
Holger Hermanns
Jun Sun
Lei Bu (Eds.)

LN
CS

 1
44

64

9th International Symposium, SETTA 2023
Nanjing, China, November 27–29, 2023
Proceedings

Dependable
Software Engineering
Theories, Tools, and Applications

Lecture Notes in Computer Science 14464
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Holger Hermanns · Jun Sun · Lei Bu
Editors

Dependable
Software Engineering
Theories, Tools, and Applications

9th International Symposium, SETTA 2023
Nanjing, China, November 27–29, 2023
Proceedings

Editors
Holger Hermanns
Saarland University
Saarbrücken, Germany

Lei Bu
Nanjing University
Nanjing, China

Jun Sun
Singapore Management University
Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-99-8663-7 ISBN 978-981-99-8664-4 (eBook)
https://doi.org/10.1007/978-981-99-8664-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://orcid.org/0000-0002-2766-9615
https://orcid.org/0000-0003-0517-7801
https://orcid.org/0000-0002-3545-1392
https://doi.org/10.1007/978-981-99-8664-4

Preface

This volume presents the proceedings of the International Symposium on Dependable
Software Engineering: Theories, Tools and Applications (SETTA) 2023, held in Nanjing
on November 27–29, 2023. The purpose of the SETTA symposium series is to bring
international researchers together to exchange research results and ideas on bridging the
gap between formal methods and software engineering. Topics of interest to SETTA
include, but are not limited to:

– Requirements specification and analysis
– Formalisms for modeling, design, and implementation
– Model checking, theorem proving, and decision procedures
– Scalable approaches to formal system analysis
– Formal approaches to simulation, run-time verification, and testing
– Integration of formal methods into software engineering practice
– Contract-based engineering of components, systems, and systems of systems
– Formal and engineering aspects of software evolution and maintenance
– Parallel and multicore programming
– Embedded, real-time, hybrid, probabilistic, and cyber-physical systems
– Mixed-critical applications and systems
– Formal aspects of service-oriented and cloud computing
– Safety, reliability, robustness, and fault-tolerance
– Dependability of smart software and systems
– Empirical analysis techniques and integration with formal methods
– Applications and industrial experience reports
– Software tools to assist the construction or analysis of software systems

This edition of the symposium received 89 submissions, out of which 9 were
desk-rejected for reasons such as having a wrong format or being out of scope. Each
remaining submission went through a rigorous review process with at least 3 reviews,
followed by an online discussion among the PC members, overseen by the PC chairs.
In the end, 24 full high-quality papers were selected for presentation at the conference.

SETTA 2023 was blessed by the presence of three internationally recognized
keynote speakers, who gave talks covering current hot research topics and revealing
many new interesting research directions:

– Nazareno Aguirre (Universidad Nacional de Río Cuarto, Argentina)
– Jinsong Dong (National University of Singapore, Singapore)
– Geguang Pu (East China Normal University, China)

This edition of SETTA would not have been successful without the contribution
and involvement of the Program Committee members and the external reviewers who
contributed to the review process. This event would not exist if authors and contributors
did not submit their work. We owe our thanks to every person, reviewer, author, program
committee member, and organizing committee member involved in SETTA 2023.

vi Preface

The local host and sponsor Nanjing University of Aeronautics and Astronautics
provided financial support and tremendous help with registration and facilities. Many
thanks to all the local organizers and sponsors.

November 2023 Holger Hermanns
Jun Sun
Lei Bu

Organization

General Chair

Zhiqiu Huang Nanjing University of Aeronautics and
Astronautics, China

Program Co-chairs

Holger Hermanns Saarland University, Germany
Jun Sun Singapore Management University, Singapore
Lei Bu Nanjing University, China

Publicity Chair

Zhibin Yang Nanjing University of Aeronautics and
Astronautics, China

Local Organization Committee

Yu Zhou (Chair) Nanjing University of Aeronautics and
Astronautics, China

Zhibin Yang Nanjing University of Aeronautics and
Astronautics, China

Zhiyi Zhang Nanjing University of Aeronautics and
Astronautics, China

Weiwei Li Nanjing University of Aeronautics and
Astronautics, China

Chuanqi Tao Nanjing University of Aeronautics and
Astronautics, China

Wenhua Yang Nanjing University of Aeronautics and
Astronautics, China

Haiyan Chen Nanjing University of Aeronautics and
Astronautics, China

viii Organization

Web Chairs

Zhiyi Zhang Nanjing University of Aeronautics and
Astronautics, China

Bohua Zhan Institute of Software, Chinese Academy of
Sciences, China

Program Committee

Guangdong Bai University of Queensland, Australia
Jean-Paul Bodeveix IRIT-UPS, France
Sudipta Chattopadhyay Singapore University of Technology and Design,

Singapore
Liqian Chen National University of Defense Technology,

China
Yuting Chen Shanghai Jiao Tong University, China
Pedro R. D’Argenio Universidad Nacional de Córdoba – CONICET,

Argentina
Benoit Delahaye Université de Nantes - LS2N, France
Yuxin Deng East China Normal University, China
Rayna Dimitrova CISPA Helmholtz Center for Information

Security, Germany
Wei Dong National University of Defense Technology,

China
Clemens Dubslaff Eindhoven University of Technology,

The Netherlands
Mamoun Filali IRIT-CNRS, France
Jan Friso Groote Eindhoven University of Technology,

The Netherlands
Nils Jansen Radboud University, The Netherlands
Yu Jiang Tsinghua University, China
Xiaohong Li Tianjin University, China
Yi Li Nanyang Technological University, Singapore
Shang-Wei Lin Nanyang Technological University, Singapore
Yun Lin Shanghai Jiao Tong University, China
Shuang Liu Tianjin University, China
Malte Lochau University of Siegen, Germany
Mohammadreza Mousavi King’s College London, UK
Thomas Noll RWTH Aachen University, Germany
Jun Pang University of Luxembourg, Luxembourg
Dave Parker University of Oxford, UK

Organization ix

Zhiping Shi Capital Normal University, China
Fu Song ShanghaiTech University, China
Ting Su East China Normal University, China
Meng Sun Peking University, China
Jean-Pierre Talpin Inria, France
Jingyi Wang Zhejiang University, China
Zhilin Wu Chinese Academy of Sciences, China
Yueling Zhang East China Normal University, China
Yongwang Zhao Zhejiang University, China

Additional Reviewers

André, Pascal
Ardourel, Gilles
Attiogbé, Christian
Bu, Hao
Chi, Zhiming
De Vink, Erik
Demasi, Ramiro
Dong, Yanqi
Franken, Tom
Galesloot, Maris
Holík, Lukáš
Jansen, David N.
Jantsch, Simon
Jilissen, Kevin
Kouchnarenko, Olga
Köhl, Maximilian Alexander
Laveaux, Maurice
Li, Shuo
Lime, Didier
Liu, Guanjun
Liu, Ye
Liu, Yicheng
Liu, Yixuan

Luan, Xiaokun
Ma, Feifei
Müller, Robert
Petri, Gustavo
Qi, Xiaodong
Schmidl, Christoph
Stramaglia, Anna
van Spaendonck, Flip
Wang, Junjie
Wang, Keyin
Weiß, Mathis
Wu, Xiuheng
Xu, Ming
Xu, Peng
Xu, Xiufeng
Xue, Xiaoyong
Yang, Dong
Yang, Xuqing
Zhang, Lei
Zhang, Peixin
Zhang, Teng
Zhang, Yao
Zhang, Yating

Contents

String Constraints with Regex-Counting and String-Length Solved More
Efficiently . 1

Denghang Hu and Zhilin Wu

Reachability Based Uniform Controllability to Target Set with Evolution
Function . 21

Jia Geng, Ruiqi Hu, Kairong Liu, Zhihui Li, and Zhikun She

Enhancing Branch and Bound for Robustness Verification of Neural
Networks via an Effective Branching Strategy . 38

Shaocong Han and Yi Zhang

Graph-Based Log Anomaly Detection via Adversarial Training 55
Zhangyue He, Yanni Tang, Kaiqi Zhao, Jiamou Liu, and Wu Chen

Formal Verification Based Synthesis for Behavior Trees . 72
Weijiang Hong, Zhenbang Chen, Minglong Li, Yuhan Li,
Peishan Huang, and Ji Wang

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 92
Jintao Huang, Gaosheng Wang, Zhiqiang Shi, Fei Lv, Weidong Zhang,
and Shichao Lv

Session Types with Multiple Senders Single Receiver . 112
Zekun Ji, Shuling Wang, and Xiong Xu

Understanding the Reproducibility Issues of Monkey for GUI Testing 132
Huiyu Liu, Qichao Kong, Jue Wang, Ting Su, and Haiying Sun

Multi-dimensional Abstraction and Decomposition for Separation
of Concerns . 152

Zhiming Liu, Jiadong Teng, and Bo Liu

Solving SMT over Non-linear Real Arithmetic via Numerical Sampling
and Symbolic Verification . 171

Xinpeng Ni, Yulun Wu, and Bican Xia

Leveraging TLA+ Specifications to Improve the Reliability
of the ZooKeeperCoordination Service . 189

Lingzhi Ouyang, Yu Huang, Binyu Huang, and Xiaoxing Ma

xii Contents

Modeling Regex Operators for Solving Regex Crossword Puzzles 206
Weihao Su, Haiming Chen, Rongchen Li, and Zixuan Chen

Software Vulnerability Detection Using an Enhanced Generalization
Strategy . 226

Hao Sun, Zhe Bu, Yang Xiao, Chengsheng Zhou, Zhiyu Hao,
and Hongsong Zhu

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 243
Weidi Sun, Yuteng Lu, Xiaokun Luan, and Meng Sun

Formalization of Lambda Calculus with Explicit Names as a Nominal
Reasoning Framework . 262

Xinyi Wan and Qinxiang Cao

Vulnerability Report Analysis and Vulnerability Reproduction for Web
Applications . 279

Weiwei Wang, Zidong Li, Feng You, and Ruilian Zhao

Run-Time Assured Reinforcement Learning for Safe Spacecraft
Rendezvous with Obstacle Avoidance . 298

Yingmin Xiao, Zhibin Yang, Yong Zhou, and Zhiqiu Huang

An Abstract Domain of Linear Templates with Disjunctive
Right-Hand-Side Intervals . 314

Han Xu, Liqian Chen, Guangsheng Fan, Banghu Yin, and Ji Wang

Deducing Matching Strings for Real-World Regular Expressions 331
Yixuan Yan, Weihao Su, Lixiao Zheng, Mengxi Wang, Haiming Chen,
Chengyao Peng, Rongchen Li, and Zixuan Chen

Binary Level Concolic Execution on Windows with Rich Instrumentation
Based Taint Analysis . 351

Yixiao Yang, Chen Gao, Zhiqi Li, Yifan Wang, and Rui Wang

Cheat-FlipIt: An Approach to Modeling and Perception of a Deceptive
Opponent . 368

Qian Yao, Xinli Xiong, and Yongjie Wang

Making an eBPF Virtual Machine Faster on Microcontrollers: Verified
Optimization and Proof Simplification . 385

Shenghao Yuan, Benjamin Lion, Frédéric Besson, and Jean-Pierre Talpin

An Optimized Solution for Highly Contended Transactional Workloads 402
Chunxi Zhang, Shuyan Zhang, Ting Chen, Rong Zhang, and Kai Liu

Contents xiii

DeepTD: Diversity-Guided Deep Neural Network Test Generation 419
Jin Zhu, Chuanqi Tao, Hongjing Guo, and Yue Ju

Author Index . 435

String Constraints with Regex-Counting
and String-Length Solved More Efficiently

Denghang Hu1,2 and Zhilin Wu1,2(B)

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{hudh,wuzl}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Regular expressions (regex for short) and string-length func-
tion are widely used in string-manipulating programs. Counting is a fre-
quently used feature in regexes that counts the number of matchings of
sub-patterns. The state-of-the-art string solvers are incapable of solving
string constraints with regex-counting and string-length efficiently, espe-
cially when the counting and length bounds are large. In this work, we
propose an automata-theoretic approach for solving such class of string
constraints. The main idea is to symbolically model the counting opera-
tors by registers in automata instead of unfolding them explicitly, thus
alleviating the state explosion problem. Moreover, the string-length func-
tion is modeled by a register as well. As a result, the satisfiability of string
constraints with regex-counting and string-length is reduced to the satis-
fiability of linear integer arithmetic, which the off-the-shelf SMT solvers
can then solve. To improve the performance further, we also propose tech-
niques to reduce the sizes of automata. We implement the algorithms and
validate our approach on 48,843 benchmark instances. The experimental
results show that our approach can solve more instances than the state-
of-the-art solvers, at a comparable or faster speed, especially when the
counting and length bounds are large.

1 Introduction

The string data type plays a crucial role in modern programming languages such
as JavaScript, Python, Java, and PHP. String manipulations are error-prone and
could even give rise to severe security vulnerabilities (e.g., cross-site scripting,
aka XSS). One powerful method for identifying such bugs is symbolic execution,
which is possibly in combination with dynamic analysis. It analyses symbolic
paths in a program by viewing them as constraints checked by constraint solvers.
Symbolic execution of string manipulating programs has motivated the highly
active research area of string constraint solving, resulting in the development
of numerous string solvers in the last decade, e.g., Z3seq [30], CVC4/5 [2,26],
Z3str/2/3/4 [3,5,37,38], Z3str3RE [4], Z3-Trau [1,7], OSTRICH [14], Slent [35],
among many others.

Regular expressions (regex for short) and the string-length function are
widely used in string-manipulating programs. According to the statistics from
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 1–20, 2024.
https://doi.org/10.1007/978-981-99-8664-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_1&domain=pdf
http://orcid.org/0000-0003-0899-628X
https://doi.org/10.1007/978-981-99-8664-4_1

2 D. Hu and Z. Wu

[9,17,36], regexes are used in about 30–40% of Java, JavaScript, and Python
software projects. Moreover, string-length occupies 78% of the occurrences of
string operations in 18 Javascript applications, according to the statistics from
[31]. As a result, most of the aforementioned string constraint solvers support
both regexes and string-length function. Moreover, specialized algorithms have
been proposed to solve such string constraints efficiently (see e.g. [4,27]).

Counting (aka repetition) is a convenient feature in regexes that counts the
number of matchings of sub-patterns. For instance, a{2,4} specifies that a occurs
at least twice and at most four times, and a{2,∞} specifies that a occurs at least
twice. Note that the Kleene star and the Kleene plus operator are special cases of
counting. For instance, a∗ is equivalent to a{0,∞} and a+ is equivalent to a{1,∞}.
Counting is a frequently used feature of regexes. According to the statistics
from [9], Kleene star/plus occur in more than 70% of 1,204 Python projects,
while other forms of counting occur in more than 20% of them. Therefore, an
efficient analysis of string manipulating programs requires efficient solvers for
string constraints containing regexes with counting1 and string-length function
at least.

Nevertheless, the aforementioned state-of-the-art string constraint solvers
still suffer from such string constraints, especially when the counting and length
bounds are large. For instance, none of the string solvers CVC5, Z3seq, Z3-Trau,
Z3str3, Z3str3RE, and OSTRICH is capable of solving the following constraint
within 120 s,

x ∈ (Σ \ a){1,60}(Σ \ b){1,60}(Σ \ c){0,60} ∧ x ∈ Σ∗c+ ∧ |x| > 120. (1)

Intuitively, the constraint in (1) specifies that x is a concatenation of three strings
x1, x2, x3 where a (resp. b, c) does not occur in x1 (resp. x2, x3), moreover, x ends
with a nonempty sequence of c’s, and the length of x is greater than 120. It is easy
to observe that this constraint is unsatisfiable since on the one hand, |x| > 120
and the counting upper bound 60 in both (Σ \ a){1,60} and (Σ \ b){1,60} imply
that x must end with some character from Σ \ c, that is, a character different
from c, and on the other hand, x ∈ Σ∗c+ requires that x has to end with c.

A typical way for string constraint solvers to deal with regular expressions
with counting is to unfold them into those without counting using the concate-
nation operator. For instance, a{1,4} is unfolded into a(ε + a + aa + aaa) and
a{2,∞} is unfolded into aaa∗. Since the unfolding incurs an exponential blow-
up on the sizes of constraints (assuming that the counting in string constraints
are encoded in binary), the unfolding penalizes the performance of the solvers,
especially when the length bounds are also available.

Contribution. In this work, we focus on the class of string constraints with regular
membership and string-length function, where the counting operators may occur
(called RECL for brevity). We make the following contributions.

1 In the rest of this paper, for clarity, we use counting to denote expressions of the
form e{m,n} and e{m,∞}, but not e∗ or e+.

String Constraints with Counting and Length Solved More Efficiently 3

– We propose an automata-theoretical approach for solving RECL constraints.
Our main idea is to represent the counting operators by cost registers in
cost-enriched finite automata (CEFA, see Sect. 5 for the definition), instead
of unfolding them explicitly. The string-length function is modeled by cost
registers as well. The satisfiability of RECL constraints is reduced to the
nonemptiness problem of CEFA w.r.t. a linear integer arithmetic (LIA) for-
mula. According to the results from [13], an LIA formula can be computed
to represent the potential values of registers in CEFA. Thus, the nonempti-
ness of CEFA w.r.t. LIA formulas can be reduced to the satisfiability of LIA
formulas, which is then tackled by off-the-shelf SMT solvers.

– We propose techniques to reduce the sizes (i.e. the number of states and
transitions) of CEFA, in order to achieve better performance.

– Combined with the size-reduction techniques mentioned above, the register
representation of regex-counting and string-length in CEFA entails an efficient
algorithm for solving RECL constraints. We implement the algorithm on top
of OSTRICH, resulting in a string solver called OSTRICHRECL.

– Finally, we utilize a collection of benchmark suites comprising 48,843
instances in total to evaluate the performance of OSTRICHRECL. The experi-
ment results show that OSTRICHRECL solves the RECL constraints more effi-
ciently than the state-of-the-art string solvers, especially when the counting
and length bounds are large (see Fig. 5b and Table 1a). For instance, on 1,969
benchmark instances where the counting bounds are greater than or equal
to 50 and the string lengths are required to be beyond 200, OSTRICHRECL

solves at least 278 more instances than the other solvers, while spending only
half or less time per instance on average.

Related Work. We discuss more related work on regexes with counting, string-
length function, and automata with registers/counters. Determinism of regexes
with counting was investigated in [10,19]. Real-world regexes in programming
languages include features beyond classical regexes, e.g., the greedy/lazy Kleene
star, capturing groups, and back references. Real-world regexes have been
addressed in symbolic execution of Javascript programs [28] and string constraint
solving [12]. Nevertheless, the counting operators are still unfolded explicitly
in [12]. The Trau tool focuses on string constraints involving flat regular lan-
guages and string-length function and solves them by computing LIA formu-
las that define the Parikh images of flat regular languages [1]. The Slent tool
solves the string constraints involving string-length function by encoding them
into so-called length-encoded automata, then utilizing symbolic model checkers
to solve their nonemptiness problem [35]. However, neither Trau nor Slent sup-
ports counting operators explicitly, in other words, counting operators in regexes
should be unfolded before solved by them. Cost registers in CEFAs are differ-
ent from registers in (symbolic) register automata [16,23]: In register automata,
registers are used to store input values and can only be compared for equal-
ity/inequality, while in CEFAs, cost registers are used to store integer-valued
costs and can be updated by adding/subtracting integer constants and con-
strained by the accepting conditions which are LIA formulas. Therefore, cost

4 D. Hu and Z. Wu

registers in CEFAs are more like counters in counter automata/machines [29],
that is, CEFAs can be obtained from counter machines by removing transition
guards and adding accepting conditions. Counting-set automata were proposed
in [21,33] to quickly match a subclass of regexes with counting. Moreover, a vari-
ant of nondeterministic counter automata, called bit vector automata, was pro-
posed recently in [25] to enable fast matching of a more expressive class of regexes
with counting. Nevertheless, the nonemptiness problem of these automata was
not considered, and it is unclear whether these automata models can be used for
solving string constraints with regex-counting and string-length.

Organization. The rest of this paper is structured as follows: Sect. 2 gives an
overview of the approach in this paper. Section 3 introduces the preliminaries.
Section 4 presents the syntax and semantics of RECL. Section 5 defines CEFA.
Section 6 introduces the algorithm to solve RECL constraints. Section 7 shows
the experiment results. Section 8 concludes this paper.

2 Overview

In this section, we utilize the string constraint in Eq. (1) to illustrate the app-
roach in our work.

At first, we construct a CEFA for the regular expression (Σ \ a){1,60}(Σ \
b){1,60}(Σ \ c){0,60}. Three registers are introduced, say r1, r2, r3, to represent
the three counting operators; the nondeterministic finite automaton (NFA) for
(Σ \ a)∗(Σ \ b)∗(Σ \ c)∗ is constructed; the updates of registers are added to
the transitions of the NFA; the counting bounds are specified by the accepting
condition 1 ≤ r1 ≤ 60 ∧ 1 ≤ r2 ≤ 60 ∧ 0 ≤ r3 ≤ 60, resulting in a CEFA
A1 illustrated in Fig. 1(a). r1 + + means that we increment the value of r1 by
one after running the transition. A string w is accepted by A1 if, when reading
the characters in w, A1 applies the transitions to update the state and the
values of registers, reaching a final state q in the end, and the resulting values
of the three registers, say v1, v2, v3, satisfy the accepting condition. In addition,
we construct other two CEFAs A2 for Σ∗c+ (see Fig. 1(b)) and A3 for string
length function (see Fig. 1(c)). In A3, a register r4 is used to denote the length
of strings and the accepting condition is true (See Sect. 6.1 for more details
about the construction of CEFA.) Note that we represent the counting operators
symbolically by registers instead of unfolding them explicitly.

p0 p1

Σ \ {a} Σ \ {b}

p2

Σ \ {c}
r1 + + r2 + + r3 + +

1 ≤ r1 ≤ 60 ∧
1 ≤ r2 ≤ 60 ∧
0 ≤ r3 ≤ 60 q0 q1

c

cΣ

(a) (b)

A1 A2

Σ \ {b}
r2 + +

Σ \ {c}
r3 + +

q′
0

Σ

(c)

A3

r4 + +

true

Fig. 1. CEFA for (Σ \ a){1,60}(Σ \ b){1,60}(Σ \ c){0,60}, Σ∗c+, and |x|

String Constraints with Counting and Length Solved More Efficiently 5

Next, we construct A1∩A2∩A3, that is, the intersection (aka product) of A1,
A2, and A3, as illustrated in Fig. 2(a), where the states can not reach the final
states are removed. For technical convenience, we also think of the updates of
registers in transitions as vectors (u1, u2, u3, u4), where ui ∈ Z is the update on
the register ri for each i ∈ [4]. For instance, the transitions corresponding to the
self-loop around (p0, q0, q′

0) are thought as ((p0, q0, q′
0), a

′, (p0, q0, q′
0), (1, 0, 0, 1))

with a′ ∈ Σ \ {a}, since r1 and r4 are incremented by one in these transitions.
After considering the updates of registers as vectors, the CEFA is like Fig. 2(b).

p0, q0, q
′
0

Σ \ {a} Σ \ {b}

r1 + +
r4 + +

r2 + +
r4 + +

1 ≤ r1 ≤ 60 ∧
1 ≤ r2 ≤ 60 ∧
0 ≤ r3 ≤ 60

c

p0, q1, q
′
0

p1, q0, q
′
0

p1, q1, q
′
0

c

r4 + +

r4 + +
r4 + +

c
r4 + +

c

Σ \ {b}

c

r4 + +

r2 + +
r4 + +

(a)

p0, q0, q
′
0

Σ \ {a} Σ \ {b}
(1, 0, 0, 1)

1 ≤ r1 ≤ 60 ∧
1 ≤ r2 ≤ 60 ∧
0 ≤ r3 ≤ 60

c

p0, q1, q
′
0

p1, q0, q
′
0

p1, q1, q
′
0

c
(0, 0, 0, 1)

c c

Σ \ {b}

c

(0, 1, 0, 1)

(b)

(0, 0, 0, 1)

(0, 0, 0, 1)

(0, 0, 0, 1)

(0, 1, 0, 1)

(0, 0, 0, 1)

Fig. 2. A1 ∩ A2 ∩ A3: Intersection of A1, A2, and A3

Finally, the satisfiability of the original string constraint is reduced to the
nonemptiness of the CEFA A ≡ A1 ∩ A2 ∩ A3 with respect to the LIA formula
ϕ ≡ r4 > 120, that is, whether there exist w ∈ Σ∗ and (v1, v2, v3, v4) ∈ Z4

such that w is accepted by A, so that the resulting registers values (v1, v2, v3, v4)
satisfy both 1 ≤ v1 ≤ 60 ∧ 1 ≤ v2 ≤ 60 ∧ 0 ≤ v3 ≤ 60 and ϕ. It is not
hard to observe that the nonemptiness of A with respect to ϕ is independent
of the characters of A. Therefore, the characters in A can be ignored, resulting
into an NFA B over the alphabet C, where C is the set of vectors from Z4

occurring in the transitions of A (see Fig. 3(a)). Then the original problem is
reduced to the problem of deciding whether there exists a string w′ ∈ C∗ that is
accepted by B and its Parikh image (i.e., numbers of occurrences of characters),
say ηw′ : C → N, satisfies 1 ≤ v′

1 ≤ 60 ∧ 1 ≤ v′
2 ≤ 60 ∧ 0 ≤ v′

3 ≤ 60 ∧ v′
4 > 120,

where (v′
1, v

′
2, v

′
3, v

′
4) =

∑

v∈C
ηw′(v)v for each v ∈ C. Intuitively, (v′

1, v
′
2, v

′
3, v

′
4) is

a weighted sum of vectors v ∈ C, where the weight is the number of occurrences
of v in w′. (See Sect. 6.2 for more detailed arguments).

Let C = {v1, · · · ,vm }. From the results in [32,34], an existential LIA formula
ψB(x1, · · · , xm) can be computed to define the Parikh image of strings that are
accepted by B, where x1, · · · , xm are the integer variables to denote the number
of occurrences of v1, · · · ,vm . Therefore, the satisfiability of the string constraint
in (1) is reduced to the satisfiability of the following existential LIA formula,

ψB(x1, · · · , xm) ∧ ∧

1≤j≤4

rj =
∑

1≤k≤m

xkvk,j ∧
1 ≤ r1 ≤ 60 ∧ 1 ≤ r2 ≤ 60 ∧ 0 ≤ r3 ≤ 60 ∧ r4 > 120.

(2)

6 D. Hu and Z. Wu

q′′
0

(1, 0, 0, 1)

q′′
1

(0, 1, 0, 1)

(0, 1, 0, 1)

(0, 0, 0, 1)

(0, 0, 0, 1)

(0, 0, 0, 1)

q′′
2

p0, q0, q
′
0

(1, 0, 0, 1)

p0, q1, q
′
0

p1, q0, q
′
0

p1, q1, q
′
0

(0, 0, 0, 1)

(0, 1, 0, 1)

(0, 0, 0, 1)

(0, 0, 0, 1)

(0, 0, 0, 1)

(0, 1, 0, 1)

(0, 0, 0, 1)

(a) (b)

B C

Fig. 3. Reduced automaton B and C

which can be solved by the off-the-shelf SMT solvers.
Nevertheless, when the original regexes are complicated (e.g. contain occur-

rences of negation or intersection operators), the sizes of the NFA B can still be
big and the sizes of the LIA formulas defining the Parikh image of B are also
big. Since the satisfiability of LIA formulas is an NP-complete problem [20], big
sizes of LIA formulas would be a bottleneck of the performance. To tackle this
issue, we propose techniques to reduce the sizes of the NFA B.

Specifically, to reduce the sizes of B, we determinize B, and apply the mini-
mization algorithm to the resulting deterministic finite automaton (DFA), result-
ing in a DFA C, as illustrated in Fig. 3(b). Note that C contains only three states
q′′
0 , q′′

1 , q′′
2 and six transitions, while B contains four states and eight transitions.

Furthermore, if B contains 0-labeled transitions, then we can take these transi-
tions as ε-transitions and potentially reduce the sizes of automata further.

We implement all the aforementioned techniques on the top of OSTRICH,
resulting in a solver OSTRICHRECL. It turns out that OSTRICHRECL is able
to solve the string constraint in (1) within one second, while the state-of-the-art
string solvers are incapable of solving it within 120 s.

3 Preliminaries

We write N and Z for the sets of natural and integer numbers. For n ∈ N
with n ≥ 1, [n] denotes {1, . . . , n}; for m,n ∈ N with m ≤ n, [m,n] denotes
{i ∈ N | m ≤ i ≤ n}. Throughout the paper, Σ is a finite alphabet, ranged over
a, b,

For a function f from X to Y and X ′ ⊆ X, we use prjX′(f) to denote the
restriction (aka projection) of f to X ′, that is, prjX′(f) is the function from X ′

to Y , and prjX′(f)(x′) = f(x′) for each x′ ∈ X ′.

Strings and Languages. A string over Σ is a (possibly empty) sequence of ele-
ments from Σ, denoted by u, v, w, An empty string is denoted by ε. We use

String Constraints with Counting and Length Solved More Efficiently 7

Σε to denote Σ∪{ε}. We write Σ∗ (resp., Σ+) for the set of all (resp. nonempty)
strings over Σ. For a string u, we use |u| to denote the number of letters in u.
In particular, |ε| = 0. Moreover, for a ∈ Σ, let |u|a denote the number of occur-
rences of a in u. Assume that u = a1 · · · an is nonempty and 1 ≤ i < j ≤ n. We
let u[i] denote ai and u[i, j] for the substring ai · · · aj . Let u, v be two strings.
We use u · v to denote the concatenation of u and v. A language L over Σ is
a subset of strings. Let L1, L2 be two languages. Then the concatenation of L1

and L2, denoted by L1 · L2, is defined as {u · v | u ∈ L1, v ∈ L2}. The union
(resp. intersection) of L1 and L2, denoted by L1 ∪ L2 (resp. L1 ∩ L2), is defined
as {u | u ∈ L1 or u ∈ L2} (resp. {u | u ∈ L1 and u ∈ L2}). The complement
of L1, denoted by L1, is defined as {u | u ∈ Σ∗, u �∈ L1}. The difference of L1

and L2, denoted by L1 \ L2, is defined as L1 ∩ L2. For a language L and n ∈ N,
we define Ln inductively as follows: L0 = {ε}, Ln+1 = L · Ln for every n ∈ N.
Finally, define L∗ =

⋃

n∈N
Ln.

Finite Automata. A (nondeterministic) finite automaton (NFA) is a tuple A =
(Q,Σ, δ, I, F), where Q is a finite set of states, Σ is a finite alphabet, δ ⊆
Q×Σ ×Q is the transition relation, I ⊆ Q is the set of initial states, and F ⊆ Q
is the set of final states. For readability, we write a transition (q, a, q′) ∈ δ as
q

a−→
δ

q′ (or simply q
a−→ q′). The size of an NFA A, denoted by |A|, is defined

as the number of transitions of A. A run of A on a string w = a1 · · · an is a
sequence of transitions q0

a1−→ q1 · · · qn−1
an−−→ qn such that q0 ∈ I. The run is

accepting if qn ∈ F . A string w is accepted by an NFA A if there is an accepting
run of A on w. In particular, the empty string ε is accepted by A if I ∩ F �= ∅.
The language of A, denoted by L(A), is the set of strings accepted by A. An
NFA A is said to be deterministic if I is a singleton and, for every q ∈ Q and
a ∈ Σ, there is at most one state q′ ∈ Q such that (q, a, q′) ∈ δ. We use DFA to
denote deterministic finite automata.

It is well-known that finite automata capture regular languages. Moreover,
the class of regular languages is closed under union, intersection, concatenation,
Kleene star, complement, and language difference [22].

Let w ∈ Σ∗. The Parikh image of w, denoted by parikh(w), is defined as the
function η : Σ → N such that η(a) = |w|a for each a ∈ Σ. The Parikh image of
an NFA A, denoted by parikh(A), is defined as {parikh(w) | w ∈ L(A)}.

Linear Integer Arithmetic and Parikh Images. We use standard existential linear
integer arithmetic (LIA) formulas, which typically range over ψ,ϕ, Φ, α. For a set
X of variables, we use ψ/ϕ/Φ/α(X) to denote the set of existential LIA formulas
whose free variables are from X. For example, we use ϕ(x) with x = (x1, · · · , xk)
to denote an LIA formula ϕ whose free variables are from {x1, · · · , xk}. For an
LIA formula ϕ(x), we use ϕ[t/x] to denote the formula obtained by replacing
(simultaneously) xi with ti for every i ∈ [k] where x = (x1, · · · , xk) and t =
(t1, · · · , tk) are tuples of integer terms.

At last, we recall the result about Parikh images of NFA. For each a ∈ Σ,
let za be an integer variable. Let ZΣ denote the set of integer variables za for
a ∈ Σ. Let A be an NFA over the alphabet Σ. Then we say that an LIA formula

8 D. Hu and Z. Wu

ψ(ZΣ) defines the Parikh image of A, if {η : Σ → N | ψ[(η(a)/za)a∈Σ] is true} =
parikh(A).

Theorem 1 ([32]). Given an NFA A, an existential LIA formula ψA(ZΣ) can
be computed in linear time that defines the Parikh image of A.

4 String Constraints with Regex-Counting
and String-Length

In the sequel, we define the string constraints with regex-counting and string-
length functions, i.e., REgex-Counting Logic (abbreviated as RECL). The syn-
tax of RECL is defined by the rules in Fig. 4, where x is a string variable, x is
an integer variable, a is a character from an alphabet Σ, and m,n are integer
constants. A RECL formula ϕ is a conjunction of atomic formulas of the form
x ∈ e or t1 o t2, where e is a regular expression, t1 and t2 are integer terms,
and o ∈ {=, �=,≤,≥, <,>}. Atomic formulas of the form x ∈ e are called regular
membership constraints, and atomic formulas of the form t1 o t2 are called length
constraints. A regular expression e is built from ∅, the empty string ε, and the
character a by using concatenation ·, union +, Kleene star ∗, intersection ∩,
complement ,̄ difference \, counting {m,n} or {m,∞}. An integer term is built
from constants n, variables x, and string lengths |x| by operators + and −.

ϕ ::= x ∈ e | t1 o t2 | ϕ ∧ ϕ formulas
e ::= ∅ | | a | e · e | e + e | e∗ | e ∩ e | e | e \ e | e{m,n} | e{m,∞} | (e) regexes
t ::= n x x t t t + t integer terms

Fig. 4. Syntax of RECL

Moreover, for S ⊆ Σ with S = {a1, · · · , ak}, we use S as an abbreviation of
a1 + · · · + ak.

For each regular expression e, the language defined by e, denoted by L(e),
is defined recursively. For instance, L(∅) = ∅, L(ε) = {ε}, L(a) = {a}, and
L(e1 · e2) = L(e1) · L(e2), L(e1 + e2) = L(e1) ∪ L(e2), and so on. It is well-
known that regular expressions define the same class of languages as finite state
automata, that is, the class of regular languages [22].

Let ϕ be a RECL formula and SVars(ϕ) (resp. IVars(ϕ)) denote the set of
string (resp. integer) variables occurring in ϕ. Then the semantics of ϕ is defined
with respect to a mapping θ : SVars(ϕ) → Σ∗ IVars(ϕ) → Z (where denotes
the disjoint union). Note that the mapping θ can naturally extend to the set of
integer terms. For instance, θ(|x|) = |θ(x)|, θ(t1 + t2) = θ(t1)+θ(t2). A mapping
θ is said to satisfy ϕ, denoted by θ |= ϕ, if one of the following holds: ϕ ≡ x ∈ e
and θ(x) ∈ L(e), ϕ ≡ t1 o t2 and θ(t1) o θ(t2), ϕ ≡ ϕ1 ∧ ϕ2 and θ |= ϕ1

and θ |= ϕ2. A RECL formula ϕ is satisfiable if there is a mapping θ such as
θ |= ϕ. The satisfiability problem for RECL (which is abbreviated as SATRECL)
is deciding whether a given RECL formula ϕ is satisfiable.

String Constraints with Counting and Length Solved More Efficiently 9

5 Cost-Enriched Finite Automata

In this section, we define cost-enriched finite state automata (CEFA), which was
introduced in [13] and will be used to solve the satisfiability problem of RECL
later on. Intuitively, CEFA adds write-only cost registers to finite state automata.
“write-only” means that the cost registers can only be written/updated but
cannot be read, i.e., they cannot be used to guard the transitions.

Definition 1 (Cost-Enriched Finite Automaton). A cost-enriched finite
automaton A is a tuple (R,Q,Σ, δ, I, F, α) where

– R = {r1, · · · , rk} is a finite set of registers,
– Q,Σ, I, F are as in the definition of NFA,
– δ ⊆ Q × Σ × Q × ZR is a transition relation, where ZR denotes the updates

on the values of registers.
– α ∈ Φ(R) is an LIA formula specifying an accepting condition.

For convenience, we use RA to denote the set of registers of A. We assume
a linear order on R and write R as a vector (r1, · · · , rk). Accordingly, we write
an element of ZR as a vector (v1, · · · , vk), where vi is the update of ri for each
i ∈ [k]. We also write a transition (q, a, q′,v) ∈ δ as q

a−→
v

q′.

The semantics of CEFA is defined as follows. Let A = (R,Q,Σ, δ, I, F, α) be
a CEFA. A run of A on a string w = a1 · · · an is a sequence q0

a1−→
v1

q1 · · · qn−1
an−−→
vn

qn such that q0 ∈ I and qi−1
ai−→
vi

qi for each i ∈ [n]. A run q0
a1−→
v1

q1 · · · qn−1
an−−→
vn

qn is accepting if qn ∈ F and α(v′/R) is true, where v′ =
∑

j∈[n]

vj . The vector

v′ =
∑

j∈[n]

vj is called the cost of an accepting run q0
a1−→
v1

q1 · · · qn−1
an−−→
vn

qn.

Note that the values of all registers are initiated to zero and updated to
∑

j∈[n]

vj

after all the transitions in the run are executed. We use v′ ∈ A(w) to denote
the fact that there is an accepting run of A on w whose cost is v′. We define
the semantics of a CEFA A, denoted by L(A), as {(w;v′) | v′ ∈ A(w)}. In
particular, if I ∩ F �= ∅ and α[0/R] is true, then (ε;0) ∈ L(A). Moreover, we
define the output of a CEFA A, denoted by O(A), as {v′ | ∃w. v′ ∈ A(w)}.

We want to remark that the definition of CEFA above is slightly different
from that of [13], where CEFA did not include accepting conditions. Moreover,
the accepting conditions α in CEFA are defined in a global fashion because the
accepting condition does not distinguish final states. This technical choice is
made so that the determinization and minimization of NFA can be utilized to
reduce the size of CEFA in the next section.

In the sequel, we define three CEFA operations: union, intersection, and con-
catenation. The following section will use these three operations to solve RECL
constraints. Note that the union, intersection, and concatenation operations are
defined in a slightly more involved manner than register automata [23] and
counter automata [19], as a result of the (additional) accepting conditions.

10 D. Hu and Z. Wu

Let A1 = (R1, Q1, Σ, δ1, q1,0, F1, α1) and A2 = (R2, Q2, Σ, δ2, q2,0, F2, α2) be
two CEFA that share the alphabet. Moreover, suppose that R1 ∩ R2 = ∅ and
Q1 ∩ Q2 = ∅.

The union of A1 and A2 is denoted by A1 ∪A2. Two fresh auxiliary registers
say r′

1, r
′
2 �∈ R1 ∪ R2, are introduced so that the accepting condition knows

whether a run is from A1 (or A2). Specifically, A1∪A2 = (R′, Q′, Σ, δ′, I ′, F ′, α′)
where

– R′ = R1 ∪ R2 ∪ {r′
1, r

′
2}, Q′ = Q1 ∪ Q2 ∪ {q′

0} with q′
0 �∈ Q1 ∪ Q2, I ′ = {q′

0},
– δ′ is the union of four transitions sets:

• {(q′
0, a, q′

1, (v1,0, 1, 0)) | ∃q1 ∈ I1. (q1, a, q′
1,v1) ∈ δ1}

• {(q′
0, a, q′

2, (0,v2, 0, 1)) | ∃q2 ∈ I2. (q2, a, q′
2,v2) ∈ δ2}

• {(q1, a, q′
1, (v1,0, 0, 0)) | q1 �∈ I1. (q1, a, q′

1,v1) ∈ δ1}
• {(q2, a, q′

2, (0,v2, 0, 0)) | q2 �∈ I2. (q2, a, q′
2,v2) ∈ δ2}

where (v1,0, 1, 0) is a vector that updates R1 by v1, updates R2 by 0, and
updates r′

1, r
′
2 by 1, 0 respectively. Similarly for (0,v2, 0, 1), and so on.

– F ′ and α′ are defined as follows,
• if (ε;0) belongs to L(A1) or L(A2), i.e., one of the two automata accepts

the empty string ε, then F ′ = F1 ∪ F2 ∪ {q′
0} and α′ = (r′

1 = 0 ∧ r′
2 =

0) ∨ (r′
1 = 1 ∧ α1) ∨ (r′

2 = 1 ∧ α2),
• otherwise, F ′ = F1 ∪ F2 and α′ = (r′

1 = 1 ∧ α1) ∨ (r′
2 = 1 ∧ α2).

From the construction, we know that

L(A1 ∪ A2) =

⎧
⎨

⎩
(w;v)

∣
∣
∣
∣
∣
∣

(w; prjR1
(v)) ∈ L(A1) and prjr′

1
(v) = 1, or

(w; prjR2
(v)) ∈ L(A2) and prjr′

2
(v) = 1, or

(w;v) = (ε,0) if A1 or A2 accepts ε

⎫
⎬

⎭
.

Intuitively, A1 ∪ A2 accepts the words that are accepted by one of the A1 and
A2 and outputs the costs of the corresponding automaton.

The intersection of A1 and A2, denoted by A1∩A2 = (R′, Q′, Σ, δ′, I ′, F ′, α′),
is defined in the sequel.

– R′ = R1 ∪ R2, Q′ = Q1 × Q2, I ′ = I1 × I2, F ′ = F1 × F2, α′ = α1 ∧ α2,
– δ′ comprises the tuples ((q1, q2), a, (q′

1, q
′
2), (v1,v2)) such that (q1, a, q′

1,v1) ∈
δ1 and (q2, a, q′

2,v2) ∈ δ2.

From the construction,

L(A1 ∩ A2) = {(w;v) | (w; prjR1
(v)) ∈ L(A1) and (w; prjR2

(v)) ∈ L(A2)}.

Intuitively, A1 ∩A2 accepts the words that are accepted by both A1 and A2 and
outputs the costs of A1 and A2.

The concatenation of A1 and A2, denoted by A1 · A2, is defined similarly as
that of NFA, that is, a tuple (Q′, Σ, δ′, I ′, F ′, α′), where Q′ = Q1 ∪ Q2, I ′ = I1,
α′ = α1 ∧ α2, δ′ = {(q1, a, q′

1, (v1,0)) | (q1, a, q′
1,v1) ∈ δ1} ∪ {(q2, a, q′

2, (0,v2)) |
(q2, a, q′

2,v2) ∈ δ2} ∪ {(q1, a, q2, (0,v2)) | q1 ∈ F1,∃q′ ∈ I2. (q′, a, q2,v2) ∈ δ2},

String Constraints with Counting and Length Solved More Efficiently 11

moreover, if I2 ∩ F2 �= ∅, then F ′ = F1 ∪ F2, otherwise, F ′ = F2. From the
construction,

L(A1 · A2) = {(w1w2;v) | (w1; prjR1
(v)) ∈ L(A1) and (w2; prjR2

(v)) ∈ L(A2)}.

Furthermore, the union, intersection, and concatenation operations can be
extended naturally to multiple CEFA, that is, A1 ∪ · · · ∪ An, A1 ∩ · · · ∩ An,
A1 · · · · · An. For instance, A1 ∪ A2 ∪ A3 = (A1 ∪ A2) ∪ A3, A1 ∩ A2 ∩ A3 =
(A1 ∩ A2) ∩ A3, and A1 · A2 · A3 = (A1 · A2) · A3.

6 Solving RECL Constraints

The goal of this section is to show how to solve RECL constraints by utilizing
CEFA. At first, we reduce the satisfiability of RECL constraints to a decision
problem defined in the sequel. Then we propose a decision procedure for this
problem.

Definition 2 (NELIA(CEFA)). Let x1, · · · , xn be string variables, Λx1 , · · · , Λxn

be nonempty sets of CEFA over the alphabet Σ with Λxi
= {Ai,1, · · · ,Ai,li} for

every i ∈ [n] where the sets of registers RA1,1 , · · · , RA1,l1
, · · · , RAn,1 , · · · , RAn,ln

are mutually disjoint, moreover, let ϕ be an LIA formula whose free variables are
from

⋃

i∈[n],j∈[li]

RAi,j
. Then the CEFA in Λx1 , · · · , Λxn

are said to be nonempty

w.r.t. ϕ if there are assignments θ : {x1, · · · , xn} → Σ∗ and vectors vi,j such
that (θ(xi);vi,j) ∈ L(Ai,j) and ϕ[(vi,j/RAi,j

)] is true, for every i ∈ [n], j ∈ [li].

Proposition 1 ([13]). NELIA(CEFA) is PSPACE-complete.

Note that the decision procedure in [13] was only used to prove the upper bound
in Proposition 1 and not implemented as a matter of fact. Instead, the symbolic
model checker nuXmv [8] was used to solve NELIA(CEFA). We do not rely on
nuXmv in this work and shall propose a new algorithm for solving NELIA(CEFA)
in Sect. 6.2.

6.1 From SATRECL to NELIA(CEFA)

Let ϕ be a RECL constraint and x1, · · · , xn be an enumeration of the string
variables occurring in ϕ. Moreover, let ϕ ≡ ϕ1 ∧ ϕ2 such that ϕ1 is a con-
junction of regular membership constraints of ϕ, and ϕ2 is a conjunction of
length constraints of ϕ. We shall reduce the satisfiability of ϕ to an instance of
NELIA(CEFA).

At first, we show how to construct a CEFA from a regex where counting
operators may occur. Let us start with register-representable regexes defined in
the sequel.

Let us fix an alphabet Σ.
Let e be a regex over Σ. Then an occurrence of counting operators in e,

say (e′){m,n} (or (e′){m,∞}), is said to be register-representable if (e′){m,n} (or

12 D. Hu and Z. Wu

(e′){m,∞}) is not in the scope of a Kleene star, another counting operator, com-
plement, or language difference in e. We say that e is register-representable if all
occurrences of counting operators in e are register-representable. For instance,
a{2,6} ∩ a{4,∞} is register-representable, while a{2,6} and (a{2,6}){4,∞} are not
since a{2,6} is in the scope of complement and the counter operator {2,∞}
respectively.

Let e be a register-representable regex over Σ. By the following procedure,
we will construct a CEFA out of e, denoted by Ae.

1. For each sub-expression (e′){m,n} with m ≤ n (resp. (e′){m,∞}) of e, we
construct a CEFA A(e′){m,n} (resp. A(e′){m,∞}). Let Ae′ = (Q,Σ, δ, I, F).
Then A(e′){m,n} = ((r′), Q′, Σ, δ′′, I ′, F ′, α′), where r′ is a new register, Q′ =
Q ∪ {q0} with q0 �∈ Q, I ′ = {q0}, F ′ = F ∪ {q0}, and

δ′′ = {(q, a, q′, (0)) | (q, a, q′) ∈ δ} ∪
{(q0, a, q′, (1)) | ∃q′

0 ∈ I. (q′
0, a, q′) ∈ δ} ∪

{(q, a, q′, (1)) | q ∈ F,∃q′
0 ∈ I. (q′

0, a, q′) ∈ δ},

moreover, α′ = m ≤ r′ ≤ n if I ∩ F = ∅, otherwise α′ = r′ ≤ n. (Intuitively,
if ε is accepted by Ae′ , then the value of r′ can be less than m.) Moreover,
A(e′){m,∞} is constructed by adapting α′ in A(e′){m,n} as follows: α′ = m ≤ r′

if I ∩ F = ∅ and α′ = true otherwise.
2. For each sub-expression e′ of e such that e′ contains occurrences of counting

operators but e′ itself is not of the form (e′
1)

{m,n} or (e′
1)

{m,∞}, from the
assumption that e is register-representable, we know that e′ is of the form
e′
1 · e′

2, e′
1 + e′

2, e′
1 ∩ e′

2, or (e′
1). For e′ = (e′

1), we have Ae′ = Ae′
1
. For

e′ = e′
1 · e′

2, e′ = e′
1 + e′

2, or e′ = e′
1 ∩ e′

2, suppose that CEFA Ae′
1

and Ae′
2

have been constructed.
3. For each maximal sub-expression e′ of e such that e′ contains no occurrences of

counting operators, an NFA Ae′ can be constructed by structural induction
on the syntax of e′. Then we have Ae′ = Ae′

1
· Ae′

2
, Ae′ = Ae′

1
∪ Ae′

2
, or

Ae′ = Ae′
1
∩ Ae′

2
.

For non-register-representable regexes, we first transform them into register-
representable regexes by unfolding all the non-register-representable occurrences
of counting operators. After that, we utilize the aforementioned procedure to
construct CEFA. For instance, (a{2,6} · b∗){2,∞} is transformed into (aa(ε + a +
aa + aaa + aaaa) · b∗){2,∞}. The unfoldings of the inner counting operators
of non-register-representable regexes incur an exponential blowup in the worst
case. Nevertheless, those regexes occupy only 5% of the 48,843 regexes that are
collected from the practice (see Sect. 7.1). Moreover, the unfoldings are partial
in the sense that the outmost counting operators are not unfolded. It turns out
that our approach can solve almost all the RECL constraints involving these
48,843 regexes, except 181 of them (See Fig. 5b).

For each i ∈ [n], let xi ∈ ei,1, · · · , xi ∈ ei,li be an enumeration of the regular
membership constraints for xi in ϕ1. Then we can construct CEFA Ai,j from
ei,j for each i ∈ [n] and j ∈ [li]. Moreover, we construct another CEFA Ai,0

String Constraints with Counting and Length Solved More Efficiently 13

for each i ∈ [n] to model the length of xi. Specifically, Ai,0 is constructed as
((ri,0), {qi,0}, Σ, δi,0, {qi,0}, {qi,0}, true) where ri,0 is a fresh register and δi,0 =
{(qi,0, a, qi,0, (1)) | a ∈ Σ}. Let Λxi

= {Ai,0,Ai,1, · · · ,Ai,li} for each i ∈ [n], and
ϕ′
2 ≡ ϕ2[r1,0/|x1|, · · · , rn,0/|xn|]. Then the satisfiability of ϕ is reduced to the

nonemptiness of CEFAs in Λx1 , · · · , Λxn
w.r.t. ϕ′

2.

6.2 Solving NELIA(CEFA)

In this section, we present a procedure to solve the NELIA(CEFA) problem: Sup-
pose that x1, · · · , xn are mutually distinct string variables, Λx1 , · · · , Λxn

are
nonempty sets of CEFA over the same alphabet Σ where Λxi

= {Ai,1, · · · ,Ai,li}
for every i ∈ [n]. Moreover, the sets of registers RA1,1 , · · · , RAn,ln

are mutually
disjoint, and ϕ is a LIA formula whose free variables are from

⋃

i∈[n],j∈[li]

RAi,j
.

The procedure comprises three steps.

Step 1 (Computing intersection automata). For each i ∈ [n], compute a CEFA
Bi = Ai,1 ∩ · · · ∩ Ai,li , and let Λ′

xi
:= {Bi}. ��

After Step 1, the nonemptiness of CEFAs in Λx1 , · · · , Λxn
w.r.t. ϕ is reduced

to the nonemptiness of CEFAs in Λ′
x1

, · · · , Λ′
xn

w.r.t. ϕ.
In the following steps, we reduce the non-emptiness of CEFAs in Λ′

x1
, · · · , Λ′

xn

w.r.t. ϕ to the satisfiability of an LIA formula. The reduction relies on the
following two observations.

Observation 1 CEFA in Λ′
x1

= {B1}, · · · , Λ′
xn

= {Bn} are nonempty w.r.t. ϕ
iff there are v1 ∈ O(B1), · · · ,vn ∈ O(Bn) such that ϕ[v1/RB1 , · · · ,vn/RBn

] is
true.

Let A = (R,Q,Σ, δ, I, F, α) be a CEFA and CA = {v | ∃q, a, q′. (q, a, q′,v) ∈
δ}. Moreover, let UA = (Q,CA, δ′, I, F) be an NFA over the alphabet CA that
is obtained from A by dropping the accepting condition and ignoring the char-
acters, that is, δ′ comprises tuples (q,v, q′) such that (q, a, q′,v) ∈ δ for a ∈ Σ.

Observation 2 For each CEFA A = (R,Q,Σ, δ, I, F, α),

O(A) =

{
∑

v∈CA

η(v)v

∣
∣
∣
∣
∣

η ∈ parikh(UA) and α

[
∑

v∈CA

η(v)v
/
R

]

is true

}

.

For i ∈ [n], let αi be the accepting condition of Bi. Then from Observation 2,
we know that the following two conditions are equivalent,

– there are v1 ∈ O(B1), · · · ,vn ∈ O(Bn) such that ϕ[v1/RB1 , · · · ,vn/RBn
] is

true,
– there are η1 ∈ parikh(UB1), · · · , ηn ∈ parikh(UBn

) such that

∧

i∈[n]

αi

⎡

⎣
∑

v∈CBi

ηi(v)v
/
RBi

⎤

⎦∧ϕ

⎡

⎣
∑

v∈CB1

η1(v)v
/
RB1 , · · · ,

∑

v∈CBn

ηn(v)v
/
RBn

⎤

⎦

is true.

14 D. Hu and Z. Wu

Therefore, to solve the nonemptiness of CEFA in Λ′
x1

, · · · , Λ′
xn

w.r.t. ϕ, it is
sufficient to compute the existential LIA formulas ψUB1

(ZCB1
), · · · , ψUBn

(ZCBn
)

to represent the Parikh images of UB1 , · · · , UBn
respectively, where ZCBi

= {zi,v |
v ∈ CBi

} for i ∈ [n], and solve the satisfiability of the following existential LIA
formula

∧

i∈[n]

(

ψUBi
(ZCBi

) ∧ αi

[
∑

v∈CBi

zi,vv
/
RBi

])

∧

ϕ

[
∑

v∈CB1

z1,vv
/
RB1 , · · · ,

∑

v∈CBn

zn,vv
/
RBn

]

.

Intuitively, the integer variables zi,v represent the number of occurrences of v in
the strings accepted by UBi

.
Because the sizes of the LIA formulas ψUB1

(ZCB1
), · · · , ψUBn

(ZCBn
) are pro-

portional to the sizes (more precisely, the alphabet size, the number of states
and transitions) of NFA UB1 , · · · ,UBn

, and the satisfiability of existential LIA
formulas is NP-complete, it is vital to reduce the sizes of these NFAs to improve
the performance.

Since
∑

v∈C(Bi)

η(v)v =
∑

v∈C(Bi)\{0}
η(v)v for each i ∈ [n] and η ∈ parikh(UBi

),

it turns out that the 0-labeled transitions in UBi
do not contribute to the final

output
∑

v∈C(Bi)

η(v)v. Therefore, we can apply the following size-reduction tech-

nique for UBi
’s.

Step 2 (Reducing automata sizes). For each i ∈ [n], we view the transitions
(q,0, q′) in UBi

as ε-transitions (q, ε, q′), and remove the ε-transitions from UBi
.

Then we determinize and minimize the resulting NFA. ��
For i ∈ [n], let Ci denote the DFA obtained from UBi

by executing Step
2 and CCi

:= CBi
\ {0}. From the construction, we know that parikh(Ci) =

prjCCi
(parikh(UBi

)) for each i ∈ [n]. Therefore, we compute LIA formulas from
Ci’s, instead of UBi

’s, to represent the Parikh images.

Step 3 (Computing Parikh images). For each i ∈ [n], we compute an existen-
tial LIA formula ψCi

(ZCCi
) from Ci to represent parikh(Ci). Then we solve the

satisfiability of the following formula,

∧

i∈[n]

(

ψCi
(ZCCi

) ∧ αi

[
∑

v∈CCi

zi,vv
/
RBi

])

∧

ϕ

[
∑

v∈CC1

z1,vv
/
RB1 , · · · ,

∑

v∈CCn

zn,vv
/
RBn

]

.

7 Experiments

We implemented the algorithm in Sect. 6 on top of OSTRICH, resulted to
a string solver called OSTRICHRECL. In this section, we evaluate the per-
formance of OSTRICHRECL on two benchmark suites, that is, RegCoL and

String Constraints with Counting and Length Solved More Efficiently 15

AutomatArk. In the sequel, we first describe the two benchmark suites as
well as the experiment setup. Then we present the experiment results. We do
experiments to compare the performance of OSTRICHRECL with the state-of-
the-art string solvers. Moreover, in order to know whether OSTRICHRECL is
good at solving string constraints with large counting and length bounds, we
extract 1,969 instances with large bounds out of the two benchmark suites,
and compare the performance of OSTRICHRECL with the other solvers on
these instances. Finally, we empirically justify the technical choices made in
the decision procedure of Sect. 6.2 by comparing OSTRICHRECL with the fol-
lowing two variants of OSTRICHRECL: OSTRICHRECL

−ASR and OSTRICHRECL
NUXMV,

where OSTRICHRECL
−ASR and OSTRICHRECL

NUXMV are obtained from OSTRICHRECL

by removing the automata size-reduction technique (i.e. Step 2 in Sect. 6.2)
and using the nuXmv model checker to solve the nonemptiness of NELIA(CEFA)
respectively.

7.1 Benchmark Suites and Experiment Setup

Our experiments utilize two benchmark suites, namely, RegCoL and
AutomatArk. Other industrial benchmark suites are not utilized because they
contain no counting operators. There are 48,843 instances in total, and all bench-
mark instances are in the SMTLIB2 format. Moreover, it turns out that only
5% of regexes among the 48,843 instances are non-register-representable (see
Sect. 6.1).

RegCoL Benchmark Suite. There are 40,628 RECL instances in the RegCoL
suite. These instances are generated by extracting regexes with counting oper-
ators from the open source regex library [18,33] and manually constructing
a RECL constraint x ∈ e ∧ x ∈ esani ∧ |x| > 10 for each regex e, where
esani ≡ Σ∗(< + > +′ +′′ +&)Σ∗ is a regular expression that sanitizes all occur-
rence of special characters <, >, ′, ′′, or &. The expression esani is introduced
in view of the fact that these characters are usually sanitized in Web browsers
to alleviate the XSS attacks [11,31].

AutomatArk Benchmark Suite. This benchmark suite is adapted from the
AutomatArk suite [6] by picking out the string constraints containing count-
ing operators. We also add the length constraint |x| > 10 for each string variable
x. There are 8,215 instances in the AutomatArk suite. Note that the original
AutomatArk benchmark suite [6] includes 19,979 instances, which are conjunc-
tions of regular membership queries generated out of regular expressions in [15].

Distribution of Problem Instances w.r.t. Counting Bounds. The distribution of
problem instances w.r.t. the counting bounds in RegCoL and AutomatArk suites
is shown in Fig. 5a, where the x-axis represents the counting bound and the
y-axis represents the number of problem instances whose maximum counting
bound is equal to the value of the x-axis. From Fig. 5a, we can see that while
most problem instances contain only small bounds, there are still around 2,000
(about 4%) of them using large counting bounds (i.e. greater than or equal to
50).

16 D. Hu and Z. Wu

Experiment Setup. All experiments are conducted on CentOS Stream release 8
with 4 Intel(R) Xeon(R) Platinum 8269CY 3.10 GHz CPU cores and 190 GB
memory. We use the zaligvinder framework [24] to execute the experiments,
with a timeout of 60 s for each instance.

(a) Distribution of problem instances w.r.t.
counting bounds

CVC5 Z3str3RE Z3str3 Z3seq Ostrich OSTRICHRECL

sat 27813 28283 23126 27761 25975 28360
unsat 16941 19312 12742 18651 20291 20302

unknown 8 99 6990 98 160 28
timeout 4081 1149 5985 2333 2417 153
soundness

error
0 44 44 56 0 0

solved
correctly

44754 47551 35824 46356 46266 48662

average
time (s)

5.64 1.62 7.63 3.59 5.94 1.93

(b) Overall performance evaluation

Fig. 5. Distribution of counting bounds and performance evaluation

7.2 Performance Evaluation

We evaluate the performance of OSTRICHRECL against the state-of-the-art
string constraint solvers, including CVC5 [2], Z3seq [30], Z3str3 [5], Z3str3RE
[4], and OSTRICH [14], on RegCoL and AutomatArk benchmark suites. The
experiment results can be found in Fig. 5b. Note that we take the results of
CVC5 as the ground truth2, and the results different from the ground truth
are classified as soundness error. We can see that OSTRICHRECL solves almost
all 48,843 instances, except 182 of them, that is, it solves 48,662 instances cor-
rectly. The number is 3,908/1,111/12,838/2,306/2,396 more than the number
of instances solved by CVC5/Z3str3RE/Z3str3/Z3seq/OSTRICH respectively.
Moreover, OSTRICHRECL is the second fastest solver, whose average time on
each instance is close to the fastest solver Z3str3RE (1.93 s versus 1.62 s).

7.3 Evaluation on Problem Instances with Large Bounds

We extract 1,969 problem instances with large counting bounds (greater than
or equal to 50) from the RegCoL and AutomatArk benchmark suites. Moreover,
in order to test the performance of the solvers on string constraints with large
length bounds as well, we increase the length bound to 200, that is, |x| > 200.

We evaluate the performance of OSTRICHRECL on the 1,969 instances. The
experiment results can be found in Table 1a. We can see that OSTRICHRECL

2 Initially, we used the majority vote of the results of the solvers as the ground truth.
Nevertheless, on some problem instances, all the results of the three solvers in the
Z3 family are wrong (after manual inspection), thus failing this approach on these
instances.

String Constraints with Counting and Length Solved More Efficiently 17

solves 1,873 instances correctly, which is 947/278/563/637/523 more than those
solved by CVC5/Z3str3RE/Z3str3/Z3seq/OSTRICH respectively. Furthermore,
OSTRICHRECL is 6.79/2.88/2.61/5.27/3.95 times faster than CVC5/Z3str3RE/
Z3str3/Z3seq/OSTRICH respectively. From the results, we can conclude that
OSTRICHRECL is much more effective and efficient to solve the problem
instances with large bounds than the other solvers.

Table 1. More experiment results, where the time limit is set as 60 s

CVC5 Z3str3RE Z3str3 Z3seq ostrich OSTRICHRECL

sat 317 827 616 346 488 909

unsat 609 768 694 890 862 964

unknown 1 11 297 11 123 14

timeout 1042 363 362 722 496 82

soundness
error

0 0 0 0 0 0

solved
correctly

926 1595 1310 1236 1350 1873

average
time (s)

34.16 14.48 13.15 26.49 19.85 5.03

(a) Large bounds

OSTRICHRECL
−ASR OSTRICHRECL

NUXMV OSTRICHRECL

sat 26884 26603 28360

unsat 20275 20261 20302

unknown 48 45 28

timeout 1637 1935 153

soundness
error

0 0 0

solved
correctly

47159 46864 48662

average
time (s)

4.27 6.05 1.93

(b) Empirical justification of the technical
choices in the decision procedure

7.4 Empirical Justification of the Technical Choices Made
in the Decision Procedure

We compare OSTRICHRECL with OSTRICHRECL
−ASR and OSTRICHRECL

NUXMV, to jus-
tify the technical choices made in Sect. 6.2. The experiment results can be found
in Table 1b. We can see that OSTRICHRECL solves 1,503 more instances and is
2.21 times faster than OSTRICHRECL

−ASR. Therefore, the automata size-reduction
technique indeed plays an essential role in the performance improvement. More-
over, OSTRICHRECL solves 1,798 more instances and is 3.13 times faster than
OSTRICHRECL

NUXMV. Therefore, the decision procedure in Sect. 6.2 is more efficient
to solve the NELIA(CEFA) problem than nuXmv.

8 Conclusion

This work proposed an efficient automata-theoretical approach for solving string
constraints with regex-counting and string-length. The approach is based on
encoding counting operators in regular expressions by cost registers symbolically
instead of unfolding them explicitly. Moreover, this work proposed automata-
size reduction techniques to improve performance further. Finally, we used two
benchmark suites comprising 48,843 instances in total to evaluate the perfor-
mance of our approach. The experimental results show that our approach can
solve more instances than the state-of-the-art best solvers, at a comparable or
faster speed, especially when the counting and length bounds are large. For the
future work, we plan to investigate how the symbolic approach can be extended
to reason about nested counting operators.

18 D. Hu and Z. Wu

References

1. Abdulla, P.A., et al.: Efficient handling of string-number conversion. In: Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2020, pp. 943–957. Association for Computing Machinery,
New York (2020). https://doi.org/10.1145/3385412.3386034

2. Barbosa, H., et al.: CVC5: a versatile and industrial-strength SMT solver. In:
TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99524-9 24

3. Berzish, M.: Z3str4: a solver for theories over strings. Ph.D. thesis, University of
Waterloo, Ontario, Canada (2021). https://hdl.handle.net/10012/17102

4. Berzish, M., et al.: Towards more efficient methods for solving regular-expression
heavy string constraints. Theor. Comput. Sci. 943, 50–72 (2023)

5. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design, FMCAD
2017, Vienna, Austria, 2–6 October, pp. 55–59 (2017). https://doi.org/10.23919/
FMCAD.2017.8102241

6. Berzish, M., et al.: An SMT solver for regular expressions and linear arithmetic over
string length. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp.
289–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 14

7. Bui, D., contributors: Z3-trau (2019). https://github.com/diepbp/z3-trau
8. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.

(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

9. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in
Python. In: Zeller, A., Roychoudhury, A. (eds.) Proceedings of the 25th Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,
Germany, 18–20 July 2016, pp. 282–293. ACM (2016). https://doi.org/10.1145/
2931037.2931073

10. Chen, H., Lu, P.: Checking determinism of regular expressions with counting. Inf.
Comput. 241, 302–320 (2015). https://doi.org/10.1016/j.ic.2014.12.001

11. Chen, T., Chen, Y., Hague, M., Lin, A.W., Wu, Z.: What is decidable about string
constraints with the replaceall function. PACMPL 2(POPL), 3:1–3:29 (2018).
https://doi.org/10.1145/3158091

12. Chen, T., et al.: Solving string constraints with regex-dependent functions through
transducers with priorities and variables. Proc. ACM Program. Lang. 6(POPL),
1–31 (2022). https://doi.org/10.1145/3498707

13. Chen, T., et al.: A decision procedure for path feasibility of string manipulating
programs with integer data type. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020.
LNCS, vol. 12302, pp. 325–342. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-59152-6 18

14. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. PACMPL
3(POPL) (2019). https://doi.org/10.1145/3290362

15. D’Antoni, L.: Automatark: automata benchmark (2018). https://github.com/
lorisdanto/automatark

16. D’Antoni, L., Ferreira, T., Sammartino, M., Silva, A.: Symbolic register automata.
In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 3–21. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 1

https://doi.org/10.1145/3385412.3386034
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://hdl.handle.net/10012/17102
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1007/978-3-030-81688-9_14
https://github.com/diepbp/z3-trau
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1145/2931037.2931073
https://doi.org/10.1016/j.ic.2014.12.001
https://doi.org/10.1145/3158091
https://doi.org/10.1145/3498707
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1007/978-3-030-59152-6_18
https://doi.org/10.1145/3290362
https://github.com/lorisdanto/automatark
https://github.com/lorisdanto/automatark
https://doi.org/10.1007/978-3-030-25540-4_1

String Constraints with Counting and Length Solved More Efficiently 19

17. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression
denial of service (ReDoS) in practice: an empirical study at the ecosystem scale.
In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2018, pp. 246–256. Association for Computing Machinery, New York
(2018)

18. Davis, J.C., Michael IV, L.G., Coghlan, C.A., Servant, F., Lee, D.: Why aren’t reg-
ular expressions a lingua franca? An empirical study on the re-use and portability
of regular expressions. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2019, pp. 443–454. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3338906.3338909

19. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak
versus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012). https://doi.
org/10.1137/100814196

20. Haase, C.: A survival guide to Presburger arithmetic. ACM SIGLOG News 5(3),
67–82 (2018). https://doi.org/10.1145/3242953.3242964

21. Hoĺık, L., Śıc, J., Turonová, L., Vojnar, T.: Fast matching of regular patterns with
synchronizing counting. In: Kupferman, O., Sobocinski, P. (eds.) FoSSaCS 2023.
LNCS, vol. 13992, pp. 392–412. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-30829-1 19

22. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

23. Kaminski, M., Francez, N.: Finite-memory automata. In: Proceedings [1990] 31st
Annual Symposium on Foundations of Computer Science, vol. 2, pp. 683–688
(1990). https://doi.org/10.1109/FSCS.1990.89590

24. Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: ZaligVinder: a generic test
framework for string solvers. J. Softw. Evol. Process 35(4), e2400 (2023). https://
doi.org/10.1002/smr.2400

25. Le Glaunec, A., Kong, L., Mamouras, K.: Regular expression matching using bit
vector automata. Proc. ACM Program. Lang. 7(OOPSLA1) (2023). https://doi.
org/10.1145/3586044

26. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

27. Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C., Barrett, C.: A decision pro-
cedure for regular membership and length constraints over unbounded strings. In:
Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 135–150.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24246-0 9

28. Loring, B., Mitchell, D., Kinder, J.: Sound regular expression semantics for dynamic
symbolic execution of JavaScript. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, 22–26 June 2019, pp. 425–438. ACM (2019). https://doi.org/
10.1145/3314221.3314645

29. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Series in
Automatic Computation. Prentice-Hall (1967)

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1145/3338906.3338909
https://doi.org/10.1137/100814196
https://doi.org/10.1137/100814196
https://doi.org/10.1145/3242953.3242964
https://doi.org/10.1007/978-3-031-30829-1_19
https://doi.org/10.1007/978-3-031-30829-1_19
https://doi.org/10.1109/FSCS.1990.89590
https://doi.org/10.1002/smr.2400
https://doi.org/10.1002/smr.2400
https://doi.org/10.1145/3586044
https://doi.org/10.1145/3586044
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-24246-0_9
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1145/3314221.3314645
https://doi.org/10.1007/978-3-540-78800-3_24

20 D. Hu and Z. Wu

31. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: 2010 IEEE Symposium on Security and
Privacy, pp. 513–528 (2010). https://doi.org/10.1109/SP.2010.38

32. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-27836-8 94

33. Turoňová, L., Hoĺık, L., Lengál, O., Saarikivi, O., Veanes, M., Vojnar, T.: Regex
matching with counting-set automata. Proc. ACM Program. Lang. 4(OOPSLA)
(2020). https://doi.org/10.1145/3428286

34. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–
352. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231 25

35. Wang, H.E., Chen, S.Y., Yu, F., Jiang, J.H.R.: A symbolic model checking app-
roach to the analysis of string and length constraints. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, pp. 623–633. ACM (2018). https://doi.org/10.1145/3238147.3238189

36. Wang, P., Stolee, K.T.: How well are regular expressions tested in the wild? In:
Leavens, G.T., Garcia, A., Pasareanu, C.S. (eds.) Proceedings of the 2018 ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, 04–09 November 2018, pp. 668–678. ACM (2018)

37. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effec-
tive search-space pruning for solvers of string equations, regular expressions and
length constraints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 235–254. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 14

38. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a Z3-based string solver for web applica-
tion analysis. In: ESEC/SIGSOFT FSE, pp. 114–124 (2013). https://doi.org/10.
1145/2491411.2491456

https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1007/978-3-540-27836-8_94
https://doi.org/10.1145/3428286
https://doi.org/10.1007/11532231_25
https://doi.org/10.1145/3238147.3238189
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1007/978-3-319-21690-4_14
https://doi.org/10.1145/2491411.2491456
https://doi.org/10.1145/2491411.2491456

Reachability Based Uniform
Controllability to Target Set

with Evolution Function

Jia Geng1, Ruiqi Hu1, Kairong Liu1, Zhihui Li2, and Zhikun She1(B)

1 School of Mathematical Sciences, Beihang University, Beijing, China
{jgeng,by1809102,krliu,zhikun.she}@buaa.edu.cn

2 China Aerodynamics Research and Development Center, Mianyang, China
zhli0097@x263.net

Abstract. In this paper, we investigate the uniform controllability to
target set for dynamical systems by designing controllers such that the
trajectories evolving from the initial set can enter into the target set. For
this purpose, we first introduce the evolution function (EF) for exactly
describing the reachable set and give an over-approximation of the reach-
able set with high precision using the series representation of the evo-
lution function. Subsequently, we propose an approximation approach
for Hausdorff semi-distance with a bounded rectangular grid, which can
be used to guide the selection of controllers. Based on the above two
approximations, we design a heuristic framework to compute a piecewise
constant controller, realizing the controllability. Moreover, in order to
reduce the computational load, we improve our heuristic framework by
the K-arm Bandit Model in reinforcement learning. It is worth noting
that both of the heuristic algorithms may suffer from the risk of local
optima. To avoid the potential dilemma, we additionally propose a ref-
erence trajectory based algorithm for further improvement. Finally, we
use some benchmarks with comparisons to show the efficiency of our
approach.

Keywords: Controllability · Reachability · Evolution function ·
Reinforcement learning · Reference trajectory

1 Introduction

Control synthesis problem for reachability is a crucial issue in various realistic
applications such as robotics and control communities [1–3], and has attracted
attention for decades. It usually involves designing a controller such that the
dynamic system will eventually reach a specific region of the state space within
a finite time. How to design the explicit controllers has been intensively studied

This work is supported by the National Key R&D Program of China (2022YFA1005103)
and the National Natural Science Foundation of China (12371452).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 21–37, 2024.
https://doi.org/10.1007/978-981-99-8664-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_2&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_2

22 J. Geng et al.

in the past [4–6], and can be broadly grouped into two categories: searching-
based method [7] and dynamic programming-based method [8]. The searching-
based method usually uses rapid and intuitive searching algorithms to obtain
the controllers that meet the requirements, such as incremental sampling [9]
and exploring random trees [10]; the dynamic programming-based method typi-
cally constructs an optimal control problem using the HamiltonJacobi-Bellman
equation and solves the optimal controller by dynamic programming [11,12].

However, in reality, it is usually impractical to consider a single initial and
final state only. For example, in robot system [13,14], the initial position obtained
by the sensor is not accurate and prompt, and the specific missions of the robot
are required to be completed within a specified target area. For modelling the
phenomena above, it is necessary to consider the uniform controllability to target
set, i.e., to design controllers such that the trajectories evolving from the initial
set can enter the target set within a finite time. However, the uniform controlla-
bility problem to target set is rather challenging. First, the initial set described
by a connected compact set should be considered instead of a finite number of
points, thus the methods developed for points are not appropriate; second, the
uniform controllability to target set usually involves the reliable computation
of reachable sets and Hausdorff distance between two sets, both of which are
inherently difficult; finally, most existing methods such as the Hamilton-Jacobi
equation based approach usually incur in the curse of dimensionality [15,16].

In recent years, there have been many studies on theoretical approaches and
engineering applications about the control synthesis of set. For example, [17] pro-
poses an optimal control strategy for linear systems subjected to set-membership
uncertainties; [18] presents approaches as a combination of Hamiltonian tech-
niques with set-valued analysis for the problem of output feedback control under
unknown but bounded disturbances. It is worth pointing out that there are some
works that combine the reachability analysis with the controllability of set and
have attracted much attention. For example, by combining reachability analysis
with optimal control, [19] provides an approach to formally guarantee the satis-
faction of constraints for disturbed linear systems; [20] presents a toolbox that
automatically synthesizes verified controllers for solving reach-avoid problems
using reachability analysis. Moreover, the controllability of sets has also been
investigated in different application areas, such as air traffic management [21],
automotive engines [22], and protein signal transduction in biology [23].

In this paper, inspired by the series representations of evolution function [24],
we investigate the reachability based uniform controllability to target set. Specif-
ically, we first introduce the concept of evolution function (EF) for exactly
describing the reachable set. Due to the difficulty of solving analytic solutions of
EF, we give the approximations of reachable sets with high precision by the series
representation of EF. Afterwards, in virtue of the bounded rectangular grids, we
propose an approximation approach for obtaining the Hausdorff semi-distance
with any arbitrary precision guarantees between the reachable set and the target
set. Based on the above, we develop a heuristical framework to choose an optimal
piecewise constant controller from sampled candidates, in which a reachability

Reachability Based Uniform Controllability to Target Set 23

verification condition is used as the termination criteria, realizing the control-
lability. However, since we take numerous candidate controllers as samples, a
huge computational load is required for the computations of the corresponding
reachable sets. Therefore, inspired by reinforcement learning, we improve our
framework by using K-arm Bandit model. Additionally, it is notable that both
heuristic frameworks are prone to a potential local optimum dilemma, which will
result in the reachable set possibly missing the target set during the procedure.
To overcome the possible issue, we further improve our framework by developing
a reference trajectory based algorithm. Finally, we use some benchmarks with
comparisons to show the effectiveness of our methods.

The paper is organized as follows. In Sect. 2, we give the problem formulation.
In Sect. 3, we propose the theoretical foundations for reachability based uniform
controllability to target set. Then we design a framework for searching a piece-
wise constant controller to realize the controllability in Sect. 4. In Sect. 5, we
improve our framework by using K-arm Bandit model and reference trajectory
respectively. In Sect. 6, some benchmarks are provided to show the efficiency of
our approaches. We conclude the paper in Sect. 7.

2 Problem Formulation

In this paper, we consider the following dynamical system

ẋ = f(x,u(t)),x ∈ D, t ∈ T,u(·) ∈ U (T,U), (1)

where x ∈ R
n is an n-dimensional vector, D ⊂ R

n is a domain, time interval
T = [−T, T], T is a given time horizon, U =

∏m
i=1[ai, bi] ⊂ R

m, U (T,U) �
{measurable function Φ|Φ : T �→ U}, u(t) : R �→ R

m is the input control in
U (T,U), and f : D ×U (T,U) �→ R

n is an n-dimensional analytic real function
satisfying the local Lipschitz condition with respect to x and u(·). Denote the
trajectory starting from x0 ∈ R

n under the input control u(t) as φu(x0, t). Note
that in this paper we assume that T is strictly contained in the existence interval
of the solution. For System (1), we define the reachable set as follows.

Definition 1. For System (1) with control u(·) and initial set X0 ⊆ R
n, the

reachable set Reacht,u
f ,X0

at t ∈ T is defined as Reacht,u
f ,X0

= {φu(x0, t)|x0 ∈ X0}.
To describe the reachable set, we introduce the evolution function, which is
similar to the concept of advection operator in [25].

Definition 2. Given an analytic function g(x) : R
n → R and a given input

control u(·),the evolution function of system (1) with g(x) is defined as

Evof ,g,u(x, t) = g(φu(x,−t)),∀(x, t) ∈ D × [−T, 0]. (2)

Then, for a given analytic function g(x) : Rn → R, we denote the sub-level
set of g(x) as μ(g) � {x ∈ R

n|g(x) ≤ 0}. If the initial set X0 ⊆ R
n can be

described by the sub-level set, i.e., X0 = μ(g), we use Reacht,u
f ,g as aliases of

Reacht,u
f ,μ(g(·)). With Definition 2, we directly have the following proposition,

connecting evolution function Evof ,g,u(x, t) with reachable set Reacht,u
f ,g.

24 J. Geng et al.

Proposition 1. For System (1) and analytic function g(x) : Rn → R, Reacht,u
f ,g

= μ(Evof ,g,u(x, t)) = {x ∈ R
n|Evof ,g,u(x, t) ≤ 0}.

From Proposition 1, computation of Reacht,u
f ,g can be converted to computa-

tions of evolution function defined by its sub-zero level set. Then, the reachability
based uniform controllability to target set for System (1) is defined as follows.

Definition 3. For System (1) with given simply connected compact initial set
G0 = μ(g0), convex compact target set Gtarget = μ(gtarget) and time horizon
T, the reachability based uniform controllability to target set is the problem
of considering the existence of a proper input control u(·) ∈ U such that all
trajectories starting from G0 simultaneously move into Gtarget during [0, T], that
is, the existence of u(·) ∈ U and t ∈ [0, T] such that Reacht,u

f ,g0
⊆ Gtarget holds.

3 Reachability Based Theoretical Foundation

In this section, we propose the theoretical foundation for achieving reachabil-
ity based uniform controllability to target set. In details, Sect. 3.1 presents an
approximation of reachable set by remainder estimation-based method; Sect. 3.2
presents an approximation of the Hausdorff semi-distance by boundary grid;
Sect. 3.3 presents the conditions for its reachability verification.

3.1 Approximation of Reachable Set

For reachable set computation, Proposition 1 shows that we can compute the
reachable set by computing the evolution function of the system. However, the
analytic solution is hard to get in general. Instead of computing the evolution
function by directly using the analytic solution, following the work in [26,27], we
here introduce a methodology to compute approximations of evolution functions.
For the above purpose, we first define the approximations of the set as follows.

Definition 4. For two n-dimensional scale functions f1 (x) and f2 (x), f1 (x) is
an over-(or under-)approximation of f2 (x) over S if f1 (x) ≤ (≥)f2 (x),∀x ∈ S.

Note that segmented constant value functions can approximate time-varying
functions well, the segmented constant value controllers are usually considered.
Due to this, we in this subsection mainly focus on the constant value controller,
i.e. du

dt = 0. Based on Definition 2, the Taylor expansion of Evof ,g,u(x, t) w.r.t.
t at t = 0 can be expressed as

Evof ,g,u(x, t) =
+∞∑

i=0

Evo
(i)
f ,g,u(x, 0)

ti

i!
=

+∞∑

i=0

Mi
f ,g,u(x)

i!
(−t)i, (3)

where Mi
f ,g,u(x) is defined inductively as M0

f ,g,u(x) = g(x), and Mi+1
f ,g,u(x) =

∂Mi
f,g,u(x)

∂x · f(x,u) for all x ∈ D. Moreover, we denote EvoN
f ,g,u(x, t) as its N th

partial sum, i.e., EvoN
f ,g,u(x, t) ≡ ∑N

i=0
(−t)i

i! Mi
f ,g,u(x).

Reachability Based Uniform Controllability to Target Set 25

We denote the remainder of EvoN
f ,g,u(x, t) as RemN

f ,g,u(x, t) = Evof ,g,u(x, t)−
EvoN

f ,g,u(x, t). It was proved in [26] that RemN
f ,g,u(x, t) can be represented as

∫ t

0
(t−r)N

N ! (−1)N+1MN+1
f ,g,u(φu(x,−r))dr. Thus, if we can find proper bounds of

MN+1
f ,g,uφu(x,−r), then we can directly estimate remainders RemN

f ,g,u(x, t), arriv-
ing at approximations of evolution function, as shown in Theorem 1.

Theorem 1. For System (1) with constant controller, analytic g : Rn → R

and time bound T , assume that S is a compact set of states such that D ⊇ S ⊇⋃
t∈[0,T] Reacht,u

f ,g , and S
′ ⊇ ⋃

t∈[−T,0] Reach−t,u
f ,S . For any degree N ∈ N, if we can

have LN+1 ≤ (−1)N+1MN+1
f ,g,u(x) ≤ UN+1, then for all (x, t,u) ∈ S

′ × [0, T]×U,

1. Over(x, t,u) = EvoN
f ,g,u(x, t) + LN+1

tN+1

(N+1)! / Under(x, t,u) = EvoN
f ,g,u(x, t)

+ UN+1
tN+1

(N+1)! is over- / under- approximation of Evof ,g,u(x, t) over S.

2. the precisions for approximations above is bounded by (UN+1 −LN+1) tN+1

(N+1)! .

3.2 Hausdorff Semi-distance Based Control Synthesis

After obtaining a reliable representation of the reachable set, we need to provide
a metric between the reachable sets and the target set to guide the selection of
controllers. For this purpose, we introduce the concept of Hausdorff semi-distance
of set and give a theoretical representation of the optimal control. However, the
calculation of Hausdorff semi-distance is rather difficult. Here, based on some
common assumptions on sets, we present a lemma for simplification, such that
the Hausdorff semi-distance between sets can be converted to the Hausdorff semi-
distance between boundaries of sets. Moreover, since the Hausdorff semi-distance
between connected boundaries is still difficult to obtain, we propose a rectangular
grid based approximation method to give an estimate of the Hausdorff semi-
distance between boundaries with a given error range, and further, give the
controller selection strategy based on the above approximation.

Definition 5. For sets ΩA and ΩB, the Hausdorff semi-distance from ΩA to ΩB

is defined by d(ΩA, ΩB) = supa∈ΩA
d(a,ΩB), where d(a,ΩB) = infb∈ΩB

‖a−b‖2.
Based on the distance in Definition 5, we can use it as an important metric

to assess the performance among different input control u. Then, solving reach-
ability based uniform controllability problem to target set can be converted to
find the proper input control u∗(·) such that

u∗(·) = argmin
u∈U (T,U)

min
t∈[0,T]

d(μ(Evof ,g,u(x, t)),Gtarget). (4)

In general, it is difficult to directly solve (4) since accurate reachable sets are
not available. Especially, as for computing accurate Hausdorff semi-distance, it
usually requires comparing all points in two sets, which is obviously not possible
in applications. Therefore, in order to reduce the computation cost, we propose a
lemma to simplify the Hausdorff semi-distance based on the following property.

26 J. Geng et al.

Property 1. Assume that ΩA is a compact set and ΩB is a convex compact set.
Then there must exist a ∈ ∂ΩA such that d(a,ΩB) = d(ΩA, ΩB).

Lemma 1. Assume that ΩA is a compact set and ΩB is a convex compact set.
If ∂ΩA ⊆ ΩB, then d(ΩA, ΩB) = 0; else d(ΩA, ΩB) = d((∂ΩA)

⋂
Ωc

B , ∂ΩB).

Now we consider the distance between μ(Evof ,g,u(x, t)) and Gtarget. Due
to the continuity of Evof ,g,u(x, t) and the compactness of the initial set,
we have μ(Evof ,g,u(x, t)) is compact. Besides, Gtarget is assumed to be con-
vex and compact. Based on Lemma 1, we transform the computation of
d(μ(Evof ,g,u(x, t)),Gtarget) to d(∂μ(Evof ,g,u(x, t)) ∩ G

c
target, ∂Gtarget), reduc-

ing the complexity.
Although the distance between μ(Evof ,g,u(x, t)) and Gtarget is simplified to

the distance between boundaries, it is still difficult to solve the above Hausdorff
semi-distances directly. This is attributed to the fact that the complexity of the
evolution function will increase significantly as the system evolves, resulting in
a complex sub-zero level set. Therefore, based on the general consensus that
distances can be calculated numerically on a finite number of grid points [28],
we propose a high-precision method to compute the distance above as follows.

Given a compact set Ω and a hypercuboid S which satisfies Ω ⊆ S, we divide
S and attempt to find finite grid points of S to approximate the boundary of Ω.
Specifically, for a hypercuboid S =

∏n
i=1[ai, ai] ⊆ R

n, the rectangular bounded
grid on S with kn grid points has a spacing (ai − ai)/(k − 1) in each of its
dimensions, that is, the length of S in each dimension is divided equally into
k − 1 parts. We denote the finite set of all grid points on S by N(S, k), i.e.,

N(S, k) = {xi1···in
| xi1···in

= (a1 +
a1 − a1

k − 1
∗ i1, · · · , an +

an − an

k − 1
∗ in),

ij = 0, · · · , k − 1, j = 1, · · · , n},

and the maximum spacing of each dimension as h = maxi=1,··· ,n{(ai − ai)/(k −
1)}. Then we consider the grid points on S that close to the boundary of set
Ω, i.e., the grid points on S for which the distance to the boundary of Ω is less
than h, denoted as N(Ω)(S, k) = {x ∈ N(S, k) | d(x,Ω) ≤ h}.

However, when the set is represented by a zero sub-level set, d(x,Ω) is difficult
to obtain, so we introduce a boundary determinant as follows.

N(μ(g))(S, k) = {x = (xi1,··· ,ij ,··· ,in
) ∈ N(S, k) | ∃ j ∈ [1, n], ij ∈ [1, k − 1],

g(xi1,··· ,ij−1,··· ,in
) · g(xi1,··· ,ij+1,··· ,in

) ≤ 0}.
(5)

Clearly, we have N(μ(g))(S, k) ⊆ N(Ω)(S, k), and Eq. (5) guarantees that
there are points of dissimilar sign in each mesh, which means that the boundary
points will be covered. To get a better visualization of (5), we use Fig. 1 for
a two-dimensional example to show four boundary cases where none and four
inside attributed to one case. The points on the rectangles represent the local
grid points, the red lines represent the boundary ∂(μ(g)), and the green cir-
cle represents N(μ(g))(S, k) selected to satisfy (5). Based on (5), we propose an
approximation method for d(ΩA, ΩB) with a given error range in Theorem 2.

Reachability Based Uniform Controllability to Target Set 27

(a) One inside (b) Two inside (c) Three inside (d) Four inside

Fig. 1. Schematic representation of boundary approximation grid points in (5)

Theorem 2. Given two compact sets ΩA = μ(gA) and ΩB = μ(gB), then for
any hypercuboids SA =

∏n
i=1[ai, ai] and SB =

∏n
i=1[bi, bi] satisfying ΩA ⊆ SA

and ΩB ⊆ SB, we define the grid distance d̃(ΩA, ΩB) with kn grid points as

d̃(ΩA, ΩB) = sup
a∈N(μ(gA))(SA,k)

inf
b∈N(μ(gB))(SB ,k)

‖a − b‖2, (6)

and the approximation error satisfies: ‖d(ΩA, ΩB) − d̃(ΩA, ΩB)‖ ≤ hA + hB,

where hA = max1≤i≤n{ (ai−ai)

k−1 }, and hB = max1≤i≤n{ (bi−bi)

k−1 }.
According to Theorem 2, (4) will be converted into the following equation:

u∗(·) = argminu∈U (T,U) mint∈[0,T] d̃(μ(Over(x, t,u)),Gtarget).

3.3 Reachability Verification

This subsection provides a method to verify whether the current reachable set
reaches the target set truly under the input control by numerical quantifier
elimination. Apparently, if there exists t∗ ∈ [0, T], such that the Hausdorff
semi-distance from μ(Evof ,g,u(x, t∗)) to Gtarget takes the minimal value 0, i.e.,
d(μ(Evof ,g,u∗(·)(x, t∗)),Gtarget) = 0, then we can obtain that μ(Evof ,g,u(x, t)) ⊆
Gtarget. However, the grid distance d̃ in Theorem 2 introduces computational
errors, and thus the grid distance d̃(Over(x, t,u∗),Gtarget) = 0 can not guaran-
tee that the reachable set at the current instant enters the target set. Therefore,
we here propose an alternative approach for verification. It is worth mentioning
that we only verify when the distance between the reachable set and the tar-
get set at the current moment is less than h. Specifically, based on Theorem 1
and Proposition 1, if exists t∗ ∈ [0, T], we have Over(x, t∗,u) ⊆ Gtarget, then
μ(Evof ,g,u(x, t∗)) ⊆ Gtarget. Utilizing the sub-zero level set representation of
the target set, we can obtain sufficient conditions for reachability as follows.

Theorem 3. For a convex compact set Gtarget = {x | gtarget ≤ 0} and the over-
approximation of reachable set Over(x, t,u∗), if the constraint ∃t ∈ [0, T],∀x ∈
S, [Over(x, t,u∗) ≤ 0 ⇒ gtarget(x) ≤ 0] holds, then Gtarget is reachable.

28 J. Geng et al.

4 Reachability Based Heuristic Framework

In this section, we propose a reachability based heuristic framework for uni-
form controllability to target set. For this, inspired by the property that for any
measurable function, there exist piecewise constant functions converging to it,
we firstly propose the following sketch, attempting to search a proper piecewise
constant u∗(·) such that under u∗(·), Reacht,u∗

f ,g ⊆ Gtarget for a certain t ∈ [0, T]:

1. divide [0, T] into 0 = t0 < t1 < · · · < tK = T , and G0 := μ(g0);
2. for each interval [ti, ti+1], 0 ≤ i ≤ K − 1,

(a) Approximation: compute the over-approximation μ(Over(x, t,u)) of the
reachable set and a box S satisfying S ⊇ μ(Over(x, t,u)).

(b) Synthesis: select the optimal constant controller u∗
i by solving

u∗
i = argmin

u∈U (T,U)

d̃(μ(Over(x, t,u)),Gtarget); (7)

(c) Verification(where d̃u∗
i

≤ h): verify the constraint: ∃t ∈ [ti, ti+1],∀x ∈
S, [Over(x, t,u∗) ≤ 0 ⇒ gtarget(x) ≤ 0],
i. if the above constraint holds (reached), return u∗(·);
ii. else, gi+1 = Over(x, ti+1,u∗

i) and go to the time interval [ti+1, ti+2].

Secondly, we design an algorithm for over-approximating reachable set in (7).
That is, for given System (1), analytic function g(·), time horizon T and des-
ignated precision ε, we attempt to use Theorem 1 to compute Over(x, t,u) for
any given u ∈ U. For this, starting from a box B containing the initial set μ(g),
we first call CORA [29] to get an over-approximation (Bound) of the maxi-
mal reachable set as S and an over-approximation (Interval) of the backward
maximal reachable set of S as S

′
. Then, according to S′, we can iteratively

increase the degree N of EvoN
f ,g,u(x, t) and estimate the lower bound LN+1 and

upper bound UN+1 of (−1)N+1MN+1 (x,u) in S
′ × U with interval arithmetic

in CORA until UN+1 − LN+1 ≤ ε·(N+1)!
T N+1 . According to Theorem 1, all over-

approximations of Evof ,g,u(x, t) for all u ∈ U are generated with the given
precision. Consequently, we have Algorithm 1 to compute over-approximations
of EF with any given precision.

Thirdly, we design an algorithm to realize the verification. For this, we call
RSolver [30] for solving the constraint ∃t ∈ [ti, ti+1],∀x ∈ S, [Over(x, t,u∗) ≤
0 ⇒ gtarget(x) ≤ 0]. Note that RSolver can solve quantified constraints, that is,
formulae in the first order predicate language over the reals, and returns ‘true’,
‘false’, and ‘unknown’ with corresponding intervals according to a user-provided
error bound. Consequently, we design Algorithm 2 for verifying simulative reach-
ability.

Finally, based on Algorithm 1 and 2, we can achieve our overall reachability
based heuristic framework in Algorithm 3. Specifically, considering the synthesis
in our framework, for given over-approximation of reachable sets Over(x, t,u), all
candidates control set [ai, bi], over-approximation of the maximal reachable set S
and designated precision ε, we attempt to implement the selection of controllers

Reachability Based Uniform Controllability to Target Set 29

Algorithm 1. Over-approximation
Input: f(x,u(t)), g(x), B, T , ε, [ai, bi];
Output: Over(x, t,u), S.

1: Call CORA(f, B, T) to find Bound as S;
2: Call CORA(f, Bound, −T) to find Interval as S′;
3: Initialize N ← 0, M (x,u) ← g(x), Tr(x, t,u) ← g(x);

4: while U − L > ε·(N+1)!
T N+1 do

5: M (x,u) ← ∂M (x,u)
∂x

· f(x,u);

6: Tr(x, t,u) ← Tr(x, t,u) + (−t)N+1

(N+1)! M (x,u) and N ← N + 1;

7: Compute L and U for M (x,u) in S′ × ∏m
i=1[ai, bi];

8: Over(x, t,u) ← Tr(x, t,u) + L (t)N+1

(N+1)! ;

9: return Over(x, t,u), S.

Algorithm 2. Verification
Input: Over(x, t,u∗

i), S, Gtarget, η, T ;
Output: flag.
1: Initialize flag ← 0;
2: while flag == 0 do
3: Call RSolver with (Over(x, t,u∗

i), S, Gtarget, η, T) for the flag in Theorem 3;
4: if the interval for ‘false’ �= ∅ then
5: flag ← −1;
6: else if the interval for ‘unknown’ �= ∅ then
7: η ← 0.5η;
8: else
9: flag ← 1;

10: return flag.

in step 2(a) according to Theorem 2. From Theorem 2, we generate a rectangular,
bounded grid in R

n of kn grid points to approximate the Hausdorff semi-distance.
Grid for reachable sets is generated in the S which is found in Algorithm 1 and
Grid for the target set is given by initial condition that Gtarget ⊆ Starget. Then,
for all candidates ũ ∈ [ai, bi], we try to get enough boundary points of the
reachable set to compute Hausdorff semi-distance. According to Theorem 2, we
use the boundary determination condition based on the sub-level set and obtain
the approximate boundary points of the target set and reachable set by using
the rectangular bounded grid, and then we can compute dũ for each candidate
ũ ∈ [ai, bi] from a finite number of grid points. After that, we compare all
approximations of d(μ(Evof ,g,u(x,Δt)),Gtarget) and then select the best input
control u∗.

5 Improvements of Reachability Based Framework

In this section, we will improve our heuristic framework by K-arm Bandit Model
and reference trajectory respectively. In detail, in order to reduce the computa-
tional complexity, in Subsect. 5.1 we improve our framework with less time cost

30 J. Geng et al.

Algorithm 3. Reachability based Heuristic Framework
Input: f(x,u(t)), T , K, k, g0, gtarget, U (T,U), B, Starget, ε, η;
Output: u∗(·).
1: Initialize g(x) = g0, S0 = B, divide [0, T] into 0 = t0 < t1 < · · · < tK = T .
2: Construct Tbounds from the N(μ(gtarget))(Starget, k) and get hT in (5)
3: for i = 0, · · · , K − 1 do
4: Sampling to obtain controllers ũi in U
5: Call Algorithm 1 with (f , g, Si, ti+1 − ti, ε, U) for Over(x, t,u) and Si+1

6: Generate a grid in Si+1 of kn grid points
7: for all candidates ũi ∈ U do
8: Construct Rbounds from the N(μ(Over(x,ti+1,u)))(Si+1, k) and get hO in (5)

9: d̃ũi ← maxpr∈Rbounds minpt∈Tbounds‖pr − pt‖2

10: u∗
i = argminũi∈U d̃ũi

11: if d̃u∗
i

≤ hO + hT then
12: Call Algorithm 2 with (Over(x, t,u∗

i), Si+1, Gtarget, η, ti+1 − ti) for reach
flag

13: if flag = 1 then
14: Let u∗(·) ← u∗

j , for all j(j = 0, · · · , i)
15: return u∗(·)
16: Reset g(x) ← Over(x, ti+1,u

∗
i)

17: return control not found.

achieving similar results by using K-arm Bandit model in reinforcement learn-
ing. Furthermore, to avoid the possible dilemma of local optima, in Subsect. 5.2
we improve our framework based on the reference trajectory.

5.1 K-Arm Bandit Model Based Improvement

Note that for control inputs with large-scale sampling and systems of high dimen-
sions, the number of over approximations of the reachable set and the corre-
sponding rectangular grid points will increase exponentially, which implies the
huge computational cost of Algorithm 3. In order to reduce the complexity, we
propose an improved approach for selection based on K-arm Bandit model.

K-arm Bandit is a typical problem of reinforcement learning, and it describes
the following task: suppose there is a slot machine with K different levers on
which a positive reward is given for each pull and the goal is to maximize the total
reward for a given fixed number of pulls. Inspired by the K-arm Bandit model, we
abstract a similar K-arm Bandit model for solving our problem. Specifically, we
regard different candidates of the controller as levers (options) of K-arm Bandit
model in each [ti, ti+1]. Then, for each trial in the K-arm Bandit model, we select
a random point s(ti) which is located in the initial set of current time interval as
the test point, and the distance difference d(s(ti), ctarget) − d(s(ti+1), ctarget) is
used as the reward of the current trail. Based on the reward of each trial, we can
define the reward for different controllers ũ of the current time interval, which
is defined as the average reward of each trial under ũ.

Reachability Based Uniform Controllability to Target Set 31

Based on the above discussion, for given System (1), analytic g(x), time
horizon T , all candidates control set [a, b], total test times M and designated
precision ε, we attempt to design a new improved algorithm for selection of
controllers. Firstly, for each time interval [ti, ti+1], generate a multitude of ran-
dom states s(ti) in current initial set μ(g(x)) and compute the state s(ti+1)
evolving from state s(ti) for each candidates ũi ∈ [a, b] by numerical algo-
rithm of System (1). Then we compute return reward of the current trail as
r(ũi) = d(s(ti), ctarget)−d(s(ti+1), ctarget). For the reward of each candidate ũi,
after repeating M trials, we can compute the average of r(ũi), and regard it as
the reward of ũi, denoted as Q(ũi). We choose the candidate that maximizes the
average reward as the optimal controller of current time interval [ti, ti+1], and
compute the Over(x, ti+1,u∗

i) under the current optimal controller u∗
i , which

can be used as the initial set for the next time interval.
As a conclusion of the above discussions, we present our overall reachability

based K-armed Bandit framework in Algorithm 4. Different from Algorithm 3,
we here avoid the multiple computations of over-approximations of reachable
sets and their Hausdorff semi-distance, reducing the computational complexity
significantly. Our benchmark (Example 1) shows that Algorithm 4 has similar
performance as Algorithm 3, but with significantly lower computational cost.

Algorithm 4. K-armed Bandit Based Improved Framework
Input: f(x,u(t)), T , K, k, g0, gtarget, U (T,U), B, M , ε;
Output: u∗(·).
1: Initialize g(x) = g0, S0 = B, divide [0, T] into 0 = t0 < t1 < · · · < tK = T .
2: for i = 0, · · · , K − 1 do
3: Q(·) = 0, count = 0, sampling to obtain controllers ũi in U
4: while count ≤ M do
5: Generate a random point p inside μ(g(x))
6: for all candidates ũi ∈ U do
7: r(ũi) ← d(s(ti), ctarget) − d(s(ti+1), ctarget)

8: Q(ũi) ← count∗Q(ũi)+r(ũi)
count+1 , count ← count + 1

9: u∗
i ← argmaxũi∈U Q(ũi)

10: Call Algorithm 1 with (f , g, Si, ti+1 − ti, ε, U) for Over(x, t,u) and Si+1

11: if d(s(ti+1), ctarget) ≤ ε then
12: Call Algorithm 2 with Over(x, t,u∗

i), Si, Gtarget, η, ti+1 − ti for flag
13: if flag = 1 then
14: Let u∗(·) ← u∗

j , for all j(j = 0, · · · , i)
15: return u∗(·)
16: Reset g(x) ← Over(x, ti+1,u

∗
i)

17: return control not found.

5.2 Reference Trajectory Based Further Improvement

It is worth noting that the heuristic frameworks may be subject to the risk
of local optima, which means the controllers obtained by the above heuristic

32 J. Geng et al.

algorithms can not always guarantee that all trajectories will reach the target
set within the time horizon. To avoid the local optimum dilemma, we further
improve our algorithm using reference trajectory.

Firstly, we present the method for searching a suitable reference trajectory.
The idea is to compute a feasible trajectory φu(c0, t) that steers the center c0
of the initial set μ(g0) as close as possible to the geometric center ctarget of
the target set μ(gtarget). For this idea, one possible way is to minimize the
distance between φu(c0, t) and ctarget for t ∈ [0, T] and u ∈ U . However,
φu∗(c0, t∗), where (u∗, t∗) = argmint∈[0,T], u∈U ‖φu(c0, t) − ctarget‖, may be
very close to the center of the target set but outside of the target set; and
there may exist a t such that φu∗(c0, t) is strictly inside the target set though
it might not be the closest state to ctarget. Therefore, a better way is to search
a trajectory φu∗(c0, t) such that φu∗(c0, t∗) is in the target set. For this, we
additionally introduce an exponential function eA(sgn(gtarget(φu(c0,t)))+1), where
sgn(·) is the sign function and A is a sufficiently large positive integer, as a
penalty term in the objective function, which is used to determine whether
the state is inside the target set or not. Based on the above discussion, let-
ting R(u, t) = eA(sgn(gtarget(φu(c0,t)))+1)‖φu(c0, t) − ctarget‖, we can obtain the
reference trajectory by minimizing R(u, t) for t ∈ [0, T] and u∈ U . However,
it is difficult to solve this optimization problem since optimizing both variables
directly is unrealistic. Thus, we give an alternative method for solving a reference
trajectory. For this, we adopt the time splitting 0 = t0 < t1 < · · · < tK = T ,
and then solve the univariate optimization problem for each time interval [0, ti]
(1 ≤ i ≤ K), i.e., minu∈U R(u, ti). For each i, the optimization can be achieved
by calling ACADO Toolkit [31], which is an open source framework for automatic
control using multiple shooting. After obtaining the K optimal values R(u∗

i , ti)
(1 ≤ i ≤ K), where u∗

i = argminu∈U R(u, ti), let j∗ = argmin1≤i≤KR(u∗
i , ti) and

uref = u∗
j . Then our reference trajectory can be given as xref (t) = φuref

(c0, t).
After obtaining the reference trajectory xref (·) during the interval [0, tj], we

still use the concept of average reward similar to the one in Algorithm 4 as
an index to measure the performance of each candidate controller for designing
an improved algorithm. Specifically, for i = 0, · · · , j∗ − 1, instead of using the
distance between s(ti+1) and the center of the target set, we alternatively use
the minus distance between s(ti+1) and the corresponding state on the refer-
ence trajectory xref (·) (i.e., −d(s(ti+1), xref (ti+1))) as the new return reward.
Then, we calculate the average of the above distances for each candidate con-
troller as the average reward and choose the candidate with the largest average
reward as the optimal controller of the current time interval. Thus, the selec-
tion strategy described above can ensure that the reachable set evolves almost
along a predetermined reference trajectory, thereby avoiding the local optimum
dilemma that usually exists in heuristic algorithms. Therefore, we can use the
new reward r(ũi) = −d(s(ti+1), xref (ti+1)) to update lines 7 of Algorithm 4 to
obtain the improved ref-trajectory-based algorithm. Note that, if j∗ < K, then
for i = j∗, · · · ,K − 1 we do not change the formula of r(ũi) in Algorithm 4.
The complete updated algorithm will not be listed in detail due to the space
constraint, but we still refer to it as Algorithm 5 for the convenience of usage.

Reachability Based Uniform Controllability to Target Set 33

6 Examples and Discussions

In this section, we demonstrate our methods on three examples, where η =
10−2, ε = 10−3, red lines represent the target set and green lines represent
the approximations of reachable sets. Moreover, we show the performance of
our methods by comparing Examples 1 and 2 with the motion primitive based
control algorithms in AROC [20], setting Opts.maxIter = 20. It is worth noting
that AROC aims to drive all states inside the initial set at the final time tf as
close as possible to a desired final state, whereas we aim to drive all trajectories
evolving from the initial set can simultaneously enter into the target set within
a time horizon. We do not compare our method with AROC for Example 3 here
since it is hard to adapt AROC for this example. All examples were performed
on a Laptop with 1.8GHz Intel Core i7 (4 cores) and 8 Gb of RAM.

Example 1. Consider a nonlinear multi-input control system [32]:
[
ẋ1

ẋ2

]

=
1
2

[
x2
1 + x2

−x1x2

]

+
[
1/2 0
0 1/2

] [
u1

u2

]

,

where u1 ∈ [−1, 1], u2 ∈ [−1, 1], the initial set G0 is {x|(x1 − 1)2 + (x2 − 2)2 −
0.02 ≤ 0}, the target set Gtarget is {x|(x1 − 3)2 + (x2 − 1)2/4 − 0.49 ≤ 0} and
the time horizon T = 1. We divide T into n = 20 parts, and take 121 samples
from [−1, 1] × [−1, 1] as candidates of control input.

Algorithm 3 and Algorithm 4 both realize the controllability to the target
set during the time segment [0.60, 0.65]. The time cost of Algorithm 3 is 1912 s,
while Algorithm 4 is only 223 s, which shows the advantages of our K-arm Bandit
Model based algorithm. The resulted over-approximations of reachable sets at
t = 0, 0.05, · · · , 0.65 are shown in Fig. 2(a) and Fig. 2(b) respectively. Moreover,
we set the initial set to be [0.9, 1.1] × [1.9, 2.1] and the final time tf = 0.65, and
use the state (2.94, 0.95), determined by the numerical solution at the instant
t = 0.65 with initial state (1, 2) under the controller produced by Algorithm 4,
as the goal state; AROC can realize the goal of synthesizing a controller with
191 s, which makes trajectories evolving from the initial set as close as possible
to the desired state (2.94, 0.95) ∈ Gtarget at the instant tf = 0.65 instead of
simultaneously enter into the set Gtarget. The results of over-approximations of
reachable sets obtained by AROC are listed in Fig. 2(c). However, if the goal
state is reset to be (3, 1) (the center of target set), AROC cannot find a feasible
solution for tf = 0.65 even if we set Opts.maxIter=50; and if we reset the time tf
as 0.70, AROC still cannot find a feasible solution for the goal state (2.94, 0.95)
even if we set Opts.maxIter = 50. These results show that AROC has a higher
dependence on the final time and goal state in achieving controllability, while our
approaches have relatively loose requirements on the final time and goal state.

