
Deducing Matching Strings
for Real-World Regular Expressions

Yixuan Yan1,2, Weihao Su1,2, Lixiao Zheng3, Mengxi Wang1,2,
Haiming Chen1,2(B), Chengyao Peng1,2, Rongchen Li1,2, and Zixuan Chen1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{yanyx,suwh,wangmx,chm,pengcy,lirc,chenzx}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing 101400, China
3 College of Computer Science and Technology, Huaqiao University,

Xiamen, China

Abstract. Real-world regular expressions (regexes for short) have a
wide range of applications in software. However, the support for regexes
in test generation is insufficient. For example, existing works lack support
for some important features such as lookbehind, are not resilient to subtle
semantic differences (such as partial/full matching), fall short of Unicode
support, leading to loss of test coverage or missed bugs. To address these
challenges, in this paper, we propose a novel semantic model for compre-
hensively modeling the extended features in regexes, with an awareness
of different matching semantics (i.e. partial/full matching) and match-
ing precedence (i.e. greedy/lazy matching). To the best of our knowledge,
this is the first attempt to consider partial/full matching semantics in
modeling and to support lookbehind. Leveraging this model we then
develop PowerGen, a tool for deducing matching strings for regexes, which
randomly generates matching strings from the input regex effectively. We
evaluate PowerGen against nine related state-of-the-art tools. The evalu-
ation results show the high effectiveness and efficiency of PowerGen.

Keywords: regex · semantics · modeling · generation · matching
string

1 Introduction

As a versatile mechanism for pattern matching, searching, substituting, and
so on, real-world regular expressions (regexes for short) have become an
integral part of modern programming languages and software development,
with numerous applications across various fields [3,13,18,19,31,43]. Previous
research [12,18,53] has reported that regexes are utilized in 30–40% of Java,
JavaScript, and Python software.

Though popular, regexes can be difficult to comprehend and construct even
for proficient programmers, and error-prone, due to the intrinsic complexities

Y. Yan and W. Su—These authors contributed equally.
Zixuan Chen is currently employed at Kuaishou Technology.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 331–350, 2024.
https://doi.org/10.1007/978-981-99-8664-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_19&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_19

332 Y. Yan et al.

of the syntax and semantics involved, resulting in tens of thousands of bug
reports [13,27,30,31,44]. Therefore, it is crucial to offer automated techniques
for test generation and bug finding within regexes. Producing matching strings
for regexes is essential for many tasks, such as automated testing, verifying,
and validating programs that utilize regexes. There have been numerous stud-
ies related to this problem using various techniques [14,25,26,28,29,42,50,52].
However, there are crucial concerns that have been either overlooked or inad-
equately addressed in the existing literature, limiting their utility. We classify
these issues as follows.

Features Support. All existing works lack support for some important fea-
tures. For example, none of the existing works support lookbehind, and only
one work supports lookahead but with soundness errors (see Sect. 2.3). Regexes
are featured with various extended features (or simply called features) such as
lookarounds, capturing groups, and backreferences. An instance of a regex using
a backreference is (.∗)\1, which defines a context-sensitive language {ww|w∈Σ∗}
where \1 is a backreference. In addition, if such an expression is also included
in lookarounds, then those lookarounds effectively encode the intersection of
context-sensitive languages [15]. These show that regexes are not limited to rep-
resenting regular languages [1], and as a result, generating strings for regexes
becomes more involved. For instance, in [15], the authors demonstrated that the
emptiness problem of regular expressions with lookaheads and backreferences
is undecidable. Thus, in many works, these features are often disregarded or
imprecisely estimated. This lack of support can lead to, for instance, poor cov-
erage or unrevealed bugs. Furthermore, based on our analysis of open-source
projects for six programming languages (Java, Python, JavaScript, C#, PHP,
Perl) which yielded 955,184 unique regexes, the average ratio of capturing group
usage exceeds 38%, while the average percentage of lookarounds and backref-
erences is over 4%, while it approaches 10% in C#, thus those features are
non-negligible. Similar observations for JavaScript were also reported by [29].

Subtle Semantic Differences. Regexes have different semantics which can
result in different matching results. For example, there are partial and full match-
ing functions for the regexes in most programming languages, which can lead to
different matching results. For instance, the regex node modules(?=paradigm.∗)
from practical project [19] matches node modulesparadigm under a partial
matching call, but is unsatisfiable under a full matching call. None of the existing
works addressed the different matching semantics of regexes (such as partial/full
matching), thus may lead to wrong results. As another example, backreference
has different semantics in different programming languages. For instance, the
regex (?:(a)b)?\1c can match c in JavaScript, but does not match c in Java,
Python, PHP and C#. See more examples in Sect. 2.3.

Unicode Support. Supporting the Unicode Standard can be useful in the
internationalization and localization of practical software. PCRE and POSIX
standards for regexes defined several operators such as \uFFFF , [:word:] and
\p{L} to represent Unicode code points, improving the usability of regexes. In

Deducing Matching Strings for Regexes 333

modern mainstream regex engines and string constraint solvers [17,24,45], those
operators are common. However, we found the existing tools show incomplete
support for those features.

Various Kinds of Soundness Errors. We also found incorrect outputs gen-
erated by existing works, reflecting logic errors in their implementation which
may be due to the intricacy of the syntax and semantics of regexes. See Sect.
2.3 for details.

To achieve the end, this paper proposes a novel semantic model for compre-
hensively modeling the extended features in regexes with the awareness of dif-
ferent matching semantics (i.e. partial/full matching) and matching precedence
(i.e. greedy/lazy matching). Leveraging this model we then develop PowerGen,
a tool for deducing matching strings for regexes. Specifically, PowerGen first
rewrites the input regex by selecting the appropriate optimization rule based
on the input programming language and rewrites the input regex based on the
information of partial/full matching function. Then it uses Unicode automata
to support a vast class of extended Unicode-related features. Next PowerGen
selects the appropriate induction rules based on the input programming lan-
guage to perform the top-down induction of the sub-expressions of the rewritten
regex. Finally, PowerGen randomly generates matching strings according to the
induction rules and stack compiled from the rewritten regex, which effectively
identifies unsatisfiable cases.

We evaluate PowerGen by comparing PowerGen against nine state-of-the-
art tools on publicly available datasets. Our evaluation demonstrates the high
effectiveness and efficiency of PowerGen.

The contributions of this paper are listed as follows.

– We propose a novel semantic model for regexes, which comprehensively mod-
els the extended features, with the awareness of different matching semantics
and matching precedence. To the best of our knowledge, it is the first one to
consider partial/full matching semantics in modeling and supporting lookbe-
hind.

– Based on our model, we develop PowerGen, a tool for deducing matching
strings for regexes. To this end, we devise novel algorithms that randomly
generate matching strings according to the input regex, which effectively iden-
tifies unsatisfiable cases.

– Evaluation shows the high effectiveness and efficiency of PowerGen.

