subspaces where one subspace is not the orthogonal complement
of the other. For example, consider R3.LetW, = span{(1,0,0), (0,1,0)}and W, =
span{(1, 1, 1)}. Observe that V. = W; @ W, and W; £ W,. In such cases also we
can define a linear map.

Theorem 5.15 Let V be an inner product space and Wy, W, be subspaces of V with
V = W, & W,. Then the map P defined by P(v) = w;, where v = w| + wy is the
unique representation of v € V is linear.

Proof Similar to the proof of Theorem 5.14(a).
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Fig. 5.16 Observe that A

R(P1) L N(Pp). Therefore R(Py)
Py is not an orthogonal N(Py)

projection

A
N2

The above defined map P is called projection map. Observe that an orthogonal
projection map is a projection map P with [R(P)]* = N (P).

Example 5.32 Consider R? over R with standard inner product. Let P; : R?> — R?
be a linear map defined by
Pi(vi,v2) = (v1,0)

Observe that R(P;) is the straight line y = x and N (P}) is the y— axis. Clearly,
R? = R(P;) @ N(P;). Thus P; is a projection but not an orthogonal projection
(Fig.5.16).

Example 5.33 Consider P;[0, 1] with the inner product {p, ¢) = fol p(x)g(x)dx.
Let P, : P,[0, 1] — P,[0, 1] be a linear map defined by

Pr(ap + a1x + agxz) =ax

We have R(P,) = span{x} and N(P,) = span{l, x*}. Observe that P,[0, 1] =
R(P,) & N(P>),but R(Py) L N(P»). Therefore P, is a projection but not an orthog-
onal projection.

The following theorem gives an algebraic method to check whether a linear oper-
ator is a projection map or not.

Theorem 5.16 Let V be a finite-dimensional inner product space and T be a linear
operator on V. Then T is a projection of V if and only if T> = T.

Proof Suppose that T is a projection on V, then clearly 7> = T by definition.
Now suppose that T is a linear operator on V such that 72 = T. We will show
that V. = R(T) & N(T). Let v € R(T) & N(T). Then there exists v € V such that
TE) =v.AlsoT(W) =0.Now T?’() =T(W)=0=T@) =vasT?>=T.Thus T
is a projection on V.

Example 5.34 Consider the linear operators P; and P, from Examples 5.32 and
5.33 respectively. Clearly, we can see that P2 = Py and P} = P;.
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5.5 Exercises

1. Show that (R, d) is a metric space, where d : R x R — R is defined by

(a) d(x,y) =|e* —e’|forx,y e R.

() d(x,y) = 1f|§fly\ forx,y e R.

Check whether d is induced by any norm on R?
2. Letv = (vq, v2, ...v,) € R". Show that

(@) |IVlloe = max{|vil, ..., |v,|} defines a norm on R” called infinity norm.

(b) forp > 1, ||v||p = (Zf=1|v,-|p)7 defines a norm on R” called p-norm.
3. Show that the following functions define a norm on M, «,, (R). Let A = [a,- j] €
M sen (R).
@) 1Al = max 7 Jai
(b) 1 Allc = max 37 jag|
© All, = m, where A, denotes the highest eigenvalue of A.

4. Show thatin a finite-dimensional space V every norm defined on it are equivalent.
Show that every finite-dimensional normed linear space is complete.
6. Show that

1
@ |vll, = (372, Ivil?)” defines a norm on I7.
(®) |Ivlloo = sup|v;| defines a norm on [*°.
ieN

() forl <p<r<oo,lP Cl'.Alsol? C I

e

7. Show that the following collections

c=v=0,v,..)el®|v >reKasi — oo}
co={v=01,v,...)€l®|v;—>0asi — oo}

coo = {v = (v1,v2,...) € [°° | all but finitely many v.s are equal to 0}

are subspaces of [*°.

8. Show that c, ¢y are complete, whereas c( is not complete with respect to the
norm defined on [*°.

9. Let V be a vector space over a field K. A set B C V is a Hamel basis for V if
span(B) = V and any finite subset of B is linearly independent. Show that if
(V, |I.1D is an infinite-dimensional Banach space with a Hamel basis B, then B
is uncountable. (Hint: Use Baire’s Category theorem.)

10. Let u = (uy, uz),v = (vi, v2) € R%. Check whether the following defines an

inner product on R? or not.

@ (u,v) =vi(ur + 2uz) +v22uy + 51,)
(b) (u,v) =viQui + uz) +va(uy +v2)
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11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

Exercises 203

Show that (z1, z2) = Re(z1Z2) defines an inner product on C, where Re(z)
denotes the real part of the complex number z = a + ib.

Show that (A, B) = Tr (B*A) defines an inner product on M, ., (K).

Prove or disprove:

(a) The sequence spaces [” with p # 2 are not inner product spaces.
(b) P with (u,v) =Y 72, u;vi, whereu = (uy, uz,...),v = (vi,va,...) € I*is
a Hilbert space.

Let (V, (, )) be an inner product space . Then show that for all u,v € V

1
(u,v) = Z[(u+v,u+V>—(u—v,u—V>>]
if K = R. Also show that if K = C, we have

1
(u,v):Z[(u—f—v,u—i—v}—(u—v,u—v)—f—i(u—i—iv,u—i—iv)—i(u—iv,u—iv)]

Show that in an inner product space V, u, — u and v, — v implies that
(tn, va) = (u, v).

Show that I” with (u, v) = Y >~ u,v, is a Hilbert space.

Let V be an inner product space with an orthonormal basis {v;, v», ..., v,}. Then
for any v € V, show that Ivi? = v, vi) 2.

(Bessel’s Inequality) Let S be a countable orthonormal set in an inner product
space V. Then for every v € V, show that Zu;eSHV’ u)|? < IvI2.

Let S be an orthonormal set in an inner product space V. Then for every v € V,
show thattheset S, = {u € S| (v, u) = 0}isacountable set. (Hint: Use Bessel’s
Inequality)

Construct an orthonormal basis using Gram—Schmidt orthonormalization pro-
cess

1 —1 0
(a) for R? with standard inner product, using the basis 21,1 0 {,10
2 2 1

(b) for P5[0, 1] with (f, g) = fOl f(x)g(x)dx, using the basis {1, x, x?}

Show that, for A € M, (R), AAT = I if and only if the rows of A form an
orthonormal basis for R”.
Consider R? with standard inner product. Find S+, when S is

(@) {u}, where u = (uy, uz) #0
(b) {u, v}, where u,v are two linearly independent vectors.

Let S;, S, be two non-empty subsets of an inner product space V, with S| C S.
Then show that
() S; C S;+ (b) S C S (c) Sttt = st
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24.

25.

26.

27.

28.

29.

30.
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Let S = {(3,5, - 1)} C R3.

(a) Find an orthonormal basis B for S*.
(b) Find the projection of (2, 3, —1) onto S*.
(c) Extend B to an orthonormal basis of R3.

Let V be a finite-dimensional inner product space. Let Wi, W, be subspaces of
V. Then show that

@) (Wi +Wo)" = Wit nwyt
(b) (Wi N Wyt = Wit + Ws-

Prove or disprove: Let W be any subspace of R” and let S C R” spans W.
Consider a matrix A with elements of S as columns. Then W+ = ker(A).
Find the orthogonal projection of the given vector v onto the given subspace W
of an inner product space V.

(@ v=(1,2), W ={(x,x) € R?| x| +x, =0}
() v=3,1,2), W = {(x1, x2, x3) € R? | x3 = 2x| + x2}
©v=14+2x+x2 W= {a0+a1x+a2x2 € P,[0,1] | a =0}

Let V be an inner product space and W be a finite-dimensional subspace of
V.If T is an orthogonal projection of V onto W, then I — T is the orthogonal
projection of V onto W+.

Consider C[—1, 1] with the inner product ( f, g) = f_ll f(s)g(s)ds,forall f, g €
Cl0, 1]. Let W be the subspace of C[0, 1] spanned by {x + 1, x> + x}.

(a) Find an orthonormal basis for span (W).
(b) What will be the projection of x> onto span (W)?

Show that a bounded linear operator on a Hilbert space V is an orthogonal
projection if and only if P is self-adjoint and P is idempotent(P? = P).

Solved Questions related to this chapter are provided in Chap. 11.



Chapter 6 ®)
Bounded Linear Maps oo

In this chapter, the exploration of advanced linear algebra and functional analy-
sis unfolds the notion of bounded linear maps, which elegantly combine linearity
and boundedness, crucial in various mathematical applications. The concept of the
adjoint operator which is introduced, enabling the study of self-adjoint, normal,
and unitary operators, each possessing for distinct properties and widespread utility.
Singular value decomposition (SVD) emerges as a powerful factorization method,
revolutionizing linear equation solving. When standard matrix inverses do not exist,
generalized inverses, such as the Moore—Penrose inverse, provide a flexible structure
for solving systems of linear equations, enabling least square solutions to otherwise
ill-posed problems in a number of mathematical and practical situations. Banach con-
traction principle offers a profound insight into mappings on metric spaces, underpin-
ning algorithms across disciplines. Lastly, iterative methods, including Gauss—Jacobi
and Gauss—Seidel, are introduced for solving linear systems, catering to large-scale
numerical problems.

6.1 Bounded Linear Maps

As a linear map is a function, the question of continuity arises naturally. Because
every normed space is a metric space, the definition of a continuous function in a
normed space follows from Definition 1.28. We have seen that a function f from
a metric space (X, d;) to a metric space (Y, d») is said to be continuous at a point
xo € X, if for every € > O thereis a§ > 0 such that

dy(f(x), f(x0)) < € whenever d;(x, xg) < §

Then, by Theorem 5.1, we have the following definition for continuity of a linear
operator.
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Definition 6.1 (Continuous Linear Operator) Let V and W be normed spaces and
T € L(V, W) be a linear operator, then T is said to be continuous at vy € V, if for
every € > 0 there exists § > 0 such that

ITv — Tvg|| < € whenever ||[v — vl < §

T is said to be continuous on V if T is continuous at every v € V.

Now that we have defined the continuity of a linear map, we will give some
alternate characterizations of continuity in the following theorem.

Theorem 6.1 Let V and W be normed linear spaces and let T € L (V, W). Then
the following are equivalent:

(a) T is continuous.
(b) T is continuous at 0.
(c) There exist A > O such that |Tv|| < A||v| forallv e V.

Proof The implication (a) = (b) is obvious. To prove (b) = (c), suppose that T’
is continuous at 0. Then by Definition 6.1, for € = 1, there exists § > 0 such that
ITv|| < 1 when ||v|| < 8. Now take u = gﬁ for v # 0. Then [|u| = 2 < & and by
continuity of 7 at 0,

T () T(8v> S 1oy <1
u) = —— | = V) <
2 vl 2wl
which implies that |7 (v)|| < % [lv]| for all v € V \ {0}. Also ||[T(0)|| =0 < % [10]].
Take A = % Then ||Tv| < A|v| forallv € V.
Now to prove (c) = (a), suppose that such a A exists. Since T is a linear trans-

formation
IT@) =TOI=1Twu—=v) <Alu—v]

forallu,v e V.Lete > 0and§ = i.Thenforu,v € V with |lu — v|| < §, we have

1T =T =2 lu—vl <2 () =¢

Therefore, T is continuous.

As every normed space is a metric space, sequential continuity can also be con-
sidered as an alternative criterion for the continuity of a linear map. Let T be a linear
map between two normed linear spaces V and W. T is sequentially continuous if
{v,} is a sequence in V with v, — v, then T (v,) — T (v).

Example 6.1 Consider C[0, 1] with supremum norm. Define 7' : C[0, 1] — CJO0, 1]
by T(f) = fol f(x)dx. We have already seen that T is linear (See, Example 3.5).
Now
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1
/ f(x)dx
0

1
max / | f(x)]|dx
0

x€[0,1]

1
max |f(x)|/ dx
0

x€[0,1]

=l

I7(HII

max
x€l0,1]

IA

IA

for all f € C[O, 1]. Hence, the integral operator is a continuous linear operator.

Example 6.2 Consider C[0, 1] with supremum norm. Define 7 : C[0, 1] — C[0, 1]
by T(f(x)) = %( f(x)). We have already seen that 7T is linear (See, Example 3.4).
Consider f,(x) = x". Then

T = max |nx"" | =n max |x"'|=n
1T (Cfill xe[O,l]l | xe[0’1]| |

Asn — oo, ||T(f,)|| — oo.Thatis, there does notexists A > Osuchthat ||T(f)| <
Ml f]l for all f € C[O, 1]. Therefore differential operator is an example of a linear
operator which is not continuous.

Theorem 6.2 Let V and W be normed spaces where V is finite- dimensional and
T € L(V,W). Then T is continuous.

Proof Suppose that V is finite-dimensional. We will show that for any sequence {v, }
withv, - vinV, T(v,) — T(v). Then by Theorem 1.6, T is continuous. As V is
finite-dimensional, it has a finite basis, say {vi, v, ..., v,}. Thus for each n € N,
v, € V can be represented as

Vyp = )\.’11\)1 + )\3\/2 +-- 4+ )‘-::1‘}171

where A e K,i=1,2,...,m. Also, as veV, v=Avi+ Ay + -+ Apvn,
where A; € K,i =1,2,...,m. Now v, — v implies that A7 — A; for each i =
1,2, ..., m. Therefore

Twy,) =T ()»'fvl + v+ 4 )\va)
=MT W) +MTW2) + -+ A, T (V)
= MT ) +20TW) + -+ 20T (V) =T ()

by linearity of T'. Therefore, T is continuous.

Consider condition (c¢) in Theorem 6.1. Always keep in mind that two different norms
are used. One is from V and the other from W. For simplicity, no distinction is made.
Maps satisfying this condition are of great importance in the field of Mathematics.

Definition 6.2 (Bounded Linear Operator) Let V and W be normed spacesand T’ €
L (V, W), then T is said to be bounded, if there exists A € R suchthat ||Tv| < A |[v].
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By Theorem 6.1, for a linear transformation the term continuous and bounded can
be used interchangeably. Bounded linear transformations essentially maps a bounded
setto abounded set. Note that a bounded linear map does not demand a bounded range
set. For example, consider 7 : R — R defined by 7' (v) = v. As || Tv|| = ||v|| for all
v € V, T is a bounded linear operator, but the range set is R, which is unbounded.

Now observe that the definition of a bounded linear operator can also be stated as
follows. A linear operator between the normed spaces V and W is bounded if and

only if there exists a real number A such that ””TVV”” < Aforallv € V \ {0}. That is, if

lveV\ {0}} is bounded. Now consider the supremum of

I7vl
vl

this set. We will show that this gives us a norm on the vector space of all bounded
linear operators from V to W, denoted by B (V, W).

and only if the set {

Theorem 6.3 Let V and W be normed spaces and T : V. — W be a bounded linear
operator. Then
7wl

1T =
venvioy VIl

6.1)

defines a norm on B (V, W) called as operator norm.

Proof Consider the norm defined as above.

(N1) Clearly ||T|| = Oforall T € B8(V, W) as we are taking supremum of the set

’% lveV\ {O}], which contains non-negative elements only. Also
Tv
ITI =0« ” ||=0
vevvioy VIl
& |Tv|=0VveV (. TO) =0)
&T=0

where 0 is the zero operator on V. Thus (N1) is satisfied.
(N2) Now for any A € K,

AT = IAT)W)
vevvioy VIl
ATl
veV\{0} vl
ATV
vevvioy vl

IALIT

Thus (N2) is satisfied.
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(N3) Now forany 71, T, € B(V, W),

(T + T) ()]

1Ty + Tall =
veV\{0} (vl
{ ITivll T2l }
“venvioy U VI vl
Tyl I Tov |l
“evvioy VL vevvigy VI
= T1ll + T2l

Thus (N3) is also satisfied.
Therefore B (V, W) is a normed linear space with the norm defined as in (6.1)

Soif T € B(V, W) is a bounded linear operator, we can write,
ITvil < IT vl

forallv e V.
Remark 6.1 For T € B (V, W), the norm defined as

ITl=sup [Tv]

veV. |vil<l

gives an alternating way of calculating operator norm.

Example 6.3 Consider C[0, 1] with supremum norm. Define 7 : C[0, 1] — C[0, 1]
as in Example 6.1. We have proved that ||T(f)| < || f|l for all f € C[O0, 1]. This
implies that ||T|| < 1. Now for the function f(x) =1, |[T(f)|| = 1. Therefore
17l = 1.

We have seen that every linear map from a finite-dimensional space is bounded. Now
we will give an example for a linear map which is not bounded, otherwise called as
an unbounded linear map. As boundedness and continuity are synonyms for linear
operators, the differential operator on C[0, 1] is an example of an unbounded operator.

In Chap. 4, we have defined eigenvalues and eigenvectors for square matrices. We
have already seen that a n x n matrix is nothing but a linear operator from a finite-
dimensional space to itself. The same definition can be used for linear operators on
infinite-dimensional spaces.

Definition 6.3 Let 7T : V — V be a linear operator on a vector space V over a field
K. A vector v # 0 is said to be an eigenvector of T if there exists A € K, such that
TW) = Av.

The set of all eigenvalues of T is called as the eigen spectrum of T. There are
other sets of scalars that are closely related to operators and are beyond the scope of
this book.
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6.2 Adjoint of a Bounded Linear Map

Let T be a linear map from R" to R™. We know that there exists a corresponding
matrix A = [a;jlmxn € Myxn (R) such that

TW) = [Yoiajv; 2oy av o 3y amjvi]

Then

(Av, w)m [ L av; Z _ a2V ...Z?,lamjvj],[wl,wz,...wm]>]Rm
m
- <Z allwl> Vi + (Z al2wl> V2 + - (Zainwi> Vn
i=1
( Vi, V2, ... ] s [Zizl a1 wi Z?=1 apwi ... Z:n:l ainwi]>Rn
= (v, ATw)ps

Therefore we can say that for every linear map from R” to R™, there exists a linear
map T* from R™ to R" with corresponding matrix A”. If C is considered instead of
R, the matrix corresponding to 7* will be A*. In this section, we will generalize this
idea to abstract spaces.

Let us start by establishing a connection between a Hilbert space and its dual
space. The following theorem asserts a one-one correspondence between an element
in a Hilbert space and its corresponding dual space.

Theorem 6.4 (Riesz Theorem) Let V be a Hilbert space and f : V — K be a linear
transformation, then f can be represented in terms of

F) = (v,w)
where w is uniquely determined by f and has norm |w| = || f|l.

Proof 1If f = 0, take w = 0. Clearly, all conditions of the theorem are satisfied. Now
if £ #0, N(f) # V and hence by Theorem 5.13, N(f)* # {0}. Then there exists
at least one element in N'(f)* say wy # 0. Now take,

w = f(wo — f (wo) v
where v € V. Then
W)= fWfwo)— fwo) f(v) =0
which implies that w € N(f). Since wy € N(f)*, we have

0= (w,wo) = (f(Wwo — f (wo) v, wo) = f (v) {(wo, wo) — f (wo) (v, wo)
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As (wo, wo) = [lwoll # 0, we get

f (wo)

(WO’ W0>

fv) = (v, wo)

f (wo)

{(wo, wo)
such an element w € V is unique, suppose that there exists w; € V such that

If we take w =

wo , we get f(v) = (v, w) forany v € V. Now to prove that

FW) = (v, w) = (v,w1)

for all v € V. Then by Theorem 5.4(d), we have w; = w.
Now to prove that ||w| = || f]|. We have

Iwli? = (w,w) = fow) < [ £ Iwll

Therefore ||w| < || f]. Also

[fIl="sup |f[= sup [(v,w)|=wl

veV, |v|<1 veV,|v|I<l
by Schwarz inequality. Thus ||w| = || fI|.

Example 6.4 Let f:R?>— R be defined by f(vi,vs, v3) = v; + 25 + 3v3.
Clearly f is a linear map. Now consider the standard ordered basis B = {ey, €3, 3}
for R® which is orthonormal. Take v = f(e))e; + f(e2)es + f(ez)es = (1,2, 3).
Then ((vi, va, v3), (1,2,3)) = vi +2v, +3v3 = T (vi, va, v3).

Definition 6.4 (Sesquilinear function) Let V and W be vector spaces over the same
field K. A sesquilinear function is a mapping f : V x W — K such that for all
v, vi,va € V,w,wi,wy € Wand A € K

S Qv +va,w) =Af (vi,w) + f (va, w)

and _
fOAwr+wa) =Af (v,w) + f (v, w2)

In other words, we can say that f : V x W — K is sesquilinear if it is linear in
first variable and conjugate linear in second variable. Clearly, the inner product is a
sesquilinear function.

Definition 6.5 (Boundedness) Let V and W be normed spaces over the same field K
and let f be asesquilinear mapping from V x W.Then f is said to be bounded if there
exists A € K such that for all v € V and w € W, we have | f (v, w)| < A |v] [w]l,
and the number
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|f (v, w)l
Ifl= sup ————== sup [f(v,w)]
v0eVwzoew VWL ui=jwi=1

is called norm of f.

Example 6.5 Let V be an inner product space over the field K. We have already
seen that the inner product is an example of a sesquilinear function. Now we will
show that it is bounded. By Schwarz inequality, we have |(v, w)| < ||v|| ||w]| for all
v, w € V. Therefore f(v,w) = (v, w) is a bounded sesquilinear functionon V x V.

Now let us discuss a more general version of Theorem 6.4. We will use the
following theorem to prove the existence of an adjoint map for a bounded linear map
in a Hilbert space.

Theorem 6.5 (Riesz Representation Theorem) Let V be Hilbert space and W be an
inner product space overthe field K and f : V. x W — K be a sesquilinear function.
Then f has a representation f (v, w) = (F (v), w), where ¥ : V — W is a bounded
linear map. F is uniquely determined by f and ||F || = || |-

Proof Fixv € V.Defineg : W — Kby g(w) = f(v,w). Then for all wy,w, € W
and A € K, we have

g (Awi +w) = f(v, Awy +wp)
=Af,w1) + f(v, W)

= )‘f(vs Wl) + f(va WZ)
= Ag(w1) + g(wo)

Thus, g is linear. By Theorem 6.4, there exists a unique element, w € W such that
gw) = f(v,w) = (w, w). Therefore f(v,w) = (w,w). Clearly w depends on v €
V. Now using this fact, define ¥ : V. — W by ¥ (v) = w. Now for vi, v, € V and
A € K, we have

(F (v +w),w) = f (v +va, w)
=Af (v, w) + f(a,w)
= MF 1), w) +(F (), w)
= (AF (1) +F (), w)

which is true for all w € W. Then by Theorem 5.4(d), ¥ (Av; 4+ v2) = AF (v) +
F (vp) for all vi, v, € V and A € K. Therefore ¥ is linear. Now we have to prove
that [|F|| = || fIl. If f =0, then ¥ = 0 and ||F| = || f|. Otherwise,
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[f(v, w)]|
voev,wzoew |VIITWl

{F (v), w)]
voeVwzoew VI ITwll

[(F (), F ()]

Ifll=

>
T vzoev,Fmzoew  IVIHITF O
IF Wl
= — = ||F|
vzoev VIl

That is, ||F|| < |fll. Thus ¥ is bounded. By Schwarz inequality, we have
HF ), w)| < |F Wl lwll. Using this, we have

H{F (v), w)| IF I lwll
Ifl= sup o = sup  ————— = ||F]
voevw2oew  IVILITwl voev,wroew  IVIHIwl
Thus || || = || f|l. Now to prove the uniqueness part, suppose that there exists ¥ :

V — W such that
fv,w) =(F ), w) = (F1(v), w)

for all v € V and w € W. Then by Theorem 5.4(d), ¥ (v) = F1(v) for all v € V.
Thus F = 7.

Now we will show that every bounded linear map on a Hilbert space will have an
adjoint map and it is unique. If the domain is not a Hilbert space, a bounded linear
map need not have an adjoint (See Example 6.8).

Theorem 6.6 Let V be Hilbert space and W be an inner product space over the
same field K. Let T : V. — W be a bounded linear map. Then, there exists a unique
bounded linear map T* : W — V such that (T (v),w) = (v, T*(w)) forallv eV
andw € W with ||[T| = |T*|.

Proof Define f : W xV — Kby f(w,v) = (w, T(v)). Now forv € V,wy,w; €
W and A € K, we have

S Owr+w2,v) = (Qwy +wa, T (v)) = Awy, T(V)) + (w2, TW)) = Af (W1, v) + f(w2, V)
and forvi,v, € V,w e W, A € K, we have
Fw, v +v2) = (w, T (i +v2)) = Aw, TO)) + (w, T(n)) = Af(w,v1) + f(w, v2)

Thus, f is a sesquilinear function. Also, by Cauchy—Schwarz inequality, we have

Lfw, ) = [w, TON] < Wl ITO)I < ITHIvIFTwl
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Thos 1w, )]
w, v
Il = sup — < |||
v0eV,w0ew Wil V]|
Also
[f(w, V)]
fll= ——
v20ev,wzoew Wil vl
[{(w, T (v))]

voev,woew Wl VIl

(T (), TW)I

> sup —— = |IT|
v2oev,Tm=zoew T )V

That is, || f|| = |IT||. Thus f is a bounded sesquilinear function. Then by Theo-
rem 6.5, there exists a unique bounded linear map 7* from W to V with f(w,v) =
w, TW)) =(T*(w),v) and ||f|l=T| = |T*||. Taking conjugates, we get
(T),w) = (v, T*(w)) forallv e Vandw € W.

Definition 6.6 (Adjoint of a Bounded Linear Map) Let V be Hilbert space and W
be an inner product space over the same field K. and 7 : V — W be a bounded
linear map. Then the linear map 7* : W — V satistying (T'(v), w) = (v, T*(w)) for
allv € V and w € W is called adjoint of T'.

Remark 6.2 Let V be a Hilbert space and W be an inner product space over the
same field K and 7 : V — W be a bounded linear map and 7% : W — V be its
adjoint, then (T*(w),v) = (w, T(v)) forallv € V and w € W. For,

(T*w),v) = (v, T*w) = (T, w) = (W, T(V)
is true forallv € V and w € W. Also, if W is a Hilbert space, as
v, Tw)) = (T*), w) = (v, (T*)" W)
by Theorem 5.4(d), we get (T*)* = T.

Example 6.6 Let V be a Hilbert space over the field K. Define the identity operator
I:V — V,I(v) =vforallv € V and the zero operator,O : V — V,by O(v) = 0.
Then forallv,w € V,

, I*(w)) = (L), w) = (v,w) = (v, 1 (v))

and

v, O"w) = (0(), w) = (0, w) =0 = (v,0) = (v, O(w))

Thus I* = I and O* = O.
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Example 6.7 Let T : R* — R”" be defined by

T, va, ooy v) =0,v1,va, .0, V1)
Then forv = (v, va, ..., v,),w = (W, ws,...,w,) € R", we have

<T(V)5 W> = ((07 V17 V2, AR ] Vn—l)a (Wla W25 AR ] Wil))
=Viwy + Vw3 + -V Wy
=viwy +vow3z + -+ Vv, 1w, +v,.0

= (v, V2, .., V), (W, w3, .o, W, 0)

Define T*(w) = (wp, w3, ..., w,,0). Clearly T* is linear and (T (v),w) =
(v, T*(w)) for all v,we V. T and T* are called right and left shift opera-
tors, respectively. Observe that the matrices of these operators are given by [T] =

00...00] 010...0

10...00 001...0

01...00] 4pq [T*]=|:::-. - |, respectively. Clearly, [T*] = [T]" as we
SETREE 000...1

00...10] 000...0

have seen in the introduction.

For a bounded linear map between two general inner product spaces, the existence
of an adjoint is not assured. But if we are considering the bounded linear map from
a Hilbert space to an inner product space, there definitely exists an adjoint.

Example 6.8 Consider cq, the linear space of all real sequences having only a
finite number of non-zero terms with the inner product (v, w) = > > v,w,. Then
coo 18 an incomplete space with respect to the given inner product (Why?). Define

T : Ccoo — Coo by

T(v) = (ivn—",o,o,...)

n=1

Clearly, T is linear (verify!). Also,

Thus T is a bounded linear operator on cyy. We will show that there does not exists
an operator T such that (T (v), w) = (v, T (w)). Consider the sequence {e, }, where
en = (0,0,...,0,1,0)(1isinthe nth position and all other entries are zero). Clearly,
{en} € coo (isit?). If (T(v)),, denotes the element in the nth position of f‘(v), we have

- - 1
(T(er)n = (e T(e))) = (T(en), 1) = —
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Thus 7 (e;) = (1, 1.4, ..., L ). Thisis not possible as T (e;) must be an element

RIS

of coo. Therefore T does not have an adjoint operator on coy. What if we define T
on /? with the given inner product? Remember that /? is complete with respect to the
given inner product (See, Exercise 13, Chap. 5).

Now, let us discuss some properties of the adjoint of a bounded linear map.

Theorem 6.7 Let V be a Hilbert space and W be an inner product space over the
same field K. Let T, T : V — W be bounded linear maps. Then

(a) AT 4+ T)* = AT* + T*, where » € K.
(b) (TT) = 77,

(c) IT*T| = ITT*| = T|*

(d) T*T =0ifand only if T = 0.

Proof (a) Forallv,w € V and A € K, we have

(AT +TY(v), w) = AT ) + T (v), w)

MT W), w) + (T (), w)
= Ay, T*W)) + (v, T*(w))
= (v, A\T*(w) + T*(w))

As the adjoint of a linear operator is unique, we get (AT + T) = AT* 4+ T*,
where A € K.
(b) Forallv,we V

(DY), w) = (T (T0),w) = (F0), T*0) = (v, TT* ()
Therefore (TT) = T*T*.
(c) Wehave T*T : V — V. Now,
|T* T )| < |T*[ U7Vl < |T*| UT1 vl = 1T vl
forallv € V. Thus |T*T| < ||T||2. Also
ITWIP = (Tv,Tv) = (T*T) v).v) < [(T*T) W) | IIvll < | T*T | IIvII®
Taking supremum over all v € V with |v|| = 1, we get ITI?> < IT*T|. Thus
I7*T| = ||IT | Similarly, we can prove that | TT*| = ||T|>.
(d) Suppose that T = 0. That is, T(v) =0 for all v € V. Then (T*T)(v) = T*

(T(v)) =0forallv € V and hence T*T = 0. Conversely, suppose that T*T =
0. Then from (c), we have | T*T|| = ||T||*> = 0. Therefore T = 0.
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Now we will use the concept of adjoint operators to define some special class of
bounded linear operators.

6.3 Self-adjoint Operators

In this section, we will study a special class of bounded linear maps which are of
great importance in applications of linear operator theory and are defined using the
adjoint of a linear operator.

Definition 6.7 (Self-adjoint Operators) Let H be a Hilbert spaceand T : H — H
be a bounded linear operator. Then T is self-adjoint if 7 = T*.

Theorem 6.8 Let T\, T, : H — H be self-adjoint operators on a Hilbert space H.
Then T\ + T, is self-adjoint and T, T, is self-adjoint if and only if T) and T, commute.

Proof LetT,, T, : H — H be self-adjoint operators. Then forallv, w € H, we have

(Ty + T) v), w) =(T1(v), w) + (T2(v), w)
= v, Ti(w)) + (v, Tr(w))
=, (T + T5) (w))

Thus 7| + T is self-adjoint. Also
(M) ), w) = (o), Ty (W) = (T2(v), Ti(w)) = (v, (T2T1) (W))
Thus (T Tz)* =0T & LT =TT,

Example 6.9 Let V be a Hilbert space. From Example 6.6, the identity operator and
the zero operator on V are self-adjoint operators.

Example 6.10 Let 7 : R? — R? be defined by
T, v2) = vy +v2, v + 3v2)
Then for all (v, v2), (11, us) € R%, we have

(T (vi, v2), (w1, u2)) = (2v1 +va, v1 + 3v2), (U1, u2))
= 2vi +v)ui + (vi + 3v)us
= v1(2uy + uz) + va(uy + 3us)
= ((vi,v2), T"(u1, u2))

Thatis, T*(vi, v2) = Qvy + va,vi + 3vp) = T (vq, vp) forall (vi, vp) € R2. Thus T
is self-adjoint.
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Example 6.11 Let T : C[0, 1] — CJ[O0, 1] be defined by (Tf) (x) = x (f(x)). Then
for all f, g € C[O, 1], we have

1 1
(T'(f).8) =/0 (xf(x)) g(x)dx =/0 f(x) (xg(x))dx = (f, T*(g))

That is, (T*f)(x) =xf(x) = (Tf)(x) for all f € C[O0, 1]. Therefore T is self-
adjoint.

Observe that the above linear operator does not have an eigenvalue. For, let A be an
eigenvalue of T with eigenvector f € C[0, 1]. Thatis, T(f(x)) = xf(x) = Af(x)
for all x € [0, 1]. Then (x — 1) f(x) = 0 which implies that f(x) = 0 for all x €
[0, 1]. This is a contradiction as, an eigenvector must be a non-zero element. Thus
the existence of eigenvalues, is not guaranteed even for bounded linear self-adjoint
operators. Now in the following theorem, we will prove that if H is a complex Hilbert
space, the eigenvalues of a bounded linear self-adjoint operator are real numbers if
they exist.

Theorem 6.9 LetT : H — H be aself-adjoint operator on a complex Hilbert space
H. Then

(a) the eigenvalues of T, if they exist, are real numbers.
(b) the eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof Let T : H — H be a self-adjoint operator on a complex Hilbert space H.
That is, (T (v),v) = (v, T(v)) forallv € H.

(a) Let A be an eigenvalue of T with eigenvector v. Then,
A, v) = (v, v) =(T(1),v) = (v, TM) = (v, lv) = A(v, V)

gives (A — A) (v, v) = 0. As (v, v) # 0, we get A = A. Hence, A is real.
(b) Let A; and X, be two distinct eigenvalues of T with eigenvectors v, v, € H
respectively. From (a), both A and X, are real. Then

A{vi, v2) = (Avi, va) = (T (v1), v2) = (v, T(n2)) = (v1, Aava) = Aa(vy, v2)

gives (A1 — Ap) (vi, »2) = 0. As A1 # Ay, we get (vi, vp) = 0. Thus, the eigen-
vectors corresponding to distinct eigenvalues are orthogonal.

The existence of an eigenvalue is not guaranteed in the above theorem. But the
following lemma guarantees that a linear operator 7' on a finite-dimensional complex
vector space V has at least one eigenvalue.

Lemma 6.1 Let T : V — V be a linear operator on a finite-dimensional complex
vector space V. Then T has at least one eigenvalue.
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Proof Consider a basis B for V. Let A be the matrix representation of 7' with respect
to B. Let p (1) be the characteristic polynomial of A. Then p (1) is a polynomial of
finite degree, say n. Then by Fundamental theorem of algebra, A has at least one
eigenvalue. That is, T has at least one eigenvalue.

Now we will discuss one of the important theorem in the theory of self-adjoint
operators.

Theorem 6.10 Let T : V — V be a self-adjoint linear operator on a finite- dimen-
sional complex vector space V. Then, there exists an orthonormal basis for V that
consists only of eigenvectors of T and the matrix representation of T with respect to
B is diagonal.

Proof Let T : V — V be a self-adjoint linear operator on a finite- dimensional
complex vector space V. Let S denote the span of eigenvectors of 7. First, we will
prove that S+ = {0}. Letv € S* and v; € S be an eigenvector of T corresponding to
the eigenvalue A;. Then

(TW),vi) =@, TO)) = (v, ,vi) =X {v,v;) =0

Thus, for every v € S+, we have T(v) € S*. In other words S is invariant under
T.1f s+ # {0}, so that its dimension is one or more, then, by Lemma 6.1, T has
an eigenvalue A and with v € S+ being its corresponding eigenvector. But then v,
being an eigenvector, is also in S. As S N S+ = {0}, we get v = 0. Then by Corol-
lary 5.3, S = V. That is, we have V as the span of eigenvectors of 7. Now using,
Gram-Schmidt orthonormalization process, we will get an orthonormal basis for V
consisting of eigenvectors of 7. Clearly, the matrix representation of 7" with respect
to B is diagonal.

In matrix terms, the above theorem states that for a self-adjoint matrix A, there
exists a matrix P, with the eigenvectors (orthonormal) of A as columns such that
PAP~! = D, where D is a diagonal matrix with the eigenvalues of A as diagonal
entries. Now we will characterize self-adjoint operators in complex Hilbert spaces.

Theorem 6.11 Let T : H — H be a bounded linear operator on a Hilbert space
H.IfT is self-adjoint, then (T (v), v) is real for allv € H. In particular, if a complex
Hilbert space is considered, (T (v), v) is real for allv € H implies T is self-adjoint.

Proof Since T is self-adjoint, for all v € H, we have

(TW),v) =, TW)=(TW),v)

That is, (T (v), v) is equal to its complex conjugate for all v € H. Thus (T (v), v) is
real forallv € H.

Now, suppose that H is a complex Hilbert space. Then, for all v, w € H, we have
v+iwe H.As (T (v),v)isreal forallv € H, we get (v, T (v)) = (T (v), v) for all
v € H. In particular,
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(Tw4+iw),v+iw)=v+iw, T(v+iw))
This implies that
—i(TW),w)+i(Tw),v)=—i(v, Tw)) +iw, T(v))

and hence
(TOW),w)+ (w, TW) =(TW),v) +{v, T(w))

Then by using (I P4), we get Re (T (w),v)) = Re ({v, T(w))) for all v,w € V.
Now, to prove that Im ((T (w), v)) = Im ({v, T (w))), it is enough to consider the
element v + w € V instead of v 4+ iw, where v, w € V. Thus we have (T (w), v) =
(v, T(w)) forallv,w e V.

We have defined the norm of an operatorin Sect. 6.1.Let T : V — W be abounded
linear map between two inner product spaces V and W . Forv € V, (T (v), w)| <
1T W) lw]l by Schwarz inequality for all w € W. Also, for T'(v) # 0, if we take
w= LW we get (T(v),w) = |T (). Thus

17l
1T = Sup{{T(),w)|: we W, [w| <1}
Then || T'|| can also be defined as
1Tl = Sup{{T (), w)|:veV,weW, vl =<1, |wl=1}

The following theorem shows that if we are considering a self-adjoint operator, we
need not have to take the supremum of such a big set.

Theorem 6.12 Let T : H — H be a bounded self-adjoint operator on a Hilbert
space H. Then ||T|| = Sup{|{T (v),v)|:ve V,|v| <1}

Proof Let T : H — H be a bounded self-adjoint operator on a Hilbert space H.
Take
o = Sup{{T(),w)|:v,we H, |vll =1, [w] <1}

and
B = Sup{{T(v),v}|:veH,|vl]=<1}

Clearly, 8 < «. Now, observe that for every v, w € V, we have
(TO+w),v+w) =(TW),v) +(TW),w) +(TW),v)+({TWw),w)

(T =w),v=w) =(TW),v) = (TW),w) = (Tw),v) + (T (W), w)
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Then

(TO+w),v+w)—(Tv—w),v—w)=2(TW),w)+2(T(w), v)
=2(T (), w) +2(w, T (v))
=2T(v),w) +2(T(v), w)
=4Re ((T(v), w))

As 22 has norm 1, we have
=

T+ w),v+w)| <allv+w|?

Similarly,
HT (v —w),v—w)| <alv—w|?

Thus we have

4Re (T(v). w)) = (T +w), v+ w)| + (T —w). v —w)]
o (v +wl* + v —wl?)
< 2e (VI + Iwll?)

by using Parallelogram law. Now forv, w € H with [|v||, ||w|| < 1, theabove inequal-
ity implies that 4Re ((T (v), w)) < 4a. Now, if T(v) # 0, take w = ﬁ then
lwll =1and [|[T (V)| = (T (v),w) = Re ({T (v), w)) so that 8 < «. Therefore, we

have [T = Sup{(T(v),v)| :v €V, |vll = 1}.

Corollary 6.1 Let T : H — H be a bounded self-adjoint operator on a Hilbert
space H. Then T = 0 if and only if (T (v),v) =0 forallv € H.

Proof Let T : H — H be a bounded self-adjoint operator on a HIlbert space H.
Then, we have T = 0 if and only if || T'|| = Sup{|{T (v),v)| :v € V,|v|| <1} =0.
That is, if and only if (T'(v),v) =0 forallv € H.

This is an important consequence of Theorem 6.12, which will be used later to
characterize normal operators.

Positive Operators

Theorem 6.11 establishes an important property of self-adjoint operators, which will
be used for further classification of self- adjoint operators. In this section, we will be
classifying self-adjoint operators on finite-dimensional inner product spaces based
on the first part of Theorem 6.11 which will give as an important class of self-adjoint
operators.



222 6 Bounded Linear Maps

Definition 6.8 (Positive Definite) Let T : V — V be a self-adjoint linear operator
on a finite- dimensional inner product space V, then T is called positive definite
operator if (T'(v), v) > 0 for all non-zero v € V. T is called positive semi-definite
operator if (7'(v), v) > 0 for all non-zerov € V.

Example 6.12 Let V be a Hilbert space and / be the identity operator on V. In
Example 6.9, we have seen that / is self-adjoint. Also,

(IW),v) = (v,v) = v[I* > 0

for all non-zero v € V. Therefore [/ is positive definite.

Example 6.13 Let 7} : R2? — R? be defined by T1(vi, v2) = (v1, 2v;). Clearly, T;
is a self- adjoint linear operator on R?(Verify). Also, (T;(vi, v2), (v, v2)) = v% +
2v§ > 0 for all non-zero (v;, v») € R?. Thus, T} is positive definite.

Now define T» : R*? — R? be defined by Tr(vi, v2) = (0, 2v,). Clearly, 75 is a
self-adjoint linear operator on R?(Verify). Observe that, (T>(v;, 0), (v1, 0)) = 0 for
allvy € Rand (T5(vy, v2), (vi, v2)) = 2v§ > ( otherwise. Hence, T is positive semi-
definite.

In Sect. 5.4, we have defined orthogonal projection operator on an inner product
space projecting a vector to a finite- dimensional subspace. In the next example, we
will show that orthogonal projection operators are positive operators.

Example 6.14 Let V be a finite-dimensional vector space and W be a subspace
of V. By Theorem 5.13, for any v € V, there exists w € W and w € W+ such that
v=w+w. WedefineT:V — V by tyy(v) =w. Let vi = w; +w, v =wy +
wo € V. Then,

(rw (v1), va) = (w1, wa +Ww2) = (w, w2) = (w1 + Wi, wa) = (v, Tw (2))
Thus, y is self-adjoint. Now for every non-zerov = w + w € V, we have
(rw (), v) = (w,w+w) = (w,w) >0

Therefore my is positive definite.

Now, we will characterize positive operators on finite-dimensional inner product
spaces.

Theorem 6.13 Let T : V — V be a self-adjoint linear operator on a finite- dimen-
sional inner product space V. Then T is positive definite if and only if all the eigen-
values of T are positive. Similarly, T is positive semi-definite if and only if all the
eigenvalues of T are non-negative.

Proof Suppose that T : V — V is positive definite. Let A be an eigenvalue of T
with eigenvector v. As T is positive definite, we have
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(TW),v) = (Av,v) = A{v,v) >0
Clearly, A > 0. Now let A, Ay, ..., A, be the eigenvalues of 7 without count-

ing multiplicity. Suppose that they are all positive. As T is self-adjoint, by The-
orem 6.10, we know that V has a basis consisting of eigenvectors of 7', say

B ={vi,v2,...,v,}, where v; is an eigenvector of A;. Then, for any v € V, there
exists scalars «q, oy, ..., «, € Ksuchthaty = Z?:l o;v;. Therefore, forallv € V,
we have

(T),v) = <T (iai\’z) ) iaivi> = i)\i(aivis a;vi) >0
i—1 i—1 i—1

Thus, T is positive definite. Proof is similar for positive semi-definite operators.

In matrix terms, the above theorem means that, an n x n matrix A is positive
definite (or positive semi-definite) if and only if all the eigenvalues are positive(or
non-negative).

Theorem 6.14 Let V and W finite-dimensional inner product spaces over the same
field K. Let T : V. — W be a linear map. Then

(a) T*T and TT* are positive semi-definite.
(b) Rank (T*T) = Rank (TT*) = Rank (T)

Proof Wehave, T*T : V — Vand TT*: W — W. As
(T*T) ), v) = (T ), TW) = (v, T*T (1))

forallv € V, T*T is self-adjoint. Similarly, 7T* is also self-adjoint.

(@) Now for ve V, (T*T) (v),v) =(T(v),T(v)) >0 and for we W, (TT*)
W), v) =(T*(v), T*(v)) = 0. Thus both T*T and TT* are positive semi-
definite.

(b) By Theorem 6.7, N(T) = N(T*T) = N(TT*). Then by Rank—Nullity theo-
rem, Rank (T*T) = Rank (TT*) = Rank (T).

We will be using the positive semi-definiteness of the operator 7*T later in this
chapter.

6.4 Normal, Unitary Operators

In the previous section, we have discussed one of the important class of linear oper-
ators, called self-adjoint operators. Although the scope of this book covers linear
operators on finite-dimensional spaces mostly, we will discuss two more important
classes of linear operators defined using adjoint operator, namely, unitary operators
and normal operators.



224 6 Bounded Linear Maps

Definition 6.9 (Normal, Unitary Operators) Let H be a Hilbert space and 7T :
H — H be abounded linear operator. Then 7 is normal if 77* = T*T and unitary
ifTT*=T*T = 1.

Example 6.15 Consider the operator defined in Example 6.10, Observe that TT* =
TT* # I.Thus T is normal, but not unitary. Similarly, the operator defined in Exam-
ple 6.11 is normal, but not unitary.

Example 6.16 Define 7 : R? — R? by T (v, v2) = (v2, v1). Then for all (v{, v,),
(u1, up) € R?, we have

(T (vi,v2), (U1, uz)) = ((va, v1), (U, uz)) = vouy +vius = ((vi, v2), (U, uy))

Thus T7* = T. Also TT* = T*T = I. Thus T is normal and unitary.

Remark 6.3 Observe that both self-adjoint operators and unitary operators are nor-
mal operators. But a normal operator need not be either of them. For, consider
the operator T : R? — R? defined by T (vi, v2) = (vi + v2, v2 — v;). Then for all
V1, v2), (U, us) € R%, we have

(T (vi,v2), (U1, uz)) = ((vi +v2,v2 —v1), (u1, u2))
= (vi +v)uy + (v2 — vuy
=vi(u; —uz) +vo(uy +uz)
= ((vi, v2), (U1 — uz, uy + uz))
= ((vi,v2), T"(uy, u))

Therefore T* : R?2 — R?is defined by T*(vi, v2) = (v —va,vi +v2). Here TT* =
2(vy,v2) = T*T. Therefore T is normal. As T # T*, T is not self-adjoint and as
TT*=T*T =21 # I, T is not unitary.

We have characterized self-adjoint operators on complex Hilbert spaces in Theo-
rem 6.11. In the following theorem, we will characterize normal and unitary opera-
tors.

Theorem 6.15 Let T : H — H be a bounded linear operator, where H is a Hilbert
space. Then,

(a) T is normal if and only if ||T W)|| = |[T*(W)|| forallv € H.
(b) T is unitary if and only if T is onto and ||T (v)|| = ||v|| for allv € H.

Proof Let T be a bounded linear operator on a Hilbert space H.

(a) Suppose that T is normal. Then for all v € H, we have
ITW)? = (TW), TE) = (T*T ), v) = (TT*(),v) = (T*), T*0) = | T*0)|*

Now, suppose that |7 (v)|| = ||T*(v)|| for all v € H. Then
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(T*T(),v) ={(TT*(v),v\Vve H

Thus, ((T*T — TT*) (v),v) = 0forall v € H. Then by Corollary 6.1, we have
T*T = TT*. Therefore T is normal.
(b) Suppose that T is unitary. Then as 7 is invertible, T is onto. Also

ITOI? = (TW), TOW) = (T*TW),v) = (v,v) = V]

for all v € H. Now, suppose that T is onto and ||T(v)|| = ||v| for all v € H.
Then ((T*T) (v),v) = (I(v),v) for all v € H. This implies that

(T*T—1I)(v),v)=0VveH

Asboth, T*T and I are self-adjoint operators, by Corollary 6.1, T*T = I. Now,
forallv,w € H, as

ITOV) =TWI =ITV=w =Ilv—wl|

T is one-one. Thus T is an invertible operator and hence by the uniqueness of
the inverse operator 7! = T*. Therefore T is normal.

Now we will check whether the sum and product of normal and unitary operators
are respectively normal and unitary.

Theorem 6.16 Let H is a Hilbert space.

(a) Let T\, T, : H— H be normal operators, then T\ + T, and T, T, is normal if
T, commutes with T;* and T{" commutes with T,.

(b) Let T\, T, : H— H be unitary operators, then T\T, is unitary and T\ + T; is
unitary if it is onto and Re ({T1(v), T,(v))) = —%foreveryv € Hwith ||v| = 1.

Proof (a) Let Ty, T, : H — H be normal operators, where H is a Hilbert space.
Suppose that 71T, = T,)T; and T*T, = T,T}". Then

(T + ) (T + T)* = (T + T) (T)" + T5)
=TT+ T\'T, + T T + TS
=TT\ + T[T+ T,’T\ + T,T»
=T+ 1) (T) + T»)

Thus T; + 75 is normal. As,
(D) (BT =T (RE) 17 = (LT) (BTY) = (GN) (T7T2) = (1) (T T2)

we get (T\T») (T\ T»)* = (T1'T»)* (T1 T). Thus, T, T» is normal.
(b) Let Ty, T, : H — H be unitary operators, where H is a Hilbert space. Now for
allv € H, we have
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(M +T2) ), (T1 + ) ) =(T1(v), i) + (T1 (v), 2() +(T2(v), TI1 () + (T2 (v), T2(v))

By Theorem 6.15(b), (T7(v), Ti(v))=(Tr(v), T(v))=(v,v) and (T>(v),
Ti(v)) = (T1(v), T (v)). Therefore,

(T +T2) ), (T1 + T2) (v)) = 2(v,v) + 2Re ((T1(v), T2(v)}))

Again by Theorem 6.15(b), we have T; 4 T, is unitary if and only if it is
onto and ((T} + T>) (v), (T} + T») (v)) = (v, v). This happens only if (v, v) +
2Re ({T1(v), T»(v))) = 0. Hence, Re ((T1(v), T»(v))) = —% for every v e H
with [|v]| = 1. As,

(') (D) =T (LT T =TT =1
(D) (D) =T, (IYT) =T, 1T, = I
T T; is unitary.

Now let us discuss some of the properties regarding the eigenvalues and eigen-
vectors of a normal operator. Keep in mind that as both self-adjoint operators and
unitary operators are normal operators, they will also possess these properties.

Theorem 6.17 Let T : H — H be a normal operator, where H is a Hilbert space.
Then,

(a) If 1 is an eigenvalue of T with eigenvector v, then A is an eigenvalue of T* with
Vv as eigenvector.
(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof LetT : H — H be a normal operator.
(a) Let A be an eigenvalue of 7" with eigenvector v. Then (T — A1) (v) = 0. Now,
by Theorem 6.15(a),
1T =D Wl = [(T =aD* 0| = |[(T* = *1) 0| =0

Therefore, T*(v) = Av.
(b) Letvy, v, € H beeigenvectors corresponding to eigenvalues Aj, A, respectively,
where A1 # A,. Now,

rMvi,va) = (v, ve) = (T (1), v2) = (v, T (»))
Now, from (a), we have A, is an eigenvalue of T, with v, as an eigenvector.

Therefore )»1(\/1, V2> = (Vl, )»_2\/2> = )\2(\/1, Vz). Then ()\,1 — )»2) <V1, V2) =0.As
A #E Ao, we get (vi, ) =0.
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For general linear operators, the above results need not be true. Consider the right
and left shift operators defined as in Example 6.7, observe that 0 is an eigenvalue of
left shift operator with eigenvector (1, 0, ..., 0) € R". But O is not an eigenvalue of
right shift operator.

6.5 Singular Value Decomposition

In earlier chapters, we have seen some decompositions of matrices which exist only
for square matrices. In this section, we will generalize the concept of decomposition
of matrices to general m x n matrices.

Theorem 6.18 Let T : V — W be a linear transformation of rank r , where V
and W are finite-dimensional inner product spaces. Then there exists orthonormal
bases {vi,va, ..., va}, (Wi, wa, ..., wn} of V, W respectively and unique scalars
o1 >0, > .- >0, > 0such that

ow;, if1l <i<r

T;) =
i) 0, ifi>r

Proof For any linear map 7' : V — W, by Theorem 6.14, T*T is a positive defi-
nite operator of rank r on V. Now by Theorem 6.10, there is an orthonormal basis

{vi, va, ..., vy} of V consisting of eigenvectors of 7*T with corresponding eigenval-
ues A; where Ay > A, > --- > A, > 0and A; = 0 for i > r. Now, define 0; = +/A;
and w; = %T(vi) where 1 <i < r. First, we will prove that {w;, w,, ..., w,} is an

orthonormal subset of W. For i <1i,j <r,wehave

1 1 1 1
(Wi, wj) = <—T(Vi), _T(Vi)> = —(T"T(v;),v;) = —(Aivi, v))
g; i O'l‘Uj O’[O’j

As o; = 4/A; and {v, V2, ..., v,} is an orthonormal basis for V this implies that

(wi,wj) = L lfl - ]. . Thus {w;, ws, ..., w,} is an orthonormal set in W. By
0, ifi #j

Theorem 2.14 and Gram—Schmidt orthonormalization process, we can extend this set

to an orthonormal basis, {wy, wy, ..., w,}, of W. Then, T (v;) = o;w; for1 <i <r.

For i > r, we have (T*T)(v;) = 0. Then by Theorem 6.7(d), we have T (v;) = 0,

where i > r. Thus, we have

T ow;, ifl <i <r
Vi) = .
0, ifi>r

Now we have to prove that the scalars o1, 07, . .., 0, are unique. For I <i < m and
1 < j <n, we have
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<T*(wl~),vj) = (w;, T(v))) = !O’i, ifi=j<r

0, otherwise

And by Theorem 5.10, forany 1 <i < m,

n .
o, ifi=j<r
T*(w;) = T*wi),vjyv; =1 " -
(wi) ;< i) vi)vj {O, otherwise

Now, for i <r, (T*T)(v;) = T*(oiw;) = 0;T*(w;) = Ul.zw,- and for i >r,
(T*T)(v;) = T*(0) = 0. Thus each v; is an eigenvector of T*T with corresponding
eigenvalue o7 if i <rand 0ifi > r.

Definition 6.10 (Singular Value Decomposition) The unique scalars o) > oy >

- > 0, > 0 defined in Theorem 6.18 are called singular values of a linear trans-
formation and the above decomposition is called Singular Value Decomposition. If
r < min{m, n}, then 0,.1 = --- = 07 = 0 are also considered as singular values,
where | = min{m, n}.

Example 6.17 Consider a linear transformation 7 :P,[—1,1] — P, [—1,1]
defined by T'(f) = f”. We have already seen that ® = { 7 f f (3x% — ]
is an orthonormal basis for P, [—1, 1]. Hence ¥ = L/%, \/;x} is an orthonormal

000
basis for Py [—1, 1]. Then A = [T]‘I’ [8 8 3?)/_] and hence A*A= {00 0
0045

Here A; = 45, A, = 0and A3 = 0. Corresponding eigenvectors are (1, 0, 0), (0, 1, 0)
and (0,0, 1). Observe here that r = 1 < min{2, 3}. Therefore the singular val-
ues are o7 = 3+/5 and o, = 0. Translating this to the given context, we get v; =

3G = 1v = [irandvs = L Thenw, = 170 = 5 Takews = 3.
{w1, wy} forms an orthonormal basis for P; [—1, 1].

From Theorem 6.18, it is clear that the scalars oy, 05, ..., 0, are determined
uniquely by 7. Now, we know that, for every linear transformation 7 : V — W,
there exists a corresponding matrix A = [T]g, where @ is a basis of V and W is
a basis for W. Take & as the matrix with the above orthonormal basis elements
Vi, V2, ..., v, as columns. That is, the matrix with eigenvectors of A*A as columns
in the decreasing order of their corresponding eigenvalues. Take W as the matrix with
the orthonormal basis elements wy, wy, ..., w,, of as columns, where w; = [%_Av,-.
Then in matrix terms, the above theorem can be stated as follows.

Theorem 6.19 Let A be an m x n matrix with rank r. Then there exists an m X m
unitary matrix ¥ and an n x n unitary matrix ® such that A = VX &%, where
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X .
0, otherwise

{oi, ifi=j<r
ij =

and oy >0y > --->0, >0 are scalars such that o; = /\; where A;,i =

1,2, ..., r are the non-zero eigenvalues of A* A.
100 100

Example 6.18 Consider a matrix A = . Then, A*A = [ 01 0 [, which has
010 000

eigenvalues A; = A, = 1 and A3 = 0. Observe here that the corresponding eigen-

vectors are v = (1,0,0),v, = (0, 1,0) and v3 = (0, 0, 1) respectively. Thus ® =
100
0 1 0 |. The non-zero singular values are oy = 0, = 1. Also, u; = UilAvl =(1,0)
001

10]

0 1_ . Now, observe that

and u, = ész = (0, 1). Therefore ¥ = [

100
woor =[] 15 00] [o10| =4

01]]010 001
13] 14 10
Example 6.19 Consider the matrix A = | 3 1 |. We have A*A = |:1 01 4], which
22

has eigenvalues A; = 24 and A, =4 with eigenvectors v; = %(1, 1) and v,

%(1, —1) respectively. Then u; = J-Av; = %(1, 1,1) and up = S Av; =

(—1,1,0). Choose uz = \/Lg(l, 1, —2). Observe that,
1 11
V2 e || v240 T L
UEP = |5 55 o= 02| Y3 |=4
V3 V2 Ve 41
L 0 —-Z 0 0|Lv2 V2
V3 NG

6.6 Generalized Inverse of a Matrix

We know that every n x n non-singular matrix A has a unique inverse denoted by
A~'. What about singular matrices and rectangular matrices? There is a need for
partial inverse or generalized inverse for such matrices having some properties of the
usual inverse in numerous mathematical problems. One of the vital applications is in
solving a system of linear equations. For example, consider the system Ax = b. If
A is non-singular, the given system has a unique solution for x given by x = A~'b.
When A is singular or rectangular, the system can have no solution or infinitely many
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solutions. Suppose that there exists a matrix X having the property that AXA = A.
Take x = Xb. Then, we have

Ax = A(Xb) = AX(Ax) = (AXA)x = Ax = b 6.2)

That is, x = Xb solves the system Ax = b. This implies that to solve a system of
linear equations, Ax = b, a matrix X having the property that AXA = A is really
useful. For a given matrix A, we characterize all matrices X having the property
AXA = A asthe generalized inverses of A, which helps to solve the system Ax = b.
Likewise, we may need other “relationships” of A and X to solve different problems.
This will give us more restricted classes of generalized inverses. When A is non-
singular, A~! trivially satisfies these “relationships”. One of the interesting facts to
observe here is that the generalized inverse for a matrix need not be unique. Consider
the following example.

Example 6.20 Let A = [2 3]. A generalized inverse for A is a matrix X = |:Z:|
with AXA = A. We have,

a

AXA =[23] [b

}[23]:(2a+3b)[23]=[4a+6b6a+9b]

a

Now AX A = A implies that any matrix X = |: b

i| with 2a + 3b = 1is a generalized

inverse of A.

Now, we will show that if X is a generalized inverse of A, then both AX and X A
are projection matrices onto the column space of A and A” respectively. Consider
the following theorem.

Theorem 6.20 Let A € M, ., (K) with generalized inverse X € M, (K), then
AX € M, xm (K) is an orthogonal projection onto the column space of A

Proof First, we will prove that AX and A have the same column space. Let w €
Im(A). Then there exists v € K" such that Av = w. We have

w=Av = (AXA) = (AX)(Av)

Therefore w € Im(AX).

Conversely, let w € Im(AX). Then there exists v € K” such that (AX)v = w.
Clearly, w = A(Xv) € Im(A). Thus, both A and AX have the same column space.
Now to prove that AX is an orthogonal projection, it is enough to show that AX is
both self-adjoint and idempotent (See, Excercise 5.30). We have

(AX)(AX) = (AXA)X = AX
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and by condition 6.5, (AX)* = AX. Thus, AX is an orthogonal projection onto the
column space of A.

Similarly, we can prove that XA is also a projection matrix onto the column
space of A*. We have already seen that the generalized inverse of a matrix need
not be unique. In 1955, Roger Penrose! proved that for every matrix A (square or
rectangular), there exists a unique matrix X satisfying the following conditions.

AXA=A (6.3)
XAX =X (6.4)
(AX)" = AX (6.5)
(XA)" = XA (6.6)

For, suppose X and Y satisfy conditions (6.3)—(6.6). Then,

X = XAX = X(AX)* = XX*A* = XX*(AYA)* = X(AX)*(AY)*
= X(AXA)Y = XAY = XA(YAY) = (XA)*(YA)'Y = A*X*A*Y*Y (6.7)
= (AXA)*'Y*Y = A*Y*Y = (YA)'Y = YAY =Y

The conditions (6.3)—(6.6) are collectively known as Penrose conditions. Based on
these conditions, some classifications are made for generalized inverses. Generalized
inverse of a matrix A satisfying conditions (6.3)—(6.6) are named after the American
mathematician Eliakim Hastings Moore (1862—1932) and the English mathematician
Roger Penrose (1931-).

Definition 6.11 (Moore—Penrose Inverse) Let A be am x n matrix. If X is a matrix
such that it satisfies condition (6.3), then it is a generalized inverse of A. If X satisfies
both conditions (6.3) and (6.4), then it is a reflexive generalized inverse of A. If X
satisfies all the four conditions, then it is the Moore—Penrose inverse of A, denoted
by AT,

Example 6.21 Consider the matrix A = [2 3] as given in Example 6.20. We have
seen that any element of the set

o (-

1
is a generalized inverse of A. Consider X; = |:(2)i| € X. Then, we can observe that

1 Penrose, R. (1955, July). A generalized inverse for matrices. In Mathematical proceedings of the
Cambridge philosophical society (Vol. 51, No. 3, pp. 406—413). Cambridge University Press.
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AX,A =[23] H [23]=[23]=4

s [eaf] - -
(AX)* =[1] = AX,

and

10 13
* = 2 =
That is, X; satisfies conditions (6.3)—(6.5) but not condition (6.6). Thus X; is a
reflexive generalized inverse but not Moore—Penrose inverse. So, how do we find the
Moore—Penrose inverse of A? Clearly, conditions (6.3) and (6.4) are trivially satisfied

for any element in X. Observe here that, for a matrix X = Z € X to satisfy
=« |2a2b| |2a3af g
(X4 = |:3a 3b} = [219 319} XA

2
a and b must be % and % respectively. Consider, X, = [%{| € X. Then,

13

=[] -[§] - mosr- [ ] -

2
Thus X, = []3*:| satisfies conditions (6.3)—(6.6) and is the Moore—Penrose inverse
3

2
for A. Thatis, AT = []3{|
3
Now, we will define a generalized inverse for an m X n matrix using singular
value decomposition. Consider the following definition.

Theorem 6.21 Let A be anm x n matrix with rankr. Let A = VX ®* be the singu-
lar decomposition of A, where WV, ¥ and ® are as described in Theorem 6.19. Then
the matrix, X = ®XTW* satisfies conditions (6.3)—(6.6), where ¥ is an n x m
matrix with
5 = {UL ifi=j<r
0, otherwise

and oy > 0y > --- > o, > 0 are singular values of A.
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Proof We have,
AXA = (VZP*) (PXZTU) (VEQ*) = ¥ (ET7) (V*Y) 20" = UEd* = 4
Also,
XAX = (oZT0*) (VE0*) (PZHW*) = ¢ (2 3) (@) ZTW* = o2 0 = X

Observe that
AX = VT (¢*0) St = ¢ (7)) ¢*

and
XA =0t (V'V) 2" =P (ZF%) 0*

where XX+ and 13X are diagonal matrices with 1 as first » diagonal entries and
the remaining entries zero. Therefore, (AX)* = AX and (XA)* = X A. This implies
that X = ® X T W* satisfies conditions the Penreose conditions, (6.3)—(6.6).

The matrix X = ®XTW¥* is known as the pseudo inverse of A, and is denoted by
AT. By (6.7), we can observe that A” is unique. Obviously, if A € M, (K) is an
invertible matrix, then AT = A~!.

Example 6.22 Consider the matrix A = (1) (l) 8 from Example 6.18. We have seen
that the singular value decomposition of A is
- 141100
vza = [19) 199010
- 41001

Therefore, the pseudo inverse for A is

100|160 |:1Oi| 10

AT=0x W = 101001 || \|=]01
001(]00 00
Example 6.23 In Example 6.19, we have seen that the singular value decomposition
13
of the matrix A = |31 1is
22
B S .
e I T
» | L L L 2 V2
Vi =% 5 % 0 2] (Y Y1
L o0 -2 0 O|Lv2z V2
V3 V6
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Then
SRS I
1 1
A _oster_ | v |[#m00 AE 1241
= TlL 1|9 Lo V2 2 T 12| 4 21
V2 2 2 1L 2
V6 V6 V6

Consider a system Ax = b, where A is am x n matrix and b € R™.

Pseudo Inverse and System of Linear Equations

Consider the system of linear equations Ax = b, where A € M, ., (K) and b € K".
We have seen that three possibilities can occur while solving the system. It can have
a unique solution, an infinite number of solutions, or no solutions. The system has
a unique solution when A is invertible, and the solution is given by x = A~'b. We
know that, if A isinvertible A~' = AT, and hence the solution can also be represented
as x = A"b. From (6.2), we know that x = ATb is a solution to the given system if
the system is consistent (either the system has a unique solution or has an infinite
number of solutions). Now the question arises: What is the meaning of A’h when
the system does not have any solution?

Suppose that the system is inconsistent with A having rank n. That is, b lies
outside the column space of A. So we will try to get as “close” as to b. As Im(A)
is a subspace of R™, by Theorem 5.13, we can consider the orthogonal projection of
b to Im(A) (say b) for this purpose. Since b lies in the column space of A, we can
solve Ax = b. Let ¥ be the solution for this equation. Then,

(b — A%) L Im(A)

This implies that
AT(b— A% =0

and hence
ATb = AT Ax

If A has rank n, then AT A is invertible. Then we get

F=ATAHTTATD
That is, if the system Ax = b is inconsistent, X = (AT A)"'ATb gives us a best
approximate to the solution. Interesting! Now, is there any relation between A and

(AT A)~TAT? or between AT and (AT A)~' AT ? The following theorem provides an
answer.
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Theorem 6.22 Let A € M, ., (K), m > n be a matrix with Rank(A) = n. Then
At = (A*4)7" A

Proof As A € M, «,,(K), by Sylvester inequality A* A has rank n. Therefore A*A is

invertible and X = (A"‘A)’1 A* is well defined. To show that X is the pseudo inverse
of A, it is enough to prove that X satisfies (6.3)—(6.6). We have

AXA=A(AA) " A*A = (AA7) ((AH'A") A=A

and
XAX = ((A*A)"'A%) A(A*A) 7' A*
— ((A*A)—IA*) (AA—I) ((A*)—IA*)
= (A*A) ' A* =X
Also

(XA = ((A"A)'A*A) =1 = (A"A)'A"A = XA

Thus AT = (A*A)~! A*.

This result has significant role in solving least square problems, which will be
discussed later in this chapter. Let us consider an example first.

13]
Example 6.24 Consider the matrix A = [ 3 1 | from Example 6.19. Clearly A has
22

rank 2. Then by Theorem 6.22, we have

b el ge_ L[ 14 —10][132]_ 1 [-2 41
A_(AA) A_%[—IO 14 |[312] 124 —21

which we have obtained in Example 6.23. Thus, if the matrix A has full column rank,
we can compute the psuedo inverse easily using Theorem 6.22.

Remark 6.4 If Aisanm x nmatrix withm > n and Rank(A) = n, then the pseudo
inverse of A is
AT = (A*A)'A*

and if A is anm x n matrix with m < n and Rank(A) = m, then the pseudo inverse
of A is
AT = A*(AAD™!
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Im(A)

y

Fig. 6.1 Consistent system

Fig. 6.2 Inconsistent system

Theorem 6.23 Consider the system of Ilinear equations Ax =b, where
A e M, ,(K) and b € K. IfXx = A'b, then the following statements are true.

(i) If the system is consistent, then X is the unique solution of the system having
minimum norm (Fig. 6.1).

(ii) Ifthe system is inconsistent, then X is the unique best approximation of a solution
having minimum norm (Fig.6.2).

Proof (i) If the system is consistent b lies in the column space of A.
We have seen in (6.2) that, if the system is consistent then x = Xb is a solution
for Ax = b, where X is any generalized inverse of A. Thus ¥ = A'b is a solution
of Ax = b. We have to show that ||X|| < ||)2 H for any solution of Ax = b. Now
suppose that X is a solution of the given system. Then

ATAx = ATh =%

By Theorem 6.20, we can say that X is the orthogonal projection of X to the
column space of A. Then by Theorem 5.13, we have || x| < H)? ||

(ii) Suppose that the system is inconsistent. By Theorem 6.20, AX = AATb is the
orthogonal projection of b to the column space of A. Then by Theorem 5.13,
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then the image of x is the vector in Im(A) “closest” to b. That is, x is the best
approximation of a solution of Ax = b.

To prove the uniqueness part, suppose that there exists a vector x € K" with
AX = A% = b. Then,

ATh = ATAx = ATAATh = ATh = %

That is, both x and X are two independent solutions of the system Ax = b with
% = ATb. Then by part (i), |X|| < ||)?||
Example 6.25 Consider the system of equations,

2x1+x—x3=1
dx1 +2x, —2x —3=2 (6.8)

21-1

The system can be converted into the form Ax = b, where A = |: 42 -2

i|andb=

1 o .
L We can observe the system has an infinite number of solutions. Suppose we
want to find the solution of the system (6.8) with minimum norm. Here,

By Theorem 6.23, we can say that

x=ATb=

[
|._.
—_
|
I\JN
| —
[N
| I
I
|
I =
—_

30

is the required solution.

Now, suppose that b is changed to b = |:1

3i|. Then the system Ax = b is incon-

sistent. Here,

2 4 14
-1 1
x=ATh==—1|1 2 M:- 7

30| 4, 30 | 4

is not a solution of the system, but it is the best approximation to a solution and
having minimum norm.
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Least Square Problems

A researcher is collecting data on marine food exports from India to Europe
over a particular period. Given n points, suppose that the data is of the form
(x1, ¥1), (x2, ¥2), ..., (x5, ¥,) and he/she wants to represent the data using a curve.
Suppose the data are plotted as points on a plane, as shown in the figure below.

From this plot, suppose that the researcher feels a linear relation exists between x;s
and y/s. Thatis, there may existaline, say y = ax + b, that fits the data appropriately,
or we may be able to find a line that represents the data with less error. As we can
observe from Fig. 6.3, the distance from (x;, y;) to (x;, ax; + b) is |y; — ax; — b|,
which is the error between the actual output and the computed output. The sum of
squares of the errors for the entire data is

e=i(yi—ax,-—b)2

i=1

As € depends on a and b, a necessary condition for € to be minimum is

de = 23 xi(yi—ax; —b) =0

il (6.9)
g—; =—2;(y,' — ax; —b) =0
This implies that
ainz—f—be; = X
i;l i=1 m i=1 (610)

aY xi+bm=>y

i=1 i=1

Fig. 6.3 fitting the data
points on a straight line

3

(xl’)":l)
/ (Xi»vi) (Xi> i)

\
[4

I
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These equations are called normal equations corresponding to our problem. Observe
that (6.10) can be written in the compact form

inz Zx,- g in)’i
1711 i=1 |:bi| — l=”11 (611)
dxi m Zlyi

i=1 i=

We solve this system for a and b which will provide the straight line which has least
deviation from the given data.