Example 2. Consider a 4-dimensional Dubins car system [15]:
⎡

⎢
⎢
⎣

ẋ
ẏ

θ̇
v̇

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

vcosθ
vsinθ

u1

u2

⎤

⎥
⎥
⎦ ,

34 J. Geng et al.

1 1.5 2 2.5 3 3.5

x
1

0.8

1

1.2

1.4

1.6

1.8

2

x 2

(a) Over-approximation
of Reacht,u

f ,g by Alg. 3.

1 1.5 2 2.5 3 3.5

x
1

0.8

1

1.2

1.4

1.6

1.8

2

x 2

(b) Over-approximation
of Reacht,u

f ,g by Alg. 4.
(c) Over-approximation of
reachable set by AROC.

Fig. 2. Results of Example 1

where u1 ∈ [−0.4, 0.4], u2 ∈ [−9, 9], the initial set G0 is {(x, y, θ, v) | x2 + y2 +
θ2 + (v − 20)2 − 0.02 ≤ 0}, the target set Gtarget is {(x − 19.87)2 + (y + 1.99)2 +
(θ + 0.2)2 − 0.25 ≤ 0} and time horizon T = 1. We divide T into n = 20 parts,
and take 1369 samples from [−0.4, 0.4] × [−9, 9] as candidates of control.

Algorithm 4 and Algorithm 5 can both realize the controllability to tar-
get set during the time segment [0.80, 0.85]. The time cost of Algorithm 4
is 250 s, while the time cost of Algorithm 5 is 297 s, which shows that the
additional use of reference trajectory in Algorithm 5 does not significantly
change the time cost. The resulted over-approximations of reachable sets under
the corresponding obtained controllers at t = 0, 0.05, · · · , 0.85 are shown in
Fig. 3(a) and Fig. 3(b) respectively. Note that this system is exactly the bench-
mark used in the AROC 2022 Manual [34], and we set the initial set to be
[−0.1, 0.1] × [−0.1, 0.1] × [−0.1, 0.1] × [19.9, 20.1] and the final time tf = 0.85,
and use the state ((19.87,−1.99,−0.2, 25.72), determined by the numerical solu-
tion at the instant t = 0.85 with initial state (0, 0, 0, 20) under the controller
produced by Algorithm 5; AROC can realize the goal of synthesizing a con-
troller with 218 s, which makes trajectories evolving from the initial set as close
as possible to the desired state (19.87,−1.99,−0.2, 25.72) ∈ Gtarget at the time
tf = 0.85 instead of simultaneously enter into the set Gtarget. The results of
over-approximations of reachable sets obtained by AROC are listed in Fig. 2(c).
Note that in addition to the dependence on the final time and goal state, AROC
requires a specific target state, while our algorithms consider a specific target
set that is independent on the variable v. This implies that our approach is more
flexible and less restrictive.

Example 3. Consider a 6-dimensional non-polynomial system [33], which models
the backflip maneuver for the quadrotor helicopter:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ṗx

v̇x

ṗy

v̇y

φ̇
ω̇

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

vx

−Cv
Dvx

m
vy

−mg−Cv
Dvy

m
ω

−Cφ
Dω

Iyy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
− sinφ

m
− sinφ

m
0 0

cosφ
m

cosφ
m

0 0
l

Iyy

l
Iyy

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
u1

u2

]

,

Reachability Based Uniform Controllability to Target Set 35

-5 0 5 10 15 20 25

x
1

-2.5

-2

-1.5

-1

-0.5

0

0.5

x 2

(a) Over-approximation of
Reacht,u

f ,g by Alg. 4.

-5 0 5 10 15 20 25

x
1

-2.5

-2

-1.5

-1

-0.5

0

0.5

x 2

(b) Over-approximation of
Reacht,u

f ,g by Alg.5.
(c) Over-approximation of
reachable set by AROC.

Fig. 3. Results of Example 2

where px, py, and φ represent the horizontal, vertical, rotational positions, vx, vy,
and ω represent the corresponding velocities, u1 ∈ [−20, 20] and u2 ∈ [−20, 20]
are thrusts exerted on either end of the quadrotor. For the coefficients, Cv

D = 0.1
for translational drag, m = 5 for mass, g = 9.8 for gravity, Cφ

D = 0.1, for
rotational drag, Iyy = 10 for the moment of inertia and l = 0.5. The initial set
G0 is {p2x + (vx − 2)2 + p2y + (vy − 1)2 + (φ − π/6)2 + (ω − 0.1)2 − 0.01 ≤ 0},
the target set Gtarget is {(px − 2.29)2 + (py + 4.425)2 − 0.252 ≤ 0} and time
horizon T = 2. We divide T into n = 40 parts, and take 1681 samples from
[−20, 20] × [−20, 20] as candidates of control input.

Note that Algorithm 4 can terminate within 237 s, but Fig. 4(a) shows that
Algorithm 4 cannot control the initial set into the target set within the given
time horizon T = 2. Fortunately, by using Algorithm 5, we can realize the
controllability to target set during the time segment [1.00, 1.05] within 397 s.
Figure 4(c) shows the resulted over-approximations of reachable sets obtained
by Algorithm 5. This demonstrates the advantage of our reference trajectory-
based Algorithm 5 over Algorithm 4. Note that we also use n = 80 and sampled
40,401 candidate inputs, but Algorithm 4 still failed to realize the controllability
to the target (see Fig. 4(b)). This is because for this example, Algorithm 4 falls
into the local optimum.

-0.5 0 0.5 1 1.5 2 2.5 3
x
1

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

x
2

(a) Over-approximation of
Reacht,u

f ,g with 1681 input
candidates by Alg. 4.

-0.5 0 0.5 1 1.5 2 2.5 3
x
1

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

x
2

(b) Over-approximation of
Reacht,u

f ,g with 40401 input
candidates by Alg. 4.

-0.5 0 0.5 1 1.5 2 2.5 3
x
1

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

x
2

(c) Over-approximation of
Reacht,u

f ,g with 1681 input
candidates by Alg.5.

Fig. 4. Results of Example 3

36 J. Geng et al.

7 Conclusion

In this paper, we study the uniform controllability to target set such that the
trajectories evolving from the initial set under designed controllers can enter into
the target set. Firstly, we provide an over-approximation of the reachable set by
using the series representation of EF. Subsequently, we propose an approxima-
tion approach for Hausdorff semi-distance with a bounded rectangular grid to
measure the distance between reachable sets and the target set. Then, we design
a heuristic framework to compute a piecewise constant controller, realizing the
controllability. Moreover, to reduce the complexity, we improve our framework
by K-arm Bandit Model in reinforcement learning. Since the heuristic algorithms
may suffer from the local optima, we additionally use the reference trajectory for
further improvement. Finally, some benchmarks with comparisons are presented
to show the efficiency of our approaches. In the future, we will investigate the
reachability based uniform controllability for avoidance-guaranteed problem.

References

1. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Practical search techniques in
path planning for autonomous driving. Ann Arbor 1001(48105), 18–80 (2008)

2. Stefanovski, J.: Fault tolerant control of descriptor systems with disturbances.
IEEE TAC 64(3), 976–988 (2019)

3. Kurzhanski, A.B., Mesyats, A.I.: The Hamiltonian formalism for problems of group
control under obstacles. IEEE TAC 49(18), 570–575 (2016)

4. Fisac, J.F., Akametalu, A.K., et al.: A general safety framework for learning-based
control in uncertain robotic systems. IEEE TAC 64(7), 2737–2752 (2018)

5. Ornik, M., Broucke, M.E.: Chattering in the reach control problem. Automatica
89(1), 201–211 (2018)

6. Broucke, M.E.: Reach control on simplices by continuous state feedback. SIAM J.
Control. Optim. 48(5), 3482–3500 (2010)

7. Kavralu, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Trans. Robot.
Autom. 12(4), 566–580 (1994)

8. Nevistic, V., Primbs, J.A.: Constrained nonlinear optimal control: a converse HJB
approach. Technical Memorandum, No. CIT-CDS 96-021 (1996)

9. Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E., Kavraki, L.E.: Multiple query
probabilistic roadmap planning using single query planning primitives. In: IEEE
IROS, pp. 656–661 (2003)

10. Xu, J., Duindam, V., Alterovitz, R., Goldberg, K.: Nonlinear Systems Analysis,
Stability and Control. Springer, New York (1999). https://doi.org/10.1007/978-1-
4757-3108-8

11. Klamka, J.: Controllability of dynamical systems. A survey. Bull. Pol. Acad. Sci.:
Tech. Sci. 61(2), 335–342 (2013)

12. Khalaf, M.A., Lewis, F.L.: Nearly optimal control laws for nonlinear systems with
saturating actuators using a neural network HJB approach. Automatica 41(5),
779–791 (2005)

13. Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for collisions-free
multirobot systems. IEEE Trans. Robot. 33(3), 661–674 (2017)

https://doi.org/10.1007/978-1-4757-3108-8
https://doi.org/10.1007/978-1-4757-3108-8

Reachability Based Uniform Controllability to Target Set 37

14. Fisac, J.F., Akametalu, A.K., Zeilinger, M.N., Kaynama, S., Gillula, J., Tomlin,
C.J.: A general safety framework for learning-based control in uncertain robotic
systems. IEEE TAC 64(7), 2737–2752 (2019)

15. Bansal, S., Chen, M., Herbert, S., et al.: Hamilton-Jacobi reachability: a brief
overview and recent advance. In: IEEE CDC, pp. 2242–2253 (2017)

16. Chen, M., Tomlin, C.J.: Exact and efficient Hamilton-Jacobi reachability for decou-
pled systems. In: IEEE CDC, pp. 1297–1303 (2015)

17. Dmitruk, N., Findeisen, R., Allgower, F.: Optimal measurement feedback control of
finite-time continuous linear systems. IFAC Proc. Vol. 41(2), 15339–15344 (2008)

18. Kurzhanski, A.B., Varaiya, P.: Optimization of output feedback control under set-
membership uncertainty. J. Optim. Theory Appl. 151(1), 11–32 (2011)

19. Schurmann, B., Althoff, M.: Optimal control of sets of solutions to formally guar-
antee constraints of disturbed linear systems. In: American Control Conference,
pp. 2522–2529 (2017)

20. Kochdumper, N., Gruber, F., Schürmann, B., et al.: AROC: a toolbox for auto-
mated reachset optimal controller synthesis. In: HSCC, pp. 1–6 (2021)

21. Tomlin, C.J., Pappas, G.J., Sastry, S.S.: Conflict resolution for air traffic manage-
ment: a study in multiagent hybrid systems. IEEE TAC 43(4), 509–521 (2002)

22. Koo, T.J., Pappas, G.J., Sastry, S.: Mode switching synthesis for reachability spec-
ifications. In: HSCC, pp. 333–346 (2004)

23. Lincoln, P., Tiwari, A.: Symbolic systems biology: hybrid modeling and analysis of
biological networks. In: HSCC, pp. 660–672 (2004)

24. Li, M., She, Z.: Over- and under-approximations of reachable sets with series rep-
resentations of evolution functions. IEEE TAC 66(3), 1414–1421 (2021)

25. Wang, T.C., Lall, S., West, M.: Polynomial level-set method for polynomial system
reachable set estimation. IEEE TAC 58(10), 2508–2521 (2013)

26. Hu, R., Liu, K., She, Z.: Evolution function based reach-avoid verification for time-
varying systems with disturbances. ACM Trans. Embed. Comput. Syst. (2023).
https://doi.org/10.1145/3626099

27. Hu, R., She, Z.: OURS: over- and under-approximating reachable sets for analytic
time-invariant differential equations. J. Syst. Architect. 128, 102580 (2022)

28. Kraft, D.: Computing the Hausdorff distance of two sets from their distance func-
tions. J. Comput. Geom. Appl. 30(1), 19–49 (2020)

29. https://tumcps.github.io/CORA/
30. Ratschan, S.: Efficient solving of quantified inequality constraints over the real

numbers. ACM Trans. Comput. Log. 7, 723–748 (2006)
31. Houska, B., Ferreau, H., Diehl, M.: ACADO toolkit - an open source framework

for automatic control and dynamic optimization. Optimal Control Appl. Methods
32(3), 298–312 (2011)

32. Slotine, J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs
(1991)

33. Chen, M., Herbert, S.L., Vashishtha, M.S., Bansal, S., Tomlin, C.J.: Decomposition
of reachable sets and tubes for a class of nonlinear systems. IEEE TAC 63(11),
3675–3688 (2018)

34. https://tumcps.github.io/AROC/

https://doi.org/10.1145/3626099
https://tumcps.github.io/CORA/
https://tumcps.github.io/AROC/

Enhancing Branch and Bound
for Robustness Verification of Neural
Networks via an Effective Branching

Strategy

Shaocong Han1(B) and Yi Zhang1,2

1 Department of Automation, Tsinghua University, Beijing 100084, China
hsc20@mails.tsinghua.edu.cn, zhyi@mail.tsinghua.edu.cn

2 Beijing National Research Center for Information Science and Technology
(BNRist), Beijing 100084, China

Abstract. The existence of adversarial examples highlights the vulner-
ability of neural networks and brings much interest to the formal verifi-
cation of neural network robustness. To improve the scalability of neural
network verification while approaching completeness, researchers have
adopted the branch-and-bound (BaB) framework. Better branching can
reduce the number of branches to explore and plays an important role
in BaB verification methods. In this paper, we propose a new branch-
ing strategy. It utilizes a low-cost metric to make splitting decisions and
supports branching on ReLU activation functions. We conduct experi-
ments on widely used benchmarks to evaluate its performance. Simula-
tion results demonstrate that this branching strategy effectively improves
the verification efficiency and is better than the state-of-the-art strategies
in overall performance.

Keywords: Robustness verification · Neural network · Branching
strategy · Branch and bound

1 Introduction

Neural networks have accomplished significant success in a variety of applica-
tions [1,2] such as image recognition [3], object detection [4], and so on [5]. It
provides a new way to develop software systems by training neural networks
on a finite set of samples to tackle more unseen inputs correctly [6]. Despite
their success, the finding of adversarial examples implies the vulnerability of
neural networks [7] and brings concerns about their application in safety-critical
tasks [8]. It is shown that small and imperceptible perturbations to the input
can lead to unexpected behavior of the neural network [9–11]. To guarantee reli-
ability, formal verification of neural networks has received much more attention
in recent years. Approaches based on satisfiability modulo theory (SMT) [12,13],
interval propagation [14], and reachability analysis [15] are developed to rigor-
ously prove the property of neural networks satisfies some given specifications.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 38–54, 2024.
https://doi.org/10.1007/978-981-99-8664-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_3&domain=pdf
http://orcid.org/0009-0009-0605-2542
http://orcid.org/0000-0001-5526-866X
https://doi.org/10.1007/978-981-99-8664-4_3

Enhancing BaB for Neural Networks Verification via a Branching Strategy 39

Completeness and scalability are two major concerns of formal verification
methods for neural networks [16]. To reach high scalability, methods based on
over-approximation are devised. Such approaches transform the verification task
into solving relaxed convex optimization problems [17]. These approaches are
highly scalable and sound, but can only verify certain specifications due to the
relaxation error raised [18], i.e., they are incomplete. To overcome incomplete-
ness, the branch and bound (BaB) framework was applied by some researchers,
which incorporates fast bounding approaches with splitting procedures to elimi-
nate approximation error iteratively. BaB methods can finally approach complete
verification [19,20].

There are two approaches to improving the efficiency of BaB methods: bet-
ter bounding and better branching. Better branching can enhance efficiency by
reducing the number of sub-problems needed to be explored [20,21] and save veri-
fication time. In this paper, we investigate and propose a new branching strategy,
which supports splitting over ReLU nonlinear activation functions. This strat-
egy utilizes a computationally inexpensive metric to sort and choose splitting
actions. It can be incorporated with various off-the-shelf sound bounding meth-
ods to build verifiers. Experiments are set up to evaluate the performance of
this strategy and compare against baselines including two state-of-the-art ones
on MNIST [22] and CIFAR [23] image classification tasks. Experiment results
show that this strategy is more efficient than others in the verification bench-
marks.

In summary, the main contributions of this paper are as follows:

– We investigate the branch and bound framework for neural network verifica-
tion and propose a new branching strategy that supports splitting over ReLU
nonlinear activation function and can be integrated with various off-the-shelf
sound bounding methods to build complete verifiers.

– We combine the new branching strategy with a sound bounding method to
form a new type of BaB method and implement the method in Python.

– We design and conduct some experiments to evaluate the performance of the
strategy and compare it against three baselines to show its efficacy.

The rest of this paper is structured as follows. Section 2 presents some prelim-
inaries, including the task of neural network verification and the formal formula-
tion of a verification problem. In Sect. 3, we propose a new branching scheme that
can be applied within the branch and bound verification framework. Section 4
describes the setup of experiments and presents the results. We conclude the
paper and picture the future work in Sect. 5.

2 Preliminaries

In this section, we review some background on neural network verification prob-
lems and present terminologies and notations applied throughout this paper.

40 S. Han and Y. Zhang

2.1 Neural Network Verification

Notation of Neural Network. A k-layer feed-forward neural network denoted
by f : Rn0 → R

nk can be expressed as [24]

ẑi = Wizi−1 + bi, for i = 1, . . . , k

zi = ReLU(ẑi), for i = 1, . . . , k − 1
. (1)

Here z0 ≡ x ∈ R
n0 denotes the input vector variable and ẑk ∈ R

nk refers to
the output of the neural network. ReLU refers to the element-wise non-linear
activation function which is defined as ReLU(x) = max{0, x}. We refer to ni as
the number of neurons of the i-th layer, Wi ∈ R

ni×ni−1 as the weight matrix,
and bi ∈ R

ni as the bias vector. ẑi,j and zi,j are defined as the pre-activation
value and post-activation value of the j-th neuron of the i-th layer respectively.

Verification Problem. We now specify the problem of formal verification of
neural networks. Given a neural network f : R

n0 → R
nk , the input x in a

bounded domain C, and some property P of the output, the formal verification
problem denoted by (f, C, P) can be expressed as [19]

∀x ∈ C ∧ y = f(x) ⇒ P (y). (2)

As most properties examined, such as the robustness to adversarial example,
usually can be expressed as a combination of certain linear inequalities of the
output value [17,18], for instance, cT y − θ > 0, the property P can be merged
into the last layer of the network as [20,25]:

cT ẑk − θ = cT (Wkzk−1 + bk) − θ = cTWk
︸ ︷︷ ︸

Wk
′

zk−1 + cT bk − θ
︸ ︷︷ ︸

bk
′

. (3)

The merged fP : Rn0 → R is called the canonical form [19]. The verification
problem can be reformulated as proving or disproving the specification

∀x ∈ C, fP (x) = ẑk ≥ 0. (4)

One typical approach to tackle Eq. (4) is to build an optimization model [26]
and determine the sign of its optimal value:

min
ẑ,z

fP (x) ≡ ẑk

s.t. z0 = x ∈ C
ẑi = Wizi−1 + bi, for i = 1, . . . , k

zi = ReLU(ẑi), for i = 1, . . . , k − 1

. (5)

Since ReLU is a nonlinear function, the model in Eq. (5) is a non-convex
optimization problem [27]. It is an NP-hard problem and very difficult to find
the global optimal solution, so researchers turn to compute a lower bound of the
minimum value of fP (x), denoted by f

P
(x), which is relatively easy to obtain. If

f
P

(x) ≥ 0, then the property can be proved. Based on this idea, several efficient
sound verification methods have been developed [17,24].

Enhancing BaB for Neural Networks Verification via a Branching Strategy 41

2.2 Branch and Bound

Although sound methods are computationally efficient, they are not complete:
some properties can not be proved since the bounds calculated are not tight
enough. To improve the tightness of the lower bound of the optimal value, the
BaB framework was introduced and adopted by Bunel et al. [19]. BaB is an iter-
ative process, it performs two steps in each iteration: branching and bounding.

In the branching step, the bounded input domain C is divided into some dis-
joint domains Cj , such that C = ∪Cj , and the original problem can be substituted
by several sub-problems:

min
ẑ,z

fP,Cj
(x), x ∈ Cj (j = 1, . . .).

In the bounding step, BaB uses a certain approximation method to estimate
a lower bound f

P,Cj
(x) and an upper bound f̄P,Cj

(x) for the minima of each
sub-problem. Taking the minimum of all lower bounds as

f ′
P

(x) = min
j

f
P,Cj

(x)

and the minimum of all upper bounds as

f̄ ′
P (x) = min

j
f̄P,Cj

(x),

tighter global lower and upper bounds for min fP (x) over C can be obtained.
If f ′

P
(x) > 0, then the property is proved; if f̄ ′

P (x) < 0, then the property is
disproved or falsified; otherwise, the domain Cj in which f̄P,Cj

(x) > 0 > f
P,Cj

(x)
will be further partitioned into subdomains and the iteration continues to tighten
the global lower bound until the property is proved or disproved [18,21].

The efficiency of branch and bound highly depends on the bounding algo-
rithm and the branching strategy. A lot of effort has been committed to revising
sound and fast bounding methods that can be used in BaB. As far as we know,
linear programming (LP) bounding procedure [28] and linear relaxation based
perturbation analysis (LiPRA) [29] are two of the most representative meth-
ods. Both methods perform some kind of linear relaxations on the non-convex
equality constraints in Eq. (5) as follows.

Linear Programming Bounding. The linear programming bounding method
constructs a linear program by relaxing the non-linear ReLU equality constraint
zi,j = ReLU(ẑi,j) to a group of linear equality or inequality constraints [28]:

zi,j = 0 if ui,j < 0
zi,j = ẑi,j if li,j > 0

zi,j ≥ ẑi,j

zi,j ≥ 0

zi,j ≤ (ẑi,j − li,j)
(ui,j − li,j)

ui,j

⎫

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎭

if ui,j > 0 > li,j

(6)

42 S. Han and Y. Zhang

where ui,j denotes the upper bound of ẑi,j and li,j denotes the lower bound of
ẑi,j , as shown in Fig. 1.

Fig. 1. The trilateral convex envelope for the ReLU equality constraint. The points
along the black bold folded line in the left part form a non-convex set. The shaded area
in the right part represents the relaxed linear region which is convex [28].

Under the assumption x ∈ C can be expressed as some linear constraints, a
lower bound of the optimal value of Eq. (5) can be acquired by solving the linear
program in Eq. (7), subject to Eq. (6).

min
ẑ,z

fP (x) ≡ ẑk,

s. t. z0 = x ∈ C
ẑi = Wizi−1 + bi for i = 1, . . . , k

. (7)

There are also other types of linear relaxation for ReLU equality constraints.
For example, LiPRA [18] substitutes the ReLU equation constraints with

zi,j = ReLU(ẑi,j) ⇒

zi,j = 0 if ui,j < 0
zi,j = ẑi,j if li,j > 0

zi,j ≥ αẑi,j

zi,j ≤ (ẑi,j − li,j)
(ui,j − li,j)

ui,j

⎫

⎪
⎬

⎪
⎭

if ui,j > 0 > li,j

(8)

where α can be any value that belongs to the interval [0, 1].

Domain Splitting. In addition to the bounding algorithm, branch strategy
also influences the efficiency of BaB [19]. If the bounded domain is divided
properly, branches and running time can be saved. For ReLU-based networks,
a typical approach for dividing a domain C is splitting an unfixed ReLU unit
zi,j = ReLU(ẑi,j) to be in active and inactive states, resulting in two independent
subdomains [21]

C1 = {x|x ∈ C, ẑi,j ≥ 0}
C2 = {x|x ∈ C, ẑi,j < 0}. (9)

Enhancing BaB for Neural Networks Verification via a Branching Strategy 43

Within C1 and C2, the convex envelop in Eq. (6) will be replaced by the linear
equality constraint zi,j = ẑi,j and zi,j = 0 respectively. This reduces the size
of the feasible region for each sub-problem. So, the global lower bound can be
tightened by taking the minimum of the lower bounds of sub-problems.

The crucial issue for branching is to decide which unfixed ReLU unit to split.
Two of the state-of-the-art are BaBSR [19] and Filtered Smart Branching
(FSB) [20]. BaBSR estimates the effect of splitting each unfixed ReLU unit on
tightening the lower bound with a score si,j calculated by

si,j =
∣

∣

∣

∣
max(vi,jbi−1,j − ui,j li,j

ui,j − li,j
[μi,j]+,

−μi,jbi−1,j + vi,jbi−1,j − ui,j li,j
ui,j − li,j

[μi,j]+)
∣

∣

∣

∣
(10)

where vi,j and μi,j are defined as [24]:

vk = −1

μi = WT
i+1vi+1, for i = k − 1, ...0

vi,j =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0, if ui,j < 0
μi,j , if li,j > 0

ui,j

ui,j − li,j
[μi,j]+ + αi,j [μi,j]−, if li,j ≤ 0 ≤ ui,j

for i = k − 1, ...1

. (11)

Then BaBSR takes the ReLU unit with the highest si,j value to split on.
Inspired by mimicking strong branching, FSB [20] defines another metric ti,j

called the backup score as

ti,j =
ui,j li,j

ui,j − li,j
[μi,j]+. (12)

FSB employs si,j and ti,j to choose a subset of splitting decision candidates
DFSB in each hidden layer by

DFSB =
k−1
⋃

i=1

{(

i, argmax
j∈Ii

si,j

)

,

(

i, argmax
j∈Ii

ti,j

)}

(13)

where Ii = {j|ui,j > 0 > li,j} denotes the index set of unfixed ReLU units in the
i-th layer. Then it applies the fast dual bounding method proposed in [17,24] to
evaluate and choose the splitting decision

dFSB = arg max
d∈DFSB

(

min
h∈{1,2}

{

lA(pd,[h])
}

)

(14)

where lA(pd,[h]) denotes the lower bound acquired by bounding algorithm A for
the h-th subproblem of p with applying splitting decision d.

44 S. Han and Y. Zhang

3 Enhancing BaB with a Better Branching Strategy

In this section, we investigate the effect of tightening the lower bound through
splitting on an unfixed ReLU unit and define a new type of metric to indicate
the effect. Based on this metric, we propose a branching strategy, which is com-
putationally low-cost and can be applied in BaB for neural network verification.

3.1 Improvement to Lower Bound by Splitting

According to the weak duality theorem, the best lower bound of the linear pro-
gram in Eq. (7) can be obtained by solving its Lagrange dual problem [17,21,24].
The bound can be computed by

f
p

= −
k

∑

i=1

vT
i bi +

k−1
∑

i=1

∑

j∈I

ui,j li,j
ui,j − li,j

[μi,j]+ − μ0
Tx0 − ε ‖μ0‖ (15)

with
vk = −1
μi = Wi+1vi+1, for i = k − 1, ...0

vi,j =

⎧

⎪
⎨

⎪
⎩

0, if ui,j < 0
μi,j , if li,j > 0

ui,j

ui,j−li,j
[μi,j]+ + αi,j [μi,j]−, if li,j ≤ 0 ≤ ui,j

for i = k − 1, ...1

when x ∈ C = {x|x − x0 ≥ −ε, x ≤ x0 + ε}. Here, [a]+ = max(a, 0) denotes the
positive part of a and [a]− = min(a, 0) denotes its negative part.

When we split an unfixed ReLU unit zi,j = ReLU(ẑi,j) with additional
domain constrains {x ∈ C|ẑi,j ≥ 0} and {x ∈ C|ẑi,j < 0}, the state of the
unit zi,j in subproblems will be turned into positive and negative. According
to Eq. (15), the item vi,j will change from vi,j to 0 in positive state, or from vi,j
to μi,j in negative state respectively. Assuming other terms in Eq. (15) remain
unchanged [19,20], the improvement to the lower bound of each sub-problem
can be approximated by

l(ps∈{1,2}) − l(p)

=

{

vi,jbi−1,j − ui,j li,j
ui,j−li,j

[μi,j]+, for vi,j → 0

−μi,jbi−1,j + vi,jbi−1,j − ui,j li,j
ui,j−li,j

[μi,j]+, for vi,j → μi,j

.(16)

An immediate idea is to use the maximum or minimum of the two items in
Eq. (16) to select the best potential ReLU unit to split on, as which is applied
in BaBSR and FSB [19,20].

Enhancing BaB for Neural Networks Verification via a Branching Strategy 45

3.2 Better Splitting Decision

Inspect the value of the items by Eq. (16), we can draw three key observations:

1. For each subproblem ps(s = 1, 2), the item−ui,j li,j [μi,j]+/(ui,j − li,j) is
always greater than or equal to zero since −ui,j li,j/(ui,j − li,j) and [μi,j]+
are both non-negative for any unfixed ReLU unit, while the other items
such as vi,jbi−1,j , −μi,jbi−1,j + vi,jbi−1,j can be positive or negative. So
−ui,j li,j [μi,j]+/(ui,j − li,j) may be used to indicate the extent of the improve-
ment for lower bound.

2. −ui,j li,j/(ui,j − li,j) is the intercept of the upper bound line of the tri-
lateral convex envelope for the ReLU equality constraint, as shown in
Fig. 1. It depicts the maximum deviation of the points in the convex region
from the corresponding points in the original non-convex set. The smaller
−ui,j li,j/(ui,j − li,j) is, the less deviation incurred by relaxation.

3. In certain situations, there may be a fraction of unfixed ReLU units that
have [μi,j]+ equal to zero. Another metric is needed to prioritize these units
as soon as all the ones with −ui,j li,j [μi,j]+/(ui,j − li,j) �= 0 have been split
while the lower bound is still not tight enough to prove the specification.

Based on those observations stated above, we can use −ui,j li,j [μi,j]+/(ui,j −
li,j) to approximately measure the effect of splitting the unfixed units and pick
up the one that may bring the most significant improvement to the lower bound
to split on. Once all unfixed ones with −ui,j li,j [μi,j]+/(ui,j − li,j) �= 0 have
been split, we then turn to choose among those which have vi,jbi−1,j ≥ 0 or
−μi,jbi−1,j + vi,jbi−1,j ≥ 0.

In implementation, we evaluate the choice of splitting on an unfixed ReLU
unit zi,j by the metric

h(zi,j) =

{−ui,j li,j [µi,j]+
ui,j−li,j

η + ([vi,jbi−1,j]+ + [−μi,jbi−1,j]+)(1 − η), j ∈ Ii

0, j /∈ Ii

(17)
where Ii denotes the index set of unfixed ReLU units in the i-th layer as in
Eq. (13). Here, η is a hyperparameter that belongs to the interval (0, 1) and can
be determined through experiments; [·]+ is an operator that takes the positive
part of the operand. Then among all unfixed ReLU units, we select the one with
the largest score h(zi,j) to split on

z∗
i,j = argmax

zi,j

h(zi,j). (18)

We name this branching strategy relaxation loss minimization (RLM). This
strategy is computationally efficient given that: 1) all vi,j and μi,j can be com-
puted by one single backward pass with Eq. (15); 2) the intermediate bounds
ui,j and li,j needed for the calculation in Eq. (17) are the outputs of the previous
bounding step so they are ready for use; 3) the branching strategy just commits
a very little overhead by computing h(zi,j) for those unfixed ReLU units and

46 S. Han and Y. Zhang

picking out the maximal one. In addition, this branching strategy is very gen-
eral and can be applied in combination with a variety of off-the-shelf bounding
algorithms such as LP [19] and CROWN [18,21] within the BaB framework.

4 Experimental Evaluation

In this section, we set up experiments to evaluate the effectiveness of our pro-
posed branching strategy and compare it against three baseline strategies: One
trivial strategy denoted by Random Choice (RC), which randomly selects an
unfixed node to split, and two state-of-the-art strategies: BaBSR devised by
Bunel et al. [19] and FSB by Palma et al. [20].

4.1 Benchmarks

To conduct a fair comparison, we use one fixed sound bounding algorithm that is
based on CROWN [21,30] in the bounding phase. We then combine the bounding
algorithm with those four branching strategies respectively, resulting in four
BaB verification methods denoted as BaB-RC, BaB-SR, BaB-FSB, and BaB-
RLM. We use the identical bounding algorithm in all the BaB methods to make
sure only the branching strategies contribute to the difference in the verification
performance.

We assess these verification methods on a set of widely used benchmark
tasks. In detail, we use four types of pre-trained robust neural networks in our
evaluation. These networks are trained for image classification on MNIST [22]
dataset and CIFAR [23] dataset and are used in previous research works [17,18,
21,30,31]. The networks are denoted by MNIST-6-100, MNIST-9-200, CIFAR-
A-Adv, and CIFAR-B-Adv respectively. MNIST-6-100 is a 6-layer and MNIST-
9-200 is a 9-layer fully-connected feed-forward neural network; CIFAR-A-Adv
is a 4-layer convolutional neural network and CIFAR-B-Adv is also a 4-layer
convolutional network but with wider layers.

We intend to certify the adversarial robustness of the networks on a set of
images: for each image xi, provided that the network f(x) can correctly predict
its true label yi, the task is to verify the property that every x in the region
{x| ‖x − xi‖∞ ≤ ε} can be assigned the same label as xi. This problem can be
formulated as proving the specifications shown in Eq. (19).

∀x ∈ {x ∣

∣‖x − xi‖∞ ≤ ε} → f(x)i − f(x)j > 0,∀j �= i. (19)

With MNIST-6-100 and MNIST-9-200, an image from the MNIST dataset
could be predicted to one of ten labels. Assuming its true label is yi, then we need
to verify nine specifications for one image, i.e. f(x)i > f(x)j , j ∈ {0, 1, . . . , i −
1, i + 1, 9}. With CIFAR-A-Adv and CIFAR-B-Adv, one image taken from the
CIFAR dataset also has ten possible labels, so there are also nine specifications
to verify for each correctly-predicted image.

Enhancing BaB for Neural Networks Verification via a Branching Strategy 47

In the experiments, we use N images from the dataset and use some specific
ε-values as the L∞-norm of adversarial perturbation noise. We evaluate BaB-
RLM and other baseline verification methods on MNIST-6-100, MNIST-9-200,
CIFAR-A-Adv, and CIFAR-B-Adv respectively and compare their performance.
Those ε-values are intentionally chosen to make the verification tasks not trivial
since too small values (without any noise) will cause 100% verification and too
big ones will lead to 100% falsification with a small number of iterations or even
a single bounding operation. To force the program to end within a limited time,
we set a timeout for verifying a specification for each method in the experiment.

All the experiments were conducted on a workstation with an AMD EPYC
7742 CPU, 4 NVIDIA GeForce RTX 3080 GPUs, and 512 GB of RAM. Our
program was developed using Python 3.10 and PyTorch 1.12.0.

4.2 Experiment Results

Results on the Feed-Forward Network MNIST-6-100. In this experi-
ment, the L∞-norm of adversarial noise is set to various ε-values taken from the
interval [0.01, 0.04]. In each round, N = 100 images randomly taken from the
MNIST dataset are used and the timeout value is set to 200 s for verifying one
specification. The hyperparameter η of BaB-RLM is determined by a bisection
search and is set to 0.99. We measured the percentage of the successfully verified
specifications and calculated the average runtime for verifying one image [30].
The numerical experiment results are given in Table 1. To visually compare the
performance of the four methods, we also plot the data in Fig. 2.

Fig. 2. Comparison of verified accuracy, average runtime and verification efficiency for
BaB-FSB, BaB-RLM, BaB-SR, and BaB-RC on the neural network MNIST-6-100. The
lower part depicts the comparison without BaB-RC for illustrative purposes.

48 S. Han and Y. Zhang

Table 1. The percentage of verified specifications and the average runtime for veri-
fying one image by each method on MNIST-6-100 with various values of ε. The best-
performing values are highlighted in bold and the second-best are underlined. The gains
of average verification efficiency by BaB-RLM relative to the second-best method are
presented in the lower part of the table.

ε Verified accuracy

BaB-RLM BaB-FSB BaB-SR BaB-RC

0.0100 99.89% 99.43% 99.43% 99.32%

0.0125 98.30% 98.30% 97.96% 96.49%

c.0150 93.08% 93.08% 92.74% 90.82%

0.0175 88.55% 88.55% 88.10% 85.60%

0.0200 79.71% 79.25% 78.80% 74.04%

0.0225 66.21% 65.65% 65.08% 58.73%

0.0250 52.61% 51.70% 51.47% 46.49%

0.0275 41.27% 40.93% 40.36% 35.60%

0.0300 29.93% 29.14% 29.02% 20.41%

0.0325 15.42% 14.97% 14.74% 10.54%

0.0350 7.48% 7.26% 7.26% 4.88%

0.0375 4.42% 4.20% 4.20% 2.61%

0.0400 2.27% 2.04% 1.93% 1.36%

ε Average runtime (s)

BaB-RLM
(Efficiency gain)

BaB-FSB BaB-SR BaB-RC

0.0100 7.05(+65.14%) 11.64 12.41 13.48

0.0125 8.87(+28.09%) 11.36 15.72 40.17

0.0150 7.96(+31.60%) 10.48 13.73 51.38

0.0175 14.90(+25.49%) 18.70 21.50 69.22

0.0200 24.83(+38.27%) 34.33 38.75 149.48

0.0225 40.00(+48.93%) 59.57 63.80 236.51

0.0250 43.16(+61.36%) 69.65 71.68 252.82

0.0275 53.52(+33.09%) 71.22 71.71 324.56

0.0300 113.54(+54.11%) 174.98 163.29 872.64

0.0325 101.92(+74.31%) 177.65 179.46 909.53

0.0350 100.14(+63.43%) 163.65 174.11 993.24

0.0375 98.75(+49.57%) 147.71 136.64 1309.39

0.0400 218.39(+45.27%) 317.27 358.21 1213.64

From Table 1 and Fig. 2, we can see that BaB-RLM achieves the highest
verified accuracy among all methods in each round of the experiment. It also
takes the least amount of average runtime to do the verification. The other three

Enhancing BaB for Neural Networks Verification via a Branching Strategy 49

methods can occasionally get the same high verification rate as BaB-RLM with
certain specific ε-values while they all require more average runtime. Based on
the Pareto principle, we can see that the overall performance of the four methods
is ranked as: BaB-RLM>BaB-FSB>BaB-SR>BaB-RC.

It is important to note that BaB verification methods are theoretically com-
plete, which means if sufficient runtime is provided, the verified accuracy of all
methods will be almost the same. However, the average runtime can be different
for each method. The average runtime can indicate the efficiency of the verifica-
tion method: the less average runtime implies the higher efficiency, provided the
experiment is conducted on the same dataset.

In terms of verification efficiency (defined as the reciprocal of average veri-
fication time), it is clear that BaB-RLM outperforms BaB-FSB, BaB-SR, and
BaB-RC under each condition. We calculate the gain of verification efficiency by
BaB-RLM to the second-best method by Eq. (20)

gain =
1

tRLM
− 1

t2nd

1
t2nd

=
t2nd − tRLM

tRLM
× 100% (20)

where tRLM denotes the average runtime of BaB-RLM and t2nd refers to the
average runtime of second-best method. From Table 1 and Fig. 2, it can be seen
that BaB-RLM improves the verification efficiency by 25%–74% relative to the
second-best-performing method. The gain of efficiency by BaB-RLM to the other
two methods is even larger.

Results on the Convolutional Network CIFAR-A-Adv. In this experi-
ment, the L∞-norm of adversarial noise is set to various ε-values taken from the
interval [0.009,0.025], making the property not too easy to verify without any
branching. In each round, N = 100 images randomly taken from the CIFAR
dataset are utilized and the timeout value is set to 25 s for verifying one spec-
ification. The hyperparameter η for BaB-RLM remains 0.99 as previously. We
record the percentage of the successfully verified specifications and the average
runtime in verifying one image. The numerical experiment results are given in
Table 2. To make a visual comparison, we also plot the results in Fig. 3.

According to Table 2, we can see that BaB-RC constantly achieves the lowest
verification accuracy under all conditions while consuming the most amount of
average runtime, so it is no doubt the worst one. Similar to the results in Table 1,
BaB-SR and BaB-FSB can occasionally reach the same high verification accuracy
as BaB-RLM under a certain level of adversarial noise, so they are better than
BaB-RC. Above all, BaB-RLM steadily gets the highest verification accuracy
among all methods and always requires the least average runtime in all cases.

Given the results in Table 2 and Fig. 3, it is clear that the overall efficiency
of BaB-RLM is superior to the other three methods. According to the Pareto
comparison principle, the overall performance of the four methods is BaB-
RLM>BaB-FSB>BaB-SR>BaB-RC. This also conforms to the results in
Table 1 and Fig. 2. In terms of the verification efficiency, BaB-RLM improves

50 S. Han and Y. Zhang

Table 2. Percentage of verified specifications and average runtime for verifying one
image by each method on CIFAR-A-Adv with various values of ε. All the best-
performing values are highlighted in bold, and the second-best underlined. The gains
of average verification efficiency by BaB-RLM relative to the second-best method are
also presented in the table.

ε Verified accuracy

BaB-RLM BaB-FSB BaB-SR BaB-RC

0.009 92.42% 92.42% 91.25% 88.38%

0.011 89.06% 88.89% 86.53% 77.10%

0.013 83.33% 83.33% 79.29% 61.62%

0.015 74.92% 74.75% 68.01% 39.73%

0.017 63.13% 62.29% 54.55% 18.52%

0.019 46.30% 45.29% 39.73% 6.90%

0.021 30.13% 28.79% 23.57% 1.68%

0.023 13.13% 11.78% 10.61% 0.34%

0.025 5.22% 4.71% 4.38% 0.00%

ε Average runtime (s)

BaB-RLM
(Efficiency gain)

BaB-FSB BaB-SR BaB-RC

0.009 6.27(+5.52%) 6.61 8.86 15.87

0.011 8.25(+10.71%) 9.13 14.82 40.02

0.013 10.72(+21.83%) 13.05 22.06 84.77

0.015 15.54(+22.78%) 19.09 37.76 204.55

0.017 25.21(+33.11%) 33.56 60.79 550.22

0.019 32.26(+38.70%) 44.75 70.66 1289.14

0.021 41.70(+51.64%) 63.23 104.26 3806.76

0.023 67.55(+44.59%) 97.68 125.11 8555.99

0.025 83.03(+41.77%) 117.72 121.32 inf

by 5%–51% relative to the second-best method (i.e., BaB-FSB) as shown in
the lower part of Table 2. Besides BaB-FSB, the gain of efficiency by BaB-RLM
to the other two methods will be even larger as shown in Fig. 3. To clearly
demonstrate the comparison with BaB-FSB and BaB-SR, the plot for BaB-RC
is omitted in the lower part of Fig. 3.

Results on MNIST-9-200 and CIFAR-B-Adv. For MNIST-9-200, the L∞-
norm of adversarial noise is set to various ε-values in the interval [0.006,0.019]
and N = 100 images randomly taken from the MNIST are utilized in each
round. The timeout value is set to 200 s for verifying one specification and the
hyperparameter η is assigned to 0.99 as before. We record and compare the
percentage of the successfully verified specifications and the average runtime in

Enhancing BaB for Neural Networks Verification via a Branching Strategy 51

Fig. 3. Comparison of verified accuracy, average runtime and verification efficiency
for BaB-FSB, BaB-RLM, BaB-SR, and BaB-RC on the convolutional neural network
CIFAR-A-Adv. The lower part depicts the comparison without BaB-RC for clarity.

verifying one image. The numerical results show that the overall efficiency of
BaB-RLM is superior to the other three methods and BaB-RLM improves the
verification efficiency by 1%–26% compared to the second-best method.

For CIFAR-B-Adv, the L∞-norm of adversarial noise is set to various ε-values
in the interval [0.007,0.017] and N = 100 images randomly taken from the CIFAR
are utilized. The timeout value is set to 25 s for verifying one specification and the
hyperparameter η for RLM is also set to 0.99. Experiment results confirm that
BaB-RLM is superior to the other three methods in term of the overall efficiency,
i.e. it verifies more specifications than or as many as other three methods and
always takes less average runtime, and BaB-RLM gains the verification efficiency
by 14%–40% relative to the second-best method.

Here we omit the details of the results due to the limitation on the length of
the paper and to avoid redundancy. Interested readers can contact the authors
for more information about the experiments.

As we know, all the verification methods involved in the comparison adopt
the same bounding algorithm. The evaluation experiments were performed in
the same hardware environment with the identical parameter configuration for
each method, so the only difference lies in the branching strategy. Based on
the results of the simulation experiments, it is reasonable for us to claim that
the RLM strategy can effectively enhance the performance of BaB in neural
network verification. In summary, our branching strategy is very competitive
and can outperform the baseline strategies, including the state-of-the-art ones,
in promoting the efficiency of the verification method.

5 Conclusion

In this paper, we investigate the BaB framework for neural network verification
and propose a new branching strategy that is general and can be easily integrated

52 S. Han and Y. Zhang

with other bounding algorithms. The branching approach uses a computationally
inexpensive metric to make the appropriate splitting decision to quickly tighten
the global lower bound and avoid exploring unnecessary branches. We design
and conduct several simulation experiments to evaluate the performance of our
strategy and compare it with state-of-the-art baselines on some widely used
verification benchmarks. Experiment results show that the overall performance
of our strategy can outperform all other baselines in terms of the verified accuracy
and the average runtime of the verification process. It can significantly enhance
the efficiency of the BaB method in neural network verification.

In the future, we will engage in research on reducing the computational cost of
the bounding algorithm to further enhance the efficiency of the BaB verification
method.

Acknowledgements. This research was supported in part by the National Natural
Science Foundation of China under Grant 62133002 and the National Key Research
and Development Program of China under Grant 2021YFB2501200.

References

1. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015). https://doi.org/10.1038/nature14539

2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.90

4. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy
of object detection. ArXiv abs/2004.10934 (2020)

5. Kuutti, S., Bowden, R., Jin, Y., Barber, P., Fallah, S.: A survey of deep learn-
ing applications to autonomous vehicle control. IEEE Trans. Intell. Transp. Syst.
22(2), 712–733 (2021)

6. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

7. Szegedy, C., et al.: Intriguing properties of neural networks. In: 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14–16, 2014, Conference Track Proceedings. OpenReview.net (2014)

8. Meng, M.H., et al.: Adversarial robustness of deep neural networks: a survey from a
formal verification perspective. IEEE Trans. Dependable Secur. Comput. 1 (2022)

9. Gnanasambandam, A., Sherman, A.M., Chan, S.H.: Optical adversarial attack. In:
IEEE/CVF International Conference on Computer Vision Workshops, ICCVW
2021, Montreal, BC, Canada, 11–17 October 2021, pp. 92–101. IEEE (2021)

10. Finlayson, S.G., Bowers, J.D., Ito, J., Zittrain, J.L., Beam, A.L., Kohane, I.S.:
Adversarial attacks on medical machine learning. Science 363(6433), 1287–1289
(2019). https://doi.org/10.1126/science.aaw4399

11. Chakraborty, A., Alam, M., Dey, V., Chattopadhyay, A., Mukhopadhyay, D.: A
survey on adversarial attacks and defences. CAAI Trans. Intell. Technol. 6(1),
25–45 (2021). https://doi.org/10.1049/cit2.12028

https://doi.org/10.1038/nature14539
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1126/science.aaw4399
https://doi.org/10.1049/cit2.12028

Enhancing BaB for Neural Networks Verification via a Branching Strategy 53

12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

13. Zhang, Y., Wei, Z., Zhang, X., Sun, M.: Using Z3 for formal modeling and verifica-
tion of FNN global robustness (S). In: Chang, S. (ed.) The 35th International Con-
ference on Software Engineering and Knowledge Engineering, SEKE 2023, KSIR
Virtual Conference Center, USA, 1–10 July 2023, pp. 110–113. KSI Research Inc.
(2023). https://doi.org/10.18293/SEKE2023-110

14. Weng, T., et al.: Towards fast computation of certified robustness for ReLu net-
works. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
10–15 July 2018. Proceedings of Machine Learning Research, vol. 80, pp. 5273–
5282. PMLR (2018)

15. Tran, H., et al.: Parallelizable reachability analysis algorithms for feed-forward
neural networks. In: Gnesi, S., Plat, N., Day, N.A., Rossi, M. (eds.) Proceedings of
the 7th International Workshop on Formal Methods in Software Engineering, For-
maliSE@ICSE 2019, Montreal, QC, Canada, 27 May 2019, pp. 51–60. IEEE/ACM
(2019). https://doi.org/10.1109/FormaliSE.2019.00012

16. Leucker, M.: Formal verification of neural networks? In: Carvalho, G., Stolz, V.
(eds.) SBMF 2020. LNCS, vol. 12475, pp. 3–7. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-63882-5 1

17. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural net-
work robustness certification with general activation functions. In: Proceedings of
the 32nd International Conference on Neural Information Processing Systems, pp.
4944–4953. NIPS’18, Curran Associates Inc., Red Hook, NY, USA (2018)

18. Xu, K., et al.: Fast and complete: Enabling complete neural network verification
with rapid and massively parallel incomplete verifiers. In: 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May
2021. OpenReview.net (2021)

19. Bunel, R., Turkaslan, I., Torr, P.H.S., Kumar, M.P., Lu, J., Kohli, P.: Branch and
bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21(42),
1–39 (2020)

20. Palma, A.D., et al.: Improved branch and bound for neural network verification
via lagrangian decomposition. ArXiv abs/2104.06718 (2021)

21. Wang, S., et al.: Beta-crown: efficient bound propagation with per-neuron split con-
straints for neural network robustness verification. In: Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information
Processing Systems. vol. 34, pp. 29909–29921. Curran Associates, Inc. (2021)

22. Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

23. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
24. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the

convex outer adversarial polytope. In: Dy, J.G., Krause, A. (eds.) Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceedings of Machine Learn-
ing Research, vol. 80, pp. 5283–5292. PMLR (2018)

25. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of
piecewise linear neural network verification. In: Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems, pp. 4795–4804.
Curran Associates Inc., Red Hook, NY, USA (2018)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.18293/SEKE2023-110
https://doi.org/10.1109/FormaliSE.2019.00012
https://doi.org/10.1007/978-3-030-63882-5_1
https://doi.org/10.1007/978-3-030-63882-5_1

54 S. Han and Y. Zhang

26. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net
(2019)

27. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004). https://doi.org/10.1017/cbo9780511804441

28. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

29. Xu, K., et al.: Automatic perturbation analysis for scalable certified robustness and
beyond. In: Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, pp. 1129–1141. Curran Associates Inc., Red Hook, NY,
USA (2020)

30. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron convex
barrier for neural network certification. In: Proceedings of the 33rd International
Conference on Neural Information Processing Systems, pp. 15098–15109. Curran
Associates Inc., Red Hook, NY, USA (2019)

31. Zhang, H., et al.: Towards stable and efficient training of verifiably robust neural
networks. In: 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020)

https://doi.org/10.1017/cbo9780511804441
https://doi.org/10.1007/978-3-319-68167-2_19

Graph-Based Log Anomaly Detection
via Adversarial Training

Zhangyue He1, Yanni Tang2, Kaiqi Zhao2, Jiamou Liu2, and Wu Chen1,3(B)

1 College of Computer and Information Science, Southwest University,
Chongqing, China

hezhangyue@email.swu.edu.cn
2 University of Auckland, Auckland, New Zealand

ytan370@aucklanduni.ac.nz, {kaiqi.zhao,jiamou.liu}@auckland.ac.nz
3 School of Software, Southwest University, Chongqing, China

chenwu@swu.edu.cn

Abstract. Log analysis can diagnose software system issues. Log
anomaly detection always faces the challenge of class distribution imbal-
ance and data noise. In addition, existing methods often overlook log
event structural relationships, causing instability. In this work, we pro-
pose AdvGraLog, a Generative Adversarial Network (GAN) model based
on log graph representation, to detect anomalies when the reconstruction
error of discriminator is terrible. We construct log graphs and employ
Graph Neural Network (GNN) to obtain a comprehensive graph repre-
sentation. We use a GAN generator to transform original negative logs
into adversarial samples. Discriminator adopts an AutoEncoder (AE)
to detect anomalies by comparing reconstruction error to a threshold.
Adversarial training enhances adversarial sample quality and boosts the
discriminator’s anomaly recognition. Experimental results demonstrate
the superiority of our proposed method over baseline approaches in real-
world datasets. Supplementary experiments further validate the effec-
tiveness of our model in handling imbalanced log data and augmenting
model robustness.

Keywords: Log analysis · Anomaly detection · Graph representation
learning · Generative adversarial network · Adversarial sample

1 Introduction

System logs contain essential information about system operations, event inter-
actions, and status [20,30]. They provide a trackable record of system activities,
aiding in understanding how the system works, diagnosing issues, and trou-
bleshooting. Thus, log-based anomaly detection is critical for maintaining proper
system operations.

Imbalanced data challenges anomaly detection and hinders machine learn-
ing’s ability to spot anomalies within numerous logs. Skewed fault distributions
are frequently observed in large software systems [6,36,37], with anomalous logs
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 55–71, 2024.
https://doi.org/10.1007/978-981-99-8664-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_4&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_4

56 Z. He et al.

typically comprising a small fraction of datasets (e.g., 2.93% in HDFS). Research
on software defect models demonstrates that imbalanced data can lead to unsat-
isfactory predictions [38]. In addition, common public datasets (e.g., HDFS and
BGL) are manually inspected and labeled by engineers, but this process can
introduce erroneous labels, leading to model misinterpretations and reduced
anomaly detection accuracy. Despite being a small portion of the logs, data
noise significantly degrades existing model performance.

Many approaches exist for log-based anomaly detection. As systems grow in
capacity and complexity, the volume and intricacy of log data increase, making
manual analysis challenging and time-consuming [18]. Therefore, the need for
automated anomaly detection in system logs has become increasingly urgent.
Conventional machine learning methods like PCA [29] and LogCluster [14]
use statistical models for anomaly detection, leading to unstable performance
across diverse datasets. Existing deep learning-based methods (e.g., DeepLog [5],
LogRobust [39], and NeuralLog [12]) utilize Long Short-Term Memory (LSTM)
to learn log sequence patterns to detect anomalies. However, these methods can-
not fully utilize structural information among log events.

To overcome these limitations, we propose AdvGraLog, a weakly supervised
approach for anomaly detection based on log graph embeddings using genera-
tive adversarial networks. First, a graph neural network is employed to create
a graph-level representation for logs. Moreover, rare anomalies provide valuable
information for log anomaly detection. The generator in AdvGraLog is used
to modify the original negatives to generate adversarial samples. Meanwhile,
based on the idea of sample reconstruction [22], we adopt an autoencoder model
discriminator for log anomaly detection tasks, where the discriminator recon-
structs the input samples. In addition, we adopt state-of-the-art techniques [19]
to improve the encoder in the discriminator to stabilize the training of the model.
The main contributions of this work are summarized as follows:

(1) We propose a novel log anomaly detection method based on graph repre-
sentation learning through adversarial training.

(2) GAN-based system log anomaly detection improves the detection capability
and further addresses the problem of data imbalance in real-world datasets.

(3) We conduct extensive experiments using two real-world log datasets to show
significant improvement and the robustness of AdvGraLog over baselines.

2 Related Work

2.1 Log-Based Anomaly Detection

Log-based anomaly detection involves creating algorithms to automate the detec-
tion of anomalies in log data. Three main approaches are covered: rule-based,
sequence-based, and graph-based approaches. Rule-based methods rely on pre-
defined rules developed by experts [23,32], which can identify known anoma-
lies but struggle with new or complex logs. Sequence-based approaches (e.g.,
DeepLog [5], NLSALOG [31], and LogAnomaly [17]) treat logs as sequences

Graph-Based Log Anomaly Detection via Adversarial Training 57

and use deep learning methods, Recurrent Neural Network or LSTM, to detect
anomalies. Recently GNN-based log anomaly detection methods have been pro-
posed. Graph-based approaches (e.g., GLAD-PAW [26] and LogGD [28]) employ
graph neural networks to capture log dependencies, enhancing anomaly detec-
tion by considering intricate log data relationships [3]. DeepTraLog [35], a deep
learning-based approach for microservice anomaly detection, uses a unified graph
representation to capture complex trace structures and log events.

Log anomaly detection can be categorized in another way. Supervised models,
represented by LogRobust [39], depend on labeled data for precision but require
high-quality labels, while unsupervised models (e.g., PCA [29], LogCluster [14],
LogTAD [7]) may not be able to cover all anomaly types . Semi-supervised
models (e.g., LogAnomaly [17]) minimize label reliance but can lead to false
alarms.

2.2 Generative Adversarial Network for Anomaly Detection

Generative Adversarial Networks have gained recognition for their ability to
model data distributions, offering a fresh approach to anomaly detection. Recent
studies [2,9,24] have successfully applied GANs to various anomaly detection
tasks. AnoGAN [21] initiated GAN integration in image anomaly detection but
required parameter updates during testing. EGBAD [33] addressed this issue
with improved efficiency. GANomaly [1], a GAN-autoencoder hybrid, outper-
formed EGBAD in metrics and speed. In the field of log anomaly detection,
LogGAN [27] applies GAN principles to discern anomalies from normal events
in log sequences using generators.

In summary, our approach introduces log graph embedding based on gener-
ative adversarial networks for log anomaly detection. We utilize graph neural
networks for graph representation learning. In addition, we employ a generative
adversarial network that utilizes a small amount of anomaly data to generate
high-quality adversarial samples, addressing the challenge of sparse anomaly
samples. A high-quality discriminator is obtained through adversarial training
to determine anomalies by log sample reconstruction loss.

3 Framework

Figure 1 illustrates the proposed log anomaly detection algorithm based on
graph representation learning and generative adversarial networks. It involves
five main steps: Log Processing, Graph Construction, Graph Representation
Learning, Adversarial Training Model, and Anomaly Detection. This chapter
details log graph representation learning and the training of anomaly detection
models within the framework.

3.1 Problem Statement

This work tackles the problem of graph-level log anomaly detection. Given a log
graph embedding hG , the target of the anomaly detection model is to learn a

58 Z. He et al.

mapping mechanism to calculate the anomaly score A(·), which describes the
abnormal degree of the G. Consequently, when evaluating the anomaly score
A(x) of a specific sample x against a threshold λ, it determines whether x is
anomalous or not.

3.2 Log Preprocessing

The log preprocessing mainly includes log parsing, log partition, and log template
feature extraction.

Log Parsing. Log parsing is the process of converting semi-structured raw
log messages into organized log templates. Several log text extraction methods
exist, including SLCT [25], IPLoM [16], Spell [4], Drain [8], etc. Experimental
valuation [40] confirms the superior performance of Drain compared to main-
stream parsing methods since its independence from additional information. In
this paper, we adopt Drain to extract log templates from collected messages. For
instance, an initial log message “Receiving block blk_-1608999687919862906 src:
10.250.19.102:54106 dest: 10.250.19.102:50010” is parsed into the corresponding
log event “Receiving block ∗ ”.

Log Partition. The parsed log events are partitioned into distinct log
sequences. Specifically, in the context of system logs containing identifiers, log
events can be segmented into separate sequences based on identifiers found in the
original log message, such as “block_id” in HDFS logs, represented as “blk_-” in

Fig. 1. The overall architecture of AdvGraLog.

Graph-Based Log Anomaly Detection via Adversarial Training 59

the aforementioned log message “1608999687919862906”. In cases where system
logs lack such identifiers, a fixed window or sliding window approach is adopted
for log sequence division. We adopt a fixed window for logs without identifiers
to group logs.

Semantic Feature Extraction. Converting unstructured text data to num-
bers is crucial for machine learning, as many models can’t handle strings. We
extract semantic information from log templates, turning them into structured
vectors for computations. Specifically, we generate a vector representation for
each log event in the following steps: (1) Preprocessing : Considering log entry as a
natural language sentence, we remove non-characters and decompose compound
symbols for analysis. (2) Word Embedding : We utilize a pre-trained FastText
[10] model to extract the d-dimensional semantic vector for each word embed-
ded in log templates where d = 300. (3) Template Embedding : Calculate TF-IDF
(Term Frequency-Inverse Document Frequency) for each word, followed by gen-
erating vector representations for each template. The resulting embeddings have
the advantage of being much less dimensional and also incorporate information
about the word contexts.

3.3 Graph Construction

All logs are categorized into different groups based on sessions or predefined
windows, each representing a distinct directed graph.

A log graph structure consisting of log events can be described as follows.
Given a log graph G = (V, E , X), where V denotes the set of unique log events
{υ1, υ2,. . ., υn} and E indicates the sequence of events {e1, e2, . . . , em}. For
example, the directed graph in Fig. 1 is constituted by a sequence of log events
(E1, E3, E2, E5, E1, E7, E14). The d-dimensional log template semantic vectors
obtained in Sect. 3.2 are denoted by X = [x1, x2, . . . , xn] ∈ R

n×d. The attributed
graph can also be represented as G = (X, A) for simplicity. Here A = {0, 1}n×n

is an adjacency matrix where Ai,j = 1 indicates that there is an edge between
node vi and node vj , otherwise, Ai,j = 0.

3.4 Graph Representation Learning

GNN Module. The aim of the Graph Representation Learning module is to
aggregate node information and obtain comprehensive structural and semantic
embedding of a log graph. The log graph G is fed into a GNN with three stacked
layers, where a single layer can be written as:

H(�) = GNN
(
A,H(�−1);W(�−1)

)
, (1)

where H(�−1) and H(�) are the hidden representation matrices learned by the
(� − 1)-th layer and �-th layer respectively, guided by weight matrix W(�−1) of
the (� − 1)-th layer, and A is an adjacency matrix of a directed log graph. The

60 Z. He et al.

input representation H(0) is defined as the log template semantic attribute X
obtained from Sect. 3.4. GNN(·) can be set to any type of mainstream GNN.
In practice, we adopt GCN [11] due to its high efficiency. Then Eq. 1 can be
specifically written as:

H(�) = φ
(
D̃− 1

2 ÃD̃− 1
2H(�−1)W(�−1)

)
, (2)

where Ã = A + I is the adjacency matrix with self-loop, D̃− 1
2 is the inverted

square root of the diagonal degree matrix for normalizing the adjacency matrix,
and φ(·) is the activation function such as ReLU. Through multi-layer iteration,
nodes gradually capture more graph structure information to form the structural
embedding of the graph, while node representations are updated at each layer
to synthesize the structure and feature information of the whole graph.

Readout Module. Next, a READOUT operation is applied to the node repre-
sentations to obtain the graph-level log representation for G. To detect anomalies,
we aggregate extreme features through max-pooling in the READOUT opera-
tion. Thus, the idea of our readout function is that each log node plays a role in
the graph and key nodes should contribute more explicitly:

hG =
1

|V|
∑
v∈V

hv +Maxpooling (h1 . . .hν) . (3)

Through the readout function, the semantic embedding and structural embed-
ding of the log graph are fused to obtain a comprehensive graph representation.

3.5 Adversarial Training Model

This module focuses on learning good mapping mechanisms in GAN to detect
anomalies. Adversarial training enhances model strength by capturing genuine
and representative features. Further insights into the generator and discriminator
are presented subsequently.

Generator Network. The generator acts as a competitor in adversarial learn-
ing. We aim to enhance performance and robustness by training the generator
to choose diverse and high-quality negative samples. The architecture of the
generator is defined as follows:

G (zi) = R (tanh (f (zi))) . (4)

Generator employs a three-layer fully-connected network and combines noise
with anomalous graph embeddings to craft these adversarial samples. The ReLU
function F = max(0, x) activates the first two linear layer outputs. The final
generator layer employs tanh() for [0,1] normalization. The function R adapts
data to inputs of the first layer discriminator.

Graph-Based Log Anomaly Detection via Adversarial Training 61

Discriminator Network. The discriminator is an autoencoder consisting of a
standard encoder-decoder. Given an input feature vector x, a typical AE can be
defined as:

x′ = AE(x) = fdec (fenc (x)) , (5)

where x′ = fdec (h) and h = fenc (x) are deep decoder and encoder, respectively.
In the above equation, x′ is the reconstructed feature vector, and h denotes the
latent representation of x. The encoder and decoder structures in the autoen-
coder also use fully connected neural networks, the specific parameters of which
we will clearly describe in the experimental setup.

Adversarial Training. The main idea of adversarial training is to add the
adversarial samples to the training set together with the original samples, which
is an effective regularization technique to improve the accuracy of the model and
the robustness of the anomaly detection model.

For the loss function of the generator, we introduce the Pull-away Term [34]
to encourage the generator to generate more diverse samples in the latent space.

Lpt =
1

N(N − 1)

N∑
i=1

∑
j �=i

(
f (xi)

T
f (xj)

‖f (xi)‖ ‖f (xj)‖

)2

, (6)

where N is the batch size, xi and xj represent different generated adversar-
ial samples from the same batch, f(xi) and f(xj) represent the corresponding
feature vector. The total loss function of the generator is defined as:

LG (G,D, zi) =
1
N

N∑
i=1

log (|α − D(G (zi))|) + λ0Lpt, (7)

where α in the front part of the generator loss function ensures the high quality of
the adversarial samples, λ0 is a hyperparameter used to balance the two losses,
which is set to 1 in the experiment, and G and D refer to the generator and
discriminator, respectively.

The discriminator attempts to discriminate generated negative samples as 0
and the real samples as 1. We can define the loss of the discriminator D as:

LD (G (zi) , xi,D) =
1
N

N∑
i=1

[− log (D (xi))) − μ × log (1 − D(G (zi))] , (8)

where μ is a parameter by which the discriminator weighs generated samples
against anomalous samples.

In each training epoch, we iterate the training set in small batches to train the
generator while the discriminator parameters are fixed. Then, with the generator
parameters fixed, we iterate the training set again to train the discriminator.
This training process can also be seen as a way to make the generator search for

62 Z. He et al.

high-quality adversarial samples, filter out some useless information, and then
use it to challenge the discriminator. We also use Spectral Normalization (SN)
[19] in discriminator encoder training to enhance stability and overcome pattern
collapse. SN controls the Lipschitz constant by normalizing weight matrices or
convolutional layer’s spectral norms.

3.6 Anomaly Detection

Anomaly detection aims to identify patterns that deviate from the majority.
In the experiment, we use a proportion-based approach to set the threshold
of anomaly scores. The thresholds are determined based on the distribution of
anomaly samples across various datasets. When fewer anomalies exist, a lower
threshold is chosen to detect them effectively. Specifically, given a test graph
sample G, we use the Mean Squared Error (MSE) between the reconstructed
output ĥG and the observed data hG :

A(G) = 1
|hG |

|hG |∑
i=1

(
hG − ĥG

)2

. (9)

An input sample is classified as abnormal if its anomaly score A(·) surpasses
a predefined threshold λ.

4 Experiments and Results

In this section, we perform empirical evaluations to demonstrate the effective-
ness of our proposed framework AdvGraLog. Specifically, we aim to answer the
following research questions:

– RQ1 : How effective is the AdvGraLog approach in detecting graph-level log
anomalies with different imbalanced data ratios?

– RQ2 : How much does the performance of AdvGraLog change by providing
different levels of data noise contamination?

– RQ3 : How does the component of AdvGraLog (i.e., negative sample genera-
tor and spectral normalization) contribute to the final detection performance?

4.1 Datasets and Evaluation Metrics
Datasets. In this section, we evaluate the performance of AdvGraLog with two
real-world datasets HDFS and BGL. Details of these datasets are as follows:

HDFS (Hadoop Distributed File System) dataset is produced by exe-
cuting Hadoop-based MapReduce jobs on a cluster of over 200 Amazon EC2
nodes and annotated by Hadoop domain experts. The HDFS dataset contains a
total of 11,175,629 log messages, approximately 2.9% of blocks are abnormal.

BGL (Blue Gene/L) dataset, collected by Lawrence Livermore National
Labs (LLNL), comprises 4,747,963 manually labeled supercomputing system log

Graph-Based Log Anomaly Detection via Adversarial Training 63

Table 1. Dataset Statistics.

Dataset Time Span Data Size #Messages #Templates Window %Anomalies

HDFS 38.7 h 1.47 GB 11,175,629 48 session 2.93%
BGL 214.7 days 708.76 MB 4,747,963 1848 100logs 10.24%

messages. One log with an abnormal label in the same group, group is considered
an anomaly (Table 1).

In subsequent experiments, we utilize the first 80% of the dataset for training
and the remaining 20% for testing based on timestamps, which is done to pre-
vent potential data leakage. In addition, since the provided dataset is manually
labeled, we consider these annotations as the definitive reference for evaluation.

Metrics. The goal of anomaly detection is to identify unusual points. There-
fore, anomalies are treated as positive samples to measure the ability to detect
anomalous situations. Log anomaly detection studies commonly employ standard
classification evaluation metrics: precision, recall, and F1-score, as follows:

precision =
TP

TP + FP
(10)

Precision measures the proportion of correctly predicted anomalies among all
instances classified as anomalies.

recall =
TP

TP + FN
(11)

Recall calculates the proportion of correctly predicted anomalies from all actual
anomalies.

F1 − score = 2 × precision × recall

precision + recall
(12)

The F1-score is the harmonic mean of precision and recall. TP (true positive) is
the number of anomaly logs correctly detected as anomalies. FP (false positive)
denotes the number of normal logs incorrectly detected as abnormal. FN (false
positive) represents the number of abnormal logs incorrectly detected as normal.

4.2 Baselines and Implementation Details

Baseline Methods. We compared AdvGraLog with five representative log
anomaly detection methods. Specifically, there are two unsupervised learning
methods PCA [29] and LogCluster [14], a supervised learning method LogRo-
bust [39], a semi-supervised learning method DeepLog [5], and a graph-based
semi-supervised method GLAD-PAW [26]. For the baseline method used for
comparison, we use the implementations in the studies [13,15]. For models whose
hyperparameter settings are reported in their paper, we use the same hyperpa-
rameter values. Otherwise, we tune their hyperparameters empirically.

64 Z. He et al.

Experimental Setup. In this paper, experiments are conducted on a server
with Intel Xeon Platinum 8255C CPU @ 2.50 GHz CPU and NVIDIA RTX
2080TI GPU running Python 3.8 and PyTorch 1.11.0. A fixed-window grouping
approach is chosen for efficient storage of log sequences in the BGL dataset. A
3-layer GCN network with a hidden layer dimension of 128 is used in the AdvGra-
Log model for graph representation learning. The generator and discriminator
employ 3-layer and 5-layer fully connected neural networks, respectively, with
LeakyReLU as the activation function. The generator’s hidden layer has 256
and 128 nodes, while the discriminator’s hidden layer has 128, 256, 128, and 64
nodes. Training consists of 100 epochs with early stopping, using Adam as the
optimizer, a learning rate of 0.0002, and a batch size of 64.

In our experiments, we varied the proportion of anomalies in HDFS and BGL
datasets from 0.1% to 10% (i.e., 0.1%, 0.5%, 1%, 5%, and 10% respectively). We
introduced noise by modifying log labels, simulating noise proportions spanning
from 0.1% to 15% (specifically, 0.1%, 0.5%, 1%, 5%, 10%, and 15% respectively).
Each method was run three times on different datasets, and the averages were
reported to reduce randomness in the results.

Fig. 2. Algorithm performance with various clean log sets.

4.3 RQ1: Comparison with Baseline Models

Overall Comparison. In the experiments, we evaluate the performance of
AdvGraLog compared with the included baseline methods. We present the eval-
uation results (based on the original imbalance ratio) w.r.t. precision, recall,
and F1-score in Fig. 2. Accordingly, we have the following observations: (1)
Our proposed method AdvGraLog outperforms other compared methods on two
datasets in the original anomaly ratio. (2) PCA and LogCluster rely on log data
statistics for anomaly detection but exhibit unstable performance. LSTM-based

Graph-Based Log Anomaly Detection via Adversarial Training 65

Table 2. Model performance with different anomaly ratios. In the table, the best F1
values at different scales are bolded, and all the second-best are underlined.

Model HDFS BGL
0.1% 0.5% 1% 5% 10% 0.1% 0.5% 1% 5% 10%

PCA Precision 0.990 0.993 0.993 0.996 0.995 0.541 0.504 0.528 0.532 0.524
Recall 0.421 0.473 0.459 0.461 0.443 0.081 0.090 0.082 0.081 0.082
F1-score 0.591 0.641 0.628 0.631 0.613 0.141 0.153 0.142 0.141 0.142

LogCluster Precision 0.972 0.975 0.971 0.970 0.978 0.987 0.985 0.982 0.991 0.986
Recall 0.711 0.711 0.708 0.711 0.711 0.349 0.341 0.337 0.351 0.355
F1-score 0.821 0.823 0.819 0.821 0.823 0.516 0.507 0.502 0.519 0.522

DeepLog Precision 0.963 0.957 0.961 0.968 0.968 0.926 0.923 0.925 0.967 0.969
Recall 0.483 0.489 0.529 0.825 0.863 0.402 0.437 0.562 0.748 0.834
F1-score 0.643 0.648 0.682 0.891 0.912 0.560 0.593 0.699 0.844 0.897

LogRobust Precision 0.667 0.698 0.750 0.933 0.949 0.433 0.499 0.759 0.804 0.825
Recall 0.433 0.553 0.740 0.902 0.927 0.358 0.403 0.647 0.870 0.922
F1-score 0.525 0.617 0.745 0.917 0.937 0.392 0.446 0.699 0.836 0.871

GLAD-PAW Precision 0.952 0.950 0.942 0.948 0.969 0.924 0.924 0.925 0.942 0.948
Recall 0.564 0.609 0.673 0.873 0.925 0.518 0.526 0.562 0.823 0.864
F1-score 0.708 0.742 0.785 0.909 0.946 0.664 0.670 0.699 0.878 0.904

AdvGraLog Precision 0.966 0.964 0.967 0.958 0.981 0.956 0.952 0.962 0.961 0.966
Recall 0.824 0.850 0.871 0.944 0.968 0.805 0.815 0.838 0.907 0.940
F1-score 0.890 0.903 0.917 0.951 0.975 0.874 0.878 0.896 0.933 0.953

models like DeepLog and LogRobust excel on simple data but face challenges
with diverse templates in complex datasets like BGL. In contrast, graph-based
methods, AdvGraLog and GLAD-PAW, outperform statistical and sequential
approaches in log anomaly detection. This reaffirms the superiority of graph-
based log anomaly detection methods. (3) AdvGraLog surpasses GLAD-PAW
on both datasets, affirming its superiority and GAN-based approach for training
effective graph-based log anomaly detection models. Adversarial training miti-
gates anomaly sample scarcity, enhancing anomaly detection tasks.

Generalization Evaluation. To evaluate the generalization ability of AdvGra-
Log for anomaly detection with limited abnormal data, we evaluate it by sim-
ulating different data imbalance scenarios. We test AdvGraLog’s performance
using log data with different percentages of anomalies (0.1%, 0.5%, 1%, 5%,
10%) on two different datasets. As shown in Table 2, the supervised and semi-
supervised models get better as the proportion of anomalous data increases,
while the performance of the unsupervised model does not fluctuate much. Fur-
thermore, for anomaly rates lower than 1% in HDFS data, unsupervised mod-
els achieve the second-highest F1 scores, suggesting the possible utilization of
inherent data structure and patterns independent of anomaly labels. Specifically,
AdvGraLog demonstrates exceptional performance with highly imbalanced data
(0.1% anomalies), surpassing all baseline methods and showcasing its remarkable

66 Z. He et al.

Fig. 3. F1-score performance of models w.r.t. different contamination levels.

adaptability and robustness. For instance, at 0.1% anomaly rate, GLAD-PAW
gets F1 scores of 70.8% and 66.4% on HDFS and BGL data, respectively. This
surpasses DeepLog (64.3%, 56.0%), yet AdvGraLog excels further with F1 of
89.0% and 87.4% on both datasets, respectively.

4.4 RQ2: Robustness w.r.t. Data Contamination

We often utilize assumed-normal training data for spotting anomalies. Yet, real-
world data may be noisy due to human labeling errors. We examine how AdvGra-
Log copes with this challenge by introducing noise to training data. Specifically,
we add anomalous data in semi-supervised scenarios, while in supervised sce-
narios, we randomize anomaly labels. Contamination ratios range from 0.1% to
15%.

In Fig. 3, we present the evaluation results of AdvGraLog and baseline mod-
els. The charts illustrate that increased log noise affects all models, especially
supervised learning. AdvGraLog, trained on anomalous and adversarial data,

Fig. 4. The performance of the generator.

Graph-Based Log Anomaly Detection via Adversarial Training 67

Fig. 5. t-SNE visualization of the reconstruct samples process.

exhibits resilience and maintains high performance even with 10% noise, with
a slight drop at 15%, but F1-scores remain fairly stable. Its ability to adapt
to diverse data distributions and recognize noisy and genuine patterns leads to
good generalization, minimizing the impact of training data noise and enhancing
performance on test data.

4.5 RQ3: Ablation Study

In this section, we performed a series of studies to understand AdvGraLog.

Adversarial Training. AdvGraLog utilizes adversarial training, we conducted
an ablation study on its generator, which is responsible for creating adversar-
ial negative samples to enhance anomaly detection by the discriminator. We
assessed the impact of using both random noise vectors and original anomaly
sample features as input for the generator, comparing it with using solely random
noise vectors as input while keeping other experimental settings constant.

Figure 4 illustrates the experimental results. It shows a significant difference
between our model and the baseline. In HDFS, AdvGraLog exceeds the random
noise model by 12.9% in precision, 21.9% in recall, and 17.5% in F1-score. Sim-
ilarly, in the BGL dataset, AdvGraLog also improves these metrics by 18.6%,
20.6%, and 19.7%, respectively. This is because AdvGraLog including anomalous
features can learn diverse and unique anomaly representations from the small
number of anomalous samples encountered during training, thus generating more
valuable negative sample information. This results in adversarial samples that
enhance the discriminator’s ability to detect anomalies, thereby significantly
improving anomaly detection performance.

In Fig. 5, we used t-SNE to visualize anomaly scores of 200 random samples.
As the model training progresses, normal and anomalous sample distributions
become more focused, the anomalous samples distinctly separate from the nor-
mal ones, and the generated samples cluster near real sample boundaries. This
shows the generator effectively achieves the goal of generating diverse and high-
quality negative samples, thus confirming the validity of the model.

68 Z. He et al.

Fig. 6. Effect of SN on discriminator training.

Evaluation of Spectral Normalization. We expanded our approach by
adding Spectral Normalization to AdvGra-Log’s discriminator encoder to assess
its impact on anomaly detection. We observed the discriminator’s loss during
training and noted reduced fluctuations after introducing SN, as Fig. 6.

5 Conclusion

This paper presents AdvGraLog, an anomaly detection approach using adver-
sarial learning to represent log data as graphs. Log events are transformed into
directed graphs, and graph neural networks generate log graph embeddings,
framing log anomaly detection as graph-level classification. Adversarial samples,
created from original anomalies, enhance the discriminator’s understanding of
diverse anomaly patterns. Adversarial training helps the discriminator accurately
reconstruct normal samples, resulting in higher reconstruction loss for anomalies.
The loss is compared to a threshold to identify abnormalities, and the model’s
effectiveness and robustness are evaluated using public log datasets.

References

1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised
anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G.,
Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-20893-6_39

https://doi.org/10.1007/978-3-030-20893-6_39

Graph-Based Log Anomaly Detection via Adversarial Training 69

2. Avola, D., et al.: A novel GAN-based anomaly detection and localization method
for aerial video surveillance at low altitude. Remote Sens. 14(16), 4110 (2022)

3. Capra, L.: Graph transformation systems: a semantics based on (stochastic) sym-
metric nets. In: Pang, J., Zhang, L. (eds.) SETTA 2020. LNCS, vol. 12153, pp.
35–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62822-2_3

4. Du, M., Li, F.: Spell: streaming parsing of system event logs. In: 2016 IEEE 16th
International Conference on Data Mining (ICDM), pp. 859–864. IEEE (2016)

5. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog: anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1285–1298 (2017)

6. Fenton, N.E., Ohlsson, N.: Quantitative analysis of faults and failures in a complex
software system. IEEE Trans. Softw. Eng. 26(8), 797–814 (2000)

7. Han, X., Yuan, S.: Unsupervised cross-system log anomaly detection via domain
adaptation. In: Proceedings of the 30th ACM International Conference on Infor-
mation & Knowledge Management, pp. 3068–3072 (2021)

8. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with
fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS),
pp. 33–40. IEEE (2017)

9. Jiang, W., Hong, Y., Zhou, B., He, X., Cheng, C.: A GAN-based anomaly detection
approach for imbalanced industrial time series. IEEE Access 7, 143608–143619
(2019)

10. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

12. Le, V.H., Zhang, H.: Log-based anomaly detection without log parsing. In: 2021
36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp. 492–504. IEEE (2021)

13. Le, V.H., Zhang, H.: Log-based anomaly detection with deep learning: How far are
we? In: Proceedings of the 44th International Conference on Software Engineering,
pp. 1356–1367 (2022)

14. Lin, Q., Zhang, H., Lou, J.G., Zhang, Y., Chen, X.: Log clustering based problem
identification for online service systems. In: Proceedings of the 38th International
Conference on Software Engineering Companion, pp. 102–111 (2016)

15. Liu, Z., Xia, X., Lo, D., Xing, Z., Hassan, A.E., Li, S.: Which variables should i
log? IEEE Trans. Softw. Eng. 47(9), 2012–2031 (2019)

16. Makanju, A.A., Zincir-Heywood, A.N., Milios, E.E.: Clustering event logs using
iterative partitioning. In: Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1255–1264 (2009)

17. Meng, W., et al.: LogAnomaly: unsupervised detection of sequential and quantita-
tive anomalies in unstructured logs. In: IJCAI, vol. 19, pp. 4739–4745 (2019)

18. Mi, H., Wang, H., Zhou, Y., Lyu, M.R.T., Cai, H.: Toward fine-grained, unsu-
pervised, scalable performance diagnosis for production cloud computing systems.
IEEE Trans. Parallel Distrib. Syst. 24(6), 1245–1255 (2013)

19. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

20. Oliner, A.J., Aiken, A., Stearley, J.: Alert detection in system logs. In: 2008 Eighth
IEEE International Conference on Data Mining, pp. 959–964. IEEE (2008)

21. Park, S., Lee, K.H., Ko, B., Kim, N.: Unsupervised anomaly detection with gen-
erative adversarial networks in mammography. Sci. Rep. 13(1), 2925 (2023)

https://doi.org/10.1007/978-3-030-62822-2_3
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1802.05957

70 Z. He et al.

22. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty
detection. Signal Process. 99, 215–249 (2014)

23. Rouillard, J.P.: Real-time log file analysis using the simple event correlator (SEC).
In: LISA, vol. 4, pp. 133–150 (2004)

24. Sagar, B., Manjul, M., et al.: Anomaly detection in wireless sensor network using
generative adversarial network (GAN). In: Automation and Computation, pp. 45–
49 (2023)

25. Vaarandi, R.: Mining event logs with SLCT and LogHound. In: NOMS 2008–2008
IEEE Network Operations and Management Symposium, pp. 1071–1074. IEEE
(2008)

26. Wan, Y., Liu, Y., Wang, D., Wen, Y.: GLAD-PAW: graph-based log anomaly
detection by position aware weighted graph attention network. In: Karlapalem,
K., et al. (eds.) PAKDD 2021. LNCS (LNAI), vol. 12712, pp. 66–77. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-75762-5_6

27. Xia, B., Yin, J., Xu, J., Li, Y.: LogGAN: a sequence-based generative adversarial
network for anomaly detection based on system logs. In: Liu, F., Xu, J., Xu, S.,
Yung, M. (eds.) SciSec 2019. LNCS, vol. 11933, pp. 61–76. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34637-9_5

28. Xie, Y., Zhang, H., Babar, M.A.: LogGD: detecting anomalies from system logs
with graph neural networks. In: 2022 IEEE 22nd International Conference on Soft-
ware Quality, Reliability and Security (QRS), pp. 299–310. IEEE (2022)

29. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, pp. 117–132 (2009)

30. Yan, Y., Jiang, S., Zhang, S., Huang, Y.: CSFL: fault localization on real software
bugs based on the combination of context and spectrum. In: Qin, S., Woodcock,
J., Zhang, W. (eds.) SETTA 2021. LNCS, vol. 13071, pp. 219–238. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-91265-9_12

31. Yang, R., Qu, D., Gao, Y., Qian, Y., Tang, Y.: nLSALog: an anomaly detec-
tion framework for log sequence in security management. IEEE Access 7, 181152–
181164 (2019)

32. Yen, T.F., et al.: Beehive: large-scale log analysis for detecting suspicious activity
in enterprise networks. In: Proceedings of the 29th Annual Computer Security
Applications Conference, pp. 199–208 (2013)

33. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient
GAN-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018)

34. Zenati, H., Romain, M., Foo, C.S., Lecouat, B., Chandrasekhar, V.: Adversari-
ally learned anomaly detection. In: 2018 IEEE International Conference on Data
Mining (ICDM), pp. 727–736. IEEE (2018)

35. Zhang, C., et al.: DeepTraLog: trace-log combined microservice anomaly detec-
tion through graph-based deep learning. In: Proceedings of the 44th International
Conference on Software Engineering, pp. 623–634 (2022)

36. Zhang, H.: On the distribution of software faults. IEEE Trans. Softw. Eng. 34(2),
301–302 (2008)

37. Zhang, H.: An investigation of the relationships between lines of code and defects.
In: 2009 IEEE International Conference on Software Maintenance, pp. 274–283.
IEEE (2009)

38. Zhang, H., Zhang, X.: Comments on “data mining static code attributes to learn
defect predictors”. IEEE Trans. Softw. Eng. 33(9), 635–637 (2007)

https://doi.org/10.1007/978-3-030-75762-5_6
https://doi.org/10.1007/978-3-030-34637-9_5
https://doi.org/10.1007/978-3-030-91265-9_12
http://arxiv.org/abs/1802.06222

Graph-Based Log Anomaly Detection via Adversarial Training 71

39. Zhang, X., et al.: Robust log-based anomaly detection on unstable log data. In:
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, pp.
807–817 (2019)

40. Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., Lyu, M.R.: Tools and benchmarks
for automated log parsing. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 121–130
(2019)

Formal Verification Based Synthesis for
Behavior Trees

Weijiang Hong1,2,3, Zhenbang Chen1,2(B) , Minglong Li1,3, Yuhan Li1,
Peishan Huang1,2,3, and Ji Wang1,2,3(B)

1 College of Computer, National University of Defense Technology, Changsha, China
{hongweijiang17,zbchen,liminglong10,liyuhan,Huang_ps,wj}@nudt.edu.cn

2 Key Laboratory of Software Engineering for Complex Systems, National University
of Defense Technology, Changsha, China

3 Institute for Quantum Information & State Key Laboratory of High Performance
Computing, National University of Defense Technology, Changsha, China

Abstract. Behavior trees (BTs) have been extensively applied in the
area of both computer games and robotics, as the control architectures.
However, the construction of BTs is labor-expensive, time-consuming,
and even impossible as the complexity of task increases. In this work,
we propose a formal verification based synthesis method to automati-
cally construct BTs whose behaviors satisfy the given Linear Temporal
Logic (LTL) specifications. Our method first explores candidate BTs by
a grammar-based Monte Carlo Tree Search (MCTS), then the explored
BTs are transformed into Communicating Sequential Processes (CSP)
models. After that, we invoke the verifier to check the models’ correct-
ness w.r.t. specifications, and provide feedback based on the verification
result for guiding the search process. The application of our method on
several representative robotic missions indicates its promising.

Keywords: Behavior Trees · MCTS · CSP · Synthesis

1 Introduction

Behavior Trees (BTs) [15] are models that control the agent’s decision-making
behavior through a hierarchical tree structure. The development of BTs can be
traced back to their applications in the field of computer games, wherein BTs
are initially used to facilitate the design and control of non-player characters
[18,20,26]. Afterwards, BTs’ application is gradually extended to the area of
robotics, like mobile ground robots [7,19], unmanned aerial vehicles [17,28], to
name a few. It’s incontestable that BTs play a more and more important role in
the area of both computer games and robotics, as the control architectures.

Compared with other control architectures, like Decision Trees (DTs) [27],
Teleo-reactive Programs (TRs) [22] and Finite State Machines (FSMs) [14], the

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 72–91, 2024.
https://doi.org/10.1007/978-981-99-8664-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_5&domain=pdf
http://orcid.org/0000-0002-4066-7892
http://orcid.org/0000-0003-0637-8744
https://doi.org/10.1007/978-981-99-8664-4_5

Formal Verification Based Synthesis for Behavior Trees 73

reactivity and modularity of BTs make it more applicable and flexible to accom-
plish tasks in unpredictable environments [8]. The support for reactivity means
the agent can interrupt an ongoing task to execute another task for reacting to
the environment changes, while the support of modularity means we can natu-
rally combine several individually designed BTs into a more complex BT without
providing any auxiliary glue-codes. Although BTs are being adopted and devel-
oped due to their promising features, their construction is still problematic espe-
cially when dealing with complex robotic tasks in unpredictable environments.
Manually designing BTs usually becomes labor-expensive, time-consuming, and
even impossible as the task involves more and more objects and subtasks. There-
fore, it’s expected that the construction of BTs can be automatic.

In this work, we propose a formal verification based synthesis method to
automatically construct BTs whose behaviors satisfy the given Linear Tempo-
ral Logic (LTL) specifications. Our method first explores candidate BTs by a
grammar-based Monte Carlo Tree Search (MCTS). Considering that BTs are
not suitable formal models for formal verification w.r.t. properties, the explored
BTs are transformed into Communicating Sequential Processes (CSP [13]) mod-
els. After that, we invoke the verifier to check the models’ correctness w.r.t.
specifications, and provide feedback based on the verification result for guiding
the search process. The main contributions of this work are as follows:

– We proposed a formal verification based synthesis method for BTs. To the
best of our knowledge, the combination of the verification method and the
synthesis method for BTs hasn’t been investigated before.

– We designed a CSP modelling method for BTs to capture their behaviors.
The correctness of BTs’ behaviors thereby can be checked by verifying the
CSP model w.r.t. LTL specifications.

– We provided a method to evaluate the verification result and utilized this
evaluation feedback to guide the search process, which improved the search
efficiency.

– We successfully synthesized the expected BTs for several representative
robotic missions within 1 h, which indicates the effectiveness of our method.

This paper is organized as follows. Some backgrounds are provided in Sect. 2.
The problem formulation and the proposed approach are presented in Sect. 3 and
Sect. 4, respectively. The demonstration result is shown in Sect. 5. The overview
for the existing work is given in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Background

This section first briefly introduces Behavior Trees with an example that used
throughout the paper. Then, we provide some necessary prerequisite knowledge
about Linear Temporal Logic and Communicating Sequential Processes.

74 W. Hong et al.

2.1 Behavior Trees

Behavior Trees (BTs) [15] are the hierarchical trees that control the agent’s
decision-making behavior. Figure 1 shows a BT example that controls the robot
to pick up a cube from a specific position. The leaf nodes of BTs are execution
nodes that can be classified into action nodes and condition nodes. Apart from
those execution nodes, there are four types of control flow nodes that include
sequences nodes, fallbacks nodes, parallel nodes, and decorator nodes. In this work,
we mainly focus on the usage of sequences nodes and fallbacks nodes. More details
about them can be found below:

– action nodes: The gray and rectangle-shaped ones, like GotoPos, Pickup. It
may return one of the three statuses: success (the action is completed), failure
(the action is impossible to complete), running (the action is not completed
yet).

– condition nodes: The ellipse-shaped ones, like Picked, AtPos. It may only
return success (the condition holds) or failure (the condition does not hold).

– sequences nodes: It is represented as the symbol →. It returns success when
all of its children return success in an order from left to right; returns fail-
ure/running as soon as one of its children returns failure/running.

– fallbacks nodes: It is represented as the symbol ?. It returns failure when all of
its children return failure in an order from left to right; returns success/run-
ning as soon as one of its children returns success/running.

AtPos

Picked

GotoPos

Pickup

?

-->

?

AtPos

Picked

GotoPos

Pickup

?

-->

?

AtPos

Picked

GotoPos

Pickup

?

-->

?

AtPos

Picked

GotoPos

Pickup

?

-->

?

failure

failure

running

running

failure

Behavior Tree First Tick Second Tick Third Tick

running
1 1

2 3

4

5

6 7
8

9

10

failure

1
2

success3
12

success

4
9

5

6
success

7
8

success10
11

1
2

success

Fig. 1. BT example.

The execution of BTs starts from the root and infinitely delivers ticks to
its children at a particular frequency. Ticks can be seen as a signal to identify
which node is executable. We take one possible execution of the BT example for
illustrations, which requires that the robot firstly goes to the specific position,
then picks up a cube. The node’s execution order w.r.t. ticks is labeled, as shown
in Fig. 1. We assume that the conditions Picked and AtPos don’t hold initially.
In the first tick, the condition node Picked is ticked but returns failure, then
the condition node AtPos is ticked due to the functionality of these control

Formal Verification Based Synthesis for Behavior Trees 75

flow nodes. AtPos also returns failure and the action node GotoPos is ticked and
returns running. The status running is propagated to the root since all the control
flow nodes will return running if one of its children returns running. Similar to
the first tick, the action node GotoPos is ticked again but returns success in
the second tick. During the second tick, the action node Pickup is also ticked
since the first child of the sequences node returns success and Pickup returns
success. The success of Pickup means the condition Picked holds. Therefore, the
condition node Picked always returns success in the third and following ticks.

2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) is widely used to describe specifications about
long-term goals, like safety and liveness. It can be used to specify the BTs’
behaviors [3]. The basic elements of LTL include a set of atomic proposition
p ∈ P , the propositional logic operators ¬ (negation), ∨ (disjunction), and
∧ (conjunction), and several temporal logic operators X (next), U (until), G
(always), and F (eventually).

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | Gϕ | Fϕ

For example, the previous BT example controls the robot to finally pick up a
cube can be expressed as the LTL specification F p, wherein p denotes “Picked
holds”. We only mentioned those notions used in this paper, and more details
about LTL can be found in [1].

2.3 Communicating Sequential Processes

Communicating Sequential Processes, or CSP [13] is a kind of language for
describing an interaction system consisting of processes. For convenience, we
use the lower case letters (a, b, ...) to represent events in the process and the
upper case letters (P, Q, ...) to represent processes. The following provides part
of the standard semantics, and more details about the completed semantics can
be found in [13].

P ::= Skip | a → P | P; P | P � P

We take some expressions used in this paper as examples:

– Skip is a normal terminated process that does nothing.
– a → P executes the event a then behaves like the process P. If a is additionally

decorated by [Guard] a {Program}, it requires that a can only be executed
when the condition Guard satisfies and the effect of executing a is represented
by Program.

– P1; P2 executes the process P1 first, then executes the process P2.
– P1 � P2 executes the process P1 or P2, wherein which process executed depends

on the external environment.

76 W. Hong et al.

The following CSP model represents all executions in the form of a∗b. The whole
process may continuously executes the event a due to the process P’s recursive
behavior or executes the event b once and terminates immediately due to Skip.

P = (a → P) � (b → Skip);

There are many verifiers to support the verification of CSP model w.r.t. the
LTL specification ϕ, like PAT [24] and FDR [11], to name a few.

3 Problem Formulation

Before carrying out our formal verification based synthesis method, there are
some prerequisites: the BTs’ construction grammar, the action nodes’ function
descriptions and the LTL specification. The BTs’ construction grammar is shown
in Fig. 2, wherein the action nodes {act1, .., actN} and the condition nodes
{cond1, .., condM} are regarded as the terminal symbols. The grammar will be
used to carry a grammar-based MCTS to generate plenty of candidate BTs.

Fig. 2. The BTs’ construction grammar.

As for the action nodes’ function descriptions, we noticed that the interac-
tion between BTs and unpredictable environments is actually reflected in the
effect of actions {act1, .., actN} on conditions {cond1, .., condM}. Therefore, we
regard the condition set as a proposition set Σ, and represent the interaction
snapshot between BTs and environments as a state set S = 2Σ . The function of
an action can be represented in the form of s1

a−→ s2, wherein s1, s2 ∈ S and
a ∈ {act1, .., actN}. For each action node, we clarify its function as shown in
Table 1, which will be used to facilitate the CSP modelling for BTs.

Table 1. The function descriptions of action nodes.

Action Requirement Result

..
acti condj, . . . , ¬condk condp, . . . , ¬condq
..
GotoPos | AtPos

Pickup AtPos, ¬Picked Picked

Formal Verification Based Synthesis for Behavior Trees 77

We use cond and ¬cond to represent whether the condition holds or not,
respectively. For each action node acti, Requirement is the pre-condition
needed to be satisfied before executing acti, i.e., s1 |= condj ∧ ... ∧ ¬condk;
while Result is the post-condition caused by successfully executing acti, i.e.,
s2 |= condp ∧ ...∧¬condq. For example, the execution of GotoPos is without any
requirements, but results in AtPos to be hold; the execution of Pickup requires
that AtPos holds while Picked does not hold, but Picked will hold after the
success execution of Pickup.

Goal: Given the BTs’ construction grammar, the function descriptions of action
nodes, and the LTL specification ϕ, our goal is to synthesize the expected BT
whose behavior satisfies the specification ϕ.

4 Proposed Approach

Grammar

Grammar-based MCTS

CSP Modelling and VerificationNodes’
Function

LTL-Spec φ

Candidate
BTs

Model
Transformer

CSP
Models Verifier Verification

Results

Feedback

Selection
&&

 Expansion

Expected
BT

Invoking

Initial BT
(Root)

Candidate
BTs Simulation Backpropagation

Found

Fig. 3. The formal verification based synthesis framework.

The formal verification based synthesis framework is presented in Fig. 3,
which consists of two modules: Grammar-based MCTS and CSP Modelling and
Verification. In this framework, we conduct a Monte Carlo Tree Search process
based on the grammar rules shown in Fig. 2, which starts from the non-terminal
symbol Root and continually expands non-terminal symbols to obtain the can-
didate BTs. During the simulation phase, the candidate BT will be transformed
into CSP model with the nodes’ function embedding, then the model w.r.t. LTL
specification ϕ will be checked by the verifier. The verification result will be
utilized to provide feedback for guiding the search process. This search process
will repeat until the expected BT has been found or the time is running out.
In the following subsections, we will first focus on the verification module, then
combine it with the search module.

4.1 CSP Modelling and Verification

Given the candidate BT B and the nodes’ function F , we construct the corre-
sponded CSP model M in a bottom-up manner as shown in Algorithm 1. Con-
sidering that each node with its children in a BT is corresponded to a sub-BT,

78 W. Hong et al.

we use a mapping to store the corresponding CSP model for each node/sub-BT
(line 1). During the modelling process, we first construct CSP model for each
leaf node w.r.t. F (line 2–5), then focus on the structure building for the control
node (line 6–14). For each control node whose CSP model is not defined but its
child nodes are defined (line 8), we compose these child nodes together based on
the type of control nodes to construct the control node’s CSP model (line 9–13).
Finally, we select the root’s CSP model to return (line 15–17). The correspond-
ing CSP model for the BT in Fig. 1 is presented in Fig. 4. We next describe the
Function Embedding and the Structure Building for Fig. 4 in detail.

Algorithm 1: Modelling(B, F)
Require: The candidate behavior tree B and the function information of action

nodes F = {(require1, action1, result1), ..., (requiren, actionn, resultn)}.
Ensure: The corresponding CSP model M for B.
1: E ← {} // Mapping each node to a CSP model
2: // Function Embedding
3: for each leaf node n in B do
4: E [n] ← functionEmbedding(n,F)
5: end for
6: // Structure Building
7: while exist undefined control node in B w.r.t. E do
8: (n1, n2, n) ← select(B, E) // n1,n2 are defined, while the parent n is not.
9: if n is → then

10: E [n] ← composeSequence(n1, n2)
11: else
12: E [n] ← composeFallback(n1, n2)
13: end if
14: end while
15: // The Final Model w.r.t. Root
16: M ← E [selectRoot(B)]
17: return M

Function Embedding. First, we present CSP model without the function
embedding for each leaf node. Note that, a single leaf node can be also regarded
as a BT. For example, the model for a condition node condi is like

BT = (condi_f → BT) � (condi_s → BT)

It captures the two possible return statuses of condi by the external choice oper-
ator �, wherein condi_f and condi_s are the events that mean the node returns
failure and success, respectively. Besides, this node will be infinitely ticked at
a particular frequency, which has been depicted as the recursion structure. The
action node acti can be constructed in the similar way by adding acti_r for
the status running as shown below.

BT = (acti_r → BT) � (acti_f → BT) � (acti_s → BT)

Formal Verification Based Synthesis for Behavior Trees 79

Fig. 4. The CSP model for the BT example in Fig. 1, wherein [] represents the external
choice � and // represents comments. (1) if picked holds, the process is re-executed
(line 29); (2) if picked doesn’t hold but atpos holds, pickup is executed (line 22–26);
(3) if both picked and atpos don’t hold, gotopos and pickup are executed (line 7–17).

Second, we consider to add the function embedding into the model. The key
point is using a flag (ci for condi and ai for acti) to indicate which status the
execution node returns (1 for success and 0 for others), which will be further
used to guide other nodes’ executions. The function embedding of events in CSP
model is presented in the following form

[...]
︸ ︷︷ ︸

Guard

Event {...}
︸ ︷︷ ︸

Program

, wherein Guard is a boolean expression to represent the pre-condition needed
for Event to take, and Program is the detailed description for the effect of Event
taken. For each condition node condi, its related events will be depicted by

[ci==0] condi_f { } [ci==1] condi_s { }

The value of ci depends on the environment initialization as shown in line 31 of
Fig. 4 that assumes there is no condition holds initially. Besides, the value of ci
can be also altered by the execution of action nodes as shown below.

For illustrations, we assume the requirement for acti is condj ∧ ¬condk, and
the result for acti is condp, its related events will be depicted by

80 W. Hong et al.

[cj==1 && ck==0] acti_r {cp=0; ai=0}

[cj==0 || ck==1] acti_f {cp=0; ai=0}

[cj==1 && ck==0] acti_s {cp=1; ai=1}

Besides, we require N times running of an action eventually leads to the status
success and use ni to record the number of running times an action has kept.
Therefore, the events above will be additionally decorated by

[(cj==1 && ck==0) && ni< N] acti_r {(cp=0; ai=0) ; ni++}

[(cj==0 || ck==1) && ni==0] acti_f {(cp=0; ai=0)}

[(cj==1 && ck==0) && ni≤ N] acti_s {(cp=1; ai=1) ; ni=0}

After the function embedding for each leaf node, we next focus on the struc-
ture building for control nodes.

Structure Building. We consider more complex BTs that contain control
nodes (Fallbacks or Sequences) other than the single node. We construct CSP
model in a bottom-up manner by considering the functionality of control nodes
described in Sect. 2.1. We take the BT in Fig. 1 as an example for the whole
modelling process. We first construct the model for each leaf node as shown
below and ignore those details of Guard and Program for clarity.

BT1 = ([...] picked_f {...} → BT1) � ([...] picked_s {...} → BT1)

BT2 = ([...] atpos_f {...} → BT2) � ([...] atpos_s {...} → BT2)

BT3 = ([...] gotopos_r {...} → BT3) � ([...] gotopos_f {...} → BT3)

� ([...] gotopos_s {...} → BT3)

BT4 = ([...] pickup_r {...} → BT4) � ([...] pickup_f {...} → BT4)

� ([...] pickup_s {...} → BT4)

Next, we consider the node ? associated with AtPos and GotoPos, which
requires that the execution of GotoPos only happened when AtPos doesn’t hold.
Therefore, we deconstruct BT3 and compose it with BT2 to reconstruct a new
model BT23. BT23 consists with the modelling shown in line 6–11 of Fig. 4.

BT23 = ([...] atpos_f {...} → (([...] gotopos_r {...} → BT23)

� ([...] gotopos_f {...} → BT23)

� ([...] gotopos_s {...} → BT23))

) � ([...] atpos_s {...} → BT23)

After that, we consider the node → associated with the left subtree and
Pickup. It required that the execution of Pickup only happened under two cases:
(1) atpos_s of the left subtree taken (corresponded to line 21–26 of Fig. 4); (2)

Formal Verification Based Synthesis for Behavior Trees 81

both atpos_f and gotopos_s of the left subtree taken (corresponded to line 11–
17). The model’s construction process is similar to the previous one described.
Finally, we tackle with the modelling of the node ? associated with Picked
and the right subtree based on the functionality of Fallbacks, as shown in Fig. 4.
Intuitively, we automatically construct CSP model in a bottom-up manner based
on the type of control nodes and the event each child nodes takes.

Verification. After the scene-customized function embedding for leaf nodes and
the structure building for control nodes, we construct a CSP model from the
given BT. Then, we can verify the correctness of CSP model w.r.t. specifications
(line 33, i.e. the robot finally picks up a cube) by the verifier PAT [24]. The
final verification result shows this CSP model is truly valid w.r.t. specifications,
which implies the behavior of BT satisfies such specification. The verifier can
also provide a counter-example trace if the final verification result shows invalid.
For example, let the specification be that the robot never picks up a cube, i.e.,
G ¬pickup_s, the verifier may return a counter-example trace like picked_f;
atpos_f; gotopos_s; pickup_s. The counter-example provided by the verifier
will be useful in the following search process.

4.2 Grammar-Based MCTS

We instantiate the grammar-based search as a Monte Carlo Tree Search (MCTS)
process. Starting from the non-terminal symbol Root as the initial candidate BT,
MCTS consists of four phases:

– selection phase: it selects the most promising candidate BT based on the
current exploration.

– expansion phase: it expands the selected BT based on the given grammar
shown in Fig. 2 to generate more candidate BTs.

– simulation phase: it evaluates the candidate BT based on the feedback pro-
vided by the verifier.

– backpropagation phase: it updates the information of BTs that have been
explored. After backpropagation phase, a new round of search begins.

The whole process is presented in Fig. 5. The search process will repeat until the
expected BT has been found or the time is running out.

Instead of applying simulators to do the simulation phase, our method utilizes
the verifier to evaluate the BT and provides feedback. The main consideration is
that, the feedback provided by robotic simulators is not timely enough since the
dynamic interaction and reaction with environments is time-consuming. Com-
pared with robotic simulators, the verifier can provide timely feedback in a static
manner without the interaction. Therefore, we invoke the verifier to check the
candidate BT and calculate its value as shown in Fig. 6.

We first classify candidate BTs’ models into two categories: determined
one and non-determined one, based on the existence and reachability of non-
terminals. After that, we invoke the verifier to check the model’s correctness

82 W. Hong et al.

backpropaga�on

-->

?

...

?

cond

selec�on

expansion

expansion

expansion

-->

...

simula�on
...

...

backpropaga�on

simula�on

RootRoot

Root

RootC

RootRoot

Root

C

?
Verifier

Verifier

Fig. 5. Grammar-based MCTS.

Candiate BT

non-determined
models

Non-terminal
Existed?

No determined
models

Yes

Non-terminal
Reachable?

Yes

No

Verification
Passed?

Verification
Passed?

No
-∞

No
V

+∞

Yes

Yes

Fig. 6. The evaluation of candidate BTs.

w.r.t. specifications and assign different values for candidate BTs according to
the verification result: (1) the value is -∞ when the determined model failed to
pass the verification; (2) the value is calculated as v when the non-determined
model failed to pass the verification; (3) the value is ∞ when the model passed
the verification, which means the expected BT is found. We next describe them
in detail.

Type Classification. During the grammar-based search process, we may get
plenty of candidate BTs with or without non-terminals. For the candidate BT
without non-terminals, it’s undoubtedly classified into the category of deter-
mined models; while for the candidate BT with non-terminals, its category
depends on the reachability of non-terminals.

For example, the BT in Fig. 1 might be derived from a candidate BT with
non-terminals that only has difference in the rightmost as shown in Fig. 7,
wherein A is a non-terminal symbol. For modelling candidate BTs with non-
terminals, we treat all the non-terminal symbols as the symbol Unknown, which
represents the behavior of this node is unknown and full of possibility. Then, the
corresponding CSP model can be obtained by replacing the whole part of Pickup
in Fig. 4 with Unknown → BT (line 19 and line 27 of Fig. 4). Intuitively, the reach-
able of Unknown in CSP model, i.e., G ¬ Unknown is not valid, means there exist
the possibility to satisfy any specifications, even it doesn’t yet. Conversely, the
unreachable means that the behavior of BT has been determined. Therefore, we

Formal Verification Based Synthesis for Behavior Trees 83

AtPos

Picked

GotoPos

Pickup

?

-->

?

determined

AtPos

Picked

GotoPos

A

?

-->

?

non-determined

Fig. 7. The candidate BTs.

classify those candidate BTs with non-terminals into different categories based
on the reachability checking.