2 Background

2.1 Regex

Let Σ be a finite alphabet of symbols and Σ∗ be the set of all possible words
(i.e. strings) over Σ, ε denotes the empty word and the empty set is denoted by
∅. For the definition of standard regular expressions we refer to [55].

334 Y. Yan et al.

Table 1. The Results from Each Tool for Examples in Practical Projects

No. Regex Egret dk.brics Mutrex Generex Exrex Xeger (O’Connor) Randexp.js ExpoSE Ostrich

#1 ^<(\S+?@@)> <@@>(✓) – – – <@> <QrpwE^bd@>(✓) – <U + 00E7@>(✓) <@>

#2 \boldgnu\b.*\bformat\b oldgnu format(✓) – – – ...8Uformat oldgnuX... oldgnuB... error oldgnuformat

#3 (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)\11 abcdefghijkk(✓) – – – abcdefghijkk(✓) abcdefghijkk(✓) abcdefghijk unsat –

#4 (?<foo>xyz)(?<bar>\d+)abc\k<bar> xyz0abc0(✓) – – – xyz2375022abc2375022(✓) xyz14369195abc14369195(✓) error error –

#5 ^(?:(a\2)(b))+$ – – – – – – ababbabbab... ab(✓) –

#6 (?:(){0}(?:(?:){0})\1)|(?:()(?:(?:))\2) error – – – error error ε(✓) unsat –

#7 ^(?:(d)(a\2))+$ error – – – error error dadaadaaa... error –

#8 (a)(?=\1)\w+ – – – – – – – unsat –

In practice, real-world regular expressions (regexes) are pervasive in diverse
application scenarios. A regex over Σ is a well-formed parenthesized formula con-
structed by, besides using the constructs for standard regular expressions and
character classes, as well as using the following operators (i) capturing group (E);
(ii) named capturing group (<name>E); (iii) non-capturing group (?:E); (iv)
lookarounds: positive lookahead (?=E1)E2, negative lookahead (?!E1)E2, pos-
itive lookbehind E1(?<=E2), and negative lookbehind E1(?<!E2); (v) anchors:
word boundary \b, non-word boundary \B, start-of-line anchor ^, and end-of-line
anchor $; (vi) greedy quantifiers: E?, E∗, E+, and E{m,n}; (vi) lazy quantifiers:
E??, E∗?, E+?, and E{m,n}?; (vii) backreference \i and (viii) named backrefer-
ence \k<name>, etc.

In addition, E?, E∗, E+ and E{i} where i ∈ N are abbreviations of E{0,1},
E{0,∞}, E{1,∞} and E{i,i}, respectively. E

{m,∞}
1 is often simplified as E

{m,}
1 .

Following symbols (,), {, }, [,], ^, $, |, \, ., ?, * and + are escaped with the
escape character \ in Σ. The language L(E) of a regex E is the set of all strings
accepted by E.

2.2 Research Problem

In this paper, we focus on the research problem of finding matching strings which
depends on the partial/full matching semantics in regexes. We present related
concepts below.

In most programming languages there are partial and full matching functions
for the regexes (e.g. the matches and find functions in Java for full matching
respectively partial matching). For a regex E, if it is used with the full matching
function, then a string w is a matching string of E if w ∈ L(E). If E is used
with the partial matching function, then a string w is a matching string of E
if w ∈ L(.∗E.∗) .

2.3 The Current Status of Existing String Generation Tools

We identified 9 state-of-the-art string generation tools for comparison which
can be categorized into three groups: (1) string generation based on automata,
including Egret [25], dk.brics [35], Mutrex [2] and Generex [54]; (2) string gen-
eration based on AST (Abstract Syntax Tree), including Exrex [49], Xeger
(O’Connor) [37] and Randexp.js [22]; (3) string generation based on SMT (Sat-
isfiability Modulo Theories) solvers, including ExpoSE [29], and Ostrich [14]. It

Deducing Matching Strings for Regexes 335

Regex

Language

Func�on

Random Matched String Generator

Matched String

Unicode Automata Compiler

AST with Unicode
Automata

Reduction Rules

AST of
Regex

Induction System

Stack

Induc�on
Rules

Strings

Language Language

Fig. 1. The Framework of PowerGen

should be noticed that string constraint solvers do more work than string gener-
ators: they handle word equations and other more complicated string constraints
like ReplaceAll.

We notice that, even under the features they claim to support, errors exist
and are predominantly on features like lazy quantifier, word boundary, back-
reference. Examples1 from practical projects [19] are listed in Table 1 with cor-
responding strings generated by each tool mentioned above, where the correct
results are marked with “(✓)”. In addition, “–” indicates that the tool does
not support one or more features in the regex, error indicates run-time errors,
and unsat indicates the tool determines that the regex cannot be satisfied with
any input. It is evident that certain tools exhibit flawed handling of lazy quan-
tifier, word boundary, backreference and lookaround. In the second example,
the .* should be constrained to favor \b, but Exrex, Xeger (O’Connor), Rand-
exp.js and Ostrich do not take that into account and gives wrong results, and
Expose returns an error. For the third regex, Randexp.js and ExpoSE, yielding
abcdefghijk and unsat respectively, fail to support more than 9 backreferences.
In the case of the expression ^(?:(a\2)(b))+$ semantic differences arise between
languages. JavaScript is capable of supporting backreferences preceding the cor-
responding capture group and generating the correct output, such as ab, abab.
Nevertheless, Randexp.js fails to return the correct string. For the given exam-
ple 6, the right node of the logical OR operator can accept an empty string.
However, Egret, Exrex and Xeger(’Connor) return an error and ExpoSE returns
unsat. Moreover, none of them are capable of correctly handling a self-referenced
backreference like example 7, or combining a backreference with lookaround as
shown in example 8.

1 To facilitate error identification, we simplify lengthy regexes by isolating the prob-
lematic fragment.

336 Y. Yan et al.

3 Overview

In this section, we provide an overview of our approach. Our method, depicted in
Fig. 1, encompasses four main components: reduction rules, Unicode automata
compiler, induction system, and random matching string generator. Initially,
the Reduction Rules module takes the regex, the language, and a matching
function to form an AST, addressing the semantic divergence between partial
and full match calls. This simplified regex AST and language are then forwarded
to the Unicode Automata Compiler, which develops automata to integrate
the Unicode 15.0.0 standard into UTF-8 and compiles the AST leaves into the
Unicode Automaton. The Induction System component, chosen based on the
input language, converts the AST into induction rules and stack. Lastly, the
Random Matching String Generator uses these induction rules and stack
with capture information to generate matching strings. By iteratively executing
the generation function, multiple matching strings are produced.