Example 6.26 Let the data collected be (1, 4), (2,4), (3,5), (4,6) and (5, 7). To
obtain the normal equations consider the following table.

Tabular representation of data to obtain normal equations

S}

Xi Vi Xi Vi X;

1 4 4 1

2 4 8 4

3 5 15 9

4 6 24 16

5 7 35 25

5 5 5 5
Sxi=15 Yyi=15 3 xiyi =86 Y x2=55
i=1 i=1 i=1 i=1

Then the normal equations are

(6.12)
15a + 5b = 26

{55a +15b = 86
Solving (6.12), we get a = 0.8 and b = 2.8. Thus the line y = 0.8x 4 2.8 best fits
the given data. Also, we can compute the error, € = 0.4.

We can also get the least square solution by using the Moore—Penrose inverse
method. Our aim was to fitthe data (x1, y1), (x2, y2), ... (X, y,) toaliney = ax + b.
Then, the data must satisfy the following equations:

y1=ax; +b
y2=ax+b
Yo =ax, +b

This can be written in the form Ax = y, where
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x 1 n

le a Y2
a7 =l

x, 1 Yn

We know that if the number of unknowns is less than the number of equations, the
system is overdetermined. Thus we will be finding an approximate solution in such
cases. First, let us multiply both sides of the equation Ax = y by A”. Then, we have

(ATAx = ATy

As x/s are all different Rank(A" A) = 2 by Sylvester’s Inequality and hence A” A
is invertible. Hence we have the approximate solution ¥ = (AT A)~'ATy. From the
previous section, we know that (A7 A)~! A is the Moore—Penrose inverse of A. Con-
sider the following example.

Example 6.27 Consider the data given in Example 6.26. Then

11 4
21 4
A= |31 andy=|5
41 6
51 7
Now,
11
21
12345 5515
a2
11111 41 15 5
51
and |
T r_Les =150 _ 111 -3
(A A) 50 [—15 55 } 10 [—3 11
Therefore

. [a]_ 11 =3][12345
YSle| T 1031111111

It follows that the line y = 0.8x + 2.8 best fits the data as we have seen in
Example 6.26. This line is called as the least square line.

BN o) RN, T S N
|
5#
[\o)
2
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Observe that (AT A)x = ATy is nothing but the compact form of normal equations
as given in Eq. (6.11). Also, observe that € = Z (yi —ax; — b)2 =|y— AxII2

This method also can be used to fit the data to a polynomial of degree k <n — 1,
ie., p(x) =ag+ax + - -- + arx*. Suppose we need to fit the data to a quadratic
polynomial p(x) = ap + a;x + a>x? (i.e., k = 2). Then, the sum of the squared error

€ is given by

e=Y (yi—p))
i=1

and the coefficients ag, a; and a, that minimize the sum of the squared error can be
obtained by solving the time equations

de de o€
— =0, — =0, — =0

)

861() 7 8a1 8a2

This gives rise to the normal equations:

am+ayy i xi+ay ., xi2 =Yy

a0 Yoiy X+ a Yo X a Y ) = 0 iy (6.13)
n 2 n 3 n 4 __ n 2

Ao Y iy Xitar iy x; Fan Y X=Xy

and in the matrix form

Mz
=
Mz
2,
NE

Il
-
Il
-
Il
-

m
m m ) m 3 ap m
Yoxi o xi x| fa| = X xvi (6.14)
i=1 =1 =1 a i=1
m ) m 3 m . 2 m
DIEADIEADIE > Xty
i=1 i=1 i=1 i=1
1 x; x3
which can be solved for ag,a; and a;. Let A= |1 x, x% . Again, observe that
2
1 x3 x3

(AT A)x = ATy is the normal equations given by (6.14) and the least square solution
is given by the Moore—Penrose inverse as

X = (ATA)—IATy — ATy

Let us generalize the ideas we have discussed so far with the following theorem.
Given an m x n matrix A, we can find x € R” such that |y — AX|| < ||y — Ax]|| for
all x € R". We can use this method to find a polynomial of degree at mostk < n — 1,
for any positive integer k that best fits the data.
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Theorem 6.24 Let A € M, (R),m > n and y € R". Then there exists x € R"
such that (ATA) X =ATyand|y — AX|| < |y — Ax| forall x € R". Furthermore,

if Rank(A) = n, then & = (AT A) ™' ATy,

Proof Let W = {Ax | x € R"}. Clearly, W is a subspace of R”. Then by Theorem
5.13, there exists a unique vector w € W, with ||y —w|| < ||y —w| forallw € W.
Asw € W,w = Ax for some x € R”. Call this vector x as our x. Then ||y — Ax|| <
ly — Ax|| for all x € R".

To find X, we have y — A¥ € Wt sothat (Ax, y — AX) = (x, AT(y — AX)) =0
for all x € R". This implies that, A7 (y — A%) = 0 and hence ATy = AT AX. Then,
if Rank(A) = n, we have X = (ATA)71 ATy.

Remark 6.5 Consider the system Ax = y, where y € R™, Aisareal m X n matrix
withm > nand Rank(A) < n.Then the given system has infintely many least square
solutions.

Now, suppose that we need to fit the data

©1,y1), 02, ¥2), ..., On, Y1)

to a trigonometric curve, say y = asin 6 4 bcos 6. Can we convert this to a least
square problem? Yes, we can!! Observe that, if we take

sin 0; cos 6, Y1

sin 6, cos 6, a 2

A= . ,x=|::|,andy= .
: b :

sin 6, cos 6, Yn

we can convert the problem to the form Ax = y and solve it for x to obtain the
desired trigonometric curve that best fit the given data. Another situation where
the least square problem comes handy is when we have to fit a data of the form

(c} x3,x3), (¢, x3,x3), ..., (x7, x5, x¥) toaplane x3 = a + bx; + cx,. Here also,
if we take
1 x| x) o
1 x7 x3 a 3
A=|. ,x=|b|,andy = | "3
ix{’ x5 ‘ s

we can convert the problem to the form Ax = y and solve it for x to obtain the
plane that best fits the given data. Due to their effectiveness in handling challenging
data fitting and optimization problems, these adaptable approaches have applications
across a wide range of fields.
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6.7 Iterative Methods for System of Linear Equations

There are two approaches to solving systems of linear equations: direct meth-
ods and iterative methods. Direct approaches like Gauss elimination method, LU -
decomposition method, etc. seek an exact solution in a finite number of steps, with
guaranteed convergence. They are computationally demanding, especially for large
systems, and necessitate a huge amount of memory. Iterative approaches, on the
other hand, begin with an initial guess and repeatedly refine the solution, providing
computational efficiency and lower memory requirements for big and sparse systems.
Iterative approaches, on the other hand, provide approximate solutions that may need
various numbers of iterations to achieve a desired degree of precision, making them
ideal in situations when exact solutions are not required and computational resources
are limited. Consider an equation of the form:

Ax=b (6.15)

where A = [a;;] is n x n matrix and b is an n x 1 matrix. First we will write A =
M — N, where M is an invertible matrix. Then, (6.15) becomes of the form;

Mx =Nx+b
As M is invertible, we can write it as
x=M'Nx+b)=M'Nx+M'b (6.16)
Let us define a function 7 : R*" — R” by
T(x)=M 'Nx+M'b (6.17)

If there exists an element x¢ € R” with T (xg) = xo, then we can observe that xy is a
solution for the system (6.15). For,

T (x9) = xo =>M71NX()+M71b=)C()
= Nxog+b=Mx,
= (M—-N)xo=b= Axg=b>b

Thus we can conclude that any element in R” which is mapped onto itself by 7T is a
solution to the system (6.15). Such elements are called fixed points of T in R". Now,
let us define fixed points of functions defined on arbitrary sets. Let X be a given set
and f be any function defined from X to itself. Then fixed points of f are points
in X that remains unchanged under the action of f. We have the following formal
definition.
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Definition 6.12 (Fixed Point) A fixed point of a function f : X — X is a point
x € X which is mapped onto itself. That is, f(x) = x.

Example 6.28 Consider fi, f> : R — R defined by fi;(x) = —x and fo(x) = x +
1. Then f; has exactly one fixed point, which is 0. For,

fix)=x=2x=—-x=>2x=0=>x=0

Clearly, f> has no fixed points as it translates any number on the real line to one unit
right of it.

Example 6.29 Let V be any vector space and T : V — V be any linear transfor-
mation. Then the zero element in V is a fixed point for 7.

Example 6.30 Let T, 7> : R> — R?> be defined by 7T)(x;,x;) = (x;,0) and
T>(x1, x2) = (x2, x1). Then all the points on the x-axis are fixed points for 77 and all
the points on the line y = x are fixed points for 75.

Now, consider the system (6.15) and function 7 as defined in (6.17). We have
seen that a fixed point of T is a solution for the system (6.15). The essential question
now is whether we can guarantee the existence of such an element for the function
T. Will it be unique if it exists? We can guarantee the existence of fixed points for
functions having certain characteristics. In this section, we will be focusing on the
existence of one particular class of functions called “contractions”.

Definition 6.13 (Contraction) Let (X, ||.||) be anormed space. A function f : X —
X is said to be a contraction on X if there exists a positive real number o < 1 such
that

IfC) = fDI=ellx =yl

In other words, the distance between any two points in the domain will always
be greater than the distance between their respective images, that is, a contraction
brings points closer together. Consider the following example.

Example 6.31 Consider the normed space (R, ||.||o). Define f; : R — Rby fi(x) =
%x. Then f is a contraction with o = % For,

1 1 1 1
1A = finll = ‘Ex - Ey’ = Elx —yl= 3 llx =yl
Now, define f, : R — R by fo(x) = x. Is f, a contraction? Does there exists a
positive real number o with o < 1 such that [x — y| < a|x — y|? Clearly, such an «
with 0 < o < 1 does not exists. Thus f> is not a contraction.
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Example 6.32 Consider the metric space ([—1, 1], [|.|lp). Define f :[—1, 1] —
[—1, 1] defined by f(x) = cos x. By Mean-Value Theorem?, there exists a point
p € (—1,1) with

lcos x — cos y| = |sin pllx —y|, Vx,y € [-1, 1]

As the sine function does not achieve its maximum value(which is 1) in this interval,
we have |cos x —cos y| < |x —y|, Vx,y € [—1, 1]. Thus f is a contraction on
[—1, 1]. What if we change the domain to R?

We will now prove one of the fundamental results in mathematics that provides
the conditions under which a contraction mapping from a normed space to itself has
a unique fixed point.

Banach Contraction Principle

Banach contraction principle is a crucial mathematical result that guarantees the
existence of a fixed point for contraction mapping defined on a Banach space. Essen-
tially, it provides a powerful mathematical instrument for establishing the existence
and uniqueness of solutions in a variety of contexts, including optimization prob-
lems, differential equations, and iterative numerical approaches. The importance of
this theorem stems from its broad applicability across mathematics as well as its
function in illustrating the convergence of iterative algorithms in solving real-world
issues.

Theorem 6.25 (Banach Contraction Principle) Let (X, ||.||) be a Banach space and
f : X — X be a contraction on X. Then f has exactly one fixed point.

Proof We will start the proof by defining a Cauchy sequence {x,} in X using the
function f. As X is complete {x, } will converge to a point x € X. We will show that
x is the unique fixed point for f in X. Choose an xo € X and define

Xn+1 = f(xn)a n=123,...

First we will show that this sequence is Cauchy. As f is a contraction, we have

2 Mean-Value Theorem: Suppose f : [a, b] — R be a continuous function on [a, b] and that f
has a derivative in the open interval (a, b). Then there exists atleast one point ¢ € (a, b) such that
f(b) — f(a) = f'(c)(b — a), where f’ denotes the derivative of f.
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”xm-H - xm” = ”f(xm) - f(xm—l)” <o ”xm — Xm—1 ”
<ol fxp—1) — fxn-2)ll

2
<o lxp—1 — xp—2ll

< o™ |lx; — xol

By Triangle inequality and summation formula for geometric series, for n > m we
have

1% — Xpll < X — Xt Il + X1 — Xpg2ll + -+ + 1 x0—1 — x|l

< (" 4+ o) llx — xoll

1 — " m
=" ——— |lx; — xoll
l—«o

n—m

As « is a positive real number with @ < 1, we have 1 — « < 1 and hence for all

n>m
m

llx1 = xoll
—

lxm — x,l < 1

Since 0 < o < 1 and ||x; — xo]| is fixed if we choose m sufficiently large, we can
make ||x,, — x,|| as small as possible. Thus {x,} is Cauchy and as X is complete
X, > x € X.

Now, we will show that x is a fixed point of f. By Triangle Inequality, we have

lx — FOONI < llx = x,l + llxp, — fF O]
= [|x — xpll + I f (xa1) — FOl

< llx = xull + o llxp—1 — x|

As x,, — x we can make this distance as small as possible by choosing m as suffi-
ciently large. Thus ||x — f(x)|| = 0 and hence we can conclude that f(x) = x. That
is, x is a fixed point of f.

Now we will prove that x is the only fixed point of x. Suppose that there exists
another fixed point for f in X, say x. That is, we have f(X) = X. Then

lx =Xl =11/ () = fOIl = e llx — x|l

and this implies ||x — X|| = 0. Thus x = X and hence f has exactly one fixed point.

Graphically identifying fixed points of a function requires identifying the points
on the graph where the function intersects the line y = x. We have seen examples for
contractions on complete metric spaces in Example 6.31 and Example 6.32. Then
by Banach Fixed Point Theorem, we can say that both these functions have exactly
one fixed point and it can be visualized as follows (Fig. 6.4).
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2

(a) b)

Fig. 6.4 Observe that the line y = x(represented by the dotted line) touches the graph of (a) f (x) =
%x and f(x) = cos x exactly once in their respective domains as mentioned in Examples 6.31 and
6.32

Table 6.1 Fixed-point

iteration for f(x) = cos(x) Iteration (n) Approximation (x,)
with xo = 0.7 0 0.7

1 0.7648

2 0.7215

3 0.7508

16 0.7392

17 0.7390

18 0.7391

19 0.7391

We can clearly identify x = 0 is the unique fixed point for f(x) = %x. Now let
us find the fixed point of f(x) = cos x using fixed point iteration method. Consider
the following example.

Example 6.33 Consider f : [—1, 1] — [—1, 1] defined by f(x) = cos x as given
in Example 6.32. Choose xo = 0.7(an initial approximation can be identified from
the Figure 6.4(b)). Now, define x,+| = cos x,, (Table6.1).

Proceeding like this, we can approximate the fixed point of f(x) = cos x as x &
0.739 after a certain number of iterations. The more the number of iterations, the
less will be the error associated with it. Keep in mind that any initial point will give
us the fixed point, however, the number of iterations required may vary.

Remark 6.6 To prove the Banach contraction principle, we use only the properties
of distance notion on X provided by the infinity norm, but we do not use any properties
of vector space structure of X. We can prove that this result is valid in a complete
metric space also. That is, if (X, d) is a complete metric space and f : X — X isa
contraction on X, then f has exactly one fixed point.
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Gauss—-Jacobi Method and Gauss—Siedel Method

The Banach contraction principle plays a vital role in iterative algorithms for solving
systems of linear equations, such as the Gauss—Jacobi and Gauss—Seidel methods.
These methods reduce a complex problem to a series of simpler ones, with each
iteration attempting to get the solution closer to the actual solution. The Banach
contraction principle establishes a theoretical basis for their convergence by ensuring
that, under specific conditions, the iterations converge to a single fixed point that
corresponds to the solution of the original problem. This theorem guarantees that,
when used correctly, iterative approaches will produce accurate solutions for linear
systems.

Theorem 6.26 Consider the system

x=Cx+b (6.18)
of n linear equations in n unknowns, say xi, X2, ..., x,. Here C = [Cij]nxn’ X =
X1 I;l
and b = . | is a fixed vector. If C satisfies
X by
Z|c,~j| <1, Vi=1,2,...,n (6.19)
j=1

the system (6.18) has exactly one solution and this can be obtained by the iterative
scheme

X" =Cx™ +b (6.20)

0

where x° is arbitrary.

X1

.....

Xn
is an elements in R”. Then (R”, ||.||,,) is a complete metric space(Verify!). Define
T:R" — R" by

y=Tx)=Cx+b 6.21)
Y1 ;
wherey = | : | e R".Thenfori =1,2,...,n,wehavey;, = > CijXj +l;i.Take
i=1
Vi !
wi 21
w=|: |,z=|: | € R" with Tw = z. Now,
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Y =2l = 1T (X)) = TW)lleo =

|
=
)
b
3
=
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Il

=

o

bel

™
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<
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=
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|

<
0
~

IA
=
o
=
)
8
jov)
b
=

.....

Then by (6.19), we have
I17(x) = TW)lloo < llx = wlleo

Thus T is a contraction on R". Then by Banach contraction principle, T has exactly
one fixed point.

Observe that the condition (6.19) which helped us in proving that 7 is a con-
traction is useful only when we are using the infinity norm on R". What if we use
another metric? (Think!) Now we will discuss Gauss—Jacobi method and Gauss—
Siedel method which are popular iterative techniques for solving systems of linear
equations. First, we will discuss the Gauss—Jacobi method named after the German
mathematicians Johann Carl Friedrich Gauss (1777—-1855) and Carl Gustav Jacob
Jacobi (1804-1851).

X1
Theorem 6.27 (Gauss-Jacobi Iteration) Letx = | . | denote an approximate solu-

Xn

tion for (6.15). If

n

> laijl < laiil (6.22)

J=1j#i

foralli = 1,2,...,n, then the iteration method defined by

l n
= — b= Y ayxl (6.23)

i j=1i#i
converges to X.
Proof Consider the system (6.15). Write A = L + D + U, where L and U are the

strict lower and upper triangular part of A and D is the diagonal part of A. Then, we
can write (6.15) in the form (6.18), where
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|_
|- o
o

B

0 apn ...y,

1 ap " ann 0 ... dyy
C=-D'(L+U)=

0 0 1 ayl Ay . .. 0

and .
ar 0...0 b,
0-L...0|],
~ 22 2
b=D""b= . ,
00 i L|LP
Then¢;; =0foralli =1,2,...,nand ¢;; = Z—’ otherwise. As Y la;;| < |ai]
! J=L#
foralli =1, 2,...,nwehave Zlc,ﬂ < 1Vi =1,2,...,n.Then, by Theorem 6.26,
j=1

the iteration scheme converges.

A matrix A = [a;;] satisfying condition (6.24) is called strictly diagonally dom-
inant matrix. Thus, if the matrix A is strictly diagonally dominant, then we can say
that the Gauss—Jacobi iteration scheme converges.

Example 6.34 Consider the system,

412 x -1
151 X2 | = 5
214 | x3 3
Let us solve this system using Gauss—Jacobi iteration method with initial condition
412
x1 = xp = x3 = 0. Clearly, the matrix A = | 1 5 1 | is strictly diagonally dominant.
214
Now,
1 _1
1 01 IR
C=-D" (L+U)=|—-3 —3
_i —L
2 74
and | X
i 1 10071 ~3
b=D"'b=|010||5|=|1
1 3
00y 3 3
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Table 6.2 The table contains m X
the first 10 iterations of the -
Gauss—Jacobi iteration 0 (0,0,0)
method. Clearly, at each step 1 (—0.25,1,0.75)
the solution approaches the 2 (—0.875, 0.9, 0.625)
actual solution (—1, 1, 1) 3 (—0.7875. 1.05. 0.9625)
4 (—0.9938, 0.965, 0.8812)
5 (—0.9319, 1.0225, 1.0056)
6 (—1.0084, 0.9852, 0.9603)
7 (—0.9765, 1.0096, 1.0079)
8 (—1.0064, 0.9937, 0.9858)
9 (—0.9913, 1.0041, 1.0048)
10 (—1.0034, 0.9973, 0.9946)
Table 6.3 The table contains m X
the first 7 iterations of the =
Gauss—Siedel iteration 0 (0,0,0)
method. Observe that these 1 (—0.25, 1.05, 0.6125)
iterates approaches to 2 (—0.8188, 1.0412, 0.8991)
(—1, 1, 1) faster than the 3 (~0.9598, 1.0122, 0.9769)
Gauss—Jacobi iterates
4 (—0.9915, 1.0029, 0.995)
5 (—0.9982, 1.0006, 0.999)
6 (—0.9996, 1.0001, 0.9998)
7 (=0.9999, 1, 1)
Then the Gauss—Jacobi iteration scheme is given by,
1 1 1
N i I
Xm+ = —§ 0 — 3 x" + 1
1 3
—2-3 0 i

Observe that in Gauss—Jacobi iteration method the values of the variables are
updated simultaneously using the values of the previous iterations. However, in
Gauss—Siedel iteration method, the values of the variables are updated one at a
time using updated values within the same iteration. This method is named after
the German mathematicians Johann Carl Friedrich Gauss (1777-1855) and Philipp
Ludwig von Seidel (1821-1896) (Tables6.2 and 6.3).

X1

Theorem 6.28 (Gauss—SiedelIteration) Letx = | . | denote an approximate solu-

Xn

tion for (6.15). If
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Z laij| < laiil (6.24)
j=Lj#i
foralli =1,2,...,n, then the iteration method defined by
1 i—1 n
)Cl-m+l = a_ bi — Zaijx;'”'l - Z a,-jx;” (625)
" j=1 j=i+1

converges to Xx.

The proof this theorem is similar to the proof of Theorem 6.27. Here, we take
C=—(L+D)'Uandb = (L+ D) 'b.
Example 6.35 Consider the system Ax = b as given in Example 6.34. Then, Now,

L
210
8

i

C=—L+D7'U=

|
|“5|~M|~

(==l

I
<)

and

b=L+D)'U=|2

6.8 Exercises

1. Let V, W be normed spaces and T : V — W be a linear operator. Show that if
T is continuous at one point, then it is continuous.
2. FixA = [a,j] € M, x,.Define T : R — R™ by T'(v) = Av.Show that | Tv|| <

MV, where 1 = ST S a2

3. Check whether the following statements are true or false.

(a) Let V, W be normed spaces and T : V — W be a bounded linear operator.
Then v, — vin V implies that T (v,) — T (v).

(b) Let V be an inner product space over C, then the set of all self-adjoint
operators on V forms a subspace of B(V)

(c) Let T be a linear operator on R3 such that there is a basis of R? consisting
of eigenvectors of T, then T is self-adjoint.

(d) Let T be a self-adjoint operator on a finite-dimensional inner product space
over R. Then the matrix representation of 7 with respect to any basis is
symmetric.

(e) Let Ty, T, be two positive operators on a Hilbert space H. Then T,7; is
positive.
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10.

11.

12.

13.

14.

15.

16.
17.
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(f) Let T be a linear map on a Hilbert space H with T2 = T. Then T is self-
adjoint.

Let V, W be normed spacesand T : V — W be a bounded linear operator. Then

(a) Show that N(T) is closed.
(b) Give an example to show that R(7T") need not necessarily be closed.

. If W is a Banach space, show that 8(V, W) with operator norm is also a Banach

space.
LetU, V, W benormed linearspacesand 7} : U — V, T, : V. — W bebounded
linear maps. Then show that 7,7} : U — W is a bounded linear map and
1T < 120 T3l

. Let H be a Hilbert space and T be a bounded linear map on H. Then show that

N(T) = [R(T*)]* and N(T*) = [R(T)]*

. Let V and W be normed linear spaces and 7 : V — W be a linear operator.

Then show that there exists « > O such that |Tv| > « ||v||, Vv € V if and only
if T is injective. Also show that 7~! : R(T) — V is continuous and ]|T“w” <
Liwl vw e R(T).

Let H be aHilbertspaceand T : H — H be abounded linear map whose inverse
is bounded. Show that (T*)~' = (T~1)".

Does there exists a self-adjoint linear operator T on R? with T(1,0, 1) =
0,0,0)and T(1,2,0) = (2,4, 0)?

If T is a bounded self-adjoint linear operator on a complex Hilbert space H, then
show that the 72 cannot have a negative eigenvalue. Which theorem on matrices
does this generalize to?

Let H be a Hilbert space and P : H — H be a bounded linear map. Then P is
an orthogonal projection if and only if P2 = P and P is self-adjoint.

Let T : > — [? be defined by (Tx), = x,_;, where, x = {x,,} € I>. Then show
that 7 is unitary but not self-adjoint.

Let T : C*> — C? be defined by T'(z1, z2) = (Az1, uz2), where A, u € C. Then
show that

(a) T is normal.
(b) T is self-adjoint if and only if A and u are real numbers.
(¢) T is unitary and only if |A| = |u| = 1.

LetT : R" — R"bedefinedby 7 (v) = > [_; A;(v, ¢;)e;, where {e1, €2, ..., €}
is an orthonormal basis for R” and Ay, A5, ..., A, € R are some fixed scalars.
Then show that

(a) T is normal.
(b) T is self-adjoint.
(c) T isunitary and only if &; = 1 or —1.

Does there exists a linear map 7 with TT* = [ but T*T # I?
Let T be a linear map on a Hilbert space H which is normal. If 72> = T, then
show that T is self-adjoint.
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20.

21.

22.

23.

24.

25.

26.

27.

28.
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Let T be a normal operator on a finite-dimensional inner product space V. Show
that if B is an orthonormal basis for V, T'(B) is also an orthonormal basis for V.
Let H be a complex Hilbert space and T be a bounded linear operator on H.
Then show that there exists unique operators 77, T, on H suchthatT = T} + i T>.
Also, show that:

(a) T isnormal if and only if T T, = T»T;.
(b) T is self-adjoint if and only if 7, = 0.
(c) T isunitary and only if 7,75, = T,T; and le + T22 =1.

Find the singular value decomposition of the following matrices

-3 1 1 =10
a) |:§_05] b) [;;_22] o6 -2 |0 1 —1

6 -2 -1 0 1
Show that A € M, (R maps the 2-norm unit sphere in R” to an ellipsoid in
R", where r < min{m, n}.
Show that if A is a positive semi-definite matrix, then the singular values of A
are the eigenvalues of A.
Let A be a positive definite matrix with singular value decomposition A =
WY d*. Then show that ¥ = ®.
Let A € M,,»(R) be a fixed matrix. Show that (i, v) = u” Av defines an inner
product on R? if and only if A is positive definite.
Let A € M, (R) be a matrix with rank ». Then show that

(a) (Full-Rank factorization) There exists an m x r matrix P with full column
rank and r x n matrix Q with full row rank such that A = P Q.
(b) AT = Q*(P*AQ*)P*, where P and Q are as described in part (a).

Find the Psuedo inverse of each of the following matrices.

12 110 -1

(a) |} }_}] b)| 21 (©) B _22 ﬂ @[o0o1-10
—-12 -101 1

Show that for every matrix A:
@ @ANT=A ) (A9 =(@AH* (A" =@AH’
Also, give example to show that for matrices A and B with AB defined, (AB)T
need not be equal to BTAT.
For each of the following system of equations; if the system is consistent, find
the solution with minimum norm, otherwise, find the best approximation to a
solution having minimum norm

(a)
2x1 +3xy —x3+2x4 =5

X1+X2~|—2X3—2.X4=7

Ax1 4+ S5x0 +3x3 — 2x4 = 12
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29.

30.

31.

32.

33.

(b)
X1+ 3x=2

2xX1+x2 =5

X1—2X2=3

Suppose that a manufacturing company produces circular-shaped products. The
company wants to ensure that the manufactured items match industrial require-
ments, therefore it employs sensors to capture the coordinates of numerous points
on the perimeter of the manufacturing goods. Suppose we have the measured
data

((xlv )’I)a (XZv yz)v MR} (-xrh )’n)

where n > 4, with respect to any manufactured product of the company. We
would like to fit a circle of the form

x—a}+ @y -b*=r’

to the observed data (x;, y;),i = 1,2,...,n. Model this situation to a linear
least square problem of the form Ax = y.
Fit a straight line to the given points by the method of least squares.

(@ (1,2),(2,5),3,3),(4,8), 5,7
(b) (_11 O)s (07 2)» (19 4)! (29 5)
(©) (0,12), (1,19), (2,29), (3,37), (4,45)

Find a plane x3 = a + bx;| + cx;, that best fits the following data;
(1,-1,3),(2,-4,5), (3, 8,10), (2,8, 12), (1, 6, 10)

Find a trigonometric curve y = asin 6 4+ bcos 0, which best fits the points
@, yi),i =1,2,3,4 as given below.

(2 GG ()

Ohm’s law states that the voltage across a conductor is directly proportional to
the current flowing through it, provided all physical conditions and temperature,
remain constant. Mathematically, this relation is represented by V = I R, where
V is the voltage across the conductor, / is the current flowing through the con-
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34.

35.

36.

37.

38.

39.
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ductor and R is the resistance provided by the conductor to the flow of current.
Estimate R from the given data using least square approximation method.

1 \4

3 162
5 255
7 360
10 495

Let (X, d) be a metric space and f : X — X be a contraction. Show that f is a
continuous function.
Find the fixed points for the following functions.

(@) f:R — Rdefined by f(x) = x°.
(b) f:R?> — R?defined by f(x,y) = (x, x?).
(c) T :R?*> — R?defined by T (x, y) = (x, —y).

Using Banach fixed point theorem, show that the equation x> + x> — 6x + 1 =0
has a unique solution in the interval [—1, 1].
(Newton-Raphson Method) Let f : [a, b] — R be a twice continuously differ-
entiable function and let X be a simple zero of f in (a, b). Show that the iteration
defined by

fx)

()

Xn+1 = g(xn)v g(xn) = Xn

is a contraction on some neighborhood of X and it converges to X.
Show that if in Theorem 6.26 if we use d; metric or d, metric instead of d,
metric, then we obtain the sufficient conditions given by

n

Z|Cij| <1, Vj=12,...n

i=l1

and
n n

ZZC% <1,Vj=12,...n

i=1 j=1

respectively, for convergence of the iterative scheme (6.20).
Consider the integral equations of the form

b
£ =2 / k(6 v) F )y + g(x) 6.26)

where f : [a, b] — Risanunknown function, k : [a, b] x [a, b] — Risagiven
function with |k(x, y)| < « for all (x, y) € [a, b] X [a, b] and A is a parameter.
Consider Cla, b] with supremum norm. Define T : Cla, b] — Cla, b] by
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b
(TH) = A / k(e ¥) )y + g(x)

Now, solvability of (6.26) follows from the existence of fixed point of the operator
T. Show that T is a contraction when |A| < ﬁ

40. Set up (i) Gauss—Jacobi (ii) Gauss—Siedel iterative schemes for the following
system of equations and compute the first four iterations.

612 [x 6 412 X1 -3
@ |[143]||x|=|—-4 ®)[04 2 x|=16
218 | x3 8 4510 | x3 11

Solved Questions related to this chapter are provided in Chap. 12.



Chapter 7 ®)
Applications e

This chapter explores the numerous applications of linear algebra in diverse domains,
demonstrating its tremendous impact on real-world problem-solving. Linear algebra
is used in economics to support models of supply and demand, optimize resource
allocation, analyze economic systems, etc. It facilitates the investigation of chem-
ical reactions in chemistry, which is critical for drug development and materials
science. Linear algebra is essential in Markov processes, assisting in the model-
ing of stochastic systems, predicting future states, and studying phenomena such as
population dynamics and financial markets. It is the foundation of circuit analysis
and signal processing in electrical engineering, making it easier to build electronic
systems. Furthermore, linear algebra is used in control theory to understand dynam-
ical systems and design control algorithms. These broad applications demonstrate
linear algebra’s prevalence and versatility as a foundational tool for addressing com-
plicated challenges across a wide range of scientific and engineering disciplines,
linking theory and practice. It has been shown that the general regression models can
be implemented as a problem of finding the learning weights of an artificial neural
network (ANN) with linear transfer functions.

7.1 Applications Involving System of Equations

A system of linear equations serves as a fundamental mathematical framework appli-
cable across numerous domains. These systems, consisting of multiple linear equa-
tions with common variables, are employed to model a wide array of real-world
problems. Whether in economics, engineering, physics, or social sciences, solving
systems of linear equations helps us make informed decisions, optimize processes,
and understand complex relationships. Linear algebra provides powerful techniques
for solving these systems, revealing unique solutions, infinite solutions, or incon-
sistency, depending on the underlying equations. This mathematical tool is indis-
pensable for problem-solving and decision-making in various fields, making it a
cornerstone of applied mathematics.
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R1: 49 R2:4Q

I b

Vz =16v

Fig. 7.1 Electrical circuit

Electrical Circuit Problem

Consider an electrical circuit as given in the following figure (Fig.7.1).
We have the following fundamental principles in electrical circuit theory to rep-
resent the given circuit:

e Kirchhoff’s Voltage Law—The voltage around a loop equals the sum of every
voltage drop in the same loop for any closed network and equals zero.

e Kirchhoff’s Current Law—The total current entering a junction or a node is equal
to the charge leaving the node as no charge is lost.

Using the above laws, we have the following system of equations:

L+L—-1=0
41 + I3 =8
AL+ 1 =16

This can be represented in the general form, AX = B as

11-1|1|14L 0
40 1 L|=1|28
04 1 I 16

Solving this, we get I} = 1A, I, = 3A and I3 = 4A.

Leontief Input—Qutput Models in Economics

Soviet-American economist, Wassily Wassilyevich Leontief (1905-1999) employed
matrices to simulate economic systems. His models, also known as input-output mod-
els, segment the economy into different sectors, each of which generates commodities
and services both for itself and for other sectors. Because of their interdependence,
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the total input and total output are always equal. For his contributions in this area,
he received the Nobel Prize in Economics in 1973.

Closed Leontief Model: Leontief closed model is especially useful for understanding
the relationships and dependencies within a self-contained economy. However, it
does not take into account the external factors that can have an impact on demand.
For example, consider an economy consisting of 3 industries, namely A, B and
C. Suppose that each of the industries produces for internal consumption among
themselves only. Suppose that,

e A itself consumes 40% of its product and gives 40% to B, and 20% to C.
e B itself consumes 30% of its product and gives 40% to A, and 30% to C.
e (C itself consumes 50% of its product and gives 30% to A, and 20% to B.

The above data can be represented by the following table.

Tabular representation of the data

Proportion produced by A Proportion pro- Proportion pro-

duced by B duced by C
Proportion used by A 0.4 0.4 0.3
Proportion used by B 0.4 0.3 0.2
Proportion used by C 0.2 0.3 0.5

We can observe that a matrix representation would be more convenient to represent
this data. In the matrix form, it can be written as

040403
N={04030.2
0.20.30.5

This matrix is called the input coefficient matrix. Now, suppose that A, B and C
gets paid x, y and z dollars, respectively. Let us now look at A’s expenses. A uses
up 40% of its own production, that is, of the x dollars he gets paid, A pays itself
0.40x dollars, pays 0.40y dollars to the B, and 0.30z to C. As this economy is self
contained, it can be modeled as

X 040403 |x
y|=10403021(]y (7.1)
z 0.20.30.5 z
X
Observe that, if we denote X = | y [, we can write (7.1) in the form of a homoge-
z

neous system of linear equations as follows:

X-NX=(I-N)X=0

i i -2 _ 12 _
Solving this, we get x = 5% Y = 32 and z = o, where o € R.
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Open Leontief Model: In an open economy, interactions occur not only between dif-
ferent sectors within the economy, but also with the rest of the world. This means that
imports and exports, as well as internal sector interactions, are taken into account. For
example, consider a simple economy, where there are only three sectors: Agriculture
(A), Manufacturing (M), and Services (S). Suppose that

e Agriculture (A) requires 20% of its own output, 30% of Manufacturing’s output,
and 10% of Services’ output as inputs.

e Manufacturing (M) requires 40% of Agriculture’s output, 20% of its own output,
and 20% of Services’ output as inputs.

e Services (S) requires 10% of Agriculture’s output, 30% of Manufacturing’s output,
and 40% of its own output as inputs.

Then the input coefficient matrix is,

0.20.30.1
N=[040202
0.10304

Let the final demand values be; Agriculture(A)-$30 million, Manufacturing
(M)-$50 million and Services (S)-$70 million. Denote the final demand values by
30
the vector Y = | 50 |. “Final demand” denotes the external demand for the output of
70
each sector, which originates from sources outside the modeled economy. It indicates
the entire amount of products and services that are used up outside of the sectors that
are being analyzed through consumption, investment, or other means. For example,
spending on agricultural products by consumers, businesses, and government bodies
that are not part of the Agriculture sector itself could be included in the final demand
for Agriculture.
X4
Let X = | X | represent the equilibrium outputs of the sectors in the Leontief
Xs
model. These variables represent optimum output levels for each sector that meet
both internal input-output relationships and external final demand. Then we can set
up the equations in the form as follows:

X4 0.20.30.1 X4 30
Xu|=1040202| Xy |+ 1|50 (7.2)
Xs 0.10304 X5 70

We can see that, (7.2) can be re-written in the form of a system of linear equations

as follows:
I-N)X=Y
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Then
X=U-N)Y

Solving this system of equations gives us the equilibrium outputs for each sector:

138.2353
X =1190.3361
234.8739

Some Problems in Chemistry

Now, let us give you some problems in Chemistry involving a system of linear
equations.

Example 7.1 A chemical substance is created by combining three separate con-
stituents, A, B, and C. Before they may interact to form the chemical, A, B, and C
must be dissolved in water separately. Suppose that a 2.6 g/cm® solution of A cou-
pled with a 2.7 g/cm?® solution of B combined with a 3.7 g/cm?® solution of C yields
21.2 g/cm® of the chemical. If the percentages of A, B, and C in these solutions
are altered to 2.4 g/cm?, 3.75 g/cm®, and 4 g/cm? respectively (keeping the volumes
same), 22.7 g/lem® of chemical is produced. Finally, 23.6 g/cm® of chemical is pro-
duced if the proportions are 2.75 g/cm?, 3.4 g/lem®, and 3.85 g/cm?, respectively.
Suppose that we have to find the volumes of the solutions containing A, B, and C.
How will you proceed? Again, the techniques of linear algebra come in handy. The
above scenario can be represented as,

26A+27B+37C =212
24A+43.775B +4C =227
2.75A+3.4B +3.85C =23.6

2.6 2.7 3.7
which can be converted into the form AX = B, where A = | 2.4 3.75 4 and
2.75 3.4 3.85
21.2
B = | 22.7 |. Solving, we get A =5.0403 cm?, B =2.2281 cm? and C = 0.5620cm?.
23.6

Another instance of employing a system of linear equations can be found in the
balancing of chemical equations. When considering chemical reactions, we want
to look at how much of each element was there at the start and how much of each
element is present in the end result.
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Example 7.2 Consider the combustion reaction of Isooctane(CgH;g) given by
CgHis + O, — CO; + H,O (7.3)

Carbon dioxide and water are produced as a result of the combustion of Isooctane.
Now, the question is, What exactly is a balanced chemical equation? A balanced
chemical equation is a description of a chemical reaction that indicates the relative
quantities of reactants and products involved in the reaction using chemical formulas
and symbols. The phrase “balanced” denotes that the equation follows the law of
conservation of mass, which stipulates that matter in a chemical reaction cannot be
generated or destroyed, just rearranged. For an equation to be balanced, the following
conditions must be met:

e The number of atoms of each element on the left side of the equation must be
equal to the number of atoms of the same element on the right side.
e The total mass of the reactants must be equal to the total mass of the products.

We can see that (7.3) is not balanced, for the number of carbon, hydrogen, and
oxygen atoms on the right side of the equation is not the same as the number of
carbon, hydrogen, and oxygen atoms on the left side of the equation. To balance the
equation, re-write (7.3) as

xCgHjg + yO, — zCO,; + wH,O (7.4)

Then, we have

8x =1z

18x = 2w

2y =2z+w

which implies
8x —z=0
18x — 2w =0

2y —2z—w=0

This can be written in the form of AX = B as

s0—-1071(" 0

800 —2||Y]=]0

02-2-11]]°% 0
w
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Solving, we get x = o,y = %a, z=8x and w = 9. If we take o =2, we get
y =25,z =16 and w = 18. Clearly,

2CgH;3 + 250, — 16CO, + 18H,0

is a balanced chemical equation for (7.4).

Traffic Flow

Consider a traffic network as given in the following figure. The streets are all one-
way, with arrows showing the traffic flow direction. The traffic flow in and out is
measured in units of vehicles per hour(v/ h). Let us construct a mathematical model
to analyze this network (Fig.7.2).
The traffic at junction A can be represented by x| + x, = 525. Similarly,

at junction B, x| + x4 = 375.

at junction C, x3 + x4 = 700.

at junction D, x, + x3 = 850.

s 4 ¥3
&Q b
(@] N
300v/h street 1 125v/h
A)) A xl B A))
on <t
X2
> ) C >
375v/h street 2 250v/h
5 :
[9\] S
§ 1 Te

Fig. 7.2 Traffic network
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This can be modeled into the form AX = B as

1100 | x4 525
1001 x| | 375
0011 x3 |~ | 700
0110 | x4 850
and it can be reduced into

100 1 X1 375
010 -1 x| | 150
001 1 x3 |~ | 700
000 O X4 0

Clearly, the system has an infinite number of solutions. This implies here that there
are an infinite number of possible traffic flows. There are certain options available to
drivers at intersections. As you can see, a driver has two options at junction A. Same
at other intersections as well.

This model can be used to analyze and obtain more information about the traffic
flow. Suppose Street 3 needs to undergo a mandatory road maintenance. Then, it
would be preferable if street 3 had the least amount of traffic feasible. That is, x3
must be as small as possible. The question that arises then becomes, what is the
smallest value of x3 that will not cause traffic congestion? As the streets are all one-
way, all the traffic flows should be non-negative. Now, from the reduced form, we
can see that

x3 + x4 = 700

which implies that x3 is minimum when x4 is maximum. From the first and second
equations in the reduced form, we can see that the maximum value of x4, without x;
and x; being negative, is 375. Therefore, the minimum value of x3 is 325. That is, any
road repair work on Street 3 should be done only after the appropriate arrangements
for a traffic flow of 325v/ h have been made.

7.2 Cryptography

In an increasingly interconnected digital world, providing secure communication and
data security through the use of matrices in cryptography is essential. The translation
of plain text into ciphertext and vice verse is made possible by the use of matrices,
which provide the mathematical foundation for a wide variety of encryption and
decryption procedures. Matrix-based encryption techniques, such as the Hill Cipher,
which uses matrices to describe the encryption process, and more recent algorithms
like the Advanced Encryption Standard (AES), which uses matrices to manipulate
data blocks, all significantly influence cryptographic strategies. Matrix-based codes
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Fig. 7.3 Encryption and decryption process

Table 7.1 Numbers assigned to English alphabets
A B C D E F G H I J K L
1 2 3 4 5 6 7 8 9 10 11 12 13
N (0] P Q R S T U v w X Y
14 15 16 17 18 19 20 21 22 23 24 25 26

are used in public-key cryptography to create secure key pairs, and by error detection
and correction methods to protect data integrity (Fig.7.3).

In this section, we look at a matrix multiplication and matrix inverse-based encryp-
tion technique. Lester S. Hill (1896—1961), a math professor who worked on military
encryption and lectured at various US institutions, developed this technique, which
is referred to as the Hill Algorithm. Modern mathematical theory and techniques
entered the realm of cryptography with the development of the Hill algorithm. The
Hill Algorithm is no longer regarded as a safe encryption technique because it is
extremely simple to defeat using current technology. However, contemporary com-
puting technology did not existin 1929 when it was created. With hand computations,
this procedure was too time-consuming to employ but is simple to use with today’s
technology. The secret message is first encoded by randomly assigning a number to
each letter, creating an integer string. Let’s encrypt the phrase “LINEAR ALGEBRA”
by allocating a position number to each letter of the alphabet. A space is represented
by the number 27, and punctuation is ignored (Table 7.1).

We divide the message’s letters into two-letter groups as follows:

LI NE AR _A LG BE RA

We assign the numbers from the above table to these letters and turn each pair of
numbers into 2 x 1 matrices.
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So, at this point, our message is expressed using 2 x 1 matrices as follows:

12 14 1 27 121 |5 18
ST TR oo
The next step is to multiply this string of numbers by an inverse square matrix of
our choice in order to create a new set of numbers. The coded message is represented

by this new set of digits. In this, let us consider the matrix ﬁ g] Then, our first pair

[§:| will be represented by

I

Multiplying each 2 x 1 message in (7.5), our message can be encrypted as follows,

69 53 92 59 59 20| |41 (7.6)

39071297 |55(7 |30 |33 |11]| |21 )
To convert them into the alphabet form, we have to use the mod(27) arithmetic.
Then, the matrices in (7.6), will be of the form

BB o

and the encoded message is “QMACNCGDGGTKOU”. The matrix 5j| is the key

2
13
to this encoded message. Let us decode this message. For decoding, we will use the

1 _25 . Let us multiply each 2 x 1 matrix in
(7.7) by the inverse of the key matrix. Then, we obtain the following matrices,

MBI LB o

Applying mod (27) arithmetic on (7.8), we will get back our original message(verify).
Also, try to encode this message using a 3 x 3 matrix as key and then decode it.

inverse of the key matrix, given by
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7.3 Markov Process

A Markov chain or Markov process is a stochastic model that illustrates a series
of potential occurrences where the likelihood of each event is solely determined
by the state it reached in the preceding event. Numerous real-world processes can
be statistically modeled using Markov chains, including the dynamics of animal
populations, queues or lines of passengers at airports, and cruise control systems in
automobiles. In computer science, physics, biology, economics, and finance Markov
chains are crucial tools for comprehending, describing, and forecasting occurrences.
It is named after the Russian mathematician Andrey Andreyevich Markov (1856—
1922).

Markov processes are concerned with the fixed probabilities of transitioning
between a finite number of states. We start by defining probability vector and then
probability transition matrix/stochastic matrix.

D1
Definition 7.1 A probability vector p = | : | is a vector with each component

Dn
pi > 0 and the sum of components equal to one. Thatis, > ;_, p; = 1.

Definition 7.2 A matrix M = [m ij ]n n with real entries is called a stochastic matrix
or probability transition matrix provided that each column of M is a probability
vector, where m;; denote the probability of transition from the jth state to the ith
state. As the total probability of transition from the state j to any other state is 1,
0<m;; <land ) !  m;; = 1.Thatis, each column sum of M is I.
x|
Let M = [m i j]nxn be a stochastic matrix and x¢ = | : | denote the state of the
Xy
system at time g. Assume that x¢ denote the amount of some materials spread among
n states. Then, x; denote the amount of material in ith state at time g. The transition
of material from the jth state at time O to the ith state at time 1 is given by m; jx?.
Then the total amount of material at the ith state would be the sum of the material
from all the states to state i. That is,

n
1 _ .0
X = E mijx;
Jj=1

Therefore, we have

and in general, we can write
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As the amount of material at each state i at time g depends on the amount of material
in i at the time g — 1, this can also be represented as,

x9 = MIx°

Clearly, we can observe that the total amount of material at time ¢ is the same as at
time g — 1. For,

n n

n

9 _ 471
DBEEDI DI
i=1

i=1 \ j=1

i=1

andas ) 7 m;; =1, weget )/ x/ =37 x?~", Let this amount be denoted by
«. Then the proportion of the material in the ith state at time g is given by,

X!
Pl =—
o
Then the probability vector at time q is,
pi x|
1 1
pq = . = — = —_xq
: o o
i X

Also,

1 1 1
plq = —xq e —Mx471 = M <—xq1) = Mp471
o o o

That is, the probability vectors also transform through multiplication by the matrix
M . For a stochastic matrix M, the transformation p? = Mp?~! on probability vectors
is called a Markov process. A Markov Chain is the sequence of iterates p? = M9 p®
obtained for a given initial probability vector, p°.

Example 7.3 Let’s consider an example of a Markov chain representing the weather
states, sunny,cloudy and rainy. The transition probabilities are defined as follows;

e Ifit’s sunny today, there’s a 70% chance it will be sunny tomorrow, a 20% chance
it will be cloudy, and a 10% chance it will be rainy.

e If it’s cloudy today, there’s a 50% chance it will be cloudy tomorrow, a 30%
chance it will be sunny, and a 20% chance it will be rainy.

e Ifit’s rainy today, there’s a 60% chance it will be rainy tomorrow, a 20% chance
it will be cloudy, and a 20% chance it will be sunny.
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We can represent this Markov chain with a transition probability matrix,

0.70.30.2
M={020502
0.10.20.6

1

0 [, which means that initially the weather
0

state is sunny with 100% certainty, and the probabilities of rainy and cloudy are both
zero. Then, for day 1, we have

Now, consider the initial condition x° =

0.703027[1 0.7
x'=Mx"=1020502]]0| =102
01020610 0.1

So the likelihood of a sunny day is 0.7, a cloudy day is 0.2, and a rainy day is 0.1
the following day. For day 2, we have

0.70.30.27 [0.7 0.57
X2=Mx'=1020502([02]=10.26
0.10206]|0.1 0.17
and for day 3,
0.70.30.27 [0.57 0.511
X=Mx*=1020502]|[026]|=0.278
0.10206]]0.17 0.211

proceeding like this, for day 14, we have

0.70.30.2| [ 0.4572 0.4572
x*=Mx"2=1020502|]0.2857 | = |0.2857
0.10.20.6 | [ 0.2571 0.2571
0.4572
That is, the sequence of vectors have converged to the vector | 0.2857 |. This vector
0.2571

is called the steady state vector. The steady state vector in this example indicates
the equilibrium distribution of the weather. It informs us how much of the time we
can expect the weather to be sunny, cloudy, or rainy in the long run, providing the
transition probabilities remain constant.

From the above example, we can observe that the steady state vector is the eigen-
vector corresponding to the eigenvalue 1 (Clearly, 1 is an eigenvalue of M as the
column sum of M is 1).
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Page Rank Algorithm

Page Rank is an algorithm created by Google founders Larry Page and Sergey Brin
to rank web pages in search engine results. It transformed the way search engines
give relevant and authoritative results by utilizing the structure of the web graph and
linear algebra concepts.

The internet is modeled as a directed graph in the context of Page Rank, which
is commonly referred to as the “web graph”. In the graph, web sites are represented
as nodes, while connections between pages are represented as directed edges. Each
link from page A to page B represents a vote of confidence or recommendation from
page A to page B. Page Rank simulates the behavior of a random online surfer who
navigates the web graph by clicking on hyperlinks using a Markov chain model. The
web surfer begins on a random website and, at each step, either follows a hyperlink
on the current page or, with a given chance, teleports to a random page. This random
surfer model is based on the idea that users frequently navigate across online sites by
clicking on links.A transition probability matrix is created to quantitatively depict the
unpredictable movement of the surfer. Based on the hyperlinks, this matrix depicts
the odds of navigating from one page to another. Each row of the matrix represents
a source page, while each column represents a destination page. The entries of this
matrix represent the likelihoods of transiting from the source page to each destination
page. Finding the stationary distribution of the Markov chain, which depicts the long-
term probability of the arbitrary surfer being on each web page, is the key to Page
Rank Algorithm. This stationary distribution corresponds to the Page Rank scores
of the pages. The Page Rank vector is the dominant eigenvector of the transition
probability matrix, with an eigenvalue 1.

In Summary, the Page Rank Algorithm uses linear algebra principles, namely
eigenvectors, eigenvalues, and matrix operations, to rank online sites based on their
relevance and authority within the linked web graph. This sophisticated method illus-
trates how linear algebra may be used to solve real-world challenges in information
retrieval and ranking.

7.4 Coupled Harmonic Oscillators

Let’s now give you an illustration of how eigenvalues and eigenvectors can be
employed in real-life applications. Consider an oscillator as shown in the figure
(Fig.7.4).

Two bodies of mass m are coupled by springs with spring constants k and slide on
a smooth plane. The x; and x, displacements are measured from their equilibrium
positions and are positive when to the right. Hooke’s law and Newton’s laws of motion,
when combined with these conventions, yield the differential equations given below.
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k%)k%k

X1 X2

Fig. 7.4 Coupled Harmonic oscillators

mxy = —kx; + k(x; — x1) = k(xy — 2x1)
mx>, = —k(x, — x1) — kxo = k(x; — 2x3)

)5'1 _ k -2 1 X1
52700

In this case, since there is no damping, we choose a purely oscillatory solution as we

have seen in Sect.4.1. Let .
xi(0) | _ e
x2(1) pae'™

be a solution of (7.10). Then

o iat
W= —a? |l | = —a? | (7.11)
X2 Hae X2
From (7.10) and (7.11), we have
E 21 ][x; s ks
m 1 -2 X2 - X2

k [—
Clearly, this is an eigenvalue problem Ax = Ax, where A = — |: 12 12] and
m —

(7.9)

This can be written as

A= —a’.

Now, let’s find the value of « when m = k = 1. Then, we have A = [_12 _12]

Clearly, the eigenvalues of A are —1 and —3 with respective eigenvectors v| = [i:|

and v, = [_1 i| Therefore, @2 = 1 or &> = 3 and the general solution is

1
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V3t V3t

x(t) = cyvie’ +covie ™ + c3vaeY ! + cavae”

e + e + c3eV3 4 cpeV3
creit 4+ cre~i — czeV3 — eV

7.5 Satellite Control Problem

Linear algebra is an essential building block in control theory, supporting the analysis
and design of dynamic systems for a variety of applications. It provides a strong math-
ematical framework for modeling, interpreting, and managing systems that evolve
over time. Linear algebra allows us to formulate complicated systems as matrices
and vectors using ideas such as state-space representation, matrix transformations,
and eigenvalue analysis. This, in turn, makes it easier to investigate system stabil-
ity, controllability, observability, and performance. The impact of linear algebra is
profound, whether designing control algorithms for aerospace, robotics, industrial
processes, or economic systems, as it enables control theorists to harness the elegance
of matrices and eigenvectors to unravel the intricate behavior of dynamic systems,
paving the way for sophisticated control strategies that improve stability, optimize
performance, and achieve desired outcomes. Let us give you an example. Consider
a satellite revolving around the earth. Due to various forces, a satellite injected into
orbit may slightly deviate from the predicted orbit or alter orientation. To correct the
deviation, the satellites include built-in control mechanisms in the form of thrusters
in the radial and tangential directions.

Consider a satellite of unit mass orbiting around the earth under inverse square
law field. It is convenient to choose polar coordinates, with r(¢) the radius from the
origin to the mass, and 6 (¢) the angle from x- axis. We can assume that the satellite
has thrusting capacity with radial thrust u; (¢) and tangential thrust u, () (Fig.7.5).

Then by Newton’s law, the equations of motion have the form

az "\ ar) T e T a.12)
a0 2 dodr  us(t) '

= rodidi T

With u; = u, =0, and the initial conditions r(0) = o, 7(0) =0,6(0) =0 and
1
6(0) = w, where w = (%) *, the coupled Eq.(7.12) have solutions given by

rit)=o

0(t) = ot (7.13)
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Fig. 7.5 A unit mass m in y
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If we make the following change of variables,
xi=r—0,x=rx3=0 —wt), xs =00 — )
Equation (7.12) will reduce to the form;
dxy X2
&, (x +0)(ﬂ+w)2—L+u
g : g Gty T (7.14)
b X
fﬂ _ _uo

.X_4
20 (a +CL)) (x1+a) + (x1+0)
This is a system of non-linear ordinary differential equations involving the forcing
functions (controls) u; and u,, which can be represented in compact vector notation

as follows: p
= ferw, x() € RN u() € B (7.15)

Here f is a vector with components f|, f», f3, fa given by

S1Gen, x2, X3, X4, Uy, Uz) Xzz
Ja(xn, X2, X3, Xg, uy, u) | _ | (X1 +0) (2 +o0) - e +0)2 +uy
f3(x11x21x35x49u17’42) )C4

_ X4 X2 U0
SaCxr, x2, X3, X4, Uy, uz) 20 (% + o) Tl + G

We now linearize the non-linear system about the zero equilibrium solution to obtain
the system in the form x(#) = Ax(#) + Bu(t). By linearizing the function f(x, u),
about x = 0, u = 0, we have
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fx,u) = £(0,0)x + £(0,0)u = Ax + Bu

where,
afi 8fi 3fi Bf;
T G n o 0 100
b 3f 05 0 302 0 020
A=[OO= | RE Wl =10 o 01 (1o
0x; 0xo 0x3 0Xx4
AR 0 —2w0 0
0x; dxp dx3 9xs(0,0)
and afi If
, o 10
B=f,0.0=1% 3 |= |00 .17
quy duy
s 0y 01
3141 3”2

Here, o is normalized to 1. The representation of the system in the form
X(t) = Ax(t) + Bu(t) (7.18)

is called the state-space representation. Dynamical systems can often be seen in state-
space form, with the behavior of the systems described by a set of linear differential
equations. The state vector indicates the internal variables of the system, and matrices
describe how these variables change over time. This is a time-invariant linear system
and the matrix e forms the state transition matrix of the linear homogeneous system.
Now, by using the variation of parameter method the solution of (7.18) with initial
condition x(#y) = x( can be written in the form;

t
x(1) = ey + / A" Bu(t)dr. (7.19)

to

Computation of e*!

Computation of state transition matrix in the form of the exponential of a square
matrix is a key concept in linear algebra which have wide applications in solving dif-
ferential equations, analyzing dynamic systems, and understanding transformations
induced by matrices on vectors in diverse fields. It involves extending the notion of
exponential function from numbers to matrices through a power series expansion:

At 1 2 1 n
e ::]+A+5A +”.+EA 4. (7.20)
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This expansion parallels the Taylor series for the regular exponential function. In
practice, the matrix exponential calculation can be challenging, especially for bigger
matrices. It can be computed quickly and precisely with the aid of methods like
matrix diagonalization and Jordan form.
We know that if the matrix A is diagonalizable, then there exists a matrix P such
that,
A=PDP™!

where, D is a diagonal matrix containing eigenvalues of A. Then,

At t2 2 t" n
e =I+At+ A+ -+ A"+
2! n!

n

12 t
=1+ PDP 't + EPDZP‘I +. 4 —‘PD"P“ +...
! n.

n

1? t
:P|:I+Dt+—D2+~~+—D”—|—~-«:|P_l
2! n!

=P€D,P71

That is, if A is diagonalizble, we can compute e” in a simple manner. This can also
be generalized as follows. From Exercise 27, Chap. 4 we know that for any realn x n
matrix A, there exists a matrix P consisting of generalized eigenvectors of A, such
that A = S + N where S = P’ldiag{)ul, ..., Ap} P and N is a nilpotent matrix. By
using this representation, we can write

N2t2 Nk— 1 tk_l
At __ . At Ant —1
e —[Pdlag{e ..., e }P ][1+Nt+ T +--- %=1 i|

(7.21)
Using this formula, let us compute the state transition matrix for the satellite system
discussed above. We can observe that the eigenvalues of A are 0,0, £iw and A
is not diagonalizable. The eigenvectors corresponding to the eigenvalue A = 0 are
(1, 0,0, —37’“) and (0, 0, 1, 0) and the eigenvectors corresponding to the complex
eigenvalues A = +iw are (1,0, 0, 2w) and (0, w, 2, 0). This gives,

1010 4002
—32.0 20 0 0 500
and hence,
0 000
N=A-S=A-P 'diagl0,0,iw, —iw}P = —ga) 8 8 —03

0 000
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Then we can compute eA¢—") ag

4 —3cos w(t — tg) %sin w(t —ty) 0 % (1 —cos w(t —ty))
3wsin w(t — tgy) cos w(t — tg) 0 2sin w(t — to)
—6w(t — 1) + 6sin o(t — t9) = [cos ot —19) — 11 1 Lsin w(t — 1) — 3(t — o)
6w [cos w(t —tg) — 1] —2sinw( —1t) O 4cos w(t —tg) — 3

Now, let us define the controllability of a dynamical system.

Controllability of Linear Systems

The concept of controllability analysis is crucial in the study of dynamical systems. It
considers whether a system can be steered from an arbitrary initial state to any desired
final state using appropriate control inputs within a given time frame. Controllability
in linear systems is governed by the qualities of the system’s state matrix and control
matrix. A system is considered controllable if the reachable states can span its state
space under the effect of control inputs. This feature is critical in engineering and
control theory because it underpins the design and execution of successful control
techniques for a wide range of applications, including robotics and aerospace, as
well as economics and chemical processes. Let us give a formal definition for con-
trollability first and then we will discuss on the conditions that are used to verify the
controllability of a dynamical system.

Definition 7.3 (Controllability) The system x (1) = Ax(¢t) + Bu(t) with initial con-
dition x(fy) = xo is said to be controllable in the interval [fy, #;] if for every
X0, X; € R” there exists a control input u € £ ([to, ;]; R™) such that the corre-
sponding solution starting from x (#y) = x( also satisfies x (f;) = x;.

From Eq.7.19 it follows that the system (7.18) is controllable if and only if there
exists a control function u € £*([to, t11; R™) such that
n
x(t) = x; = A0y + / A Bu(t)dr

fo

That is,
il
xp — ATy = / AT By(t)dr
1o

If we take x; — eA ) xy = w, system (7.18) is controllable if and only if Yw € R”
there exists a control function u € £2([#, t;]; R™) such that

5]
w:/ A=) By (1)dt
fo
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Define an operator C : L%([ty, ;] : R™) — R” by

151
Cu= / A" Bu(t)de (7.22)

fo

Observe that C is abounded linear operator(Verify!) and system (7.18) is controllable
if and only if Cu = w has a solution for every w € R". That is, controllability of
system (7.18) is equivalent to the ontoness of the operator C. The operator C defines
its adjoint C* : R* — L2([to, 1] : R™) in the following way:

1]
(Cu, v)gn = ( / AT By(t)dr, v)
1 R

4]
=f (A" Bu(t),v) dt

fo Rn

n r
=/ (u(r), BTer =0yy dr

ty R~
= (u(1), BTeAT(“*T)V)Lz
= (u, C*v) p
That is, .
(C*v)(r) = BTeA 177y (7.23)

The following theorem explains the relation between controllability of the system
(7.18) with the operators C and C*.

Theorem 7.1 System (7.18) is controllable if and only if one of the following is
satisfied.

(a) the operator C is onto.
(b) the operator C* is onto.
(c¢) the Gramian matrix

h

Wi(t, 1) = CC* = / eA(ll—T)BBTeAT(tI_-[)dT
fo

is non-singular.

Thus, we have observed that system (7.18) is controllable if and only if there
exists a control function u € £%([to, t1]; R™) such that

t
w=Cu= / eI Bu(t)de

fo



280 7 Applications

By Cayley—Hamilton Theorem, we can write the above equation as

w= / | [Po(D) L, + Pi()A+ -+ + 7’,,,1(7:)A"_1] Bu(t)dt,Vw € R"
ft(:l Po(t)u(r)dr

1 P J
=[B AB ... A"'B] ffo 1(7.)u(r) T

S Pn,l(})u(r)dr

where P;(t),i = 1,2, ...,n — 1 are polynomial functions that appears in the expan-
sion of A= Thus, we can say that system (7.18) is controllable if and only if
R([B AB ... A”‘lB]) = R”. that is, if and only if Rank ([B AB ... A”‘IB]) =
n. This result is proposed by the Hungarian-American electrical engineer and math-
ematician Rudolf Emil Kalman (1930-2016) and is known as Kalman’s Rank Con-
dition for controllability.

Theorem 7.2 (Kalman’s Rank Condition) System (7.18) is controllable if and only
if the controllability matrix

Q=[B|AB|A*B|---| A" 'B]

has full rank; that is, Rank(Q) = n.

Now, suppose that there exists a vector v € R” such that vA = Av and vB = 0.
Then observe that
v[BAB...A"'B] =0

and hence Rank ([B AB ... A" 'B]) < n which implies that system (7.18) is not
controllable. Thus for the controllability of system (7.18), no vector v € R" with
vA = Lv should be orthogonal to the columns of B. This method is known after the
mathematicians Vasile M. Popov (1928-), Vitold Belevitch (1921-1999) and Malo L.
J. Hautus (1940-).

Theorem 7.3 System (7.18) is controllable if and only if one of the following is
satisfied.

(a) PBH Rank Condition: Rank[sl, — A, Bl =n, Vs € C.
(b) PBH Eigenvector Condition: the relationship vI A = AT implies vI B # 0,
where v is a left eigenvector of A associated with the eigenvalue A.

Using Theorem 7.2, we can verify the controllability of the satellite system. The
controllability matrix Q for the given satellite system is

001 0 0 20 —w* O
10 0 20 —w?> O 0 —20°
00 0 1 2w O 0 —40?
01 2w 0 0 —4w?20® 0
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and we can observe that Q has rank 4. This means that the given satellite system is
controllable.

It is interesting to ask the following question: What happens when one of the
controllers or thrusters become inoperative? Suppose that the tangential thruster fails.

0
Then u, = 0 and hence B in (7.17) will reduce to B; = (1) . The controllability
0
matrix is given by
0 1 0 —o?
1 0 —w? 0
Q=10 0 20 0
02w 0 2

We can observe that O has rank 3 and hence the system is not controllable. What if
the Radial Thruster become inoperative? Try to find it out yourself!

Linear algebra is also essential in analyzing the observability and stability of
dynamical systems. Linear algebraic techniques aid in determining whether all sys-
tem states can be accurately determined from available measurements, allowing
monitoring of the entire system’s activity. Conditions for observability can be derived
along the same lines as that of controllability. Stability analysis to evaluate the behav-
ior of the system over time can also be done using tools from linear algebra. Stability
conditions can be derived by studying the eigenvalues of the system matrix, indicat-
ing if the system converges or diverges. With the help of these tools, we may examine
the behavior, predictability, and robustness of systems, which will enable us to make
well-informed decisions in numerous real-life applications.

7.6 Artificial Neural Network as Linear Regression Model

Linear algebra is foundational in artificial neural networks and machine learning,
serving as the mathematical framework that underpins their operations. Matrices and
vectors represent data, weights, etc., enabling efficient information manipulation and
transformation. Matrix multiplication, dot products, and vector addition are crucial
to neural network training, allowing signals to propagate through layers of neurons
and model parameters to be adjusted during optimization. Linear algebra allows
complex mathematical operations to be expressed clearly and serves as the foundation
for understanding the fundamental concepts and behavior of these robust learning
systems, making it a vital component of the subject.
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X0 = 1
wi
X1 O
w2
wo
X2 O
y
Wn-1
Xn-1 O
Wn
Xn O

Fig. 7.6 Linear regression network

Let us consider a network that works as regression network for mapping input-
output data from an experiment. The data can be used to train a linear regression
network as shown in the following figure (Fig.7.6).

The output of the neuron is given by

m
y = E XiWi
i=0

Let {(x",»"), (x* ¥*)..... ™, y™}, x* € R"*' y' € Rbeaset of training data
1
X
. . . . 7 I .
for determining a linear regression model in a feature space. Here x' = | *2 | is the
i

input including constant input 1 for the bias wy and y; is the corresponding output.
We use the following notations;
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1l 1
I x; xy ... x,
2 2

n

2
I xi x5 ...x

Using the training data define a matrix X = . Our objective is

Ixi" x3' ... x
to find a weight vector W satisfying XW = y. Here, X is a rectangular matrix and
hence we look for a W which minimizes the error(residue) given by,

e=ly—XWI>=(y—XW,y—XW)
Now, by using least square techniques W can be computed as follows:

)
ﬁ =0=>(—Xh,y— XW) + (y — XW, —Xh) = 0 for h € R"*!

= —(Xh,y) + (Xh, XW) — (y, Xh) + (XW, Xh) =0
= —2(h, XTy) +2(h, XTXW) = 0 for h € R"*!
= X"xw=x"y

If XT X is invertible, then
W=(X"Xx)""x"y=xy

Hence 5
W=X"X(X"X)"X"y=X"a

-2 . . . .
wherea = X (X Tx ) xT y. That is, the weight vector W can be written as a linear
combination of the input vector X.
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Solutions for Selected Problems

Chapter 1

[\

. not an equivalence relation.
4. (a) not a bijection. (b) not a bijection. (c) not a bijection. (d) is a bijection.

15. (¢) Z (GL,(F)) = Set of all non-zero scalar matrices and Z(S3) = { (1 2 3) }

123
0 wo(} 2]) =2 wo([1Y]) =
123
20.{(123)]. s

22. Z, for any prime p.
26. Rank(A) =3
28. X1 = 1,)62 = 1,)63 =2

Chapter 2

2. (@ {(x1,0) e R? | x; = 0} (b) {(x1,x2) € R? | x; =0 0r x, = 0}

not a vector space.

4. (a) linearly independent (b) linearly independent (c) linearly independent
(d) linearly dependent  (e) linearly independent  (f) linearly independent (g)
linearly independent (h) linearly dependent

6. (a) not a subspace (b)is a subspace, B = {(1, —1)}, dimensionis 1 (c)nota
subspace (d) not a subspace (e) is a subspace, dimension is 0

7. (a) is a subspace, B = ”:1 _1:| , [0 O] , |:O Oi| }, dimension is 3  (b) not a

et

00 10 01
subspace (c) not a subspace (d) not a subspace (e) is a subspace, B =

1o 00 01 dimension is 3
o1|’{r1of’(0o0|}|’

8. (a) is a subspace, B = {x, x?}, dimension is 2 (b) not a subspace (c) is a
subspace, B = {x — x?}, dimensionis2 (d)nota subspace (e) is a subspace,
B = {1, x?}, dimension is 2
9. (a) True (b)False (c)False (d)False (e)False (f) False (g) False
11. Row space = R?, Column space = R>
14. (a) doesn’t span R?> (b) span R? (c) span R?> (d) doesn’t span R (e) span
RZ
15. (a) doesn’t span R?  (b) doesn’t span R?  (c) span R?  (d) doesn’t span R3
(e) span R3
16. (a)span P, (b) span P, (c) doesn’t span P, (d) span P, (e) doesn’t span
P
20. (a)is abasis (b)isabasis (c)notabasis (d)isa basis
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21. (a) is a basis, (1,2,3) =3(1,1,1) —1(1,1,0) — 1(1,0,0) (b) is a basis
(1,2,3) = 3(1,2, D) — 12,1, 1) + 3(1,1,2)  (c) not a basis
23. (a) dimension is 1, span is the line y = —2x, basis = {(1, —2)}
(b) dimension is 2, span is R?, basis = {(—2, 3), (1, 2)}
(c) dimension is 3, span is R3, basis = {(0, 3, 1), (—1, 2, 3), (2, 3, 0)}
(d) dimension is 2, span is {ay + ai1x + axx*> € Py | ap = a,}, basis = {1 +
x, x>+ x+1}
(e) dimension is 2, span is {ag + a;x + axx*> € P, | ag = —a,}, basis = {1 —
x, x?}
. . . . 11 1 -1 00 00
(f) dimension is 4, span is M, (R), basis = H:O 0i| , |:0 0 :| , |:] 1] , |:_1 li“
. . . . 11 11 10 01
(g) dimension is 4, span is M, (R), basis = ”:1 0j| , |:O 1j| , |:1 1j| , |:1 lj“
24. (a) Wi + W, =R*and W, N W, = {0}
(b)dim (W) + W) =4 anddim (W, N W) =0
Chapter 3
1. (a) not a linear transformation. (b) is a linear transformation. (c) not a linear
transformation. (d) not a linear transformation. (e) is a linear transformation.
(f) not a linear transformation.
2. (a) is a linear transformation. (b) is a linear transformation. (c) not a linear
transformation. (d) is a linear transformation. (e) not a linear transformation.
(f) not a linear transformation. (g) is a linear transformation.
3. Take A = I, and B = —1I,, where I, is the identity matrix of order 2. Check
whether, det (A + B) = det(A) + det (B) and det (AA) = Adet (A).
5. Ty + T, will always be a non-linear map.
6. As (x1, y1,21) = (x1 = y1)(1,0,0) + (y1 —z1)(1, 1,0) + z: (1, 1, 1),
T(XI, Y1, Zl) = (-xl - )’I)T(l, 0’ O) + (}’1 - ZI)T(lv 1’ O) + ZlT(lv 15 1)
= (x1 — y1, 2y1 — 221, x1)
7. (@) R(T) = {(x1, X2, x3) € R* | x5 = 0} and N(T) = {(x1, x2,x3) € R? | x; =
10 11 11
x3 = 0}. (b) R(T)=span {[0 0} , [0 0] , |:1 0“ and N(T) =
{zero polynomial}.
(©) R(T) = span ”_11 8] , |:(1) _01:“ and N(T) = Set of all 2 x 2 symmetric
matrices.
8. Choose v3,vs € R* such that B ={v; = (1, 1,1, 1),v, = (1,0,0, 1), v3, v}

forms a basis for R*. Then define 7(v;) = T(v,) =0 and T (v3) = (1, 1, 0),
T(vy) =(1,0,1).
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10.

