
An Abstract Domain of Linear Templates
with Disjunctive Right-Hand-Side

Intervals

Han Xu1,3, Liqian Chen1,2(B), Guangsheng Fan1,3, Banghu Yin4(B),
and Ji Wang1,3

1 College of Computer, National University of Defense Technology,
Changsha 410073, China

{hanxu,guangshengfan,wj,lqchen}@nudt.edu.cn
2 Hunan Key Laboratory of Software Engineering for Complex Systems,

Changsha 410073, China
3 HPCL, National University of Defense Technology, Changsha 410073, China
4 College of Systems Engineering, National University of Defense Technology,

Changsha 410073, China
bhyin@nudt.edu.cn

Abstract. Abstract interpretation provides a general framework for
analyzing the value ranges of program variables while ensuring sound-
ness. Abstract domains are at the core of the abstract interpretation
framework, and the numerical abstract domains aiming at analyzing
numerical properties have received extensive attention. The template
constraint matrix domain (also called the template polyhedra domain)
is widely used due to its configurable constraint matrix (describing lim-
ited but user-concerned linear relationships among variables) and its high
efficiency. However, it cannot express non-convex properties that appear
naturally due to the inherent disjunctive behaviors in a program. In this
paper, we introduce a new abstract domain, namely the abstract domain
of linear templates with disjunctive right-hand-side intervals, in the form
of

∑
i aixi ∈ ∨p

j=0[cj , dj ] (where ai’s and p are configurable and fixed
before conducting analysis). Experimental results of our prototype are
encouraging: In practice, the new abstract domain can find interesting
non-convex invariants that are out of the expressiveness of the classic
template constraint matrix abstract domain.

Keywords: Abstract interpretation · Abstract domain · Template
constraint matrix · Invariant

1 Introduction

The precision of program analysis based on abstract interpretation is largely
dependent on the chosen abstract domain [8]. The polyhedra abstract domain
[9] is currently one of the most expressive and widely used numerical abstract

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 314–330, 2024.
https://doi.org/10.1007/978-981-99-8664-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_18&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_18


Linear Templates with Disjunctive Right-Hand-Side Intervals 315

domains. However, its applicability is severely limited by its worst-case expo-
nential time and space complexity.

In order to reduce the complexity of the polyhedra abstract domain and at
the same time derive practical linear invariants, Sankaranarayanan et al. [14,17]
proposed the template constraint matrix (TCM) abstract domain (also called
the template polyhedra domain). The domain representation of TCM polyhedra
abstract domain is Ax ≤ b, where the coefficient matrix A is predetermined
before the analysis, x is a vector of variables appearing in the program envi-
ronment, and the right-hand-side vector of constraint constants b is inferred
automatically by the analysis [17]. The expression capability of TCM polyhe-
dra abstract domain covers interval abstract domain [10] and the weakly rela-
tional linear abstract domains (e.g., octagonal abstract domain [15], octahedral
abstract domain [7], etc.) commonly used in practical static analysis. Therefore,
due to the representativeness of the TCM polyhedra abstract domain expressiv-
ity and its polynomial time complexity, the TCM polyhedra abstract domain has
been receiving much attention from the academic community since its proposal.

However, like most current numerical abstract domains (e.g., interval abstract
domain [10], octagonal abstract domain [15], etc.), the TCM abstract domain
is based on a series of linear expressions, the corresponding geometric regions
is convex, and therefore it can only express convex properties. In the actual
analysis, the behavior of the program in the specific or collection semantics are
generally non-convex. For example, “if-then-else” statements are often used in
programs for case-by-case discussion. In addition, users are concerned about the
non-convex numerical properties of a program, e.g., checking that a program
does not have a “division-by-zero error” requires verifying a non-convex property
such as “x �= 0”.

In this paper, we propose a novel method to combine the TCM abstract
domain with fixed partitioning slots based powerset domain of intervals to design
a new abstract domain, namely, an abstract domain of linear templates with
disjunctive right-hand-side intervals (rhiTCM abstract domain). This domain
aims to retain non-convex information of linear inequality relations among values
of program variables, in the form of Ax ∈ ∨p

i=0[ci ,di ] (where A is the preset
template constraint matrix, x is the vector of variables in the program to be
analyzed, ci and di are vectors of constants,

∨p
i=0[ci ,di ] are a disjunction of

interval vectors based on fixed partitioning slots inferred by the analysis). To
be more clear, each constraint in Ax ∈ ∨p

i=0[ci ,di ] is formed as:
∑

i aixi ∈
[c0, d0]∨ [c1, d1]∨ . . .∨ [cp, dp], where a′

is together with p are fixed before analysis,
and for each i ∈ [0, p − 1] it holds that di ≤ ci+1.

Motivating Example. In Fig. 1, we show a simple typical program that contains
division in C language. This example involves non-convex (disjunctive) con-
straints that arise due to control-flow join. Specifically, at program line 10, the
rhiTCM abstract domain is able to deduce that x+ y ∈ [−1,−1] ∨ [1, 1], and as
a result, the program can be deemed safe. In contrast, the classic TCM abstract
domain infers that x + y ∈ [−1, 1], leading to false alarms for division-by-zero
errors.