The Verification for Determined Models. For the model without Unknown,
or the model wherein Unknown is unreachable, we invoke the verifier to check
whether it satisfies specifications. If the verifier returns valid, then we found
the expected BT and stopped the search; otherwise, the value of this model’s
corresponding candidate BT is set as -∞, which implies this candidate BT will
never be explored again, and we abandon it to prune the search space.

The Verification for Non-determined Models. For the model wherein
Unknown is reachable, we also invoke the verifier to check the model’s correctness
w.r.t. specification ϕ. If the verifier returns valid, then we found the expected
BT and stopped the search; otherwise, we got a counter-example like event1;
event2; ...; eventN . Next we evaluate the value in the following four aspects,
wherein the first two focus on the BT itself, the last two focus on the specifica-
tion.

– V1: we evaluated the ratio of terminal symbols in the candidate BT to inves-
tigate the model’s determinacy.

– V2: we evaluated the expansion way that results in the current candidate BT
to investigate its influence.

– V3: we evaluated the relevance between the specification and the candidate
BT from the perspective of literal comparison.

– V4: we evaluated the relevance between the specification and the candidate
BT from the perspective of verification result.

Given the action nodes {GotoPos, Pickup}, the condition nodes {Picked,
AtPos}, the function descriptions shown in Table 1, and the specification ϕ =
F picked_s, we take the candidate BT with non-terminals in Fig. 7 as an exam-
ple. We depict those values one by one: V1 is calculated as the ratio of the
already existing terminals to all symbols in the BT like 3

4 = 0.75, while V2

84 W. Hong et al.

evaluates the influence of this BT’s expansion manners in the expansion phase,
which can be classified into three different cases:

– key terminal expansion: the BT is expanded based on a non-terminal to
terminal rules, wherein the new terminal symbol is related to the existing ter-
minals w.r.t. nodes’ function. For example, the case that (? AtPos GotoPos)
is derived from (? AtPos A), wherein AtPos is entangled in the function of
GotoPos as shown in Table 1.

– non-terminal expansion: the BT is expanded based on a non-terminal to
non-terminal rules like Root → A.

– other terminal expansion: the BT is expanded based on a non-terminal
to terminal rules that the new symbol is not related to the existing terminals
w.r.t. nodes’ function.

We prefer key terminal expansion, followed by non-terminal expan-
sion, and finally other terminal expansion. The V2 value of three cases is
set as 0.9, 0.6, 0.3, respectively.

As for the other two values, the literal relevance value V3 is calculated as
the proportion of the current occurring terminals in ϕ like 1

1 = 1 (here ϕ only
contains Picked and Picked exists); while the verification relevance value V4

measures the complexity of counter-example. It’s worth noting that the longer
the counter-example trace generated, the closer the behavior of the candidate BT
may be likely to ϕ. For convenience, we project the length of counter-example
(event1; event2; ...; eventN) to a value by the formula V4 = lnN/(lnN +2).
The final value V is the sum of those four values. Based on the value feedback,
we continue advance the later backpropagation phase and search in a new round.

Optimizations. To improve the efficiency, we optimize the search process in two
aspects. The first one is to make MCTS parallelizing. Note that, for the candidate
BTs collected by the expansion phase, we usually do the simulation phase for
each candidate BT at a time. However, the simulation phase can be parallelizing.
Here we take a leaf parallelization method [23], which invokes multiple threads
to deal with those candidate BTs generated by the expansion phase in parallel,
then collects all simulation values to propagate backwards through the tree by
one single thread. This parallelization can effectively reduce the time required
for the simulation phase. The second one is to utilize the nodes’ function to
make an early checking for the candidate BTs before invoking the verifier. For
example, the candidate BT (? Picked (→ AtPos GotoPos)Root) can be pruned
in advance although the non-terminal Root is reachable. The reason is that the
success of AtPos relies on GotoPos under the function descriptions shown in
Table 1. However, in this case, the failure of AtPos will skip the execution of
AtPos, which makes the status of AtPos to be always failure. Therefore, we can
deduct that there exists a redundant structure in view of BT’s execution and
we can prune it for the simplicity of the expected synthesized BT. This pruning
can effectively reduce the search space without invoking the verifier.

Formal Verification Based Synthesis for Behavior Trees 85

5 Demonstration

We have implemented our method as a prototype in Python and applied it on
several representative robotic missions. To demonstrate its effectiveness and effi-
ciency, we have conducted the following experiments: (1) the comparison experi-
ment between our framework (MCTS with verifier) and the framework instan-
tiated as MCTS with a simple simulator used by [16] (MCTS with simulator);
(2) the ablation experiment for the value designed in Sect. 4.2.

5.1 Experimental Setup

We collect several representative robotic missions which are shown in Table 3,
wherein the first column shows the names of missions and the second column
gives a short description for missions. The detailed information about those
missions is provided in the website1. The time threshold for synthesis is 1 h. All
the experiments were carried out on a machine with an Intel Core i9 processor
(3.6GHz, 8 cores) and 8 GB of RAM, and the operating system is Ubuntu 22.04.

5.2 Comparison Experiment

Case Study. We take the mission Alarm as an example. The mission requires
the robot to react with the unpredictable environment factor Alarm. The robot
may navigate to the position A (GotoA) to complete TaskA (DoTaskA) if the
alarm occurs or navigate to the position B (GotoB) to complete TaskB (DoTaskB)
otherwise. Given the action nodes {GotoA, GotoB, DoTaskA, DoTaskB} and the
condition ndoes {Alarm, AtA, AtB, TaskFinishedA, TaskFinishedB}, the seman-
tics for each action node is provided in Table 2.

Table 2. Nodes’ function for mission Alarm.

Action Requirement Result

GotoA | AtA, ¬AtB
GotoB | ¬AtA, AtB
DoTaskA AtA, Alarm, ¬TaskFinishedA TaskFinishedA

DoTaskB AtB, ¬Alarm, ¬TaskFinishedB TaskFinishedB

The specification ϕ is presented as follows. The first part declares the existence
of an alarm and specifies that the robot needs to complete at least one of the
two tasks. The second part specifies that whenever the alarm occurs, the robot
is forbidden to complete TaskB until the alarm frees. The third one is similar.

1 https://github.com/FM4BT/Synthesizer4BT.

https://github.com/FM4BT/Synthesizer4BT

86 W. Hong et al.

F (Alarm_s ∨ Alarm_f) ∧ F (DoTaskA_s ∨ DoTaskB_s)

∧ G (Alarm_s → ((¬DoTaskB_s U Alarm_f) ∨ G ¬DoTaskB_s))
∧ G (Alarm_f → ((¬DoTaskA_s U Alarm_s) ∨ G ¬DoTaskA_s))

Our method (MCTS with verifier) successfully synthesized the expected BT
as shown in the left of Fig. 8, while MCTS with simulator didn’t. After an hour
of learning, it obtained the synthesized BT as presented in the right of Fig. 8.
The result BT failed to complete the mission.

MCTS with verifier MCTS with simulator

Alarm GotoA

-->

DoTaskA

?

GotoB

DoTaskB

?

Alarm GotoB DoTaskA

AtB DoTaskB
Task

FinishedA

?

C Root

-->

Task
FinishedB

?

?

Fig. 8. The synthesis result for the mission Alarm.

Overall Results. The full experimental results are presented in Table 3. The
third column records the time-cost of our method (MCTS with verifier) to
synthesize the expected BT (�) for each mission. The fifth column represents
that no expected BT is synthesized by MCTS with simulator in one hour (�
3600 s). The latter lacks the evaluation and pruning of non-determined models, as
well as the timely feedback from simulators. The detailed synthesis information
can be found in the aforementioned website. Note that, compared with the other
missions, the significant time overhead increase for the mission Alarm is mainly
due to the difficulty of determining the position where the node Alarm should
locate. The forth column represents the number of pruned candidate BTs by
the verifier, and the corresponding proportion of these pruned ones in the total
verified ones is labeled. There is about 11.6% of the candidate BTs are pruned
in average, whose number of leaf nodes is mostly no more than 3. The result
implies that we avoid a plenty of meaningless expansions in the early stage.

5.3 Ablation Experiment

Besides, we also investigate the rationality of the value design (V1, V2, V3 and
V4) in Sect. 4.2. By disabling the four values individually, we found that the
final synthesis time-cost increased to some extent, or even timed out in 16 cases
out of 20, as shown in Fig. 9. The result implies that the rationality of the value
design in guiding the search process.

Formal Verification Based Synthesis for Behavior Trees 87

Table 3. The description and experimental result of missions.

Mission Description MCTS with verifier MCTS with
simulator

Result #Pruned Result

Charge recharge when the battery
is low

� 174s 79(15.3%) � 3600s

Patrol1 visit posA, posB , posC
without an order

� 124s 57(14.8%) � 3600s

Patrol2 visit posA, posB , posC in
order

� 182s 78(14.0%) � 3600s

Pickup pick up a cube from posA
and place it at posB

� 1102s 313(9.1%) � 3600s

Alarm do different tasks
depending on the status of
alarm

� 2535s 353(4.9%) � 3600s

Fig. 9. The speedup w.r.t. ALL for each mission and ALL includes all four values.

5.4 Discussion

We are currently primarily focused on BTs composed of only action, condition,
sequences, and fallbacks nodes. The main bottleneck of our method lies in two
aspects. (1) How to design the suitable formal specification to depict the behavior
of BTs? This problem can be relieved by utilizing large language models to
translate natural language to temporal logics as [9] does. This is not a focal
point of our work. (2) How to improve the efficiency of finding the expected
BT? This problem can be relieved by designing more effective heuristic search
strategy, which is better to customize the heuristic search based on the specific
scenario. In this work, we design a general search strategy and demonstrated its
effectiveness in the experiment.

88 W. Hong et al.

6 Related Work

There are many works dedicated to automatically designing and constructing
BTs [15]. For example, QL-BT [10] applied reinforcement learning (RL) methods
to decide the child nodes’ execution order and further optimize early behavior
tree prototypes. Banerjee [2] used RL methods to obtain control policies, then
converted it into the expected BTs, while Scheide et al. [29] utilized Monte Carlo
DAG Search to learn BTs based on the formal grammar. Besides, the evolution-
inspired learning is another choice for synthesizing BTs [16,18,21,25], which
evolves BTs by the generic programming. However, for the above methods, the
burden of simulation time for learning and evolving are usually intractable and
the synthesized BT just tends to rather than guarantees to meet the specification.

Apart from those learning-based synthesis methods, there also exist some
planning-based ones. Colledanchise et al. [5] and Cai et al. [4] synthesized BTs
based on the idea of back chaining, which iteratively extended the action to meet
the goal condition. Starting from the formal specifications, Tumova et al. [32]
constructed an I/O automaton that is the maximally satisfying discrete control
strategy w.r.t. State/Event Linear Temporal Logic, then converted it into BTs.
Colledanchise et al. [6] and Tadewos [31] et al. taken a divide-and-conquer way
to synthesize BTs whose missions are expressed in Fragmented-Linear Temporal
Logic. For the method’s effectiveness, the expressiveness of those synthesized
BTs is usually sacrificed by the limited form of specifications. Compared with
that, this work does not impose any restrictions on the specification form.

As regards the verification method for BTs, Biggar et al. [3] provided a frame-
work for checking whether the given BT’s behavior satisfies LTL specifications.
Henn et al. [12] utilized Linear Constrained Horn Clauses to verify the BT’s
safety properties. Serbinowski et al. [30] translated BTs into nuXmv models for
verification. In this work, we model the behavior of BTs as CSP models and
utilize the verifier to check its correctness.

7 Conclusion

In this paper, we proposed a formal verification based synthesis method to auto-
matically construct BTs, which combines Monte Carlo Tree Search with a CSP
modelling and verification method. In this method, we innovatively utilized the
verifier to complete the simulation phase in MCTS and make the search space
pruning based on verification results. The application of our method on several
representative robotic missions indicates its promising.

The future work lies in several directions: (1) further exploiting the counter-
example traces provided by the verifier, like analyzing the invalidness reason, to
guide the search and facilitate the pruning; (2) supporting the modelling for more
control node types, like Parallel, Decorator, Memorized Sequences, Memorized
Fallbacks, and so on; (3) utilizing the concurrence feature of CSP models to
verify the robotic mission involved with multi-BTs.

Formal Verification Based Synthesis for Behavior Trees 89

Acknowledgement. This research was supported by National Key R&D Program of
China (No. 2022YFB4501903) and the NSFC Programs (No. 62172429 and 62032024).

References

1. Baier, C., Katoen, J.: Principles of model checking (2008)
2. Banerjee, B.: Autonomous acquisition of behavior trees for robot control. In: 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2018, Madrid, Spain, 1–5 October 2018, pp. 3460–3467. IEEE (2018)

3. Biggar, O., Zamani, M.: A framework for formal verification of behavior trees with
linear temporal logic. IEEE Robot. Autom. Lett. 5(2), 2341–2348 (2020)

4. Cai, Z., Li, M., Huang, W., Yang, W.: BT expansion: a sound and complete algo-
rithm for behavior planning of intelligent robots with behavior trees. In: Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Event, pp.
6058–6065 (2021)

5. Colledanchise, M., Almeida, D., Ögren, P.: Towards blended reactive planning
and acting using behavior trees. In: International Conference on Robotics and
Automation, ICRA 2019, Montreal, QC, Canada, 20–24 May 2019, pp. 8839–8845.
IEEE (2019)

6. Colledanchise, M., Murray, R.M., Ögren, P.: Synthesis of correct-by-construction
behavior trees. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2017, Vancouver, BC, Canada, 24–28 September 2017, pp.
6039–6046. IEEE (2017)

7. Colledanchise, M., Ögren, P.: How behavior trees modularize robustness and safety
in hybrid systems. In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA, 14–18 September 2014, pp. 1482–1488.
IEEE (2014)

8. Colledanchise, M., Ögren, P.: Behavior trees in robotics and AI: an introduction.
CoRR abs/1709.00084 (2017)

9. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: interactively
translating unstructured natural language to temporal logics with large language
models. In: Enea, C., Lal, A. (eds.) Computer Aided Verification. CAV 2023. LNCS,
vol. 13965, pp. 383–396. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-37703-7_18

10. Dey, R., Child, C.: QL-BT: enhancing behaviour tree design and implementation
with q-learning. In: 2013 IEEE Conference on Computational Intelligence in Games
(CIG), Niagara Falls, ON, Canada, 11–13 August 2013, pp. 1–8. IEEE (2013)

11. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8_13

12. Henn, T., Völker, M., Kowalewski, S., Trinh, M., Petrovic, O., Brecher, C.: Ver-
ification of behavior trees using linear constrained horn clauses. In: Groote, J.F.,
Huisman, M. (eds.) Formal Methods for Industrial Critical Systems. FMICS 2022.
LNCS, vol. 13487, pp. 211–225. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15008-1_14

13. Hoare, C.A.R.: Communicating Sequential Processes (1985)
14. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,

Languages, and Computation, 3rd edn. Pearson international edition. Addison-
Wesley, Boston (2007)

https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-031-15008-1_14
https://doi.org/10.1007/978-3-031-15008-1_14

90 W. Hong et al.

15. Iovino, M., Scukins, E., Styrud, J., Ögren, P., Smith, C.: A survey of behavior trees
in robotics and AI. Robot. Auton. Syst. 154, 104096 (2022)

16. Iovino, M., Styrud, J., Falco, P., Smith, C.: Learning behavior trees with genetic
programming in unpredictable environments. In: IEEE International Conference
on Robotics and Automation, ICRA 2021, Xi’an, China, 30 May–5 June 2021, pp.
4591–4597. IEEE (2021)

17. Lan, M., Xu, Y., Lai, S., Chen, B.M.: A modular mission management system
for micro aerial vehicles. In: 14th IEEE International Conference on Control and
Automation, ICCA 2018, Anchorage, AK, USA, 12–15 June 2018, pp. 293–299.
IEEE (2018)

18. Lim, C.-U., Baumgarten, R., Colton, S.: Evolving behaviour trees for the commer-
cial game DEFCON. In: Di Chio, C., et al. (eds.) EvoApplications 2010. LNCS,
vol. 6024, pp. 100–110. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12239-2_11

19. Marzinotto, A., Colledanchise, M., Smith, C., Ögren, P.: Towards a unified behav-
ior trees framework for robot control. In: 2014 IEEE International Conference on
Robotics and Automation, ICRA 2014, Hong Kong, China, May 31–7 June 2014,
pp. 5420–5427 (2014)

20. Mateas, M., Stern, A.: A behavior language for story-based believable agents. IEEE
Intell. Syst. 17(4), 39–47 (2002)

21. Neupane, A., Goodrich, M.A.: Learning swarm behaviors using grammatical evolu-
tion and behavior trees. In: Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August
2019, pp. 513–520 (2019)

22. Nilsson, N.J.: Teleo-reactive programs for agent control. J. Artif. Intell. Res. 1,
139–158 (1994)

23. Papakonstantinou, G.K., Andronikos, T., Drositis, I.: On parallelization of
UET/UET-UCT loops. Neural Parallel Sci. Comput. 9(3–4), 279–318 (2001)

24. PAT Website. http://pat.comp.nus.edu.sg
25. Perez, D., Nicolau, M., O’Neill, M., Brabazon, A.: Evolving behaviour trees for the

Mario AI competition using grammatical evolution. In: Di Chio, C., et al. (eds.)
EvoApplications 2011. LNCS, vol. 6624, pp. 123–132. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20525-5_13

26. Puga, G.F., Gómez-Martín, M.A., Gómez-Martín, P.P., Díaz-Agudo, B., González-
Calero, P.A.: Query-enabled behavior trees. IEEE Trans. Comput. Intell. AI Games
1(4), 298–308 (2009)

27. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
28. Ramírez, M., et al.: Integrated hybrid planning and programmed control for real

time UAV maneuvering. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden,
10–15 July 2018, pp. 1318–1326 (2018)

29. Scheide, E., Best, G., Hollinger, G.A.: Behavior tree learning for robotic task plan-
ning through Monte Carlo DAG search over a formal grammar. In: IEEE Interna-
tional Conference on Robotics and Automation, ICRA 2021, Xi’an, China, 2021,
pp. 4837–4843 (2021)

30. Serbinowski, B., Johnson, T.T.: BehaVerify: verifying temporal logic specifications
for behavior trees. In: Schlingloff, B.H., Chai, M. (eds.) Software Engineering and
Formal Methods. SEFM 2022. LNCS, vol. 13550, pp. 307–323. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17108-6_19

https://doi.org/10.1007/978-3-642-12239-2_11
https://doi.org/10.1007/978-3-642-12239-2_11
http://pat.comp.nus.edu.sg
https://doi.org/10.1007/978-3-642-20525-5_13
https://doi.org/10.1007/978-3-031-17108-6_19

Formal Verification Based Synthesis for Behavior Trees 91

31. Tadewos, T.G., Newaz, A.A.R., Karimoddini, A.: Specification-guided behavior
tree synthesis and execution for coordination of autonomous systems. Expert Syst.
Appl. 201, 117022 (2022)

32. Tumova, J., Marzinotto, A., Dimarogonas, D.V., Kragic, D.: Maximally satisfying
LTL action planning. In: 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Chicago, IL, USA, 14–18 September 2014, pp. 1503–1510.
IEEE (2014)

SeHBPL: Behavioral Semantics-Based
Patch Presence Test for Binaries

Jintao Huang1,2, Gaosheng Wang1,2, Zhiqiang Shi1(B), Fei Lv1,
Weidong Zhang1, and Shichao Lv1

1 Institute of Information Engineering, CAS, Beijing, China
{huangjintao,wanggaosheng,shizhiqiang,lvfei,zhangweidong,

lvshichao}@iie.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Patch presence testing is a critical component of risk and loss
assessment for software vulnerabilities. By determining whether a patch
has been applied to their software, organizations can better understand
their exposure to potential threats. Many schemes for patch presence
testing have be proposed. However, they did not consider the challenges
brought about by various compilation options, they are not practical
when testing patch presence for binaries compiled with complex compi-
lation configurations.

To address the issue, we propose a new semantic-level feature named
“behavioral semantics” to represent fixing patches precisely and stably.
Behavioral semantics is a high-level abstraction of functions within bina-
ries and is not affected by compilation differences. It consists of the
behavior performed by the function and the path constraints for the
behavior. We implement a system named SeHBPL based on behavioral
semantics, and test patch presence by generating a behavioral semantics
signature of the patch and searching for it in the target binary.

SeHBPL is tested with 6,912 binaries corresponding to 91 vulnerabil-
ities and achieves high accuracy and precision, outperforming the state-
of-the-art tool. This paper presents a novel approach to patch presence
testing that overcomes the limitations of current methods and has the
potential to significantly improve risk and loss assessment.

Keywords: Patch presence testing · Behavioral semantics · Risk
assessment

1 Introduction

Open-source software is popular now. According to Synopsys [1], which examined
over 2400 codebases across 17 industries, 97% of codebases contain open-source
code, with 78% of code being open-source. However, such popularity facilitates
the widespread dissemination of vulnerabilities that exist in open-source code
[2–4]. In 2014, a critical vulnerability named “Heartbleed”1 occurred in the pop-
ular OpenSSL cryptographic software library, allowing for the theft of protected
1 https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 92–111, 2024.
https://doi.org/10.1007/978-981-99-8664-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_6&domain=pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160
https://doi.org/10.1007/978-981-99-8664-4_6

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 93

information [5]. As OpenSSL is a fundamental component used for SSL/TLS
encryption, this vulnerability affected around 17% of SSL web servers using cer-
tificates issued by trusted certificate authorities [6].

To mitigate the large-scale impact caused by such vulnerabilities, which can
impede production and daily life, downstream application users must conduct
patch presence testing on software using the affected component. Patch presence
testing aims to determine whether a patch for a specific vulnerability has been
applied to a target binary. In terms of the techniques used, there are three main
approaches to conducting patch presence testing: (1) proof-of-concept (PoC)
based penetration testing for the target binary; (2) identifying the version of
the component used in the binary and checking if it falls within the scope of the
vulnerability (e.g., OSSPolice [7]); and (3) deriving signatures from the patch and
then determining the patching status of the target binary by signature searching
(e.g., BINXRAY [8]).

However, the PoC program for a specific vulnerability is not always avail-
able. Additionally, the conditions for a PoC program to successfully trigger a
vulnerability are strict, and the design of the software and the environment in
which it is running can all affect the effectiveness of triggering. For methods
based on version identification, they are not fine-grained enough. Developers
can customize code according to their needs and partially use the library code,
which can result in inaccurate patch existence test results. For signature search-
based approaches, the features they currently use are not robust enough. These
features differ greatly in binaries compiled with different compilation configu-
rations. The schemes proposed by previous researches are not applicable to the
binaries compiled with complex compilation options, this has created a large gap
between existing approaches and real-world programs. In short, patch presence
testing across compilation configurations remains an open problem in practice
[9,10].

To bridge the gap, we introduce behavioral semantics, which is defined as a
combination of behavior and path constraints on the behavior, and is described
with a tuple “<Behavior, Constraints>”. Based on behavioral semantics, we
have developed a system named SeHBPL which determines patch presence in
three steps: (1) parsing source code to obtain function definitions and data
structures; (2) extracting behavioral semantics from binaries; and (3) comparing
behavioral semantics sets of two reference binaries to derive patch signatures
and then searching for these signatures in target binaries.

SeHBPL has been tested with 6,912 binaries those are compiled with dif-
ferent compilation configurations. The results show that SeHBPL achieves high
accuracy and precision and is highly tolerant to diverse compilation settings,
outperforming the state-of-the-art approach.

The contributions are summarized as follows:

– The concept of behavioral semantics. This paper proposes the concept of
behavioral semantics, a high-level abstraction of functions with high tolerance
for various compilation options.

94 J. Huang et al.

– A new approach for patch presence testing. This paper presents the
design and implementation of SeHBPL, a system for accurate and precise
patch presence testing using behavioral semantics. SeHBPL is highly tolerant
to various compilation options, making it more practical.

– Comprehensive evaluation. SeHBPL is tested with a large corpus of
test cases to evaluate its effectiveness and efficiency. Evaluations show that
SeHBPL achieves high accuracy (>88%) and precision (>86%), outperform-
ing the state-of-the-art tool.

2 Overview

The patch presence testing addressed in this paper targets open source com-
ponents utilized in software. Given a target binary and specific vulnerability
information, the goal is to determine whether the patch fixing the vulnerability
has been applied to the target binary. To perform patch presence testing, the
following assumptions are made:

(1) Target binaries are not obfuscated. As obfuscation schemes will change the
code executed by CPUs and result in differences in behavior, they are outside
the scope of SeHBPL.

(2) Source code for the binary is available. As the focus is on open source soft-
ware, their source code is readily accessible to the public. It requires only
engineering effort to download the related source code from the Internet.

(3) Addresses of functions related to the patch can be obtained in target binary.
SeHBPL requires the entry point of a function to hook it for the parameters
passed in. To determine the location of functions, researches on binary code
search [11–14] can be used.

2.1 Challenges

The challenges of patch presence testing are summarized as follows:

(1) Subtleness of a change in patch. Patches typically result in modest modi-
fications [15]. The security patch for CVE-2018-185572, an “out-of-bounds
write” vulnerability in the library LibTIFF, is shown in Fig. 1. The patch
only changes the arguments of a function call, and does not affect the control
flow. Such minor changes are difficult to handle with code similarity-based
approaches since these methods require certain tolerances for code varia-
tions.

(2) Various compilation options. When a component is released in binary, its
code is usually optimized using multiple compilation optimization options.
Different options enable compilers to employ different optimization algo-
rithms. The compilation optimization option ‘-Os’, for example, allows the
compiler to reduce the size of the generated binary files as much as possi-
ble during compilation [16]. As a result, control flows and instructions vary
significantly in binaries produced with different compilation configurations.

2 https://gitlab.com/libtiff/libtiff/-/commit/681748ec.

https://gitlab.com/libtiff/libtiff/-/commit/681748ec

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 95

2.2 Behavioral Semantics

Considering these challenges, we summarize the characteristics that practical
patch signatures should possess. These characteristics include uniqueness, sensi-
tivity, and stability.

(1) Uniqueness: In signature search-based schemes, the uniqueness of the sig-
nature is crucial. Patch features should not be easily duplicated to avoid
misjudgments and a high false positive rate.

(2) Sensitivity: Changes introduced by a patch can be subtle and only involve
minor updates. This requires patch features to be sensitive enough to detect
such slight differences.

(3) Stability: Good signatures should remain consistent under various compi-
lation options. This is necessary as different compilation settings are used
in practical development.

To construct patch signatures that conform to these principles, the concept
of behavioral semantics is proposed. The behavioral semantics of a function are
defined as the behavior in the function and the path constraints on the behavior.
In SeHBPL, behavior includes function calls, memory reads, and memory writes.
Function calls consist of the name of the called function and the arguments
passed to it. Memory reads consist of the target address, the data read, and the
size of the data. Memory writes are similar to memory reads. Path constraints
in SeHBPL are restrictions on variables along paths from the function entry to
the behavior position.

Taking the patch shown in Fig. 1 as an example. The line in red is to be
removed while the line in green is to be added. The changes introduced by the
patch are too subtle to change the Control Flow Graph (CFG). However, the
changes in behavioral semantics are significant. Since the data involved in the
behavior is part of the behavioral semantics, the changes in the arguments of
function TIFFReverseBits will result in completely new behavioral semantics.
This demonstrates the sensitivity of behavioral semantics to subtle changes.

01 static int JBIGDecode(
02 TIFF* tif, uint8* buffer,
03 tmsize_t size, uint16 s) {
04 // ……
05 if (isFillOrder(tif, tif->tif_dir.td_fillorder))
06 {
07 - TIFFReverseBits(tif->tif_rawdata,
08 - tif->tif_rawdatasize);
09 + TIFFReverseBits(tif->tif_rawcp,
10 + tif->tif_rawcc);
11 }
12 // ……
13 }

Fig. 1. The source code of CVE-2018-18557

The path constraint in behavioral semantics consists of a series of branching
conditions along the execution path from the function entry to the associated

96 J. Huang et al.

+ TIFFReverseBits(
+ tif->tif_rawcp,
+ tif->tif_rawcc);

- TIFFReverseBits(
- tif->tif_rawdata,
- tif->tif_rawdatasize);

Previous blocks

Unchanged

Fig. 2. The CFG of CVE-2018-18557

behavior. Executions that conform to these constraints will reach the behavior
no matter where they end up. Furthermore, the data involved in a behavior dif-
ferentiates it from other behaviors subject to the same path constraints, ensuring
that each behavioral semantics is unique.

Behavioral semantics are defined in source code written by developers and
will not be altered by compilers or compilation settings. The comparison of
behavioral semantics is based on semantic equality, making them unaffected by
changes to control flow and instruction sequence that do not change semantics.
As a result, behavioral semantics are more robust to various compilation options
compared to other features and are more reliable.

2.3 Insights

Behavioral semantics is based on the following insights:

(1) The behavior of a function remains invariant to compilation settings.
Regardless of the compiler or compilation options used, the intended behav-
ior of a function cannot be altered. For instance, if a function func in the
source code is designed to output the sum of its inputs, the binary program
generated from that source code will not output the result of the subtraction
of its inputs.

(2) The constraints that must be satisfied when performing an action are
unchanged. Suppose that two binaries Bina and Binb are generated from
the same source code with different compilation settings. If a memory write
action Mw in binary Bina can only be conducted when “len>0, n>32”,
then Mw cannot be performed within binary Binb when “len=0, n=3”, i.e.,
both the action itself and its path constraints remain constant.

2.4 Running Example

The CFG of the function JBIGDecode related to CVE-2018-18557 is shown in
Fig. 2. As can be seen, the CFG remains unchanged after the patch is applied.
This means that the approaches which rely on analyzing changes of the CFG

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 97

to test patch presence, like researches proposed by Sun et al. [10], will not be
effective in this case. As for PDiff [9], which utilizes code semantics as well, it
also records memory operation in functions. However, it uses the name of the
called function to represent a function call, changes like this will be ignored by
it. Moreover, in most binaries, symbol tables are unavailable, thus it’s difficult
to know the name of callee functions, let alone to use the name to represent
function calls.

SeHBPL tests patch presence in target binary in 3 steps:
Step 1: Parsing the source code. SeHBPL first identifies the function affected

by the vulnerability (i.e. JBIGDecode in this case), and then parses the source
code to obtain the definition of the function as well as the arguments of the
function. If an argument is of a composite data type, such as struct in C language,
SeHBPL will parse each field of the type recursively. In addition to the definition
of JBIGDecode itself, SeHBPL also extracts the definition of each function called
by JBIGDecode.

Step 2: Behavioral semantics extraction. At first, SeHBPL constructs sym-
bolic data with with definitions extracted from the source code. Then it
sets memory content with symbolic data, and sets hooks for function calls.
Finally, SeHBPL extracts behavioral semantics with symbolic execution pow-
ered by angr. For CVE-2018-18557 that shown in Fig. 1, before the patch
is applied, the behavioral semantics for the function call in lines 07 and 08
is “<TIFFReverseBits(tif->tif rawdata, tif->tif rawdatasize), isFillOrder(tif,
tif-> tif dir.td fillorder) �=0>”. After the patch being applied, the behavioral
semantics is “<TIFFReverseBits(tif->tif rawcp, tif->tif rawcc), isFillOrder(tif,
tif-> tif dir.td fillorder) �=0>”.

Step 3: Patch presence testing. The differences in behavioral semantics
brought about by a patch are regarded as the signatures of the patch. SeHBPL
searches for the data that satisfies the constraints existing in patch signatures,
and then sets memory space of the target binary. After that, SeHBPL per-
forms symbolic execution on the target binary, and extracts behavioral seman-
tics from it. In the case for CVE-2018-18557, SeHBPL searches for possi-
ble values of tif and tif->tif dir.td fillorder that satisfy the constraint “isFil-
lOrder(tif, tif->tif dir.td fillorder) �=0”. As for arguments that are not involved
in these constraints, their values do not affect the extraction of target behav-
ioral semantics, so their values are randomly chosen according to their con-
straints. SeHBPL sets the memory space for the target binary with these values,
and performs symbolic execution on the related function in the target binary.
Finally, SeHBPL checks the behavioral semantics set BS t of the target binary. If
BS t contains the behavioral semantics “<TIFFReverseBits(tif->tif rawcp, tif-
>tif rawcc), isFillOrder(tif, tif->tif dir.td fillorder) �=0>” and does not contain
“<TIFFReverseBits(tif->tif rawdata, tif->tif rawdatasize), isFillOrder(tif, tif-
>tif dir.td fillorder) �=0 >”, then the binary is thought to be patched.

3 Approach Design

The overview of SeHBPL is presented with Fig. 3. SeHBPL tests patch presence
based on related vulnerability information and source code. Then SeHBPL deter-

98 J. Huang et al.

mines if a target binary is patched in three steps, namely “source code parsing”,
“behavioral semantics extracting” and “behavioral semantics matching”.

Source Code

Source Code Parsing

Function
Definition

Data
Structure

Behavioral
Semantics
Extracting

Patched
Binary

Vulnerable
Binary

Target Binary

Behavioral
Semantics

of Patched Binary

Behavioral
Semantics

of Vulnerable Binary

Behavioral
Semantics

of Target Binary

Behavioral
Semantics
Matchingof Vulnerable Binary

Vulnerability
Information

Compile

Testing
Result

Fig. 3. Workflow of SeHBPL. Dashed line framed part is SeHBPL.

3.1 Source Code Parsing

When parsing source code for function definitions, SeHBPL extracts function
names, argument names, argument data types, and returned data types.

Considering the source code shown in Fig. 4(a) and suppose that the target
function is Func. At first, SeHBPL extracts the definition for function Func
from the source code, including the function name “Func”, the returned data
type void and the definitions for arguments. Then, SeHBPL extracts definitions
for function setName, which is called by Func. Similar to function JBIGDecode,
SeHBPL extracts argument definitions for setName.

Data structures consist of basic data types (e.g., char) and composite data
types (e.g., struct). During source code parsing, SeHBPL recursively parses the
data type to which each data field in a composite data type belongs.

3.2 Behavioral Semantics Extracting

SeHBPL relies on angr for symbolic execution. For normal binaries, SeHBPL
loads them with the base addresses declared in their ELF headers. For PIE and
shared libraries, they are loaded with the base address 0x0.

Figure 4 shows the behavioral semantics extraction process. SeHBPL symbol-
izes memory space and registers with the names of the variables stored within
them. Suppose that the target function in Fig. 4(a) is Func. SeHBPL first ini-
tializes memory for it with its definition as if it were called. To simplify the
illustration, it is assumed that the arguments for Func are passed on the stack.
SeHBPL creates two pieces of symbolic data, Syma and Symp, with the names
of the arguments in Func, and stores them in the correct place in Func’s stack.
As argument p is a pointer to type Person, which is a structure type, SeHBPL
allocates a memory space Memperson of size sizeof(Person) for it and replaces

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 99

Symp in the stack with the address of Memperson. For Memperson, SeHBPL
initializes it with symbolic data created with the name of each data field in Per-
son. Furthermore, as the field name in Person belongs to type char*, SeHBPL
allocates a new memory area of 256 bytes, namely Memname, and fills it with
the symbolic data named by Memname[idx], one for each byte, where idx ranges
from 0 to 255. Finally, SeHBPL replaces name in Memperson with the address
of Memname.

typedef struct _Person {
char* name;
int age;
char gender;

} Person;

int setName(char* n, Person* p) {
strcpy(p->name, n);
return 0;

}

void Func(int a, Person* p) {
setName(“Child", p);
if (p->age > 18)

setName(“Adult", p);
}

(a) Source Code

Symp.name[0]

Symp.name[1]

Symp.name[255]

…

…

…

0x0

0xFFFFFFFF

0x0

0xFFFFFFFF

[Return Addr.]

Syma

Symp

…

…

0x0

0xFFFFFFFF

Stack of Func Memory layout for person Memory layout for person.name

Symp.name

Symp.gender

Symp.age

…

…

(b) Memory Layout

Fig. 4. Behavioral Semantics Extraction.

setName(“Child”, p)

setName(“Adult”, p)

p->age > 18p->age ≤ 18

Fig. 5. Behavior Graph

After initializing the memory for Func, SeHBPL catches behaviors using sym-
bolic execution. SeHBPL sets hooks for each function call and memory operation.
If the behavior is performed by Func itself, SeHBPL records it and extracts the
involved data as well as the path constraints on the behavior. For a memory
operation, SeHBPL records it in the same way as other works do, namely by
recording the operating address, operated data, and data size. For a function
call, however, SeHBPL not only records the name of the called function but also

100 J. Huang et al.

the arguments passed within the call. This level of detail makes SeHBPL more
sensitive than approaches that only record function names when a patch changes
the arguments of function calls.

SeHBPL relies on behavior graph to construct behavioral semantics after all
the behavior be captured. The source code of the function Func in Fig. 4(a) can
be transformed into the behavior graph shown with Fig. 5. In a behavior graph,
an edge e connecting node v with node t indicates that to perform actions in
node t after node v occurs, the constraint on edge e must be satisfied. The
path constraints for each behavior in rectangle r consist of a series of branch
conditions represented by edges connecting the entrance node (dashed-line circle
in red) to r. A rectangle node in the behavior graph represents a set of behaviors
under the same path constraints.

The extraction is not easy, it faces some challenges:

(1) Function pointers. Function pointers can be used as arguments in func-
tion calls and fields in composite data types. The uncertainty of a function
pointer’s value makes it difficult to determine the function to which the
pointer points.

To address this issue, SeHBPL sets the value of a variable of function pointer
type to a pseudo function entry. Then, SeHBPL hooks all function calls that tar-
get at the faked addresses and records all involved data. As for the function name
in the call, SeHBPL generates a patterned name based on the definition of the
type for it. For example, if there is a call to a variable of the function pointer type
“HandleResultCb” with two arguments named “result” and “error” respectively,
the name generated will be “FAKE FUNC HandleResultCb result error”.

(2) Path explosion. SeHBPL extracts behavioral semantics based on symbolic
execution. However, symbolic execution faces the problem of path explo-
sion, which can consume a lot of resources and time during analysis. To
alleviate the problem of path explosion, loops in functions are expanded
only twice and constrained symbolic execution is used to avoid unnecessary
explorations.

3.3 Behavioral Semantics Matching

Data is stored in memory and registers during the runtime of a program, so ref-
erences to this data are actually to related memory units and registers. However,
the same data can be stored at different memory addresses in different memory
layout models, this makes the forms of behavior using this data vary and further
make it difficult to compare behavioral semantics. For example, the variable v
is stored at addra and addr b in binary A and B respectively. When addra is not
equal to addr b, the function calls that utilize v are func(addra) and func(addr b),
thus it it difficult to determine if the two behaviors utilize the same data.

To address the problem, SeHBPL symbolizes memory areas and registers with
the names of the variables stored in them. Then it converts the references to these
memory areas and registers to the references to corresponding symbolic data. As

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 101

a result, all the references to the same variable have same forms, regardless of
the exact addresses where the variable is stored. That means the function calls
in binaries A and B that utilize v are now both transformed into func(v).

Regarding behavior comparison, SeHBPL considers the behavior types and
the data involved in the behavior, it deems two pieces of behavior identical only
if they possess same behavior types and data. Meanwhile, SeHBPL employs
semantic equality to compare the two path constraints. If a path constraint
PC 1 has the same variable set V as another path constraint PC 2, and for each
variable v in V, the constraints on it in both PC 1 and PC 2 are semantically
equal, then PC 1 is regarded equal to PC 2. Furthermore, two pieces of behavioral
semantics are only identical if they possess the same behavior and equal path
constraints.

Assume that two behavioral semantics sets BSpatched and BSvul are extracted
from reference binaries (i.e., patched and vulnerable ones) respectively, then the
patch signature is represented as (BSadd, BSdel). Here,

BSadd =BSpatched \ BSvul ,

BSdel =BSvul \ BSpatched

(1)

For each behavioral semantics in sets BSadd and BSdel, SeHBPL solves its con-
straints with angr [17] and then selects satisfied data to set the memory space of
target binary. After performing symbolic execution on the target binary, SeHBPL
obtains the behavioral semantics set BS t of the target binary. If BSadd ⊂ BSt

and BSdel ∩ BSt = ∅, the target binary is regarded to be patched by SeHBPL.

4 Evaluation

A prototype system, SeHBPL, has been implemented on top of angr with 5119
lines of Python code. And a set of evaluations were performed to address the
following questions:

– Q1: Can SeHBPL reliably determine patch presence?
– Q2: Can SeHBPL tolerate diversities in compilation configurations?
– Q3: How does SeHBPL’s efficiency compare to that of state-of-the-art tools?
– Q4: Can behavioral semantics precisely reflect the changes in a patch?

4.1 Testing Data Setup

All the vulnerabilities that used in the evaluation are selected based on the
following criteria:

– The fixing patch does not change the definition of vulnerable functions,
including their names and arguments;

– The fixing patch does not change the definition of data structures involved in
the arguments of vulnerable functions;

– The source code could be successfully parsed by current implementation of
SeHBPL.

102 J. Huang et al.

0
2
4
6
8

10
12
14
16
18
20

Fig. 6. Quantity of different CVE types.

Ultimately, 91 vulnerabilities were chosen, and their corresponding patches were
collected. Detailed information on vulnerability types of these vulnerabilities
are shown in Fig. 6. As the figure demonstrates, the collected vulnerabilities
encompasses multiple common vulnerability types.

The source code associated with these vulnerabilities was obtained from their
official repositories. To assess SeHBPL’s tolerance to varying compilation set-
tings, the code was compiled using a combination of different compilers and
optimization levels. For each vulnerability, two code releases were selected, one
before and one after the introduction of the patch, to create target binaries. If
the vulnerable function was present in multiple executable binaries after compi-
lation, up to three binaries were chosen. In total, 6,912 binaries were generated,
with details provided in Table 1.

For each of the 91 vulnerabilities, the most neighboring commits of code
respectively before and after the patch was introduced were chosen to build
reference binary pairs for it, with each pair including a patched version and a
vulnerable version. In addition to compilation options composed of a combina-
tion of compilers and optimization levels, the code was compiled with various
compilers and the default compilation options to create another part of reference
binaries. In the end, 2,187 reference binary pairs were obtained.

4.2 Evaluation Setup

The evaluation setup is described below, and all evaluations were conducted on
a workstation with an Intel Core i9-9880H CPU and 64 GB memory. Only one
thread was used for testings on each binary.

Evaluation 1. This evaluation was conducted to evaluate the ability of SeHBPL
to test for patch presence when confronted with binaries compiled using differ-
ent compilers or optimization levels. When testing SeHBPL’s ability to perform
patch presence testing across compilers, we use the reference binaries that are
compiled with the compiler C and optimization level O, and then test the bina-
ries that are compiled with the same optimization level O but different compilers,
vice versa.

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 103

Table 1. Binaries in the dataset

The compiler Optimization level Targetsa Reference pair

gcc O0 507 126

O1 483 111

O2 474 111

O3 459 111

Os 471 111

defaultb - 192

icc O0 444 102

O1 447 105

O2 423 105

O3 423 105

Os 447 105

default – 168

clang-10 O0 486 120

O1 486 120

O2 471 105

O3 438 105

Os 453 105

default – 180
a Some binaries are lost due to compilation failure.
b Compiled with default configuration predefined by developers.

Evaluation 2. In practice, it can be difficult to reliably determine which com-
piler and optimization level were used to compile the target binary. Therefore,
this evaluation was designed to assess whether SeHBPL is capable of testing
patch presence across compilers and optimization levels simultaneously. The
source code was compiled using different compilers and default compilation
options preset by developers to create reference binary pairs, and the testing
is then performed on target binaries that are compiled with all other compilers
and optimization levels.

Evaluation 3. This evaluation was conducted to test whether behavioral seman-
tics can express the changes introduced by a patch. The patches were manually
compared with the patch signatures generated by SeHBPL. Within the current
capability scope of SeHBPL, The judgment criteria for the effective extraction
of patch features by SeHBPL are introduced as follows:

– The patch introduces new behavior - new behavioral semantics should be
included in BSadd;

– The patch deletes original behavior - original behavioral semantics should be
included in BSdel;

– The patch changes constraints - behavioral semantics constrained by the orig-
inal constraints should be included in BSdel, and those constrained by the
new constraints should be included in BSadd.

104 J. Huang et al.

4.3 Evaluation on Effectiveness

SeHBPL was evaluated with 22,872 (reference binaries, target binary) pairs to
seek answers to Q1 and Q2, And BINXRAY was used for comparison.

Different Compiler or Optimization Level. Table 2 summarizes the perfor-
mance of SeHBPL as well as the comparison between SeHBPL and BINXRAY.
The statistics listed in the Supported column show a low support rate for
BINXRAY on the test cases, slightly higher than 10%. This is due to BINXRAY’s
inability to output exact results for most cases, instead returning “NT no trace”
and “NA too much diff”.

Table 2. Evaluation on tolerance of SeHBPL to diverse compiling configurations.

Stage Tool Targets Supporteda Intersectionb Overallc

Acc. Pre. F 0.5 Acc. Pre. F 0.5

ACd BINXRAY 8,445 870 (10.30%) 0.86 0.72 0.75 0.60 0.72 0.29

SeHBPL 8,445 8,445 (100.00%) 0.95 0.91 0.92 0.89 0.87 0.87

AO BINXRAY 14,427 1,452 (10.06%) 0.86 0.71 0.74 0.60 0.71 0.28

SeHBPL 14,427 14,427 (100.00%) 0.85 0.73 0.74 0.90 0.87 0.88

* Some binaries are not counted due to errors occur during the analysis.
a The amount and the ratio of the testing targets supported by each tool.
b Metrics for targets that can be analyzed by both the two tools.
c Cases where BINXRAY fails to output results are treated as if the binary is considered
unpatched.
d Short for “Across Compiler” and “Across Optimization Level”.

As Table 2 illustrates, SeHBPL consistently outperforms BINXRAY in three
key metrics. When evaluating patch presence in binaries compiled with different
compilers, SeHBPL achieves superior performance, with improvements of 10-
28%, 15–20%, and 0.17-0.58 in accuracy, precision, and F 0.5 score, respectively.
The great gaps in these metrics indicate the greater robustness of SeHBPL.
When testing patch presence in binaries compiled with different optimization
levels, BINXRAY achieves close performance when faced with target binaries
which it can process. However, among 14,427 target binaries, BINXRAY is only
able to output concrete result for 1,452 binaries, for only 10.06%. Considering
the overall metrics in both across-compiler evaluation and across-optimization
level evaluation, SeHBPL is regarded as more reliable and more practical.

An analysis of the false negatives of SeHBPL was conducted and it was con-
cluded that the majority of them were caused by incomplete path explorations by
angr. The incomplete explorations resulted in SeHBPL not reaching the instruc-
tion position to which the patches brought changes. If this occurs when SeHBPL
extracts behavioral semantics for reference binaries, SeHBPL will be unable to
derive patch signatures, causing the subsequent patch presence testing to fail.

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 105

Among the remaining false negatives, most were incurred by function inlining.
In these cases, the behavior of the callee functions is integrated into that of the
caller, and both the behavior and path constraints in the caller function are
greatly changed. Currently, SeHBPL tolerates function inlinings that occur in
reference binaries, but when a callee function within the target binary is inlined,
SeHBPL will fail to match its behavioral semantics with patch signatures, ulti-
mately causing the patch presence testing to fail.

Answer to Q1: SeHBPL can reliably perform patch presence testing, even
when the reference binaries and the target binary differ in compilation options.

Different Compiler and Different Optimization Level. The results of
evaluation 2 are presented in Table 3. Both SeHBPL and BINXRAY face chal-
lenges when conducting patch existence tests on binaries generated with varying
compilers and optimization levels, resulting in a slight decrease in accuracy and
precision for both tools. The most significant changes for both SeHBPL and
BINXRAY are observed in their precision, which decrease from over 86% to less
than 70% and from over 70% to around 60% respectively. Among all the 7,074
binaries, BINXRAY still can only output concrete results for a small portion
(14.76%) of target binaries, showing inability of processing complex targets.

In comparison to its counterpart, SeHBPL outperforms BINXRAY in all
metrics. Even when analyzing binaries that both tools can handle, BINXRAY
falls short in terms of accuracy and precision. Given that the reference binaries
are compiled using default settings, these results suggest that SeHBPL is more
reliable and practical in practice.

Table 3. Evaluation on SeHBPL with reference binaries compiled with default config-
uration.

Tool Targets # of Supported Supported Overall

Acc. Pre. F 0.5 Acc. Pre. F 0.5

BINXRAY 7,074 1,044 (14.76%) 0.72 0.60 0.61 0.58 0.61 0.15

SeHBPL 7,074 7,074 (100.00%) 0.80 0.71 0.74 0.76 0.68 0.71

Answer to Q2: SeHBPL can accurately and precisely test patch presence
with reference binaries generated using the default compilation setting, indicat-
ing that SeHBPL is practical.

4.4 Evaluation of Efficiency

The efficiency comparison of SeHBPL and BINXRAY is summarized in Table 4.
Overall, SeHBPL takes an average of 94.464 s to perform patch presence test-
ing on a binary. In many cases, such as the test on CVE-2016-8884, SeHBPL
completes the testing within one second. However, in a few cases, such as the

106 J. Huang et al.

test on CVE-2019-20387, SeHBPL takes more than 400 min. In these cases, the
vulnerability-related functions contain excessive branches and loops, resulting in
a dramatic increase in the number of execution paths waiting to be explored. As
a result, SeHBPL spends more time extracting behavioral semantics for these
cases than it does for others. For the most of other targets (>90%), SeHBPL
finishes patch presence testing on them within 120 s.

The detailed distribution of time costs for patch presence tests by SeHBPL is
shown in Fig. 7. As the figure shows, for most target binaries, no matter they are
compiled across compilers or across optimization levels, SeHBPL finishes testing
patch presence on them with 10 to 100 s. More specifically, SeHBPL tests patch
presence on 32.22% of targets within less than 10 s.

Compared to BINXRAY, SeHBPL takes longer to perform tests due to the
use of symbolic execution. To precisely extract changed behavioral semantics,
SeHBPL must explore many execution paths. Due to the relatively low efficiency
of symbolic execution, these explorations are time-consuming. However, consid-
ering that many symbolic execution efficiency improvement techniques [18,19]
and engineering efforts can be introduced into SeHBPL in the future, this time
consumption is considered acceptable.

Table 4. Time cost of BINXRAY and SeHBPL (in seconds).

Tool Minimum Average Median Maximum Done In 120 s

BINXRAY 0.002 2.10 0.07 270.04 99.72%

SeHBPL 0.32 94.46 17.68 28567.00 92.87%

Across Compilers Across Optimization Across Both

0

1

2

3

4

Fig. 7. Time Cost Distribution For SeHBPL. Values on Y-axis are in log scale.

Answer to Q3: SeHBPL can conduct patch presence tests with high efficiency.
It completes the analysis for most binaries within an acceptable time frame.

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 107

4.5 Performance of Behavioral Semantics

The efficiency of extracting behavioral semantics signatures was tested and the
results are summarized in Table 5. A signature is extracted in two steps: source
code parsing and signature generation. As the table shows, signature generation
takes much more time than source code parsing due to the symbolic execution
it involves. On average, it takes SeHBPL 426.01 s to generate patch signatures.
Although this is time costing, behavioral semantics extraction for patch signature
generation only needs to be performed once due to the tolerance of SeHBPL to
various compilation options. This means that the behavioral semantics signature
for a patch only needs to be generated once, and can then be used for patch
presence testing on target binaries compiled with various compilation settings.
As demonstrated earlier, SeHBPL outperforms its adversary in terms of both
accuracy and precision, indicating the usefulness of patch signatures based on
behavioral semantics. Therefore, it is considered worthwhile to spend this long
time to derive high-quality signatures.

Table 5. Time cost on source code parsing and patch signature generating (in seconds).

Stage Min. Ave. Med. In 120 s

Source Code Parsing 1.56 19.95 5.22 95.87%

Signature Generation 2.85 426.01 84.16 71.49%

Overall 7.78 445.96 85.95 69.01%

Second, the capability of behavioral semantics to capture changes introduced
by patches was measured. Among 91 vulnerabilities, source code changes intro-
duced by patches for 80 vulnerabilities were faithfully included in patch signa-
tures based on behavioral semantics. For other 11 vulnerabilities, errors occurred
in angr when SeHBPL extracted behavioral semantics, resulting in incomplete
symbolic executions and behavioral semantics extraction.

Answer to Q4: Behavioral semantics reliably reflects the changes in patches.

5 Discussion

Path Explosion. SeHBPL employs symbolic execution, which is susceptible to
path explosion. Path explosion has greatly affected the efficiency of SeHBPL. To
mitigate this issue, loops are currently expanded only twice and constraints are
applied during symbolic execution. In the future, additional approaches [18,19]
could be implemented to enhance execution efficiency.

Availability of Symbols. SeHBPL depends on symbol tables in target bina-
ries to locate relevant functions. However, symbol tables may not always be

108 J. Huang et al.

present, particularly in commercial off-the-shelf (COTS) products. This can hin-
der SeHBPL’s ability to test patch presence in these products. To overcome this
limitation, code search techniques [11,12,20] could be utilized.

6 Related Work

Binary-Level Code Search. Previous research utilized many characteristics
as features, including control flow [12–14], data constants [11,14], and call graphs
[20,21]. For instance, Andreas et al. [22] employs mnemonics for instructions and
normalized operands to detect code copying in Windows XP and the Linux ker-
nel. Works that use control flows as features, such as BinDiff [23], BinSlayer [24],
and discovRE [12], focus on the structure of the control flow graph, while Genius
[13] and Gemini [25] encode the control flow for efficiency. As natural language
processing techniques have advanced, they have been applied in Asm2vec [26],
Deepbindiff [27], and Yu et al. [28].

Identification of Component Versions. Version identification aims to ascer-
tain the specific version of a component used in a target binary. OSSPolice [7]
and B2SMatcher [29] extract features from different versions of components,
such as strings and names of exported functions, to create signatures for specific
versions. LibScout [30], which targets third-party components in Android appli-
cations, constructs a variant of Merkle trees [31] based on package hierarchical
structures and uses it as a signature. Libradar [32] performs version identification
based on the frequency of function calls to the Android API.

Testing for Patch Presence. Brahmastra [33] seeks to trigger vulnerabilities
through dynamic driving. However, the triggering results are heavily influenced
by the quality of the inputs generated for the target binary. FIBER [34] extracts
syntactic and semantic changes in source code and attempts to match these
changes in target binaries. PDiff [9] converts execution paths affected by patches
into formulas and performs similarity calculations on these formulas between
reference binaries and the target binary to determine patch presence.

7 Conclusion

This paper presents two key challenges in patch presence testing for binaries:
the subtlety of changes introduced by patches and the diversity of compilation
configurations. To address these challenges, the concept of behavioral semantics
is introduced and SeHBPL, a patch presence testing system based on behavioral
semantics, is implemented. SeHBPL accurately captures changes introduced by
patches and exhibits high tolerance to different compilation options. Evaluation
results demonstrate that SeHBPL achieves high accuracy and precision, outper-
forming state-of-the-art tools.

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 109

Acknowledgment. This work was supported by National Key R&D Program of the
Ministry of Science and Technology of China (No. 2020YFB2010902), Youth Science
Fund Project of China (No. 62002342) and Projects from the Ministry of Industry and
Information Technology of China (No. TC220H055). In addition, Siyi Zheng deserves
thanks for her work on beautifying the figures.

References

1. Synopsys, I.: 2022 open source security and analysis report (2022). https://www.
synopsys.com/software-integrity/resources/analyst-reports/open-source-security-
risk-analysis.html. Accessed 15 Apr 2022

2. Jang, J., Agrawal, A., Brumley, D.: Redebug: finding unpatched code clones in
entire OS distributions. In: IEEE Symposium on Security and Privacy, pp. 48–62.
IEEE (2012)

3. Kim, S., Woo, S., Lee, H., Oh, H.: Vuddy: a scalable approach for vulnerable code
clone discovery. In: IEEE Symposium on Security and Privacy (SP), pp. 595–614.
IEEE (2017)

4. Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., Hu, J.: Vulpecker: an automated vulnerability
detection system based on code similarity analysis. In: Proceedings of the 32nd
Annual Conference on Computer Security Applications, pp. 201–213 (2016)

5. Synopsys, I.: The heartbleed bug (2020). https://heartbleed.com/. Accessed 8 Apr
2022

6. Ltd. N. Half a million widely trusted websites vulnerable to heart-
bleed bug (2014). https://news.netcraft.com/archives/2014/04/08/half-a-million-
widely-trusted-websites-vulnerable-to-heartbleed-bug.html. Accessed 8 Apr 2022

7. Duan, R., Bijlani, A., Xu, M., Kim, T., Lee, W.: Identifying open-source license
violation and 1-day security risk at large scale. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2169–2185
(2017)

8. Xu, Y., Xu, Z., Chen, B., Song, F., Liu, Y., Liu, T.: Patch based vulnerability
matching for binary programs. In: Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, pp. 376–387 (2020)

9. Jiang, Z., et al.: PDiff: semantic-based patch presence testing for downstream ker-
nels. In; Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1149–1163 (2020)

10. Sun, P., Yan, Q., Zhou, H., Li, J.: Osprey: a fast and accurate patch presence
test framework for binaries. Comput. Commun. 173, 95–106, 2021. https://www.
sciencedirect.com/science/article/pii/S0140366421001079

11. Costin, A., Zaddach, J., Francillon, A., Balzarotti, D.: {Large-Scale} analysis of the
security of embedded firmwares. In: 23rd USENIX Security Symposium (USENIX
Security 14), pp. 95–110 (2014)

12. Eschweiler, S., Yakdan, K., Gerhards-Padilla, E.: discovRE: efficient cross-
architecture identification of bugs in binary code. In: NDSS, vol. 52, pp. 58–79
(2016)

13. Feng, Q., Zhou, R., Xu, C., Cheng, Y., Testa, B., Yin, H.: Scalable graph-based bug
search for firmware images. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 480–491 (2016)

14. Khoo, W.M., Mycroft, A., Anderson, R.: Rendezvous: a search engine for binary
code. In: 2013 10th Working Conference on Mining Software Repositories (MSR),
pp. 329–338. IEEE (2013)

https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://heartbleed.com/
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://news.netcraft.com/archives/2014/04/08/half-a-million-widely-trusted-websites-vulnerable-to-heartbleed-bug.html
https://www.sciencedirect.com/science/article/pii/S0140366421001079
https://www.sciencedirect.com/science/article/pii/S0140366421001079

110 J. Huang et al.

15. Tian, Y., Lawall, J., Lo, D.: Identifying Linux bug fixing patches. In: 34th Inter-
national Conference on Software Engineering (ICSE), pp. 386–396. IEEE (2012)

16. GNU, ”Optimize options for GCC” (2022). https://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html. Accessed 8 Apr 2022

17. Shoshitaishvili, Y., et al.: SoK: (State of) the art of war: offensive techniques in
binary analysis. In: IEEE Symposium on Security and Privacy (2016)

18. Chen, J., Hu, W., Zhang, L., Hao, D., Khurshid, S., Zhang, L.: Learning to acceler-
ate symbolic execution via code transformation. In: 32nd European Conference on
Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2018)

19. Zhang, C., Groce, A., Alipour, M. A.: Using test case reduction and prioritization to
improve symbolic execution. In: Proceedings of the 2014 International Symposium
on Software Testing and Analysis, pp. 160–170 (2014)

20. Liu, B., et al.: αdiff: cross-version binary code similarity detection with DNN.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 667–678 (2018)

21. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P.: Detecting software theft via system call based
birthmarks. In: Annual Computer Security Applications Conference, pp. 149–158.
IEEE (2009)

22. Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D., Su, Z.: Detecting code clones
in binary executables. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, pp. 117–128 (2009)

23. zynamics, ”Bindiff” (2004). https://www.zynamics.com/bindiff.html. Accessed 15
Apr 2022

24. Bourquin, M., King, A., Robbins, E.: Binslayer: accurate comparison of binary
executables. In: Proceedings of the 2nd ACM SIGPLAN Program Protection and
Reverse Engineering Workshop, pp. 1–10 (2013)

25. Xu, X., Liu, C., Feng, Q., Yin, H., Song, L., Song, D.: Neural network-based graph
embedding for cross-platform binary code similarity detection. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 363–376 (2017)

26. Ding, S.H., Fung, B.C., Charland, P.: Asm2vec: boosting static representation
robustness for binary clone search against code obfuscation and compiler opti-
mization. In: IEEE Symposium on Security and Privacy (SP), pp. 472–489. IEEE
(2019)

27. Duan, Y., Li, X., Wang, J., Yin, H.: DeepBinDiff: learning program-wide code
representations for binary diffing. In: Network and Distributed System Security
Symposium (2020)

28. Yu, Z., Cao, R., Tang, Q., Nie, S., Huang, J., Wu, S.: Order matters: semantic-
aware neural networks for binary code similarity detection. In: AAAI Conference
on Artificial Intelligence (2020)

29. Ban, G., Xu, L., Xiao, Y., Li, X., Yuan, Z., Huo, W.: B2smatcher: fine-grained
version identification of open-source software in binary files. Cybersecurity 4(1),
1–21 (2021)

30. Backes, M., Bugiel, S., Derr, E.: Reliable third-party library detection in android
and its security applications. In: Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 356–367 (2016)

31. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.zynamics.com/bindiff.html
https://doi.org/10.1007/3-540-48184-2_32

SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries 111

32. Ma, Z., Wang, H., Guo, Y., Chen, X.: LibRadar: fast and accurate detection of
third-party libraries in android apps. In: Proceedings of the 38th International
Conference on Software Engineering Companion, pp. 653–656 (2016)

33. Bhoraskar, R., et al.: Brahmastra: driving apps to test the security of third-party
components. In: 23rd USENIX Security Symposium (USENIX Security 14), pp.
1021–1036 (2014)

34. Zhang, H., Qian, Z.: Precise and accurate patch presence test for binaries. In: 27th
USENIX Security Symposium (USENIX Security 18), pp. 887–902 (2018)

Session Types with Multiple Senders
Single Receiver

Zekun Ji1,2, Shuling Wang1(B), and Xiong Xu1

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

{jizk,wangsl,xux}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Message passing is a fundamental element in software devel-
opment, ranging from concurrent and mobile computing to distributed
services, but it suffers from communication errors such as deadlocks. Ses-
sion types are a typing discipline for enforcing safe structured interac-
tions between multiple participants. However, each typed interaction is
restricted to having one fixed sender and one fixed receiver. In this paper,
we extend session types with existential branching types, to handle a com-
mon interaction pattern with multiple senders and a single receiver in a
synchronized setting, i.e. a receiver is available to receive messages from
multiple senders, and which sender actually participates in the interaction
cannot be determined till execution. We build the type system with exis-
tential branching types, which retain the important properties induced by
standard session types: type safety, progress (i.e. deadlock-freedom), and
fidelity. We further provide a novel communication type system to guaran-
tee progress of dynamically interleaved multiparty sessions, by abandon-
ing the strong restrictions of existing type systems. Finally, we encode Rust
multi-thread primitives in the extended session types to show its expressiv-
ity, which can be considered as an attempt to check the deadlock-freedom
of Rust multi-thread programs.

Keywords: Communications · Session types · Type system ·
Deadlock-freedom

1 Introduction

Distributed and concurrent programming plays an increasingly important role
due to the high demand for distributed applications and services across networks.
Message passing is one fundamental element in these areas and its correctness
is very crucial. Many existing programming languages provide communication
primitives, but still leave to the programmers the responsibility of guaranteeing
safety [26]. Concurrent and distributed programming suffers from communica-
tion errors such as deadlocks, and how to guarantee the correctness of commu-
nication behaviors is challenging.

Supported by NSFC under grant No. 61972385, 62032024, and 62192732.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 112–131, 2024.
https://doi.org/10.1007/978-981-99-8664-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_7&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_7

Session Types with Multiple Senders Single Receiver 113

There have been many academic studies on the specification and verification
of communicating behaviors. Session types [9,10] are a type theory for describing
structured communications between multiple end-point participants to statically
ensure safe interactions of them. It has been studied extensively in the context
of process calculi [1,2,5,7,24,28] and also in many programming languages [3,
13,17,18]. A variety of interaction patterns can be captured by session types, via
sequencing, branching, recursion, and channel mobility, however, each interaction
is typed with one fixed sender and one fixed receiver. In reality, a receiver may
be available to receive messages from a set of senders, and which sender actually
synchronizes with the receiver to complete the interaction is not determined
till execution, e.g. Rust multiple-producer, single-consumer channels. Existing
session types are not expressive enough to handle such communication behaviors.

This paper extends session types with an existential branching type that
allows to specify interactions with multiple senders and one receiver, enforcing
that at execution one among a set of senders synchronizes with the receiver
each time. With the addition of the existential branching type, we need to first
re-establish the whole type theory, which should retain the critical properties
of session types including type safety, progress (deadlock-freedom), and session
fidelity (type adherence). These properties guarantee that communications of
all the end-point processes together realize the global interaction protocol spec-
ified by a session global type. However, same as existing works based on global
types [1,23], the latter two properties put very strong restrictions on processes,
e.g. each process plays only one role in the protocol. Other alternative approaches
on guaranteeing deadlock-freedom loose these restrictions, but instead they must
obey strong order structures for nested channels [2,5], or require heavy syntax
annotations on the usage of channels [15,16]. In our approach, we present a novel
communication type system that records the execution orders between commu-
nication events over different channels, and checks the existence of dependence
loops in the transition closure of all the orders. In particular, in order to deal
with the dynamic mobility of channels, we define a unification process to transfer
the channel to be moved and its communication history to the target receiver.

At the end, to show the expressivity of the extended session types, we encode
concurrent primitives of Rust, including multiple-producer, single-consumer
channels, mutex, and read-write locks, in the extended session calculus. As a
result, a Rust multi-thread program can be encoded as a process that can be
checked by the type systems presented in this paper. In summary, the contribu-
tion of this paper includes the following three aspects:

– We extend session type with an existential branching type to specify the
interactions that allow multiple senders and one receiver, and establish the
type system to ensure type safety, deadlock-freedom, and session fidelity;

– We further propose a communication type system for checking deadlock-
freedom of concurrent processes, by dropping strong restrictions of existing
approaches;

114 Z. Ji et al.

– We encode concurrent primitives of Rust as processes in the extended session
calculus, which shows the possibility of checking the communication behaviors
of Rust using our approach in the future.

After presenting the related work, the paper is organized as follows: Sect. 2
gives a motivating example to illustrate our approach; Sect. 3 presents the
extended session calculus and session types with existential branching resp.;
Sect. 4 defines the new type system and proves the theorems corresponding to
type safety, progress, and fidelity, and Sect. 5 proposes the communication type
system for ensuring progress without restrictions. Section 6 encodes Rust multi-
thread primitives in the extended session calculus, and Sect. 7 concludes the
paper and addresses future work.

1.1 Related Work

Session types were introduced by Honda [9,10] initially for describing and val-
idating interactions between binary parties, and then extended to more gener-
alized multiparties [2,11]. Session types, either follow a top-down approach to
require the communications between multiple participants conform to a global
type via projections [2,8,11,29], or check local session types of communicating
systems directly, by requiring them to be compatible [10], satisfy behavioural
predicates corresponding to safety, liveness, etc [23], or by rely-guarantee rea-
soning [22]. Session types have been extended for various purposes. Dynamic
multirole session type introduces a universal polling operator to describe that an
arbitrary number of participants share common interaction behaviors and they
can dynamically join and leave [5]. The more general parameterized multiparty
session types integrate session types with indexed dependent types, to specify
the number of participants and messages as parameters that can dynamically
change [28]. Both of them focus on specifying communication topologies with
arbitrary number of participants and universally quantified interactions. Depen-
dent types are integrated into session types to specify and verify the dependency
and safety of data that are exchanged among multiple participants [24,25,27].
There are also extensions of session types on specifying crash-stop failures [1]
and continuous time motion behaviors [20]. However, all these works remain
the interaction patterns of original session types unchanged, with no support to
existential branching interactions considered in this paper.

The progress property, also called deadlock-freedom, has been studied a lot
for channel-based communicating systems. The types of channels in [15,16]
were decorated explicitly with capabilities/obligations to specify the relations
on channel-wise usages, thus they need heavy syntax annotations. The type sys-
tems for ensuring progress in session types were studied in [2,4], avoiding any
tagging of channels or names in syntax. However, the typing rules of [2,4] put
strong restrictions on nested channels in order to keep the correct orders between
different parties, and moreover, the output is assumed to be asynchronous. Our
communication type system was inspired by [2,4], but abandons the restric-
tions and moreover both input and output are synchronous. There is also work

Session Types with Multiple Senders Single Receiver 115

on verifying progress by checking multiparty compatibility of endpoint commu-
nications [12,19], via model checking or other verification techniques.

Session types have also been embedded in mainstream programming lan-
guages to guarantee the correctness of communication behaviors [3,6,13,17,18].
For more details, readers are referred to a recent survey [26]. The commonality
of them is to define session channels as enriched types to express the sequences
of messages that are expected to occur along the channels, the ordering of mes-
sages, or the synchronization between inputs and outputs, to guarantee deadlock-
freedom or other safety properties. However, none of these efforts focus on how
the native parallel programs can be directly checked for communication correct-
ness, and the strong-typed session channels may be not user-friendly to use and
only generate code for fixed patterns.

2 A Motivating Example

Figure 1 shows a motivating example of a satellite control system, which includes
three parts: the controller Ctrl, the ground control Grd, and the gyroscope Gys.
The controller receives data from the gyroscope periodically, then calculates the
control command based on the received data and sends it to the gyroscope to
obey in the next period; meanwhile, the ground control also needs to commu-
nicate with the controller to request current data or manually modify a certain
control parameter of the controller. Therefore, the controller should be always
ready to handle the requests from both the ground and the gyroscope. How-
ever, the ground and the gyroscope cannot play one role due to their different
responsibilities. Session types cannot specify the interactions of this example.

Figure 1 shows how to specify this example using our approach. G defines the
global type for the interactions between the controller, the ground control and
the gyroscope from a global perspective. Let pr denote the ground control, py

the gyroscope, and pc the controller. The controller pc first receives a message
from ground pr or gyroscope py and then takes further actions according to the
source of this message. If the message is from pr, then pr continues to send
a query request inq and receive a response from pc, or send a modification
request mod to modify the control parameter and further send the value to be
changed. If the message is from py, then the controller receives data from py and
sends a new control command comm back. Local types s[pc] and s[A], where
A = {pi}i∈{r,y}, are projections from G to the three roles resp., to define the
types of communications they participate in from their local view. Especially,
s[pc] defines the local type for pc, while s[A] defines the local types for pr and py

as a whole, as it is not determined statically which among pr and py interacts
with pc at each time.

116 Z. Ji et al.

Fig. 1. Example of Attitude Control of Satellite

3 MSSR Session Types

This section introduces the extended session π-calculus, and the corresponding
session types for typing the calculus. We call the session calculus and types
extended with multiple senders single receiver MSSR session calculus and MSSR
session types resp.

3.1 Session π-Calculus

As an extension of [1,23], MSSR session calculus is used to model processes inter-
acting via multiparty channels. The syntax is given below, where c stands for
channels, d for data that can be transmitted during communication, including
both basic values and channels, P,Q for processes, and D for function decla-
rations. The sessions s in restriction, and variables xi, yi, x̃ in branching and
function declaration are bounded. We adopt the Barendregt convention that
bounded sessions and variables, and free ones are assumed pairwise distinct.

c ::= x | s[p] variable, session with roles

d ::= x | a | s[p] variable, constant, session with roles

P, Q ::= 0 | (νs)P | P |Q inaction, restriction, parallel composition

| c[q] ⊕ l〈d〉.P selection towards q

| c[q]&{li(xi).Pi}i∈I branching from q with I �= ∅
| ∃i∈Ic[qi]&{li(yi).Pi} existential branching from {qi}i∈I

| def D in P | X(d̃) process definition, call

D ::= X(x̃) = P function declaration

Channels can be a variable, or s[p] representing the channel of participant
p (called role p interchangeably) in session s. Restriction (νs)P declares a new
session s with the scope limited to process P . Parallel composition P |Q executes

Session Types with Multiple Senders Single Receiver 117

P and Q concurrently, with communication actions between two roles synchro-
nized. Selection c[q] ⊕ l〈d〉.P sends value d labelled by l to role q, using channel
c, and then continues as P . In contrary, branching c[q]&{li(xi).Pi}i∈I expects
to receive a value from role q using channel c, and if a value dk with label lk is
received for some k ∈ I, xk will be replaced by received value and the execution
continues as the corresponding Pk. The lis must be pairwise distinct, and the
scopes of xis are limited to Pis. Existential branching ∃i∈Ic[qi]&{li(yi).Pi} is the
newly added construct, which expects to receive a value from senders {qi}i∈I ,
and if some qk sends a value, yk will be replaced by the received value and the
execution continues as Pk. Note the difference between branching and existential
branching: the former waits for a message from a single role that may provide
multiple messages, while the latter waits for a message from a set of different
roles. For the above three kinds of prefix communications, we call c their subject.

X(x̃) = P declares the definition for process variable X, which can be called
by X(d̃) with actual parameters d̃. Recursive processes can be modelled using it.
def D in P introduces the process definitions in D and proceeds as P . To make
sure that a recursive process has a unique solution, we assume P in X(x̃) = P is
guarded [23], i.e. before the occurrence of X in P , a prefix communication event
occurs. For example, P = x1[q] ⊕ l〈d〉.X(−) is guarded, while P = X(−) is not.

Semantics. Before presenting the semantics, we define the reduction context
C as follows:

C := C|P | (νs)C | def D in C | []

C is defined with a hole [] and for any process P , C[P] represents the process
reached by substituting P for [] in C. The execution of C[P] can always start
with executing P . The semantics of the calculus are then defined by a set of
reduction rules, denoted by P → P ′, meaning that P can execute to P ′ in one
step. We define P →∗ P ′ to represent that P executes to P ′ via zero or more
steps of reductions, and P→ to represent that there exists P ′ such that P → P ′,
and P� otherwise. The semantics are given below:

[&⊕] s[p][q]&{li(xi).Pi}i∈I |s[q][p] ⊕ lk〈w〉.Q → Pk[w/xk]|Q if k ∈ I

[∃⊕] ∃i∈Is[p][qi]&{li(yi).Pi}|s[qk][p] ⊕ lk〈w〉.Q → Pk[w/xk]|Q if k ∈ I

[X] def X(x1, ..., xn) = P in (X(w1, ..., wn)|Q)

→ def X(x1, ..., xn) = P in (P [w1/x1, ..., wn/xn]|Q)

[Ctx] P → P ′ implies C[P] → C[P ′]

[≡] P ′ ≡ P and P → Q and Q ≡ Q′ implies P ′ → Q′

Rule [&⊕] defines the synchronized communication between roles p (receiver)
and q (sender), matched by label lk, resulting in the substitution of w for xk in
continuation Pk, where w is a constant a or a session channel, say s′[r]. Rule
[∃⊕] defines the synchronized communication between receiver p and a sender
among {qi}i∈I , with the sender qk determined (externally from the sender side)
for the communication. Rule [X] replaces the occurrences of call X(w1, ..., wn)

118 Z. Ji et al.

by rolling its definition P after substituting wis for corresponding parameters
xis. Rule [Ctx] defines that, if P reduces to P ′, then context C[P] reduces to
C[P ′]. Rule [≡] defines that reduction is closed with respect to the structural
equivalence. Here P ≡ P ′ holds if P can be reconstructed to P ′ by α-conversion
for bounded variable renaming, or the commutativity and associativity laws of
parallel composition operator.

3.2 Global and Local Session Types

Session types define the use of channels in π-calculus. A global type specifies
the interactions of all the participants from a global view, and on the contrary a
local type specifies the interactions of each participant from its local view. The
projection of a global type upon a specific role produces the local type of the
corresponding participant. Below we define the MSSR global and local types,
denoted by G and T resp.

S ::=int | bool | real | 〈G〉 B ::=S | T

G ::=p → q : {li(Bi).Gi}i∈I T ::=p ⊕ {li(Bi).Ti}i∈I | p&{li(Bi).Ti}i∈I

| ∃i∈Iqi → p : {li(Bi).Gi} | ∃i∈Ipi&{li(Bi).Ti}
| μt.G | t | end | μt.T | t | end

Sort types S for values include basic types and global types. B defines types of
messages exchanged over channels, which can be sort types and channel types
(denoted by T). The global interaction type p → q : {li(Bi).Gi}i∈I describes an
interaction between role p and q, saying that p sends to q one of the messages
labelled by li, with payload type Bi for some i ∈ I, and then continues according
to the continuation type Gi. The global existential interaction type ∃i∈Iqi → p :
{li(Bi).Gi} specifies that there exists i ∈ I such that role qi sends to role p a
message, labelled by li with payload type Bi and then continues according to
Gi. We call {qi}i∈I the domain of the existential type. μt.G defines a recursive
global type and t represents a type variable. Type variables t are assumed to be
guarded in the standard way. end represents that no more communication will
occur.

Local types T define the types of end-point channels. The first three are cor-
responding to the selection, branching and existential branching processes in ses-
sion π-calculus. The selection type (or internal choice) p⊕{li(Bi).Ti}i∈I specifies
a channel that acts as a sender and sends a message among {li(Bi)}i∈I to receiver
p, and in contrary, the branching type (or external choice) p&{li(Bi).Ti}i∈I spec-
ifies a channel that acts as a receiver and expects to receive from sender p a mes-
sage among {li(Bi)}i∈I , and for both of them, the corresponding continuations
are specified as types Ti. The existential branching type (or existential external
choice) ∃i∈Ipi&{li(Bi).Ti} defines a receiving channel that expects to receive
from a sender among {pi}i∈I with corresponding message and continuation.

Example 1. We use a simpler running example to explain the notations and
definitions throughout this paper. The global type G given below specifies a
protocol between seller rs, buyer rb, and distributor rd:

Session Types with Multiple Senders Single Receiver 119

G = ∃i∈{b,d}ri → rs :{
purchase.rs → ri : price(int).ri → rs{ok.end, quit.end}, i = b
deliver.rs → ri : restock(str).end, i = d

}

At first, the seller expects to receive either a purchase message from the buyer
or a delivery message from the distributor. If the former occurs, the seller sends
the price to the buyer, who in turn sends the seller its decision on whether or
not to purchase; if the latter occurs, the seller sends a message to the distributor
about what it wants to restock.

Below presents the process, associated with G, for the three roles rs, rb, rd in
the syntax of MSSR session calculus (we omit irrelevant message payloads). The
buyer sends a purchase request to start a conversation with the seller, while the
distributor not.

(νs)(Prs |Prb |Prd), where⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Prs : ∃i∈{b,d}s[rs][ri]&

⎧⎨
⎩

purchase.s[rs][ri] ⊕ price(100)
.s[rs][ri]&{ok.0, quit.0} , i = b

deliver.s[rs][ri] ⊕ restock(“bread”).0, i = d

⎫⎬
⎭

Prb : s[rb][rs] ⊕ purchase.s[rb][rs]&price(x).s[rb][rs] ⊕ ok.0
Prd : 0

3.3 Projection and Well-Formed Global Types

The projection of a global type G to a role p is denoted by G �p, which maps G to
the local type corresponding to p. Before defining G �p, consider the projection of
the existential branching type ∃i∈Iqi → p : {li(Bi).Gi} to each qi. At execution,
there must exist one i0 ∈ I, such that qi0 sends to p while others in {qi}i�=i0,i∈I

do not. The choice of qi0 is not determined statically, and meanwhile unique, i.e.
there are not two qk, qj with k 	= j such that they both send to p. Due to this
reason, we define the projection of the existential branching type to all qis as a
whole. Instead of G �p, we define G �A, where A is a set of roles, that can be
a singleton as before, or contains multiple roles corresponding to the domain of
some existential type occurring in G. When A is a singleton {r}, we write G �r

for simplicity. G �A is defined as follows:

(μt.G) �A�
{

μt.G �A if G �A �= t′ for all t′

end otherwise
t �A= t end �A= end

(p → q : {li(Bi).Gi}i∈I) �A�

⎧⎨
⎩

q ⊕ {li(Bi).Gi �A}i∈I if A = {p}
p&{li(Bi).Gi �A}i∈I if A = {q}
�{Gi �A}i∈I otherwise

(∃i∈Iqi → p : {li(Bi).Gi}) �A�

⎧⎨
⎩

∃i∈Iqi&{li(Bi).Gi �A} if A = {p}
p ⊕ {li(Bi).Gi �qi}i∈I if A = {qi}i∈I

�{Gi �A}i∈I otherwise

120 Z. Ji et al.

For global type p → q : {li(Bi).Gi}i∈I , the projection to sender p or receiver
q results in the corresponding selection and branching local types; while the
projection to A that is neither {p} nor {q}, is defined to be the merge of the
projections of continuation types Gi (denoted by
, to be explained below). The
third case indicates that, from the eye of any role rather than p and q, it is not
known which case among I is chosen thus all the continuations in I need to be
merged to include all possible choices. The projection of ∃i∈Iqi → p : {li(Bi).Gi}
to receiver p results in the existential branching type on the set of senders, while
the projection to the set of senders {qi}i∈I is defined as the selection type on
receiver p. The projection of μt.G to r is defined inductively.

Now we define the merge operator
 for two local types, presented below:

p&{li(Bi).Ti}i∈I � p&{lj(Bj).Sj}j∈J

= p&{lk(Bk).(Tk � Sk)}k∈I∩J &
p&{li(Bi).Ti}i∈I\J &
p&{lj(Bj).Sj}j∈J\I

∃i∈Ipi&{li(Bi).Ti} � ∃j∈Jpj&{lj(Bj).Sj}
= ∃k∈I∩Jpk&{lk(Bk).(Tk � Sk)} &

∃i∈I\Jpi&{li(Bi).Ti} &
∃j∈J\Ipj&{lj(Bj).Sj}

p ⊕ {li(Bi).Ti}i∈I � p ⊕ {li(Bi).Ti}i∈I = p ⊕ {li(Bi).Ti}i∈I

μt.T � μt.S = μt.(T � S) t � t = t end � end = end

The merge of two branching types & combines together to form a larger branch-
ing type to allow to receive more messages. However, two selection types ⊕ can
only be merged when they have exactly the same choices. Otherwise, a selection
type with more (internal) choices will produce unexpected behaviors than the
global type as specified.

A global type G is well-formed, if G �A is defined for each A ∈ roles(G) ∪
exdom(G), where roles(G) returns the set of roles occurring in G and exdom(G)
returns the set of domains of all existential branching types occurring in G. From
now on, we only consider well-formed global types.

Example 2. The projection of G presented in Example 1 upon each role returns
the corresponding local type. Let R = {ri}i∈{b,d}, then:

s[rs] : G �rs
= ∃i∈{b,d}ri&

{
purchase.ri ⊕ price(int).ri&{ok.end, quit.end}, i = b
deliver.ri ⊕ restock(str).end, i = d

}

s[R] : G �R= ri ⊕
{

purchase.rs&price(int).rs ⊕ {ok.end, quit.end}, i = b
deliver.rs&restock(str).end, i = d

}

3.4 Consistency of Global Types and Local Types

The transition semantics of types abstract the communications that might occur
over typed channels. They can also be used to investigate the consistency between
a global type and its projections. First, we define the typing context for channels:

Session Types with Multiple Senders Single Receiver 121

Definition 1 (Typing context for channels). The channel typing context
Γ maps a channel (e.g. x, s[p]) or a set of channels (e.g. s[A]) to local types,
defined as:

Γ � ∅ | Γ, s[p] : T | Γ, s[A] : T | Γ, x : T

The domain of each Γ denotes the set of channels of the form s[p] or s[A]. We
write Γ1, Γ2 to denote the union of Γ1 and Γ2, when they have disjoint domains.

The transition semantics for global and local type is defined by transition

relations G
α−→G G′ and Γ

α′
−→L Γ ′ resp. We select some of the rules shown below

and the full semantics can be found in [14]. Here α represents a communication,
while α′ can be an input, output or a communication, as shown in the following
rules.

∃i∈Iqi → p : {li(Bi).Gi} qk→p:lk(Bk)−−−−−−−−→G Gk ∀k ∈ I (G-exist)

∀i ∈ I.Gi
α−→G G′

i {p, qi}i∈I ∩ roles(α) = ∅
∃i∈Iqi → p : {li(Bi).Gi} α−→G ∃i∈Iqi → p : {li(Bi).G′

i}
(G-exist’)

s[p] : ∃i∈Iqi&{li(Bi).Ti} p:qk&lk(Bk)−−−−−−−−→L s[p] : Tk ∀k ∈ I (L-exist)

s[{pi}i∈I] : q ⊕ {li(Bi).Ti}i∈I
pk:q⊕lk(Bk)−−−−−−−−→L s[pk] : Tk ∀k ∈ I (L-select’)

Γ1
p:q⊕l(B)−−−−−−→L Γ ′

1 Γ2
q:p&l(B)−−−−−→L Γ2

Γ1, Γ2
p→q:l(B)−−−−−−→L Γ ′

1, Γ
′
2

(L-par)

Rule (G-exist) performs a global interaction from a sender among {qi}i∈I to p,
while rule (G-exist’) defines the case which permutes the order of two actions
that are causally unrelated. The action to be executed for (G-exist’) is required
to be available no matter what choice is made for the prefix interaction. For local
types, rules (L-exist) and (L-select’) define the input and output resp., and rule
(L-par) defines the synchronization between an input and a compatible output.

Consistency of Projection. Suppose G is a global type with roles {p1, ..., pk}
and domain sets {A1, ..., Al}. Let {s[p1] : T1, ..., s[pk] : Tk; s[A1] : T ′

1, ..., s[Al] :
T ′

l } be the local types obtained from the projection of G towards the roles,
denoted by proj(G) below. We give the definition of consistent global type and
local types below.

Definition 2 (Consistency). A global type G and a set of local types Γ are

consistent, if the following conditions hold: if G
p→q:l(B)−−−−−−→ G′, then there must

exist Γ1, Γ2 in Γ with Γ = Γ1, Γ2, Γ3, such that Γ1, Γ2
p→q:l(B)−−−−−−→ Γ ′

1, Γ
′
2, and let

Γ ′ = Γ ′
1, Γ

′
2, Γ3, G′ and Γ ′ are consistent; and vice versa.

Theorem 1. Let G be a well-formed global type, then G and its projection
proj(G) are consistent.

122 Z. Ji et al.

The proof of this theorem, plus the ones for the following theorems, are all given
in [14].

4 Type System

The type system is defined under two typing contexts: the one for channels Γ
defined in Definition 1, and Θ mapping variables to basic types and process
variables to a list of types.

Θ � ∅ | Θ,X : T1, ..., Tn

The typing judgment Θ · Γ P states that under the typing contexts Θ and Γ ,
process P is well-typed. Figure 2 presents a selection of typing rules for MSSR
π-calculus, to mainly show the difference from the standard session types [2,23].

Fig. 2. Selection of Typing Rules for Processes (see [14] for the full version)

The rules are explained as follows:

– Rule (T-branch): c[q]&{li(yi).Pi}i∈J is typed under Γ and Γ1, if under Γ1, c
has a type that is an external choice from q with a smaller label set I ⊆ J ,
and for each i ∈ I, Pi is typed under the channel typing context composed of
Γ , the typing for bounded variable yi that occurs in Pi and the continuation
type Ti of c.

– Rule (T-exist): ∃i∈Ic[qi]&{li(yi).Pi}i∈J is typed, if c has a type that is an
existential external choice from the senders in {qi}i∈I satisfying I ⊆ J , and
for each i ∈ I, Pi is typed under Γ , the typing for yi and the continuation
type Ti of c.
Both of the above rules indicate that processes allow more external choices.

– Rule (T-select): c[q] ⊕ {lk〈dk〉.Pk} is typed, if c has a type that is an internal
choice towards q, with a label set containing lk inside.

Session Types with Multiple Senders Single Receiver 123

– Rule (T-select’): c[q] ⊕ {lk〈dk〉.Pk} is also typed, if the typing context corre-
sponding to c is end, but the typing context for some s[A] exists such that c
corresponds to some role in A and c is fixed for performing the communica-
tions specified by s[A]. A must be the domain of some existential branching,
and the role of c is among it.

– Rule (T-new): (νs)P is typed under Γ , if P is typed under the typing context
composed of Γ and the one for session s (i.e. Γ1). Γ1 guarantees that there
exists a global type G such that each role of s has exactly the local type
projected from G.

Example 3. We have the following typing derivation for the running example:

...

s[R] : G �R Prb
|Prd

(T-select’)
...

s[rs] : G �rs
 Prs

(T- exist)

s[R] : G �R, s[rs] : G �rs
 Prs

|Prb
|Prd

(T-Par)

∅ (νs)(Prs
|Prb

|Prd
)

(T-new)

The above derivation result shows that the processes are typed with the corre-
sponding local types projected from global type G.

Subject Reduction and Progress. There are two important properties
for evaluating a type system: subject reduction (also called type safety) and
progress.

Theorem 2 (Subject reduction). Assume Θ · Γ P is derived according to
the type system in Fig. 2. Then, P → P ′ implies ∃ Γ ′ such that Γ →∗

L Γ ′ and
Θ · Γ ′ P ′.

The subject reduction guarantees that if a typed process takes a step of evalu-
ation, then the resulting process is also typed. However, it does not guarantee
that a well-typed process can always take one further step of execution if it is
not terminated: it could be stuck in a deadlock while waiting for dual actions.
The deadlock freedom is usually called progress in some literature [21]. We prove
the following theorem on progress.

Theorem 3 (Progress). Let P be (νs)(Πi∈IPi), with |roles(Pi)| = 1 and
roles(Pi) ∩ roles(Pj) = ∅ for any i, j ∈ I, i 	= j. Then Θ, ∅ (νs)P and
P →∗ P ′

� implies P ′ = 0. Here roles(Pi) returns the roles of Pi.

However, the above theorem has a strong restriction by requiring that each
sequential process plays only one role. If a process plays multiple roles in a
session, deadlock might occur. The reason is that the projection from a global
type to local types loses the orders of actions occurring over different roles. See
the example below.

124 Z. Ji et al.

Example 4. Define P = (νs)P1|P2, where P1 = s[p][r]&{l1(x1).s[p][q] ⊕
{l2(a2).0}} and P2 = s[q][p]&{l2(x2).s[r][p]⊕{l1(a1).0}}, where P1 plays one role
p, and P2 plays two roles q and r. Let G = r→p :{l1(B1).p→q :{l2(B2).end}},
Γ a1 :B1, a2 :B2, we have

G �r= p ⊕ l1(B1).end G �q= p&l2(B2).end G �p= r&l1(B1).q ⊕ l2(B2).end

By the type system, ∅ · Γ P . However, P leads to a deadlock. In next section,
we will define a communication type system by abandoning the restriction on a
single role.

Session Fidelity. The session fidelity connects process reductions to typ-
ing context reductions. It says that the interactions of a typed process follow
the transitions of corresponding local types, thus eventually follow the protocol
defined by the global type.

Theorem 4 (Session Fidelity). Let P be Πi∈IPi, with |roles(Pi)| = 1 and
roles(Pi) ∩ roles(Pj) = ∅ for any i, j ∈ I, i 	= j. If Θ,Γ P , Γ = {s[p] : G �p

}p∈roles(G) for some global type G, and Γ →L, then there exist Γ ′ and P ′ such
that Γ →L Γ ′, P → P ′ and Θ · Γ ′ P ′.

5 A Communication Type System for Progress

This section defines a communication type system for guaranteeing the progress
of processes in MSSR π-calculus, especially for the cases when one sequential
process plays multiple roles. This is achieved by recording the execution orders
of communication events for processes and then checking if there exists a depen-
dence loop indicating that all processes are on waiting status and cannot proceed.

Notations. First of all, we introduce the notion of directed events:

– A directed event (c[r], l, i), where c is a channel, r a role, l a label and i > 0
a time index, representing that this event is the i-th communication action
of c[r] and the label is l. The event is directed from the role of c to r, e.g. if
c = s[p], it means that p sends to or receives from r at this event.

– A directed event with channel mobility (c[r], l, i, c′, A), where c′ is the channel
exchanged over this event and A is a set recording the communication history
of c′ till this event occurs. Each element of A has form (c′[p], k), where p is
a role and k > 0, indicating that k times of communications on c′[p] have
occurred before c′ is moved by this event.

Session Types with Multiple Senders Single Receiver 125

Below we denote the sets of these two kinds of events by E and EM , and for
simplicity, call them events and mobility events resp. For any e in E or EM , we
will use e.i to represent the i-th sub-component.

Each communication typing rule takes the form Δ P 	 U,M,R, where P
is the process to be typed, U ⊆ E is the set of the least events of P such that
no event has occurred prior to them, M is the set of mobility events that have
occurred in P , R ⊆ E × E is a set of relations describing the execution order of
events, and Δ is the communication context for functions, of the form {X(ỹ) 	
UX ,MX , RX}X∈P , for any function X called in P . (e1, e2) ∈ R means that e1
occurs strictly before e2 in P , and we will write e1 ≺R e2 as an abbreviation (R
omitted without confusion). The addition of M is mainly to transfer the history
information of each channel to be moved to the corresponding target receiver.

Before presenting the typing rules, we introduce some notations (all symbols
are defined as before). U \c[r] removes all events of c[r] from U , i.e. {e | e ∈
U ∧ e.1 	= c[r]}; pre(x,U) is defined as {x ≺ y | y ∈ U}, to represent that x
occurs prior to all events in U ; C(d) is a boolean condition judging whether d
is a channel value; M1 � b � M2 returns M2 if b is true, otherwise M1; events
(s[p][q], l, i) and (s[q][p], l, i) are said to be dual, and we use e to represent the
dual event of e. At the end, we define the k-th index increase of events with
respect to a fixed pair of sender and receiver α, which has the form c[q] for some
c and q. Let e be an event (c[r], l, i) and me be a mobility event (c[r], l, i, c′, A):

e ↑α
k �

{
(c[r], l, i + k) if α = c[r]

e otherwise A ↑α
k �

{
A\(α, i) ∪ {(α, i + k)} if (α, i) ∈ A

A ∪ {(α, k)} otherwise

me ↑α
k �

⎧⎨
⎩

(c[r], l, i + k, c′, A) if α = c[r]
(c[r], l, i, c′, A ↑c′[p]

k) if α = c′[p] for some p
me otherwise

R ↑c[q]
k � {e ↑c[q]

k ≺ e′ ↑c[q]
k |e ≺ e′ ∈ R} M ↑c[q]

k � {me ↑c[q]
k |me ∈ M}

R ↑A�
⋃

(c[q],k)∈A R ↑c[q]
k M ↑A�

⋃
(c[q],k)∈A M ↑c[q]

k

e ↑α
k says, when e is occurring on α, its time index is increased by k, otherwise

not changed. me ↑α
k not only promotes the event itself with respect to α (the

first case), but also the communication history of c′ (the second case). As defined
by A ↑α

k , the pair corresponding to α is increased by k, or added if it is not in
A. R ↑c[q]

k and M ↑c[q]
k perform the pointwise k-th index increase with respect to

c[q] to all events in them, R ↑A and M ↑A perform the index increase of events
in R and M with respect to A. For simplicity, we omit the subscript k of all the
above definitions when k = 1.

126 Z. Ji et al.

Fig. 3. A Communication Type System for Processes and Auxiliary Definitions

5.1 Typing Rules

Figure 3 presents the communication type system for MSSR session calculus and
the auxiliary rules for unification and transitivity of relations, with explanations
below:

– Rule (C-select): The prefix selection produces event (c[q], l, 1), which becomes
the (only) least event of the current process. If d is a channel value,
(c[q], l, 1, d, ∅) is added to M , especially ∅ indicating no communication along
d has occurred till now. The occurrence of (c[q], l, 1) promotes the time indexes
of events of c[q] in both R and M by 1. The precedence from (c[q], l, 1) to
all events of non-c[q] channels in U holds and the corresponding relations are
added to the R-set.

– Rule (C-bran): The prefix branch process produces a set of least events
(c[q], li, 1) for i ∈ I. When yi is a channel, (c[q], li, 1, yi, ∅) is added to Mi.
The Mi, Ri-sets are joined together, and furthermore, they promote all events
with respect to c[q]. The precedence from (c[q], li, 1) to non-c[q] events in Ui

are added to each Ri-set.
– Rule (C-exist): Each existential branch from qi for i ∈ I is handled similarly

as in (C-bran) to update the three sets.

Session Types with Multiple Senders Single Receiver 127

– Rule (C-par): The three communication typing sets corresponding to P and
Q are joined together for P |Q.

– Rules (C-call) and (C-def): Function call X(d̃) instantiates the communica-
tion typing sets for X(x̃) by substituting d̃ for x̃. Function declaration X(x̃)
unfolds the function body P once by replacing the (possibly recursive) occur-
rence of X in P by 0 to compute the communication typing sets of X(x̃).
This is adequate, because by the type system of Fig. 2, each process is typed
with the corresponding projection of a global type, thus all end-point pro-
cesses conform to the same recursive structure as specified by the global type
and one time unfolding is enough for representing all cases of communication
orders between events.

– Rule (C-unify): It defines the unification of M and R according to rule (Unify).
Rule (Unify) transfers the channel value s[m] and its communication history
recorded by A from sender p to receiver q, by first promoting the events on
x with respect to the history A[x/s[m]] and then substituting all occurrences
of x for s[m]. Through unification, all variable channels in R are instantiated
to constant channels and the events of them have the correct time indexes
(globally).

– Rule (C-trans): It defines the transitivity of R according to rules (Trans-1)
and (Trans-2), based on the synchronization of an event and its dual.

A relation R is safe, if e ≺ e /∈ R for any e, i.e. there does not exist an event
e such that e and its dual event e (that are expected to be synchronized) are in
a strict order.

Theorem 5 (Progress). Suppose Θ, ∅ (νs)P and Δ P 	 U,M,R, if both
(C-unify) and (C-trans) cannot be applied anymore to M and R, and if R is
safe, then P →∗ P ′

� implies P ′ = 0.

Example 5. We show how to use the communication type system to type the
processes in Example 4. In particular, P2 produces a relation between s[q][p]
and s[r][p], which is absent in the previous type system.

Δ � 0 � ∅, ∅, ∅
Δ � s[p][q] ⊕ {l2(a2).0} � {(s[p][q], l2, 1)}, ∅, ∅ [C-select]

Δ � s[p][r]&{l1(x1).s[p][q] ⊕ {l2(a2).0}}� {(s[p][r], l1, 1)}, ∅,
{(s[p][r], l1, 1) ≺ (s[p][q], l2, 1)}

[C-bran]

Δ � 0 � ∅, ∅, ∅
Δ � s[r][p] ⊕ {l1(a1).0} � {(s[r][p], l1, 1)}, ∅, ∅ [C-select]

Δ � s[q][p]&{l2(x2).s[r][p] ⊕ {l1(a1).0}}� {(s[q][p], l2, 1)}, ∅,
{(s[q][p], l2, 1) ≺ (s[r][p], l1, 1)}

[C-bran]

By [C-par], (Trans-1) and (C-Trans), P1|P2 produces a relation set containing
(s[p][r], l1, 1) ≺ (s[r][p], l1, 1), which is not safe.

128 Z. Ji et al.

6 Modelling Rust Multi-threads in MSSR Session Types

Rust offers both message-passing and shared-state mechanisms for concurrent
programming. This section presents how to model these different concurrency
primitives using MSSR session types.

Channel. Rust library provides communication primitives for handling multi-
producer, single-consumer communications. A channel x contains two parts
(tx, rx), with tx standing for the transmitter and rx for the receiver. The chan-
nel can be synchronous or asynchronous, and allows a buffer to store the values.
Let s be the session created for (tx, rx), p and q the owner threads of tx and rx
respectively. If the channel is synchronous with buffer size 0, it is consistent with
synchronous communication in session types. The Rust primitives tx.send(val)
and a = rx.recv(), representing that tx sends val and rx receives the value and
assigns it to a, are encoded as the processes resp. below:

tx.send(val) : s[p][q]⊕x(val) a = rx.recv() : s[q][p]&x(a)

where the threads of tx and rx (i.e. p and q) are translated as roles, and the
channel name x is translated as the message label. Through this way, each thread
plays one role, which satisfies the condition of progress property of the type
system of Fig. 2.

The transmitter can be cloned to multiple copies, denoted by txi, i ∈ I, each
of which communicates with the same receiver rx. The existential branching
process models this case. Suppose xi = (txi, rx), and the threads of txi are pi

for i ∈ I, then

txi.send(val) : c[pi][q] ⊕ xi(val) a = rx.recv() : ∃i∈Ic[q][pi]&{xi(a)}

If the channel has a buffer with size n > 0, the transmitter can send without
waiting for the first n times. We model this case in the extended report [14].

Mutex. For shared state concurrency, Rust provides mutex to allow only one
thread to access the shared data at one time. Assume threads ti, i ∈ I want to
access shared data d, protected by the mutex lock m. Each thread can call lock,
try lock, unlock1 to acquire, try to acquire and release the lock resp. They are
encoded as follows:

m.lock() : m[ti][sm] ⊕ li().m[ti][sm] ⊕ lock().m[ti][sm]&ok(d)
m.try lock() : m[ti][sm] ⊕ li().m[ti][sm] ⊕ try lock().m[ti][sm]&{ok(d), block()}
unlock(m) : m[ti][sm] ⊕ li().m[ti][sm] ⊕ unlock(d)

1 Rust releases locks implicitly, but we treat unlock explicitly for illustrating our
approach.

Session Types with Multiple Senders Single Receiver 129

For each method, thread ti first sends a message to server sm to build the con-
nection, followed by the lock/try lock/unlock requests resp. Message ok received
from sm indicates that ti acquires the lock successfully, while message block
means that the lock is occupied by another thread and ti fails to get it.

A server thread sm is defined to coordinate the access of the shared data
from different threads as follows. P models the initial state, expects to receive a
message from ti, i ∈ I, and for either lock or try lock request, sends ok to ti. The
process continues as Pi, which is available to receive messages from either Pi to
release the lock and go back to P again, or from another Pj to try to acquire
the lock but it is denied and goes back to Pi.

P = ∃i∈Im[sm][ti]&{li().m[sm][ti]&

{
lock().m[sm][ti] ⊕ ok(d).Pi,

try lock().m[sm][ti] ⊕ ok(d).Pi

}

Pi = ∃j∈Im[sm][tj]&{lj().Pij}, i ∈ I

Pij =

{
m[sm][ti]&unlock(d).P , i = j, i, j ∈ I

m[sm][tj]&try lock().m[sm][tj] ⊕ block().Pi , i �= j, i, j ∈ I

Except for the above channels and mutex, we also model Rust Read-Write Lock
in [14].

Discussion on Rust Programs. With the help of the encoding of concur-
rency primitives, we can represent a whole Rust multi-threaded program as an
MSSR process. Some details such as assignments are neglected (similar to most
static analysis approaches), while concurrency primitives and control flow such
as sequential composition, if-else, loop, and (recursive) functions, are supported
by MSSR calculus directly. After a Rust program is translated to an MSSR pro-
cess, it can be typed according to the type systems defined in this paper, to
check whether it is type-safe and deadlock-free. A Rust program that passes the
type checking is guaranteed to be type-safe and deadlock-free, but the inverse
does not hold, i.e. programs that fail in the check might be safe in execution,
mainly due to abstraction of the encoding from Rust to session calculus.

7 Conclusion and Future Work

This work introduced an extension of session types with existential branching
type for specifying and validating more flexible interactions with multiple senders
and a single receiver. This extension can represent many communication proto-
cols, such as Rust multi-thread primitives as encoded in the paper. We estab-
lished the type system for the extended session types based on projection and
global types, to ensure type safety, progress and fidelity. We proposed a more gen-
eral communication type system for guaranteeing progress without restrictions
of existing approaches, by studying the execution orders between communication
events among different participants.

130 Z. Ji et al.

To make full use of the extended session types, several future works can
be considered. First, the type systems presented in this paper follow a top-
down approach based on end-point projections, which might be restrictive to
reject some valid processes when the corresponding global types do not exist. To
avoid this, we will consider to define the type systems by checking local session
types directly instead, as in [23]. Second, as an important application, we are
considering to implement the translation from Rust multi-threaded programs to
the extended session types for safety checking; Third, we will apply our approach
to model and check more practical protocols and applications.

References

1. Barwell, A.D., Scalas, A., Yoshida, N., Zhou, F.: Generalised multiparty session
types with crash-stop failures. In: CONCUR 2022, volume 243 of LIPIcs, pp. 1–25.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M.,
Yoshida, N.: Global progress in dynamically interleaved multiparty sessions. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–
433. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 33

3. Chen, R., Balzer, S., Toninho, B.: Ferrite: a judgmental embedding of session types
in Rust. In: ECOOP 2022, volume 222 of LIPIcs, pp. 1–28. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022)

4. Dezani-Ciancaglini, M., de’Liguoro, U., Yoshida, N.: On progress for structured
communications. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
257–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78663-
4 18

5. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL 2011,
pp. 435–446. ACM (2011)

6. Fowler, S., Lindley, S., Morris, J.G., Decova, S.: Exceptional asynchronous session
types: session types without tiers. In: POPL 2019, pp. 1–29. ACM (2019)

7. Gheri, L., Lanese, I., Sayers, N., Tuosto, E., Yoshida, N.: Design-by-contract for
flexible multiparty session protocols. In: ECOOP 2022, volume 222 of LIPIcs, pp.
1–28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

8. Ghilezan, S., Jaksic, S., Pantovic, J., Scalas, A., Yoshida, N.: Precise subtyping
for synchronous multiparty sessions. J. Log. Algebraic Methods Program. 104,
127–173 (2019)

9. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

10. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

11. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL 2008, pp. 273–284. ACM (2008)

12. Imai, K., Lange, J., Neykova, R.: Kmclib: automated inference and verification
of session types from OCaml programs. In: TACAS 2022. LNCS, vol. 13243, pp.
379–386. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 20

https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/978-3-540-78663-4_18
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-030-99524-9_20

Session Types with Multiple Senders Single Receiver 131

13. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In:
WGP@ICFP 2015, pp. 13–22. ACM (2015)

14. Ji, Z., Wang, S., Xu, X.: Session types with multiple senders single receiver (report
version). https://arxiv.org/abs/2310.12187 (2023). arxiv CoRR (2023)

15. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Infor-
matica 42(4–5), 291–347 (2005)

16. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Her-
manns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11817949 16

17. Kokke, W.: Rusty variation: deadlock-free sessions with failure in rust. In: ICE
2019, volume 304 of EPTCS, pp. 48–60 (2019)

18. Lagaillardie, N., Neykova, R., Yoshida, N.: Implementing multiparty session types
in rust. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134,
pp. 127–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 8

19. Lange, J., Yoshida, N.: Verifying asynchronous interactions via communicating
session automata. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
97–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 6

20. Majumdar, R., Yoshida, N., Zufferey, D.: Multiparty motion coordination: From
choreographies to robotics programs. Proc. ACM Program. Lang. 4(OOPSLA),
1–30 (2020)

21. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
22. Scalas, A., Yoshida, N.: Multiparty session types, beyond duality. J. Log. Algebraic

Methods Program. 97, 55–84 (2018)
23. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. In: POPL

2019, pp. 1–29 (2019)
24. Toninho, B., Yoshida, N.: Certifying data in multiparty session types. J. Log.

Algebraic Methods Program. 90, 61–83 (2017)
25. Toninho, B., Yoshida, N.: Depending on session-typed processes. In: Baier, C., Dal

Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 128–145. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89366-2 7

26. Tu, T., Liu, X., Song, L., Zhang, Y.: Understanding real-world concurrency bugs
in go. In: ASPLOS 2019, pp. 865–878. ACM (2019)

27. Wu, H., Xi, H.: Dependent session types. https://arxiv.org/abs/1704.07004. arXiv
CoRR. (2017)

28. Yoshida, N., Deniélou, P.-M., Bejleri, A., Hu, R.: Parameterised multiparty session
types. In: Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 128–145. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12032-9 10

29. Yoshida, N., Gheri, L.: A very gentle introduction to multiparty session types.
In: Hung, D.V., D’Souza, M. (eds.) ICDCIT 2020. LNCS, vol. 11969, pp. 73–93.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36987-3 5

https://arxiv.org/abs/2310.12187
https://doi.org/10.1007/11817949_16
https://doi.org/10.1007/978-3-030-50029-0_8
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-319-89366-2_7
https://arxiv.org/abs/1704.07004
https://doi.org/10.1007/978-3-642-12032-9_10
https://doi.org/10.1007/978-3-030-36987-3_5

Understanding the Reproducibility Issues
of Monkey for GUI Testing

Huiyu Liu1, Qichao Kong1, Jue Wang2(B), Ting Su1, and Haiying Sun1(B)

1 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

hysun@sei.ecnu.edu.cn
2 Nanjing University, Nanjing, China

juewang591@gmail.com

Abstract. Automated GUI testing is an essential activity in developing
Android apps. Monkey is a widely used representative automated input
generation (AIG) tool to efficiently and effectively detect crash bugs in
Android apps. However, it faces challenges in reproducing the crash bugs
it detects. To deeply understand the symptoms and root causes of these
challenges, we conducted a comprehensive study on the reproducibil-
ity issues of Monkey with Android apps. We focused on Monkey’s
capability to reproduce crash bugs using its built-in replay functional-
ity and explored the root causes of its failures. Specifically, we selected
six popular open-source apps and conducted automated instrumentation
on them to monitor the invocations of event handlers within the apps.
Subsequently, we performed GUI testing with Monkey on these instru-
mented apps for 6,000 test cases and collected 56 unique crash bugs. For
each bug, we replayed it 200 times using Monkey’s replay function and
calculated the success rate. Through manual analysis of screen record-
ing files, log files of event handlers, and the source code of the apps,
we pinpointed five root causes contributing to Monkey’s reproducibil-
ity issues: Injection Failure, Event Ambiguity, Data Loading, Widget
Loading, and Dynamic Content. Our research showed that only 36.6%
of the replays successfully reproduced the crash bugs, shedding light on
Monkey’s limitations in consistently reproducing detected crash bugs.
Additionally, we delved deep into the unsuccessfully reproduced replays
to discern the root causes behind the reproducibility issues and offered
insights for developing future AIG tools.