11.

12.

20.

21.

23.

24.
27.

30.

7 Applications

(@) Yes. Ty, T» : R — R? defined by T;(x1, x2) = (x1,0) and Tr(x, x2) =
(2x1,0). (b) Yes. T}, T» : R? - R? defined by Ti(x1,x2) = (x1,0) and T3
(x1,x2) = (0, x2).

(b) R(T) = span{(x1, x2, x3, x4) € R* | x4 =0} and N(T) = span{(x1, x2,
)C3,)C4) € R4 | X =Xy = X3 = )C4}.

(a) False (b) False (c)False (d) True (e)True (f)False (g)True (h)
False

[T13 =|-5 0
1

1-2-1 1 -3 —4
-1 ®»|01 0 c)l02 2
00 1 00 3

Chapter 4

(@A2—41—32 (A2 —111+39 ¢) —A3+922—3% —30

i)

8. 35

13.
14.

18.
25.

. (@) True (b)False (c)False (d)True (e)True (f)False (g)False (h)

True (i) True (j) True

0

(a) diagonalizable (b) not diagonalizable (c) diagonalizable (d) diagonal-

izable (e) diagonalizable

Characteristic polynomial = A"~! (A — n) and Minimal polynomial = A(A — n).

(a) The eigenvalues are 2,2, 1 with eigenvectors (—1,0, 1), (0,1,0) and
—-10 0

(0, —1, 1)respectively. (b)| O 1 —1 (©){(0,0,0)}, R3, span{(—1, 0, 1)},

101

span{(0, 1, 0)},

span{(0, —1, 1)}, span{(—1,0, 1), (0, 1, 0)}, span{(—1,0, 1), (0, —1, 1)} and

span{(0, 1, 0), (0, —1, 1)}.
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3100000 0 0
0300000 0 0
0030000 0 0
0002000 0 0
26. |[000020 0 0 0
0000020 0 0
000000—1 1 0
000000 0 —1 0
(000000 0 0 —1|
Chapter 5
20. @ {L(1,2,2),5-2,-1,2), 2, -2, )}  ®)
675 (x> —x + 1)}
22. (@) {v | v =A(—uz,u1), 2 € R} (b){(0,0)}
24. (a){—(1,0,3),—(—3,2, 1)} ) (=%, -1, -
/_10 m ( 35
27. (@ 3(=1, 1) (b) {5(11,25,47) (c) § +V2x
Chapter 6
3. (a) True (b)False (c)False (d)False (e) False
10.No -
20. @ |_% T%M‘/‘TO oo H_ﬁ?
[~ )L 0 VIOD] 5 G
1 1 ]
M1 1 - = 0
o | ¢ 7%“500} S
5 5 Losol | T
3 3 3
T2 2
© 25 %0 [ [3V10 07 [-3v/10 1110
gg , 0 0][ 1v/10 310
L 3 7 5
L 11 N U T
6 VIB|[V3 00 2TV V3
B >
@ | 7% & A ovaol] o 2L
2 g LfLo o0oo0]| L 1L
RE 3 VI T3

287

{12v3-1).

13

35

)

(f) False
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1 —1-1
1 1 11
516 —13 2 2 2
1 1 1 — 1
26 @z | 1 1 (b)SO[102 14}(0)I2 3-3] Dy 2 2o
-1 -1 11
-1 1 1
93
. . 1| =35 . 1|39
28. (a) inconsistent, 5= _26 (b) consistent, 7= _3
-35
2x1 2y 1 )clz—i—yl2
2x> 2y2 1 a x2—|—y2
2. |77 b= | where e = 1% — a® — b2,
oo ¢ :
2x, 2y, 1 x,% + y,%
30 (@y=13x+1.1 ®O)y=17x+19 (¢c)y=84x+11.6

31. x3 =5.2171 4 0.4053x; 4 0.6039x,
32. y = —0.3937sin 6 4+ 0.8535cos 6
33. V=18.74+4791
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Chapter 8 )

Solved Problems—Preliminaries Becit
11 3

() Let A = [5 Z} and X — [4] Then Tim A"X
0 1 n—oo

(a) does not exist (b) |:;:| (c) [i] (d) |:i:|

Ans. Option ¢
We have

Proceeding like this we get A" X = |:2 _Z 2”:| and hence lim A"X = |:2]

n—oo 4
0 1 =2
2) LetA=|—-1 0 « |,a e R\ {0}andb anon-zero vector such that Ax = b
2 —a 0

for some x € R3. Then the value of x7b is
@-a (ba ©0 (@1

Ans. Option ¢
X by
Letx = | xo | andb = | by |. Then
X3 b3
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 291
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8 Solved Problems—Preliminaries

Ax =b = xp —2x3 =b1, —x1 +ax3 =b,2x1 —axy = b3
= X1X3 — 2x1x3 = b1x1, —X1X2 + ax2x3 = baxp, 2x1x3 — ax2x3 = b3x3

Adding these, we get bix| + byxy + bsxz; =0 = xTh.
Let

S=1A:A=ajjls, 5 a;;=00r1Vi,j,» ajj=1Viand Y a;=1V
J i

Then the number of elements of S is
@5 15 (©5 (@55

Ans. Option ¢
Since ajj =0o0r 1V i, j, Y ajj=1Viand ) a;; =1V j the first row has 5
possibilities. ’ l

10000

01000

5 possibilities {00100
00010
00001

Then the second row has 4 possibilities, third row has 3 possibilities, fourth row
has 2 possibilities and the fifth row has only 1 possibility. Thus the number of
elements of S is 5!.

Let p be a prime number and let Z, denote the field of integers modulo p. Find
the number of 2 x 2 invertible matrices with entries from this field.

Ans. Let GL, (Zp) denote the set of all 2 x 2 invertible matrices with entries
from Z,. Let M € GL, (Zp). Then the first row of M has p> — 1 possibilities
as first row cannot be [0 0]. Now the second row has p*> — p possibilities since
it cannot be a scalar multiple of the first row. So the number of 2 x 2 invertible
matrices with entries from Z,, is (p> = D(P* - p).

The order of the matrix |:% §i| inGLy (Zs)is......

Ans. We know that the order of the matrix A = I:? ;i| in GL, (Zs) is the least

positive integer n such that A™ = ﬁ ;i| = |:(1) (l)i| We have

e[ RY-EE)- R
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s [22][23]_[6 10]_[10].
A _[42} [1 2}_[10 16]_[0 1} in GLaz (Zs)

Therefore order of H is 3.

and

0-1

(6) Let G be asubgroup of G L,(R) generated by [(1) (1)] and [ 1 -1

] . Then the order

01 0-—1
Ans. Let A = |:1 0] and B = |:1 _1i|. We have

w=[No][1o) = renaw =[L 5] 2] [0 21] =

B> = [j (1)] ,AB = [(1) :ﬂ = B’Aand AB® = [j ﬂ = BA

Also

Thus G = {I, A, B, B%, AB, A?>B} and hence order of Gis6.
7

~

Consider the following group under matrix multiplication:
lpg
G = Olr|:p,q,reR

001

Then the center of the group, Z(G) is isomorphic to
@ R\ {0}, x) () R, +) (©) (R%+) (@ R, +)® [R\{0}, x)

Ans. Option b
Lxy [1pg
Let |01 z | € Z(G). Thenforany |0 1 r | € G, we have
001 1001
Lpg|[lxy] lxyl[1lpq
01r||01z|=|01z]||01Fr
001][00T ] 001|001

This implies that

1l x+p g+xr+y 1 x+p g+pz+y
0 1 zZ+r =10 1 z+r
0O O 1 0O O 1
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Therefore pz = xr for any p,r € R, which is possible only if x = z = 0. Thus
center of G is given by

10y
Z(G) = 010]:yeR
001
10y
Now define ¢ : Z2(G) - R, +)byep | |010 = y. Clearly ¢ is both one-
001
10y1 10)72
oneandonto. Take A= |01 0 [,B=]01 0 | € Z(G). Then
001 001
1Oy +y
¢(AB)= |01 0 =y1+»=¢(A)+¢(B)
00 1

Thus, ¢ is a homomorphism. Therefore ¢ is an isomorphism.

Let F = {a) eC: ™ = 1}. Consider the group

6= |(5)-wereec) min=|(}):2cc]

under matrix multiplication. Then the number of cosets of H in G is
(a) 1010  (b) 2019 (c)2020 (d) infinite

Ans. Option c
Define ¢ : G — F by ¢p(A) = det (A). Since

¢(AB) =det(AB) =det(A)det(B) = ¢p(A)p(B)VA,Be G
¢ is a homomorphism from G to F with
Ker(p) ={A e G:det(A)=1}=H

Then by First Isomorphism Theorem G \ H = Im(¢) = F. Therefore the num-
ber of cosets of H in G is 2020.

Let G denote the group of all 2 x 2 invertible matrices with entries from R. Let

H ={AeG:det (A) =1} and H, = {A € G : A is upper triangular}
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Consider the following statements:

P : H, is a normal subgroup of G

Q : H; is a normal subgroup of G

Then

(a) Both P and Q are true (b) P is true but Q is not true
(c) P is false and Q is true (d) Both P and Q are false

Ans. Option b
Let H € H),and A € G. Then AHA™" € H, since

det(AHA™") = det(A)det(H)det(A) =1

Therefore H; is a normal subgroup of G.

Consider the matrix B = G _11> eGand K = (é g) € H,. Then

L=y 12y (11 10
we =3 () 03 () = (53) e

Therefore H, is not a normal subgroup of G.

(10) Let A, B be n x n matrices. Which of the following equals 7 (A%B?)?
(@) (tr(AB))> (b)tr(AB2A) (c)tr ((AB)?) (d)tr(BABA)

Ans. Option b
Since tr(AB) = tr(BA), tr(A?B?) = tr(BA%*B) = tr(AB?A).

(11) Pick out the true statements:
(a) Let A and B be two arbitrary n x n matrices. Then (A + B)> = A% +
2AB + B2
(b) There exist n x n matrices A and B such that AB — BA = 1.
(c)Let A and B be two arbitrary n x n matrices. If B is invertible, then tr(A) =
tr(B~'AB).

Ans. Option ¢

(a) (A+B)>=(A+B)(A+ B) =A>4+ AB + BA + B? since AB # BA,
(A + B)? need not be equal to A% +2AB + B2

(b) Suppose there exists n X n matrices A and B such that AB — BA = I. Then
tr (AB — BA) must be equal to tr(I) = n. Since tr(AB) = tr(BA),tr(AB —
BA) = 0. So there does not exists such matrices A and B.

(c) Since tr(AB) = tr(BA), tr(B~'AB) = tr(BB~'A) = tr(A).

(12) If A € Mp,»(R) with det(A + 1) = 1 + det(A), then we can conclude that
(a)det(A) =0 (B)A=0 (¢c)Tr(A) =0 (d) A is non-singular
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Ans. Option ¢
(a) & (b) Take A = (1)_01:| Then A+I=|:
det(A). Here A # 0 and det (A) # 0.

_|ab _|a+1 b
(c)LetA_|:cdi|.ThenA+I—|: d—i—l]'

20
001| and det(A+1)=1+

det(A+1)=1+det(A) = (a+1)d+ 1) —bc =1+ ad — bc
=sad+a+d+1—bc=1+ad— bc
=sa+d=0

This gives, Tr(A) =a+d = 0.
(d) Take A = |:8 (1):| Then A+ 1 = |:(1) }] and det(A+ 1) =1+ det(A). But
A is singular.
(13) Itis known that X = Xy € M,,»(Z) is a solution of AX — XA = A for some
1 1 -1 1 1 —1 . .

A€ {|:_1 _1} , [ 1 1l |:_1 1 “ Which of the following values are
not possible for the determinant of X?
@0 (B2 (@6 (@10

Ans. Optiond
Consider the equation AX — XA = A. As tr(AX) = tr(XA),

tr(AX — XA)=tr(A) = tr(A) =0

1 1 ab
Therefore, A = |:—l _11|. Take X = |:c d]' Then

ax—xa=a= [} [0l A=

N b+c 2b+d—-a| |1 1
—a—2c+d —(b+c) | |[-1-1

=bt+c=1,2b+d—a=1, —a—2c+d=-1
The equations 2b +d —a =1 and —a — 2c +d = —1 are the same as ¢ =
1 — b. Then,
b=1,d=0,a=1,c=0=det(Xy) =0
b=1,d=1,a=2,c=0=det(Xy) =2
b=1,d=2,a=3,c=0=det(Xy) =6

Thus det (Xo) = 10 is not possible.
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(14) Let A and B be n x n matrices. Suppose that the sum of elements of A in
any row is 2 and the sum of elements in any column of B is 2. Which of the
following matrices is necessarily singular?

(@)1 —1BAT ()I—-L1AB (o)1-1AB (@ 1-1BA”
Ans. Optiond
21

Take A = |:? (1)] and B = |:O 1iI.Then,
o[BS
i
B RR-L 1
o[- BRD-B ]

It can be observed that I — %BAT is singular.

X
(15) The number of distinct real values of x for which A = [ 1 x 1 | is singular is
11x
(@1l ()2 (c)3 (d) infinite

Ans. Option b
x11

Let A= |1x 1 |. We have A is singular if and only if det (A) = 0. Now,
I1x

det (A)=0=x>=3x4+2=x-1D*’Gc+2)=0=x=1,1,-2
Hence, A is singular, when x is either 1 or —2.

(16) Let A be a3 x 3 matrix with integer entries such that det(A) = 1. What is the
maximum possible number of entries of A that are even?
@2 03 (©6 ()38

Ans. Option ¢
app apz a3
Consider the 3 x 3 matrix A = | a1 ax axs |. Then,

asy asp ass
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det(A) =ay @xnasz — a3ax) — app (ax1a33 — az1a3) + ais (a21a32 — az1a)

Clearly, the maximum number of even entries cannot be equal to 8 as the deter-
minant would become an even number. Now consider the 3 x 3 identity matrix,
1. We know that det (I) = 1. Hence the maximum possible number of entries of
A that are even is 6.

170
(17) Fort € R, define A(t) = | 1 1 ¢> |. Then which of the following statements
011

is true?

(a) det (A(t)) is a polynomial function of degree 3 in ¢.
(b) det (A(t)) =O0forallt € R.

(c) det (A(t)) is zero for infinitely many ¢ € R.

(d) det (A(t)) = O for exactly two ¢t € R.

Ans. Option d
We havedet (A(t)) =1 —t> —t = 0. Sincediscriminant = 5, det (A(t)) =0
for exactly two t € R.

(18) A permutation matrix A is a non-singular square matrix in which each row has
exactly one entry equals 1, the other entries being all zeros. If Aisann x n
permutation matrix, what are the possible values of determinant of A?

Ans. A permutation matrix is obtained by interchanging rows(columns) of iden-
tity matrix. If odd number of interchanges are made, then the determinant of the
permutation matrix is —1 and if even number of interchanges are made, then the
determinant of the permutation matrix is 1.

(19) The determinant of the n x n permutation matrix

@ D" O (D (© -1 (@1

Here | x| denotes the greatest integer not exceeding x.

Ans. Option b
Consider 2 x 2 and 5 x 5 permutation matrices of the given form. All the options
except Option b are false.

(20) For j =1,2,...,5let A; be the matrix of order 5 x 5 obtained by replacing
the jth column of the identity matrix of order 5 x 5 with the column vector

v=[5432 I]T. Then the determinant of the matrix product A; A, A3A4As
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Ans. We have

det(A1AyA3A4A5) = det(Ay)det (Ay)det (As)det (Ay)det (As)
=5x4x3x2x1
=120

(We can calculate the determinant easily as the first row in each of these matrices
has only two non-zero entry and the determinant with the second non zero entry
will be zero since the 4 x 4 matrix has one column zero)

,ifi+j=n+1
0, otherwise
What is the value of det (A) when (i) n = 10 and (ii) n = 100?

(21) Let A= (aij) S Mnxn(R)’ Where aij =

Ans. The given matrix is

00---1
A= .. )
1000

nxn

The given matrix is obtained by interchanging the rows of the identity matrix
and hence det (A) = (—1D)!'2) where L5 denotes the greatest integer less than
or equal to % Therefore det (A) when (i) n = 10is —1 and (ii) n = 100 is 1.

(22) Let A be a4 x 4 matrix whose determinant is 10. Then det (—3A) is
(a) =810 (b) =30 (c)30 (d)810

Ans. Option d
As det (AA) = A'det (A) for an n x n matrix A, we have

det(—3A) = (=3)*det (A) = 810

92 7 1
(23) Let A = 07 2 11 the value of det ((81 — A)?) i
et A = 00116 en the value of det (( ) )is......

00-50
-1 -2-7-1
0 1 —2-1

Ans. We have 81 — A = 0 0 -3-6 . Then

0 0 5 8

det ((81 — A)®) = [det 8] — A)]’ = —216



300 8 Solved Problems—Preliminaries

(24) The determinant of the matrix

100002
010020
001200
002100
020010
200001

@0 (b)—9 ()—-27 @1
Ans. Option ¢
Let M = |:é IB):| where A, B, C and D are square matrices. Then

det(M) = det (A — BD™'C) det(D)

002
Take A= D = Iand B = C = | 02 0 |. Then determinant of the given matrix
200
is —27.
abc —Xx a —p
(25) Let Dy =det [ x yz|and D, =det| y —b q |.Then
pqr z —c r
@Dy =D, (b)Dy=2D; (¢)D1=—-Dy (d)2Dy=D;
Ans. Option ¢
(a b ¢ R, < C
A=|xyz R, & C,
| pqr ] R3; < G
0 x ]
~|bygqg R, —> —R,
Fdx —p]
~|1 b vy g C, —» —C
4 xp]
~|-by g¢q C) «<—
o a ]
~|ly =bg
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Asdet(A) =det (AT), taking transpose of a does not make any changes in D;.
However, multiplying by —1 on row/ columns and interchanging the columns

will result in multiplying D by (—1)3(as 3 such changes are made). Therefore
D, = —D;.

Or
100 010
Let Dy =det |0 10|, then Dy =det | 1 00 |. Clearly, Dy = —D,. Options
001 001

a,b and d are incorrect.

(26) If ad — bc = 2 and ps — gr = 1, then the determinant

S
o

(SIS
=
o3
L O O

[\
S

equals......
Ans. We have
63’11902(;2 102p ¢ 32pq
=ald 00/ —=blc 00
cd 00 7 2r s 22r s
27 2r s

= a[—2pds + 2qdr] — b[—2pcs + 2qcr]
= 2ad[qr — ps] — 2bc[—ps + qr]
= 2[ad — bcllgr — ps] = —4

114x14+x+x2
(27) The determinant |1 14y 1 + y + y?| is equal to
114z 1+z+42°
@GE=—yez-x)0(y—-—x) O C-x-2)»-2)
© (x = (y—2*@—x)7 (d) &> =y)H(* - ) —x?)

Ans. Option a

We have
I14+x14+x+x2 1 x x2 1x x2
Ll+yl4+y+y [ ~1yy [~ -0Gz—-x)|01y+x
11+z14+z+22 1z2z? 01 z+4+x

114x14x4x2
Therefore |1 1+y 1+y +y?| = (z — y)(z — x)(y — X).
114z 1+z+22
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(28) Letay,as, ..., a, € R. Evaluate the determinant:
l14+a; ay --- a,
a l14ay--- a,
ay a ---1+a,

Ans. We have

l4+a a -+ ay l+a+a+---+a, a --- ay

a l14a--- a, l+ai+a+---+a,14+a--- a,

a a ---14+a, l4+a+a+---4+a, a ---1+a,
lazon-an

=l+a+a+---+a,) e

00-.---1
=l4+a+a+---+a,
(29) Let fi(x), fo(x), g1(x), g2(x) be differentiable functions on R. Let F(x) =
fi(x) fz(X)‘ be the determinant of the matrix |:f1 (x) fz(x):|. Then F’(x) is

g1(x) g2(x) g1(x) g2(x)
equal to

@ fI) L@ A g1 @) L] i) g1(x)
g1(x) g2(x) fr(x) g2(x) g1(x) g2(x) 2 (x) g5(x)
© fix) [0 [ filx) g1 (x) ) fix) f(x)
g1(x) g2(x) fa(x) g5(x) g1(x) g5(x)

Ans. Option b
We have
fi(x) fa(x)

FO =100 220

= fix)g2(x) — g1(x) f2(x)

Then

F'(x) = fi(x)gy(x) + fi(x)g2(x) — g1(x) fr(x) — g1 (x) f(x)
= f1(x)g2(x) — g1(x) fo(x) + fi(x)gh(x) — g1 (x) fo(x)

[ 0] | filx) g1(x)
g1(x) g2(x)| | 2(x) g5(x)
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(30) Let A = ((a,-j)) be a 3 x 3 complex matrix. Identify correct statements.
(@) det (=)' A) =det(A)  (b)det (=) A) = —det (A)
(©)det ((V=D") A) =det(A) (d)det (((V=1)"") A) = —det (A)

Ans. Options a and c

ap ap a3

Let A = | axy ax ar3 |. Then

| a31 a3 as3

det(A)=ay\ (anaz3—azar) — az (a21a33 — az1a3) + ai3 (a21a3 — a31a2).
ayp —dpp dis

Let B= | —ax1 ax» —a»x3 |. Then

| a1 —asxn as

det(B) = ay| (axpa33 — azans) + ayp (—az1ass + azrazz) + a3 (ax1a3 — azran)
= ay (axa33 — azpaps) —ayp (a1a33 — azjazs) + a3 (a1a3 — azrayy)
= det (A)

—aj; —iap a3
Let C = | —iay1 ax iays |. Then
az|  iazp —aszy

det(C) = —ay (—axas3 +azpa3) +iayp (iax1a33 —iazya3) + a3 (a21a32 — azjan)
= ayy (apaz3 — azpa3) — aip (ap1a33 — azjazz) +ais (ax1asy — azjaz)
=det(A)

(31) The number of matrices in G L, (Z3) with determinant 1 is . .....
()24 (b)60 (c)20 (d)30

Ans. Option a
Let SL,(Z3) denote 2 x 2 matrices over Z3 with determinant 1.
Define ¢ : GLy(Z3) — Z3 by
$(A) =det(A)
Then kernel (¢p) = SL,(Z3) and hence by First Isomorphism Theorem,
GLy(Z3)/SLa(Z3) = Z3 \ {0}

... O(GLy(Z3))
This implies ————————— = 2. Also we have
PR 0 (SLa(Za))

O (GLy(Z3)) = (3> = 1)(3* — 3) = 48

Therefore O (SLy(Z3)) = 24.
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01000
10000
(32) Write down the inverse of the matrix [0 000 1
00100
00010

Ans. The given matrix is an elementary matrix. The inverse is its transpose.

10000
01000
(33) Write down the inverse of the following matrix: (00100
00210
00301

Ans. The given matrix is an atomic triangular matrix. An atomic triangular
matrix is a special type of upper(lower) triangular matrix where all its diagonal
entries are 1’s and all off-diagonal entries except a single column are zeros.
The inverse of an atomic triangular matrix is again an atomic triangular matrix
where the signs of the entries in the non-zero column are reversed. Therefore the

10 000

01000
inverse of the given matrixis |00 1 00 |.

00-210

00-301

(34) Let M be the set of all invertible 5 x 5 matrices with entries 0 and 1. For each
A € M,letn(A)andny(A) denote the number of 1’sand 0’s in A, respectively.
Then /gni/\r}llnl (A) —no(A)| =

€

@l 3 @S5 @15

Ans. Option a
11101
01110
Considerthematrix A = {00 11 1 |. Then, |n;(A) — no(A)| = 1 which is the
00011
00001

minimum.

(35) Let «, B, y be real numbers such that 8 # 0 and y # 0. Suppose A = |:)O/[ ‘g:|

and A~! = A. Then
@Qa=0and By =1 (b)a#0and By =1
Qa=0and By =2 (da=0and By =—1
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Ans. Option a
We have

S ;O—ﬂ_O%_[aﬁ]
A dt(A)aj(A) ﬁy[_ya}_[%_;_y _7/0

This implies « = 0 and By = 1.

(36) Let A = (a;;) be a2 x 2 lower triangular matrix with diagonal entries a;; = 1
and axy = 3.If A™! = (b;;), what are the values of by; and by, ?

1 —
Ans. Theinverseofa x 2matrix A = dind is given by 4 —diz|
a a det(A) | —a21 ar

The determinant of a lower triangular matrix is product of its diagonal entries.
Hence det (A) = 3. Therefore by = 1 and by; = %

(37) Let A =[a;;] be an n x n matrix such that a;; is an integer for all i, j. Let
AB = I with B = [b;;], where I is the identity matrix. Which of the following
statements is true?

(a) If det(A) = 1 thendet(B) = 1.

(b) A sufficient condition for each b;; to be an integer is that det(A) is an
integer.

(c) B is always an integer matrix.

(d) A necessary condition for each b;; to be an integer is det(A) € {+1, —1}.

Ans. Options a and d
(a) AB =1 = det(AB) = det(A)det (B) = 1. Therefore if det(A) = 1 then
det(B) = 1.

(b) & (c) Let A = [2 0

02

1
] and B = |:(2) (l)i| Then AB = I and hence options b
2

and c are false.
(d) Letdet (A) € {41, —1}. Since A and B are square matrices AB = I implies

1
B is the inverse of A. Therefore B = det () ———Adj(A) = £Adj(A). Since A is
an integer matrix, Adj(A) is an integer matrix and hence B is also an integer
matrix.

01
10
the form PT AP for a suitable 2 x 2 invertible matrix P over Q?

20 20 10 34
@ (5 %) o) e (%) @)

Ans. Options a, c and d
Let PT AP = B, then applying determinant on both sides, we get

(38) Consider the matrix A = |: i| Which one of the following matrices are of

det(PTAP) = (det(P))*(det(A)) = det (B)
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As det(A) is negative, det(B) must also be negative. Therefore option b is

_fab T _ 2ab ad + bc .
false. Now let P = <c d>' Then P' AP = <ad Lhe 2cd > From this, if
_11>, then

11

we take P = ( ), then PTAP = <3 _02> If we take P = <

B =09 | —

—11
10 13 34
T _ — 2 T —
P AP = (0 _1). Ifwe take P = <1 %) then P' AP = <4 5).
. . 12345 . .
(39) Given the permutation o = 31254 , the matrix A is defined to be the one

whose ith column is the o (i)th column of the identity matrix /. Which of the
following is correct?
@A=A4"2 bA=A"* ©DA=A4" DHA=A"'

Ans. Option c
Since o is of order 6, % = e, where o is the identity permutation and hence
o =07, Hence, A = A>.

598
(40) The matrix A = | 1 8 2 | satisfies
910
(a) A is invertible and the inverse has all integer entries.
(b) det(A) is odd.
(c) det(A) is divisible by 13.
(d) det (A) has at least two prime divisors.

Ans. Options c and d
We have det(A) = —416 = 2° x 13. Therefore A is invertible but the inverse
does not have integer entries.

(41) Let A, B be n x n matrices such that BA + B> = I — BA? where [ is the
n X n identity matrix. Which of the following is always true?
(a) A is non-singular (b) B is non-singular
(c) A + B is non-singular (d) AB is non-singular

Ans. Option b
(a) & (d) Let A=0and B = I, then BA+ B> =1 — BA?, but A and AB are
singular.
(b) Now BA + B> = I — BA?> = B(A? + A + B) = I. Taking determinant on
both sides,

det(B)det(A* + A+ B) =1 = det(B) #0

Therefore B is non-singular.
(c)Let A= —1I and B = I, then BA + B2=1—BA%L but A+ B is singular.

(42) Let S denote the set of all prime numbers p such that the following matrix is
invertible when considered as a matrix with entries in Z,,.
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120
A=1]0 3-1
-20 2

which of the following statements are true?

(a) S contains all the prime numbers.

(b) S contains all the prime numbers greater than 10.
(c) S contains all the prime numbers other than 2 and 5.
(d) S contains all the odd prime numbers.

Ans. Options b and c
Since the determinant of the given matrix is det (A) = 10 = 2 x 5, the matrix is
invertible when considered as a matrix with entries from other than Z, and Z.s.

(43) Let S denote the set of all the prime numbers p with the property that the matrix
9131 0
29 31 0 | has an inverse in the field Z,,. Then
79 23 59
(@ S={31} (b)S=1{31,59} (c)S={7,13,59} (d) S is infinite

Ans. Optiond
Determinant of the given matrixis2 x 31 x 31 x 59iszero only when p = 2, 31
or 59. Therefore S is infinite.

(44) Letm, n, r be natural numbers. Let A be an m x n matrix with real entries such
that (AA")" = I, where I is the m x m identity matrix and A’ is the transpose
of the matrix A. we conclude that
(aAm=n (b) AA! is invertible
(c) A'A is invertible (d) if m = n, then A is invertible

Ans. Options b and d

100 10 10
Consider the matrix A = .Then A" = | 01|, AA" = and A'A =
010 01
00
100
0 10 |. Therefore m need not be equal to n and A' A need not be invertible.
000

Since (AA"Y =1, det(AA") # 0. Therefore AA' is invertible and if m = n,
then A is invertible.

(45) Let A, B be n x n real matrices such that det(A) > 0 and det(B) < 0. For
0<t<1,consider C(t) =tA+ (1 —t)B. Then
(a) C(2) is invertible for each ¢ € [0, 1].
(b) There is a #y € (0, 1) such that C (%) is not invertible.
(c) C(¢) is not invertible for each ¢ € [0, 1].
(d) C(2) is invertible for only finitely many ¢ € [0, 1].
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Ans. Option b
Define f : [0, 1] - R by f(t) =det [C(t)]. Then

£(0) = det [C(0)] = det(B) < 0and f(1) = det [C(1)] = det(A) > 0

Since determinant is a continuous function, f is continuous. Then by Interme-
diate Value Theorem' there exists ty € (0, 1) such that C(ty) = 0. Thus, C(t)
is not invertible.

Or

Taken =3,A=1and B = —1. Thendet(A) > Oanddet(B) < 0and C(t) =
(2t — 1)I1. C(t) is invertible for every t € [0, 1] except for t = % Option a, ¢
and d are false.

1111
. 1232].
(46) The rank of the matrix A = 2564 is......
2685
1111 111 1
1232 01 2 1
Ans. We have A = 2564 " |o0—2—_1 . Therefore Rank(A) = 3.
2685 000 O
(47) Let
1 2 0 2
A= 220 U hen g k(A) 1
=| 1 2 _3_7| ThenRan equals
1 2 -2-4
@4 ®3 (©2 @I
Ans. Option c
1 2 0 2 1202
—1-21 1 0013
We have 1 2 -3-71" 10000 . Therefore Rank(A) = 2.
1 2 -2-4 0000
157 9
(48) Let A = 0135 Find that the rank of A is t
etA=1 o1l y so that the rank o S two.
144 vy

! Intermediate Value Theorem: Let f :la, b] — R be a continuous function on [a, b]. If k € R
satisfies f(a) < k < f(b), then there exists a point ¢ € [a, b] such that f(c) = k.
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157 9 15 7 9
0135 01 3 5 .

Ans. We have 1610141 “loo o o . Then A has rank 2 if y = 4.
144 y 0-1-3y-9

49) LetA=Y"7_ X; X[, where X]=[1 -110],xJ=[1101],x] =[1310],
XT =[1110]. Then Rank(A) equals ......

4 4 31 443 1 1000
41231 0100 0100

Ans. We have, A= 3330 ~ 001 —1 ~ 0010l Thus Rank
1101 100 1 0000

(A) = 3.

(50) Let A, B be n x n real matrices. Which of the following statements is correct?
(a) Rank(A + B) = Rank(A) + Rank(B)
(b) Rank(A + B) < Rank(A) + Rank(B)
(c) Rank(A + B) = min{Rank(A), Rank(B)}
(d) Rank(A + B) = max{Rank(A), Rank(B)}

Ans. Option b
Take A = I and B = —1. Then option a, c and d are false.

(51) Let A be a non-zero n x n real matrix with n > 2. Which of the following
implications is valid?
(a) det(A) = 0 implies Rank(A) = 0.
(b) det(A) = 1 implies Rank(A) # 1.
(c) Rank(A) = 1 implies det (A) # 0.
(d) Rank(A) = n implies det (A) # 1.

|:(1) 8i| det(A) = 0 but Rank(A) # 0.
(b)det (A) # Oimplies A has full rank. Clearly Rank(A) # 1. (c) Rank(A) = 1
implies det (A) = 0. (d) Consider the n x n identity matrix. Rank(A) = n but
det(A) = 1.

Ans. Option b (a) Consider the matrix

(52) Let A be an n x m matrix with each entry equal to 4+1, —1 or O such that
every column has exactly one +1 and exactly one —1. We can conclude that
(a) Rank(A) <n—1()Rank(A) =m ()n <m(d)n—1=<m

Ans. Option a
1 1

Consider the matrix _01 _01 . Then options b, c and d are false.
0 0
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(53) Let A be a 5 x 5 matrix and let B be obtained by changing one element of
A. Let r and s be the ranks of A and B respectively. Which of the following
statements is/are correct?

@s<r+1 ®Or—-1<s @©s=r—1 (ds#r

Ans. Options a and b
By changing one element of A we can either reduce the rank of A by 1, increase
by 1 or the rank will be the same. Thereforer — 1 <s <r + 1.

(54) Let A = [a;;] be a 50 x 50 matrix, where a;; = min(i, j);i,j =1,...,50.
Then the rank of A equals
@1 (b2 ()25 (d)50

Ans. Option d

111---1 111---1
122...2 -1
Wehave A= |123...3 | ~001...1 . Therefore Rank(A) is 50.
123...50 000...1
(55) Let J denote the matrix of order n x n with all entries 1 and let B be a (3n) x
00J
(3n) matrix given by B =det | 0 J 0 |. Then the rank of B is
JOO

@2n M3n—-1 (©2 @3

Ans. Option d

0K 111
K O |, where K =1000].
00 000

By suitable row transformations B = det

XN o o

Therefore B has rank 3.

(56) Let A, be the real n x n matrix (n > 2) whose entry in position (i, j) isi — j.
What is the rank of A,, as a function of n?

0_1 0—-1-2
Ans. WehaveA2=[1 O:|,A3= 10 —-11,...,
21 0
0 -1 ...—(m-=1
A, = . Reducing to row-echelon formwe can iden-
n—1ln—2... 0

tify that A,, has rank 2 for all n.

(57) Let x and y in R” be non-zero column vectors and A = xy’, where y' is the
transpose of y. Then the rank of A is
(@2 ()0 (c)atleast % (d) None of the above.
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Ans. Optiond
Since x and y are non-zero column vectors in R”", both have rank 1. Then by
Sylvester’s inequality Rank(A) is less than or equal to 1.

(58) Let A and B be two real matrices of size 4 x 6 and 5 x 4, respectively. If
Rank(B) = 4 and Rank(BA) = 2, then Rank(A) is equal to

Ans. By Sylvester’s inequality, we have
4 4+ Rank(A) —4 < Rank(BA) =2 < min {4, Rank(A)}

This implies that
Rank (A) <2 < Rank (A)

Therefore, Rank(A) = 2.

(59) Let A be a m x n matrix and B be a n x m matrix over real numbers with
m < n. Then
(a) AB is always non-singular
(b) AB is always singular
(c) BA is always non-singular
(d) BA is always singular

Ans. Optiond
We have
Rank(A), Rank(B) < min{m,n} = m

Since BA is an n x n matrix, by Sylvester’s inequality,
Rank(BA) < min{Rank(B), Rank(A)} <m <n

Therefore B A is always singular.

(60) Letm,ne N, m <n, Ae M,,,,(R), Be M, ,(R).Then which of the fol-
lowing is(are) NOT possible?
(a) Rank(AB) = n
(b) Rank(BA) = m
(c) Rank(AB) =m

(d) Rank(BA) = (m;" 1, the smallest integer larger than or equal to ’”TJ’”

Ans. Option a and d
The maximum possible rank of both A and B are m since

Rank(A), Rank(B) < min{m,n} <n
Then by Sylvester’s inequality, if Rank(A) = Rank(B) = m, Rank(AB) = m

and Rank(BA) = m. Clearly, Rank(AB) =n is not possible. Also Rank
(BA) = [”’;"] is not possible since m < [%]
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(61) Let A be a3 x 3 non zero real matrix. If there exists a 3 x 2 real matrix B and
a 2 x 3 real matrix C such that A = BC, then
(a) Ax = 0 has a unique solution, where 0 € R?
(b) there exists b € R? such that Ax = b has no solution
(c) there exists a non zero b € R? such that Ax = b has a unique solution
(d) there exists a non zero b € R? such that A” x = b has a unique solution

Ans. Option b
We have
Rank (A) < min{Rank (B), Rank (C)} <2

Therefore A is not invertible and hence the homogeneous system has infinite
number of solutions. The system Ax = b has a unique solution if

Rank [A | b] = Rank (A) =3

which is not possible. Similarly for the system ATx = b. As we can choose
Rank [A | b] = 3 there exists b € R> such that Ax = b has no solution.

(62) If A is a 5 x 4 matrix with real entries such that Ax = 0 if and only if x =0
where x is a4 x 1 vector and 0 is a null vector. Then Rank(A) is
@5 4 (©2 @1

Ans. Option b
The system Ax = b has unique solution if and only if

Rank[A | b] = Rank(A) = number of unknowns = 4

(63) Let A be an x m matrix and b be a n x 1 vector(with real entries). Suppose
the equation Ax = b, x € R” admits a unique solution. Then we can conclude
that(@Qym>n (Mb)n>m CQn=m Dn>m

Ans. Option b
The system has a unique solution if and only if

Rank[A | b] = Rank(A) = m

Also
m = Rank(A) <min{m,n} <n

(64) Let A be an m x n matrix of rank n with real entries, Choose the correct
Statement.
(a) Ax = b has a solution for any b.
(b) Ax = 0 does not have a solution.
(c) If Ax = b has a solution, then it is unique.
(d) xT A = 0 for some non zero x.
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Ans. Option ¢
Ifthe system is consistent Rank(A) = n imply unique solution. Consider A = I,

and x = [Z] for option d.

205
(65) Let A= | 1 23 |.The system of linear equations Ax = b has a solution
—151
X
(@onlyforb=1]0|,x; eR.
0
0
(b)only forb = | x; |,x € R.
0
0
(c)only forb = | x; | ,x2,x3 € R.
X3
(d) for all b € R3.
Ans. Option d
205
As | 1 23| 0, the given system has unique solution for any b € R>.
—-151

(66) The equations
X1+2x%4+3x3=1, x1 +4x + 93 =1, x; +8x, +27x3 =1

have

(a) only one solution.

(b) two solutions.

(c) infinitely many solutions.
(d) no solutions.

Ans. Option a
The above system of equations can be written in the form of Ax = b as

1237 [x 1
149 ||x|=]1
1827 | x3 1

Since A is invertible the given system has unique solution.

(67) Consider the system of equations

X1+X2+X3=3, X1 —X2+X3=4, X1 —5X2+)\X3=6
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Then the value of A for which this system has an infinite number of solutions
is@i=-5 ®Ar=0 ©)A=1 (dxr=3

Ans. Option c
The above system can be represented in the form Ax = b as

I 1 1|]|x 3
I1-11|]|x|=|4
1-5Ax X3 6

1113 11 1 3
Then[A|b]=|1—-114[~]0-2 0 1

1-5A16 00 A-10
The given system has an infinite number of solutions, when Rank[A | b] =
Rank(A) = 2. Therefore . = 1.

(68) The system of equations:

lx+2x2+3xy+0.y=6
2x+1.x>4+3xy+1y=5
lx—1x>+0xy+1ly=7

(a) has solutions in rational numbers (b) has solutions in real numbers
(c) has solutions in complex numbers (d) has no solution

Ans. Optiond
When we add the first and third equation, we get the LHS of the second equation
but the RHS is different. Therefore the system has no solution.

203 2 02 5 5
010-13 4 1 1 .

(69) Let A = 001 0 4 4 , by = 1 and b, = 3 . Then which of the
111 011 4 3

following are true?

(a) Both systems Ax = b; and Ax = b, are inconsistent.
(b) Both systems Ax = by and Ax = b, are consistent.
(c) The system Ax = by — b is consistent.

(d) The system Ax = b; — b, is inconsistent.

Ans. Options a and ¢

2032 0-25 2032 0-25
The augmented matrix [A | b1]= 8(1)(1)_013 i i ~ 8(1)(1)_013 j 1
111 011 4 000 0 00 2

= Rank [A | b1] # Rank(A). Thus, the system Ax = by is inconsistent. Sim-
ilarly, we can show that the system Ax = b, is inconsistent.
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0
Let b=by —b, = _02. Then the augmented matrix [A]|b]=
|1
2032 0-2 0] 203 2 0-20
010-13 4 O 010—-13 40
001 044 —2| " 001 04 4 2| RanklA]b]= Rank(A).
111011 2| 000 00O0O

Thus, the system Ax = by — b, is consistent.

(70) Let A be 4 x 5 real matrix. Consider the system Ax = b of linear equations
where x is a 5 x 1 column matrix of indeterminates and b is some fixed 4 x 1
column matrix with real entries. Given that

4 A is row equivalent to the matrix M below (which means that the rows of A are
all linear combinations of the rows of M and vice versa), and
4 C and D below are both solutions to Ax = b,

what is the value of y?

1-2-1-30 ; ;

00 0 01
M:00000’C:2’D:f51

00 0 00 < <

Ans. Since C and D below are both solutions to Ax =b, y —25=—-18 =
y="17.

(71) Consider the system of linear equations

X1+ x+5x3 =3, xi+2x+ux3 =5, x; +2x +4x3 =1
The system is consistent if
@u#4 GAIA#ES ©Qu=4 Ar=5

Ans. Option a and d
The above system can be represented in the form of Ax = b as

(115 X 3
Z,u X2 | = 5
B 24 _)C3_ A
Then _ _ _
1153 11 5 3
[Albl=(12uS5({~[01pu-5 2
[124x] |004—pir-5
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(a) When u # 4, Rank[A | b] = Rank(A) = 3, the system is consistent.

(b) & (c) When A # 5, u = 4, Rank[A | b] = 3 # Rank(A) = 2, the system is
not consistent.

(d) When L =5, Rank[A | b] = Rank(A) =2 or 3 which depends upon the
value of |, then the system is consistent.

(72) Suppose a, B, y € R. Consider the following system of linear equations.

Xi+xo+x3=0o, x1+Px2+x3=y, x1+x2+ax3=4

If this system has atleast one solution, then which of the following statements
is(are) TRUE?

(@Ifa=1theny=1 (b)Ifp=1theny =«
(©)If#1thena=1 (d)Ify =1thena =1

Ans. Option a and b
The above system can be represented in the form of Ax = b as

111 X1 o
LBl |x|=|Y
I11a|lx; B

Then
1 1 1 o

o
y|~[08—-1 0 y—«
B

11
[Alb]l= |18
11 0 0 a—-18—«

1
1
o

(a) If« = 1, we have

11 1 1
[Albl=|0B8—-10y—1
0 0 08—1

As the given system is consistent, Rank[A | b] = Rank(A) foranya, B,y € R.
Therefore if B # 1, then the given system does not have a solution as otherwise,

Rank[A | b] = 3 # Rank(A) =2
Therefore f = 1.Then
111 1
[Ab]=(000y—-1]|=>y=1
000 O

(b)If B =1, then



8 Solved Problems—Preliminaries

317
11 1 o
[A]b]=[00 0 y—«
00a—-11—-«a

If y # o, then Rank[A | b] # Rank(A). Now suppose that o = y. Then

11 1 1
[A|b]=[00 O 0
00a—11—«

The given system is consistent.

(c)If B # 1 and o = 1, then

Rank[A | b] = 3 # Rank(A) =2

Then the system is not consistent.

(d)Ify =a =1, then

11 1 1
[Alb]=]|0B8—-10 0
0 0 08—1

Clearly, the system need not be consistent.

(73) For two non zero real numbers A and p, consider the system of linear equations

Apllxal %
wA][x2 3
Which of the following statements is(are) TRUE?

(a) If & = p, the solutions of the system lie on the line x; + x, = %

(b) If A = —u, the solutions of the system lie on the line x, — x; = %
(c) If & # %pu, the system has no solution.
(d) If & # %pu, the system has a unique solution.

Ans. Options a, b and d
(a) If A =  then the given system written in the form Ax = b is

e ] -TE]
J~[56

Then

OfE

R
[Alb]_[u

)

SIS
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Clearly, Rank[A | b] = Rank(A) = 1. The system is consistent and the solu-
tions of the system lies on x| + x, = %

(b) If A = —u then the given system written in the form Ax = b is
—wop ||x| |5
wo—p | x2 -

N B
[Alb]_[u—u%‘} [0 00

Clearly, Rank[A | b] = Rank(A) = 1. The system is consistent and the solu-
tions of the system lies on x, — x| = %

Then

(¢) If . # %, then det(A) = A% — u? # 0. Therefore
Rank[A | b] = Rank(A) = 2 = number of unknowns

Thus the system has a unique solution.

(74) The system of equations
X14+x+2x3=2, 2x; +3xp —x3=95, 4x; +Tx, + Ax3 =6
does NOT have a solution. Then, the value of A must be equalto......

Ans. The given system can be represented in the form Ax = b as

11 2 X1 2
23 -1 x| =15
47 X X3 6
We have
112 2 11 2 2
23-15|1~(01 =5 1
47 1 6 O0A+7-5

Therefore, the system has no solution if , +7 = 0. That is, if A = —7.

(75) Consider the following system of three linear equations in four unknowns
X1, X2, X3 and X4

X14+x+x34+x4 =4, x1+2x +3x3+4x4 =5, x1 +3x +5x3+Axy =5

If the system has no solutions, then A = - - - - -
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Ans. The given system can be represented in the form Ax = b as

1111 | 4
1234 || =15
1352 5
L X
We have _

11114 111 1 4

[Alb]=|12345|~|012 3 1
(13545 000A—7—1

When A =7, Rank[A | b] = 2 # Rank(A) = 3. Therefore the given system has
no solution.

(76) Consider the following system of linear equations
Axi4+2x+x3 =0, x+5x3 =1, uxs —5x3 = —1

Which one of the following statements is true?

(a) The system has unique solution for A = 1, u = —1

(b) The system has unique solution for A = —1, u =1

(c) The system has no solution for A =1, u =0

(d) The system has infinitely many solutions for A =0, u =0

Ans. Option b
The above system can be represented in the form Ax = b as

21 X1 0
01 5 x|=11
=5 X3 —1
Then
A2 1 0 A2 1 0
[A]lb]=(0T1T 5 1 | ~|[01 5 1
0p—5—1 00-5—5u—1—p

(a) When . =1, u = —1,
Rank(A) = Rank[A | b] = 2 < number of unknowns

Therefore the system has infinitely many solution.
(b) When A = —1,u =1,

Rank(A) = Rank[A | b] = 3 = number of unknowns
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Therefore the system has unique solution.
(c) When A =1, u =0,

Rank(A) = Rank[A | b] = 3 = number of unknowns

Therefore the system has unique solution.
(d) When .. =0, u =0,

Rank[A | b] =3 # Rank(A) =2

Therefore the system has no solution.

(77) In which case the system of equations
X1 —2xp4+x3=3, 2x1 = 5x,+2x3 =2, x1 +2x2 + Ax3 =

has infinite number of solutions? (a) A =1, u = —19 (b)A=—-1,u =19
©r=2,u=18 r=1u=19

Ans. Optiond
The above system can be represented in the form Ax = b as
1=211[x 3
2-52(|x|=|2
1 2 A |x3 N
Then
1-213 1-2 1 3
[A]b]=|2-522|~[0-1 O —4
1 2 Ap 00 x—1p—19

(a) When . =1, u = —19,
Rank[A | b] = 3 # Rank(A) =2

Therefore the system has no solutions.
(b) When A = —1, u = 19,

Rank[A | b] = Rank(A) = 3 = number of unknowns

Therefore the system has unique solution.
(c) When A =2, u = 18,

Rank[A | b] = Rank(A) = 3 = number of unknowns
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Therefore the system has unique solution.
(d) When .. =1, u = 19,

Rank[A | b] = Rank(A) = 2 < number of unknowns
Therefore the system has infinite number of solutions.
(78) Consider the linear system
X1+x24+2x3=A, x1+4x2+x3=4, 3x, —x3 =W

If the above system always has a solution then the value of A + u is equal to

Ans. The above system can be represented in the form Ax = b as

112 X A
141 xn|l=14
03—-1]]x3 1%
Then
112 A 112 A
141 4] ~(03-1 4-—2A
03—-1pn 000 A+u—4

The given system has a solution when Rank[A | b] = Rank(A) = 2. That is,
when A + u — 4 = 0. Therefore A + n = 4.

(79) The system of equations

X1+ 3x4+2x3 =X, 2x; +x, —4x3 =4, 5x; — 14x3 = 10
(a) has unique solution for A = 2  (b) has infinitely many solutions for A = 2
(c) has no solution for A =2 (d) has unique solution for any A # 2

Ans. Option b

The above system can be represented in the form Ax = b as

13 2 X1 A
21 —4 xn|l=14
50—14 1| | x3 10
Then
13 2 A 13 2 A

[A|B]=|21 —4 4 |~|0-5-84—2x
50—14 10 00 0 A—2
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When A = 2, Rank[A | b] = Rank(A) = 2 < number of unknowns. Therefore
the given system has infinitely many solutions.

When ) # 2, Rank[A | b] = 3 # Rank(A) = 2. Therefore the system has no
solution.

(80) Find the value(s) of A for which the following system of linear equations

Al X1 1
X2 =
X3 1

(a) has a unique solution
(b) has infinitely many solutions
(c) has no solution

Ans. Since the determinant of the given matrix is M=3r+2=0GQ—-D*0+
2), the given matrix is invertible for all ) other than I and —2. When A = 1, the
given system is
111 X1
111 x| =
111 X3

Then Rank[A | b] = Rank(A) = 1 < number of unknowns. So the system has
infinitely many solutions when A = 1.
When . = —2, the given system is

-2 1 1 X1
1 =21 x| =
1 1 =2) \x3
Then
-2 1 11 -2 111
[Alb]=]|1 21 1})~| 0 —333
1 1 =21 0 006
Clearly, Rank[A | B] =3 # Rank(A) = 2 and hence the given system has no
solution when . = —2.
1-11 1
B8l) Let A= |1 1 1| and b= | 3 |. Then the system Ax = b over the real
2 3 A w

numbers has

(a) no solution whenever u # 7.

(b) an infinite number of solutions whenever A # 2.
(c) an infinite number of solutions if A = 2 and u # 7.
(d) a unique solution if A # 2.
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Ans. Optiond
Consider the augmented matrix

When A # 2, Rank[A | b] = Rank(A) = 3, the given system has a unique solu-
tion.

When A = 2and i # 7, Rank[A | b] = 3 # Rank(A) = 2 implies that the sys-
tem is inconsistent.

(82) Consider the system of simultaneous equations
2x1 — 2% —2x3 =, —2x1+2x; —3x3 =0, 4x; —4x, +5x3 =y

Write down the condition to be satisfied by «, 8, y for this system NOT to have
a solution.

Ans. The above system can be written in the form of Ax = b as

2 =2 =27 [ a
22 3| |x|=|8
4 -4 5 X3 y
Then
9w 2-2-2 a
[Albl=|-22 —3p8|~|00 > “;Fﬂ S
4 —4 5y 0 %ﬂ"'y

The system has no solution when Rank[A | b] # Rank(A). Here Rank(A) = 2.
So when —a + 98 + 5y # 0 the system has no solution.

(83) Let A € M,»(R) be a singular matrix. Let xy and b be vectors in R” such that
Axog = b. Which of the following statements are true?
(a) There exists yo € R” such that AT yy = b.
(b) There exist infinitely many solutions to the equation Ax = b.
(c) If ATx = 0, then it follows that bTx = 0.

Ans. Option b and ¢
(a) Consider the system

001 [x 1
010 [xx| =12
000 |x3 0

Then [0 2 1]T is a solution for the given system. But the system
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000] [x 1
010 X2 | = 2
100 | x3 0

does not have solution as the rank of the augmented matrix is 3 and the rank of
the coefficient matrix is 2.
(b) Since A is singular,

Rank[A | b] = Rank(A) < number of unknowns

Therefore there exist infinitely many solutions to the equation Ax = b.
(c) ATx=0= xTATx=0=bTx =0.

(84) The system of equations
X1—Xo+2x3=0a, x]+2x—x3=8, 2xo —2x3 =y

is inconsistent when («, 8, y) equals
(@ (2,2,00 ()(0,3,2) (¢)(2,2,1) (d)2,-1,-2)

Ans. Option c
The above system can be represented in the form of Ax = b as

1-12 X1 o
2 —1||x|=|8
2 =2||x3 y
Then
L 1-12 o
— o ,B—a
[Albl=|12 —18]|~]|0 1 —1 ;
_ 3y — 2
02 2y 00 o Y P+ 2«

Since the system is inconsistent Rank[A | b] # Rank(A) = 2. Therefore

3y =2 2
Rank[A | b] = 3. Hence, yfﬁ—}—a must be non-zero.

(85) Letu,v € R*besuch thatu = [12 3 S]T andv=[532 1]T. Then the equa-
tion uv’ x = v has
(a) infinitely many solutions (b) no solution
(c) exactly one solution  (d) exactly two solutions

Ans. Option b
We have
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53215 5321 5

o’ | v] = 106 423 10000 —7
T 1159 632 0000—-13
25151051 0000 —24

Then
Rank [uv” | v] =2 # Rank (uv’) =1

T

Thus the equation uv' x = v has no solutions.

(86) If x1, x, and x3 are real numbers such that 4x; + 2x, + x3 = 31 and 2x; +
4x, — x3 = 19, then the value of 9x; + 7x5 + x3
(a) equals 8%—1 (b) equals Z;ﬂ (c) equals lgﬁ (d) equals 23ﬁ

Ans. Optiond
The given system can be written in the form Ax = b as

42 171 3
24 -1 7 |19
X3

42 1 317 [42 1 31
[A|b]=|:24—119]~[06—3 7}

Rank [A | b] = Rank (A) = 2 < number of unknowns

Then

and

Therefore the system has infinite number of solutions. The general form of the
T+ 3A 43 — 31

solutions is given by z = A,y = and x = . If we take A =0,
wehavex:%,y: %,z:O. Then9x1+7x2+x3=23ﬁ.
all X1
B87) LetA=|181|,a8y =1,a,8,y € Randx = | x, | € R®. ThenAx =0
11y X3

has infinitely many solutions if 7 (A) is ......

Ans. The homogeneous system has infinitely many solutions when det (A) = 0.

Here
det(A)=3—(a¢+B8+y)=0=>tr(A)=a+B+y =3

(88) Let a unit vector v = [vl vy v3]T be such that Av = 0 where

67 5

A=|5 3 _? . Then the value of v/6(|v{| + |va| + |v3]) equals ......
g |
6 3 6
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Ans. We have

5 —1 —1
5T (5 —2-1
A= *Tlg*— =—|-22 =2
3,03 3 6
T3 e -1-25
Then

5 —2-1 0 00

22 2|~10 1 =2|=v,=2v;,v =13

-1-25 -1-25

Since v is a unit vector, ,/Ivf| + |v§| + |v§| = 1. Consider v = % [1 2 1]

Then v/6(|vi| + |va| + |v3]) = 4

(89) Let p be a prime and consider the field Z,. List the primes for which the
following system of linear equations DOES NOT have a solution in Z:

5x1+3x =4
3x;1 +6x, =1

Ans. The system can be written as
5 3 X1 _ 4
36 X2 |1

534] [53 4
[A|b]=[63l]w[021 —7}

The system of equations Ax = b is inconsistent when Rank[A | b] # Rank(A).
If Rank(A) = 2 then clearly Rank[A | b] = Rank(A). So here Rank(A) must
be equal to 1. Hence det(A) =0= p =3 or p=". When p =7, Rank[A |
b] = Rank(A) = 1 andwhen p = 3, Rank[A | b] = 2 # Rank(A) = 1. There-
fore p = 3 is the only possibility.

Then

(90) Check whether the following statements are true or false.

(a) If A and B are 3 x 3 matrices and A is invertible, then there exists an integer
n such that A 4+ n B is invertible.

vjwp - VjWio
| vowy - v2wio

(b) The 10 x 10 matrix . . hasrank 2, where v;, w; # 0 € C.
VjoWi - - VjoWio

(c) Let S be the set of all n x n real matrices whose entries are only 0, 1, or 2.
Then the average determinant of a matrix in § is greater than or equal to 1.
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(d) Every 2 x 2 matrix over C is a square of some matrix.

(e) For all positive integers m and n, if A is an m x n real matrix, and B is an
n x m real matrix such that AB = I, then BA = 1.

(f) Suppose Ay, ..., A,, are distinct n x n real matrices such that A;A; =0
foralli # j. Thenm < n.

(g) Let A, B, C € Mj3,3(R) be such that A commutes with B, B commutes
with C and B is not a scalar matrix. Then A commutes with C.

(h) Let A, B € M,,.,(R) be such that A+ B = AB. Then AB = BA.

(1) Suppose A, B, C are 3 x 3 real matrices with Rank(A) = 2, Rank(B) =
1,Rank(C) = 2. Then Rank(ABC) = 1.

Ans. (a) True. det (A + x B) is a polynomial of degree 3. It is either zero for all
X or equal to zero for all but finitely many x. When x = 0, det (A + xB) # 0 as
A is invertible. So there exists an integer n such that A + nB is invertible.

Vs
(b) False. The ith row of the given matrix can be obtained by multiplying — to
Ui

the first row. So the given matrix is of rank 1.

(c) False. The given set contains 3" elements as each entry has three possibilities.

Now suppose that A € S and det (A) = A then by interchanging one row we get

another matrix in S which has determinant —\. Then the average determinant

of a matrix in S is zero.

(d) False. Let A = 1i|. Suppose that there exists a matrix B = |:a1 ! alz] such
_0 0 ap) dx

that B> = A. This gives,

[ a}, + anax an(an +ax) _ 01
Lax(an + az) anan + a3, 00

Then alzl + apaz; = aziapn +a§2 = 0 which implies that ay = £ay. And
ap(ayr +ap) = 1= ayy = anforifa; = —ax thenaz(ay + axn) = 0. Now
azi(ay; + ax) =2az1a11 = 0= ax; =0 or a;; =0. Now suppose a1 =0,
then axiap;p + a%z = 0 = ay = ay; = 0. But this is not possible since ajp(a;; +
an) = 1. By the same reason a;; = 0 is not possible. So there does not exist a
matrix B such that B> = A.

(e) False. Consider the matrix A = [l O] and B = |:1

2], Then AB = [1] = I 4.

10
But BA = [2 0} £1.

. 00 10| (0O .
(f) False. Conszdertheset{[o 0i| , [O 0] , |:O 1i| } Then A;Aj = Oforalli # j.

Butm > n.
120 100 100

(g) False. Let A= [000|,B=|010|,C=1200|. Then A commutes
000 000 000

with B, B commutes with C and B is not a scalar matrix. But A does not com-
mutes with C.
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(h) True. For, we have

A+B=AB=A+(B—-1)+1=AB
= I=AB—A—(B—1)
S I=AB-1)—(B-1)
=I=A-DB-1

i.e., (A —1I)and (B — I) are inverses of each other. Now

I=B-DA-1)=1=BA—B—A+1

= BA=A+B

= AB = BA

100 100 000
(i) False. Consider the matrices A= |0 10|,B=({000|,andC =]100|.

000 000 010

Then ABC is the zero matrix.
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Solved Problems—Vector Spaces oo

(1) Let p(x) = ax? 4+ Bx + y be a polynomial, where «, 8, y € R. Fix x( € R.
LetS = {(a,b,c) e R} | p(x) = a(x — x0)> + b(x — xo) + ¢V x € R}. Then
the number of elements in S is
()0 (b)1 (c) strictly greater than 1 but finite  (d) infinite

Ans. Option b
Fix xo € R. Then

p(x) =alx —x0)? +b(x —x0) +c = ax’ + Bx+y =a(x —x0)> + b(x — x0) + ¢
=a=u«, b=+ 2uxp, c:y+(ﬁ+2ax0)xo+x3
(2) If V is a vector space over the field Zs and dimz (V) = 3, then V has
(a) 125 elements. (b) 15 elements. (c) 243 elements. (d) None of the above.

Ans. Option a
Let {vy, v3, v3} be a basis of V. Then

V ={awv) +avs +azvs i a, a, a3 € Zs}

Therefore V has 125 elements.

484
(3) Which of the following matrices has the same row space as the matrix | 36 1 |?
240
120 110 010 100
@ (0 0 1) ®) (0 0 1) © <0 0 1) @ (o 1 0)
Ans. Option a
484 120
By suitable elementary transformations, we get | 36 1] ~ (1001 |.
240 000
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(4) Let Abeanm x n matrix withrank r. If the linear system Ax = b has a solution
for each b € R™, then

@ m=r

(b) the column space of A is a proper subspace of R™.

(c) the null space of A is a non trivial subspace of R” whenever m = n.
(d) m > n implies m = n.

Ans. Options a and d

The system Ax = b has a solution for each b € R™ implies that the column space
of A is R™ and since Rank(A) =r, m =r. As Rank(A) < min{m,n}, m > n
implies m = n. If m = n the null space of A is the trivial subspace of R™.

ap ap
a1 ax
ap + axp = 0. Let W be the set of matrices in V with aj, + a1 = 0. Then,
under usual matrix addition and scalar multiplication, which of the following
is (are) true?

(a) V is a vector space over C  (b) W is a vector space over C

(c) V is a vector space over R (d) W is a vector space over R

(5) Let V be the set of 2 x 2 matrices |: ] with complex entries such that

Ans. Options a, c and d
a+ib c+id
e+if —a—ib

ar+iby ¢ +id; _|ax+iby cx+ids
|:€1+l'f1 —al—ib1i|’ = |:ez+if2 —az—ibz] € V.ThenA A+ B eV as

An element in 'V is of the form [ :| Let A=

Mar +iby) + (az +ib2) + AM(—ay —iby) + (—az — ib2) =0

forany » € C(or Ryand A,B € V.

An element in W is of the form |: a+ib c+id

—c+id —a — ibi|' Then

| a+ib c+id | | ia—b ic—d
! —c+id —a—ib|  |—ic—d —ia+b

Jov

But W is a vector space over R.

(6) Let A be an m x n real matrix and b € R™ with b # 0.

(a) The set of all real solutions of Ax = b is a vector space.

(b) If x; and x, are two solutions of Ax = b, then Ax; + (1 — X)x, is also a
solution of Ax = b forany A € R

(c) For any two solutions x; and x; of Ax = b, the linear combination Ax; +
(1 — A)x; is also a solution of AX = B only when 0 < A < 1.

(d) If rank of A is n, then Ax = b has at most one solution
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Ans. Options b and d

(a) Since 0 vector is not a solution of the given system Option a is false.
(b) & (c) x1 and x, are solutions = Ax; = b and Ax, = b. Now

AQxi+ (0 =Mx) =AAx1+ (1 —XMAx, =b

forany A € R.
(d) If the system is consistent Rank(A) = n imply unique solution.

(7) Which of the following is a subspace of the vector space R3?

@ {(x,y,2) e R¥:x+2y=0,2x+3z=0]}
() {(x,y,2) eR*:2x + 3y +4z -3 =0,z =0}
© {(x,y,2)eR*: x>0,y >0}

@ {x,y, 200 eR:x—1=0,y =0}

Ans. Option a

(a) Let
W, ={(x,y,z)G]R3:x+2y=0,2x+3z=0}

Take (x1, y1,21), (X2, ¥2, 22) € A. Then x1 +2y; = 0,2x; 4+ 3z; = 0 and
X2+ 2y, =0,2x, + 3z, = 0. For A € R, we have

Alxr, ¥1,21) + (X2, y2, 22) = (Ax1 + X2, Ay1 + Y2, Az1 +220) € W)

as
AXp+x2 + 2y +y2) = Ax; +2y1) + (2 +2y2) =0

and
2(Ax1 +x2) +3(Az1 + 22) = A(2x1 +321) + 2x2 +322) =0

Therefore Wy is a subspace.
(b) Let
W, = {(x,y,z) €R3:2x+3y+4z—3=0,z=0}

Then W, is not a subspace since (0,0, 0) ¢ W,.
(c) Let
Wi={(x,y,2)eR*:x >0,y >0}

Then(1,1,0) € Ws.Take —1 € R. —1(1,1,0) = (-1, —1, 0) ¢ W3. There-
fore W5 is not a subspace.
(d) Let
Wi={(x,y,200eR:x—1=0,y=0}
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Then Wy is not a subspace since (0,0, 0) ¢ Wy.

(8) Which of the following are subspaces of the vector space R3?
@{x,y,2):x+y=0 ®{(x,y,2):x—y=0}
©{x,y,2):x+y=1} D{x y.2):x—y=1}

Ans. Options a and b
Since the possible subspaces of R* are either {0}, lines passing through origin,
planes passing through origin and R3, options ¢ and d are not subspaces as
they does not pass through origin and a and b represents planes passing through
origin.

(9) Which of the following sets of functions from R to R is a vector space over R?

Wi ={f1 ]im3f(x) =0}, Wr={gl }im3g(x) =1}, W3={h| 1im3h(x) exists}

(a) Only W,

(b) Only W,

(c) W; and W3 but not W,

(d) All the three are vector spaces

Ans. Option ¢
Let f1, f» € Wy and A € R. Since

lim A(f1(x) + f2(x)) = 2 lim £1(x) + lim f>(x) =0

W, is a vector space over R.
Let hy, h, € W5 and ) € R. Since

11m3 Ahi(x) + ho(x)) = A 111’[13 hi(x) + ]11’1’5 ho(x)

exists, W3 is a vector space over R. Since 0 element does not belong to W, it is
not a vector space over R.

(10) Consider M, (R). Among the following subsets of M, ., (R), decide which
are linear subspaces.

@ Wy ={A eM,x, R): Aisnonsingular}

(b) Wy ={A € M, (R) : det(A) =0}

() W3 ={A € M, R) : 1r(A) =0}

(d) Wy={BA: A e M,, (R)} where B is some fixed matrix in M, ., (R).

Ans. Options c and d

(a) We have I, —I1 € Wi, where I is the identity matrix. But their sum is the
zero matrix which does not belong to W,. Therefore W, is not a linear
subspace.
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10...0
01...0
(b) Take Ay =| ... .|(az=1Vi=12,....,n—1, a,, =0 and all
00...0
00...0
00...0
other entries are zero) and Ao, = | . . .| (a;z =0Vi=172,...,
00...1

n—1, a,, =1 and all other entries are zero). Then A;, A, € W, and
A1+ Ay = I ¢ W,. Therefore W, is not a linear subspace.
(c) Let Ay, Ay € W3 and ) € R. Then
tr(AA + Ay) = Atr(A)) +tr(Ay) =0

Therefore W5 is a linear subspace.
(d) Let BA;, BA, € Wy where Ay, Ay € M, (R) and let A € R. Then

AMBA| + BAy) = B(AA| + Ay) e Wy

Therefore Wy is a linear subspace.

210
(11) Fix A=[020] € M3,3 (R). Which of the following are subspaces of
003
M3 (R)?

() W, = {B € My, (R) : BA = AB)
by Wy ={BeM;3(R): B+ A=A+ B}
(©) W3 ={B € M3.3 (R) : tr(AB) = 0}

(d) Wy = {B € M, (R) : det (AB) = 0}

Ans. Options a, b and c
(a) Let By, B, € Wy, then AB; = B1A and AB, = ByA. Now for any A € R,

(ABy + B)A = AB{A+ BA=AAB1+ AB, = A(AB; + B»)

Hence, AB| + B, € W for any By, B, € W and . € R. Therefore W is
a subspace.

(b) Let By, B, € W), then By + A = A+ Byand B, + A = A + B,. Now for
any ) € R. Then

(AB1+B)+A=AB +(By+A)=AB1 +A)+ By =A+ (AB1 + By)

Hence, LBy + B, € W, for any B, B, € W, and . € R. Therefore W, is
a subspace.
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(c) Let By, B, € W3, then tr (ABy) = tr (AB,) = 0. Now for any A € R,
tr[A(AB) + By)] =tr (AABy + ABy) = Altr (AB))]+tr (AB;) =0

Hence, LBy + B, € W3 for any B, B, € W3 and ) € R. Therefore W5 is

a subspace.
100 000
(d) Let By={000]| and B =|010]. Then B, B, € Wy. But B; +
000 001

By =1 ¢ Wy. Therefore Wy is not a subspace.

(12) Let V be a finite-dimensional vector space and let W, W, and W3 be subspaces
of V. Which of the following statements are true?

@ WinWo+W3) =W NW,+ W NW;
®) Win(W,+W3)cWinW,+ W, NW;
C© Win(Wo+W3) DWiNW,+ W, NW;

Ans. Option ¢
LetV =R% W, = {(x, yeR:y= xl, W, = x— axis, and W3 = y— axis.
Then Wy, W, and W3 are subspaces of R. Also

WiN(Wa+ Ws) =W, NR> =W,

and
WiN W, + W, N W ={(0,0)}

Therefore (a) and (b) are false. Now letv € Wi N W, + Wi N W3, then

veWiNW,+WiNnWy=v=vi+wv,vie WNWand v, € W; N\ W;
= v, e W,vieW,and v, € Ws
S>v=vi+wveWandv=vi+vye W,+ W;
=ve W nNW,+ Ws)

Therefore Wi N (W, + W3) D Wi N W, + W N Wa.