In the following section, we exemplify our approach by highlighting the
intractable part of a regex Ψ = (?:=(”)?[^; ”\s]∗\1) from Node.js version 18.16.0.
The original regex is ^(?:<[^>]∗>)(?:\s∗;\s∗[^;"\s]+(?:=(")?[^;"\s]∗\1)?)∗$,
which is used to validate the Web Linking header within HTML documents.
This validation process ensures that the input value is free from any syntacti-
cally invalid Uniform Resource Identifiers (URIs). A legal input of Ψ is ="style"
and the backreference referred to the first capturing group (")? ensures the quo-
tation marks " are matching, e.g. = "style should be rejected by Ψ , but = style
is acceptable.

4 Modeling and String Generation Algorithms

In this section, we present the details of our model for regex semantics. First, we
describe our extension of functions as a foundation for our model in Sect. 4.1.
For optimizing the efficiency of our tool, we implemented some reduction rules in
Sect. 4.2. Then, we introduce a new automaton model for effective representation
and Boolean operations for Unicode character classes in Sect. 4.3. We provide
the induction rules from the AST in Sect. 4.4. Finally, we give a brief account
of the random generation algorithms in Sect. 4.5.

4.1 Extension of Functions to Regex

Among the basic functions to synthesize position automata [23], according to
the nomenclature in [11], the output of first, follow, last functions are called
position sets. Here we generalize the nullable, first and last functions to regexes
by giving computation rules for operators of regexes, which is necessary for
modeling regexes. Due to space limitation, the details of computation rules are
shown in our complete version.2 We also deploy these functions on tasks such
as processing semantic of anchors and identification of unsatisfiable cases, as
heuristics to avoid the algorithms that require exponential time [46].
2 https://cdn.jsdelivr.net/npm/dataset2023/.

https://cdn.jsdelivr.net/npm/dataset2023/

Deducing Matching Strings for Regexes 337

Fig. 2. Reduction Rules for Regex

Definition 1. For a regex E over Σ, we define the following functions:

first(E) = {a | aw ∈ L(E), a ∈ Σ, w ∈ Σ∗} (1)
last(E) = {a | wa ∈ L(E), a ∈ Σ, w ∈ Σ∗} (2)

nullable(E) =

{
true, if ε ∈ L(E)
false, otherwise

(3)

The definitions effectively compute the possible prefix/suffix of length
one from a regex, without a full traversal on the AST. For example, for
E = ^\b[^\d]{2,4}(?<!\w), first(E) = {[a-zA-Z]}, last(E) = {[^\w]},
nullable(E) = false. We also notice those functions for backreferences depends
on the capturing information during the generation, which can not be soundly
computed statically.

4.2 Reduction Rules for Regex

We implemented several reduction rules shown in Fig. 2 to optimize the efficiency
of our tool. Some of these reduction rules above are derived from existing regex
engines and practical tools. For instance, mechanic of [c1c2]|[c1c3] =⇒ [c1c2c3]
is also found in the C# regex library. The others provide significant help in
terms of efficiency and precision. The reduction rules we show here are common
among our language-dependent reduction rules according to their original engine
implementation.

We handle the semantic differences of partial/full match calls in the reduction
system. For tight relationships between function calls and anchors, we consider
semantic equivalence reduction by appending .∗ in an unanchored prefix/suffix,
and none when anchored under partial match call. We also consider the full
matching semantic by appending ^ and $. Inside our algorithms, anchors are
processed as empty characters with constraints and for the sake of succinctness,
we support start-of-line/end-of-line anchors implicitly. For our running example
Ψ , the ? and ∗ operators are rewritten into {0,1} and {0,∞}, thus the output is
(?:=("){0,1}[^;"\s]{0,∞}\1). However E^ and $E when E is not nullable will be
considered unsat in the reduction system and directly return ∅.

4.3 Effective Representation of Unicode Character Classes

We build automata in a top-down manner to encode the Unicode 15.0.0 [51]
standard into UTF-8 in Algorithm 1 and traverse the automata to generate

338 Y. Yan et al.

acceptable strings in UTF-8 byte-by-byte. This structure makes string generation
feasible in acceptable time. In situations when ASCII flags (e.g. re.A in Python)
are enabled, our representation is simplified into ASCII ranges.

In Algorithm 1, each Unicode character sets ci when transformed into UTF-
8 encoding composed with several runes (ranges) cj

i defined on a byte. After
initialization, Algorithm 1 first checks whether the character class is ∅. If not,
the algorithm iterates the Unicode ranges c1, c2, .., cr in the character class cc,
initializes the current state A as the initial state init and j as the height of
each ci.

Algorithm 1: Unicode Automa-
ton
Input: An Unicode character class

cc = [c1, c2, ..., cr]
Output: Initial state init of

Unicode automaton or ∅

otherwise
1 init ← 0; F ← ∅;
2 if cc = ∅ then
3 return ∅;

4 for i ∈ 1...r do
5 A ← init; j ← len(ci);

6 while j ≥ 0 ∧ δ(A, cji) �= ∅ do

7 A ← δ(A, cji); j ← j − 1;

8 while j ≥ 0 do

9 δ(A, cji)← S; A ← S;
10 j ← j − 1;

11 if A ∈ F then
12 F ← F ∪ {A}
13 else
14 F ← {A}
15 return init;

Then Algorithm 1 checks whether
j ≥ 0 and whether there has been a
transition with cj

i from the current state
A to a non-null state, if so make this
state as the current state and substract
j. If there is no such non-null state and
j ≥ 0, we build a new state S, and mark
a transition δ(A, cj

i) to S, then take S
as the current state and substract j.
Finally, we mark the final states when
j = 0.

The Unicode automaton allows us
to support a vast class of Unicode-
related extended features, which is a
major factor of the high usability of
our tool. The Unicode character classes
effectively define an automaton of a
finite language with more succinctness
than those translated to standard regu-
lar expressions. The cost from Boolean
operations among Unicode automata,
including intersection [40], subset con-
struction [41], has a major impact on
the performance of our tool. To miti-
gate the cost, we execute those algorithms lazily, e.g. for [^; ”\s] in our running
example Ψ , the complementation of [; ”\s] is computed only if a character is to
be generated from this character class, instead of pre-processing and rewritting
them in advance [17], thus guarantee the efficiency. The other character classes
in Ψ are also compiled into Unicode automata.

4.4 Induction System for Regex

To comprehensively model the semantics of extended operators and generate
matching strings, we propose the induction system.

The induction rules are composed of configurations and logical constraints,
where a triple (E,w,C) is called a configuration, where E is a regex, w is
a variable representing strings that E defines, and C is a stack preserving

Deducing Matching Strings for Regexes 339

the generated strings from the referenced subexpressions. To comprehensively
model the semantics of regex operators, the extension of the basic functions
defined in Sect. 4.1 is necessary for our induction system. Also the syntactic
and semantic differences between dialects of regexes can hardly be negligible.
To tackle this problem, we designed different induction rules for string gener-
ation, according to specified languages from the user. From the categorization
in [5], we consider ε-semantics and ∅-semantics, and differentiate regex dialects
in implementation details, e.g. \w is equal to [a-zA-Z0-9] in Python mode
and [\p{L}\p{Mn}\p{Nd}\p{Pc}] in C# mode. The induction rules we show
here are designed for JavaScript regexes. In our induction system, specialized
induction rules for other dialects of regexes can also be found.