Keywords: Reproducibility · Empirical Study · Android GUI Testing

1 Introduction

The Android apps have become increasingly widespread [2]. In Android app
development, GUI (Graphical User Interface) testing is crucial for ensuring the
stability and reliability of Android apps. It aims to mitigate the risk of soft-
ware failures, data breaches, and other potentially expensive issues. To support
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 132–151, 2024.
https://doi.org/10.1007/978-981-99-8664-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_8&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_8

Understanding the Reproducibility Issues of Monkey for GUI Testing 133

efficient and robust GUI testing, numerous AIG (Automated Input Generation)
tools have been developed [1,6,16–18,20,29,31–33]. By sending GUI events auto-
matically to the app under test and monitoring its performance, these AIG tools
effectively detect and report crash bugs in Android apps.

Despite the success of AIG tools in detecting crash bugs, the primary chal-
lenge in addressing these bugs is reproducing them. Most existing AIG tools lack
replay functionality. As a result, testers must manually attempt to reproduce any
reported crash bugs, which can be both challenging and labor-intensive. Even for
AIG tools that offer replay functionalities (e.g., Monkey [23], Ape [11], Droid-
Bot [16]), they cannot guarantee reliable reproduction due to varying runtime
contexts [30], which brings challenges for testers to diagnose and fix these crash
bugs. Flakiness in Android testing refers to the inconsistent results of automated
tests. Most of the existing studies about flakiness in Android testing primarily
focus on flaky tests in UI testing frameworks like Espresso. A few works have
also studied the reproducibility issues associated with AIG tools [28,30]. How-
ever, these studies reproduce the buggy trace only a few times, which might
not be comprehensive or systematic. We believe that a deep understanding of
the reproducibility issues of AIG tools is crucial. Such insight can pinpoint the
limitations of these tools and suggest directions for improvement.

Therefore, we conducted an in-depth study of the reproducibility issues of
AIG tools. Specifically, we focus on Monkey [23], a widely adopted AIG tool
for Android apps in industry [26,34]. Monkey provides the capability to sim-
ulate user interactions by generating random events such as clicks, touches, or
gestures, as well as some system-level events. Moreover, it has a built-in function-
ality to replay the event sequences it generated. Google has officially integrated
Monkey into the Android SDK (Software Development Kit) [24], highlighting
the representativeness and significance of Monkey for Android GUI testing. To
get insights on the reproducibility of Monkey, in this work, we primarily focus
on the following two research questions:

– RQ1: How reliably can Monkey reproduce the crash bugs it detects?
– RQ2: What are the root causes of the reproducibility issues of Monkey?

To answer the two research questions, we selected six real-world, open-source
Android apps, and conducted GUI testing on them with Monkey. When a
crash bug was detected, we replayed it with Monkey’s built-in functionality.
Specifically, to get further information about the execution status of each replay,
we implemented an instrumentation tool in the form of a Gradle Plugin using
a Java bytecode manipulation and analysis framework - ASM [5]. Applying the
plugin to our subject apps can help us observe how the app reacts to input events
from the event handler level. We recorded the execution information of each
replay, including the event sequence, screen recording, and the event handler
invocations recorded by our instrumentation. Finally, we conducted a manual
analysis of the unsuccessfully-reproduced replays and identified the root causes.

According to our experimental results, only 36.6% of the replays can success-
fully reproduce the crash bugs detected by Monkey on average. We categorized
the root causes of the reproducibility issues into five types, namely Injection

134 H. Liu et al.

Failure, Event Ambiguity, Data Loading, Widget Loading and Dynamic Content.
The most prevalent cause, Injection Failure, stems from Monkey’s event gener-
ation mechanism, accounting for 54.4% of the 7,100 unsuccessful replays. Event
Ambiguity, Data Loading, Widget Loading, and Dynamic Content account for
20.9%, 15.1%, 9.2%, and 0.4%, respectively. Our study reveals the limitation
of Monkey in reliably reproducing the crash bugs it detects, which can also
be generalized to AIG tools implemented based on the principles of Monkey.
For researchers, understanding these limitations can guide the enhancement of
existing AIG tools and the future development of the coming AIG tools. For
developers, understanding these limitations can help to interpret the bug reports
and assess whether the AIG tool’s inputs truly represent the user interactions
that led to the crash. It also allows developers to distinguish between genuine
bugs and false positives (reporting a bug that doesn’t exist) or false negatives
(not detecting an actual bug) caused by the tool’s inaccuracies.

Overall, the main contributions of this paper can be summarized as follows:

– To our knowledge, we conducted the first systematic and in-depth study to
investigate Monkey’s reproducibility issues.

– To study the reproducibility issues of Monkey, we implemented an instru-
mentation tool that can help observe the runtime behavior of the apps from
the event handler level.

– We identified five root causes of Monkey’s reproducibility issues from differ-
ent perspectives (e.g., Monkey’s self unreliability, app’s feature), and some
of these root causes (e.g., Injection Failure, Event Ambiguity) were not iden-
tified previously.

– We have publicly released our tool and dataset at https://github.com/
InstrumentDroid/InstrumentDroid.

2 Empirical Study Methodology

This section presents our methodology for investigating the reproducibility rate
of crash bugs detected by Monkey and analyzing the root causes of the repro-
ducibility issues of Monkey. Figure 1 shows the methodology of our study.

2.1 Notations and Definitions

An Android app is a GUI-based event-driven program P . A crash bug r can be
described as a type of fault in P that triggers a runtime exception resulting in
an app crash or hang. A Monkey event e is an event generated by Monkey to
simulate various user interactions, such as touch events, key events, and system
events. Note that Monkey is coordinate-sensitive rather than widget-sensitive,
so not event Monkey event interacts with UI elements. We denote these Mon-
key events as blank events. When finished a Monkey testing, P responds to a
sequence of Monkey events E = [e1, e2, ..., en] and yields an execution trace
τ = 〈E, I〉, where E denotes the Monkey event sequence and I denotes the
event handler invocation sequence.

https://github.com/InstrumentDroid/InstrumentDroid
https://github.com/InstrumentDroid/InstrumentDroid

Understanding the Reproducibility Issues of Monkey for GUI Testing 135

Buggy App

Instrumented App

InstrumentDroid

(1) Instrumentation (2) Monkey Testing
until Detected Crash bug

(3) Replay using
the Same Seed

Monkey Seed (4) Compare and
Analyze

Root Causes

Original Key-Info
Package*

Replay Key-Info
Package

Step1:Instrumentation Phase Step2:Monkey Testing & Replaying Phase Step3:Comparing & Analyzing Phase

Key-Info Package*

Event Handler
LogFile

Crash Stack
LogFile

Screen Record
Video

Monkey Event
Sequence LogFile

Fig. 1. Overview of our methodology including three major phases

2.2 Experimental Method

Step 1: Instrumentation Phase. To monitor the real-time execution sequence
of GUI events during Monkey testing, we crafted an instrumentation tool,
InstrumentDroid, which was capable of capturing the invocations of event
handlers in the app. Event handlers are responsible for responding to the events
generated by UI widgets when interacting with them. Therefore, Instrument-
Droid hook into the event handlers corresponding to the UI widgets to get the
GUI event sequences. Specifically, we first used a bytecode manipulation frame-
work ASM to collect all the event handlers as an Event Handler List. Next, we
developed the Gradle plugin InstrumentDroid. When applying Instrument-
Droid to the apps, it can automatically scan all the event handlers in the app’s
source code and insert a piece of code into these event handlers to get runtime
information about these event handlers. In this way, when users interact with
a specific UI widget, its corresponding event handler is invoked, then the log
information of this event handler is output to a designated file so that we can
know which UI widget users are interacting with. Figure 2 shows the workflow
of instrumentation.

Step 2: Monkey Testing & Replaying Phase. In this phase, we aim to
conduct automated random GUI testing with Monkey on the instrumented
apps until we get a series of unique crash bugs, and replay them with Monkey’s
built-in functionality.

Key-Info Package. To quantify app execution status, we recorded data termed
Key-Info Package. A Key-Info Package consists of four components: Event Han-
dler LogFile, Crash Stack LogFile, Monkey Event Sequence LogFile and Screen
Record Video. The Event Handler LogFile is the output from Instrument-
Droid, which documents the invocation state of event handlers. When an event
handler is triggered, the Event Handler LogFile logs its invocation time, the
related UI widget information, and its fully qualified name. For example, in
Fig. 3, lines 1-3 show the logs for onOptionsItemSelected invocation. Line 1 indi-
cates the invocation time of onOptionsItemSelected. Line 2 indicates its UI widget
details (with the resourceId of this Option Menu as ‘2131296485’ and the Menu
Option labeled ‘History’). Line 3 gives its fully qualified name. The Crash Stack
LogFile and Monkey Event Sequence LogFile are both outputs from Monkey.
Crash Stack LogFile details crash events, including the crash location, exception

136 H. Liu et al.

information, etc. Monkey Event Sequence LogFile records events and actions
performed by Monkey, including action types, coordinates, etc. Finally, Screen
Record Video captures the real-time Android device display during the Mon-
key test, showcasing all visual actions during the Monkey testing process. It is
obtained by the built-in screen recording functionality screenrecord of Android
ADB.

App Source Code

Manifest File

.class Files

Activity Set Modified .class Files

Parse

Current
Class in

Activity Set?

Yes

Method is
an Event
Handler?

Yes
Instrument Methods

Traversing Each
Method of Filtered

Classes

Instrumented APK

Packing

Fig. 2. Workflow of our instrumentation approach

Monkey Testing. We aim to use Monkey for random GUI testing to collect
unique crash bugs and their corresponding Key-Info Package. For each app, we
set up 1,000 test cases, and each test case is a single Monkey test. We customize
the command-line parameters for each test, including throttle and event count.
For off-line apps, half of the test cases have a throttle of 200 ms and the other
half 500 ms. On-line apps have throttles set at 500 ms and 1000 ms, based on
empirical findings from other automated testing studies [4,22]. We set an event
count limit of 5,000 Monkey events per test. If a crash happens within this limit,
Monkey stops and outputs the test’s Key-Info Package. We use a shell script
to manage the processes, from starting the emulator to extracting the Key-Info
Package. Finally, we can get the execution traces and Key-Info Packages of these
crash bugs. We denote the execution trace of a crash bug as τO, representing the
original execution trace.

1 18:34:50.364/
2 131296485/History
3 com/amaze/filemanager/activities/MainActivity/onOptionsItemSelected

Fig. 3. Example of the output log of InstrumentDroid

Replaying. A key feature of Monkey is its capability to generate identical
pseudo-random event sequences using a Seed. Leveraging this, we replay each
τO 200 times with consistent seed and throttle settings, collecting the replay
execution traces and their Key-Info Packages. The replay execution trace is
denoted as τR.

Step 3: Comparing & Analyzing Phase. In this stage, our goals are (1)
comparing each pair of τO and τR, determining how many replays successfully
reproduced the crash bugs, and computing the reproducibility rate of each crash
bug, and (2) for the failed replays, analyzing the possible reasons for the repro-
ducibility issues of these replays.

Understanding the Reproducibility Issues of Monkey for GUI Testing 137

To achieve the first goal, given τO = 〈EO, IO〉 and τR = 〈ER, IR〉 with EO =
[e1, e2, ..., em] and ER = [e1, e2, ..., en], we use two metrics to evaluate whether
τR is successfully reproduced τO: (1) the index of Monkey event causing the
crash, and (2) exception information. The crash-causing event index refers to the
last Monkey event’s index when the crash bug occurs. Specifically, if m = n,
τO and τR crashed at the same event index. Exception information refers to the
runtime exception when the crash occurs. Specifically, if τO and τR have the same
exception type (e.g., NullPointerException) and description, they triggered the
same runtime exception. If τR matches the event index and runtime exception
of τO, we denote that τR successfully reproduced τO. Finally, for each crash bug,
we calculated the percentage of successfully-reproduced replays out of all 200
replays as the reproducibility rate of this crash bug.

To achieve the second goal, we analyzed the Event Handler LogFile and the
Screen Record Video of each pair of τO and τR. First, we preprocessed the Event
Handler LogFile, abstracting each event handler’s invocation as a GUI event,
forming a GUI event sequence. Next, we compared the GUI event sequences of
τO and τR, pinpointing differences. For the first divergent GUI event, we used the
event execution times from the Event Handler LogFile to locate positions in the
Screen Record Video. We compared frames around the divergence in both videos
and manually determined the discrepancy’s root causes. Specifically, for all the
unsuccessfully-reproduced replays, two co-authors independently analyzed the
root causes based on their knowledge and understanding. Then, the co-authors
conducted cross-validation and discussion, reaching a consensus on the discrep-
ancies. When they could not reach a consensus, the other three co-authors par-
ticipated and helped make the final decision together. Manual analysis of all the
unsuccessfully-reproduced replays was time-consuming, spanning about three
months to complete. This analysis extended beyond Key-Info Package’s infor-
mation to include specific bug lines in the source code. This makes the results
more accurate and convincing.

2.3 Experimental Setup

Selecting Subject Apps. We selected six Android apps as the test subjects
of our study. We focus on the open-source Android apps from GitHub so that
we can monitor their execution to identify and analyze the root causes of the
reproducibility issues. Our app selection was based on three criteria: popularity
as indicated by GitHub stars, diversity of app categories for experimental valid-
ity, and feature variety. Specifically, we included both on-line (internet-required)
and off-line apps, covering a wide range of app categories to enhance the validity
of our experiment. We sourced all apps from Themis [30] and the app subjects
of the recent empirical study conducted by Xiong et al. [35], because both of
these datasets are recent studies of real-world bugs, meaning they are suitable
for testing. From the intersection of these datasets, we initially picked three apps
including two off-line and one on-line. Since Monkey lacks auto-login capabil-
ities, our subsequent selections were non-login apps, ensuring diverse category

138 H. Liu et al.

representation. Ultimately, we selected four off-line and two on-line apps. The
specifics of these six apps are detailed in Table 1.

Table 1. Six popular open-source and representative Android apps used in our study
(K = 1,000), ‘#Stars’ indicates the number of GitHub Stars, ‘#LOC’ indicates the
number of lines of app source code.

App Name App Category #Stars #LOC Type

AmazeFileManager File Manager 4.6K 94,768 Off-Line

AnkiDroid Flashcard Learning 6.5K 218,558 Off-Line

ActivityDiary Personal Diary 68 2,011 Off-Line

Sunflower Gallery App 16.9K 1,687 Off-Line

AntennaPod Podcast Manager 5K 90,427 On-Line

NewPipe Video Player 24.2K 94,245 On-Line

Execution Environment. We conducted experiments on a physical machine
with 128 GB RAM and a 64-cores AMD 3995WX CPU, running a 64-bit Ubuntu
20.04 operating system. To run the apps, we used a set of Android x86 emulators,
where each emulator was configured with 4 CPU cores, 2 GB of RAM, 1 GB of
SD card, and the version of Android OS 8.0 (API level 26). For each test case,
the Android emulator is initialized to a fresh state at the beginning to provide
a clean testing environment.

3 Experimental Results Analysis

During automated GUI testing, we ran 6,000 test cases across the six apps, col-
lecting 56 unique crash bugs. After replaying each crash-triggering test case 200
times, we obtained 11,200 replays. Of these, 4,100 were successfully-reproduced
replays, while 7,100 were not. In this section, RQ1 studied Monkey’s repro-
ducibility rates, while RQ2 explores the root causes of its reproducibility issues.

3.1 RQ1: REPRODUCIBILITY RATE

Through a systematic analysis of 11,200 replays across six apps (four offline
and two online), only 36.6% successfully reproduced the crash bug, indicating
Monkey’s limitation in reliably reproducing the crash bugs it detected. Table 2
details the reproducibility rates for the 56 identified bugs, segmented into four
categories: (1) “Same eid and Same Crash” where tauR and tauO have matching
Monkey event indexes leading to the crash and identical exception information,
indicating successfully-reproduced replays; (2) “Different eid and Same Crash”
where tauR crash at differing event indexes but share tauO’s runtime exception;

Understanding the Reproducibility Issues of Monkey for GUI Testing 139

Table 2. List of the reproducibility rate of Monkey on the six subject apps. ‘#Activ-
ities’ indicates the number of activities in this app.

App Name #Activities Type Throttle Crash Bug Id Same Eid Different Eid Different Eid No Crash

Same Crash Same Crash Different Crash

AmazeFileManager 10 Off-Line 200 ms Crash#1 178 4 0 18

Crash#2 0 0 107 93

Crash#3 5 1 1 193

Crash#4 43 118 29 10

Crash#5 163 0 6 31

500 ms Crash#1 143 45 10 2

Crash#2 161 14 21 4

Crash#3 8 0 10 182

Crash#4 1 1 12 186

Crash#5 11 0 0 189

AnkiDroid 21 Off-Line 200 ms Crash#1 0 1 173 26

Crash#2 96 1 1 102

Crash#3 39 0 133 28

Crash#4 0 0 0 200

Crash#5 7 0 12 181

Crash#6 0 0 194 6

500 ms Crash#1 39 1 3 157

Crash#2 0 64 134 2

Crash#3 108 4 38 50

Crash#4 98 0 90 12

Crash#5 110 0 0 90

Crash#6 91 0 71 38

Crash#7 59 0 55 86

Sunflower 1 Off-Line 200 ms Crash#1 20 0 0 180

Crash#2 177 23 0 0

Crash#3 60 6 2 132

Crash#4 121 15 1 63

Crash#5 95 11 1 93

500 ms Crash#1 0 0 0 200

Crash#2 200 0 0 0

Crash#3 196 0 0 4

Crash#4 132 0 0 68

Crash#5 134 0 0 66

ActivityDiary 7 Off-Line 200 ms Crash#1 1 0 0 199

Crash#2 97 3 47 53

Crash#3 89 0 28 83

Crash#4 114 0 2 84

500 ms Crash#1 45 0 0 155

Crash#2 65 0 0 135

Crash#3 0 0 5 195

Crash#4 0 0 2 198

Crash#5 180 0 13 7

AntennaPod 10 On-Line 500 ms Crash#1 200 0 0 0

Crash#2 19 0 181 0

Crash#3 46 0 0 154

Crash#4 136 0 44 20

Crash#5 0 0 21 179

Crash#6 0 0 9 191

Crash#7 18 0 4 178

1000 ms Crash#1 200 0 0 0

Crash#2 1 0 105 94

Crash#3 18 0 0 182

Crash#4 189 1 0 10

NewPipe 14 On-Line 500 ms Crash#1 174 0 3 23

1000 ms Crash#1 3 0 53 144

Crash#2 10 36 30 124

#Total 4100 349 1651 5100

#Proportion 36.6% 3.1% 14.7% 45.5%

140 H. Liu et al.

(3) “Different eid and Different Crash” where tauR have a distinct event index
and trigger a different bug; and (4) “No Crash” where no crash occurs within
the 5,000 Monkey events span.

Based on the experimental results, we have two interesting findings. First, the
reproducibility rate of Monkey is not significantly correlated with the runtime
exception type. We conducted a statistical one-way ANOVA [9] of variance
on the reproducibility rates of different exceptions using SPSS [13]. We first
categorized the runtime exceptions of the 56 crash bugs and excluded exception
types with sample sizes less than 3 due to their potential random occurrences
that could affect experimental results. In the end, we obtained eight groups of
exception types, including NullPointerException, ClassCastException, etc. Next,
we employed the homogeneity of variance test and set the null hypothesis (H0) as
follows: the reproducibility rates of crash bugs with different exception types are
equal, indicating that reproducibility rates are independent of exception types.
The results of the variance analysis showed a significance level (P-value) of 0.412,
which is greater than 0.05. This implies that there is no significant correlation
between the reproducibility rate and the exception types of crash bugs.

Second, the reproducibility rate of Monkey is not significantly correlated
with the app’s complexity. Generally, apps with more complex features usually
have more components in their activities, and different actions on these com-
ponents may correspond to different functionalities, increasing the likelihood of
executing error events. Apps with simpler features typically have simpler activ-
ity designs with more blank pages, resulting in a relatively higher probability of
executing blank events. We conducted a similar ANOVA analysis between app
features and the reproducibility rates, yielding a P-value of 0.441. This indicates
that there is no significant correlation between them.

3.2 RQ2: ROOT CAUSE

By manually analyzing 7,100 unsuccessfully-reproduced replays’ Key-Info Pack-
ages, we finally identified five root causes of the reproducibility issues in Mon-
key: Injection Failure, Event Ambiguity, Data Loading, Widget Loading and
Dynamic content. Table 3 shows the detailed proportion.

Injection Failure. “Injection failure” describes situations where Monkey
experiences issues while inserting events into the InputManager, causing the
event to not be added. Ideally, with the same Seed, Monkey should generate
consistent event sequences. However, our experiments revealed occasional event
execution failures by the Android framework due to injection issues, denoted
in the Monkey Event Sequence LogFileby “//Injection Failed”. This results in
inconsistencies between the original and replay execution traces, contributing to
Monkey’s reproducibility challenges. In our study, 3,864 of the 7,100 problem-
atic replays (or 54.4%) suffered from injection failure.

To understand the reasons behind injection failure, we conducted an in-depth
analysis of Monkey’s source code. Monkey has two types of event: KeyEvent,

Understanding the Reproducibility Issues of Monkey for GUI Testing 141

which corresponds to a physical button, and MotionEvent, such as click and long
press. For KeyEvent, if the action code of the KeyEvent is not a valid key action
such as UP and DOWN, it will fail to be injected into the InputManager. For
MotionEvent, if the pointer count (the multitouch number on the screen) of the
MotionEvent is less than 1 or greater than 16, or any individual pointer ID in
the MotionEvent is less than 0 or greater than the maximum allowed pointer ID,
the MotionEvent will fail to be injected to the InputManager. A common case of
Injection Failure is that the pointer count equals 0 when injecting MotionEvents
due to the rapid event execution speed of Monkey.

Finding 1: Injection Failure affects 54.4% of the reproducibility issues,
which is the most common root causes.

Event Ambiguity. When recognizing actions, Android framework typically
utilizes algorithms and rules to determine the type of action based on proper-
ties like pointer speed, distance, direction, and so on. Event ambiguity refers to
the situation where the Android framework identifies the same Monkey event
as different UI events, leading to a disparity between the original execution
trace and the replay execution trace. This discrepancy contributes to the repro-
ducibility issues of Monkey. In our experiment, 1483 out of 7100 replays with
reproducibility issues (accounting for 20.9%) were attributed to event ambiguity.

For example, in the case of Anki-Android, the component deck has registered
two different event handlers, which is shown in Fig. 4. When clicking on a certain
deck, onClick will be executed, while when long-clicking this deck, onLongClick
will be executed. During GUI testing with Monkey, for the same Monkey
event, the Android framework identified it in the original execution trace as a
click event, but in the replay execution trace as a long-click event. Then this
discrepancy led to the reproducibility issues. Figure 5 shows the real scenario of
this example.

Finding 2: Event Ambiguity affects 20.9% of the reproducibility issues,
which is an important factor affecting the reproducibility rate.

Data Loading. Data loading refers to the situation where Monkey interacted
with a partially loaded page or component, resulting in an empty event execu-
tion. Specifically, when switching to a new page, the app needs a period to fully
load the content, and there will be a loading icon or some skeleton images on the
page usually. Because Monkey is not widget-sensitive but coordinate-sensitive,
when Monkey generates a click event, it may hit an area where the data is not
yet available. That will possibly miss a pivot event. In our experiments, 1071
out of 7100 replays with reproducibility issues (accounting for 15.1%) are related
to data loading. The reproducibility issues in Monkey caused by data loading
can be fundamentally categorized into two types: database loading and network
loading. Database loading refers to the situation where loading a new page or
component requires retrieving information from a local or remote database. Such

142 H. Liu et al.

holder.rl.setOnClickListener(
new View.OnClickListener() {

@Override
public void onClick(View v) {

//Handle events
}

});
(a)

holder.rl.setOnLongClickListener(
new View.OnLongClickListener() {

@Override
public boolean onLongClick(View p1) {

//Handle events
}

});
(b)

Fig. 4. Source Code of Event Ambiguity

query operations typically take some time to complete. Network loading refers
to the situation where loading a new page or component requires some time
to retrieve information from a remote server or certain APIs. This can lead to
failures in reproducing actions accurately due to variations in network speed or
connectivity, causing discrepancies between the original and replayed events. For
instance, in AmazeFileManager, showcased in Fig. 5(c) and (d), there’s a notice-
able difference in the file list display attributable to database loading speed.
In Fig. 5(c), while the file list was still populating, Monkey clicked an empty
space, maintaining the app’s state. Conversely, in Fig. 5(d), the app had effi-
ciently fetched and displayed file data, leading Monkey to click on the ‘gr’
folder and transition to a new page. Such inconsistencies, stemming from varied
database loading rates, amplify Monkey’s reproducibility challenges.

Widget Loading. Widget loading refers to the situation where the widget with
animated effects is clicked before all the menu options have been fully displayed,
leading to clicking the incorrect menu option during the replay process. In our
experiments, 653 out of 7100 replays with reproducibility issues (accounting for
9.2%) are related to widget loading.

For example, in the case of AmazeFileManager illustrated in Fig. 5(e) and
(f), in the original execution trace, the click event landed on the ‘GridView’
option within the Options Menu. However, in the replay execution trace, the
dropdown speed of the Options Menu was slower, causing Monkey not to click
on any option within the Options Menu. As a result, the original execution trace
and replay execution trace ended up on different pages.

Specifically, for further investigating widget loading, we manually analyzed
the Screen Record Video and found that specific widgets like Drawer Menu and
Options Menu typically require 60 ms to 150 ms (according to our video frame-
by-frame statistics) to load completely to respond accurately to click events.
In one particular experiment, we observed that when setting the throttle of
Monkey to 200 ms, if a Monkey event ei triggered a pop-up of Options Menu,
ei+1 had a 63% probability of being unable to select the well-prepared menu
options. In addition, in a broader analysis encompassing four offline apps, when
setting the throttle of Monkey to 200 ms, 58% of the pivot GUI events were
missed or affected due to clicking on partially loaded widgets. This highlights the

Understanding the Reproducibility Issues of Monkey for GUI Testing 143

Table 3. List of the root causes of the reproducibility issues of Monkey that we
identified. A ‘-’ in the ‘Dynamic Content’ column indicates that the off-line apps do
not have this situation.

App Name Type Throttle Injection Event Data Widget Dynamic Exception Type Of

Failure Ambiguity Loading Loading Content Crash Bug

AmazeFileManager Off-Line 200 ms 20 0 2 0 - NullPointerException

79 68 48 5 - ClassCastException

161 13 13 8 - ClassCastException

123 24 9 1 - StringIndexOutOfBoundsException

22 5 8 2 - IllegalArgumentException

500 ms 28 26 0 3 - NullPointerException

28 6 4 1 - StringIndexOutOfBoundsException

151 36 1 4 - ClassCastException

175 12 11 1 - StringIndexOutOfBoundsException

175 3 10 1 - NullPointerException

AnkiDroid Off-Line 200 ms 68 9 123 0 - NullPointerException

69 34 1 0 - NullPointerException

38 95 28 0 - NullPointerException

102 90 4 4 - NullPointerException

182 8 2 1 - RuntimeException

39 158 2 1 - ArrayIndexOutOfBoundsException

500 ms 126 30 5 0 - NullPointerException

4 193 3 0 - NullPointerException

51 41 0 0 - ActivityNotFoundException

70 4 28 0 - ArrayIndexOutOfBoundsException

53 13 24 0 - NullPointerException

96 13 0 0 - FileOutputStreamError

117 17 7 0 - IllegalArgumentException

Sunflower Off-Line 200 ms 77 8 0 95 - IllegalArgumentException

19 0 0 4 - IllegalArgumentException

97 1 0 42 - IllegalArgumentException

47 2 0 30 - IllegalArgumentException

65 3 0 37 - IllegalArgumentException

500 ms 0 20 0 180 - IllegalArgumentException

0 0 0 0 - IllegalArgumentException

0 0 0 4 - IllegalArgumentException

0 7 0 61 - IllegalArgumentException

0 46 0 20 - IllegalArgumentException

ActivityDiary Off-Line 200 ms 199 0 0 0 - NullPointerException

101 0 2 0 - IndexOutOfBoundsException

85 1 23 2 - IndexOutOfBoundsException

59 7 9 11 - SQLException

500 ms 131 6 17 1 - SQLException

121 4 10 0 - SQLException

14 12 173 1 - SQLException

198 0 2 0 - IndexOutOfBoundsException

6 0 13 1 - IndexOutOfBoundsException

AntennaPod On-Line 500 ms 0 0 0 0 0 VerifyError

7 75 0 94 5 VerifyError

61 0 91 0 2 VerifyError

8 0 55 0 1 VerifyError

27 12 145 8 8 libcoreError

49 132 12 5 2 Ioexception

48 87 33 9 5 InterruptedIOException

1000 ms 0 0 0 0 0 VerifyError

37 93 59 8 2 IllegalArgumentException

64 37 73 6 2 VerifyError

0 8 0 2 1 VerifyError

NewPipe On-Line 500 ms 13 5 7 0 1 NullPointerException

1000 ms 187 4 6 0 0 RemoteServiceException

167 15 8 0 0 NullPointerException

#Total 3864 1483 1071 653 29

#Proportion 54.4% 20.9% 15.1% 9.2% 0.4%

144 H. Liu et al.

significance of timing and synchronization between click events and the loading
of interactive widgets.

Dynamic Content. Dynamic content refers to the situation where some spe-
cific app dynamic contents may change (e.g., recommended items, pop-up adver-
tisements), leading to the different execution traces in replays from those in the
original execution traces, thus resulting in the reproducibility issues of Monkey.
In our experiments, 29 out of 7100 replays with reproducibility issues (accounting
for 0.4%) are related to dynamic content.

In certain specific on-line apps, the presence of dynamic content introduces
significant challenges to reproducing crashes. For example, in the case of Anten-
naPod illustrated in Fig. 5(g) and (h), the continuous changes in the recom-
mendation list primarily arise from the app’s reliance on fetching and updating
data from remote sources. User interactions and time-dependent factors trigger
these data updates, resulting in constant changes in the recommendation list.
Consequently, even though we use the read-only mode to ensure that the app
starts from the same state every time, for apps with recommendation lists, the
content of the recommendation list may change when run at different times. The
dynamic nature of the recommendation lists may lead to discrepancies between
the events executed in tauO and tauR.

4 Discussions and Implications

4.1 How Does Throttle Affect MONKEY’s Reproducibility Rate?

A recent study by Feng et al. [8] proposed a lightweight image-based approach
AdaT to dynamically adjust the inter-event time based on GUI rendering state.
AdaT can infer the rendering state and synchronize with the testing tool to
schedule the next event when the GUI is fully rendered, which can improve the
testing effectiveness. Another study by Behrang et al. [3] also indicated that for
UI-based flaky tests, the typical root causes behind flaky UI tests include issues
like async wait and resource rendering due to improper configuration of time
intervals between two events, leading to the flakiness of UI tests. According to
our experimental results, we are curious about the impact of throttle on the
reproducibility rate of Monkey. To investigate the relationship between the
throttle and the reproducibility rate, we randomly chose 19 τO, both increased
and decreased the throttle of each τO, and replayed them 200 times with the
new throttle to get their corresponding new τR, then computed the new repro-
ducibility rate. Then we similarly conducted the ANOVA analysis, and the
results revealed the P-value of 0.280. This indicates that altering the throttle,
whether increased or decreased, did not significantly improve the reproducibility
rate. When the throttle is increased, the app gets a longer GUI loading time,
but the reproducibility rate of the crash bug has not been significantly improved.
One potential explanation for this phenomenon is that triggering a crash bug
usually requires dozens of Monkey events to reach a specific state that leads

Understanding the Reproducibility Issues of Monkey for GUI Testing 145

Fig. 5. Illustrative examples of root causes. The red boxes indicate the click area.
(Color figure online)

146 H. Liu et al.

to a crash. Some of the pivot events need to be executed rapidly, while others
need to be executed after the app is fully rendered. So a uniform adjustment of
throttle (whether increase or decrease) may potentially miss out on some pivot
events, making the app cannot reach the specific state to crash. Therefore, dur-
ing testing, if each event waits until the GUI is fully loaded before execution,
there’s a possibility of missing some bugs which are triggered only when user
events are executed during the partial rendering state of the GUI. Our experi-
mental results indicate that a larger throttle isn’t necessarily better. The better
selection of intervals between events in automated GUI testing remains a topic
worthy of discussion.

4.2 Can R&R Tools Improve MONKEY’s Reproducibility Rate?

After discovering the reproducibility issues of Monkey, we wondered if the
R&R (Record and Replay) tools could improve Monkey’s reproducibility rate.
To validate this assumption, we initially selected three recent and representative
R&R tools - Reran[10], Rx[14] and SARA[12]. Then we use Monkey’s built-
in functionality to replay existing crash bugs, and record them with the R&R
tools at the same time. However, we found that Reran was unable to capture
the events executed by Monkey. This is because Reran records events from
the system file /dev/input/event. Only events captured by InputReader are
logged into /dev/input/event. Consequently, the events generated by Monkey
cannot be recorded by Reran. After that, we replayed the sequences recorded
by Rx and SARA and assessed their reproducibility rate. We conducted our
small-scale experiments on two off-line apps namely AmazeFileManager and
AnkiDroid, and selected two crash bugs with short τO and reproduced them
five times with the R&R tools. According to our experimental results, we found
that employing R&R tools to reproduce crash bugs yields a lower reproducibility
rate than that of Monkey. This is because Monkey generates events quickly,
and most of the R&R tools record events in the form of scripts, which is time-
consuming. Secondly, the R&R tools can only record certain event types, so
they cannot record all the events executed by Monkey, which leads to a failure
to reproduce the crash bug. This also highlights that for R&R tools, recording
speed and comprehensive recording of event types are crucial and important.

4.3 Threats to Validity

Our study may suffer from some threats to validity. First, our research focused
exclusively on Monkey without assessing the reproducibility capabilities of
other AIG tools. This is because Monkey is a widely used AIG tool in the
industry and is representative of commonly applied testing tools. Additionally,
Monkey itself provides self-replay capabilities, which eliminates the impact of
additional record and replay tools on the experimental results. Moreover, many
AIG tools (e.g., Ape, FastBot) are designed upon Monkey. Therefore, study-
ing the reproducibility issues of Monkey is a meaningful work and can provide
insights to other AIG tools. Specifically, Injection Failure may apply to AIG

Understanding the Reproducibility Issues of Monkey for GUI Testing 147

tools that inject events into InputManager. Data Loading and Widget Loading
may apply to AIG tools that are coordinate-sensitive but not widget-sensitive.
Event Ambiguity may not apply to widget-sensitive AIG tools, because they
directly perform corresponding actions on the widgets. In the future, we plan
to expand our research to investigate the reproducibility capabilities of other
AIG tools as well. Second, our study involves some manual analysis, which may
bring some potential biases in the results. To mitigate this threat, two co-authors
independently conducted the analysis and then reached a consensus to derive the
final results. When they could not reach a consensus, the other three co-authors
participated and helped make the final decision together. This approach helps
ensure a more objective and reliable assessment of the findings and minimizes
the influence of individual biases.

Additionally, we have introduced InstrumentDroid, which may cause some
potential problems. First, we detect bugs based on the instrumented app, which
makes τO and τR unified. Second, InstrumentDroid only inserts a snippet
of log code to the event handlers, which is a lightweight implant and will not
have a big impact on the performance of the program. Moreover, we’ve verified
InstrumentDroid’s accuracy in event recognition, ensuring that the same UI
controls don’t produce duplicate content in Event Handler LogFile. Nevertheless,
our tool does have its limitations. While it can cover most widgets, widgets
without corresponding event handlers require special actions. Yet, this limitation
minimally affects the reproducibility issues, as the behavior between the original
and replay traces remains consistent.

5 Related Work

Flakiness in Android GUI Testing. Flaky tests refer to software tests that
produce inconsistent or unreliable results. Different from the reproducibility
issues, in the literature, flakiness usually refers to the uncertainty of test results.
A flaky test does not necessarily trigger a crash bug. However, the reproducibility
issues focus on a known bug and study whether the bug can be reliably repro-
duced. There are many works about the flakiness in UI tests and unit tests.
Romano et al. [25] investigated flaky UI tests, identifying common causes such
as Async Wait, Environment, Test Runner API, and Test Script Logic issues.
SHAKER [27] offers a technique to improve test rerun effectiveness for spot-
ting flaky tests. Both our study and previous ones found that UI rendering and
asynchronous data loading contribute to flakiness. Our work uniquely introduces
Injection Failure and Event Ambiguity as causes. Conversely, other studies high-
light concurrency and thread competition as sources of flakiness.

Some works also researched the topic of reproducibility. Su et al. conducted a
study about the reproducibility of exception bugs [28]. They chose two Android
GUI Testing tools, i.e., Stoat [29] and Sapienz [19], and utilized Monkey and
UIAutomator scripts for test recording and replay. If an app crashed, they
recorded the exception trace and the crash-triggering test, rerunning each test
five times to determine reproducibility. They identified three challenges for test-
ing tools in reliably reproducing exceptions: test dependency, timing of events,

148 H. Liu et al.

and specific running environment. Our work differs in several respects. First, our
tool choice was Monkey due to its widespread industry use and built-in replay
functionality, negating the need for extra scripts. Notably, Su et al. mentioned
the flakiness of Monkey tests so they didn’t choose it. Second, we replayed
crash bugs 200 times for reproducibility, as opposed to their five times. Third,
the 56 crash bugs in our work were discovered through random GUI testing
using Monkey in a unified environment. These bugs are all independent of
each other, so there is no correlation between them, and they are not affected
by the testing environment. We also addressed event timing via Data Loading
and Widget Loading. Compared to their work, our work is more systematic and
comprehensive.

Deterministic Replay in Other Systems. Deterministic replay, often
referred to as reproducibility, is less studied in the Android field than in non-
smartphone platforms where it has been widely explored and implemented. In
hardware, FDR [36] offers a low-overhead solution for reproducible execution in
cache-coherent multiprocessors. Conversely, BugNet [21] is designed to record
information continuously for deterministic bug replay and resolution. In virtual
machines, ReVirt [7] enhances intrusion analysis by using logging and replay
techniques, minimizing interference from the target OS. LoRe [15] serves a sim-
ilar purpose, but is tailored for the popular full virtualization solution, KVM.

6 Conclusion and Future Work

In this paper, we conducted an in-depth empirical study on the reproducibil-
ity issues of Monkey about how effectively can it reproduce the crash bugs it
detected and the root causes of its reproducibility issues. Specifically, we stud-
ied 56 unique crash bugs detected by Monkey from six popular open-source
Android apps to understand the reproducibility issues. Our results show that
only 36.6% of the crashes could be reproduced on average. Through the manual
analysis, we categorized five types of root causes of the reproducibility issues
of Monkey: Injection Failure, Event Ambiguity, Data Loading, Widget Load-
ing and Dynamic Content. The corresponding proportions of them are 54.4%,
20.9%, 15.1%, 9.2%, and 0.4% on average. In the future, we plan to come up with
some solutions to improve the reproducibility issues of Monkey and research
the reproducibility issues of other AIG tools.

Acknowledgements. We thank the SETTA reviewers for their valuable feedback,
Yiheng Xiong and Shan Huang from East China Normal University for their insight-
ful comments, and Cong Li from Nanjing University for the mechanism of Rx. This
work was supported in part by National Key Research and Development Program
(Grant 2022YFB3104002), NSFC Grant 62072178, “Digital Silk Road” Shanghai Inter-
national Joint Lab of Trustworthy Intelligent Software under Grant 22510750100, and
the Shanghai Collaborative Innovation Center of Trusted Industry Internet Software.

Understanding the Reproducibility Issues of Monkey for GUI Testing 149

References

1. Arnatovich, Y., Wang, L., Ngo, N., Soh, C.: Mobolic: an automated approach to
exercising mobile application GUIs using symbiosis of online testing technique and
customated input generation. Softw. Pract. Exp. 48, 1107–1142 (2018). https://
doi.org/10.1002/spe.2564

2. Ash Turner: The Rise of Android: Why is Android Successful? (2023). https://
www.bankmycell.com/blog/how-many-android-users-are-there

3. Behrang, F., Orso, A.: Seven reasons why: an in-depth study of the limitations of
random test input generation for android. In: Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1066–1077. ASE
2020, Association for Computing Machinery, New York, NY, USA (2021). https://
doi.org/10.1145/3324884.3416567

4. Bläsing, T., Batyuk, L., Schmidt, A.D., Camtepe, S.A., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: 2010 5th Interna-
tional Conference on Malicious and Unwanted Software, pp. 55–62 (2010). https://
doi.org/10.1109/MALWARE.2010.5665792

5. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to imple-
ment adaptable systems. Adapt. Extensible Compon. Syst. 30(19) (2002)

6. Chen, S., Fan, L., Su, T., Ma, L., Liu, Y., Xu, L.: Automated cross-platform GUI
code generation for mobile apps. In: 2019 IEEE 1st International Workshop on
Artificial Intelligence for Mobile (AI4Mobile), pp. 13–16 (2019). https://doi.org/
10.1109/AI4Mobile.2019.8672718

7. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: ReVirt: enabling
intrusion analysis through virtual-machine logging and replay 36(SI), 211–224
(2003). https://doi.org/10.1145/844128.844148

8. Feng, S., Xie, M., Chen, C.: Efficiency matters: Speeding up automated testing with
GUI rendering inference. In: Proceedings of the 45th International Conference on
Software Engineering, pp. 906–918. ICSE 2023 (2023). https://doi.org/10.1109/
ICSE48619.2023.00084

9. Girden, E.R.: ANOVA: Repeated measures. No. 84, Sage (1992)
10. Gomez, L., Neamtiu, I., Azim, T., Millstein, T.: Reran: timing- and touch-sensitive

record and replay for android. In: 2013 35th International Conference on Software
Engineering (ICSE), pp. 72–81. IEEE Computer Society, Los Alamitos, CA, USA
(2013). https://doi.org/10.1109/ICSE.2013.6606553

11. Gu, T., et al.: Practical GUI testing of android applications via model abstrac-
tion and refinement. In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering (ICSE), pp. 269–280 (2019). https://doi.org/10.1109/ICSE.2019.
00042

12. Guo, J., Li, S., Lou, J.G., Yang, Z., Liu, T.: Sara: self-replay augmented record and
replay for android in industrial cases. In: ISSTA 2019, Association for Computing
Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3293882.3330557

13. IBM Corp.: IBM SPSS statistics for windows. https://hadoop.apache.org
14. Li, C., Jiang, Y., Xu, C.: Cross-device record and replay for android apps. In:

ESEC/FSE 2022, Association for Computing Machinery, pp. 395–407. New York,
NY, USA (2022). https://doi.org/10.1145/3540250.3549083

15. Li, J., Si, S., Li, B., Cui, L., Zheng, J.: Lore: supporting non-deterministic events
logging and replay for KVM virtual machines. In: 2013 IEEE 10th International
Conference on High Performance Computing and Communications, vol. 1, pp. 442–
449 (2013). https://doi.org/10.1109/HPCC.and.EUC.2013.70

https://doi.org/10.1002/spe.2564
https://doi.org/10.1002/spe.2564
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://www.bankmycell.com/blog/how-many-android-users-are-there
https://doi.org/10.1145/3324884.3416567
https://doi.org/10.1145/3324884.3416567
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.1109/AI4Mobile.2019.8672718
https://doi.org/10.1109/AI4Mobile.2019.8672718
https://doi.org/10.1145/844128.844148
https://doi.org/10.1109/ICSE48619.2023.00084
https://doi.org/10.1109/ICSE48619.2023.00084
https://doi.org/10.1109/ICSE.2013.6606553
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1109/ICSE.2019.00042
https://doi.org/10.1145/3293882.3330557
https://hadoop.apache.org
https://doi.org/10.1145/3540250.3549083
https://doi.org/10.1109/HPCC.and.EUC.2013.70

150 H. Liu et al.

16. Li, Y., Yang, Z., Guo, Y., Chen, X.: DroidBot: a lightweight UI-guided test input
generator for android. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pp. 23–26 (2017). https://doi.org/
10.1109/ICSE-C.2017.8

17. Li, Y., Yang, Z., Guo, Y., Chen, X.: Humanoid: a deep learning-based approach
to automated black-box android app testing. In: 2019 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp. 1070–1073
(2019). https://doi.org/10.1109/ASE.2019.00104

18. Lv, Z., Peng, C., Zhang, Z., Su, T., Liu, K., Yang, P.: Fastbot2: reusable auto-
mated model-based GUI testing for android enhanced by reinforcement learning.
In: Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering. ASE 2022 (2023). https://doi.org/10.1145/3551349.3559505

19. Mao, K., Harman, M., Jia, Y.: Sapienz: multi-objective automated testing for
android applications. In: Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis. ISSTA 2016 (2016). https://doi.org/10.1145/2931037.
2931054

20. Moran, K., Linares-Vásquez, M., Bernal-Cárdenas, C., Vendome, C., Poshyvanyk,
D.: Automatically discovering, reporting and reproducing android application
crashes. In: 2016 IEEE International Conference on Software Testing, Verification
and Validation (ICST), pp. 33–44 (2016). https://doi.org/10.1109/ICST.2016.34

21. Narayanasamy, S., Pokam, G., Calder, B.: BugNet: continuously recording program
execution for deterministic replay debugging. In: ISCA 2005, IEEE Computer Soci-
ety, pp. 284–295. USA (2005). https://doi.org/10.1109/ISCA.2005.16

22. Patel, P., Srinivasan, G., Rahaman, S., Neamtiu, I.: On the effectiveness of random
testing for android: or how i learned to stop worrying and love the monkey. In:
Proceedings of the 13th International Workshop on Automation of Software Test,
pp. 34–37 (2018). https://doi.org/10.1145/3194733.3194742

23. Project, A.O.S.: Monkey - android developers (2023). https://developer.android.
com/studio/test/other-testing-tools/monkey

24. Project, A.O.S.: SDK platform tools release notes (2023). https://developer.
android.com/tools/releases/platform-tools

25. Romano, A., Song, Z., Grandhi, S., Yang, W., Wang, W.: An empirical analy-
sis of UI-based flaky tests. In: 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE), pp. 1585–1597 (2021). https://doi.org/10.1109/
ICSE43902.2021.00141

26. Roy Choudhary, S., Gorla, A., Orso, A.: Automated test input generation for
android: are we there yet? (e), pp. 429–440 (2015). https://doi.org/10.1109/ASE.
2015.89

27. Silva, D., Teixeira, L., d’Amorim, M.: Shake it! detecting flaky tests caused by con-
currency with shaker. In: 2020 IEEE International Conference on Software Main-
tenance and Evolution (ICSME), pp. 301–311 (2020). https://doi.org/10.1109/
ICSME46990.2020.00037

28. Su, T., et al.: Why my app crashes? Understanding and benchmarking framework-
specific exceptions of android apps. IEEE Trans. Softw. Eng. 48(4), 1115–1137
(2022). https://doi.org/10.1109/TSE.2020.3013438

29. Su, T., et al.: Guided, stochastic model-based GUI testing of android apps. In: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pp. 245–256. ESEC/FSE 2017 (2017). https://doi.org/10.1145/3106237.3106298

30. Su, T., Wang, J., Su, Z.: Benchmarking automated GUI testing for android against
real-world bugs. In: Proceedings of 29th ACM Joint European Software Engi-

https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ASE.2019.00104
https://doi.org/10.1145/3551349.3559505
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1109/ICST.2016.34
https://doi.org/10.1109/ISCA.2005.16
https://doi.org/10.1145/3194733.3194742
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/tools/releases/platform-tools
https://developer.android.com/tools/releases/platform-tools
https://doi.org/10.1109/ICSE43902.2021.00141
https://doi.org/10.1109/ICSE43902.2021.00141
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ASE.2015.89
https://doi.org/10.1109/ICSME46990.2020.00037
https://doi.org/10.1109/ICSME46990.2020.00037
https://doi.org/10.1109/TSE.2020.3013438
https://doi.org/10.1145/3106237.3106298

Understanding the Reproducibility Issues of Monkey for GUI Testing 151

neering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 119–130 (2021). https://doi.org/10.1145/3468264.3468620

31. Su, T., et al.: Fully automated functional fuzzing of android apps for detecting
non-crashing logic bugs 5(OOPSLA) (2021). https://doi.org/10.1145/3485533

32. Sun, J., et al.: Understanding and finding system setting-related defects in android
apps. In: Proceedings of the 30th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 204–215 (2021). https://doi.org/10.1145/
3460319.3464806

33. Wang, J., Jiang, Y., Xu, C., Cao, C., Ma, X., Lu, J.: ComboDroid: generating high-
quality test inputs for android apps via use case combinations. In: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering, pp. 469–
480. ICSE 2020 (2020). https://doi.org/10.1145/3377811.3380382

34. Wang, W., et al.: An empirical study of android test generation tools in industrial
cases. In: Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pp. 738–748. ASE 2018, Association for Computing
Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3238147.3240465

35. Xiong, Y., et al.: An empirical study of functional bugs in android apps, pp. 1319–
1331 (2023). https://doi.org/10.1145/3597926.3598138

36. Xu, M., Bodik, R., Hill, M.D.: A “flight data recorder” for enabling full-system
multiprocessor deterministic replay, pp. 122–135. ISCA 2003, Association for Com-
puting Machinery, New York, NY, USA (2003). https://doi.org/10.1145/859618.
859633

https://doi.org/10.1145/3468264.3468620
https://doi.org/10.1145/3485533
https://doi.org/10.1145/3460319.3464806
https://doi.org/10.1145/3460319.3464806
https://doi.org/10.1145/3377811.3380382
https://doi.org/10.1145/3238147.3240465
https://doi.org/10.1145/3597926.3598138
https://doi.org/10.1145/859618.859633
https://doi.org/10.1145/859618.859633

Multi-dimensional Abstraction
and Decomposition for Separation of Concerns

Zhiming Liu(B) , Jiadong Teng(B), and Bo Liu(B)

School of Computer and Information Science, Southwest University, Chongqing, China
{zhimingliu88,liubocq}@swu.edu.cn, swu20201518@email.swu.edu.cn

Abstract. Model-driven engineering (MDE) or model-driven architecture
(MDA) holds significant appeal for the software industry. Its primary aim is to
address software complexity by enabling automated model creation and trans-
formation. Consequently, many software development firms are actively seeking
integrated development platforms (IDP) to enhance automation within their soft-
ware production processes. However, the adoption of MDE and the utilisation
of IDPs remain low, with doubts surrounding their success. To tackle this issue,
this paper uses the formal refinement of component and object systems (rCOS)
as a framework to identify different types of requirements and their relationships,
with the goal of supporting MDE. We emphasise the necessity for families of for-
mal languages and transformations among them, as well as the indispensability
of architecture modelling and refinement in MDE. Furthermore, to enhance the
handling of changes during the development and operation of systems, there is
a paramount need for formal methods that facilitate abstractions and decomposi-
tions, leading to a multi-dimensional separation of concerns.

Keywords: Abstraction · Refinement · Decomposition · Separation of
Concerns · Architecture modelling · Software Complexity

1 Introduction

Software engineering has focused on the development, study, and practice of meth-
ods for mastering inherent complexity [6–8] in the software development activities of
requirements analysis, development processes, design and implementation (also called
software construction), verification and validation, respectively. The goal has been
to improve software comprehensibility, support reuse, enable evolution, and increase
automation of development. In this paper, a method mainly consists of its underlying
theory, a suite of sound techniques, and related tool supports (also called a platform)
to the use of these techniques. Furthermore, a formal method (FM) refers to a method
whose underlying theory is a formal theory consisting of a formal language, a proof
system, and model theory, essentially constituting a formal logic system [48].

Supported by the Chinese National NSF grant (No. 62032019) and the Southwest University
Research Development grant (No. SWU116007).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 152–170, 2024.
https://doi.org/10.1007/978-981-99-8664-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_9&domain=pdf
http://orcid.org/0000-0001-9771-3071
http://orcid.org/0000-0002-9026-2543
https://doi.org/10.1007/978-981-99-8664-4_9

Multi-dimensional Abstraction and Decomposition 153

Some formal methods (FMs) offer languages for modelling specific aspects and
their properties, while others provide languages for specifying various types of require-
ments. An aspect represents concerns related to particular types of requirements, includ-
ing data, functionality, concurrency, communication, and more.

Separation of Concerns by Abstractions. An abstraction allows developers to sim-
plify complex or domain-specific realities, focusing only what is essential. It introduces
a layer of indirection between a general idea and specific implementations. By showcas-
ing the core attributes of a problem, abstractions make problem clearer. This clarity aids
in managing complexity, letting developers concentrate on a single aspect without being
bogged down by intricate details. Such a method promotes a step-by-step approach to
understanding and problem-solving. It also enhances reusability, as either the high-level
problem or its solution can be reused in various scenarios, given that their connection
is traceable. Automating tasks becomes feasible, especially when translating from an
abstract to a concrete representation. Examples of these layers of indirection in soft-
ware include pointers, APIs, the symbolic assembler that transform assembly programs
to programs in machine language, the interpreter or compiler which translates a pro-
gram in a high-level programming language to an machine language program, as well
as concepts like super- and sub- class in object-oriented programming and super- and
sub- type in type theory.

Separation of Concerns by Decompositions. Decompositions are essential strategies
for mastering software complexity, involving the process of breaking down software
into smaller, more manageable, clear, and well-defined components. Decomposition
allows developers to focus on understanding and perfecting individual parts rather than
being overwhelmed by the entire system. This not only improves software compre-
hensibility, as each part becomes self-contained with a specific responsibility, but also
supports reuse. These components can be designed in a way that enables their use in
multiple places within the same application or even across different projects, eliminat-
ing the need to recreate the same functionality. In terms of software evolution, decom-
positions allow for easier scalability and adaptability. If a single component needs to be
updated or replaced, it can be done without disrupting the entire system. Finally, decom-
positions lend themselves well to the automation of development processes. Tools can
be better designed for the automatic construction and testing of smaller and simpler
components, as well as for hierarchical components and system integration with clearly
defined interfaces.

Process of Decomposition and Refinements. A top-down development (sub)process
is a sequence of decompositions and implementation mechanisms or representations of
abstractions, which are termed refinements of abstractions. Conversely, a the bottom-up
(sub)process involves a sequence of activities centred around the integration of sub-
components, each of which has been developed through refinements. For large-scale
systems, the vast design space encompasses the processes of decompositions, refine-
ments, and compositions. Moreover, the requirements for decomposition and refine-
ment are intricate [40,47]. Accordingly, it is essential to incorporate large-scale reusable
components, ensure low coupling and high cohesion, and to facilitate potent, non-
invasive adaptation and customisation capabilities. It is also crucial to maintain trace-

154 Z. Liu et al.

ability of refinements and decompositions throughout the software lifecycle to minimise
the impact of changes and substitutability.

Existing Approaches. To address the above challenges and requirements, substantial
research has been made in the areas of decomposition and abstraction. Notably, mod-
ularisation is an important technique for partitioning a system into modules, premised
on related functional units [14,41]. This approach is also referred to as algorithm-based
decomposition. On the other hand, object-oriented decomposition adopts a distinct
philosophical stance, envisioning a system as an ensemble of interacting objects [3,6].
These objects are software representations congruent with those discerned in the appli-
cation domain. In light of their promising potential to enhance reusability, enable inde-
pendent development, and facilitate standalone deployment, component-based develop-
ment (CBD) [46] and service-oriented architecture (SOA) [5] are increasingly gaining
prominence in contemporary academic and industry discussions.

Aims and Objectives of the Paper. Despite advancements in software engineering
research, significant challenges persist in current model-driven engineering (MDE)
frameworks to abstraction and decomposition. Many of these challenges arise from the
inability of these approaches to effectively separate concerns as highlighted in previous
literature [16,24,47]. These deficiencies have caused them to fall short of achieving the
primary objectives of MDE as described in the referenced article [16]. We identify the
following limitations in the current modelling approaches:

(1) Insufficient tool support for life-cycle management. Changes in the generated mod-
els or some constructed models often lead to round-trip issues.

(2) Ineffectiveness in reducing the sensitivity of primary artefacts to various changes,
such as personnel adjustments, requirement updates including those in the devel-
opment platform, and changes in deployment platforms.

(3) Limited flexibility to accommodate development team members with diverse
methodological expertise due to each approach’s adherence to fixed theories, tech-
niques, and tools.

(4) Constrained dimensions for abstractions and decompositions in modelling
approaches. For instance, MDA only emphasises on abstractions which move from
platform-independent models to platform-specific ones. Decompositions, on the
other hand, primarily focus on modules, objects, components, or services, neglect-
ing the separation of different aspects.

Several of these challenges have been identified and discussed in existing litera-
ture [16,24,40,47]. Notably, these references represent early explorations in this field.
The discussions in [16,24] offer broad conceptual discussions, without proposing con-
crete technical solutions. The work presented in [40] discusses the importance of these
challenges, demonstrating with examples that decomposing a program into modules
differs fundamentally from decomposing it based on its flowchart steps. The research
in [47] introduces an approach to decomposition by presenting the concept of hyper-
slices, which capture concerns that cross cut various modules or methods across dif-
ferent classes. However, this approach is primarily presented within the context of pro-
gramming languages, and it appears to lack a formal definition of what constitutes “con-
cerns”. Importantly, formal methods are not the primary focus of these studies.

Multi-dimensional Abstraction and Decomposition 155

In this paper, we utilise the modelling methodology of the Refinement Calculus of
Object and Component Systems (rCOS) as a formal framework to further investigate
these issues. Our objective is to showcase how a multi-dimensional architectural mod-
elling technique can be devised to rectify and surpass the limitations found in main-
stream approaches. It is our believe that to improve the limitations discussed above,
MDA requires an IDPs to support consistent integration of models of different FMs.

2 Linking Formal Methods

As mentioned in Sect. 1, an FM consists of the techniques and tools developed under-
pinned the formal theory. These include

– Techniques and tools for constructing models and specifying the properties of soft-
ware systems using the formal language of the theory.

– Theorem proving techniques and tools for proving the required properties and laws
of refinements of software systems within the proof system.

– Techniques, algorithms, and tools for model checking and solving constraint satis-
faction problems.

The research on FMs actually started with beginning of computer science, and it expe-
rienced a period of rapid development. There are now a large number FMs have been
developed. There are a number of well-known classifications, including

(a) By formalism: model-based methods (e.g. those based on state transition systems),
deductive methods which focus on the derivation of correct systems using formal
logic, and process algebras (e.g. CCS, CSP, and the π-calculus).

(b) By Phase of Application: specification method, development (correct by construc-
tion) method, verification methods and validation methods.

(c) By Verification Technique: model checking, theorem proving, and type systems.
(d) By level of formalisation: lightweight formal methods and full/heavyweight formal

methods.

FMs are also typically classified into operational methods or denotational methods,
according to the semantics of their languages. For the purpose of this paper, we describe
a classification of FMs according to the aspects of software they model, or classification
for separation of concerns.

2.1 Formal Theories of Different Aspects

We primarily focus on discussing mechanisms of abstraction (vs. refinement) and
decomposition (vs. composition) to achieve the purpose of separation of concerns. Con-
sequently, we classify FMs based on the aspects their languages are designed to express.
These aspects are determined by the viewpoints from which developers observe the sys-
tem. They can be orthogonal but are often interrelated. Different aspects are typically
modelled using different formal theories, and there are various theories for modelling
the same aspect. A complete model of a system is the integration of models from dif-
ferent aspects.

156 Z. Liu et al.

Typically, an FM’s language is defined with a specific set of symbols known as
the signature, which is often finite and nonempty. This signature is commonly par-
titioned into disjoint subsets termed sorts (borrowed from algebras). Using this signa-
ture, expressions and statements are formed using symbols of operations following spe-
cific grammatical rules. For tool development in the FM, the grammatical correctness
(also called well-formedness) of these expressions and statements needs to be machine-
checkable. As a result, the language’s design adheres to automata theory principles,
making the language a set of symbol strings produced by a certain type of automaton.

The signature and grammatically rules of an FM’s language are designed based one
the aspect to be specified by the language. The signature and grammatical rules repre-
sents what relevant to the aspect the modeller need to observe in the system behaviour.
We present the important aspects and give examples of their modelling theories below.

Data Types. All software systems require to process data of different types. Their rep-
resentation, operations and implementations can be separated from controls flow and
data flows of programs. Abstract data types (ADTs) are a formal theory for data types,
in which each ADT is modelled by an abstract (or formal) algebra. In object-oriented
programming paradigms, an ADT is implemented as class and a general class is also
regarded as an ADT. In rCOS, the theory of semantics and refinement of class decla-
rations (also represented by UML class diagrams) serves the purpose of theory of data
model [18,32].

Local Functionality. Theories like Hoare Logic [20] and Calculus of Predicate Trans-
formers [12] are used to specify and verify sequential programs, possibly with non-
determinism. We also include in this class those theories, such as VDM [23], Z [45]
and B [1], which are based these and have mechanisms for modularity. Object-Z [44],
rCOS theory of semantics and refinement for OO programs [18] and Java Modeling
Language (JML) [28] can be regarded as OO extensions, and the latest VDM also treats
object-orientation. These theories do not explicitly deal with concurrency and synchro-
nisation.

Communication and Concurrency. Process algebras, such as CSP [21,43] and
CCS [38,39], are event-based and abstract local computation away and explicitly treat
concurrency and synchronisation. Petri Net [42] is another popular even-based formal-
ism for concurrency. The the theory of input-output automata is control state and event
based theory for communication and synchronisation.

Communication and Concurrency with Data Functionality. There are formalisms
which combine local functionality with concurrency and synchronisation, where local
computations are represented as atomic actions and specified in away like that in Hoare-
Logic. Among them, we have logic systems like Temporal Logic of Actions (TLA) [25,
26] and UNITY [9], Action Systems [4], and Event-B [2]. A formal theory of this kind
are more power than the above event-based theories in that they can specify properties of
shared states. The apparently disadvantage they do not explicitly describe concurrency
and synchronisation activities.

Performance and Quantity Aspects. A formalism for dealing with performance, such
as timing, spacial aspects and energy consumption, can be defined by extending the

Multi-dimensional Abstraction and Decomposition 157

signatures of an existing formal theory in the above list. In theory, security and privacy
requirements can be treated without the need of fundamentally new formalism [35],
neither does fault-tolerance [33].

The list of formal theories referenced earlier is by no means exhaustive. We believe
that there is no single FM that is sufficient for addressing all issues across every aspect
of a system’s lifecycle. In particular, the development of modern, complex software
systems requires a family of FMs to build models for different aspects of the artefacts,
which can then be analysed and verified. Moreover, for 2 and 3 outlined in the paragraph
of aims and objectives in Sect. 1, an integrated model-driven development environment
should support the utilisation and transformation of models, proofs, verification algo-
rithms, and verified theorems from various formal methods for the same aspect. Thus,
from both educational and industrial adoption perspectives of Model-Driven Engineer-
ing (MDE), understanding the interrelationships between different FMs is crucial.

2.2 UTP for Linking Formal Theories

he Unifying Theories of Programming (UTP) [22], developed by Tony Hoare and He
Jifeng, presents a unified approach to defining formal programming theories. A theory
T of programming in a specific paradigm aims to characterise the behaviour of pro-
grams using a set of alphabetised predicates. In T, a predicate contains free variables
from a designated set known as the alphabet of the predicate. The set of predicates, also
denoted as T, is subject to constraints defined by a set of axioms known as healthiness
conditions.

The theory also establishes a set of symbols representing operations on the set T.
These symbols, along with the alphabets, collectively form the signature of T. The
connection between different theories is established based on the theory of complete
lattices and Galois connections

As an example, we define a relational theory R for imperative sequential pro-
gramming. In this theory, observables are represented by a given set X of input vari-
ables, along with their decorated versions X ′ = x′|x ∈ X as output variables. The set
α = X ∪ X ′ is referred to as the input alphabet, output alphabet, and alphabet of R.

In theory R, a program (or specification) is expressed as a first-order logic formula
P , associated with a subset αP of α in such a way that P only mentions variables in αP ,
which is known as the alphabet of P . Thus, a relation is written in the form (αP, P),
and αP is the union of the input and output alphabets of P , denoted as inαP ∪ outαP .
We always assume that inαP ⊆ X and outαP = inα′P = {x | x ∈ inαP}.

It is easy to define the meaning of operations symbols in sequential programming

(α, skip)
def
=

∧

x∈inα

x′ = x, (α, x := e)
def
= x′ = e ∧

∧

x∈inα−{x}
x′ = x

The sequential composition is defined as for given relations D1 and D2 and conditional
choice D1 � b � D2, where b is a Boolean expression

158 Z. Liu et al.

D1;D2
def
= ∃v0.D1[v0/outαD1] ∧ D2[v0/inD2], provided outαD1 = inαD2

inα(D1;D2)
def
= inα(D1), out(D1;D2)

def
= outα(D1)

D1 � b � D2
def
= b ∧ D1 ∨ ¬b ∧ D2 provided αb ⊂ inαD1 = inαD2

α(D1 � b � D2) = α(D1) = α(D2)

We say that a predicate D2 is refinement of predicate D1 in theory R, denoted as
D1 	R D2, if the implication D2 → D1 is valid, i.e. the universal closure [D2 → D1]
of D2 → D1 holds. The refinement relation is a partial order, and true and false are the
bottom and top elements. The formulas of R then forms a complete lattice and thus,
according to Tarski’s fixed point theorem, the least fixed-point μX.(D;X) � b � skip
exists and it is defined to be loop state b∗D. If we want to have nondeterministic choice
D1 � D2, it is defined to be the disjunction D2 ∨ D2.

We can readily observe that neither true;D = true nor D; true = true holds for
an arbitrary relation D in R. However, in all practical programming paradigms, they
should both hold for an arbitrary programD if we use true to define the chaotic program
⊥. Therefore, these healthiness conditions are imposed as axioms of R.

Theory R is for specification and verification of partial correctness reasoning as
it is not concerned termination of programs. When termination becomes an aspect of
concern, it is necessary to extendR to a theory, denoted byD, for specification and rea-
soning about total correctness of programs. To this end, we introduce two fresh observ-
ables ok and ok′ which are Boolean variables.D contains the specifications of the form
P � Q called designs, where P and Q are predicates in R. The meaning of P � Q, is
however defined by the formulation (P ∧ ok) → (Q ∧ ok′). We still use input alphabet,
output alphabet and alphabet of P and Q as those of the design P � Q.

We can then refine the meaning of operations on programs, where we omit the
alphabets for simplicity:

skip
def
= true � x′ = x for all x ∈ α

⊥ def
= false � true = true

� def
= ¬ok

x := e
def
= defined(e) � x′ = e and ∀y ∈ (α − {x}).y′ = y

D1 � b � D2
def
= defined(b) → (b ∧ D1 ∨ ¬b ∧ D2)

b ∗ D
def
= μX.(D;X) � b � skip

Latter we allow to write true � Q as � Q. The least fixed-point of loop statement is
defined for the refinement relation on D which is still implication, ⊥ and � defined
above.

It is easy to prove that both true;D = true and D; true = true hold inD. Likewise,
the left zero law (⊥;D) = D and the left unit law (skip;D) = D also hold in D.
However, neither the right zero law (D;⊥) = ⊥ nor the right unit law (D; skip) = D
holds inD. In UTP, healthiness conditions were imposed to ensure that they hold.

Multi-dimensional Abstraction and Decomposition 159

In either R or D, we can encode Hoare logic and Dijkstra’s calculus predicate
transformer. Given a predicate D inR orD, and two state properties p and q, we define

the Hoare triple as {p}P{q} def
= P → (p → q′). where p′ is the predicate obtained from

p by replacing all free variables in p with their dashed version. Then, the axioms and
inference rule hold inD andR. Given a predicateD ofR orD and a state property r, we

define the weakest precondition of D for the postcondition r as wp(D, r)
def
= ¬(D;¬r).

Then, the rules in the wp calculus are valid inD and R.
The above definitions show that the theories of Hoare logic and calculus of predicate

transformers can be mapped into the theory D and R and used consistently. Further-
more, we can treatD as sub-theory ofR with alphabet X ∪X ′ ∪{ok, ok′} by the trans-
lation mapping T : D → R such that T (P � Q) = (P → Q) for each design (P � Q)
in D. It is important to note the differences and relations between the languages, proof
systems and models (i.e. semantics) ofR, D, Hoare logic and the calculus of predicate
transformers.

Another important theory for unifying or linking formalisms is the theory of institu-
tion [15] by Goguen and Burstall. The theory is based category theory and using a group
of related mappings to define meaning serving translations between formal languages,
and their associated mappings between specifications, theorems, proofs, and models. It
is an interesting research problem to establish the formal relation of UTP and the the-
ory of institution. It is important to say that the the purpose of unification is actually for
consistent use to support separation of concerns.

3 rCOS Theory for Component-Based Architecture

The formal theory of rCOS is an extension to the design calculus D introduced in
the previous section for modelling and refinement of OO and component-based soft-
ware systems [17,18,31]. It has the advantage of supporting modelling and refinement
of continuously evolving architectures that accommodate open design [36].Here, open
design means that the architecture allows the use of subsystems that are designed and
operated by different organisations.

3.1 rCOS Theory of Semantics and Refinement of OO Programming

The theory defined an abstract OO programming language (OPL). A normal form of an
OO program P is Classes • Main, where

– Classes is a finite (possibly empty) class declarations C1; . . . ;Cn.
– A class declaration C has a name N ; a list of typed attributes and a list of meth-
ods m1(in1; out1){c1}; . . . ;mk(ink; outk){ck}, where a method m(in, out){c} has
a name m, a list in of input parameters and out of output parameters with their types,
a body c which is a command written in OPL.

– Main is the main class which it has a list of attributes and its main method main{c}.
– The syntax of the OPL is defined as:

c ::= P � Q | skip | chaos | var x := e | end x | le := e | C.New(x, e) |
(c; c) | c � b � c | le.m(e)

160 Z. Liu et al.

The type of an attribute or a program vairaible can be either a primitive type or or a
class, and the order of the methods in a class is not essential.

Notably, we allow to use a design as a command, and le is called an assignable
expression defined by le ::= x | a | le.a | slef, i.e. it is either a simply variable name x, an
attribute name, a trace of attributes names or self. An expression e, which can appear on
the right hand side of assignment symbol :=, is defined as e ::= x | slef | null | e.a | f(e).
Here f(e) is an expression constructed using operations of primitive types. The full lan-
guage also include in encapsulations of class attributes, and commands of type casting
and type testing, but we omit them here as they are not particularly discussed.

The rCOS theory on OO programming is presented in the paper [18]. There, an
object of class is formally defined and the state space of the a program is all the objects
of the Main class. For intuitive explanation, we use graphs as follows.

– An object of a class C is represented as a directed graph with a root that represents
the object. From the root, each edge points to a node, which can be an object of the
class of an attribute or a node that represents a value in the type of an attribute with
a primitive type. The edges are labelled with the names of attributes. Nodes that
represent values of primitive types or null objects are considered leaves. Non-leaf
nodes represent objects and are recursively defined as sub-graphs.

– A state of a program is an object of the Main class.
– An execution of the program is to change the initialised object to a final object, each
step of the execution may create a new object, modify the values of an attribute of
primitive type, replace an edge with another one (swings an edge, say by executing
le.a := self.b).

The formal definition of an object is by finite paths by the graph, thus having ruled out
infinitely looping in the graph. Therefore, a design P � Q in the OO theory specifies a
relation on state graphs. The refinement relation is also defined as logic implication. In
the paper [50], an operational semantics for the OO language is actually defined using
graphs, and a set sound and relative complete refinement rules are proven to actually
form a refinement calculus of OO programs.

It is easy to realise that the class declarations of an OPL program can be represented
as a UML class diagram. On the other hand, a UML class diagram also represents a
list of OPL class declarations plus constraints, such as those specified by association
multiplicities and textual comments. There is no difficulty in extending the OPL syntax
to allow the specification of these constraints on classes and attributes, which can be
written in the Object Constraint Language (OCL) or formal predicate logic.

We refer to UML diagrams and OPL class declaration sections with object con-
straints as class models. Therefore, a class model defines a set of UML object diagrams,
with each object in an object diagram corresponding to an object graph. This enables
us to utilise the rCOS object-oriented semantic theory as a formal semantics for UML
class models, as well we the type system of rCOS OPL programs.

3.2 Model of Interface Contracts of Components

According to Szyperski [46], ‘A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software com-

Multi-dimensional Abstraction and Decomposition 161

ponent can be deployed independently and is subject to composition by third parties.’
In the semantic theory, we specifically focus on ‘contractually specified interfaces and
explicit context dependencies only’ and the idea of being ‘subject to composition by
third parties.’ Therefore, interfaces are considered first-class syntactic model elements,
and interface contracts represent the first-class semantic modelling concept.

Interfaces. An interface I = 〈T ,V,M〉 consists of a list T of type declarations, a
list V of state variables (or attributes) with types defined in T , and a list M of method
declarations with parameters having types from T . T can include class declarations,
and both V and M follow the syntax of the rCOS OPL language. The state variables
in V are encapsulated within the component and can only be accessed from outside
the component through specified methods. The implementation details of the interface
methods are hidden inside the component, but their functionalities must be specified
and published to enable proper use.

Example 1 (Interface of Memory). A memory provides services for writing values to
it and reading values from it from it with an interface

M.I = 〈{int, array[int]}{array[int] m}, {w(int v), r(; int u)}〉
where m is a variable for the content of memory. Later we simply omit the types in
example when they are clear, and use a program template to write interfaces.

Reactive Designs.Components in component-based systems are distributedly deployed
and run concurrently, often requiring to be reactive. To specify the reactive behaviour
of components, we introduce the concept of reactive designs. Similar to the approach
in Sect. 3, where the relational theory R is extended to the design theory D, we extend
the theoryD to the theoryC by introducing two new Boolean observables, wait,wait′,
and defining that a design D is considered reactive if it is a fixed point of the lifting
mapping W , i.e., D(D) = D, where W is defined as follows:

W(D)
def
= (true � (wait′ ∧ (inα′ = inα) ∧ (ok′ = ok)) � wait � D

Here inα is the input alphabet of D without ok and wait being in it. Hence, when wait
is true the execution of D is blocked.

To specify both the functionality and synchronisation conditions of interface meth-
ods, we introduce the concept of ’guarded design’ in the form g&D, where g is a
Boolean expression based on program variables (namely, ok and wait), and D is a reac-
tive design in C. The meaning of g&D is defined as:

D � g � (true � (inα′ = inα) ∧ (ok′ = ok))

It can be easily proven that W is monotonic with respect to implication, thus the
set C of reactive designs. forms a complete lattice. This, along with the following two
theorems, is necessary forC to be used as a theory of reactive programming.

Theorem 1. For any designs D, D1 and D2 of D, we have

162 Z. Liu et al.

(1) W is idempotent W2(D) = W(D);
(2) W is nearly closed for sequencing: (W(D1);W(D − 2)) = W(D1,W(D2));
(3) W is closed for non-deterministic choice: (W(D1) ∨ W(D2)) = W(D1 ∨ D2);
(4) W is closed for conditional choice: (W(D1)� b � W(D2)) = W(D1 � b � D2).

Here, “=” denotes logical equivalence, and the following properties hold for guarded
designs, which ensure that they can be used as commands in reactive programming.

Theorem 2. For any react designs D, D1 and D2 of D, we have

(1) g&D is reactive;
(2) (g&D1 ∨ g&D2) = g&(D1 ∨ D2)
(3) (g1&D1 � b � g2&D2) = (g1 � bg2)&(D1 � B � D2);
(4) (g1&D1; g2&D2) = g1&(D1; g2&D2).

It is important to note that from Theorem 1(1) a(1), D in a guarded design g&D
can be a design in D too, and the top level interface specification only uses guarded
designs of this kind. We need to define programs in a programming language, such as
one in Subsect. 2.2 and the OPL in Subsect. 3.1, as reactive designs. The way to do this
is to define the primitive commands directly as reactive design and the apply the above
two theorems for composite composite commands. We take the following primitive
commands as examples.

skip
def
= W(true � ¬wait′ ∧ inα′ = inα), choas

def
= W(false � true)

stop
def
= W(true � wait′ ∧ inα′ = inα)

x := e
def
= W(true � (x′ = e) ∧ ¬wait′ ∧ (inα − {x})′ = (inα − {x})

We will write true&D as D.

Contracts of Interfaces. An interface of a component is a point through which the
component interact with its environment, that is to provide services or require services.
Therefore, a component can have a number of interfaces, some of them are provided and
some required services, but their semantics is defined in the same way, as contracts.

Definition 1 (Contract of Interface). Given an interface I = 〈T ,V,M〉, a contract
C for I is a pair (θ, Φ), where

– θ is a predicate with free variables in V , called the initial condition;
– and θ is a mapping from M to C such that each m(in; out) is assigned with a
guarded design g&D over input variables V ∪ in and output variables V ′ ∪ out′.

A contract C is denoted by a tripe C = 〈I, θ, Φ〉.

Example 2 (Contracts for memory interface). We give two contracts for M.I. The first
C1 = 〈M.I, true, Φ1〉, where Φ1 is defined by giving the designs as bodies of the corre-
sponding methods as follows

w(int v){¬isFull(m) � m′ = append(a,m)};
r(; int u){¬isEmpty(m) � (u′ = head(m) ∧ m′ = tail(m))}

Multi-dimensional Abstraction and Decomposition 163

Here, operations on data isEmpty, isFull, append(), head(), and tail() are supposed to
have been defined in the definitions of the types.

The second contracts C2 = 〈M.I, isEmpty = false, Φ2〉 imposes controls to the
invocations to the interface methods with gourds, where

w(int v){¬isFull(m)&(¬isFull(m) � m′ = append(a,m))};
r(; int u){¬isEmpty&(¬isEmpty(m) � u′ = head(m) ∧ m′ = tail(m))}

Thus, the first invocation must be write, and then the user cal write into the memory as
long it is not full, and can read from it as long as it is not not empty.

Dynamic Behaviours of Contracts. In an operational view, a contract defines the
behaviour of an labelled state transition system (LSTS) in such a way that its states
include elements from V ∪ ok,wait, where the labels of transitions represent invoca-
tions ?m(v) and returns !m(u) with actual input parameters v and actual output param-
eters u. An execution of the LSTS diverges once it enters a state in which ok is false,
and it deadlocks when it reaches a state where wait is true. However, when we define
the ’refinement relation’ between contracts, a denotational model becomes more con-
venient. The dynamic behaviour of a contract C = 〈I, θ, Φ〉 is defined in terms of its
divergences, failures, and traces, which captures the key characteristics of concurrent
programs.

Definition 2 (Divergences). For a contract C = 〈I, θ, Φ〉, the set Div(C) of diver-
gences of C consists of sequences of invocations and returns of methods from the
interface 〈?m1(v1)!m1(u1) . . .?mk(vk)!mk(uk)〉 whose executions end in a divergent
state. In other words, the execution of θ;m1(v1;u1); . . . ;mj(vj ;uj) as a prefix of the
sequence, starting from an initial state, results in ok′ being false, where vi and ui are
the actual input and output parameters of the invocation mi().

Definition 3 (Failures). Given a contract C, a failure of C is pair (tr,M), where tr is
a finite trace of method invocations and returns 〈?m1(v1)!m1(u1) . . .〉 of the interface,
and M a set of method invocations, such that one of the following conditions holds

(1) tr is the empty sequence, and M is the set of invocations ?m(v) with their guards
being false in the initial states;

(2) tr is a trace 〈?m1(v1)!m1(u1) . . .?mk(vk)!mk(uk)〉 and M consists of the invoca-
tions ?m(v) that after the executions of the invocations m1(x1, y1) . . . mk(xk, yk)
from an initial state the guard of m(v) is false;

(3) tr is a trace 〈?m1(x1)!m1(y1) . . .?mk(xk)〉 and the execution of the invocation
mk(v) is yet to deliver an output, and M contains all invocations;

(4) tr is a trace 〈?m1(x1)!m1(y1) . . .?mk(xk)〉 and the execution of the invocation
mk(v) has entered a wait state, and M contains all invocations; or

(5) tr is a divergence in DC , and M contains all invocations (all invocations can be
refused after the execution diverges).

We use Fail(C) to represent set of failures of contract C.

164 Z. Liu et al.

It is worth noting that some guards are more complex than others, depending on whether
they involve only control states, both control and data states, or a combination of input
parameters, control, and data states. For example, consider to change the guard of r() in
Example 2 to ¬isEmpty∧Even(v)∧ count(m) ≤ 4. In general, changing preconditions
of designs affects the divergence set and failures. Similarly, altering guards influences
failures and divergences, potentially leading to invocations that violate the design’s pre-
condition. These properties are characterised by the concept of contract refinement and
its associated theorem.

Definition 4 (Contract refinement). A contract C1 is refined by a contract C2, denoted
as C1 	 C2, if they have same interface, and

(1) C2 is not more likely to diverge, i.e. Div(C2) ⊆ Div(C1); and
(2) C2 is not more likely to block the environment, i.e. Fail(C2) ⊆ Fail(C1).

The effective way to establish contract refinement is by upward simulation and down-
ward simulation [17].

The above discussion shows how we can extract models of failures and divergences
from the models of contracts defined by reactive designs. This establishes a connection
between the theory of input and automata, action systems, and process calculi. It is
often simpler to specify communication requirements in terms of communication traces
or protocols. We first define the set of traces for a contract C from its failures

Trace(C) def= {tr|there exists an M such that (tr,M) ∈ Fail(C)}

Then, a protocol P is a subset of Prot(C) def= {tr ↓? |tr ∈ Trace(C)}.
Definition 5 (Consistency of Protocol with Contract). A protocol T is consistent
with (DC ,FC) (thus with contract C), if the execution of any prefix of any invocation
sequence sq in T does not enter a state in which all invocations to the provided services
are refused, i.e. for any sq ∈ T and any (tr,M) ∈ FC such that sq = tr ↓?, M �=
{m(v) | m() ∈ O} if tr ↓?.
We have the following theorem for the consistency between protocols and contracts.

Theorem 3. Given a contract C and its protocols T1 and T2, we have

(1) If T1 is consistent with C and T2 ⊆ T1, T2 is consistent with C.
(2) If both T1 and T2 are consistent with C, so is T1 ∪ T2.
(3) If C1 = (I, θ1, Φ1) is another contract of interface I and θ 	 θ1 and Φ(m()) 	

Φ1(m()) for any operation m() of the interface, T1 is consistent with C1 if it is
consistent with C.

The concept and theorems discussed above regarding consistency are essential for the
correct use of components in different interaction environments. It also enables the
separation of designing functional aspects from tailoring communication protocols. In
an incremental development process, the specification of a component’s interface can
first be provided as a pair (D,P) of designs in OPL (not guarded designs) along with a
protocol P . This initial specification can then be further developed into a fully specified
contract as required. Another advantage of separating the specification of functionality
using designs and interaction protocols is that, as shown in Example 2, it allows for
different interaction protocols for the same functionality specification, and vice versa.

Multi-dimensional Abstraction and Decomposition 165

4 rCOS Support to Separation of Concerns in MDE

We have developed an understanding of the unification of data, local functionality, and
dynamic behaviour. However, the purpose of this unification is to ensure consistent
integration of models of these different aspects. This is particularly crucial for Model-
Driven Engineering (MDE) and integrated development platforms. Now, let us discuss
how this is put into practice in MDE. In rCOS, we propose to support a use-case-driven
incremental development process, also known as the Rational Unified Process (RUP).
However, we place a strong emphasis on component-based architectural models and
refinement.

4.1 Use Case Driven Requirements Model Building

A requirements model consists of a set of interrelated use cases identified from the
application domain. Each use case is modelled as an interface contract of a component
in the following steps:

1. The operations provided by the component’s interface corresponding to a use case
consist of the interactions with the actors.

2. The classes are represented in conceptual class diagrams that the use case involves,
and the state variables are names for objects that the use case needs to know (i.e., to
record, check, modify, and communicate).

3. The interaction protocol of the use case represents the possible events of the inter-
actions between the actors and the system to carry out the use case, and they are
modelled by sequence diagrams.

4. The dynamic behaviour of a use case is modelled by a state diagram of the use case.
5. The functionalities of interface operations are specified by designs (pre- and post-

conditions), focusing on what new objects are created, which attributes are modified,
and the new links of objects that are formed.

6. The requirements architecture is modelled by UML component-based diagrams that
reflect the relations among use cases in the use case diagram.

The models of above aspects of a component for a use case consisting of interac-
tions, dynamic behaviour, types and functionality. More systematic presentation of the
method can be found in [11,13], but with less formal support.

4.2 Component Development Process

A OO design process for components consists of the following modelling steps as
shown in Fig. 1:

1. It takes each use-case component and designs each of its provided operations accord-
ing to its pre- and post-conditions using the object-oriented refinement rules, with a
focus on the four patterns of GRASP, in particular [11,27].

2. This decomposes the functionality of each use case operation into internal object
interactions and computations, refining the use case sequence diagram into an object
sequence diagram of the use case [11].

166 Z. Liu et al.

3. During the decomposition of the functionality of use-case operations into internal
object interactions and computations, the requirements class model is refined into a
design class model by adding methods and visibilities in classes based on responsi-
bility assignments and method invocation directions [11].

4. Select some of the objects in an object sequence diagram and consider them as
candidate component controllers if they satisfy six given invariant properties through
automatic checks. Then, transform the design sequence diagram into a component-
sequence diagram [30].

5. Generate a component diagram for each use case from the component sequence dia-
gram obtained in the previous step, automatically decomposing the use-case compo-
nent in the requirements model into a composition of sub-components. This leads to
the decomposition of the entire component-based architecture model at the require-
ments level into a component-based design architecture model [30].

6. The coding from the design architecture model is not particularly difficult and can
largely be automated [37,49].

Fig. 1. Transformations from requirements to design of a component

4.3 System Development

For a given application domain, we assume a repository of implemented components for
‘plenty’ of use cases, their contract specifications, information on context dependencies,
and (possibly) their sub-components1.

Roughly speaking, the system development begins with the development of a
requirements model in the form of use case contracts. The use case contracts are then

1 We do not know such as an existing repository.

Multi-dimensional Abstraction and Decomposition 167

refined and/or decomposed into compositions of components to create a model of the
system architecture. Subsequently, we search for candidate components in the reposi-
tory that match a component in the architecture and check if their contracts are refine-
ments of those in the architecture. The verification of functional requirements and syn-
chronisation requirements can be conducted separately, and they can be refined inde-
pendently by adding connectors and coordinators, respectively.

It is possible that for some contracts of components in the architecture, there are no
appropriate components that can be easily adapted for implementation. In such cases,
we have to develop them using the component development method discussed in the
previous subsection. The main features of component and system development in rCOS
are shown in Fig. 2.

Fig. 2. Features of the rCOS modelling and development

To gain a deeper understanding of the processes described above, we recommend
referring to the paper in [10], which reports the application of rCOS to the CoCoMe
common case study [19]. Please note that domain knowledge is essential for providing
the requirements model in terms of use cases, for designing the architecture, and for
mapping them to components in the repository. The primary challenge in formalizing
the mapping and developing tool support lies in the different naming schemes used in
the requirements models, the architecture design, and the representations of the models
of the components in the repository. In our opinion, significant effort is required in this
area.

5 Conclusions

Abstractions and decompositions with respect different aspects are, which are essential
for reuse and modification. We are skeptical that there exists a tool capable of automatic
modelling and decomposition that can seamlessly achieve this separation of concerns.
It predominantly requires human intelligence and effort. Nonetheless, a formal mod-
elling method should offer multi-dimensional decomposition beyond just component-
based methods, and multi-dimensional abstraction surpassing mere focus on a single

168 Z. Liu et al.

aspect of the system. Additionally, when it comes to model refinement, there should be a
broader spectrum of transformation options than just those transitioning from platform-
independent models (PIMs) to platform-specific models (PSMs).

We have highlighted the significance and challenges associated with the develop-
ment and application of formal methods that systematically aid in addressing abstrac-
tion and decomposition. We have introduced the rCOS framework to delineate the
dimensions of models for different aspects and to discuss issues related to their decom-
position, refinement, and consistent composition. While our discussion primarily cen-
tres on the formalisms and their capabilities, we acknowledge that there is limited cov-
erage of tool implementation and support. However, for rCOS tools, we refer to the
work in [29,34,49], though they are still in the form of proof of concepts.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University
Press, Cambridge (2010)

3. Andersen, E.P., Reenskaug, T.: System design by composing structures of interacting objects.
In: Madsen, O.L. (ed.) ECOOP 1992. LNCS, vol. 615, pp. 133–152. Springer, Heidelberg
(1992). https://doi.org/10.1007/BFb0053034

4. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Jonsson, B., Parrow, J.
(eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidelberg (1994). https://
doi.org/10.1007/978-3-540-48654-1 28

5. Bell, M.: Service-Oriented Modeling: Service Analysis, Design, and Architecture. Wiley,
Hoboken (2008)

6. Booch, G.: Object-Oriented Analysis and Design with Applications. Addison-Wesley,
Boston (1994)

7. Brooks, F.P.: No silver bullet: essence and accidents of software engineering. IEEE Comput.
20(4), 10–19 (1987)

8. Brooks, F.P.: The mythical man-month: after 20 years. IEEE Softw. 12(5), 57–60 (1995)
9. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley, Reading

(1988)
10. Chen, Z., et al.: Modelling with relational calculus of object and component systems - rCOS.

In: Rausch, A., Reussner, R., Mirandola, R., Plášil, F. (eds.) The Common Component Mod-
eling Example. LNCS, vol. 5153, pp. 116–145. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-85289-6 6

11. Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and verification in component-
based model driven design. Sci. Comput. Program. 74(4), 168–196 (2009)

12. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
13. Dong, J.S., Woodcock, J. (eds.): Formal Methods and Software Engineering, 5th Interna-

tional Conference on Formal Engineering Methods, ICFEM 2003, Singapore, November 5–
7, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2885. Springer, Heidelberg
(2003). https://doi.org/10.1007/b94115

14. Gauthier, R., Pont, S.: Designing Systems Programs. Prentice-Hall, Englewood Cliffs (1970)
15. Goguen, A.J., Burstall, R.M.: Institutions: abstract model theory for specification and pro-

gramming. J. ACM 39(1), 95–146 (1992)
16. Haan, J.D.: 8 reasons why model-driven approaches (will) fail, infoQ. https://www.infoq.

com/articles/8-reasons-why-MDE-fails/

https://doi.org/10.1007/BFb0053034
https://doi.org/10.1007/978-3-540-48654-1_28
https://doi.org/10.1007/978-3-540-48654-1_28
https://doi.org/10.1007/978-3-540-85289-6_6
https://doi.org/10.1007/978-3-540-85289-6_6
https://doi.org/10.1007/b94115
https://www.infoq.com/articles/8-reasons-why-MDE-fails/
https://www.infoq.com/articles/8-reasons-why-MDE-fails/

Multi-dimensional Abstraction and Decomposition 169

17. He, J., Li, X., Liu, Z.: A theory of reactive components. Electr. Notes Theor. Comput. Sci.
160, 173–195 (2006)

18. He, J., Liu, Z., Li, X.: rCOS: a refinement calculus of object systems. Theoret. Comput. Sci.
365(1–2), 109–142 (2006)

19. Herold, S., et al.: The common component modeling example. In: Rausch, A., Reussner, R.,
Mirandola, R., Plášil, F. (eds.) The Common Component Modeling Example. Lecture Notes
in Computer Science, chap. 1, , vol. 5153, pp. 16–53. Springer, Heidelberg (2008)

20. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

21. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

22. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Upper Saddle
River (1998)

23. Jones, C.B.: Systematic Software Development using VDM. Prentice Hall, Upper Saddle
River (1990)

24. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
47884-1 16

25. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst. 16(3), 872–
923 (1994)

26. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley, Boston (2002)

27. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd edn. Prentice-Hall, Upper Saddle River (2001)

28. Leavens, G.T., Baker, A.L.: Enhancing the pre- and postcondition technique for more expres-
sive specifications. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol.
1709, pp. 1087–1106. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48118-
4 8

29. Li, D., Li, X., Liu, J., Liu, Z.: Validation of requirements models by automatic prototyping.
J. Innov. Syst. Softw. Eng. 4(3), 241–248 (2008)

30. Li, D., Li, X., Liu, Z., Stolz, V.: Interactive transformations from object-oriented models to
component-based models. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253,
pp. 97–114. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35743-5 7

31. Liu, Z.: Linking formal methods in software development - a reflection on the development of
rCOS. In: Bowen, J.P., Li, Q., Xu, Q. (eds.) Theories of Programming and Formal Methods.
LNCS, vol. 14080, pp. 52–84. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
40436-8 3

32. Liu, Z., Jifeng, H., Li, X., Chen, Y.: A relational model for formal object-oriented require-
ment analysis in UML. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885,
pp. 641–664. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39893-6 36

33. Liu, Z., Joseph, M.: Specification and verification of fault-tolerance, timing, and scheduling.
ACM Trans. Program. Lang. Syst. 21(1), 46–89 (1999)

34. Liu, Z., Mencl, V., Ravn, A.P., Yang, L.: Harnessing theories for tool support. In: Proceedings
of the Second International Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA 2006), pp. 371–382. IEEE Computer Society (2006)

35. Liu, Z., Morisset, C., Stolz, V.: A component-based access control monitor. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 339–353. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88479-8 24

36. Liu, Z., Wang, J.: Human-cyber-physical systems: concepts, challenges, and research oppor-
tunities. Frontiers Inf. Technol. Electron. Eng. 21(11), 1535–1553 (2020)

https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-48118-4_8
https://doi.org/10.1007/3-540-48118-4_8
https://doi.org/10.1007/978-3-642-35743-5_7
https://doi.org/10.1007/978-3-031-40436-8_3
https://doi.org/10.1007/978-3-031-40436-8_3
https://doi.org/10.1007/978-3-540-39893-6_36
https://doi.org/10.1007/978-3-540-88479-8_24

170 Z. Liu et al.

37. Long, Q., Liu, Z., Li, X., He, J.: Consistent code generation from UMLmodels. In: 16th Aus-
tralian Software Engineering Conference (ASWEC 2005), 31March–1 April 2005, Brisbane,
Australia, pp. 23–30. IEEE Computer Society (2005). https://doi.org/10.1109/ASWEC.2005.
17

38. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle River (1989)
39. Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1980). https://doi.

org/10.1007/3-540-10235-3
40. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Commun.

ACM 15(12), 1053–1058 (1972)
41. Parnas, D.L.: A technique for software module specification with examples. Commun. ACM

15, 330–336 (1972)
42. Petri, C.A., Reisig, W.: Petri net. Scholarpedia 3(4) (2008)
43. Roscoe, A.W.: Theory and Practice of Concurrency. Prentice-Hall, Upper Saddle River

(1997)
44. Smith, G.: The Object-Z Specification Language. Springer, Heidelberg (2000). https://doi.

org/10.1007/978-1-4615-5265-9
45. Spivey, J.M.: The Z Notation, A Reference Manual. International Series in Computer Sci-

ence, 2nd edn. Prentice Hall, Upper Saddle River (1992)
46. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn.

Addison-Wesley Longman Publishing Co., Inc., Boston (2002)
47. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N degrees of separation: multi-dimensional

separation of concerns. In: Proceedings of the 1999 International Conference on Software
Engineering, pp. 107–119. IEEE (1999)

48. Wang, J., Zhan, N., Feng, X., Feng, Liu, Z.: Overview of formal methods (in Chinese). Ruan
Jian Xue Bao/J. Softw. 30(1), 33–61 (2019)

49. Yang, Y., Li, X., Ke, W., Liu, Z.: Automated prototype generation from formal requirements
model. IEEE Trans. Reliab. 69(2), 632–656 (2020)

50. Zhao, L., Liu, X., Liu, Z., Qiu, Z.: Graph transformations for object-oriented refinement.
Formal Aspects Comput. 21(1–2), 103–131 (2009)

https://doi.org/10.1109/ASWEC.2005.17
https://doi.org/10.1109/ASWEC.2005.17
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-1-4615-5265-9
https://doi.org/10.1007/978-1-4615-5265-9

Solving SMT over Non-linear Real
Arithmetic via Numerical Sampling

and Symbolic Verification

Xinpeng Ni , Yulun Wu , and Bican Xia(B)

School of Mathematical Sciences, Peking University, Beijing, China
nxp@stu.pku.edu.cn, yulunwu@pku.edu.cn, xbc@math.pku.edu.cn

Abstract. Popular SMT solvers have achieved great success in tackling
Nonlinear Real Arithmetic (NRA) problems, but they struggle when
dealing with literals involving highly nonlinear polynomials. Current
symbolic-numerical algorithms can efficiently handle the conjunction of
highly nonlinear literals but are limited in addressing complex logical
structures in satisfiability problems. This paper proposes a new algorithm
for SMT(NRA), providing an efficient solution to satisfiability problems
with highly nonlinear literals. When given an NRA formula, the new algo-
rithm employs a random sampling algorithm first to obtain a floating-
point sample that approximates formula satisfaction. Then, based on
this sample, the formula is simplified according to some strategies. We
apply a DPLL(T)-based process to all equalities in the formula, decom-
posing them into several groups of equalities. A fast symbolic algorithm
is then used to obtain symbolic samples from the equality sets and verify
whether the samples also satisfy the inequalities. It is important to note
that we adopt a sampling and rapid verification approach instead of the
sampling and conflict analysis steps in some complete algorithms. Con-
sequently, if our algorithm fails to verify the satisfiability, it terminates
and returns ‘unknown’. We validated the effectiveness of our algorithm
on instances from SMTLIB and the literature. The results indicate that
our algorithm exhibits significant advantages on SMT(NRA) formulas
with high-degree polynomials, and thus can be a good complement to
popular SMT solvers as well as other symbolic-numerical algorithms.

Keywords: SMT · Nonlinear real arithmetic · Random sampling

1 Introduction

The Satisfiability Modulo Theories (SMT) aims to solve the problem of deter-
mining the satisfiability of logical formulas with respect to certain background
theories, efficiently tackling complex real-world problems in various domains
through a dedicated decision procedure. In this paper, we focus on Nonlinear
Real Arithmetic (NRA), in which each literal of the logical formula is a polyno-
mial formula in real variables.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 171–188, 2024.
https://doi.org/10.1007/978-981-99-8664-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_10&domain=pdf
http://orcid.org/0009-0005-8967-5665
http://orcid.org/0009-0008-0319-8178
http://orcid.org/0000-0002-2570-2338
https://doi.org/10.1007/978-981-99-8664-4_10

172 X. Ni et al.

A famous and widely used complete algorithm for solving polynomial formu-
las is the Cylindrical Algebraic Decomposition (CAD) algorithm [1], which, for
a given formula, divides the space R

n into finitely many disjoint cells, guaran-
teeing that the satisfiability of the formula is invariant in each cell. Therefore,
one sample point selected from each cell is enough for satisfiability checking.
Suppose there are n variables involved and the highest degree of polynomials
is d. An upper bound, O(22

n

d2
n

), of cell number is given in [2]. That means
in the worst case there are numerous cells must be computed and checked. To
accelerate the solving process, the MCSAT framework, making use of the CAD
algorithm for conflict analysis and clause learning, has been proposed, introduc-
ing single-cell projections instead of decomposing the space into cells [3,4]. In
this method, the space is sampled first, followed by calculating the single-cell
projection of CAD if conflicts occur. Notably, the computational complexity of
individual cells is much smaller than that of the entire space decomposition. If
a sample point satisfies the formula, the algorithm terminates early. This app-
roach is widely used in popular SMT solvers, e.g. Z3 [5], CVC5 [6], Yices2 [7],
and MathSAT5 [8], bringing significant improvements to solving these types of
problems. However, when the formula is unsatisfiable, a number of sampling and
single-cell computations are needed by exhaustive search. There is another deci-
sion procedure, called δ-complete decision procedure [9], for non-linear formulas,
which may answer unsat or δ-sat on input formulas for an error bound δ given
by the users.

One point worth noting is that for most satisfiable SMT problems, an
appropriate sampling method may prove satisfiability with just a few times of
sampling. Therefore, some solvers are dedicated to quickly sampling specific
instances. For example, Li et al. [10] proposed a local searching method to solve
inequality constraints and Li and Cai [11] introduced a method for multilinear
constraints. Another approach was proposed by Cimatti et al. to combine opti-
mization and topological test [12], which uses optimization algorithms to obtain
an initial numerical sample, followed by topological testing to verify if there is
a true solution within a small box near the numerical solution.

In the field of symbolic computation, polynomial constraint systems are
widely studied. Compared to general nonlinear formulas, there is a much simpler
class of problems: zero-dimensional systems (equation systems with only a finite
number of complex zeros). Various works focus on finding solutions to these
systems. Techniques such as triangular decomposition [13] and Gröbner bases
[14,15] have been used to symbolically find all solutions of zero-dimensional sys-
tems, while the homotopy continuation method [16] and moment matrix comple-
tion method [17] have been employed to compute numerical solutions. Existing
algorithms perform significantly better in handling zero-dimensional systems
than CAD-based methods. Efficient methods for handling zero-dimensional sys-
tems have also led to some work on symbolic-numerical methods to prove the sat-
isfiability of polynomial constraints (see e.g. [18,19]). In fact, through our experi-
ments, five degree 3 and 5-variable constraints conjunctions randomly generated
are beyond the capability of all popular SMT solvers, while specialized algo-

Solving SMT(NRA) via Sampling and Verification 173

rithms that are designed specifically for managing zero-dimensional systems can
verify points on special polynomial systems of significantly larger sizes [18,19].
However, these symbolic computation algorithms are limited to accepting con-
junctive forms and fall short when it comes to handling formulas in conjunction
normal form.

The main motivation of our work is to design an algorithm which may effi-
ciently solve NRA satisfiability problems with complicated logical structures and
highly nonlinear literals so that it can be a good complement to popular SMT
solvers as well as existing symbolic-numerical methods. The key of our idea is
to replace the exhaustive search and conflict analysis in the complete algorithms
with more efficient sampling and quick verification methods for faster problem-
solving. Our method is straightforward: we first obtain a numerical sample point
through a numerical algorithm and simplify the formula by discarding constraints
in the formula that have a high cost (see Sect. 5.2). Then, a DPLL(T)-based split-
ting algorithm is utilized for equality constraints in the formula. The formula
is transformed into several equation systems, and we obtain symbolic sample
points for each equation system. Finally, we verify if the inequality constraints
in the formula are satisfied by the symbolic samples.

Example 1. The following instance, originating from a modified P3P problem
[20], is satisfiable. The degrees of all the polynomials contained within it do not
exceed 3, but all mainstream solvers failed to prove its satisfiability in 1000 s.
Our algorithm can find a satisfactory point in less than 0.1 s.

((x2 + y2 − xy − 1 ≤ 0) ∨ ((z2 + x2 − zx − b2)x > 0))

∧ ((y2 + z2 − yz − a2 ≤ 0) ∨ (a + b < x) ∨ (z2 − x2 − 2 = 0))

∧ z2 + x2 − zx − b2 = 0 ∧ a2 − 1 + b − b2 ≤ 0
∧ x > 0 ∧ y > 0 ∧ z > 0 ∧ a > 5/4 ∧ b ≥ a. (1)

We conduct experiments on SMTLIB and examples collected from the lit-
erature and find that our approach achieves competitive results with existing
solvers on all satisfiable problems. For those instances containing highly nonlin-
ear literals, our performance is significantly better. Moreover, we demonstrate
the characteristics of our method for different difficulty levels using random
examples.

The organization of this paper is as follows: Sect. 2 introduces the basic con-
cepts, notation, and essential functions for handling zero-dimensional systems.
Section 3 explains how we obtain a numerical sample point and use it to simplify
formulas. Section 4.5 discusses how we utilize a symbolic sample point to verify
whether an inequality formula is satisfied. Section 4 presents the main algorithm.
In Sect. 5, several experiments are conducted to validate the effectiveness of the
algorithm. Finally, Sect. 6 concludes the paper.

174 X. Ni et al.

2 Preliminaries

2.1 Real Arithmetic Formula

Let x̄ = (x1, . . . , xn) be n variables taking real values. We use Q and R to denote
the sets of rational and real numbers, respectively. The ring of polynomials in
the variables x1, . . . , xn with coefficients in Q is denoted by Q[x̄]. A polynomial
constraint is a polynomial equation or inequality, which may also be referred to
as a constraint or literal in this paper. A formula in Nonlinear Real Arithmetic
(NRA) consists of a logical composition of polynomial constraints. Furthermore,
we make sure that the formula includes only < and = symbols because other
symbols can be readily replaced in CNF.

Example 2. Formula 1 is converted to

((x2 + y2 − xy − 1 < 0) ∨ (x2 + y2 − xy − 1 = 0) ∨ (−(z2 + x2 − zx − b2)x < 0))

∧ ((y2 + z2 − yz − a2 < 0) ∨ (y2 + z2 − yz − a2 = 0)

∨ (a + b − x < 0) ∨ (z2 − x2 − 2 = 0))

∧ (z2 + x2 − zx − b2 = 0) ∧ ((a2 − 1 + b − b2 < 0) ∨ (a2 − 1 + b − b2 = 0))

∧ (−x < 0) ∧ (−y < 0) ∧ (−z < 0) ∧ (−a + 5/4 < 0)

∧ ((−(b − a) < 0) ∨ (−(b − a) = 0)).

Let Λ = {P1, . . . , Pm}, where every Pi corresponds to a finite subset of Q[x̄].
Consider the formula: F =

∧
Pi∈Λ

∨
pij∈Pi

pij(x1, . . . , xn) �ij 0, where �ij ∈ {<
,=}. We refer to F as a formula, pij(x1, . . . , xn)�ij 0 as an atomic formula, and∨

pij∈Pi
pij(x1, . . . , xn) �ij 0 as a clause.

SMT(NRA) problems can be formulated as the decision problem of deter-
mining the satisfiability of the formula F : Is F satisfiable?

2.2 Zero-Dimensional Systems and Real Zeros

During our symbolic sampling process, zero-dimensional systems play a key role
in our algorithm. In general, multivariate polynomial equality constraint systems
are difficult to handle, as it is often challenging to represent the set of real zeros.
However, zero-dimensional systems, i.e. systems with only finitely many complex
solutions, can be effectively managed.

Definition 1. A finite polynomial set T ⊆ Q[x̄] is a zero-dimensional system if
the zeros of T , {x̄ ∈ C

n|f(x̄) = 0,∀f ∈ T}, form a finite set.

Definition 2. Let T ⊆ Q[x̄] be a zero-dimensional system. A real zero cube or
an isolating cube of T consists of a list of intervals ([a1, b1], . . . , [an, bn]) such
that T has exactly one root (x1, ..., xn) with xi ∈ [ai, bi] for i = 1, . . . , n. We
denote the precision of this isolating cube as maxi{bi − ai}.

Solving SMT(NRA) via Sampling and Verification 175

As discussed in the introduction, some algorithms can efficiently obtain real
zero cubes of a zero-dimensional system. In our method, we use triangular decom-
position to do this, which is able to calculate all real zero cubes of any zero-
dimensional system. Although it costs an exponential time for a zero-dimensional
system [21] and is not the fastest in practice among those algorithms, it can han-
dle problems of a much bigger size than CAD.

In this paper, the triangular decomposition is only a solver for computing
the set of zero cubes, and we don’t explain its details. The algorithms we used
are from [21,22]. Also, the triangular decomposition algorithm can be used for
determining whether a given polynomial set is a zero-dimensional system.