(13) For arbitrary subspaces U, V and W of a finite-dimensional vector space, which
of the following hold:

@UnNniV+wW)ycunv4+Unw
b)) UNV+W)DUNV+UNW
© UNWM+WcCcU+WwW)nv+Ww)
@ uUnv)+woWU+w)ynv+w)
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Ans. Options b and c

Consider R?. Let U = x-axis, V = y-axis and W = {(x,y) € R? : y = x}.
ThenUNV +W)=U,butUNV +UNW={0}LAlso(UNV)+ W =W
and (U + W) N (V + W) = R2 Therefore options a and d are false.

veUNV+UNW=v=v+v, wherevieUNVandv, e UNW
=svielU,Vandv, e U W
>vi+weUandvi+v, e V+W
=sveUNV4+W)

Therefore UN(V+W)DUNV4+UNW.

veUNV)+W=v=v)+Vvy, wherevie UNV)andv, e W
Sv=vi+wv e U+ W)and (V+ W)
veU+W)NV +W)

Therefore UNV)+ W C (U+W)N(V + W).

(14) Let {vy, v2, v3} is a linearly independent set of vectors in a vector space over R,
then which one of the following sets is also linearly independent?

(@) {vi +v2 —v3,2v; +vo + 3vs, Sv; + 4v,}

(b) {vi —v2,va —v3,v3 — i}

(©) {vi+v2—v3,va+v3 =V, v3+V — V2,V + V2 + vz}
(d {vi +v2,v2+2v3,v3 + 3v1}

Ans. Optiond
Suppose that {vi, v2, v3} is linearly independent. Then

AMvi+ v+ A3 =0 A =X =23=0
Now

a(vi +vy —v3) + BQ2vi+ vy +3v3) +y(Svi +4v2) =0
= @+28+5y)vi+(@+B+4y)va+ (—a+38)v3=0

Since {vi, v2, v3} is linearly independent,
a+284+5y, a+8+4y =0, —a+38=0
We have to check whether o« = B = y = 0. It is enough to check whether the

homogeneous system has unique solution or not. The homogeneous system has
unique solution when the determinant of the coefficient matrix is not equal to zero.
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125 1 0 -1
Since | 1 14| =0, option a is not correct. Similarly, since |—1 1 0 | =0,
—-130 0 -1 1
103
option b is not correct. Since |1 1 0| 5~ 0 option d is correct. For option ¢ we
021
get 4 x 3 coefficient matrix which ensures the existence of infinite number of
solutions.

(15) Let n be an integer, n > 3, and uy, u,,...,u, be n linearly independent
elements in a vector space over R. Set uy = 0 and u,; = u;. Define v; =
u; +uipandw; =u;_; +u; fori =1,2,...,n. Then
(a) vi,va, ..., v, are linearly independent, if n = 2010.

() vy, v, ..., v, are linearly independent, if n = 2011.
(c) wy, wa, ..., w, are linearly independent, if n = 2010.
(d) wy, wy, ..., w, are linearly independent, if n = 2011.

Ans. Options b, c and d
Let A, Ao, ..., Ay € Rsuch that )'_ Ajv; = 0.

n n n n
Z)»ivi =0= Z)\i(ui +uip) = Zliui + Z)»iuiﬂ =0
i=1 i=1 i=1 i=1

n—1
= (A1 + A up + Z()»i +Air)uip1 =0

i=1
= A =—M,and Ajr1 = —A; since{u; |i =1,...,n}is LI
= A =—A,and A = (—l)i_lkl fori=2,3,...,n

When n is odd, this gives A; = —A, = A,. Therefore, .y = X, = 0. This implies
A =0Vi=1,2,...,n when n is odd. Therefore vi, v, ..., v, are linearly
independent, if n = 2011 and linearly dependent, if n = 2010.

Now let [y, 2, ..., by € R such that y_;_, piw; = 0.

n n n n
Zﬂiwi =0= Zﬂi(ui—l +u;) = Zﬂiui—l + Z,Miui =0
i=1 i=1 i=1 i=1
n—1

= Z (Mi + :ufi+l) Ui + pty = 0

i=1

= w=0Y¥i=12....n

Therefore wi, wy, . .., w, are linearly independent, ifn = 2010 and ifn = 2011.
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(16) Let A be a 4 x 3 real matrix and let {e, e2, 3} be the standard basis of R3.
Which of the following is true?

(a) If Rank(A) = 1, then {Ae;, Ae;} is a linearly independent set.
(b) If Rank(A) = 2, then {Ae;, Ae;} is a linearly independent set.
(c) If Rank(A) = 2, then {Ae;, Aes} is a linearly independent set.
(d) If Rank(A) = 3, then {Ae;, Ae,} is a linearly independent set.

Ans. Option d
[100]
000

000
000

(a) Let A =

. Then A is matrix of Rank 1. But {Ae|, Ae,} is not a

linearly independent set as Ae, is the zero vector.

(1007
000
001
000

(b) Let A =

. Then A is matrix of Rank 2. But {Aey, Aey} is not a

linearly independent set as Ae, is the zero vector.

[100]
010

(c) Let A = 000

000

, Then A is matrix of Rank 2. But {Ae,, Aes} is not a

linearly independent set as Aes is the zero vector.
(d) Now consider the matrix B with {e;, ez} as its columns. Then B is matrix
with Rank 2. Then by Sylvester’s inequality,

Rank(A) + Rank(B) — 3 < Rank(AB) < min {Rank(A), Rank(B)}

which implies Rank(AB) = 2.Therefore {Aey, Aes} is a linearly indepen-

dent set.

135 x

13

(17) Let A= 1017 9 u | where A, u € R. Choose the correct statement.
0011115

(a) There exists values of A and u for which the columns of A are linearly

independent.

(b) There exists values of A and u for which Ax = 0 has x = 0 as the only

solution.

(c) For all values of A and pu the rows of A span a three-dimensional subspace

of R.

(d) There exists values of A and u for which Rank(A) = 2.
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Ans. Option ¢

Since R® cannot have a linearly independent set of 5 vectors, there does not

exists values of A and  for which the columns of A are linearly independent.
135

Since A contains the sub matrix | 0 1 7 | of rank 3, Rank(A) = 3 < number
001

of unknowns, the system has infinitely many solutions for any values of A and

u. Since Rank(A) = 3, for all values of A and w the rows of A span a three-

dimensional subspace of R>.

(18) Let x = (x1, x2,x3),y = (¥1, y2,¥3) € R3 be linearly independent. Let §; =
XoV3 — YoX3, 80 = X1y3 — Y1X3,083 = X1y — yi1xp. If V is the span of x,y,
then
@V ={u,v,w):u—5v+sw=0}
bV ={(u,v,w) : =81u + §v + 3w = 0}
©V ={(u,v,w):§u—+8sv—w=0}

@V ={(u,v,w):8u-+ v+ sw =0}

Ans. Option a
Take x = (1,0,0) and y = (0, 1, 1). Then

V = spanf{x, y} = {(u,v,w) e R? 1 v = w}

and §) =0, 8§, = 1 and §3 = 1. Then options b and d are incorrect.
Now take x = (1,1,0) and y = (0,0, 1). Then

V = spanf{x, y} = {(u,v,w) e R> 1 u = v}

and §) = 1, 8, = 1 and §3 = 0. Then options c is incorrect.

(19) Let V denote a vector space over a field K and with abasis B = {ey, e, ..., €,}.
Letkl, Ay ooy Ay € K.LetC = {)\.16‘1, rel+ e, ..., Ale1 +Arer + ...+
Anen}. Then
(a) Cisalinearly independentsetimpliesthatA; # Oforeveryi =1,2,...,n.
() X; #O0foreveryi =1,2,...,n implies that C is a linearly independent

set.

(c) The linear span of C is V implies that A; #= O foreveryi = 1,2, ..., n.
(d) x; #Oforeveryi =1,2,...,nimplies that the linear span C is V.
Ans. Options a, b, c and d

(a) Suppose that C is a linearly independent. Then hie; # 0 = A1 # 0. Like-
wise,

Mer+rey Z0= Ay #0

Forifx, =0,
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Are + ey = Apeg
which implies C is linearly dependent. Proceeding like this we get A; # 0

foreveryi =1,2,...,n.
(b) Let 141, o, ..., 1, € Kand consider

mirier + pa (Arer + Azex) + -+ py (Aieg + Azez + -+ + Ayey) =0
That is,
(w1 + .o+ ) Mer + (2 + -+ o) Arez + - -+ + pdpe, =0
Since B is a basis,
M1+ Fu)r =W+ +u)ra ==k, =0
As A; # O foreveryi = 1,2, ..., n this implies u,, = 0. Now,
Wn—1+ M) A1 =0= wy 1+ =0= 1 =0
Proceeding like this we get u; = 0 for everyi =1,2,...,n.
(c) Suppose that the linear span of C is V. Since V is of dimension n, every
element in C is non-zero. Then hie; # 0 = L1 # 0. Also,
Mer+rey Z0= Ay 20

Forif, A\ =0
Are + Arer = Ageg

which implies C is linearly dependent. Proceeding like this we get A; # 0
foreveryi =1,2,...,n.

(d) Asr; # Oforeveryi = 1,2, ..., nimplies C is a linearly independent set,
we get the linear span of C is V.

(20) Let p(x) =ao+ a1x +--- + a,x" be a non-constant polynomial of degree
n > 1. Consider the polynomial

. d
q(x) = / p)dt, r(x) = Ir p(x)
0 X

Let V denote the real vector space of all polynomials in x. Then which of the
following are true?

(a) g and r are linearly independent in V.
(b) g and r are linearly dependent in V.
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(c) x" belongs to the linear span of g and r.
(d) x"*! belongs to the linear span of ¢ and r.

Ans. Option a

Let p(x) =aop+aix+---+a,x". Then q(x) = apx +al"72 +--- +an%
andr(x) = a; + 2ax + + - - - + na,x"~'. Since q(x) and r (x) are polynomials
of different degrees they are linearly independent.

Kyl

Let p(x) = x" 4+ 1. Then q(x) = = 4+ x and r(x) = nx"~'. Clearly both x"

n+1
n+1

and x"T' cannot be written as a linear combination of q and r.

(21) (a) Find a value of A such that the following system of linear equations has no
solution: x +2y +3z =1, 3x+T7y+ iz =2, 2x + Ay + 12z =3
(b) Let V be the vector space of all polynomials with real coefficients of degree
at most n, where n > 2. Considering elements of V as functions from R to
R, define

1
W:{peV:[ p(x)dx:O}
0

Show that W is a subspace of V and dim (W) = n.

Ans. (a) The above system can be represented in the form Ax = b as

12 3 X 1
2A12 Z 3
Then
1231 1 2 3 1
[A|B]=|37A2|~|0A—-4 (A—4HOA-9) 1r—4
2123 0 0 6—-A—4HA—-95—A
Now

6—(L—dHA—-9=0=21>—131+30=0=Ar=100r L =3
When L =10 or A =3, Rank[A | B] =2 and Rank(A) = 3, the system

has no solution.
(b) Let p1(x), p2(x) € W, then

1
/o (Ap1(x) + p2(x))dx =0

for any A € R. Therefore W is a subspace. Consider the set
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which is a subset of W, as

1 1 k+1 1 1
/ - —)dx = r =0Vk=1,...,n
0 k+1 k+1 k4+1],

Also the set is linearly independent, for

A l+/\21+/\3l++x"1—o
"2 2\ 73 YTy n\Y T T

SA=A=A3=-=Ay =0

For constant polynomials fol px)dx # 0. Therefore dim (W) = n.
(22) Which of the following sets of vectors form a basis for R3?

(a) {(=1,0,0), (1,1, 1)(1,2,3)}
(b) {(0,1,2),(1,1, 1)({,2,3)}
(c) {(—-1,1,0),(2,0,0)(0, 1, 1)}

Ans. Options a and ¢

Any linearly independent set which has cardinality as that of dimension is a
basis. So it is enough to check whether the set is linearly independent or not.

—-100
(a) Wehave | 1 1 1| = —1 # 0. Therefore the given set is linearly independent
1 23
and hence is a basis.
012
(b) We have |1 1 1| = 0. Therefore the given set is linearly dependent and hence
123
is not a basis.
200
(c) We have |—1 10| =2 # 0. Therefore the given set is linearly independent
011
and hence is a basis.

(23) Which of the following subsets of R* is a basis of R*?
B, ={(1,0,0,0), (1,1,0,0), (1, 1, 1,0), (1, 1, I, 1)}
B, ={(1,0,0,0),(1,2,0,0), (1,2,3,0), (1,2, 3, 4)}

B3 =1{(1,2,0,0),(0,0,1,1),(2,1,0,0), (-5,5,0,0)}
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(a) B; and B, butnot B; (b) By, B, and B;
(c) By and B3 butnot B, (d) Only B

Ans. Option a

It is enough to check whether which of the above sets are linearly independent.
Since the elements of B, when written as the rows of a 4 x 4 matrix forms a
lower triangular matrix with non-zero diagonal entries, the matrix is invertible
and hence the rows are linearly independent. Similarly, B, is also a linearly
independent set. As, 5(1,2,0,0) + (=5)(2,1,0,0) = (-5,5,0,0), B; is lin-
early dependent.

(24) A basis of
V:{(x,y,z,w)eR4:x+y—z:O, y+z+w=0,2x+y—-3z—w=0}

is
@ {(1,-1,0,DH} ®{d,1,-1,0
1

1 , D, (2,1, =3, 1)}
©{d,0,1, =D} (d {1, -L0,

0’ B
1 ,—D}

1
705

—_ —

) (
) (

Ans. Option d
We have

V={(x,y,z,w)€R4:x+y—z:0, y+z4+w=0,2x+y—-3z—w=0}

:{(x,y,Z,W)ERA‘:)sz—y’ WI*)’*Z}
= span {(1,-1,0,1), (1,0, 1, = 1)}

Clearly the set {(1, —1,0, 1), (1, 0, 1, —1)} is linearly independent.

(25) Write down a basis for the following subspace of R* :

V={(x,y,z,t)€R4:z=x+y,x+y+t=0}

Ans. We have

V={t,yz0eR :z=x+y x+y+1=0]
={,y.z.H)eR iz=x+yt=—-(x+y)}
:Span{(lvos 17_1)7(0a1s 17_1)}

Therefore {(1,0, 1, —1), (0, 1, 1, —1)} is a basis.

(26) Let W C R* be the subspace defined by W = {x € R* : Ax = 0}, where A =
|:2 123

113 O]' Write down a basis for W.
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Ans. By suitable elementary transformations we get
A 2123 (20-26
{1130 01 4 -3

and hence
W={(x,y,z,w)GR4:x—z+3w=O,y+4z—3w=O}

Therefore {(—3,3,0,1), (1, —4, 1, 0)} forms a basis for W.

(27) Let W be the subspace of M, (R) consisting of matrices such that the entries
of the first row add up to zero. Write down a basis for W.

apn —ap
az a

1 -1 00 00| . .
Therefore H:O 0 i| , |:1 0:| , [O 1]} is a basis for W.

(28) Let W be the subspace of M, (R) consisting of all matrices with trace zero and
such that the entries of the first row add up to zero. Write down a basis for W.

Ans. The general form of a matrix in W is |: 1] where a,1, dz1, dyy € R.

ap —an

Ans. The general form of a matrix in W is |: :| where a1, ax € R.

1 -1 00]] . ;
Therefore H:O _1i| , |:1 0:| } is a basis for W.

(29) Let W C M, (R) be the subspace of all matrices such that the entries of the first
column add up to zero. Write down a basis for W.

az) —an

apn ap
—dar az

10 01 00f(] . .
R. Therefore {|:_1 0] , |:0 0i| , |:0 1:” is a basis for W.

(30) Let W = {A € M3(R) : A = A” and tr(A) = 0}. Write down a basis for W.

Ans. The general form of an element in W is [ ] where ay1, ai, ax €

apy ap as
Ans. The general form of a matrix in W is | aj ax a; . Then
a3 ax — (a1 + an)
100 00 0 010 001 000
000 1],/]01 0 [,[{100(f,]000],]001 forms a basis
00 -1 00 -1 000 100 010

or W.
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(31) Let {v;, v, v3} be be a basis of R>. Consider the following statements P and
0:

P : {vi + V2, va + v3, v — v3} is a basis of R3.

O :{vi +v2 +v3,v; +2v, — v3, v; — 33} is a basis of R3.

Which of the above statements hold TRUE?

(a) both P and Q (b) only P

(c) only Q (d) Neither P nor Q

Ans. Option ¢

P: Since
Vit v —(na+v3) =v —v3

the given set is linearly dependent and hence is not a basis of R>.

Q: It is enough to check whether the given set is linearly independent or
not, as the given set has cardinality same as the dimension of R3. For
)\] s )\.2, )\3 S R,

M +v2+v3) + A2 +2v2 —v3) + A3(v; — 3v3) =0

= A +r+23)vi+ A +24) v+ (A — A2 = 343)v3 =0
= AM+r+23)=0, A +212) =0, (A1 —A2—343) =0
SA=A=i3=0

Thus the given set is linearly independent and hence is a basis for R>.

(32) Let V be a vector space of dimension d < oo, over R. Let W be a vector

subspace of V. Let S be a subset of V. Identify which of the following statements
is true:

(a) If S is a basis of V then W N § is a basis of W.

(b) fWNSisabasisof Wand{s + W € V\ W | s € S}isabasisof V \ W.
Then S is a basis of V.

(c) If S is a basis of W as well as V then the dimension of W is d.

Ans. Option ¢

(a) Let V =R? and W = x—axis. Then W is a subspace of V. Consider S =
{(1, 1), (1, =1)}. Then clearly S is a basis for R*. But W N S = ¢ is not a
basis for W.

(b) Let V=R?% W = x—axis and S = {(1,0), (1, 1), (2, 1)}. Clearly W N
S ={(,0)}is abasis of W. Also {s + W € V\ W | s € S} is a basis of
V \ W. But S is not a basis of V.

(c) W and V have same basis means they have same dimension. Therefore,
dim(W) =dim(V) =d.
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(33) Consider the following row vectors:
vi=(,1,0,1,0,0) v»=(1,1,0,0,1,0) vs=(1,1,0,0,0, 1)
vg=(1,0,1,1,0,0) vs =(1,0,1,0,1,0) v¢ =(1,0,1,0,0, 1)

The dimension of the vector space spanned by these row vectors is
@6 (b5 (4 (D3

Ans. Option ¢
By suitable elementary transformations, we have

110100 1101 00
110010 000-110
110001 (000-101
101100 101 100
101010 000 0 00
101001 000 0 00

Therefore the dimension of the vector space spanned by these row vectors is 4.

(34) Consider the subspace

W= {(xl,X2,...X10) € R]O Xy =Xp_1+xpofor3 <n< 10}

of the vector space R'?. The dimension W is
@2 )3 ©9 (@10

Ans. Option a

Since every vector can be written in terms of x| and x,, the dimension W is 2.
(For example, x4 = x3 + x3 = 2x7 + x1)

(35) Consider thereal vector space Pao = {D 7o aix’ : a; € Rand 0 < n < 2020}.
Let W be the subspace given by

W = Zaixi € Paoo : a; = O for all oddi]
i=0

Then, the dimension of Wis......
Ans. Py is a vector space of dimension 2021. There are 1011 even integers
upto 2020 starting from Q. Therefore the dimension of W is 1011.

(36) Consider the subspace W = {[a;;] : a;; = 0if i is even} of all 10 x 10 real
matrices. Then the dimension of W is
(@25 ()50 (¢)75 (d) 100
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Ans. Option b
Since the entries are zero on even rows there are only 50 non-zero entries and
no other restrictions are given. Hence the dimension of W is 50.

(37) Let V be the vector space of all 6 x 6 real matrices over the field R. Then the
dimension of the subspace of V consisting of all symmetric matrices is
(@l5 ()18 (¢)21 (d)35

Ans. Option a
The general form of a 6 x 6 symmetric matrix is

aj) aijz aiz di4 dis die
aj Az azs dz4 das Aze
a3 a3 Az dsg dss dse
A14 A4 Q34 Q44 A45 A4
a)s dps ass d4s dss dse
A6 26 A36 A46 dse Aoes

Therefore V is of dimension 21. In general, if V is the vector space of alln x n
real matrices over the field R, the dimension of the subspace of V consisting of
all symmetric matrices is @

(38) The dimension of the vector space

V= {4 = (@), s € Coty = a5

over the field R is
) ) nn—1) 2
@n° (d)n -1 (C)T @ %
Ans. Option ¢
Since a;; = —a;; Vi, a;; = 0V i and hence the general form of an element in V
0 ap a3z ---an
—ap 0 ax ---ax
is | —a13 —an O - @ | S0 the dimension of V is the number of elements
—Alp —dyy —Aa3zy - 0
nn—1)

above the main diagonal which is

(39) The dimension of the vector space of all symmetric matrices of ordern x n(n >
2) with real entries and trace equal to zero is
@) (n? —n) 1 o) n?* — 2n) !
a —— — —
2 2
(n* +n) 1@ (n% + 2n) B
2 2

() 1
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Ans. Option ¢
The general form of an n X n matrix is

ap ap ais ... ain
app ax azs ... Aaxn
apz asz ass ... asp
iy Aop A3y« .. — (Clu + - 'a(nfl)(nfl))

Therefore dimension of the given subspace is

(n* +n)
2

-1

347

(40) The dimensions of the vector space of all symmetric matrices A = (a,- j) of

order n x n(n > 2) with real entries, a;; = 0 and trace zero is

n*+n—4) n®>—n+4 n*+n-23) n*—n+23)
@-——— (b (©) (d
2 2
Ans. Option b
The general form of an n X n matrix is
0 app aiz ... aip
ap ax a3 ... Qo
a3 asz ass ... asp
Ay Q2p A3y - .. — (6122 +---+ a(n—l)(n—l))
n*+n—4)

Therefore dimension of the given subspace is

(41) Let

W =1 (a;j) € MuaR) | Y a;; =0, fork=2,3,4,56,7.8,

itj=k

then dim(W) is
@7 ®8 ©9 @10

Ans. Option ¢
The general form of an element in W is

0 ap
—ap2 an
—(a13 + axn) as

2

apz a4
azs a4
asz as4

—(a14 + ax +az) —(axy +azz) —azs 0
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Therefore dim(W) = 9.

(42) Let V C M, 4, (R) be the subspace of all matrices such that the entries in every
row add up to zero and the entries in every column also add up to zero. What
is the dimension of V?

Ans. The general form of a matrix in 'V is

ar a —(a11 +---+aip-1)
azy an —(a1 + -+ axp-1))
—(an +-+ap-n) —(@2+---+ap-12) - @i+ +ap-n+--+ap-n1+ -+ an-nm-1

As the last row and column of the above matrix can be represented as a linear

combination of other elements, dimension of V is (n — 1),

(43) Let W be the subset of M., (R) consisting {(a,-.,-) lajg +an+---+
an, = 0}. Is it true that W is a vector subspace of V over R? If so what is
its dimension?

Ans. W consists of set of all n x n matrices with trace 0. Let A, B € W and
A €R, then

tr(lA+ B) = Atr(A) +tr(B)=0 = AA+ B e W

So W is a vector subspace of V over R. General form of a matrix in W is

ainp app ... iy
ajy ay ... (75 ) )
and hence the dim(W) = n° —
aip ayy ... —(@n +an+ -+ ap—1u-n)
1.

(44) Consider the following subspace of R?
W= {(x,y,z) €R3:2x +2y+2z=0, 3x +3y — 2z =0, x+y—3z:0}

The dimension of W is
@0 1 (©2 @3

Ans. Option b
W is the solution space of the system

2x+2y4+z=0,3x+3y—2z=0, x+y—3z=0

The above system can be written in the form AX = B as
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Then
22 1 22 1
33-2|~100-7
11-3 00 0

Therefore A has rank 2 and hence the dimension of W is 3 —2 = 1.

111
(45) LetA=|223|andletV ={(x,y,2) € R3 : det(A) = 0}. Then the dimen-
xXyz
sion of V equals
@0 ®1 @©2 @3

Ans. Option ¢
We have

V ={(x,y,2) € R} : det(A) =0}
={(x,y,2) eR*:x =y}

Clearly V is a two-dimensional subspace.

111
(46) Let A= |3 —1 1 | and V be the vector space of all x € R? such that Ax = 0.
153
Then dim (V) is
@0 1 ©2 @3

Ans. Option b

We have
111 11 1
A=|[3-11[~|0—-4-2
153 1 0

is of rank 2. Therefore dim (V) =3 -2 = 1.
(47) Let V be a subspace of My, (R) defined by

A B

Then the dimensionof Vis......

Ans. Let A = |:x y]. Then
w
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02| |02 xy|[|l02] |02f]|xy
A[31]—[3 1]A$[ZWM3 1]—[3 1]|:Zwi|
=3y=2z, 2x+y=2w, 3w=3x+2

2 +1
:—’sz —
=y 3z 3z

Therefore the dimension of V is 2.

(48) Consider the set V ={[x yz] e R* :ax + By +z =1y, o, B,y € R}. For

which of the following choice(s) the set V becomes a two dimensional subspace
of R? over R?

@a=0,=1,y=0 ®Ga=0,8=1,y=1
C©a=1,=0,y=0 (dDa=1,8=1, y=0

Ans. Options a, c and d

When a« =0, B=1, y=0, V={[xyz] eR:z=—y} which is a 2 -
dimensional subspace.

Wheno =0, =1, y=1,V = {[xyz] €R3:y+z= 1} which is not a
subspace since (0,0,0) € V.

When o« =1, =0, y =0, V:{[xyz]eR3:z:—x} which is a 2 -
dimensional subspace.

Whena =1, =1, y =0,V = {[x y z] eR¥:z= —(x+y)} which isa?2
- dimensional subspace.

1 0
(49) Letvi = | 1| and v, = | 1 [. Let A be the matrix whose columns are vy, v;,
1

2v| — v, V| + 2v; in that order. Then the number of linearly independent solu-
tions of the homogeneous system of linear equations Ax =0is......

Ans. v and v, are linearly independent vectors and hence A has rank 2(as
2vi — vp and vy 4 2v, can be written as a linear combination of both v and
v3). A is of order 3 x 4. So it has 4 unknowns and hence the solution space has
dimension 4 — Rank(A) =4 —2 = 2.

(50) Consider a homogeneous system of linear equations Ax = 0, where A is an

m x n real matrix and n > m. Then which of the following statements are
always true?

(a) Ax = 0 has a solution.

(b) Ax = 0 has no non-zero solution.

(¢) Ax = 0 has a non-zero solution.

(d) Dimension of the space of all solution is atleast n — m.

Ans. Options a, c and d

A homogeneous system is always consistent. Since Number of unknowns is
greater than number of equations the given system has infinite number of solu-
tions and dimension of the space of all solution is atleast n — m.
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X1 T
XX . .
51) Letx = | x, | € R3 be a non-zero vector and A = ——. Then the dimension
T
xTx
X3

of the vector space {y € R? : Ay =0} over Riis ......

xx
Ans. Since x and xT are of rank 1, by Sylvester’s inequality A = —— has rank

X
1. Therefore the solution space of homogeneous system has dimension3 — 1 = 2.

(52) Let W be the subspace of C[0, 1] spanned by {sin(x), cos(x), tan(x)}. Then
the dimension of W over R is
(@1 (d)2 (¢)3 (d) infinite

Ans. Option ¢
The set S = {sin(x), cos(x), tan(x)} is linearly independent. For, let

p(x) = Aysin(x) + Axcos(x) + Astan(x) =0V x € [0, 1]

Then p(0) = 0 = A, = 0. Now,

P (%) =0= Aysin (%) + hstan (%) —0= %)\1 + %M =0

P(%) =0= Aysin (%)—i—hmn (%) =0= %)”4_)\3 =0

Thus we get a system of two equations in two unknowns, namely Ay and Az. This

— 1
V2
invertible. Therefore S = {sin(x), cos(x), tan(x)} is linearly independent and

hence the dimension of W over R is 3.

11
system has unique solution ., = Az = 0, as the coefficient matrix % V3 :| is

(53) Let V denote the vector space C 3[a, b] over R and

_ AT N
Then
(@) dim(V)y =occanddim(W) = oo (b)dim(V) = oo and dim(W) =4

(©) dim(V) = 6 and dim(W) = 5 (d) dim(V) = 5 and dim(W) = 4

Ans. Option b

C3la, b is an infinite-dimensional space and the given differential equation is
a fourth order ODE with constant coefficients. It has 4 linearly independent
solutions. Therefore dim(V) = oo and dim(W) = 4.
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(54) Consider the subspaces
Wi = {(x1, x2,x3) € R 11 = 3o 4 2x3)
Wa = {(x1, X2, x3) € R : x; = 3x2 + 2x3}
of R3. Then the dimension of W; + W equals ... . ...
Ans. Clearly dim(W;) = 2 and dim(W,) = 2. Now
Wi N Wa = {(x1, %2, %3) € R? 1 xy = 0, x = 2x3}

Therefore dim(Wy + W) =2+2—1=23.
(55) Let
Wy = {(u,v,w, x) e R* lu+v4+w=0,2v+x=0,2u+2w—x =0}
Wy = {(u,v,w, x) cR* lu+w+x=0u+w—-2x=0,v—x =0}
Then which among the following is true?
@ dim(W) =1 (b)dim(Wy) =2 (c)dim(W,NWy) =1 (@) dim(W, +
W) =3

Ans. Option c
We have

Wi = {,v,w,x) e R* |u+v+w=0,2v+x=0,2u+2w — x = 0}
={w,v,w,x) eR* [v=—@+w),x=2u+w))
:span{(ls_laov 2)7(07_17 1, 2)}

W2={(u,v,w,x)eR4|u+w+x=0,u+w—2x:0,v—x:0}
={u,v,w,x) eR*|v=x=0,u = —w)}
= span{(1,0, —1,0)}

Therefore dim(Wy) = 2 and dim(W,) = 1. Since
(1’ 05 _17 0) = (17 _17 05 2) - (07 _17 17 2)

W, is a subspace of Wi. Hence dim(Wy N W,) = 1 and dim(W; + W,) = 2.

(56) Let Wy, W,, W3 be three distinct subspaces of R0 such that each W; has dimen-
sion 9. Let W = W; N W, N W3. Then we can conclude that
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(@)dim(W) <3 (b)dim(W) <8
(c)dim(W) =7 (d) W may not be a subspace of R0

Ans. Options b and ¢
Since
dim(W, N W,) =dim W, +dim Wy —dim(W; + W5)

and the possible dimension of Wi + W, is 10 (since Wi and W, are distinct), we
get dim(Wy N W,) = 8. Now

dim(WiNWr,NW3) =dim(Wy N W,) +dim Wz —dim(W; N W, + W3)

and the possible dimension of Wi N Wy 4+ W3 are 9 and 10. Therefore the pos-
sible dimensions of W is 7 and 8.

(57) Letv; = (vi(]), vl@, vl.(3), vi(4)) be four vectors in R* such that Z?:l vi(j) =0, for
each j = 1,2,3,4. Let W be the subspace of R* spanned by {v, va, v3, va}.
Then the dimension of W over R is always
(a) either equal to 1 or equal to 4. (b) less than or equal to 3.

(c) greater than or equal to 2.  (d) either equal to O or equal to 4.

Ans. Option b
Since 24 p = 0, for each j = 1,2, 3,4, the set {vi, vy, v3, v4} is linearly

i=1"Vi
dependent as we can write v4 as a linear combination of {vy, v2, v3}. Therefore
the dimension of W over R is always less than or equal to 3.

(58) Let V be the vector space of all polynomials of degree at most equal to 2n with
real coefficients. Let V stand for the vector subspace

Vo={PeV:P(l)4+ P(—1) =0}

and V, stand for the subspace of polynomials which have terms of even degree
alone. Find dim(Vy) and dim (Vo N V,).

Ans. Let p(x) = ap + ayx + apx> + - - + a,x** € V. Then

p(H)+p(-1)=0=a9+a;+ar+---+apy+tay—a +a—--+ay=0
= 2a90+2ay+---+2a3, =0
= axy = —(ap +az +---+axy-2)

Since V is vector space of dimension 2n 4 1, Vy is a subspace of V of dimension
2n. Now Vo NV, contains all those polynomials in Vy which have terms of
even degree alone. The dimension of V, is n + 1 and hence dim(VoN'V,) =
n+1—-1=n.
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(59) Let V be the real vector space of all polynomials in one variable with real
coefficients and of degree less than, or equal to, 5. Let W be the subspace
defined by

W={peV:pl=pQR)=0}
What is the dimension of W?

Ans. Let p(x) = ag + a1x + arx? + a3x> + ayx* + asx’ € V. Then, p'(x) =
ay + 2axx + 3a3x? + dasx® + Sasx*.

P'(2) =0= a; +4a> + 12a3 + 32a4 + 80as = 0
= a; = —(4ay + 12a3 + 32a4 + 80as)

p)=0=ay+a+ar+a3+as+a =0
= ap = —(a; +ax + az + a4 + as)
= a9 = 3a; + 1laz + 31ay + 79as

Therefore dimension of W is 4.

(60) Let V be the vector space of all polynomials in one variable with real coefficients
and having degree at most 20. Define the subspaces

1
le{pEVIP(l)ZO, P<§>=0» p(5) =0, P(7)=0}

1
Wz={p€V:p(§>=0, pB3)=0, p4) =0, p(7)=0}

Then the dimension of W; N Whis......

Ans. We have

1
Winw, = {P eV:p() =P(§) =p@3)=p@ =pO) =p0) =0}

V is a vector space of dimension 21. Since six independent conditions are given,
we can represent 6 coefficients in terms of the remaining 15 coefficients. There-
fore the dimension of Wy N W, = 15.

1100 1232 .
(61) If U and V are the null spaces of 001 l] and |:0 12 1:| respectively. Then

the dimension of the subspace U + V equals ..... ..
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Ans. Since both matrices have rank 2, by Rank-Nullity theorem, we have
dim(U) = dim(V) = 2. Now the dimension of U NV is the dimension of the
1100
0011
1232
0121
1. Then the dimension of the subspace U + V equals 3.

null space of the matrix . Since this matrix has rank 3, dim(U N V) =

(62) Let V be the vector space of all 3 x 3 matrices with complex entries over the
real field. If

Wi={AeV:A=Aand W, ={A e V: tr(A) = 0}

then the dimension of W, + W, is equal to

Ans. The general form of an element in Wy is

app apiz a3
app dpz azs
apz azs a3

where a1, ax, azs are real numbers as the diagonal entries of a Hermitian
matrix is always real and the other entries are complex numbers. Therefore
dim(Wp) =09.

Now general form of an element in W, is

ap ap as
az| ay anxs
azy az —(ay + axn)

where all the entries are complex numbers. Therefore dim(W,) = 16.
Also an element in Wi N W, will be of the form

ap apr a3
ai axn a3
a3 axz —(ay + axn)

where ay1, axy are real numbers and the other entries are complex numbers.
Therefore dim(W; N W) = 8 Then the dimension of Wiy + W is 16 +9 — 8 =
17.

(63) Let W, be be the real vector space of all 5 x 2 matrices such that the sum of the
entries in each row is zero. Let W, be the real vector space of all 5 x 2 matrices
such that the sum of the entries in each column is zero. Then the dimension of
the space W N Wyis......
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Ans. The elements of Wi and W, are respectively of the form

apn —an ai apn
a1 —an1 ary an
az| —as | and as as
as; —aa) as as
as) —das — (a1 +az +az; +aq)) — (a2 + axn +az + ap)

Therefore elements of W1 N W, are of the form

apg —dai
a —daz)
asg —as)
a4l —day

— (a1 + az1 + a3 + asr) (a1 +az +az + asr)

Then the dimension of the space W) N W is 4.

(64) Let V be the vector space of all 2 x 2 matrices over R. Consider the subspaces

le{[‘i _d“] :a,c,deR} andW2={|:_aa2] :a,b,deR}

Itm =dim (W NW,) and n = dim (W; + W,), then the pair (m, n) is
@@2,3) 4 ©G4 @a,3)

Ans. Option b
Clearly, dim (Wy) = 3 and dim (W,) = 3. Every element of Wi N W, is of the

form _aa —da:|. Therefore m = dim (W, N W) = 2 and hence

n=dim (Wi + W) =dim (W)) +dim (Wy) —dim (W NW,) =4

1-1 1
(65) Let A = [1 O _J.If

v=[(x,y,0)eR3:Am =[8” and W= {(x’y’Z)GRS:AD 2[3]}

Then
(a) the dimension of V equals 2 (b) the dimension of W equals 2
(c) the dimension of V equals 1 (d) VN W = {(0, 0, 0)}
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Ans. Option ¢
We have

(1 -1 1 N 1-11
|1 —-1-1 00 -2
Then

0
=[Oi|:>x—y=0:>x=y

=
O < =

Hence, V. ={(x,y,0) : x =y, x,y € R}. Therefore V has dimension 1. Now
o 0
Aly =[O}:>x—y+z=0, —2z2=0=>27z=0,x=y
Z

Thus, W ={(x,y,2) :x=yz=0,x,y,ze R} = V.

(66) Let A € M,,,(R) be such that A # 0 but A> = 0. Which of the following
statements are true?

(a) If nis even, then dim(Col(A)) > dim(Null(A)).
(b) If nis even, then dim(Col(A)) < dim(Null(A)).
(c) If nis odd, then dim(Col(A)) < dim(Null(A)).
(d) If nis odd, then dim(Col(A)) > dim(Null(A)).

Ans. Options b and c
Letv € Col(A). Then there exists u € R" such that Au = v. Now,

0= A% = A(Au) = Av

That is, v € Null(A). Therefore dim(Col(A)) < dim(Null(A)). As, rank of A
is same as the dimension of the column space of A, by Rank-Nullity Theorem,
dim(Col(A)) < dim(Null(A)). Forif,dim(Col(A)) = dim(Null(A)), n must
be even.

(67) Let V be a vector space of dimension 4 over the field Z3 with 3 elements. What
is the number of one-dimensional vector subspaces of V?

Ans. V is a vector space with cardinality 3* = 81. Consider the non-zero ele-
ments in V, each non-zero vector spans a one-dimensional subspace and each
subspace has 2 non-zero elements and hence the number of one-dimensional
vector subspaces of V is % = 40.

(68) Let V be a vector space such that dim(V) = 5. Let W; and W, be subspaces of
V such that dim(W;) = 3 and dim(W,) = 4. Write down all possible values
of dim (W] n Wz)
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Ans. The possible values of dim(W; N W,) are 0,1,2 and 3. Suppose dim(W; N
W,) = 0, then Wy + W, will be a subspace of dimension 4 + 3 = 7 which is not
possible since V is a vector space of dimension 5. Suppose dim (W, N W,) =1,
then Wy + W, will be a subspace of dimension 4 +3 — 1 = 6 which is not
possible since V is a vector space of dimension 5. But if dim (W1 N\ W) =2,
then Wi 4+ W, will be a subspace of dimension4 + 3 — 2 = 5, which is possible.
Similarly ifdim (W1 N\ Wy) = 3, then Wy + W, will be a subspace of dimension
4 + 3 — 3 = 4, which is possible. Therefore the possible dimensions of Wy N W,
are 2 and 3.

(69) Let {vi, vy, ..., v,}bealinearly independent subset of a vector space V where
n > 4. Setw;; =v; —v;. Let W be the span of {w;; : 1 <i, j < n}. Then

(@ {wij : 1 <i,j <n}spans W.

(b) {w;; : 1 <1i, j <n}is alinearly independent subset of W.
(©) {wij:1<i<n-—1,j=i+1}spans W.

(d) dim W = n.

Ans. Options a and c

Since wj; =v; —v;i = —(v; —v;) = —wyj, {w; : 1 i, j <n} is a linearly
dependent subset of W and {w;; : 1 <i <n—1,j=i+1} spans W. Also
wij =wij —wy; and since {vi,Vva2,...,V,} is a linearly independent set,
dim(W)=n—1.

(70) Check whether the following statements are true or false.

(a) Let S be a finite subset of R? such that any three elements in S span a two
dimensional subspace. Then S spans a two dimensional space.

(b) Thepolynomials (x — 1)(x —2), (x —2)(x —3),(x = 3)(x —4), (x —4)
(x — 6) € R[x] are linearly independent.

(c) There exists an infinite subset S C R? such that any three vectors in S are
linearly independent.

(d) The set of nilpotent matrices in M, ,, (R) spans M, .., (R) considered as an
R-vector space(a matrix A is said to be nilpotent if there exists n € N such
that A" = 0).

Ans. (a) True. Clearly span(S) has dimension > 2. Suppose span(S) has
dimension 3, then there exists a subset W of S with three linearly indepen-
dent vectors and this is not possible as any three elements in S span a two
dimensional subspace.

(b) False. Since the dimension of set of all polynomials of degree at most 2 is
3. So we cannot find a collection of 4 linearly independent second degree
polynomials.

(c) True. Consider the set S = {(1, x, x%) : x € RY. Then take any three vec-
tors {(1, r,r?), (1,s,s%),(,t,t%) :r,s,t € Rl Now



9 Solved Problems—Vector Spaces 359

1rr?
lss?|l=@—r)(s—r)t—s)
1t 2

Since (t —r)(s —r)(t — s) = 0 only if any two of them are equal or r =
s = t. So any three vectors in S are linearly independent.

(d) False. Since we cannot span matrices with non-zero trace using the set of
nilpotent matrices in M, «,, (R), the given statement is false.



Chapter 10 ®)
Solved Problems—Linear Geda
Transformations

(1) Which of the following is NOT a linear transformation?
(@) T : R® — R? defined by T'(x, v, z) = (x, 2)
(b) T : R? — R3 defined by T'(x,y,2) = (x,y — 1,2)
(¢) T : R? — R? defined by T (x,y) = (2x,y — x)
(d) T : R? — R? defined by T'(x,y) = (¥, x).

Ans. Option b

(a) Letvi = (x1,y1,21), v2 = (x2,¥2,22) € R’, and o € R. Then

T(avi +v2) = (ax1 + x2, oy1 + y2, 021 + 22)
= (ax; +x2, @71 + 22)
= a(xy, z1) + (x2, 22)
=aT () +T(n)

T is a linear transformation.
(b) T(0,0,0) = (0,—1,0). Therefore T is not a linear transformation. (Since
a linear transformation maps identity to identity.)

(c) Letvy = (x1,y1),v2 = (X2, y2) € R?, and o € R. Then

T(avi +v2) = Q2ax; +x2), ay; +y2 — ax; — x2)
= a2xy,y1 —x1) + 2x2, y2 — x2)
=aT () +T()

T is a linear transformation.
(d) Letvi = (x1,¥1), v2 = (X2, y2) € R?, and a € R. Then
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T(avy +v2) = T(ax; +x2, ay1 + y2)
= (ay1 + y2, ax; + x2)
= a1, x1) + (2, x2)
=al () +T()

T is a linear transformation.
(2) Let the mappings Ty, T», T3, T4 from R? to R? be defined by
Ti(x.y.2) = (2 +y" x+z.x+y+2) Dy =@+zx+zx+y)

T5(x,y,2) = (x+y,xy,x—z) Talx,y,2) = (x,2y,32)

Then which of these are linear transformations of R? over R?
(@Tyand T, (b)TrandT5(c) T, and T4 (d) 75 and Tj4.
Ans. Option ¢

(a) We have T1(1,0,0) = (1,1, 1). As

T:(2,0,0) = 4,2,2) #2T,(1,0,0)

T, is not a linear transformation.
(b) Let vy = (x1,y1,21), V2 = (X2, 2, 22) € R3, and a € R. Then

Tr(avy +v2) = Ta(ax) + X2, ayy + y2, @21 + 22)
= (a1 +2z1) +y2 + 22, a(x) +21) +x2 + 22, ¢(x1 +y1) +x2 +y2)
=a(1 +z1,%1 + 21, X1 + 1) + (2 + 22, X2 + 22, X2 +¥2)
=aTr(vi) + T2(v2)

T, is a linear transformation.
(¢) We have T5(1,0,0) = (1,0, 1) and T5(0, 1,0) = (1, 0, 0). As

T3(15 17 O) = (27 17 1) # T3(17 Oa 0) + TS(O’ 17 0)

T is not a linear transformation.
(d) Let vi = (x1,y1,21), v2 = (x2,2,22) € R’, and o € R. Then

Ty(avy +v2) = Ty(ax) + x2, ay1 + y2, @z + 22)
= (ax; + x2, 2(ay1 +y2), 3(@z1 + 22))
= a(xy, 2y1, 3z1) + (x2, 2y2, 322)
= aly(v1) + Ty(v2)

Ty is a linear transformation.
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Which of the following is a linear transformation from R* to R??

. 4 x Xy Y Z—x
“r = (1) o g - (1)) e g -(:5)

(@ only T; (b) only T, (c) only 75 (d) all the transformations T, T,,
and T5.

Ans. Option c

0
Since T, | 0 < ) <8), Ty is not a linear transformation. We have
0
1 0 0 0 1 | 1
T.10]) = 1 and T, |1] = 1) But T,|1] = ) ;é 10+
0 0 0 0
0
T | 1]. T is not a linear transformation. But
0
AX1 + xo Az —x1) + (2 — x2) X1 Xo
T3 | Ay1 +»2 =( o 5 2)=?»T3 yi|+7T5|
A
A+ 2 (1 y1) +ox2 3 21 2

Therefore Ts is a linear transformation.

Leta,b,c,d € Randlet T : R?2 — R2 be the linear transformation defined by

x|\ _ |ax+by 5
r(])= [ a] e [ e
Let S : C — C be the corresponding map defined by

S(x+1iy) = (ax + by) +i(cx + dy) for x,y € R

Then

(a) S is always C— linear, that is S(z; + z2) = S(z1) + S(zp) for all z;,z, € C
and S(az) = aS(z) foralla € Cand z € C.

(b) S is C— linearif b = —cand d = a.

(c) S is C— linear only if b = —c and d = a.

(d) S is C— linear if and only if T is the identity transformation.
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Ans. Options b and ¢
Let 71 = x; + iy and 7o = xp + iy, € C. Then

S(z1 +22) =S8 ((x1 +x2) +i(y1 +2))
=a(x +x2) +b(y1 +y2) +i (el +x2) +d (1 + y2))
= ax; + by) +i(cx; +dy1) +axy + bys + i (cx + dy)
=5(z1) + S(z2)

Also
S@iz) =S (i(x +iy)) = S(—y +ix) = —ay + bx + i (—cy + dx)
and
iS(z) =i (ax + by + i (cx + dy)) = i(ax + by) — (cx + dy) # S(iz)

Therefore, S need not be C— linear. Now let « = ¢ + icy € Cand b = —c and
d=a.

S(az) =8 (c1x — ey + i(c2x + €1))

= a(c1x — c2y) + b(eax + c1y) + i (=b(cix — c2y) + alcax + c1y))
ci(ax + by + i(—bx + ay)) + ica(ax + by + i(—bx + ay))
aS(z)

Now suppose that S(xz) = aS(2).

S(az) = S (c1x — 2y +i(cax + c1y))
= a(c1x — c2y) + b(cax + c1y) + i (c(c1x — c2y) + d(cax + c1y))
= ci(ax + by +i(=bx + ay)) + ic;(ax + by + i(—bx + ay))

aS(z) = (¢ + ica) [(ax + by + i(cx + dy))]
=c [(ax + by +i(cx + dy))] + icy [(ax + by +i(ex + dy))]

Comparing, we getb = —c and d = a.
(5) Consider the vector space C[0, 1] over R. Consider the following statements:

P : If the set {xf;, x’f», x’f3} is linearly independent, then the set {f;, f>, f3} is lin-
early independent, where fi, >, f3 € C[0, 1] and x" represents the polynomial
function x — x",n € N.

Q: IfT:[0,1] - Ris given by T(f) = folf(xz)dx for each f € C[0, 1], then T
is a linear map.
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Which of the above statements hold true?
(@) Only P (b) Only Q (c) Both P and Q (d) Neither P nor Q.

Ans. Option b

Let fi = f, = f3 = 1. Then the set {xfl,xzfg, x3f3} = {x, X2, x3} is linearly inde-
pendent. But the set {f|, f>,f3} is not linearly independent. For f, g € C[0, 1]
and A € R,

1 1 1
TOf +g) = fo Of + ) (D)dx = 2 fo FePydx + /O ¢(2)dx = AT(F) + T(g)

Therefore P is false and Q is true.

(6) Let T : R> — R? be a linear transformation such that 7(1,2) = (2, 3) and
T(,1)=(1,4). Then T(5, 6) is

(@) (6,=1) () (=6,1) (©)(=1,6) (d)(I,-6).

Ans. Option a
Since (5,6) = 5(1, 2) + (—4)(0, 1), we have

T5,6)=5T(1,2)+ (-4 T(0,1)=(6,-1)

(7) Let T:R3>— R* be a linear transformation. If 7(1,1,0) = (2,0, 0, 0),
T(1,0,1)=(2,4,0,0),7(0,1,1) =(0,0,2,0), then T(1, 1, 1) equals

() (1,1,1,0) () (0,1,1,1) (c)(2,2,1,0) (d)(0,0,0,0).

Ans. Option ¢
Since (1,1,1) = (1, 1,0) + (1,0, 1) + $(0, 1, 1)

1 1 1
T, 1,1) = 5T, 1,0) + 57,0, 1) + -T(, 1, 1)

1 1 1
==(2,0,0,0)+ =(2,4,0,0) + =(0,0,2,0
2( )+2( )+2( )

=(1,0,0,0)+(1,2,0,0) + (0,0, 1,0)
=(2,2,1,0)

(8) Let T : R? — R? be a linear transformation such that 7 (1, 2) = (1, 0) and
T (2,1) = (0, 1). Suppose that (3, —2) = & (1,2) + (2, 1) and T (3, —2) =
(a, b). Then @ + B + a + b equals

2 4 5 7
(a) 3 (b) 3 (c) 3 (d) 3
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Ans. Option a
We have

7 8
/3:

(3, -2)=a(l,2)+ (2, l)=(a+2ﬁ,2a+/3)=>a=%, 3

Since T is linear transformation,

-7 8 -7 8
T@3,-2) = TT(I’ 2) + §T(2, 1) = <T’ 5) = (a, b)

2

Therefore + B +a+b = 3

(9) Consider the vector space P,[x] = {ap + a1x + ax*: a; € R, fori=0,1,2}

of polynomials of degree at most 2. Let f : P,[x] — R be a linear functional

such that f(1 +x) =0,f(1 —x*) =0 and f (x> —x) = 2. Then f(1 + x +x?)
equals......

Ans. Since (1+x+x%) =3(14+x) + (—=3) (1 —x) + F(* — ),
2 3 1 2 1 2
f+x+x9) = Ef(1+x)+ <—§)f(1—x )+§f(x —x)=1

(10) Let S = {T R3>R3:T(1,0,1)=(1,2,3),T(1,2,3) = (1,0, 1)} where
T denotes a linear transformation. Then S is
(a) a singleton set
(b) a finite set containing more than one element
(c) a countably infinite set
(d) an uncountable set.

Ans. Optiond

The set {(1,0, 1), (1,2, 3)} is a linearly independent set in R?. Then we choose
a third vector v € R3 such that {(1, 0, 1), (1, 2, 3), v} forms a basis for R* and
we can assign any vector in R> for v. So S is an uncountable set.

(11) Let T : R* — RR” be a linear transformation, where n > 2. For k < n, let
E={v,va,.... i} SR and F = {Tvy, Tva, ..., Tv}

Then

(a) If E is linearly independent, then F is linearly independent.
(b) If F is linearly independent, then F is linearly independent.
(c) If E is linearly independent, then F is linearly dependent.
(d) If F is linearly independent, then E is linearly dependent.
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Ans. Option b

Suppose that E is linearly independent, consider the zero transformation, then
F is not linearly independent. If we consider the identity transformation F is
linearly independent. Now suppose that F is linearly independent, i.e.,

MIvi+ 2Ty + - 4+ 4T =0= A =l =---=X2=0
Now for i, a, ..., g € R,

mive + pava + -+ v = 0= T (v + pova + - -+ ) =0
= wTvy + woTvy + -+ i Tvp =0
=pr=pr=-=m=0

Therefore E is linearly independent.

(12) Let V be a non-zero vector space over a field K. Let S C V be a non-empty
set. Consider the following properties of S :

(I) For any vector space W over K, any map 7 : S — W extends to a linear
map from V to W.
(II) For any vector space W over K and any two linear maps 77,7, : V — W
satisfying T (s) = T»(s) forall s € S, we have T (v) = T>(v) forallv € V.
(III) S is linearly independent.
(IV) The spanof Sis V.

Which of the following statement(s) is(are) true?
(a) (I) implies AV) (b) () implies (III)

(c) () implies (IIT) (d) (II) implies (IV).
Ans. Option d
(I) need not imply (IV)
ConsiderV =W =R?, § = {(1,0)}. DefineT, : S — WbyT(1,0) = (1, 0).
This map can be extended to a linear map from'V to W as T (x,y) = (x,y). But
the span of S is not V.
(I) need not imply (II)
Consider V=W =R?, §=1{(1,0),(0,1), (1, 1)}. Define T):S — W by
T,(1,0) = (1,0),T,(0, 1) = (0, 1), T\ (1, 1) = (1, 1). This map can be extended
to a linear map from'V to W as Ty (x,y) = (x,y). But S is linearly dependent.
If (1) is satisfied S need not be a linearly independent set. For example, if
V=W=R2 S={(1,0), (0,1, (,1)}. We can define T\ and T, satisfying
the above conditions. But S is not linearly independent. Also for Ty and T to be
equal for allv € V, S must span V.
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(13) Consider the basis {v;, v;, V3}0fR3,Where vi=(1,0,0), v, =(1,1,0), v3 =
(1,1, 1). Let {f1, f>, f3} be the dual basis of {v;, v», v3} and f be a linear func-
tional defined by f(x,y,z) =x+y+2z, (x,y,2) e R3.Iff = Aifi + Aofo +
Asfs, then (Mg, Ao, A3) is

(a)(1,2,3) (b)(1,3,2) (¢)(2,3,1) (@ @3,2,1).

Ans. Option a
Since f; is linear

fitx,y,2) =x£:(1,0,0) + y/i(0, 1,0) + z£:(0, 0, 1)

Also we have f1(1,0,0) = 1,£(1,1,0) =0,/1(1,1,1) =0

= £1(0,1,0) = —1 and f1(0, 0, 1) = 0. Therefore, fi(x,y,2) =x — y.
Similarly, £>(1,0,0) =0,£(1,1,0) =1,£(1,1,1) =0

= 1£(0,1,0) = 1 and f>(0, 0, 1) = —1. Therefore, f>(x,y,2) =y — 2,
and f3(1,0,0) =0,(1,1,0) =0, /1,1, 1) =1

= f3(0,1,0) = 0and f5(0, 0, 1) = 1. Therefore, f3(x,y, z) = z. Now,

[ =M+ 2f + A3 = f(x,y,2) = Afi(x, ¥, 2) + Afa(x, ¥, 2) + Aaf3(x, ¥, 2)
Sx+y+tz=rmE—y) +r2@ -2 +2130)
=S>A=1 A2=2 13=3

(14) Let S be the set of all 2 x 3 real matrices each of whose entries is 1, 0, or —1
(there are 3% matrices in S). Recall that the column space of a matrix A in S is
the subspace of R? spanned by the three columns of A. For two elements A and
Bin S, let us write A ~ B if A and B have the same column space. Note that ~
is an equivalence relation. How many equivalence classes are there in S?

Ans. The possible columns of elements in S are [O O] T, [0 l]T,[O —l]T, [1 O]T,
[—1 O]T, [1 1]T, [1 —1]T, [—1 1]T, [—1 —I]T. So the only possible column
spaces are {0}, R?, ((1,0)), ((0, 1)), ((1, 1)), ((1, —=1)), where (v) denote the
span of v. Therefore there exist 6 equivalence classes.

(15) Let V be a finite-dimensional vector space over R, and W C V a subspace.
W N T (W) # 0 for every linear isomorphism 7 : V — V if and only if

@Q W=V (b) dim W < Ldim V
(©) dim W = 1dim V (d) dim W > 1dim V.

Ans. Option d

Since T is an isomorphism we have dim W = dim T(W). Let dim V = n. Sup-
pose that dim W < 3. Then define a linear isomorphism which maps W to its
complement W’. Then W N T(W) = {0}. Now suppose that dim W > %dim V.
Then WNT(W) #0 forif WNT(W) = {0},
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dim (W +TW)) =dimW +dimT(W) —dim (WNTW))
=dim W +dim W, since dim W = dim T (W)
=2dim W

1
> dimV, since dim W > Edim \%

which is not possible.

(16) LetT : R? — R?be the linear transformation given by 7'(x, y) = (—x, y). Then
() T* =T forallk > 1
(b) T*+! = —T forall k > 1
(c) R(T?) is a proper subspace of R(T)
d) R(T? = R(T).

Ans. Option d
We have
T2 (x,y) = T (T(x,y)) = T(—x,y) = (x,y) # T(x,y)

SinceT? = I, we have T* = [ and T*+! = T forallk > 1. T2 =1 = R(T?) =
R2and T(1,0) = (—1,0),T(0,1) = (0, 1) = R(T) = R

(17) Let V be a vector space over R and let 7 : R® — V be a linear transformation
suchthat S = {Te,, Tey, Teg} spans V. Which one of the following must be true?

(a) Sisabasisof V. ®T R £V.
(c) {Tey, Tes, Tes} spans V. (d) N(T) contains more than one element.

Ans. Optiond
S need not be a basis. S should be linearly independent also. For example, let
T:RS > R?, defined by

T(e2) = (1,0), T(es) = (0, 1), T(ee) = (1, 1)

and
T(ey) =T(e3) =T(es) =0

Then {Te,, Tes, Teg} spans V. = R2. But S is not a basis of W as S is not linearly
independent. Also {Te;, Tes, Tes} does not span V and T(R®) = W. By Rank-
nullity theorem, Rank(T) + Nullity(T) = 6 and Rank(T) < 3. Therefore N(T)
contains more than one element.
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(18) If T : M,,,(R) = M, (R) is a linear transformation such that 7(A) =0
whenever A € M, (R) is symmetric or skew-symmetric, then the rank of
T is
n(n +1) nn—1)

@) — (b) — (c)n (d)0.

Ans. Option d
Since every matrix A € M,,«,,(R) can be written as a sum of a symmetric and
skew-symmetric matrix and T is a linear transformation T(A) = 0 for all A €

Muxn (R).
(19) If T : P,[x] — P,41[x] is defined by

(Tp) %) =p'(x) — / p(ndt
0
then the dimension of null space of T is

@0 (M1 (©n @n+l.

Ans. Option a
Let p(x) € N(T), then

(Tp) () =0=p'(x) = /0 pdt = p(x) =0

Therefore N(T) = {0} and hence dimension of null space of T is 0.

Al 2
(20) If the nullity of the matrix | 1 —1 —2 | is 1, then the value of A is
11 4

@—1 0 @1 (d)2.

Ans. Option a

Since the nullity of the given matrix is 1, determinant of the given matrix is zero.
Therefore, —2A —2 =0= A = —1.

(21) Let A be a5 x 4 matrix with real entries such that the space of all solutions of

the linear system AX” = [123 4 S]T is given by

[[14+2524353+454455] :5eR)
Then the rank of A is equal to

A(ﬁ) 40 (b) 3 ©2 @1

Since the solutlon space is of dimension 1, the rank of the matrix is 3.
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1236
(22) LetA = |2 69 18 |. Find a basis for the null space of A.
12612

Ans. By suitable elementary transformations, we have

1236 1236
A=126918|~10436
12612 0036

Therefore
N@A) ={(x,y z,w) € R*:z = —2w} = span{(0,0, =2, 1)}

Hence {(0,0, =2, 1)} is a basis for N(A).

(23) Let V be an n— dimensional vector space and let 7 : V — V be a linear trans-
formation such that Rank (T) < Rank (T*). Then which of the following state-
ment is necessarily true?

(@) N(T) = R((T)

(b) N(T) NR(T) = {0}

(c) There exists a non-zero subspace W of V such that N(T) NR(T) = W
() N(T) € R(T).

Ans. Option b

Since  R(T) D R(T?), Rank(T) < Rank (T3) = Rank(T) = Rank (T3).
Therefore  dim [N(T)] = dim [N(T%)].  Since N(T) C N(T?), N(T) =
N(T?). Now, let v € R(T) N N(T), then there exists w such that Tw = v and
Tv = 0. Then,

Tw=T*Tw)=T>v=0=w e N = N(T)

Therefore Tw = v = 0. Hence N(T) N R(T) = {0}.

(24) Let V be a finite-dimensional vector space over R. Let T : V — V be a linear
transformation such that Rank (T?) = Rank(T). Then,

@NT* =NT)  (b)R(T* =R(T)
(© N(T) NR(T) = {0} (d) N(T*) NR(T?) = {0}.
Ans. Options a, b, ¢, and d

(a) By Rank-Nullity theorem, Nullity(TZ) = Nullity(T). Since N(T) C
N(T?) we get N(T?) = N(T).
(b) Since R(T*) € R(T) and Rank(T?) = Rank(T), we get R(T?) = R(T).
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(c) Letw € N(T) N R(T)

weNT)NRT)=Tw)=0and v € V suchthat T(v) = w
=TV =TTW)=Tw) =0
=veN(T?* =N
=Tv=0=w

(d) From (a), (b), and (¢), N(T?) NR(T?) = {0}.

(25) Let L(R") be the space of R— linear maps from R” to R”. Then which of the
following are true?
(a) There exists T € L(R?) \ {0} such that R(T) = N(T).
(b) There does not exist T e L(R>) \ {0} such that R(T) = N(T).
(c) There exists T € L(R®) \ {0} such that R(T) = N(T).
(d) There does not exist T € L(R®) \ {0} such that R(T) = N(T).

Ans. Options b and c
By Rank-Nullity theorem,

dim(V) = dim [R(T)] + dim [N(T)]

If dim [R(T)] = dim [N (T)], dim(V) = 2dimR(T) is even. Therefore there does
not exist T € L(R>) \ {0} such that R(T) = N(T).
Now define T : R® — R® by

T(er) =T(e2) =T(e3) =0,T(es) = e1,T(es) =er, T(eg) = e3

Then R(T) = N(T) = spanfey, e, e3}. That is, there exists T € L(R®) \ {0}
such that R(T) = N(T).

1 20

26) Let A = [_1 s

12
j|, B = |:—1 0:|. Then the dimension of N'(A) N R(B) over
31

Ans. The null space of A is

N(A):{xeR3:Ax:0}
={xeR’:x+2y=0,7y+2z =0}
=Span{(_47 2’ _7)}

R(B) = span{(1,—1,3), (2,0, 1)}. Also the set {(—4,2,-T7),(1,—1,3),
(2,0, 1)} is linearly dependent. Therefore N(A) N R(B) = N (A) and hence the
dimension of N(A) N R(B) = 1.
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(27) LetT : R" — R” be alinear transformation. Which of the following statements
implies that T is bijective?

(a) Nullity(T) = n (b) Rank(T) = Nullity(T) = n
(c) Rank(T) + Nullity(T) = n (d) Rank(T) — Nullity(T) = n.

Ans. Optiond
(a) & (b) A linear transformation T is one-one if and only if N(T) = {0}. That
is, if and only if Nullity(T) = 0.
(c) ConsiderT : R*? — R? givenby T (x,y) = (x, 0). Clearly Rank(T) +
Nullity(T) = 2, but T is not bijective.
(d) By Rank-Nullity theorem, we have Rank(T) + Nullity(T) = n and for
T to be one-one, Nullity(T) = 0 = Rank(T) — Nullity(T) = n.

(28) Consider non-zero vector spaces Vi, Vs, V3, V4 and linear transformations
T, : Vi = V5, T, : V) = V3, T3 : V3 — V4, such that N(Ty) = {0}, R(Ty) =
N(TZ)» R(TZ) = N(T3), 'R(Tg) = V4. Then

@ Y (=)idimVi=0 (b) X1, (=DidimV; >0

© Xh, (=DidimV; <0 (d) X5, (=1)idim V; # 0.
Ans. Options a and b
Since N(Ty) = {0}, we have N(T)) = {0}. As R(Ty) = N(T) and R(T») =
N(T3), we get Rank(T)) = Nullity(T,) and Rank(T,) = Nullity(T3). Also
dim(V,) = Rank(T») as R(T») = V4. Now,

dim(Vy) = Rank(Ty) + Nullity(T})
= Rank(T) since N(T,) = {0}
dim(V,) = Rank(Ty) + Nullity(T,)
= Rank(T>) + dim(Vy) since Rank(Ty) = Nullity(T,)
dim(V3) = Rank(T3) + Nullity(T5)
= Rank(T3) + dim(V,) — dim(V) since Rank(T>) = Nullity(T3)
dim(V,) = Rank(T3) = dim(V3) — dim(V,) + dim(V})

(29) Let T : R* — R* be a linear map defined by
Tex,y,z,w) = x+2z,2x+y+3z,2y + 2z, w)

Then the rank of 7 isequalto......
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Ans. We have

Tx,y,z,w)=(x+2z,2x+y+3z,2y +2z,w) = (0,0,0,0)
>x=y=-z,w=0

Therefore

N(T)Z{(x,y,z’w)e}l@1x=y=—zandw=0}
— span{(1, 1, —1,0)}

Since dim [N (T)] = 1 by Rank-Nullity theorem, rank of T is 3.

(30) Let T be a 4 x 4 real matrix such that 7% = 0. Let k; = dim [N (Ti)] for
1 <i < 4. Which of the following is NOT a possibility for the sequence
ki <ky < ks < k4?

(3<4<4<4 b)1<3<4<4
©2<4<d4<4 (d)2<3<4<4

Ans. Option b
Suppose that ky = dim [N (T)] = 1, then dim [R(T)] = 3. Then by Sylvester’s
inequality, 34+3 -4 =2 < Rank(Tz) <3and hencel <k, < 2.

(31) Let T : R” — R’ be a linear transformation with nullity(T) = 2. Then, the
minimum possible value for Rank(T?) is ... ...

Ans. By Rank-Nullity theorem, we have Rank(T)=7—-2=15 and by
Sylvester’s inequality,

545—7=3<Rank(T?*) <min{5,5} =5

That is, minimum possible value for Rank(T?) is 3.

(32) Let T}, T» : RS — R3 be linear transformations such that Rank(T}) = 3 and
Nullity(T;) = 3. Let T3 : R3 — R3 be a linear transformation such that 75 o
T, = T,. Then Rank(T3) is ......

Ans. Since Nullity(T,) = 3, Rank(T,) = 2 = Rank(T5 o Ty) (By
Rank-Nullity theorem). By Sylvester’s inequality,
Rank(T3) 4+ Rank(T1) — 3 < Rank(T3 o T1) = 2 < min{Rank(T3), Rank(T7)}

Since  Rank(T)) =3, this gives Rank(T3) <2 < Rank(T3). Thus,
Rank(T3) = 2.



10 Solved Problems—Linear Transformations 375

(33) Let V be a vector space (over R) of dimension 7 and let f : V — R be
a non-zero linear functional. Let W be a linear subspace of V such that

V = N(f) @ W. What is the dimension of W?
Ans. By Rank-Nullity theorem,

7 = dim(V) = Rank(f) + Nullity(f) = 1 + Nullity(f) = Nullity(f) = 6
SinceV=N({)d W,
7 = dim(V) = Nullity(f) + dim(W) = 6 + dim(W) = dim(W) = 1

(34) LetA and B be n x nreal matrices such that AB = BA = 0 and A + B is invert-
ible. Which of the following is always true?
(a) Rank(A) = Rank(B). (b) Rank(A) + Rank(B) = n.
(c) Nullity(A) + Nullity(B) = n. (d) A — B is invertible.

Ans. Option b, ¢, and d

100 000
(a) Let A=1000| and B=|010|. Then AB=BA =0 and A+ B is
000 001

invertible, but Rank (A) # Rank(B).
(b) Since A + B is invertible,

n = Rank(A + B) < Rank(A) + Rank(B)

By Sylvester’s inequality,
Rank(A) + Rank(B) — n < Rank(AB) = 0 = Rank(A) + Rank(B) < n

Therefore Rank(A) + Rank(B) = n.
(c¢) By Rank-Nullity theorem,

Nullity(A) = n — Rank(A) and Nullity(B) = n — Rank(B)
Therefore
Nullity(A) + Nullity(B) = 2n — (Rank(A) + Rank(B)) = n
(d) Since AB= BA =0,
(A—B?*=A>—AB—BA+B>=A’>+B*=(A+B)?

Therefore A + B is invertible implies that A — B is invertible.
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(35) Let A be a 4 x 7 real matrix and B be a 7 x 4 real matrix such that AB = I.

Which of the following is/are always true?

(a) Rank(A) = 4 (b) Rank(B) =7
(¢) Nullity(B) = 0 (d) BA = I.

Ans. Options a and c
We have Rank(A), Rank(B) < min{4,7} = 4. By Sylvester’s inequality,

Rank(AB) = 4 < min{Rank (A), Rank(B)} = Rank(A) = Rank(B) = 4

By Rank-Nullity theorem, Nullity(B) = 0 and again by Sylvester’s inequality,
Rank(BA) < 4.

(36) Let M,,,,(R) be the set of all m x n matrices with real entries. Which of the

following statements is correct?

(a) There exists A € M, s(R) such that the dimension of null space of A is 2.
(b) There exists A € M, 5(IR) such that the dimension of null space of A is 0.
(c) There exists A € M, ,5(R) and B € M5,,(R) such that AB is the 2 x 2
identity matrix.

(d) There exists A € My 45(R) whose null space is {(x1, x2, x3, X4, X5) € R :
X1 =X2,X3 = Xq4 = X5}.

Ans. Option c

A € My ys(R) implies that it is a linear transformation from a five-dimensional
space to a two-dimensional space. By Rank-Nullity theorem, the dimension of the
null space of a cannot be 2 and 0. For, then the dimension of the range space will
be 3 and 5 respectively. Since a two-dimensional space cannot have subspaces
(1)(1)838] and B =AT,
then AB = I,. Now the set {(x}, X2, X3, X4, %5) € R% 1 x| = xp, X3 = x4 = x5} =
span{(1,1,0,0,0), (0,0, 1, 1, 1)} has dimension 2 and it cannot be the null
space of A.

of dimension 3 and 5 this is not possible. Take A = |:

(37) Let A be a4 x 4 matrix. Suppose that

N(A) = {('x’y’zﬂw) ER4 3X+y+Z=0, .X+y+w:0}
Then
(a) dim(column space(A)) = 1 (b) Rank(A) = 1

(c) dim(column space(A)) =2 (d)S = {(1, 1, 1,0), (1, 1,0, 1)} is a basis of
N(A).
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Ans. Option ¢
Since

NA) ={(x,y,zw) eR* :x+y+2z=0, x+y+w=0}
= span{(1,0, =1, =1), (0, 1, =1, = 1)}

As{(1,0,—1, —1), (0, 1, —1, —1)} is a linearly independent set, it is a basis for
N (A). Therefore Nullity(A) = 2. By Rank-Nullity theorem,

dim(column space(A)) =4 -2 =2

That is, Rank(A) = 2.

(38) Let U,V, and W be finite-dimensional real vector spaces, and 7} : U —
V.,T,:V —- W, and T5 : W — U be linear transformations. If R(T,T;) =
N(T3), N(T,T,) = R(T3), and Rank(T,) = Rank(T,), then which one of the
following is true?

(@ N(T1) = N(I).

(b) dim(U) # dim(W).

(c) If dim(V) = 3, dim(U) = 4, then T3 is not identically zero.

(d) If dim(V) = 4, dim(U) = 3 and T; is one-one, then T3 is identically zero.