(CONCAT)
(E1E2, w1w2, C)

(E1, w1, C) (E2, w2, C)

(ALTER)
(E1|E2, w1w2, C)

(E1, w1, C) ∨ (E2, w2, C)

(GREEDY)
(E{m,n}

1 , w1w2...wn, C)
∧

m<j≤n

(E1, wj |ε, C)
∧

0<i≤m

(E1, wi, C)

(LAZY)
(E{m,n}?

1 , w1w2...wn, C)
∧

0<i≤m

(E1, wi, C)
∧

m<j≤n

(E1, ε|wj , C)

(CAPTURE)
((nE1)n, w, C)

∀\k, \k /∈ E1 ∧ (E1, w, Cn ← w)

(WBOUND)

(E1\bE2, w1xyw2, C)
(E1, w1x,C) ∧ x ∈ last(E1) ∩ \w (E2, yw2, C) ∧ y ∈ first(E2) ∩ \W

∨ (E1\bE2, w1xyw2, C)
(E1, w1x,C) ∧ x ∈ last(E1) ∩ \W (E2, yw2, C) ∧ y ∈ first(E2) ∩ \w

(NON-WBOUND)

(E1\BE2, w1xyw2, C)
(E1, w1x,C) ∧ x ∈ last(E1) ∩ \w (E2, yw2, C) ∧ y ∈ first(E2) ∩ \w

∨ (E1\BE2, w1xyw2, C)
(E1, w1x,C) ∧ x ∈ last(E1) ∩ \W (E2, yw2, C) ∧ y ∈ first(E2) ∩ \W

∨ (E1\BE2, w, C)
(E1, ε, C) ∧ nullable(E1) (E2, ε, C) ∧ nullable(E2)

(BACKREF)
(\i, w,C)

(\i, w ← Ci, C)

(POS-LA)
((?=E1)E2, w1w2, C)

(E1.∗, w1, C) ∧ (E2, w1w2, C)

(NEG-LA)
((?!E1)E2, w1w2, C)

(¬(E1.∗), w1, C) ∧ (E2, w1w2, C)

(POS-LB)
(E1(?<=E2), w1w2, C)

(E1, w1w2, C) ∧ (.∗E2, w2, C)

(NEG-LB)
(E1(?<!E2), w1w2, C)

(E1, w1w2, C) ∧ (¬(.∗E2), w2, C)

The rules for standard operators are self-explanatory. For rule GREEDY,
the original configuration unfolds this operator into a conjunction of series of
configurations to generate strings separately. For rule LAZY, it makes the string
that the expression matches as short as possible.

We constrain the expressive power of the regex in the rule CAPTURE as fol-
lows. When processing a Python/C# regex, we disallow backreferences to appear
inside any referenced capturing group. And when the user specifies JavaScript
regex for the input, the first assertion in the post-condition is canceled and the
unassigned backreference is configured as ε by default. The configuration also
pushes the generated string from its configuration into stack C for reference. As
we do not rewrite quantifiers like in [29], the generated strings from the same
capturing group will overwrite the stack of index i during generation. Notice

340 Y. Yan et al.

that we do not present induction rule for non-capturing groups, since those are
considered useless on AST as in regex engines like C#’s, and the unreferenced
capture groups are considered non-capturing as in Java regex engine. Thus for
those capturing groups not referenced within the regex, we treat them as non-
capturing groups. For succinctness, the logic for named capturing groups is also
contained in the rule CAPTURE.

In rule BACKREF, the configuration simply reads the context from the latest
assigned value of the stack Ci into the string variable. For our running example
Ψ , last and nullable will output unknown and proceed to generate a character
from (")?, when the generation by the capturing group requires any of those
functions from this exact capturing group, our algorithm returns unknown to
avoid non-termination. Once a character " is generated from the sub-regex (")?,
the above functions are considered decidable, i.e. first(Ψ) = {=}, last(Ψ) = {"},
nullable(Ψ) = false. Also, named backreferences are contained in this rule.

From ES2018 [20], lookbehinds are introduced into the standard. In the rules
for lookarounds, take positive lookahead as an example, w1 should belong to E1.

∗,
w1w2 is generated from E2, the result is the conjunction of two configurations,
i.e. (?=a)\w+ can generate abbbb even in full match mode. The most intractable
case is when lookarounds are decorated by repetitions: the lookarounds also put
limitations on each repeating subexpression adjacent to it, our induction system
shows a natural advantage in handling these cases.

In rules WBOUND and NON-WBOUND, we categorize the situations by the
first and last functions of subregexes. For instance, in regex ^\b(&|ab|c), & is
not satisfiable. Thus we generate a character from first((&|ab|c))∩\w and prune
the configuration of &. Also, the rules contain the case when the word-boundary
appears at the start or end of the regex. And a Non-word boundary operator
can generate ε when E1 and E2 are both nullable. If none of the situations are
satisfied, the induction system will return ∅.

Furthermore, since the complement of a regular language requires exponential
time [21,46], we also apply heuristics for identification of unsatisfiable cases. For
E1(?<!E2), if E2 is nullable, the complement of E2 is ∅, thus the regex is
unsatisfiable. Similar strategies are applied to other zero-width assertions.

Back to running example Ψ , the result from applying induction rules is shown
as below. Notice we simplified the induction process to improve readability.

((?:=("){0,1}[^;"\s]{0,∞}\1),w1w2w3w4,C)
(=("){0,1}[^;"\s]{0,∞}\1,w1w2w3w4,C)

(=,w1,C)

∧

0<j≤1
(("),w2|ε,C)

∧

0<j≤1
(",w2|ε,C1←w2|ε)

([^;"\s]{0,∞},w0...j
3 ,C)

∧

0<j≤∞
([^;"\s],wj

3|ε,C)
(\1,w4←C1,C)

4.5 String Generation Algorithm

In this section, we introduce our algorithm PowerGen, which takes a regex,
the corresponding language, and the matching function as inputs, and outputs
matching strings.

Deducing Matching Strings for Regexes 341

Our algorithm first conducts a syntax check conforming to the regex syntax
rules of the provided language, selects the corresponding reduction rules based
on the language, and creates an AST. The reduction rules handle the seman-
tic difference of partial/full match calls in the corresponding language. It then
forwards the simplified regex AST and the language as input to the Unicode
automata compiler. It develops automata to incorporate the Unicode 15.0.0 [51]
standard into UTF-8 in Algorithm 1, and compiles the AST leaves into Unicode
automata. Depending on the language, we choose the appropriate induction sys-
tem. This system takes the AST as input and compiles it into induction rules
with stack storage. Finally, our random matching string generator receives induc-
tion rules and stack information as input and produces a matching string as an
output. The generator performs a top-down traversal on the induction rules to
generate strings. All of the Boolean operations of induction rules are performed
on Unicode automata in Sect. 4.3. If the induction system returns ∅, PowerGen
outputs unsat. By running the generation function repetitively, multiple match-
ing strings are produced, since our generation strategy is random. Returning to
our running example, we can easily obtain random sentences from the string
variable of the root configuration. One of the strings generated is =":z2L@Q",
while the “sound” modeling in [29] mistakenly returns =".