316 H. Xu et al.

Fig. 1. Motivating Example

The new domain is more expressive than the classic TCM abstract domain
and allows expressing certain non-convex (even unconnected) properties thanks
to the expressiveness of the disjunctive right-hand-side intervals. We made a pro-
totype implementation of the proposed abstract domain using rational numbers
and interface it to the Apron [13] numerical abstract domain library. The pre-
liminary experimental results of the prototype implementation are promising on
example programs; the rhiTCM abstract domain can find linear invariants that
are non-convex and out of the expressiveness of the conventional TCM polyhedra
abstract domain in practice.

The rest of the paper is organized as follows. Section 2 describes some prelim-
inaries. Section 3 presents the new proposed abstract domain of rhiTCM abstract
domain. Section 4 presents our prototype implementation together with experi-
mental results. Section 5 discusses some related work before Sect. 6 concludes.

2 Preliminaries

2.1 Fixed Partitioning Slots Based Powerset Domain of Intervals

We describe an abstract domain, namely, f ixed partitioning slots based power-
set domain of Intervals (fpsItvs). The main idea is to extract fixed partition-
ing points based on the value characteristics of variables in the program under
analysis, and utilize these fixed partitioning points to divide the value space of
variables. This approach aims to preserve more stable information regarding the
range of variable values during program analysis. We use FP_SET to store the
fixed partitioning points (FP_SET = {FP1, FP2, . . . , FPp}). Each fixed parti-
tioning point FPi ∈ R satisfies FPi < FPi+1.

Definition 1. fpsItvsp = {∨p
i=0[ci, di] | for i ∈ [0, p− 1], ci ≤ di ≤ ci+1, ci, di ∈

R}.
Let II ∈ fpsItvsp, which means that II is a disjunction of p disjoint

intervals. The domain representation of fixed partitioning slots based power-
set domain of intervals is x ∈ [a0, b0] ∨ [a1, b1] ∨ . . . ∨ [ap, bp], where x is
the variable in the program to be analysed, [a0, b0] ⊆ [−∞, FP1], [a1, b1] ⊆



Linear Templates with Disjunctive Right-Hand-Side Intervals 317

[FP1, FP2], . . . , [ap, bp] ⊆ [FPp,+∞], ai, bi ∈ R is inferred by the analysis,
FP_SET = {FP1, FP2 . . . , FPp} is the preset configurable point set. It should
be noted that p distinct fixed partitioning points correspond to p+ 1 intervals.
Let ⊥is denote the bottom value of fpsItvsp (⊥is = ⊥i0 ∨ ⊥i1 ∨ . . . ∨ ⊥ip) and
let 	is denote the top value of fpsItvsp (	is = [−∞, FP1]∨ [FP1, FP2]∨ . . .∨
[FPp,+∞]).

Domain Operations. Let II = [a0, b0] ∨ [a1, b1] ∨ . . . ∨ [ap, bp], II′ = [a′
0, b

′
0] ∨

[a′
1, b

′
1] ∨ . . . ∨ [a′

p, b
′
p]. For simplicity, abbreviate the above expression as II =

I0 ∨ I1 ∨ . . . ∨ Ip , II′ = I ′
0 ∨ I ′

1 ∨ . . . ∨ I ′
p. Let 
i, �i, �i respectively denote the

abstract inclusion, meet, join operation in the classic interval domain [10].

• Inclusion test 
is:
II 
is II′ iff I0 
i I

′
0 ∧ I1 
i I

′
1 ∧ . . . ∧ Ip 
i I

′
p

• Meet �is:
II �is II′ � I0 �i I

′
0 ∨ I1 �i I

′
1 ∨ . . . ∨ Ip �i I

′
p

• Join �is:
II �is II′ � I0 �i I

′
0 ∨ I1 �i I

′
1 ∨ . . . ∨ Ip �i I

′
p

Extrapolations. Since the lattice of fpsItvs has infinite height, we need a
widening operation for the fpsItvs abstract domain to guarantee the conver-
gence of the analysis and a narrowing operation to reduce the precision loss
caused by the widening operation. The symbol Ii represents the lower bound of
interval Ii and the symbol Ii represents the upper bound of interval Ii.