For ease of understanding, we describe the specifications of four functions
about real zero calculating progress mentioned above:

– RealZero(equations): Calculating all real zeros of a zero-dimensional system.
The input is an equation system and the output is a list containing all real
zero cubes of the system if it is zero-dimensional.

– IsZeroDimension(equations): Whether an equation set is zero-dimensional.
The input is a list of equations and the output is true or false.

– IsConsistent(equations): Whether an equation set has at least one real zero.
The input is a list of equations and the output is true or false.

– IncreasePrecison(cube, equations): Increase the precision of a real zero
cube. The input is a list of equations and a given zero cube. The output
is a new cube with higher precision containing the same zero. If the context
is clear, we use IncreasePrecison(cube) for brevity.

Note that IsZeroDimension and IsConsistent are actually sub-processes
of RealZero. And IncreasePrecison can be done efficiently with any precision
[22]. Now, we give an example to show a zero-dimensional system and the real
zero cubes of it.

Example 3. Suppose we collect a list T0 of some polynomials appearing in For-
mula 1 (see Example 2): T0 = [x2 + y2 −xy − 1, y2 + z2 − yz − a2, z2 +x2 − zx−
b2, a2 − 1 + b − b2]. We have IsZeroDimension(T0) = false.

Substituting a = 1 and b = 2, we get a new system T1 = [x2 + y2 − xy −
1, y2 + z2 − yz − 1, z2 + x2 − zx − 4,−2], which is a zero-dimensional system.
IsConsistent(T1) = false, which means T1 has no real zeros.

Substituting a = 0 in T0, we get a square system T2 = [x2 + y2 − xy −
1, y2 + z2 − yz, z2 + x2 − zx − b2, b − b2 − 1]. IsConsistent(T2) is still false.
Substituting a = 2 in T0, a zero-dimensional system T3 is obtained, where T3 =
[x2 + y2 − xy − 1, y2 + z2 − yz, z2 + x2 − zx − b2, b − b2 − 1]. It has 8 real zeros,
which are represented as real zero cubes:

RealZero(T3) = { [[0, 0], [1, 1], [
1179

512
,
2361

1024
], [

77266941

33554432
,
38682627

16777216
]], ...}.

The intervals in every cube correspond to the variables x, y, z, and b in
sequence. We can call IncreasePrecison(cube) to increase the precision of these
cubes, where cube is a zero cube in RealZero(T3).

176 X. Ni et al.

3 Numeric Sampling via Random Global Optimization

In this section, we provide details on encoding an SMT formula into an objective
function for an unconstrained optimization problem. Several samples are gen-
erated using a Markov chain Monte Carlo algorithm. Actually, a CNF formula
inherently corresponds to an optimization objective function.

Definition 3. For any polynomial constraint pij(x1, . . . , xn) �ij 0, where pij ∈
Q[x̄] and �ij ∈ {<,=}, the “distance” function, which measures how far it is to
be satisfied, is defined as: distance(pij(x̄) < 0) := pij(x̄) < 0 ? 0 : pij(x̄)2 and
distance(pij(x̄) = 0) := pij(x̄)2.

For a polynomial formulaF =
∧

Pi∈Λ

∨
pij∈Pi

pij(x1, . . . , xn)�ij 0, where Λ is
a set of finite subsets Pi ⊆ Q[x̄] and �ij ∈ {<,=}, the corresponding optimiza-
tion goal is: Obj[F](x̄) =

∑
Pi∈Λ minpij∈Pi

distance(pij(x̄) �ij 0).

It is easy to see that a constraint is satisfiable if and only if its distance is
equal to zero and the formula is satisfiable if and only if the minimum value of
its corresponding optimization goal is equal to 0.

However, we cannot claim that F is satisfiable if a sample makes the opti-
mization goal very close to zero. If a CNF formula is satisfied, at least one con-
straint in each clause needs to be satisfied. As the optimization goal approaches
zero, based on its construction, it implies that the distances for those satisfied
constraints are also close to 0. Nonetheless, having a distance close to or equal
to 0 does not necessarily mean that a constraint is satisfied. Firstly, a floating-
point number is highly unlikely to satisfy an equation precisely. Secondly, if the
distance of an inequality constraint is near or even equal to zero, it does not
guarantee that the polynomial of the inequality is genuinely less than 0. Due to
numerical errors, a function that is always greater than or equal to zero may
also be evaluated as being less than zero numerically at certain points.

Example 4. Consider the formula: F = (x2−1 = 0)∧ [(x2−1 < 0)∨(x < 0)] and
two points x1 = 0.9998 and x2 = −1.0002. By Definition 3, we have Obj[F](x) =

(x2−1)2+min(x2−1 < 0 ? 0 : (x2−1)2, x < 0 ? 0 : x2) and Obj[F](x1) = Obj[F](x2) =

4 × 10−7, which means the two points are equally good.

To avoid such a situation, we modify the “distance” of inequalities. Let d > 0
be a constant. Define distance(pij(x̄) < 0) = pij(x̄) + d < 0 ? 0 : (pij(x̄) + d)2.

It is sufficient for d to be several orders of magnitude larger than the precision
of the numerical algorithm. It is set to 10−2 in our implementation1. By this
change, Obj[F](x1) is several orders of magnitude larger than Obj(F)(x2) and
the numeric sampling process can obtain that x2 is better than x1.

1 d = 10−2 has nothing special. In our experiment, the numbers between 10−1 and
10−5 make no significant difference. We just need a number several orders of mag-
nitude larger than the precision of the numerical algorithm here.

Solving SMT(NRA) via Sampling and Verification 177

4 The Main Algorithm

Now, we begin to explain the details of our algorithm. Our main algorithm is
provided in Main (see Algorithm 1). It accepts an SMT formula as input and
encodes it into an optimization function, as described in Sect. 3. The algorithm
then calls an MCMC method to obtain several numeric samples for the formula.
Next, in SimplifyFormula (see Algorithm 2), we discard some literals from the
formula to streamline its logical structure. Then, EquationSplit (see Algorithm
3) attempts to divide the original formula into several sub-problems. Finally,
ModelObtain(see Algorithm 4) is used to obtain a symbolic sample that satisfies
the formula, guided by the points obtained throughout the process.

Algorithm 1. Main
Input : formula F , δ
Output: sat or unknown

Samples ← MCMC(F)
for sample in Samples do

F1 ←SimplifyFormula(F, sample, δ)
Problems ←EquationSplit(F1, {}, {}, sample)
for problem in Problems do

equations ← problem[1]
formula ← problem[2]
if ModelObtain(equations, formula, sample) = true then

return sat

return unknown

4.1 Using Numeric Samples to Simplify the Formula

Our goal is to obtain a symbolic sample that satisfies the formula by taking use
of a floating-point sample. A constraint with a smaller distance is more likely
to be satisfied through certain adjustments. Based on these ideas, we use the
algorithm SimplifyFormula to simplify the formula. It takes an NRA formula,
a (numerical) sample, and a threshold δ as input, and it ignores the constraints
if its distance is greater than the threshold δ.

This algorithm yields a formula that is expected to be satisfied by the sample.
Furthermore, the satisfiability of this simplified formula inherits the satisfiability
of the original formula. In our implementation, δ is set to 1. This selection might
seem arbitrary but is actually based on empirical evidence and does not carry
any special meaning.

Example 5. We use the CNF formula in Example 2 to explain Algorithm 2.
Suppose that we obtain the following sample point (For ease of presentation,
here we retain four decimal places after the decimal point.): a = 1.3996, b =
1.5995, x = 1.1547, y = 0.5773, z = 1.8257. By setting δ = 1, we get the following

178 X. Ni et al.

Algorithm 2. SimplyFormula
Input : formula F , sample s, δ
Output: simplified NRA formula

for constraint in F do
if distance(constraint) >= δ then

F ← F \ {constraint}
return F

simplified formula, named formula1, where every constraint has a distance less
than δ:

((x2 + y2 − xy − 1 < 0) ∨ (x2 + y2 − xy − 1 = 0) ∨ (−(z2 + x2 − zx − b2)x < 0))
∧ ((y2 + z2 − yz − a2 = 0) ∨ (z2 − x2 − 2 = 0)) ∧ (z2 + x2 − zx − b2 = 0)
∧ ((a2 − 1 + b − b2 < 0) ∨ (a2 − 1 + b − b2 = 0)) ∧ (−x < 0) ∧ (−y < 0)
∧ (−z < 0) ∧ (−a + 5/4 < 0) ∧ ((−(b − a) < 0) ∨ (−(b − a) = 0)).

4.2 DPLL-Based Splitting Procedure

Our main progress for symbolic verification is a modified version of the DPLL
algorithm, considering that NRA formulas together with a numeric sample. If
the formula is not satisfied under this sample, we try to adjust it to fit some
equations. Therefore, our first step is to select a set of equations in the formula.

In the EquationSplit algorithm, we solely focus on determining the truth
value of each equation. It takes in a formula. TrueEqs and FalseEqs are sets of
equations, representing equations assigned true and false, respectively. On each
invocation of this process, we select an equation (SelectEquation) from the
formula and add it to both TrueEqs and FalseEqs. Once we have determined
the truth value of all equations in the formula, we retain all remaining inequalities
in formula, and [TrueEqs, F] will be a subproblem to be solved. In the main
algorithm, we use ModelObtain to adjust the sample to TrueEqs and verify
whether the system can be satisfied.

In the UnitPropagation process, in addition to propagating through single-
literal clauses, we simultaneously apply the following two rules to infer the truth
value of equations or inequalities: p1 ∈ TrueEqs ∧ p1 | p2 ⇒ ¬p2 < 0 and
p1 ∈ FalseEqs ∧ p2 | p1 ⇒ ¬p2 = 0, where A | B denotes A divides B.

Example 6. We perform EquationSplit on the simplified formula (see Example
5). There are 6 equations in this formula.

On the first invocation of this process, UnitPropagation(z2 + x2 − zx −
b2 = 0) is true since it is the only literal in some clause. Furthermore, we have
(z2 + x2 − zx − b2) | −(z2 + x2 − zx − b2)x ⇒ ¬(−(z2 + x2 − zx − b2)x < 0).
So, −(z2 + x2 − zx − b2)x < 0 is dropped from the formula. Then, we select an
equation −b + a = 0 and assign it to true, invoke ModelObtain again. Now we
have TrueEqs2 = [z2 + x2 − zx − b2,−b + a], FalseEqs2 = [], and formula2 =
((x2 + y2 − xy − 1 < 0) ∨ (x2 + y2 − xy − 1 = 0)) ∧ ((y2 + z2 − yz − a2 =

Solving SMT(NRA) via Sampling and Verification 179

Algorithm 3. EquationSplit
Input : formula F , TrueEqs, FalseEqs, sample s
Output: a list of problems

F ← UnitPropagation(F, TrueEqs, FalseEqs)
ProblemList ← []
if ExistEquation(F) then

equation ← SelectEquation(F)
for problem in EquationSplit(F, TrueEqs ∪ {equation}, FalseEqs, s) do

add problem to ProblemList

for problem in EquationSplit(F, TrueEqs, FalseEqs ∪ {equation}, s) do
add problem to ProblemList

return ProblemList

else
problem ← [TrueEqs, F]
return [problem]

0)∨ (z2 −x2 −2 = 0)) ∧ ((a2 −1+b−b2 < 0)∨ (a2 −1+b−b2 = 0)) ∧ (−x <
0) ∧ (−y < 0) ∧ (−z < 0) ∧ (−a + 5

4 < 0).
We sequentially assign x2 + y2 − xy − 1 = 0, a2 − 1 + b − b2 = 0 and

y2 + z2 −yz −a2 = 0 to true. Eventually, we obtain a sub-problem: TrueEqs3 =
[z2 + x2 − zx − b2,−b + a, x2 + y2 − xy − 1, a2 − 1 + b − b2, y2 + z2 − yz − a2]
and formula3 = (−x < 0) ∧ (−y < 0) ∧ (−z < 0) ∧ (−a + 5

4 < 0). If we
assign −b + a = 0 and x2 + y2 − xy − 1 = 0 to false while set z2 − x2 − 2 = 0
and a2 − 1 + b − b2 = 0 to true, another sub-problem is obtained: TrueEqs4 =
[z2+x2−zx−b2, a2−1+b−b2, z2−x2−2], and formula4 = ((x2+y2−xy−1 <
0)∨(−(z2+x2−zx−b2)x < 0)) ∧ (−x < 0) ∧ (−y < 0) ∧ (−z < 0) ∧ (−a+ 5

4 <
0) ∧ (−(b − a) < 0). By considering different assignments, we obtain a total of
24 sub-problems.

4.3 Model Generation and Verification

Now, we explain a sub-process of computing the model of a formula. Suppose we
have a set of equations, and a formula containing only inequalities, we consider
the satisfiability of (∧p∈equationsp = 0) ∧ formula. Furthermore, suppose we
have a sample that assigns a rational value for each variable. We attempt to
adapt the sample to fit the equations and obtain a symbolic sample satisfying
this formula using ModelObtain.

First, we reduce the equations to a zero-dimensional system by assigning some
variables to their value in sample. Then, we perform RealZero and calculate the
zero cubes. Finally, we invoke CheckInequality (Algorithm 6) to check if the
formula is satisfiable using interval arithmetic. For those variables whose values
are not given in cubes, we just use the values in sample.

Example 7. Continue with Example 6 to explain Algorithm 4. Suppose the sub-
problem is TrueEqs4, formula4 in Example 6. We first take x = 1.15, and obtain

180 X. Ni et al.

Algorithm 4. ModelObtain
Input : equations Eqs, formula F , sample s
Output: true or false

equations ← ReduceToZeroDimension(Eqs, s)
cubes ← RealZero(Eqs)
for cube in cubes do

if CheckInequality(F, cube, s) then
return true

return false

a consistent zero-dimensional system [b2+z2−1.15z+1.33, a2−b2+b−1, z2−3.33].
(All the numbers used in the algorithm are actually represented as rational
numbers, but for the sake of presentation, we uniformly display them here with
two decimal places.) Then, RealZero calculated 8 real zero cubes of it. One
of them is z ∈ [1.82 . . . , 1.82 . . .], b ∈ [1.59 . . . , 1.59 . . .], a ∈ [1.39 . . . , 1.39 . . .]
together with x = 1.15 . . . , y = 0.57 CheckInequality confirms that this
sample satisfies the formula symbolically.

4.4 Reducing the Equation Set to Zero-Dimensional System

It is essential to note that the input equation set for the RealZero process
requires a zero-dimensional system. If the equation set input to the ModelObtain
process is not a zero-dimensional system, we need to reduce it to a zero-
dimensional system first.

Algorithm 5. ReduceToZeroDimension
Input : equations Eqs, formula F , sample s
Output: equations Eqs or false

Eqs ← AssignAllVariables(Eqs, s)
while not IsConsistent(equations) do

variable ← ChooseOneVariable(Eqs)
if variable = false then

break

Eqs ← BacktrackOneVariable(Eqs, variable)

if IsZeroDimension(Eqs) and IsConsistent(Eqs) then
return Eqs

else
return false

In the ReduceToZeroDimension procedure, we assign variables with the
sample value, hoping that when some variables are substituted, a consistent
zero-dimensional system will emerge. We choose to substitute all variables
(AssignAllVariables) first and backtrack one assignment each time if the sys-
tem is not consistent (ChooseOneVariable and then BacktrackOneVariable).

Solving SMT(NRA) via Sampling and Verification 181

The main reason is the time cost of inputs in the IsZeroDimension proce-
dure is considerably more for non-zero-dimensional systems than that for zero-
dimensional systems. During ChooseOneVariabe, in order to avoid the system
having no real zeros, we always choose variables in the polynomials assigned to
a constant first.

Example 8. Consider a list of polynomials [z2 +x2 − zx− b2, a2 −1+ b− b2, z2 −
x2 − 2]. First, substituting a = 1.39, b = 1.59, x = 1.15, z = 1.82, we get a non-
consistent system containing 3 constants. Then, backtrack z to reduce constants
in this system. After that, since a2−1+b−b2 is still a constant. We backtrack a.
Finally, b is backtracked. And a consistent zero-dimensional system is obtained.

4.5 Determine Satisfiability of Inequality

In this subsection, we address a sub-problem of solving SMT problems. Given
a CNF formula with only inequalities, suppose we have a complete symbolic
assignment for all variables. Our goal is to check whether the formula is satisfied
under this assignment.

More precisely, we consider a formula in the form F = ∧Pi∈Λ ∨pij∈Pi

pij(x1, ..., xn) < 0. The set of variables is divided into two parts: one part is
assigned rational values, and the other part is assigned by a real zero cube of a
certain zero-dimensional system. We aim to determine whether the formula F is
ture or false under this assignment.

It is important to note that although cubes formally appear as a series of
interval-defined cubes, they actually represent a single point. Moreover, as stated
in Sect. 2, we can increase the precision of cubes to any value small enough using
the function IncreasePrecision(cube) with a low cost.

Before showing how to solve this problem, we give a brief introduction
to interval arithmetic. All the concepts of interval arithmetic are classic. A
subset X of R is called an interval if X has one of the forms from the fol-
lowing list: [a, b], [a,+∞), (−∞, b], (−∞,+∞), where a, b ∈ R. Letting a, b ∈
R∪ {+∞,−∞}, we use [a, b] to unify all the forms of an interval. We also use a
list of intervals to denote a cube, which represents a cube in a multidimensional
space.

Definition 4. For an interval X = [a, b], the sign of X is defined as follows:
Sign(X) is −1 if b < 0; 0 if a ≤ 0 ≤ b; and 1 if a > 0. For two intervals X,Y
and an operation ◦ ∈ {+,−, ·}, we define X ◦ Y = {x ◦ y | x ∈ X, y ∈ Y }.

A multivariate polynomial p is actually a combination of operations from
{+,−, ·}, and we can get an interval evaluation of its value in a cube using the
operations on intervals. This is denoted as Subs(p, cube). Additionally, when the
cube shrinks to a point x̄, Subs(p, cube) will approach p(x̄).

Example 9. Suppose we have x ∈ [−1, 1], y ∈ [1, 3/2] and a polynomial
p = x2 + y2 − xy − 1. Using interval arithmetic, we get an evaluation of p as
Subs(p, [[−1, 1], [1, 3/2]]) = [−5/2, 15/4] and Sign(Subs(p, [[−1, 1], [1, 3/2]])) = 0.

182 X. Ni et al.

As shown in Algorithm 6, we are given a CNF formula with only < con-
straints, rational assignments for part of the variables, and a real zero cube
assignment for the other variables. And the algorithm returns the Boolean value
(true or false) of the formula under this assignment. In each loop, we use interval
arithmetic to determine the sign of each constraint and infer the Boolean value
of each clause. In case we cannot determine the value of the formula after one
loop, i.e. there is some sign of constraint that cannot be determined by the cube
precision, we increase the precision of the cube and repeat this progress.

Algorithm 6. CheckInequality
Input : formula, cube, x (where formula has only inequality constraints)
Output: true or false

for i from 1 to 5 do
newformula ← []
forall the clause in formula do

newclause ← []
forall the constraint in clause do

if Sign(constraint, x ∪ cube) = −1 then
newclause ← [true]
break

else
if Sign(constraint, x ∪ cube) = 0 then

newclause ← newclause ∪ {constraint}

if newclause = [true] then
break

else
if newclause = [] then

return false
else

newformula ← newformula ∪ {newclause}

if newclause = [] then
return true

else
cube ←IncreasePrecision(cube)

return false

Note that no matter how many times we increase the precision, we may
always get Sign(p) = 0 if the assignment is a zero of a certain constant p < 0.
Therefore, we restrict the precision adjustment to a maximum of five increases2.
Beyond these increases, any remaining constraints are considered as “=0” for
this assignment, and subsequently yield a result of false.

2 The function, IncreasePrecision, escalates the precision level of the cube by a factor
of 2−8. After 5 iterations, the precision ascends by a factor of 2−40, which, as per
our judgment, is deemed adequate.

Solving SMT(NRA) via Sampling and Verification 183

5 Experiment

We conducted experiments to evaluate the performance of our algorithm on
three classes of instances. The first one is NRA from SMTLIB, the second one
is collected from the literature and is partially manually created, and the last
one is composed of randomly generated instances. We compare our tool with
state-of-the-art SMT(NRA) solvers.

5.1 Experiment Preparation

Implementation: We use the basinhopping package from the Python Scipy
library as the implementation tool for our optimization program, and imple-
mented the subsequent algorithm with Maple2021 as a tool, which is named
ET.

Experiment Setup: All experiments were conducted on 8-Core Intel Core i7-
11700K with 64GB of memory and Ubuntu 22.04.2 LINUX SYSTEM. We com-
pare our tool with 4 state-of-the-art SMT(NRA) solvers, namely Z3(4.12.1),
CVC5(1.0.5), Yices2(2.6.4) and MathSAT5(5.6.9). Each solver is executed with
a cutoff time of 90 s for each instance.

5.2 Instances

We prepare three classes of instances. The first dataset is QF-NRA comes from
SMTLIB3. It contains all the 12134 instances, among which 5248 are satisfiable,
5534 are unsatisfiable, and 1352 unknown. The second class of instances named
SC contains two subsets, with a total of 147 instances4. RW is taken from a
book on symbolic computation [23], and all cases in Vers are from Verschelde’s
test suite5. The third class is random instances. The method used to generate
those instances is almost identical to the method in [10], with the only difference
being that we modify it to allow “=” with a certain probability.

After conducting extensive experiments, some parameters that can determine
the structure of the formula are reasonably fixed in a certain interval, and the
remaining parameters are used to adjust the difficulty of the formula to illustrate
the experimental effect. Let rdn(down,up) denote a random integer between two
integers down and up. All randomly generated formulas have a structure that
is defined by a set of parameters following these criteria: vn is the number of
possible variables with a value of rdn(10,15), pn is the number of polynomials
that may appear in formulas with a value of rdn(20,40), pvn is the number of
variables that each polynomial may have with a value of rdn(4,6), pl is the size
of a polynomial with a value of rdn(10,30), cl is the length of clauses in the
formula with a value of rdn(3,5). The other two parameters are used to adjust
the difficulty of the formula in two different aspects, namely pd which decides
the degree of each polynomial, and cn which is the clause num of the formula.
3 https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF NRA.
4 https://gitee.com/wuyulunPM/etsolver.
5 https://www.math.uic.edu/∼jan.

https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_NRA
https://gitee.com/wuyulunPM/etsolver
https://www.math.uic.edu/{~}jan

184 X. Ni et al.

5.3 Comparison to Symbolic Computation Tools

symbolic computation tools can handle the conjunction of polynomial con-
straints, yet lack the ability to manage logical formulas. Our method transforms
non-linear SMT problems into problems that can be solved by symbolic compu-
tation tools, effectively augmenting the reach of such tools. For this reason, a
comparison with symbolic computation tools is not necessary.

5.4 Comparison to State-of-the-Art SMT Solvers

Our tool can only respond with ‘sat’ and ‘unknown’, whereas the state-of-the-
art SMT solvers deliver answers in the form of ‘sat’ or ‘unsat’. We run our
algorithm three times on every example to mitigate random effects and only
count those instances where the response of our tool is ‘sat’. It’s crucial to
note that a majority of state-of-the-art SMT solvers integrate a combination of
strategies, both complete and incomplete. Our intention, via these experiments,
is to demonstrate that our approach can handle a class of problems that these
integrated methods struggle with, that is, highly non-linear cases.

We run our algorithm together with state-of-the-art SMT solvers on all
instances with satisfiable or unknown status and discard the instances with
Boolean variables. The results are presented in Tables 1 and 2. The tables show
that for each solver, the number of instances they solve successfully and give a
sat answer. The first column on the left is the overall, and the remaining ones
correspond to each benchmark family. The best results corresponding to each
benchmark family are highlighted in boldface.

For QF-NRA, we have observed that our performance in solving instances
with high nonlinearity, specifically in Sturm-MBO and Geogebra, exceeds that of
other solvers. However, our performance on instances that exhibit nearly linear
behavior falls short, and these instances make up the majority of the QF-NRA.
Although we solve fewer instances compared to Z3, CVC5, and Yices2, we have
successfully solved 55 unique instances that other solvers could not handle. It is
worth considering that our algorithm, despite employing a single strategy unlike
state-of-the-art solvers, demonstrates a competitive advantage.

For the SCs manually collected from the literature, formulas in RW are struc-
tured with the conjunction of polynomial constants, while formulas in Vers only
contain equations. The instance in both of them don’t have a complex logical
structure, but the degree of polynomials is relatively high. The performance on
these instances being better than all state-of-the-art solvers is as expected, as
shown in Table 2. However, we observed that there are still some cases that we
can not solved. As mentioned earlier, in our framework, triangular decomposi-
tion is used in handling zero-dimensional systems, which can calculate all real
roots of any zero-dimensional system. However, it is slower than many incom-
plete algorithms for zero-dimensional systems. Our tool is also weaker than many
other algorithms for handling zero-dimensional systems in the instances of Vers.
Other solvers may be added to overcome this in the future.

Solving SMT(NRA) via Sampling and Verification 185

Table 1. Summary of results for cases without Boolean variables in QF-NRA. The
data in the table represents the number of instances where the solver returned ‘sat’ as
the result.

Total Sturm-
MBO

Sturm-
MGC

UltimateInv Economics-
M

Pine Geogebra Uncu kissing LassoRanker meti-
tarski

UltimateAut zankl

ET 4683 43 0 0 58 189 111 66 24 0 4155 0 37

z3 5257 0 2 44 93 235 109 69 32 173 4391 44 65

cvc5 5152 0 0 34 89 199 91 62 16 232 4335 34 60

yices 5112 0 0 39 90 235 98 69 20 96 4368 39 58

mathsat 2677 0 0 34 84 11 0 45 18 266 2159 34 26

Unique 55 43 0 0 7 0 3 0 1 0 1 0 0

On randomly generated examples, by the specific fixed parameter mentioned
above (except pd and cn), we compare our algorithm with popular solvers in
different equality possibilities (ep represents the possibilities a constraint is an
equation). The result is shown in Fig. 1. In each row, the value of ep is set to
different values, specifically 0.15, 0.3, and 0.5. In each column, the complexity of
the random formulas is changed from different dimensions. In the first column,
we fix the number of clauses(cn) as rnd(15,25) and increase the polynomial
degree pd from 1 to 100, i.e. changing the nonlinearity degree of the formulas.
We find that under the three equality probabilities, the curves have the same
trend. Besides, ET is weaker than the popular SMT solvers in the linear case,
similar to their capabilities in the quadratic case, and much better than them
when the polynomial degree is greater than 3.

Table 2. Summary of results for SC without Boolean variables. The data in the table
represents the number of instances where the solver returned ‘sat’ as the result.

Total RW Vers

ET 75 22 53

z3 44 11 33

cvc5 30 10 20

yices 32 5 27

mathsat 36 7 29

To further clarify the comparison of solver capabilities when the polynomial
degree reaches 3, the second column of the chart is drawn. In these three sets
of experiments, we fix the polynomial degree(pd) at 3 and increase the number
of clauses(cn) from 10 to 100 (recall the clause length(cl) value as rdn(3,5)),
that is, changing the complexity of the logical structure of the formula. We can
see that under the three equality probabilities, regardless of how cn changes, we
always outperform existing solvers. Therefore, we conclude that our algorithm
has an absolute advantage over the popular solvers when the polynomial degree
is greater than or equal to 3.

186 X. Ni et al.

(a) cn=rdn(15,25),ep=0.15 (b) pd=3,ep=0.15

(c) cn=rdn(15,25),ep=0.3 (d) pd=3,ep=0.3

(e) cn=rdn(15,25),ep=0.5 (f) pd=3,ep=0.5

Fig. 1. Comparing ET with popular solvers on randomly generated instances.

6 Conclusion and Future Work

In this paper, we presented a new approach for proving satisfiability in NRA,
utilizing a sampling and verification process as its foundation. Our algorithm,
referred to as ET, was implemented and evaluated on three sets of benchmark
problems. Though our algorithm may not be able to respond to cases marked

Solving SMT(NRA) via Sampling and Verification 187

as “unsat” and its sampling heuristics do not provide a guarantee for a “sat”
response in all satisfiable instances, the results clearly demonstrate the competi-
tiveness of our method on all satisfiable instances. It also showcases a significant
improvement over state-of-the-art techniques, particularly for highly nonlinear
problems involving more than 10 variables and polynomial degrees greater than
2. However, our approach faces challenges when dealing with cases that are
almost linear or consist of large equation systems. Moving forward, we plan to
integrate more heuristics, such as local search, to enhance sampling capabilities
and incorporate some incomplete but rapid solvers for zero-dimensional systems.

Acknowledgements. This work was supported by the National Key R & D Program
of China (No. 2022YFA1005102).

References

1. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition: a synopsis. ACM SIGSAM Bull. 10(1), 10–12 (1976)

2. Mouraford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth
table invariant cylindrical algebraic decomposition. J. Symb. Comput. 76, 1–35
(2016)

3. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) Verification, Model Checking, and
Abstract Interpretation, pp. 1–12 (2013)

4. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) Automated Reasoning, pp. 339–354 (2012)

5. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS, pp. 337–340
(2008)

6. Barbosa, H., et al.: CVC5: a versatile and industrial-strength SMT solver. In:
TACAS, pp. 415–442 (2022)

7. Dutertre, B.: Yices 2.2. In: CAV, pp. 737–744 (2014)
8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT

solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

9. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

10. Li, H., Xia, B., Zhao, T.: Local search for solving satisfiability of polynomial for-
mulas. In: Enea, C., Lal, A. (eds.) CAV, pp. 87–109 (2023)

11. Li, B., Cai, S.: Local search for SMT on linear and multilinear real arithmetic,
arXiv preprint arXiv:2303.06676 (2023)

12. Cimatti, A., Griggio, A., Lipparini, E., Sebastiani, R.: Handling polynomial and
transcendental functions in SMT via unconstrained optimisation and topological
degree test. In: Bouajjani, A., Hoĺık, L., Wu, Z. (eds.) ATVA 2022. LNCS, vol.
13505, pp. 137–153. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
19992-9 9

13. Wu, W.-T.: On the decision problem and the mechanization of theorem proving in
elementary geometry. Sci. Sinica 21(2), 159–172 (1978)

https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-38574-2_14
http://arxiv.org/abs/2303.06676
https://doi.org/10.1007/978-3-031-19992-9_9
https://doi.org/10.1007/978-3-031-19992-9_9

188 X. Ni et al.

14. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, Math. Inst.,
University of Innsbruck (1965)

15. Bose, N.K.: Gröbner bases: an algorithmic method in polynomial ideal theory.
In: Buchberger, B. (ed.) Multidimensional Systems Theory and Applications, pp.
89–127. Springer, Dordrecht (1985). https://doi.org/10.1007/978-94-017-0275-1 4

16. Li, T.-Y.: Numerical solution of multivariate polynomial systems by homotopy
continuation methods. Acta Numerica 6, 399–436 (1997)

17. Lasserre, J.B., Laurent, M., Rostalski, P.: Semidefinite characterization and com-
putation of zero-dimensional real radical ideals. Found. Comput. Math. 8, 607–647
(2008)

18. Yang, Z., Zhi, L., Zhu, Y.: Verified error bounds for real solutions of positive-
dimensional polynomial systems. In: Proceedings of ISSAC, pp. 371–378 (2013)

19. Yang, Z., Zhao, H., Zhi, L.: Verifyrealroots: a matlab package for computing verified
real solutions of polynomials systems of equations and inequalities. J. Syst. Sci.
Compl. 36(2), 866–883 (2023)

20. Eriksson, F.: Which triangles are plane sections of regular tetrahedra? Amer. Math.
Monthly 101(8), 788–789 (1994)

21. Li, H., Xia, B., Zhao, T.: Square-free pure triangular decomposition of zero-
dimensional polynomial systems. J. Syst. Sci. Compl. (2023)

22. Xia, B., Zhang, T.: Real solution isolation using interval arithmetic. Comput. Math.
Appl. 52(6), 853–860 (2006)

23. Xia, B., Yang, L.: Automated Inequality Proving and Discovering. World Scientific
(2016)

https://doi.org/10.1007/978-94-017-0275-1_4

Leveraging TLA+ Specifications
to Improve the Reliability

of the ZooKeeperCoordination Service

Lingzhi Ouyang , Yu Huang(B) , Binyu Huang , and Xiaoxing Ma

State Key Laboratory for Novel Software Technology, Nanjing 210023, China
{lingzhi.ouyang,binyuhuang}@smail.nju.edu.cn, {yuhuang,xxm}@nju.edu.cn

Abstract. ZooKeeper is a coordination service, widely used as a back-
bone of various distributed systems. Though its reliability is of critical
importance, testing is insufficient for an industrial-strength system of the
size and complexity of ZooKeeper, and deep bugs can still be found. To
this end, we resort to formal TLA+ specifications to further improve the
reliability of ZooKeeper. Our primary objective is usability and automa-
tion, rather than full verification. We incrementally develop three levels
of specifications for ZooKeeper. We first obtain the protocol specification,
which unambiguously specifies the Zab protocol behind ZooKeeper. We
then proceed to a finer grain and obtain the system specification, which
serves as the super-doc for system development. In order to further lever-
age the model-level specification to improve the reliability of the code-
level implementation, we develop the test specification, which guides the
explorative testing of the ZooKeeper implementation. The formal specifi-
cations help eliminate the ambiguities in the protocol design and provide
comprehensive system documentation. They also help find critical deep
bugs in system implementation, which are beyond the reach of state-of-
the-art testing techniques. Our specifications have been merged into the
official Apache ZooKeeper project.

Keywords: TLA+ · ZooKeeper · Zab · Specification · Model checking

1 Introduction

ZooKeeper is a distributed coordination service for highly reliable synchroniza-
tion of cloud applications [23]. ZooKeeper essentially offers a hierarchical key-
value store, which is used to provide a distributed configuration service, synchro-
nization service, and naming registry for large distributed systems. Its intended

This work is supported by the National Natural Science Foundation of China
(62372222), the CCF-Huawei Populus Grove Fund (CCF-HuaweiFM202304), the Coop-
eration Fund of Huawei-Nanjing University Next Generation Programming Innovation
Lab (YBN2019105178SW38), the Fundamental Research Funds for the Central Uni-
versities (020214912222) and the Collaborative Innovation Center of Novel Software
Technology and Industrialization.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 189–205, 2024.
https://doi.org/10.1007/978-981-99-8664-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_11&domain=pdf
http://orcid.org/0000-0001-7523-8759
http://orcid.org/0000-0001-8921-036X
http://orcid.org/0009-0007-8359-9010
http://orcid.org/0000-0001-7970-1384
https://doi.org/10.1007/978-981-99-8664-4_11

190 L. Ouyang et al.

usage requires Zookeeper to provide strong consistency guarantees, which it does
by running a distributed consensus protocol called Zab [25].

Consensus protocols are notoriously difficult to get right. The complex failure
recovery logic results in an astronomically large state space, and deep “Heisen-
bugs" still often escape from intensive testing [31,32]. Toward this challenge, we
resort to formal methods to improve the reliability of ZooKeeper. We do not aim
to achieve full verification, but instead emphasize a high degree of automation
and practical usability. Moreover, our primary goal is to improve the reliability
of both the model-level design and the code-level implementation.

We adopt TLA+ as our specification language. TLA+ has been successful in
verifying distributed concurrent systems, especially consensus protocols. Many
consensus protocols, including Paxos, Raft and their derivatives, have their
TLA+ specifications published along with the protocol design and implemen-
tation [8,10,18,30]. However, the current usage of TLA+ is mainly restricted to
verification of the protocol design. Considering code-level implementation, model
checking-driven test case generation is used to ensure the equivalence between
two different implementations in MongoDB Realm Sync [16].

Our primary objective is to improve the reliability of ZooKeeper. We incre-
mentally obtain three levels of specifications in TLA+. We first obtain the
protocol specification, which unambiguously specifies the Zab protocol behind
ZooKeeper. We then proceed to a finer grain and obtain the system specification,
which serves as the super-doc1 for ZooKeeper development. In order to leverage
the model-level specification to improve the reliability of the code-level imple-
mentation, we further develop the test specification, which guides the explorative
testing of the ZooKeeper implementation. The formal specifications help elimi-
nate the ambiguities in the protocol design and provide comprehensive system
documentation. They also help find critical deep bugs in system implementation,
which are beyond the reach of state-of-the-art testing techniques. Our specifi-
cations are available in the online repository [6]. Writing TLA+ specifications
for ZooKeeper was raised as an issue [3]. Our specifications have addressed this
issue and been accepted by the Apache ZooKeeper project [11].

We start in Sect. 2 by introducing the basics of ZooKeeper and TLA+. We
present our three levels of specifications in Sects. 3, 4 and 5. In Sect. 6, we discuss
the related work. Finally, Sect. 7 concludes with a discussion on the benefits of
and the potential extensions to our formal specification practices.

2 ZooKeeper and TLA+

2.1 ZooKeeper and Zab

ZooKeeper is a fault-tolerant distributed coordination service used by a variety of
distributed systems [14,23,35]. These systems often consist of a large number of
processes and rely upon ZooKeeper to perform essential coordination tasks, such

1 Super-doc refers to the precise, concise and testable documentation of the system
implementation, which can be explored and experimented on with tools [37].

Leveraging TLA+ to Improve ZooKeeper Reliability 191

as maintaining configuration information, storing status of running processes and
group membership, providing distributed synchronization and managing failure
recovery.

Due to the significant reliance of large applications on ZooKeeper, the ser-
vice must maintain a high level of availability and possess the ability to mask
and recover from failures. ZooKeeper achieves availability and reliability through
replication and utilizes a primary-backup scheme to maintain the states of replica
processes consistent [13,24,25]. Upon receiving client requests, the primary gen-
erates a sequence of non-commutative state changes and propagates them as
transactions to the backup replicas using Zab, the ZooKeeper atomic broad-
cast protocol. The protocol consists of three phases: DISCOVERY, SYNC and
BROADCAST. Its primary duties include agreeing on a leader in the ensemble,
synchronizing the replicas, managing the broadcast of transactions, and recov-
ering from failures.

To ensure progress, ZooKeeper requires that a majority (or more generally a
quorum) of processes have not crashed. Any minority of processes may crash at
any moment. Crashed processes are able to recover and rejoin the ensemble. For
a process to perform the primary role, it must have the support of a quorum of
processes.

2.2 TLA+ Basics

TLA+ (Temporal Logic of Actions) is a lightweight formal specification language
that is particularly suitable for designing distributed and concurrent systems [7].
In contrast to programming languages, TLA+ employs simple mathematics to
express concepts in a more elegant and precise manner. In TLA+, a system is
specified as a state machine by defining the possible initial states and the allowed
actions, i.e., state transitions. Each state represents a global state of the system.
Whenever all enabling conditions of a state transition are satisfied in a given
current state, the system can transfer to the next state by applying the action.

One of the notable advantages of TLA+ is its ability to handle different
levels of abstraction. Correctness properties and system designs can be regarded
as steps on a ladder of abstraction, with correctness properties occupying higher
levels, system designs and algorithms in the middle, and executable code at the
lower levels [37]. The flexibility to choose and adjust levels of abstraction makes
TLA+ a versatile tool suited to a wide range of needs.

TLA+ provides the TLC model checker, which builds a finite state model
from the specifications for checking invariant safety properties (in this work,
we mainly focus on safety properties and do not consider liveness properties).
TLC first generates a set of initial states that satisfy the specification, and then
traverses all possible state transitions. If TLC discovers a state violating an
invariant property, it halts and provides the trace leading to the violation. Oth-
erwise, the system is verified to satisfy the invariant property. With TLC, we are
able to explore every possible behavior of our specifications without additional
human effort. As a result, we can identify subtle bugs and edge cases that may
not be exposed through other testing or debugging techniques.

192 L. Ouyang et al.

3 Protocol Specification

We first develop the protocol specification, i.e., specification of the Zab protocol
based on its informal description [23,25]. The protocol specification aims at
precise description and automatic model checking of the protocol design. It also
serves as the basis for further refinements, as detailed in Sects. 4 and 5.

3.1 Development of Protocol Specification

The protocol specification necessitates a comprehensive description of the design
of Zab, along with the corresponding correctness conditions that must be upheld.
In the following, we present our practice of developing the TLA+ specifications
for both aspects.

Specification of Zab. The “upon-do clauses” in the Zab pseudocode can be
readily transformed to the enabling conditions and actions in TLA+. This fea-
ture greatly simplifies the task of obtaining the initial skeleton of the protocol
specification. The real obstacle lies in handling the ambiguities and omissions in
the informal design. We have three challenges to address, as detailed below.

First, we need to cope with the ambiguities concerning the abstract mathe-
matical notion of quorum. ZooKeeper is a leader-based replicated service. The
leader requires certain forms of acknowledgements from a quorum of followers
to proceed. Though the notion of quorum greatly simplifies presentation of the
basic rationale of Zab, it introduces subtle ambiguities in the design. Specifi-
cally, the set Q, which denotes the quorum of followers in the Zab pseudocode,
is severely overloaded in the informal design. It refers to different sets of follow-
ers in different cases, as shown in Fig. 1. In the TLA+ specification, we must
use separate variables for different quorums in different situations, e.g., variable
cepochRecv for the quorum acknowledging the CEPOCH message and ackeRecv
for the quorum acknowledging the ACKEPOCH message.

Second, the design of Zab mainly describes the “happy case”, in which the fol-
lower successfully contacts the leader and the leader proceeds with support from
a quorum of followers. In our TLA+ specification, we must precisely describe
the unhappy case where the leader has not yet received sufficient acknowledge-
ments from the followers. We must also explicitly model failures in the execution
environment, enabling the TLC model checker to exhaustively exercise the fault-
tolerance logic in Zab. Moreover, Zab is a highly concurrent protocol. Actions of
ZooKeeper processes and environment failures can interleave. The complex inter-
leavings are not covered in the protocol design, and we supplement the detailed
handling of the interleavings in our TLA+ specification.

Third, the Zab protocol does not implement leader election, but relies on
an assumed leader oracle. In our TLA+ specification, we use a variable called
leaderOracle to denote the leader oracle. The leader oracle exposes two actions
UpdateLeader and FollowLeader to update the leader and to find who is the leader,
respectively.

Leveraging TLA+ to Improve ZooKeeper Reliability 193

Fig. 1. From informal design to formal specification. In the informal design (Left), the
set Q, which denotes the quorum of followers, is ambiguous and overloaded. In the
TLA+ specification (Right), the set Q is specified with different variables (cepochRecv,
ackeRecv and ackldRecv) for different quorums in different situations.

The details of protocol design we supplement in the TLA+ specification are
verified by model checking. It is also confirmed by our development of the system
specification (see Sect. 4).

Specification of Correctness Conditions. We specify two types of correct-
ness conditions, the core correctness conditions and the invariant properties
(with a focus on safety properties in this work). The Zab protocol [25] pre-
scribes six core correctness conditions, namely integrity, total order, agreement,
local primary order, global primary order and primary integrity. These proper-
ties are extracted from the requirement analysis of the ZooKeeper coordination
service. They constrain the externally observable behavior from the user client’s
perspective.

Designers usually do not directly guarantee the core correctness conditions
when designing a complex protocol like Zab. Rather, they decompose the core
correctness conditions into a collection of invariant properties. In principle, the
invariants maintained in different parts of the protocol can collectively ensure
the core correctness conditions. Model checking against the invariants can also
accelerate the detection of bugs in protocol design. We extract the invariant
properties based on our understanding of the Zab protocol. We are also inspired
by the invariants specified for Paxos, Raft and their derivatives [8,10,30,38].

3.2 Ensuring Quality of Protocol Specification

Upon completing the development of the protocol specification, we perform
model checking to ensure its quality. The protocol specification is amenable to
automatic exploration by the TLC model checker. We utilize TLC in two modes:
the standard model-checking mode, in which TLC traverses the state space in
a BFS manner, and the simulation mode, where TLC keeps sampling execution
paths of a predefined length until it uses up the testing budget.

194 L. Ouyang et al.

In this work, we perform model checking on a PC equipped with an Intel I5-
9500 quad-core CPU (3.00GHz) and 16GB RAM, running Windows 10 Enter-
prise. The software used is TLA+ Toolbox v1.7.0. We first tame the state explo-
sion problem for the model checking and identify subtle bugs resulting from
ambiguities in the informal design. Then we conduct further model checking to
verify the correctness of the protocol specification.

Taming State Explosion. Model checking suffers from the state explosion
problem, making it impractical to fully check models of arbitrary scales. To
mitigate this issue, we prune the state space by tuning the enabling conditions
of key actions in the protocol specification. The basic rationale behind this is to
constrain the scheduling of meaningless events. For example, too many failure
events are meaningless when the leader does not even contact the followers, and
such scheduling should be ruled out during the checking process.

Furthermore, we directly limit the state space based on the small-scope
hypothesis, which suggests that analyzing small system instances suffices in
practice [34]. Specifically, we control the scale of the model by restricting the
following configuration parameters: the number of servers, the maximum num-
ber of transactions, the maximum number of timeouts, and the maximum
number of restarts. The server count is confined to a maximum of 5, as it
is sufficient to trigger most invariant violations in most cases according to
ZooKeeper’s bug tracking system [1]. Similarly, the number of transactions is
limited to a small value, as it already suffices to cause log differences among
servers.

It is also worth noting that in the protocol specification, we model failures
as Timeout and Restart mainly for state space reduction. These two actions can
effectively describe the effects of multiple failures in the execution environment.

Finding Ambiguities in the Informal Design. Following the above tech-
niques to mitigate the state explosion, we perform model checking and find two
invariant violations in the preliminary version of our protocol specification. One
is due to the misuse of the quorum of followers. The other concerns how the
leader responds to a recovering follower in between logging a transaction and
broadcasting it to the followers. The paths to the violations help us find the root
cause and fix the bugs in the protocol specification. Our fixes are also in accor-
dance with the system implementation (see Sect. 4), though the implementation
contains more details.

Verifying Correctness. After resolving the aforementioned bugs in the pro-
tocol specification, we proceed with model checking to ensure its correctness.
We adjust the scale of the model using the parameters specified in the model
configuration mentioned earlier. For each configuration, we record the checking
mode, the number of explored states, and the checking time cost. For the model
checking mode, we also record the diameter of the state space graph generated

Leveraging TLA+ to Improve ZooKeeper Reliability 195

by the TLC model checker. For the simulation mode, we set the maximum length
of the trace to 100. We restrict the model checking time to 24 h and the disk
space used to 100GB.

Table 1. Model checking results of the protocol specification.

Config∗ Checking mode Diameter Num of states Time cost

(2, 2, 2, 0) Model-checking 38 19, 980 00 : 00 : 03

(2, 2, 0, 2) Model-checking 38 25, 959 00 : 00 : 04

(2, 2, 1, 1) Model-checking 38 26, 865 00 : 00 : 04

(2, 3, 2, 2) Model-checking 60 10, 370, 967 00 : 06 : 58

(3, 2, 1, 0) Model-checking 43 610, 035 00 : 00 : 28

(3, 2, 0, 1) Model-checking 50 1, 902, 139 00 : 02 : 36

(3, 2, 2, 0) Model-checking 54 26, 126, 204 00 : 17 : 07

(3, 2, 0, 2) Model-checking 68 245, 606, 642 03 : 41 : 23

(3, 2, 1, 1) Model-checking 61 84, 543, 312 01 : 00 : 18

(3, 2, 2, 1) Model-checking 50 1, 721, 643, 089 > 24 : 00 : 00

(3, 2, 1, 2) Model-checking 46 1, 825, 094, 679 > 24 : 00 : 00

(3, 3, 3, 3) Simulation − 1, 194, 558, 650 > 24 : 00 : 00

(4, 2, 1, 0) Model-checking 64 21, 393, 294 00 : 23 : 29

(4, 2, 0, 1) Model-checking 71 79, 475, 010 01 : 37 : 31

(4, 2, 2, 0) Model-checking 57 1, 599, 588, 210 > 24 : 00 : 00

(5, 2, 3, 3) Simulation − 1, 044, 870, 264 > 24 : 00 : 00

(5, 3, 2, 2) Simulation − 817, 181, 422 > 24 : 00 : 00

* In the protocol specification, the Config parameters represent the number of
servers, the maximum number of transactions, the maximum number of time-
outs, and the maximum number of restarts.

Table 1 presents statistics regarding the model checking of the protocol spec-
ification. The explorations shown in the table cover a variety of configurations,
with the server count ranging from 2 to 5, and the maximum number of trans-
actions, timeouts, and restarts up to 3. Within the time limit of 24 h, the explo-
rations of all configurations do not exceed the space limit. When limiting the
model to a relatively small scale, the model-checking mode can exhaustively
explore all possible interleavings of actions. In contrast, the simulation mode
tends to explore deeper states. All specified correctness conditions are met with-
out violation during the explorations in models of diverse configurations. Based
on the results and the small-scope hypothesis [34], we have achieved a high level
of confidence in the correctness of our protocol specification.

Moreover, we further tweak the specification a little and see if the model
checker can find the planted errors. For instance, in one trial, we modified the
definition of the constant Quorums in the specification, which originally denotes

196 L. Ouyang et al.

a set of all majority sets of servers, to include server sets that comprise no less
than half of all servers. In expectation, the modification will lead to invariant
violations only when the number of servers is even. We executed model checking
on the modified specification, and as anticipated, no violations occurred when
the server number was 3 or 5. However, in the case of 2 or 4 servers, invariant
violations emerged, such as two established leaders appearing in the same epoch.
Such trials illustrate the effectiveness of the specified correctness conditions and
further indicate the correctness of the protocol specification. More details about
the verification of the protocol specification can be found in [6].

4 System Specification

Given the protocol specification, we further develop the system specification,
which serves as the super-doc supplementing detailed system documentation
of Zab implementation for the ZooKeeper developers. In the following, we first
discuss the essentials of a system specification written in TLA+. Then, we present
the practice of developing the system specification and the approach to ensuring
its quality.

4.1 Essentials of a Super-Doc in TLA+

To develop the system specification, we first need to decide which should and
should not be included in the specification. We fathom out the right level of
abstraction from two complementary perspectives, namely what the system
developers need from a super-doc and what the TLA+ specification language
can express.

As a super-doc, the system specification should reconcile accuracy with sim-
plicity. When we submitted the preliminary version of the system specification
to the ZooKeeper community [22], a basic principle the community suggests is
that “whether or not an action should be retained in the specification depends
on whether it is critical to reveal important details of the protocol”. Further sug-
gestions include “implement the minimum required” and “keep things simpler”.
These suggestions guide us to calibrate the level of abstraction. In principle,
the system specification should cover every aspect of the ZooKeeper system.
Meanwhile, low-level details, e.g. the leader-follower heartbeat interactions and
internal request queues for blocked threads, can be omitted. We also inherit the
modularity of the system implementation in our specification.

The precision of the specifications written in TLA+ is intended to uncover
design flaws. TLA+ specifications mostly consist of ordinary non-temporal math-
ematics, e.g., basic set theory, which is less cumbersome than a purely temporal
specification. A major advantage of TLA+ is that it frees us from complex pro-
gramming considerations like multi-threading and object encapsulation. When
enjoying the simplicity of TLA+, we inevitably need to handle the gap in expres-
siveness between TLA+ and the programming language (Java in the ZooKeeper
case). In ZooKeeper, the block-and-wakeup style multi-thread programming is

Leveraging TLA+ to Improve ZooKeeper Reliability 197

heavily used, while in TLA+, actions are executed in an asynchronous style.
We decompose the block-and-wakeup thread logic into two conditional branches
in one TLA+ action. The timing of scheduling the wakeup logic is encoded in
the entry conditions of the branches. Moreover, we combine the wakeup logic of
multiple threads in one conditional branch in the TLA+ action. This not only
improves specification readability, but also helps mitigate the state explosion.

4.2 Development of the Super-Doc

The system specification is in principle a refinement of the protocol specification.
Details in the system specification are supplemented based on the source code,
as shown in Fig. 2. ZooKeeper inherits the basic architecture of Zab, and we
discuss each of its modules in turn.

Fig. 2. Incremental development of the system specification. The system specification
is in principle a refinement of the protocol specification, with supplementary details
derived from the source code.

ZooKeeper implements its own Fast Leader Election (FLE) algorithm [35],
which is omitted in Zab. FLE elects a leader which has the most up-to-date
history. We also extract the invariant properties FLE should maintain from its
design. Moreover, to conduct “unit test” on the FLE design, i.e., to model check
the FLE module alone, we simulate the interaction between FLE and its outside
world, e.g., actions updating the epoch or the transaction ID (zxid).

Compared with Zab, the DISCOVERY module in ZooKeeper is simplified,
since the leader already has the most up-to-date history. We reuse most part of
this module in the protocol specification, and make several revisions according
to the implementation. Specifically, the follower does not need to send its full

198 L. Ouyang et al.

history to the leader, and only needs to send the latest zxid it has. The leader
checks the validity of each follower’s state rather than updates its history based
on all histories received from the followers.

In Zab, the leader sends its full history to the followers in the SYNC phase.
This is obviously a simplification for better illustration of the design rationale.
In the implementation, the SYNC module is significantly optimized for better
performance. We rewrite the system specification for this module based on the
implementation. Specifically, NEWLEADER acts as a signaling message without
carrying concrete history data. The leader’s history will be synchronized to the
followers in one of three modes, namely DIFF, TRUNC, and SNAP. The leader
will select the right mode based on the differences between its history and the
follower’s latest zxid. The follower may update its log or snapshot according
to the sync mode. These supplemented details in the system specification are
confirmed by the system implementation. The BROADCAST module is basically
inherited from the protocol specification.

In order to facilitate conformance checking (see Sect. 4.3), we also refine the
failure modeling of the protocol specification. Specifically, we model environment
failures as node crash/rejoin events and network partition/reconnection events
in the system specification. These failure events are more fundamental and can
generate the failures modeled in the protocol specification.

Correctness conditions, including core correctness conditions and invariant
properties, are mainly inherited from the protocol specification. Table 2 presents
the model checking results of the system specification under certain configuration
parameters. No violation of correctness conditions is found during the checking.

Table 2. Model checking results of the system specification.

Config ∗ Checking mode Diameter Num of states Time cost

(3, 2, 3, 3) Model-checking 24 3, 322, 996, 126 > 24 : 00 : 00

(5, 2, 3, 3) Model-checking 16 693, 381, 547 > 24 : 00 : 00

(3, 5, 5, 5) Simulation − 1, 139, 420, 778 > 24 : 00 : 00

(5, 5, 5, 5) Simulation − 1, 358, 120, 544 > 24 : 00 : 00

(3, 5, 0, 10) Simulation − 1, 463, 314, 104 > 24 : 00 : 00

(3, 5, 10, 0) Simulation − 1, 211, 089, 513 > 24 : 00 : 00

* In the system specification, the Config parameters represent the number of
servers, the maximum number of transactions, the maximum number of node
crashes, and the maximum number of network partitions.

4.3 Ensuring Quality of the Super-Doc

The quality of the super-doc primarily depends on whether the doc precisely
reflects the system implementation, with unimportant details omitted. Note that
model checking can only ensure that the specification satisfies the correctness
conditions. It cannot tell whether the specification precisely reflects the system
implementation.

Leveraging TLA+ to Improve ZooKeeper Reliability 199

We conduct conformance checking between the system specification and the
system implementation to ensure the quality of the specification, as shown in
Fig. 3. We first let the TLC model checker execute the system specification and
obtain the model-level execution traces. We extract the event schedule from the
model checking trace, and then control the system execution to follow the event
schedule.

The controlled system execution is enabled by the Model Checking-driven
Explorative Testing (Met) framework [5]. We first instrument the ZooKeeper
system, which enables the test execution environment to intercept the commu-
nication between the ZooKeeper nodes, as well as local events of interest, e.g.,
logging transactions. The intercepted events are dispatched according to the
event schedule extracted from the model checking trace. In this way, we con-
trol the system execution to “replay” the model checking trace, and check the
conformance between these two levels of executions.

Once the conformance checking fails, discrepancies between the specification
and the implementation are detected. The specification developer checks the
discrepancies and revises the specification based on the implementation. After
multiple rounds of conformance checking, the system specification obtains suffi-
cient accuracy. This process is analogous to the regression testing [15].

During our practice, we discovered several discrepancies between the specifi-
cation and the implementation. For example, in the initial version of the system
specification, it was assumed that whenever the leader processes a write request,
the client session has already been successfully established. However, client ses-
sion creation is also considered a transaction in ZooKeeper and requires confirma-
tion by a quorum of servers. This discrepancy was identified during conformance
checking, and the specification was subsequently revised to address it. Further
details about the system specification can be found in [6].

5 Test Specification

Given the protocol and system specifications, we further develop the test specifi-
cation, in order to guide the explorative testing of ZooKeeper. The basic workflow
of explorative testing following the Met framework is shown in Fig. 3. We detail
the three core parts of the framework below.

Fig. 3. Model checking-driven explorative testing.

200 L. Ouyang et al.

5.1 Obtaining the Test Specification

In the explorative testing, we mainly focus on the recovery logic of ZooKeeper
in its SYNC phase (though Met can be applied to each module of ZooKeeper).
This module is heavily optimized in practice. It is under continual revision and
deep bugs can still be found, according to ZooKeeper’s bug tracking system [1].

The test specification is in principle a refinement of the system specification
toward the source code. The test specification first inherits the system specifica-
tion. The part of the specification to be refined, which corresponds to the part
of the system under test, can be obtained by copy-pasting the ZooKeeper source
code and manually updating the syntax to be valid TLA+ specification [16]. Due
to the inherent gap in the expressiveness, certain details are inevitably omitted
or transformed in the test specification, including low-level programming consid-
erations like multi-threading. The developer can also intentionally omit certain
details if they deem such details irrelevant to the potential deep bugs. For exam-
ple, we do not explicitly model the client and “pack” the workload generation
logic inside the leader.

Due to the state explosion, we cannot model check the test specification of
the whole ZooKeeper system. In practice, we follow the Interaction-Preserving
Abstraction (IPA) framework [19]. We refine one single module to its test spec-
ification, while keeping other modules as abstract as possible, with the interac-
tions between modules preserved. As we conduct Met on the SYNC module,
we abstract all other modules. For example, we combine ELECTION and DIS-
COVERY into one action, while their interactions with the SYNC module are
preserved.

5.2 Improving the Accuracy of Specification

The quality of the testing specification is also incrementally improved by mul-
tiple rounds of conformance checking (see Sect. 4). Typically, we find a number
of discrepancies. The developer may need to fine-tune the test specification to
better conform to the code. He may also neglect the discrepancy if he confirms
that the discrepancy is due to the inherent differences in expressiveness and is
irrelevant to the potential deep bug we try to find. The conformance checking
keeps going like the regression testing until no discrepancy can be found. This
means that the test specification is (sufficiently) accurate to guide the explorative
testing.

5.3 Test Specification in Action

With the help of our test specification and the Met framework, we stably trigger
and reproduce several critical deep bugs in ZooKeeper [6]. Here, we use ZK-2845
[2] and ZK-3911 [4] as examples to demonstrate the effectiveness and efficiency
of this approach. These two bugs will result in the inconsistency of accepted logs
or the loss of committed logs, which can be particularly severe for a coordination
service like ZooKeeper. However, similar to other deep bugs, they are difficult to

Leveraging TLA+ to Improve ZooKeeper Reliability 201

uncover and reproduce. Triggering these bugs typically requires numerous steps,
and the timing of failures is subtle. The space of all possible bug-triggering
patterns is so vast that it is beyond human reasoning. We can only find the bugs
by explorative search guided by model checking.

Table 3 lists the statistics related to the invariant violations of ZK-2845 and
ZK-3911. As indicated, we can obtain the traces of these two bugs within a short
time by model checking against the invariants. The high efficiency is mainly
attributed to the test specification, which abstracts irrelevant details while pre-
serving the necessary information.

Table 3. Invariant violations of ZK-2845 and ZK-3911.

Bug Invariant violation ∗ Simulation mode Model-checking mode
Len. Time cost Len. Time cost

ZK-2845 ProcessConsistency 23 00 : 00 : 02 10 00 : 00 : 12

ProposalConsistency 20 00 : 00 : 03 11 00 : 00 : 18

ZK-3911 LeaderLogCompleteness 25 00 : 01 : 29 14 00 : 00 : 42

MonotonicRead 39 00 : 01 : 35 18 00 : 13 : 13

* The column Invariant violation lists the violated invariants of the bugs. The
definitions of these invariants can be found in the test specification. The results in the
table are obtained using the configuration of 3 servers, 2 transactions in max, 4 node
crashes in max, and 4 network partitions in max.

Trace analysis reveals that a bug may violate multiple invariants that rep-
resent different aspects of the system’s requirements. For instance, for the two
invariants violated by ZK-3911, LeaderLogCompleteness constrains the internal
behavior from the developer’s perspective, while MonotonicRead constrains the
externally observable behavior from the user client’s perspective. The quality
of the invariants specified in the test specification significantly affects the effi-
ciency of bug detection. Typically, invariants that constrain internal behaviors
can expedite the bug-triggering process compared to the invariants that con-
strain external behaviors.

The two checking modes of TLC exhibit different capabilities in triggering
invariant violations. In most cases, the simulation mode is typically faster and
more effective in detecting deeper bugs since it tends to explore deeper states.
Conversely, the model-checking mode is better suited for searching for the short-
est trace that leads to an invariant violation.

It is worth noting that exposing these bugs through model checking on the
system specification can be challenging (see Table 2). The human knowledge
behind the development of the test specification plays a crucial role in pruning
the state space and accelerating the bug-triggering process. With the flexibility
to adjust levels of abstraction in TLA+, one can generate the test specification
from the system specification at a low cost. Besides, TLC enables efficient explo-
rations without additional human effort, and Met allows us to replay the traces

202 L. Ouyang et al.

of invariant violations in the system to validate their authenticity. More bugs
exposed by our approach are detailed in [6].

6 Related Work

Specification in TLA+. TLA+ is widely used for the specification and ver-
ification of distributed protocols in both academia and industry. Lamport et
al. utilized TLA+ to specify the original Paxos protocol [30], as well as various
Paxos variants, including Disk Paxos [18], Fast Paxos [28], and Byzantine Paxos
[29]. These protocols were also verified to be correct using TLC. Diego Ongaro
provided a TLA+ specification for the Raft consensus algorithm and further ver-
ified its correctness through model checking [10]. Yin et al. employed TLA+ to
specify and verify three properties of the Zab protocol [42]. Moraru et al. utilized
TLA+ to specify EPaxos when first introducing the protocol [36].

In industry, Amazon Web Services (AWS) extensively employs TLA+ to help
solve subtle design problems in critical systems [37]. Microsoft’s cloud service
Azure leverages TLA+ to detect deeply-hidden bugs in the logical design and
reduce risk in their system [12]. PolarFS also uses TLA+ to precisely document
the design of its ParallelRaft protocol, effectively ensuring the reliability and
maintainability of the protocol design and implementation [20]. WeChat’s stor-
age system PaxosStore specifies its consensus algorithm TPaxos in TLA+ and
verifies its correctness using TLC to increase confidence in the design [9].

The practices mentioned above utilize TLA+ to specify and verify distributed
protocols with the goal of identifying design flaws and increasing confidence in
the core protocol design. However, they do not address the code-level implemen-
tation and cannot guarantee that the specification accurately reflects the system
implementation. Discrepancies between the specification and the implementation
can result from transcription errors, and model checking is solely responsible for
verifying the specification. Our TLA+ specifications for ZooKeeper focus on both
the protocol design and the system implementation. Based on the source code
and the protocol specification, we incrementally develop the system specifica-
tion that serves as the super-doc for the ZooKeeper developers. Additionally, we
conduct conformance checking between the system specification and the system
implementation to eliminate discrepancies between them and ensure the quality
of the specification.

Model Checking-Driven Testing on ZooKeeper. Model checking-driven
testing has been extensively employed in distributed systems such as ZooKeeper.
The FATE and DESTINI framework systematically exercises multiple combina-
tions of failures in cloud systems and utilizes declarative testing specifications to
support the checking of expected behaviors [21]. This framework has been effec-
tively used to reproduce several bugs in ZooKeeper. SAMC incorporates semantic
information into state-space reduction policies to trigger deep bugs in ZooKeeper
[32]. FlyMC introduces state symmetry and event independence to reduce the
state-space explosion [33]. PCTCP employs a randomized scheduling algorithm

Leveraging TLA+ to Improve ZooKeeper Reliability 203

for testing distributed message-passing systems [39], while taPCT integrates par-
tial order reduction techniques into random testing [40]. Both approaches have
been utilized to detect bugs in ZooKeeper’s leader election module. Modulo
utilizes divergence resync models to systematically explore divergence failure
bugs in ZooKeeper [26]. The aforementioned works explore ZooKeeper based on
implementation-level model checkers.

In contrast, inspired by the practice of eXtreme Modelling [16] and other test
case generation techniques with TLA+[17,27], we leverage the TLA+ specifica-
tion and the TLC model checker to guide the explorative testing of ZooKeeper.
TLC is highly efficient at exploring long traces and uncovering subtle deep bugs
that require multiple steps to trigger, making it a powerful tool for test case gen-
eration. Similarly, Mocket uses TLC to guide the testing and reproduces bugs in
ZooKeeper [41]. We further reduce the state space by taking advantage of the
flexibility of the TLA+ specification, which can be integrated with human knowl-
edge at a low cost. We develop a test specification that efficiently triggers bugs
in ZooKeeper, further enhancing the effectiveness of our model checking-driven
explorative testing framework.

7 Conclusion and Future Work

In this work, we use TLA+ to present precise design of and provide detailed
documentation for ZooKeeper. We also use model checking to guide explorative
testing of ZooKeeper. The formal specifications well complement state-of-the-art
testing techniques and further improve the reliability of ZooKeeper.

In our future work, we will use TLA+ specifications in more distributed sys-
tems, e.g., cloud-native databases and distributed streaming systems. Enabling
techniques, such as taming of state explosion and deterministic simulation of
system execution, also need to be strengthened.

References

1. Apache ZooKeeper’s issue tracking system. https://issues.apache.org/jira/
projects/ZOOKEEPER/issues

2. Issue: ZK-2845. https://issues.apache.org/jira/browse/ZOOKEEPER-2845
3. Issue: ZK-3615. https://issues.apache.org/jira/browse/ZOOKEEPER-3615
4. Issue: ZK-3911. https://issues.apache.org/jira/browse/ZOOKEEPER-3911
5. MET. https://github.com/Lingzhi-Ouyang/MET
6. Three levels of TLA+ specifications for ZooKeeper. https://github.com/Disalg-

ICS-NJU/zookeeper-tla-spec
7. TLA+ home page. https://lamport.azurewebsites.net/tla/tla.html
8. TLA+ specification for Paxos. https://github.com/tlaplus/Examples/blob/

master/specifications/PaxosHowToWinATuringAward/Paxos.tla
9. TLA+ specification for PaxosStore. https://github.com/Starydark/PaxosStore-tla

10. TLA+ specification for Raft. https://github.com/ongardie/raft.tla
11. TLA+ specifications for the Apache ZooKeeper project. https://github.com/

apache/zookeeper/tree/master/zookeeper-specifications

https://issues.apache.org/jira/projects/ZOOKEEPER/issues
https://issues.apache.org/jira/projects/ZOOKEEPER/issues
https://issues.apache.org/jira/browse/ZOOKEEPER-2845
https://issues.apache.org/jira/browse/ZOOKEEPER-3615
https://issues.apache.org/jira/browse/ZOOKEEPER-3911
https://github.com/Lingzhi-Ouyang/MET
https://github.com/Disalg-ICS-NJU/zookeeper-tla-spec
https://github.com/Disalg-ICS-NJU/zookeeper-tla-spec
https://lamport.azurewebsites.net/tla/tla.html
https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Paxos.tla
https://github.com/tlaplus/Examples/blob/master/specifications/PaxosHowToWinATuringAward/Paxos.tla
https://github.com/Starydark/PaxosStore-tla
https://github.com/ongardie/raft.tla
https://github.com/apache/zookeeper/tree/master/zookeeper-specifications
https://github.com/apache/zookeeper/tree/master/zookeeper-specifications

204 L. Ouyang et al.

12. The use of TLA+ in industry. https://lamport.azurewebsites.net/tla/industrial-
use.html

13. Zab’s wiki. https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab1.0
14. ZooKeeper home page. https://zookeeper.apache.org/
15. Bourque, P., Fairley, R.E., Society, I.C.: Guide to the Software Engineering Body

of Knowledge (SWEBOK(R)): Version 3.0, 3rd edn. IEEE Computer Society Press,
Washington, DC, USA (2014)

16. Davis, A.J.J., Hirschhorn, M., Schvimer, J.: eXtreme modelling in practice.
Proc. VLDB Endow. 13(9), 1346–1358 (2020). https://doi.org/10.14778/3397230.
3397233

17. Dorminey, S.: Kayfabe: model-based program testing with TLA+/TLC. Tech-
nical report, Microsoft Azure WAN (2020). https://conf.tlapl.us/2020/11-Star_
Dorminey-Kayfabe_Model_based_program_testing_with_TLC.pdf

18. Gafni, E., Lamport, L.: Disk Paxos. Distrib. Comput. 16(1), 1–20 (2003). https://
doi.org/10.1007/s00446-002-0070-8

19. Gu, X., Cao, W., Zhu, Y., Song, X., Huang, Y., Ma, X.: Compositional model check-
ing of consensus protocols specified in TLA+ via interaction-preserving abstrac-
tion. In: Proceedings of International Symposium on Reliable Distributed Systems
(SRDS 2022). IEEE (2022). https://doi.org/10.1109/srds55811.2022.00018

20. Gu, X., Wei, H., Qiao, L., Huang, Y.: Raft with out-of-order executions. Int. J.
Softw. Informatics 11(4), 473–503 (2021). https://doi.org/10.21655/ijsi.1673-7288.
00257

21. Gunawi, H.S., et al.: FATE and DESTINI: a framework for cloud recovery testing.
In: Proceedings of the 8th USENIX conference on Networked Systems Design and
Implementation. p. 239 (2011). https://dl.acm.org/doi/10.5555/1972457.1972482

22. Huang, B., Ouyang, L.: Pull request for ZOOKEEPER-3615: provide formal spec-
ification and verification using TLA+ for Zab #1690. https://github.com/apache/
zookeeper/pull/1690

23. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: ZooKeeper: wait-free coordination
for internet-scale systems. In: Proceedings of ATC 2010, USENIX Annual Tech-
nical Conference, pp. 145–158. USENIX (2010). https://dl.acm.org/doi/10.5555/
1855840.1855851

24. Junqueira, F.P., Reed, B.C., Serafini, M.: Dissecting Zab. Technical report, YL-
2010-007, Yahoo! Research, Sunnyvale, CA, USA (2010). https://cwiki.apache.org/
confluence/download/attachments/24193444/yl-2010-007.pdf

25. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: high-performance broadcast for
primary-backup systems. In: Proceedings of DSN 2011, IEEE/IFIP Conference on
Dependable Systems and Networks, pp. 245–256. IEEE (2011). https://doi.org/10.
1109/DSN.2011.5958223

26. Kim, B.H., Kim, T., Lie, D.: Modulo: finding convergence failure bugs in
distributed systems with divergence resync models. https://www.usenix.org/
conference/atc22/presentation/kim-beom-heyn

27. Kuprianov, A., Konnov, I.: Model-based testing with TLA+ and Apalache. Tech-
nical report, Informal Systems (2020). https://conf.tlapl.us/2020/09-Kuprianov_
and_Konnov-Model-based_testing_with_TLA_+_and_Apalache.pdf

28. Lamport, L.: Fast Paxos. Distrib. Comput. 19(2), 79–103 (2006). https://doi.org/
10.1007/s00446-006-0005-x

29. Lamport, L.: The PlusCal Code for Byzantizing Paxos by Refinement. TechReport,
Microsoft Research (2011)

30. Lamport, L., Merz, S., D, D.: A TLA+ specification of Paxos and its refinement
(2019). https://github.com/tlaplus/Examples/tree/master/specifications/Paxos

https://lamport.azurewebsites.net/tla/industrial-use.html
https://lamport.azurewebsites.net/tla/industrial-use.html
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab1.0
https://zookeeper.apache.org/
https://doi.org/10.14778/3397230.3397233
https://doi.org/10.14778/3397230.3397233
https://conf.tlapl.us/2020/11-Star_Dorminey-Kayfabe_Model_based_program_testing_with_TLC.pdf
https://conf.tlapl.us/2020/11-Star_Dorminey-Kayfabe_Model_based_program_testing_with_TLC.pdf
https://doi.org/10.1007/s00446-002-0070-8
https://doi.org/10.1007/s00446-002-0070-8
https://doi.org/10.1109/srds55811.2022.00018
https://doi.org/10.21655/ijsi.1673-7288.00257
https://doi.org/10.21655/ijsi.1673-7288.00257
https://dl.acm.org/doi/10.5555/1972457.1972482
https://github.com/apache/zookeeper/pull/1690
https://github.com/apache/zookeeper/pull/1690
https://dl.acm.org/doi/10.5555/1855840.1855851
https://dl.acm.org/doi/10.5555/1855840.1855851
https://cwiki.apache.org/confluence/download/attachments/24193444/yl-2010-007.pdf
https://cwiki.apache.org/confluence/download/attachments/24193444/yl-2010-007.pdf
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1109/DSN.2011.5958223
https://www.usenix.org/conference/atc22/presentation/kim-beom-heyn
https://www.usenix.org/conference/atc22/presentation/kim-beom-heyn
https://conf.tlapl.us/2020/09-Kuprianov_and_Konnov-Model-based_testing_with_TLA_+_and_Apalache.pdf
https://conf.tlapl.us/2020/09-Kuprianov_and_Konnov-Model-based_testing_with_TLA_+_and_Apalache.pdf
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x
https://github.com/tlaplus/Examples/tree/master/specifications/Paxos

Leveraging TLA+ to Improve ZooKeeper Reliability 205

31. Leesatapornwongsa, T., Gunawi, H.S.: SAMC: a fast model checker for finding
Heisenbugs in distributed systems (demo). In: Proceedings of the 2015 Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2015, pp. 423–427.
Association for Computing Machinery, New York (2015). https://doi.org/10.1145/
2771783.2784771

32. Leesatapornwongsa, T., Hao, M., Joshi, P., Lukman, J.F., Gunawi, H.S.: SAMC:
semantic-aware model checking for fast discovery of deep bugs in cloud systems.
In: Proceedings of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI 2014, pp. 399–414. USENIX Association, Berkeley (2014).
https://dl.acm.org/doi/10.5555/2685048.2685080

33. Lukman, J.F., et al.: Flymc: highly scalable testing of complex interleavings in
distributed systems. In: Proceedings of the Fourteenth EuroSys Conference 2019,
pp. 1–16 (2019). https://doi.org/10.1145/3302424.3303986

34. Marić, O., Sprenger, C., Basin, D.: Cutoff bounds for consensus algorithms. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 217–237.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_12

35. Medeiros, A.: ZooKeeper’s atomic broadcast protocol: theory and practice (2012).
https://www.tcs.hut.fi/Studies/T-79.5001/reports/2012-deSouzaMedeiros.pdf

36. Moraru, I., Andersen, D.G., Kaminsky, M.: There is more consensus in egalitarian
parliaments. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 358–372 (2013). https://doi.org/10.1145/2517349.2517350

37. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015). https://doi.org/10.1145/2699417

38. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In:
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Con-
ference, USENIX ATC 2014, pp. 305–320. USENIX Association, Berkeley (2014).
https://dl.acm.org/doi/10.5555/2643634.2643666

39. Ozkan, B.K., Majumdar, R., Niksic, F., Befrouei, M.T., Weissenbacher, G.: Ran-
domized testing of distributed systems with probabilistic guarantees. Proc. ACM
Program. Lang. 2(OOPSLA), 1–28 (2018). https://doi.org/10.1145/3276530

40. Ozkan, B.K., Majumdar, R., Oraee, S.: Trace aware random testing for distributed
systems. Proc. ACM Program. Lang. 3(OOPSLA), 1–29 (2019). https://doi.org/
10.1145/3360606

41. Wang, D., Dou, W., Gao, Y., Wu, C., Wei, J., Huang, T.: Model checking guided
testing for distributed systems. In: Proceedings of the Eighteenth European Confer-
ence on Computer Systems, pp. 127–143 (2023). https://doi.org/10.1145/3552326.
3587442

42. Yin, J.Q., Zhu, H.B., Fei, Y.: Specification and verification of the Zab protocol
with TLA+. J. Comput. Sci. Technol. 35, 1312–1323 (2020). https://doi.org/10.
1007/s11390-020-0538-7

https://doi.org/10.1145/2771783.2784771
https://doi.org/10.1145/2771783.2784771
https://dl.acm.org/doi/10.5555/2685048.2685080
https://doi.org/10.1145/3302424.3303986
https://doi.org/10.1007/978-3-319-63390-9_12
https://www.tcs.hut.fi/Studies/T-79.5001/reports/2012-deSouzaMedeiros.pdf
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/2699417
https://dl.acm.org/doi/10.5555/2643634.2643666
https://doi.org/10.1145/3276530
https://doi.org/10.1145/3360606
https://doi.org/10.1145/3360606
https://doi.org/10.1145/3552326.3587442
https://doi.org/10.1145/3552326.3587442
https://doi.org/10.1007/s11390-020-0538-7
https://doi.org/10.1007/s11390-020-0538-7

Modeling Regex Operators for Solving
Regex Crossword Puzzles

Weihao Su1,2, Haiming Chen1(B), Rongchen Li1,2, and Zixuan Chen1,2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing 100190, China

{suwh,chm,lirc,chenzx}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing 101400, China

Abstract. Modeling regular expressions (regexes) has been applied in
abundant scenes, but at present, there is a lack of comprehensive model-
ing for extended operators, which limits their usage in related scenes. To
address the problem, we comprehensively model the operators of regexes
and apply the modeling method to solve regex crossword puzzles. Firstly,
to solve the challenges of comprehensive modeling of regexes, we propose
an over-approximate modeling method for regex operators according to
their languages or semantics, and use a counterexample-guided abstrac-
tion refinement scheme to strengthen constraints, thereby eliminating
spurious solutions and ensuring the correctness of our modeling. Then,
based on our modeling method, we present a novel algorithm for solv-
ing regex crossword puzzles. We collect 803 rectangular puzzles and 95
hexagonal puzzles from the most popular regex crossword puzzles web-
site, and compare our algorithm with five state-of-the-art tools. Experi-
ment results show that our algorithm can solve 97.76% rectangular puz-
zles and 98.95% hexagonal puzzles in an acceptable running time, which
are 19.06% and 65.27% higher than the highest success rates of other
methods respectively.

Keywords: modeling regex operators · regex crossword puzzles · SMT
constraints

1 Introduction

As a string processing tool, regular expressions (regexes) are widely used
in various fields of computer science and software, such as software engi-
neering [13,15,42,47], network security [4,32,56], natural language process-
ing [5,11,23,27,34,40], database [8,36,39], etc. Because they are so common,
modeling regexes have been applied in plenty of scenarios, such as program anal-
ysis [41,42], regular expression denial of service (ReDoS) detection [37], regex
synthesis and repair [14,17,38,45], regex testing [54], regex crossword puzzle
solving [33], and so on. However, there is a lack of comprehensive modeling for
extended operators—many extended operators are usually ignored or imprecisely

Zixuan Chen is currently employed at Kuaishou Technology.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 206–225, 2024.
https://doi.org/10.1007/978-981-99-8664-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_12&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_12

Modeling Regex Operators for Solving Regex Crossword Puzzles 207

approximated (we show this by an example shortly). This lack of support can
lead to limited usage in various scenarios, such as the loss of test code coverage,
the omission of ReDoS detection, the failure of expression synthesis or repair,
the incomplete test, and the failure of solving puzzles. There are further com-
plexity results on the hardness of dealing with regexes where lookarounds and
backreferences are involved, e.g. in [18] authors proved the constraint solving
problem of [42] is undecidable.

Now let us consider the problem of solving regex crossword puzzles. Tra-
ditional crossword puzzles [3], as typical satisfaction problems, have received
attention from constraint programming [6,31]. As a new form of a crossword
puzzle, regex crossword puzzles enjoyed popularity in several programmers’ com-
munities [9,52] and appeared in Capture-the-Flag (CTF) competitions [22] and
MIT’s puzzle-based scavenger hunting [43].

[0-5A][BQ-X]
B*A+

A
*
B
+

[
A
-
M
]
*

[0-5A][BQ-X]
B*A+

A
*
B
+

[
A
-
M
]
*

A B
B A

(a) A R-rcp (left) and its solution (right).

[AS]*
.*

(MX|LP)1

[SE]* .*

(.)1.*\1

[^
S]
*

.*
X.
*

[A
RP
]*

[AS]*
.*

(MX|LP)1

[SE]* .*

(.)1.*\1

[^
S]
*

.*
X.
*

[A
RP
]*

S A
E X P
L P

(b) A H-rcp (left) and its solution (right).

Fig. 1. Examples of R-rcp and H-rcp.

A regex crossword puzzle contains
a blank grid and constraints. In a
basic regex crossword puzzle, we are
given two non-empty regex lists label-
ing the m rows and n columns of
an m × n empty grid, respectively.
The challenge of basic puzzles is to
fill the grid with characters such that
each row reading left to right forms
a string matching the corresponding
regex, and the same as each column
reading top to bottom. For details see
Sect. 4.1. For example, Fig. 1(a) shows
a 2 × 2 basic puzzle1, which has a
unique solution. There are two vari-
ants of the basic regex crossword puz-
zle. One is rectangular regex cross-
word puzzles (R-rcps) which has two
regexes in each row and column, and the string must match the two regexes
simultaneously. Another is hexagonal regex crossword puzzles (H-rcps), which
are composed of hexagonal cells, and contain regexes in three independent direc-
tions, an example2 is shown in Fig. 1(b).

Some complexity results of regex crossword puzzles have been obtained [25,26],
for example, the complexity of a restricted regex crossword puzzle (i.e., an R-
rcp where all the row regexes are equal to one another and similarly the column
regexes) is NP-complete. On the other hand, for solving regex crossword puz-
zles in practice, the state-of-the-art techniques are based on different methods:
string constraint solving (e.g. Jeong [33]), heuristic algorithms (e.g. Trux [53] and
Shcherban [51]), backtracking algorithm (e.g. Abolofia [1] and Schaaf [49]). But
experimentally we found that among the existing tools, the highest success rate

1 http://regexcrossword.com/playerpuzzles/28c1c678-b94d-4a54-bcbb-
ac09beab3876.

2 http://regexcrossword.com/playerpuzzles/59e76811836a3.

http://regexcrossword.com/playerpuzzles/28c1c678-b94d-4a54-bcbb-ac09beab3876
http://regexcrossword.com/playerpuzzles/28c1c678-b94d-4a54-bcbb-ac09beab3876
http://regexcrossword.com/playerpuzzles/59e76811836a3

208 W. Su et al.

in rectangular puzzles is 78.70%, while in hexagonal puzzles is only 33.68% (see
Sect. 5), which is undoubtedly very limited for users to solve puzzles automatically.

This motivated us to design a comprehensive model for regex operators, and
apply it to solve regex crossword puzzles. As we have mentioned above, modeling
for extended operators is not comprehensive at present. In detail, the modeling
of regexes usually supports regexes in the language-theoretical sense, while either
ignoring or imprecisely approximating the irregular or semantically different
parts of regexes. For example, regex r = \s[^>]*?(?<=\s)src\s*=\s*(["
’]?)1(.*?)2\1 parses img tags in html files, which defines a context-sensitive
language, where the same string matched in (["’]?)1 has to be matched twice
in \1. In this example, the lookbehind (the (?<=\s) which is used for restrict-
ing the matching content before it), the capturing groups (the parentheses (
)1, ()2 (see further in Sect. 2)), the backreference (the \1 referring to the first
capturing group), and the non-greedy matching precedence (the *? which is non-
greedy) are usually ignored or imprecisely approximated, owing to the difficulty
of precise modeling of these extended operators. This in turn may lead to, for
example, the failure of solving puzzles. Furthermore, Loring et al. [42] point out
that extended operators, such as backreferences, etc., are widely used.

To address the challenges above, in this paper, we first propose an over-
approximate method for comprehensively modeling regex operators. Our model
translates a regex r into a first-order logic formula ϕ which is used as con-
straints for Satisfiability Modulo Theories (SMT) solvers, such that the solution
s satisfies s ∈ L(r), where L(r) stands for the language of r. We also deploy a
counterexample-guided abstraction refinement (CEGAR) [19] scheme to ensure
the correctness of our modeling.

Then, based on our modeling method, we propose Rcps, a novel algorithm
for solving regex crossword puzzles. In detail, the algorithm first initializes the
variable matrix according to the puzzle. Then it generates constraints based on
our modelings. Finally, it solves the constraints with an SMT solver. Note that
for some extended operators, the generated constraints are over-approximated.
In this case it eliminates possible spurious solutions generated by our model by
a CEGAR scheme. Experimental results show that our algorithm is significantly
more effective than existing methods.

The contributions of this paper are listed as follows.

– We propose an over-approximate modeling method for regex operators
according to their languages or semantics, and use a CEGAR scheme to ensure
the correctness of our modeling (Sect. 3).

– We present a novel algorithm Rcps to solve R-rcps and H-rcps, which assigns
bounded length variables to cells of the puzzles according to coordinates,
solves string constraints by an SMT solver and eliminates spurious solutions
by the CEGAR scheme (Sect. 4).

– We collect 803 R-rcps and 95H-rcps from the most popular regex crossword
puzzle website, and compare our algorithm with five state-of-the-art tools.
The evaluation results show that our algorithm can solve 97.76% R-rcps and
98.95% H-rcps in an acceptable running time, which are 19.06% and 65.27%
higher than the highest success rates of other methods respectively (Sect. 5).

Modeling Regex Operators for Solving Regex Crossword Puzzles 209

2 Preliminaries

Let Σ be an alphabet of all printable symbols except each of the following
symbols is written with an escape character \ in front of it: (,), {, }, [,],
^, $, |, \, ., ?, *, and +. The set of all strings over Σ is denoted by Σ∗. Let
N = {0, 1, 2, . . .} and N+ = N \ {0}. |K| stands for the size of a set K or the
length of a string K. For a string s = s0 . . . sn−1 (n ∈ N), when n ≥ 1, we write
s[i : j] (0 ≤ i ≤ j < n) to represent a sub-string si . . . sj of s, or an empty string
ε otherwise. Regex, the regular expression used in practice, is defined as follows.

A regex r on Σ is a well-formed parenthesized formula that extends the fol-
lowing operators on the basis of standard regular expressions [57]: (i) character
class [C] (or [^C]), where C ⊆ Σ; (ii) capturing group3(r)i; (iii) non-capturing
group (?:r); (iv) backreference \i, where i ∈ N+; (v) lookarounds: positive looka-
head (?=r), negative lookahead (?!r), positive lookbehind (?<=r), and nega-
tive lookbehind (?<!r); (vi) anchors: start-of-line anchor ^, end-of-line anchor $,
word boundary \b, and non-word boundary \B; (vii) quantifiers: greedy quantifier
r{m,n}, lazy quantifier r{m,n}?, where m ∈ N, n ∈ N ∪ {+∞}, and m � n.

The language L(r) of a regex r is the set of all strings accepted by r. For a
subexpression rk of r we define L(rk) = {s[k, k] | s ∈ L(r), |s| ≥ k, k > 0}. For
quantifiers in the form of r{m,n} [30], we have the following abbreviations: (i)
r{m} = r{m,m}; (ii) r{m,} = r{m,+ ∞}; (iii) ε = r{0,0}; (iv) r? = r{0,1}; (v)
r* = r{0,}; (vi) r+ = r{1,}.

Next, we informally illustrate the semantics of these extended operators. A
character class [C] (or [^C]) matches a character in (or not in) set C. There
are some abbreviations of character class: \w represents [a-zA-Z0-9_], and .
matches any symbol except \n (a newline character). Note that for any [^C],
there is always a set C ′ = Σ \ C satisfying L([C ′]) = L([^C]). In the following,
we use [C] to uniformly represent [C] and [^C]. In regexes, quantifiers include
greedy quantifier r{m,n} and lazy quantifier r{m,n}?. A greedy quantifier is
repeated as many times as possible while a lazy quantifier is repeated as few times
as possible. A capturing group (r)i matches r, and stores the matched substring
in the memorizer Mi identified by the index i. A non-capturing group (?:r)
matches r without storing the matched substring. A backreference \i matches
the content stored in Mi. In addition, the number i of the backreference \i
cannot exceed the maximum number of capturing groups in a regex r. We call
the backreference \i as uninstantiated backreference when Mi = ∅. According to
[7], there are ε-semantic [10,28,29,42,50] or ∅-semantic [2,12] for uninstantiated
backreferences. In this paper, we follow the ECMAScript standard [24] and set
the value of uninstantiated backreferences to ε. Lookarounds are zero-length
assertions, and search for strings that satisfy certain contexts. Specifically, it
includes lookahead and lookbehind, specifying the context after and before the
searching strings, respectively. Anchors are also zero-length assertions, which
specify the non-character context. A start-of-line anchor ^ denotes the start of a
line, while an end-of-line anchor $ denotes the end. A word boundary anchor \b

3 Capturing group in the real world do not have the subscript i (i ∈ N+), we write it
here for readability.

210 W. Su et al.

matches the position where one side is a word and the other side is not a word.
A non-word boundary anchor \B, the negation of \b, matches at any position
between two-word characters as well as at any position between two non-word
characters.

3 Modeling Regex Operators

In this section, we introduce our modeling of regex operators, which is the basis
of our algorithm Rcps. As mentioned in Sect. 1, for a given regex r, the output
of the modeling is a formula in first-order logic, such that its solution s satisfies
s ∈ L(r). We introduce our modeling for regex operators (Sect. 3.1) and explain
how to eliminate spurious solutions by refinement (Sect. 3.2).

In this paper, we parse regexes according to the grammar4: r → ε
∣
∣ a

∣
∣ [C]

∣
∣ r|r

∣
∣ rr

∣
∣ ^r

∣
∣ r$

∣
∣ r\br

∣
∣ r\Br

∣
∣ (r)i

∣
∣ (?:r)

∣
∣ r{m,n}?

∣
∣ r{m,n}

∣
∣ (?=r)r

∣
∣

(?!r)r
∣
∣ r(?<=r)

∣
∣ r(?<!r)

∣
∣ \i, where a ∈ Σ, C ⊆ Σ, i ∈ N+, m ∈ N,

n ∈ N ∪ {+∞}, and m � n.

3.1 The Function Φ(r, p, l)

For a regex r, we define the function Φ(r, 0, k) for generating the constraint
such that its solution is a fixed-length string s (|s| = k) that satisfies s =
s0s1 . . . sk−1 ∈ L(r). The constraint is generated by recursively traversing the
nodes on the abstract syntax tree (AST) of r. For each sub-regex ri in r, the
function Φ(ri, pi, li) generates the constraint such that the sub-string s[pi : pi +
li − 1] of s satisfies s[pi : pi + li − 1] = spi

spi+1 . . . spi+li−1 ∈ L(ri). Next,
we use the variable sequence V = 〈x0,x1, . . . ,xk−1〉 to represent the string
s = s0s1 . . . sk−1, where xi corresponds to si (0 ≤ i < k). We first define
function len(r, k) to calculate all the possible lengths of string s satisfying s ∈
L(r) ∧ |s| ≤ k, see Fig. 2.

Algorithm 1: Φ(r, p, l)
Input: a regex r, two integers p ∈ N and l ∈ N, where p represents the starting

subscript of variable xp in variable sequence V , and l is the number of
variables assigned to this modeling.

Output: a formula ϕ in first-order logic.
1 if l /∈ len(r, k) or p + l > k then
2 ϕ ← False; // k is a global constant value.
3 else
4 ϕ ← calculate Φ(r, p, l) through Eq. (17) – Eq. (34);

5 return ϕ;

4 We refer to ECMAScript® 2022 language specification [24] which summarizes the
grammar used in this paper.

Modeling Regex Operators for Solving Regex Crossword Puzzles 211

The recursive calculation of Φ(r, p, l) is shown in Algorithm 1. Note that
throughout the constraint modeling, k is a global constant value. For any regex
r, if l /∈ len(r, k) or p + l > k, then

Φ(r, p, l) = False. (1)

Otherwise, the calculation of Φ(r, p, l) is shown in Fig. 3. Intuitively, Eq. (1)
indicates that (i) the length l of the sub-string which matches r should satisfy
the restriction of len(r, k); (ii) for the length p of matched sub-string and the
length l of to-be-matched sub-string, p + l cannot exceed k.

len(ε, k) = {0} (2)

len(a, k) = len([C], k) = {1} (a ∈ Σ) (3)

len(r1r2, k) = sum(len(r1, k), len(r2, k), k) (4)

len(r1|r2, k) = len(r1, k) ∪ len(r2, k) (5)

len(r{m,n}, k) =

⎧
⎨

⎩

{0} ∪ len(r, k) ∪ (2, n) m = 0
len(r, k) ∪ (2, n) m = 1
(m, n) m 2

(6)

len(r{m,n}?, k) = len(r{m,n}, k) (7)

len((?=r1)r2, k) = {x | x ∈ len(r2, k), x ≥ min{len(r1, k)}} (8)

len((?!r1)r2, k) = len(r2, k) (9)

len(r1(?<=r2), k) = {x | x ∈ len(r1, k), x ≥ min{len(r2, k)}} (10)

len(r1(?<!r2), k) = len(r1, k) (11)

len(^r, k) = len(r$, k) = len(r, k) (12)

len(r1\br2, k) = sum(len(r1, k), len(r2, k), k) − {0} (13)

len(r1\Br2, k) = sum(len(r1, k), len(r2, k), k) (14)

len((r)i, k) = len((?:r), k) = len(r, k) (15)

len(\i, k) = len((r)i, k) 0 (16)

Fig. 2. The calculation of the function len(r, k), where the functions sum(N1, N2, k) =
{x + y | x ∈ N1, y ∈ N2, x + y ≤ k}, and �(m, n) =

⋃
m−1�t�n−1

sumt(len(r, k), len(r, k), k), the symbol sumt represents calling the function sum t times
recursively.

Modeling of Standard Operators. For an empty string ε, when l ∈
len(ε, k) = {0}, there are no variables assigned to the modeling of it. Obvi-
ously, this is always True, hence we have Eq. (17). For a character a ∈ Σ,
L(a) = {a}, when l and p satisfy l ∈ len(a, k) = {1} and p + l ≤ k, we assign a
variable xp to a in Eq. (18). Character class [C] consumes only one character,
thus xp may be any character in C, so we have Eq. (19).

For alternation r1|r2, L(r1|r2) = L(r1) ∪ L(r2). We assign the variable
sequence 〈xp ,xp+1, . . . ,xp+l−1〉 to Φ(r1, p, l) and Φ(r2, p, l) at the same time
to generate the constraints of s ∈ L(r1) and s ∈ L(r2), respectively. Therefore,
we have Eq. (20).

For concatenation r1r2, L(r1r2) = L(r1)L(r2). We split the string s into two
parts (s1 and s2), the first l′ characters are used to match r1 (i.e., Φ(r1, p, l′)

212 W. Su et al.

Φ(ε, p, l) = True. (17)

Φ(a, p, l) = (xp = a). (18)

Φ([C], p, l) =
a∈[C]

(xp = a). (19)

Φ(r1|r2, p, l) = Φ(r1, p, l) ∨ Φ(r2, p, l). (20)

Φ(r1r2, p, l) =
l ∈len(r1,k)

Φ(r1, p, l) ∧ Φ(r2, p + l , l − l) . (21)

Φ(r{m,n}, p, l) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l ∈len(r{m},k) Φ(r{0,n-m}, p + l , l − l)
∧Φ(rr · · · r

m

, p, l) , m > 0

0
i=n Φ(rr · · · r

i

, p, l) , m = 0, l > 0

True. m = 0, l = 0

(22)

Φ(r{m,n}?, p, l) = Φ(r{m,n}, p, l). (23)

Φ((?=r1)r2, p, l) = Φ(r1Σ∗, p, l) ∧ Φ(r2, p, l). (24)

Φ((?!r1)r2, p, l) = ¬Φ(r1Σ∗, p, l) ∧ Φ(r2, p, l). (25)

Φ(r1(?<=r2), p, l) = Φ(r1, p, l) ∧ Φ(Σ∗r2, p, l). (26)

Φ(r1(?<!r2), p, l) = Φ(r1, p, l) ∧ ¬Φ(Σ∗r2, p, l). (27)

Φ(^r, p, l) =
Φ(r, p, l), p = 0
False. p > 0 (28)

Φ(r$, p, l) =
Φ(r, p, l), p + l = k
False. p + l < k

(29)

Φ(r1\br2, p, l) =
l ∈len(r1,k)

Φ(r1, p, l) ∧ Φ(r2, p + l , l − l) ∧ (p, l) . (30)

Φ(r1\Br2, p, l) =
l ∈len(r1,k)

Φ(r1, p, l) ∧ Φ(r2, p + l , l − l) ∧ ¬ (p, l) . (31)

where (p, l) =

⎧
⎪⎪⎨

⎪⎪⎩

c∈\w(xp+l = c), p + l = 0

c∈\w(xp+l −1 = c), l − l = 0

c∈\W(xp+l −1 = c) ∧ c∈\w(xp+l = c) ∨
c∈\w(xp+l −1 = c) ∧ c∈\W(xp+l = c) . p + l > 0 ∧ l − l > 0

Φ((r)i, p, l) = Φ(r, p, l). // meanwhile, let pi p (32)

Φ((?:r), p, l) = Φ(r, p, l). (33)

Φ(\i, p, l) =
True, pi

φ(p, pi, l). otherwise (34)

where φ(p, pi, l) =
False, pi = p ∨ pi + l > k ∨ l = 0

0 m<l(xp+m = xpi+m). otherwise

Fig. 3. The calculation of the function Φ(r, p, l) according to regex operators.

for s1 ∈ L(r1)), and the remaining l − l′ characters are used to match r2 (i.e.,
Φ(r2, p+ l′, l − l′) for s2 ∈ L(r2)), where l′ ∈ len(r1, k). len(r1, k) calculates the
length of the sub-string that regex r1 matched. So, we have Eq. (21).

Modeling on Quantifiers. For greedy quantifier r{m,n}, when m > 0,
L(r{m,n}) = L(r{0,n-m})L(rr · · · r

︸ ︷︷ ︸

m

), we utilize Eq. (21) to model this

Modeling Regex Operators for Solving Regex Crossword Puzzles 213

case. Let r1 = r{0,n-m}, r2 = rr · · · r
︸ ︷︷ ︸

m

, so we infer that Φ(r{m,n}) =

∨

l′∈len(r{m},k)

(

Φ(r{0,n-m}, p + l′, l − l′) ∧ Φ(rr · · · r
︸ ︷︷ ︸

m

, p, l′)
)

. When m = 0,

L(r{m,n}) = L(rr · · · r
︸ ︷︷ ︸

n

) ∪ · · · ∪ L(rr) ∪ L(r) ∪ L(ε). According to different

values of l, we further divide constraints for L(ε) into (i) l > 0, Φ(ε, p, l) =
False, Φ(r{m,n}, p, l) = Φ1 ∨ False = Φ1; and (ii) l = 0, Φ(ε, p, l) =
True, Φ(r{m,n}, p, l) = Φ1 ∨ True = True. In summary, we have Eq. (22).

Lazy quantifier r{m,n}? mainly affects the content matched by capturing
groups rather than membership [20]. We give an over-approximate modeling by
reusing the modeling for the greedy quantifier r{m,n} in Eq. (23), and ensure
the correctness by the refinement strategy introduced in Sect. 3.2. Notice that
the capturing groups decorated by quantifiers have the same subscript when
modeled as Φ(r, p, l) functions.

Modeling on Zero-Length Assertions. For lookarounds (e.g., (?=r1)r2,
(?!r1)r2, r1(?<=r2) and r1(?<!r2)), we give approximate definitions of their
languages. Taking positive lookahead (?=r1)r2 as an example, L((?=r1)r2) =
{s | s ∈ L(r1Σ∗) ∧ s ∈ L(r2)}, the condition s ∈ L(r1Σ∗) is modeled as
Φ(r1Σ∗, p, l), and the condition s ∈ L(r2) is modeled as Φ(r2, p, l). So we have
Eq. (24). Also, we model the condition s /∈ L(r1Σ∗) as ¬Φ(r1Σ∗). Therefore,
we have Eq. (25–27). We model start-of-line anchor ^r and end-of-line anchor
r$ according to the starting (or ending) position of the sub-string, as shown in
Eq. (28) and Eq. (29), respectively.

1 \w 2 \w $ 3 \W \w 4 \w \W

Fig. 4. The matching positions of \b.

We model word boundary r1\br2
and non-word boundary r1\Br2 accord-
ing to their semantics. The matching
positions of r = r1\br2 are shown in
Fig. 4. \b restricts the form of the last character of s1 and the first character of
s2 in the string s = s1s2 ∈ L(r), where s1 ∈ L(r1), s2 ∈ L(r2). The modeling
of r1\br2 should satisfy Eq. (21) and the matching position constraint, then we
have Eq. (30). Similarly, we model s ∈ L(r1\Br2) as Eq. (31).

Modeling on Capturing Group and Backreference. Next, we propose an
over-approximate modeling for backreference. The correctness is guaranteed by
the refinement strategy introduced in Sect. 3.2.

Capturing group (r)i matches the same string as r, which is stored in the
memorizer Mi labeled by the index i. We use an extra variable p′

i to record the
starting position p when calculating the constraint Φ((r)i, p, l). The variable p′

i

and the memorizer Mi are overwritten each time (r)i is matched. Therefore, we
have Eq. (32). The non-capturing group (?:r) does not affect the membership
of r, then we have Eq. (33).

Backreference \i matches the content stored in Mi. The function Φ(\i, p, l)
generates the constraint satisfying xpxp+1 . . . xp+l−1 = xp′

i
xp′

i +1 . . .xp′
i +l−1

through the variable p′
i, when p, p′

i and l are valid. When p′
i is undefined (unin-

stantiated), we set Φ(\i, p, l) to True, the same as an empty string. To sum up
we have Eq. (34).

214 W. Su et al.

3.2 Refinement

As we mentioned in Sect. 3.1, our modeling of regex for some extended operators
is over-approximated. For example, our modeling cannot guarantee the number
of variables used for matching (r)i is equal to that used for matching \i. For the
regex r = ([ab]+)1\1, when k = 4 (the length of the matching string s is |s| = 4),
the constraint generated by our models is ϕ = Φ(r, 0, 4) =

(∨

a∈[ab](x0 =
a) ∧ ∧

0�m<3(x1+m = xm)
) ∨ (∨

a∈[ab](x0 = a) ∧ ∨

a∈[ab](x1 = a) ∧
∧

0�m<2(x2+m = xm)
) ∨ (∨

a∈[ab](x0 = a)∧ ∨

a∈[ab](x1 = a)∧ ∨

a∈[ab](x2 =
a) ∧ (x3 = x0)

)

. Through an SMT solver, a solution sϕ = {x0 = a,x1 = a,x2 =
b,x3 = a} is obtained. But obviously, the string composed by the values of the
variables in sϕ is s = x0x1x2x3 = aaba /∈ L(r). We call this kind of solutions
that satisfy the constraint ϕ but s /∈ L(r) spurious solutions.

To address this problem, we use a counterexample-guided abstraction refine-
ment (CEGAR) scheme that validates candidate strings with a concrete matcher
(e.g., an ECMAScript-compliant matcher [24]). If the matching validation fails,
then we refine the constraint as ϕ ← ϕ ∧ s �= sϕ. In this example, the string
s = aaba is rejected by running the concrete matcher. Therefore, we refine the
constraint ϕ by adding the counterexample sϕ, e.g., ϕ ← ϕ ∧ s �= aaba. We then
solve and validate a new solution (string) and repeat the refinement scheme until
the string is matched by the concrete matcher or terminate when an iteration
bound is reached to avoid non-termination [19].

4 Solving Regex Crossword Puzzles

In this section, we present our algorithm Rcps to solve regex crossword puzzles.
We first introduce the definition of regex crossword puzzles (Sect. 4.1), then we
present our algorithm Rcps (Sect. 4.2), including the major technical details and
an example in Fig. 1(a) (left).

4.1 The Definitions

First, we formally define rectangular and hexagonal regex crossword puzzles.

Definition 1. Rectangular Regex Crossword Puzzle, R-rcp. A rectan-
gular regex crossword puzzle T (see Fig. 5(a) 1) is represented as a 7-tuple
(n1, n2, Γ1, Γ2, Γ

′
1, Γ

′
2, GT), where:

– GT is an empty grid consisted of n1 rows and n2 columns of square cells;
– for i = 1, 2, Γi and Γ ′

i are different regex lists, where |Γi| = ni (Γi =
〈ri,1, . . . , ri,ni

〉), |Γ ′
i | is either ni (Γ ′

i = 〈r′
i,1, . . . , r

′
i,ni

〉) or 0 (Γ ′
i = ∅).

Rule. Players can fill a square cell with a character.
Challenge. Players fill GT such that:

– Reading left to right (called direction d1, see Fig. 5(a) 2), the string si is
composed of all square cells on line li, satisfying si ∈ L(r1,i) (and si ∈ L(r′

1,i),
if Γ ′

1 �= ∅), where i ∈ [1, n1].

Modeling Regex Operators for Solving Regex Crossword Puzzles 215

– Similar for reading top to bottom (called direction d2, see Fig. 5(a) 3).

Solution. If the challenge is successful, the filled grid GT is a solution of T .

Definition 2. Hexagonal Regex Crossword Puzzle, H-rcp. A hexago-
nal regex crossword puzzle T (see Fig. 5(b) 1) is represented as a 7-tuple
(n1, n2, n3, Γ1, Γ2, Γ3, GT) where:
– GT is an empty grid composed of hexagonal cells.
– for i = 1, 2, 3, Γi represents a regex list, where |Γi| = ni (Γi = 〈ri,1, . . . , ri,ni

〉).
Rule. Players can fill a hexagonal cell with a character.
Challenge. Players fill GT such that:
– Reading left to right (called direction d1, see Fig. 5(b) 2), the string si is

composed by all hexagonal cells on the line li, satisfying si ∈ L(r1,i), where
i ∈ [1, n1].

– Similar to reading top right to bottom left (called direction d2, see
Fig. 5(b) 3) and bottom right to top left (called direction d3, see
Fig. 5(b) 4).

Solution. Same as the Solution in Definition 1.

In addition, it should be noted that any puzzle belongs to one of the following
three cases: (1) no solution; (2) a unique solution; (3) more than one solution.
We call the first case unsolvable and the other cases solvable. In particular, a
puzzle with more than one solution is called ambiguous.

(a) Rectangular regex crossword puz-
zles

(b) Hexagonal regex crossword puzzles

Fig. 5. Modeling of rectangular and hexagonal regex crossword puzzles.

4.2 Rcps: Regex Crossword Puzzle Solver

Algorithm 2 shows the details of our algorithm Rcps. The input of Rcps is a
regex crossword puzzle T , including the grid GT , and the regex lists on each
edge of GT . The output of Rcps is one of the following three forms: (1) a
character-filled grid GS , which has the same shape and size as the grid GT ;
(2) ∅, indicating that the puzzle T is unsolvable; (3) failed, indicating that the
algorithm cannot determine whether T has a solution GS . Generally speaking,
our algorithm includes four processes:

Initialize the Variable-Marked Grid. We first initialize the constraint Ψ as
True. (line 1). To model the regex crossword puzzle T , we need to mark each
cell in GT with a unique variable xi , via the function markVar(GT). The input
of markVar(GT) is an empty grid GT , and the output is a variable-marked grid
GMT with the same shape and size as GT .

216 W. Su et al.

Algorithm 2: Rcps
Input: a regex crossword puzzle T
Output: a character-filled grid GS , or

∅, or failed
1 Ψ ← True;
2 GMT ← markVar(GT);
3 foreach regex r in T do
4 V ← selectVars(GMT , T);
5 Ψ ← Ψ∧ the constraint Φ(r, 0, |V |)

encoded by V ;
6 i ← 0;
7 while i < ITER_MAX do
8 S ← solve Ψ by an solver;
9 if Ψ is satisfiable then

10 GS ← fillChars(GMT , S);
11 if verify(GS , T) = true then

return GS else
Ψ ← Ψ ∧ GS �= S

12 else return ∅

13 i ← i + 1;

14 return failed ;

For rectangular grids, we uniquely
identify the cells by their row
and column indexes. For hexagonal
grids, we use the cubic coordinates5
to uniquely mark each cell. (line 2).
For example, for the grid GT in
Fig. 1(a) (left), the variable-marked
grid GMT is shown in Fig. 6 1 .