5 Evaluation

We implemented our algorithms in C++, and conducted experiments on a
machine with 192-core Intel Xeon E7-8850 v2 2.30 GHz processors and 2048
GB of RAM, running Ubuntu 16.04.5 LTS. Our algorithm can generate match-
ing strings in multiple languages, including Python, JavaScript, Java, PCRE2,
and C#. Our empirical investigation aims to address the following research ques-
tions:

RQ1. When randomly generating strings, does accurate modeling of
regexes improve string generation efficiency?

RQ2. Is our support for full matching and partial matching better
than other tools, which only support one kind of matching
semantics?

RQ3. How does our approach work in practical projects?

To address RQ1, we compare our approach with existing string-generation
tools by evaluating our algorithm on publicly available datasets. We select repre-
sentative examples to demonstrate the correctness of all the tools in generating
strings according to their specified matching semantics, thus validating RQ2.
Lastly, we assess the performance of our approach in comparison to other tools
in practical projects to clarify RQ3.

5.1 Datasets

Our experiment was conducted on a benchmark from [19]. This benchmark
contains 537,806 unique regexes extracted from 193,524 programs written in 8

342 Y. Yan et al.

programming languages, including JavaScript, Java, PHP, Python, Ruby, Go,
Perl, and Rust. The unique regexes represent the set of expressions after remov-
ing duplications.

5.2 Tools for Comparison

We compared nine string generation tools (see Sect. 2.3). We ensured all tools
were configured according to their original configurations as stated in their
papers or documentation, respectively. Egret, dk.brics, Mutrex and Generex
(extended on dk.brics) did not specify the regexes they supported in which pro-
gramming language, so we classified them as Unspecific support. Meanwhile,
Exrex and Xeger focused on Python regexes, and Randexp.js, ExpoSE and
Ostrich specialized in JavaScript regexes. ExpoSE supports partial matching
semantics, while the others support full matching semantics, as shown in Table 2.

Table 2. Language-Matching Calls-Features Support by String Generation Tools

Toolsa Egr DK Mut Gen Exr Xeg Rnd Ost Exp PowerGen

Language Unspecified Python JavaScript Multi-Language

Matching Calls Full Partial Full&Partial

F
e
a
tu

re
s

Character Class ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Greedy Quantifier ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lazy Quantifier ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

Unicode (\uxxxx) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Capture/Non-Capturing Group ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Input Start/End (^$) ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Start/End-of-line Anchors ✓ ✗ ✗ ✗ ✓ ✓ – – – ✓

Start/Reset match ✗ ✗ ✗ ✗ – – – – – ✓

Word/Non-word Boundary ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Lookahead ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Lookbehind ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Backreference ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Ignore Case, Multi-line, Single-line Flags ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Extended Flag ✗ ✗ ✗ ✗ ✓ ✓ – – – ✓

Unicode Flag ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Comment Group ✗ ✗ ✗ ✗ ✓ ✓ – – – ✓
a abbreviations for each tool in this table, along with their respective definitions, are
as follows: Egr (Egret), DK (dk.brics), Mut (Mutrex), Gen (Generex), Exr (Exrex),
Xeg (Xeger (O’Connor)), Rnd (Randexp.js), Exp (ExpoSE), Ost (Ostrich)

5.3 Evaluation of Random String Generation

We compared the feature support for each tool. The results are presented in
Table 2. The “–” in Table 2 indicates that the programming language specified
by the tool lacks support for that feature, and the “✗” signifies that the corre-
sponding tool does not support a feature. Our algorithm supports all the features
listed earlier.

To begin with, we evaluate the impact of random generation. Through statis-
tical analysis, the language-specific tools are based on the regexes of the Python
or JavaScript languages. Therefore, in full matching comparisons, we evaluate
each language-specific tool in its own language, and unspecific tools in both

Deducing Matching Strings for Regexes 343

Python and JavaScript. For partial matching comparisons, there is only one tool,
ExpoSE, to compare with us. We filtered the dataset to ensure syntax correct-
ness. We assess the accuracy rate and time of the tools, with results depicted in
Table 3, where the full match validation are shown on the left and the JavaScript
partial match validation on the right. The first line on the left is based on Python
validation results, while the second line refers to JavaScript validation results
(achieved by adding start and end-of-line anchors before and after the regex).
The accuracy rate is defined as: AccuracyRate = 1

|D|
∑|D|

i=1 Match(ri, si). In the
given formulas, ri denotes the i-th regex in the dataset D, where |D| refers to the
size of D. si denotes the string generated by ri by the tool. Match(ri, si) rep-
resents the validation of string si using the language’s matcher. It returns 1 for
success and 0 for failure. It is noteworthy to mention that Ostrich, ExpoSE, and
our approach perform checks for unsatisfiability. We classify regexes as unsat-
isfiable if all tools determine them to be either unsatisfiable or incorrect. The
memory usage refers to the average maximum resident set size.

Table 3. Experimental Results of String Generation Tools under Specific Language

Matching calls Full match Partial match

Tools Egr DK Mut Gen Exr Xeg PowerGen Exp PowerGen

Accuracy (%) 90.90 39.94 40.54 38.87 92.33 92.71 97.40 77.84 97.72

Time (s) 0.154 0.489 3.346 0.610 0.146 0.159 0.004 53.14 0.004

Memory (KB) 13535 47522 109772 52020 11021 9652 5835 90132 4975

Tools Egr DK Mut Gen Rnd Ost PowerGen

Accuracy (%) 90.92 35.82 44.62 40.93 91.43 93.69 97.71

Time (s) 0.153 0.471 3.354 0.599 0.172 8.540 0.004

Memory (KB) 13522 47477 110737 52078 32418 138913 4796

Fig. 3. Experimental Results of String Generation Tools on Feature Dataset

The experimental results show that PowerGen achieves the highest accuracy
in random string generators among state-of-the-art tools. In Python full match-
ing validation, PowerGen achieved the highest accuracy of 97.40%, followed by
Exrex and Xeger (O’Connor) with about 92%, and the worst performer was DK,
Mutrex and Generex with about 40%. For JavaScript full matching validation,

344 Y. Yan et al.

to be ranked according to accuracy, PowerGen achieved the highest percent-
age of 97.71%, followed by Randexp.js and Ostrich with about 92%, while DK,
Mutrex and Generex achieved only 35.82%, 44.62% and 40.93% respectively.
For JavaScript partial matching validation, PowerGen is about 20% higher than
ExpoSE. Additionally, PowerGen generates correct results for all the examples
mentioned in Sect. 2.3.