• Widening operation (∇is):
II ∇is II′ � I ′′

0 ∨ I ′′
1 ∨ . . . ∨ I ′′

p

I ′′
0 =

⎧
⎪⎨

⎪⎩

I0 if I ′
0 = ⊥i

I ′
0 if I0 = ⊥i

[I0 ≤ I ′
0 ? I0 : −∞, I0 ≥ I ′

0 ? I0 : FP1] otherwise

when 0 < i < p,

I ′′
i =

⎧
⎪⎨

⎪⎩

Ii if I ′
i = ⊥i

I ′
i if Ii = ⊥i

[Ii ≤ I ′
i ? Ii : FPi, Ii ≥ I ′

i ? Ii : FPi+1] otherwise

I ′′
p =

⎧
⎪⎨

⎪⎩

Ip if I ′
p = ⊥i

I ′
p if Ip = ⊥i

[Ip ≤ I ′
p ? Ip : FPp, Ip ≥ I ′

p ? Ip : +∞] otherwise



318 H. Xu et al.

• Narrowing operation (�is):
II �is II′ � I ′′

0 ∨ I ′′
1 ∨ . . . ∨ I ′′

p

I ′′
0 =

⎧
⎪⎨

⎪⎩

I0 if I ′
0 = ⊥i

I ′
0 if I0 = ⊥i

[I0 = −∞ ? I ′
0 : I0, I0 = FP1 ? I ′

0 : I0] otherwise

when 0 < i < p,

I ′′
i =

⎧
⎪⎨

⎪⎩

Ii if I ′
i = ⊥i

I ′
i if Ii = ⊥i

[Ii = FPi ? I ′
i : Ii, Ii = FPi+1 ? I ′

i : Ii] otherwise

I ′′
p =

⎧
⎪⎨

⎪⎩

Ip if I ′
p = ⊥i

I ′
p if Ip = ⊥i

[Ip = FPp ? I ′
p : Ip, Ip = +∞ ? I ′

p : Ip] otherwise

2.2 Mixed-Integer Linear Programming

Mixed-integer Linear Programming (MILP) problem is a type of linear program-
ming problem where both the objective function and constraint conditions are
linear equalities or inequalities. The variables in a MILP problem include both
continuous and integer variables. Continuous variables can take any value within
the real range, while integer variables can only take integer values. Due to the
mixed nature of continuous and integer variables in the MILP problem, its opti-
mal solution may exist in multiple local optimal solutions. The general form of
a MILP problem can be expressed as:

minimize (or maximize) cT ∗ x+ dT ∗ y

subject to A ∗ x+B ∗ y ≤ b

x ∈ R
n

y ∈ Z
m

where c and d are given coefficient vectors, x represents the continuous variables,
y represents the integer or boolean variables, A and B are known matrices, and
b is the right-hand-side vector of constraints.

A MILP problem can have one of three results: (1) the problem has an optimal
solution; (2) the problem is unbounded; (3) the problem is unfeasible.

2.3 Template Constraint Matrix Abstract Domain

The template constraint matrix abstract domain [17] is introduced by Sankara-
narayanan et al. to characterize the linear constraints of variables under a given
template constraint matrix: Ax ≤ b, where A ∈ Q

m×n is an m × n matrix of



Linear Templates with Disjunctive Right-Hand-Side Intervals 319

coefficients (determined prior to the analysis), x ∈ Q
n×1 is an n × 1 column

vector (determined by the environment of the variables in the current analysis),
and b ∈ Q

n×1 is a right-hand-side vector of constraints inferred by the analysis.
Figure 2 shows an instance of a template constraint matrix polyhedron.

Assume that the program has two variables x and y, the template constraint
matrix is A. In the TCM polyhedra abstract domain, b is obtained from the
derivation of the matrix A during analysis.

Fig. 2. An Instance of TCM

3 An Abstract Domain of Linear Templates with
Disjunctive Right-Hand-Side Intervals

In this section, we present a new abstract domain, namely the abstract domain
of linear templates with disjunctive right-hand-side intervals (rhiTCM). The key
idea is to use the fixed partitioning slots based powerset of intervals (fpsItvs)
to express the right-hand value of linear templates constraints. It can be used
to infer relationships of the form

∑
k akxk ∈ II over program variables xk(k =

1, . . . , n), where ak ∈ Q, II ∈ fpsItvsp is automatically inferred by the analysis.

3.1 Domain Representation

The new abstract domain is used to infer relationships of the form Ax ∈ II, where
A ∈ Q

m×n is the preset template constraint matrix, x ∈ Q
n×1 is the vector of

variables in the program to be analysed, II is the vector of II automatically
inferred by the analysis (II is composed of IIm×1). For ease of understanding,
we also write Ax ∈ II as

∑
k aikxk ∈ IIi (aik represents the element in the ith

row and kth column of the matrix A, IIi represents the element in the ith row
of the vector II, 1 ≤ i ≤ m, 1 ≤ k ≤ n).

Example 1. Consider a simple rhiTCM abstract domain representation as fol-
lows. Assume there are three variables x1, x2 and x3.



320 H. Xu et al.

A =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 1
1 −1 2
1 1 0
0 3 −2
0 0 −1

⎤

⎥
⎥
⎥
⎥
⎦

x =

⎡

⎣
x1

x2

x3

⎤

⎦ representing constraints

⎡

⎢
⎢
⎢
⎢
⎣

x1 + x3 ∈ II1
x1 − x2 + 2x3 ∈ II2

x1 + x2 ∈ II3
3x2 − 2x3 ∈ II4

−x3 ∈ II5

⎤

⎥
⎥
⎥
⎥
⎦

Since the template matrix A remains unchanged during the analysis process, a
vector II in the abstract domain rhiTCM represents the set of states described
by the set of constraints Ax ∈ II. The template constraint matrix is nonempty,
i.e., m > 0, and the abstract domain contains m-dimensional vectors II.

Definition 2. rhiTCM is defined as follows:

rhiTCM �

⎧
⎪⎨

⎪⎩

⊥rhiTCM , if ∃IIi = ⊥is

	rhiTCM , if ∀IIi = 	is

Ax ∈ II otherwise

where IIi is the element in the ith row of II. ⊥rhiTCM is the bottom value
of the rhiTCM abstract domain, representing this rhiTCM element is infeasible;
	rhiTCM is the top value of rhiTCM domain, representing the entire state space.
Figure 3 presents a rhiTCM element.