Select Variables to Form Vari-
able Sequences. Notice that a
cell in the puzzle T is constrained
by more than one regex simultane-
ously (e.g., the variable x1,1 in GS

(Fig. 6 1) is constrained by both
the regex r1 of the first row and the
regex r3 of the first column at the
same time). Therefore we need to
select the variables in GS to form
the variable sequence V . That is,
the function selectVars(GMT , T)
is used to select the variables by
reading all cells on line l in direction d to form a variable sequence V . (line 4).
Let’s continue with the example in Fig. 1(a). Reading left to right (see Fig. 6 2),
we get V1 = 〈x1,1,x1,2〉 and V2 = 〈x2,1,x2,2〉 for regex r1 and r2, respectively.
Reading top to bottom (see Fig. 6 3), we get V3 = 〈x1,1,x2,1〉 (for r3), and
V4 = 〈x1,2,x2,2〉 (for r4) similarly.

Fig. 6. The solving process of the R-rcp in
Fig. 1(a) (left) , where r1 = [0-5A][BQ-X],
r2 = B*A+, r3 = A*B+, and r4 = [A-M]*.

Generate the Constraint on the
Puzzle. Using V and r from the
last step, we have the constraint
Φ(r, 0, |V |) on a regex r (line 5). The
constraint Ψ on the puzzle T is Ψ =
∧

1�i�n Φ(ri, 0, |Vi|), where n is the
number of regexes in T . At line 8 we
solve Ψ by the solver to find a solu-
tion.

Likewise, let us consider the example in Fig. 1(a) (left). The constraint
encoded by V1 is Φ(r1, 0, |V1|) =

∨

a∈[0-5A](x1,1 = a) ∧ ∨

a∈[BQ-X](x1,2 = a).
Similarly, we have: Φ(r2, 0, |V2|) = (x2,1 = B) ∧ (x2,2 = A);Φ(r3, 0, |V3|) =
(x1,1 = A)∧ (x2,1 = B);Φ(r4, 0, |V4|) =

∨

a∈[A-M](x1,2 = a)∧∨

a∈[A-M](x2,2 = a).
Therefore, the constraint Ψ on T is Ψ =

∧

1�i�4 Φ(ri, 0, |Vi|).
CEGAR for Solving Regex Crossword Puzzles. After filling the solution
we obtained from the solver, we fill the satisfiable solution into GS in line 10. At

5 https://www.redblobgames.com/grids/hexagons/.

https://www.redblobgames.com/grids/hexagons/

Modeling Regex Operators for Solving Regex Crossword Puzzles 217

line 11 of Algorithm 2, we utilize the function verify(GS , T) to judge whether
the challenge (see Definition 1 and Definition 2) is successful, since the modeling
is over-approximate. The function verify(GS , T) takes a character-filled grid
GS and a puzzle T as input, and it returns true if and only if each regex r in T
is matched by the corresponding string s in the grid GS , or false otherwise. If
the function verify(GS , T) returns false, at line 12 of Algorithm 2 we add the
counterexample GS �= S to the constraint Ψ . In the constraint solving process,
the CEGAR scheme iterates until the condition verify(GS , T) = true or i =
ITER_MAX is reached, and Rcps returns GS or failed.

Let us further consider the example in Fig. 1(a) (left). By using an SMT
solver to solve Ψ , we get a solution S = {x1,1 = A,x1,2 = B,x2,1 = B,x2,2 = A}.
We call function fillChars(GMT , S) to replace the variables in GMT with
the corresponding values in S, and get a character-filled grid GS (as shown in
Fig. 6 4). We call function verify(GS , T) to judge whether (i) AB ∈ L(r1),
(ii) BA ∈ L(r2), (iii) AB ∈ L(r3), and (iv) BA ∈ L(r4) are satisfied. The function
verify(GS , T) returns true, so our algorithm returns GS (Fig. 6 4).

5 Experiments

In the experiments, we evaluate the effectiveness and efficiency of Rcps on large-
scale regex crossword puzzle datasets. We first introduce the benchmark datasets,
tools for comparison, and experimental configurations (Sect. 5.1), then analyze
our experimental results (Sect. 5.2).

5.1 Experiment Setup

0 100 200 300 400
0

20

40

60

80

#Cells

#
R
eg
ex
es

puzzle

(a) Distribution of

#Cells & #Regexes in

R-rcps.

0 20 40 60 80 100120
0

10

20

30

40

#Cells

#
R
eg
ex
es

puzzle

(b) Distribution of

#Cells & #Regexes in

H-rcps.

Type #Puzzles
#Cells #Regexes

Min. Max. Avg. Min. Max. Avg.
R-rcp 803 1 400 24.84 2 80 13.77
H-rcp 95 1 127 26.53 3 39 15.61

(c) Minimum, maximum and average values of

#Cells and #Regexes in R-rcps and H-rcps.

Fig. 7. The benchmark datasets for evalu-
ation.

Benchmark Datasets. We collected
puzzles from the most popular regex
crossword puzzle website6, which
allows players to upload solvable rect-
angular or hexagonal regex crossword
puzzles with solutions. We obtained
803 R-rcps and 95H-rcps, as shown in
Fig. 7. We counted the number of cells
(#Cells) and regexes (#Regexes) for
each puzzle. Figure 7(a) and Fig. 7(b)
show the distribution of #Cells and
#Regexes in R-rcps and H-rcps
respectively. Figure 7(c) summarizes
the minimum, maximum and average
values of #Cells and #Regexes in R-
rcp and H-rcp respectively.

Furthermore, we also analyze the
usage of each extended operator in the

6 https://regexcrossword.com/.

https://regexcrossword.com/

218 W. Su et al.

regexes extracted from all puzzles. Table 1 shows statistics on the number and
proportion of regexes, where RE stands for the standard regular expressions
which do not contain any extended operator.

Table 1. Usage of regex operators in
datasets.
Operator Total % Unique %
Total Regex 12,538 100.00% 10,872 100.00%
RE 381 3.04% 306 2.81%
Character Class 10,398 82.93% 9,883 90.90%
Capturing Group 5,079 40.51% 4,519 51.57%
Non-Capturing Group 195 1.56% 145 1.33%
Backreference 2,773 22.12% 2,288 21.04%
Lookarounds 1,582 12.62% 1,305 12.00%

Positive Lookahead 781 6.23% 675 6.21%
Negative Lookahead 1,094 8.73% 846 7.78%
Positive Lookbehind 26 0.21% 26 0.24%
Negative Lookbehind 6 0.05% 6 0.06%

Anchors 658 5.25% 570 5.24%
Start-of-line Anchor 388 3.09% 346 3.18%
End-of-line Anchor 471 3.76% 396 3.64%
Word Boundary 24 0.19% 23 0.21%
Non-word Boundary 20 0.16% 20 0.18%

Quantifiers 13,366 82.68% 8,979 82.59%
Greedy Quantifier 13,346 82.52% 8,961 82.42%
Lazy Quantifier 95 0.76% 78 0.72%

* The unique version is deduplicated, while the total ver-
sion retains the duplicates.

In general, both Loring et al. [42]
and our statistics confirm that regexes
usually contain complex features,
which also indicates it is necessary to
study the modeling of regex extended
operators. Specifically, character class
and greedy quantifier are the two
most popular operators, while nega-
tive lookbehind is the least.

Baselines. To evaluate the effec-
tiveness and efficiency of Rcps, we
selected five state-of-the-art tools for
comparison: Jeong [33], Trux [53],
Shcherban [51], Abolofia [1], and
Schaaf [49]. We list extended opera-
tors supported by each tool in Table 2.
In the tables and figures below, the
abbreviations JE, TR, SH, AB and
SC represent Jeong [33], Trux [53],
Shcherban [51], Abolofia [1], Schaaf [49], respectively.

Table 2. Extended operators sup-
ported by each tool.

JE TR SH AB SC Rcps
Character Class ✓ ✓ ✓ ✓ ✓ ✓

Capturing Group ✓ ✓ ✓ ✓ ✓ ✓

Non-Capturing Group ✗ ✓ ✓ ✓ ✓ ✓

Backreference ✓ ✓ ✓ ✓ ✗ ✓

Positive Lookahead ✗ ✓ ✓ ✓ ✗ ✓

Negative Lookahead ✗ ✗ ✓ ✓ ✗ ✓

Positive Lookbehind ✗ ✗ ✓ ✓ ✗ ✓

Negative Lookbehind ✗ ✗ ✓ ✓ ✗ ✓

Start-of-line Anchor ✓ ✓ ✓ ✓ ✓ ✓

End-of-line Anchors ✓ ✓ ✓ ✓ ✓ ✓

Word Boundary ✗ ✓ ✓ ✓ ✓ ✓

Non-word Boundary ✗ ✓ ✓ ✓ ✓ ✓

Greedy Quantifier ✓ ✓ ✓ ✓ ✓ ✓

Lazy Quantifier ✗ ✗ ✓ ✓ ✓ ✓

* ✓ means the operator is supported; ✗ indicates
the operator is not supported.

Configurations. We implemented the
prototype of Rcps in Python 3 where
the SMT solver we used is Z3 solver [44].
Our experiments were run on a machine
with 2.20GHz Intel Xeon(R) Silver pro-
cessor and 128G RAM, running Win-
dows 10. We used the parameter config-
uration ITER_MAX = 5,000 in our algo-
rithms for all experiments. All baselines
were configured in the same settings as
reported in their original documents.

5.2 Effectiveness and Efficiency
of Rcps

Table 3 gives the overall evaluation results
on the benchmark datasets. According to
Table 3, Rcps outperforms all baseline
techniques in success rate, which success-

fully solved 97.76% R-rcps and 98.95% H-rcps. According to Algorithm 2, our
algorithm may output failed (e.g., Rcps cannot determine whether the puzzle

Modeling Regex Operators for Solving Regex Crossword Puzzles 219

Table 3. Comparison of the effectiveness and efficiency on the benchmarks.

Tools R-rcps H-rcps
#Sol. % Min. T.(s) Max. T.(s) Avg. T.(s) #Sol. % Min. T.(s) Max. T.(s) Avg. T.(s)

JE [33] 398 49.56% 0.01 128.40 1.27 — — — — —
TR [53] 632 78.70% 0.01 3.79 0.04 32 33.68% 0.02 0.05 0.03
SH [51] 93 11.58% 0.14 38.04 2.49 17 2.49% 0.13 16.83 1.51
AB [1] 229 28.52% 0.00 1205.50 11.02 — — — — —
SC [49] 138 17.19% 0.00 1511.78 11.01 — — — — —
Rcps 785 97.76% 0.02 252.25 6.65 94 98.95% 0.02 497.57 3.20

∗ The symbol “—” indicates that the corresponding tools cannot solve the H-rcps.

has a solution), mainly because the CEGAR-scheme is still not refined suc-
cessfully within ITER_MAX times. In order to balance the success rate and
efficiency, we kept ITER_MAX = 5,000.

Effectiveness. Jeong [33] is also based on Z3 [44]. Among the 5 baselines,
it supports the least number of extended operators (see Table 1 and Table 2).
Furthermore, its modeling of operators is incomplete, e.g., it neither supports
negated character classes such as [^\w], nor generates constraints for regex
((A)2\2)1\1. Due to the incomplete modeling of the extended operators, the
success rate is only 49.56% on the R-rcps, which is nearly 1

2 of ours.
Trux [53] employs a heuristic algorithm to recursively calculate the possible

characters of each cell, and supports most of the extended operators in Table 2.
Trux has limited support for lookarounds and its constraint propagation strategy
for backreferences may prune the correct answer. It solved 78.70% R-rcps, which
performed best among all baselines but nearly 18% lower than Rcps, while on
the H-rcps, its success rate is 33.68%, which is only close to 1

3 of ours.
Shcherban [51] is based on a genetic algorithm, evolving strings using

crossover and mutation operators. The genetic algorithm does not consider the
structure of regexes or the semantics of regex operators. Therefore Shcherban
supports all extended operators in Table 2. However, in the experiment, its suc-
cess rate is the lowest, whether on the R-rcps (11.58%) or H-rcps (2.49%). This
also shows that the analysis of the structures and semantics of regexes is essential
for solving regex crossword puzzles.

Abolofia [1] is based on a backtracking regex engine7 which supports all
extended operators in Table 2. Abolofia uses a backtracking algorithm to con-
tinuously extend s such that its length |s| is equal to the number of cells cor-
responding to r. However, due to the size of the search space, it is difficult to
solve puzzles with large alphabets. In the experiments, it only solved 28.52% of
R-rcps, which is 68.49% less than ours.

Schaaf [49] obtains the automaton compiled by the regex engine of Go8. The
tool maintains states compiled by the engine according to the positions of the
puzzle and uses a backtracking algorithm to fill the puzzle. Go’s regex engine

7 https://pypi.org/project/regex/.
8 https://pkg.go.dev/regexp.

https://pypi.org/project/regex/
https://pkg.go.dev/regexp

220 W. Su et al.

follows Re2’s [21] syntax, which does not include backreferences or lookarounds.
Additionally, the size of the search space also affects its performance. In the
experiments, the tool has a low success rate on the R-rcps (17.19%) due to
incomplete support for regex operators.

0

100

200

In
te

rs
ec

tio
n

186
159

142

2

Venn plotUpSet plot

SH
SC
AB
JE
TR

RCPS

SH
SC
AB
JE

R
RCPS

Fig. 8. An illustration of effectiveness of
Rcps on R-rcps datasets.

In addition, we analyze the puz-
zles commonly solved by each tool to
further evaluate the effectiveness of
Rcps. In Fig. 8, the Venn plot shows
the relationship of puzzle sets solved
by each tool on R-rcps. The number
of puzzles solved by each baseline is
less than that of Rcps, and the puz-
zles they solved are subsets of Rcps.
In the UpSet plot, the upper vertical
bar chart represents the intersection
size of puzzles solved by one or more
tools, and the lower dot-line chart represents the corresponding tools, e.g., the
value of the first vertical bar is 186, and the corresponding tools are Trux and
Rcps, which means that among all the solved R-rcps, 186 puzzles can only be
solved by Trux and Rcps, but not by the other four tools. The UpSet plot shows
Rcps can solve 142 R-rcps that the other tools cannot. Similarly, on the H-rcps,
Rcps covers all the puzzles solved by the baselines, and there are 51 H-rcps
uniquely solved by ours. These results demonstrate that Rcps is significantly
more effective than all baselines in solving regex crossword puzzles.

Efficiency. Compared with Jeong [33], Rcps is only 5.38(s) slower on R-rcps,
which is acceptable because we consider the modeling of complex extended oper-
ators, and our success rate (97.76%) is nearly doubled that of Jeong (49.56%).
From Table 3, Rcps achieved a much higher success rate than that achieved by
Trux [53], taking only around 6 and 3 more seconds running time on R-rcps
and H-rcps respectively. Shcherban [51] has a lower average time than ours,
meanwhile, their success rate is low (11.58%). Rcps also has speedups (1.66x
and 1.66x on average) and much higher success rates (69.2% and 80.5%) over
Abolofia [1] and Schaaf [49] respectively on R-rcps. To sum up, Rcps can solve
more puzzles in an acceptable running time.

Summary. First, Rcps has a higher success rate than all baselines, which is
97.76% on the R-rcps and 98.95% on the H-rcps, which are 19.06% and 65.27%
higher than the highest success rates of existing methods, respectively. The solu-
tions of all baselines are subsets of Rcps. Besides, there are 142 R-rcps and 51
H-rcps uniquely solved by ours. Second, Rcps can solve regex crossword puzzles
efficiently, Rcps takes an average of 6.65 s to achieve around 20% more success
rate on the R-rcps, and achieves 65% more success rate at the cost of 3 more
seconds on the H-rcps.

Modeling Regex Operators for Solving Regex Crossword Puzzles 221

Limitations. There are also limitations to the efficiency of our algorithm. In the
experiments, we found following regex structures caused our model generation
time-consuming.

Continuous quantifiers such as r∗
1r

∗
2 . . . r∗

n. Suppose all ri are identical, and
len(ri, k) = {0, 1, . . . , k}, there are about

∑min{k,n}
i=1

(
k−1
i−1

)(
n
i

)

variable alloca-
tion schemes; Nested quantifiers such as ((r1*)* . . .)*. Assuming the quan-
tifiers are nested n layers and len(r1, k) = {0, 1, . . . , k}, there are about
kn variable allocation schemes; Negative lookarounds and backreferences, e.g.,
expression (?!.*(r2)1.*\1)r1 limits the form of string s1 ∈ L(r1) not to be
s1 = . . . s2 . . . s2 . . ., where string s2 ∈ L(r2) appears discontinuously.

Structures we mentioned above need to be further optimized in the future.

6 Related Work

Modeling Regex Operators. In 2004, G. Peasant introduced a global con-
straint to model complex sequencing rules using DFA [46]. Their model did
not consider extended features. Saxena et al. [48] proposed the first scheme
to encode the capturing groups through string constraints. Li and Ghosh [35]
described a string constraint solver, which supports most JavaScript string oper-
ations and partially supports ECMAScript regex but it does not support back-
references or lookaheads. Loring et al. [41] introduced the partial support for
encoding JavaScript regex in terms of classical regular language membership and
string constraints. In their follow-up work [42], they supplemented the model-
ing of lookaheads and anchors, and solved the challenge of matching precedence
through a CEGAR scheme. However, they do not support lookbehinds. Chen
et al. [16] proposed a transducer model PSST combining priorities to capture
greedy/lazy semantics, and support for lookarounds and backreferences are in
their future work. This paper and [55] both propose novel methods for model-
ing regexes. However, they develop different techniques because the problems
they solve are different. The algorithmic difference between this paper and [55]
are listed as follows: firstly our implementation is based on SMT solver Z3 [44]
instead of the induction system to generate a solution. Secondly since regex
crossword puzzles has fixed number of cells, we introduced the len(r, k) func-
tion in fine-grained modeling of regex operators, which is not considered in [55].
Thirdly because regex crossword puzzles do not specify the matching functions,
we have not considered the semantic difference between full matching and partial
matching. However the matching functions for regexes are ubiquitous in practi-
cal programs, thus the authors modeled them in [55]. Another difference is that
we rely on CEGAR strategy to eliminate spurious solutions, which makes our
algorithm sound, yet incomplete, while in [55], authors constrained the expres-
sive power of the input regex by induction rules to ensure the completeness of
their algorithm within the subclass of regexes that they support.

Regex Crossword Puzzles. In [25,26], authors have shown the complexity of
a number of variants and restrictions of regex crossword puzzles. In practice,
the state-of-the-art tools for solving regex crossword puzzles include Jeong [33],

222 W. Su et al.

Trux [53], Abolofia [1], Shcherban [51], and Schaaf [49], which are based on differ-
ent algorithms (see Sect. 1), we also analysis their pros and cons (see Sect. 5.2). In
this paper, we provide more comprehensive regex operator modeling for solving
regex crossword puzzles.

7 Conclusion

In this paper, we propose an over-approximate modeling method for regex oper-
ators. For a given regex r, the output of the modeling is a formula ϕ in first-order
logic, such that the solution s satisfies s ∈ L(r). We deploy a CEGAR scheme
to strengthen ϕ and ensure the correctness of our modeling. We also apply the
modeling to solve regex crossword puzzles and develop a novel algorithm Rcps.
We compare our algorithm with five state-of-the-art tools in 803 R-rcps and
95H-rcps. Experiment results show that, due to the comprehensive modeling,
our algorithm can solve 97.76% R-rcps and 98.95% H-rcps in an acceptable run-
ning time, which are 19.06% and 65.27% higher than the highest success rates
of other methods respectively.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions. Work supported by the Natural Science Foun-
dation of Beijing, China (Grant No. 4232038) and the National Natural Science Foun-
dation of China (Grant No. 62372439).

References

1. Abolofia, R.: regex-crossword-solver (2015). https://github.com/purple4reina/
regex-crossword-solver

2. Alfred, V.: Algorithms for finding patterns in strings. Algorithms Complex. 1, 255
(2014)

3. Anderson, R., Kolko, J.: Crossword puzzle: clues and solutions. Interactions 15(3),
35 (2008)

4. Appelt, D., Panichella, A., Briand, L.: Automatically repairing web application
firewalls based on successful SQL injection attacks. In: ISSRE 2017, pp. 339–350
(2017)

5. Bartoli, A., De Lorenzo, A., Medvet, E., Tarlao, F.: Active learning of predefined
models for information extraction: selecting regular expressions from examples. In:
FSDM 2019, pp. 645–651 (2019)

6. Beacham, A., Chen, X., Sillito, J., van Beek, P.: Constraint programming lessons
learned from crossword puzzles. In: AI 2001, pp. 78–87 (2001)

7. Berglund, M., van der Merwe, B.: Re-examining regular expressions with backref-
erences. Theor. Comput. Sci. 940, 66–80 (2022)

8. Björklund, H., Martens, W., Schwentick, T.: Conjunctive query containment over
trees using schema information. Acta Informatica 55(1), 17–56 (2018)

9. Black, L.: Can You Do the Regular Expression Crossword (2014). https://www.
i-programmer.info/news/144-graphics-and-games/5450-can-youdo-the-regular-
expression-crossword.html

https://github.com/purple4reina/regex-crossword-solver
https://github.com/purple4reina/regex-crossword-solver
https://www.i-programmer.info/news/144-graphics-and-games/5450-can-youdo-the-regular-expression-crossword.html
https://www.i-programmer.info/news/144-graphics-and-games/5450-can-youdo-the-regular-expression-crossword.html
https://www.i-programmer.info/news/144-graphics-and-games/5450-can-youdo-the-regular-expression-crossword.html

Modeling Regex Operators for Solving Regex Crossword Puzzles 223

10. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. J. Found. Comput. Sci. 14(06), 1007–1018 (2003)

11. Cao, J., Li, M., Li, Y., Wen, M., Cheung, S.C., Chen, H.: SemMT: a semantic-
based testing approach for machine translation systems. In: TOSEM 2022, pp.
1–36 (2022)

12. Carle, B., Narendran, P.: On extended regular expressions. In: LATA 2009, pp.
279–289 (2009)

13. Caruccio, L., Cirillo, S., Deufemia, V., Polese, G.: Efficient validation of functional
dependencies during incremental discovery. In: SEBD 2021, pp. 5–9 (2021)

14. Chen, Q., Wang, X., Ye, X., Durrett, G., Dillig, I.: Multi-modal synthesis of regular
expressions. In: PLDI 2020, pp. 487–502 (2020)

15. Chen, T., et al.: Solving string constraints with regex-dependent functions through
transducers with priorities and variables. POPL 2022(6), 1–31 (2022)

16. Chen, T., et al.: Solving string constraints with regex-dependent functions through
transducers with priorities and variables. In: POPL 2022, vol. 6, pp. 1–31 (2022)

17. Chida, N., Terauchi, T.: Repairing DoS vulnerability of real-world regexes. In: S&P
2022, pp. 1049–1066 (2022)

18. Chida, N., Terauchi, T.: On lookaheads in regular expressions with backreferences.
In: FSCD 2022, vol. 228, pp. 15:1–15:18 (2022)

19. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV 2000, pp. 154–169 (2000)

20. Cox, R.: Regular Expression Matching Can Be Simple And Fast (2007). https://
swtch.com/~rsc/regexp/regexp1.html

21. Cox, R.: Regular Expression Matching in the Wild (2010). https://swtch.com/
~rsc/regexp/regexp3.html

22. CTFtime.org: CTFtime.org/HackPack CTF 2021/Regex World (2021). https://
ctftime.org/task/15582

23. Doleschal, J., Kimelfeld, B., Martens, W.: Database principles and challenges in
text analysis. ACM SIGMOD Rec. 50(2), 6–17 (2021)

24. ECMA-262: ECMAScript® 2022 Language Specification (2022). https://tc39.es/
ecma262/multipage/

25. Fenner, S.: The complexity of some regex crossword problems (2014)
26. Fenner, S., Padé, D., Thierauf, T.: The complexity of regex crosswords. Inf. Com-

put. 286, 104777 (2021)
27. Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., Vrgoč, D.: Efficient

enumeration algorithms for regular document spanners. ACM Trans. Database
Syst. 45(1), 1–42 (2020)

28. Freydenberger, D.D.: Extended regular expressions: succinctness and decidability.
Theory Comput. Syst. 53(2), 159–193 (2013)

29. Freydenberger, D.D., Schmid, M.L.: Deterministic regular expressions with back-
references. J. Comput. Syst. Sci. 105, 1–39 (2019)

30. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak
versus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012)

31. Ginsberg, M.L., Frank, M.C., Halpin, M.P., Torrance, M.C.: Search lessons learned
from crossword puzzles. In: AAAI-1990 (1990)

32. Gu, H., et al.: DIAVA: a traffic-based framework for detection of SQL injection
attacks and vulnerability analysis of leaked data. IEEE Trans. Reliab. 69(1), 188–
202 (2019)

33. Jeong, Y.: regex-crossword-solver (2018). https://github.com/blukat29/regex-
crossword-solver

https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html
https://ctftime.org/task/15582
https://ctftime.org/task/15582
https://tc39.es/ecma262/multipage/
https://tc39.es/ecma262/multipage/
https://github.com/blukat29/regex-crossword-solver
https://github.com/blukat29/regex-crossword-solver

224 W. Su et al.

34. Jiang, C., Zhao, Y., Chu, S., Shen, L., Tu, K.: Cold-start and interpretability:
turning regular expressions into trainable recurrent neural networks. In: EMNLP
2020, pp. 3193–3207 (2020)

35. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval
automaton. In: HVC 2013, pp. 15–31 (2013)

36. Li, Y., Cao, J., Chen, H., Ge, T., Xu, Z., Peng, Q.: FlashSchema: achieving high
quality XML schemas with powerful inference algorithms and large-scale schema
data. In: ICDE 2020, pp. 1962–1965 (2020)

37. Li, Y., et al.: ReDoSHunter: a combined static and dynamic approach for regular
expression DoS detection. In: USENIX Security 2021, pp. 3847–3864 (2021)

38. Li, Y., et al.: FlashRegex: deducing anti-ReDoS regexes from examples. In: ASE
2020, pp. 659–671 (2020)

39. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2),
1–53 (2016)

40. Liu, J., Bai, R., Lu, Z., Ge, P., Aickelin, U., Liu, D.: Data-driven regular expressions
evolution for medical text classification using genetic programming. In: CEC 2020,
pp. 1–8 (2020)

41. Loring, B., Mitchell, D., Kinder, J.: ExpoSE: practical symbolic execution of stan-
dalone JavaScript. In: SPIN 2017, pp. 196–199 (2017)

42. Loring, B., Mitchell, D., Kinder, J.: Sound regular expression semantics for dynamic
symbolic execution of JavaScript. In: PLDI 2019, pp. 425–438 (2019)

43. MIT: A Regular Crossword (Solution) (2013). http://www.mit.edu/activities/
puzzle/2013/coinheist.com/rubik/a_regular_crossword/answer/index.html

44. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS 2008, pp. 337–
340 (2008)

45. Pan, R., Hu, Q., Xu, G., D’Antoni, L.: Automatic repair of regular expressions.
In: OOPSLA 2019, vol. 3, pp. 1–29 (2019)

46. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: CP 2004, pp. 482–495 (2004)

47. Polo, M., Pedreira, O., S. Places, Á., Garcia Rodriguez de Guzman, I.: Automated
generation of oracled test cases with regular expressions and combinatorial tech-
niques. J. Softw. Evol. Process 32(12), e2273 (2020)

48. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: S&P 2010, pp. 513–528 (2010)

49. Schaaf, H.: regex-crossword-solver (2014). https://github.com/hermanschaaf/
regex-crossword-solver

50. Schmid, M.L.: Characterising REGEX languages by regular languages equipped
with factor-referencing. Inf. Comput. 249, 1–17 (2016)

51. Shcherban, M.: GP-crossword-solver (2019). https://github.com/maxymczech/gp-
regex-crossword

52. Slashdot: Can You Do the Regular Expression Crossword (2013). https://
games.slashdot.org/story/13/02/13/2346253/canyou-do-the-regular-expression-
crossword

53. Trux, A.: Regex-crossword-solver (2017). https://github.com/antoine-trux/regex-
crossword-solver

54. Veanes, M., De Halleux, P., Tillmann, N.: Rex: symbolic regular expression
explorer. In: ICST 2010, pp. 498–507 (2010)

55. Yan, Y., et al.: Deducing matching strings for real-world regular expressions. In:
SETTA 2023 (2023, accepted)

http://www.mit.edu/activities/puzzle/2013/coinheist.com/rubik/a_regular_crossword/answer/index.html
http://www.mit.edu/activities/puzzle/2013/coinheist.com/rubik/a_regular_crossword/answer/index.html
https://github.com/hermanschaaf/regex-crossword-solver
https://github.com/hermanschaaf/regex-crossword-solver
https://github.com/maxymczech/gp-regex-crossword
https://github.com/maxymczech/gp-regex-crossword
https://games.slashdot.org/story/13/02/13/2346253/canyou-do-the-regular-expression-crossword
https://games.slashdot.org/story/13/02/13/2346253/canyou-do-the-regular-expression-crossword
https://games.slashdot.org/story/13/02/13/2346253/canyou-do-the-regular-expression-crossword
https://github.com/antoine-trux/regex-crossword-solver
https://github.com/antoine-trux/regex-crossword-solver

Modeling Regex Operators for Solving Regex Crossword Puzzles 225

56. Yu, F., Shueh, C.Y., Lin, C.H., Chen, Y.F., Wang, B.Y., Bultan, T.: Optimal
sanitization synthesis for web application vulnerability repair. In: ISSTA 2016, pp.
189–200 (2016)

57. Yu, S.: Regular languages. In: Handbook of Formal Languages, Vol. 1: Word, Lan-
guage, Grammar, pp. 41–110 (1997)

Software Vulnerability Detection Using
an Enhanced Generalization Strategy

Hao Sun1,2, Zhe Bu3, Yang Xiao1, Chengsheng Zhou3, Zhiyu Hao4,
and Hongsong Zhu1(B)

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{sunhao,xiaoyang,zhuhongsong}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 Institute of Security, China Academy of Information and Communications
Technology, Beijing, China

4 Zhongguancun Laboratory, Beijing, China
haozy@zgclab.edu.cn

Abstract. Detecting vulnerabilities in software is crucial for prevent-
ing cybersecurity attacks, and current machine learning-based methods
rely on large amounts of labeled data to train detection models. On the
one hand, a major assumption is that the training and test data follow
an identical distribution. However, vulnerabilities in different software
projects may exhibit various distributions due to their application sce-
narios, coding habits, and other factors. On the other hand, when detect-
ing vulnerabilities in new projects, it is time-consuming to retrain and
test the models. Especially for new projects being developed, it has few
or no instances of vulnerabilities. Therefore, how to leverage previous
learning experience to learn new projects faster is important. To address
these issues, we propose VulGML, a vulnerability detection approach
using graph embedding and meta-learning. The goal is to establish a
model with enhanced generalization, so that the model trained on multi-
ple known projects can detect vulnerabilities in new projects. To further
illustrate the strong generalization of VulGML, we also choose multiple
known vulnerability types to train the meta-learning model and a new
vulnerability type for vulnerability detection. Experimental results show
that VulGML outperforms the state-of-the-art methods by 6.44–39.61%
in detecting new projects, achieves an accuracy higher than 77.80% when
detecting vulnerabilities in new vulnerability types, and its modules have
greatly improved detection performance, demonstrating that VulGML is
potentially valuable in practical usage.

Keywords: Cybersecurity attacks · Vulnerability detection ·
Enhanced generalization · Graph embedding · Meta-learning

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 226–242, 2024.
https://doi.org/10.1007/978-981-99-8664-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_13&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_13

Software Vulnerability Detection Using an Enhanced Generalization 227

1 Introduction

According to the CVEDetails report [3], a total of 25,227 vulnerabilities are
reported in 2022, 25.1% over the previous year and the most ever recorded of
any year since the website began. Software vulnerabilities are security flaws,
glitches, or weaknesses found in software systems that could be exploited by
attackers to undertake malicious activities [16]. In particular, criminal groups
may make use of unresolved security vulnerabilities in software to attack and
damage a system to steal confidential information or extort assets, resulting in
severe economic damage [6]. Therefore, it is essential and indispensable to detect
the software vulnerabilities as soon as possible.

Current research mainly focuses on in-domain vulnerability detection based
on supervised machine learning models [7,15,18,19,23]. As shown in Fig. 1(a),
they divides the sufficient labeled data from multiple projects into two parts: one
part for training and another part for testing, i.e. assuming that the training data
and test data come from the same distribution. When a new project needs to
be detected, the model requires multiple retraining iterations after incorporat-
ing the data from the new project to update parameters, especially those that
simulate high-complexity problems. If there is only a small amount of training
data in the new project, even the timely machine learning algorithm using gra-
dient descent is not very effective [22]. In fact, due to factors such as coding
style and application scenarios, the vulnerability features in different software
projects may obey different probability distributions. In addition, the in-domain
vulnerability detection relies on large amounts of labeled data to train detec-
tion models. However, there is no known publicly available large-scale software
vulnerability database that directly provides real vulnerability data with code
and label pairs [11]. Real-world software projects, particularly those in the early
stages of development, have few or no instances of vulnerabilities. Construct-
ing the new training dataset based on the vulnerabilities of new projects is also
prohibitively expensive.

As shown in Fig. 1(b), to address the above issues, detection models need to
leverage previous learning experience to learn new projects faster, rather than
retraining the detection model for new projects. In other words, the trained vul-
nerability detection model should exhibit enhanced generalization capabilities.
For example, a vulnerability detection model trained on project1 and project2
can also be applied to the other projects.

In this paper, we present VulGML, an enhanced generalization method
using graph embedding and meta-learning. VulGML treats the existing multiple
projects as multiple meta-tasks, and the goal is to use multiple meta-tasks to
train a vulnerability detection model with strong generalization ability, so that it
can also detect vulnerabilities in a new project. Specifically, we take the follow-
ing steps: First, Data preparation. We crawl the source codes of five projects to
obtain vulnerability functions and their fixed functions, which avoids the impact
of highly normative synthetic datasets on model generalization and meets the
needs of real-world vulnerability detection. Each function is constructed into
a program dependency graph (PDG) to obtain graph embedding, which can

228 H. Sun et al.

Train Single
Task

Project1 Project2 Vulnerability Not

Test
Project2 Vulnerability NotProject1

(a) Traditional deep learning methods.

Train

Meta-task1
Project1

Vulnerability Not

Test
Project4Project3

Meta-task2
Project2

Vulnerability Not

(b) Our approach.

Fig. 1. Comparison of traditional DNN approach and our approach.

not only represent rich dependency semantic information in the function, but
also reduce the error in randomly initialized the graph embedding in meta-
learning model. Second, A meta-learning model. It involves basic network and
meta-learner. We utilize the basic network to learn the vulnerability features
of functions in each meta-task, and the meta-learner to enhance the generaliza-
tion ability of the basic network across various vulnerability features through
learning multiple meta-tasks. The trained meta-learning model can learn accu-
rate generalization representations for different vulnerability features of multiple
meta-tasks. Third, Detection vulnerabilities for the new projects. The trained
meta-learning model can obtain a generalized representation of vulnerability fea-
ture, we use a portion of the samples in the new project fine-tune the trained
meta-learning model, and then detect vulnerabilities for the remaining sam-
ples. It avoids the time consumption caused by retraining on new projects. The
results demonstrate that our method outperforms the state-of-the-art model,
which enables us to accurately judge whether the samples is a vulnerability.

To summarize, this paper makes the following contributions:

(1) We propose a novel approach VulGML that better enhances the general-
ization of the vulnerability detection model. VulGML utilizes the graph
embedding and meta-learning to enable faster learning of new projects by
leveraging previous learning experience.

(2) Data preparation that adopts the graph embedding of the PDG for each
function, successfully obtaining the dependency semantic information of the
source code, and reducing the impact of meta-learning random initialization
of vulnerability features on detection results.

(3) A meta-learning method that represents the general vulnerability features
of multiple meta-tasks using basic network and meta-learner, achieving a
strong generalization capability across different projects.

Software Vulnerability Detection Using an Enhanced Generalization 229

(4) A fine-tuning-based detection method involves utilizing the new project to
fine-tune the trained meta-learning model and subsequently detecting vul-
nerabilities in the new project, which avoids the time consumption caused
by retraining on new projects. The results demonstrate our method outper-
forms state-of-the-art methods on detecting the vulnerability.

The remainder of this paper can be organized as follows. Section 2 pro-
vides the state-of-the-art related work and advantages of our method. Section 3
presents the design of VulGML. Section 4 evaluates the experimental results. In
Sect. 5, we conclude the paper and discuss its limitations and future work.

2 Related Works

Machine learning does not rely on human experts to identify vulnerability pat-
terns, and automatically detects potential vulnerabilities through model train-
ing. We review the work related to machine learning from two directions: in-
domain and cross-domain vulnerability detection methods.

2.1 In-Domain Vulnerability Detection Methods

In-domain vulnerability detection methods assume that the sufficient labeled
training data and test data in multiple projects come from the same distribution.
The main tasks include serialization-based methods [1,10,11] and graph-based
methods [2,17,24].

Serialization-based methods. They input the source code into the model as
serialized tokens for learning. For example, VulDeePecker [11] generates code
gadgets which is represented by a set of semantically related lines of C/C+
code, and then uses BiLSTM to convert them into vectors in a serialized form
for training. SySeVR [10], based on syntax and semantics of source code, fully
exploits data dependencies and control dependencies. BGNN4VD [1] extracts
the syntax and semantic information of source code through AST, CFG, and
DFG, and learn the different features using BGNN.

Graph-based methods. The source code is transformed into graph structures,
and graph models are utilized to learn the syntax and semantic information
within the graph. For example, Devign [24] utilizes various components of GNN
to learn the rich semantic information in Code Property Graph, which enables
GNN to better learn node representations and thus achieve graph-level classifi-
cation. FUNDED [17] shows how a multi-relational, gated graph neural network
can be developed for vulnerability detection and exploit transfer learning to port
vulnerability detection models across programming languages.

Compared with serialization-based vulnerability detection, graph-based mod-
els fully integrate richer semantic information. Therefore, in this paper, we rep-
resent source code as the PDG and use a graph neural network to learn its graph
embedding as initial input for meta-learning.

230 H. Sun et al.

2.2 Cross-Domain Vulnerability Detection Methods

For the in-domain methods, the prerequisite for detecting new projects is to
retrain the model with the new project added to the dataset. This operation
overlooks the fact that due to application scenarios, coding habits, and other
factors, vulnerability features of different software projects may obey different
probability distributions.

In order to apply a detection model trained on limited training data to new
projects, there have been some recent studies on cross-domain methods [9,12,14].
They involve training models in one domain and applying them to a different
domain, aiming to generalize knowledge and transfer it across domains. For
example, Literature [14] uses migration component analysis to map software
metrics in the source and target domains to the same feature space. VulGDA
[9] uses GRU [4] for code encoding and implements cross domain vulnerability
detection based on Maximum Mean Discrepancy. CD-VulD [12] uses a metric
transfer learning framework (MTLF) [20] to bridge the gap between different
domains’ distribution.

Cross-domain approaches for software vulnerability detection are limited to
one source domain (i.e., training on a single source project, and assessing the gen-
eralization performance on another project). However, the vulnerability features
covered by a single source project are limited, and the ability to generate general
vulnerability features across multiple source projects needs improvement. Our
method treats multiple source projects as multiple meta-tasks, combining accu-
rate vulnerability features representing each meta-task to generate generalized
vulnerability features for all source projects. Finally, when detecting the model
on other projects, it exhibits significantly improved generalization performance
compared to cross-domain methods.

3 Approach

The overview architecture of VulGML is illustrated in Fig. 2. As can be seen, it
is composed of three modules, i.e., Data preparation, Meta-learning model and
Detection model.

Data Preparation. We crawl the vulnerability functions and their fixed func-
tions for multiple projects, which avoids the impact of highly normative synthetic
datasets on model generalization and meets the needs of real-world vulnerabil-
ity detection. In addition, we construct the PDG for each function, and obtain
graph embedding using the graph neural network, which can not only represent
dependency semantic information for the function, but also reduce the error in
randomly initialized the graph embedding in meta-learning model.

Meta-learning Model. Given M projects as multiple meta-tasks, the dataset
of each meta-task is divided into support set and query set. We use support set of
each meta-task to train the meta-learning model, i.e., utilizing the basic network
to learn the vulnerability features of functions in each meta-task, and the meta-
learner to minimize the sum of generalization losses of overall multiple meta-
tasks. The query set is used to test the performance of the meta-learning model.

Software Vulnerability Detection Using an Enhanced Generalization 231

Meta
Learning

Project 1

Project M

√

√ √

Support Set

√

√

Query Set
Train

Train

Test

Test

Detection Project Q √

Support Set

√

Query Set

Train Test

The samples in different projects

Data Preparation

Fig. 2. Overview of VulGML.

Detection Model. Given that a trained meta-learning model can represent
the general vulnerability features of multiple meta-tasks, so when a new project
needs to be detected, instead of in-domain machine learning methods to retrain
the model, we only need to utilize this prior knowledge to better train specific
detection tasks and obtain accurate detection results. Specifically, the samples
in each new project are divided into support set and query set, of which support
set is used to fine-tune the trained meta-learning model, and query set is used
to evaluate the generalization ability.

3.1 Data Preparation

This section is used to obtain the dependency semantic information of each
function and input it into the meta-learning model, which can reduce the detec-
tion error caused by the random initialization code embedding in meta-learning
model. As shown in Fig. 3, data preparation includes obtaining the PDG by
parsing source code and graph embedding by GPT-GNN.

Given the function of source code as the input, we first apply a robust parser
Joern [21] to parse each function, and generate PDG of the function. The PDG
of function f is denoted by G = (V,E), where V = {v1, . . . , vk} is a set of nodes
with each node representing a statement or control predicate, E = {e1, . . . , en}
is a set of direct edges with each edge representing a data dependency (DDG)
or control dependency (CDG) between a pair of nodes.

Then, we get graph embedding using GPT-GNN. The set of node embeddings
is referred to as graph embeddings, where embedding of each node fuses the
dependency semantic information of adjacent nodes. GPT-GNN [8] introduces
a self-supervised attributed graph generation task to pre-train a GNN, which
not only avoids relying on large amounts of labeled data, but also captures the

232 H. Sun et al.

5

1

4 6

7

DDG:

DDG:

DDG:

CDG:

DDG:yDDG:z

DDG:y

A sample in the projects Graph embedding by GPT-GNNGet PDG by parsing source code
Data Preparation

1 int example() {
2 int y;
3 void *z;
4 z = getchar() – 0 ;
5 y = z - 1;
6 if (y % 2 == 0):
7 printf("%d\n", 100/y);
8 }

Fig. 3. The structure of data preparation for VulGML (DDG and CDG represent data
and control dependencies between nodes, respectively).

inherent dependency between node attributes and graph structure for each node
in the PDG. GPT-GNN calculates the attribute and edge generation for each
node simultaneously. The attribute generation nodes is masked out by replacing
their attributes with a dummy token and learn a shared vector to represent it.
The attribute generation loss is as follows.

LAttr
i = Distance

(
DecAttr

(
hAttr

i

)
,Xi

)
(1)

where hAttr represents the output embeddings of attribute generation node,
DecAttr (·) is its decoder. Its goal is to minimize the distance between the gen-
erated and masked attributes, and can capture the semantic of this PDG for
nodes.

The edge generation nodes can keep their attributes and put them as input
to the GNN. After getting the edge generation node representation hEdge , GPT-
GNN model the likelihood that node i is connected with node j by DecEdge (·),
where DecEdge is a pairwise score function, j+ is the linked node and S−

i is the
unconnected nodes, the loss is as follows.

LEdge
i = −

∑

j+∈Ei,−o

L (2)

L = log
exp

(
DecEdge

(
hEdge

i , hEdge
j+

))

∑
j∈S−

i ∪{j+} exp
(
DecEdge

(
hEdge

i , hEdge
j

)) (3)

By optimizing LEdge, it is equivalent to maximizing the likelihood of generat-
ing all the edges, and thus the pre-trained model is able to capture the intrinsic
structure of the graph. By minimizing LAttr and LEdge, GPT-GNN is optimal.

3.2 Meta Learning Model

To generalize a vulnerability detection model trained on multiple meta-tasks to
new projects, we propose a meta-learning method, which involves basic network

Software Vulnerability Detection Using an Enhanced Generalization 233

and meta-learner. Basic network is utilized to learn the vulnerability features of
functions. Meta-learner is a framework that improves the generalization ability
of the basic network to various vulnerability features via multiple meta-tasks.
Figure 2 shows the overall structure of meta-learning. We regard each project as
a task Ti, and divide the data of each task DTi

into support data (defined as
Dsupport

Ti
) and query data (defined as Dquery

Ti
), where Dsupport

Ti
is used to train

the meta-learning model, and Dquery
Ti

is used to test the meta-learning model.

Convolutional
layer

Input

Basic
Network

Activation
layer

Maxpooling
layer

Fully
connected

Output
0/1

Fig. 4. Composition of the basic network.

1) Basic network. Software vulnerability detection treats source code as text
processing. Text-CNN is considered effective in text classification [5], we use it
as basic network for vulnerability detection. As shown in Fig. 4, the basic network
includes convolutional layer, activation layer, maxpooling layer, fully connected
layer. The basic network is able to automatically learn the graph embedding
initialized by GPT-GNN, which can be very useful in identifying patterns and
dependency semantic information within the graph.

2) Meta-learner. In this part, we aim to minimize the sum of generalization losses
of overall multiple meta-tasks and optimize the model parameters with a small
number of gradient steps on each meta-task. As shown in Fig. 5, the meta-learner
consists of inner-learner and outer-learner.

The inner-learner is utilized to improve the ability of the basic network to
capture the vulnerability features of functions in a single meta-task. It is trained
with Dsupport

Ti
and feedback from corresponding loss, and then tested on Dquery

Ti
.

Suppose there is a parametrized function fθ with parameters θ. We update the
parameters θ to θ∗ when adapting to a new project Ti. Using one gradient update
as an example, the parameters of inner-learner are updated as follows:

θ∗
i = θ − α∇θLTi

(fθ) (4)

where α is the learning rate of the inner-learner, and ∇ represents the operation
of gradient descent.

The outer-learner enables the basic network to obtain superior generalization
performance to various tasks. The updating process of the outer-learner is by
optimizing the performance of fθ∗

i
with respect to θ across all tasks sampled

from p(T). The learning process is presented in the form of parameter iterative
updates, i.e.,

min
θ

∑

Ti∼p(T)

LTi

(
fθ∗

i

)
=

∑

Ti∼p(T)

LTi
(fθ − α∇θLTi

(fθ)) (5)

234 H. Sun et al.

Basic Network Basic Network

New weights & New bias

loss

Gradient
Descent

Support set

Query set

Support
Set *

Query
Set *

loss1

loss2

Gradient
Descent

Basic Network Basic Network
loss

Gradient
Descent

Support set

Query set

Support
Set *

Query
Set *

Outer-learner

Inner-learner

weights & bias

weights & bias

Optimal weights
& Optimal bias

Task1

Task2

….

Fig. 5. Composition of meta-learner.

The optimization across tasks of outer-learner is performed via stochastic
gradient descent, then the updating process for outer-learner would be simplified
as follow:

θ ← θ − β∇θ

∑

Ti∼p(T)

LTi

(
fθ∗

i

)
(6)

where β is the learning rate of the outer-learner.
Our work can be viewed as a binary classification task to determine whether

the source code is a vulnerability (labeled as 1) or a normal sample (labeled as
0). We use a cross entropy loss for the input/output pair x(j), y(j) sampled from
task Ti, the loss takes the form:

LTi
(fφ) =

∑

x(j),y(j)∼Ti

y(j) log fφ

(
x(j)

)

+
(
1 − y(j)

)
log

(
1 − fφ

(
x(j)

)) (7)

3.3 Detection Model

This section is to apply the learned knowledge by meta-learning model to detect
new projects. Figure 6 shows the vulnerability detection process. Note that the
basic network used for detection in new projects is the same as shown in Fig. 4.

The new project is divided into the support set and query set, as illustrated
in Fig. 2. To improve the detection performance in new projects, we utilize the
optimal prior knowledge θ0 as initialization parameters for fine-tuning in support

Software Vulnerability Detection Using an Enhanced Generalization 235

Basic
Network

Basic
Network

weights
&bias

Outputs0/1

TestingFine-tuning

Query setSupport set

Optimal weights
&Optimal bias

Fig. 6. The vulnerability detection process (vulnerabilities labeled 1).

set. This process yields updated weights and bias denoted as θtn . Then, we utilize
θtn as the parameters of the detection model to assess whether samples in query
set have vulnerabilities. One gradient update process is taken as an example:

θtn = θ − γ∇θ0Ltn (fθ0) (8)

where Ltn is the loss function in the new projects for detection, θ0 is defined as
the optimal trained parameters of the meta-learning model.

4 Evaluation

4.1 Experimental Setup

1) DataSet. The dataset is a C/C++ open source project, and other program-
ming languages will also be considered in the future. We first crawl the vul-
nerabilities and its fixed functions of five projects from Cvedetails and Github
websites. The application domain includes network packet analyzer, operating
system kernel, software library providing safe communication, network analysis
tool, and multimedia file operators, which exhibit different security concerns.
The dataset and usage of five projects are shown in Table 1.

Table 1. The number of vulnerable and fixed functions in five projects

Projects (Tasks) Vulnerabilities Patch Total Usage

Wireshark 3,123 6,013 9,136 Meta-learning

Linux 473 654 1,127 Meta-learning

Openssl 57 221 278 Detection

Tcpdump 64 64 128 Detection

Ffmpeg 59 59 118 Detection

In order to measure the detection generalization of VulGML to other vulnera-
bility types, we also collect four different vulnerability types from Cvedetails and
Github websites, namely improper input validation (CWE20), improper restric-
tion of operations within the bounds of a memory buffer (CWE119), numeric

236 H. Sun et al.

errors (CWE189) and resource management errors (CWE399). Each vulnera-
bility type includes vulnerabilities and its fixed functions with the same ratio.
Four vulnerability types contain a total of 4,676 functions. Figure 7 shows the
proportion of functions.

CWE20
34%

CWE119
24%

CWE189
28%

CWE399
14%

CWE20 CWE119 CWE189 CWE399

Fig. 7. The proportion of functions in four vulnerability types.

2) Metrics and setting. We measure the performance in terms of Accuracy, Preci-
sion, Recall, and F1-Score. In VulGML, the output dimension of GPT-GNN for
each node embedding is 64. During training the meta-learning model, the num-
ber of Text-CNN layers in basic network is 3. The learning rate of inner-learners
and outer-learner is 0.001, the optimizer is Adam, and the training batch size for
each meta-iteration is 16. During the detecting procedure of the new projects,
we set the learning rate as 0.001, and the fine-tuning batch size for each iteration
is 16.

4.2 Experiment Results

1) Generalization of detecting vulnerabilities in new projects. In order to
study the improvement of generalization in detecting vulnerabilities within new
projects, we compare VulGML with five state-of-the-art baselines, including
three in-domain methods (i.e. BGNN4VD [1], VulDeePecker [11] and SySeVR
[10]) and two cross-domain methods (i.e. VulGDA [9] and CD-VulD [12]).

The emergence of new projects often contains potential vulnerabilities, and
the number of vulnerability samples available for training in new projects is very
small. We train on Wireshark and Linux (called Wireshark-Linux), which have
a sufficient number of vulnerable (labeled 1) and fixed functions (labeled 0) for
training. In addition, we use Openssl, Tcpdump, and Ffmpeg, which have fewer
vulnerable and fixed functions, as detection tasks to evaluate the generalization
of the different models. The following is the processing of the three types of
methods: in-domain method, cross-domain method, and meta-learning method.

In-Domain Method. We integrate Wireshark-Linux for training the model,
and use Openssl, Tcpdump, and Ffmpeg respectively to detect the generalization
of the trained model. Note that when training the model, we use 80% of the

Software Vulnerability Detection Using an Enhanced Generalization 237

Wireshark-Linux as the training dataset and perform 5-fold cross-validation to
train the models, and use the remaining 20% as the testing dataset.

Cross-Domain Method. We use Wireshark-Linux as source domain, and
Openssl, Tcpdump, and Ffmpeg as the target domain respectively. The dataset
in the target domain is divided into two subsets. In the case of the Openssl,
we hold out 80% as labeled data of Openssl and use it with Wireshark-Linux
to train the cross-domain model. Then the remaining 20% is used to detect the
generalization of the model.

Meta-learning Method. We consider Wireshark-Linux as two tasks to train
meta-learning model, and Openssl, Tcpdump, and Ffmpeg as new projects
to evaluate the generalization of trained meta-learning model. The following
describes the specific details.

During training the meta-learning model, first, we consider Wireshark-Linux
as two meta-tasks and split their datasets into 80% for training (support data)
and 20% for testing (query data). Second, we construct the PDG for each sample,
and use GPT-GNN to generate the graph embedding. The graph embedding as
input for the model training below. Third, we design Text-CNN as basic network
in the inner-learner to determine whether the samples of each meta-task have
vulnerabilities. Finally, we minimize the sum of generalization losses of overall
meta-tasks in outer-learner, and update all the parameters in the inner-learner.

During detection stage, we evaluate the generalization performance of the
trained meta-learning model on new projects, namely Tcpdump, Ffmpeg, and
Rdesktop. First, we split the dataset for each new project into 90% for train-
ing (support data) and 10% for testing (query data). Second, we extract the
graph embedding for each sample in the new projects (using the same method
with training the meta-learning model), and use them as input for the following
process. Third, the support data is used to fine-tune the trained meta-learning
model. Finally, the query data is used to evaluate the generalization performance
of VulGML.

Table 2 shows the performance measures when Wireshark-Linux is used for
training the model and Openssl is used for detection. Here are our findings.

Table 2. Wireshark+Linux→Openssl

Approach type Approach Acc(%) P(%) R(%) F1(%)

In-domain BGNN4VD 50.32 47.91 54.53 52.34

VulDeePecker 61.28 63.36 70.14 65.41

SySeVR 67.14 65.33 69.25 68.18

Cross-domain VulGDA 75.29 79.37 68.67 71.83

CD-VulD 77.49 80.19 76.84 77.16

Meta-learning VulGML 83.93 82.50 80.86 82.38

238 H. Sun et al.

First, the generalization performance of in-domain methods is poor because
new projects are not retrained and directly tested, resulting in no vulnerability
features of new projects in the trained model. For example, the Accuracy of
BGNN4VD is only 50.32%. Specifically, BGNN4VD lacks preprocessing opera-
tions on graph information, and the convolution operation on the state vectors
matrix causes some important graph structure information to be lost, which may
be the main reason affecting it. In addition, SySeVR-enabled BGRU is 3.12%
higher than VulDeePecker in F1-Score. Because VulDeePecker cannot accommo-
date semantic information induced by control dependency.

Second, cross-domain methods outperform in-domain methods. Because
domain adaptation in cross-domain methods promotes the emergence of fea-
tures that are both discriminative for vulnerability detection and invariant to the
shift between domains. For example, compared with SySeVR, CD-VulD achieves
8.98% improvement in F1-Score, showing a great improvement in reducing dis-
tribution differences between different domains. In addition, CD-VulD is 5.33%
higher than VulGDA in F1-Score, we think that the metric transfer learning
framework in CD-VulD is better than Maximum Mean Discrepancy in VulGDA
in minimizing the distribution divergence between the source domain and the
target domain.

Finally, our method outperforms cross-domain methods. Because cross-
domain approaches for software vulnerability detection are limited to one source
domain (i.e., train on a single project, and detect on another project). For mul-
tiple projects, the ability to generate general vulnerability features between
multiple tasks needs to be improved. Our approach VulGML achieves 6.44%,
2.31%, 4.02% and 5.22% improvement in Accuracy, Precision, Recall and F1-
Score respectively, showing the strong generalization in software vulnerability
detection.

Table 3. Wireshark+Linux→Tcpdump

Approach type Approach Acc(%) P(%) R(%) F1(%)

In-domain BGNN4VD 51.01 48.15 54.41 52.62

VulDeePecker 61.46 63.57 70.97 65.15

SySeVR 66.19 66.76 70.84 68.27

Cross-domain VulGDA 75.11 79.23 69.41 73.00

CD-VulD 79.97 81.77 77.59 78.75

Meta-learning VulGML 83.29 82.95 81.18 82.22

To further illustrate the generalization of VulGML to other new projects
besides Openssl, we detect Tcpdump and Ffmpeg in Table 3 and Table 4, respec-
tively. Compared with the best method on Tcpdump in Table 3, VulGML
achieves 3.47% improvement in F1-Score. Similarly, for detecting the Ffmpeg
in Table 4, VulGML achieves 3.55% improvement in F1-Score. These detection

Software Vulnerability Detection Using an Enhanced Generalization 239

Table 4. Wireshark+Linux→Ffmpeg

Approach type Approach Acc(%) P(%) R(%) F1(%)

In-domain BGNN4VD 50.09 48.80 53.72 51.84

VulDeePecker 62.70 62.08 71.90 66.99

SySeVR 67.75 65.65 68.38 68.06

Cross-domain VulGDA 74.20 78.63 69.55 71.80

CD-VulD 79.11 80.60 77.89 78.50

Meta-learning VulGML 83.01 82.11 81.14 82.05

results show that our method can also generalize to other new projects. Addition-
ally, we also found that the results of VulGDA and CD-VulD in our experiments
are higher than those shown in the original paper [9,12]. This is mainly because
the vulnerabilities types present in the detection projects (i.e., e Openssl, Tcp-
dump, and Ffmpeg) are also encompassed in the meta-learning projects (i.e.,
Wireshark and Linux).

2) Generalization of detecting vulnerabilities with new vulnerability types. To
further illustrate the strong generalization to vulnerabilities with new vulnera-
bility types, we use the vulnerabilities with CWE20 and CWE189 for training
the meta-learning model, and CWE119 and CWE399 for detection, respectively.
The experiments indicate that this work is more challenging than 1).

77.81%
77.32%

78.04% 77.93%

0.7

0.75

0.8

Acc P R F1

CWE20+CWE189→CWE119

(a) CWE20 and CWE189 for meta-
learning, and CWE119 for detection.

77.95% 78.03%

76.54%
77.16%

0.7

0.75

0.8

Acc P R F1

CWE20+CWE189→CWE399

(b) CWE20 and CWE189 for meta-
learning and CWE399 for detection.

Fig. 8. Generalization of detecting vulnerabilities with new vulnerability types.

Figure 8(a) shows the performance measures when using CWE119 to detect
generalization. The F1-Score of it is 77.93%, lower than detecting a new project
Ffmpeg which is 82.05%. Similarly, The F1-Score of CWE399 in Fig. 8(b) is
4.89% lower than detecting a new project Ffmpeg. Because different projects
might have varying distributions due to factors like application scenarios and

240 H. Sun et al.

coding styles. However, vulnerabilities in different projects might belong to the
same vulnerability type. For example, both Wireshark and Tcpdump may have
vulnerabilities of the CWE119, which results in similar aspects of vulnerability
features across different projects. But different vulnerability types come from
different projects and represent different vulnerability features, so the common
features that meta-learning can learn will be less. In addition, the detection
generalization effect of CWE119 is slightly better than that of CWE399. We
think that the reason may be that the data of CWE119 is 10% more than that
of CWE399, so the fine-tune is more powerful.

Overall, despite the distinct features of different vulnerability types, VulGML
still demonstrates strong generalization performance in detecting vulnerabilities
with different vulnerability types. For instance, As shown in Fig. 8(a), after train-
ing on vulnerabilities with CWE20 and CWE189 and detecting on vulnerabilities
with CWE119, the values of Accuracy, Precision, Recall, and F1-Score achieve
77.81%, 77.32%, 78.04%, and 77.93%, respectively.

3) Gain of Proposed Methods. To measure the effect gain of using graph embed-
ding and meta-learning, we evaluate the detection generalization of VulGML
with a single method, i.e., word2vec [13] instead of GPT-GNN to represent the
initial graph embedding of each sample, or Text-CNN instead of meta-learning
to train the vulnerability detection model. The results show that the effect is
much lower than that of VulGML.

0.6 0.65 0.7 0.75 0.8 0.85

F1

R

P

Acc

GPT-GNN+TextCNN Word2vec+Meta-Learning VulGML

Fig. 9. The gain of proposed methods.

Figure 9 shows the detection results on Openssl using trained model by
Wireshark-Linux. We found that the effect gain of using graph embedding is
up to 3.28%, 2.10%, 1.63%, 2.45% in Accuracy, Precision, Recall, and F1-Score
respectively, which means that graph structured information can better rep-
resent dependency semantic information. In addition, the effect gain of using
meta-learning is up to 22.39%, 19.63%, 17.93%, 20.15% in Accuracy, Precision,
Recall, and F1-Score respectively, which shows that our meta-learning model

Software Vulnerability Detection Using an Enhanced Generalization 241

can detect new projects based on existing multiple meta-tasks. In conclusion,
VulGML uses graph embedding and meta-learning to effectively enhance the
generalization of the model and improve the vulnerability detection ability.

5 Conclusion

To leverage previous learning experience to learn new projects faster, this paper
presents VulGML, a vulnerability detection approach using graph embedding
and meta-learning. The goal is to establish a model with strong generaliza-
tion, so that the model trained on multiple meta-tasks can detect vulnerabili-
ties in new projects. To illustrate the strong generalization to new projects, we
choose two projects as two meta-tasks for training the meta-learning model and
a new project for vulnerability detection. Furthermore, we also analyze the gen-
eralization effect of the model learned based on existing vulnerability types to
new vulnerabilities with new vulnerability types. The experimental results show
that VulGML outperforms state-of-the-art in-domain and cross-domain meth-
ods when multiple meta-tasks as input, and its modules have greatly improved
detection performance. However, VulGML is not a perfect vulnerability detection
method, and the following are its limitations as well as our future work.

This paper focuses on training and detecting C/C++ programs. VulGML is
a generic solution, and exploring vulnerability detection in other programming
languages will be an interesting work for future research. Additionally, the effec-
tiveness of VulGML on datasets beyond those used in this paper remains to be
validated. In the experiments, neural network parameters are set to default val-
ues or widely used values within the deep learning community. Adjusting these
parameters in the future may lead to improved experimental results.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China under Grant 61972392, Grant 62072453 and Grant 62202462.

References

1. Cao, S., Sun, X., Bo, L., Wei, Y., Li, B.: BGNN4VD: constructing bidirectional
graph neural-network for vulnerability detection. Inf. Softw. Technol. 136, 106576
(2021)

2. Chakraborty, S., Krishna, R., Ding, Y., Ray, B.: Deep learning based vulnerability
detection: are we there yet. IEEE Trans. Softw. Eng. (2021)

3. CVEDetails. https://www.cvedetails.com/
4. Dey, R., Salem, F.M.: Gate-variants of gated recurrent unit (GRU) neural networks.

In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems
(MWSCAS), pp. 1597–1600. IEEE (2017)

5. Dharma, E.M., Gaol, F.L., Warnars, H., Soewito, B.: The accuracy comparison
among word2vec, glove, and fasttext towards convolution neural network (CNN)
text classification. J. Theor. Appl. Inf. Technol. 100(2), 31 (2022)

6. Dowd, M., McDonald, J., Schuh, J.: The Art of Software Security Assessment:
Identifying and Preventing Software Vulnerabilities. Pearson Education (2006)

https://www.cvedetails.com/

242 H. Sun et al.

7. Guo, W., Fang, Y., Huang, C., Ou, H., Lin, C., Guo, Y.: HyVulDect: a hybrid
semantic vulnerability mining system based on graph neural network. Comput.
Secur. 102823 (2022)

8. Hu, Z., Dong, Y., Wang, K., Chang, K.W., Sun, Y.: GPT-GNN: generative pre-
training of graph neural networks. In: Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1857–1867
(2020)

9. Li, X., Xin, Y., Zhu, H., Yang, Y., Chen, Y.: Cross-domain vulnerability detec-
tion using graph embedding and domain adaptation. Comput. Secur. 125, 103017
(2023)

10. Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., Chen, Z.: SySeVR: a framework for using
deep learning to detect software vulnerabilities. IEEE Trans. Dependable Secure
Comput. 19(4), 2244–2258 (2021)

11. Li, Z., et al.: VulDeePecker: a deep learning-based system for vulnerability detec-
tion. arXiv preprint arXiv:1801.01681 (2018)

12. Liu, S., et al.: CD-VulD: cross-domain vulnerability discovery based on deep
domain adaptation. IEEE Trans. Dependable Secure Comput. 19(1), 438–451
(2020)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Nam, J., Pan, S.J., Kim, S.: Transfer defect learning. In: 2013 35th International
Conference on Software Engineering (ICSE), pp. 382–391. IEEE (2013)

15. Nguyen, V.A., Nguyen, D.Q., Nguyen, V., Le, T., Tran, Q.H., Phung, D.: ReGVD:
revisiting graph neural networks for vulnerability detection. In: Proceedings of the
ACM/IEEE 44th International Conference on Software Engineering: Companion
Proceedings, pp. 178–182 (2022)

16. NVD. https://nvd.nist.gov/
17. Wang, H., et al.: Combining graph-based learning with automated data collection

for code vulnerability detection. IEEE Trans. Inf. Forensics Secur. 16, 1943–1958
(2020)

18. Wartschinski, L., Noller, Y., Vogel, T., Kehrer, T., Grunske, L.: VUDENC: vulner-
ability detection with deep learning on a natural codebase for Python. Inf. Softw.
Technol. 144, 106809 (2022)

19. Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., Jin, H.: VulCNN: an image-inspired
scalable vulnerability detection system. In: Proceedings of the 44th International
Conference on Software Engineering, pp. 2365–2376 (2022)

20. Xu, Y., et al.: A unified framework for metric transfer learning. IEEE Trans. Knowl.
Data Eng. 29(6), 1158–1171 (2017)

21. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulner-
abilities with code property graphs. In: 2014 IEEE Symposium on Security and
Privacy, pp. 590–604. IEEE (2014)

22. Zha, D., Lai, K.H., Wan, M., Hu, X.: Meta-AAD: active anomaly detection with
deep reinforcement learning. In: 2020 IEEE International Conference on Data Min-
ing (ICDM), pp. 771–780. IEEE (2020)

23. Zhang, L., et al.: CBGRU: a detection method of smart contract vulnerability
based on a hybrid model. Sensors 22(9), 3577 (2022)

24. Zhou, Y., Liu, S., Siow, J., Du, X., Liu, Y.: Devign: effective vulnerability identi-
fication by learning comprehensive program semantics via graph neural networks.
In: Advances in Neural Information Processing Systems, vol. 32 (2019)

http://arxiv.org/abs/1801.01681
http://arxiv.org/abs/1301.3781
https://nvd.nist.gov/

HeatC: A Variable-Grained Coverage
Criterion for Deep Learning Systems

Weidi Sun, Yuteng Lu, Xiaokun Luan, and Meng Sun(B)

School of Mathematical Sciences, Peking University, Beijing, China
{weidisun,luyuteng,lxk_5826,sunm}@pku.edu.cn

Abstract. Deep learning (DL) systems have achieved significant success
in numerous cutting-edge fields. However, the deployment of DL systems
in safety-critical areas has raised public concerns about their correctness
and robustness. To provide testing evidence for the dependable behavior
of Deep Neural Networks (DNNs), various DL coverage criteria have been
proposed. These coverage criteria are often “ad-hoc” in terms of granu-
larity for different tasks, but designing appropriate criteria for every pos-
sible usage scenario is infeasible and will make the coverage testing lack
of uniform standards. In this paper, we proposes a variable-grained DL
coverage criterion named HeatC as a common solution for different cov-
erage testing tasks. HeatC leverages class-activation-map-based features
from neural networks and clusters these features to generate test targets.
Experiments demonstrate that HeatC outperforms existing mainstream
coverage criteria in assessing the adequacy of test suites and selecting
high-value test samples from unlabeled datasets.

Keywords: Neural networks · HeatC · Testing · Coverage criteria

1 Introduction

Deep Neural Networks (DNNs) are increasingly becoming popular for their abil-
ity to handle a wide range of tasks in various domains, such as autonomous driv-
ing [5], natural language processing [23], and climate science [8]. However, the
growing applications of DNNs have set higher demands on their behavior reliabil-
ity. Recent accidents involving autonomous vehicles [10] have further emphasized
the urgent need for improved assurance evaluation practices for DNN systems.
The efforts made to guarantee the trustworthiness of DNNs mainly focus on five
aspects: verification [6], testing [21,29], adversarial attack [14,22], defense [4,9],
and interpretability [2,18]. Among these aspects, testing is one of the best ways
to ensure the adequacy of DNNs, considering the balance between completeness
and efficiency. However, quantifying DNNs’ test adequacy is challenging as their
behavior cannot be explicitly encoded into control flow structures [24].

To address this challenge, various coverage criteria have been proposed to
evaluate the adequacy of a test suite for a DNN. The first coverage criterion,
Neuron Coverage (NC) [20], is inspired by code coverage in software testing and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 243–261, 2024.
https://doi.org/10.1007/978-981-99-8664-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_14&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_14

244 W. Sun et al.

calculates the ratio of activated neurons during test execution. The follow-up
studies are IDC [7], NBC, SNAC, KMNC [17], which partition the output value
range of neurons into buckets and calculate the activated bucket ratio, and 2-
way coverage [16], MC/DC neuron coverage [28], 3-way coverage [25], INC [27],
which analyze interactions between neurons in adjacent layers or all neurons.
Additionally, TKNC [17] evaluates the ratio of top-k neurons, while SC [11]
measures the relative novelty of test inputs with respect to the training set.
These coverage criteria are crucial in assessing the adequacy of test suites for
DNNs, enabling better reliability of these systems in industrial domains.

However, these existing coverage criteria are “ad-hoc” in terms of granularity.
For example, NC is designed to guide the gradient optimization in DeepXplore
whitebox testing framework [21]. It underachieves in test adequacy evaluation
due to its coarse granularity. The coarse-grained coverage criteria have a small
number of “test targets” which makes them easy to satisfy and cannot capture
the subtle differences between different test suites. DeepCT [16] and 3-way cov-
erage [25] are designed for test adequacy evaluation, they are too fine-grained to
select a small number of high-value test inputs. Since fine-grained coverage cri-
teria have a large number of test targets, they cannot determine the exploration
priorities of uncovered cases. In the case of selecting a small number of samples,
each input covers a large number of targets, that makes it difficult to decide
which input is more valuable. Different application fields require coverage crite-
ria with different levels of granularity. However, designing appropriate criteria
for every possible usage is complicated and difficult, which needs a huge amount
of manual labor and will make the coverage testing lack of uniform standards.

In this paper, we present a variable-grained DL coverage criterion named
HeatC. To provide a common solution for different coverage testing tasks, HeatC
generates variable-grained test targets from benchmark datasets (usually the
training set). These class activation mapping based test targets are named heat
feature buckets, which combine the attention of the neural networks and the fea-
tures of inputs to reflect the behaviors of DNNs. HeatC computes the covered
ratio of heat feature buckets to evaluate the test adequacy and utilizes the repre-
sentative samples from heat feature buckets to form high-quality test suites. We
evaluate HeatC and other mainstream coverage criteria comprehensively to show
that HeatC performs better than existing works in assessing test adequacy and
test sample selection. The evaluation is based on two publicly available datasets
(Fashion-MNIST [31] and CIFAR-10 [13]) and 10 representative DNNs.

The main contributions of this paper are as follows:

– We propose the variable-grained coverage criterion HeatC to provide a com-
mon solution for different coverage testing tasks.

– We design the test adequacy evaluation and test sample selection methods
for HeatC.

– We analyze HeatC and other mainstream criteria on 2 public datasets and
10 representative DNNs. The experiments show that HeatC is superior to
existing works in test adequacy evaluation and test sample selection.

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 245

The rest of this paper is organized as follows. Section 2 introduces the class
activation mapping which is the foundation of HeatC. Then we present the work-
flow of HeatC in Sect. 3. Section 4 evaluates HeatC and other mainstream cover-
age criteria in two aspects: test adequacy evaluation and test sample selection.
Finally, Sect. 5 summarizes this paper.

2 Class Activation Mapping

Class Activation Mapping (CAM) indicates the features contributing to neural
networks’ prediction. It is a vector with values ranging from 0 to 1 at each
position, which is also known as class heat map, saliency map, etc. A high score in
CAM means that the corresponding feature has a high response and contribution
to the network’s prediction (Fig. 1).

Fig. 1. CAM shows the main prediction basis of DL systems

The first CAM is proposed by Zhou et al. in [33] based on the global average
pooling (GAP) of neural networks. GAP [15] is a pooling operation commonly
used in deep learning architectures which computes the average value of each
feature map across its spatial dimensions to capture global context and spatial
relationships while preserving spatial invariance. Zhou et al. define the CAM by
the equation:

M(x, y) =
∑

k

wkfk(x, y)

where M(x, y) is the value of CAM at position (x, y), wk is the weight connecting
GAP’s k-th output channel and the neuron of the predicted class, fk is the k-th
input channel of GAP. This CAM generation method requires GAP layer in the
network architecture, but not all models are equipped with GAP layer.

To overcome this defect, Selvaraju et al. [26] present Grad-CAM which
replaces the weight in CAM with the average gradients of the target channels.
The workflow of Grad-CAM can be divided into two steps. In the first step,

246 W. Sun et al.

Fig. 2. Overview of HeatC coverage criterion

Grad-CAM calculates the gradients of given channels via back-propagation and
obtains the importance weights by using the equation:

αc
k =

1
Z

∑

i

∑

j

∂yc

∂Ak
i,j

where αc
k is the weight corresponding to channel k and prediction class c, Z is the

number of neurons in the channel k, ∂yc

∂Ak
i,j

is the gradient of class c’s score with
respect to each neuron in channel k. Grad-CAM applies global average pooling to
gradients instead of channels. In the second step, Grad-CAM multiplies weights
with corresponding channels and follow it with a ReLU function:

Lc
Grad−CAM = ReLU(

∑

k

αc
kAk)

Chattopadhay et al. [1] and Omeiza et al. [19] propose Grad-CAM++ and
Smooth Grad-CAM++, respectively, to improve the calculation of weights in
Grad-CAM. Some other CAM generation methods do not rely on gradients. For
example, Wang et al. [30] present Score-CAM based on Channel-wise Increase
of Confidence (CIC) and Desai et al. [3] propose Ablation-CAM based on abla-
tion study. In this paper, we extract the features based on CAM to reflect the
behaviors of DL systems for specific inputs, especially the subtle behaviors that
are vulnerable to adversarial attacks.

3 HeatC Coverage Criterion

In this section, we present our HeatC coverage criterion. To provide a common
solution for different tasks, HeatC generates variable-grained test targets from
benchmark datasets (usually the training set). The workflow of HeatC is shown
in Fig. 2, which can be divided into two parts:

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 247

Algorithm 1. Algorithm for generating heat feature
1: Input: set of activation results D
2: Output: heat features HeatF
3: HeatF = ∅

4: for each A in D do
5: A = A.reshape(A.batch_size,-1)
6: HeatF .connect(A)
7: end for
8: Return HeatF

– extracting the heat features and clustering them to generate the heat feature
buckets,

– using the heat feature buckets to evaluate test adequacy or selecting high-
value test samples from the unlabeled dataset.

We introduce these two parts in the following subsections.

3.1 Generation of Heat Feature Buckets

Heat feature buckets are the test targets of HeatC. A heat feature bucket can
be denoted as a tuple (O, r) where O is a cluster center of heat features and r is
the given radius of the bucket. One heat feature bucket (O, r) is covered by an
input set when there exists at least one sample whose feature f falls into (O, r).
In other words, the distance between f and O is less than r. The generation of
heat feature buckets can be divided into three steps.

The first step is to extract heat features. For each sample in a given dataset,
HeatC extracts the specified intermediate results from different layers of DNNs.
It then calculates the gradients of these results with respect to the prediction
results via backward propagation. The intermediate results and the correspond-
ing gradients are denoted as vector R and G in shape B × C × W × H where
B is the batch size, C is the number of channels, W and H are the width and
height of channels. We apply the global average pool to G to get the channel
weights ω by the following equation.

ωb,k =
1

W × H

∑

i

∑

j

Gb,k,i,j

Then we merge ω and R linearly to get the activation result A.

Ab,k,i,j = ωb,kRb,k,i,j

Finally, we flatten the activation results and connect them to get the one-
dimensional heat features for each input as shown in Algorithm 1.

The distance of the heat feature is defined as follows.

Definition 1 (Distance of heat feature). Each heat feature HeatF can be
divided into slices HeatFk = HeatF [ik : jk] which come from different interme-
diate results of a DNN. In this paper, we treat each layer’s heat feature as a slice

248 W. Sun et al.

Algorithm 2. Algorithm for heat feature cluster
1: Input: heat feature bucket radius θ, benchmark dataset D, neural network N ,

convergence parameters ε
2: Output: heat feature cluster centers C
3: AD = N(D).heat_feature
4: Buckets = ∅

5: Selected = ∅

6: while (AD \ Selected) �= ∅ do
7: center = select one feature from AD \ Selected randomly
8: while True do
9: temp_dis = Dis(center, AD)

10: candidate = ∅

11: for each d ∈ temp_dis and the corresponding A ∈ AD do
12: if d < θ then
13: candidate.add(A)
14: end if
15: end for
16: new_center =

∑
A′∈candidate A′

|candidate|
17: if (∃c ∈ Buckets : Dis(c, new_center)< θ

2
)∨(Dis(center, new_center)<ε)

then
18: Selected.add(candidate)
19: Buckets.add(center)
20: break
21: else
22: center = new_center
23: end if
24: end while
25: end while
26: Return Buckets

of the whole heat feature. Given two heat features HeatF1, HeatF2, and a slice
weight α, the distance of HeatF1, HeatF2 can be denoted as

Dis(HeatF1,HeatF2) =
∑

k

αk||HeatF1,k − HeatF2,k||1

which is the weighted sum of slices’ L1 distance. The αk in this paper is
k

Len(HeatF1,k)
.

In the second step, HeatC decides the radius of the heat feature buckets based
on a given radius parameter θ (0 < θ < 1). We select m pairs of heat features
extracted from the benchmark dataset. We then calculate their distances and
sort these distances in ascending order. With the radius parameter θ, we choose
the �θm�-th distance as the radius of the heat feature bucket. A bigger θ leads
to a smaller radius, which means that the coverage targets, i.e., the heat feature
buckets are finer-grained.

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 249

In the third step, Algorithm 2 finds the heat feature buckets based on the
mean-shift algorithm. Algorithm 2 calculates the heat features of all samples
in the benchmark dataset in line 3. The cluster center set Buckets and the
processed feature set Selected are initialized in line 4 and line 5, respectively.
Line 7 randomly selects one sample from the unprocessed features as a temporary
cluster center (bucket center) until all samples are processed. Line 9 computes
the distance between the temporary center and all features. Line 10 to line 15
find the features in the bucket of the temporary center (the distance between
these features and the temporary center is less than the given bucket radius θ).
Line 16 calculates the average of these features as the new center. If this new
center is close to existing bucket centers or satisfies the convergence condition,
line 18 to 20 adds the candidate and the center to the processed feature set and
the bucket center set. Or rather, line 22 updates the center and Algorithm 2
starts a new loop from line 8 to line 24. Line 26 returns the result.

3.2 Test Adequacy Evaluation and Test Sample Selection

In this subsection, we present the second part of HeatC, i.e., the heat feature
buckets based implementation of test adequacy evaluation and test sample selec-
tion.

Test adequacy evaluation of HeatC treats the heat feature buckets as the
test targets. Given a benchmark data set and a test suite, HeatC calculates the
heat feature buckets of the benchmark set and uses the test suite to cover these
buckets. For a bucket bi with center oi and the radius r, if a test sample with
feature s covers bi, it must satisfy the following two conditions:

– For all uncovered buckets, s is closest to oi.
– The distance between s and oi is less than r.

Then we use the test samples which cannot cover any bucket to generate new
heat feature buckets. The HeatC score can be defined as

HeatCscore =
ν + μ

λ + μ

where ν is the number of covered buckets from the benchmark dataset, μ is the
number of newly generated buckets from the test suite, λ is the number of all
buckets generated by the benchmark data set. The details of the test adequacy
evaluation are shown in Algorithm 3.

In Algorithm 3, line 1 and line 2 declare the inputs and the output. Line
3 generates the bucket set B and the corresponding radius r of the benchmark
data set. Line 4 extracts the heat feature FT of the test data set. Line 5 initializes
the tensor InBucket which records the test samples falling into the buckets in
B. Line 6 calculates the distance matrix BFDis; each variable BFDis[i, j] in
BFDis represents the distance between i-th bucket in B and j-th feature in FT .
Line 7 initializes the variable ν recording the number of covered buckets. For
each row in BFDis, line 9 marks the samples falling into the buckets. Line 11

250 W. Sun et al.

Algorithm 3. Algorithm for generating HeatC score
1: Input: benchmark data set D, test set T , neural network N , radius parameter θ
2: Output: HeatCscore

3: B, r = HeatB(N ,D,θ)
4: FT = HeatF(N ,T)
5: InBucket = [FALSE]*len(T)
6: BFDis = Dis(B,FT)
7: ν = 0
8: for i, d in enumerate(BFDis) do
9: judge = (d < r)

10: if sum(judge)> 0 then
11: j = argmin(d)
12: assign +∞ to column j in BFDis
13: InBucket = InBucket ∨ judge
14: ν+ = 1
15: end if
16: end for
17: Bout = HeatB’(N ,T [¬InBucket])
18: HeatCscore = ν+|Bout|

|B|+|Bout|
19: Return HeatCscore

selects the sample closet to B[i]; line 12 drops the feature having been used. Line
13 and 14 update the InBucket and ν. Line 17 generates the buckets with the
fixed radius for test samples out of B’s buckets. Line 18 calculates the HashC
score and Line 19 returns the result.

Test sample selection approach of HeatC is designed to select a given size
test suite that is as adequate as possible. HeatC distributes the selected samples
evenly among the test targets during selecting a small size test suite from a big
unlabeled data set. In this way, the test suite can 1) enrich the features explored
by the test suite, 2) prevent similar samples from wasting the places in the test
suite. The workflow of HeatC’s test sample selection is shown in Algorithm 4.

Algorithm 4 is introduced in detail as follows. Line 3 in Algorithm 4 contains
a function HeatBS which generates the buckets of unlabeled data set D and
returns the samples divided by these buckets. The list S consists of sample sets;
the samples in each set fall into one bucket. Line 4 initializes the output test
suite T . Line 5 to line 21 is a loop which selects the test samples one at a time.
The variable m in line 5 represents the number of test samples to select. If m is
greater than the number of buckets, line 6 to line 13 updates the m, pops one
sample from each bucket and adds them to T , and finally removes the empty
sets from S. Otherwise, line 14 to line 20 selects some buckets and adds their
samples to T . It should be noted that our mean-shift based algorithm tends to
put the adjacent buckets in adjacent positions in S. Thus, we select buckets at
intervals of � |B|

m � in S to make the selection more even. Line 22 returns the test
suite T as the result.

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 251

Algorithm 4. Algorithm for test sample selection
1: Input: unlabeled data set D, neural network N , radius parameter θ, test suite size

m
2: Output: test suite T
3: S = HeatBS(N ,D,θ)
4: T = ∅

5: while m > 0 do
6: if m > |B| then
7: m-=|B|
8: for bucket in S do
9: T .add(bucket.pop())

10: if bucket = ∅ then
11: S.remove(bucket)
12: end if
13: end for
14: else
15: step = � |B|

m
�

16: for i in range(m) do
17: T .add(B[i ∗ step].pop())
18: end for
19: m = 0
20: end if
21: end while
22: Return T

10000-CIFAR10 (CIFAR10’s test set)

select 400 inputs from each class of 10000-CIFAR10 randomly

4000-MNIST 4000-MNIST

2000-MNIST

select 200 inputs from each class of 4000-CIFAR10 randomly

2000-MNIST

200-MNIST 200-MNIST

Fig. 3. The generation of test suites

4 Evaluation

In this section we compare HeatC with mainstream coverage criteria on two
aspects:

– the sensibility in distinguishing test suites with different adequacies,

252 W. Sun et al.

– the performance in selecting high-quality test suite from unlabeled dataset.

All the experiments are implemented on the Pytorch framework [12] and con-
ducted on a GPU server. The server has 4 Xeon Gold 5118 2.30GHz CPUs,
24GB system memory, and 1 NVIDIA Titan XP GPU.

4.1 Experiment Design

We design two experiments. In Experiment 1 , we chose θ as 0.994 because we
conducted multiple preliminary experiments ranging from 0.99 to 0.999. As θ
increases, the time cost also increases, and we found that a granularity of 0.994
strikes a balance between evaluating effectiveness and time cost. In Experiment
2 , we selected θ as 0.99 because a coarser granularity of coverage criteria is
beneficial for test case selection. This demonstrates the versatility of variable
granularity for different tasks.

Experiment 1 compares HeatC with HashC, SC, NC, and KMNC. The hyper-
parameters of these coverage criteria are as follows:

– The activation threshold t of NC and HashC is set to 0.
– The k of KMNC is set to 4.
– The surprise metric of SC is L2 and other parameters are the same as in [11].

SC analyzes the second to the last layer in DNNs.

We compare HeatC with HashC, KMNC, NC and SC by evaluating two
series of synthetic test suites with different adequacies to show that HeatC
is more sensitive. The comparison is deployed on five kinds of DNNs includ-
ing LeNet-5, AlexNet, GoogLeNet, MobileNet, and ResNet18. All these DNNs
are trained by Fashion-MNIST and CIFAR10. The two series of test suites are
selected from the test sets of Fashion-MNIST and CIFAR10. For example, we first
regard CIFAR10’s test set as 10000-CIFAR10. The 4000-CIFAR10ks select 400
inputs from each class of 10000-CIFAR10 randomly (CIFAR10 has ten classes),
thus, 10000-CIFAR10 is the father of 4000-CIFAR10ks. Then 2000-CIFAR10k

selects 200 inputs from each class of its “father” 4000-CIFAR10k. The other
series of test suites are i-Fashion-MNISTs which are generated in the same way
as i-CIFAR10s. These test sets’ adequacies are different. The adequacies of i-
CIFAR10ks (i-Fashion-MNISTks) are in ascending order of i. For example, 4000-
CIFAR10k is more adequate than 2000-CIFAR10k, because 2000-CIFAR10k is
a subset of 4000-CIFAR10k. We take ten i-CIFAR10ks’ (i-Fashion-MNISTks’)
average coverage score to represent i-CIFAR10’s (i-Fashion-MNIST’s) score so
as to eliminate the random error. The process for generating i-CIFAR10s, which
is also the same process used for generating i-Fashion-MNIST, is illustrated in
Fig. 3.

We use coverage criteria to assess the adequacy of different test suites, demon-
strating the sensitivity of coverage criteria. An ideal sensitive coverage criterion
should be able to give a lower score to test suites with lower adequacy, a higher
score to test suites with higher adequacy, and provide as large a difference in

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 253

Table 1. Coverage scores of i-Fashion-MNISTs

i-Fashion-MNISTs
200 500 1000 2000 4000 10000

HashC AlexNet 0.0799 0.1355 0.1656 0.1866 0.3625 0.4318
HeatC 0.2574 0.3504 0.4322 0.5148 0.6113 0.7478
NC 0.9934 0.9959 0.9969 0.9978 0.9984 0.9987
KMNC 0.9878 0.9922 0.9943 0.9958 0.9970 0.9979
SC 0.1711 0.3447 0.5050 0.6449 0.7326 0.8250
HashC GoogLeNet 0.2816 0.4076 0.4462 0.4639 0.9199 0.9594
HeatC 0.1431 0.2123 0.2842 0.3723 0.4896 0.6654
NC 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000
KMNC 0.9986 0.9997 0.9999 0.9999 1.0000 1.0000
SC 0.1507 0.2767 0.3848 0.4935 0.5774 0.6630
HashC LeNet-5 0.1766 0.2813 0.3311 0.3587 0.6685 0.7634
HeatC 0.2178 0.2862 0.3520 0.4257 0.5224 0.6382
NC 0.9859 0.9872 0.9884 0.9897 0.9906 0.9912
KMNC 0.9801 0.9843 0.9862 0.9875 0.9887 0.9898
SC 0.1708 0.3520 0.5398 0.7022 0.8181 0.9200
HashC MobileNet 0.2972 0.4024 0.4399 0.4608 0.9103 0.9545
HeatC 0.1585 0.2239 0.2977 0.3778 0.4676 0.6307
NC 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
KMNC 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
SC 0.1535 0.2777 0.3615 0.4127 0.4541 0.4990
HashC ResNet18 0.2407 0.3410 0.3834 0.4073 0.8018 0.8653
HeatC 0.1352 0.2238 0.3176 0.4130 0.5184 0.6552
NC 0.9997 0.9998 0.9999 0.9999 0.9999 1.0000
KMNC 0.9985 0.9994 0.9997 0.9998 0.9999 0.9999
SC 0.1530 0.2715 0.3585 0.4230 0.4660 0.5200

scores as possible between test suites with different adequacy levels to distinguish
them.

Experiment 2 is designed for evaluating the performance of HeatC and main-
stream coverage criteria in selecting high-quality test suites from unlabeled
datasets. In this experiment, we use HeatC and other mainstream coverage crite-
ria to select test suites based on different DNNs. All these test suites are selected
from a synthetic unlabeled dataset which is generated as follows:

– Selecting 1000 source samples from the original dataset (e.g., the training set
of Fashion-MNIST or CIFAR10).

– Applying data augmentation to the 1000 selected samples to get 10000 sam-
ples which form the synthetic unlabeled dataset. The data augmentation tech-
niques include rotation, translation, cropping, adding noise, etc.

254 W. Sun et al.

Table 2. Coverage scores of i-CIFAR10s

i-CIFAR10s
200 500 1000 2000 4000 10000

HashC AlexNet 0.3744 0.4762 0.4908 0.4955 0.9889 0.9966
HeatC 0.1486 0.2221 0.292 0.3823 0.4827 0.6265
NC 0.9965 0.9989 0.9995 0.9998 0.9999 1
KMNC 0.9999 1 1 1 1 1
SC 0.1609 0.3078 0.4244 0.5155 0.5767 0.642
HashC GoogLeNet 0.3414 0.462 0.4836 0.4922 0.9787 0.9931
HeatC 0.1439 0.2662 0.3971 0.5468 0.6901 0.8153
NC 0.9998 0.9999 1 1 1 1
KMNC 0.9992 0.9997 0.9999 0.9999 1 1
SC 0.1248 0.2057 0.2745 0.3337 0.3758 0.418
HashC LeNet-5 0.3138 0.4208 0.4583 0.4745 0.9371 0.978
HeatC 0.1166 0.1844 0.2519 0.3371 0.4426 0.5818
NC 0.9948 0.996 0.9968 0.9974 0.9979 0.9982
KMNC 0.9932 0.9945 0.9954 0.9962 0.9969 0.9975
SC 0.1511 0.267 0.355 0.4412 0.5304 0.6237
HashC MobileNet 0.4262 0.4939 0.4992 0.4999 0.999 0.9999
HeatC 0.1383 0.2093 0.2881 0.3768 0.4783 0.6203
NC 1 1 1 1 1 1
KMNC 0.9998 1 1 1 1 1
SC 0.1291 0.2036 0.2488 0.2917 0.3364 0.394
HashC ResNet18 0.312 0.4499 0.4784 0.4923 0.9724 0.9887
HeatC 0.1722 0.2611 0.3375 0.4292 0.5296 0.6852
NC 1 1 1 1 1 1
KMNC 0.999 0.9997 0.9999 1 1 1
SC 0.1334 0.2125 0.2711 0.3231 0.366 0.417

The distribution of samples in the synthetic unlabeled dataset is unreasonable,
most of them are clustered around a few source samples. Such low-quality unla-
beled datasets can easily arise in data acquisition due to laziness during pho-
tography (e.g. taking consecutive shots of the same target from a similar angle).
The duty of coverage guided selection in this experiment is to select feature-rich
and evenly distributed test suites. The selected test suites’ sizes are 400. We also
select test suites from each synthetic unlabeled dataset randomly as the baseline
of Experiment 2.

Experiment 2 reuses the DNNs in Experiment 1 and the compared coverage
criteria are: HeatC, NC, KMNC, and TKNC. The hyper-parameters of NC and
KMNC are the same as that in Experiment 1, the k of TKNC is set to 1.

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 255

4.2 Experiment Results

Experiment 1 ’s evaluation results of i-Fashion-MNISTs and i-CIFAR10 are in
Table 1 and 2, respectively.

From the table, we can observe that the assessment capabilities of NC and
KMNC are quite limited. Many test suites receive scores close to 1, even though
they vary significantly in their adequacy. Other coverage criteria ensure that cov-
erage scores increase with adequacy and can distinguish between test suites with
different levels of adequacy. To more directly evaluate which coverage criterion
performs better in distinguishing test suites, we define the “sensitivity score” as
follows.

Definition 2 (Sensitivity score). A series of test suites Tis’ (i = 0, 1, ..., N)
adequacies are in ascending order of i. Evaluating Tis by a coverage criteria C
on a DNN N , the C score of Ti can be denoted as si. The sensitivity score SS

of C on Ti and N is defined as SS = (sN − s0) ∗
N∑

i=1

(1 − (
si−1

si
)2).

Before the analysis of the evaluation results, we first review the sensitivity
score. Sensitivity score measures the “increase” of each row in Table 1 and 2. In
the case that the network and the data set under evaluation are the same, a
coverage criteria with a higher “increase” in its corresponding row can separate
the test suites with different adequacies more observably. For example, if si is
larger than si−1, then si−1

si
will be smaller, and the final score will be higher.

Additionally, to prevent the case that a large score caused by small differences,
such as si = 1e − 5 and si−1 = 1e − 7, we multiply the difference as a coefficient
in front of the score. Thus the coverage criterion with higher sensitivity score is
more sensitive in distinguishing test suites with different adequacies.

Table 3. Sensitivity scores of evaluated coverage criteria

LeNet-5 AlexNet GoogLeNet ResNet18 MobileNet

i-Fashion-MNIST
NC 6 * 10−5 6 * 10−5 2 * 10−8 2 * 10−7 2 * 10−8

KMNC 0.0002 0.0002 4 * 10−6 4 * 10−6 2 * 10−8

HashC 1.1603 0.7831 1.0773 1.0668 0.9963
SC 1.6639 1.3804 1.0704 0.6472 0.5815
HeatC 0.7323 0.8439 1.1936 1.1889 1.0127

i-CIFAR10
NC 2 * 10−5 2 * 10−5 8 * 10−8 0 0
KMNC 3* 10−5 2 * 10−8 1 * 10−6 2 * 10−6 8 * 10−8

HashC 0.9920 0.7614 0.8810 0.9925 0.5913
SC 0.9695 0.9223 0.5269 0.4928 0.4556
HeatC 1.0919 1.0368 1.6024 1.0742 1.0777

256 W. Sun et al.

The sensitivity scores of all evaluated coverage criteria on i-Fashion-MNISTs
and i-CIFAR10s are in Table 3 showing that HeatC performs better than NC,
KMNC, SC, INC, and HashC on most DNNs and test suites. We sort the coverage
criteria by their sensitivities, the result is: 1) HeatC, 2) HashC, 3) SC, 4) KMNC,

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(a) Fashion-MNIST-LeNet-5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(b) Fashion-MNIST-MobileNet

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(c) Fashion-MNIST-AlexNet

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(d) Fashion-MNIST-ResNet-18

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(e) Fashion-MNIST-GoogLeNet

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(f) CIFAR10-LeNet-5

Fig. 4. Minimum feature-distance of test suites

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 257

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(g) CIFAR10-MobileNet

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(h) CIFAR10-AlexNet

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(i) CIFAR10-ResNet-18

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80

Random TKNC NC KMNC HeatC

(j) CIFAR10-GoogLeNet

Fig. 4. (continued)

5) NC. In addition, NC and KMNC are so easy to be satisfied, so that they
cannot reflect the changes in test suites’ adequacy when the score is close to 1.
In conclusion, HeatC criteria are finer than other evaluated criteria.

Experiment 2 ’s test suites are evaluated by the top-k minimum feature distance
(TKMD) defined as follows.

M(T, k) = maxTk⊆T (minx,y∈Tk(x�=y)D(x, y))

where T k is the subset of the evaluated test suite satisfying |T k| = |T | ∗ k% and
D is the perceptual similarity measurement LPIPS (Learned Perceptual Image
Patch Similarity) [32]. The T k′ = argmaxTk⊆T (minx,y∈Tk(x�=y)D(x, y)) denotes
the most representative (|T | ∗ k%)-sample subset in T . Because the samples in
T k′ are far away from each other, and each of them can represent a region in the
input space. The similarity measurements are designed to evaluate structured
inputs’ “perceptual distance”, they can measure how similar are two pictures in
a way coinciding with human judgment. In this experiment, we use the LPIPS
to evaluate the feature distance between samples. Given two test suites T1 and

258 W. Sun et al.

Table 4. TKMD of evaluated coverage criteria

LeNet-5 AlexNet GoogLeNet ResNet18 MobileNet

i-Fashion-MNIST
Random 0.2449 0.2192 0.2192 0.2192 0.2192
TKNC 0.2588 0.2413 0.2354 0.2361 0.2354
NC 0.2564 0.1803 0.2275 0.2277 0.2304
KMNC 0.2456 0.2388 0.2352 0.2400 0.2376
HeatC 0.2652 0.2673 0.2388 0.2420 0.2429

i-CIFAR10
Random 0.4573 0.4573 0.4573 0.4573 0.4573
TKNC 0.5070 0.4822 0.4711 0.4693 0.4689
HashC 0.4711 0.4810 0.4347 0.4738 0.4731
NC 0.4984 0.4749 0.4660 0.4656 0.4672
HeatC 0.5232 0.5151 0.4992 0.5167 0.5153

T2, M(T1, k) > M(T2, k) represents that the most representative (|T | ∗ k%)-
sample subset in T1 distributes more evenly than that of T2 in perception. The
comprehensive evaluation of test suites’ TKMD is shown in Fig. 4. The subfigure
name in Fig. 4 represents the source of test suites, e.g., Fig. 4a contains the
test suites generated from Fashion-MNIST based on LeNet-5. The names of
curves represent the generation methods, for example, the Random curves are
the TKMD curves of test suites generated by random selection which is the
baseline of Experiment 2. The ordinates denote the TKMD values, the abscissas
represent the k of TKMD. It is obvious that the curves of HeatC generated test
suites are higher than other curves.

A more brief conclusion of Fig. 4 is in Table 4. The data in Table 4 stands for
“area under the TKMD curve”, or rather, Table 4 measures the two-dimensional
area underneath the TKMD curve of all test suites. The coverage criterion with a
higher score in Table 4 can generate test suites distributing more reasonable. This
experiment shows that HeatC is superior to other coverage criteria in selecting
high-quality test suites.

5 Conclusion

To facilitate the use of coverage testing in different areas, we present a cover-
age criterion named HeatC which is a variable-grained DL coverage criterion.
HeatC utilizes the activation mapping based test targets to combine the atten-
tion of the neural networks and the features of inputs. Guiding by the clustered
test targets, HeatC can reflect the subtle behaviors of DNNs and adjust its own
granularity. We also develop the test adequacy evaluation and test sample selec-
tion approaches for HeatC. Experiments show that HeatC performs better than

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 259

existing mainstream coverage criteria in assessing the adequacy of test suites
and selecting high-value test samples from the unlabeled dataset.

Acknowledgement. This research was sponsored by the National Natural Science
Foundation of China under Grant No. 62172019, and CCF-Huawei Formal Verification
Innovation Research Plan.

References

1. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-
CAM++: generalized gradient-based visual explanations for deep convolutional
networks. In: Proceedings of the 18th IEEE Winter Conference on Applications of
Computer Vision, pp. 839–847. IEEE Computer Society (2018). https://doi.org/
10.1109/WACV.2018.00097

2. Chen, J., Song, L., Wainwright, M.J., Jordan, M.I.: Learning to explain: an
information-theoretic perspective on model interpretation. In: Proceedings of the
35th International Conference on Machine Learning, ICML 2018, pp. 1386–1418.
PMLR 80. International Machine Learning Society (2018). https://doi.org/10.
48550/arXiv.1802.07814

3. Desai, S., Ramaswamy, H.G.: Ablation-CAM: visual explanations for deep convo-
lutional network via gradient-free localization. In: Proceedings of the 2020 IEEE
Winter Conference on Applications of Computer Vision, pp. 972–980. IEEE (2020).
https://doi.org/10.1109/WACV45572.2020.9093360

4. Dhillon, G.S., et al.: Stochastic activation pruning for robust adversarial defense.
In: Proceedings of the 6th International Conference on Learning Representations.
International Conference on Learning Representations (2018). https://doi.org/10.
48550/arXiv.1803.01442

5. Feng, D., Harakeh, A., Waslander, S.L., Dietmayer, K.: A review and compara-
tive study on probabilistic object detection in autonomous driving. IEEE Trans.
Intell. Transp. Syst. 23(8), 9961–9980 (2022). https://doi.org/10.1109/TITS.2021.
3096854

6. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.T.: AI2: safety and robustness certification of neural networks with abstract
interpretation. In: Proceedings of the 2018 IEEE Symposium on Security and Pri-
vacy, pp. 3–18. IEEE Computer Society (2018). https://doi.org/10.1109/SP.2018.
00058

7. Gerasimou, S., Eniser, H.F., Sen, A., Cakan, A.: Importance-driven deep learn-
ing system testing. In: Proceedings of the 42nd International Conference on Soft-
ware Engineering: Companion, pp. 322–323. IEEE (2020). https://doi.org/10.
1145/3377812.3390793

8. Gerges, F., Boufadel, M.C., Bou-Zeid, E., Nassif, H., Wang, J.T.L.: A novel deep
learning approach to the statistical downscaling of temperatures for monitoring
climate change. In: Proceedings of the 6th International Conference on Machine
Learning and Soft Computing, pp. 1–7. Advances in Intelligent Systems and Com-
puting 887, ACM, Virtual, Online, China (2022)

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: Proceedings of the 3rd International Conference on Learning Repre-
sentations. International Conference on Learning Representations (2015). http://
arxiv.org/abs/1412.6572

https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.48550/arXiv.1802.07814
https://doi.org/10.48550/arXiv.1802.07814
https://doi.org/10.1109/WACV45572.2020.9093360
https://doi.org/10.48550/arXiv.1803.01442
https://doi.org/10.48550/arXiv.1803.01442
https://doi.org/10.1109/TITS.2021.3096854
https://doi.org/10.1109/TITS.2021.3096854
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1109/SP.2018.00058
https://doi.org/10.1145/3377812.3390793
https://doi.org/10.1145/3377812.3390793
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572

260 W. Sun et al.

10. Guller, D.: Technical foundations of a DPLL-based SAT solver for propositional
Godel logic. IEEE Trans. Fuzzy Syst. 26(1), 84–100 (2018). https://doi.org/10.
1109/TFUZZ.2016.2637374

11. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. In: Proceedings of the 41st International Conference on Software Engi-
neering, pp. 1039–1049. IEEE (2019). https://doi.org/10.1109/ICSE.2019.00108

12. Kim, S., Wimmer, H., Kim, J.: Analysis of deep learning libraries: Keras, Pytorch,
and MXnet. In: Proceedings of the 20th IEEE/ACIS International Conference on
Software Engineering Research, Management and Applications, pp. 54–62. IEEE
(2022). https://doi.org/10.1109/SERA54885.2022.9806734

13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, pp. 32–33 (2009). https://www.cs.toronto.edu/kriz/learning-
features-2009-TR.pdf

14. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: Proceedings of the 5th International Conference on Learning Repre-
sentations. International Conference on Learning Representations (2019). https://
openreview.net/forum?id=HJGU3Rodl

15. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proceedings of the 2nd Interna-
tional Conference on Learning Representations. International Conference on Learn-
ing Representations (2014)

16. Ma, L., et al.: DeepCT: tomographic combinatorial testing for deep learning sys-
tems. In: Proceedings of the 26th IEEE International Conference on Software Anal-
ysis, Evolution and Reengineering, pp. 614–618. IEEE (2019). https://doi.org/10.
1109/SANER.2019.8668044

17. Ma, L., et al.: DeepGauge: multi-granularity testing criteria for deep learning sys-
tems. In: Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pp. 120–131. ACM (2018). https://doi.org/10.1145/
3238147.3238202

18. Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them, pp. 5188–5196. IEEE Computer Society (2015). https://doi.org/10.1109/
CVPR.2015.7299155

19. Omeiza, D., Speakman, S., Cintas, C., Weldemariam, K.: Smooth grad-CAM++:
an enhanced inference level visualization technique for deep convolutional neural
network models. CoRR abs/1908.01224 (2019). http://arxiv.org/abs/1908.01224

20. Pei, K., Cao, Y., Yang, J., Jana, S.: Towards practical verification of machine learn-
ing: the case of computer vision systems. CoRR abs/1712.01785 (2017). http://
arxiv.org/abs/1712.01785

21. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of
deep learning systems. In: Proceedings of the 26th ACM Symposium on Operat-
ing Systems Principles, pp. 1–18. ACM (2018). https://doi.org/10.1145/3132747.
3132785

22. Poursaeed, O., Katsman, I., Gao, B., Belongie, S.: Generative adversarial pertur-
bations, pp. 4422–4431. IEEE Computer Society (2018). https://doi.org/10.1109/
CVPR.2018.00465

23. Razumovskaia, E., Glavas, G., Majewska, O., Ponti, E.M., Vulic, I.: Natural lan-
guage processing for multilingual task-oriented dialogue. In: Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics, pp. 44–
50. Association for Computational Linguistics (2022). https://doi.org/10.18653/
v1/2022.acl-tutorials.8

https://doi.org/10.1109/TFUZZ.2016.2637374
https://doi.org/10.1109/TFUZZ.2016.2637374
https://doi.org/10.1109/ICSE.2019.00108
https://doi.org/10.1109/SERA54885.2022.9806734
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=HJGU3Rodl
https://openreview.net/forum?id=HJGU3Rodl
https://doi.org/10.1109/SANER.2019.8668044
https://doi.org/10.1109/SANER.2019.8668044
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1145/3238147.3238202
https://doi.org/10.1109/CVPR.2015.7299155
https://doi.org/10.1109/CVPR.2015.7299155
http://arxiv.org/abs/1908.01224
http://arxiv.org/abs/1712.01785
http://arxiv.org/abs/1712.01785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1109/CVPR.2018.00465
https://doi.org/10.1109/CVPR.2018.00465
https://doi.org/10.18653/v1/2022.acl-tutorials.8
https://doi.org/10.18653/v1/2022.acl-tutorials.8

HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems 261

24. Salay, R., Czarnecki, K.: Using machine learning safely in automotive software: an
assessment and adaption of software process requirements in ISO 26262. CoRR
abs/1808.01614 (2018). http://arxiv.org/abs/1808.01614

25. Sekhon, J., Fleming, C.: Towards improved testing for deep learning. In: Proceed-
ings of the 41st International Conference on Software Engineering, pp. 85–88. IEEE
(2019). https://doi.org/10.1109/ICSE-NIER.2019.00030

26. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.:
Grad-CAM: visual explanations from deep networks via gradient-based localiza-
tion. Int. J. Comput. Vis. 128(2), 336–359 (2020). https://doi.org/10.1007/s11263-
019-01228-7

27. Sun, W., Lu, Y., Sun, M.: Are coverage criteria meaningful metrics for DNNs? In:
Proceedings of the 2021 International Joint Conference on Neural Networks, pp.
1–8. IEEE (2021). https://doi.org/10.1109/IJCNN52387.2021.9533987

28. Sun, Y., Huang, X., Kroening, D.: Testing deep neural networks. CoRR
abs/1803.04792 (2018). http://arxiv.org/abs/1803.04792

29. Udeshi, S., Arora, P., Chattopadhyay, S.: Automated directed fairness testing.
In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 98–108. ACM (2018). https://doi.org/10.1145/3238147.
3238165

30. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional
neural networks. In: Proceedings of the 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pp. 111–119. IEEE (2020). https://
doi.org/10.1109/CVPRW50498.2020.00020

31. Xiao, H., Rasul, K., Vollgraf, R.: Fashion MNIST: an MNIST-like dataset of
70,000 28×28 labeled fashion images (2017). https://github.com/zalandoresearch/
fashion-mnist

32. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the 31st
IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595. IEEE
Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00068

33. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: Proceedings of the 29th IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929. IEEE Computer Society
(2016). https://doi.org/10.1109/CVPR.2016.319

http://arxiv.org/abs/1808.01614
https://doi.org/10.1109/ICSE-NIER.2019.00030
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1109/IJCNN52387.2021.9533987
http://arxiv.org/abs/1803.04792
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1145/3238147.3238165
https://doi.org/10.1109/CVPRW50498.2020.00020
https://doi.org/10.1109/CVPRW50498.2020.00020
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2016.319

Formalization of Lambda Calculus
with Explicit Names as a Nominal

Reasoning Framework

Xinyi Wan and Qinxiang Cao(B)

Shanghai Jiao Tong University, Shanghai, China
wanxinyi@sjtu.edu.cn, caoqinxiang@gmail.com

Abstract. We formalize the metatheory of lambda calculus in Coq, in
its classic form with explicit names. The formalization is founded upon
an intuitive α-equivalence definition without substitution or name swap-
ping. Furthermore, we provide structural and rule induction principles
that encapsulate the Barendregt Variable Convention, enabling formal
proofs mirroring informally-styled ones. These principles are leveraged
to establish foundational results such as the Church-Rosser theorem.
Demonstrating the framework’s utility, we extend first-order logic with
predicate definitions, ensuring its soundness through properties obtained
from the metatheory by encoding propositions as lambda terms.