Regarding efficiency, in the full matching comparisons, the fastest among
other tools is Exrex with 0.146 s, while our tool only takes 0.004 s, which has
achieves a 36.5x speedup over Exrex. Moreover, our tool outperforms the slowest
tool, Ostrich, by a factor of 2136. In the partial matching comparisons, we are
up to ten thousand times faster than ExpoSE. We also expect our tool to be
integrated into other softwares to improve their efficiency. Regarding memory
usage, our memory usage is the least among tools in comparison.

To further analyze the experimental results, we then use the AST parsing
tool to parse the regexes in the dataset and divide the dataset according to
regex features. It should be noted that a regex can have multiple features thus
can be split into multiple features categories. Due to the space limitation, we
only present the comparison results under full matching calls. We calculate the
accuracy rate for each feature and plot the Fig. 3(a) and 3(b) for Python and
Javascript. The x-axis represents different features, the y-axis represents different
tools, and the values indicate the accuracy rate.

The Fig. 3(a) and 3(b) indicate that our tool achieved the highest accuracy
rate for each feature, where lookbehind is only supported by our tool. Among
other tools that support Python regex syntax, their support for word boundary
is relatively poor. Besides, for the tools that claim to support JavaScript regex
syntax, their accuracy for word boundary, non-word boundary, and backreference
achieves about 80%, and even 0% in some cases due to lack of support.

Summary to RQ1: By better supporting features, in the full matching com-
parisons, our algorithm achieves the highest accuracy for both Python and
JavaScript. Regarding efficiency, our tool is several dozen times faster than
the fastest among existing tools. In the partial matching comparisons, Our
accuracy is 20% higher than ExpoSE while being faster by a factor of ten-
thousandth.

Table 4. The Results by Each Generator for Examples

Regexa Possibly Acceptable Results Tools

Egr DK Mut Gen Exr Xeg Rnd Ost Exp PowerGen

Full Partial Full Partial Full Partial

\b\ $ unsat a$ unsat – – – $ $ $ unsat $ unsat a$

\b\u0023 unsat a# unsat – – – $ $ $ unsat $ unsat a#

node modules(?=paradigm.*) |
(paradigm-gulp-watch)

paradigm-
gupl-watch

node
modulesparadigmaaa

– – – – – – – – unsat paradigm-
gulp-watch

node
modulesparadigmaaa

"""(?=") unsat """" – – – – – – – – unsat unsat """"

\n|(?=\?>) \n ?> – – – – – – – – unsat \n ?>

(?=a{2,5})\w unsat aa – – – – – – – – unsat unsat aa

.(?<=\d{2,61}) unsat 11 – – – – – – – – unsat unsat 11

https:\/\/(?=\w{2,3}). unsat https://aa – – – – – – – – unsat unsat https://aa

a All the example regexes in this table are from [19]. We simplified some lengthy regexes
for presentation.

Deducing Matching Strings for Regexes 345

5.4 Statistics for Full Matching and Partial Matching

The actual project library contains both full and partial matching capabilities.
Unfortunately, the tools being compared only support one kind of matching
semantics, which is inadequate for dealing with this situation. Furthermore, there
are many logical errors in these tools regarding the semantics they claim to sup-
port. In this section, we analyse some representative examples from the dataset
under full and partial matching calls in Table 4.

1. \b\$
Under full matching call, the regex above is unsatisfiable, while under par-
tial matching it should return a string from \w\ $. Among those tools sup-
porting full matching semantic, dk.brics, Mutrex and Generex lack support
for word boundaries, Exrex, Xeger(O’Connor) and Randexp.js returns $,
which is incorrect. ExpoSE’s output $ is erroneous under partial match, while
PowerGen is capable to find the correct results under both matching seman-
tics.

2. node modules(?=paradigm.∗)|(paradigm-gulp-watch)
Under full matching, paradigm-gulp-watch is the matching string,
while for partial matching, results from node modulesparadigm.∗ or
paradigm-gulp-watch are acceptable. Although ExpoSE claimed to support
lookahead, it returned unsat, which is incorrect for both full and partial
matching; PowerGen generates the correct answers under both cases.

3. """(?=")
For full matching, this regex is not satisfiable. In partial matching, lookaround
requires that after matching three quotes, a quote must follow, resulting in
the generation of four quotes. ExpoSE returns unsat, which is incorrect in
the case of partial matching. In contrast, our result is accurate in both full
and partial matching scenarios.

4. (?=a{2,5})\w
For full matching, this regex is unsatisfiable. And under partial matching, a
string aa is acceptable. ExpoSE returned unsat, which is wrong under partial
matching, while our results are correct under both cases.

The other examples in the table are similar to four examples above.

Summary to RQ2: By considering the distinctions between full matching
and partial matching, our algorithm can generate correct strings for different
semantics.

346 Y. Yan et al.

5.5 Results on Real Projects

Table 5. Examples in PyPI (Python) Project Library

Tools
FileName Pattern Matching calls

Egr DK Mut Gen Exr Xeg PowerGen

\w{1,16} full matching – – – – – – 7.../mcdre

forged

plugin.py

(?<=\u64027)

!!MCDR[\w]∗

(?=\u6402)

partial matching – – – – – –
\u64027!!MC

DR\u6402

[a-zA-Z0-9. -]+@

[a-zA-Z0-9. −]{2,}

\.[a-z]{2,4}
partial matching – – – – – - -@ddg.qq

[a-zA-Z0 − 9. -]+@

[a-zA-Z0-9. -]{2,}

\.[a-z]{2,4}
full matching evil@–.aaaa ---.aa ---.ab(✗) error

rhxbe@9

c60bHn7...

g@HOZGmxj8

.meuy
@kzz.dd

.../conf

igurati

on.py

(?P<heures>\d+)[h:]

(?P<minutes>\d+).+?

(?P<value>[a-zA-Z0-9\.]+)

partial matching – – – – - -
001:77\ud90b

\udf013

(?:(?<=\s)|(?<=\W)|

(?<=^))(%\w)|(\
{.∗? \})(?=\s| \W|$)

partial matching – – – – – – %1
.../prep

rocessi

ng.py
ˆ{.∗?}$ full matching ε – – – {bqs-$tx} {} {}

We inspected a large number of projects in PyPI [39], Maven [32], npm [36] and
other project libraries, and found that many of them contain various matching
calls within the same project. In Table 5 and 6, we present a few examples
of this phenomenon. Similar to RQ1, we conducted experiments in languages
supported by each tool. It can be seen that other tools give wrong results in
most examples due to not supporting some features and/or the matching calls
(indicated by –), run-time errors (indicated by error), or others (indicated by ✗).
Our tool consistently produces the correct results thanks to considering different
matching semantics and supporting a wider range of extended features.

Summary to RQ3: Our approach is highly effective in real projects due to
in-depth understanding of different matching semantics, as well as our com-
prehensive support for more extended features.