Fig. 3. A rhiTCM Element

3.2 Domain Operations

Now, we describe the design of most common domain operations required for
static analysis over the rhiTCM abstract domain. Assume that there are n vari-
ables in the program to be analyzed (x = [x1, x2, . . . , xn]T ), and the template
constraint matrix preset based on the program is A (A ∈ Q

m×n, representing
matrix elements with aij , i ∈ 1, 2, . . . ,m, j ∈ 1, 2, . . . , n). As mentioned ear-
lier, the template constraint matrix for the domain representation correspond-
ing to the abstract states of different program points in the rhiTCM abstract



Linear Templates with Disjunctive Right-Hand-Side Intervals 321

domain is the same, except for the constraint vector on the right side. There-
fore, domain operations mainly act on the vector of II. Assuming there are
currently two abstract states, their corresponding domain representations are
rhiTCM � Ax ∈ II and rhiTCM ′ � Ax ∈ II′, where II = [II1, II2, . . . , IIm]T

and II′ = [II′1, II
′
2, . . . , II

′
m]T .

Lattice Operations. The lattice operations include abstract inclusion, meet
and join operation, represented by symbols 
,�,� respectively. Let 
is, �is, �is

respectively denote the abstract inclusion, meet, join operation in the fpsItvs
abstract domain.

Inclusion Test. The inclusion test for rhiTCM abstract domain is implemented
based on the inclusion test for vector II (�is).

Definition 3. Inclusion test of vector II (�is). Let II = [II1, II2, . . . , IIn]T ,
II′ = [II′1, II

′
2, . . . , II

′
n]

T .

II �is II′ iff
n∧

i=1

(IIi 
is II′i)

For the rhiTCM abstract domain, rhiTCM 
 rhiTCM ′ implies the domain
element of rhiTCM is contained in rhiTCM ′, which is geometrically equiv-
alent to the graph corresponding to rhiTCM is contained within the graph
corresponding to rhiTCM ′. With Definition 3, we define the inclusion test of
rhiTCM abstract domain as follows:

rhiTCM 
 rhiTCM ′ iff II �is II′.

Example 2. Assume II =
[
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]

]

, II′ =
[
[−2,−1] ∨ [1, 2]
[−3,−1] ∨ [1, 3]

]

and

FP_SET = {0}. Note that:
([−2,−2]∨ [2, 2] 
is [−2,−1]∨ [1, 2]) ∧ ([−3,−2]∨ [2, 3] 
is [−3,−1]∨ [1, 3]),

thus II �is II′, rhiTCM 
 rhiTCM ′.

Meet. The meet operation of rhiTCM abstract domain is implemented based on
the meet operation of vector II.

Definition 4. Meet operation of vector II(�is). Let II = [II1, II2, . . . , IIn]T ,
II′ = [II′1, II

′
2, . . . , II

′
n]

T .

II �is II′ � [II1 �is II′1, . . . , IIn �is II′n]
T

For the rhiTCM abstract domain, rhiTCM � rhiTCM ′ is geometrically
equivalent to the part that exists simultaneously in both rhiTCM and rhiTCM ′.
With Definition 4, we define the meet operation of rhiTCM domain as follows:

rhiTCM � rhiTCM ′ � Ax ∈ (II �is II′).



322 H. Xu et al.

Join. The join operation of rhiTCM abstract domain is implemented based on
the join operation of vector II.

Definition 5. Join operation of vectors of II(�is). Let II = [II1, II2, . . . , IIn]T ,
II′ = [II′1, II

′
2, . . . , II

′
n]

T .

II �is II′ � [II1 �is II′1, . . . , IIn �is II′n]
T

For the rhiTCM abstract domain, rhiTCM � rhiTCM ′ is geometrically
equivalent to the part that envelope rhiTCM and rhiTCM ′. With Definition
5, we define the join operation of rhiTCM abstract domain as follows:

rhiTCM � rhiTCM ′ � Ax ∈ (II �is II′).

Example 3. Assume II =
[
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]

]

, II′ =
[
[−2,−1] ∨ [1, 2]
[−3,−1] ∨ [1, 3]

]

and

FP_SET = {0}. We note that:

([−2,−2] ∨ [2, 2]) �is ([−2,−1] ∨ [1, 2]) = [−2,−2] ∨ [2, 2],
([−3,−2] ∨ [2, 3]) �is ([−3,−1] ∨ [1, 3]) = [−3,−2] ∨ [2, 3],
([−2,−2] ∨ [2, 2]) �is ([−2,−1] ∨ [1, 2]) = [−2,−1] ∨ [1, 2],
([−3,−2] ∨ [2, 3]) �is ([−3,−1] ∨ [1, 3]) = [−3,−1] ∨ [1, 3],

thus we can get:

rhiTCM � rhiTCM ′ � Ax ∈ (II �is II′) = Ax ∈
[
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]

]

,

rhiTCM � rhiTCM ′ � Ax ∈ (II �is II′) = Ax ∈
[
[−2,−1] ∨ [1, 2]
[−3,−1] ∨ [1, 3]

]

.

3.3 Extrapolations

The lattice of the rhiTCM abstract domain is of infinite height, and thus we
need a widening operation to guarantee the convergence of the analysis. The
widening operation of rhiTCM abstract domain is implemented based on the
widening operation of vector II.

Definition 6. Widening operation of vector II (∇). Let II = [II1, II2, . . . , IIn]T ,
II′ = [II′1, II

′
2, . . . , II

′
n]

T .