Keywords: Lambda Calculus · Nominal Syntax · First-Order Logic

1 Introduction

Formal reasoning about syntax with binders is notoriously cumbersome due to
the intricacies arising from the various selections of bound variables, i.e. α-
equivalence. In a paper-and-pencil setting, this issue is often avoided by identify-
ing terms up to α-equivalence. When proofs involve binders, a common practice
known as the Barendregt Variable Convention (BVC) is adopted. This conven-
tion assumes that binders are assigned fresh names that are distinct from the
surrounding mathematical context. This practice simplifies the proof process,
leading to elegant and straightforward informal proofs.

An illustration of this convention can be found in a widely used textbook [1,
Page 28], where the author tries to prove the equation:

M [x �→ N][y �→ L] =α M [y �→ L][x �→ N [y �→ L]]. (1)

Here, M,N,L are lambda terms, x is a variable that does not occur freely in L,
and M [x �→ N] means the substitution of the free occurrences of x in M with
N . The notation =a represents α-equivalence.

The proof is conducted through a structural induction on M . In the abstrac-
tion case, the author wrote:
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 262–278, 2024.
https://doi.org/10.1007/978-981-99-8664-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_15&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_15

Formalization of Lambda Calculus with Explicit Names 263

CASE 2. M = λz. M1. By the variable convention we may assume z �= x, y
and z is not free in N,L. Then by the induction hypothesis

(λz. M1)[x �→ N][y �→ L] = λz. M1[x �→ N][y �→ L]
= λz. M1[y �→ L][x �→ N [y �→ L]]
= (λz. M1)[y �→ L][x �→ N [y �→ L]]

(2)

In the first step the binder z does not need renaming, as it is automatically
treated as fresh according to the convention. This enables the direct application
of the induction hypothesis in subsequent steps.

However, the justification of this convention does not arise spontaneously
within a formal context. Structural induction, which necessitates case analy-
sis on arbitrary binders rather than fresh ones, does not inherently support it.
Therefore, a longstanding aspiration has been the development of a technique
enabling proofs to be formalized in a manner similar to the one demonstrated
above. In this paper we aim to formalize the metatheory of untyped lambda
calculus with explicit names in Coq, and subsequently employ it as a framework
for binder-related reasoning. In the second part, we demonstrate how specific
entities (propositions in first-order logic) can be encoded as lambda terms, with
properties concerning α-equivalence and substitution naturally derived from the
established metatheory.

1.1 Related Work

Many approaches have been put forward to address formal treatment of binders,
primarily categorized into three distinct approaches. The nameless approach,
originating from De Brujin [6], involves encoding binders as numerical indicators
of their positions. This technique has sparked further advancements, such as the
locally nameless representation [2], leading to the development and utilization
of automated libraries [12]. Nevertheless, a significant limitation of De Brujin
indices lies in the substantial gap between the nameless representation and the
classic syntax. As a consequence, considerable effort is required to transform
informal proofs into proofs employing the nameless representation.

An alternative method is the higher-order abstract syntax (HOAS), wherein
object-level binders are shallowly embedded through the employment of the
meta-logic’s binder, as presented in multiple formalizations [3,7,9]. This app-
roach offers a light formalization, facilitated by the direct incorporation of bind-
ing mechanisms from the meta-logic. Nonetheless, since operations like substi-
tution on object-level terms are fundamentally implemented at the meta-level,
this formalization requires informal reasoning concerning meta-level operations
to demonstrate the adequacy of the representation.

The nominal approach endeavors to retain the original syntax of binders (i.e.
a variable parameter of the binding operator) and introduces induction princi-
ples applicable to α-equivalent terms, thereby enabling the direct utilization of
BVC to emulate informal proofs. In an initial exploration [10], the manner in
which equality embodies α-conversion is axiomatized and subsequently proved

264 X. Wan and Q. Cao

sound for De Brujin terms. A subsequent contribution establishes the nominal
logic [11] as a framework for first-order languages featuring bindings, based on
name swapping and permutation operations. This methodology is further refined
within theorem provers, most notably by Urban in Isabelle/HOL [13–15]. This
nominal syntax is also embraced in Copello et al.’s works [4,5], effectively for-
malizing theories related to untyped lambda calculus with a single category of
names.

1.2 Our Contributions

Our study adopts the nominal-style methodology, but it distinguishes itself from
preceding approaches. Current nominal techniques rely on the pivotal operation
of name swapping. In contrast, we have discovered that the theory can be founded
upon an intuitive definition of α-equivalence. Building upon this definition, we
have formalized metatheories about untyped lambda calculus and introduced a
Coq framework for nominal reasoning.

Furthermore, we introduce an α-structural induction principle for lambda
terms and two novel rule induction principles for parallel reduction. These induc-
tion principles are designed to formally integrate BVC into the induction process.
By leveraging these principles, we establish foundational outcomes, including
the Church-Rosser theorem. Remarkably, the proofs of these outcomes elegantly
mirror their informal counterparts.

Distinguishing our work from Copello et al.’s formalization [5], we support
multiple categories for variables, thus enhancing its applicability, exemplified by
an extended first-order logic featuring dynamically defined predicates in Sect. 4.
Notably, our framework departs from certain operations like name swapping.
Instead, our framework is exclusively parameterized based on variable name
categories and a function for introducing fresh names. This design choice con-
tributes to a more intuitive and straightforward usability.

The rest of this paper is organized as follows. In Sect. 2, we describe the syntax
of lambda terms, introduce a definition for α-equialence and establish an α-
structrual induction prnciple. Section 3 presents two rule induction principles and
formalizes the Church-Rosser theorem. We show the framework’s applicability
in extending first-order logic with predicate definitions in Sect. 4. Finally, Sect. 5
concludes the paper.

2 Syntax and Alpha-Equivalence

2.1 Names

Variables within lambda terms ranges over a countable set of names, fixed as type
V in this article. These variables can be categorized into distinct groups referred
to as sorts, thereby facilitating binding across diverse entities. For instance,
in second-order logic, this allows for the inclusion of both individual and set
variables. Consequently, we establish an additional type, VS, to describe these

Formalization of Lambda Calculus with Explicit Names 265

sorts and fix a function varsort of type V → VS, assigning a specific sort to each
individual name.

A key operation within α-equivalence involves the incorporation of a fresh
binder, signifying a name not in the existing context. Consequently, this entails
the requirement that ∀x, y : V, there exists a discriminating process: {x = y} +
{x �= y}.

Ultimately, the actual introduction of a fresh name is accomplished through
the function newvar of type list V → VS → V. Provided with a list of names and
a designated sort T , newvar yields a variable of sort T , ensuring its absence from
the provided list.

In Coq, we employ a Module Type to encapsulate these fundamental require-
ments, establishing it as the cornerstone for subsequent developments. Users have
the flexibility to instantiate this Module Type with various definitions satisfying
the properties, allowing fine-grained control on names.

Module Type Naming module type.
Parameter C : Type.
Parameter V: Type.
Parameter VS: Type.
Parameter varsort: V VS.
Parameter newvar: list V VS V.
Axiom var eq dec: ∀v1v2 : V, {v1 = v2} + {v1 = v2}.
Axiom constant eq dec: ∀c1c2 : C, {c1 = c2} + {c1 = c2}.
Axiom newvar fresh: ∀(xs: list V) (T :VS), (newvar xs T) /∈ xs.
Axiom newvar sort: ∀(xs: list V) (T :VS), varsort(newvar xs T) = T.
End Naming module type.

Fig. 1. The Module Type in Coq, C is the type for constants’ names.

2.2 The Syntax of Lambda Calculus

The syntax of untyped lambda calculus is inductively defined as:

t ::= Var x | Cons c | λx.t | t1 t2, (3)

where x ranges over V and c ranges over C. Free occurrences of a variable in a
term is given by a recursive function.:

Definition 1 (Free Occurrence).

free_occur x(Var y) := if x = y then 1 else 0
free_occur x(Cons c) := 0
free_occur x(t1t2) := free_occur x t1 + free_occur x t2

free_occur x(λs.t) := if x = s then 0 else free_occur x t,

266 X. Wan and Q. Cao

free_occur x t = 0 will be subsequently shortened to x /∈ FV(t), while
free_occur x t �= 0 will be x ∈ FV(t). The function returns a natural number, a
design choice made to accommodate potentially more subtle applications involv-
ing free occurrences. Returning a boolean would also suffice for the development
presented in this paper.

2.3 Alpha Equivalence

The classic definition of α−equivalence is the least congruence relation achieved
through the renaming of bound variables, i.e. λx. t =a λy. t[x �→ y]. In this
paper, we introduce a purely syntax-driven, intuitive and decidable definition
of the α-equivalence relation. Notably, this definition does not involve any sub-
stitution or name swapping operations. The essence of this approach lies in the
observation that when comparing terms like λx. t1 and λy. t2, one must recog-
nize that the role of x in t1 corresponds to the role of y in t2. This realization
prompts a subsequent examination of t1 and t2 under this established association
between x and y. To encapsulate this linkage, a context may be maintained.

Definition 2 (Context). A context Γ is a sequence of variable pairs that
record the relationship between two binders, alongside a boolean value to indi-
cate whether the correspondence is still “active”.

Γ : list (V ∗ V ∗ bool) ::= [] | (x, y, b) :: Γ ′. (4)

Considering λxx.xz and λxy.yz, when we assess the equivalence between
λx.xz and λy.yz, we observe that x on the left corresponds to x on the right.
Consequently, a context (x, x, true) is established to record this correspondence.
Delving deeper, when we explore the equivalence between xz and yz, we find
that the binder x on the left aligns with y on the right. Therefore, a new cor-
respondence, (x, y, true), should be added to the context. However, since x is
already associated with x in the context, it should be deactivated by replacing
(x, x, true) with (x, x, false). This results in the context (x, y, true) :: (x, x, false).
Here is the definition of deactivating non-effective correspondence in a context:

Definition 3 (Deactivating non-effective correspondence in a context).
For variables x, y, m, n, and a boolean b, we define the deactivation of a pair of
binders as follows:

(m,n, b)\(x, y) := (m,n, false) if x = mor n = y,

(m,n, b)\(x, y) := (m,n, b) otherwise.

For a context Γ , this deactivation is performed on every pair of binders in it
using the map function.

Γ\(x, y) := map (fun (m,n, b) ⇒ (m,n, b)\(x, y)) Γ

This definition ensures that for any binder x, all of its original appearances
on the corresponding projection (left if Γ\(x,_) and right if Γ\(_, x)) in the
context will be deactivated.

Then we may formalize the auxiliary α-equivalence relation augmented with
a context:

Formalization of Lambda Calculus with Explicit Names 267

Definition 4 (Alpha-Equivalence With Context).
[αCONS]

Γ � c ∼a c

(u, v, true) ∈ Γ
[αBIND]

Γ � u ∼a v

s /∈ V (Γ)
[αFREE]

Γ � s ∼a s

Γ � M1 ∼a M2 Γ � N1 ∼a N2 [αAPP]
Γ � M1 N1 ∼a M2 N2

varsort(x) = varsort(y) (x, y, true) :: (Γ\(x, y)) � M ∼a N
[αABS]

Γ � λx. M ∼a λy. N

Definition 5 (Alpha-Equivalence). When the context is empty, the preceding
relation simplifies to the conventional α-equivalence.

M =a N � [] 	 M ∼a N. (5)

The previous example involving λxx.xz and λxy.yz can now be formalized
as shown in Fig. 2.

(x, y, true) ∈ (x, y, true) :: ...
[αBIND]

(x, y, true) :: ... x ∼a y

z /∈ V ((x, y, true) :: (x, x, false))
[αFREE]

(x, y, true) :: (x, x, false) z ∼a z
[αAPP]

(x, y, true) :: (x, x, false) xz ∼a yz
[αABS]

(x, x, true) λx. xz ∼a λy. yz
[αABS]

[] λxx. xz α λxy. yz

Fig. 2. Proof tree of λxx. xz =a λxy.yz

To establish the equivalence between λxx. xz and λxy. yz, we dive down
through layers of binders by applying αABS. First the tuple (x, x, true) is intro-
duced into the empty context. Then the tuple (x, y, true) is introduced into the
context. The prior association of x with itself becomes redundant and is deac-
tivated by Γ\(x, x). The operation (x, y, true)\(x, y) ensures that each distinct
binder in the context on both sides is actively associated with exactly one binder
on the other side at all times. In the atomic cases, x ∼a y since x and y are
actively linked bound variables. Regarding variable z, which does not appear in
any of the variables in the context, its presence must be a result of free occur-
rence. Here V (Γ) represents all variables in a context. Therefore, it can solely
be equivalent to itself.

The nature of this relation is evident in its top-down evaluation approach,
wherein the context serves as a stack, recording the legitimate “renaming" of
bound variables at each hierarchical level. It is straightforward to define an
equivalent recursive function, thereby rendering this process decidable.

268 X. Wan and Q. Cao

Lemma 1. =a is an equivalence relation.

Proof. Basic properties, such as equivalence, about =α are proved by demon-
strating a stronger version of ∼a through rule induction, provided the invariant
property of the context during evaluation is correctly characterized. Consider
transitivity as an example. During the simultaneous evaluation of t1 =a t2,
t2 =a t3 and t1 =a t3, the encountered binders will be recorded within three
distinct contexts, obeying the following relation1:

trans_ctx [] [] []

trans_ctx Γ1 Γ2 Γ3

trans_ctx (x, y,_) :: Γ1 (y, z,_) :: Γ2 (x, z,_) :: Γ3

Throughout the entire process, trans_ctx will be preserved and we can now
prove a stronger proposition: if Γ1 	 t1 ∼a t2, Γ2 	 t2 ∼a t3, and trans_ctx Γ1 Γ2

Γ3, then Γ3 	 t1 ∼a t3. The proof is conducted through induction on t1 ∼a t2,
wherein we demonstrate two interesting cases:

– αBIND. If Γ1 	 x ∼a y because (x, y, true) ∈ Γ1, then Γ2 	 y ∼a z can
be established only by the αBIND rule. This is because y occurs in Γ1,
thereby enforcing its presence in Γ2 by the trans_ctx relation. Subsequently,
an additional induction on trans_ctx will yield (x, z, true) ∈ Γ3, leading to
Γ3 	 x ∼a z.

– αABS. If Γ1 	 λx. t1 ∼a λy. t2, Γ2 	 λy. t2 ∼a λz. t3. From the αABS rule,
we know (x, y, true) :: Γ1 	 t1 ∼a t2 and (y, z, true) :: Γ2 	 t2 ∼a t3. As
(x, z, true) :: Γ3 satisfies trans_ctx, we immediately derive from the induction
hypothesis that (x, z, true) :: Γ3 	 t1 ∼a t3, thus Γ3 	 λx. t1 ∼a λz. t3.

The proposition simplifies to the transitivity of =a when all three contexts are
empty.

2.4 Substitution

We implement a parallel capture-avoiding substitution, enabling the simultane-
ous substitution of multiple variables. In the abstraction case, special care is
taken to rename binders appropriately.

Definition 6 (Capture-Avoiding Substitution).
Subst_task is a list of variable and lambda term pairs, recording the variables to
be substituted:

σ : subst_task ::= [] | (x, t) :: σ. (6)

1 An additional constraint is that all “correct” contexts can only be obtained through
the operation in the αABS rule. We assume it implicitly holds within this paper.

Formalization of Lambda Calculus with Explicit Names 269

[�→ _] : term →subst_task → term :=
c[σ] = c

x[x �→ t; ...] = t

y[x �→ t :: σ] = y[σ] if x �= y,

(t1 t2)[σ] = (t1[σ]) (t2[σ])
(λx. t)[σ] = λx.(t[σ\x]) if x /∈ FV(σ\x)
(λx. t)[σ] = λu.(t[x �→ u :: σ\x]) if x ∈ FV(σ\x).
where u = newvar([x;V(t);V(σ\x)], varsort(x))

where σ\x means removing the substitution for x in subst_task σ and V(_)
represents the list of all variable names present in the term t or subst_task σ.
FV (σ) represents all the variables freely occurring in the right projection of terms
of a subst_task σ.

If the binder freely occurs in the substitution task, a fresh name with the same
sort will be introduced to avoid capturing and this renaming process will be
integrated into the task.

Substitution and α−equivalence can be related through the following lemmas:

Lemma 2 (Substitution is α−compatible).

M =a N ⇒ M [σ] =a N [σ].

Lemma 3 (Renaming keeps α−equivalence).

varsort(x) = varsort(y) ⇒ y /∈ FV(t) ⇒ λx. t =a λy. t[x �→ y].

These two lemmas are also established by proving a stronger version of ∼a,
facilitated by the introduction of a relation on contexts.

2.5 An Alpha-Structural Induction Principle

Lemma 3 demonstrates the alignment between our proposed definition of α-
equivalence and the conventional definition. Building upon this, we proceed to
provide a formalization of the Barendregt Variable Convention and derive an
α−structural induction principle that exclusively requires proofs on fresh binders
in the abstraction case.

Lemma 4 (Variable Convention). Given any term t and a list of names xs,
there exists a term t′ such that t =a t′ and any bound variable x in t′ satisfies
x /∈ xs.

Proof. Proven through structural induction on t, the significant case is abstrac-
tion. Consider λx. t, the induction hypothesis permits the existence of t′ =a t
that meets the specified conditions. This leads to λx. t =a λx. t′. Then we
rename x to a fresh name y- a name that is not in xs and also not freely
occurs in t′, given by newvar([xs;V(λx. t)], varsort(x)). By Lemma 3, we deduce
λy. t′[x �→ y] =a λx. t, thereby satisfying the requisite property.

270 X. Wan and Q. Cao

This lemma enables us to formulate an α-structural induction principle
parameterized by a list of names:

Theorem 1 (Alpha-Structural Induction).
Assume P: term→ Prop is a predicate on lambda terms. Given a list of names
xs, if the following five assertions hold:

1. P is α−compatible: ∀M =a N,P M ⇒ P N
2. ∀x : V, P (Var x).
3. ∀c : C, P (Cons x).
4. ∀M N, P M ⇒ P N ⇒ P (M N).
5. ∀x t, x /∈ xs ⇒ P t ⇒ P (λx. t).

then ∀t : term,P t holds.

Proof. To prove P t, utilizing assumption (1) and lemma 4, it suffices to demon-
strate P t′ where t =a t′ and all binders within t′ are distinct from names in xs.
A subsequent induction on t′ immediately resolves the issue.

The assumption of α-compatibility states that the predicate remains invari-
ant under α-equivalence, which is essential to ensure that binder renaming is
sound. The name list xs typically includes the variables of other terms in the
proof context. This choice effectively sidesteps binder renaming during substitu-
tion, so induction hypothesis can be directly applied in the abstraction case.

Following lemmas can be readily formalized through the the α-structural
induction principle:

Lemma 5 (Communicativity of substitution). If x �= y and x /∈ FV(L),
then

M [x �→ N][y �→ L] =α M [y �→ L][x �→ N [y �→ L]].

Proof. The formal proof mirrors exactly the informal one in Sect. 1.

Lemma 6 (Substitution preserves α-equivalence).

M =a M ′ ⇒ N =a N ′ ⇒ M [x �→ N] =a M ′[x �→ N ′].

3 The Church-Rosser Theorem

In this section, we extend the metatheory with the Church-Rosser theorem.
The proof of this theorem largely follows the approach formulated by Tait and
Martin-Lof [1], but revised to incorporate a formal treatment of α-equivalence.

Definition 7 (Beta Reduction). β-reduction is the compatible closure of β-
contraction, enabling one-step contraction, i.e. (λx. M)N � M [x �→ N], at any
position within the term:

(λx. M)N →β M [x �→ N]

Formalization of Lambda Calculus with Explicit Names 271

M →β N

L M →β L N

M →β N

M L →β N L

M →β N

λx. M →β λx. N

The Church-Rosser theorem states its reflexive and transitive closure satisfies
the diamond property (i.e. β-reduction is confluent):

If M →∗
β A and M →∗

β B, then there exists N , such that A →∗
β N and

B →∗
β N (Fig. 3).

M

A B

N

* *

* *

Fig. 3. The Church-Rosser theorem.

However, this statement is true only when α-equivalent terms are treated as
identical. Due to the arbitrary reduction order allowed by β-reduction, distinct
fresh names might be introduced among different reduction processes. Therefore,
for a formal consideration of α-equivalence, the confluence property should be
rephrased as follows:

Definition 8 (Confluence). A relation is confluent means that for any two
reduction orders, there exists reduction orders that converge to α-equivalent
terms.

confluence(→β) := ∀M A B, M →∗
β A ⇒ M →∗

β B ⇒
∃NA NB , A →∗

β NA ∧ B →∗
β NB ∧ NA =α NB .

(7)

The proof of this theorem relies on the so-called parallel-reduction�1 :

Definition 9 (Parallel Reduction).

[PREFL]
M �1 M

M �1 N [PABS]
λx. M �1 λx. N

M �1 M ′ N �1 N ′
[PAPP]

M N �1 M ′ N ′

M �1 M ′ N �1 N ′
[PCONTRACT]

(λx. M) N �1 M ′[x �→ N ′]

272 X. Wan and Q. Cao

3.1 Rule Induction Principles

We present two rule induction principles for parallel induction. These principles
are implicitly employed within informal contexts. The first principle enhances
the induction hypothesis to cover all terms with a smaller size. The specific
definition of size is omitted here.

Theorem 2 (Size Rule Induction).
Assume P: term→ term → Prop is a relation on lambda terms. If the following
four assertions hold:

1. ∀M : term, P M M
2. ∀M M ′ such that M �1 M ′,

(∀L �1 L′, size L ≤ size M ⇒ P L L′) ⇒
P (λx. M) (λx. M ′).

3. ∀M M ′ N N ′ such that M �1 M ′, N �1 N ′,
(∀L �1 L′, size L ≤ size M ⇒ P L L′) ⇒
(∀L �1 L′, size L ≤ size N ⇒ P L L′) ⇒
P (M N) (M ′ N ′).

4. ∀M M ′ N N ′ such that M �1 M ′, N �1 N ′,
(∀L �1 L′, size L ≤ size M ⇒ P L L′) ⇒
(∀L �1 L′, size L ≤ size N ⇒ P L L′) ⇒
P ((λx. M) N) (M ′[x �→ N ′]).

,

then ∀M N : term,M �1 N implies P M N .

Proof. Induction on the size of M establishes the theorem.

A more interesting problem is how to encode BVC into rule induction. Simi-
lar to the example presented in Sect. 1, it is assumed that the variable convention
holds throughout the execution of rule induction within an informal context. To
our knowledge, this problem has been explored in two existing studies [4,14],
but both of them have to modify the definition of parallel reduction. In Copello
et al.’s formalization [4], the PCONTRACT case directly integrates α-conversion,
and rule induction is bypassed through α-structral induction on the first term of
reduction. On the other hand, in Urban et al.’s study [14], BVC is directly incor-
porated into rule induction, but a freshness condition about x is added to the
PCONTRACT case. Here we showcase how this induction can be achieved without
the necessity of modifying parallel reduction. The induction principle relies on
the observation that parallel reduction is modulo α−equivalence (Fig. 4):

Lemma 7. For any M �1 N and M =a M ′, we can find M ′ �1 N ′ and
N =a N ′.

Proof. Proved by size rule induction on M �1 N .

Now we begin to formulate the α-rule induction principle. First, we extend
the concept of α-compatibility to relations:

Formalization of Lambda Calculus with Explicit Names 273

M N

M N

Fig. 4. Parallel reduction is modulo α−equivalence.

Definition 10 (Alpha-Compatible Relations).
A relation P:term→term→ Prop is α-compatible if

∀M N, (∃M ′ =a M,N ′ =a N,P M ′ N ′) ⇒ P M N. (8)

Then the α-rule induction principle is as follows, parameterized by a name
list xs:

Theorem 3 (Alpha Rule Induction).
Assume P: term→ term → Prop is a relation on lambda terms and xs is a list
of names. If the following five assertions hold:

1. P is α−compatible.
2. ∀M : term, P M M.
3. ∀M M ′ such that M �1 M ′,

x /∈ xs ⇒ P MM ′ ⇒
P (λx. M) (λx. M ′).

4. ∀M M ′ N N ′ such that M �1 M ′, N �1 N ′,
P MM ′ ⇒
P NN ′ ⇒
P (M N) (M ′ N ′).

5. ∀M M ′ N N ′ such that M �1 M ′, N �1 N ′,
x /∈ xs ⇒
P MM ′ ⇒
P NN ′ ⇒
P ((λx. M) N) (M ′[x �→ N ′]).

,

then ∀M N : term,M �1 N implies P M N .

Proof. By assumption (1), we just need to find α−equivalent M ′ and N ′ that
satisfies P M ′ N ′. By Lemma 4, there exists M ′ =a M and binders of M ′ are not
in xs. Then, employing Lemma 7, we establish the existence of N ′ =a N such
that M ′ �1 N ′. The goal now transforms into proving M ′ �1 N ′ ⇒ P M ′ N ′,
where M ′ only involve fresh binders. This problem can be resolved by conducting
a standard rule induction on M ′ �1 N ′ and subsequently applying assumptions
(2)–(5).

3.2 Proof of Church-Rosser

Armed with these two induction principles, the formal proof of the Church-
Rosser theorem closely parallels the conventional informal proofs.

274 X. Wan and Q. Cao

Lemma 8. (Substitutivity of �1).
If M �1 M ′ and N �1 N ′, then there exists L such that M [x �→ N] �1 L and
L =a M ′[x �→ N ′].

Proof. Alpha-rule induction on M �1 M ′, with xs including all variables in N
and N ′. The PREFL case is addressed by another α-structural induction on M .
Another intriguing scenario arises in the PCONTRACT case, where we want to
show

∃L, ((λy. A)B)[x �→ N] �1 L ∧ L =a A[y �→ B][x �→ N ′]. (9)

As y is fresh, we have

((λy. A)B)[x �→ N] = (λy. A[x �→ N])(B[x �→ N])
�1 A[x �→ N ′][y �→ B[x �→ N ′]] (Induction Hypothesis)
=a A[y �→ B][x �→ N ′]. (Lemma 5)

Lemma 9. �1 satisfies diamond property.

Proof. Size rule induction is applied to �1. The proof is omitted here, and
its informal equivalent can be found in the textbook [1], primarily based on
Lemma 8. The α-rule induction is not required as no renaming situations are
encountered.

Theorem 4 (Church-Rosser). →β is confluent.

Proof. The diamond property is preserved through transitive closure, so �+
1

satisfies diamond property. By demonstrating the equivalence between �+
1 and

→∗
β , it can be established that →β is confluent.

Corollary 1. If M →∗
β A, M →∗

β B, with both A and B in β-normal form (i.e.
they cannot undergo further →β reduction), then A =a B.

Proof. By Church-Rosser, there exist LA =a LB such that A →∗
β LA and B →∗

β

LB . Given that both A and B are already in normal form, it follows that A = LA

and B = LB . We conclude that A =a B.

4 Application: First-Order Logic Extended
with Dynamically-Defined Predicates

Now, we explore how the formalized metatheory can serve as a framework to
facilitate reasoning about nominal syntax with binders. We show that it is valid
to extend the first-order language’s syntax with a let-in constructor, allowing
for arbitrary predicate definitions within a proposition. We will demonstrate
that this new system is equivalent to the classical first-order language through
a syntax transformation, fundamentally rooted in β-reduction.

We have previously formalized the ZFC axiomatic set theory in Coq using
first-order logic (with rich connectives for educational usage):

Formalization of Lambda Calculus with Explicit Names 275

Definition 11 (Terms And Propositions in ZFC).

t ::= ∅ | Var x | {t} | t1 ∩ t2 | t1 ∪ t2.

P ::= t1 = t2| t1 ∈ t2 | ¬P | P1 ∧ P2 | P1 ∨ P2 | P1 → P2 | P1 ↔ P2 | ∀x, P | ∃x, P

where ∅ is the constant symbol representing the empty set, and Var x accepts a
string to be utilized as a variable name. We have also developed the provability
	 P for propositions, including deduction rules for first-order logic and ZFC
axioms. The rules can be found in a logic textbook [8].

To further enhance the usability, now we extend this syntax with a syntactic
sugar for defining predicates, adding two constructors to propositions:

Definition 12 (Definition And Application of Predicates).

let r(xs) := P in Q | r ts. (10)

Here r ranges over the name for predicates, while xs and ts respectively denote
lists of variable names and terms. let r(xs) := P in Q means we may define a
new predicate named r, whose parameters are xs and definition is P . The newly
defined predicate can then be applied to concrete terms in Q with the form of
r ts2. To provide an example, the subset relation can be represented as follows:

let ⊆ (x, y) := (∀z, z ∈ x → z ∈ y) in ... ⊆ (∅, w)... (11)

One may think that this approach is redundant, since symbols like ⊆ can be
defined as derived predicates or can be treated as a macro — in those approaches,
it is not necessary to explicitly introduce the let-in syntax. However, it’s cru-
cial to recognize that this extension makes let-in an object-language component
instead of a meta-language concept. That means, we can now formally reason
about related syntactic transformation.

Accordingly, we add two deduction rules concerning predicate definition. To
distinguish them from the original system, we use the subscript s to represent
propositions and the deduction system with syntactic sugar.

	S let r(l) := PS in QS [LetELIM]	S QS [r �→ λl.Ps]

	S QS [r �→ λl.PS] [LetINTRO]	S let r(l) := PS in QS

These two rules describes the folding and unfolding predicate definitions. The
unfolding of predicates at the predicate application case is

(r(t1, ..., tn))[r �→ λl.P ; ...] := P [l1 �→ t1; ...; ln �→ tn]. (12)

Net we show that if 	S PS ,by eliminating all predicate definitions, the propo-
sition remains provable using the original deduction system.
2 We require all propositions to be well-formed, i.e. propositions should not contain
any freely-occurring predicates and all predicates are applied to correct number of
terms as their definitions.

276 X. Wan and Q. Cao

Definition 13 (Predicate Elimination).

elim (let r(xs) := P in Q) = (elim Q)[r �→ λxs. elim P] (13)

To prove 	S PS ⇒ 	 elim PS , we require a property relating elimination and
substitution. This is precisely where the formalized metatheory becomes crucial.

From the perspective of λ calculus, the act of binding a predicate definition
to a proposition P corresponds to abstraction in λ calculus. Using Eq. 11 as an
example, the operation of defining ⊆ can be understood as:

(λ ⊆ . ((⊆ ∅) w))
︸ ︷︷ ︸

application Q

(λ xy
︸︷︷︸

parameter

l. ∀z.z ∈ x → z ∈ y)
︸ ︷︷ ︸

definition

P) (14)

In proposition Q, ⊆ is treated as a parameter, and it will be applied to
(λxy. ∀z.z ∈ x → z ∈ y). Performing one step of β-reduction on Eq. 14 will
replace the ⊆ symbol with its actual definition, resulting in:

((λxy. ∀z.z ∈ x → z ∈ y) ∅) w →∗
β ∀z.z ∈ ∅ → z ∈ w, (15)

which is exactly the result of predicate elimination. If we can translate the propo-
sition PS into a lambda term, we can establish a connection between predi-
cate elimination and β-reduction. This connection would enable us to apply the
Church-Rosser theorem, obtaining favorable properties of elim directly.

The proofs in Sect. 2 and 3 have already been encapsulated in the verifi-
cation module mentioned at the beginning. By providing the relevant parame-
ters, one can automatically construct lambda terms of user-specified types and
the corresponding Church-Rosser theorems. First, the types of variables in the
propositions (V) and the types of predicates (R) are both based on the same
String library in Coq. We unify them under type U, which serves as the uniform
variable type V for lambda terms. Explicit variable sorts and the function sort
can be readily provided, and constructing cases based on the constructors of U
is straightforward. Subsequently, logic connectives, constants, and function sym-
bols can be categorized into a constant type C, with each element corresponding
to a symbol (denoted as ∀, etc.). It’s easy to prove the properties required by
Fig. 1 for these parameters.

Following this, we present the translation function from PS to a lambda term.
The lambda term corresponding to the proposition P is denoted as Pλ.

Definition 14 (Conversion to lambda terms).

(t1 = t2)λ := = (tλ1 tλ2)

(¬P)λ := ¬Pλ

(P1 ∧ P2)λ := ∧ (Pλ
1 Pλ

2)

(∀x, P)λ := ∀ (λx. Pλ)

(∃x, P)λ := ∃ (λx. Pλ)

(let r(l) := P in Q)λ := (λr. Qλ) (λl.Pλ).

Formalization of Lambda Calculus with Explicit Names 277

The α-equivalence of propositions is defined to be the equivalence of their lambda
terms. With this transformation, following lemmas can be proved:

Lemma 10. Pλ →∗
β (elim P)λ.

Lemma 11. (elim P)λ is in β-normal form.

Lemma 12 (Elimination and Substitution is Communicative).

elim (P) [x �→ t] =α elim (P [x �→ t]).

Proof. The lambda term forms of both propositions can be reached through
multi-step reductions from (λx.Pλ) tλ. Further, utilizing Lemma 11, we know
that both of these terms are β-normal forms. Therefore, by the corollary of
Church-Rosser (Corollary 1), we can conclude that these two terms are α-
equivalent, and translate the lambda term equivalence back to propositions.

Theorem 5 (Soundness of 	S).

	S PS ⇒ 	 elim PS .

Proof. Rule induction on 	S . In the two cases concerning predicate definitions,
we have elim(let r(l) := P in Q)λ =α elim(Q[r �→ λl.P])λ by Lemma 12. The
case is then solved by the α-congruence rule in 	.

5 Conclusions

Formalizing informal proofs involving binders presents challenges. To address
the problem, we have successfully formalized the metatheory of nominal lambda
calculus within Coq, providing a framework for nominal reasoning with binders.
Our work sets itself apart from existing approaches by avoiding the use of name
swapping techniques. Instead, we introduce an intuitive α-equivalence definition
and present several induction principles that encode the essence of the Baren-
dregt Variable Convention. This enables formal proofs to closely mirror their
informal counterparts. We introduce an α-rule induction for the original parallel
reduction, an improvement from previous works that often required altering its
definition [4,14]. Employing these principles, we seamlessly recreate the Church-
Rosser theorem’s proof by parallel reduction.

Our framework finds application in the formalization of ZFC set theory in
first-order logic extended with predicate definitions. By transforming proposi-
tions into lambda terms, this operation can be explained as β-reduction. This
facilitates the establishment of the soundness of the extended deduction system.
Further research avenues could delve into systematically exploring the incor-
poration of BVC into rule induction, as well as the definition of α-recursion
functions.

278 X. Wan and Q. Cao

References

1. Barendregt, H.P., et al.: The lambda calculus, vol. 3. North-Holland Amsterdam
(1984)

2. Charguéraud, A.: The locally nameless representation. J. Autom. Reason. 49, 363–
408 (2012)

3. Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: Proceedings of the 13th ACM SIGPLAN International Conference on Func-
tional Programming, pp. 143–156 (2008)

4. Copello, E., Szasz, N., Tasistro, Á.: Machine-checked proof of the Church-Rosser
theorem for the lambda calculus using the Barendregt variable convention in con-
structive type theory. Electron. Notes Theor. Comput. Sci. 338, 79–95 (2018)

5. Copello, E., Szasz, N., Tasistro, Á.: Formalization of metatheory of the lambda cal-
culus in constructive type theory using the Barendregt variable convention. Math.
Struct. Comput. Sci. 31(3), 341–360 (2021)

6. De Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
In: Indagationes Mathematicae (Proceedings), vol. 75, pp. 381–392. Elsevier (1972)

7. Despeyroux, J., Felty, A., Hirschowitz, A.: Higher-order abstract syntax in Coq.
In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp.
124–138. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0014049

8. Ebbinghaus, H.D., Flum, J., Thomas, W., Ferebee, A.S.: Mathematical Logic, vol.
1910. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-030-73839-6

9. Felty, A., Momigliano, A.: Hybrid: a definitional two-level approach to reasoning
with higher-order abstract syntax. J. Autom. Reason. 48(1), 43–105 (2012)

10. Gordon, A.D., Melham, T.: Five axioms of alpha-conversion. In: Goos, G., Hart-
manis, J., van Leeuwen, J., von Wright, J., Grundy, J., Harrison, J. (eds.) TPHOLs
1996. LNCS, vol. 1125, pp. 173–190. Springer, Heidelberg (1996). https://doi.org/
10.1007/BFb0105404

11. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186(2), 165–193 (2003)

12. Stark, K., Schäfer, S., Kaiser, J.: Autosubst 2: reasoning with multi-sorted de
bruijn terms and vector substitutions. In: Proceedings of the 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pp. 166–180 (2019)

13. Urban, C.: Nominal techniques in isabelle/hol. J. Autom. Reason. 40, 327–356
(2008)

14. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s variable convention in rule
inductions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 35–
50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73595-3_4

15. Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comput. Sci.
323(1–3), 473–497 (2004)

https://doi.org/10.1007/BFb0014049
https://doi.org/10.1007/978-3-030-73839-6
https://doi.org/10.1007/BFb0105404
https://doi.org/10.1007/BFb0105404
https://doi.org/10.1007/978-3-540-73595-3_4

Vulnerability Report Analysis
and Vulnerability Reproduction for Web

Applications

Weiwei Wang1 , Zidong Li2, Feng You2, and Ruilian Zhao2(B)

1 Beijing Institute of Petrochemical Technology, Beijing 102617, China
2 Beijing University of Chemical Technology, Beijing 100029, China

rlzhao@mail.buct.edu.cn

Abstract. With the increasing complexity of Web applications, their
security issues happen frequently. Vulnerability reports aim to document
security issues of Web applications and assist in improving their secu-
rity and quality. However, vulnerability reports are usually described in
highly unstructured natural language, and the descriptions of vulnera-
bilities vary considerably. So automatically reproducing vulnerabilities
from their reports is a challenging task. To this end, this paper pro-
poses an approach to automatically comprehend vulnerability reports
and reproduce vulnerabilities in Web applications. In order to automati-
cally parse vulnerability reports of Web applications, a general syntactic
dependency pattern is summarized from diverse vulnerability reports to
guide the identification and extraction of key information in vulnerabil-
ity reports. In particular, payloads in vulnerability reports exist mainly
in the form of code fragments, unlike natural language. For this rea-
son, a payload extraction rule is further designed. Moreover, consider-
ing that the descriptions of vulnerability reports and Web application
are different but semantically similar, this paper uses semantic similar-
ity to match the events of web application with the key information of
the report, and then generates event sequences and corresponding test
scripts to trigger the vulnerability, achieving vulnerability reproduction.
To verify the effectiveness of our approach, we collect 400 vulnerability
reports from more than 300 Web application projects and summarize
syntactic dependency patterns. And 26 real vulnerability reports involv-
ing 23 open-source Web applications were used for experiments. The
results show that our method can effectively extract critical information
from vulnerability reports and generate feasible test scripts to reproduce
vulnerabilities, reducing manual operations and improving the efficiency
of vulnerability reproduction.

Keywords: web application testing · vulnerability report analysis ·
vulnerability reproduction · syntactic dependency pattern · test script

1 Introduction

With the rapid development of the Internet, Web applications have become pop-
ular in all aspects of social life. Meanwhile, the security of Web applications is
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 279–297, 2024.
https://doi.org/10.1007/978-981-99-8664-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_16&domain=pdf
http://orcid.org/0000-0003-4860-1553
http://orcid.org/0000-0002-6024-4010
https://doi.org/10.1007/978-981-99-8664-4_16

280 W. Wang et al.

increasingly important. According to the National Information Security Vulner-
ability Sharing Platform (CNVD) [5], a total of 1,764 security vulnerabilities
were collected in July 2023, of which security vulnerabilities with respect to
Web applications accounted for as many as 64%, seriously affecting the security
of web applications. Hence, identifying and addressing vulnerabilities is urgently
needed. If vulnerabilities found during testing or using can be reproduced, the
causes of the vulnerabilities can be analyzed and repaired, thereby improving
the quality and security of web applications.

A vulnerability report usually describes some key aspects of the vulnerability,
which is critical to its reproduction and repair [2,3]. However, most vulnerability
reports are currently written in natural language, and the descriptions of vulner-
abilities vary a lot, so, it is difficult to automatically parse the reports and extract
the key information involved in triggering vulnerabilities. At present, most exist-
ing studies on vulnerability reports focus on the identification of their structured
information, such as the software name, the vendor, the type of vulnerability, and
so on by using the named entity recognition or relationship extraction techniques
[6,9,13]. But these techniques have difficulty in parsing a complex unstructured
descriptions, such as the steps to trigger a vulnerability in the vulnerability report.

Furthermore, due to the imprecision and incompleteness of the vulnerability
report itself [8], the vulnerability-triggering steps described in reports are not
accurate enough. Meanwhile, modern Web applications involve a variety of GUI
events. Thus, it is a challenge to map directly the vulnerability-triggering steps in
reports to GUI events of actual Web applications [14], making it more difficult
to reproduce a vulnerability automatically for web applications. To date, the
existing vulnerability reproduction largely depends on manual experience and
required the tester to have expertise in the security field, which makes the cost
of vulnerability location and repair high.

Therefore, this paper proposes an approach to automatically reproduce vul-
nerabilities from vulnerability reports of Web applications, which involve both
structured and unstructured information, and have various abstract descriptions.
To parse the unstructured information of vulnerability reports, a general syntac-
tic dependency pattern is summarized from diverse vulnerability reports of Web
applications. In particular, there may exist some malicious codes, named attack
payloads, in the unstructured part of reports, which refer to the specific data
inputs or commands used to exploit a vulnerability. These attack payloads are
usually illegal strings and mostly in the form of code fragments. Thus, to effec-
tively obtain the attack payloads of vulnerability reports, corresponding attack
payloads extraction rules are designed. On this basis, the critical information
of triggering a vulnerability can be extracted from the reports automatically.
Besides, considering that the description of vulnerability reports and Web appli-
cations are different but semantically similar, a test script generation method
based on semantic similarity is proposed to realize vulnerability reproduction. To
summarize syntactic dependency patterns of vulnerability reports, 400 reports
from more than 300 Web application projects are collected and used. And to
further verify the effectiveness of our approach, vulnerability analysis and repro-
duction experiments are conducted on 23 open-source Web applications involving

Vulnerability Report Analysis and Vulnerability Reproduction 281

26 real vulnerability reports. The results show that our approach can effectively
parse the vulnerability reports, and generate feasible test scripts to reproduce
the vulnerabilities, improving the efficiency of vulnerability reproduction.

The main contributions are as follows:

1. An automatic vulnerability reports parsing approach is proposed to extract
critical information that trigger vulnerabilities based on the syntactic depen-
dency patterns summarized and attack payloads extraction rule.

2. A semantic similarity-based test script generation method is presented
to reproduce vulnerabilities by correlating vulnerability-triggering steps in
reports with GUI events in Web applications.

3. 400 vulnerability reports are collected for syntactic dependency patterns sum-
marizing. And experiments are conducted on 26 vulnerability reports of 23
open-source Web applications. The results show that our approach can effec-
tively analyze reports and reproduce vulnerabilities.

The rest of this paper is organized as follows: Sect. 2 introduces the related
concepts and techniques, involving vulnerability report, natural language pro-
cessing and test script for web applications. Section 3 describes our vulnerabil-
ity report analysis and vulnerability reproduction approach. Section 4 conducts
experiments on 26 vulnerability reports to validate the effectiveness of our app-
roach. Finally, the paper concludes with a summary of the whole paper.

2 Basic Concepts and Related Techniques

This section introduces the components of vulnerability report of web applica-
tions, the NLP-related techniques, and test script, which are relevant to the work
reported in this paper.

2.1 Vulnerability Report

Vulnerability reports are designed to record information, usually written in nat-
ural language, about vulnerabilities discovered by testers or users during their
use of Web applications. Typically, it contains structured information, such as
the title, date of found, exploit author, and so on, as well as unstructured
information, such as vulnerability description, steps to reproduce the vulner-
ability, and so on. Figure 1 shows an example of a Stored Cross-Site Scripting
(XSS) vulnerability report of a management system. From this example, we
can see that the basic vulnerability information is described in the structural
part marked with “#”, while the steps that trigger the vulnerability are given
in the unstructured part, documenting the user’s interactions with Web appli-
cations when the vulnerability is exploited successfully. Moreover, some of the
steps contain malicious code that can trigger a specific vulnerability, such as
“><script>alert(“XSS”)</script> in step 5 in Fig. 1. The malicious code is
generally named as the attack payload in vulnerability reports.

It is obvious that the critical information to reproduce vulnerabilities can
be obtained from the unstructured part of vulnerability reports, especially the

282 W. Wang et al.

steps. Developers/testers can have some insight into the vulnerability by reading
the report, getting the vulnerability-triggering steps, finding the corresponding
GUI events of Web applications, triggering them step by step, and finally repli-
cating the vulnerability. Thus, this paper focuses on the analysis of “Steps to
Reproduce” to guide the automatic reproduction of the relevant vulnerability.

Fig. 1. an example of a vulnerability report.

2.2 Natural Language Processing

Natural Language Processing (NLP) is an important area of artificial intelligence
in the study of human-computer interaction. It aims to automatically analyze
and understand natural language [12]. In order to parse vulnerability reports
written in natural language, this paper will use lexical analysis techniques and
dependency syntactic parsing techniques in NLP. Moreover, semantic similarity
techniques will be also used to compare the operations in vulnerability reports
and the events in Web applications.

Lexical Analysis. Lexical analysis techniques are a fundamental part of NLP,
which are usually used to separate text into basic lexical units, such as words,
punctuation marks, numbers, etc. It mainly consists of two important processes:
tokenization and part-of-speech (POS) tagging.

Tokenization is the process of dividing a text into individual lexical units.
Since English text usually uses Spaces to separate words, the simplest tokenizer
only use spaces to split entire sentences. More complex tokenizers may also
handle a text by other symbols such as parentheses, conjunctions, or word suffixes
[10]. Besides, users can customize the tokenizer with other symbols.

In vulnerability reports of web applications, the attack payloads or URLs,
in the “Steps to Reproduce” part, are different from the common text, which

Vulnerability Report Analysis and Vulnerability Reproduction 283

usually contain a long string of consecutive characters connected by special sym-
bols. Thus, a custom tokenizer is needed for analyzing the steps sentence in the
reports. spaCy [15], an open-source library for NLP, provides a variety of APIs
for users to customize tokenizers. So, this paper adopts a customized spaCy to
split steps information in reports into individual words or tokens.

POS tagging is the process of labeling each lexical unit, which can help to
understand the grammatical or semantic role of every lexical unit in a sentence,
such as nouns, verbs, adjectives, etc. There are many methods for part-of-speech
tagging, such as grammar-based methods, statistic-based methods and deep
learning methods. Since deep learning-baseds POS tagging have shown signifi-
cant advantages over traditional approaches in capturing contextual information
and handling out-of-vocabulary words, it is employed to tag the part-of-speech
of steps information in vulnerability reports.

Dependency Syntactic Parsing. Dependency syntactic parsing is also an
NLP technique that aims to analyze the grammatical structure of a sentence
by identifying the syntactic relationships between words. Unlike traditional syn-
tactic parsing techniques, dependency syntactic parsing not only focuses on the
syntactic structure of a sentence, but also on the semantic relationships between
words in the sentence.

Stanza [16] is an open-source Python NLP toolkit. Compared with other
toolkits, Stanza can implement the POS tagging and accurate context-aware
tagging based on deep learning techniques. At the same time, it incorporates
a high-quality dependency parser that can analyze the syntactic structure of
sentences and generate dependency parse trees, representing the relationships
between words. It has been observed that the description of vulnerability reports
often lacks certain sentence elements due to poor writing, while dependency
syntactic parsing can infer elements by using the relationships among words.
Thus, in this paper, Stanza is used for POS tagging and dependency parsing of
vulnerability reports.

Semantic Similarity Calculation. Semantic similarity refers to the degree of
similarity or relatedness between two pieces of text or concepts in terms of their
meaning. Instead of relying solely on lexical or surface-level similarity, semantic
similarity takes into account the contextual and conceptual similarity between
words, phrases, or sentences.

One commonly used method to calculate the similarity between word groups
is to convert words into vector representations and measure their similarity
using cosine similarity. In this method, each word is represented as a vector
in a high-dimensional space, with each dimensions capturing a different aspect
of the word’s meaning. The semantic similarity between word vectors is calcu-
lated by cosine similarity, where a larger value indicates that the two vectors
are identical or very similar, while a value closer to zero suggests that the two
vectors are orthogonal or dissimilar. Word2vec [17] are often used to converts
text into vectors via neural networks. There are two main models in Word2vec,
CBOW (Continuous Bag-of-Words) model and skip-grams model. The CBOW
model predicts and analyses the current word from nearby contextual words,

284 W. Wang et al.

and the order of the contextual words does not affect the result. The skip-grams
model predicts the context from the current word, with nearer words given more
weight than more distant words. These two models have their advantages and
disadvantages. Generally speaking, the CBOW model is faster, while skip-grams
works better for less common words.

For vulnerability reports of web applications, it is a challenge that translates
their step information into GUI events of Web applications because their lexical
descriptions often differ greatly. But the semantics between steps and GUI events
are similar. Therefore, they can be matched with the help of semantic similarity.
Moreover, most of the words appearing in vulnerability reports are commonly
used, so this paper employs the CBOW model to convert words into vectors to
achieve higher efficiency.

2.3 Test Scripts and Testing Framework of Web Applications

For a web application, its test case consists of a sequence of events and the input
values on the sequence. In order to automate the execution of test cases, test
scripts need to be created to achieve automatic interaction with web page and
their elements. And for most web applications, test scripts rely on DOM tree
to locate elements and manipulate objects within the tree through a defined set
of interactive functions. In that way, test cases can, for instance, automatically
fill in and submit forms and click on hyperlinks [1,11]. That is to say, test
scripts refer to a series of basic instructions, which can be executed under test
automation frameworks to control the browser and interact with the web page
and its elements. In fact, test cases are executed through test scripts under a
test automation framework. Therefore, test scripts can reduce the workload of
testers, and greatly improve the testing efficiency of Web applications [18].

Selenium is one of the most widely used test framework for Web applications,
which can be used to drive browsers and manipulate page elements. For an event
of Web applications, its test script in Selenium consists of a series of GUI atomic
operations. Each atomic operation is represented as a triple <Com, Tar, Val>,
where Com represents a GUI operation command, such as click and input; Tar
remarks the target object of Com; and if the Com is an input command,
Val is used to store user inputs; otherwise, the Val is empty. For example,
a login event includes entering a username and password and clicking the login
button. So, three atomic GUI operations are required in order to make this event
executable. They are <send key, user, value1>, <send key, pass, value2> and
<click, //input[@value =‘Login’]>, respectively. These atomic operations can
be represented as test script in Selenium syntax, and the sample representations
of these atomic operations of Selenium are shown in Table 1. This paper adopts
Selenium to execute test cases of web applications.

Vulnerability Report Analysis and Vulnerability Reproduction 285

Table 1. The sample representations of atomic operations in Selenium

event Selenium atomic operations Executable script(Python)

Com Tar Val

login Send key user admin driver.find element by name(user).send keys(“admin”)

Send key pass 123 driver.find element by name(pass).send keys(“123”)

click Xpath:(//input[@
value=‘Login’])

– driver.find element by xpath(“:(//input[@value=‘Login’] ”).click()

Fig. 2. Vulnerability reproduction from vulnerability report for Web applications

3 Vulnerability Report Analysis and Vulnerability
Reproduction Approach for Web Applications

This section describes our vulnerability report analysis and vulnerability repro-
duction approach for Web applications in detail.

3.1 Overview

A vulnerability report of Web applications contains the steps to trigger the vul-
nerability. Generally, a step describes an action taken by users during interaction
with the Web application, as well as information such as the object of the action,
object type, and input values, known as critical information of step, abbre-
viated as CIS. The CIS can be expressed by a quadruple, i.e. <action, object,
oType, input>, where oType stands for object type. Obviously, CIS is essential
for reproducing a vulnerability.

In order to identify CISs in vulnerability reports, we first studied the way
that users describe vulnerability-triggering steps and summarized them as syn-
tactic dependency patterns. Then, syntactic reports are automatically analyzed
according to the syntactic dependency patterns summarised, and their corre-
sponding CISs are identified and extracted. Furthermore, the attack payloads,
which are some malicious code written in the steps of vulnerability reports in
order to trigger a specific vulnerability, are also identified and extracted. For a
step with a payload, the payload is treated as the input value of correspond-
ing action. As a result, a CIS sequence can be generated in the order of the
corresponding steps. On this basis, the GUI events of Web applications associ-
ated with the sequence of CIS are identified based on their semantic similarity,
and test scripts are constructed to reproduce the vulnerability in Web applica-
tions. The overall framework of vulnerability report analysis and vulnerability
reproduction for web applications is shown in Fig. 2.

286 W. Wang et al.

3.2 Syntactic Dependency Patterns Summarising from Vulnerability
Reports

By analyzing real web applications and their vulnerability reports, we found
that the core actions involved in web applications can be divided into five major
categories, and the syntactic structure describing vulnerability-triggering steps
is determined by the type of actions. We collected 400 vulnerability reports
of more than 300 Web applications from Exploit-db, a vulnerability collection
platform [7], and found that the verbs involved in the steps can be associated with
one of the five action categories. Moreover, each type of action may correspond
to multiple verbs in steps, and the concrete relationship is shown in Table 2.
Therefore, for the collected vulnerability reports of web applications, we can
identify and classify the verbs involved in their steps into different actions, and
then analyze syntactic structures of these steps based on each type of action.
Finally, they are summarized as syntactic dependency patterns of the steps of
vulnerability reports.

In more detail, the description sentence of each step in the collected vul-
nerability reports is regarded as text, and tokenization and POS tagging are
enforced on the text by automatic lexical analysis. Then, the verbs that indi-
cate the actions are extracted and classified according to Table 2. After that, the
syntactic structure of each step sentence is analyzed based on its type of action
with the help of the dependency syntactic parsing technique. On the basis of
the syntactic structures, the dependencies among the action and other critical
information, including the objects of the action, the type of object and corre-
sponding input are further resolved. These dependencies are then summarised
to form dependency syntactic patterns for the steps of vulnerability reports. For
example, for the action of “Click”, it can be summarized that the object may
be represented by a nominal/adjectival modifier or by a compound word of the
type of the object. And the type of objects may be identified by the preposi-
tion of object, oblique nominal, adverbial modifier, and so on. Since the action
of Click does not require input values, there are no input-related description
involved in its pattern. So, the dependency syntactic pattern of “Click” action
can be summarized as shown in the “click” row in Table 3, where Nmod, Amod
and Compound stand for a nominal/adjectival modifier or a compound word,
and Pobj, Obl, and Advmod indicate the preposition of object, oblique nominal,
and adverbial modifier, respectively. For other types of action, similar general-
izations can be made about their objects, object types, and input modifiers. As
a result, the corresponding dependency syntactic patterns of the steps in the
vulnerability reports are listed in Table 3, each consisting of multiple entries.

Therefore, the specific dependency syntactic patterns are summarised from
each step sentence of collected vulnerability reports for web applications. And
the summarised dependency syntactic patterns can be used for extracting critical
information for vulnerability reproduction.

Vulnerability Report Analysis and Vulnerability Reproduction 287

Table 2. Classification and Verbs in steps of vulnerability reports

Type of Action Containing verbs

Jump go,login,navigate,visit, triggered, using

Input enter, type, add, write, paste, put, insert, fill

Use use

Click click

Change change

3.3 Automated Parsing of Vulnerability Reports

For a vulnerability report, the CISs, i.e. <action, object, oType, input>, in
its steps are essential to reproduce the vulnerability. Based on the dependency
syntactic pattern summarised, the steps in the report are analyzed by lexical
analysis and dependency syntactic parsing, and the corresponding CIS sequences
are obtained, laying the foundation for vulnerability reproduction.

Table 3. Dependency syntactic patterns of different types of actions

Type of Action Action objects Type of Object input values

Jump Nmod, Amod Obj, Parataxis, Obl /

Input Amod, Compound, Appos Pobj, Obl Dobj, Obj

Use Amod, Compound Pobj, Obl Dobj, Obj

Click Nmod, Amod, Compound Pobj, Obl, Advmod /

Change Nmod, Amod Obj Obl

In addition, we note that some of vulnerability-triggering steps require an
attack payload to be entered at a specified location. Unlike traditional natural
language, the payload in vulnerability reports is usually an illegal string sur-
rounded by quotation marks, mostly in the form of code fragments for attacking
specific vulnerabilities. Thus, the forms of payloads needs to be analyzed and
used for payload identification and extraction in this paper.

CIS Identification and Extraction. In order to obtain the sequence of
CIS from a vulnerability report, the steps of triggering the vulnerability in the
report should be first identified, and then theses steps sentences are parsed. It is
observed that for vulnerability reports of web applications, the steps that trigger
vulnerabilities generally start with the “Steps to Reproduce” keyword, so this
paper uses string matching to locate the steps. Considering a single step in the
reports may occupy multiple lines, this paper groups these lines into a text and
treats it as one complete step.

288 W. Wang et al.

As mentioned above, in a step sentence, its action is the most important
and decides the syntactic structure of the step. So, the verb corresponding to
the action is first identified by using lexical analysis. Specifically, tokenizer in
lexical analysis is used to partition the sentence into separate lexical units, and
part-of-speech tagging is used to mark each lexical unit with its lexicality. And
the verbs in the step sentence are extracted and regarded as actions. Then,
the object associated with the action, the object type and the input values are
identified and extracted by using syntactic dependency parsing technique.

In particular, a single step sentence may contain multiple verbs. Thus, in
addition to the root verb of the step sentence should be extracted as action, all
verbs that have adverbial clause, conjunction or juxtapositions modifiers with
the root verb should be also extracted as actions. The step sentence can be
divided into intervals according to these verbs, and CIS should be extracted
from each interval. If the sentence is not split, the accuracy of CIS extraction
may be lower. For instance, if the step sentence “click on the login button, enter
username and password, click on the submit button” is not separated, the CIS
associated with the second click may overwrite the CIS of the first click, affecting
the extraction accuracy of CISs from vulnerability reports.

Besides, when extracting the objects of actions, there may be case that a
verb corresponds to multiple objects and inputs. So, this paper records these
objects and inputs involved in a CIS in the form of a set. For example, in the
sentence “click on the ’save’ and ’submit’ button”, the verb click is the root word
of the sentence, namely the action of this step, and the action click corresponds
to the save and submit objects. According to the syntactic dependency pattern,
the button should be the type of the objects. And the dependency between save
and button is compound, so save should be extracted as an object of the CIS;
and the words save and submit are conjunction(Conj), so both save and submit
should be added to the CIS as objects. Thus, the CIS of this sentence should be
<click, [save,submit], [button], None>.

Payload Identification and Extraction. The payloads in vulnerability
reports generally appear in two forms: 1) inside the steps; 2) under the heading of
payload outside the steps. For the above two forms, we design two corresponding
extraction rules.

For the form 1), the payloads are identified as follows. As mentioned above,
the payload is a illegal string, mostly in the form of code fragments. As we
know, standard tokenizer in lexical analysis would split the payload into multiple
words, leading to errors in subsequent processing. Thus, this paper redesigns a
custom tokenizer that can treat all the words involved in a payload as a whole,
and then extracts the payload according to our syntactic dependency patterns
summarized. It can be observed that attack payloads are usually enclosed in a
pair of symbols such as parentheses, quotation marks, or square brackets. Thus,
payloads in vulnerability reports can be matched by regular expressions. In order

Vulnerability Report Analysis and Vulnerability Reproduction 289

to accurately locate the payloads, this paper designs a set of regular expressions,
as shown in Table 4, to identify the words involved in the payloads.

Concretely, the custom tokenizer first splits the step sentence into multiple
words based on symbols or spaces in traditional way. Then, the location of the
payload is identified by regular expression matching, and the related phrases
involved in the payload are merged to form a complete payload. After that, the
step sentence is parsed by using the syntactic dependency parsing. If the input
value in CIS is the word “payload”, then the words that have a dependency on
“payload” as adjectival modifier (Amod), appositional modifier (Appos), adver-
bial modifier (Advmod), or a compound are treated as the content of the payload.

Table 4. Regular expressions for extracting special case words in payload

Parentheses of payload Regular expressions

“ ‘[ˆ‘|ˆ]+[ˆ‘]*[ˆ‘|ˆ]+‘

“” ”[ˆ”|ˆ]+[ˆ”]*[ˆ”|ˆ]+”

” ’[ˆ’|ˆ]+[ˆ’]*[ˆ’|ˆ]+’

() ([ˆ(|ˆ)]+)

{} {[ˆ(|ˆ)]+}

For the form 2), that is, the payload is given under the heading “payload”,
whereas in a vulnerability report, the step sentence may only mention that a
payload is to be entered at a certain location.

In this case, there are no words in the step sentence that have a dependency
on the word “payload”. Then, we will use “payload” as the keyword to search for
the payload in full text. In addition, the URL of the homepage in vulnerability
reports is similar to the payload. Thus, its identification is similar as that of the
payloads.

In summary, for a vulnerability report, each of its step sentence is analyzed,
and its CIS and the corresponding payload (if any) are determined. The CIS and
payload in the same step are associated to form a complete CIS. Finally, these
CISs are combined into a sequence in the order of the steps for reproducing the
vulnerability.

3.4 Automatic Vulnerability Reproduction Based on Semantic
Similarity Between CIS and Event of Web Application

To reproduce a vulnerability in a vulnerability report from a web application, a
sequence of events on the Web application that corresponds to the CIS sequence
of the report should be found. Although the CISs of the reports are syntactically
different from the events of Web applications, they are semantically similar. So,
we can match the object of CIS with the page element binding events according to
their semantic similarity. To be specific, cosine similarity, a widely used measure

290 W. Wang et al.

of similarity, is used to calculate how similar an object in CIS is to the id or
name attribute of a page element in a Web application. As a result, the event
corresponding to the CIS can be obtained, and an executable test script for
the event can be created and executed. Hence, the event sequence of the web
application that matches the CIS sequence can be dynamically explored during
web application execution, reproducing the vulnerability.

In more detail, starting from the home page of the Web application, the
dynamic exploration process tries to match the GUI event sequence with the
CIS sequence by their semantic similarity. That is, if there exists a page element
similar to the current CIS, then an executable test script for the event binding
that element is generated and executed to trigger the event, entering a new
Web page. In this new page, its page element and the object of next CIS in
the sequence is compared, and the element similar to the CIS is selected and
triggered. Repeat the process above until all the CISs involved in the report
have been traversed. In this case, it is believed that the event sequence triggered
during the exploration of web application can reproduce the vulnerability.

The process of vulnerability reproduction is shown in Algorithm 1. Its inputs
are the URL of a web application and the CIS sequence extracted from its
corresponding vulnerability report. Specifically, it first does the initialization line
(1–2) and then the html source code of the current page, starting from the home
page of the Web application, is parsed with BeautifulSoup parser, a commonly
used web application parser, and all web elements in this page are extracted (line
4). Then, the element with the greatest semantic similarity with the current CIS
is found by matching the object in current CIS with the id or name of all page
element in this page (line 5–9). Based on the matched element, the event binding
this element is determined and the corresponding test script is created for the
event (line 10–12). The script is executed to trigger the event, reaching a new
web page (line 13). Considering that the page may not be fully loaded due to
network reasons, if there are no elements on the page matching the current CIS,
(that is, the semantic similarity is less than a threshold), the algorithm will wait
for some time, such as 5 s, before continuing to search for elements related to
the current CIS (line 16). If new page is loaded after waiting, indicating that
new elements are generated, then we continue to find the elements matching the
current CIS on the new loaded page (lines 17–18). Otherwise, we think the event
for the current CIS is not found, and reproducing this vulnerability fails (line
20). When all CISs have been processed, the vulnerability can be triggered by
executing the corresponding events via their test script, and the resulting test
scripts are regarded as the vulnerability reproduction script.

Vulnerability Report Analysis and Vulnerability Reproduction 291

Algorithm 1. Automatic vulnerability reproduction from a vulnerability report
Input: Web application URL; CIS sequence CISs[]
1: TestScript[] = null,maxSim = 0,maxIdx = −1 //Initialization
2: Web.get(URL) //Loading the home page by the URL
3: while i < CISs.size() do
4: element[] = ParseByBeautifulSoup(Web.page)
5: while j < element.size() do
6: sim[j] = SemSim(CISs[i], element[j])
7: maxSim = Max(maxSim, sim[j]) //maxSim records greatest similarity
8: maxIdx = Update(maxIdx, j) //maxIdx records index of the element with

greatest similarity with CISs[i]
9: end while

10: if maxSim ≥ Threshold then
11: script = generateScript(element[maxIdx])
12: TestScript.add(script)
13: Web.page source = execute(script) //Trigger the matched event and reach

the new page
14: i + + //Proceed to the next CIS
15: else
16: NewPage = waitUntilLoaded() //Until the page are loaded completely
17: if NewPage �= Web.page then
18: Web.page = NewPage, Continue
19: else
20: Break //The event for the current CIS is not found, break
21: end if
22: end if
23: end while

4 Experiment

This paper proposes an automatic vulnerability reports analysis and vulnera-
bility reproduction approach for web application. In order to verify the effec-
tiveness of this approach, real vulnerability reports, collected from vulnerability
tracking platform, are analyzed, and vulnerability reproduction experiments are
conducted on corresponding web applications. On this foundation, three research
questions are raised to assess our approach.

RQ1. Can our automatic vulnerability report analysis method extract CIS
sequences accurately?

RQ2. Is our attack payload extraction strategy effective?
RQ3. Can our vulnerability reproduction method generate test scripts to trigger

vulnerabilities?

292 W. Wang et al.

Table 5. Experimental subjects and classification

Category No. Name of Web Application Number of reports

Pa Pa-1 Loan Management System 1

Pa-2 Simple Online College Entrance Exam System 1

Pa-3 Hospitals Patient Records Management System 3

Pa-4 Student Quarterly Grading System 1

Pa-5 Simple Student Quarterly Result/Grade System 1

Pa-6 Online DJ Booking Management System 1

Pa-7 RATES SYSTEM 1

Pa-8 Online Railway Reservation System 1

Pa-9 Online Veterinary Appointment System 1

Pa-10 Online Thesis Archiving System 1

Pa-11 Online Enrollment Management System in PHP and PayPal 1

Pa-12 Employee and Visitor Gate Pass Logging System 1

Pa-13 Online Project Time Management System 1

Pa-14 Online Diagnostic Lab Management System 1

Pa-15 Hospitalss Patient Records Management System 1

Pa-16 Gadget Works Online Ordering System 1

Pa-17 COVID19 Testing Management System 2

Pa-18 Simple Chatbot Application 1

Pa-19 Online Employees Work From Home Attendance System 1.0 1

Re Re-1 Young Entrepreneur E-Negosyo System 1

Re-2 WordPress Plugin Wappointment 1

Thi Thi-1 Cab Management System 1

Thi-2 Online Diagnostic Lab Management System 1

Total 26

4.1 Experimental Subjects and Environment

In this paper, 400 vulnerability reports from over 300 projects in the vulnerability
collection platform Exploit-db are selected, and the syntactic dependency pat-
terns are summarised based on them. On this basis, 26 real vulnerability reports
corresponding to 23 open source Web applications are analyzed and vulnerabil-
ity reproduction experiments are carried out. According to their descriptions for
triggering vulnerabilities, the reports can be divided into three categories. The
first category of reports contains only Web page element operations in their step
sentences, such as clicking buttons, entering information, and other GUI opera-
tions, denoted by Pa; The second category of reports contains request informa-
tion in their step sentences, such as sending a request, represented by Re; The
third category of reports contains third-party software operations in their step
sentences, such as using burp suite [4] to intercept request information, denoted
by Thi. Table 5 gives the vulnerability report classification, number and name.

In vulnerability report analysis experiments, all these three categories are
used, while in vulnerability reproduction experiments, only Pa category is con-
sidered since Re and Thi categories require manual operations to construct test
scripts for reproduction.

Vulnerability Report Analysis and Vulnerability Reproduction 293

The experiments were carried out on a personal computer with a MacBook
Pro (16-in, 2019), 2.3 GHz Intel Core i9 processor and 16 GB of running memory;
the programming language is Python. Furthermore, a simple replication package
containing experiment data is provided at Github, available at https://github.
com/LiZD0424/ARV.

4.2 Analysis of Experimental Results

Results for RQ1. To evaluate whether our automatic vulnerability reports
analysis method can extract CIS sequences accurately, this paper compares the
CIS sequences extracted by our approach with those analyzed manually. Table 6
shows the total number of steps involved in the reports, where the steps refers
to the intervals after processing, and each of them corresponds to one CIS.
Further, the extraction accuracy of CIS sequence for each report is shown in
this table, where extraction accuracy counts the proportion of CISs correctly
parsed. As can be seen from the table, our method can successfully parse 23
vulnerability reports. And the average extraction accuracy of CIS sequences is
77%. This shows that our automatic parsing method for vulnerability reports is
effective in identifying and extracting the critical information for triggering the
vulnerabilities.

Table 6. CIS extraction accuracy of vulnerability report analysis

NO Total number of steps Steps of correct identification The extraction accuracy

Pa-1 3 3 100%

Pa-2 3 3 100%

Pa-3 9 9 100%

Pa-4 3 3 100%

Pa-5 1 1 100%

Pa-6 5 3 60%

Pa-7 2 1 50%

Pa-8 3 1 33%

Pa-9 3 2 66%

Pa-10 3 2 66%

Pa-11 3 1 33%

Pa-12 4 2 50%

Pa-13 4 4 100%

Pa-14 4 2 50%

Pa-15 3 2 66%

Pa-16 5 5 100%

Pa-17 5 3 60%

Pa-18 5 4 80%

Pa-19 3 3 100%

Re-1 3 2 66%

Re-2 2 1 50%

Thi-1 5 5 100%

Thi-2 5 4 80%

Total 86 66 77%

https://github.com/LiZD0424/ARV.
https://github.com/LiZD0424/ARV.

294 W. Wang et al.

It is worth noting that there are still errors when parsing some reports.
Through analysis, we found that this is due to the non-standard writing of the
steps in reports. For example, the sentence in report Pa-8 contains “Navigate to
‘Schedule’> go to ‘Book’ or ‘Revervation Form’ page using the following URL:
http://localhost:8000/orrs/?page%20=reserve&sid=1”. This step sentence uses
the irregular symbol ′ >′, which resulted in the step not being divided into two
intervals. Thus, it has an adverse impact on the CIS extraction results.

Results for RQ2. To answer whether our payload extraction method is effec-
tive, we performed payload extraction experiments on all vulnerability reports,
except the reports corresponding to web application Pa-17 and Re-1 because
they did not contain URL or payloads. The experiment results are shown in
Table 7. For 26 vulnerability reports, there are 42 URLs and payloads in total.
By using the traditional tokenizer, 42.9% of URLs and payloads are identified on
average. By using the custom tokenizer, 66.7% of URLs and payloads are accu-
rately identified. In other words, our payload extraction method can improve the
extraction accuracy of payloads or URLs in vulnerability reports. In particular,
the accuracy of payload extraction was increased by 55.48%.

Table 7. Effectiveness of URL and load identification

No. Number of URLs or payloads Accuracy of url or payload recognition

traditional tokenizer custom tokenizer

Pa-1 2 50% 100%

Pa-2 2 50% 100%

Pa-3 3 100% 100%

Pa-4 2 50% 100%

Pa-5 1 100% 100%

Pa-6 3 100% 100%

Pa-7 2 0% 50%

Pa-8 2 0% 0%

Pa-9 2 50% 50%

Pa-10 3 0% 66%

Pa-11 1 0% 0%

Pa-12 2 0% 0%

Pa-13 1 100% 100%

Pa-14 2 0% 0%

Pa-15 2 0% 100%

Pa-16 1 100% 100%

Pa-17 3 33% 67%

Pa-18 / / /

Pa-19 2 50% 100%

Pa-1 / / /

Pa-2 1 0% 0%

Re-1 2 100% 100%

Re-2 3 33% 33%

Total 42 42.9% 66.7%

Vulnerability Report Analysis and Vulnerability Reproduction 295

For the URLs and payloads that are not distinguished by our method,
our analysis found that the main reason was due to the nonstandard descrip-
tion of steps in the vulnerability reports. For example, the sentence “Cre-
ate new user by adding the following payload in First Name and Last
Name fields. <image src/onerror=prompt(document.cookie)>” in the step of
the vulnerability report Pa-14, the payload is written directly after the
step sentence, neither as a component of the previous sentence nor with
any marker to identify it as an payload. Another example is the sentence
“Login as admin to wp-admin portal, Go to Wappointment −− > Calendar
(http://localhost/wordpress/wpadmin/admin.php?page=wappointment calendar
)” in the vulnerability report Pa-2, this sentence is not standard due to the
existence of symbol ′ −− >′, which also has an impact on the extraction results.

Results for RQ3. Our automatic vulnerability reproduction focuses on the
reports that contain only page elements operations (category Pa) and are cor-
rectly parsed. Based on the CIS sequence extracted from these reports, the exe-
cutable events of the corresponding web application are explored to enable vul-
nerability reproduction. The results are shown in Table 8. We can see that among
11 reports, our method successfully reproduced 6 vulnerabilities, with a success
rate of 55%.

Table 8. Vulnerability reproduction results

Web App No. - Report No reproduction results

Pa-1-1 1

Pa-2-1 1

Pa-3-1 0

Pa-3-2 0

Pa-3-3 0

Pa-4-1 1

Pa-5-1 1

Pa-13-1 0

Pa-16-1 0

Pa-17-2 1

Pa-19-1 1

The main reasons why vulnerability reproduction fail can be summarized
as follows: 1) The critical information in some vulnerability reports is missing,
for example, the step information in the vulnerability report Pa-4 is “login as
admin, click on setting”, but the login username and password are not given
in the report. 2) The id and class of Web page tags are artificially named, and

296 W. Wang et al.

sometimes they are not a meaningful word and do not appear in the standard
corpus. These may lead to the inaccuracy of semantic similarity calculation,
affecting vulnerability reproduction.

5 Conclusion

This paper proposes an automatic vulnerability report analysis and vulnerabil-
ity reproduction approach for Web applications. First, the syntactic dependency
patterns are analyzed and summarised the basis of 400 vulnerability reports
from over 300 projects. Then, the CIS sequence from the reports are obtained by
using lexical analysis and dependency syntactic parsing based on the dependency
patterns summarised. At last, guided by the CIS sequence, the corresponding
Web application is dynamically explored based on semantic similarity to get
the events and associated test scripts to trigger vulnerabilities of Web applica-
tions. The experimental results show that the average extraction accuracy of CIS
sequences in vulnerability report analysis is 77%. And 55% of the vulnerabilities
are successfully reproduced. Therefore, our approach can handle vulnerability
reports and reproduce vulnerabilities effectively.

References

1. Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D., Porres, I.: Model-based testing using
UML activity diagrams: a systematic mapping study. Comput. Sci. Rev. 33, 98–112
(2019)

2. Bhuiyan, F.A., Shakya, R., Rahman, A.: Can we use software bug reports to iden-
tify vulnerability discovery strategies? In: Proceedings of the 7th Symposium on
Hot Topics in the Science of Security, pp. 1–10 (2020)

3. Bhuiyan, F.A., Sharif, M.B., Rahman, A.: Security bug report usage for software
vulnerability research: a systematic mapping study. IEEE Access 9, 28471–28495
(2021)

4. (2022). https://portswigger.net/burp
5. (2022). https://www.cnvd.org.cn
6. Dong, Y., Guo, W., Chen, Y., Xing, X., Zhang, Y., Wang, G.: Towards the detec-

tion of inconsistencies in public security vulnerability reports. In: 28th USENIX
Security Symposium (USENIX Security 2019), pp. 869–885 (2019)

7. (2022). https://www.exploit-db.com
8. Fazzini, M., Prammer, M., d’Amorim, M., Orso, A.: Automatically translating bug

reports into test cases for mobile apps. In: Software Testing and Analysis (2018)
9. Feng, X., et al.: Understanding and securing device vulnerabilities through auto-

mated bug report analysis. In: SEC 2019: Proceedings of the 28th USENIX Con-
ference on Security Symposium (2019)

10. Jin, Y.: Design of Japanese computer aided instruction system based on natural
language processing. Tech. Autom. Appl. 40(10), 52–55 (2021)

11. Leotta, M., Stocco, A., Ricca, F., Tonella, P.: Pesto: automated migration of dom-
based web tests towards the visual approach. Softw. Test. Verif. Reliabil. 28(4),
e1665 (2018)

https://portswigger.net/burp
https://www.cnvd.org.cn
https://www.exploit-db.com

Vulnerability Report Analysis and Vulnerability Reproduction 297

12. Li, R., Zhang, X., Li, C., et al.: Keyword extraction method for machine read-
ing comprehension based on natural language processing. In: Journal of Physics:
Conference Series, vol. 1955, no. 1, p. 012072 (2021)

13. Mu, D., et al.: Understanding the reproducibility of crowd-reported security vul-
nerabilities. In: 27th USENIX Security Symposium (USENIX Security 2018), pp.
919–936 (2018)

14. Ricca, F., Tonella, P.: Testing Processes of Web Applications. J. C. Baltzer AG
Science Publishers (2002)

15. (2022). https://github.com/explosion/spaCy
16. (2022). https://github.com/stanfordnlp/stanza
17. (2022). https://github.com/danielfrg/word2vec
18. Yang, X., Qian, F., Liu, G.: Analysis of software automatic testing methods. China

New Telecommun. 23(10), 77–78 (2021)

https://github.com/explosion/spaCy
https://github.com/stanfordnlp/stanza
https://github.com/danielfrg/word2vec

Run-Time Assured Reinforcement
Learning for Safe Spacecraft Rendezvous

with Obstacle Avoidance

Yingmin Xiao1,2, Zhibin Yang1,2(B), Yong Zhou1,2, and Zhiqiu Huang1,2

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China

yangzhibin168@163.com
2 Key Laboratory of Safety-Critical Software, Ministry of Industry and Information

Technology, Nanjing 211106, China

Abstract. Autonomous spacecraft rendezvous poses significant chal-
lenges in increasingly complex space missions. Recently, Reinforcement
Learning (RL) has proven effective in the domain of spacecraft ren-
dezvous, owing to its high performance in complex continuous control
tasks and low online storage and computation cost. However, the lack of
safety guarantees during the learning process restricts the application of
RL to safety-critical control systems within real-world environments. To
mitigate this challenge, we introduce a safe reinforcement learning frame-
work with optimization-based Run-time Assurance (RTA) for spacecraft
rendezvous, where the safety-critical constraints are enforced by Control
Barrier Functions (CBFs). First, we formulate a discrete-time CBF to
implement dynamic obstacle avoidance within uncertain environments,
concurrently accounting for soft constraints of spacecraft including veloc-
ity, time, and fuel. Furthermore, we investigate the effect of RTA on rein-
forcement learning training performance in terms of training efficiency,
satisfaction of safety constraints, control efficiency, task efficiency, and
duration of training. Additionally, we evaluate our method through a
spacecraft docking experiment conducted within a two-dimensional rela-
tive motion reference frame during proximity operations. Simulation and
expanded test demonstrate the effectiveness of the proposed method,
while our comprehensive framework employs RL algorithms for acquir-
ing high-performance controllers and utilizes CBF-based controllers to
guarantee safety.

Keywords: Run-time assurance · Safe reinforcement learning ·
Spacecraft rendezvous · Obstacle avoidance · Safety-critical system

Supported by National Natural Science Foundation of China (62072233) and Chinese
Aeronautical Establishment (201919052002).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 298–313, 2024.
https://doi.org/10.1007/978-981-99-8664-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_17&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_17

RTA RL for Safe Spacecraft Rendezvous with Obstacle Avoidance 299

1 Introduction and Related Work

Spacecraft rendezvous refers to one spacecraft (the chaser) towards another (the
target) from close proximity, with stringent limitations on the ultimate position,
velocity, and attitude of the involved spacecraft. This process is fundamental
for various on-orbit servicing missions, including tasks such as docking, mainte-
nance, structural assembly, and formation flying. Given the escalating intricacy
of space missions, the development of computationally efficient control strategies
for spacecraft rendezvous presents a substantial challenge. Conventional optimal
control approaches are computationally expensive, sensitive to the initial guess,
not feasible for on-board real-time implementation, and usually limited by the
simplifying assumptions (e.g., obstacles are static, no models for uncertainties
and disturbance). Nevertheless, reinforcement learning which has demonstrated
state-of-the-art results in numerous domains is appealing for solving control
problems. RL shifts computational burden to offline training at design time by
producing a static pre-trained Neural Network (NN) that is smaller and faster
to compute online than other optimization algorithms. Although the training
of a neural network controller requires a non-trivial length of time, obtaining a
solution from a fully trained network occurs almost instantaneously.

Reinforcement learning is based on the idea of an agent learning a policy (i.e.,
controller) to choose actions to maximize long-term cumulative rewards. During
the learning stage, the agent interacts with environment repeatedly by observing
its state, executing an action based on current policy, receiving a reward, and
modifying its policy to maximize its long-term rewards. RL has found successful
application in continuous control tasks within the spacecraft rendezvous domain.
For instance, Broida et al. investigated the use of RL for closed-loop control
applied to satellite rendezvous missions [7]. Oestreich developed six-degree-of-
freedom spacecraft docking maneuvers via RL [23]. In [14,16,19], RL has demon-
strated successful usage in guiding autonomous spacecraft during proximity oper-
ations. Considering spacecraft constraints, Yang et al. developed a model-based
reinforcement learning and neural-network-based policy compression approach
for spacecraft rendezvous on resource-constrained embedded systems [29]. Scor-
soglio et al. introduced a feedback guidance algorithm for near-rectilinear lunar
orbits with path constraints based on actor-critic RL [26]. Nonetheless, while RL
controllers exhibit excellent performance and consider certain spacecraft con-
straints in these endeavors, they cannot provide the same safety guarantees as
traditional control. RL focuses on maximizing the long-term reward, and it may
explore unsafe behaviors during its learning process, which limits the use of RL
for safety-critical control systems. To achieve optimal results in terms of both
performance and safety within safety-critical systems, an RL algorithm with
safety guarantees becomes profoundly significant.

Safe RL refers to a process of policy learning that maximizes expected
return while ensuring the satisfaction of some safety constraints [15]. Previous
approaches to safe RL mainly fall into the categories of modifying the opti-
mization criterion (i.e., reward shaping) or modifying the exploring process (i.e.,
RTA or shielding). Reward shaping aims to solve the constrained Markov Deci-

300 Y. Xiao et al.

sion Process (MDP) with Lagrangian methods [1,28]. These methods tend to
learn overly conservative policies or lack safety guarantees during learning -
safety is only approximately guaranteed after a sufficient learning period. In
contrast, RTA monitors unsafe behavior and intervenes with a backup safety
controller to ensure safety of RL, achieved through various methods such as
Lyapunov-based approaches [10,11], barrier functions [9,22], and formal verifi-
cation utilizing model checking [3,8]. A limitation of these methods is that the
creation of Lyapunov functions, barrier functions, or system automata relies on
manual crafting, and synthesizing the backup safety controller or shielding is a
non-trivial task.

In the field of spacecraft rendezvous, there is a dearth of research involving
safe RL. Kyle Dunlap et al. conducted the most closely related prior work in this
domain [13,17]. They explored 2-DOF RL using various forms of RTA to enforce
a dynamic velocity constraint. However, there has been limited consideration
given to obstacle constraints. Currently, there are over 21,000 pieces of debris
larger than 10 cm being tracked in orbit around the Earth [20], and the mission
environment for on-orbit servicing is becoming cluttered and full of uncertainty.
Due to the possibility of potentially mission ending collisions, there is a need for
the planning safe trajectories for safety-critical spacecraft. To address this issue,
this paper introduces a novel approach to ensuring safe spacecraft rendezvous via
run-time assured reinforcement learning, specifically aimed at obstacle avoidance
within docking missions. The main contributions are as follows:

• We introduce a safe reinforcement learning framework with optimization-
based run-time assurance for spacecraft rendezvous, where the safety-critical
constraints are enforced by control barrier functions.

• We formulate a discrete-time CBF to implement dynamic obstacle avoidance
within uncertain environments, where the obstacle constraints are assured
during training phase, concurrently accounting for soft constraints of space-
craft including velocity, time, and fuel.

• Effect of RTA on reinforcement learning training performance is investigated
in terms of training efficiency, satisfaction of safety constraints, control effi-
ciency, task efficiency, and duration of training.

• Our method is evaluated through a spacecraft docking experiment conducted
within a two-dimensional relative motion reference frame during proximity
operations. Simulation and expanded test demonstrate the effectiveness of
the proposed method, while our comprehensive framework employs RL algo-
rithms for acquiring high-performance controllers and utilizes CBF-based con-
trollers to guarantee safety.

This paper is organized as follows. In Sect. 2, we present the background
of reinforcement learning and run-time assurance approaches. In Sect. 3, we
introduce the relative motion dynamics of spacecraft and safety constraints in
rendezvous missions. A discrete-time control barrier function is formulated for
obstacle avoidance and run-time assured RL algorithm is discussed. In Sect. 4, we
introduce experiments setup. We show the training results in Sect. 5, analyze the

RTA RL for Safe Spacecraft Rendezvous with Obstacle Avoidance 301

impact of RTA on RL training performance, and evaluate the proposed methods
by simulation and expanded test. Section 6 provides concluding remarks.

2 Background

This section presents an introduction to RL and RTA. In the context of this
study, RL is employed for training a neural network controller, while RTA is
integrated with RL to ensure safety. This paper focuses on safety-critical control-
affine dynamical systems, where s ∈ S ⊂ R

n denotes the state vector and u ∈
U ⊂ R

m denotes the control vector. The time evolution of the system is given
by

st+1 = f (st) + g (st) ut, (1)

where f and g compose a known nominal model of the dynamics.

2.1 Reinforcement Learning

The foundational framework of reinforcement learning is the Markov decision
process MDP =< S,A, T, r, γ >, where S is a set of states (i.e. state vectors),
A is a set of actions (i.e. control vectors), T : S × A → S is the transition
function (i.e. system dynamic (1)), r : S × A → R is the reward function, and
γ ∈ (0, 1) is the discount factor. The goal of RL algorithms is to learn a policy
π : S × A → [0, 1] to maximize the expected cumulative discounted rewards in
the process of interactions with the environment.

Let J(π) denote expected cumulative discounted rewards of policy π:

J(π) = Eτ∼π

[∞∑
t=0

γtrt

]
, (2)

where τ ∼ π is a trajectory {s0, a0, r0, s1, a1, r1, ..., st, at, rt, ...} and the actions
are sampled from policy π(a|s). RL algorithms attempt to maximize J(π) using
various policy optimization methods, one of which is policy gradient methods
including Deep Deterministic Policy Gradients (DDPG) [21], Proximal Policy
Optimization (PPO) [25], and etc. Policy gradient methods estimate the gradi-
ent of J(π) based on sampled trajectories and optimize the policy using gradient
ascent. In practice, Policy gradient methods typically employ actor-critic archi-
tecture, where actor represents policy function π(a|s) and critic represents value
function Vπ or action value function Qπ. Vπ and Qπ are used to estimate the
value of a state and an action, and are defined as below:

Vπ (st) = Eat,st+1,at+1,...

[∞∑
k=0

γkrt+k

]
, (3)

Qπ (st, at) = Est+1,at+1,...

[∞∑
k=0

γkrt+k

]
, (4)

where actions ai are sample from distribution ai ∼ π(a|si).

302 Y. Xiao et al.

Proximal Policy Optimization. PPO is a policy gradient RL algorithm that
uses two neural networks approximate the actor and the critic, which are param-
eterized as π(a|s; θ) and V (s;φ). The actor increases the probability of selecting
actions if the resulting reward is better than the critic expected or decreases the
action selection probability if the reward is less than expected.

PPO updates the critic network using the mean squared error and gradient
descent method based on Eq. (3). To update the actor network, PPO optimizes
the objective function incorporating a clipping function:

LCLIP (θ) = Êt

[
min

(
Rt(θ)Ât, clip (Rt(θ), 1 − ε, 1 + ε) Ât

)]
. (5)

Here Rt(θ) describes the difference between current policy πθ and the old policy
πθold , and is defined as

Rt(θ) =
πθ (at | st)

πθold (at | st)
. (6)

ε is a hyperparameter which roughly says how far away the new policy is allowed
to go from the old. Ât is the estimate for the advantage function which is defined
as the difference between the state value after taking an action and that before
the action (λ is a hyperparameter between 0 and 1 to balance deviation and
variance):

Ât =
∞∑

l=0

(γλ)l(rt+l + γV (st+l+1) − V (st+l)). (7)

In this research, we utilize PPO as it is one of the most advanced policy
gradient algorithms in use today. Additionally, it is simple to implement, and
well-suited for continuous control problems.

2.2 Run-Time Assurance

When dealing with RL, the complex nature of the NN-based control law often
renders conventional offline verification techniques excessively difficult. In con-
trast, RTA techniques provide an online approach to prevent the NN controller
to perform disastrous actions, where safety-critical requirements can be encoded
in one or more monitors and enforced during learning and execution phases.
RTA system is split into a performance-driven NN controller and a safety-driven
RTA filter, which allows a designer to decouple performance objectives and safety
guarantees. On one hand, RL agent learns performance goals through the reward
function. On the other hand, RTA filter makes the agent respect significant prop-
erties including safety-critical requirements referred to as invariants.

Based on distinct intervention approaches, RTA can be classified into two cat-
egories: switching-based or optimization based. While switching-based RTA [24] is
simple and relies on backup control designs, optimization-based RTA [5] is mini-
mally invasive to the primary controller, where the intervention is smoother and

RTA RL for Safe Spacecraft Rendezvous with Obstacle Avoidance 303

more gradual than switching-based RTA. In this study, we employ optimization-
based RTA aiming to ensure the safety while concurrently endeavoring to pre-
serve the full performance of the primary NN controller. One possible implemen-
tation of a optimization-based RTA is constructed as

u(s, uNN) = argminub
‖uNN(s) − ub‖2

s.t.BCi(s, ub) ≥ 0,∀i ∈ {1, . . . , M} (8)

where BCi(s, ub) represents a set of M barrier constraints based on control
barrier functions [4] used to enforce safety of the system.

Control Barrier Function. Assuming the dynamic system (1) is locally Lip-
schitz, inequality constraints ϕi(s) : R

n → R,∀i ∈ {1, ...,M}, can be used
to define a set of M safety constraints, where the constraint is satisfied when
ϕi(s) ≥ 0. The allowable set Sϕ ⊆ S, defined as the set of states where all
constraints are satisfied, is then given by

Sϕ := {s ∈ S | ϕi(s) ≥ 0,∀i ∈ {1, . . . , M}} . (9)

In order to ensure the safe operation of RTA systems, there is a need to
define a stricter subset of states. By adhering to this stricter defined set, we
avoid scenarios that can arise near the boundary of the allowable set, where
no matter the action executed, the next state will be outside the allowable set.
Therefore, we need limit safety to a forward invariant subset S ⊆ Sϕ referred
to as the safe set, where

st0 ∈ S =⇒ st ∈ S,∀t ≥ t0. (10)

This set is control invariant if there exists a control law u that maintains its
forward invariance subject to constraints.

We consider a set Sh defined as the superlevel set of a continuously differen-
tiable function h : Rn → R, yielding

Sh = {s ∈ S | h(s) ≥ 0},
∂Sh = {s ∈ S | h(s) = 0},

IntSh = {s ∈ S | h(s) > 0}.
(11)

Definition 1. Let Sh ⊂ R
n be the superlevel set of a continuously differentiable

function h : Rn → R, then h is a control barrier function for the system (1) if
there exists an extended class K∞ function α such that for all s ∈ Sh,

sup
u∈U

[Lfh(s) + Lgh(s)u] ≥ −α(h(s)) (12)

Remark 1. Lf and Lg are Lie derivatives of f and g respectively (i.e. ∂h(s)
∂s ·f(s)

and ∂h(s)
∂s ·g(s)), and the extended class K∞ function α : R → R is a function that

is strictly increasing and with α(0) = 0. In this study, we let α(h(s)) = ηh(s)
where η ∈ [0, 1] is a scalar and represents how strongly the barrier function
“pushes” the state inwards within the safe set [9].

304 Y. Xiao et al.

The existence of a CBF implies that there exists a controller such that the
set Sh is forward invariant for system (1) [2,5]. In other words, if condition (12)
is satisfied for all s ∈ Sh, then the set Sh is forward invariant. Therefore, we
employ CBFs to construct barrier constraints of RTA filter, so that safety is
certified. Consequently, the barrier constraint in optimization-based RTA (8) is
then written as

BC(s, u) = Lfh(s) + Lgh(s)u + ηh(s)
= ∇h(s)(f(s) + g(s)u) + ηh(s).

(13)

Again, h(s) is a CBF with regard to safety-critical constraints of the system.

3 Safe Spacecraft Rendezvous

In the context of spacecraft rendezvous, an active spacecraft known as the
“chaser” gradually approaches a passive “target” spacecraft, simulating docking
within a linearized relative motion reference frame. Both spacecraft are consid-
ered rigid bodies and are represented as point-mass objects. Assumptions include
the mass of spacecraft being markedly lower than that of Earth, negligible mass
loss during maneuvers compared to the spacecraft mass, the target spacecraft
existing in a circular orbit, and the distance between spacecraft being signifi-
cantly shorter than their respective distances from Earth. This section discusses
the relative motion dynamics, safety constraints, and applications of RTA for
spacecraft rendezvous.

3.1 Relative Motion Dynamics

The location of the chaser with respect to the target is expressed in Hill’s ref-
erence frame [18], where the origin is located at the mass center of the target.
Here, we describe the problem with 2-dimensional dynamics. As shown in Fig. 1,
the vector �x points away from the center of the Earth and the vector �y points
in the direction of motion.

A first order approximation of the relative motion dynamics between the
chaser and target spacecraft is given by the Clohessy-Wiltshire equations [12]:

st+1 = Ast + But, (14)

where s = [x, y, ẋ, ẏ]T ∈ S = R
4 is the state vector, u = [Fx, Fy]T ∈ U =

[−umax, umax]2 is the control vector, and

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

3n2 0 0 2n
0 0 −2n 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
0 0

1/m 0
0 1/m

⎤
⎥⎥⎦ . (15)

Here n = 0.001027 rad/s is the spacecraft mean motion and m = 12 kg is the
mass of the chaser. In this study, the chaser is initialized around the target with

RTA RL for Safe Spacecraft Rendezvous with Obstacle Avoidance 305

Earth

Earth

Orbit

Chaser

Target

Obstacle

Keep-out Zone

Fig. 1. Hill’s reference frame centered on a target spacecraft.

the relative distance ‖ �rH‖ = (x2+y2)1/2 = 500 m. The chaser successfully docks
if ‖ �rH‖ less than 0.5 m and the ultimate relative velocity ‖vH‖ = (ẋ2 + ẏ2)1/2

is less than 0.2 m/s.

3.2 Safety Constraints

The system is defined to be safe if the chaser never violates obstacle constraints.
In this study, the obstacle moves in the environment with a random initial posi-
tion and velocity, following the same dynamic equation as spacecraft except that
the thrust terms are zero, as we assume the obstacle is unpowered. The chaser
spacecraft can estimate relative position and velocity of the obstacle through
sensors when the distance between them is less than ddetect, and is not allowed
to enter a keep-out zone centered around the obstacle with a radius of dsafe.

To synthesize a safe controller, we formulate a quadratic barrier function for
obstacle avoidance:

h(s) = (x − xob)2 + (y − yob)2 − (σdsafe)2, (16)

where xob and yob describe x/y-coordinate of the obstacle, and σ ≥ 1 is a factor
to expand warning zone for conservative safety. For the discrete-time system
with �t = 1 s, the barrier constraint is constructed as

BC(st, u) = ∇h(s)(f(st) + g(st)u) + ηh(st)
= h(st+1) − h(st) + ηh(st)
= h(st+1) − (1 − η)h(st).

(17)

In realistic environments, spacecraft velocity and thrust are typically
bounded. When velocity of the obstacle greatly exceeds that of the spacecraft,
no forward invariant can meet safety constraints. This phenomenon arises due to
specific states where the obstacle velocity is high and applying additional thrust
does not prevent a significant reduction in the distance between the chaser and

306 Y. Xiao et al.

the obstacle. Therefore, this paper assumes that obstacle velocity on entering
the detection range is similar to the chaser velocity. Concurrently, we employ
factor σ as a hyperparameter in barrier function (16), which implies a warning
zone that is larger than keep-out zone. Upon the chaser entries into the warning
zone, endeavors should be made to promptly exit it.

Apart from the obstacle constraint, this paper also addresses soft constraints
such as spacecraft velocity, time, and fuel, which are not obligatory during the
training process due to obstacle avoidance. We consider the same velocity con-
straint as [13]: ‖�vH‖ ≤ v0 + v1 ‖�rH‖ where v0 = 0.2 m/s and v1 = 2n, which
implies the chaser is expected to slow down as it approaches the target. Addi-
tionally, the rendezvous process is not expected to exceed a time limit of 1,800 s
or run out of fuel by using more than 1,500 N of cumulative force, which is
implemented by reward shaping (see details in Sect. 4).

3.3 Run-Time Assured RL Algorithm

For safe spacecraft rendezvous, we employ PPO algorithm with RTA to achieve a
balance between the optimality and safety. Figure 2 illustrates the PPO learning
framework incorporating a RTA filter in the training loop. Specifically, the state
s = (x, y, ẋ, ẏ, xob, yob, ˙xob, ˙yob) is formed by concatenating the state vectors of
the chaser and the obstacle. Within this framework, PPO utilizes sampled data
to train a NN controller as introduced in Sect. 2.2, while the optimization-based
filter is developed based on the methodology described by Eq. (8), and the barrier
constraint is formulated using Eq. (16) and (17).

PPO Algorithm

Learn a NN controller (i.e. policy)

using sampled data { , , , }

EnvironmentOptimization-based
RTA filter

Quadratic Programming

Algorithm

Neural Network

Controller
Dynamics

,

Fig. 2. PPO training process with an optimization-based RTA filter.

It is important to note that the optimization-based RTA filter generates a
safe control action u, which might deviate from the desired action uNN produced
by the NN controller. During the integration of RTA into RL training, the safe
action u provided to the environment does not contribute to training. Instead, the
action uNN from the NN controller is employed. This is critical for the effective
training of the NN controller due to the on-policy nature of PPO algorithm.
Consequently, the RL algorithm has no knowledge of when RTA is active, except
through the reward function. In this study, we configure RTA in two modes: RTA

RTA RL for Safe Spacecraft Rendezvous with Obstacle Avoidance 307

without punishment and RTA with punishment. In situations where RTA does
not intervene, both modes utilize the origin training data {st, uNNt, rt, st+1}.
However, when RTA intervenes, an additional punishment p is added to the
reward associated with the latter mode, resulting in a transformation of the
training data into {st, uNNt, rt + p, st+1}.

4 Experiments

4.1 Spacecraft Rendezvous Environment

A custom reinforcement learning environment for spacecraft rendezvous is
designed with the OpenAI Gym [6]. As mentioned above, the task succeeds if
the chaser spacecraft satisfies ‖ �rH‖ ≤ 0.5 m with a velocity ‖vH‖ ≤ 0.2 m/s. The
initial conditions are summarized in Table 1. The max thrust is umax = 1N and
the radius of keep-out zone centered at the obstacle is dsafe = 50 m. An Euler
integrator is employed to numerically advance the system dynamics. An episode
within the environment will terminate under one of following several conditions:
successful docking, collision of the chaser with the obstacle, traversal beyond
the defined boundary, surpassing the time threshold of 1,800 s (i.e., steps), or
depletion of fuel by using more than 1,500 N cumulative force. The termination
criterion aims to restrict exploration to the more efficient rendezvous policies.

Table 1. Initial conditions

Items Value

Position of the chaser x = 500 cos (π/3), y = 500 sin (π/3)

Velocity of the chaser A random value ‖vH‖ ∈ [0, 1.2]

Direction of the chaser A random angle arctan (ẏ/ẋ) ∈ [π, 1.5π]

Position of the obstacle A random value xob ∈ [200, 300], yob ∈ [200, 300]

Velocity of the obstacle A random value ‖vob‖ ∈ [0, init ‖vH‖]

Direction of the obstacle A random angle arctan (˙yob/ ˙xob) ∈ [0, π]

Boundaries x ∈ [−100, 600], y ∈ [−100, 600]

4.2 Reward Shaping

Reward shaping is one of the most critical work in the RL environment setup,
which constructs and improves reward functions to encourage expected behaviors
or punish the unexpected behaviors. In this spacecraft rendezvous environment,
the reward function including dense rewards and sparse rewards is summarized
in Table 2. Dense rewards are given at each time step of the simulation and
sparse rewards are only given at the termination of the episode.

There are three different training cases in this research: No RTA, RTA with-
out Punishment, and RTA with Punishment. No RTA case is a baseline, which

308 Y. Xiao et al.

encourages the spacecraft to adhere to safety constraints only by reward con-
struction. However, this does not guarantee safety during training process. With
RTA, barrier constraints can be used to ensure the spacecraft never enters an
unsafe state. The distinction between no punishment case and punishment case
is that small negative rewards are given to the latter case if RTA adjusts the
desired action from the NN controller.

Table 2. Reward function

Dense rewards: all cases

Proximity +0.002(‖rH‖old − ‖rH‖)

‖rH‖ ≤ 1m +0.1

Sparse rewards: all cases

‖rH‖ ≤ 0.5 m and ‖vH‖ ≤ 0.2 m/s2 +5

‖rH‖ ≤ 0.5 m but ‖vH‖ > 0.2 m/s2 −0.001

Over max time/fuel −1

Out of boundary −1

Violation of obstacle −1

Dense rewards: ONLY RTA with Punishment case

RTA is active to intervene −0.002

4.3 Hyperparameters

The algorithm used in this research is based on the PPO implementation from
OpenAI SpinningUp. The actor and the critic of PPO are both implemented
by full-connected neural networks with 2 hidden layers of 128 nodes each and
hyperbolic tangent (tanh) activation functions. For optimization-based RTA, we
employ IPOPT [27] to solve nonlinear quadratic programming problems. Hyper-
parameters used in PPO and RTA are summarized in Table 3.

Table 3. Hyperparameters setting for PPO training and RTA

HP Name Value

Discount factor γ 0.99

Actor learning rate 3e − 4

Critic learning rate 1e − 3

Clip ratio ε in Eq. (5) 0.2

Gradient descent steps per epoch 80

Lambda λ in Eq. (7) 0.97

Epochs 60

Steps per epoch 36000

Factor σ in Eq. (16) 1.5

Barrier function scalar η in Eq. (17) 0.2

RTA RL for Safe Spacecraft Rendezvous with Obstacle Avoidance 309

5 Results

In this section, we evaluate the training outcome and analyze RL performance in
terms of training efficiency, satisfaction of safety constraints, control efficiency,
task efficiency, and duration of training. Additionally, spacecraft rendezvous tra-
jectories are simulated on both numeric calculation and rendering engine. Fur-
thermore, we test different policies with or without RTA in expanded range.

Fig. 3. Averaged training results.

310 Y. Xiao et al.

5.1 Training Performance Analysis

Three different training cases are analyzed, each consisting of five trials with
different random seeds: No RTA, RTA without Punishment, and RTA with Pun-
ishment. The random seeds are consistent for each training case. Figure 3 shows
averaged training results of the five trials for each case over all epochs. The data
are smoothed by averaging over a window of 10 epochs.

In this research, training efficiency is the time required to learn a successful
policy measured as the first time it reaches 100% success. Figure 3(a) depicts the
average episode return (i.e., accumulated discount rewards) during all epochs. It
shows that RTA with Punishment rapidly converges near 20 epochs (720 thou-
sand interactions), while No RTA or RTA without Punishment case converges
to maximum return after 50 epochs. Figure 3(b) shows the average percentage
of episodes that result in successful docking. We can see that the fastest time
RTA with Punishment learns a successful policy is about 20 epochs, while the
other two cases need 50 or more than 60 epochs. Therefore, RTA with Punish-
ment has the best training efficiency in this spacecraft rendezvous environment.
This advantage is likely because the RTA filter prevents an episode from being
interrupted by the obstacle, and the small punishment helps the spacecraft learn
safe behaviors more quickly, which could be beneficial to collecting complete and
successful episodes as soon as possible.

Satisfaction of safety constraints is percent of constraint violation, which is
shown in Fig. 3(e). Obviously, in two types of RTA cases, the spacecraft never
crash the moving obstacle. During learning phase, it is inevitable to violate
obstacle constraint in No RTA case though the violation rate gradually decreases
to 0 as the interactions increase. This distinction shows the unique advantage of
RTA approaches.

Control efficiency is measured by average cumulative accelerate (i.e., cumu-
lative thrust divided by the mass), which is depicted by Fig. 3(c). All training
cases effectively minimize fuel consumption by the conclusion of training. At the
same time, task efficiency, which refers to the time required to complete the task
measured by average episode length, has also decreased to about 1,000 timesteps
for all cases, as shown in Fig. 3(d). Therefore, RTA with or without punishment
has little impact on training performance in terms of control efficiency and task
efficiency. As for duration of training which means the CPU time required to
reach 60 epochs, RTA cases are slower than No RTA case in experiments due to
their additional computation with the use of IPOPT solver.

5.2 Simulation and Expanded Test

We simulate a chaser spacecraft trajectory using the best trained policy of RTA
with Punishment. Figure 4(a) shows the numeric simulation that the trajectory
is smooth and almost straight. Figure 4(b) is a frame of rendering moving pic-
tures within the custom spacecraft rendezvous environment, which is designed
using OpenAI Gym built-in rendering functions to visualize how the policy is

RTA RL for Safe Spacecraft Rendezvous with Obstacle Avoidance 311

Fig. 4. Spacecraft rendezvous simulation.

performing. Both simulations demonstrate the effectiveness of run-time assured
PPO algorithm for spacecraft rendezvous.

Once training is completed, the deterministic NN controller is a fixed. One
common question is whether policies are adaptive for tasks they were not trained
on and whether policies trained with the RTA filter are still effective in expanded
test without RTA. Therefore, addition to simulations, we test different policies of
all training cases within small dynamic noises in expanded range with or without
RTA. In the training phase, the initial position of the chaser is stationary, as
summarized in Table 1. In the test, it is uniformly sampled from a square area
with the original initial position as the center and a side length of 100m. We
sample 100 test points randomly and compare the best policy (100% success rate
in training phase) of each case. The results are shown in Table 4.

Table 4. Success rate for expanded test with or without RTA

Training policy Test case

with RTA without RTA

No RTA 96% 96%

RTA without Punishment 96% 92%

RTA with Punishment 97% 95%

The test results demonstrate generalization capabilities of the policies in all
cases. As for the dependence of policies on RTA, the effect of RTA is negligible for
the policy in No RTA training case, but noticeable for policies trained with RTA.
Consequently, we recommend in engineering applications that when employing
RTA during the training phase, its implementation during the deployment phase
is advisable. In addition, RTA with Punishment demonstrates superiority over
RTA without Punishment based on the aforementioned training performance
analysis and expanded test results.

312 Y. Xiao et al.

6 Conclusions

This paper introduced a run-time assured guidance approach with a focus on AI
safety for RL-based spacecraft rendezvous. First, We formulated a discrete-time
CBF to implement dynamic obstacle avoidance within uncertain environments,
concurrently accounting for other constraints including velocity, time, and fuel
by reward shaping. Furthermore, we explored the impact of RTA on RL and
demonstrated its high training performance and safety. Finally, simulation and
expanded test showed the effectiveness of the proposed method and generaliza-
tion capabilities of NN controllers. In future work, we will expand this study
to physical satellite systems under observation disturbances, and explore test-
ing and verification methods for NN-based safety-critical heterogeneous systems
when CBF is hard to construct.