Ans. Option c

(a) We know that N (Ty) is a subspace of U and N (T) is a subspace of V. Since
U and V need not be the same space, N (T) need not be equal to N (T).
(b) Since T>T, : U — W, by Rank-Nullity theorem,

dim U = dim range(T,Ty) + Nullity(T>Ty)
= Nullity(T3) + Rank(T3)
=dim W

(c) Let dim(V) = 3 and dim(U) = 4. Then from option (b), dim(W) = 4. We
have N(T,Ty) = R(T3). We know that Nullity(T,Ty) is minimum when
Rank(T>Ty) is maximum. Since the maximum possible dimension for R(T,)
and R(Ty) is 3, the maximum possible dimension of R(T,Ty) is 3. Therefore
by Rank-Nullity theorem, N (T,T,) has dimension > 1. Hence, R(T3) is of
dimension > 1. Hence T is not identically zero.

(d) Asinoption (c), R(T3) is of dimension > 1. Hence Tj is not identically zero.
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(39) If Ais a5 x 5 matrix and the dimension of the solution space of Ax = 0 is at
least two, then

(a) Rank(A?) < 3 (b) Rank(A?) > 3 (c) Rank(A?) = 3 (d) det(A?) = 0.

Ans. Options a and d

If Nullity(A) = 2, by Rank-Nullity theorem, Rank(A) =5 —2 = 3. Then by
Sylvester’s inequality, | < Rank(A?) < 3. Therefore if Nullity(A) > 2, Rank(A)
will be less than 3 and hence Rank (A?) < 3. Since Rank(A) is always less than
5, det(A) = 0. Therefore det(A%) = 0.

(40) The row space of a 20 x 50 matrix A has dimension 13. What is the dimension
of the space of solutions of Ax = 0?
(a7 ()13 (c)33 (d)37.

Ans. Optiond

A is the matrix representation of a linear transformation from R to R?°. The
dimension of the space of solutions of Ax = 0 is the dimension of null space of A.
Then by Rank-Nullity theorem, the dimension of the space of solutions of Ax = 0
is 37.

(41) Let A be anm x n matrix with rank r. If the linear system Ax = b has a solution
for each b € R™, then
@m=r.
(b) the column space of A is a proper subspace of R”.
(c) the null space of A is a non-trivial subspace of R” whenever m = n.
(d) m > n implies m = n.

Ans. Options a and d

The system Ax = b has a solution for each b € R™ implying that the column
space of A is R™ and since Rank(A) = r, m = r. As Rank(A) < min{m, n},
m > n implies m = n. If m = n, the null space of A is the trivial subspace
of R™

(42) Forn # m,letT; : R — R™and T, : R™ — R” be linear transformations such
that T, 75 is bijective

(a) Rank(Ty) = n and Rank(T,) = m (b) Rank(T,) = m and Rank(T>) = n
(c) Rank(T,) = n and Rank(T>) = n (d) Rank(T,) = m and Rank(T,) = m.
Ans. Option d
IfT, :R" - R"and T, : R" — R", then T\ T, : R™" — R™. Since T T, is bijec-
tive Rank (T, T,) = m. By Sylvester’s inequality,

Rank(T\T,) = m < min{Rank(T,), Rank(T,)}
This implies that Rank(T), Rank(T,) > m. Also, Rank(T)), Rank(T,) <

min{m,n} implies Rank(T)), Rank(T,) < m. Hence Rank(T\)=m and
Rank(T>) = m.
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(43) Let T, : R?> > R* and T, : R* - R? be linear transformations such that
T, o T is the identity map of R>. Then

(a) Ty o T is the identity map of R*. (b) T} o T is one-one, but not onto.
(¢c) Ty o T, is onto, but not one-one. (d) T} o T is neither one-one nor onto.

Ans. Optiond

The matrix of Ty is of order 4 x 3 and T, is of order 3 x 4. Therefore Rank(T),
Rank(T>) < 3. Then by Sylvester’s inequality, Rank(T,T,) < 3. Therefore T o
T, is neither one-one nor onto.

(44) If a linear transformation T : P, (R) — M,»(R) is defined as

CTp® —p2) 0
TQ’)‘[ 0 p(l)]

then

(a) T is one-one but not onto (b) T is onto but not one-one

(¢) R(T) = span { |:8 (1):| , |:_02 (1)“ () N(T) = span {x2 —2x, 1 — x}.

Ans. Option c
Consider the standard basis for P, (R). We have

O R v e v

24

Then the matrix of T is , which is of rank 2. Therefore R(T) =

— o O O
—_ O O

0
0
1

01 01
Hence T is not one-one.

span { |:0 0:| , [_2 0]} and N(T) has dimension 1 by Rank-Nullity theorem.
(45) Let T : C — C be the map defined by T (z) = z + z. For a C-vector space V,
consider the map
¢:{f:V—->C|fisC—linear} — {g:V — R | g is R — linear}

defined by ¢ (f) = T o f. Then this map is
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(a) injective, but not surjective. (b) surjective, but not injective.
(c) bijective. (d) neither injective nor surjective.

Ans. Option ¢
Letf € N (¢).

feEN@=>Tof)(x))=0VzeV
=T @)=0VzeV

=Sf(@)+f@) =0VzeV = Re(f(z)) =0

Therefore f (z) is of the form f (z) = ih(z). Now f (iz) = —1h(z) = —h(z). Since
Re(f) = 0, we get h(z) = 0. Therefore f (z) = 0 and hence ¢ is one-one.
Nowlet g € {g:V — R | g is R — linear}. Define

g(x) —ig(ix)

f@x) = 5

Since
g(ix) —ig(—x) _ g(ix) +ig(x)
2 2

Sfix) = =if (x)

f is C — linear. Also f (x) + f (x) = g(x) = ¢ is onto. Therefore ¢ is bijective.
(46) Let T : C — My« (R) be the map given by
. o xy
T =Tkx+iy) = |:—y xi|

Then which of the following statements is false?

P: T(z1z2) = T(21)T (z) for all z;, 2o € C.

Q : T(z) is singular if and only if z = 0.

R : There does not exist non-zero A € M, (R) such that the trace of T (z)A is
zero for all z € C.

S: T +2)=T)+T(z) forall z;,z, € C.

@P B ©R @S
Ans. Option c
Let 7y =x1 4+ iy, 20 =x3+ iy, € C. Then T(z1) = |: x)l)] zi] and T(zp) =

X2 W
—y2 X2 |
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(a) We have

T(z122) =T ((x1x2 — y1y2) + i(x1y2 + x2y1))

_ |: X1X2 —Y1y2  X1Y2 +x2)1

—(lez + Xle) X1Xp — }’1y2] (Zl) (ZZ)

P is true.
(b) T(2)is singular = x> +y> =0=x =0,y = 0 = z = 0. The converse is
trivial. Q is true.

(c) Take A = [a b

b —a:|' Then

| xy|la b
ron=[ 2232

Clearly, trace of T (2)A is zero for all z € C. R is false.

(d) We have
T +2)=Txi+x)+i( +y2)
_ [ X1+x2 ¥ +y2}
=1 +y2) x1 +x2
X1 Y1 X2 Y2
|:—y1 X11| + |:_y2 x2:| (z1) + T(22)
S is true.

(47) Let V be a finite-dimensional vector space over R and 7 : V — V be a linear
map. Can you always write T = T, o T for some linear maps 7 : V — W.T, :
W — V, where W is some finite-dimensional vector space and such that

(a) both T and T5 are onto. (b) both 7 and T, are one-one.
(c) T, is onto, T5 is one-one. (d) 7| is one-one, 75 is onto.

Ans. Options c and d

(a) If both T\ and T, are onto, then T = T, o Ty must also be onto. So it need
not be true.

(b) If both Ty and T, are one-one, then T = T, o T\ must also be one-one. So it
need not be true.

(c) Let W =V \N(T). Define T, : V. — W by T\(v) =v+ NT) and T :
W — VbyT,(v+ N(T)) =Tw). Then

(T 0THW) =T (v + N(T)) =T(v)
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Clearly Ty is onto. Now

T+ N(T) =0=Tv) =0
=veNT)
= v+N(T) =N(T)
= N(Tr) = N(T)

= T, is one — one

(d) Let W =V ® V. Define Ty : V—> WbyTi(v) = v, TW) and T, : W —
V by T>(vi, v2) = vo. Then

(Tp0THWV) =T (v, T(V)) =T(v)
Since T, is the projection map, clearly T, is onto. Now

Ti(v1) =T1(2) = (v, T(v1)) = (2, T(»)) = vi =vp = T} is one — one

(48) On R?, consider the linear transformation which maps the point (x, y) to the
point (2x +y, x — 2y). Write down the matrix of this transformation with
respect to the basis {(1, 1), (1, —1)}.

Ans. We have
TA,H=@G,-)=11,1)+2,-1)

and
T, -1)=(1,3)=2(1,D)+(Dhdad, -1

Therefore the matrix of T is I:; _21]

(49) A linear transformation 7 rotates each vector in R? clockwise through 90°. The

matrix of 7" with respect to the standard ordered basis { [(l)i| , |:O] } is

1
(@) [_01 _01] (b) [_01 (1)} © [? (ﬂ @ [‘1) _01]
Ans. Option b

Since T rotates the vectors through 90°, T ([(1):|> = |:_01:| and T ([(1):|> -

|:(l)] Therefore the matrix of T with respect to the standard basis is |:_01 ol
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(50) LetB = {(1) , <2> } be a basis of R? and T : R* — R? be defined by

()= (3)

Then the matrix of T with respectto Bis [T]g =------

o[ el5] eR] els]
) () e ()0
()= 6)- () +=()

Therefore the matrix of T with respect to the basis Bis given by [T |p = |:—33 —21:| .

(51) Let T : R® — R3 be a linear transformation defined by
Tx,y,2) =x+y—z,x+y+2z,y—2)

Then the matrix of the linear transformation T with respect to ordered basis
B =1{(0,1,0), (0,0, 1), (1,0,0)} of R? is

11-1 110 111 1-11
(@111 b |11 1 @©|1—-10 @1 11
01-1 10-1 1-11 1-10
Ans. Option ¢
We have

70,1,00=(,1,1) =1(0,1,0) + 1(0,0, 1) + 1(1, 0, 0)
70,0,1)=(-1,1,-1) =1(0,1,0) + (—=1)(0,0, 1) + (=1)(1, 0,0)
7(1,0,0)=(,1,0)=1(0,1,0)40(0,0,1) 4+ 1(1,0,0)

111
Therefore the matrix of T with respectto Bis | 1 —10 |.
1-11
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(52) Let T : P5[0, 1] — P,[0, 1] be defined by
d? d
(Tp)(x) = ) [p0)] + e [p(0)]

Then the matrix representation of 7 with respect to bases {1, x, x2, x’} and
{1, x, x*} of P5[0, 1] and 5[0, 1] respectively is

(1)88 0120 0210 88(1)
(a) ® 0026 (c)]6200 (d) .
220 0003 3000 022
063 360
Ans. Option b
We have

T(1) =0 =0.1+ 0x + 0x?
T(x)=1=1.140x+0x?
T(x*) =24 2x =2.1 4+ 2x + 0x?

T(x*) = 6x+3x*> = 0.1 + 6x + 3x°

0120
Therefore the matrix of T with respect to the given basesis | 0026 |.
0003
(53) Define the linear transformation 7 : P3 (R) — P5 (R) by

T(ap + a1x + axx* + asx’) = (ap + a1 + a» + a3) + (a1 + 2az + 3az)x
+ (ar + 3a3)x2 + (13)63

Write down the matrix of T with respect to the basis {1, 14+x 14+x%1 ~|—x3}.
Ans. We have
T(1)=1=11+0(1+x)+0(1 +x*) +0(1 +x°)
TA4+x)=2+x=T1)=1=1.1+1(14+x)+0(1 +x%) +0(1 +x%)

TA4+x) =24+24+x>=(=D.14+204+x) + 11 +x>)+0(1 +x%

TA+x) =24+3x+3x2 +3° = (=5).1+3(1+x) +3(1+x2) + 1(1 +x°)
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11-1-5
Therefore the matrix of T with respect to the given basis is 00 % g
000 1

(54) Consider the vector space P3(R) over R. Define
(Tp)(¥) = ap + ar(x + 1) + ax(x + D* + as(x + 1)’

where p(x) = ag + ayx + axx* + asx>. Write down the matrix representing the
linear transformation 7" with respect to the standard basis.

Ans. We have
T(1) =1=1.140x+ 0x* + 0x*

T(x) =x+1=1.1+ lx+0x> +0x°
TOH =@+ D> =x>+2x+1=1.142x+ 1x> +0x°
T =@+ D=2 +3% +3x+ 1= 1.1+ 3x 4+ 3% + 1x°
1111
0123

0013}
0001

Therefore the matrix of T with respect to the standard basis is

(55) Define T : P,(R) — P5(R) by

X

] d
(Ip)(x) =f0 p(ndr +

o [pP(0]

Then the matrix representation of T with respect to the bases {1, x, x*} and

{1,x,x2,x3}is
0100 ?ég 0100 ?é?
@|1030] M, ©f1020] @ 2
0281 040 010l 020
3 001 273 001

Ans. Option b
We have

T(1) =x=0.14+ lx+0x*> +0x°

X 1, 3
T(x):E+1:1.1+0x+§x + Ox°
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T 2_153 _ 13
(x)—?+2x—0.1+2x+0x —l—gx

The matrix of T with respect to the given bases is

(=Nl o)
o= O =
w—-O N O

(56) Consider the linear transformation 7 : P3 (R) — P53 (R) defined by

d? d
(Ip)(x) = XA [p0)] + 3xa [p@)] +2p(x), Vp € P53 (R)

Write down the corresponding matrix of 7" with respect to the standard basis.

Ans. Consider the standard ordered basis {1, x, X2, x3}. Then
T(1) =2 =2.140x+ 0x* + 0x°
T(x) = 5x = 0.1 4 5x + 0x* + 0x°
T(x*) = 8x% +2x = 0.1 + 2x + 8x% + 0x>
T =11 +6x2 = 0.1 4+ 0x + 6x%2 + 11%°

2000
. . L 0520
The matrix of T with respect to the standard basis is given by 008 6

00011

(57) With the notations and definitions of the problem above, find p € P53 (R) such
that

d? d 5 2
X3 [P + 3xa [PO]+2p(x) = 11x° + 14x° + Tx + 2

Ans. Let p(x) = ag + ajx + arx> + asx® € V. Then
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d? d
x5 [pn)] + 3 [P)] +2p(x) = 2ap + (Say + 2a)x + (8a + 6a3)x* + 11azx’

=ag=1, Sa; +2ap =7, 8ay +6a3 =14, a3 =1
=apg=a1=ay=a3 =1

Therefore p(x) = 1 + x + x* + x°.
(58) Define T : P3 (R) — P53 (R) by

(Ip)(x) =px+1), p e P3(R)

Then the matrix of T in the basis {1, x, x?, x*} is given by

1000 1111 1123 0000
0200 0123 1123 1000

@ 10030 ®loo13| ©@l2223] Dlo100]
0004 0001 3333 0010

Ans. Option b

We have
T(1)=1=1.1+0x+ 0x*+0x°

T(x) =x4+1=1.1+ lx+0x> +0x°
T =x>+2x+1=1.142x+ 122 +0x°

T = +3x2+3x+1=1.1+3x+3%+ 1

1111
. . .. 10123
The matrix of T with respect to standard basis is 0013
0001
100
(59) Let A= | 110 |. Then the matrix of the linear transformation 7 : R? — R?
111
1 1 1
defined by T (x) = Ax with respect to the basis B = o),11],
0 0 1
over R is
0—-1-1 011 011 0 —11]
@0 0 —1 ®® (001 ©]101 @f-10 2].
12 3 123 123 32 1]
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Ans. Option a

We have
1] 11 1 1 1 1
T(0|]= Ol=|1]=0]0|+0|1]|+1]1
0] 111]]0 1 0 0 1
1] 100][1 1 1
T||1 =(110||1|=|2|=(=D|0f[+0|1[+2
1 0] 111]]0 2 0 0
1 100 [ 1 1 1
T||1 =(110]|1|=|2|=(C-D)|0[+(C-1)|1[+3
| 1 L1t 3 0 0
0-1-1
The matrix of T with respectto Bis [0 0 —1|.
12 3

(60) If T : P3[x] — P4[x] is the linear transformation defined by
» d !
(Tp) (x) = x o [P]+ | p@)dr
X 0

and A = [a,j] is the matrix of T with respect to standard bases of P;[x] and

P4[x], then

S5x4

(b) azy = % and azy = 0.
(d) azy = 0 and azy = 0.

(a) azy = % and aszy =

(C) azy = 0 and azy =
Ans. Option b
Consider the standard ordered basis for both P3| x] and Py[x]:

7
3-
7
3

T(1) =x=0.14+ lx+0x> 4+ 0x> + 0x*

32 3
T(x) = % =0.1+0x+5x2+0x3+0x4

2 7% I 4
T(x):Tzo.l—l-Ox—l—Ox ~|—§x + Ox

. 13 , o, 13,
T(X’)=T=01+OX+OX +O)C +ZX
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The matrix of T with respect to the given bases is given by

(=N

S oo = O
O OvIw O O
o

OwNOo O O

|

(61) Consider the linear transformation 7 : P3 (R) — P53 (R) defined by
T(ay+ arx + ax® + a3x3) =az + arx + arx® + a0x3

Then the matrix representation A of 7" with respect to the ordered basis
{1, x, x%, x*} satisfies

A2+, =0 DA —L=0 ()A—1I,=0 (d)A+1I =0.

Ans. Option b

We have
T(1) =x* = 0.1 + 0x + 0x? + 1x°
T(x) =x>=0.1 +0x + 1x% + 0x°
T(x*) =x=0.1+ Ix+0x> + 0x°
T(x*) =1=1.1+0x+0x>+0x>
0001
_|o0010 .
Then A = 0100 and A° = I,.
1000

(62) Let T : P3 (R) — P53 (R) be the map given by

(Ip)(x) = /1 pl(t)dt

where p’(r) denotes the derivative of p(r). If the matrix of T relative to the
standard basis of P5 (R) is A, then A + A7 is



390 10 Solved Problems—Linear Transformations

[0 —1—1—1 10 0 2
12 0 0 0 -11 0
@l 020 ®lo 1210
0 0 0 2 2 0 2 -1
2 0 0 —1 0 —1—-1-1
021 0 12 0 0
©@l o121 D10 2 0
| -10-1 0 10 0 2
Ans. Optiond
We have

T(1) =0=0.14 0x + 0x* + 0x°
T(x) =x—1=(=1).1+ lx+ 0x* 4 0>
T =x>—1=(=1).140x+ 1% + 0x°

TH =x—1=(=1.1+0x+ 0%+ 1°

0—-1-1-1 0000

Therefore A = 8(1) (1) 8 and AT = :1(1)(1)8 . Hence A+ AT =
00 0 1 —1001

0 —-1-1-1

-1 2 0 O

-1 0 2 O

-10 0 2

(63) Define a linear transformation T : M., (R) — My, (R) by
TA) =2A+A'

where A’ denotes the transpose of the matrix A. Then the trace of T equals

Ans. We have
10Ty _[30]_.[10],.[01],  [00] .[00]
T(_00_>: 00] =00 %00 "% 10] T 01

017\ _[02] _.[10],,J0o1], [oo]  [00]
T(_00_>= 10]=%00] " 2[00 T [10] 01

0o]\ 011 .[10] .[o1] .[o0] .[00]
T(_IO_) 20/ = 00 T oo] T 2[10]T%01]
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00 00 10] 01 00 00
r([03]) - [o3]=elool +ofoo] +o[ve] + o7]
3000]
; . 10210 .
Therefore the matrix of T is 0120 and hence trace of T is 10.
0003

(64) Let T : My r(R) — My,»(R) be the linear transformation defined by

T(A) = 24 + 34

Write down the matrix of this tran

(Ei:1<i<4)where Ey = [(1)8
Ans. We have
T (En) =2E + 3B = g 0
T (Ey) =2E; +3E' = (3) (2)
T (E3) = 2E; + 3E;3' = :(2) (3)_
T (Es) = 2E, +3E, = 8 (5)

The matrix of T with respect to the give

o]

sformation with respect to the basis
01 00 00
0 0}’E3 = [1 o]’E“ = [o 1]'
=5E, +0E, +0FE; + 0E,

= 0E| 4+ 2E, + 3E5 + OE4

= 0E; 4+ 3E, + 2E;5 + OEy

= 0E; 4+ 0E, + OE; + 5E4

5000
0230
0320]
0005

n basis is

65) Let B, = {(1,2), (2, —1)} and B, = {(1, 0), (0, 1)} be ordered bases of R2. If

T : R? — R?isalinear transformation such that [T]gf

43 ] then T (5, 5)

Tl2-4f
isequalto.......
(@ (=9,8) () (9.8 (o) (=15,-2) (d)(15,2).
Ans. Optiond
[T]g? = |:; _34i| =T(x,y)=aT(1,2) +bT (2, —1) where (x,y) =

a(1,2) + b2, —1). Then
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r1,2)=4(1,0)+2(0,1) =(4,2)

and
T2,—1)=3(1,0)—4(0,1) = 3, -4

Thus (5,5) =3(1,2) +12,-1)=T(5,5) =34,2) + 13, —4) = (15, 2).

66) LetD : P, (R) > P, R)and T : P, (R) — P,+; (R) be the linear transforma-
tions defined by

D(ap + a1x + axx> + -+ 4+ apxX™) = a; + 2a0x + - - - + nax™!
T(ap + aix + ax® + - - + apx™) = apx + a1 x> + apx® + - - - + apx™!

respectively. If A is the matrix representation of the transformation DT — 7D :
P, (R) — P, (R) with respect to the standard basis of P, (R), then tr(A) =

@—-n Mdn Cn+1 (d)—-@+1).

Ans. Option c
We have

DT (ayp + a1x + axx> + - - - + a,x™) = D(agx + a1x* + axx® + - - + a,x™ )
=ay+2ax+ -+ @0+ Da,x"

and
TD(ag + aix + axx* + - - + ayx) = T(ay + 2ax + - - - + nax™™")
=ajx +2ax* + - - - + na,x"
Therefore
(DT —TD)(ag + a1x + - -+ apx™) = ap + arx + arx> + -+ ax" =1

Hence tr(A) =tr(l) =n+ 1.

(67) Let V be a vector space of dimension 3 over R. Let 7 : V — V be a lin-
1 -1 0

ear transformation, given by the matrix A = | 1 —4 3 | with respect to an
-2 5 -3

ordered basis {vi, v, v3} of V. Then which of the following statements are true?

@7T(w3) =0 ®)TW+v)=0
©T@i+v+v3) =0 (d) T +v3)=T(W).
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Ans. Option ¢

Since A is the matrix of the linear transformation T, T (vi) = vi + v, — 2v3,

T(v) = —vi —4vy + 5vs3, and T (v3) = 3v, — 3vs.

(a) T(vz) =0 = 3v, — 3v3 = 0 = v, = v3, which is not possible.

(b)) TWi+v2))=0=>TW)+TW) = -3 +3v3 =0= v, =v3, which
is not possible.

(¢c) T +va+v3) =Tw1)+T () +T(vz) =0.

(d) T(vi +v3) = —T(v).

(68) LetT : R? — RR? be the linear map which maps each point in R? to its reflection
on the x—axis. What is the determinant of 7?7 What is its trace?

Ans. T : R? — R? is defined by T(x,y) = (x, —y). Since T(1,0) = (1,0),
T, 1) = (0, —1), the matrix of T is given by |:(1) _01] Therefore tr(T) = 0 and
det(T) = —1.

(69) Let T : P3 (R) — P53 (R) be defined by

d
(Ip)(x) = p(x) —x

- [p]

Then the Rank(T) is

@l b2 (@©3 4.

Ans. Option c
Consider the standard basis {1, x, %%, %3 } for V. We have

T(H) =1, T(x) =0, T = —x>, T(x) = =243

100 O
000 O
00-10
00 0 -2

Therefore the matrix of T with respect to the standard basis is
which has rank= 3.
(70) Let T : R* — R? be a linear transformation defined by

T(x,y,2) =(x+y,x—2)

Then dim [N(T)] is

@0 ()1 (©2 (3.
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Ans. Option b
We have

7(1,0,0)=(1,1),70,1,0) =(1,0),7(0,0,1) = (0, -1)

110
10 -1
theorem, dim [N (T)] = 1.

Then the matrix of T is ] Clearly, Rank(T) = 2. Hence by Rank-Nullity

(71) Consider the linear transformation

Tx,y,2)=2x+y+z,x+23x+2y+2)

Therank of T'is ......
Ans. Consider the standard ordered basis of R®. Then

7(1,0,00=(2,1,3), T(0,1,0)=(1,0,2) 7(0,0,1) = (1,1, 1)

211
Therefore the matrix of T is | 1 0 1 |. Clearly, Rank(T) = 2.
321

(72) Let T : R? — R3 be the linear transformation defined by

Tx,y,2) =@x+y,y+z,2+x)

for all (x, y, z) € R3. Then

(a) Rank (T) = 0, Nullity(T) = 3
(b) Rank(T) = 2, Nullity(T) =1
() Rank(T) = 1, Nullity(T) = 2
(d) Rank(T) = 3, Nullity(T) = 0.

Ans. Optiond
Consider the standard ordered basis for R®. Then we have

r(1,0,0)=(1,0,1), 7(0,1,0) = (1,1,0), 7(0,0,1) = (0, 1, 1)
110
Therefore the matrixof T is | 0 1 1 | which is of rank 3.By Rank-Nullity theorem,

101
Nullity(T) = 0.

(73) Let T : R* — R3 be the linear transformation defined by

Tx,y,2) =x+3y+22,3x+4y+2,2x+y—2)
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(i) The dimension of the R (T2) is
@0 ()l (¢)2 (d)3.
(ii) The dimension of the NV (T°?) is

@0 1 (@©2 (@3

Ans. We have
7(1,0,0)=(1,3,2)=1(1,0,0) +3(0,1,0) +2(0,0, 1)
7(,1,0)=3,4,1) =3(1,0,0) +4(0,1,0) + 1(0,0, 1)
70,0,1)=(2,1,-1)=2(1,0,0) 4+ 1(0, 1,0) 4+ (—1)(0,0, 1)

132
The matrix of T is given by | 34 1
21-—1

14173
(i) The matrix of T? is given by | 17 26 9 |. Therefore dimR (Tz) =2
396
Option ¢
71 113 42
(ii) The matrix of T? is given by | 113 164 51 |. Therefore dimR (T3) =2
42 51 9
Hence by Rank-Nullity theorem, Nullity(T?) = 1.
Option b

(74) LetT : P, (R) — P, (R) be the map (Tp)(x) = p'(1), x € C. Which of the fol-
lowing are correct?

(a) Nullity(T) =n (b) Rank(T) =1

(c) Nullity(T) =1 (d) Rank(T) =n+ 1.
Ans. Options a and b

We have
T(1)=0=0.14+0x+0x>+--- 4+ 0x"
T(x)=1=1.1+0x+0x*+--- 4 0x"
T(x*)=2=214+0x+0x>+---+0x"

TxM =n=nl14+0x+0x2+ - +0x"
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012...n
000...0

The matrix of T is - which is of dimension (n+ 1) x (n+ 1).
000...0

Clearly Rank(T) = 1 and Nullity(T) = n.

(75) Consider the map T : P, (R) — P4 (R) defined by (Tp)(x) = p(x?). Then
(a) T is a linear transformation and Rank(T) = 5.
(b) T is a linear transformation and Rank(T) = 3.
(¢) T is alinear transformation and Rank(T) = 2.
(d) T is not a linear transformation.

Ans. Option b
Letp,q € P, (R) and ) € R. Then

[TOp+ 9] @) = (p+ @) = Ap(¥) + g(*) = M(Tp)(x) + (Tg)(x)

Therefore T is a linear transformation. Now consider the standard order basis
for both P, (R) and P4 (R):

T(1) =1=1.14 0x+ 0x* + 0x> + Ox*
T(x) =x>=0.1 + 0x + 1x% + 0x> + Ox*
T(x%) =x* =0.14 0x + 0x% + 0x + 1x*

100
000
Then the matrix of T is given by | 010 (. Since rank of matrix of T is 3,
000
001
Rank(T) = 3.

(76) Let T : R* — R* be the linear map satisfying
T(e)) = ez, T(ex) =e3, T(ez) =0, T(es) = e3
where {e|, e, €3, e4} is the standard basis of R*. Then

(a) T is idempotent. (b) T is invertible.
(¢) Rank T = 3. (d) T is nilpotent.

Ans. Optiond
We have
T(e;) = ey =0e; + lex + Oez 4 Oey
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T(ey) = e3 = 0e; + Oey + les + Oey
T(e3) =0 = 0e; + 0ey + Oez + Oey
T(ey) = e3 = 0e; + 0ey + lez + Oey

0000

Therefore the matrix of T with respect to the standard basis is (1) ? 8 (1) . Since

0000
T? £ T, T is not idempotent. T has rank 2 and hence is not invertible. Since
T3 =0, T is nilpotent.

(77) Letnbeapositiveinteger and V be an (n + 1)-dimensional vector space over R.
If {e1, ez, ..., enr1}isabasisof Vand T : V — V is the linear transformation
satisfying

T(e;))=¢e 1 fori=1,2,...,nand T(e,s1) =0
then
@tr(T) #0 (b)Rank(T) =n (c)Nullity(T) =1 (d) T" is the zero map.

Ans. Options b and c

We have
T(e1) =e; =0e; + lex +0e3 + - - - 4+ 0e,4
T(ez) = e3 =0e; +0e; + les + -+ - 4+ 0e,1q
T(e,) = ent1 = Oe; + 0ey +0e3 + - - + len-H
T(enJrl) =0=20e; +0e; +0e3 +---+ Oen+l
00---00
10---00
Therefore the matrix of T is of the form, T = 01---001 Then Rank(T) =n
D0
00---10

and by Rank-Nullity theorem, Nullity(T) = 1. Clearly, tr(T) = 0 and T" # 0.

(78) Given a4 x 4 real matrix A. For which choices of A given below do R(T") and
R(T?) have respective dimensions 2 and 1? ( * denotes a non-zero entry)
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00 %% 00%0 0000 0000

00 % % 00%0 0000 0000
@1 000%| 1000000 D [00xx]|

0000 000 x 000 00 s %

Ans. Options a and b

(a) Since Rank(A) = 2 and Rank(A?) = 1, R(T) and R(T?) have respective
dimensions 2 and 1.

(b) Since Rank(A) = 2 and Rank(A?) = 1, R(T) and R(T?) have respective
dimensions 2 and 1.

(c) Since Rank(A) = 2 and Rank(A?) = 2, R(T) and R(T?) have respective
dimension 2 each.

(d) Since Rank(A) = 1 and Rank(A%) = 1, R(T) and R(T?) have respective
dimension 1 each.

(79) Fix a non-singular matrix A = (a,-j) € M,,«,(K), and consider the linear map
T : M5, (K) = M., (K) given by T(X) = AX. Then
@My =n)_ ai.  (b)tr(T) =37, >, ay.
(c) Rank of T is n?. (d) T is non-singular.

Ans. Options a, ¢, and d

Take n = 2 and fix A = <a11 a12>. Then
az| ax

()= (0 () 268) o () o)
1((50)) = (i) =ofoa) ren (60) o (75) v 57)
() (20 (8)068) () 062
()= ) o(08) o 62) o) - )

aln 0 agn 0
0 al 0 apn
ary 0 an 0
0 ar 0 an

Therefore the matrix of T is . Then

) 2 2 2
det(A) = ay,ay, — 2a1anana + aj,ay, = (anaxn — apa)” #0

and
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2
tr(T) =2a11 + 2ax» =2 (a; +ax) = 22%‘

i=1
Therefore rank of T is n*> and T is non-singular.

(80) Let T € M,,(R). Let V be the subspace of M, (R) defined by
V ={X € M,y,(R) : TX =0}
Then the dimension of V is

(a) pn — Rank(T) (b) mn — pRank(T)
(¢) p(m — Rank (T)) (d) p (n — Rank (T)).

Ans. Optiond
Consider X = [x1 [xp | --- |xp] € M, (R) where X;i € My, i =
1,2,...,p. Then

X =0&Tx;,=0Vi=12,....p&x;, e NOOVi=1,2,...,p

As N(T) has dimension n — Rank(T), V has dimension p (n — Rank (T)).

OR
10

Take M, (R) = M350 (R) and M,y ,(R) = My, o(R). Fix T=|01]. Let
00

X = ‘C’z] € My, »(R). Then TX =0 = X =0. Here Rank(T) =2 and

dim(V) = 0. Therefore options (a), (b), and (c) are false.
(81) Let a linear transformation 7 : P, (R) — P, (R) be defined by

T(ap + aix + axx*) = (ap + a) + (a1 — az2)x + (ap + az)x*

Consider the following statements:

I. The null space of T is {A(—1 +x + x?); A € R}.
II. The range space of T is spanned by the set {1 4+ x?, 1 + x}.
oI T(T(1+x) =1+ x%
IV. If A is the matrix representation of T with respect to the standard basis {1, x, x?}
of P, (R), then the trace of the matrix A is 3.

Which of the following statements are TRUE?

(a) I and II only. (b) 1, 111, and IV only.
(c)1,11,and IV only. (d) /I and IV only.
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Ans. Option ¢

We have
T()=1+x>=1.1+0x+ 1

Tx)=14x=1.14+ lx+ 0x?

T(x?) = —x+x>=0.1+ (—Dx + 1x?

110
The matrix of T is given byA = | 01 —1
101
110 110
I. Observethat | 01 —1 | ~ | 0 1 —1 |. Therefore the null space of T is given
10 1 000

by
N(T) = {ag + aix + axx* € P, (R) : —ap = ay = a2, ag, a1, a» € R}

={AM=1+x+x);1eR}

1. Since the third column of A can be spanned by the first two columns, the
range space of T is spanned by the set {1 + x%, 1 + x}.
IIl. We have

T(TA+x)=TQ+x+x>)=3+3%=3(14+x%)
1V. Clearly, tr(A) = 3.

(82) For p(x) = ap + a1x + - - - + a,x" € P,[x], define a linear transformation 7 :

P,[x] — P,[x] by
(Tp)(x) = ap + ap—1x + - - - + aox”
Then which of the following are correct?

(a) T is one-one. (b) T is onto.
(¢) T is invertible. (d) det(T) = £1.

Ans. Options a, b, ¢, and d
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We have
T(H=x"=014+0x4+---+ 0"+ 1x"
T(X):xﬂ—l :0.1+0x+,__+1xn—1+0xn
T =1=1+0x~+---40x"" + 0x"
00...01
00...10
The matrixof Tis | - . . . . |.Since T can be obtained by interchanging the
01...00
10...00

rows of identity matrix, det(T) = x1. T is one-one, onto, and invertible.

(83) For p(x) = ap + a1x + - - - + a,x" € P,[x], define a linear transformation 7 :
P,[x] — P,[x] by

(Tp)(x) = ap — arx + ax® — - - + (=1)"a,x"
Then which of the following are correct?

(a) T is one-one. (b) T is onto.
(c) T is invertible. (d) det(T) = 0.

Ans. Options a, b, and ¢

We have
T()=1= 1.140x+---4+0x"1 +0x"

Tx)=—x=01+(=Dx+---+ 1Ix" 4 0x"

T = (=1)"=0.1+0x+ -+ 0" 4+ (=1)"x"

Therefore the matrix of T is

100... O
0-10... O
001... O
000...(=D"

(D) x (1)
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Clearly T is one-one, onto, and invertible. Also det(T) = +£1.
(84) Let V be the space of twice differentiable functions on R satisfying
ff=2f"+f=0
Define T : V — R* by T(f) = (f(0),f(0)). Then T is

(a) one-one and onto. (b) one-one but not onto.
(c) onto but not one-one. (d) neither one-one nor onto.

Ans. Option a

The auxiliary equation of the given matrix is m*> —2m+1=0=m =1, 1.
Therefore the general solution is given by y(x) = Lie* + Ayxe*. That is, the
solution space V is spanned by {e*, xe*}. As

T =(1,1)=1(1,0)+1(0, 1)

T(xe) = (1,0) = 1(1,0) + 00, 1)

the matrixof T is givenby T = |} (l)i| Since T has rank 2, N(T) = {0}. Therefore

T is both one-one and onto.

e cos T sin T, S .
(85) The least positive integer n such that .4 4| is the identity matrix of
—sin % cos T
order 2 is

(a4 ()8 (c)12 (d)1e6.
Ans. Option a

Si cos® sind" | cosnf sinnd 4
M _sind coso| ~ | —sinnd cosno |""F T ™

(86) Let A be the 2 x 2 matrix (jll:ll 18 s 2 ) Then the smallest number n € N

] 9 sin 18
such that A" =1 is

@3 b9 ()18 (d)27.

Ans. Option b

cos ¥ —sin 4%

Since cos (& — 0) = sin 0, sin & = cos *= and hence A = | . 2 4
2 18 9 TU -TT

sin - cos %

We know that

cos 0 —sin0\" _ (cos nf —sinno
sinf cos 6 ~ \sinnh cosnb



10 Solved Problems—Linear Transformations 403

Therefore n = 9.

cos O sin6
—sin 0 cos 6

cos 136 sin 136 01
@4 ®F © <—sin 136 cos 139) @ (-10)'

. . 27 2015
(87) Consider the matrix A = , Where 60 = 3 Then A equals

Ans. Option b
. cos® sin®\" cos nf sin no
Since = , we have

—sin 6 cos 0 —sin nb cos nb

42015 _ cos 1300 sin 1300 _
—sin 1306 cos 1306

(88) For the matrix A as given below, which of the them satisfy A® = I?

cos 7 sin7 0 1 0 0
(@A =|—sinF cos 7 0 ®A=|0 cos3 sin%
0 0 1 0 —sin 5 cos 5
cos g 0 sin % cos 5 sin% 0
A= 0O 1 0 (A= |—sin7 cos 50
—sin g 0 cos T 0 0 1
Ans. Option ¢
cos g 0 sin %
A= 0O 1 0 is the rotation matrix in R about y-axis. Therefore
—sin g 0 cos %

A =1.

(89) Let A be a 5 x 3 real matrix of rank 2. Let b € R’ be a non-zero vector that is
in the column space of A. Let § = {x eR?: Ax = b}. Define the translation
of a subspace V of R? by xg € R3 as the set xg + V = {xo + v : v € V}. Then
(a) S is the empty set
(b) S has only one element
(c) S is a translation of a one-dimensional subspace
(d) § is a translation of a two-dimensional subspace.

Ans. Option ¢

Given that the system has a solution. Therefore Rank [A | b] = Rank (A) =2 <
number of unknowns. Therefore dim (S) =3 -2 = 1.
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(90) Check whether the following statements are true or false?
(a) Consider the map T : Ps — R2, given by (Tp)(x) = (p(3), p'(3)). Then
Nullity(T) = 3.
(b) Consider the map T : P, — P, given by (Tp)(x) = p(x) + p'(x). Then T
is invertible.
(c) Let V be the vector space over R consisting of polynomials of degree less
than or equal to 3. Let 7 : V — V be the operator sending f (x) to f(x 4+ 1),
and D : V — V the operator sending f (x) to 5—x [f (x)]. Then T is a polynomial
in D.
(d) An invertible linear map from R? to itself takes parallel to parallel lines.

Ans. (a) False. We know that Ps is of dimension 6. Suppose that Nullity(T) = 3.
Then by Rank-Nullity Theorem,

6 = dim(V) = Rank(T) + Nullity(T) = Rank(T) =3

which is not possible as R? is a vector space of dimension 2 and it cannot
have a subspace of dimension 3.
(b) True. Consider the standard ordered basis for P,. Then

T(Hh=1Tkx)=x+1, T(x*) =x>+2x

110
Hence the matrix of T is given by | 0 1 2 |. Clearly T is invertible.
001
(c) True. Consider the standard ordered basis for V. Then

T =1, T =x+1, T =x>+2x+1, T&x) =x> +3x> +3x + 1

1111
) . 0123
and the matrix of T is T = 0013 . Also

0001
D(1) =0, D(x) = 1, D(x?) = 2x, D(x>) = 3x2

0100
0020
0003
0000

and the matrix of D is D = .ThenT = D>+ iD*+ D +1.
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(d) True. Consider two parallel lines in R? given by L, = (AX + ﬁ) | 2 e R}

and L, = (A X + 72) | 2 € R} passing through ﬁ), 72) eR?and X € R?
is its direction vector.
TWL)=AT(X)+TON) | AeRYand T(Ly) = AT (X)+T(3) | €
R}. Since T is invertible T(X) # 0 if ¥ # 0 and T(Ly) and T(L,) are
parallel lines with direction vector T(X) and passing through T(ﬁ)) and
T(fz)), respectively.
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210
(1) Which of the following is an eigenvector of the matrix A= |02 1 ]?
002
1 0 0 2
@0 |1 © (0] ]2
0 0 1 2

Ans. Option a
As A is an upper triangular matrix, the eigenvalues of A are its diagonal entries.

210 1 1
Therefore the only eigenvalue of A is 2. Also [ 02 1 0]=210].
002/ \0 0
32 5
(2) The imaginary parts of the eigenvalues of the matrix A = |2 —3 6 | are
00 -3

(@0,0,0 (b)2,-2,0 (c)1,-2,0 (d)3,-3,0.

Ans. Option a
The characteristic equation of A is given by (3 + 1)(A> — 13) = 0. Therefore it
has no complex eigenvalues.

2200
. . . . 12100].
(3) The number of linearly independent eigenvectors of the matrix 0030/
0014

@l (b2 (©3 @4

Ans. Optiond
Since the given matrix is a block diagonal matrix, the eigenvalues of the given
matrices are precisely the eigenvalues of the sub-block matrices. That is, in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 407
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this case the eigenvalues of the given matrix are eigenvalues of the matrices
22 30 . . . . .

|:2 1i| and |: 1 4i|. Therefore the given matrix has 4 distinct eigenvalues. Since

eigenvectors corresponding to different eigenvalues are linearly independent,

there are 4 linearly independent eigenvectors for the given matrix.

4) Let p(A) = ap + ajr + aA* + - - - + a, A" be the characteristic polynomial
of an x n matrix A with entries in R. Then which of the following statements
is true?

(a) p(A) has no repeated roots.

(b) p(X) can be expressed as a product of linear polynomials with real coef-
ficients.

(c) If p(1) can be expressed as a product of linear polynomials with real
coefficients, then there is a basis of R" consisting of eigenvectors of A.

Ans. Option ¢

(a) Consider the identity matrix. Then the characteristic polynomial is (. —
1)" which has repeated roots.

(b) Consider the matrix [_01 (1)] Then the characteristic polynomial is \> + 1
which cannot be expressed as a product of linear polynomials with real
coefficients.

(c) p(A) can be expressed as a product of linear polynomials with real coeffi-
cients implying that it has n distinct eigenvalues. Since eigenvalues corre-
sponding to distinct eigenvalues are linearly independent, the collection
of all eigenvectors is a linearly independent set of cardinality n in R".
Therefore R" has a basis consisting of eigenvectors of A.

2
) If | y | (v, z € R) is an eigenvector corresponding to a real eigenvalue of the
Z
00 2
matrix | 1 0 —4 |, thenz — yisequalto.......
01 3

Ans. The characteristic equation of the above matrix is
B34 —2=0—-DRA*=224+2)=0=>r=lorr=1=+i
The only real eigenvalue of A is 1. Then,
00 2 2

2
10—4||y|=1|y|=27=2and2—-4z=y=z=1,y=-2
01 3 z z
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Therefore z — y = 3.

1 0 0
(6) Let A= |0cos 6 —sin6 ,WhereO<9<%.LetV:{veR3:AvT=
0sinf cosH

vT'}. Then the dimension of V is
@0 (M1 ©2 )3

Ans. Option b
V is the eigenspace of A with respect to the eigenvalue 1. Thus,

V={peR: A =y}
=(veR:(A-In" =0}
=NA-1)

Since 0 < 6 < % Rank(A — I) =2 and hencedim [N(A — )] =3—-2=1.
(7) Let T : R? — R3 be a linear transformation such that
r{1,2,3)=(,2,3),7(1,5,0)=(2,10,0)andT(-1,2,—-1) = (-3,6, —3)

Then dimension of the vector space spanned by all the eigenvectors of T is
@0 M1 (2 (3.

Ans. Optiond
Since
r(,2,3)=(1,2,3) = 1(1,2,3)

7(1,5,0) = (2,10,0) = 2(1, 5, 0)
T(=1,2,—1) = (=3,6,-3) = 3(—1,2, —1)

1,2, and 3 are eigenvalues of T. Since T has three distinct eigenvalues, eigen-
vectors of T are linearly independent. As R3 has dimension 3, the eigenvectors
of T spans R3.

(8) Let D : P4[x] — P4[x] be the linear operator that takes any polynomial p(x)
to its derivative p’(x). Then the characteristic polynomial f(x) of D is
@x* x> ©x3x—-1D @x*x-1D.

Ans. Option b
Consider the standard basis {1, x, x2, x3, x*}. Then

D(1) =0 =0.1+ 0x + 0x> + 0x> + Ox*

D(x) =1=1.1+0x + 0x> 4 0x> + 0x*
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D(x?) = 2x = 0.1 + 2x + 0x* + 0x’ + Ox*
D(x*) =3x% = 0.1 + Ox + 3x% + 0x> + Ox*
D(x* = 4x*> = 0.1 + Ox + 0x? + 4x> + 0x*

01000
00200
Then the matrix of T is | 00 0 3 O |. Then the characteristic polynomial f(x)
00004
00000
of D is x°.

(9) Letnbeanodd number > 7.Let A = [a;;]beann x nmatrix witha;;41y) = 1
foralli =1,2,...,n—1anda, = 1.Leta;; =0 for all other pairs (i, j).
Then we can conclude that
(a) A has 1 as an eigenvalue (b) A has —1 as an eigenvalue
(c) A hasnoreal eigenvalues (d) A has at least one eigenvalue with AM > 2.

Ans. Option a

We have
010 ...0
1 ...0
A= . .
100 ...0

The matrix is obtained by interchanging the rows of the identity matrix of order
n and hence the characteristic polynomial is \* — 1. The eigenvalues of A are
precisely the nth roots of unity.

(10) Let P4(X) denote the characteristic polynomial of a matrix A. Then for which
of the following matrices P4(A) — P4-1(}) is a constant?

@(3;) ®(i) ©G3) ©(Gi)

Ans. Option ¢

Let Ay and ), be two eigenvalues of A, then the eigenvalues of A~" are /\l] and /\1—2
(since A is invertible). Hence the characteristic polynomials for A and A~ are
given by Py(3) = > = (b1 + A)A + Aidg and Pai(A) = A2 — (= + £)A +

Tl)\z' Now Pa(A) — Pa-1(A) is a constant only if

1 1 1
Mtr=—+— MEM[1-——])=0
1+ A )»1+)»2=>(1+ 2)< )»1)»2)

=AM +A=00r LiAy =1

= trace = 0 or determinant = 1
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Only (Z g) satisfy one of these conditions.

1 o o?

(11) Letwbeacomplex numbersuchthatw® = I,butw # 1.LIfA = | o «? 1

o* o 1

)

then which of the following statements are true?

(a) A isinvertible.

(b) Rank(A) = 2.

(c) Ois an eigenvalue of A.

(d) there exist linearly independent vectors v,w € C® such that
Av = Aw = 0.

Ans. Options b and c
# 0,

Rank(A) = 2 and hence Ax = 0 has only one linearly independent solution.

Since det(A) = 0, A is not invertible and 0 is an eigenvalue of A. As i) ;))2

ab
(12) Let MZ{A:<cd

) | a, b, c,d € 7Z and the eigenvalues of A be in (@}.
Then

(a) M is empty
(b) M = {A: (2’2) la,b,c,d € Z

(c) if A € M then the eigenvalues of A are in Z
(d) if A, B € M are such that AB = [ then det(A) € {+1, —1}.

Ans. Options c and d
(a) Let A = I. Then clearly A € M. Thus, M is non-empty.

. . 01 ab
(b) Consider the matrix B = |:_1 0:| IS {A = (c d) |a,b,c,d e Z}.

Clearly, B ¢ M. Therefore M # {A = (i Z) |a,b,c,d e Z}.

(c) The characteristic polynomial has rational roots implying that it is
reducible over Q which gives the reducibility of the characteristic poly-
nomial over Z. Therefore if A € M then the eigenvalues of A are in Z.

(d) If A, B € M, then their determinant must be an integer (as det(A) =
ad — bc). Now AB =1 = det(AB) = det(A)det(B) = 1. Therefore
det(A) € {+1, —1}.

(13) Let {uy,...,u,} and {vi,...,v,} be two bases of R". Let A be an n x n
matrix with real entries such that Au; =v;, i =1,2,...,n. Suppose that
every eigenvalue of A is either —1 or 1. Let B = I 4+ 2A. Then which of the
following statements are true?
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(@) {u; +2v; |i =1,2,...,n}is also a basis of V.
(b) B is invertible.
(c) Every eigenvalue of B is either 3 or —1.

(d) det(B) > 0ifdet(A) > 0.

Ans. Options a, b, ¢, and d
Letcy,...,c, € R be such that

cr(ur +2vi) + -+ (U, +2v,) =0
Since Au; = v; this implies that
ciuy + -+ cpuy +2A(ciuy + - - -+ cpuy) =0
= A(ciur + -+ cpun) = _71(01”1 + ot cultn)

Since every eigenvalue of P is either —1 or 1, this is possible only when ciu +

coo A+ cpuy = 0. {uy, ..., u,} is a basis implying that
co=c=---=c¢c, =0
Hence{u; +2v; | i =1,2,...,n}isalsoabasis of V. Since every eigenvalue of

A is either —1 or 1, the eigenvalues of B are either2(1) +1 =3 0r2(—1) + 1 =
—1. Since 0 is not an eigenvalue B is invertible. Since the algebraic multiplicity

of —1 as an eigenvalue of A and as an eigenvalue of B are the same, det(B) > 0
ifdet(A) > 0.

(14) Let T : R" — R” be a linear transformation of R”, where n > 3, and let

M, A2, ..., A, be the eigenvalues of T. Which of the following statements are
true?
(@) If »; =0, forsomei =1,2,...,n,then T is not surjective.

(b) If T is injective, then A; = 1 for some i, 1 <i <n.
(c) If there is a three-dimensional subspace W of V such that T(W) = W,
then A; € Rforsomei, 1 <i <n.

Ans. Options a and ¢

(a) If one of the eigenvalues is zero, then Rank(T) < n. Therefore T cannot
be surjective.

(b) T isinjective need not imply \; = 1 for some i. For example, consider the
linear transformation T : R> — R3 given by T (x, y, 2) = (2x, 3y, 42).
T is injective but 1 is not an eigenvalue of T

(c) If we consider T as a linear transformation from W to itself, the char-
acteristic polynomial of T will be of degree 3 with real coefficients. It
always has a real root.
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(15) Let A be a 5 x 5 matrix with real entries such that the sum of the entries in
each row of A is 1. Then the sum of all the entries in A° is
@3 M15 ()5 (@) 125.

Ans. Option ¢
Since the sum of all entries in each row of A is 1, 1 is an eigenvalue of A
with eigenvector [1 111 l]T. Then 1 is an eigenvalue of A3 with the same

eigenvector and hence the sum of entries in each row is 1. Therefore the sum of
all the entries in A3 is 5.

(16) Let A be an invertible 10 x 10 matrix with real entries such that the sum of
each row is 1. Then

(a) The sum of entries of each row of the inverse of A is 1.

(b) The sum of entries of each column of the inverse of A is 1.
(c) The trace of the inverse of A is non-zero.

(d) None of the above.

Ans. Option a

(a) We have
apip app -+ ap, 1 air +ap+ - +ay,
a1 axp -+ ay, 1 @1 t+an+--+ay,
aio, ao, -+ - oy, | |1 a, + ai, + -+ + aio,, 1
. . o T
Therefore 1 is an eigenvalue of A with eigenvector [1 l--- 1] . Hence 1

is an eigenvalue of A=! with eigenvector [l I 1]T (Theorem4.4). So

sum of entries of each row of the inverse of A is 1.
11

(b) Consider B = |:(2) %] Observe that B~! = |:

2 —

1
0 1:|. Take A =

|:OB 021X8i| R. Then A is invertible with sum of entries in each row being
8x2 8
_1 B! 0248 .
1. Also, A= = 0 It Clearly, sum of entries of each column of
8x2 18

the inverse of A need not be 1.
(c¢) Consider the matrix

00---01

00---10
A=

10---00

Then A~' = A and hence tr(A~") = 0.
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(17) Let A be a 3 x 3 matrix with real entries which commutes with all 3 x 3
matrices with real entries. What is the maximum number of distinct roots that
the characteristic polynomial of A can have?

app app a3
Ans. Let A = | ap) ax axz | be a matrix which commutes with all 3 x 3 matri-

as) az asz
ces with real entries. In particular,

001 001 ajz apz ap az| asy ass apy ap a3

Al010|=[010|A= |axax ay | = |ax ax a3 | = A = |az ax ax

100 100 asz az asi ay ap a3 ajz ap ap
010

Also A commutes with | 1 0 0 | which gives
000

010 010 aip aip 0 ar| apy any a;ir 0 0
Al100|=|100A=|axnan0|=|anranaz|=A=| 0 a; O
000 000 aip a1z 0 0O 0 O 0 0 ap

Hence, A must be a scalar matrix and hence it has only one eigenvalue.

abc
(18) Let A = | b d e | be areal matrix with eigenvalues 1, 0, and 3. If the eigen-

ce f
vectors corresponding to 1 and 0 are (1, 1, D7 and (1, —1,0)7 respectively,
then the value of 3 f isequalto.......

Ans. Since 0 is an eigenvalue of A with eigenvector (1, —1, 0)’,

abc 1 0
bd e —1|=|10|=a=b=d, c=e¢
cef 0 0

And as (1, 1, 1)" is an eigenvector of A, corresponding to the eigenvalue 1,

abc 1
bd e l|=|1|=2>2a+c=2c+f=1=2a+3c+f=2
ce f 1 1

Sincetr(A) =4,a+d+ f =4 = 2a + f = 4. Substituting thisin2a + 3c +
f =2 wegetc= —Tz and hence f = % Therefore 3 f ="T.

123
(19) The matrix A =045
006
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(a) is an elementary matrix

(b) can be written as a product of elementary matrices
(c) does NOT have linearly independent eigenvectors
(d) is a nilpotent matrix.

Ans. Option b

A is not an elementary matrix as an elementary matrix is obtained by a single
row(column) transformation on the identity matrix. The given matrix is invertible
and hence can be written as a product of elementary matrices. A is an upper tri-
angular matrix hence the eigenvalues are its diagonal entries. Since A has three
distinct eigenvalues it has three linearly independent eigenvectors. A nilpotent
matrix is never invertible as zero is an eigenvalue.

(20) Let A, B be complex n x n matrices. Which of the following are true?

(a) If A, B and A + B are invertible, then A~! + B~! is invertible.

(b) If A, B and A + B are invertible, then A~! — B~! is invertible.

(c) If AB is nilpotent, then BA is nilpotent.

(d) Characteristic polynomials of AB and BA are equal if A is invertible.

Ans. Options a, ¢, and d

(a) Since (A + B) is invertible, we have

(A+B)YA+B) '=1=AA"+B")BA+B) ' =1
= A"+ B Visinvertible
(b) If A= B =1,, then A, B, and A + B are invertible, but Al — Bl

not invertible.
(c) AB is nilpotent = (AB)* = 0 for some positive integer k. That is,

(AB)(AB)...(AB)(k times) =0
Multiplying by B from left and A from right, we get
B(AB)(AB)...(AB)A = (BA*' =0

Therefore B A is nilpotent.
(d) The characteristic equation of AB is given by det (Al — AB) = 0. Since
A is invertible,

det (. — AB) = det (MAA™' — ABAA™)
=det[A(M — BA)A™']
= det(A)det (. — BA)det (A™")
=det (\ — BA)
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Therefore characteristic polynomials of AB and BA are equal if A is
invertible.

(21) Leta, b, c, d be distinct non-zero real numbers with a + b = ¢ + d. Then an
a b1
eigenvalue of the matrix [ ¢ d 1| is

1-10
(@a+c (bya+tb (c)a—b (d)b—d.

Ans. Option b
The characteristic polynomial of the above matrix is

13— (@+d)2+ (ad —be)r =0 = 2% — (a +d)A + (ad — be) =0

e (a+d) £ (a+d)?—4@ad — be)

L (a+d)++/(a—d)? —4bc

A (a+d)£+/(c—b)? —4bc

sincea—d =c—b

2
L (a+d) £/ (b+c)?
- 2
b+c+d d—c—b
:A:%:a—i—bork:ﬁ%

AB

(22) Let A and B be two n x n matrices and C = |:B A

:| . Which of the following
statements are true?

(a) If A is an eigenvalue of A 4 B, then A is an eigenvalue of C.
(b) If A is an eigenvalue of A — B, then A is an eigenvalue of C.
(c) If A is an eigenvalue of A or B, then X is an eigenvalue of C.
(d) All the eigenvalues of C are real.

Ans. Options a and b

(a) Let X be an eigenvalue of A + B. Then there exists v # 0 € R" such that
(A 4+ B)v = Av. Now, consider V = |:::| € R?". Observe that

_{ABf|v| _[(A+Byw| _ |Av| _,(v] __
V= |:B Ai| |:vi| o [(A + B)v] - |:)»vi| =4 |:vi| =V
That is, A is an eigenvalue of C.

(b) Let X be an eigenvalue of A — B. Then there exists v # 0 € R" such that

\4

(A — B)v = Av. Now, consider V. = |:_ e R?". Observe that
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_|AB v | (A=Byw [ | av | _ v
i Y e e e e e B
That is, A is an eigenvalue of C.
(c) Consider n = 2. Take A = B = i } . Then the eigenvalues of A and
B are 0 and 2. Observe that 2 is not an eigenvalue of C (eigenvalues of
C are 0 and 4). Therefore, every eigenvalue of A or B need not be an
eigenvalue of C.
. 01 00 .
(d) Considern = 2. Take A = 10 and B = ool Then the eigenvalues
of C are i and —i, each repeated twice. Therefore, all the eigenvalues of
C need not be real.

(23) Write down a necessary and sufficient condition, in terms of a, b, ¢, and d

. . |ab
(which are assumed to be real numbers), for the matrix |:c di| not to have a

real eigenvalue.

Ans. The characteristic equation of a2 x 2 matrix is given by \> — (tr (A))A +
det(A) = 0. Therefore the characteristic equation of the given matrix is \* —
(a + d)A + (ad — bc) = 0. Then the equation does not have a real eigenvalue
when (a + d)* — 4(ad — be) < 0.

-2 6
(24) Let A be a 3 x 3 matrix such that A| 1 | = | —3 | and suppose that
0 0
1 o
A3 _71 = | B | forsome «, B, y € R. Then |¢| isequalto.......
0 Y

Ans. If X is an eigenvalue of A with eigenvector v # 0, then A" is an eigenvalue
of A" with eigenvector v (Theorem4.5). In this case, as

-2 6 -2
Al ]==3l==3|1
0 0 0

—3 is an eigenvalue of A with eigenspace E = span{(—2,1,0)'}. Clearly

(l, ’Tl 0)t € E. Therefore

1
=1
2
0

and hence |a| = 27.
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(25) If a 3 x 3 real skew-symmetric matrix has an eigenvalue 2i, then one of the
remaining eigenvalues is

@+ B3 ©0 @1

Ans. Option ¢
A is skew-symmetric implies AT = —A

AT = —A = det(AT) = (—1)*det (A)
= det(A) = (=1)det(A) since det(AT) = det(A)
= det(A) =0

Therefore 0 is one of the remaining eigenvalues. Since the complex roots of a
polynomial with real coefficients occur in conjugate pairs, the third eigenvalue
is —2i.

(26) Let A be an n x n non-null skew-symmetric matrix, where n is even. Which
of the following statements is (are) always true?

(a) Ax = 0 has infinitely many solutions, where 0 € R".

(b) Ax = Ax has a unique solution for every non-zero A € R.
(c) If B= (I, + A)(I, — A)~!, then BTA = I,.

(d) The sum of all eigenvalues of A is zero.

Ans. Options c and d

Consider the matrix A = I:? _01] Then A is skew-symmetric. Since A is invert-

ible the system Ax = 0 has a unique solution. The characteristic equation of A
is A2+ 1 = 0. As A has no real eigenvalues, Ax = Ax has no solutions for every
non-zero A € R.

BT = [(I, + AU, — A)']"

= [t - L+ 4"

= (I, =AD"\, + A")

=, + AU, — A)
Since (I, + A) and (I, — A) commutes, BT B = I,,. Also since the diagonal
entries of a skew-symmetric matrix is zero, tr(A) = the sum of all eigenvalues
of A=0.

0 1-—1 T
27) let A = 1—i and B = A" A. Then

(a) an eigenvalue of B is purely imaginary (b) an eigenvalue of A is zero
(c) all eigenvalues of B are real (d) A has a non-zero real eigenvalue.
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Ans. Option ¢
We have B = ATA = |:—i2— 1 ! g li|. The characteristic polynomial of B is

S5EV1T
2

12 —5A +2 = 0 and hence the eigenvalues are ). = . The character-

istic polynomial of A is \*> — i) + 2 = 0 and hence the eigenvalues of A are —i
and 2i.

T

(28) Letv e R" with viv #£0. Let A =1 — 2%. Then which of the following
viy
statements is(are) true?

(@A '=1—A. (b)—1and 1 are eigenvalues of A.
©A =A@ T+ Ay =v.

Ans. Options b and c
We have

T T T T\ 2 T T
v vy v v vy v
A=(1-2——)(I-20—)=T-4—+4(—) =T —-4——+4—— =1
< vTv) ( vTv> vIy + (vTv) vIy + vy

Thus A~' = A. We know that w' is a matrix of rank 1 and the eigenvalues of

wT are vTv and 0. For,

(va)v = v(vTv) = (vTv)v
and if we take w € R" with vI'w = 0, we have
whHw =veTw) =0

As we can choose n — 1 such as w's from R", the only eigenvalues of w' are

vI'v and 0. Therefore the eigenvalues of 2¥ are 2 and 0. This implies that the

eigenvalues of A are —1 and 1. Also

T T
(I+A)v:<I+I—2¥)v:2v—2v(vTv) =2 =2 =0
vy vy

(29) Let A be an invertible 4 x 4 real matrix. Which of the following are not true?
(a) Rank(A) = 4. (b) Ax = b has exactly one solution V b € R*.
(©)dim[N(A)] = 1. (d)0is an eigenvalue of A.

Ans. Options c and d

Since A is invertible Rank(A) = 4 and 0 is not an eigenvalue of A. For every
vector B € R*, Ax = b has exactly one solution x = A~'b. By Rank—Nullity
theorem, dim [N'(A)] = 0.
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(30) Which of the following statements is true?

(a) Any matrix A € My,4(R) has a real eigenvalue.
(b) Any matrix A € Ms,5(R) has a real eigenvalue.
(c) Any matrix A € M4, (R) has a real eigenvalue.

Ans. Option b
Since any odd degree polynomial with real coefficients has at least one real root,

any matrix A € Msy5(R) has a real eigenvalue. Consider the matrices |:_01 (l)i| €

0100

My (R) and _01 8 8 (1) € Myx4(R). Both do not have real eigenvalues as

00-10
their characteristic polynomials are respectively A*> + 1 and (A* + 1)2.
(31) Let A be a5 x 5 matrix with real entries, then A has
(a) an eigenvalue which is purely imaginary.
(b) at least one real eigenvalue.

(c) at least two eigenvalues which are not real.
(d) at least 2 distinct real eigenvalues.

Ans. Option b

Since any odd degree polynomial with real coefficients has at least one real root,
any 5 x 5 matrix with real entries has a real eigenvalue. Consider Is. It has only
one eigenvalue which has algebraic multiplicity 5 and is also real.

(32) Let A(B) = |: cotv 0 sin 9], where 0 € [0, 27r]. Mark the correct statement
—sin 6 cos 0

below.

(a) A(6) has eigenvectors in R? for all § € (0, 27).

(b) A(P) does not have an eigenvector in R? for any 6 € (0, 27).

(c) A(9) has eigenvectors in R? for exactly one value of 6 € (0, 27).
(d) A(0) has eigenvectors in R? for exactly 2 values of 9 € (0, 27).

Ans. Option ¢
The characteristic equation of A(0) is

A2 —2(cos )r+1=0
Therefore, the eigenvalues of A(0) are

N 2cos 0 4+ +/4cos 20 — 4
1 =
2

=cos O +isin0
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and
2cos 0 — «/4cos 20 — 4 o
A= 5 =cos 0 —isin 6

Ay and Ly are real when sin 0 = Q. In the interval (0, 2m), sin 6 = 0 only for
0 =m.

a2f 0
(33) Let A= |2f b 3f | where a, b, c, f are real numbers and f # 0. The
0 3f ¢
geometric multiplicity of the largest eigenvalue of A equals........
020
Ans. Takea = b =c =0and f = 1. Thenthe matrixis givenby A = |20 3 |.
030

Then the characteristic equation of the matrix is A> — 13X = 0. Since this matrix
has 3 distinct eigenvalues, the geometric multiplicity of the largest eigenvalue
of Ais 1.

(34) Consider the matrix A = Iy — 2vTv with v = % [1 1111111 1]. If » and

W are two distinct eigenvalues of A, then |A — U= .

Ans. The eigenvalues of v v where v is a row vector are w' and O with algebraic
multiplicity I andn — 1 respectively (see Question 31). Therefore the eigenvalues
of Aare . = 1 and u = —1 and hence |A — u| = 2.

(35) Let A be the matrix |:% _3]i| Which one of the following matrix equations

does A satisfy?

(a) A24+3A451=0
(b) A3 —A?—54=0
()A? —=3A4+1=0

(d) A2 —A+51=0.

Ans. Option b

The given matrix A has trace 1 and determinant —5. Therefore the characteristic
polynomial of A is \> — A — 5 = 0 and hence by Cayley—Hamilton Theorem,
A’ —A-51=0.

13
(36) Let A = [g g}. Then
5

5
(a)20A2 —13A+71 =0 (b)20A> - 134 -7 =0
() 20A2 4+ 13A+71 =0 (d)20A%+13A -7 =0.

Ans. Option b
Since tr(A) = % and det(A) = —% the characteristic equation of A is
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By Cayley—Hamilton Theorem, we have A* — %A — 27—0 = 0. Therefore, 20A% —
13A—-7I =0.

(37) Given an x n matrix A, define e” by

Let p be the characteristic polynomial of A. Then the matrix e”“) is
@1, ®0, (c)el, (d)nl,.

Ans. Option a
By Cayley—Hamilton theorem, every matrix satisfies its characteristic equation.
Therefore p(A) = 0,x, and hence ePM =1 .

(38) Let A be a 4 x 4 matrix with entries from the set of rational numbers. If

V2 +i, withi = /—1, is a root of the characteristic polynomial of A and /
is the 4 x 4 identity matrix, then

(a) A* =442 491

(b) A* =4A% — 9]

(c) A*=24%-9]

(d) A* =2A% +9].

Ans. Option ¢

The characteristic polynomial of A is a polynomial with real coefficients. Since
V2 +i is a root, the other roots are /2 — i —/2+i and —~/2 — i. There-
fore the characteristic equation of A is A* — 24% + 9 = 0. By Cayley—Hamilton
theorem A* —2A% 4+ 91 = 0.

(39) If the roots of the characteristic polynomial of a 4 x 4 matrix A are

1£4/5
N V5

, then A8 =
(@) I+ A% (b)21+ A% ()21 +3A% (d)31+2A%
Ans. Option ¢

: - . 1++/5
Since the roots of the characteristic polynomial of A are & > the char-

acteristic equation is

() () ) )

By Cayley—Hamilton theorem, A must satisfy its characteristic equation. Then,

A=A+ T = A= (A2+ DA+ 1) = A" 4247 + 1 =3A% 421
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(40) Let A be a3 x 3 singular matrix such that Av = v for a non-zero vector v and

2

1 5
Al 0O [=1]0
-1 =2

5

Then
(@) A® = L(TA2 —24) (b) A’ = {(TA* —2A)
(©) A* = 1(7A2 —24) (d) A’ = J(TA% = 24).

Ans. Option a
1
Av = v for a non-zero vector v implies that I is an eigenvalue of A. A| 0 | =
-1
! 2
3 0 | implies that 3 is an eigenvalue of A. Since A is singular, 0 is also an
—1

eigenvalue. Therefore characteristic polynomial of A is given by A3 — 7/5)* +
2/5A. Hence, by Cayley—Hamilton Theorem, A3 = %(7A2 —2A).

(41) Let A € Mjpx10 (C). Let W, be the subspace of Mljg« 10 (C) spanned by {A” |
n > 0}. Choose the correct statements.
(a) For any A, dim(W,) < 10. (b) For some A, 10 < dim(W,) < 100.
(c) For any A, dim(W,) < 10. (d) For some A, dim(W4) = 100.

Ans. Option a
By Cayley—Hamilton Theorem, any matrix of order can be represented as a linear
combination of {A" | 0 < n <9}, forany A, dim(Wy) < 10.

(42) Let A be an n x n real matrix. Let V be the vector space spanned by
{1, A, A%, Az"}. The dimension of the vector space V is
(@)2n (b)atmostn (c)n?® (d)at most 2n.

Ans. Options b and d
By Cayley—Hamilton Theorem, every matrix of order n can be written as a linear

combination of {1, A, A%, ..., A" ). The dimension of the vector space V is n.
(43) Let V = {p(A) : pis a polynomial with real coefficients}, where
010
A =001 ]. The dimension of the vector space V satisfies
100

(A4<d=<6 (b)6<d<9 (c)3<d=<8 (@3=<d=<4

Ans. Options c and d

By Cayley—Hamilton Theorem, every matrix of degree greater than 3 can be
written as a linear combination of {I, A, A2, A3}. Here A® = I and hence V
can be spanned by {I, A, A?}.
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(44) Let A be a3 x 3 upper triangular matrix whose diagonal entries are 1, 2, and
—3. Express A~! as a linear combination of I, A, and AZ.

Ans. The characteristic equation of the given matrix is

A=—DA-2)A+3)=1>-T1+6=0

By Cayley—Hamilton Theorem,
1

AN TA+6I=0= A" =1 - _A?

6 6
(45) Let A be a3 x 3 matrix and suppose that 1, 2, and 3 are eigenvalues of A. If
_1 r ., 11
AT =—-A"— A+ —1
o o

for some scalar @ # 0, then ¢ isequal to .. .....

Ans. Since 1, 2, and 3 are eigenvalues of A, the characteristic equation of A is

A=DA=2)A=3)=2>—622+11a—-6=0

By Cayley—Hamilton Theorem, A~' = EAZ —A+ g[. Therefore o = 6.