II ∇II′ � [II1∇isII′1, . . . , IIn∇isII′n]
T

The widening operation of rhiTCM abstract domain is as follows:

rhiTCM ∇ rhiTCM ′ � Ax ∈ (II ∇ II′).



Linear Templates with Disjunctive Right-Hand-Side Intervals 323

The widening operation may result in substantial precision loss. To mitigate
this, we utilize a narrowing operation to perform decreasing iterations once the
widening iteration has converged, effectively reducing precision loss. Notably,
this operation is capable of converging within a finite time. The implementation
of the narrowing operation for the rhiTCM abstract domain is derived from the
narrowing operation of vector II.

Definition 7. Narrowing operation of vector II (�).

II � II′ � [II1�isII′1, . . . , IIn�isII′n]
T

The narrowing operation of rhiTCM abstract domain is as follows:

rhiTCM � rhiTCM ′ � Ax ∈ (II � II′).

Example 4. Assume II =

⎡

⎣
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]
[−2,−2] ∨ ⊥i

⎤

⎦, II′ =

⎡

⎣
[−3,−2] ∨ [2, 3]
[−3,−1] ∨ [1, 3]
[−2,−2] ∨ [2, 2]

⎤

⎦ and

FP_SET = {0}. Note that:

([−2,−2] ∨ [2, 2]) ∇is ([−3,−2] ∨ [2, 3]) = [−∞,−2] ∨ [2,+∞],
([−3,−2] ∨ [2, 3]) ∇is ([−3,−1] ∨ [1, 3]) = [−3, 0] ∨ [0, 3],
([−2,−2] ∨ ⊥i) ∇is ([−2,−2] ∨ [2, 2]) = [−2,−2] ∨ [2, 2],

thus

rhiTCM ∇ rhiTCM ′ � Ax ∈ (II ∇ II′) = Ax ∈
⎡

⎣
[−∞,−2] ∨ [2,+∞]

[−3, 0] ∨ [0, 3]
[−2,−2] ∨ [2, 2]

⎤

⎦ ,

Let II′′ = II ∇ II′, rhiTCM ′′ = rhiTCM ∇ rhiTCM ′, note that:

([−∞,−2] ∨ [2,+∞]) �is ([−2,−2] ∨ [2, 2]) = [−2,−2] ∨ [2, 2],
([−3, 0] ∨ [0, 3]) �is ([−3,−2] ∨ [2, 3]) = [−3,−2] ∨ [2, 3],
([−2,−2] ∨ [2, 2]) �is ([−2,−2] ∨ ⊥i) = [−2,−2] ∨ [2, 2],

thus:

rhiTCM ′′�rhiTCM � Ax ∈ (II′′ � II) = Ax ∈
⎡

⎣
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]
[−2,−2] ∨ [2, 2]

⎤

⎦ .

3.4 Transfer Functions

In program analysis based on abstract interpretation, an abstract environment
is usually constructed for each program point, mapping the value of each pro-
gram variable to a domain element on a specified abstract domain. Let P# rep-
resent the abstract environment constructed by the rhiTCM abstract domain.
Before introducing the test transfer function and the assignment transfer func-
tion of rhiTCM abstract domain, we introduce the MILP encoding of the rhiTCM
abstract domain representation.



324 H. Xu et al.

MILP Encoding. Note that the rhiTCM abstract domain representation∑
k aikxk ∈ IIi can be expressed in ordinary linear expressions as (

∑
k aikxk ≥

ci1 ∧ ∑
k aikxk ≤ di1) ∨ (

∑
k aikxk ≥ ci2 ∧ ∑

k aikxk ≤ di2) ∨ . . . ∨ (
∑

k aikxk ≥
ci(p+1) ∧

∑
k aikxk ≤ di(p+1)), where p is the number of fixed partitioning points.

However, the expression cannot be directly solved using a LP (linear program-
ming) solver because it contains the disjunction symbol “∨”. To tackle such prob-
lem, we typically introduce a significantly large number M and auxiliary binary
decision variables (0–1 variables). This allows us to convert the linear program-
ming problem, which contains disjunction symbols, into a mixed-integer linear
programming problem. Thus, we can employ a mixed-integer linear programming
solver to solve it.

We encode (
∑

k aikxk ≥ ci1∧
∑

k aikxk ≤ di1)∨(
∑

k aikxk ≥ ci2∧
∑

k aikxk ≤
di2) ∨ . . . ∨ (

∑
k aikxk ≥ cip ∧ ∑

k aikxk ≤ dip) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
k aikxk ≥ ci1 − M(1 − ui1),

∑
k aikxk ≤ di1 +M(1 − ui1)

∑
k aikxk ≥ ci2 − M(1 − ui2),

∑
k aikxk ≤ di2 +M(1 − ui2)

...
...

∑
k aikxk ≥ cip − M(1 − uip),

∑
k aikxk ≤ dip +M(1 − uip)

∑
j uij = 1(uij ∈ {0, 1}, 1 ≤ j ≤ p)

To simplify the treatment of the problem, we proceed to convert the con-
straints in the aforementioned linear system into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
k aikxk +Mui1 ≤ −ci1 +M,

∑
k aikxk +Mui1 ≤ bi1 +M

∑
k aikxk +Mui2 ≤ −ci2 +M,

∑
k aikxk +Mui2 ≤ bi2 +M

...
...