Table 6. Examples in Maven (Java) Project Library

FileName Pattern Matching calls Tools

Egr DK Mut Gen PowerGen

.../JDBCUserStore Manager.java (\∗)\1+ full matching ∗ ∗ ∗ – – – ∗ ∗ ∗∗
(?<!\\)\∗ partial matching – – – – ”∗

.../Path.java /+ partial matching – – – – ///

\p{Sc}+: full matching – error error error $:

.../ImdbParser.java \u00bb partial matching – – – – \u00bb

(?i)Country.∗ full matching – – – – Country\udbb4\ude5c

.../OpSumIf.java .∗(?<! ∼)\ ∗ .∗ full matching – – – – ∗
(?<! ∼)\∗ partial matching – – – – @∗
(?<! ∼)\? partial matching – – – – ?

Deducing Matching Strings for Regexes 347

6 Related Work

Matching Semantics and Extended Features. Leftmost-longest (POSIX-
type) and Leftmost-greedy (PCRE-type) policies are two popular disambigua-
tion strategies for regular expressions. However, POSIX implementations were
found error-prone [16]. Okui and Suzuki [38] formalized leftmost-longest seman-
tics and extended position automata [23] with leftmost-longest rule. Sulzmann
and Lu extended Brzozowski’s derivatives [7] to POSIX parsing problem [48].
Berglund et al. gave a formalization of Boost semantics for its combination of
POSIX semantics and capturing groups [4]. Regular expressions with backref-
erences were first proposed by Aho in 90s [1]. Câmpeanu and colleagues gave
rigorous formalisms and various properties [8–10] for regular expressions with
backreferences. Recently Berglund and van der Merwe investigated theoretical
aspects of regex with backreferences [5]. On the theoretical foundation for looka-
heads, Miyazaki and Minamide [33] extended Brzozowski’s derivatives [7] to
lookaheads. Recently Berglund et al. [6] proposed a model based on Boolean
Automata for regular expressions with lookaheads, and gave state complexity
results. In 2022, Chida and Terauchi [15] gave the first formal study on regexes
with both backreferences and lookaheads.

String Generation Toolkits. The Automaton Library [35] compiles a regex
into an ε-NFA, and implements interfaces for random string generation.
Egret [25] has a partial support for regexes to find inconsistency between regexes
and specifications, it was found their tool lacks support for Unicode-related fea-
tures. Reggae [26] supports string generation for regular expressions with inter-
section and complement operators; it also mentions that supporting lookarounds
and boundaries is challenging. Veanes et al. [52] proposed Rex, which can be
used for regular expression testing. Due to the cost of determinization on their
proposed symbolic automata based on the construction of ε-NFAs, the string
generation of Rex is not efficient. Loring et al. [29] claimed their model supports
the complete regex language for ES6, but for lookarounds decorated by repeti-
tions, ExpoSE seems to fail to give a correct result. Chen et al. [14] proposed
a novel transducer model, namely PSST, to formalize the semantics of regex-
dependent string functions, but backreference and lookarounds are still on their
future work.

This paper and [47] both propose novel methods for modeling regexes. How-
ever, they develop different techniques because the problems they solve are differ-
ent. The algorithmic differences are listed as follows: firstly our implementation
is platform-independent based on induction rules instead of Z3 [34]. Secondly
in [47] authors introduced the length constraint in modeling regex operators
for checking satisfiability, which is insufficient to deduce fixed-length matched
strings for generic purpose. Thirdly since the matching functions for regexes
are ubiquitous in practical programs, for the first time we consider different
matching semantics in modeling regexes for deducing matching strings. Also we
constrained the expressive power of the input regex by induction rules to ensure

348 Y. Yan et al.

the completeness of our algorithm within a fragment of the class of regexes,
while in [47], authors introduced a CEGAR (counterexample-guided abstraction
refinement) scheme which makes their algorithm incomplete.

7 Conclusion

We propose PowerGen, a tool for deducing matching strings for regexes. It is
based on a novel semantic model for regexes, which comprehensively models
the extended features, with the awareness of different matching semantics and
matching precedence. The evaluation results demonstrate the high effectiveness
and efficiency of our algorithms. We aim to develop methods to further deduce
the shortest matching strings for regexes and thus get a more refined model for
regex in the future.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions. Work supported by the Natural Science Foun-
dation of Beijing, China (Grant No. 4232038) and the National Natural Science Foun-
dation of China (Grant No. 62372439).

References

1. Aho, A.V.: Algorithms for finding patterns in strings. In: Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity, pp. 255–300. Elsevier
and MIT Press (1990)

2. Arcaini, P., Gargantini, A., Riccobene, E.: MUTREX: a mutation-based generator
of fault detecting strings for regular expressions. In: ICST Workshops 2017, pp.
87–96 (2017)

3. Bartoli, A., Lorenzo, A.D., Medvet, E., Tarlao, F.: Inference of regular expressions
for text extraction from examples. IEEE Trans. Knowl. Data Eng. 28(5), 1217–
1230 (2016)

4. Berglund, M., Bester, W., van der Merwe, B.: Formalising boost POSIX regu-
lar expression matching. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS,
vol. 11187, pp. 99–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02508-3 6

5. Berglund, M., van der Merwe, B.: Re-examining regular expressions with backref-
erences. Theor. Comput. Sci. 940, 66–80 (2023)

6. Berglund, M., van der Merwe, B., van Litsenborgh, S.: Regular expressions with
lookahead. J. Univers. Comput. Sci. 27(4), 324–340 (2021)

7. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
8. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.

Int. J. Found. Comput. Sci. 14(6), 1007–1018 (2003)
9. Câmpeanu, C., Santean, N.: On the intersection of regex languages with regular

languages. Theor. Comput. Sci. 410(24–25), 2336–2344 (2009)
10. Câmpeanu, C., Yu, S.: Pattern expressions and pattern automata. Inf. Process.

Lett. 92(6), 267–274 (2004)

https://doi.org/10.1007/978-3-030-02508-3_6
https://doi.org/10.1007/978-3-030-02508-3_6

Deducing Matching Strings for Regexes 349

11. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended
regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21254-3 13

12. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in
python. In: ISSTA 2016, pp. 282–293 (2016)

13. Chapman, C., Wang, P., Stolee, K.T.: Exploring regular expression comprehension.
In: ASE 2017, pp. 405–416 (2017)

14. Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin, A.W.,
Rümmer, P., Wu, Z.: Solving string constraints with regex-dependent functions
through transducers with priorities and variables. POPL 6, 1–31 (2022)

15. Chida, N., Terauchi, T.: On lookaheads in regular expressions with backreferences.
In: FSCD 2022. LIPIcs, vol. 228, pp. 15:1–15:18 (2022)

16. Chris, K.: Regex posix - HaskellWiki. https://wiki.haskell.org/Regex Posix
17. D’Antoni, L., Veanes, M.: Automata modulo theories. Commun. ACM 64, 86–95