(46) Let A be a3 x 3 matrix with complex entries, whose eigenvalues are 1, i, and
—2i. If A" = aA? + bA + cl, witha, b, ¢ € C, what are the values of a, b,

and c?
Ans. Since 1,i and —2i are the eigenvalues of A, the characteristic equation

of Ais
A=DOr=—DA+20)=23 -1 - =i —-22A—2=0

By Cayley—Hamilton Theorem,
B0 —D = —-2A—2=0=A+(-DA’=Q2—-)A-21=0

_ 1 (i—-1 2-10
A7l =_-A2 A I
= 2 + 2 + 2
— >
Thereforea:%,b: < ),andcz ( 21),
(47) Let Abe a3 x 3 upper triangular matrix with real entries. If a;; = 1, a = 2,

and a3z = 3, determine «, B, and y such that

Al =aA’+ BA+yI
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Ans. The eigenvalues of an upper triangular matrices are its diagonal entries.
Therefore its characteristic equation is

A=DA=2)A=3) =1 —62+111—-6=0

By Cayley—Hamilton theorem,

3 2 a1 11
A —6A°+11A-6I=0= A =6A —A—i-gl
1 11
Thereforea = ¢, B = —1,andy = .
1 0 2
48) Let A=|1—-2 0 |. If 6A"' =aA*>+bA+cl for a,b,c € R then
00 -3

(a, b, c) equals
(@(,2,1) (b)A,-1,2) (c)@,1,1) (@) (1,4,1).

Ans. Optiond
The characteristic equation of A is

M0 =2=-3) 24+ 6-3-21—6=2>+424+21-6=0
By Cayley-Hamilton Theorem, 6A~" = A> +4A + I. Therefore (a,b,c) =
(1,4, 1.

10 1
(49) fA=[{02 1 |and6A~! =al + bA — A?, then the ordered pair (a, b) is
20 -1
(@ @3,2) b)2,3) ©&)35 @G

Ans. Option a
The characteristic equation of A is

Mo 4+2-DA2 4+ (—2=34292—=(—6) =2 =222 =31+6=0

By Cayley—Hamilton Theorem, 6A~" =3I +2A — A%. Therefore (a,b) =
(3,2).

120
(50) LetA=|[021]|.IfA"! = §I +kA+ lAz, find the value of k. Hence or
101 4 4
X 1
otherwise, solve the system of equations A | y | = [ 0 |.
Z 0
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Ans. The characteristic equation of A is
Mo Q4+24+ DA+ Q24142 —4=2>—422+5,-4=0

By Cayley—Hamilton Theorem, we have A3 — 4A> +5A — 41 = 0. Now,

A3—4A2+5A—41—0:>A—1—§1+(—1)A+1A2:>k——1
- =7 Z -

—_

Also, we get A™! = . Since A is invertible the system of equa-

l\)| STy

—_

S N L

M|-l>-|| | =
A

Bl= =

tions is unique and the solution is A~

oo~
|

1
2

(51) Let A = _01 }

@l ()2 (c)4 (d)e.

. Then the smallest positive integer n such that A" = I is

Ans. Option d
The characteristic equation of the given matrix is

A —tr(A)+det(A)=2>—14+1=0
By Cayley—Hamilton Theorem, A> = A — I. Therefore,
A*= A2 2A+1=—-Aand A =A*A’=—-AA-1)=1

(52) Let A be the matrix A = |:_1/§ \_/ﬂ Compute the matrix

B =3A—2A%— A% —5A% + A°

Ans. The characteristic equation of A is
A2 —tr(A) +det(A)=2>+1=0

By Cayley—Hamilton Theorem, we have A* + I = 0. Thus, A> = —I and hence
A3 =—A, A* = I, A® = —I. Therefore
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2 _ 43 4, 46 0 4v2
B=3A-2A"—-A"-5A"4+A"=3A4+2I+A-5]-1= [—4\@ —8]
(53) Denote by U the set of all n x n complex matrices A(n > 2) having the prop-

erty that 4 is the only eigenvalue of A. Consider the following four statements.
@) (A—-4D)" =0, (ii) A" =41,

(iii) (A2 —5A+41)" =0, (iv) A" =4nl.

How many of the above statements are true for all A € U?

@0 (b1 (2 (@s3.

Ans. Option ¢
Since A is of order n and 4 is the only eigenvalue of A, the characteristic
polynomial of A is (A — 4)". Then by Cayley—Hamilton theorem (A — 41)" = 0.
As

A>—5A4+41=(A—4D(A-1)

we have
(A2=5A+4D)"=(A—-D"(A—41)"=0

Thus statements (i) and (iii) are true for all A € U.
Let A = |:g él‘j| Then A? = [106 186]. In this case A> # 161 and A®> # 81. Thus

statements (ii) and (iv) need not be true for all A € U.

(54) Let V be a vector space over C with dimensionn. Let T : V — V be a linear
transformation with only 1 as eigenvalue. Then which of the following must
be true?

@T—-1=0 BT -D"'=0 T -D"=0 (T -1N*"=0.

Ans. Options c and d

Since 1 is the only eigenvalue of the matrix, the characteristic polynomial is (A —

1)" and hence by Cayley—Hamilton Theorem (T — I)" = 0 and (T — I)*" = 0.
110

Now for n = 3 consider T with the matrix | 0 1 1 |. Then both options a and b
001

are false.

(85) Let T : C" — C" be a linear transformation, n > 2. Suppose 1 is the only
eigenvalue of 7. Which of the following statements are true?
@Trk#IforanykeN (b)(T—I1)""'=0
T -0n"=0 ) (T — D" =0.

Ans. Options c and d

(a) Consider the identity transformation. Then T* = I for any k € N.
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(56)
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1---0
1---0

(b) Considerthe linear transformationwithmatrixT = | . . = . |.Clearly
00---1

1 is the only eigenvalue of T. Then, (T — )"~ # 0.

(c) Since 1 is the only eigenvalue of T, the characteristic equation of T is
(A — 1)" = 0. Then by Cayley—Hamilton Theorem (T — I)" = Q.

(d) Since (T — )" =0, (T — I)"*! =0.

Consider a real vector space V of dimension n and a non-zero linear transfor-
mation T : V — V.Ifdim [T (V)] < nand T? = AT, for some A € R\ {0},
then which of the following statements is true?

(a) det(T) = |1I".

(b) There exists a non-trivial subspace W of V such that T (v) = 0 for all
veW.

(c) T isinvertible.

(d) A is the only eigenvalue of 7.

Ans. Option b
Consider the transformation T (xy, x3) = (x1,0). Then Range(T) = x— axis.
Therefore dim [T (V)] < 2 = n. Also

T?(x1, x2) = T(x1,0) = (x1,0) = T (x1, x2)

Since T is not onto, it is not invertible. Therefore det(T) = 0 and 0 is also
an eigenvalue. Hence options (a), (¢), (d) are false. Since dim [T (V)] < n, by
Rank-Nullity Theorem, there exists a non-trivial subspace W of V such that
Tw)=0forallveWw.

(57)

abc

Let A= |0ad | bea3 x 3 matrix where a, b, c, d are integers. Then, we
00a

must have

(a) Ifa # 0, there is a polynomial p € Q[A] such that p(A) is the inverse of
A.
q(a) q(b) q(c)
(b) For each polynomial g € Z[A], the matrix g(A) = 0 g(a)q(d)
0 0 g
(c) If A" = 0 for some positive integer n, then Al =0.
a 0c
(d) A commutes with every matrix of the form | 0 a’ 0
00a
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Ans. Options a, ¢, and d

(a) Since the characteristic polynomial of the given matrix is
(A —a)®> =213 =3ar> 4+ 3d*r — d°

By Cayley—Hamilton Theorem, we get

1
-1 2 2
A =E(A —3aA+3a I)
Ifa # 0, there is a polynomial p € Q[x] such that p(A) is the inverse of
A.
(b) Let g(A) = A+ 1. Then,

a+1 b c

g A)=A+1= 0 a+1 d

0 0 a+1

q(a) q(b) q(c) a+1b+1c+1
0 g@q)|=| 0 a+1d+1|#q(A)

0 0 g 0 0 a+1

Therefore option b is false.
(c) A" =0 = A is a nilpotent matrix. Since the degree of nilpotency of a
nilpotent matrix is always less than or equal to its order, A3 = 0.

(d) We have
a 0c abc adaadbadc+ca abc a 0c
04 0 Oad|=]| 0 da dd =|0ad 04 0
00d 00a 0 0 daa 00a 00d
a 0c
Clearly, A commutes with every matrix of the form | 0 a’ 0
00da

(58) Let V be the vector space of all real polynomials of degree < 10. Let
(Tp)(x) = p'(x) for p € V be a linear transformation from V to V. Con-
sider the basis {1, x, x2, ... x'%} of V. Let A be the matrix of T with respect
to this basis. Then
(a)tr(A) =1 (b)thereis nom € N such that A" =0
(c)det(A) =0 (d) A has anon-zero eigenvalue.
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Ans. Option ¢

010...0
002...0
The matrixof Tis A= | ... . . .Then T'' = 0,tr(A) =0, det(A) =0
000...10
000...0

and 0 is the only eigenvalue.

(59) Suppose that A is a 5 x 5 matrix with real entries and p(X) = det (LI — A).

(@) p(0) =det(A).

(b) every eigenvalue of A isreal if p(1) + p(2) =0 = p(2) + p(3).
(c) A~!is necessarily a polynomial in A of degree 4 if A is invertible.
(d) A is not invertible if A2 — 24 = 0.

Ans. Option ¢

(a) p(0) =det(—A) = (=1)°det(A) = —det(A).
(b) Let p(A) = A+ ar + a3h® + @A + a h + ag. Then

p(1) + pR) =0= 33+ 17a4 + 9as + Sa; + 3a; + 2a9 =0

and
p(1)+ pB)=0=2754+97a4 + 35a3 + 13a, + 5a; + 2ap =0

Let ay = as = a4 = 0. Then solving for ay and a,, we get ay = 165
and a; = —121. Then p(L) = 1> — 121A + 165. Then p(}) has 2 sign
changes and one sign change for p(—A). Then by Descarte’s Rule of
Signs, p(A) has at most 3 real roots. Therefore p has complex roots even
Fp)+p2)=0=pQ2)+ pA.

(c) By Cayley—Hamilton Theorem, A~ is necessarily a polynomial in A of
degree 4 if A is invertible.

(d) Consider A = 21I. Then A*> —2A = 0. But A is invertible.

000 0
100 -2
0101
001 2

(60) Let«, B, y, 6 be the eigenvalues of the matrix A = . Then o +

Ans. Let o, B, y, 8 be the eigenvalues of the matrix A, then o?, ,32, )/2, 8% be
the eigenvalues of the matrix A%. Then o* + B> + y? + 82 is the trace of A.
Therefore o> + 8% + y2 + 8% = 6.
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(61) Let A = [i éi| and let «,, and B, denote the two eigenvalues of A" such that

oy > Byu. Then
(a) ¢, > o0 asn — o0 (byasn — o0, B, — 0
(c) By is positive if n is even.  (d) B, is negative if n is odd.

Ans. Options a, b, ¢, and d
Let o« and B denote the two eigenvalues of A with o« > B. Then o, = («)" and
B, = (B)". The characteristic polynomial of A is A\> — A — 1 and hence a,, =

1++5)" 1-v5\"
( +2f) and B, = ( 2f> .
(62) Let A be a3 x 3 singular matrix and suppose that 2 and 3 are eigenvalues of

A. Then the number of linearly independent eigenvectors of A3 + 2A + I is
equalto.......

Ans. Since A is singular 0 is also an eigenvalue of A. Therefore the eigenvalues
ofA3 +2A + I are 1, 13, and 34. Since it has distinct eigenvalues, ASH+2A+1
has three linearly independent eigenvectors.

100

(63) Consider the matrix A = | 0 3 2 |. Let P be a non-singular matrix such that
014

P~'AP is a diagonal matrix. Then the trace of the matrix P~'A3P equals

Ans. Eigenvalues of A are 5, 2, and 1. Therefore eigenvalues of A3 are 125, 8,
and 1. Since tr(AB) = tr(BA),

tr(P~'A’P) = 1r(A%) = 134
(64) Let A, v be distinct eigenvalues of a 2 x 2 matrix A. Then which of the
following statements must be true?
(a) A? has distinct eigenvalues.
)\3 _ /'L3
(b) A3 = k—A —Ap(A + p)l.

(c) trace of A" is A" 4+ w" for every positive integer 7.
(d) A" is not a scalar multiple of identity for any positive integer n.

Ans. Options b and c
As A, i are the eigenvalues of A, tr(A) = A +  and det (A) = Au. Then, the
characteristic equation of A is

x2 - tr(A)x +det(A) = x2 - A+wx+ru=0
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By Cayley—Hamilton theorem, we get
A= (O 4+ WA —aul

Multiplying by A on both sides and substituting for A%, we have

)"S_M3

A= (2 A+ A = an+ I = A=+ )l

Since the eigenvalues of A are A and |, the eigenvalues of A" are A" and |".
Hencetrace of A" is \* + u" for every positive integer n (Theorem4.5 and Corol-

0 .. .
0—1l then A has distinct eigenvalues, but
A% = I does not have distinct eigenvalues.

lary4.2). Consider the matrix A = |:1

(65) Let A be a 3 x 3 matrix. Suppose that the eigenvalues of A are —1,0, 1
with respective eigenvectors (1, —1,0)7, (1,1, =2)7, and (1, 1, ). Then

6A equals
-1 52 100 153 -390
@] 5 —-12{®|0-10|@|513|@| 9 -30].
2 22 000 333 0 06

Ans. Option a

Since the eigenvalues of A are —1, 0, 1 with respective eigenvectors (1, —1, 07,
(1,1, =27, and (1, 1, DT, the eigenvalues of 6A are —6, 0, 6 with respective
eigenvectors (1, —1,0)7, (1,1, =2)7, and (1,1, )T (Theorem4.6). Therefore
6A has trace 0 and determinant 0. Thus options (c) and (d) are false. Since 6 is
an eigenvalue with eigenvector (1,1, 1)T, the row sum of 6A must be the same.
Hence option (b) is false.

(66) Leta = e . Consider the matrix

l o a?
0o a?
A=|00cd%«a
000 &«
000 0 «

Ol30[
Ol3()[
30(

IR N N S

Thentr (I + A+ A%)is......
@-5 (0 ©3 @@S:.

Ans. Option d

Sincea = e%, theset{1, a, a?, o, a*) is fifth roots of unity. Hencetr (A) = 1 +
a+al+ad+a*=0. Also the diagonal entries of A? are {1, a, a2, o3, Ol4}.
Therefore tr(A>) =0andtr(I + A+ A?) =tr(I) = 5.
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67) If
10 0
=143
a=|i—5— 0
—1—i3
0 1+42i T"/—

then tr (AIOZ) iS......
@0 (M1 (©2 (@3

Ans. Option d

Since the given matrix is lower triangular, the eigenvalues of A are precisely the
diagonal elements of A and the diagonal elements of A are the cube roots of unity.
Therefore the only possible eigenvalue of A'® is 1. Therefore tr (AIOZ) =3.

1+22 7 11
(68) Consider the matrix A(A) = 3 21 4 |, A € R.Then
8L 1713

(a) A()) has eigenvalue O for some A € R

(b) 0is not an eigenvalue of A(A) for any A € R
(c) A()) has eigenvalue O for all A € R

(d) A(A) is invertible for all A € R.

Ans. Option a
det [A(L)] = 2613 4 10812 + 538A — 68 is a polynomial of degree 3 and hence
must have a real root. Therefore A(L) has eigenvalue 0 for some X\ € R.

(69) Let Abea2 x 2 complex matrix such thattr(A) = 1 anddet (A) = —6. Then
tr(A* — Ad)is.......

Ans. Let Ly and A, be the eigenvalues of A. Then A + A, =1 and MA; =
—6. Therefore hi = 3 and hy = —2. Hence, the eigenvalues of A* are 81, 16
and that of A3 are 27, —8. This gives tr(A*) = 97 and tr (A®) = 19. Therefore
tr(A* — A% =97-19=78.

(70) Let A € M3,3(R) be such that det(A — 1) =0. If the tr(A) =13 and
det (A) = 32, then the sum of squares of the eigenvalues of Ais.......

Ans. Since det(A — 1) =0, 0 is an eigenvalue of (A — I) and hence 1 is an
eigenvalue of A. Let A1 and L, be the other two eigenvalues of A. Then L + A, =
12 and XAy = 32. Therefore .y = 8 and A, = 4. Then the sum of squares of the
eigenvalues of A is 81.

210\%

(71) The trace of the matrix | 02 0 is
003
@ 7% ()220 4320 (¢)2.2% 430 (d)220 432041,
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Ans. Option ¢
210
The matrix A = | 02 0] is upper triangular. The eigenvalues of the matrix are
003
2, 2, and 3. The eigenvalues of A2 gre 220 220 g 320 Therefore the trace of
the given matrix is 2.2%° 4 3%,

(72) The set of eigenvalues of which one of the following matrices is not equal to

43|

14 32 34 23

Ans. Optiond
As trace is the sum of eigenvalues and determinant is the product of eigenvalues,
it is enough to check which of the given matrices do not have the same trace and

the set of eigenvalues of |:1 2] ?

4 §:| The given matrix has trace 4 and determinant —5.
All matrices except option (d) have trace 4 and determinant —5.

) 1
determinant as that of [

a—14
(73) Let A= | 0 b 7 | be amatrix with real entries. If the sum and the product
003
of all the eigenvalues of A are 10 and 30 respectively, then a® 4 b? equals
()29 (b)40 (c)58 (d)65.

Ans. Option a
As A is an upper triangular matrix, the eigenvalues of A are a, b, and 3. Then

tr(A)=a+b+3=10=>a+b ="7and det(A) =3ab =30= ab =10

Solving, we get a = 5, b = 2. Therefore a> + b> = 29.

(74) Let Abe a3 x 3 matrix with tr(A) = 3 and det (A) = 2.1f 1 is an eigenvalue
of A, then the eigenvalues of the matrix A% — 2] are
@l, 26 -1, 26+ b —1,2G—-1),2(+1
©1,26@+1), 26+1) (@-—1,2G—-1), =2G+1).

Ans. Option d
Let )1 and A, be the eigenvalues of A, Then

trlA) =M+ +1=3= XA +r =2anddet(A) =2 = Ar =2

Then the eigenvalues of A are 1,1 + i, 1 — i and hence the eigenvalues of A* are
1, 2i, —2i. Therefore the eigenvalues ofA2 — 2l are —1, 2(i — 1), =21 + 1).
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(75) Let A be a 3 x 3 matrix having characteristic roots A} = —%, X, =0, and
A3 = 1.Define B=3A%— A2 — A+ Land C = 3A3 —2A.If a = det(B)
and b =tr(C),thena + bequals.......

Ans. Since A = —%, Ay =0, and A3 = 1 are the eigenvalues of A, the eigen-

values of B are %, 1,2 and the eigenvalues of C are g, 1,0. Therefore a =

_2 _ _1 _b
det(B) =% andb=1tr(C)= ¢ anda+b = R

1

(76) Given that the matrix A = <‘2’ 3

its det (A).

) has 1 as an eigenvalue, compute 77 (A) and

Ans. Let A be the second eigenvalue. We have
tr(A)=a+3=A4+1=>A=a+2anddet(A) =3a—2=A

Now
3a—2=a+4+2=2a=4=a=2

Therefore tr(A) = 5 and det (A) = 4.

3a

(77) Find the values of a € R such that the matrix A = |:a 5

:| has 2 as an eigen-

value.

Ans. Let A be the second eigenvalue of the given matrix. Then

tr(A)=14+2=8=>1=6

Therefore
det(A)=15—-a>=2x6=12=a=+V3
1 416
(78) The largest eigenvalue of the matrix A = | 4 16 21 | is
16 1 4

@16 (b)21 (c)48 (d) 64.

Ans. Option b

Since the sum of entries in eachrow are 21, 21 is an eigenvalue of the given matrix.
Now tr(A) = 21 implies that one of the eigenvalues is negative of the other. The
determinant of A is 3969 < 213, which implies that the largest eigenvalue is 21.

11 2
(79) Let A= |1 —2 5 |. Then the eigenvalues of A are
25 =3

(@) —4,3,-3 (14,3,1 ()4, —4+/13 (d)4, -2 +27.
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Ans. Option ¢
Since tr(A) = —4 and det (A) = 12, the eigenvalues of A are 4, —4 + /13.

(80) Let A be a3 x 3 real matrix with eigenvalues 1, 2, 3 and let B = AL+ A2
Then the trace of the matrix B is equal to

91 95 97 101
(a) ra (b) a @) 3 (d) -
Ans. Option b

1 1
The eigenvalues ofA_l are 1, 23 and the eigenvalues ofA2 are 1,4, 9. There-

1 1 95
foretr(B) =tr(A™Y) +tr(A®>) =1+ 2 + 3 +14+44+9= &
40 —29 —11
(81) Suppose that A = | —18 30 —12 | has a certain complex number A # 0.
26 24 —50

Which of the following numbers must also be an eigenvalue of A?
(@Ar+20 (b)A—20 (¢)20—Ar (d)—20— .

Ans. Option ¢

Since the third column is the negative of the sum of first and second columns,
determinant of the given matrix is zero and hence 0 is an eigenvalue of A. Now
trace of the matrix is 20 gives that the third eigenvalue is 20 — .

(82) If Aisa5 x 5 real matrix with rr(A) = 15 and if 2 and 3 are eigenvalues of
A, each with algebraic multiplicity 2, then det(A) is equal to
(@0 ()24 (c)120 (d)180.

Ans. Option d

Let A be the fifth eigenvalue. Since tr (A) =sum of eigenvalues =2 +2 + 3 +
34+ A =15, we get A = 5. Then det (A) = product of eigenvalues = 180.

(83) Let A be a4 x 4 matrix with real entries such that —1, 1, 2, —2 are its eigen-

values. If B = A* — 5A% + 51, then which of the following statements are
correct?

(a)det(A+B)=0 (b)det(B)=1
©)tr(A—B)=0 (d)tr(A+ B)=4.

Ans. Options a, b, and d

Let )\ be an eigenvalue of A, then p(}) is an eigenvalue of p(A). Therefore 1 is
the only eigenvalue of B and hence det(B) = 1. Since —1 is an eigenvalue of
A, 0 is an eigenvalue of A + B. Therefore det(A + B) = 0. Also

tr(A—B)=tr(A) —tr(B) =0 —4 = —4

and
tr(A4+B)=tr(A) +tr(B)=0+4=14
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(84) Let A be a 4 x 4 matrix such that—1, 1, 1, —2 are its eigenvalues. If B =
A* —5A% + 51, then tr(A + B) equals
@0 (Mb)y—12 (©3 (@)09.

Ans. Option ¢

We have A + B = A* — 5A% + A 4 51 = p(A), as a polynomial in A. Then the
eigenvalues of A + B are p(L), where A is an eigenvalue of A. Therefore, the
eigenvalues of A+ B are 0,2, 2, —1 and hence tr(A + B) = 3.

(85) If the determinant of an n x n matrix A is zero, then
(a) Rank(A) <n—2 (b) tr(A) is zero
(c) O is an eigenvalue of A (d) x = 0 is the only solution of Ax = 0.

Ans. Option c

1 1
Consider A = 59 .Thendet (A) = 0.But Rank(A) £ n — 2andtr(A) #
0. Since determinant is equal to the product of eigenvalues, determinant is zero
implies one eigenvalue is 0. Since A is not invertible the homogeneous system
has an infinite number of solutions.

(86) Let A be a 10 x 10 matrix with complex entries such that all its eigenvalues
are non-negative real numbers, and at least one eigenvalue is positive. Which
of the following statements is always false?

(a) There exists a matrix B such that AB — BA = B.
(b) There exists a matrix B such that AB — BA = A.
(c) There exists a matrix B such that AB + BA = A.
(d) There exists a matrix B such that AB + BA = B.

Ans. Option b

Forany given A, take B = 0. Then AB — BA = B. Suppose there exists a matrix
B such that AB — BA = A. Thentr(AB — BA) =0 = tr(A). But tr(A) can-
not be 0 since all the eigenvalues of A are non-negative. For any given A, take B
as the diagonal matrix with diagonal entries % Then AB + BA = A. For any
given A, take B = 0. Then AB + BA = B.

(87) Let A = (a;;)beal0 x 10 matrix suchthata;; = 1fori # janda; = a + 1,
where o > 0. Let A and p be the largest and the smallest eigenvalues of A,
respectively. If A + u =24, then v equals . .... ..

Ans. The given matrix is of the form A = ol + B where B is the matrix with
bij =1V 1, j. Then the eigenvalue of B are 10 and zero with algebraic multi-
plicities 1 and 9, respectively. Therefore the eigenvalues of A are 10 + o and o
with algebraic multiplicities 1 and 9, respectively. Since ¢ > 0, . = 10 4+ o and
w=o. Therefore .+ u=24= 10420 =24 > a ="1.
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(88) Letvbearealn x 1 vector satisfying v v = 1. Define A = I — 2yv”. Which
of the following statements are true?
(a) A is singular. (b) A’=A. ©tr(A)=n-2. (d)A*=1.

Ans. Options c and d
Since WT)v =v(vTv) =v and w7 is a matrix of rank 1, the eigenvalues of
w! are 0 and 1. Therefore the eigenvalues of A are 1 and —1. Therefore A is

non-singular. Now,
A= =20wDHd 2wy =T —4awT +4nTwl =1

and
tr(A) =tr(I =2w ) =tr(I) = 2@tr(w)) =n =2

(89) Let A € M»4»(R) such thattr(A) = 2 and det (A) = 3. Write down the char-
acteristic polynomial of A=,

Ans. Let )y and ), be the eigenvalues of A, then tr(A) = i + X, =2 and

det(A) = iy =3. Then Ay = 1 + V2i and AM=1-— V2i. The eigenvalues
of A"l are % = # and )le = 1-‘-3& and hence the characteristic polynomial

of AV is AF — a4 1.

(90) Let A be a real 6 x 6 matrix. Let 2 and 1 be two eigenvalues of A. If A% =
al + bA, where a, b € R, then
(@a=10,b=11 (b)a=—-11,b=10
©a=-10,b=11 (d)a=10,b=—11.

Ans. Option a

The given matrix satisfies the equation A> = al + bA. Therefore p(L) = 1> —
bA — a is an annihilating polynomial for A. Since 2 and —1 are two eigenvalues
of A, we have

p2)=32-2b—a=0and p(—1)=—14+b—a=0

Solving, we geta = 10,b = 11.

(91) Let A be a 3 x 3 matrix with real entries such that A2 = A +2/. If o, B,
and y are eigenvalues of A such that ¢y = —4, then o + § + y is equal to

Ans. As A satisfies the equation A> = A + 21, \> — A —2 = 0 is an annihi-
lating polynomial of A. Then 2 and —1 are the possible eigenvalues. Since
afy = —4, the eigenvalues must be 2,2, —1. Therefore o + 8+ y = 3.

(92) Let

S ={x eR|x=rtr(A) for some A € My,4(R) such that A> = A}
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Then which of the following describes S?
(@) S ={0,2,4} (b)S=1{0,3,1,3,3,3, 1,4}
(c)S=1{0,1,2,3,4} (d)S=1[0,4]

Ans. Option ¢
Since A satisfies A> = A, A> — A is an annihilating polynomial of the given

matrix. Hence the possible eigenvalues are 0 and 1. Since A is of order 4 and
trace is the sum of eigenvalues, S = {0, 1,2, 3, 4}.

(93) Let A be an n x n matrix (with n > 1) satisfying A> — 7A 4 121 = 0. Then

which of the following statements are true?

(a) A isinvertible

(b) u? —7u+ 12n = 0 where o = 1r(A)

(c) d*> —7d + 12 = 0 where d = det(A)

(d) A? —7x + 12 = 0 where A is an eigenvalue of A.

Ans. Options a and d

Since A satisfies A?—TA+121 =0, A —3)(A —4) =0 is an annihilating
polynomial of the given matrix. Since 0 cannot be an eigenvalue of A, the
matrix is invertible and an eigenvalue of A satisfies .2 — Th + 12 = 0. Con-
sider the matrix A = [3 gi| Then A satisfies the given equation but tr(A) =7

and det (A) = 12 are not solutions of \> — Tr + 12 = 0.

(94) Let T : R" — R” be a linear map that satisfies 72 = T — I. Then which of

the following are true?
(a) T is invertible. (b) T — I is not invertible.
(c) T has areal eigenvalue. (d) T3 = —1.

Ans. Options a and d
Since T satisfies T> =T — I, \> — A + 1 is an annihilating polynomial and

+ 30

1
hence its possible eigenvalues are ———. As 0 is not an eigenvalue of T, it is

invertible and as 1 is not an eigenvalue of T — I is also invertible. Now

’=T-1=>7=7T*-T=T-0)-T=-1

(95) Let A beanon-zero linear transformation on areal vector space V of dimension

n. Let the subspace W C V be the image of V under A. Letk = dim(W) < n
and suppose that for some A € R, A2 = AA. Then

(a) A =1.

(b) det(A) = |A]".

(c) A is the only eigenvalue of A.

(d) There is a non-trivial subspace W C V such that Av = 0 forallv € Wj.
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Ans. Optiond
Since A satisfies A> = AA, x> — Ax = x(x — M) is an annihilating polynomial
of A. Since dim [R(A)] < n, A is not of full rank. Therefore 0 is an eigenvalue
of A. Also dim [N (A)] > 1. Therefore there is a non-trivial subspace W; C 'V
such that Av = 0 for all v € W,.

(96) Let A be an n x n matrix with real entries such that A> = I. Suppose that

Av # v for any non-zero vector v. Then which of the following statements
is/are TRUE?

(a) A has real eigenvalues (b) A + A~! has real eigenvalues

(c) n is divisible by 2 (d) n is divisible by 3.

Ans. Options b and c

Since A3 =1, \> — 1 is an annihilating polynomial of A. Thus the possible
eigenvalues of A are 1, w, w*. Since Av # v for any non-zero vector v, 1 is not
an eigenvalue of A. Hence the only possible eigenvalues of A are w, w*. A + A™!
has only one eigenvalue w + w* = —1, which is real. As A has only complex
eigenvalues and complex eigenvalues occur in conjugate pairs, n is divisible

by 2.

(97) (a) Let A be a3 x 3 real matrix with det(A) = 6. Then find det (adjA).

(b) Let vy and v, be non-zero vectors in R”, n > 3, such that v, is not a scalar
multiple of v;. Prove that there exists a linear transformation 7 : R" — R”
suchthat 73 = T, Tv, = v,, and T has at least three distinct eigenvalues.

Ans. (a) We have
A (adj(A)) =det(A)]

Taking determinant on both sides,
det(A)det (adj(A)) = (det(A))® =216 = det(adj(A)) = 36

(b) Let{vi,va, ..., v} beabasisforR". Define T (vi) = vy, T (v2) = vy, and
T(w;)=v;VYj=3,...,n Then

T3(v1) = T*(T () = T*(n) = T (T(n) = T(v)

and
T3(») = T (T(n)) = T*(v) = T (T(n)) = T (n)

Clearly T3 vj)=TW;)VYj=3,...,n ThereforeT is alinear transfor-
mation such that T> = T and Tv, = v,. Now since M3 — A is an annihi-
lating polynomial of T and T is not the identity transformation. Therefore
T has at least three distinct eigenvalues.
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(98) How many elements of M .,(Z7) are similar to the following matrix?
00
01

Ans. The characteristic polynomial of the given matrix is \* — » = 0. It has
b
trace = 1 and determinant = 0. The general form of an element is |:i |- a:|

where a(1 —a) = bc, a, b, ¢ € Z. There are 56 such matrices.

(99) Let A and B be real invertible matrices such that AB = —BA. Then
@tr(A)=tr(B)=0 ®)tr(A) =tr(B) =1
©)tr(A)=0,tr(B)=1 (dtr(A)=1,tr(B) =0.

Ans. Option a

Let AB = —BA. Since A is invertible, multiplying by A~' gives B =
A=Y (=B)A. Thus, B and —B are similar. Therefore they have the same trace
(Corollary4.4). That is, tr(B) = tr(—B) = tr(B) = 0. Similarly multiplying
by B~ gives tr(A) = 0.

(100) Let A and B be n x n matrices over C. Then,

(a) AB and BA always have the same set of eigenvalues.

(b) If AB and B A have the same set of eigenvalues then AB = BA.
(c) If A~! exists then AB and BA are similar.

(d) The rank of AB is always the same as the rank of BA.

Ans. Options a and ¢
(a) Let 0 be an eigenvalue of AB. Then

0 = det (AB) = det (A)det (B) = det(B)det(A) = det (BA)

This implies that 0 is also an eigenvalue of BA. Now let A be an eigenvalue
of AB, then there exists v # 0 such that

(AB)v = A(Bv) = Av = B(AB)v = (BA)(Bv) = A(Bv)
Clearly Bv # 0, since Bv = 0 implies that either . = 0 orv = 0, which

are not possible. Therefore A is an eigenvalue of B A with eigenvector Bv
where v is an eigenvector of AB with respect to the eigenvalue A.
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100 000 000
(b) Let A=1000|and B=|100 (. Then AB=|000| and BA =
000 000 000
000
100 |. AB and BA have the same set of eigenvalues (only 0). But
000
AB # BA.

(c) Since A is invertible
AB = (AB)I = (AB)(AA™") = A(BA)A™!

AB and BA are similar.
(d) Consider A and B in option b. Then Rank(AB) = 0and Rank(BA) = 1.

003
(101) The minimal polynomial associated with the matrix | 10 2 | is
011
@r—-22-21-3
(b) A — A2 4+21 -3
©) A3 —A2-31-3
(d)A* — 2% +31—3.

Ans. Option a
Since the characteristic polynomial of a 3 x 3 matrix A is given by A\> —

[1r(A)A% + [M + My + Ms3]h — det (A), the characteristic and minimal
polynomial of the given matrix is \> — A — 2\ — 3.

330
(102) The minimal polynomial of the matrix | 33 0 | is
006
@Ar—DRA—-6) ®GIXA—-3) ©A—=3)(A—6) (@) 1A —6).

Ans. Optiond

Since the given matrix has determinant zero, zero is an eigenvalue. Since it has
trace 12, the sum of the eigenvalues must be 12. From the given options, this is
possible only when the minimal polynomial is M(X — 6).

2100
0200
0020
0015
@A =2A=5 BG=-2’0=5 ©*-2P’G%-5 DOr-2"

Ans. Option b

Since the given matrix is a block diagonal matrix, the characteristic polyno-
mial of the given matrix is (A —2)3(\ — 5) and the minimal polynomial is
A —=2)2( —5).

(103) The minimal polynomial of is
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(104) Let A beanon-diagonal 2 x 2 matrix with complex entries suchthat A = A=,
Write down its characteristic and minimal polynomials.

Ans. As A= A", we get A2 = I. Since A is a2 x 2 matrix, the characteristic
polynomial of A is A2 —1 = (A 4+ 1)(A — 1). Since each eigenvalue is a root
of the minimal polynomial, minimal polynomial is same as the characteristic
polynomial.

(105) Let f(A) be the minimal polynomial of the 4 x 4 matrix

0001
1000
0100
0010

then the rank of the 4 x 4 matrix f(A) is
@0 M1 @©2 @4

Ans. Option a
Since the minimal polynomial of a matrix A is the least degree monic polynomial
f Q) such that f(A) =0, rank of f(A) is 0.

(106) If A € M, (R) (with n > 2) has rank 1, then show that the minimal polyno-
mial of A has degree 2.

Ans. A € M, (R) implies that there exists a linear transformation T : R" —
R”™. Let R(T) denote the range space of T and N (T) denote the null space of
T. Since

Rank(A) =dim [R(T)] =1

R(T) is spanned by some non-zero vector v € R". Since v € R(T) there exists
vy € R" such that Tvy = v. Since dim [N(T)] =n — 1, null space of T is
spanned by a set {va,vs3,...,v,}. Then {vi,v2,vs3,...,v,} forms a basis for
R". Now we have T (vi) =vand T(v;) =0 foralli =2,...,n and there are
two possibilities for T (vy). Either T (vi) € N(T) or T (vi) ¢ N(T).

Suppose that T (vi) e N(T), then v=T(v)) =cyvo+---+c,v, since
N(T) = span{vy, va, v3, ..., v, }. Then the matrix of T is given by

0 0---0
¢ 0---0
¢z 0---0
Cr1 00

Then clearly T? = 0. Now suppose that T (vi) ¢ N(T), then T (v;) € span{v}.
That is, T (vi) = cv for some c; # 0 € R. In this case the matrix of T corre-
sponding to the basis {v, vy, v3, ..., v} is
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0.2 0
00---0
00-.--0
0: .
00.--0

Clearly the matrix of T is diagonalizable. In both cases, the minimal polynomial
of A is of degree 2 (since the matrix corresponding to a linear transformation
with respect to different basis is similar).

(107) Let Abeareal2 x 2 matrix such that A = I. The total number of possibilities
for the characteristic polynomial of Ais.......

Ans. Since A satisfies A® = I, A% — 1 is an annihilating polynomial of A. Now
W—1=02—DE+ D=0+ D0 - DA +a+ DG =+ 1)
So the possible minimal polynomials are
A+D, =D, +DA =1, A +x1+1), A —r+1D
and hence the possible characteristic polynomials are
CHDLEA=DLOA+DA =D, A2 +r+1D, A2 =21+ 1)

Therefore, the total number of possibilities for the characteristic polynomial of
Ais 5.

(108) Consider amatrix A = (aij)nxn with integer entries such thata;; = Ofori > j
and a;; =1 fori = 1,2, ..., n. Which of the following properties must be
true?

(a) A" exists and it has integer entries.

(b) A~! exists and it has some entries that are not integers.

(c) A~!is a polynomial function of A with integer coefficients.
(d) A~!is not a power of A unless A is the identity matrix.

Ans. Options a, ¢, and d

The matrix is of the form | . . . |. Since the matrix is upper triangular, the
00---1
characteristic polynomial of the given matrix is (A — 1)". As the determinant

is 1, A™! exists and it has integer entries and by Cayley—Hamilton Theorem,
A~ is a polynomial function of A with integer coefficients. Now suppose that
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A~ = AX for some positive integer k, then AK*' = I. Thus, \**' — 1 is an
annihilating polynomial of A. Since the minimal polynomial divides the charac-

teristic polynomial and every annihilating polynomial, the minimal polynomial
isA—1.

(109) Consider the linear map 7T : P3[a, b] — Ps[a, b] defined by
(Tp)(x) =px+D+px-1D
Which of the following properties does the matrix of 7 (with respect to the

standard basis B = {1, x, x2, x3} of P3[a, b)) satisfy?

(a) det(T)=0

(b) (T —2I)* =0but (T —2I)* #£0
(¢) (T =20 =0but (T —21)>#0
(d) 2 is an eigenvalue with multiplicity 4.

Ans. Optiond

We have
T(1) =2=2.1+0x + 0x* + 0x®
T(x) =2x = 0.1 + 2x + 0x> + 0x?
T(x%) =2x* +2 =2.14 0x + 2x% + 0x*
T(x%) =2x% +6x = 0.1 + 6x + 0x* + 2x°
2020
. . 0206 . .
Therefore the matrix of T is A = 0020 The characteristic polynomial of
0002

A is (A — 2)* and the minimal polynomial is (. — 2)%. Clearly det(T) = 16.
(110) Let A € Ms,3(R) be such that A% = I. Then

(a) minimal polynomial of A can only be of degree 2.
(b) minimal polynomial of A can only be of degree 3.
(c) either A=TorA=—1I.

(d) there are uncountably many A satisfying the above.

Ans. Optiond

Consider A = I. Then A% = 1. But the minimal polynomial is of degree 1. Now
100

consider the matrix |01 0 |. Then A =1. But A # I or A # —1I. In fact
00 -1

any matrix with minimal polynomial (. — 1)(A + 1) = 0 satisfies A® = I.
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(111) Let V and W be finite dimensional vector spaces over R, andlet 7} : V — V
and 7, : W — W be linear transformations whose minimal polynomials are
given by

i =23+ 2+ r+1and () =2 =212 =2
LetT : V& W — V @& W be the linear transformation defined by
Tw,w) =T W), Th(w)) for v,w)e VoW

and let f (%) be the minimal polynomial of 7. Then
(@deg[f(M]=T (b)deg[f(M)] =5
(¢) Nullity(T) =1 (d) Nullity(T) = 0.

Ans. Options b and d
As i) =X+ 2+ 2+ 1=0+DR2+ 1) and fr(A) =14 =12 -2 =
(A2 —=2)(A% + 1), we have

fO)=lem (A +22+ 1+ 1L,a* =212 —2)
=+ DR+ DR -2)
=+ —-2ma =2

deg [ f (V)] = 5 and since 0 is not an eigenvalue of f(A), Nullity(T) = 0.

(112) Let A be an n x n matrix over C such that every non-zero vector of C" is an
eigenvector of A. Then

(a) All eigenvalues of A are equal.

(b) All eigenvalues of A are distinct.

(¢) A = Al for some A € C, where [ is the n x n identity matrix.

(d) If x4 and m 4 denote the characteristic polynomial and the minimal poly-
nomial respectively, then x4 = m4.

Ans. Options a and c

Suppose that )| and )\, are two distinct eigenvalues of A with eigenvectors v,
and v,. Since eigenvectors corresponding to distinct eigenvalues are linearly
independent, {v, v,} is linearly independent. Now as every vector in C" is an
eigenvector of A, there exists A such that A(vi +v2) = A(vi +v;). But A(v; +
Vo) = Avy + Avy = Avi + Apvp, we get

AVvi+v) =Apvi+ Ao = A —A)vi = (A — Mn
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Since A1 # Ay at least one of (A — A1) and (A, — A) is non-zero. This implies
{v1, v2} is linearly dependent which is a contradiction. Therefore all eigenvalues
of A are equal.

Since Av = Av for all v € C" and for some A € C,

(A=A =0VveC"

This gives (A — A1) is the zero operator and hence A = M1 for some A € C. The
characteristic polynomial is given by x4 = (x — A)", and the minimal polyno-
mial is given by ms = (x — A).

(113) Given two n x n matrices A and B with entries in C. Consider the following
statements:

P
0:

If A and B have the same minimal polynomial, then A is similar to B.
If A has n distinct eigenvalues, then there exists v € C" such that

v, Av, ..., A" Wy are linearly independent.
Which of the above statements hold TRUE?
(a) both P and Q (b) only P

(c) only Q (d) Neither P nor Q.

Ans. Option c

(a)

(b)

0100 0100
. . 0000 0000
Consider the matrices 0000 and 0001l They have the same
0000 0000
minimal and characteristic polynomial. But they are not similar.
Since A has n distinct eigenvalues ho, A1, ..., A,—1, A has n linearly

independent eigenvectors, say vy, Vi, Va, . . . Vy_1. Consider the vectorv =
vo+vi+ -+ v,—1. Then

ARy = Afvg 4+ ARy 4 AR = Ao A AR

where k=1,2,...n—1. Now consider cov+ ciAv+---+ o1
A" = 0. This implies that (co + ci1 o + czk(z) + .+ cn,l)\gfl)vo +
(coterhi+ R+ e A v+ (o F et + A2
+ -4 c,,,l)uﬁj)vn,l = 0. Since vy, vi, V2, ...Vu—1 is linearly inde-
pendent, this implies co + c1 A + cz)\iz + -4+ cn,l)»ffl =0foralli =
0,1,...,n — 1. This can be written in the matrix form AX = B as

1 ap A2 oA 0

1oa a3 ot

(RS}
[N
|

o o

—1
L Apey A2, . A"
n n—1 n—1 Cn_1
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Since the coefficient matrix is a Vandermonde matrix," with h; # A; Vi #
J, it is invertible and the given system has trivial solution only. Hence,
co=c) =---=cy_1 = 0. Therefore the setv, Av, ..., A"y s linearly
independent.

(114) A non-zero matrix A € M,,,.,(R) is said to be nilpotent if A*¥ = 0 for some
positive integer k > 2. If A is nilpotent, which of the following statements are
true?

(a) Necessarily, kK < n for the smallest such k
(b) The matrix I + A is invertible
(c) All eigenvalues of A are zero.

Ans. Options a, b, and ¢

(a) Since A satisfies if A* = 0 for some positive integer k > 2, \* is an anni-
hilating polynomial of A. Since the minimal polynomial divides annihi-
lating polynomial, it is of the form A" for some r < n as it divides the
characteristic polynomial also.

(b) Since the minimal polynomial is of the form A" for some r < n, all eigen-
values of A are zero. Then the eigenvalues of I + A are 1. Therefore
I + A is invertible.

(c) All eigenvalues of A are zero.

(115) Let V be the vector space of polynomials of degree at most 3 in a variable
x with coefficients in R. Let 7 = % be the linear transformation of V into
itself given by differentiation. Which of the following are correct?

(a) T isinvertible.

(b) Ois an eigenvalue of T'.

(c) There is a basis with respect to which the matrix of 7 is nilpotent.

(d) The matrix of T with respect to the basis {1, 1 +x, 1 +x + 2 14+x+
x? 4 x3} is diagonal.

Ans. Options b and c
Consider the standard ordered basis {1, x, x?, x3}f0r V. Now

I'A Vandermonde matrix, named after the French Mathematician Alexandre-Théophile Vander-

L xo...x5
Lxy...x]

monde (1735-1796), is a matrix of the form A = | . . | . |. The determinant of the Vander-
1 Xy ... x5

monde matrix is given by det(A) =[] (x; — xi).

O<i<j<n
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T(1) =0 =0+ Ox + 0x + 0x’
T(x) =1=1+0x +0x> + 0x®
T(x?) =2x = 0+ 2x + 0x? 4+ 0x°
T(x*) =3x> =0+ 0x + 3x% + 0x>

0100
0020
0003
0000
0 and 0 is an eigenvalue of T. Since the matrices of a linear transformation
corresponding to different basis are similar, the matrix of T with respect to the
basis {1,1+x, 1 +x+x>, 1 +x+x>+x3)is not diagonal.

Then the matrix of T is . Clearly it is a nilpotent matrix as T* =

20 -3
(116) Let A = | 3 —1 =3 |. A matrix P such that P~' AP is a diagonal matrix is
00 —1
111 —111 1-11 —1-11
@011 (b)| 0 11 © (011 @] 0 —11{.
110 1 10 110 1 10

Ans. Option a
The characteristic polynomial of the given matrix A is

M=3mr=2=0+D*0-2)

—1 is an eigenvalue of the given matrix with eigenvectors (1,0, DT, 4,1, DT
and 2 is an eigenvalue with eigenvector (1,1, 0)7.

(117) Which of the following matrices is NOT diagonalizable?
11 10 0-1 11
(a) <1 2) (b) <3 2) () (1 0 > (d) (0 1>~
Ans. Optiond

(a) The characteristic equation of the given matrix is \> — 31 + 1 = 0. Since
it has 2 distinct roots, the given matrix is diagonalizable.

(b) The given matrix is a lower triangular matrix and hence the eigenvalues
are its diagonal entries. Since it has 2 distinct eigenvalues, the given
matrix is diagonalizable.

(c) The characteristic equation of the given matrix is \> + 1 = 0. Since it has
two distinct complex roots, the given matrix is diagonalizable over C.

(d) The characteristic and minimal polynomial of the given matrixis (. — 1)2.
Since the minimal polynomial of the given matrix is not of linear factors,
the given matrix is not diagonalizable.
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(118) Which of the following matrices is not diagonalizable over R?
201 210

11 1 -1
@030 (b)( ) @030 (d)( )
002 H 003 2 4

Ans. (a) The given matrix is an upper triangular matrix and hence its diag-
onal entries are its eigenvalues. Hence its characteristic polynomial is
(A = 2)2(A — 3). The minimal polynomial is the same as the characteris-
tic polynomial. Since minimal polynomial does have non-linear factors,
the matrix is not diagonalizable.

(b) Since the given matrix is a 2 x 2 matrix with distinct eigenvalues, it is
diagonalizable. (Its characteristic polynomial is \> — 2A = A(A — 2).)

(c) The characteristic polynomial of the given matrix is (. — 2)*>(A — 3) and
its minimal polynomial is (A — 2)(A — 3). Since the minimal polynomial
is of linear factors only, the matrix is diagonalizable.

(d) Since the given matrix is a 2 x 2 matrix with distinct eigenvalues, it
is diagonalizable. (Its characteristic polynomial is \* — 5k +6 = (A —

2)(A —3).)
Option a
1 —11
(119) LetA=| 2 1 4 [.Given thatl isan eigenvalue of A, which among the
-2 1 —4

following are correct?
(a) The minimal polynomial of A is (A — 1)(A 4+ 4) (b) A is not diagonalizable
(c) The minimal polynomial of A is (A — D2 4+4) d) A~ = %(A + 31).

Ans. Options b and ¢

Let L1 and A be the two eigenvalues of A. Since tr(A) = —2 and det(A) = —4,
M+ Ay = =3 and AMry = —4. Thus we get .y = —4 and \y = 1. Therefore the
characteristic polynomial of A is (. — 1)?(A 4 4). Since (A — I)(A +4I) # 0,
the minimal polynomial of A is (A — 1)?(A 4 4). Since the minimal polynomial
consists of non-linear factors, A is not diagonalizable.

(120) Let Abeanon-zero?2 x 2 matrix with real entries. Pick out the true statements:

(a) If A2 = A, then A is diagonalizable.
(b) If A% = 0, then A is diagonalizable.
() If A is invertible, then A = (¢r(A))T — (det (A)) A~

Ans. Options a and ¢

(a) A* = A implies that A satisfies the polynomial equation

M—r=x1(r—1)
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Then the possibilities of minimal polynomial are A, (A — 1) and A(A. — 1).
A is not the minimal polynomial since A is not zero. Therefore the possible
minimal polynomials are (A — 1) and L(A — 1). In either case, minimal
polynomial consists of linear factors. Therefore A is diagonalizable.
(b) Consider the matrix A = [8 (1)i| Then A? = |:8 8i| But A is not diago-
nalizable as the minimal polynomial of A is \2.

(c) Let A = [“ b

c d:|’ then the characteristic equation of A is

AM—(@+dr+ (ad —bc)=0= A’ — (a+d)A + (ad — bc)[ =0
= A2 = tr(A)A + (det (A))I
= A = (tr(A)I — (det(A)A™".

(121) Let A be an n x n matrix with real entries. Which of the following is correct?

(a) If A2 =1, then A is diagonalizable over real numbers.
(b) If A% = A, then A is diagonalizable only over complex numbers.

(c) The only matrix of size n satisfying the characteristic polynomial of A is
A.

Ans. Option b

(a) Since A satisfies A>=1, \> —1 = — 1)(A+ 1) is an annihilating
polynomial of A. Since the minimal polynomial of A divides annihilat-
ing polynomial, the possible minimal polynomials are A — 1, .. + 1, and
(A — 1)(A 4 1). Since each of them are of linear factors, A is diagonal-
izable over real numbers.

(b) Since A satisfies A> = A, \> — A = A(A — 1) is an annihilating polyno-
mial of A. The possible minimal polynomials are )., ». — 1, and A(A — 1).
Since each of them are of linear factors, A is diagonalizable over real
numbers and complex numbers.

(c) Every matrix similar to A has the same characteristic polynomial. For

01

example, A = |:O 0

] and B = |:(1) 8i| have the same characteristic poly-

nomial.

(122) An n x n complex matrix A satisfies A¥ = I, where k is a positive integer
greater than 1. Suppose 1 is not an eigenvalue of A. Then which of the fol-
lowing statements are necessarily true?

(a) A is diagonalizable.
(b)A+ A2+ ...+ AT =0,

(©) tr(A) +1tr(A%) + -+ tr(A*") = —n.
AT+ A2+ A CD =
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Ans. Options a, ¢, and d
Since A satisfies A¥ =1, A* — 1 is an annihilating polynomial of the given
matrix. Since 1 is not an eigenvalue of A and as

Mel==DA+A+22 4425
1+ A+ A%+ -+ A=V is an annihilating polynomial of A. Therefore
A+ A+ 4 A =

and hence
tr(A) +tr(A*) 4+ - +tr(A) = —n

Since the annihilating polynomial can be linearly factorized using kth roots of
unity, A is diagonalizable over C. Since I + A + A% 4o 4 AL = 0, mudti-
plying A=%D on both sides

A A A

(123) Let A be a2 x 2 matrix with real entries which is not a diagonal matrix and
which satisfies A3 = I. Pick out the true statements:

(a) tr(A) = —1.
(b) A is diagonalizable over R.
(c) A = 1is an eigenvalue of A.

Ans. Option a

Since A satisfies A3 = I, A3 — 1 = (A — 1)(A2 + A + 1) is an annihilating poly-
nomial of A. Therefore the possibilities of the minimal polynomial are A — 1 and
A2 4+ A + 1. As A is not a diagonal matrix, .. — 1 cannot be the minimal polyno-
mial of A. Thus the minimal polynomial of A is A> + A + 1. Since A is of order
2, the characteristic polynomial is the same as the minimal polynomial. A is
not diagonalizable over R and . = 1 is not an eigenvalue of A. Also tr(A) =
coefficient of A = —1.

(124) Let A be a non-zero 3 x 3 matrix with the property A> = 0. Which of the
following is/are true?
(a) A is not similar to a diagonal matrix
(b) A is similar to a diagonal matrix
(c) A has one non-zero eigenvector
(d) A has 3 linearly independent eigenvectors.

Ans. Options a and ¢

Since A is a non-zero 3 x 3 matrix that satisfies A> =0, A\* is the minimal
polynomial of A and hence A is not similar to a diagonal matrix. 0 is the only
eigenvalue of A. Since A has rank 1 (A is not of rank 3 as A is not invertible. If
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Rank(A) = 2, Rank(A?) > 1), the solution space of Ax = 0 has dimension 2.
Therefore A has one non-zero eigenvector.

(125) Let A € M, (R) with the property A" = 0. Which of the following is/are true?

(a) A has n distinct eigenvalues (b) A has one eigenvalue of multiplicity n
(c) Ois an eigenvalue of A (d) A is similar to a diagonal matrix.

Ans. Options b and c
Clearly A is a nilpotent matrix. 0 is the only eigenvalue of A with multiplicity

010...0
001...0
n. Consider the matrix A= | . . . -. . |. Clearly A is not similar to a diag-
000...1
000...0

onal matrix. Since the characteristic polynomial of a nilpotent matrix is A", its
minimal polynomial is of the form A" where r < n. Therefore a nilpotent matrix
is diagonalizable implies that the matrix is zero matrix.

(126) Let A be an n x n(n > 2) non-zero real matrix with A> =0, and let « €

R\ {0}. Then

(a) « is the only eigenvalue of (A + «/) and (A — «l)
(b) « is the only eigenvalue of (A + «/) and (¢l — A)
(¢) —a is the only eigenvalue of (A + o/) and (A — a[)
(d) —a is the only eigenvalue of (A + «/) and («l — A).

Ans. Option b

As A% =0, A is a nilpotent matrix and hence A has 0 as the only eigenvalue.
Also if A is an eigenvalue of A, A + k is an eigenvalue of A + k1. Therefore the
only eigenvalue of (A + al) and (al — A) is o. Also —« is the only eigenvalue
of (A —al).

(127) Let A be a3 x 3 real non-diagonal matrix with A~! = A. Show that tr(A) =

det(A) = £1.

Ans. A satisfies the polynomial equation \> — 1 = 0. Therefore the possibilities
for minimal polynomial of A are . — 1, > + 1, A> — 1. Since A is a non-diagonal
matrix, the minimal polynomial is \* — 1. Thus the possible eigenvalues are
1,—1,1 0r 1, —1, —1. In the first case tr(A) = 1, det(A) = —1 and in the
second case tr(A) = —1, det(A) = 1.

(128) Let A be an n x n matrix with real entries such that A> = A. Show that

Rank(A — I) = Nullity(A)
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Ans. Since A satisfies A> = A, A is diagonalizable and the only possible eigen-
values of A are O and 1. If A is diagonalizable, then A — I is also diagonalizable.
For, A is diagonalizable implies that there exists an invertible matrix P such that
P~ YAP = D, where D is a diagonal matrix. Now

TA-D)P=P'AP-P'P=D-1

Thus the only possible eigenvalues of A — I are —1 and 0. Also, as A — I is
diagonalizable

Rank(A —1) = AM(—1) = AM)(for A) =n — AM(1) = n — Rank(A) = Nullity(A)

(129) Let A be an n x n real matrix with A> = A. Then

(a) the eigenvalues of A are either O or 1

(b) A is a diagonal matrix with diagonal entries O or 1
(¢) Rank(A) =tr(A)

(d) Rank(I — A) =tr(I — A).

Ans. Options a, ¢, and d

Since A satisfies A> = A, \> — X is an annihilating polynomial of A and hence
the only possible eigenvalues of A are 0 and 1. The possibilities for minimal
polynomial are A, A — 1, (A — 1). In any case, the minimal polynomial has
only linear factors. Hence A is diagonalizable. Therefore

Rank(A) = number of nonzero eigenvalues of A = A.M(1) = tr(A)

The possible eigenvalues of I — A are 0 and 1 and as above, Rank(I — A) =

tr(I — A). Now consider the matrix A = |:(1) (1{| Then A% = A, but A is not a

diagonal matrix.

(130) Let A # I beann x n matrix such that A2 = A, where [ is the identity matrix
of order n. Which of the following statements is false?
@U—-A>=I—-A (b) tr(A) = Rank(A)

(c) Rank(A) 4+ Rank(I — A) =n (d) The only eigenvalue of A is 1.

Ans. Optiond
(a) Since A*> = A, we have
(I—A?=1-2A+A’=1—-A

(b) Since A> = A, \? — A is an annihilating polynomial of the given matrix.
Therefore only possible eigenvalues of A are 1 and 0. As 1 is the only
possible non-zero eigenvalue of A and A is diagonalizable,
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tr(A) = algebraic multiplicity of 1 = Rank(A)

(c) The possible eigenvalues for I — A are again 1 and 0. First, we will show
that I — A is diagonalizable. For, as A is diagonalizable, there exists an
invertible matrix P suchthat P~'AP = D, where D isa diagonal matrix.
Then

I—A=P'P—P'DP=P "1 - D)P

and as I — D is a diagonal matrix, I — A is diagonalizable. Then,we
have

Rank(I — A) = AMQ) for I —A=AM(Q) for A
Therefore
Rank(A) + Rank(I — A) = AM(1) for A+ AM(Q) for A=n

0

(d) Consider the matrix A = |:(1) Oi|. Then A% = A, but A has 0 as an eigen-

value.

(131) LetA € M(R) with A # 0, I but A2 = A. Which of the following statements
are true?

(a) N(A) is the eigenspace of A corresponding to the eigenvalue 0.

(b) Letv # 0 € Col(A), then v is an eigenvector of A corresponding to the
eigenvalue 1.

(c) Letv ¢ N(A), then v is an eigenvector of A for the eigenvalue 1.

(d) R" = Col(A) + N(A).

Ans. Options a, b, and d

(a) Letv € N(A). Then Av = 0 = 0.v implies that N (A) is the eigenspace
of A corresponding to the eigenvalue 0.
(b) Letv #0 € Col(A), thenv = Au for some u # 0 € R". Now,

Av = A(Au) = A’u = Au=v

That is, v is an eigenvector of A corresponding to the eigenvalue 1.

10 > 1 _
0 0]. Clearly, A = A. Letv = |:1i|.As Av =
10]]1 1 0 . .
ooll1l=1o # olV ¢ N(A). Also, v is not an eigenvector of A
corresponding to the eigenvalue 1.

(d) Letv € Col(A) N N(A). Then Av = 0 and there exists u € R" such that
Au = v. Now,

(c¢) Consider the matrix A =
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v=Au = A’u = A(Au) = Av =0

That is, Col(A) N N(A) = {0}. Then by Rank-Nullity theorem, R" =
Col(A) + N(A).
L ifid+ =101 .
(132) Let A be a 100 x 100 matrix such that a;; = | ifi+i . Which
0, otherwise
of the following statements are true about A?

(a) A is similar to a diagonal matrix over R.

(b) A is not similar to a diagonal matrix over C.
(c) One of the eigenvalues of A is 10.

(d) None of the eigenvalues of A exceeds 51.

Ans. Options a, ¢, and d

0 0...01 1.100 0 ... O 0
0 0...20 0 299... 0 0
The matrix A= | @ : 1 |. Then, A* = : Do :
0 99...00 0 0 ...299 0
100 0 ...00 0 0 ... 0 1.100

is a diagonal matrix. Thus, the eigenvalues of A are 1.100,2.99, ...,50.51
each repeating twice. Therefore, the possible eigenvalues of A are ++/1.100,
+4/2.99, ..., £4/50.51. As trace(A) = 0, £+4/1.100, £4/2.99, ..., £4/50.51
are the eigenvalues of A and hence A is diagonalizable. Also, 10 is an eigenvalue
of A and none of the eigenvalues of A exceeds 51.

(133) Letn > 1 and «, B € R with o # B. Suppose A, («, B) = [a;jl.xn be such
that

o, ifi=j
CZ,‘J'_

B 0, otherwise

Let D, denote the determinant of A, («, 8). Which of the following statements
are true?

(@) Dy = (a—B)Dy-1 + B forn=2.
(b) G = Go= + Bforn > 2.
() D, =@+ m—1B)" ' (a—p)forn > 2.
(d) D, = (a+ m—1B)(a—p)" ' forn > 2.
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Ans. The matrix

«B... B BB...B1 [a—B O 0
Ba .. B BB .. B 0 a—8 0
A B)=1. .. . |=|... .|t : e
BB .. « BB .. B 0 0 ..a—8

That is, A, (o, B) = B 4+ (o — B)I, where B is the n X n matrix with all entries
equal to B. As B is a symmetric matrix, it is diagonalizable. Hence, Rank(B)
is the number of non-zero eigenvalues of B. As the sum of each row of B is
nf, the eigenvalues of B are nf8 and 0 with multiplicities 1 and n — 1, respec-
tively. Therefore, the eigenvalues of A, (a, B) are o + (n — 1)B and o — B with
multiplicities 1 and n — 1, respectively. Thus, forn > 2

D, = (a+(n—1)a—p)"!

and
Dn — Dn—l + ,3
@=pr T @—py?

Options b and d

(134) Let A € M, (R). Which of the following statements are true?

(a) If (tr(A))? > 4det (A), then A is diagonalizable over R.
(b) If (tr(A))?> = 4det (A), then A is diagonalizable over R.
(c) If (tr(A))? < 4det (A), then A is diagonalizable over R.

Ans. Option a

The characteristic polynomial of a2 x 2 matrixis \> — (tr (A))A + det (A) = 0.
The given system has distinct roots when (tr(A))* — 4det (A) > 0. Therefore if
(tr(A))? > 4det (A), then A is diagonalizable over R.

(135) If A and B are n x n matrices with real entries, then which of the following
is/are TRUE?

(@) IfP~1AP s diagonal for some real invertible matrix P, then there exists
a basis for R” consisting of eigenvectors of A.

(b) If A is diagonal with distinct entries and AB = BA, then B is also diag-
onal.

(c) If A? is diagonal, then A is diagonal.

(d) If A is diagonal and AB = BA for all B, then AB = Al for some A € R.

Ans. Options a, b, and d
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(a) P~'AP isdiagonal implies that A is diagonalizable. Therefore R" has a
basis consisting of eigenvectors of A.
(b) Let A = I:all 0 :| with ayy # ay and B = I:bn b

by by

0 an ] Then

ainbi anbiz aib anbip
AB = BA = = = br=by =0
|:1122b21 azzb22j| |:1111b21 azzb22j| 2

since ayy # ay. Thus, B is diagonal.

(c) Let A = [_11 (1)], then A? = |:1 0

0 li|. But A is not diagonal.

an 0 . . .
(d) Let A = |: 61 u i| Since A commutes with every matrix, it commutes
22

.. 100
with |:1 0i|. Now
ai 0 00 _ 00 aly 0 = _
0 ap|{10]T[10]] 0 ayp| 4 =92

(136) Let A € M,,,,(C). Then (A A is diagonalizable if and only if

0A
@A=0 (b)A=1 (c)n=2 (d) None of the above.

Ans. Option a

Let A = [1]. Consider the matrix B = |:(1) }:| Then B is not diagonalizable. So
1010
option (b) is false. Consider the matrix 10 . Then clearly the matrix 0000
00 0010
0000

is not diagonalizable. The characteristic polynomial of the given matrix is the
square of the characteristic polynomial of A, Then for the matrix to be diago-
nalizable, A must be equal to zero matrix for otherwise the minimal polynomial
won’t be of linear factors.

(137) Consider M, ., (R). Which of the following are true for every n > 2?

(a) there exists A, B € M, (R) suchthat AB — BA = 1.

(b) if A, B € M,,,(R) and AB = BA, then A is diagonalizable over R if
and only if B is diagonalizable over R.

(c) if A, B € M,«, (R), then A B and B A have the same minimal polynomial.

(d) if A, B € M,»,(R), then AB and B A have the same eigenvalues in R.

Ans. Optiond
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(a) Suppose there exists A, B € M, «,(R) such that AB — BA = I. Taking
trace on both sides,

tr(AB — BA) = tr(I,) = n

But tr(AB — BA) =tr(AB) —tr(BA) = 0. Thus our assumption is

incorrect.
100 010
(b) Let A=1010|and B= 000 |. Then AB = BA = B. A is diago-
001 000

nalizable but B is not diagonalizable.

(c) Let A = |:8 éi| and B = [8 ?] Then AB = Aand BA = 0. The minimal

polynomial for A is \* and for AB the minimal polynomial is A.
(d) Let )\ be aneigenvalue of AB. Then there existsv % O suchthat (AB)(v) =
M. Let By = w, then

(BA)(w) = (BA)(Bv) = B[(AB)v] = ABv = Aw

Thus, A is an eigenvalue of B A.

(138) Let T : R?* — R3 be the linear transformation whose matrix with respect to
001
the standard basis {e;, 2, e3} of R3is [0 1 0 |. Then T
100

(a) maps the subspaces spanned by e; and e3 into itself
(b) has distinct eigenvalues

(c) has eigenvectors that span R*

(d) has a non-zero null space.

Ans. Options a and c

(a) Since
001 1 0 001(]0 1
010110l =|0fand |1010(|0f={0
10010 1 100 1 0

span{ey, e3} is mapped onto itself.

(b) The characteristic polynomial of the given matrix is (. — 1)2( + 1). So
it does not have distinct eigenvalues.

(c) Since the minimal polynomial of the given matrix is (A — 1)(A + 1) (linear
factors only), the matrix is diagonalizable and hence it has eigenvectors
that span R3.

(d) Asthe given matrix has rank 3 by Rank-Nullity Theorem, Nullity(T) = 0.



460 11 Solved Problems—Eigenvalues and Eigenvectors

(139) Let T} : R* — R”" be given by v > «av for a fixed « € R, # 0. Let T5 :
R" — R”" be a linear transformation such that B = {v{, v, ..., v,} is a set of
linearly independent eigenvectors of 7'. Then

(a) The matrix of T, with respect to B is diagonal.

(b) The matrix of (T, — T}) with respect to B is diagonal.

(c) The matrix of T, with respect to B is not necessarily diagonal, but upper
triangular.

(d) The matrix of T, with respect to B is diagonal, but the matrix of (7, — T)
with respect to B is not diagonal.

Ans. Options a and b

Since T\ (v) = av for all v € R", the matrix of T\ = al. Since T, has n linearly
independent eigenvectors, the matrix of T, with respect to B is diagonal (Corol-
lary4.6). Also the matrix of (T, — Ty) with respect to B is diagonal (see Question
134).

(140) Let A € M;,»(R) be of trace 2 and determinant —3. Identifying M., (R) with
R*, consider the linear transformation 7 : May2(R) — Mayo(R) defined by
T (B) = AB. Then which of the following statements are true?
(a) T is diagonalizable. (b) 2 is an eigenvalue of T'.
(c) T isinvertible. (d) T(B) = B for some 0 # B in M,(R).

Ans. Options a and c

TakeA:[32}.Thena+d=2andad—bc=—3.Now

10T\ [«0] T[10] .[o1] [00] .[00T
T<_00_>:_c0_:"_00_+0_00_+C_10_+0_01_
01T\ [0a] .[10] [o1] .[ool T[00T
T(_oo_):_oc_20_00_+“_00_+0_10_+C_01_
001\ [»01 . [10] .[o1] .[oo] .[00]
T<_10_>:_do_:b_00_+0_00_+d_10_+0_01_
001\ [a0] .[10]  [o1] 00] .[00]
T<_01_>=_c0_=O_oo_+b_oo_+0[1o_+d_01_

a0b0

. . 1{0a0b

Then the matrix of T is c0dol

0cO0d
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(a) Astrace(A) =2 and det (A) = —3, the eigenvalues of A are —1 and 3.
Let V| = |::1:| and V, = [:31| be the respective eigenvectors of A. That
2 4

_|lab]|w _avl—l—bvz__ Vi
AV = [c d:| [vzi| - [C\q +dvzi| =D |:vzj|

is,

and ) )
e i R s BRI
Vi 0
From this, we can see that uy = ‘?2 and u, = ‘8 are eigenvectors
0 V)
V3
of matrix of T corresponding to the eigenvalue —1. Also, uz = ‘Z
0
0
and uy = 12)3 are eigenvectors of matrix of T corresponding to the
V4

eigenvalue 3. As V| and V, are linearly independent eigenvectors of A,
the set {uy, uy, us, us} is linearly independent and hence forms a basis
for R*. Therefore, T is diagonalizable.

(b) The eigenvalues of T are the eigenvalues of A repeated twice. Clearly, 2
is not an eigenvalue of T.

(c) As O is not an eigenvalue of T, T is invertible.

(d) Suppose there exists B such that T(B) = AB = B. Then det(AB) =
det(B) = det(A) = 1, which is a contradiction.
Observe that the properties of T are exactly the same as that of the prop-
erties of A.

(141) Suppose A is a real n x n matrix of rank r. Let V be the vector space of all
n x n matrices X such that AX = 0. What is the dimension of V?
@r ®nr (©n* () n>—nr.

Ans. Consider the map T : M,,»,(R) = M, «,(R) defined by T(B) = AB.
Then V ={X € M,(R) | AX = 0} is the null space of T. As Rank(A) =r, by
Rank-Nullity Theorem, Nullity(A) =n —r and hence Nullity(T) = n(n —
r) =n*—nr.

Option d
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(142) Consider the linear transformation T : R7 — R7 defined by

T(x1,x2,...,X6,X7) = (X7, X6, . .., X2, X1)

Which of the following statements must be true?

(a) the determinant of 7 is 1.

(b) there is a basis of T" with respect to which T is a diagonal matrix.
© T7=1.

(d) The smallest n such that 7" = [ is even.

Ans. Options b and d
The matrix of the given linear transformation T is

[0000001]
0000010
0000100
0001000
0010000
0100000

(1000000

Since T*> = I, > — 1 = (A — 1)(A + 1) is an annihilating polynomial of T. As
the minimal polynomial divides annihilating polynomial, minimal polynomial
of T is of linear factors. Therefore T is diagonalizable (Theorem4.15). That
is, there is a basis of T with respect to which T is a diagonal matrix. Clearly
det(T)=—1and T’ =T.

(143) Let A be a 3 x 3 matrix with real entries. Identify the correct statements.

(a) A is necessarily diagonalizable over R.

(b) if A has distinct real eigenvalues then it is diagonalizable over R.
(c) if A has distinct eigenvalues then it is diagonalizable over C.

(d) if all eigenvalues of A are non-zero then it is diagonalizable over C.

Ans. Options b and c
110

Consider the matrix A = | 0 1 1 |. Then all the eigenvalues of A are non-zero.
001

But it is not diagonalizable over R or C as its minimal polynomial is (. — 1)3.
If A has distinct real eigenvalues then it is diagonalizable over both R and C.