∑
k aikxk +Muip ≤ −cip +M,

∑
k aikxk +Muip ≤ bip +M

∑
j uij = 1(uij ∈ {0, 1}, 1 ≤ j ≤ p)

The above linear inequality system is a typical mixed-integer linear pro-
gramming (MILP) problem, so we can directly call the MILP solver to solve the
MILP problem. Nevertheless, when solving the MILP problem, it is important to
note that the obtained results are limited to providing the maximum and mini-
mum values of the objective function within the feasible domain. However, these
extremal values might not reflect the desired outcome of the analysis. In order
to tackle this problem, we introduce the fixed partitioning points information as
additional sets of constraints into the existing MILP problem linear inequality
system. Suppose the objective function is denoted as

∑
j ajxj . We sequentially

introduce the constraints
∑

j ajxj ≤ FP1,
∑

j ajxj ≥ FP1 ∧ ∑
j ajxj ≤ FP2,

. . . ,
∑

j ajxj ≥ FPp−1 ∧ ∑
j ajxj ≤ FPp,

∑
j ajxj ≥ FPp (FPp is the last fixed

partitioning point).
Therefore, in the process of calculating the extreme values of the objective

function, we use an iterative method in which the information of the fixed parti-
tioning points is introduced p times. This enables us to determine the extremum



Linear Templates with Disjunctive Right-Hand-Side Intervals 325

of the objective function across different fixed partitioning slots and consequently
obtain the desired representation outcome. The aforementioned encoding and
solving process is recorded as “rhiTCMmip(objFun) s.t. Cons” in this paper,
where objFun represents the objective function, and Cons represents the con-
straints to determine the extremes of the objective function.

Test Transfer Function. A linear conditional test based on precise arith-
metic can be transformed into the form as

∑
i wixi ≤ c. For test transfer func-

tion �
∑

i wixi ≤ c�#(P#), we simply combine constraint
∑

i wixi ≤ c with the
rhiTCM P#(P# � Ax ∈ II) to obtain P ′#(P ′# � P# ∧ ∑

i wixi ≤ c), and use
P ′# as the constraint system, recalculate the new boundaries of the rhiTCM.

�
∑

i wixi ≤ c�#(P#) �
∧m

i=1{
∑n

k=1 aikxk ∈ II∗i |II∗i �
rhiTCMmip(

∑n
k=1 aikxk)s.t.P ′#}.

Assignment Transfer Function. Assigning expression e to variable xj is the
assignment transfer function �xj := expr�#(P#). Firstly, we introduce a fresh
variable x′

j to rewrite the assignment statement as x′
j − expr = 0. Then, add

the new assignment statement to the P# (P# � Ax ∈ II) to get P ′′# (P ′′# �
P# ∧ x′

j − expr = 0). Finally, using P ′′# as the constraint system, recalculate
the new boundaries of the rhiTCM.

�xj := expr�#(P#) �
∧m

i=1{
∑j−1

k=1 aikxk + aijx
′
j +

∑n
k=j+1 aik ∈ II∗i |II∗i �

rhiTCMmip(
∑j−1

k=1 aikxk + aijx
′
j +

∑n
k=j+1 aik)s.t.P

′′#}.

4 Implementation and Experiments

We have implemented our prototype domain rhiTCM based on Sect. 3 using
multi-precision rational numbers. rhiTCM abstract domain is interfaced to the
Apron numerical abstract domain library [13]. The linear programming prob-
lems that are involved in the rhiTCM abstract domain are solved using an exact
arithmetic-based mixed-integer linear programming solver, which is provided by
the PPL [3] library.

To demonstrate the expressiveness of the rhiTCM abstract domain, we have
firstly analyzed the program itv_pol5 shown in Fig. 4 taken from [5], along with
the generated invariants. Program itv_pol5 in Fig. 4 consists two loops, increas-
ing y in the inner loop and increasing x in the outer loop. In Fig. 4, “Polyhedra”
is the classic polyhedra abstract domain [9] and “Interval Polyhedra” (itvPol)
from [5] is an abstract domain can infer interval linear constraints over program
variables (the domain representation is formed as

∑
k[ak, bk]xk ≤ c and can

express non-convex properties). “rhiTCM1” and “rhiTCM2” are rhiTCM abstract

domain with different configurations. “rhiTCM1”: FP_SET = {0}, A1 =
[
1 0
0 1

]T

;

“rhiTCM2”: FP_SET = {0}, A2 =
[
1 0 1 1
0 1 1 −1

]T

.



326 H. Xu et al.

Fig. 4. program itv_pol5 and the generated invariants

For program itv_pol5, at program point ➁, polyhedra abstract domain can
prove y ≥ −20 (TCM abstract domain is the same), itvPol can prove that
−20 ≤ y ≤ −10 ∨ y ≥ 10 (the invariants of itvpol come from [5]) while rhiTCM1

can prove y = −20 ∨ y ≥ 10 which is more precise than itvPol. And rhiTCM2

can prove y ≥ 10. The results have shown that rhiTCM is more powerful on
express non-convex properties than these compared abstract domains, and the
expressiveness of rhiTCM can be improved with appropriate configurations on
FP_SET and the template matrix.