(2021)
18. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression

denial of service (ReDoS) in practice: an empirical study at the ecosystem scale.
In: ESEC/FSE 2018, pp. 246–256 (2018)

19. Davis, J.C., IV, L.G.M., Coghlan, C.A., Servant, F., Lee, D.: Why aren’t regular
expressions a lingua franca? An empirical study on the re-use and portability of
regular expressions. In: ESEC/FSE 2019, pp. 443–454 (2019)

20. ECMA: ES2018. https://262.ecma-international.org/9.0
21. Ellul, K., Krawetz, B., Shallit, J.O., Wang, M.W.: Regular expressions: new results

and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)
22. Fent: Randexp.js. https://github.com/fent/randexp.js
23. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53

(1961)
24. Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms for string anal-

ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 18

25. Larson, E., Kirk, A.: Generating evil test strings for regular expressions. In: ICST
2016, pp. 309–319 (2016)

26. Li, N., Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Reggae: automated
test generation for programs using complex regular expressions. In: ASE 2009, pp.
515–519 (2009)

27. Liu, X., Jiang, Y., Wu, D.: A lightweight framework for regular expression verifi-
cation. In: HASE 2019, pp. 1–8 (2019)

28. Loring, B., Mitchell, D., Kinder, J.: ExpoSE: practical symbolic execution of stan-
dalone JavaScript. In: SPIN 2017, pp. 196–199 (2017)

29. Loring, B., Mitchell, D., Kinder, J.: Sound regular expression semantics for dynamic
symbolic execution of javascript. In: PLDI 2019, pp. 425–438 (2019)

30. Luo, B., Feng, Y., Wang, Z., Huang, S., Yan, R., Zhao, D.: Marrying up regular
expressions with neural networks: A case study for spoken language understanding.
In: ACL 2018, pp. 2083–2093 (2018)

31. Michael, L.G., Donohue, J., Davis, J.C., Lee, D., Servant, F.: Regexes are hard:
decision-making, difficulties, and risks in programming regular expressions. In: ASE
2019, pp. 415–426 (2019)

32. Miller, F.P., Vandome, A.F., McBrewster, J.: Apache maven (2010). https://repo1.
maven.org/maven2/

https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1007/978-3-642-21254-3_13
https://wiki.haskell.org/Regex_Posix
https://262.ecma-international.org/9.0
https://github.com/fent/randexp.js
https://doi.org/10.1007/978-3-642-18275-4_18
https://repo1.maven.org/maven2/
https://repo1.maven.org/maven2/

350 Y. Yan et al.

33. Miyazaki, T., Minamide, Y.: Derivatives of regular expressions with lookahead. J.
Inf. Process. 27, 422–430 (2019)

34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

35. Møller, A.: dk.brics.automaton. https://www.brics.dk/automaton/
36. npm Inc: npm. https://www.npmjs.com/
37. O’Connor, C.: Crdoconnor/xeger. https://github.com/crdoconnor/xeger
38. Okui, S., Suzuki, T.: Disambiguation in regular expression matching via position

automata with augmented transitions. In: Domaratzki, M., Salomaa, K. (eds.)
CIAA 2010. LNCS, vol. 6482, pp. 231–240. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18098-9 25

39. Python Software Foundation: Python package index - pypi. https://pypi.org/
40. Rampersad, N., Shallit, J.: Detecting patterns in finite regular and context-free

languages. Inf. Process. Lett. 110(3), 108–112 (2010)
41. Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary

alphabets. J. Autom. Lang. Comb. 2(3), 177–186 (1998)
42. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic

execution framework for JavaScript. In: S&P 2010, pp. 513–528 (2010)
43. Shen, Y., Jiang, Y., Xu, C., Yu, P., Ma, X., Lu, J.: ReScue: crafting regular expres-

sion DoS attacks. In: ASE 2018, pp. 225–235 (2018)
44. Spishak, E., Dietl, W., Ernst, M.D.: A type system for regular expressions. In:

FTfJP 2012, pp. 20–26 (2012)
45. Stanford, C., Veanes, M., Bjørner, N.: Symbolic Boolean derivatives for efficiently

solving extended regular expression constraints. In: PLDI 2021, pp. 620–635 (2021)
46. Stockmeyer, L.J.: The complexity of decision problems in automata theory and

logic. Ph.D. thesis, Massachusetts Institute of Technology, USA (1974)
47. Su, W., Chen, H., Li, R., Chen, Z.: Modeling regex operators for solving regex

crossword puzzles. In: Hermanns, H., et al. (eds.) SETTA 2023, LNCS, vol. 14464,
pp. 206–225. Springer, Cham (2023)

48. Sulzmann, M., Lu, K.Z.M.: POSIX regular expression parsing with derivatives. In:
Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 203–220. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 13

49. Tauber, A.: EXREX. https://github.com/asciimoo/exrex
50. Trinh, M., Chu, D., Jaffar, J.: S3: a symbolic string solver for vulnerability detection

in web applications. In: CCS 2014, pp. 1232–1243 (2014)
51. Unicode: Unicode 15.0.0. https://unicode.org/versions/Unicode15.0.0/
52. Veanes, M., de Halleux, P., Tillmann, N.: Rex: symbolic regular expression explorer.

In: ICST 2010, pp. 498–507 (2010)
53. Wang, P., Stolee, K.T.: How well are regular expressions tested in the wild? In:

ESEC/FSE 2018, pp. 668–678 (2018)
54. Youssef, M.: Generex. https://github.com/mifmif/Generex
55. Yu, S.: Regular languages. In: Handbook of Formal Languages, Vol. 1: Word, Lan-

guage, Grammar, pp. 41–110 (1997)

https://doi.org/10.1007/978-3-540-78800-3_24
https://www.brics.dk/automaton/
https://www.npmjs.com/
https://github.com/crdoconnor/xeger
https://doi.org/10.1007/978-3-642-18098-9_25
https://doi.org/10.1007/978-3-642-18098-9_25
https://pypi.org/
https://doi.org/10.1007/978-3-319-07151-0_13
https://github.com/asciimoo/exrex
https://unicode.org/versions/Unicode15.0.0/
https://github.com/mifmif/Generex

	Deducing Matching Strings for Real-World Regular Expressions
	1 Introduction
	2 Background
	2.1 Regex
	2.2 Research Problem
	2.3 The Current Status of Existing String Generation Tools

	3 Overview
	4 Modeling and String Generation Algorithms
	4.1 Extension of Functions to Regex
	4.2 Reduction Rules for Regex
	4.3 Effective Representation of Unicode Character Classes
	4.4 Induction System for Regex
	4.5 String Generation Algorithm

	5 Evaluation
	5.1 Datasets
	5.2 Tools for Comparison
	5.3 Evaluation of Random String Generation
	5.4 Statistics for Full Matching and Partial Matching
	5.5 Results on Real Projects

	6 Related Work
	7 Conclusion
	References