(144) Which of the following statements is correct for every linear transformation
T:R>— RPsuchthat 7° —T?> - T + 1 =0?

(a) T isinvertible as well as diagonalizable.
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(b) T is invertible but not necessarily diagonalizable.
(c) T is diagonalizable, but not necessarily invertible.
(d) None of the other three statements.

Ans. Option b

The given matrix satisfies the polynomial A3 — X> — A 4+ 1 = 0. Since the con-
110

stant term is not zero, T is invertible. Consider the matrix | 0 1 0 |. The matrix
00 -1

satisfies the given polynomial equation and is not diagonalizable.

(145) Let A be a4 x 4 matrix with dim [N(A —20)] =2,dim [N(A—-40)] =1
and Rank(A) = 3. Then
(a) 0, 2, and 4 are eigenvalues of A. (b) det(A) =0.
(c) A is not diagonalizable. (d)tr(A) = 8.

Ans. Options a, b, and d

Since Rank(A) = 3, 0 is an eigenvalue of A. Also, A has three non-zero eigen-
values. Asdim [N(A — 2I)] = 2anddim [N(A — 41)] = 1, 2 is an eigenvalue
with geometric multiplicity 2 and 4 is an eigenvalue with geometric multiplicity
1. Thus in the Jordan canonical form there must be 4 Jordan blocks. Therefore
A is diagonalizable.

(146) LetA € Mz, 3(R)andlet X = {P € GL3(R) | PAP 'istriangular}. Then

(@ X#¢

(b) If X = ¢, then A is not diagonalizable over C.
(c) If X = ¢, then A is diagonalizable over C.

(d) If X = ¢, then A has no real eigenvalue.

Ans. Option ¢

Since every odd degree matrix with real coefficient has at least one real root, A
has at least one real eigenvalue and the complex eigenvalues occur as conjugate
pairs. Thus X can be empty if A has complex eigenvalues and if X = ¢, then A
is diagonalizable over C.

(147) Which of the following matrices have Jordan canonical form equal
010
to [000]?
000
001 001 011 011
(a{000| (b)|001 (¢©)[000] @]001
000 000 000 000
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Ans. Options a, b, and ¢

The characteristic polynomial of the given matrix is A> and minimal polynomial
is A2. Matrices (a), (b), and (c) also have the same characteristic and minimal
polynomials as that of the given matrix. A is both characteristic and minimal
polynomial for matrix (d).

(148) Let T : R* — R* be a linear transformation with characteristic polynomial
(A — 2)* and minimal polynomial (A — 2)?. Jordan canonical form of T can

2000 2000 2000 2000
1200 0200 0200 1200
@1o020] ®loo20] ©loo20] D]oi120
0012 0012 0002 0002

Ans. Options a and b
Since the minimal polynomial has a factor of degree 2, it has at least one Jordan
block of order 2.

(149) Let Abea6 x 6 matrix over R with characteristic polynomial = (A — 3)2(h —
2)* and minimal polynomial = (A — 3)(A — 2)2. Then Jordan canonical form

of A can be
300000 300000 300000 310000
030000 030000 030000 030000
002100 002100 002100 002100
@loo0210] ®looo200] ©looo200] @P]oo0200]
000021 000020 000021 000021
000002 000002 000002 000002

Ans. Options b and c

The given matrix has two eigenvalues 3 and 2. The algebraic multiplicity of
A = 3 is 2 and geometric multiplicity is 1, and algebraic multiplicity of Ay = 2
is 4 and geometric multiplicity is 2. Therefore there exists at least one Jordan
block of order 2 for Ay = 2 and the possible Jordan forms are

300000 300000
030000 030000
002100 002100
000200| 000200
000020 000021
000002 000002

(150) Which of the following matrices is not diagonalizable over R?
110 (110 110 101
(@020 (b)|021 ©[010] (@]|020]{.
001 1003 002 003
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Ans. Option ¢

(a) The characteristic polynomial of the given matrix is (A — D?(A —2) and
the minimal polynomial is (A — 1)(A — 2) and hence it is diagonalizable.

(b) The given matrix is an upper triangular matrix with distinct eigenvalues
(diagonal elements are the eigenvalues) and hence it is diagonalizable.

(c) The given matrix contains a Jordan block of order 2 and hence is not
diagonalizable.

(d) The given matrix is an upper triangular matrix with distinct eigenvalues
(diagonal elements are the eigenvalues) and hence it is diagonalizable.

000 -4
100 0 . .
(151) Let A = 010 5 . Then the Jordan Canonical form of A is
0010
—-100 0 —-110 0 1100 -1 100
0100 0100 0100 0 —-100
@loo20] ®loo2o| @loo2o| Do 020
0 00-=-2 0 00-2 000 -2 0 0 0-=-2
Ans. Option a
—-100 0
. ; : o . 0100 |.
Since determinant of the given matrix is 4 and trace is 0, 0020 | the
0 00-2
required Jordan Canonical form.
221 210
(152) Consider the matrices A= |02 —1 [and B=]020
00 3 003

(a) A and B are similar over the field of rational numbers Q.

(b) A is diagonalizable over the field of rational numbers Q.

(c) B is the Jordan canonical form of A.

(d) The minimal polynomial and the characteristic polynomial of A are the
same.

Ans. Options a, ¢, and d

The characteristic and minimal polynomial of A and B is (A — 2)?( — 3).
Clearly it factors over Q. Since they have the same minimal and character-
istic polynomial, A and B are similar over the field of rational numbers Q. A is
not diagonalizable since the minimal polynomial has non-linear factors. Since
the minimal polynomial is (A — 2)*>(A — 3), B is the Jordan canonical form of
A.

(153) Let A be a7 x 7 matrix such that 24% — A* = I.If A has two distinct eigen-
values and each eigenvalue has geometric multiplicity 3, then the total number
of non-zero entries in the Jordan canonical form of A equals .......
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Ans. Since A satisfies A* —2A2 +1 =0, \* =22 +1 =0 -1 =X+
D2 (A — 1)? is an annihilating polynomial of A. Therefore the two distinct eigen-
values of A are 1 and —1. Since geometric multiplicity of each eigenvalue is 3,
each eigenvalue has 3 Jordan blocks and since A is of order 7, one of the Jordan
blocks must be of order 2. Therefore the total number of non-zero entries in the
Jordan canonical form of A is 8.

(154) Let D : P3[x] — P3[x] be the linear operator given by differentiation with
respect to x. Let A be the matrix representation of D with respect to some
basis for P;[x]. Which of the following are true?

(a) A is anilpotent matrix.

(b) A is adiagonalizable matrix.

(c) the rank of A is 2.

0100
0010
0001}
0000

(d) the Jordan canonical form of A is

Ans. Options a and d
Consider the standard ordered basis {1, x, x?, x3}f0r V. Now

D(1) =0 =0+ 0x + 0x> 4+ 0x>
D(x) =1=140x 4+ 0x* + 0x°
D(x?) =2x =0+ 2x + 0x> + 0x*

D(x?) = 3x* = 0+ Ox + 3x% + 0x°

0100
0020 . . . 4
Then A = 0003 | Clearly A is a nilpotent matrix as A* = 0. The charac-
0000
teristic and minimal polynomial of A are \*. Therefore A is not diagonalizable.
0100
. . . 10010
The rank of A is 3 and the Jordan canonical form of A is 0001 |
0000

(155) Let T : P;[x] — P,[x] be the linear transformation given by
T(p)=2p+p forpeV

where p’ is the derivative of p. Then the number of non-zero entries in the
Jordan canonical form of a matrix of T equals
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Ans. Consider the standard ordered basis for P;[x]. Then, we have
T(1) =2 =2.1+ 0x + 0x?
T(x)=2x+1=1.1+2x+0x>
T(x?) =2x? +2x = 0.1 + 2x + 2x?

210
Therefore the matrix of T is given by | 02 2 |. Since the minimal polynomial
002

is (A — 2)3, the number of non-zero entries in the Jordan canonical form of a
matrix of T is 5.

(156) Let A be a complex 3 x 3 matrix with A3 = —I. which of the following
statements are correct?

(a) A has three distinct eigenvalues. (b) A is diagonalizable over C.
(c) A is triangularizable over C. (d) A is non-singular.

Ans. Options b, ¢, and d
Since A satisfies A> = —I, A3 + 1 is an annihilating polynomial of A. Also

B 41= 0 DOZ =24 D=+ ) (A_(Hziﬁ)) (A_<1_2iﬁ))

As 0 is not an eigenvalue of A, it is non-singular. Since the minimal polynomial
divides annihilating polynomial, minimal polynomial has linear factors only.
Thus A is diagonalizable over C. Also A is triangularizable over C. Take A =
—1, then A3 = —1I, but —1 is the only eigenvalue.

(157) Let A be areal matrix with characteristic polynomial (A — 1)3. Pick the correct
statements from below

(a) A is necessarily diagonalizable.

(b) If the minimal polynomial of A is (A — 1)3, then A is diagonalizable.
(c) Characteristic polynomial of A% is (A — 1)3.

(d) If A has exactly two Jordan blocks, then (A — 1 )2 is diagonalizable.

Ans. Options c and d
110
Consider the matrix A = | 0 1 1 |. Then the characteristic and minimal poly-
001
nomial of A are (. — 1)3. Clearly A is not diagonalizable. Since 1 is the only
eigenvalue of A, A? has only one eigenvalue 1 with algebraic multiplicity 3.
Therefore characteristic polynomial of A% is (A — 1)3. Since A has two Jor-
dan blocks and 1 is the only eigenvalue of A implying (A — I)? = 0, therefore
(A=D72%is diagonalizable.
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(158) Let A be a 4 x 4 matrix over C such that Rank(A) =2 and A3 = A% # 0.

Suppose that A is not diagonalizable. Then

(a) One of the Jordan blocks of the Jordan Canonical form of A is |:0 1:|.

00
(b) A2=A#£0.
(c) There exists a vector v such that Av # 0 but A%v = 0.
(d) The characteristic polynomial of A is A* — A3.

Ans. Options a, ¢, and d

Since A satisfies A> = A%, 13 — A% = A2(A — 1) is an annihilating polynomial of
A. Therefore the possible minimal polynomials of A are A, A*, . — 1, A(A — 1),
and X2, — 1). Since A? # 0, x? is not the minimal polynomial of A. As A is
not diagonalizable A, A — 1, and L(A — 1) cannot be the minimal polynomial of
A. Therefore \*(\ — 1) is its minimal polynomial and hence one of the Jordan

blocks of the Jordan Canonical form of A is |:8 (1):| and A does not satisfy A> =
A. For if A> = A, A> — A = A(A — 1) is its annihilating polynomial and hence
diagonalizable as it has linear factors only. Since A> = A%, A>(A — I)v = O for
everyv. But A(A — I)v # Oforeveryvas A> # A. So there exists avector v such
that Av # 0 but A’v = 0. The possible characteristic polynomials are \*>(A —
D? and A3 = 1). But A2(0 — 1)2 is not possible since Rank(A) = 2 and the
minimal polynomial is A*>(» — 1). Therefore the characteristic polynomial of A
is A4 — 23,

(159) For an n x n real matrix A, A € R and a non-zero vector v € R" suppose

that (A — AI)*v = 0 for some positive integer k. Then which of the following
is/are always true?

@ (A—=ADM"vy =0, Vr e R*. (b) (A —ADv=0.

(c) (A — AT) is not injective. (d) A is an eigenvalue of A.

Ans. Options a, ¢, and d

(a) Since (A—rD*v =0, (A—=1D*""v = (A —=ADKA = AI)v =0 for
all positive integers r.

(b) Consider A = |:(1) {| Take ) = 1. Then (A — AI)?v = 0 for every non-
zerovectorv € R", but (A — AI)v # 0 for every non-zero vectorv € R".

(c) We know that there exists a non-zero vector v € R" such that (A —
LD*v = 0 for some positive integer k. Now

(A=2DYv=0=det(A—AD"=0=det(A—11)=0
Therefore there exists a non-zero vector v € R" such that (A — Al)v =0

and hence (A — AI) is not injective.
(d) From option c, )\ is an eigenvalue of A.
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(160) Check whether the following statements are true or false.

(a) Let A be ann x n matrix whose row sums equal 1. Then for any positive
integer m the row sums of the matrix A” equal 1.

(b) Let Abea2 x 2 matrix with complex entries. The number of 2 x 2 matri-
ces A with complex entries satisfying the equation A*> = A is infinite.

ln3
(c) The matrix [ O 2 4 | is diagonalizable.
003
(d) If A and B are similar matrices then every eigenvector of A is an eigen-

vector of B.

(e) Let V be the subspace of the real vector space of real-valued functions
on R, spanned by cos x and sin x. Let D : V — V be the linear map
sending f(x) € V to %. Then D has a real eigenvalue.

(f) Any linear transformation A : R* — R* has a proper non-zero invariant
subspace.

(g) Let A € M, (R) be upper triangular with all diagonal entries 1 such that
A # I.Then A is not diagonalizable.

(h) If Ais a2 x 2 complex matrix that is invertible and diagonalizable, and
such that A and A? have the same characteristic polynomial, then A is the
2 x 2 identity matrix.

0i0 000
(i) The matrices {00 1 ) and | —i 0 O | are similar.
000 010

(j) For any matrix C with entries in C, let m(C) denote the minimal polyno-
mial of C, and p(C) its characteristic polynomial. Then for any n € N,
two matrices A, B € M, (C) are similar if and only if m(A) = m(B)
and p(A) = p(B).

(k) Let A, B € M,3(R). Then det(AB — BA) =

(1) For any n > 2, there exists n x n real matrix A such that the set {A7 |
p > 1} spans the R- vector space M, «, (R).

. x 0 x 1
(m) The matrices 0 y> and (0 y
gate/similar in My,» (R).

tr[(AB — BA)?]

),x # y for any x,y € R are conju-

Ans. (a) True. We will prove this by induction onm. Let A be ann X n matrix
whose row sums equal 1. Then I is an eigenvalue of A with the eigenvector
[11...1] . Now

nxl1®

1 1 1 1 1
Ald] = =a =A =
1 1 1 1 1

nxl nxl1 nxl nxl1 nxl1
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(b)

(c)

(d)

(e)
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Thus the statement is true for m = 2. Now suppose that the statement is
true for m = k — 1. That is, the row sum ofAk’1 is 1. Then as above,

1 1 1 1 1
AT = = At e =A<
1 nx1 1 nxl 1 nxl1 1 nxl1 1 nxl1

Thus the statement is true for every positive integer m.
True. Since A satisfies A> = A,

M —A=20—DO+1)

is an annihilating polynomial of A. Then the possible minimal polynomials
are

MA—LA+ LA =1, A0+ Dand (. — DA+ 1)

If the minimal polynomial is A, then A = 0. If the minimal polynomial is
A — 1, then A = I and if the minimal polynomial is A + 1, then A = —1.
Now if the minimal polynomial is A(A — 1), any matrix with trace =
—1 and determinant = 0 satisfies this. So there exist infinitely many
matrices such that A3 = A.

True. The eigenvalues of an upper triangular matrix are its diagonal
entries. So the given matrix has three distinct eigenvalues. Therefore the
matrix is diagonalizable.

01
10

L|:—11
AR
o[-
1
1

False. Consider the matrix A = |: ] Take P = ] Then

Also A [ ] = |:{|.Theref0re [1 1][ is an eigenvector of A. But [1 l]t is

not an eigenvector of B as B |}:| = [_11i|
False. We have

D(sin x) = cos x = 0(sin x) + 1(cos x)

and
D(cos x) = —sin x = (—1)(sin x) + O(cos x)

Then the matrix of T is given by |:_Ol (1):| and it has no real eigenvalue.
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(f) True. If T has a real eigenvalue, then clearly T has a proper non-zero
invariant subspace. Suppose T has complex eigenvalues only, then the
complex eigenvalues occur as conjugate pairs. Then consider the real
Jordan form of T. Then we get that any linear transformation A : R* —
R* has a proper non-zero invariant subspace.

(g) True. Since A is an upper triangular with all diagonal entries 1, its char-
acteristic polynomial is given by (A — 1) and its minimal polynomial is
of the form (. — 1) wherer < n. Since A # I, r > 2. Therefore A is not
diagonalizable.

(h) False. Consider the matrix A = @ 02 where w € C3 where C3 denotes
0w

the cube root of unity. Then A is invertible and diagonalizable. Also A
and A? have the same characteristic polynomial.

(i) True. n x n matrices having the same characteristic and minimal poly-
nomial are similar when n < 3.

(j) False. Let A and B be two matrices of order n < 3; A and B are similar if
and only if they have the same minimal and characteristic polynomial. For

0100
.. . . 0000
n > 3, this is not true. For example, consider the matrices 0000 and
0000
0100
0000 .. .. .
0001 They have the same minimal and characteristic polynomial.
0000

but they are not similar.
(k) True. Consider the characteristic equation of the matrix (AB — BA). It

will be of the form

23 —1r(AB — BA)A> + cA —det(AB — BA) =0
where c is some real number. Sincetr(AB — BA) = tr(AB) — tr(BA) =
0, this implies A> + cA — det (AB — BA) = 0. Then by Cayley—Hamilton
Theorem,

det(AB — BA)I = (AB — BA)® + ¢(AB — BA)

Taking trace on both sides, we get

3det(AB — BA) = tr[(AB — BA)?]
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(1) False. By Cayley—Hamilton theorem any matrix of power > n can be
written as a linear combination of {1, A, A%, .. AT }. So the dimension
of span of { AP | p > 1} is less than or equal to n. But the vector space of
all n x n real matrices has dimension n*. So the set {A? | p > 1} does
not span M, ., (R).

(m) False. Since the given matrices have the same characteristic and minimal
polynomial, they are similar.



Chapter 12 ®)
Solved Problems—Normed Spaces oo
and Inner Product Spaces

(D

2)

Consider the vector space V of real polynomials of degree less than or equal to n.
Fix distinct real numbers ag, ay, ..., ax. For p € V, max{|p(a;)| : 0 < j <k}
defines a norm on V

(@onlyifk <n (b)onlyifk>n (c)ifk+1<n @ifk>n+1

Ans. Options b and d
Given that || p|| = max{|p(a;)| : 0 < j < k}.
Clearly || pll = 0.

[Pl =0= max{|p(aj)|:0=<j<k}=0
= Ip@j)l=0,0=j=<k

This implies p = Oonlyifk > norifk > n + las{ag, a1, ..., ar}isacollection
of k + 1 elements and by Fundamental Theorem of Algebra p = 0 ifit has greater
than n zeros.

lkpll = max{lkp(a;)| : 0 < j <k}
= |klmax{|p(a;)| : 0 =< j <k} = |k| l|p]

Also

lp +qll = max{|p(a;) +q(a;)| : 0 < j <k}
<max{|p(aj)|:0 < j <k} +max{lg(a;)|:0<j<k}=Ipl+lql

Consider the real vector space V of polynomials of degree less than or equal to
d.For p € V define || pll, = max{|p(0)], |p'(0)] ..., |p®(0)]} where p(0) is
the ith derivative of p evaluated at 0. Then || p||, defines a norm on V if and only
if

@k>d—1 k<d ©k>=d (Dk<d-1
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Ans. Option ¢
Clearly ||plly = 0 since [p@ ()| = 0 foralli.

Iply =0=1pP©O)|=0Vi=12,...k
= p=0onlyifk=>d
This is because p® (0) is the co-efficient of x;.
(3) Consider the following statements:
P: Let V be any normed space. Then
Wall = 1vIl < llu=vll, Yu,veV

Q: Forany v = (vi,va,...,v,) € R",

Vlloo < Vl2 = IVllh = 7 Vil

Then
(a) both P and Q are TRUE. (b) P is TRUE and Q is FALSE.
(c) P is FALSE and Q is TRUE. (d) both P and Q are FALSE.

Ans. Option a
Foru,v € V, we have

il =1lv—u+ull < llv—ull+ llul
This implies that ||v| — ||ull < ||v — ul|. Similarly, we can show that ||u| —
vl = = [vll = lulll < llv — ull. Therefore

Mull =1Vl < llu—vll, Yu,veV
Now for any v = (vi, vz, ..., V) € R",

||v||oo—sup|v1|—sup vil?)? (Zm ) = [Iv,

Also,
n n 2
2 2 2
i3 =Y wil* < (Zm) < vl
i=1 i=1

and



12 Solved Problems—Normed Spaces and Inner Product Spaces 475

“4)

®)

n n
Vil = Ivil < Y suplvil = nsuplvi| = n [Vl
i=1 i=1 ! !

Therefore ||v]loo < VIl < [IVIl} = 1 [IV]leo-

Which of the following statements about the spaces /7 and L”[0, 1] is true?
(@)? c1”and LY[0,1] c L°[0,1] (b)I? c !’ and L°[0, 1] C LO[0, 1]
()7 c I’and LO[0,1] c L°[0,1] (d)!” c I*and L°[0, 1] C LO[0, 1]

Ans. Option b
For1 < p <gq,wehavel? Cl9and L1 C L?.

The space C[0, 1] of continuous functions on [0, 1] is complete with respect to
the norm

@) [ flloo = sup{| £ ()] : x € [0, 1]}
O 1£1l, = fy 1£(0)ldx
© IF1% =11 f o + 1£O)] + | £(1)]

@ [ flly =/ fiy 1 f ) 2dx

Ans. Option a and ¢

(a) Let { f,} be a Cauchy sequence in C[0, 1]. Then, for any € > 0, there is an
N such that

I fn — full = sup{l fn(x) — fu()| : x € [0, 1]} <€, Vm,n > N
(12.1)
Then for a fixed x, say xo € [0, 1], we have | f,,(x9) — fu(x0)| <€, Vm,n >
N. Therefore { f,(xo)} is a Cauchy sequence of real numbers for each x, €
[0, 1]. Since R is complete, { f,(x9)} converges to a real number, which is
unique. Thus we can define a function f on [0, 1], pointwise. From Eq.
(12.1), as n — 00, we have

sup{| fm(x) — f)] :x €[0,1]} <€, Vm > N

Therefore | f,,(x) — f(x)| <€, Y m > N. This implies that { f,(x)} con-
verges to f(x) uniformly on [0, 1]. Since the convergence is uniform f is
continuous. Hence, f € C[0, 1]. Thus C[O0, 1] with the norm ||.| 5, is com-
plete.

(b) Consider the sequence { f,,; n > 3} € C[O0, 1], where

1 1
0, OEXSE—;
— _n 1_1 1
)= {nx—=5+1, 53— <x<3
1, ;<x=<1

Then form > n > 3,
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(6)

(7
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1

2 1
I fo = fnlly zﬁ l|fn(x)_fm(x)|dx§;
17w
This implies that, asn — oo, || f, — fully = 0. Therefore { f,,} is a Cauchy
sequence in C[0, 1].
Suppose that f,, — finCl[0, 1]. Fixa € (0, %) Take n such that% -
Then

1> .
i

05/0 If(x)ldx=/0 ) = fu@)ldx < [Lfu— Fll, — 0

asn — oo. Therefore f0a|f(x)|dx = 0. Since f € C[0, 1], this implies that
f(x) =0 for x € [0, «] for every a < % Therefore f (%) = 0. Also, we
have

1 1
05[ If(X)—lldx:[ |f ) = fu@ldx < | fu — fll; > 0

as n — oo. Therefore fl1|f(x) — 1|dx = 0 and by the continuity of f,
2

fx)=1forx e [%, 1]. This is a contradiction.

(c) Using (a), we can prove that C[0, 1] is complete with respect to the norm
112

(d) Using the sequence in (b) we can prove that C[0, 1] is incomplete with
respect to the norm ||.||,.

If V is the class of all polynomials on [0, 1], then
(a) V is complete when given the sup norm.

(b) V is complete when given the L' norm.

(c) V is not complete under any norm

(d) V is complete when given the L! norm.

Ans. Option ¢

We know that the Hamel basis of an infinite-dimensional Banach space must
be uncountable. As {1, x, X2, .. .} is a countable Hamel basis for V, V is not
complete with respect to any norm.

Which of the following is not complete in any norm?

(a) coo, the space of all sequences of real numbers having finitely many non-zero
terms.

(b) I*°, the space of all bounded sequences of real numbers.

(c) C[0, 1], the space of all real valued continuous functions on [0, 1].

(d) R", where R is the field of real numbers.
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Ans. Option a

(a) Consider the sequence v, = (1,
have

,...,%,O,...)ecoo. For m > n, we

(ST

1
2

1 1 1
||vm_vll||= 0""701 ""7_’07"' =
n+1 n n+1

Now for any € > 0, choose N € N such that % < €. Then for all m >

1 1 |
SN SN
sequence. But v, — v = (1, %, %, .. ) ¢ coo. Therefore cq is not complete.
(b) Consider (I, ||.I), where |.| is defined by ||v|l = sup;|vi| for

v =y, Vvz,...) €. Let {v,} be a Cauchy sequence in [*°, where v, =
(vi") R ) Then for any € > 0, there exists N such that

n > N, we have, ||v,, — v,| = < €. Thus {v,} is a Cauchy

m) _

Vi — Vull = sup;|v; vl <e, Ym,n> N
p 1 1

Thus, for every fixed i,
™ —v"| <€, Ym,n> N (12.2)

&)

Therefore the sequence (vi , vlfz) Y ) is a Cauchy sequence of real numbers

(n)

and hence is convergent, sayv; ' — v; asn — o0. Consider the element v =

l.(m)—v,-l <€, YVm > N.As

{v,} € [, there exists L, € R such that |xl.(")| < Ay for all i. Therefore,

1, va, ...). Lettingn — oo in (12.2), we get |v

il = v =" + 9" < i =" |+ V"l < €+ Ay, VR > N, Vi
Thus v, — vandv € [*.
(c) CI[O, 1] is complete with respect to supremum norm.

(d) As every finite-dimensional space is complete, R" is complete.

(8) Let « be a primitive fifth root of unity. Define

a2 0000
0 «'00 0
A= 0 0100
0 0 0xO
0 0 00a?

For a vector y = (Vl,vz, V3, V4, VS) c RS, define | v |A= m If w—
(1,-1,1,1,—1), then | w [4= -+ - -+
@0 M1 (@©-1 (@2
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Ans. Option a
We have

a2 0 0007[1
0 000 ||-1
wAw' =[1-111-1]| 0 0 100 1
0 00a0]|1
0 000a?]|-1

=a4+a '+ 14+a+ad?
=l4+a+a’+a’+a*=0

(9) Let A be an n x n matrix with real entries. Define (x, y)4 = (Ax, Ay),x,y €
R”. Then (x, y)4 defines an inner-product if and only if
(a) Ker(A) = {0}
(b) Rank(A) =n
(c) All eigenvalues of A are positive.
(d) All eigenvalues of A are non-negative.

Ans. Options a and b
Clearly (x, y)a = (Ax, Ay) > 0. Also

(x,y)a=0= (Ax,Ay) =0 = x = y <= Ais one — one

That is, if and only if K er (A) = {0}. Then by Rank-Nullity Theorem, Rank(A) =
n. Since A can be any matrix, options (c) and (d) are false.

(10) Which of the following is an inner product on the vector space V of n x n real
symmetric matrices?
(@) (A, B)1 = (1r(A)(tr(B)) (b) (A, B), =tr(AB)
(©) (A, B)s =det(AB) (d) (A, B)y=1r(A)+1r(B)

Ans. Option b
ap a2 ... diy

. . . app ax ... Ay
As A is symmetric, A is of the form A =

aiy, Ayp ... Ayp

10

(a) Forn =2, consider A = |:O 1

i|. Then,

(A, A)y = (tr(A)* =0

But A #0. As (I P1) is violated, {, ), is not an inner product on V.
(b) (IP1) For any A € V, we have
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n

(A, A), =tr(A%) = Z al =0

i,j=1

and

(A, A =04 > a,=0&a}=0,VijsA=0
ij=1

(IP2) Forany A, B, C €V, we have

(A+B,C), =tr[(A+ B)C]=tr(AC + BC) = tr(AC) + tr(BC)
=(A,B),+(B,C)

(IP3) Forany A, B € V and A € R, we have
(LA, B), = tr(AAB) = Mr(AB) = A(A, B),
(IP4) Forany A, B € V, we have

(A, B), = tr(AB) = tr(BA) = (B, A),

Therefore, {, ), defines an inner product on V.

(¢) Forn =2, consider A = |:(1) 8j| Then

(A, A)s =det(A®) =0

But A # 0. As (I P1) is violated, {, )3 is not an inner product on V.

(d) Forn = 2, consider A = |:(1) _01i| Then,

(A, A)g = 2.tr(A) = 0

But A # 0. As (I P1) is violated, {, )4 is not an inner product on V.

(11) Which of the following are inner products on R??
(@) ((u1, u2), (vi,v2))1 = u1vy + 2u1va + 2uovy + uzvp
(b) {(u1, u2), (vi,v2))2 = urvy + u1va + uavy + 2uzva
(©) ((u1, u2), (vi,v2))3 = urvy + u1va + uavy + uzva
(d) ((ur, u2), (v, v2))a = urvi — Jugvy — Yupvy + upv;

Ans. Option b and d
We know that, for u,v € R2 and a fixed matrix A € M,»(R), (u,v) = ul Av
defines an inner product on R? if and only if A is positive definite.



480 12 Solved Problems—Normed Spaces and Inner Product Spaces

(a) We have

12(]|v
(1, u2), (v1,v2))1 = ugvi +2u1vy 4 2upvy + ugvy = [ug uz] [2 1] [Vj

Here A = [é ﬂ As the eigenvalues of A are 3 and —1, A is not positive

definite and hence (, ) does not define an inner product on R2,
(b) We have

11]]|v
(e, u2), (v, v2))a = uvi + urvy + uavy + 2ugvy = [uy ] |:1 2] |:Vﬂ

Here A = |} ;] As the eigenvalues of A are 3i2‘/§, A is positive definite

and hence (, ), defines an inner product on R2,
(c) We have

11]|v
(1, u2), (v, v2))3 = urvi + urvy + ugvy + ugvy = [uy us] [1 1} [Vi}

Here A = |} {| As the eigenvalues of A are 0 and 2, A is not positive

definite and hence (, )3 does not define an inner product on R,
(d) We have

1 1 1 =1
(@1, u2), 01, v2))a = wivy — Surva — Sugvi +ugvy = (1 uz] [,l 2] [Vl]
2

1 =1
Here A = |:_% 12i|. As the eigenvalues of A are % and 3, A is positive

definite and hence {, )4 defines an inner product on R2.

(12) Define (, ) : C[0, 1] x C[0, 1] — R by

1
(f.g) = fo £ (g0 dt

Then which of the following statements is true?

(a) (, ) is an inner product on C[O, 1].

(b) (, ) is a bilinear form on C[0, 1] but is not an inner product on C[O, 1].
(c) {, ) is not a bilinear form on C[O0, 1].

@ (f, f) =0forall f € C[O,1].

Ans. Option ¢
Take the constant function f(t) = —1 forallt € [0, 1]. Clearly f € C[0, 1] and



12 Solved Problems—Normed Spaces and Inner Product Spaces 481

1
. f) =f (—’dt = =1 <0
0

Thus {, ) is not an inner product on C[0, 1]. {,) is a bilinear form on C[0, 1]
if it is linear on both first and second variable. Clearly (, ) is not linear on the
second variable. Thus, {, ) is not a bilinear form on C[0, 1].

(13) Which of the following normed spaces are inner product spaces?
1
(@ 17,1 < p <ocowith |[v]| = (32, IvilP)?, forv = (vi,v2,...) €17,
(b) CI0, 1T with | /1| = (fy 17 @)I7dx)” for £ € ClO, 1.

1
© L710, 1.1 = p < oo with [ £l = (fy 1/ (x)IPdx) " for f € L710, 1.
(d) None of the above.

Ans. Option d

(a) Takeu = (1,1,0,...),v=_1,—-1,0,...) € l’. Thenu +v = (2,0,0,...)
andu —v =1(0,2,0,...) with

lu + vl =llu—v|=2

Observe that ]
2r,if 1< p<oo
hll = vl = {27 1P
1, if p=oc0

Clearly parallelogram law is satisfied only when p = 2. Therefore, [P, p #*
2 are not inner product spaces.

(b) Consider f(x)=1,g(x)=1—x€C[0,1]. Then (f+g)(x)=1 and
(f —g)(x)=2x —Lwith||f +gll =1and

1

! T, if 1<p<oo
||f—g||=f [2x — 1|Pdx = { 4+p)?
0 1 L ifp=o

Also

1 L, ifl<p<oo
I|f||=||g||=/ 2x — 1|Pdx = 4 Gp?
0 1 5 lfp:oo

Clearly parallelogram law is satisfied only when p = 2. Therefore, C[0, 1]
is not an inner product spaces.

(c¢) Consider the same example as above. LP, p # 2 are not inner product
spaces.
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(14) The space [7 is a Hilbert space if and only if
(@p>1 ()piseven (c)p=oc dp=2

Ans. Option d
The space 1P is a Hilbert space if and only if p = 2.

(15) Let V be an inner product space and u#, v € V be such that

[, ) = Nuell V]I

(a) u and v are linearly independent. (b) # and v are orthogonal.
(c) u and v are linearly dependent. (d) None of these.

Ans. Option c
By Cauchy-Schwartz inequality, |(u,v)| = |lu|| ||[v|| if and only if u and v are
linearly dependent.

(16) Letco ={(vy) :v, € R,v, > 0}and M ={(v,) €Eco:vi+Vva+---+Vvi=
0}. Then, dim (co/M) isequalto . .....

Ans. Define T : co — R by
TW)=vi+va+---+vio

wherev = (vi,...,V,...) € co. Then, foru = (uy, ..., up,...),v=>1,...,
Vis..o.) €Ecoand h € R,

T (Au~+v) = (uy + Avy) + (ua + Avp) + - - - + (110 + Avig)
=ur+ur+--+up+ArAVi+va+-+vio)
= T () + AT (V)

Clearly, T is an onto homomorphism from c to R with

Ker(T) ={(va) €co:vi+va+---+vip=0}
Therefore by First Isomorphism Theorem, co/M = R. Therefore dim(co/M)
=1

(17) Let (.,.) : R" x R* — R be an inner product on the vector space R" over R.
Consider the following statements:

P: [{u,v)| < % [{u, u) + (v, v)] forall u, v € R".
Q: If (u,v) = (2u, —v) forall v € R*, thenu = 0.

Then
(a) both P and Q are TRUE. (b) P is TRUE and Q is FALSE.
(c) P is FALSE and Q is TRUE. (d) both P and Q are FALSE.
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Ans. Option a
Forallu,v € R*, we have

(laell = IvID* = Haell® + V11> = 2 flaell V1] = 0

which implies that

1 1
el vl = 5 [luell® + vI7] = 5 L u) + (v.v)]

Then by Cauchy-Schwartz inequality, we have

1
[{u, )| < llull V]l < 7 [, u) + (v, v)]
for all u,v € R". Now (u,v) = 2u, —v) for all v € R" implies that (u,v) =
—2(u, v). That is, 3{u,v) = 0 for allv € R". Hence u = 0.

(18) Let H be a complex Hilbert space. Let u, v € H be such that (u, v) = 2. Then

1

o it |12 it
E | ||u+e V|| ed[: .........

Ans. We have

u + e”v“2 =(w+e'v,u+ev)
= (u, u) + (u, &"v) + (e"'v, u) + (e''v, €''v)
= llull® + ", v) + e v, u) + v])?
= lull® +2¢" + 27" + ||v|?

Therefore

1 27 o2 1 [ . . .
I Hu +e'ly| eldt = P f [IIMH2 +2e" +2e7" + ”VHZ] eldt
T Jo 7T Jo

1 it 27 o2t 27 eit 27
=2—[(nun2 —.) +2(—.) +2(z)6"+<nvn2 —.)
b4 i)y 2i /g i/

1

- 21 47
T ow 1)
=2

[47] (sincee =7 =

(19) Let H be a Hilbert space. Consider the following statements:

P: If {¢; : i € N} is an orthonormal set and x € H, then the set E = {e; :
(x, e;) # 0} is denumerable.
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Q: If {¢; : i € N} is an orthonormal set, then for any x € H, (x,e,) — O as
n— 0.

Then
(a) both P and Q are TRUE. (b) P is TRUE and Q is FALSE.
(c) P is FALSE and Q is TRUE. (d) both P and Q are FALSE.

Ans. Option a
Forn € Nand x € H, define

1
E, = {e,- Cx, e) P > - ||x||2}

Suppose that E,, contains n or more than n elements, then for e; € E,,

1
§ |(x, ei)* > n <— |IX||2> = Ilx|?
n

But by Bessel’s inequality, we must have Y |(x, e;)|> < x| for any x € H.
Therefore E, contains at most n — 1 elements. Thus E, is finite for all n € N
Clearly, E,, C E foralln € N. Nowlete; € E. Then (x, e¢;) # 0. We can always
choose an n, say ng such that |(x, e;)|* > % x| Then ¢; € E,,. Therefore
E = U | E,. Since each E, is finite, E is countable.

If{e; : i € N}isan orthonormal set in a Hilbert space H, by Bessel’s inequality,
we have Y |(x, e;)|* < llx]1% Therefore |(x, ¢;)|* converges as n tends to oo.
Thus (x,e,) — 0asn — oo forany x € H.

(20) Suppose {vi, ..., v,} are unit vectors in R” such that

n
WI? =) 1. v)? Vv eR"
i=1

Then decide the correct statements in the following

(a) vy, ..., v, are mutually orthogonal.

() {v1, ..., v,}is abasis for R".

(c) vi, ..., v, are not mutually orthogonal.

(d) At most n — 1 of the elements in the set {v, ..., v,} can be orthogonal.

Ans. Options a and b
Take v =v;. Then

HW”Z = ZHW, v lP = v)lP = [ v) | =0Vi# )
i—1

Therefore vy, ..., v, are mutually orthogonal and hence {vy, ..., Vv,} is a basis
for R".
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(21) Let (V, (., .)) be an inner product space. Consider the following statements;

P: Ifu, > uandv, — vin V, then (u,,v,) — (u,v)in V.
Q: Ifv, >vandu L v,, Vn,thenu L v.

Then
(a) both P and Q are TRUE. (b) P is TRUE and Q is FALSE.
(c) P is FALSE and Q is TRUE. (d) both P and Q are FALSE.

Ans. Option a
We have

[ttn, vi) = (u, V)| = [ttn, Vi) = (s v) + (i, v) — (u, v)|
< Wun, v) = (s V)| + [, v) — (u, v)|
< lunll flve = VIl + lNluw — ull IV

—0asu, > uandv, - v

Since v, — v, from above we have (u,v,) — (u,v). Asu L v,, ¥ n, we have
(u,vy,) =0, Y n. Therefore (u,v) = lim,— o {u,v,) =0. Henceu L v.

112
(22) Let A=|011|and V = {Ax"T : x € R*3}. Then an orthonormal basis for
011
X T T T
T 2 1 2 1 1 T 11
(a){(l,o,()) (0% 5 (% %) } <b>{<1,0,0> (0. 55 %) }
T

T
(c){(l,o,O)T,(%,%,%) (%%%@) } (d){(1,0,0)7. (0,0, )T}

Ans. Optiond

112 100
Here V is clearly the column space of A. Since A= 011 ~ (010 | (Col-
011 010

umn reduced form), {(1, 0,07, (0,0, 1)T} gives an orthonormal basis.

(23) Consider the subspaces W, and W, of R? given by
Wi ={(x,y,2) eR:x+y+z=0}
Wo={(x,y,2) eR*: x —y+2=0)}

If W is a subspace of R? such that

1) WnN W, =span{(0,1, 1)}
(i) W N W, is orthogonal to W N W, with respect to the usual inner product of
R3
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then
(@ W ={0,1,-1),©,1,1)} (B W={(1,0,-1),(0,1,—-1)}
C©W={(1,0,-1),,1,D)} @W={(1,0,-1),(,0, 1)}

Ans. Option a
We have

Wi ={(x,y,2) eR*: x4+ y+z=0}
= span{(ls 07 _1)s (01 1» _1)}

and

Wo={(x,y,2) eR*:x —y+2z=0}
= span{(1,0, —1), (0, 1, 1)}

Since W N W, = span{(0, 1, 1)} and W N Wy is orthogonal to W N W, W =
{(0’ ]s _1)7 (Ov 1, ])}

(24) Let U be an orthonormal set in a Hilbert space H and let v € H be such that
[lv]| = 2. Consider the set

E:{ueU:|(v,u)|Z%}

Then the maximum possible number of elements in E is ... ...

Ans. Suppose that E contains n distinct elements, say uy, ua, ..., u,. As
(v, u)| > % for each u € E, we have Yy :_ (v, u)|*> = 1¢- Also by Bessel’s
inequality, we get Y _ (v, ui)|> < |v||> = 4. Therefore, the maximum possi-
ble number of elements in E is 64.

(25) The application of Gram-Schmidt process of orthonormalization to
u; =(1,1,0), up =(1,0,0), us =(1,1,1)

yields
@{50.1,0,0,0,0,0,0 0} ®&{La, 1.0, 50,-1,0, 5a, 1,0}

(c) {(0,1,0),(1,0,0), (0,0, D)} (@ {%(1, 1,0, \/Lj(l, —1,0), (0,0, 1)}

Ans. Optiond
Letvi =u; = (1,1,0). Then

<u27 Vl)

<V11 Vl)

Take v» = (1, —1,0). Then

Vo = Uy —

1 1
=1 - =-(1,1 =-(1,-1
vi = (1,0,0) 2(, ,0) 2(, ,0)
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. (u3,vl)v1 _ (us, Vz)v2 —(1,1,1) = (1,1,0) = (0,0, 1)
(v, v1) (v2, v2

Vi=Uu

Therefore [«/Li(l’ 1,0), %(1, —1,0), (0,0, 1)} is the required set.

(26) Consider R? with the standard inner product. Let S = {(1, 1, 1), (2, —1,2),
(1, =2, 1)}. For a subset W of R3, let L(W) denote the linear span of W in R3.
Then an orthonormal set T with L(S) = L(T) is
(a) {%(1, L1, %3(1, -2, D} (b){(1,0,0),(0,1,0), (0,0, 1)}

© {51 LD, (L =10} () {51, 1.D, 50,1, =D}

Ans. Option a
Since (1,=2,1) =—(1,1, 1) + (2, —1, 2),

L(S) =span{(1,1,1), (2, -1, 2)}

Now we construct an orthogonal basis using Gram-Schmidt Orthogonalisation
process from the set {vi = (1,1, 1), v, = (2, —1,2)}.
Take uy = vy, then

(v2, v1)

(v, v1)

Uy = vy — vi=(1,-2,1)

and

uj 1 us 1
=—(1,1,1), — =—(1, -2,1
{nuln A = & )}

is an orthonormal set T with L(S) = L(T).

(27) Let V be the inner product space consisting of linear polynomials, p : [0, 1] —
R(V consists of polynomials p of the form p(x) = ax + b, a, b € R), with
the inner product defined by

1
(prq) = /0 p()q()dx for p.g eV

An orthonormal basis of V is

@ {1, x} () {1,xv/3} () {1, 2x = DV/3} () {1, x — 3}

Ans. Option c
Consider the standard ordered basis {1, x}. Take u; = 1 and

(v, v1) (x, 1) 1
Uy =vy — ——V| = X — =X — —

i) | (1 1) 2

Then {1, X — %} forms an orthogonal basis. Now
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22 k-3

[z

as |uz]] = (U2, u2))* = 24/3.

(28) Consider R with standard inner product. Let W = span{(1, 0, —1)}. Then,
which of the following is a basis for the orthogonal complement of W?
(@) {(1,0,1),(0,1,00} (b){(1,2, 1), (0,1, D}
©{2,1,2),4,2,49} {2, -1,2),(1,3,D, (-1, -1, =D}

Ans. Option a

As R? can be written as a direct sum of W and its orthogonal complement, W+
is a two-dimensional subspace of R3.

(a) Observethat{(1,0,1), (1,0, —1)) =0and{(1,0, —1), (0, 1,0)) = 0. Also,
the set {(1,0, 1), (0, 1, 0)} is linearly independent and hence is a basis of
wt.

(b) We have ((0,1,1), (1,0, —1)) = —1 # 0. Therefore (0,1, 1) ¢ W

(c) Clearly, ((2,1,2),(1,0,—1)) =0and ((4,2,4), (1,0, —1)) = 0. But, the
set{(2,1,2), (4,2, 4)}is linearly dependent and hence is not a basis of W

(d) As Wt is a two-dimensional subspace of R3, {2,-1,2),(1,3,1),
(=1, —1, —1)} cannot be a basis of W=.

(29) For f, g € P,[x], define

1
(f. 8 =/0 f()g)de

Let W = {1 — ¢%, 1 + #2}. Which of the following conditions is satisfied for all
hewt?

(a) A is an even function.

(b) A is an odd function.

(¢) h(t) = 0 has a real solution.

(a) h(0).

Ans. Option c
We have,

1
wt = {h € P,[x] | / FfOht)dt =0, Vf € W}
0
={h e Pa[x] | ((1 — %), h) = 0and ((1 +t*), h) = 0}

Take h(t) = a + bt + ct* € Py[x]. Then,
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1
<(1—r2),h>=0:>/ (1—=1*) (a+bt+ct?)dt =0
0

1
:/ (a+bt+(c—a)* — bt —ct*)dt =0
0

and

1
((1+r2),h>=o:>f (1+1%) (a+bt +ct?)dt =0
0

1
é/ (a+bt+(c+a)’ +bt® +ct*)dt =0
0

:4a+3b+80_0
3 4 15

Solving these equations, we get a = % and b = %. Therefore,

W+ = span {3 + 16t + 15¢*}

489

Any element h € W+ is of the form 3k + 16kt + 15kt> for some k € R. Clearly,

h is neither an odd function nor an even function. Also h(0) # 0. As,

(16k)*> — 4(3k)(15k) = 256k> — 180k> = 76k> > 0

forall k € R, h(t) = 0 has a real solution for any h € W+.
(30) Consider L2[0, 277] with inner product
2

(f.g) = i f(x)g(x)dx

Which of the following is an orthogonal sequence in L>[0, 27]?
(@) {x" :n e N} (b){cosnx:neN}
©) {e™ :neN} (d){sinnx:neN)

Ans. Options b, c and d

27 x4 2
2\ __ 3 _
(x,x%) = x7dx = | — #0
4
0 0

(a) We have

Therefore {x" : n € N} is not an orthogonal sequence in L*[0, 27].

(b) Forni # nj, we have
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2
(cos nix, cos nyx) = / COS N1X COS Naxdx
0

_ |:sin (ny +ny)x  sin (n —nz)xi|2” _0

2 (n1 +ny) 2(ny—ny)

Therefore {cos nx : n € N} is an orthogonal sequence in L*[0, 2],
(c) Forny # ny,

2 1 2
(einlx’ ein2x> — / ei(nlfnz)xdx — |: ei(mnz)x] =0
0 i(ny —no) 0

Therefore {¢'"* : n € N} is an orthogonal sequence in L*[0, 27].
(d) Forn; # n,, we have

2
(sin n1x, sin nyx) =/ Sin nix sin noxdx
0

_ |:sin (ny —na)x  sin (n +n2)xi|2” _0
2(ny —ny) 2(ny+n2) |
Therefore {sin nx : n € N} is an orthogonal sequence in L*[0, 27].
(31) Let{vy, va, ..., v,} be an orthonormal basis of C" as column vectors. Let M =
[vl Vo ... vk], N = [Vk+1 Vit - v,,] and P be the diagonal k x k matrix with
diagonal entries o, oz, . .., ax € R. Then which of the following are true?

(a) Rank(M PM*) = k whenevero; # a;j, 1 <i,j <k.
(b) tr(MPM*) = Y% o

(c) Rank(M*N) = min(k,n — k)

(d) Rank(MM* + NN*) <n

Ans. Option b
If Rank(P) < k, then by Sylvester’s inequality Rank(M P M*) < k. Also

k
tr(MPM*) = tr(MM*P) =tr(P) = Y "o
i=1

Take M = [e e;] and N = [e3 e4]. Then M*N = 0. Also MM* + NN* = I,.

(32) Which of the following statements are true?
(a) There exists A € My, (R) which is orthogonal and has 2 as an eigenvalue.
(b) There exists A € M, (R) which is orthogonal and has i as an eigenvalue.
(c) If A € M»(R) is orthogonal, then ||Av|| = ||v|| for every v € M« (R),
where |.|| denotes the usual euclidean norm on R2.
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Ans. Options b and ¢

(a) Let A be an eigenvalue of A. Then there exists v # 0 € R? such that Av =
Av.We have

lAv]> = (Av)T (Av) =vT AT Av =vTy = |v)?

Also
[AVI? = (v, ) = AP VP = AP =1= Al =1

Therefore 2 is not an eigenvalue of A.

(b) Consider the matrix A = |:_01 (1{| Then

0 1{{0-1 10
T _ —

awr =[] 1] = o]
Also the eigenvalues of A are i and —i.

(c) From (a) we get |Ax|*> = ||lx||*. Since | Ax|| and || x| are positive, | Ax|| =
llx1l.

(33) Let A be an orthogonal 3 x 3 matrix with real entries. Pick out the true state-
ments:
(a) The determinant of A is a rational number.
(b) d (Au, Av) = d (u, v) for any two vectors u and v € R?, where d (u, v)
denotes the usual Euclidean distance vectors u and v € R3
(c) All the entries of A are positive.
(d) All the eigenvalues of A are real.

Ans. Options a and b

A is orthogonal = AAT =1 = det (AAT) =1 = (det A) = %1. Since A is
orthogonal, geometrically it is either a rotation or reflection. Henced (Au, Av) =
d (u,v) for any two vectors u and v € R>. Consider the matrix A = I:_Ol (1):|
Clearly A is orthogonal. But all the entries are not positive and it has complex
eigenvalues.

(34) Let Sbethesetofall 3 x 3 matrices A with integer entries such that the product
AAT is the identity matrix. Then |S| = ...
(@12 (b)24 (c)48 (d)60

Ans. Option ¢

Note that S consists of all matrices having orthonormal rows. Since A has only
integer entries, a row of length one has only one non-zero entry which is equal to
—1 or 1. Therefore there are 6 choices for the first row. The second row has to be
perpendicular to the first. Therefore there are only 4 choices for the second row.
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(i.e, if first row is [1 0 0], the second row cannot be [1 0 O] or [—l 0 O]). Finally
for the last row there are only two choices. Therefore |S| =6 x 4 x 2 =48
choices.

(35) Let A be areal n x n orthogonal matrix is, AT A = AAT = I. Which of the
following statements are necessarily true?
(a) (Au, Av) = (u,v)Vu,veR"
(b) All eigenvalues of A are either +1 or —1
(c) The rows of A form an orthonormal basis of R”.
(d) A is diagonalizable over R.

Ans. Options a and ¢
As ATA = AAT = I, we have

(Au, Av) = (u, ATAV) = (u,v) Yu,v e R"

0-1
10
A are either i or —i. A is not diagonalizable over R. The ith diagonal element
of AAT is the length of the ith row of A. Therefore the rows of A form an
orthonormal basis of R".

Consider the matrix A = |: . Then ATA = AAT = I,,. The eigenvalues of

(36) Let n be an integer > 2 and B € M, (R) be an orthogonal matrix. Consider
Wi = {BTAB : A € M,,,.,(R)}. Which of the following are necessarily true?
(a) Wp is a subspace of M., (R) and dim Wy < Rank(B).
(b) Wp is a subspace of M, (R) and dim W = Rank(B)Rank(B").
(C) Wp = Mnxn (R)
(d) Wg is not a subspace of M, (R).

Ans. Options b and c

Let Cy, C, € Wg. Then there exists Ay, Ay € M5, (R) such that C; = BT A B
and C, = BT Ay B. Then .C, + C» = BT (AA| + A>)B € Wg. Therefore Wy is
a subspace of M, (R) and dim Wy = n*> = Rank(B)Rank(BT). Define Ty :
M,(R) — M,(R) as Tg(A) = BTABTg(A) = 0 if and only if A = 0. Hence
N(T) = 0 and by Rank-Nullity theorem, R(T) = M,(R).

300
(37) Let A= | 062 | and let A; > A, > A3 be the eigenvalues of A.
026

(a) The triple (A1, A2, A3) equals
1) (9,4,2) (i) (8,4,3) (i) (9,3,3) (@(v)(7,5,3)
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A 00
(b) The matrix P such that PTAP =] 0 X, O
0 0 A3
1 =2 r1 =2
N N e
AEEEICIEEE:
NG LV3 V6 V2
0 01 010
e | L1 . 1 1
(iii) TE 7% 0 @iv) ?5 0 7%
zal | #0%

Ans. (a) Option ii is correct.
Since det (A) = 96, the eigenvalues of A are 8, 4 and 3.
(b) Option iii is correct.
Since 8, 4, 3 are eigenvalues of A with eigenvectors (0, 1, DT, @, 1, -DT,

0 01
1 1
(1,0,0)7, P = ?!_?0
a0
(38) Let
3 —4
170
A=|% 10
001

(a) Then A is
i. non-invertible ii. skew-symmetric
iii. symmetric iv. orthogonal
(b) If B is any 3 x 3 real matrix, then rr(ABA") is equal to
i. [tr(A)*tr(B) i 2tr(A) + tr(B)
iii. 1 (B) iv. [tr(A)]> +tr(B)

Ans. (a) Opftion iy is correct.
Since det(A) # 0, N is invertible. Also

AT = AA#—-A

OLnlLu-lw
Sl
- o O

But AAT =

omlLuuw
U]~
—_ O O

Il

~

Il

=

~

S

3 =4
131,
5 5

001
o

Therefore A is orthogonal.
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(b) Option iii is correct.
Since tr(ABAT) = tr(ATAB) = tr(B).

(39) Let A be an n x n non-zero skew-symmetric matrix. The matrix (I — A)({ +
A)~! is always
(a) singular  (b) symmetric (c) orthogonal (d) idempotent

Ans. Option ¢

Consider A = [0 —2

20 i| Then

1

o 1[-3 4
(I = AU + A) —g[_4_3}

is non-singular, not symmetric and is not idempotent. Now

(- +a07") =[d+4T] " d-4a"
=T +ANHTa-A"
= —-A)7I+A4A)

Since
(I-AUT+A)=1-A*=U+A)U-A)
we get
[ — AT+ A =[U+ AU -]
Therefore
[ - +A) ] [d-ad+47" =1
V5 =2
o) If | 2 5 5 is a real orthogonal matrix, then o> 4+ 82 + ¥ + 8 equals
3 3
a B 1

V5 =2 N .

3 37|73 3¢ I+y )

-2 45 —2J5 | = 146 =1
X s = X8 24241

3 3 3 3 a” + 7+

a B 1 y & 1

Trace=a? + B2+ 1+1+8+14+y2=3=2a?>+p2+y2+8>=0
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(41) For real constants « and S, let

1 1

A=|V2 2
a B

be an orthogonal matrix. Then which of the following statements is/are always
true?

@a+B=0 MB=VI—-a® (Qap=3 dA*=1I
Ans. Options a and d

We have
a+p
1
AAT=| 48 zﬁz =I=a+p=0anda’+p> =1
— a” +
7 B
N 1 5 1 1 8 1
o=—,B=——ora=———7, = —
V2 V2 V2 V2

Therefore B = —/1 — a2 and af = —%. Also A> = 1.

T
vy . .
(42) Let P = Tbe ann x n(n > 1) matrix, where v is a non zero column vector.

v

Then which one of the following statements is FALSE?
(a) P is idempotent (b) P is orthogonal

(c) P is symmetric (d) Rank of P is one

Ans. Option b
P2 wT wT v TvywT wT P = Pisid ront
= = — = LS taempotent.

vy yTy vTy)? vy P
T
- wT oDHTYT oyt ] )
Pl = — = = —— = P = P is symmetric.
vy vTy vIy

By Sylvester’s inequality Rank(P) = 1. P is not orthogonal.

(43) Find an orthogonal matrix P such that PAP~' = B, where

001 010
A=|100|and B=|001
000 000

Ans. A is nilpotent matrix since A3 = 0. Then,
0

Av=0= v, = is an eigenvector of A.

1
0
1
Ax =vi=> v = |:O is generalized eigenvector of A.
0
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0
Ax = v, = vy = | 0| is generalized eigenvector of A.
1
010
Now take P = | 100 |. Then P~' = P and PAP~! = B.
001

(44) Let N > 2. Letv e RV v # 0, be a column vector. Find the condition on v
such that the matrix I — 2wv” is orthogonal.

Ans.
I =2whHd =2whHy=T=4nw"1 =vTv) =0

T

vI'vis a scalar and w” # 0. Hence the required condition is vT

v=1.

(45) Let A : R™ — R” be a linear transformation. If W is a subspace of R”, define
Wt={veR":(u,v)=0Vu e W}.Which of the following statements are
true? N
(a) R(A) C [N(AD)].

1
(b) R(A) = [N(AT)] .

(c) Neither of the above statements need be necessarily true.

Ans. Option a and b
Letv € N(AT). Then since ATv = 0 if and only if (v, Au) = (ATv, u) = 0 for
all u € R™. Therefore R(A) = [N(AT)]L.

1 -1
(46) Let V be the column space of the matrix A = | 1 2 |]. Then the orthogonal
1 -1
0
projectionof | 1 | on V is
0

(@ (0,1,0" () (0,0,H" (&) (1, ,OT (d) (1,0, DT

Ans. Option a
Since the columns vy, v, of A are orthogonal, the projection of the given vector
vonV is = proj, (v) + proj,,(v). Now,

. vy, 1 :
projy, (v) = —— V1= 3 1
vivi 3\
and
vy, 1 -1
proj,(v) = — V2= 3 2
2R 3\
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0
Therefore projy(v) = | 1
0

47) LetW = span [JLE(O, 0.1.1), (1, ~1,0, 0)} be a subspace of the Euclidean

space R*. Then the square of the distance from the point (1, 1, 1, 1) to the sub-
space Wisequalto......

Ans. The projection of the given vector v on W is = proj,, (v) + proj,,(v).

Now
0 0
. viw, 0 . viw, 0
Proju,(v) = ——w = 1 and projy,(v) = ——wz = ol Therefore
wi Wi Wy W2

—_
(=]

0
projw(v) = (1) Now the square of the distance from the point (1,1, 1, 1) to

1
the subspace W is the square of the length of the vector. i.e, 2.

(48) Let A € M, (R) be a non-zero singular matrix. Consider the following prob-
lem: find X € M,,»,, (R) such that

(i) AXA = A (ii) XAX = X and (iii) AX = XA

Which of the following statements are true?

(a) If a solution to the above problem exists, then A is not nilpotent.

(b) If A represents a projection, then the above problem admits a solution.

(c) If n = 2 and if a solution to the above problem exists, then A is diagonal-
izable over R.

Ans. Options a, b and c

(@) A=AXA=AAX = A’X = A’XAX = A3X? = A3X* = ... = A7H]
X" for every n € N. Suppose that A is nilpotent, then A™ = 0 for some
m € N. Then by the above equation, this implies that A = 0, which is a
contradiction. Therefore A is not nilpotent.

(b) If A is a projection A*> = A. Then take X = A.

(c) Whenn =2, Since A is singular and A is not nilpotent, clearly A is diago-
nalizable over R.

(49) Let A € M, 4, (R) be a non-zero singular matrix that tr(A) # 0. Which of the
following statements are true?
(a) For every such matrix A, the problem stated in the preceding exercise need
not have a solution.
(b) For every such matrix A, the problem stated in the preceding exercise has
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a solution given by X =
uon given by £ =124

(c) For every such matrix A, the problem stated in the preceding exercise has

1
a solution given by X = WA.

Ans. Option ¢
The characteristic polynomial of A is > — tr(A)A = 0. That is, A satisfies A> =

tr(A) A which implies X =
such A.

(tr(A))? A is a solution for the given equations with
(A2

(50) Let A be an n x n matrix with rank k. Consider the following statements:

(i) If A has real entries, then AAT necessarily has rank k.
(ii) If A has complex entries, then AAT necessarily has rank k.

Then
(a) (1) and (ii) are true. (b) (1) and (ii) are false.
(c) (1) is true and (ii) is false. (d) (i) is false and (ii) is true.

Ans. Option c
First we prove that N(AT) = N(AAT). Let v e N(AT).

ve NAT) = ATv =0
= AATV =0
=veNAAT)

Therefore N(AT) C N(AAT). Now

veNAAT) = AATY =0
=vAATy =0
= (ATWTATv =0
= “ATV” =0if A has real entries
= ATy =0
=veNAT

Therefore N(AT) D N(AAT). Thus N(AT) = N(AAT). As Rank(A) =
Rank(AT), by Rank-Nullity theorem, If A has real entries, then AAT neces-
sarily has rank k.

But if A has complex entries, then AAT need not have rank k. For example,

l:|, then AAT = |:0 0i|.

. .1
consider the matrix [0 0 00
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(51) Let A be an n x n real matrix. Pick the correct answer(s) from the following
(a) A has at least one real eigenvalue
(b) For all non-zero vectors v, w € R”, (Aw)T (Av) > 0
(c) Every eigenvalue of AT A is a non-negative real number.
(d) I + AT A is invertible

Ans. Options c and d

Consider the matrix |:O ! The given matrix has no real eigenvalues. Take

o)
W= I:(l)i| and v = |:(1)] Then (Aw)™ (Av) = 0. Let A be an eigenvalue of AT A

with eigenvector u, then
Mull? = (e, u) = (AT Au, u) = (Au, Au) > 0

Therefore every eigenvalue of AT A is a non-negative real number. Hence every
eigenvalue of I + AT A is a non-negative real number.

(52) Let Ty, T, be two linear transformations from R” to R”. Let {v;, vo, ..., v,} bea
basis of R”. Suppose that T;v; #= Oforeveryi = 1,2,...,nandv; L Ker(T3)
foreveryi = 1,2, ..., n. Which of the following is/are necessarily true?

(a) Ty is invertible. (b) T3 is invertible.
(c) Both T}, T, are invertible. (d) Neither T nor 75 is invertible.

Ans. Option b

Since{vi,va, ..., v, }isabasisforR" andv; L Ker(T,)foreveryi =1,2,...,n,
Ker(Ty) = ¢ = T is one-one. Since T, is from R" to R", T, is invertible. Con-
sider the linear transformation T by T (vi) = --- =T (v,) = vi.ThenT (v;) # 0
foreveryi =1,2,...,n, but T is not invertible.

(53) Let T : R? — R3 be a linear transformation defined by
Tx,y,2)=(x+y,y+z,2—x)

Then an orthonormal basis for the range of T is

(G550 (53 5)} ©1(5F0). (& & %))
(79 (& %R {79 Gz

Ans. Option ¢
We have

7(1,0,0)=(1,0,—-1)=1(1,0,0)+0(0, 1,0) + (—=1)(0,0, 1)

7(0,1,0)=(1,1,0) =1(1,0,0) + 1(0, 1, 0) + 0(0, 0, 1)
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7(0,0,1)=(0,1,1) =0(1,0,0) + 1(0, 1, 0) + 1(0, 0, 1)

110

Therefore the matrix of T is given by | 0 1 1 |. Since the third column is the
—-101
linear combination of first and second column,

R(T) = span{(1,1,0), (1,0, —1)}

As {(1,1,0), (1,0, —1)} is not orthonormal we have to use Gram-Schmidt
Orthonormalization. Take uy = (1, 1, 0) and then

_ (3, 1,0), (1,0, 1)) (1 -1
u = (1,0, -1) (1. 1.0).(1.1.0)) (1,1,0)_(2, > 1>

Therefore (1, —1, —2) is an orthogonal vector to (1, 1, 0) and

span{(1,1,0), (1,0, —-1)} = span{(1, 1,0), (1, —1, =2)}

Therefore H(%, «/LE’ 0) , (\/Lg, :/—é, &—%)} is an orthonormal basis for the range
space of T.

(54) Let A be an m x n matrix of rank m with n > m. If for some non-zero real

number o, we have u” AATu = au’ u for all u € R™ then AT A has
(a) exactly two distinct eigenvalues

(b) 0 as an eigenvalue with multiplicity n — m

(c) @ as a non-zero eigenvalue

(d) exactly two non-zero distinct eigenvalues

Ans. Options a, b and ¢

Since A is a matrix of rank m, by Sylvester’s inequality AT A is a matrix of rank
m and hence 0 as an eigenvalue with multiplicity n — m. Let . be a non-zero
eigenvalue of AT A. Then there exists v # 0 such that AT Av = \v. Take Av = u.
Then ATu = AT Au = Avand AATu = AAv = Au. Multiplying withu”, we get

uTAATu = auu = 2u"u = o |lull = A ||ul|

Since ||u|| # O this gives o« = A. Therefore o is the only non-zero eigenvalue of
ATA.

(55) Suppose V is afinite-dimensional non-zero vector spaceover Cand7 : V — V

is a linear transformation such that R(T) = N(T'). Then which of the following
statements is false?

(a) The dimension of V is even.

(b) 0 is the only eigenvalue of T'.
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(c) Both 0 and 1 are eigenvalues of T'.
@r*=0

Ans. Option ¢

We have N(T) C N(T?). Now letv € (N(T))l. Then 0 # T (v) € R(T). Since
R(T) = N(T), T>(v) =T(Tv) =0. That is, ve N(T?). As V=N(T) &
N(T?), T? = 0. Therefore 0 is the only eigenvalue of T. Also Since R(T) =
N(T), By Rank-Nullity Theorem, the dimension of V is even.

(56) Let V be a closed subspace of L?[0,1] and let f, g € L?[0, 1] be given by
f(x) = x and g(x) = x2. If V! = span{f} and Pg is the orthogonal projec-
tion of g on V, then (g — Pg)(x),x € [0, 1] is
@3x (b)ix (o) 3x* (@ jx?

Ans. Option a
We know that if P is a projection on V, I — P is a projection on V. We have
IFI? = [y x*dx = 1. Then

(& f)
I£1?

3
(g —Pg)x) = f=3x%x)x = o
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If f:1° — R be defined by f ({v}) = v,, then the norm of f is
@1 0 (©2 (dj

Ans. Option a
Forv = (v, va,...) €l®, we have

| f W] = [va| < suplvi| = [Iv]|

Therefore || f|| < 1. Also, for e; = (0, 1,...) € [*°, we have f(e;) = 1. Hence
=1

Let T : (C[O, 1], ||.lloc) — R be defined by T(f) = fol 2xf(x)dx for all f €
Cl[0, 1]. Then || T|| equals ......

Ans. We have

IT| = sup

1 1
<2 sup / |x||f(x)|dx§2/ xdx =1
I flI=1 0 0

1
/ 2xf (x)dx
0 IIflI=1

Thus ||T|| < 1. Now for f(x) = 1, wehave || f|| = land |T(f)|| = /01 2xdx =
1. Therefore ||T|| = 1.

Let C[O0, 1] be the real vector space of all continuous real valued functions on
[0, 1], and let T be a linear operator on C[0, 1] given by

1
(TH)x) = / sin(x + ) f(dy, x € [0, 1]
0

Then the dimension of range space of T equals ......
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Ans. We have sin(x +y) = sin x cos y + cos x sin y. Then

1

1
(THx) = sinx/ cos yf(y)dy + cos x/ sin yf(y)dy
0 0

Therefore, T (f) € span{sin x, cos x}. As {sin x, cos x} is linearly independent
the dimension of range space of T equals 2.

Let V be areal normed linear space of all real sequences with finitely many non
zero terms, with supremum norm and 7 : V — V be a one-one and onto linear
operator defined by

Vo V3
T (i, v, v3,...) = (vl, CPRETR )
Then which of the following is TRUE?
(a) T is bounded but T~! is not bounded.
(b) T is not bounded but 7! is bounded.
(c) Both T and T~! are bounded.
(d) Neither 7 nor 7! is not bounded.

Ans. Option a
We have,

v
IT @rova,vs, ol = sup {Ivil, |35} < suptivil, sl ) = o)

Thus T is bounded. Now consider the map Ty : V — V defined by
Ty (vi,va,v3,...) = (vl, 22112, 32\23, .. )
Observe that T\T = TT, = I. Thatis, Ty = T~". Also,
Ty (vi, v, vs, . )l = sup {[vil, 2%(val, 3% (vl .. )

Clearly, T, is not bounded.
Let T : [> — [? be defined by

T((Vlsvz""vvnv"'))=(V2_V17V3_v25""vn+1_VVI’"')

Then
@ITI=1 (b) |IT|| > 2 but bounded.
©1<|IT|| <2 (@ |T]| is unbounded.

Ans. Option ¢
Since (a — b)* = a? + b* — 2ab < 2(a* + b?) for a,beR, for any
v=0,V2, e, Vp,...) E 12 with vl = 1, we have
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(6)

(7

~

(o] oo [o¢]
2 2 2 2
1T = s —val* <2 (Dvnm + ) Il ) <4
n=1 n=1 n=1

Therefore ||T| < 2. Also for v=(2,0,...,0,...), [TW)|| =2. Therefore
T = 2.
Let {(e;) : n =1, 2,3, ...} be an orthonormal basis of a complex Hilbert space

H . Consider the following statements:

P: There exists a bounded linear functional f : H — C such that f(e,) = %
forn=1,2,3,...

Q: There exists a bounded linear functional g : H — C such that g(e,) = \/Lﬁ
forn=1,2,3,...

Then
(a) both P and Q are TRUE. (b) P is TRUE and Q is FALSE.
(c) P is FALSE and Q is TRUE. (d) both P and Q are FALSE.

Ans. Option b
For any x € H, we have x = Zn(x, en)e,. Then

1
FG) = (e flew) =D fx en)~

n n

and by Holder’s inequality,

1 2
IfP < <Z|<x,en>|2> (Z ;) < % Ix]1?

Therefore f is a bounded linear functional on H. Now consider H = I* with the
inner product (v, w) = Zn VaW,, where v.= (vi,va,...),w = (Wi, ws,...) €
12. Suppose that there exists a bounded linear functional g : 1> — C such that
gle,) = \% for n =1,2,3,.... Then by Riesz representation theorem, there

exists v = (vi, va, ...) € I? such that g(x) = (x, v). Then, we have

1
gley) =(ep, V) =v, =—=Vn=1,2,3,...

Jn

But v = (ﬁ) glas ) vl>=Y, % diverges. Therefore such a bounded

linear functional g need not exist.

Let C[O0, 1] be the Banach space of real valued continuous functions on [0, 1]
equipped with supremum norm. Define T : C[0, 1] — C[0, 1] by

(TH)x) = /0 xf (Ddt



506

®)

13 Solved Problems—Bounded Linear Maps

Let R(T') be the range space of T. Consider the following statements:

P: T is a bounded linear operator.
Q: T7': R(T) — CJ0, 1] exists and is bounded.

Then
(a) both P and Q are TRUE. (b) P is TRUE and Q is FALSE.
(c) P is FALSE and Q is TRUE. (d) both P and Q are FALSE.

Ans. Option b
For all f € C[0, 1], we have

ITHIl= sup ‘ / xf (@t

= sup / lxf(Oldt = %'[tpl]lx\ [f®Olde < |11

x€l0,1

Consider f,(x) = x" € C[0, 1]. Clearly, || f,|| = 1. Now

/ xt"dt| =

Thus there does not exist A € K such that |T (f)|| = A || fll for all f € C[O, 1].
Therefore T is not injective.