To evaluate the precision and efficiency of rhiTCM further, we have con-
ducted experiments to compare rhiTCM abstract domain with TCM polyhedra
abstract domain. Table 1 shows the preliminary experimental results of compar-
ing performance and resulting invariants on a selection of simple while widely
used and representative programs. Program MotivEx is the motivating exam-
ple presented in Sect. 1, programs itv_pol4, itv_pol5 come from [5], other pro-
grams are collected from the “loop-zilu”, “loop-simple” and “locks” directory of
SV-COMP2022, which are used for analysing programs involving disjunctive
program behaviors.

The column “#var” gives the number of variables in the program. As exper-
imental setup, for each program, the value of the widening delay parameter is
set to 1. “#iter.” gives the number of increasing iterations during the analysis.

Precision. The column “Precision” in Table 1 compares the invariants obtained.
The symbol “�” indicates the invariants generated by rhiTCM is stronger (i.e.,



Linear Templates with Disjunctive Right-Hand-Side Intervals 327

Table 1. Experimental results for benchmark examples

Program TCM rhiTCM Invariant

name #vars #iter. t(ms) #iter. t(ms) TCM vs rhiTCM

MotivEx 4 0 4 0 4 �
itv_pol4 1 4 4 3 4 �
itv_pol5 2 4 16 5 44 �
nested_3.c 3 5 52 6 84 �
nested_4.c 4 6 140 7 200 �
benchmark31_disjunctive.c 2 3 44 3 60 =

benchmark44_disjunctive.c 2 3 100 3 144 =

test_locks_5.c 11 2 496 2 724 �
test_locks_6.c 13 2 908 2 1276 �
test_locks_7.c 15 2 1532 2 2080 �

more precise) than TCM, while “=” indicates the generated invariants are equiv-
alent. The results in Table 1 show that rhiTCM can output stronger invari-
ants than TCM in certain situations. One such situation is that

∑
k aikxk

exhibits a discontinuous range of values. As the motivating example shown
in Fig. 1, expression x + y has two discontinuous possible values: 1 and -1.
The rhiTCM can describe the values of x + y as x + y ∈ [−1,−1] ∨ [1, 1]
with the fixed partitioning points set FP_SET = {0}, while TCM describes
the values of x + y as x + y ∈ [−1, 1] which is less precise than the former.
Another situation arises when the assignment of variables within a loop can
be enumerated. As the program itv_pol4, variable “x” is assigned a value of
either 1 or -1 within the loop. At the loop header, the widening operation of
rhiTCM (with FP_SET = {0}) is performed as: ([−1,−1]∇i⊥i) ∨ (⊥i∇[1, 1])
and ([−1,−1]∇i[−1,−1]) ∨ ([1, 1]∇i[1, 1]), which results in x ∈ [−1,−1] ∨ [1, 1]
while the widening operation of TCM is performed as: [−1,−1]∇i[1, 1] and
[−1,+∞]∇i[−1,−1], which results in x ∈ [−1,+∞].

Performance. All experiments are carried out on a virtual machine (using Vir-
tualBox), with a guest OS of Ubuntu (4GB Memory), host OS of Windows 10,
16GB RAM and Intel Core i5 CPU 2.50GHz. The column “t(ms)” presents the
analysis time in milliseconds. Experimental time for each program is obtained by
taking the average time of ten runnings. From Table 1, we can see that rhiTCM
is less efficient than TCM. The size of matrix A and the number of the fixed
partitioning points will affect the performance of rhiTCM. The smaller the size
of matrix A and the fewer fixed partitioning points there are, the closer the per-
formance of rhiTCM will be to the performance of TCM. In program MotivEx,
there are two variables x, y. We set one linear constraint “x+y” in the template
matrix with one fixed partitioning point “0” in the FP_SET. In this configura-
tion, the analysis time of rhiTCM is almost the same as that of TCM.



328 H. Xu et al.

5 Related Work

A variety of abstract domains have been designed for the analysis of non-convex
properties. Allamigeon et al. [1] introduced max-plus polyhedra to infer min
and max invariants over the program variables. Granger introduced congruence
analysis [11], which can discover the properties like “the integer valued variable
X is congruent to c modulo m”, where c and m are automatically determined
integers. Bagnara et al. proposed the abstract domain of grids [2], which is able
to represent sets of equally spaced points and hyperplanes over an n-dimensional
vector space. The domain is useful when program variables take distribution val-
ues. Chen et al. applied interval linear algebra to static analysis and introduced
interval polyhedra [5] to infer and propagated interval linear constraints of the
form

∑
k[ak, bk]xk ≤ c.

To enhance numerical abstract domain with non-convex expressiveness, some
work make use of special decision diagrams. Gurfinkel et al. proposed BOXes,
which is implemented based on linear decision diagrams (LDDs) [12]. Gange et
al. [16] extended the interval abstract domain based on range decision diagrams
(RDDs), which can express more direct information about program variables
and supports more precise abstract operations than LDD BOXes. Some work
make use of mathematical functions that could express non-convex properties
such as the absolute value function [4,6]. Sankaranarayanan et al. [18] proposed
basic power set extensions of abstract domains. The power set extensions will
cause exponential explosion problem.

The rhiTCM domain that we introduce in this paper is an extension of tem-
plate constraint matrix domain, with the right-hand-side intervals to express
certain disjunctive behaviors in a program, e.g., the right-hand value of lin-
ear expression may be discontinuous. The configurable finite fixed partitioning
points restrict the number of the right-hand-side intervals, avoiding the expo-
nential explosion problem.