Let

1
n+1

xn+2

I7(f)ll = sup
xel0,1]

= sup

xefo,17 |7+ 1

10

L*[0,10] = {f : [0,10] = R : f is Lebesgue measurable and Fldx < oo}
0

1
equipped with the norm || f|| = ( 010 f 2dx) * and let T be a linear functional
on L?[0, 10] given by

2 10
T(f)= / fx)dx — fx)dx
0 3
Then ||T| equals ......

Ans. Since L?[0, 10] is a Hilbert space, by Riesz representation theorem, there
exists g € L*[0, 10] such that T(f) = (f,g) = [," f(x)gx)dx and ||T| =

, 0< 2
IIgII-Takefl(X)z{ ifO=x=2 4

0,2<x<10

2 2
T(f1) = / ldx =2 = / g(x)dx
0 0

0,if0<x<3
—1,3<x<10

Now take f>(x) = { . Then
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10 10
T(fp) = / ldx =7 = —/ g(x)dx
3 3

I,if0<x<2
Take g(x) = {0, 2 <x <3 . Then, clearly
-1,3=<x<10

2 10
T(f) = /0 rwds = [ o= (£)

10 2 10
||g||2=/ | g(x) | dx:f 1.dx+0+/ ldx =9
0 0 3

we get, [Tl = lIgll = 3.
(9) Consider C[—1, 1] equipped with supremum norm given by

I flloe = sup{lf(x)] : x € [—1, 1]}
for f € C[—1, 1]. Define a linear functional 7" on C[0, 1] by
0 1
T(f)=f f(x)dx—/o Sx)dx
-1

for all f € C[—1, 1]. Then the value of || T||is......
Ans. We have

xe[—1,1]

0 1
IT(HI = sup /lf(X)dx—/o fdx
0

1
< sup f(x)dx + f(x)dx
xe[-1,111J-1 0

xe[—-1,1]

1 2
52<[1|f(x)|dx) — 271

1
= sup / f(x)dx
-1
1

507

Now consider f € C[—1, 1] defined by f(x) = —2x forall x € [—1, 1]. Then

0 1
T(f):/ —2xdx—|—f 2xdx =2
—1 0

and hence ||T|| = 2.
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(10) Let cop be the vector space of all complex sequences having finitely many

non-zero terms. Equip cgo with the inner product (u,v) = Y 2 | u,v, for all
u = (u,) and v = (v,) in cgo. Define f : coo = Cby f(v) => oo, . Let N
be the kernel of f.

(I) Which of the following is FALSE?

(a) f is a continuous linear functional.
®) If1=
(c) There does not exist any u € cqp such that f(v) = (v, u) forall v € cgp.

(d) N* # {0}

(IT) Which of the following is FALSE?

(@) coo # N (b) cgp is not a complete inner product space.
(¢) Nisclosed. (d)cgy=N @ N+

Ans. (I) Optiond

Foru = (u,) and v = (v,) in ¢y, we have

oo oo

Sty =3 oS S )+ )
n=1 n=1

n n
n=1

-

00
>
n

n=1

Also by Holders inequality, we have
1
oo 2 T
OIE (Zw) =— |l
n=1

(%)

Therefore f is a continuous linear functional with || f| < 7

S

oo

Suppose there exist u € coy such that f(v) =3 07 % = (v,u) =Y ),
vty for all v € cy. Let e, denote the vector with 1 as the n'h entry and all
other entries zero. Clearly, e, € coo. Then

1
E=<en7”)=f(en)=;

This is a contradiction, since u = (1, %, %, .. ) ¢ coo. Therefore there does
not exist any u € coo such that f(v) = (v, u) for all v € cqp.
Now letv = (v,) € N*. Sincev € cg, there exists m such that v, = 0 for all
n > m. For a fixed j € {1,2,...m}, consider the element u; = (u,) € coo
with
V. ifn=j
U, = %mT.H)v_j,ifnzm%—l

0, otherwise
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As fuj)=0forall j=1,2,...,m, u; eleor al j=1,2,...,m.
Then (v, u) = |vj|2 = 0 which implies that v; =0 forall j =1,2,...,m.
Therefore N+ = {0}.

(1) Optiond
As f(e1) #0, coo = N. We know that kernel of a linear operator is closed
and cyg is not a complete inner product space. As N* = {0}, N® N+ =

N ;é C00-

(11) Let V be the Banach space of all complex n x n matrices equipped with the
norm ||A|| = 122})2”'““" If f:V — Cisdefined by f(A) = tr(A), then
(a) f is not linear.
(b) f is linear but not continuous.
(¢) f is bounded linear functional with || f|| = 1.
(d) f is bounded linear functional with || f| = n.

Ans. Optiond
Take A, B € V and ) € C, then

f(AA+ B) = tr WA + B) = atr(A) + tr(B) = Af(A) + f(B)

Therefore f is linear. Now

fA) =tr(A)=an +an+--+am < n( max Iaijl> =n|A]

1<i,j<n

Therefore f is bounded and || f| < n. Also for A = I,,, we have f(A) = n.
Therefore || f|| = n.

(12) Let H be a Hilbert space and let {e, : n > 1} be an orthonormal basis of H.
Suppose that T : H — H is a bounded linear operator. Which of the following
cannot be true?

(@) T(e,) = e foralln > 1 (b) T(e,) = ey foralln > 1
() T(ey) = ,/%en foralln >1 (d) T(e,) =e,_ foralln > 2 and T (e;)
=0

Ans. Option a

Since {e, : n > 1} is an orthonormal basis of H, any element v € H can
be written as v = Z;ozl Anen, where L; e K, i =1,2,... € N. Also, we have
> o Anen € H ifand only if Y o2 A, |* < oo.

(a) Suppose that T (e,) = ej foralln > 1. Then

Tv)=T (Z )\nen) = Z)\nT (en) = Z)‘«nel
n=1 n=1

n=1
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. 2
Take X, = rll Since Y o2, |%| < 00, we have vo = Y - | %en € H. But

[ee]

1
To) =) ~er¢ H

n=I1

asy .., % diverges. Therefore a bounded linear operator with T (e,) = e,
forall n > 1 is not possible.
(b) Suppose that T (e,)) = en+1 for alln > 1. Then as above

o0 o0
TW) = ZA,,enH = Z)L,,,len
n=1 n=2

Asv =" e, € H wehave Y oo |A,|* < 0o. Hence Y oo 5 |hn1|* <
o0. Thus a linear operator with T (e,)) = en+1 foralln > 1 exists. For bound-
edness, we have

1T =

2 o0
2 2
=Y al? = IVl
n=1

00
E )\n—len
n=2

(c) Suppose that T (e,) = ‘/%en foralln > 1. Then

00
n+1
T(W) = Z)‘n Ten

n=1
Since Y07 |An]? < 00, we have
> n+1 ? > n+1 >
D Py =Y P ——=2) Il <oo
n=1 n n=1 n n=1
n+1

Thus a linear operator with T (e,)) = enforalln > 1 exists. For bound-

n

edness, we have

o0

1
E Anyf " ey
n=2 n

(d) Suppose that T (e,) = e,_1 foralln > 2 and T (e;) = 0. Then

00 00
T(w) = Z)\nen—l = Z)\rH-len
n=2 n=1

2 o0 I’l+l oo
1T W)II> = =D P—— <2} P =2l
n=1 n=1
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Since Y02 A > < 00, we have Y22 |hyi1|* < 00. Thus a linear operator
with T (e,) = e,—1 foralln > 2 and T (e;) = 0 exists. For boundedness, we
have

00
E An+len

n=1

ITWII* =

2 o0 o0
2 2 2
=Y Il =Y Il =1l
n=1

n=2

(13) Lete; = (0,...,0,1,0,...)(e; is the sequence with 1 at the it place and 0
elsewhere) for i = 1, 2, .. .. Consider the following statements:

P: {f(e;)} converges for every continuous linear functional on /.
Q: {e;} converges on .

Then which of the following holds?
(a) Both P and Q are TRUE. (b) P is TRUE and Q is not TRUE.
(c) P is not TRUE and Q is TRUE. (d) Neither P nor Q is TRUE.

Ans. Option b

Since 1% is a Hilbert space, by Riesz representation theorem, there exists u € I°
with f(v) = (v, u) forallv € 1>. Then f(e;) = {e;, u). Then by Bessel’s inequal-
ity, we have Z:O:1 l{en, u)|? < |lul|®. Therefore the series thi] (en, u) converges.
Hence (ej,u) = f(e;) = 0on % As He,- —ej || =2foralli # j, {e;} does not
converges on [2.

21 21 — 122
(14) LetT : C? — C’bedefinedby T |z, | = izi +z2 |.Thenadjoint T*
23 21 +z22+iz3
21
of Tisgivenby T* | z» | =
13

z1+1iz2 71 —iza+23 Z1 —iz2+23 iz1+22
@ —izi+z2 || —izn+z+z3)@©)izi+z2+2z3](d) 21— iz
21 +22—123 iz3 —iz3 721 —22— 123
Ans. Option ¢
We have

1 1 1 0 0
Tlof=|i|=1]l0o|+i|l1]|+1]0
0 1 0 0 1
0 — 1 0
Tl1|=|1|=cdlo|+1|1|+1]0
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0 0 1 0 0
T|0l=(0]=0[0]+0|1]+i]O
1 i 0 0 1
1—-i0
Therefore the matrix of T is givenby | i 1 0 |. Hence the matrix of T* is given
11
1—-i 1 21 21— iz +23
byli 1 1 |adT* |z =|izi+z22+2z3
00 —i 23 —iz3

(15) Consider R" with standard inner product. For a non-zero w € R”, define T, :
R" — R" by
2(v, w)
w

T,v) =v— o)

Which of the following are true?
@det (T,) =1 (BT, =T,
©) Tow =2T,, () (T(n1), Tw(v2)) = (v1,12) forall vy, v, € R”

Ans. Option b and ¢
(a) Take n = 2. Then,

2(w, w)w

T,(w)=w— o)

=w—2w=—w

Therefore —1 is an eigenvalue of T,,. Now, take any non-zero element from
u € (span{w})*. Then, (u, w) = 0 and hence

2(u, w)

T,(u) =u— o)

w=u

Thus —1 and 1 are the eigenvalues of T,,. Hence det (T,,) = —1, when

n=2.
(b) We have,
< 2(v, w) >
T, (Ty() =T, |v— w
(w, w)

2{v, w) 2<V . W>

=v-— w— w
(w, w) (w, w)
2(v, w) 2 [ 2(v, w) }

=v— w— (v, w) — (w,w) |w
(w, w) (w, w) (w, w)
2(v, w) 2(v, w)

=y — w + w=v
(w, w) (w, w)
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(c) Forallv € R",

Ty(v) =v — M(zw) — 8(v, w) wey 2(v, w)
2w, 2w) 4(w, w) (w, w)

w=T,)

(d) Forvi,v, € R",

(T, (v)), T,y(v2)) = <v1 _ 2(vi,w) o — 2(vs, w)w>
(w, w) (w, w)

o

= (v1, v2) —{v1, w)— W, vy
(W’ W> (W, W)
+<2(V1, w) , 2(vy, W) w>
(Wv W) <W, W>
= (vi,») — 202, W) (vi, w) — 2, w) (w, v2)
(w, w) (w, w)

A1, ) (v, W)

(w, w)

(w, w)(w, w)

= (vi,12)

(16) Let A be a2 x 2 complex matrix such that A*A is the identity matrix, where
A* is the conjugate transpose of A. Then the eigenvalues of A are
(a) real (b) complex conjugates of each other
(c) of modulus 1  (d) reciprocals of each other

Ans. Option c

i0
0i
real, eigenvalues are not complex conjugates of each other and eigenvalues are
not reciprocals of each other.

Now let A be a2 x 2 complex matrix such that A*A = I. Let A be an eigenvalue
of A. Then there exists v # O such that Av = Av.

Consider the matrix A = |: ] Then AA* = I, but the eigenvalues are not

Av = Av = VATAy = v AR = vy = vty = ]2 = AP v]?

Since |v||> # 0, we get |A| = 1.

(17) Consider the following statements P and Q :
P :If Aisann x n complex matrix, then R(A) = [N(A*)]L.
Q : There exists unitary matrix with an eigenvalue A such that |A| < 1.
Which of the above statements hold TRUE?
(a) both P and Q (b) only P (c) only Q (d) Neither P nor Q

Ans. Option b
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P : LetHbeaHilbertspaceand A € BL(H). Thenwe have R(A) = [N(A*)]J‘.
Q : From the above problem, |A| = 1.

(18) For the matrix

2 342 -4
A=|3-2i 5 6
-4 —6i 3

which of the following statements are correct?
P : A is skew-Hermitian and i A is Hermitian.
Q : A is Hermitian and i A is skew-Hermitian.
R : eigenvalues of A are real.

S : eigenvalues of i A are real.

(a) P and R only. (b) O and R only.

(c) P and S only. (d) Q and S only.

Ans. Option b

2 3424
We have A*=|3-2i 5 6i | =A, A is Hermitian. Since
-4 —6i 3
i2 3i—2—4i —i2 =3i4+2 4i
iIA=|(3i4+2 5 -6 (A*=|-3—-2 =5i 6 | =—iA iAis
—4i 6 3i 4i -6 —3i

skew-Hermitian.The eigenvalues of a Hermitian matrix are always real.
Let A be an eigenvalue of a Hermitian matrix A, then Ax = Ax. Now

Ax = Ax = x*Ax = x*Ax = x*Ax = A x|
Now taking conjugate transpose on both sides,
X*A*x = A Ix])? = xFAx = A x|

Now, A ||x||> = & ||x||*> = A = A. Hence, X is real. Similarly we can prove that
The eigenvalues of a skew-Hermitian matrix are always either zero or purely
imaginary.

(19) Let A be an invertible Hermitian matrix and let a, b € R be such that > < 4b.
Then
(a) both A2 +aA + bl and A?> — aA + bI are singular.
(b) A + aA + b1 is singular but A> — aA + b1 is non-singular.
(c) A2 + aA + bl is non-singular but A> — aA + bl is singular.
(d) both A2 +aA + bl and A? — aA + bl are non-singular.

Ans. Option d
Let A be an eigenvalue of A, then since A is Hermitian, A must be real. Also
A2 4 ak + b is an eigenvalue of A> + aA + bl. Now A> + aA + bl is singular



(20) The matrix A =
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ifA2 +ar + b = 0 for some A € R. Since a> < 4b, \> +ak +b = 0 = A must
be complex, which is a contradiction. Similarly for A% — aA + bl is singular if
A2—ar+b= Oforsome A € R. Inthis case also sincea? < 4b,A> +ar+b =
0 = X must be complex, which is a contradiction. Therefore both A> + aA + bl
and A?> — aA + bl are non-singular.

cosa sino
isinaicosao
@n+1)Z,neZ ®Gn+DHE,nelkZ
©@n+DHZ neZ dGrn+DHE nelZ

is a unitary matrix when « is

Ans. Option a
A is unitary when AA* = I. Now,

. cosa sina ||cosa —isina| |10
AA _I:>[isinaicosa:H:sina—icosa:|_|:011|

1  —isin2a 10 T
i[isinzoz 1 }_[o JZWG i(2n+1)5,neZ}

(21) Pick out the true statements:

(a) The eigenvalues of a unitary matrix are all equal to £1.
(b) The determinant of real orthogonal matrix is always +1.

Ans. A is orthogonal if AAT = I. Taking determinant on both sides we get,
det(AAT) = det(I) = det(A)det (AT) = 1 = (det(A))? = 1 = det(A) = £1

i0

Consider the matrix A = |:O ;

i|, then AA* = I. Clearly, A is unitary but the

eigenvalues are not 1.

(22) Let A be an n x n matrix with real entries. Pick out the true statements:

(a) There exists a real symmetric 7 x n matrix B such that B> = A*A.

(b) If A is symmetric, there exists a real symmetric n X n matrix B such that
B? = A.

(c) If A is symmetric, there exists a real symmetric n x n matrix B such that
B} = A.

Ans. Option a and ¢

(a) Since A is a matrix with real entries, A* = AT and AT A is a real symmetric
matrix. Also AT A is positive semi definite. As every real symmetric matrix is
diagonalizable there exists an orthonormal matrix P such that PDP~! =
PDPT = AT A, where D is a diagonal matrix with eigenvalues of AT A
as diagonal entries. Now take B = PD>PT. B is well defined since the
diagonal entries of D are non negative real numbers. Then

B*=PD:PTPD:PT = PDPT = ATA



516 13 Solved Problems—Bounded Linear Maps

—1

(b) Consider A = |: 0 —

1i|. Then there does not exists a real symmetric 2 X 2

bd ab +bd b+ d*
Asa,beR a®>+bisa non-negative real number.
(c) Since A is real symmetric matrix, there exists an orthonormal matrix P such

2,2
matrix B such that B> = A. Forif B = |:a bi|. Then B? = [a +b ab+bd}.

that PDP~' = PDPT = A, where D isadiaglonal matrix with eigenvalues
of A as diagonal entries. Now take B = PD3 PT. then B is well-defined
and B? = A.

(23) Let S = {)\1, ... X,} be an ordered set of n real numbers, not all equal, but not
all necessarily distinct. Pick out the true statements:
(a) There exists an n x n matrix with complex entries, which is not self-adjoint,
whose set of eigenvalues is given by S.
(b) Thereexistsann x n self-adjoint, non-diagonal matrix with complex entries
whose set of eigenvalues is given by S.
(c) There exists an n x n symmetric, non-diagonal matrix with real entries
whose set of eigenvalues is given by S.

Ans. Options a, b and ¢

_)\,1 a 0...0
0x0...0
(a) Consider A = 002...0 , wherea € C. Then A is ann X n matrix
L0 0 0 ...4,
with complex entries, which is not self-adjoint, whose set of eigenvalues is
given by S.
(A1 0...0
0Xx...0
(b) Consider A= | . . . |. Now take a matrix P such that its columns
00 ...,

form an orthonormal basis for R" and P does not commute with A. Now
consider the matrix B = PAPT. Clearly B is a self-adjoint matrix which
is non-diagonal and the set of eigenvalues of B is S.

(c) Consider the matrix B as above.

(24) Pick out the true statements:
(a) Let A be a hermitian n x n positive definite matrix. Then, there exists a
hermitian positive definite n x n matrix B such that B> = A.
(b) Let B be a non-singular n x n matrix with real entries. Then B’ B is a
symmetric and positive definite matrix.

Ans. (a) A hermitian matrix is unitary diagonalizable. That is, there exists
a unitary matrix U such that UDU* = A. Since A is positive definite, the
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diagonal entries must be Eositive. Now define the matrix Bas B = U D:U*.
Then B> = UD:U*UD>U* = UDU* = A.
(b) Since (BT B)T = BT(BT)T = BT B, BT B is symmetric. Also,

vIBTBv = (Bv)'Bv=|Bv|?>0

Therefore BT B is a positive definite matrix.

(25) A3 x 3real symmetric matrix A admits (1, 2,3)7 and (1, 1, —1)7 transpose as
eigenvectors. The transpose of which of the following is surely an eigenvector
for A? Choose all the correct options.

(a) (1,—1,0) (b) (=5,1,1) (c)(3,2,1) (d) none of the above

Ans. Option d is correct

Since the eigenvectors corresponding different eigenvalues of a symmetric matri-
ces are orthogonal, none of the above three vectors can be an eigenvector of A
for sure.

(26) Let A be a 3 x 3 real symmetric matrix with eigenvalues 0,2 and a with the
respective eigenvectors u = (4, b, c)”,v = (=1,2,0)T andw = (1, 1, 7.
Consider the following statements:

IL.La+b—c=10

II. The vector x = (O, % %)t satisfies Ax = v + w.
II. For any d € span{u,v,w}, Ax = d has a solution.
IV. The trace of the matrix A> + 2A is 8.

Which of the following statements are TRUE?
(@ 1,11 and I11 only. (b) I and /I only.
(c) I1 and 1V only. (d) 111 and IV only.

Ans. Option b

(I) Since the eigenvectors of a real symmetric matrix corresponding to dis-
tinct eigenvalues are orthogonal, u.v = —4+2b=0=>b =2. Asv.w =
—14+2=1,a=2.Nowuw =6+ c=0= c=—6. Thereforea + b —
c = 10. ;

(Il) Clearly x = (0, %, %) = %(V ~+ w). Therefore

1 1 1
Ax = SAV+W) =2 (Av+Aw) = SQv+2w) =v+w

(Av = 2vand Aw = 2w, sincev andw are eigenvectors of A with eigenvalue
2.)

(I1l) Since {u,v,w} is linearly independent span{u,v, w} = R>® and as 0 is an
eigenvalue of A, Rank(A) = 2. Therefore foranyd € span{u, v, w}, Ax =
d need not have a solution.
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(IV) Since the eigenvalues of A are 0, 2 and 2, the eigenvalues of A” are 0, 4 and
4. Now
tr(A% +24) = tr(A®) +2tr(A) =8+ 8 =16

(27) Let A be areal symmetric n x n matrix whose eigenvalues are 0 and 1. Let the
dimension of the null space of A — I be m. Pick out the true statements :
(a) The characteristic polynomial of A is (A — 1)" A",
(b) AF = A**! for all positive integers k.
(c) The rank of A is m.

Ans. Options a and c

Dimension of null space of A — I is m = 1 is an eigenvalue with multiplicity
m. Consider A = [%]. Then Option (b) is incorrect. As A is real symmetric, it is
diagonalizable. Therefore, Rank(A) = number of non zero eigenvalues = m.

(28) Let A be an n x n complex matrix. Assume that A is self-adjoint and let B
denote the inverse of A + i[,. Then all eigenvalues of (A —il,)B are
(a) purely imaginary (b) real
(c) of modulus one (d) of modulus less than one

Ans. Option ¢

Since A is self-adjoint, every eigenvalue of A is real. Let A be an eigenvalue
of A, then A+ i is an eigenvalue of A +il, and L —i is an eigenvalue of
(A—il).(As Av=2w=A+ilL))v=iv+iv=(A+1i)v) Also ﬁ is an
eigenvalue of (A —il,)~!. Now

. a1 . 1 A+
A+il)A—-il,) " v=(A+il,) -V = -V
A—1 A—1
Hence, )‘—i’;v is an eigenvalue of (A +iI,)(A —il,)~" and it has modulus one.

(29) Let A be a real symmetric matrix and B = [ + i A, where i 2 = —1. Then
(a) B is invertible if and only if A is invertible
(b) all eigenvalues of B are necessarily real
(c) B — I is necessarily invertible
(d) B is necessarily invertible

Ans. Option d

10

Let A = |:0 Oi|. ThenB=1+iA = [1 ;)H (1)i| Then options a, b and c are are

false. The eigenvalue of a real symmetric matrix are always real. Therefore the
eigenvalues of B = I 4+ i A are of the form 1 + i) where A € R is an eigenvalue
of A. This cannot be zero. Therefore B is necessarily invertible.
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(30) Which of the following 3 x 3 matrices are diagonalizable over R?

123 010 123 012
@ |045|m®)|-100]|@|214]|@|001
006 001 341 000

Ans. Options a and ¢

(a) Since the eigenvalues of an upper triangular matrices are its diagonal
entries, the given matrix has distinct eigenvalues and hence is diagonal-
izable.

(b) The characteristic polynomial of the given matrix is

- xP4x—1 =(x—1)(x2+1)

Since it has complex roots the given matrix is not diagonalizable over R.
(c) Since a real symmetric matrix is always diagonalizable, the given matrix is
diagonalizable.
(d) The characteristic polynomial of the given matrix is x° as it is an upper
triangular matrix with all diagonal entries zero. The minimal polynomial is
also x* and hence the given matrix is not diagonalizable.

3

(31) Let A be a real symmetric matrix. Then we can conclude that
(a) A does not have 0 as an eigenvalue
(b) All eigenvalues of A are real
(c) If A= exists, then A~! is real and symmetric
(d) A has at least one positive eigenvalue

Ans. Options b and c

—-10
00
of A are 0 and —1. Eigenvalues of a real symmetric matrix A are always real.
Also (A~HT = (A7) = A~

Consider the matrix A = . Then A is real symmetric an the eigenvalues

110
(32) The distinct eigenvalues of the matrix | 1 1 0 | are
000
(a@y0and1 (b)land-1 (c)land2 (d)O0and?2

Ans. Option d

As the given matrix is symmetric, it is diagonalizable. Therefore it has only one
non-zero eigenvalue, as the given matrix has rank 1. Also the matrix has trace
2. Therefore the distinct eigenvalues are 0 and 2.

(33) The number of distinct eigenvalues of the matrix

—
—_—
—_— =
—

@1 b2 (©3 4
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Ans. Option b

As the given matrix is symmetric, it is diagonalizable. Since the matrix has rank
1, the matrix has only one non zero eigenvalue. As the eigenvalues of a real
symmetric matrix are real, the number of distinct eigenvalues is 2.

(34) Let J denote a 101 x 101 matrix with all the entries equal to 1, and let / denote
the identity matrix of order 101. Then the determinant of J — [ is
(@101 ()1 (¢)0 (d) 100

Ans. Optiond

From the above problem, the only eigenvalues of A are 0 and 1 with multiplicities
100 and 1 respectively. Therefore the eigenvalues of J — I are —1 and 100 with
multiplicities 100 and 1 respectively . Therefore the determinant of J — I is 100.

(35) The possible set of eigenvalues of a 4 x 4 skew-symmetric orthogonal real
matrix is
(@) {£i} () {*i, £1} (©{x1} () {0, £}

Ans. Option a

The eigenvalues of a skew-symmetric matrix are either zero or purely imaginary
and the eigenvalues of an orthogonal matrix is of modulus 1. hence the possible
set of eigenvalues of a skew-symmetric orthogonal real matrix is {%i}.

(36) Let Ayx, = (aij),n > 3, where a;; = (b;> — b;?) (i, j = 1,2,3,...) for some
distinct real numbers by, by, b3, ..., b,. Then det (A) is
@ Ii<j(b; —b;) (B I;(bi +b;) (©0 (d1

Ans. Option ¢
0 b>—0b2--b>—b,’

b>—b* 0 - b?—b,2
The matrix is given by A = . . . . . Clearly A is

bnz_blz bnz_b22"' 0
a skew-symmetric matrix. Since the determinant of the odd order skew symmetric
matrix is zero, from the given options, option (c) is correct.

(37) Let A be a3 x 3 non zero, skew-symmetric real matrix. Then
(a) A is invertible.
(b) the matrix I + A is invertible.
(c) there exists a non-zero real number « such that «/ + A is not invertible.
(d) all eigenvalues of A are real.

Ans. Option b

A skew-symmetric matrix of odd order is always singular, hence not invert-
ible.The characteristic polynomial of A is of degree 3. Since the eigenvalues
of a skew-symmetric matrix are either purely imaginary or 0. Clearly, 0 is an
eigenvalue of A. Also the eigenvalues of I + A is of the form 1,1 + ai, 1 — ai
where a € R. As their product is never zero I + A is invertible.The eigenvalues
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of al + A is of the form «, o 4 ai, « — ai where a € R. Their product is zero
only ifa = 0.

(38) Let A = (a;j) € M3(R) be suchthata;; = —aj; forall1 <i, j <3.If3iisan
eigenvalue of A, find its other eigenvalues.

Ans. The given matrix is an odd order skew symmetric matrix. Hence its deter-
minant is zero which implies zero is an eigenvalue of the given matrix. Since the
characteristic polynomial has real coefficients complex roots occur as conjugate
pairs. Therefore its other eigenvalues are —3i, 0

(39) Which of the following are non-singular?
(a) I + A where A # 0 is a skew symmetric real n X n matrix, n > 2.
(b) Every skew symmetric non zero real 5 x 5 matrix.
(c) Every skew symmetric non zero real 2 x 2 matrix.
(d) All the above.

Ans. Options a and c

(a) The eigenvalues of a skew symmetric matrix are either zero or purely imag-
inary. Since the matrix is real, complex eigenvalues occur in conjugate pair.
So eigenvalues of I + A are of the form 1 4+ ai, 1 — ai, 1. Therefore I + A
is non singular.

(b) The characteristic polynomial is of odd degree with real coefficients. Hence it
has atleast one real eigenvalue which will be 0. Therefore, it will be singular.

(c) Since the diagonal entries of a skew symmetric matrix must be zero,
every skew symmetric non zero real 2 x 2 matrix will be of the form

A:[ 0 a —+ bi

Ca4bi 0 ] Clearly they are non singular.

(40) Let Abea5 x 5 skew-symmetric matrix with entries in R and B be the 5 x 5
symmetric matrix whose (i, j)th entry is the binomial coefficient ; for

1 <i < j < 5. Consider the 10 x 10 matrix, given in the block form by C =
AA+B
0 B . Then

(@) det(C)=1or—1(b)det(C)=0@)Tr(C)=0) Tr(C)=5

Ans. Option b and d

Since the determinant of a odd order skew symmetric matrix is zero, det (A) = 0
and hence det (C) = det(A)det (B) = 0. Since the diagonal entries of a skew
symmetric matrix are zero, tr(A) = 0 and the diagonal entries of B are all 1.
Therefore tr (C) = tr(A) + tr(B) = 5.

(41) Let T : R} — R? be the linear transformation whose matrix with respect to
0 ab

the standard basis of R®is | —a 0 c¢ |, where a, b, ¢ are real numbers not all
—b —cO0
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zero. Then T
(a) is one-one (b) is onto
(c) has rank 1 (d) does not map any line through origin to itself

Ans. Optiond
Since T is an odd order skew-symmetric matrix, it has determinant 0 and hence
hasrank < 3. Therefore T is not both one-one and onto. Consider the square sub

. 0 a 0b 0 ¢
matrices [ Oi| , [—b Oi| and |:—c O]' Asnotalla, b, c are zero, atleast one of

these matrices have non-zero determinant and hence T can have rank 2. Since
the matrix is skew-symmetric the eigenvalues are zero or purely imaginary and
any line in R3 is of the form {Av : X € R} for some non-zero vector v. Therefore
T does not map any line through origin to itself.

(42) Let A = (aij) be an n x n complex matrix and let A* denote the conjugate
transpose of A. Which of the following statements are true?
(a) If A is invertible, then tr(A*A) # 0.
(b) If tr(A*A) # 0, then A is invertible.
(c) If [rr (A*A)| < n?, then |a;;| < 1 for some i, j.
(d) tr(A*A) = 0, then A is the zero matrix.

Ans. Options a, c and d

a ap ... Ay ap azy ... dpl
az a ... dx ajpp axy ... dpp

LetA=| . . | . |- ThenA*=| . . . . | and hence tr(AA™)
An) Ap2 - .. App Aip A2p - - . App

= Z?,j:l |ai; |2-

(a) Suppose that A is invertible. If tr (AA*) = Zz_j:] |a,'j|2 =0, then |a;j| =0
foralli and j and hence the matrix is the zero matrix and is not invertible.
Therefore tr (A*A) # 0, if A is invertible.

. . |10 «_ |10 «_ |10
(b) Consider the matrix A = |:O 0:|, then A* = |:0 O] and AA* = |:O 0:|. Here
tr(A*A) # 0, but A is not invertible.
(c) |tr(A*A)| = sz=1|ai_i|2. If|a;j| > 1foralli, j, thentr(A*A) > n2. There-
fore if |tr (A*A)| < n?, then la;j| < 1 for somei, j.
(d) By option (a) iftr(A*A) = 0, then A is the zero matrix.

(43) Let A be areal 3 x 4 matrix of rank 2. Then the rank of AT A is:
(a) exactly 2 (b) exactly 3
(c) exactly 4 (d) at most 2 but not necessarily 2

Ans. Option a
Since Rank(A) = Rank(AT A), rank of AT A is 2.
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100
(44) Let S be the set of 3 x 3 real matrices A with ATA = | 00 0 |. Then the set
000
S contains
(a) a nilpotent matrix. (b) a matrix of rank one.

(c) a matrix of rank two. (d) a non-zero skew-symmetric matrix.

Ans. Option a and b

000 100
Consider the matrix A= | 000 |, then ATA=]000]| = A € S. Clearly
100 000

A is nilpotent and has rank one. Since Rank(AT A) = Rank(A), S does not
contain a set with rank two. For a non-zero skew symmetric matrix B, BTB =

(—B)B = —B? and hence S does not contain a non-zero skew-symmetric matrix.
312
(45) Let A=|123|and Q(X) = XTAX for X € R3. Then
231

(a) A has exactly two positive eigenvalues
(b) all the eigenvalues of A are positive
() Q(X) > 0forall X e R?

d) 0(X) < 0 for some X € R3

Ans. Options a and d
The characteristic polynomial of the given matrix is

X —6x2=3x 418 = (x — 6)(x> —3)

Therefore the eigenvalues of A are 6, ++/3.

3 -10
(46) The matrix | —1 2 —1 ] is
0 —-13
(a) positive definite.
(b) non-negative definite but not positive definite.
(c) negative definite.
(d) neither negative definite nor positive definite.

Ans. Option a
The characteristic polynomial of the given matrix is

=824 19x —12=(x — D(x = 3)(x — 4)

Since all the eigenvalues of the given matrix are positive, the given matrix is
positive definite.
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47) LetV={f :[0,1] = R | fisa polynomial of degreelessthanor equalton}.
Let f;(x) = x/ for0 < j < nandlet Abethe (n + 1) x (n + 1) matrix given
by a;; = fol fi(x) fj(x)dx. Then which of the following is/are true?
(@)dim(V) =n((b)dim(V) > n(c)det(A) > 0(d) A is non-negative definite

Ans. Options b, c and d
2
v Ay = Zi’j fol vifix)v; fi(x)dx = fol (Zl vifi(x)) dx > 0 foranyv # 0.
(48) Which of the following matrices are positive definite?

@) [f ﬂ () B ﬂ © [_41 ﬂ @ [2 g]

Ans. Options a and ¢

(a) The characteristic polynomial of the given matrix is
X —dx43=(x-3)(x -1

Clearly the matrix is positive definite.
(b) The characteristic polynomial of the given matrix is

=2x=3=(x-=3)(x+1

The matrix is not positive definite.
(c¢) The characteristic polynomial of the given matrix is

2 =8+ 15=(x —5)(x —3)

The matrix is positive definite.
(d) The characteristic polynomial of the given matrix is

=16=(x+4)(x —4)

The matrix is not positive definite.

(49) Let A be a symmetric n x n matrix with real entries, which is positive semi-
definite,i.e.,vI Av > 0for every (column) vector v. Pick out the true statements:
(a) the eigenvalues of A are all non-negative;
(b) A is invertible.
(c) the principal minor of A (i.e., the determinant of the k x k matrix obtained
from the first k rows and first k columns of A) is non-negative for each 1 <
k <n.

Ans. Option a and ¢
Option (a) and (c) are alternative definitions for positive semi-definiteness. Since
eigenvalues of A can be zero, A need not be invertible.
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(50) Let J be the 3 x 3 matrix all of whose entries are 1. Then:
(a) 0 and 3 are the only eigenvalues of A.
(b) J is positive semi-definite. i.e., (Jv, v) > 0 for all v € R.
(c) J is diagonalizable.
(d) J is positive definite. i.e., (Jv,v) > 0 for all v € R? with v # 0.

Ans. Options a, b and c are true.
The characteristic polynomial of the given matrix is x>(x — 3) and the minimal
polynomial is x(x — 3).

(51) Let a, b, ¢ be positive real numbers such that b> + ¢?> < a < 1. Consider the
3 x 3 matrix
1bc
A=1|ba0
cO01

(a) All the eigenvalues of A are negative real numbers.
(b) All the eigenvalues of A are positive real numbers.

(c) A can have a positive as well as a negative eigenvalue.
(d) Eigenvalues of A can be non-real complex numbers.

Ans. Option b

Clearly A is symmetric. Also the minors of the diagonal elements are a, 1 — ¢?
and a — b*, which are all greater than zero. Thus A is positive definite and hence
all the eigenvalues of A are positive real numbers.

(52) Let A € Mj,;,», (R). Consider the following statements:

I: If XAY =0forall X € M,,(R) and Y € M,,;(R), then A = 0.
II. If m = n, A is symmetric and A2 =0, then A = 0.

Then
(a) both I and I1 are true. (b) I is true but /7 is false.
(c) I is false but /7 is true. (d) both I and /1 are false.

Ans. Option a

1 0
(a) LetA:[abc:|, Take X, =[10], X,=[01], v, =|0|, vo=|1],
de f 0 0
0
and Y3 = | 0 |. Then considering X;AY; =0 for all i =1,2 and j =

1
1,2,3 we get A = 0. We can use this idea for all m and n.
(b) Let A be symmetric and A* = 0. The diagonal entries of A* are the length
of the vectors in the corresponding row. This means each entry must be zero.

. _|ab » _[a*+b* ab+ b _
Consider for example A = |:b Ci|. Then A~ = |:ab+bc B2 +czj| =>a=
b=c=0.
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(53) For every 4 x 4 real symmetric non-singular matrix A, there exists a positive

integer k such that
(a) kI + A is positive definite (b) A* is positive definite
(c) A~ is positive definite (d) exp(kA) — I is positive definite

Ans. Options a, b and c

Since every eigenvalue of k1 + A is of the form k + A; where A; is an eigenvalue
of A, ifwe choose k > max;|A;|, kI + A is positive definite. As every eigenvalue
of A is of the form (A;)¥ if we choose k as an even number, A* is positive definite.
Similarly since every eigenvalue of A= is of the form ﬁ(as A is non-singular)

if we choose k as an even number, A% is positive definite.

(54) Let A be a n x n real symmetric non-singular matrix. Suppose there exists

v € R” such that v7 Av < 0. Then we can conclude that
(a) B = —A is positive definite. (b)det(A) <0
(c)thereexistsu e R" : uTA7'u <0 @VYueR" :uTA'u<0

Ans. Option c
-1 00
Considerthe matrix A = | 0 —1 0 |. Then A is a real symmetric non-singular
0 01
matrix with det(A) = 1 and A~' = A. Clearly B = — A is not positive definite.
Now letu = (uy, ua, u3) € R* be an arbitrary element. Thenu” A~'u = —u% —

us + u3 < 0 only when u} < u? + u3.

(55) Suppose A is a 3 x 3 symmetric matrix such that

X

[xyl]A y|=xy—1
1

Let p be the number of positive eigenvalues of A and let ¢ = Rank(A) — p.
Then

@p=1 ®p=2 ()g=2 qg=1

Ans. Options b and d
abc
Take A= | bd e |. Then,

cef

X
[xy l]A |:yi| :xy—l:>ax2+2bxy+c2x+dy2+2ey+f:xy—1
1

Sa=c=d=e=0,b=—, f=-—1

| =
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o
S OvI=

0
Therefore A = % 0 |. The characteristic polynomial of the given matrix
00 -1

is x3 4+ x% — ix — i = (x2 - %) (x + 1). Therefore p =2 and g = 1.
(56) Suppose A, B are n x n positive definite matrices and / be the n x n identity
matrix. Then which of the following are positive definite.
@A+ B (b)ABA* (c)A’+1 (d)AB

Ans. Options a, b and ¢

(a) Suppose that A and B are positive definite, then v*Av > 0 and v*Bv > 0
for all v. Therefore

V(A + By =v*Av+Vv*By >0V v

Therefore A + B is positive definite.

(b) Since B is positive definite, v:ABA*v = (A*v)*B(A*v) > 0. Therefore
ABA* is positive definite.

(c) Since the eigenvalues of A*> + I are of the form \* + 1 where X is an eigen-
value of A, A% + I is positive definite.

(d) Consider the matrix A = ﬁ i] and B = |:; ﬂ Then A and B are positive

definite, but AB = |:12 5:| is not symmetric.

73
. . . 1
(57) Consider a matrix A = (aij)5x5’ 1 <i,j <5 such that a;; = m,
where n;, n; € N. Then in which of the following cases A is positive definite
matrix?
(@yn; =iforalli =1,2,3,4,5 (b)n <ny <nz <nyg <ns
(c)ny =ny, =n3 =ng =ns (d) ny > ny > n3 > ng > ns
Ans. Options a, b and d
1
A Cauchy matrix is an m x n matrix with elements of the form a;; = ;
Xi —Yj

xi—y; #0, 1 <i<m, 1= j<nwhere(x;)and (y;) have distinct elements.
Every sub-matrix of a Cauchy matrix is itself a Cauchy matrix. The determinant
[T T G = x) (v — v
[T H?:l (xi = y))
Cauchy matrix with x; = n; and y; = —(n; + 1). Then the determinant of each
minor is strictly greater than 0 by the above formula for options a, b and d.

of a Cauchy matrix is

. The given matrix is a

(58) Which of the following statements are true?
(a) If A is a complex n x n matrix with A> = A, then Rank(A) = tr(A).
(b) Let A be a 3 x 3 real symmetric matrix such that A> = I. Then A? = I.
(c) There exists n x n matrices A and B with real entries such that
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(I — (AB—BA)" =0

(d) If A is a symmetric positive definite (All eigenvalues are positive) matrix,
then

(tr (A))" > n"det (A)

Ans. Options a, b and d

(a) Since A> = A, A is diagonalizable.0 and 1 are the only possible eigenval-
ues. For a diagonalizable matrix, rank = number of non zero eigenvalues.
Therefore Rank(A) = tr(A).

(b) Suppose A® = I. Then the matrix satisfies the polynomial equation x° — 1.
Since the matrix is real symmetric its eigenvalues are real. Now,

1= =D+ D= -Dax+ D +x+DEZ=x+1)

Both (x*> + x 4+ 1) and (x> — x + 1) have complex roots. Therefore the only
possible eigenvalues are 1 and —1 and the possible minimal polynomials
are (x — 1), (x + 1) and (x — 1)(x + 1). For all these cases A> = I.

(¢c) { —(AB—BA)'"=0=C=({ — (AB — BA)) is nilpotent which
implies C must have trace= 0. But tr (C) =tr (I) = n.

(d) Let A, Xy, - -+, A, be the eigenvalues of A.Since AM > GM we have

Al t+Ay+ Ay >m
sl 1-A2.°° " A

n

which implies (tr (A))" > n"det (A).

(59) Let P, and P, be two projection operators on a vector space. Then
(a) Py + P, is a projection if PP, = P,P; = 0.
(b) P — P, is a projection if P{P, = P,P; = 0.
(¢c) P| + P, is a projection.
(d) P, — P, is a projection.

Ans. Option a

(a) Since Py and P, are projection operators P12 = Py and P22 = P.
(Pi+ P)* =Pl +PIPy+ P,PL+ P} =P+ Pyif PPy=P,P =0

Therefore Py + P, is a projection if PP, = P, P} = 0.
(b) As above

(Py— P)? =P — PPy~ PP+ P} =P+ Pyif PP, = P,P, =0.
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(c) Let Pi(x,y) = Py(x,y) = (x,0), then both P; and P, are projection oper-
ators. Observe that (P) + P»)(x,y) = (2x, 0) is not a projection as

(P14 P)*(x, y) = (P1 + P2)(2x,0) = (4x,0) # (P + P2)(x, )

(d) Let Py(x,y) = (x,0)and P>(x,y) = (0, y), then both P; and P, are projec-
tion operators. Observe that (P; — P,)(x, y) = (x, —Y) is not a projection
as

(P1 = P)*(x,y) = (P — P)(x, —y) = (x, )
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A.1 Determinants

Permutations

In Chap. 1, we got familiarized with the symmetric group of n letters. We have seen
that a permutation on a set S = {1, 2, ..., n} is a rearrangement of the members
among themselves. In other words, a permutation o is a one-one map from S onto
itself. Such an element is represented in the form,

_ 1 2 ... 0 ... n
T=\o() o) ...0G) ... o)
We have seen that the set of all permutations on S forms a group with n! elements

under the operation function composition. For example consider S3. The elements
of S5 can be listed as

(123 (123 (123 (123 (123 (123
L0=\123)P=\231)72T\312) "= \132)"321)"= 213

Then the Cayley table for Ss is

o 0 L1 P2 133 Mn2 M3
£0 L0 P1 P2 123 m2 n3
P1 P1 P2 140 M3 M1 m2
P2 P2 £0 P1 H2 M3 123!
23t 231 M2 M3 £0 P1 P2
n2 w2 M3 M1 r2 £0 L1
3 3 231 2 P1 P2 £0

Now, take pu; = (1 23

13 2). This permutation represents the following mapping
(Fig. A.1).
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Fig. A.1 Schematic 1 2 3
representation of 1] l ><
1 2 3

Then, we can can alternatively represent 141 as (2 3) o (1) or (2 3). This represen-
tation of p is called cyclic representation of 1|, where (2 3) represents the mapping
2 < 3 and (1) represents 1 <— 1. Then using the cyclic representation S3 can
be expressed as

Ss{e. (123),(132),(23),(13).(12)}

Now, we will show that every permutation can be written as a cycle or as a product
of disjoint cycles.

Theorem A.1 Every permutation on the set S can be written as a cycle or as a
product of disjoint cycles.

Proof Leto be apermutationon S,,. Forn = 1, the proofis trivial. Forn > 1, choose
any member s; of S. Construct a sequence sy, $7, §3, . . ., where s; = oi~(s)). As S,
is finite, this sequence is finite and there exists m such that ¢ (s;) = s;. If all the
members of the set have become a part of the sequence, we can write

O‘:(S] S2...Sm)

Otherwise,
o = (S] 52 ...Sm)...

where three dots at the end suggest that we may not have exhausted set S during
this process. Then choose another element r; in S which is not a member of the
previous cycle and construct a new cycle as before. The new cycle will not contain
any element from the previous cycle. If so, then o/(s;) = o/ (r;) and this would
imply r; = o'~/ (s}), which is not possible. As the set S is finite, continuing this
process, every element in S will be a part of some cycle and

o = (S1 52 ...sm)(r1 ry ...rk)...(ql q> ...qp)
Hence every permutation can be written as a cycle or as a product of disjoint cycles.

Theorem A.2 Every permutation on S,,, n > 1 is a product of 2- cycles (transposi-
tions).

Proof From Theorem A.1, we have seen that any element o € S, can be written as

O'=(S1S2...Sm)(r1 rz...rk)...(ql ‘D'--qp)
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Clearly, we can see that this representation is same as
o =(s1 sm) (51 Sm—1)---(s1 82) (r1 7)) (r1 re=1) -~ (r1 72) -~ - (a1 ap) (a1 gp—1) --- (01 42)

Hence the proof.

Now, we will prove that if the identity transformation(e) is written as a product
of k transpositions, then k must be even. This idea will be later used to prove that
whenever a permutation is written as a product of transpositions, the number of
transpositions will be either always even or always odd.

Theorem A.3 Ife = 010, ...0, where, o;’s are transpositions, then k is even.

Proof Suppose on the contrary that k is odd. Clearly, we can say that k = 1 is
not possible as the identity permutation must fix every element. Now suppose that

O = (Sl Sg).
Case 1: 0y = (51 52). Then,

e =0102...0k—10k = 0102 ...0k=2 (S1 52) (S1 Sz) = 0102...0k_2€ =0102...0k=2

That is, e can be written as a product of k& — 2 transpositions.
Case 2: 04—y = (s1 53). Then

€=010)...0¢_10k = 0102 ...0%—2 (s1 53) (51 52) = 0102 ... 02 (51 52) (52 3)
Case 3: o4 = (S3 sz). Then

€ =010)...0k_10; =010 ...0k—2 (53 $2) (51 82) = 0102 ...0%—2 (s1 s3) (52 $3)
Case 4: oy_; = (s3 54). Then

e =0102...0k_10k =010 ...0_2 (33 S4) (S1 Sz) =0102...0k—-2 (S1 32) (S3 S4)

Consider the element s; in 0. Observe that in case 2, 3 and 4 we shifted it from oy,
to ox—1. We can continue this process till we must have a case 1. For, if that is not
the case, we will reach a stage where,

6=(S1 S5)(72...(Tk

which is not possible as the permutation on the right hand side of the above equation
does not fix s;. Therefore we will eventually reach case 1.

We have now shown that if identity is represented as a product of odd number
of transpositions, then we can delete 2 transpositions from this expression and still
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we will be having the identity permutation. That is, identity permutation is again
expressed as a product of m — 2 transpositions which is again an odd number. Again,
repeating this elimination process, we will eventually have that identity equals a
single transposition which is a contradiction. Hence k must be even.

Theorem A.4 Let o be a permutation in S,. If o can be represented as a product of
even(odd) number of transpositions, then every decomposition of o must also contain
even(odd) number of transpositions.

Proof Leto = ajay...a, and 0 = 18, ... B be two different decomposition of
o. Then,

—1 —1 -1
e=oaoy...o.fB ...B, B

As a transposition is its own inverse we have

e=o1r...0PB... BB

Then, by Theorem A.3, k + r is even. This implies that either both k and s must be
even or both must be odd.

We can also prove that the collection of all even permutationson S = {1, 2, ..., n}
forms a group called Alternating group of n letters denoted by A,. What about the
collection of all odd permutations?

Definition A.1 (Sign of a permutation) Let ¢ be a permutation in S,. Then the sign
of o is defined as
1, if ois even

sgn(o) = i—l, if oisodd

Example A.1 Consider the permutation o = (2 351 4) in S5. We have,
c=(23514)=(24)(21)(25)(23)

Thus o is even and sgn(o) = 1.

Example A.2 Consider S, = {e, 0 = (1 2)}. We have already shown that identity
permutation is even. Hence sgn(e) = 1. Clearly, sgn(o) = 1 as it is a transposition.

Example A.3 Consider S3 = {po, o1, 02, 41, L2, 43}. As pg is the identity ele-
mentsgn (pg) = 1. Verify thatsgn (p;) = sgn (p) = landsgn (u1) = sgn (n2) =
sgn (u3) = —1.

By the definition of sign of a permutation, it is easy to verify the following prop-
erties. (Verify!)
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Theorem A.5 Leto, T € S,. Then

(a) sgn(o ot) =sgn(o)sgn(t)

(b) sgn (0") = sgn(o)

(c) sgn(e) =1

(d) sgn(o) = 1, where o is any transposition.

(e) sgn(t) = (—1)*!, where t is any cycle of length k.

Now, we will define the determinant for a square matrix and discuss its properties.

Determinant of an n x n Matrix

. . ap a
Consider a 2 x 2 matrix, A = 12 We have,
az) ax

det (A1) = ajan — apa;

ap ap a;z
For a 3 x 3 matrix A, = | ap; ax ax |,
az) as asz

det(Ay) = a11a0a33 + a12a23a31 + a13a21a3 — 11023032 — A12021033 — 413022031

Keep in mind that just one element comes from each row and only one element
comes from each column in each term of the expressions above. These are the only
conceivable combinations of those, as well. If you observe the pattern of the column
numbers in each term of the above two expressions, you can see that they are exactly
S, and S3. What about the sign of each terms in the expression? Does it have any
relation with sign of the corresponding permutation? With these observations in our
mind, we will define a function on M,,,,, (K) as follows.

fA) = Z[Sgn(ﬁ)]ma(l)aza(z) Qo (n) (A.1)

€S,

Is this function well-defined? (Think!) Then, we can have the following theorem
which tells us that the function f is nothing but the determinant function.

Theorem A.6 Let A = [ai j] be an n x n matrix and M;; denote the minor of A
obtained by deleting its ith row and jth column. Then,

N
fA) =) (=D)a;My
j=1

where, f is as defined in (A.1).
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Now, we will prove the following properties of determinant function.
Theorem A.7 Let A = [a,- j] be an n x n matrix over the field K.

(a) det(A) =det(AT)

(b) If B is a matrix obtained from A by multiplying a row(column) by a scalar k,
then det (B) = kdet (A). Also, if B = kA, then det (B) = k"'det (A).

(c) If two rows (columns) of A are equal, then det(A) = 0.

(d) If B is a matrix obtained from A by interchanging any two rows (columns) of A,
then det(B) = —det(A).

(e) If B is a matrix obtained from A by adding a multiple of one row(column) to
another, then det (B) = det (A).

Proof (a) We have,

det(A) = Z[Sgn(a)]alo(l)dza(z) e lno()

og€eSs,

and
det(A") = Z[Sg”(d)]aa(maa(z)z oo Ao (myn

€S,

Ift = 0'71, we have Ao (1186 (2)2 - - - Ao (n)n = Al (1)A21(2) - - - Anzt(n) (Why?) Then,

det(AT) = Z[Sgﬂ(f)]alm)azr(z) e lpr(n)

TES,

As, Sy is a group and o runs through all elements of Sy, T also runs through all
elements of S,. Hence det (A) = det (AT).

(b) Each term in the expression (A.1) of det(A) contains just one element from
each row(column) of A. Therefore, multiplying a row(column) by a scalar k
induces the factor k in each term of def (A). Thus det (B) = kdet(A). Similarly,
det(B) = k"det(A).

(c) The matrix obtained from A by interchanging the two equal rows identical with
A. However, by the previous result the sign of the determinant must change. This
implies that det (A) = 0.

(d) Let T = (i J ) be the transposition that interchanges the ith and jth rows
(columns) of A. This interchanging has the effect of replacing each permuta-
tion o by o o . We have,

ocot(i) =0 (t@i) =0(j)
ogot(j)=0(r(j) =0(@)
andforallk € {1,2,...,n}excepti and j, o o t(k) = o (k). Also,

sgn(o ot) =sgn(o)sgn(t) = —sgn(o)
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Thus,

det(B) = Z [sgn(o o D)laigor(l) - - - Gicor (i) - - - Ajoor(j) - - - Anoor(n)
ooTES,

=- Z [sgn(o)laio(1y - - - Ai-1)o(i—1) %o ()AGi+D)o(+1) - - -
€S,
XA(j—Do(j—D%jo()A(j+1)o (j+1) - - - Ano(n)
= —det(A)

(e) Let B be the matrix obtained from A by changing its ith row by a sum of ith
row and a multiple of jth row. Then,

det(B) = Z[sgn(()')]ala(l) - (aio'([) + kajg(j)) < jo(j) -+ - no(n)

€S,

= Z[sgn(a)]alg(l) celig@i) - -+ Ajo(j) - - - Ano(n)

€S,

+ k Z[sgn(a)]alg(l) < Qjo() -+ Ajo(j) - - - Ano(n)

o€eS,

The second sum on the right side of this equation is zero, as it is the determinant
of a matrix whose two rows are equal. Thus, det(B) = det (A).

A.1.0.1 Elementary Operations and Elementary Matrices

Elementary matrices are essential linear algebra tools that play an important role
in matrix operations and transformations. These are square matrices obtained by
performing a single elementary row(column) operation on an identity matrix. Ele-
mentary row operations include scaling a row, swapping rows, or adding a multiple
of one row to another. These basic matrices serve as the foundation for comprehend-
ing more advanced matrix operations including row reduction, matrix inverses, and
solving systems of linear equations. They are an essential notion in linear algebra
because they give a systematic approach to trace changes in a matrix caused by basic
row or column operations.

010 100
Example A.4 Consider the matrices £y =|100|,E,=|040]| and E; =
001 001

1 00
—510/|. Clearly E|, E, and E; are elementary matrices as they are obtained
001
from identity matrix by interchanging first and second row, multiplying the second
row by 4 and adding —5 times the first row to the second row respectively.
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Remark A.1 Elementary matrices obtained by interchanging the rows of identity
matrix are also called permutation matrices.

01 -1
Now, consider a matrix A = [ 1 0 1 [. Observe the changes to A, when A is
100
multiplied by E;, E, and E3. We have,

010][01 —1T 10 1 10001 -1 01 -1
EfA=1100]|(10 1 [=(01-1|, E2A=]040[]|10 1 |=]40 4
001 10 0 | 100 001 100 100

and _
1 00](01 -1 01 —1
E;A=]-510|(|101 |=|1-56
1 001 100 10 0

From this, we can clearly say that to conduct any of the three elementary row opera-
tions on a matrix A, take the product E A, where E is the elementary matrix generated
by performing the required elementary row operation on the identity matrix. Now,
consider the following result.

Theorem A.8 Let A be an n x n non-singular matrix. Then A can be written as a
product of elementary matrices.

Proof As A is non-singular, atleast one element in the first column of A is non-
zero. If a;; = 0, we can interchange rows to bring a non-zero element as a;;. Then,
we multiply the first row by al_ll. Thus in the reduced matrix a;; = 1 and using
this fact, we can add —a;, times the first row to the ith row to make every other
element in the first row zero. Observe that, we have applied only the elementary row
transformations. Hence the resulting matrix is still non-singular.

Now, we wish to do the same to the second row. At least one element in second
column other than a;, must be non-zero. For, otherwise the first two columns will
be linearly dependent. Thus, if we repeat the elementary operations as we have
applied previously, we can have the ay; = 1 and a;; = O for all i # 2. Continuing
this process we will finally obtain the n x n identity matrix. Thus, if £y, E,, ..., E
are the elementary matrices representing the elementary operations applied on A
successively, we have

I =E;...E,E A

Hence
A=E'Ey' . E]!

01 -1
Example A.5 Consideramatrix A= |10 1
10 0
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001
Step I: Interchange the rows 1 and 3. That is, Multiply Aby E; = | 0 1 O |. Then,
100
100
E/A=]101
01-1
Step II: Subtract the first row from the second row. That is, Multiply A by E; =
100 100
—110|.Then, EbE;A=({00 1
001 01 -1
100
Step III: Interchange the rows 2 and 3. That is, Multiply Aby E3 = | 0 0 1 |. Then,
010
100
EsE,E1A=(01 -1
00 1
100
Step IV:  Add the second row to the third row. That is, Multiply Aby E4 = [0 1 1
001
100
Then, E4E3E2E1A =1010{.
001

We can clearly observe that A = El_lEz_lEglEé‘_l.
Theorem A.9 Let A be an n x n matrix. If E is an elementary matrix, then

det(EA) = det(E)det(A) = det (AE)

The above theorem is an immediate consequence of Theorems A.7 (b), (d) and (e).
Now, by using Theorems A.8 and A.9, we can have the following result.

Theorem A.10 Let A and B be two n x n matrices. Then,

det(AB) = det(A)det(B) = det(BA)

A.2 Fourier Series
Consider the set of all functions in [—, ] that satisfy the condition

”If(X)Izdx <0

-7

Clearly, this collection will form a vector space under point-wise addition of functions
and standard scalar multiplication (Verify!). Also,
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(f.8) =] [f)gx)dx

defines an inner product on this space (Verify!). Consider the following set of func-
tions;
1 1
—sinnx |1<n<oopU{—cosnx|1<n<o

VT VT

We will show that this set is an orthonormal set. For m # n,

T
(cos nx, cos mx) = / cos nxcos mxdx
-7
T

— [cos(m + n)x + cos(m — n)x]dx

2) .
1 . . _ T
_1 [sm(m +n)x N sin(m n)xi| _o
2 m-+n m—n pi
Similarly, form # n
(sin nx, sinmx) =0
and for all m and n
(cos nx, sinmx) =0
Also,
T 1 T
lsin nx|)* = / [sin nx]*>dx = 5/ 2 [sin nx]*dx
1 [ 1 sin2nx "
= - (1 —cos 2nx)dx = — | x — =7
2 ) . 2 2nx -
and

[[cos anI2 =7

Therefore, the set

1 1
{—sinnx|1§n<oo}u{—cosnx|1§n<oo}

N N

is an orthonormal set. Our objective is to obtain a trigonometric series representation
to every periodic function f(x) defined on [—m, r]. Let us assume that
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f(x)=ay+ Z (aycos nx + b,sin nx) (A.2)

n=1

Integrating on both sides from —rm to m,
b4 b4 o
fx)dx = / ap + Z (aycos nx + b,sin nx) | dx

/ cos nxdx + b, / sin nxdx) = 2may

-7 -7

n=1

:aO/ﬂdx—i—Z(an

- n=1

This gives,

1 b
ag = o f(x)dx (A.3)

Now, consider cos(mx), where m is a fixed integer. Multiply both sides of (A.6) by
cos(mx) and integrate from —m to 7,

4 T 0
/ f(x)cos mxdx = f |:ao + Z (apcos nx + bysin nx):| cos mxdx
- -1

n=1
T

T 0 T
= a()/ cos mxdx + Z (an / cos nxcos mxdx + by /
-1

sin nxcos mxdx)
n=1 -1 -1

p e
=apm / [cos me2dx =amm
—IT

This gives,

1 T
a, = — f(x)cos mxdx, m=1,2,... (A4)
b4

Similarly, we get

1 T
by, = — fx)sinmxdx, m=1,2,... (A.5)
T

-7

The coefficients {a,};2, and {b,};2, are called the Fourier coefficients and the
trigonometric series given in (A.6) is called the Fourier series expansion of f(x)
named after the famous French Mathematician Jean—Baptiste Joseph Fourier (1786—
1830). While Fourier series are well-known for their ability to approximate a wide
range of functions, it’s crucial to remember that they may not converge for all sorts
of signals or functions. In such circumstances, rigorous analysis and consideration
of convergence concerns are required to verify the approximation’s accuracy. The
following theorem gives sufficient conditions for the convergence of series (A.2)

with coefficients given by Egs. (A.3), (A.4) and (A.5).
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Fig. A.2 Graph of f(x) f(x)

Theorem A.11 [fa periodic function f(x) with period 27 is piecewise continuous
in the interval —m < x < w and has a left-hand derivative and right-hand derivative
at each point of that interval, then the series

oo
ap + Z (a,cos nx + b,sin nx) (A.6)

n=1

with coefficients

1 T
ag = — fx)dx
27 J_»

a, = — f(x)cos nxdx, n=1,2,...
-7

1
b, = — fx)sinnxdx, n=1,2,...
T

-7

is convergent. The sum of the series (A.6) is f(x), except at a point xo at which f(x)
is discontinuous. At xo, sum of the series is the average of the left and right hand
limits of f(x) at xy.

Example A.6 Consider the function (Fig. A.2)

_ —1,x € [-m,0)
fx) = [Lx € (0. 7] (A7)

Let us find the Fourier coefficients for f(x). We have,
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e 1 0 i
ao=g'/_nf(x)dx=g(—/_ndx+/o dx>=0

Now,

1 T

anp = —/ f(x)cos nxdx
T J-n
1 0 T
= — [/ —cos nxdx +/ cos nxdxi|

s -7 0

1 |:< sin nx)o (sin nx)”i|

T n o n 0
and

N

f(x)sin nxdx

0 T
|:/ —sin nxdx + / sin nxdx]
—7 0

cos nx\0 COS NX\7 2
( ) —( ) = —(1 — cos nm)
n - n 0 nmw

|
B

Nl— N]— 8-

Then (Fig. A.3)

4 1 1
f(x)=—[sinx+ =sin3x+ —sinS5x | +...
T 3 5

Observe that x = 0 is a point of discontinuity of f(x) all partial sums have the
value zero, the arithmetic mean of values —1 and 1 of the given function.

Remark A.2 The Fourier series of an even function of period 2L is a Fourier cosine
series,

o0
nw
f(x)=ap+ Z]:ancosTx
n=

with coefficients
1 /L £ 2 ) ni 1
ap = ; x)dx, a,=—f(x)cos—xdx, n=1,2,...

Similarly, the Fourier series of an odd function of period 2L is a Fourier sine series,

flx) = Z bnsin%x

n=1
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) ! /2

Fig. A.3 First three partial sums of the Fourier series for a square wave

with coefficients ;
2
b, = Z/o f(x)sin%x

The Fourier series expansion is a powerful mathematical tool with numerous
applications in a variety of domains. Signal processing relies on the Fourier series
extensively. It is used to examine and manipulate signals, including electromagnetic
waves, audio, and video. For instance, it is used in data compression methods like
filtering to eliminate undesirable frequencies. Engineers investigate the vibrations
and resonances of mechanical systems using Fourier analysis. This is essential for
constructing machines, vehicles, and structures to stop or reduce vibrations. Fourier’s
law outlines how heat propagates through materials in the study of heat transfer. In a
variety of engineering applications, the Fourier series can be used to address difficult
heat conduction problems. Wave functions are frequently used in quantum physics
and can be described as superpositions of multiple energy states using the Fourier
series. This is critical for understanding particle behavior at the quantum level. These
are just a few instances, and as technology progresses and our understanding of
mathematical tools grows, so will the uses of Fourier series expansion. It is a useful
and necessary tool in a wide range of scientific and engineering disciplines.
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problems, 122

Eigenvector, 121, 138, 209, 218, 226, 272,
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generalized, 148, 149
Electrical circuit problem, 260
Elementary operations, 35, 537

column operations, 35

row operations, 35
Euclidean, 18

distance, 18

space, 36

F
Field, 27, 49
algebraically closed, 29, 130
Fourier coefficients, 191
Fourier series, 539
Frobenius inequality, 34
Functions, 7
bijective, 9
co-domain of, 8
composition of, 10
continuous, 11, 20, 205
contractions, 244
discontinuous, 11
domain of, 8
fixed point, 244
graph of, 8
image of, 8
inverse of, 10
one-one, 9
onto, 9
permutation, 22, 531
range of, 8
sesquilinear, 211
bounded, 211
signum, 12

G
Gauss Elimination Method, 41
Gauss—Jacobi Method, 248
Gauss—Siedel Method, 248
Generalized inverse, 229
Gram-Schmidt Orthonormalization, 147,
193, 219, 227, 486

Group, 21, 146

Abelian, 21

alternating, 534

center of, 47, 293

cyclic, 24

factor, 26

general linear, 33

Index

generator of, 24

of integers modulo n, 22

symmetric, 22, 531
Groupoid, 23

H
Hilbert space, 188, 210, 483
Hill cipher, 267
Holder’s inequality, 45, 171, 505
Homomorphism, 23

group, 23, 294

Kernel of, 23
Horizontal line test, 9

I
Inner product, 178, 478
space, 175
Inverse
generalized, 229
Moore—Penrose, 231
pseudo, 233
Isomorphism, 23
group, 23, 294
vector space, 108, 368

J
Jordan block, 155
Jordan canonical form, 155, 463

K
Kirchhoff’s current law, 260
Kirchhoff’s voltage law, 260

L
Least square line, 240
Least square problems, 238
Least square solution, 239
Leontief model, 261
closed, 261
open, 262
Linear combination, 56, 93
Linear functionals, 112, 366
Linearly dependent, 56, 91, 125, 366
Linearly independent, 57, 91, 125, 151, 193,
335, 364, 366, 407
maximal, 65, 139
Linear map/operator, 80, 205
bounded, 207, 504
adjoint of, 210, 214
continuous, 206
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differential, 207
integral, 207
left shift, 215
normal, 221, 224
right shift, 215
self-adjoint, 217
positive definite, 222
positive semi-definite, 222
unbounded, 209
unitary, 224
Linear space, 49
normed, 163, 182, 206, 473
Linear transformation, 80, 361, 412, 499
algebra of, 100
composition of, 104, 378
inverse of, 107, 396
kernel of, 85
matrix representation of, 93, 219, 382
null space of, 85, 370
nullity of, 87
one-one, 90, 378
onto, 91, 378
range set of, 85
range space of, 85
rank of, 87, 223, 369
LU decomposition, 43

M

Markov
chain, 270
process, 269

Matrix, 29
adjoint of, 33, 440
atomic triangular, 304
augmented, 41
block, 34
block diagonal, 35
characteristic, 122
co-factor, 33
coefficient, 40
conjugate transpose, 31
determinant of, 32, 127, 136, 298, 433,

535

diagonal, 135, 219
diagonalizable, 137, 147
elementary, 537
equivalent, 35
exponential of, 276, 422
idempotent, 160
inverse of, 33, 137
involutory, 159
kernel of, 87
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nilpotent, 277
non-singular, 33, 129, 295, 538
nullity, 136, 453
orthogonal, 490
permutation, 298, 538
probability transition, 269
range of, 87
rank of, 34, 136, 308, 453
reflection, 98
rotation, 98
row echelon form of, 35, 310
reduced row echelon form, 35
similar, 135, 155
singular, 33, 297
state-transition, 276
trace of, 31, 128, 136, 295, 432
transpose of, 31
triangular, 146
triangularizable, 146
unitary, 146
Vandermonde, 448
Metric
discrete, 18, 167
induced, 167
space, 17
usual, 18
Minimal
polynomial, 133
spanning set, 63
Minkowski’s inequality, 45
Minor, 33, 535
Monoid, 23
Moore—Penrose Inverse, 231, 239
Multiplication, 30
matrix, 30
scalar, 31, 49, 100
Multiplicity, 124
algebraic, 124, 141, 455
geometric, 124, 141, 421

N
Newton-Raphson Method, 256
Norm, 164, 181, 473

energy, 182

induced, 166, 182

infinity, 165

operator, 208, 503

p, 165

Supremum, 165, 183, 206
Normal equations, 239
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(0]
Open ball, 18, 167
Order, 22
of a group, 22, 293
of an element, 22, 292
Orthogonal
complement, 196, 488
decomposition, 199
set, 188
Orthonormal set, 189, 486, 539

P
Page Rank Algorithm, 272
Parallelogram Law, 182, 183
Penrose conditions, 231
Permutation
cyclic representation, 532
even, 534
odd, 534
sign of, 534
transpositions, 532
Pivot, 35
Polynomial, 28
annihilating, 133, 438
characteristic, 122, 136, 154, 155, 408
matrix, 129
minimal, 133, 144, 155, 442
monic, 28
zero of, 29
Positive definite, 526
Principle of superposition, 80
Projection, 96, 177, 528
orthogonal, 177, 199, 222, 501

R

Regression network, 281

Relation, 6
equivalence relations, 6
reflexive, 6
symmetric, 6
transitive, 6

Ring, 26
commutative, 26
division, 27
of polynomials, 28
with unity, 26

Roster form, 4, 6

Rotation, 401, 420

Row rank, 87, 92

Row space, 87

S
Scaling, 98
Semi-group, 23
Sequence, 13
Cauchy, 14, 20, 172
convergent, 13, 19, 172
divergent, 13
functions, 15
limit of, 13, 19
real, 13
Set builder form, 4, 6
Sets, 3
closed, 18
complement of, 5
countable, 14
difference of, 5
disjoint, 6
finite, 4
infinite, 4
intersection of, 5
open, 18
uncountable, 14
union of, 5
universal, 4
Shear, 98
horizontal, 98
vertical, 98
Singular value decomposition, 227
Skew-field, 27
Space
Banach space, 174
Hilbert Space, 188
inner product space, 178
metric space, 17
normed linear space, 163
vector space, 49
Span, 60
State-space representation, 276
Steady state vector, 271
Sub-field, 27
Subgroup, 22
normal, 25, 294
Sub-ring, 27
Subset, 3
Subspaces, 52, 166, 331
direct sum of, 69, 154
invariant, 148, 149
sum of, 67
Sylvester’s inequality, 34, 311, 337

Index

System of linear equations, 38, 259, 312,

330
consistent, 41
homogeneous, 41, 350, 377
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inconsistent, 41
non-homogeneous, 41

T
Theorem, 25
Banach fixed point, 245
Cayley—Hamilton, 131, 280, 421
Factor, 29
First isomorphism, 26, 294, 303
Fundamental theorem of algebra, 29, 147,
473
Gerschgorin’s, 158, 159
intermediate value, 308
Lagrange’s, 25
Pythagoras, 188, 198
Rank—Nullity, 89, 109, 137, 369, 419, 501

Riesz, 210
Riesz Representation, 212

Schur Triangularization, 146
Traffic flow, 265
Triangle inequality, 17, 164

\%

Vector, 36, 49
characteristic, 123
coordinate representation of, 93, 111
dot product, 175, 178
length of, 176
orthogonal, 177
position, 37

Vector addition, 36
parallelogram law of, 38
triangle law of, 37

Vector space, 49, 80, 175, 329

Venn diagram, 5

Vertical line test, 9

Vieta’s formula, 29, 128
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