6 Conclusion

In this paper, we propose a new abstract domain, namely, an abstract domain
of linear templates with disjunctive right-hand-side intervals (rhiTCM abstract
domain), to infer linear inequality relations among values of program variables
in a program. The domain is in the form of

∑
i aixi ∈ ∨p

j=0[cj , dj ], where ai ∈ Q

is the variable coefficient specified in the preset template constraint matrix, x
is the variables in the program to be analysed,

∨p
j=0[cj , dj ] is the disjunctions

of intervals based on fixed partitioning slots. The key idea is to employ the
disjunctive intervals to get and retain discontinuous right-hand-side values of the
template constraint thus can deal with non-convex behaviors in the program.
We present the domain representation as well as domain operations designed
for rhiTCM abstract domain. We have developed a prototype for the rhiTCM
abstract domain using rational numbers and interface it to the Apron numerical
abstract domain library. Experimental results are encouraging: The rhiTCM



Linear Templates with Disjunctive Right-Hand-Side Intervals 329

abstract domain can discover invariants that are non-convex and out of the
expressiveness of the classic TCM abstract domain.

It remains for future work to test rhiTCM abstract domain on large realistic
programs, and consider automatic methods to generate the template constraint
matrix of the program to be analysed.

Acknowledgement. This work is supported by the National Key R&D Program of
China (No. 2022YFA1005101), the National Natural Science Foundation of China (Nos.
62002363, 62102432), and the Natural Science Foundation of Hunan Province of China
(No. 2021JJ40697).

References

1. Allamigeon, X., Gaubert, S., Goubault, É.: Inferring min and max invariants using
max-plus polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol.
5079, pp. 189–204. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-69166-2_13

2. Bagnara, R., Dobson, K., Hill, P.M., Mundell, M., Zaffanella, E.: Grids: a domain
for analyzing the distribution of numerical values. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 219–235. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71410-1_16

3. Bagnara, R., Hill, P.M., Zaffanella, E., Bagnara, A.: The parma polyhedra library.
https://www.bugseng.com/ppl

4. Chen, L., Liu, J., Miné, A., Kapur, D., Wang, J.: An abstract domain to infer
octagonal constraints with absolute value. In: Müller-Olm, M., Seidl, H. (eds.)
SAS 2014. LNCS, vol. 8723, pp. 101–117. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-10936-7_7

5. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval polyhedra: an abstract domain
to infer interval linear relationships. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS,
vol. 5673, pp. 309–325. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03237-0_21

6. Chen, L., Yin, B., Wei, D., Wang, J.: An abstract domain to infer linear absolute
value equalities. In: Theoretical Aspects of Software Engineering, pp. 47–54 (2021)

7. Cortadella, R.C.: The octahedron abstract domain. Sci. Comput. Program. 64,
115–139 (2007)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. Association for Computing Machinery (1977)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 84–96 (1978)

10. Golan, J.: Introduction to interval analysis. Comput. Rev. 51(6), 336–337 (2010)
11. Granger, P.: Static analysis of arithmetical congruences. Int. J. Comput. Math.

30(3–4), 165–190 (1989)
12. Gurfinkel, A., Chaki, S.: Boxes: a symbolic abstract domain of boxes. In: Cousot,

R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1_18

https://doi.org/10.1007/978-3-540-69166-2_13
https://doi.org/10.1007/978-3-540-69166-2_13
https://doi.org/10.1007/978-3-540-71410-1_16
https://doi.org/10.1007/978-3-540-71410-1_16
https://www.bugseng.com/ppl
https://doi.org/10.1007/978-3-319-10936-7_7
https://doi.org/10.1007/978-3-319-10936-7_7
https://doi.org/10.1007/978-3-642-03237-0_21
https://doi.org/10.1007/978-3-642-03237-0_21
https://doi.org/10.1007/978-3-642-15769-1_18


330 H. Xu et al.

13. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

14. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 25–41. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30579-8_2

15. Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19, 31–100
(2006)

16. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Disjunctive
interval analysis. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021.
LNCS, vol. 12913, pp. 144–165. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88806-0_7

17. Colón, M.A., Sankaranarayanan, S.: Generalizing the template polyhedral domain.
In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 176–195. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-19718-5_10

18. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static analysis in
disjunctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
3–17. Springer, Heidelberg (2006). https://doi.org/10.1007/11823230_2

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-030-88806-0_7
https://doi.org/10.1007/978-3-030-88806-0_7
https://doi.org/10.1007/978-3-642-19718-5_10
https://doi.org/10.1007/11823230_2

	An Abstract Domain of Linear Templates with Disjunctive Right-Hand-Side Intervals
	1 Introduction
	2 Preliminaries
	2.1 Fixed Partitioning Slots Based Powerset Domain of Intervals
	2.2 Mixed-Integer Linear Programming
	2.3 Template Constraint Matrix Abstract Domain

	3 An Abstract Domain of Linear Templates with Disjunctive Right-Hand-Side Intervals
	3.1 Domain Representation
	3.2 Domain Operations
	3.3 Extrapolations
	3.4 Transfer Functions

	4 Implementation and Experiments
	5 Related Work
	6 Conclusion
	References