References

1. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In:
International Conference on Machine Learning, pp. 22–31. PMLR (2017)

2. Agrawal, A., Sreenath, K.: Discrete control barrier functions for safety-critical con-
trol of discrete systems with application to bipedal robot navigation. In: Robotics:
Science and Systems, vol. 13, pp. 1–10. Cambridge, MA, USA (2017)

3. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe
reinforcement learning via shielding. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

4. Ames, A.D., Coogan, S., Egerstedt, M., Notomista, G., Sreenath, K., Tabuada, P.:
Control barrier functions: theory and applications. In: 2019 18th European Control
Conference (ECC), pp. 3420–3431. IEEE (2019)

5. Ames, A.D., Xu, X., Grizzle, J.W., Tabuada, P.: Control barrier function based
quadratic programs for safety critical systems. IEEE Trans. Autom. Control 62(8),
3861–3876 (2016)

6. Brockman, G., et al.: OpenAI gym. arXiv preprint arXiv:1606.01540 (2016)
7. Broida, J., Linares, R.: Spacecraft rendezvous guidance in cluttered environments

via reinforcement learning. In: 29th AAS/AIAA Space Flight Mechanics Meeting,
pp. 1–15. American Astronautical Society (2019)

8. Carr, S., Jansen, N., Junges, S., Topcu, U.: Safe reinforcement learning via shielding
for pomdps. arXiv preprint (2022)

9. Cheng, R., Orosz, G., Murray, R.M., Burdick, J.W.: End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3387–
3395 (2019)

10. Chow, Y., Nachum, O., Duenez-Guzman, E., Ghavamzadeh, M.: A lyapunov-based
approach to safe reinforcement learning. In: Advances in Neural Information Pro-
cessing Systems, vol. 31 (2018)

11. Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E., Ghavamzadeh, M.:
Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031 (2019)

12. Clohessy, W., Wiltshire, R.: Terminal guidance system for satellite rendezvous. J.
Aerosp. Sci. 27(9), 653–658 (1960)

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1901.10031

RTA RL for Safe Spacecraft Rendezvous with Obstacle Avoidance 313

13. Dunlap, K., Mote, M., Delsing, K., Hobbs, K.L.: Run time assured reinforcement
learning for safe satellite docking. J. Aerosp. Inf. Syst. 20(1), 25–36 (2023)

14. Federici, L., Benedikter, B., Zavoli, A.: Deep learning techniques for autonomous
spacecraft guidance during proximity operations. J. Spacecr. Rocket. 58(6), 1774–
1785 (2021)

15. Garcıa, J., Fernández, F.: A comprehensive survey on safe reinforcement learning.
J. Mach. Learn. Res. 16(1), 1437–1480 (2015)

16. Gaudet, B., Linares, R., Furfaro, R.: Adaptive guidance and integrated navigation
with reinforcement meta-learning. Acta Astronaut. 169, 180–190 (2020)

17. Hamilton, N., Dunlap, K., Johnson, T.T., Hobbs, K.L.: Ablation study of how run
time assurance impacts the training and performance of reinforcement learning
agents. In: 2023 IEEE 9th International Conference on Space Mission Challenges
for Information Technology (SMC-IT), pp. 45–55. IEEE (2023)

18. Hill, G.W.: Researches in the lunar theory. Am. J. Math. 1(1), 5–26 (1878)
19. Hovell, K., Ulrich, S.: On deep reinforcement learning for spacecraft guidance. In:

AIAA Scitech 2020 Forum, p. 1600 (2020)
20. Jewison, C., Erwin, R.S., Saenz-Otero, A.: Model predictive control with ellipsoid

obstacle constraints for spacecraft rendezvous. IFAC-PapersOnLine 48(9), 257–262
(2015)

21. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971 (2015)

22. Ma, H., et al.: Model-based constrained reinforcement learning using generalized
control barrier function. In: 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4552–4559. IEEE (2021)

23. Oestreich, C.E., Linares, R., Gondhalekar, R.: Autonomous six-degree-of-
freedom spacecraft docking maneuvers via reinforcement learning. arXiv preprint
arXiv:2008.03215 (2020)

24. Rivera, J.G., Danylyszyn, A.A., Weinstock, C.B., Sha, L., Gagliardi, M.J.: An
architectural description of the simplex architecture. Carnegie Mellon University,
Pittsburg, Pennsylvania, Technical report, Software Engineering Institute (1996)

25. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

26. Scorsoglio, A., Furfaro, R., Linares, R., Massari, M.: Relative motion guidance for
near-rectilinear lunar orbits with path constraints via actor-critic reinforcement
learning. Adv. Space Res. 71(1), 316–335 (2023)

27. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–
57 (2006)

28. Yang, L., et al.: Constrained update projection approach to safe policy optimiza-
tion. Adv. Neural. Inf. Process. Syst. 35, 9111–9124 (2022)

29. Yang, Z., et al.: Model-based reinforcement learning and neural-network-based
policy compression for spacecraft rendezvous on resource-constrained embedded
systems. IEEE Trans. Industr. Inf. 19(1), 1107–1116 (2023)

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/2008.03215
http://arxiv.org/abs/1707.06347

An Abstract Domain of Linear Templates
with Disjunctive Right-Hand-Side

Intervals

Han Xu1,3, Liqian Chen1,2(B), Guangsheng Fan1,3, Banghu Yin4(B),
and Ji Wang1,3

1 College of Computer, National University of Defense Technology,
Changsha 410073, China

{hanxu,guangshengfan,wj,lqchen}@nudt.edu.cn
2 Hunan Key Laboratory of Software Engineering for Complex Systems,

Changsha 410073, China
3 HPCL, National University of Defense Technology, Changsha 410073, China
4 College of Systems Engineering, National University of Defense Technology,

Changsha 410073, China
bhyin@nudt.edu.cn

Abstract. Abstract interpretation provides a general framework for
analyzing the value ranges of program variables while ensuring sound-
ness. Abstract domains are at the core of the abstract interpretation
framework, and the numerical abstract domains aiming at analyzing
numerical properties have received extensive attention. The template
constraint matrix domain (also called the template polyhedra domain)
is widely used due to its configurable constraint matrix (describing lim-
ited but user-concerned linear relationships among variables) and its high
efficiency. However, it cannot express non-convex properties that appear
naturally due to the inherent disjunctive behaviors in a program. In this
paper, we introduce a new abstract domain, namely the abstract domain
of linear templates with disjunctive right-hand-side intervals, in the form
of

∑
i aixi ∈ ∨p

j=0[cj , dj] (where ai’s and p are configurable and fixed
before conducting analysis). Experimental results of our prototype are
encouraging: In practice, the new abstract domain can find interesting
non-convex invariants that are out of the expressiveness of the classic
template constraint matrix abstract domain.

Keywords: Abstract interpretation · Abstract domain · Template
constraint matrix · Invariant

1 Introduction

The precision of program analysis based on abstract interpretation is largely
dependent on the chosen abstract domain [8]. The polyhedra abstract domain
[9] is currently one of the most expressive and widely used numerical abstract

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 314–330, 2024.
https://doi.org/10.1007/978-981-99-8664-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_18&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_18

Linear Templates with Disjunctive Right-Hand-Side Intervals 315

domains. However, its applicability is severely limited by its worst-case expo-
nential time and space complexity.

In order to reduce the complexity of the polyhedra abstract domain and at
the same time derive practical linear invariants, Sankaranarayanan et al. [14,17]
proposed the template constraint matrix (TCM) abstract domain (also called
the template polyhedra domain). The domain representation of TCM polyhedra
abstract domain is Ax ≤ b, where the coefficient matrix A is predetermined
before the analysis, x is a vector of variables appearing in the program envi-
ronment, and the right-hand-side vector of constraint constants b is inferred
automatically by the analysis [17]. The expression capability of TCM polyhe-
dra abstract domain covers interval abstract domain [10] and the weakly rela-
tional linear abstract domains (e.g., octagonal abstract domain [15], octahedral
abstract domain [7], etc.) commonly used in practical static analysis. Therefore,
due to the representativeness of the TCM polyhedra abstract domain expressiv-
ity and its polynomial time complexity, the TCM polyhedra abstract domain has
been receiving much attention from the academic community since its proposal.

However, like most current numerical abstract domains (e.g., interval abstract
domain [10], octagonal abstract domain [15], etc.), the TCM abstract domain
is based on a series of linear expressions, the corresponding geometric regions
is convex, and therefore it can only express convex properties. In the actual
analysis, the behavior of the program in the specific or collection semantics are
generally non-convex. For example, “if-then-else” statements are often used in
programs for case-by-case discussion. In addition, users are concerned about the
non-convex numerical properties of a program, e.g., checking that a program
does not have a “division-by-zero error” requires verifying a non-convex property
such as “x �= 0”.

In this paper, we propose a novel method to combine the TCM abstract
domain with fixed partitioning slots based powerset domain of intervals to design
a new abstract domain, namely, an abstract domain of linear templates with
disjunctive right-hand-side intervals (rhiTCM abstract domain). This domain
aims to retain non-convex information of linear inequality relations among values
of program variables, in the form of Ax ∈ ∨p

i=0[ci ,di] (where A is the preset
template constraint matrix, x is the vector of variables in the program to be
analyzed, ci and di are vectors of constants,

∨p
i=0[ci ,di] are a disjunction of

interval vectors based on fixed partitioning slots inferred by the analysis). To
be more clear, each constraint in Ax ∈ ∨p

i=0[ci ,di] is formed as:
∑

i aixi ∈
[c0, d0]∨ [c1, d1]∨ . . .∨ [cp, dp], where a′

is together with p are fixed before analysis,
and for each i ∈ [0, p − 1] it holds that di ≤ ci+1.

Motivating Example. In Fig. 1, we show a simple typical program that contains
division in C language. This example involves non-convex (disjunctive) con-
straints that arise due to control-flow join. Specifically, at program line 10, the
rhiTCM abstract domain is able to deduce that x+ y ∈ [−1,−1] ∨ [1, 1], and as
a result, the program can be deemed safe. In contrast, the classic TCM abstract
domain infers that x + y ∈ [−1, 1], leading to false alarms for division-by-zero
errors.

316 H. Xu et al.

Fig. 1. Motivating Example

The new domain is more expressive than the classic TCM abstract domain
and allows expressing certain non-convex (even unconnected) properties thanks
to the expressiveness of the disjunctive right-hand-side intervals. We made a pro-
totype implementation of the proposed abstract domain using rational numbers
and interface it to the Apron [13] numerical abstract domain library. The pre-
liminary experimental results of the prototype implementation are promising on
example programs; the rhiTCM abstract domain can find linear invariants that
are non-convex and out of the expressiveness of the conventional TCM polyhedra
abstract domain in practice.

The rest of the paper is organized as follows. Section 2 describes some prelim-
inaries. Section 3 presents the new proposed abstract domain of rhiTCM abstract
domain. Section 4 presents our prototype implementation together with experi-
mental results. Section 5 discusses some related work before Sect. 6 concludes.

2 Preliminaries

2.1 Fixed Partitioning Slots Based Powerset Domain of Intervals

We describe an abstract domain, namely, f ixed partitioning slots based power-
set domain of Intervals (fpsItvs). The main idea is to extract fixed partition-
ing points based on the value characteristics of variables in the program under
analysis, and utilize these fixed partitioning points to divide the value space of
variables. This approach aims to preserve more stable information regarding the
range of variable values during program analysis. We use FP_SET to store the
fixed partitioning points (FP_SET = {FP1, FP2, . . . , FPp}). Each fixed parti-
tioning point FPi ∈ R satisfies FPi < FPi+1.

Definition 1. fpsItvsp = {∨p
i=0[ci, di] | for i ∈ [0, p− 1], ci ≤ di ≤ ci+1, ci, di ∈

R}.
Let II ∈ fpsItvsp, which means that II is a disjunction of p disjoint

intervals. The domain representation of fixed partitioning slots based power-
set domain of intervals is x ∈ [a0, b0] ∨ [a1, b1] ∨ . . . ∨ [ap, bp], where x is
the variable in the program to be analysed, [a0, b0] ⊆ [−∞, FP1], [a1, b1] ⊆

Linear Templates with Disjunctive Right-Hand-Side Intervals 317

[FP1, FP2], . . . , [ap, bp] ⊆ [FPp,+∞], ai, bi ∈ R is inferred by the analysis,
FP_SET = {FP1, FP2 . . . , FPp} is the preset configurable point set. It should
be noted that p distinct fixed partitioning points correspond to p+ 1 intervals.
Let ⊥is denote the bottom value of fpsItvsp (⊥is = ⊥i0 ∨ ⊥i1 ∨ . . . ∨ ⊥ip) and
let 	is denote the top value of fpsItvsp (is = [−∞, FP1]∨ [FP1, FP2]∨ . . .∨
[FPp,+∞]).

Domain Operations. Let II = [a0, b0] ∨ [a1, b1] ∨ . . . ∨ [ap, bp], II′ = [a′
0, b

′
0] ∨

[a′
1, b

′
1] ∨ . . . ∨ [a′

p, b
′
p]. For simplicity, abbreviate the above expression as II =

I0 ∨ I1 ∨ . . . ∨ Ip , II′ = I ′
0 ∨ I ′

1 ∨ . . . ∨ I ′
p. Let
i, �i, �i respectively denote the

abstract inclusion, meet, join operation in the classic interval domain [10].

• Inclusion test
is:
II
is II′ iff I0
i I

′
0 ∧ I1
i I

′
1 ∧ . . . ∧ Ip
i I

′
p

• Meet �is:
II �is II′ � I0 �i I

′
0 ∨ I1 �i I

′
1 ∨ . . . ∨ Ip �i I

′
p

• Join �is:
II �is II′ � I0 �i I

′
0 ∨ I1 �i I

′
1 ∨ . . . ∨ Ip �i I

′
p

Extrapolations. Since the lattice of fpsItvs has infinite height, we need a
widening operation for the fpsItvs abstract domain to guarantee the conver-
gence of the analysis and a narrowing operation to reduce the precision loss
caused by the widening operation. The symbol Ii represents the lower bound of
interval Ii and the symbol Ii represents the upper bound of interval Ii.

• Widening operation (∇is):
II ∇is II′ � I ′′

0 ∨ I ′′
1 ∨ . . . ∨ I ′′

p

I ′′
0 =

⎧
⎪⎨

⎪⎩

I0 if I ′
0 = ⊥i

I ′
0 if I0 = ⊥i

[I0 ≤ I ′
0 ? I0 : −∞, I0 ≥ I ′

0 ? I0 : FP1] otherwise

when 0 < i < p,

I ′′
i =

⎧
⎪⎨

⎪⎩

Ii if I ′
i = ⊥i

I ′
i if Ii = ⊥i

[Ii ≤ I ′
i ? Ii : FPi, Ii ≥ I ′

i ? Ii : FPi+1] otherwise

I ′′
p =

⎧
⎪⎨

⎪⎩

Ip if I ′
p = ⊥i

I ′
p if Ip = ⊥i

[Ip ≤ I ′
p ? Ip : FPp, Ip ≥ I ′

p ? Ip : +∞] otherwise

318 H. Xu et al.

• Narrowing operation (�is):
II �is II′ � I ′′

0 ∨ I ′′
1 ∨ . . . ∨ I ′′

p

I ′′
0 =

⎧
⎪⎨

⎪⎩

I0 if I ′
0 = ⊥i

I ′
0 if I0 = ⊥i

[I0 = −∞ ? I ′
0 : I0, I0 = FP1 ? I ′

0 : I0] otherwise

when 0 < i < p,

I ′′
i =

⎧
⎪⎨

⎪⎩

Ii if I ′
i = ⊥i

I ′
i if Ii = ⊥i

[Ii = FPi ? I ′
i : Ii, Ii = FPi+1 ? I ′

i : Ii] otherwise

I ′′
p =

⎧
⎪⎨

⎪⎩

Ip if I ′
p = ⊥i

I ′
p if Ip = ⊥i

[Ip = FPp ? I ′
p : Ip, Ip = +∞ ? I ′

p : Ip] otherwise

2.2 Mixed-Integer Linear Programming

Mixed-integer Linear Programming (MILP) problem is a type of linear program-
ming problem where both the objective function and constraint conditions are
linear equalities or inequalities. The variables in a MILP problem include both
continuous and integer variables. Continuous variables can take any value within
the real range, while integer variables can only take integer values. Due to the
mixed nature of continuous and integer variables in the MILP problem, its opti-
mal solution may exist in multiple local optimal solutions. The general form of
a MILP problem can be expressed as:

minimize (or maximize) cT ∗ x+ dT ∗ y

subject to A ∗ x+B ∗ y ≤ b

x ∈ R
n

y ∈ Z
m

where c and d are given coefficient vectors, x represents the continuous variables,
y represents the integer or boolean variables, A and B are known matrices, and
b is the right-hand-side vector of constraints.

A MILP problem can have one of three results: (1) the problem has an optimal
solution; (2) the problem is unbounded; (3) the problem is unfeasible.

2.3 Template Constraint Matrix Abstract Domain

The template constraint matrix abstract domain [17] is introduced by Sankara-
narayanan et al. to characterize the linear constraints of variables under a given
template constraint matrix: Ax ≤ b, where A ∈ Q

m×n is an m × n matrix of

Linear Templates with Disjunctive Right-Hand-Side Intervals 319

coefficients (determined prior to the analysis), x ∈ Q
n×1 is an n × 1 column

vector (determined by the environment of the variables in the current analysis),
and b ∈ Q

n×1 is a right-hand-side vector of constraints inferred by the analysis.
Figure 2 shows an instance of a template constraint matrix polyhedron.

Assume that the program has two variables x and y, the template constraint
matrix is A. In the TCM polyhedra abstract domain, b is obtained from the
derivation of the matrix A during analysis.

Fig. 2. An Instance of TCM

3 An Abstract Domain of Linear Templates with
Disjunctive Right-Hand-Side Intervals

In this section, we present a new abstract domain, namely the abstract domain
of linear templates with disjunctive right-hand-side intervals (rhiTCM). The key
idea is to use the fixed partitioning slots based powerset of intervals (fpsItvs)
to express the right-hand value of linear templates constraints. It can be used
to infer relationships of the form

∑
k akxk ∈ II over program variables xk(k =

1, . . . , n), where ak ∈ Q, II ∈ fpsItvsp is automatically inferred by the analysis.

3.1 Domain Representation

The new abstract domain is used to infer relationships of the form Ax ∈ II, where
A ∈ Q

m×n is the preset template constraint matrix, x ∈ Q
n×1 is the vector of

variables in the program to be analysed, II is the vector of II automatically
inferred by the analysis (II is composed of IIm×1). For ease of understanding,
we also write Ax ∈ II as

∑
k aikxk ∈ IIi (aik represents the element in the ith

row and kth column of the matrix A, IIi represents the element in the ith row
of the vector II, 1 ≤ i ≤ m, 1 ≤ k ≤ n).

Example 1. Consider a simple rhiTCM abstract domain representation as fol-
lows. Assume there are three variables x1, x2 and x3.

320 H. Xu et al.

A =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 1
1 −1 2
1 1 0
0 3 −2
0 0 −1

⎤

⎥
⎥
⎥
⎥
⎦

x =

⎡

⎣
x1

x2

x3

⎤

⎦ representing constraints

⎡

⎢
⎢
⎢
⎢
⎣

x1 + x3 ∈ II1
x1 − x2 + 2x3 ∈ II2

x1 + x2 ∈ II3
3x2 − 2x3 ∈ II4

−x3 ∈ II5

⎤

⎥
⎥
⎥
⎥
⎦

Since the template matrix A remains unchanged during the analysis process, a
vector II in the abstract domain rhiTCM represents the set of states described
by the set of constraints Ax ∈ II. The template constraint matrix is nonempty,
i.e., m > 0, and the abstract domain contains m-dimensional vectors II.

Definition 2. rhiTCM is defined as follows:

rhiTCM �

⎧
⎪⎨

⎪⎩

⊥rhiTCM , if ∃IIi = ⊥is

	rhiTCM , if ∀IIi = 	is

Ax ∈ II otherwise

where IIi is the element in the ith row of II. ⊥rhiTCM is the bottom value
of the rhiTCM abstract domain, representing this rhiTCM element is infeasible;
	rhiTCM is the top value of rhiTCM domain, representing the entire state space.
Figure 3 presents a rhiTCM element.

Fig. 3. A rhiTCM Element

3.2 Domain Operations

Now, we describe the design of most common domain operations required for
static analysis over the rhiTCM abstract domain. Assume that there are n vari-
ables in the program to be analyzed (x = [x1, x2, . . . , xn]T), and the template
constraint matrix preset based on the program is A (A ∈ Q

m×n, representing
matrix elements with aij , i ∈ 1, 2, . . . ,m, j ∈ 1, 2, . . . , n). As mentioned ear-
lier, the template constraint matrix for the domain representation correspond-
ing to the abstract states of different program points in the rhiTCM abstract

Linear Templates with Disjunctive Right-Hand-Side Intervals 321

domain is the same, except for the constraint vector on the right side. There-
fore, domain operations mainly act on the vector of II. Assuming there are
currently two abstract states, their corresponding domain representations are
rhiTCM � Ax ∈ II and rhiTCM ′ � Ax ∈ II′, where II = [II1, II2, . . . , IIm]T

and II′ = [II′1, II
′
2, . . . , II

′
m]T .

Lattice Operations. The lattice operations include abstract inclusion, meet
and join operation, represented by symbols
,�,� respectively. Let
is, �is, �is

respectively denote the abstract inclusion, meet, join operation in the fpsItvs
abstract domain.

Inclusion Test. The inclusion test for rhiTCM abstract domain is implemented
based on the inclusion test for vector II (�is).

Definition 3. Inclusion test of vector II (�is). Let II = [II1, II2, . . . , IIn]T ,
II′ = [II′1, II

′
2, . . . , II

′
n]

T .

II �is II′ iff
n∧

i=1

(IIi
is II′i)

For the rhiTCM abstract domain, rhiTCM
 rhiTCM ′ implies the domain
element of rhiTCM is contained in rhiTCM ′, which is geometrically equiv-
alent to the graph corresponding to rhiTCM is contained within the graph
corresponding to rhiTCM ′. With Definition 3, we define the inclusion test of
rhiTCM abstract domain as follows:

rhiTCM
 rhiTCM ′ iff II �is II′.

Example 2. Assume II =
[
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]

]

, II′ =
[
[−2,−1] ∨ [1, 2]
[−3,−1] ∨ [1, 3]

]

and

FP_SET = {0}. Note that:
([−2,−2]∨ [2, 2]
is [−2,−1]∨ [1, 2]) ∧ ([−3,−2]∨ [2, 3]
is [−3,−1]∨ [1, 3]),

thus II �is II′, rhiTCM
 rhiTCM ′.

Meet. The meet operation of rhiTCM abstract domain is implemented based on
the meet operation of vector II.

Definition 4. Meet operation of vector II(�is). Let II = [II1, II2, . . . , IIn]T ,
II′ = [II′1, II

′
2, . . . , II

′
n]

T .

II �is II′ � [II1 �is II′1, . . . , IIn �is II′n]
T

For the rhiTCM abstract domain, rhiTCM � rhiTCM ′ is geometrically
equivalent to the part that exists simultaneously in both rhiTCM and rhiTCM ′.
With Definition 4, we define the meet operation of rhiTCM domain as follows:

rhiTCM � rhiTCM ′ � Ax ∈ (II �is II′).

322 H. Xu et al.

Join. The join operation of rhiTCM abstract domain is implemented based on
the join operation of vector II.

Definition 5. Join operation of vectors of II(�is). Let II = [II1, II2, . . . , IIn]T ,
II′ = [II′1, II

′
2, . . . , II

′
n]

T .

II �is II′ � [II1 �is II′1, . . . , IIn �is II′n]
T

For the rhiTCM abstract domain, rhiTCM � rhiTCM ′ is geometrically
equivalent to the part that envelope rhiTCM and rhiTCM ′. With Definition
5, we define the join operation of rhiTCM abstract domain as follows:

rhiTCM � rhiTCM ′ � Ax ∈ (II �is II′).

Example 3. Assume II =
[
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]

]

, II′ =
[
[−2,−1] ∨ [1, 2]
[−3,−1] ∨ [1, 3]

]

and

FP_SET = {0}. We note that:

([−2,−2] ∨ [2, 2]) �is ([−2,−1] ∨ [1, 2]) = [−2,−2] ∨ [2, 2],
([−3,−2] ∨ [2, 3]) �is ([−3,−1] ∨ [1, 3]) = [−3,−2] ∨ [2, 3],
([−2,−2] ∨ [2, 2]) �is ([−2,−1] ∨ [1, 2]) = [−2,−1] ∨ [1, 2],
([−3,−2] ∨ [2, 3]) �is ([−3,−1] ∨ [1, 3]) = [−3,−1] ∨ [1, 3],

thus we can get:

rhiTCM � rhiTCM ′ � Ax ∈ (II �is II′) = Ax ∈
[
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]

]

,

rhiTCM � rhiTCM ′ � Ax ∈ (II �is II′) = Ax ∈
[
[−2,−1] ∨ [1, 2]
[−3,−1] ∨ [1, 3]

]

.

3.3 Extrapolations

The lattice of the rhiTCM abstract domain is of infinite height, and thus we
need a widening operation to guarantee the convergence of the analysis. The
widening operation of rhiTCM abstract domain is implemented based on the
widening operation of vector II.

Definition 6. Widening operation of vector II (∇). Let II = [II1, II2, . . . , IIn]T ,
II′ = [II′1, II

′
2, . . . , II

′
n]

T .

II ∇II′ � [II1∇isII′1, . . . , IIn∇isII′n]
T

The widening operation of rhiTCM abstract domain is as follows:

rhiTCM ∇ rhiTCM ′ � Ax ∈ (II ∇ II′).

Linear Templates with Disjunctive Right-Hand-Side Intervals 323

The widening operation may result in substantial precision loss. To mitigate
this, we utilize a narrowing operation to perform decreasing iterations once the
widening iteration has converged, effectively reducing precision loss. Notably,
this operation is capable of converging within a finite time. The implementation
of the narrowing operation for the rhiTCM abstract domain is derived from the
narrowing operation of vector II.

Definition 7. Narrowing operation of vector II (�).

II � II′ � [II1�isII′1, . . . , IIn�isII′n]
T

The narrowing operation of rhiTCM abstract domain is as follows:

rhiTCM � rhiTCM ′ � Ax ∈ (II � II′).

Example 4. Assume II =

⎡

⎣
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]
[−2,−2] ∨ ⊥i

⎤

⎦, II′ =

⎡

⎣
[−3,−2] ∨ [2, 3]
[−3,−1] ∨ [1, 3]
[−2,−2] ∨ [2, 2]

⎤

⎦ and

FP_SET = {0}. Note that:

([−2,−2] ∨ [2, 2]) ∇is ([−3,−2] ∨ [2, 3]) = [−∞,−2] ∨ [2,+∞],
([−3,−2] ∨ [2, 3]) ∇is ([−3,−1] ∨ [1, 3]) = [−3, 0] ∨ [0, 3],
([−2,−2] ∨ ⊥i) ∇is ([−2,−2] ∨ [2, 2]) = [−2,−2] ∨ [2, 2],

thus

rhiTCM ∇ rhiTCM ′ � Ax ∈ (II ∇ II′) = Ax ∈
⎡

⎣
[−∞,−2] ∨ [2,+∞]

[−3, 0] ∨ [0, 3]
[−2,−2] ∨ [2, 2]

⎤

⎦ ,

Let II′′ = II ∇ II′, rhiTCM ′′ = rhiTCM ∇ rhiTCM ′, note that:

([−∞,−2] ∨ [2,+∞]) �is ([−2,−2] ∨ [2, 2]) = [−2,−2] ∨ [2, 2],
([−3, 0] ∨ [0, 3]) �is ([−3,−2] ∨ [2, 3]) = [−3,−2] ∨ [2, 3],
([−2,−2] ∨ [2, 2]) �is ([−2,−2] ∨ ⊥i) = [−2,−2] ∨ [2, 2],

thus:

rhiTCM ′′�rhiTCM � Ax ∈ (II′′ � II) = Ax ∈
⎡

⎣
[−2,−2] ∨ [2, 2]
[−3,−2] ∨ [2, 3]
[−2,−2] ∨ [2, 2]

⎤

⎦ .

3.4 Transfer Functions

In program analysis based on abstract interpretation, an abstract environment
is usually constructed for each program point, mapping the value of each pro-
gram variable to a domain element on a specified abstract domain. Let P# rep-
resent the abstract environment constructed by the rhiTCM abstract domain.
Before introducing the test transfer function and the assignment transfer func-
tion of rhiTCM abstract domain, we introduce the MILP encoding of the rhiTCM
abstract domain representation.

324 H. Xu et al.

MILP Encoding. Note that the rhiTCM abstract domain representation∑
k aikxk ∈ IIi can be expressed in ordinary linear expressions as (

∑
k aikxk ≥

ci1 ∧ ∑
k aikxk ≤ di1) ∨ (

∑
k aikxk ≥ ci2 ∧ ∑

k aikxk ≤ di2) ∨ . . . ∨ (
∑

k aikxk ≥
ci(p+1) ∧

∑
k aikxk ≤ di(p+1)), where p is the number of fixed partitioning points.

However, the expression cannot be directly solved using a LP (linear program-
ming) solver because it contains the disjunction symbol “∨”. To tackle such prob-
lem, we typically introduce a significantly large number M and auxiliary binary
decision variables (0–1 variables). This allows us to convert the linear program-
ming problem, which contains disjunction symbols, into a mixed-integer linear
programming problem. Thus, we can employ a mixed-integer linear programming
solver to solve it.

We encode (
∑

k aikxk ≥ ci1∧
∑

k aikxk ≤ di1)∨(
∑

k aikxk ≥ ci2∧
∑

k aikxk ≤
di2) ∨ . . . ∨ (

∑
k aikxk ≥ cip ∧ ∑

k aikxk ≤ dip) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
k aikxk ≥ ci1 − M(1 − ui1),

∑
k aikxk ≤ di1 +M(1 − ui1)

∑
k aikxk ≥ ci2 − M(1 − ui2),

∑
k aikxk ≤ di2 +M(1 − ui2)

...
...

∑
k aikxk ≥ cip − M(1 − uip),

∑
k aikxk ≤ dip +M(1 − uip)

∑
j uij = 1(uij ∈ {0, 1}, 1 ≤ j ≤ p)

To simplify the treatment of the problem, we proceed to convert the con-
straints in the aforementioned linear system into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑
k aikxk +Mui1 ≤ −ci1 +M,

∑
k aikxk +Mui1 ≤ bi1 +M

∑
k aikxk +Mui2 ≤ −ci2 +M,

∑
k aikxk +Mui2 ≤ bi2 +M

...
...

∑
k aikxk +Muip ≤ −cip +M,

∑
k aikxk +Muip ≤ bip +M

∑
j uij = 1(uij ∈ {0, 1}, 1 ≤ j ≤ p)

The above linear inequality system is a typical mixed-integer linear pro-
gramming (MILP) problem, so we can directly call the MILP solver to solve the
MILP problem. Nevertheless, when solving the MILP problem, it is important to
note that the obtained results are limited to providing the maximum and mini-
mum values of the objective function within the feasible domain. However, these
extremal values might not reflect the desired outcome of the analysis. In order
to tackle this problem, we introduce the fixed partitioning points information as
additional sets of constraints into the existing MILP problem linear inequality
system. Suppose the objective function is denoted as

∑
j ajxj . We sequentially

introduce the constraints
∑

j ajxj ≤ FP1,
∑

j ajxj ≥ FP1 ∧ ∑
j ajxj ≤ FP2,

. . . ,
∑

j ajxj ≥ FPp−1 ∧ ∑
j ajxj ≤ FPp,

∑
j ajxj ≥ FPp (FPp is the last fixed

partitioning point).
Therefore, in the process of calculating the extreme values of the objective

function, we use an iterative method in which the information of the fixed parti-
tioning points is introduced p times. This enables us to determine the extremum

Linear Templates with Disjunctive Right-Hand-Side Intervals 325

of the objective function across different fixed partitioning slots and consequently
obtain the desired representation outcome. The aforementioned encoding and
solving process is recorded as “rhiTCMmip(objFun) s.t. Cons” in this paper,
where objFun represents the objective function, and Cons represents the con-
straints to determine the extremes of the objective function.

Test Transfer Function. A linear conditional test based on precise arith-
metic can be transformed into the form as

∑
i wixi ≤ c. For test transfer func-

tion �
∑

i wixi ≤ c�#(P#), we simply combine constraint
∑

i wixi ≤ c with the
rhiTCM P#(P# � Ax ∈ II) to obtain P ′#(P ′# � P# ∧ ∑

i wixi ≤ c), and use
P ′# as the constraint system, recalculate the new boundaries of the rhiTCM.

�
∑

i wixi ≤ c�#(P#) �
∧m

i=1{
∑n

k=1 aikxk ∈ II∗i |II∗i �
rhiTCMmip(

∑n
k=1 aikxk)s.t.P ′#}.

Assignment Transfer Function. Assigning expression e to variable xj is the
assignment transfer function �xj := expr�#(P#). Firstly, we introduce a fresh
variable x′

j to rewrite the assignment statement as x′
j − expr = 0. Then, add

the new assignment statement to the P# (P# � Ax ∈ II) to get P ′′# (P ′′# �
P# ∧ x′

j − expr = 0). Finally, using P ′′# as the constraint system, recalculate
the new boundaries of the rhiTCM.

�xj := expr�#(P#) �
∧m

i=1{
∑j−1

k=1 aikxk + aijx
′
j +

∑n
k=j+1 aik ∈ II∗i |II∗i �

rhiTCMmip(
∑j−1

k=1 aikxk + aijx
′
j +

∑n
k=j+1 aik)s.t.P

′′#}.

4 Implementation and Experiments

We have implemented our prototype domain rhiTCM based on Sect. 3 using
multi-precision rational numbers. rhiTCM abstract domain is interfaced to the
Apron numerical abstract domain library [13]. The linear programming prob-
lems that are involved in the rhiTCM abstract domain are solved using an exact
arithmetic-based mixed-integer linear programming solver, which is provided by
the PPL [3] library.

To demonstrate the expressiveness of the rhiTCM abstract domain, we have
firstly analyzed the program itv_pol5 shown in Fig. 4 taken from [5], along with
the generated invariants. Program itv_pol5 in Fig. 4 consists two loops, increas-
ing y in the inner loop and increasing x in the outer loop. In Fig. 4, “Polyhedra”
is the classic polyhedra abstract domain [9] and “Interval Polyhedra” (itvPol)
from [5] is an abstract domain can infer interval linear constraints over program
variables (the domain representation is formed as

∑
k[ak, bk]xk ≤ c and can

express non-convex properties). “rhiTCM1” and “rhiTCM2” are rhiTCM abstract

domain with different configurations. “rhiTCM1”: FP_SET = {0}, A1 =
[
1 0
0 1

]T

;

“rhiTCM2”: FP_SET = {0}, A2 =
[
1 0 1 1
0 1 1 −1

]T

.

326 H. Xu et al.

Fig. 4. program itv_pol5 and the generated invariants

For program itv_pol5, at program point ➁, polyhedra abstract domain can
prove y ≥ −20 (TCM abstract domain is the same), itvPol can prove that
−20 ≤ y ≤ −10 ∨ y ≥ 10 (the invariants of itvpol come from [5]) while rhiTCM1

can prove y = −20 ∨ y ≥ 10 which is more precise than itvPol. And rhiTCM2

can prove y ≥ 10. The results have shown that rhiTCM is more powerful on
express non-convex properties than these compared abstract domains, and the
expressiveness of rhiTCM can be improved with appropriate configurations on
FP_SET and the template matrix.

To evaluate the precision and efficiency of rhiTCM further, we have con-
ducted experiments to compare rhiTCM abstract domain with TCM polyhedra
abstract domain. Table 1 shows the preliminary experimental results of compar-
ing performance and resulting invariants on a selection of simple while widely
used and representative programs. Program MotivEx is the motivating exam-
ple presented in Sect. 1, programs itv_pol4, itv_pol5 come from [5], other pro-
grams are collected from the “loop-zilu”, “loop-simple” and “locks” directory of
SV-COMP2022, which are used for analysing programs involving disjunctive
program behaviors.

The column “#var” gives the number of variables in the program. As exper-
imental setup, for each program, the value of the widening delay parameter is
set to 1. “#iter.” gives the number of increasing iterations during the analysis.

Precision. The column “Precision” in Table 1 compares the invariants obtained.
The symbol “�” indicates the invariants generated by rhiTCM is stronger (i.e.,

Linear Templates with Disjunctive Right-Hand-Side Intervals 327

Table 1. Experimental results for benchmark examples

Program TCM rhiTCM Invariant

name #vars #iter. t(ms) #iter. t(ms) TCM vs rhiTCM

MotivEx 4 0 4 0 4 �
itv_pol4 1 4 4 3 4 �
itv_pol5 2 4 16 5 44 �
nested_3.c 3 5 52 6 84 �
nested_4.c 4 6 140 7 200 �
benchmark31_disjunctive.c 2 3 44 3 60 =

benchmark44_disjunctive.c 2 3 100 3 144 =

test_locks_5.c 11 2 496 2 724 �
test_locks_6.c 13 2 908 2 1276 �
test_locks_7.c 15 2 1532 2 2080 �

more precise) than TCM, while “=” indicates the generated invariants are equiv-
alent. The results in Table 1 show that rhiTCM can output stronger invari-
ants than TCM in certain situations. One such situation is that

∑
k aikxk

exhibits a discontinuous range of values. As the motivating example shown
in Fig. 1, expression x + y has two discontinuous possible values: 1 and -1.
The rhiTCM can describe the values of x + y as x + y ∈ [−1,−1] ∨ [1, 1]
with the fixed partitioning points set FP_SET = {0}, while TCM describes
the values of x + y as x + y ∈ [−1, 1] which is less precise than the former.
Another situation arises when the assignment of variables within a loop can
be enumerated. As the program itv_pol4, variable “x” is assigned a value of
either 1 or -1 within the loop. At the loop header, the widening operation of
rhiTCM (with FP_SET = {0}) is performed as: ([−1,−1]∇i⊥i) ∨ (⊥i∇[1, 1])
and ([−1,−1]∇i[−1,−1]) ∨ ([1, 1]∇i[1, 1]), which results in x ∈ [−1,−1] ∨ [1, 1]
while the widening operation of TCM is performed as: [−1,−1]∇i[1, 1] and
[−1,+∞]∇i[−1,−1], which results in x ∈ [−1,+∞].

Performance. All experiments are carried out on a virtual machine (using Vir-
tualBox), with a guest OS of Ubuntu (4GB Memory), host OS of Windows 10,
16GB RAM and Intel Core i5 CPU 2.50GHz. The column “t(ms)” presents the
analysis time in milliseconds. Experimental time for each program is obtained by
taking the average time of ten runnings. From Table 1, we can see that rhiTCM
is less efficient than TCM. The size of matrix A and the number of the fixed
partitioning points will affect the performance of rhiTCM. The smaller the size
of matrix A and the fewer fixed partitioning points there are, the closer the per-
formance of rhiTCM will be to the performance of TCM. In program MotivEx,
there are two variables x, y. We set one linear constraint “x+y” in the template
matrix with one fixed partitioning point “0” in the FP_SET. In this configura-
tion, the analysis time of rhiTCM is almost the same as that of TCM.

328 H. Xu et al.

5 Related Work

A variety of abstract domains have been designed for the analysis of non-convex
properties. Allamigeon et al. [1] introduced max-plus polyhedra to infer min
and max invariants over the program variables. Granger introduced congruence
analysis [11], which can discover the properties like “the integer valued variable
X is congruent to c modulo m”, where c and m are automatically determined
integers. Bagnara et al. proposed the abstract domain of grids [2], which is able
to represent sets of equally spaced points and hyperplanes over an n-dimensional
vector space. The domain is useful when program variables take distribution val-
ues. Chen et al. applied interval linear algebra to static analysis and introduced
interval polyhedra [5] to infer and propagated interval linear constraints of the
form

∑
k[ak, bk]xk ≤ c.

To enhance numerical abstract domain with non-convex expressiveness, some
work make use of special decision diagrams. Gurfinkel et al. proposed BOXes,
which is implemented based on linear decision diagrams (LDDs) [12]. Gange et
al. [16] extended the interval abstract domain based on range decision diagrams
(RDDs), which can express more direct information about program variables
and supports more precise abstract operations than LDD BOXes. Some work
make use of mathematical functions that could express non-convex properties
such as the absolute value function [4,6]. Sankaranarayanan et al. [18] proposed
basic power set extensions of abstract domains. The power set extensions will
cause exponential explosion problem.

The rhiTCM domain that we introduce in this paper is an extension of tem-
plate constraint matrix domain, with the right-hand-side intervals to express
certain disjunctive behaviors in a program, e.g., the right-hand value of lin-
ear expression may be discontinuous. The configurable finite fixed partitioning
points restrict the number of the right-hand-side intervals, avoiding the expo-
nential explosion problem.

6 Conclusion

In this paper, we propose a new abstract domain, namely, an abstract domain
of linear templates with disjunctive right-hand-side intervals (rhiTCM abstract
domain), to infer linear inequality relations among values of program variables
in a program. The domain is in the form of

∑
i aixi ∈ ∨p

j=0[cj , dj], where ai ∈ Q

is the variable coefficient specified in the preset template constraint matrix, x
is the variables in the program to be analysed,

∨p
j=0[cj , dj] is the disjunctions

of intervals based on fixed partitioning slots. The key idea is to employ the
disjunctive intervals to get and retain discontinuous right-hand-side values of the
template constraint thus can deal with non-convex behaviors in the program.
We present the domain representation as well as domain operations designed
for rhiTCM abstract domain. We have developed a prototype for the rhiTCM
abstract domain using rational numbers and interface it to the Apron numerical
abstract domain library. Experimental results are encouraging: The rhiTCM

Linear Templates with Disjunctive Right-Hand-Side Intervals 329

abstract domain can discover invariants that are non-convex and out of the
expressiveness of the classic TCM abstract domain.

It remains for future work to test rhiTCM abstract domain on large realistic
programs, and consider automatic methods to generate the template constraint
matrix of the program to be analysed.

Acknowledgement. This work is supported by the National Key R&D Program of
China (No. 2022YFA1005101), the National Natural Science Foundation of China (Nos.
62002363, 62102432), and the Natural Science Foundation of Hunan Province of China
(No. 2021JJ40697).

References

1. Allamigeon, X., Gaubert, S., Goubault, É.: Inferring min and max invariants using
max-plus polyhedra. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol.
5079, pp. 189–204. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-69166-2_13

2. Bagnara, R., Dobson, K., Hill, P.M., Mundell, M., Zaffanella, E.: Grids: a domain
for analyzing the distribution of numerical values. In: Puebla, G. (ed.) LOPSTR
2006. LNCS, vol. 4407, pp. 219–235. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71410-1_16

3. Bagnara, R., Hill, P.M., Zaffanella, E., Bagnara, A.: The parma polyhedra library.
https://www.bugseng.com/ppl

4. Chen, L., Liu, J., Miné, A., Kapur, D., Wang, J.: An abstract domain to infer
octagonal constraints with absolute value. In: Müller-Olm, M., Seidl, H. (eds.)
SAS 2014. LNCS, vol. 8723, pp. 101–117. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-10936-7_7

5. Chen, L., Miné, A., Wang, J., Cousot, P.: Interval polyhedra: an abstract domain
to infer interval linear relationships. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS,
vol. 5673, pp. 309–325. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03237-0_21

6. Chen, L., Yin, B., Wei, D., Wang, J.: An abstract domain to infer linear absolute
value equalities. In: Theoretical Aspects of Software Engineering, pp. 47–54 (2021)

7. Cortadella, R.C.: The octahedron abstract domain. Sci. Comput. Program. 64,
115–139 (2007)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pp. 238–252. Association for Computing Machinery (1977)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 84–96 (1978)

10. Golan, J.: Introduction to interval analysis. Comput. Rev. 51(6), 336–337 (2010)
11. Granger, P.: Static analysis of arithmetical congruences. Int. J. Comput. Math.

30(3–4), 165–190 (1989)
12. Gurfinkel, A., Chaki, S.: Boxes: a symbolic abstract domain of boxes. In: Cousot,

R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 287–303. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1_18

https://doi.org/10.1007/978-3-540-69166-2_13
https://doi.org/10.1007/978-3-540-69166-2_13
https://doi.org/10.1007/978-3-540-71410-1_16
https://doi.org/10.1007/978-3-540-71410-1_16
https://www.bugseng.com/ppl
https://doi.org/10.1007/978-3-319-10936-7_7
https://doi.org/10.1007/978-3-319-10936-7_7
https://doi.org/10.1007/978-3-642-03237-0_21
https://doi.org/10.1007/978-3-642-03237-0_21
https://doi.org/10.1007/978-3-642-15769-1_18

330 H. Xu et al.

13. Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static
analysis. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 661–
667. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_52

14. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems
using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol.
3385, pp. 25–41. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30579-8_2

15. Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19, 31–100
(2006)

16. Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Disjunctive
interval analysis. In: Drăgoi, C., Mukherjee, S., Namjoshi, K. (eds.) SAS 2021.
LNCS, vol. 12913, pp. 144–165. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88806-0_7

17. Colón, M.A., Sankaranarayanan, S.: Generalizing the template polyhedral domain.
In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 176–195. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-19718-5_10

18. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static analysis in
disjunctive numerical domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
3–17. Springer, Heidelberg (2006). https://doi.org/10.1007/11823230_2

https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-540-30579-8_2
https://doi.org/10.1007/978-3-030-88806-0_7
https://doi.org/10.1007/978-3-030-88806-0_7
https://doi.org/10.1007/978-3-642-19718-5_10
https://doi.org/10.1007/11823230_2

Deducing Matching Strings
for Real-World Regular Expressions

Yixuan Yan1,2, Weihao Su1,2, Lixiao Zheng3, Mengxi Wang1,2,
Haiming Chen1,2(B), Chengyao Peng1,2, Rongchen Li1,2, and Zixuan Chen1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{yanyx,suwh,wangmx,chm,pengcy,lirc,chenzx}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing 101400, China
3 College of Computer Science and Technology, Huaqiao University,

Xiamen, China

Abstract. Real-world regular expressions (regexes for short) have a
wide range of applications in software. However, the support for regexes
in test generation is insufficient. For example, existing works lack support
for some important features such as lookbehind, are not resilient to subtle
semantic differences (such as partial/full matching), fall short of Unicode
support, leading to loss of test coverage or missed bugs. To address these
challenges, in this paper, we propose a novel semantic model for compre-
hensively modeling the extended features in regexes, with an awareness
of different matching semantics (i.e. partial/full matching) and match-
ing precedence (i.e. greedy/lazy matching). To the best of our knowledge,
this is the first attempt to consider partial/full matching semantics in
modeling and to support lookbehind. Leveraging this model we then
develop PowerGen, a tool for deducing matching strings for regexes, which
randomly generates matching strings from the input regex effectively. We
evaluate PowerGen against nine related state-of-the-art tools. The evalu-
ation results show the high effectiveness and efficiency of PowerGen.

Keywords: regex · semantics · modeling · generation · matching
string

1 Introduction

As a versatile mechanism for pattern matching, searching, substituting, and
so on, real-world regular expressions (regexes for short) have become an
integral part of modern programming languages and software development,
with numerous applications across various fields [3,13,18,19,31,43]. Previous
research [12,18,53] has reported that regexes are utilized in 30–40% of Java,
JavaScript, and Python software.

Though popular, regexes can be difficult to comprehend and construct even
for proficient programmers, and error-prone, due to the intrinsic complexities

Y. Yan and W. Su—These authors contributed equally.
Zixuan Chen is currently employed at Kuaishou Technology.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 331–350, 2024.
https://doi.org/10.1007/978-981-99-8664-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_19&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_19

332 Y. Yan et al.

of the syntax and semantics involved, resulting in tens of thousands of bug
reports [13,27,30,31,44]. Therefore, it is crucial to offer automated techniques
for test generation and bug finding within regexes. Producing matching strings
for regexes is essential for many tasks, such as automated testing, verifying,
and validating programs that utilize regexes. There have been numerous stud-
ies related to this problem using various techniques [14,25,26,28,29,42,50,52].
However, there are crucial concerns that have been either overlooked or inad-
equately addressed in the existing literature, limiting their utility. We classify
these issues as follows.

Features Support. All existing works lack support for some important fea-
tures. For example, none of the existing works support lookbehind, and only
one work supports lookahead but with soundness errors (see Sect. 2.3). Regexes
are featured with various extended features (or simply called features) such as
lookarounds, capturing groups, and backreferences. An instance of a regex using
a backreference is (.∗)\1, which defines a context-sensitive language {ww|w∈Σ∗}
where \1 is a backreference. In addition, if such an expression is also included
in lookarounds, then those lookarounds effectively encode the intersection of
context-sensitive languages [15]. These show that regexes are not limited to rep-
resenting regular languages [1], and as a result, generating strings for regexes
becomes more involved. For instance, in [15], the authors demonstrated that the
emptiness problem of regular expressions with lookaheads and backreferences
is undecidable. Thus, in many works, these features are often disregarded or
imprecisely estimated. This lack of support can lead to, for instance, poor cov-
erage or unrevealed bugs. Furthermore, based on our analysis of open-source
projects for six programming languages (Java, Python, JavaScript, C#, PHP,
Perl) which yielded 955,184 unique regexes, the average ratio of capturing group
usage exceeds 38%, while the average percentage of lookarounds and backref-
erences is over 4%, while it approaches 10% in C#, thus those features are
non-negligible. Similar observations for JavaScript were also reported by [29].

Subtle Semantic Differences. Regexes have different semantics which can
result in different matching results. For example, there are partial and full match-
ing functions for the regexes in most programming languages, which can lead to
different matching results. For instance, the regex node modules(?=paradigm.∗)
from practical project [19] matches node modulesparadigm under a partial
matching call, but is unsatisfiable under a full matching call. None of the existing
works addressed the different matching semantics of regexes (such as partial/full
matching), thus may lead to wrong results. As another example, backreference
has different semantics in different programming languages. For instance, the
regex (?:(a)b)?\1c can match c in JavaScript, but does not match c in Java,
Python, PHP and C#. See more examples in Sect. 2.3.

Unicode Support. Supporting the Unicode Standard can be useful in the
internationalization and localization of practical software. PCRE and POSIX
standards for regexes defined several operators such as \uFFFF , [:word:] and
\p{L} to represent Unicode code points, improving the usability of regexes. In

Deducing Matching Strings for Regexes 333

modern mainstream regex engines and string constraint solvers [17,24,45], those
operators are common. However, we found the existing tools show incomplete
support for those features.

Various Kinds of Soundness Errors. We also found incorrect outputs gen-
erated by existing works, reflecting logic errors in their implementation which
may be due to the intricacy of the syntax and semantics of regexes. See Sect.
2.3 for details.

To achieve the end, this paper proposes a novel semantic model for compre-
hensively modeling the extended features in regexes with the awareness of dif-
ferent matching semantics (i.e. partial/full matching) and matching precedence
(i.e. greedy/lazy matching). Leveraging this model we then develop PowerGen,
a tool for deducing matching strings for regexes. Specifically, PowerGen first
rewrites the input regex by selecting the appropriate optimization rule based
on the input programming language and rewrites the input regex based on the
information of partial/full matching function. Then it uses Unicode automata
to support a vast class of extended Unicode-related features. Next PowerGen
selects the appropriate induction rules based on the input programming lan-
guage to perform the top-down induction of the sub-expressions of the rewritten
regex. Finally, PowerGen randomly generates matching strings according to the
induction rules and stack compiled from the rewritten regex, which effectively
identifies unsatisfiable cases.

We evaluate PowerGen by comparing PowerGen against nine state-of-the-
art tools on publicly available datasets. Our evaluation demonstrates the high
effectiveness and efficiency of PowerGen.

The contributions of this paper are listed as follows.

– We propose a novel semantic model for regexes, which comprehensively mod-
els the extended features, with the awareness of different matching semantics
and matching precedence. To the best of our knowledge, it is the first one to
consider partial/full matching semantics in modeling and supporting lookbe-
hind.

– Based on our model, we develop PowerGen, a tool for deducing matching
strings for regexes. To this end, we devise novel algorithms that randomly
generate matching strings according to the input regex, which effectively iden-
tifies unsatisfiable cases.

– Evaluation shows the high effectiveness and efficiency of PowerGen.

2 Background

2.1 Regex

Let Σ be a finite alphabet of symbols and Σ∗ be the set of all possible words
(i.e. strings) over Σ, ε denotes the empty word and the empty set is denoted by
∅. For the definition of standard regular expressions we refer to [55].

334 Y. Yan et al.

Table 1. The Results from Each Tool for Examples in Practical Projects

No. Regex Egret dk.brics Mutrex Generex Exrex Xeger (O’Connor) Randexp.js ExpoSE Ostrich

#1 ^<(\S+?@@)> <@@>(✓) – – – <@> <QrpwE^bd@>(✓) – <U + 00E7@>(✓) <@>

#2 \boldgnu\b.*\bformat\b oldgnu format(✓) – – – ...8Uformat oldgnuX... oldgnuB... error oldgnuformat

#3 (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)\11 abcdefghijkk(✓) – – – abcdefghijkk(✓) abcdefghijkk(✓) abcdefghijk unsat –

#4 (?<foo>xyz)(?<bar>\d+)abc\k<bar> xyz0abc0(✓) – – – xyz2375022abc2375022(✓) xyz14369195abc14369195(✓) error error –

#5 ^(?:(a\2)(b))+$ – – – – – – ababbabbab... ab(✓) –

#6 (?:(){0}(?:(?:){0})\1)|(?:()(?:(?:))\2) error – – – error error ε(✓) unsat –

#7 ^(?:(d)(a\2))+$ error – – – error error dadaadaaa... error –

#8 (a)(?=\1)\w+ – – – – – – – unsat –

In practice, real-world regular expressions (regexes) are pervasive in diverse
application scenarios. A regex over Σ is a well-formed parenthesized formula con-
structed by, besides using the constructs for standard regular expressions and
character classes, as well as using the following operators (i) capturing group (E);
(ii) named capturing group (<name>E); (iii) non-capturing group (?:E); (iv)
lookarounds: positive lookahead (?=E1)E2, negative lookahead (?!E1)E2, pos-
itive lookbehind E1(?<=E2), and negative lookbehind E1(?<!E2); (v) anchors:
word boundary \b, non-word boundary \B, start-of-line anchor ^, and end-of-line
anchor $; (vi) greedy quantifiers: E?, E∗, E+, and E{m,n}; (vi) lazy quantifiers:
E??, E∗?, E+?, and E{m,n}?; (vii) backreference \i and (viii) named backrefer-
ence \k<name>, etc.

In addition, E?, E∗, E+ and E{i} where i ∈ N are abbreviations of E{0,1},
E{0,∞}, E{1,∞} and E{i,i}, respectively. E

{m,∞}
1 is often simplified as E

{m,}
1 .

Following symbols (,), {, }, [,], ^, $, |, \, ., ?, * and + are escaped with the
escape character \ in Σ. The language L(E) of a regex E is the set of all strings
accepted by E.

2.2 Research Problem

In this paper, we focus on the research problem of finding matching strings which
depends on the partial/full matching semantics in regexes. We present related
concepts below.

In most programming languages there are partial and full matching functions
for the regexes (e.g. the matches and find functions in Java for full matching
respectively partial matching). For a regex E, if it is used with the full matching
function, then a string w is a matching string of E if w ∈ L(E). If E is used
with the partial matching function, then a string w is a matching string of E
if w ∈ L(.∗E.∗) .

2.3 The Current Status of Existing String Generation Tools

We identified 9 state-of-the-art string generation tools for comparison which
can be categorized into three groups: (1) string generation based on automata,
including Egret [25], dk.brics [35], Mutrex [2] and Generex [54]; (2) string gen-
eration based on AST (Abstract Syntax Tree), including Exrex [49], Xeger
(O’Connor) [37] and Randexp.js [22]; (3) string generation based on SMT (Sat-
isfiability Modulo Theories) solvers, including ExpoSE [29], and Ostrich [14]. It

Deducing Matching Strings for Regexes 335

Regex

Language

Func�on

Random Matched String Generator

Matched String

Unicode Automata Compiler

AST with Unicode
Automata

Reduction Rules

AST of
Regex

Induction System

Stack

Induc�on
Rules

Strings

Language Language

Fig. 1. The Framework of PowerGen

should be noticed that string constraint solvers do more work than string gener-
ators: they handle word equations and other more complicated string constraints
like ReplaceAll.

We notice that, even under the features they claim to support, errors exist
and are predominantly on features like lazy quantifier, word boundary, back-
reference. Examples1 from practical projects [19] are listed in Table 1 with cor-
responding strings generated by each tool mentioned above, where the correct
results are marked with “(✓)”. In addition, “–” indicates that the tool does
not support one or more features in the regex, error indicates run-time errors,
and unsat indicates the tool determines that the regex cannot be satisfied with
any input. It is evident that certain tools exhibit flawed handling of lazy quan-
tifier, word boundary, backreference and lookaround. In the second example,
the .* should be constrained to favor \b, but Exrex, Xeger (O’Connor), Rand-
exp.js and Ostrich do not take that into account and gives wrong results, and
Expose returns an error. For the third regex, Randexp.js and ExpoSE, yielding
abcdefghijk and unsat respectively, fail to support more than 9 backreferences.
In the case of the expression ^(?:(a\2)(b))+$ semantic differences arise between
languages. JavaScript is capable of supporting backreferences preceding the cor-
responding capture group and generating the correct output, such as ab, abab.
Nevertheless, Randexp.js fails to return the correct string. For the given exam-
ple 6, the right node of the logical OR operator can accept an empty string.
However, Egret, Exrex and Xeger(’Connor) return an error and ExpoSE returns
unsat. Moreover, none of them are capable of correctly handling a self-referenced
backreference like example 7, or combining a backreference with lookaround as
shown in example 8.

1 To facilitate error identification, we simplify lengthy regexes by isolating the prob-
lematic fragment.

336 Y. Yan et al.

3 Overview

In this section, we provide an overview of our approach. Our method, depicted in
Fig. 1, encompasses four main components: reduction rules, Unicode automata
compiler, induction system, and random matching string generator. Initially,
the Reduction Rules module takes the regex, the language, and a matching
function to form an AST, addressing the semantic divergence between partial
and full match calls. This simplified regex AST and language are then forwarded
to the Unicode Automata Compiler, which develops automata to integrate
the Unicode 15.0.0 standard into UTF-8 and compiles the AST leaves into the
Unicode Automaton. The Induction System component, chosen based on the
input language, converts the AST into induction rules and stack. Lastly, the
Random Matching String Generator uses these induction rules and stack
with capture information to generate matching strings. By iteratively executing
the generation function, multiple matching strings are produced.

In the following section, we exemplify our approach by highlighting the
intractable part of a regex Ψ = (?:=(”)?[^; ”\s]∗\1) from Node.js version 18.16.0.
The original regex is ^(?:<[^>]∗>)(?:\s∗;\s∗[^;"\s]+(?:=(")?[^;"\s]∗\1)?)∗$,
which is used to validate the Web Linking header within HTML documents.
This validation process ensures that the input value is free from any syntacti-
cally invalid Uniform Resource Identifiers (URIs). A legal input of Ψ is ="style"
and the backreference referred to the first capturing group (")? ensures the quo-
tation marks " are matching, e.g. = "style should be rejected by Ψ , but = style
is acceptable.

4 Modeling and String Generation Algorithms

In this section, we present the details of our model for regex semantics. First, we
describe our extension of functions as a foundation for our model in Sect. 4.1.
For optimizing the efficiency of our tool, we implemented some reduction rules in
Sect. 4.2. Then, we introduce a new automaton model for effective representation
and Boolean operations for Unicode character classes in Sect. 4.3. We provide
the induction rules from the AST in Sect. 4.4. Finally, we give a brief account
of the random generation algorithms in Sect. 4.5.

4.1 Extension of Functions to Regex

Among the basic functions to synthesize position automata [23], according to
the nomenclature in [11], the output of first, follow, last functions are called
position sets. Here we generalize the nullable, first and last functions to regexes
by giving computation rules for operators of regexes, which is necessary for
modeling regexes. Due to space limitation, the details of computation rules are
shown in our complete version.2 We also deploy these functions on tasks such
as processing semantic of anchors and identification of unsatisfiable cases, as
heuristics to avoid the algorithms that require exponential time [46].
2 https://cdn.jsdelivr.net/npm/dataset2023/.

https://cdn.jsdelivr.net/npm/dataset2023/

Deducing Matching Strings for Regexes 337

Fig. 2. Reduction Rules for Regex

Definition 1. For a regex E over Σ, we define the following functions:

first(E) = {a | aw ∈ L(E), a ∈ Σ, w ∈ Σ∗} (1)
last(E) = {a | wa ∈ L(E), a ∈ Σ, w ∈ Σ∗} (2)

nullable(E) =

{
true, if ε ∈ L(E)
false, otherwise

(3)

The definitions effectively compute the possible prefix/suffix of length
one from a regex, without a full traversal on the AST. For example, for
E = ^\b[^\d]{2,4}(?<!\w), first(E) = {[a-zA-Z]}, last(E) = {[^\w]},
nullable(E) = false. We also notice those functions for backreferences depends
on the capturing information during the generation, which can not be soundly
computed statically.

4.2 Reduction Rules for Regex

We implemented several reduction rules shown in Fig. 2 to optimize the efficiency
of our tool. Some of these reduction rules above are derived from existing regex
engines and practical tools. For instance, mechanic of [c1c2]|[c1c3] =⇒ [c1c2c3]
is also found in the C# regex library. The others provide significant help in
terms of efficiency and precision. The reduction rules we show here are common
among our language-dependent reduction rules according to their original engine
implementation.

We handle the semantic differences of partial/full match calls in the reduction
system. For tight relationships between function calls and anchors, we consider
semantic equivalence reduction by appending .∗ in an unanchored prefix/suffix,
and none when anchored under partial match call. We also consider the full
matching semantic by appending ^ and $. Inside our algorithms, anchors are
processed as empty characters with constraints and for the sake of succinctness,
we support start-of-line/end-of-line anchors implicitly. For our running example
Ψ , the ? and ∗ operators are rewritten into {0,1} and {0,∞}, thus the output is
(?:=("){0,1}[^;"\s]{0,∞}\1). However E^ and $E when E is not nullable will be
considered unsat in the reduction system and directly return ∅.

4.3 Effective Representation of Unicode Character Classes

We build automata in a top-down manner to encode the Unicode 15.0.0 [51]
standard into UTF-8 in Algorithm 1 and traverse the automata to generate

338 Y. Yan et al.

acceptable strings in UTF-8 byte-by-byte. This structure makes string generation
feasible in acceptable time. In situations when ASCII flags (e.g. re.A in Python)
are enabled, our representation is simplified into ASCII ranges.

In Algorithm 1, each Unicode character sets ci when transformed into UTF-
8 encoding composed with several runes (ranges) cj

i defined on a byte. After
initialization, Algorithm 1 first checks whether the character class is ∅. If not,
the algorithm iterates the Unicode ranges c1, c2, .., cr in the character class cc,
initializes the current state A as the initial state init and j as the height of
each ci.

Algorithm 1: Unicode Automa-
ton
Input: An Unicode character class

cc = [c1, c2, ..., cr]
Output: Initial state init of

Unicode automaton or ∅

otherwise
1 init ← 0; F ← ∅;
2 if cc = ∅ then
3 return ∅;

4 for i ∈ 1...r do
5 A ← init; j ← len(ci);

6 while j ≥ 0 ∧ δ(A, cji) �= ∅ do

7 A ← δ(A, cji); j ← j − 1;

8 while j ≥ 0 do

9 δ(A, cji)← S; A ← S;
10 j ← j − 1;

11 if A ∈ F then
12 F ← F ∪ {A}
13 else
14 F ← {A}
15 return init;

Then Algorithm 1 checks whether
j ≥ 0 and whether there has been a
transition with cj

i from the current state
A to a non-null state, if so make this
state as the current state and substract
j. If there is no such non-null state and
j ≥ 0, we build a new state S, and mark
a transition δ(A, cj

i) to S, then take S
as the current state and substract j.
Finally, we mark the final states when
j = 0.

The Unicode automaton allows us
to support a vast class of Unicode-
related extended features, which is a
major factor of the high usability of
our tool. The Unicode character classes
effectively define an automaton of a
finite language with more succinctness
than those translated to standard regu-
lar expressions. The cost from Boolean
operations among Unicode automata,
including intersection [40], subset con-
struction [41], has a major impact on
the performance of our tool. To miti-
gate the cost, we execute those algorithms lazily, e.g. for [^; ”\s] in our running
example Ψ , the complementation of [; ”\s] is computed only if a character is to
be generated from this character class, instead of pre-processing and rewritting
them in advance [17], thus guarantee the efficiency. The other character classes
in Ψ are also compiled into Unicode automata.

4.4 Induction System for Regex

To comprehensively model the semantics of extended operators and generate
matching strings, we propose the induction system.

The induction rules are composed of configurations and logical constraints,
where a triple (E,w,C) is called a configuration, where E is a regex, w is
a variable representing strings that E defines, and C is a stack preserving

Deducing Matching Strings for Regexes 339

the generated strings from the referenced subexpressions. To comprehensively
model the semantics of regex operators, the extension of the basic functions
defined in Sect. 4.1 is necessary for our induction system. Also the syntactic
and semantic differences between dialects of regexes can hardly be negligible.
To tackle this problem, we designed different induction rules for string gener-
ation, according to specified languages from the user. From the categorization
in [5], we consider ε-semantics and ∅-semantics, and differentiate regex dialects
in implementation details, e.g. \w is equal to [a-zA-Z0-9] in Python mode
and [\p{L}\p{Mn}\p{Nd}\p{Pc}] in C# mode. The induction rules we show
here are designed for JavaScript regexes. In our induction system, specialized
induction rules for other dialects of regexes can also be found.

(CONCAT)
(E1E2, w1w2, C)

(E1, w1, C) (E2, w2, C)

(ALTER)
(E1|E2, w1w2, C)

(E1, w1, C) ∨ (E2, w2, C)

(GREEDY)
(E{m,n}

1 , w1w2...wn, C)
∧

m<j≤n

(E1, wj |ε, C)
∧

0<i≤m

(E1, wi, C)

(LAZY)
(E{m,n}?

1 , w1w2...wn, C)
∧

0<i≤m

(E1, wi, C)
∧

m<j≤n

(E1, ε|wj , C)

(CAPTURE)
((nE1)n, w, C)

∀\k, \k /∈ E1 ∧ (E1, w, Cn ← w)

(WBOUND)

(E1\bE2, w1xyw2, C)
(E1, w1x,C) ∧ x ∈ last(E1) ∩ \w (E2, yw2, C) ∧ y ∈ first(E2) ∩ \W

∨ (E1\bE2, w1xyw2, C)
(E1, w1x,C) ∧ x ∈ last(E1) ∩ \W (E2, yw2, C) ∧ y ∈ first(E2) ∩ \w

(NON-WBOUND)

(E1\BE2, w1xyw2, C)
(E1, w1x,C) ∧ x ∈ last(E1) ∩ \w (E2, yw2, C) ∧ y ∈ first(E2) ∩ \w

∨ (E1\BE2, w1xyw2, C)
(E1, w1x,C) ∧ x ∈ last(E1) ∩ \W (E2, yw2, C) ∧ y ∈ first(E2) ∩ \W

∨ (E1\BE2, w, C)
(E1, ε, C) ∧ nullable(E1) (E2, ε, C) ∧ nullable(E2)

(BACKREF)
(\i, w,C)

(\i, w ← Ci, C)

(POS-LA)
((?=E1)E2, w1w2, C)

(E1.∗, w1, C) ∧ (E2, w1w2, C)

(NEG-LA)
((?!E1)E2, w1w2, C)

(¬(E1.∗), w1, C) ∧ (E2, w1w2, C)

(POS-LB)
(E1(?<=E2), w1w2, C)

(E1, w1w2, C) ∧ (.∗E2, w2, C)

(NEG-LB)
(E1(?<!E2), w1w2, C)

(E1, w1w2, C) ∧ (¬(.∗E2), w2, C)

The rules for standard operators are self-explanatory. For rule GREEDY,
the original configuration unfolds this operator into a conjunction of series of
configurations to generate strings separately. For rule LAZY, it makes the string
that the expression matches as short as possible.

We constrain the expressive power of the regex in the rule CAPTURE as fol-
lows. When processing a Python/C# regex, we disallow backreferences to appear
inside any referenced capturing group. And when the user specifies JavaScript
regex for the input, the first assertion in the post-condition is canceled and the
unassigned backreference is configured as ε by default. The configuration also
pushes the generated string from its configuration into stack C for reference. As
we do not rewrite quantifiers like in [29], the generated strings from the same
capturing group will overwrite the stack of index i during generation. Notice

340 Y. Yan et al.

that we do not present induction rule for non-capturing groups, since those are
considered useless on AST as in regex engines like C#’s, and the unreferenced
capture groups are considered non-capturing as in Java regex engine. Thus for
those capturing groups not referenced within the regex, we treat them as non-
capturing groups. For succinctness, the logic for named capturing groups is also
contained in the rule CAPTURE.

In rule BACKREF, the configuration simply reads the context from the latest
assigned value of the stack Ci into the string variable. For our running example
Ψ , last and nullable will output unknown and proceed to generate a character
from (")?, when the generation by the capturing group requires any of those
functions from this exact capturing group, our algorithm returns unknown to
avoid non-termination. Once a character " is generated from the sub-regex (")?,
the above functions are considered decidable, i.e. first(Ψ) = {=}, last(Ψ) = {"},
nullable(Ψ) = false. Also, named backreferences are contained in this rule.

From ES2018 [20], lookbehinds are introduced into the standard. In the rules
for lookarounds, take positive lookahead as an example, w1 should belong to E1.

∗,
w1w2 is generated from E2, the result is the conjunction of two configurations,
i.e. (?=a)\w+ can generate abbbb even in full match mode. The most intractable
case is when lookarounds are decorated by repetitions: the lookarounds also put
limitations on each repeating subexpression adjacent to it, our induction system
shows a natural advantage in handling these cases.

In rules WBOUND and NON-WBOUND, we categorize the situations by the
first and last functions of subregexes. For instance, in regex ^\b(&|ab|c), & is
not satisfiable. Thus we generate a character from first((&|ab|c))∩\w and prune
the configuration of &. Also, the rules contain the case when the word-boundary
appears at the start or end of the regex. And a Non-word boundary operator
can generate ε when E1 and E2 are both nullable. If none of the situations are
satisfied, the induction system will return ∅.

Furthermore, since the complement of a regular language requires exponential
time [21,46], we also apply heuristics for identification of unsatisfiable cases. For
E1(?<!E2), if E2 is nullable, the complement of E2 is ∅, thus the regex is
unsatisfiable. Similar strategies are applied to other zero-width assertions.

Back to running example Ψ , the result from applying induction rules is shown
as below. Notice we simplified the induction process to improve readability.

((?:=("){0,1}[^;"\s]{0,∞}\1),w1w2w3w4,C)
(=("){0,1}[^;"\s]{0,∞}\1,w1w2w3w4,C)

(=,w1,C)

∧

0<j≤1
(("),w2|ε,C)

∧

0<j≤1
(",w2|ε,C1←w2|ε)

([^;"\s]{0,∞},w0...j
3 ,C)

∧

0<j≤∞
([^;"\s],wj

3|ε,C)
(\1,w4←C1,C)

4.5 String Generation Algorithm

In this section, we introduce our algorithm PowerGen, which takes a regex,
the corresponding language, and the matching function as inputs, and outputs
matching strings.

Deducing Matching Strings for Regexes 341

Our algorithm first conducts a syntax check conforming to the regex syntax
rules of the provided language, selects the corresponding reduction rules based
on the language, and creates an AST. The reduction rules handle the seman-
tic difference of partial/full match calls in the corresponding language. It then
forwards the simplified regex AST and the language as input to the Unicode
automata compiler. It develops automata to incorporate the Unicode 15.0.0 [51]
standard into UTF-8 in Algorithm 1, and compiles the AST leaves into Unicode
automata. Depending on the language, we choose the appropriate induction sys-
tem. This system takes the AST as input and compiles it into induction rules
with stack storage. Finally, our random matching string generator receives induc-
tion rules and stack information as input and produces a matching string as an
output. The generator performs a top-down traversal on the induction rules to
generate strings. All of the Boolean operations of induction rules are performed
on Unicode automata in Sect. 4.3. If the induction system returns ∅, PowerGen
outputs unsat. By running the generation function repetitively, multiple match-
ing strings are produced, since our generation strategy is random. Returning to
our running example, we can easily obtain random sentences from the string
variable of the root configuration. One of the strings generated is =":z2L@Q",
while the “sound” modeling in [29] mistakenly returns =".

5 Evaluation

We implemented our algorithms in C++, and conducted experiments on a
machine with 192-core Intel Xeon E7-8850 v2 2.30 GHz processors and 2048
GB of RAM, running Ubuntu 16.04.5 LTS. Our algorithm can generate match-
ing strings in multiple languages, including Python, JavaScript, Java, PCRE2,
and C#. Our empirical investigation aims to address the following research ques-
tions:

RQ1. When randomly generating strings, does accurate modeling of
regexes improve string generation efficiency?

RQ2. Is our support for full matching and partial matching better
than other tools, which only support one kind of matching
semantics?

RQ3. How does our approach work in practical projects?

To address RQ1, we compare our approach with existing string-generation
tools by evaluating our algorithm on publicly available datasets. We select repre-
sentative examples to demonstrate the correctness of all the tools in generating
strings according to their specified matching semantics, thus validating RQ2.
Lastly, we assess the performance of our approach in comparison to other tools
in practical projects to clarify RQ3.

5.1 Datasets

Our experiment was conducted on a benchmark from [19]. This benchmark
contains 537,806 unique regexes extracted from 193,524 programs written in 8

342 Y. Yan et al.

programming languages, including JavaScript, Java, PHP, Python, Ruby, Go,
Perl, and Rust. The unique regexes represent the set of expressions after remov-
ing duplications.

5.2 Tools for Comparison

We compared nine string generation tools (see Sect. 2.3). We ensured all tools
were configured according to their original configurations as stated in their
papers or documentation, respectively. Egret, dk.brics, Mutrex and Generex
(extended on dk.brics) did not specify the regexes they supported in which pro-
gramming language, so we classified them as Unspecific support. Meanwhile,
Exrex and Xeger focused on Python regexes, and Randexp.js, ExpoSE and
Ostrich specialized in JavaScript regexes. ExpoSE supports partial matching
semantics, while the others support full matching semantics, as shown in Table 2.

Table 2. Language-Matching Calls-Features Support by String Generation Tools

Toolsa Egr DK Mut Gen Exr Xeg Rnd Ost Exp PowerGen

Language Unspecified Python JavaScript Multi-Language

Matching Calls Full Partial Full&Partial

F
e
a
tu

re
s

Character Class ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Greedy Quantifier ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Lazy Quantifier ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

Unicode (\uxxxx) ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Capture/Non-Capturing Group ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Input Start/End (^$) ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Start/End-of-line Anchors ✓ ✗ ✗ ✗ ✓ ✓ – – – ✓

Start/Reset match ✗ ✗ ✗ ✗ – – – – – ✓

Word/Non-word Boundary ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Lookahead ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Lookbehind ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Backreference ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Ignore Case, Multi-line, Single-line Flags ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Extended Flag ✗ ✗ ✗ ✗ ✓ ✓ – – – ✓

Unicode Flag ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓

Comment Group ✗ ✗ ✗ ✗ ✓ ✓ – – – ✓
a abbreviations for each tool in this table, along with their respective definitions, are
as follows: Egr (Egret), DK (dk.brics), Mut (Mutrex), Gen (Generex), Exr (Exrex),
Xeg (Xeger (O’Connor)), Rnd (Randexp.js), Exp (ExpoSE), Ost (Ostrich)

5.3 Evaluation of Random String Generation

We compared the feature support for each tool. The results are presented in
Table 2. The “–” in Table 2 indicates that the programming language specified
by the tool lacks support for that feature, and the “✗” signifies that the corre-
sponding tool does not support a feature. Our algorithm supports all the features
listed earlier.

To begin with, we evaluate the impact of random generation. Through statis-
tical analysis, the language-specific tools are based on the regexes of the Python
or JavaScript languages. Therefore, in full matching comparisons, we evaluate
each language-specific tool in its own language, and unspecific tools in both

Deducing Matching Strings for Regexes 343

Python and JavaScript. For partial matching comparisons, there is only one tool,
ExpoSE, to compare with us. We filtered the dataset to ensure syntax correct-
ness. We assess the accuracy rate and time of the tools, with results depicted in
Table 3, where the full match validation are shown on the left and the JavaScript
partial match validation on the right. The first line on the left is based on Python
validation results, while the second line refers to JavaScript validation results
(achieved by adding start and end-of-line anchors before and after the regex).
The accuracy rate is defined as: AccuracyRate = 1

|D|
∑|D|

i=1 Match(ri, si). In the
given formulas, ri denotes the i-th regex in the dataset D, where |D| refers to the
size of D. si denotes the string generated by ri by the tool. Match(ri, si) rep-
resents the validation of string si using the language’s matcher. It returns 1 for
success and 0 for failure. It is noteworthy to mention that Ostrich, ExpoSE, and
our approach perform checks for unsatisfiability. We classify regexes as unsat-
isfiable if all tools determine them to be either unsatisfiable or incorrect. The
memory usage refers to the average maximum resident set size.

Table 3. Experimental Results of String Generation Tools under Specific Language

Matching calls Full match Partial match

Tools Egr DK Mut Gen Exr Xeg PowerGen Exp PowerGen

Accuracy (%) 90.90 39.94 40.54 38.87 92.33 92.71 97.40 77.84 97.72

Time (s) 0.154 0.489 3.346 0.610 0.146 0.159 0.004 53.14 0.004

Memory (KB) 13535 47522 109772 52020 11021 9652 5835 90132 4975

Tools Egr DK Mut Gen Rnd Ost PowerGen

Accuracy (%) 90.92 35.82 44.62 40.93 91.43 93.69 97.71

Time (s) 0.153 0.471 3.354 0.599 0.172 8.540 0.004

Memory (KB) 13522 47477 110737 52078 32418 138913 4796

Fig. 3. Experimental Results of String Generation Tools on Feature Dataset

The experimental results show that PowerGen achieves the highest accuracy
in random string generators among state-of-the-art tools. In Python full match-
ing validation, PowerGen achieved the highest accuracy of 97.40%, followed by
Exrex and Xeger (O’Connor) with about 92%, and the worst performer was DK,
Mutrex and Generex with about 40%. For JavaScript full matching validation,

344 Y. Yan et al.

to be ranked according to accuracy, PowerGen achieved the highest percent-
age of 97.71%, followed by Randexp.js and Ostrich with about 92%, while DK,
Mutrex and Generex achieved only 35.82%, 44.62% and 40.93% respectively.
For JavaScript partial matching validation, PowerGen is about 20% higher than
ExpoSE. Additionally, PowerGen generates correct results for all the examples
mentioned in Sect. 2.3.

Regarding efficiency, in the full matching comparisons, the fastest among
other tools is Exrex with 0.146 s, while our tool only takes 0.004 s, which has
achieves a 36.5x speedup over Exrex. Moreover, our tool outperforms the slowest
tool, Ostrich, by a factor of 2136. In the partial matching comparisons, we are
up to ten thousand times faster than ExpoSE. We also expect our tool to be
integrated into other softwares to improve their efficiency. Regarding memory
usage, our memory usage is the least among tools in comparison.

To further analyze the experimental results, we then use the AST parsing
tool to parse the regexes in the dataset and divide the dataset according to
regex features. It should be noted that a regex can have multiple features thus
can be split into multiple features categories. Due to the space limitation, we
only present the comparison results under full matching calls. We calculate the
accuracy rate for each feature and plot the Fig. 3(a) and 3(b) for Python and
Javascript. The x-axis represents different features, the y-axis represents different
tools, and the values indicate the accuracy rate.

The Fig. 3(a) and 3(b) indicate that our tool achieved the highest accuracy
rate for each feature, where lookbehind is only supported by our tool. Among
other tools that support Python regex syntax, their support for word boundary
is relatively poor. Besides, for the tools that claim to support JavaScript regex
syntax, their accuracy for word boundary, non-word boundary, and backreference
achieves about 80%, and even 0% in some cases due to lack of support.

Summary to RQ1: By better supporting features, in the full matching com-
parisons, our algorithm achieves the highest accuracy for both Python and
JavaScript. Regarding efficiency, our tool is several dozen times faster than
the fastest among existing tools. In the partial matching comparisons, Our
accuracy is 20% higher than ExpoSE while being faster by a factor of ten-
thousandth.

Table 4. The Results by Each Generator for Examples

Regexa Possibly Acceptable Results Tools

Egr DK Mut Gen Exr Xeg Rnd Ost Exp PowerGen

Full Partial Full Partial Full Partial

\b\ $ unsat a$ unsat – – – $ $ $ unsat $ unsat a$

\b\u0023 unsat a# unsat – – – $ $ $ unsat $ unsat a#

node modules(?=paradigm.*) |
(paradigm-gulp-watch)

paradigm-
gupl-watch

node
modulesparadigmaaa

– – – – – – – – unsat paradigm-
gulp-watch

node
modulesparadigmaaa

"""(?=") unsat """" – – – – – – – – unsat unsat """"

\n|(?=\?>) \n ?> – – – – – – – – unsat \n ?>

(?=a{2,5})\w unsat aa – – – – – – – – unsat unsat aa

.(?<=\d{2,61}) unsat 11 – – – – – – – – unsat unsat 11

https:\/\/(?=\w{2,3}). unsat https://aa – – – – – – – – unsat unsat https://aa

a All the example regexes in this table are from [19]. We simplified some lengthy regexes
for presentation.

Deducing Matching Strings for Regexes 345

5.4 Statistics for Full Matching and Partial Matching

The actual project library contains both full and partial matching capabilities.
Unfortunately, the tools being compared only support one kind of matching
semantics, which is inadequate for dealing with this situation. Furthermore, there
are many logical errors in these tools regarding the semantics they claim to sup-
port. In this section, we analyse some representative examples from the dataset
under full and partial matching calls in Table 4.

1. \b\$
Under full matching call, the regex above is unsatisfiable, while under par-
tial matching it should return a string from \w\ $. Among those tools sup-
porting full matching semantic, dk.brics, Mutrex and Generex lack support
for word boundaries, Exrex, Xeger(O’Connor) and Randexp.js returns $,
which is incorrect. ExpoSE’s output $ is erroneous under partial match, while
PowerGen is capable to find the correct results under both matching seman-
tics.

2. node modules(?=paradigm.∗)|(paradigm-gulp-watch)
Under full matching, paradigm-gulp-watch is the matching string,
while for partial matching, results from node modulesparadigm.∗ or
paradigm-gulp-watch are acceptable. Although ExpoSE claimed to support
lookahead, it returned unsat, which is incorrect for both full and partial
matching; PowerGen generates the correct answers under both cases.

3. """(?=")
For full matching, this regex is not satisfiable. In partial matching, lookaround
requires that after matching three quotes, a quote must follow, resulting in
the generation of four quotes. ExpoSE returns unsat, which is incorrect in
the case of partial matching. In contrast, our result is accurate in both full
and partial matching scenarios.

4. (?=a{2,5})\w
For full matching, this regex is unsatisfiable. And under partial matching, a
string aa is acceptable. ExpoSE returned unsat, which is wrong under partial
matching, while our results are correct under both cases.

The other examples in the table are similar to four examples above.

Summary to RQ2: By considering the distinctions between full matching
and partial matching, our algorithm can generate correct strings for different
semantics.

346 Y. Yan et al.

5.5 Results on Real Projects

Table 5. Examples in PyPI (Python) Project Library

Tools
FileName Pattern Matching calls

Egr DK Mut Gen Exr Xeg PowerGen

\w{1,16} full matching – – – – – – 7.../mcdre

forged

plugin.py

(?<=\u64027)

!!MCDR[\w]∗

(?=\u6402)

partial matching – – – – – –
\u64027!!MC

DR\u6402

[a-zA-Z0-9. -]+@

[a-zA-Z0-9. −]{2,}

\.[a-z]{2,4}
partial matching – – – – – - -@ddg.qq

[a-zA-Z0 − 9. -]+@

[a-zA-Z0-9. -]{2,}

\.[a-z]{2,4}
full matching evil@–.aaaa ---.aa ---.ab(✗) error

rhxbe@9

c60bHn7...

g@HOZGmxj8

.meuy
@kzz.dd

.../conf

igurati

on.py

(?P<heures>\d+)[h:]

(?P<minutes>\d+).+?

(?P<value>[a-zA-Z0-9\.]+)

partial matching – – – – - -
001:77\ud90b

\udf013

(?:(?<=\s)|(?<=\W)|

(?<=^))(%\w)|(\
{.∗? \})(?=\s| \W|$)

partial matching – – – – – – %1
.../prep

rocessi

ng.py
ˆ{.∗?}$ full matching ε – – – {bqs-$tx} {} {}

We inspected a large number of projects in PyPI [39], Maven [32], npm [36] and
other project libraries, and found that many of them contain various matching
calls within the same project. In Table 5 and 6, we present a few examples
of this phenomenon. Similar to RQ1, we conducted experiments in languages
supported by each tool. It can be seen that other tools give wrong results in
most examples due to not supporting some features and/or the matching calls
(indicated by –), run-time errors (indicated by error), or others (indicated by ✗).
Our tool consistently produces the correct results thanks to considering different
matching semantics and supporting a wider range of extended features.

Summary to RQ3: Our approach is highly effective in real projects due to
in-depth understanding of different matching semantics, as well as our com-
prehensive support for more extended features.

Table 6. Examples in Maven (Java) Project Library

FileName Pattern Matching calls Tools

Egr DK Mut Gen PowerGen

.../JDBCUserStore Manager.java (\∗)\1+ full matching ∗ ∗ ∗ – – – ∗ ∗ ∗∗
(?<!\\)\∗ partial matching – – – – ”∗

.../Path.java /+ partial matching – – – – ///

\p{Sc}+: full matching – error error error $:

.../ImdbParser.java \u00bb partial matching – – – – \u00bb

(?i)Country.∗ full matching – – – – Country\udbb4\ude5c

.../OpSumIf.java .∗(?<! ∼)\ ∗ .∗ full matching – – – – ∗
(?<! ∼)\∗ partial matching – – – – @∗
(?<! ∼)\? partial matching – – – – ?

Deducing Matching Strings for Regexes 347

6 Related Work

Matching Semantics and Extended Features. Leftmost-longest (POSIX-
type) and Leftmost-greedy (PCRE-type) policies are two popular disambigua-
tion strategies for regular expressions. However, POSIX implementations were
found error-prone [16]. Okui and Suzuki [38] formalized leftmost-longest seman-
tics and extended position automata [23] with leftmost-longest rule. Sulzmann
and Lu extended Brzozowski’s derivatives [7] to POSIX parsing problem [48].
Berglund et al. gave a formalization of Boost semantics for its combination of
POSIX semantics and capturing groups [4]. Regular expressions with backref-
erences were first proposed by Aho in 90s [1]. Câmpeanu and colleagues gave
rigorous formalisms and various properties [8–10] for regular expressions with
backreferences. Recently Berglund and van der Merwe investigated theoretical
aspects of regex with backreferences [5]. On the theoretical foundation for looka-
heads, Miyazaki and Minamide [33] extended Brzozowski’s derivatives [7] to
lookaheads. Recently Berglund et al. [6] proposed a model based on Boolean
Automata for regular expressions with lookaheads, and gave state complexity
results. In 2022, Chida and Terauchi [15] gave the first formal study on regexes
with both backreferences and lookaheads.

String Generation Toolkits. The Automaton Library [35] compiles a regex
into an ε-NFA, and implements interfaces for random string generation.
Egret [25] has a partial support for regexes to find inconsistency between regexes
and specifications, it was found their tool lacks support for Unicode-related fea-
tures. Reggae [26] supports string generation for regular expressions with inter-
section and complement operators; it also mentions that supporting lookarounds
and boundaries is challenging. Veanes et al. [52] proposed Rex, which can be
used for regular expression testing. Due to the cost of determinization on their
proposed symbolic automata based on the construction of ε-NFAs, the string
generation of Rex is not efficient. Loring et al. [29] claimed their model supports
the complete regex language for ES6, but for lookarounds decorated by repeti-
tions, ExpoSE seems to fail to give a correct result. Chen et al. [14] proposed
a novel transducer model, namely PSST, to formalize the semantics of regex-
dependent string functions, but backreference and lookarounds are still on their
future work.

This paper and [47] both propose novel methods for modeling regexes. How-
ever, they develop different techniques because the problems they solve are differ-
ent. The algorithmic differences are listed as follows: firstly our implementation
is platform-independent based on induction rules instead of Z3 [34]. Secondly
in [47] authors introduced the length constraint in modeling regex operators
for checking satisfiability, which is insufficient to deduce fixed-length matched
strings for generic purpose. Thirdly since the matching functions for regexes
are ubiquitous in practical programs, for the first time we consider different
matching semantics in modeling regexes for deducing matching strings. Also we
constrained the expressive power of the input regex by induction rules to ensure

348 Y. Yan et al.

the completeness of our algorithm within a fragment of the class of regexes,
while in [47], authors introduced a CEGAR (counterexample-guided abstraction
refinement) scheme which makes their algorithm incomplete.

7 Conclusion

We propose PowerGen, a tool for deducing matching strings for regexes. It is
based on a novel semantic model for regexes, which comprehensively models
the extended features, with the awareness of different matching semantics and
matching precedence. The evaluation results demonstrate the high effectiveness
and efficiency of our algorithms. We aim to develop methods to further deduce
the shortest matching strings for regexes and thus get a more refined model for
regex in the future.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions. Work supported by the Natural Science Foun-
dation of Beijing, China (Grant No. 4232038) and the National Natural Science Foun-
dation of China (Grant No. 62372439).

References

1. Aho, A.V.: Algorithms for finding patterns in strings. In: Handbook of Theoretical
Computer Science, Volume A: Algorithms and Complexity, pp. 255–300. Elsevier
and MIT Press (1990)

2. Arcaini, P., Gargantini, A., Riccobene, E.: MUTREX: a mutation-based generator
of fault detecting strings for regular expressions. In: ICST Workshops 2017, pp.
87–96 (2017)

3. Bartoli, A., Lorenzo, A.D., Medvet, E., Tarlao, F.: Inference of regular expressions
for text extraction from examples. IEEE Trans. Knowl. Data Eng. 28(5), 1217–
1230 (2016)

4. Berglund, M., Bester, W., van der Merwe, B.: Formalising boost POSIX regu-
lar expression matching. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS,
vol. 11187, pp. 99–115. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02508-3 6

5. Berglund, M., van der Merwe, B.: Re-examining regular expressions with backref-
erences. Theor. Comput. Sci. 940, 66–80 (2023)

6. Berglund, M., van der Merwe, B., van Litsenborgh, S.: Regular expressions with
lookahead. J. Univers. Comput. Sci. 27(4), 324–340 (2021)

7. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
8. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.

Int. J. Found. Comput. Sci. 14(6), 1007–1018 (2003)
9. Câmpeanu, C., Santean, N.: On the intersection of regex languages with regular

languages. Theor. Comput. Sci. 410(24–25), 2336–2344 (2009)
10. Câmpeanu, C., Yu, S.: Pattern expressions and pattern automata. Inf. Process.

Lett. 92(6), 267–274 (2004)

https://doi.org/10.1007/978-3-030-02508-3_6
https://doi.org/10.1007/978-3-030-02508-3_6

Deducing Matching Strings for Regexes 349

11. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended
regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21254-3 13

12. Chapman, C., Stolee, K.T.: Exploring regular expression usage and context in
python. In: ISSTA 2016, pp. 282–293 (2016)

13. Chapman, C., Wang, P., Stolee, K.T.: Exploring regular expression comprehension.
In: ASE 2017, pp. 405–416 (2017)

14. Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin, A.W.,
Rümmer, P., Wu, Z.: Solving string constraints with regex-dependent functions
through transducers with priorities and variables. POPL 6, 1–31 (2022)

15. Chida, N., Terauchi, T.: On lookaheads in regular expressions with backreferences.
In: FSCD 2022. LIPIcs, vol. 228, pp. 15:1–15:18 (2022)

16. Chris, K.: Regex posix - HaskellWiki. https://wiki.haskell.org/Regex Posix
17. D’Antoni, L., Veanes, M.: Automata modulo theories. Commun. ACM 64, 86–95

(2021)
18. Davis, J.C., Coghlan, C.A., Servant, F., Lee, D.: The impact of regular expression

denial of service (ReDoS) in practice: an empirical study at the ecosystem scale.
In: ESEC/FSE 2018, pp. 246–256 (2018)

19. Davis, J.C., IV, L.G.M., Coghlan, C.A., Servant, F., Lee, D.: Why aren’t regular
expressions a lingua franca? An empirical study on the re-use and portability of
regular expressions. In: ESEC/FSE 2019, pp. 443–454 (2019)

20. ECMA: ES2018. https://262.ecma-international.org/9.0
21. Ellul, K., Krawetz, B., Shallit, J.O., Wang, M.W.: Regular expressions: new results

and open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)
22. Fent: Randexp.js. https://github.com/fent/randexp.js
23. Glushkov, V.M.: The abstract theory of automata. Russ. Math. Surv. 16, 1–53

(1961)
24. Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms for string anal-

ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 18

25. Larson, E., Kirk, A.: Generating evil test strings for regular expressions. In: ICST
2016, pp. 309–319 (2016)

26. Li, N., Xie, T., Tillmann, N., de Halleux, J., Schulte, W.: Reggae: automated
test generation for programs using complex regular expressions. In: ASE 2009, pp.
515–519 (2009)

27. Liu, X., Jiang, Y., Wu, D.: A lightweight framework for regular expression verifi-
cation. In: HASE 2019, pp. 1–8 (2019)

28. Loring, B., Mitchell, D., Kinder, J.: ExpoSE: practical symbolic execution of stan-
dalone JavaScript. In: SPIN 2017, pp. 196–199 (2017)

29. Loring, B., Mitchell, D., Kinder, J.: Sound regular expression semantics for dynamic
symbolic execution of javascript. In: PLDI 2019, pp. 425–438 (2019)

30. Luo, B., Feng, Y., Wang, Z., Huang, S., Yan, R., Zhao, D.: Marrying up regular
expressions with neural networks: A case study for spoken language understanding.
In: ACL 2018, pp. 2083–2093 (2018)

31. Michael, L.G., Donohue, J., Davis, J.C., Lee, D., Servant, F.: Regexes are hard:
decision-making, difficulties, and risks in programming regular expressions. In: ASE
2019, pp. 415–426 (2019)

32. Miller, F.P., Vandome, A.F., McBrewster, J.: Apache maven (2010). https://repo1.
maven.org/maven2/

https://doi.org/10.1007/978-3-642-21254-3_13
https://doi.org/10.1007/978-3-642-21254-3_13
https://wiki.haskell.org/Regex_Posix
https://262.ecma-international.org/9.0
https://github.com/fent/randexp.js
https://doi.org/10.1007/978-3-642-18275-4_18
https://repo1.maven.org/maven2/
https://repo1.maven.org/maven2/

350 Y. Yan et al.

33. Miyazaki, T., Minamide, Y.: Derivatives of regular expressions with lookahead. J.
Inf. Process. 27, 422–430 (2019)

34. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

35. Møller, A.: dk.brics.automaton. https://www.brics.dk/automaton/
36. npm Inc: npm. https://www.npmjs.com/
37. O’Connor, C.: Crdoconnor/xeger. https://github.com/crdoconnor/xeger
38. Okui, S., Suzuki, T.: Disambiguation in regular expression matching via position

automata with augmented transitions. In: Domaratzki, M., Salomaa, K. (eds.)
CIAA 2010. LNCS, vol. 6482, pp. 231–240. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18098-9 25

39. Python Software Foundation: Python package index - pypi. https://pypi.org/
40. Rampersad, N., Shallit, J.: Detecting patterns in finite regular and context-free

languages. Inf. Process. Lett. 110(3), 108–112 (2010)
41. Salomaa, K., Yu, S.: NFA to DFA transformation for finite languages over arbitrary

alphabets. J. Autom. Lang. Comb. 2(3), 177–186 (1998)
42. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic

execution framework for JavaScript. In: S&P 2010, pp. 513–528 (2010)
43. Shen, Y., Jiang, Y., Xu, C., Yu, P., Ma, X., Lu, J.: ReScue: crafting regular expres-

sion DoS attacks. In: ASE 2018, pp. 225–235 (2018)
44. Spishak, E., Dietl, W., Ernst, M.D.: A type system for regular expressions. In:

FTfJP 2012, pp. 20–26 (2012)
45. Stanford, C., Veanes, M., Bjørner, N.: Symbolic Boolean derivatives for efficiently

solving extended regular expression constraints. In: PLDI 2021, pp. 620–635 (2021)
46. Stockmeyer, L.J.: The complexity of decision problems in automata theory and

logic. Ph.D. thesis, Massachusetts Institute of Technology, USA (1974)
47. Su, W., Chen, H., Li, R., Chen, Z.: Modeling regex operators for solving regex

crossword puzzles. In: Hermanns, H., et al. (eds.) SETTA 2023, LNCS, vol. 14464,
pp. 206–225. Springer, Cham (2023)

48. Sulzmann, M., Lu, K.Z.M.: POSIX regular expression parsing with derivatives. In:
Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 203–220. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 13

49. Tauber, A.: EXREX. https://github.com/asciimoo/exrex
50. Trinh, M., Chu, D., Jaffar, J.: S3: a symbolic string solver for vulnerability detection

in web applications. In: CCS 2014, pp. 1232–1243 (2014)
51. Unicode: Unicode 15.0.0. https://unicode.org/versions/Unicode15.0.0/
52. Veanes, M., de Halleux, P., Tillmann, N.: Rex: symbolic regular expression explorer.

In: ICST 2010, pp. 498–507 (2010)
53. Wang, P., Stolee, K.T.: How well are regular expressions tested in the wild? In:

ESEC/FSE 2018, pp. 668–678 (2018)
54. Youssef, M.: Generex. https://github.com/mifmif/Generex
55. Yu, S.: Regular languages. In: Handbook of Formal Languages, Vol. 1: Word, Lan-

guage, Grammar, pp. 41–110 (1997)

https://doi.org/10.1007/978-3-540-78800-3_24
https://www.brics.dk/automaton/
https://www.npmjs.com/
https://github.com/crdoconnor/xeger
https://doi.org/10.1007/978-3-642-18098-9_25
https://doi.org/10.1007/978-3-642-18098-9_25
https://pypi.org/
https://doi.org/10.1007/978-3-319-07151-0_13
https://github.com/asciimoo/exrex
https://unicode.org/versions/Unicode15.0.0/
https://github.com/mifmif/Generex

Binary Level Concolic Execution
on Windows with Rich Instrumentation

Based Taint Analysis

Yixiao Yang, Chen Gao, Zhiqi Li, Yifan Wang, and Rui Wang(B)

College of Information Engineering, Capital Normal University,
Beijing 100048, China

rwang04@163.com

Abstract. Windows programs are widely used. The effective testing
of Windows applications can prevent financial losses. Currently, there
are only a few tools that can test programs without source code on
Windows. The state-of-art WinAFL tool suffers from the poor testing
efficiency. Most of the other tools rely on analysing the source code on
Linux. Concolic execution based on binary code is an efficient method
to discover defects in program without source code. In this paper, we
present WinTaintCE, which mainly uses Rich Instrument-based taint
analysis technique for instruction refinement. The data in the input file
of fuzzing tasks will be marked as the tainted source. All instructions that
are flowing through tainted data will be extracted for symbolic execution.
However, this step will overlook many instructions for calculating non
tainted data. Thus, we innovatively propose Rich Instrument technology,
which saves the values on all registers and memory addresses involved
in an instruction to a trace file. During concolic execution based on that
trace file, those saved values will be set directly for non tainted data in
an instruction. Experimental results show that WinTaintCE can explore
about 24%–130% more paths compared to WinAFL. Also, 96%–99%
reduction in the number of instructions need to be analysed compared
to existing binary analysis tools on Windows also proves the effectiveness
of the methodology of this paper.

Keywords: software testing · binary testing · symbolic execution

1 Introduction

Windows applications are widely used in information systems, spanning various
domains such as finance, healthcare, manufacturing, and more. Testing Windows
programs is crucial as it can help prevent significant economic losses during the
development phase. Due to commercial considerations, it is often impossible to
access the source code of many software applications or development libraries for
conducting gray-box or white-box testing. Concolic execution based on binary
assembly code is an effective method for discovering program defects in the
absence of source code. It typically starts by symbolizing some data within the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 351–367, 2024.
https://doi.org/10.1007/978-981-99-8664-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_20&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_20

352 Y. Yang et al.

program and collecting binary arithmetic and control instructions as constraint
conditions. It then utilizes constraint solvers to systematically explore underlying
code branches, aiming to traverse as many paths as possible within the binary
program to uncover defects.

WinAFL [11] is one of the few tools available for testing binary Windows
programs. It is built upon AFL to implement the core fuzzing loop, utilizes
DynamoRIO for instrumentation and coverage measurement. WinAFL is based
on fuzzing, the mutation operations of WinAFL are random. So the testing effi-
ciency is low. Combining WinAFL with symbolic execution is a good idea. At
present, there is no practical open source symbolic execution solution available
that can be combined with fuzzing testing and can handle actual large binary
programs on Windows. A large number of existing binary symbolic execution
tools are targeted at Linux, such as KLEE [3], QSYM [32], S2E [4] or Sydr [30],
all of which declare on their homepage that they can only run on Linux sys-
tems. There is currently no good support for Windows. KLEE relies on LLVM
[16], although LLVM can run cross platforms, KLEE cannot run cross platforms.
Similarly, there is Sydr, which relies on Triton [23], an open-source binary anal-
ysis framework. Although Sydr cannot run cross platforms, Triton can do so. It
is worth noting that the Triton and the similar tool Miasm [24] libraries pro-
vide many functions for binary execution and analysis, but they cannot directly
receive a binary file and perform symbolic execution.

Currently, performing symbolic execution [2,10,19] on binary Windows pro-
grams presents several challenges. On one hand, compiled binary programs con-
tain a vast number of instructions, encompassing not only the code for the
program’s core logic but also the binary instructions from static and dynamic
libraries. This results in low efficiency for symbolic analysis. In reality, many of
these instructions are irrelevant for a single symbolic execution because they have
no impact on constraint solving. Thus, there is a need to simplify the analysis
by identifying and focusing on the instructions that are related to the constraint
solving. On the other hand, when conducting dynamic symbolic execution on
binary programs, a significant amount of memory and processor state informa-
tion is analyzed, while data relevant to constraint solving is often scarce. Previous
approaches have required retrieving the entire memory state, contributing to the
inefficiency of symbolic execution. There are also numerous technical challenges,
including the complexity of Windows system calls, necessitating hooking numer-
ous file read and write operations. Furthermore, handling advanced instructions
such as SIMD instructions presents additional difficulties.

To address these challenges and achieve more accurate and efficient testing
of Windows programs, we propose a taint analysis technique based on Rich
Instrument technology. We implement the open source testing tool WinTaintCE.
The data in the input file of fuzzing tasks will be marked as the tainted source. All
instructions that are flowing through tainted data will be extracted for symbolic
execution. However, this step will overlook many instructions for calculating
non tainted data. Thus, we innovatively propose Rich Instrument technology,
which saves the values on all registers and memory addresses involved in an

Binary Level Concolic Execution on Windows 353

instruction to a trace file. During concolic execution based on that trace file, those
saved values will be set directly for non tainted data in an instruction. We also
evaluated WinTaintCE. First we compared the path discovery capability with
WinAFL, and WinTaintCE could explore about 24%-130% more paths. Then we
compared WinTaintCE with other formalised test case generation tools that run
on Windows, and WinTaintCE can solve many complex models while CBMC
and SLDV cannot. Not only that, we also separately evaluated our proposed
Rich Instrumentation technology. This technique saves 96%-99% of the number
of instructions to be analysed.

2 Background

This section introduces the background knowledge of existing symbolic tools on
Windows and the drawbacks of the existing tools. Then, the motivations and
the advantages of the proposed tool are introduced.

Existing Binary Symbolic Tools on Windows. Miasm [24] (Multi-
Architecture Static and Dynamic Analysis Framework) is an open source binary
analysis framework that can be used for static and dynamic analysis of binary
files of various different architectures. Misam has a built-in symbolic execution
engine, which can be used to analyze the execution path of binary files and find
vulnerabilities. Triton is a dynamic binary analysis framework similar to Miasm.
Both Triton and Miasm rely on a virtual simulation environment to do symbolic
execution. This environment cannot handle system calls, thus, these two tools
cannot directly load and run a binary. Users must do a lot of preparation work
such as providing trace and memory data before invoking these two tools.

Advantage of the Proposed Tool. Although there exist many binary analysis
frameworks on Windows, these tools only offer a virtual simulation environment
and typically are employed only trivial and simple examples [14]. To analyze real
world applications, many problems need to be solved. The first problem is how to
observe file reads and writes at the Windows system call level to determine which
are program inputs. The second problem is how to extract binary level machine
state from the current program and set up a virtual environment to enable sym-
bolic execution engine to run correctly. The third problem is how to handle the
system calls which the analysis frameworks do not support. Because of the above
mentioned engineering challenges and the lack of tool support for Windows, at
present, there is no practical open source symbolic execution solution available
on the Windows. On Linux, existing works dump the entire memory area of a
running program and set up the virtual environment before the symbolic execu-
tion. Once a system call is encountered, the symbolic engine does not know what
the system call is doing, the subsequent execution may produce wrong results.
Besides, in all the memory area, there are many data related to the operating
system which are unrelated to the logic of the program under test. Therefore, it
is very time-consuming to process the entire memory data when simulating the
execution environment. Thus, we propose Rich Instrument technology which can

354 Y. Yang et al.

accurately analyze the memory and register information that each instruction
relies on, and print them to trace to facilitate subsequent concolic execution.
The memory data size of all our tainted instructions is about 1KB-5KB, and
the data size of the entire memory is at least 10MB-10GB, which shows that
our work can avoid a lot of extra overhead about setting up virtual memory
environment.

Existing Binary Taint Analysis Methods on Windows. Currently, both
the Triton and Miasm only support taint analysis based on symbolic execution
engine in the virtual simulation environment. Users must dump the entire trace
and memory to set up the virtual environment to do symbolic execution first,
then to do taint analysis. The whole procedure is time consuming. Besides, once
a system call is encountered, the engine may fail to do taint analysis as the
behavior of a system call is unknown to the engine.

Advantage of the Proposed Taint Analysis Method. In order to reduce
the overhead by allowing taint analysis to be carried out simultaneously with
the program execution, the Rich Instrument based taint analysis is proposed
in this paper. The Rich Instrument technique is to analyze every instruction
to identify the memory or register dependency of an instruction. For Windows
system call, the Rich Instrument technique monitors all system calls currently
encountered and analyze their functionality to ensure the correctness of real-time
taint analysis. Based on many engineering efforts, a fast and efficient real-time
taint analysis method has been implemented.

3 Overall Framework

Figure 1 shows the various modules of the overall framework and their execution
order. The dynamic taint analysis is carried out during program execution.

Fig. 1. Overall Framework

Binary Level Concolic Execution on Windows 355

Before symbolic execution, the tested program will be instrumented. The task
of the instrumentation program is to print the instruction execution procedure
into a trace. Using the Rich Instrument technology proposed in this paper, the
instrumentation not only prints information about the instruction itself, but also
prints information about all registers and memory addresses associated with the
instruction, as well as specific values on these registers and memory addresses.
After the program is instrumented, the proposed framework selects a seed from
the seed pool that has not been executed before, uses this seed as input to the
instrumented program, executes the instrumented program, performs dynamic
taint analysis and generates a reduced trace. The symbolic execution is per-
formed on the reduced trace. Since the specific values are used during symbolic
execution, this symbolic execution is actually a concolic execution. After sym-
bolic execution, many new seeds will be generated, and these new seed files will
be re-executed, recording all paths triggered by them. If a seed triggers a new
path, it will be added to the seed pool, otherwise it will be discarded.

3.1 Rich Instrument

Traditional binary instrumentation typically only inserts a few binary instruction
sequences before or after an instruction to achieve the goal of printing the opcode
of the instruction or recording the binary code of the instruction. However, it
is a complex task to print all the operand information, especially obtaining the
stored values based on the operand type. Therefore, it is unrealistic to complete
this task by inserting several binary instructions. So, we insert function calls
before and after the instruction to be observed, and call self written functions
to complete the task of recording operand values.

Fig. 2. Rich Instrument

As shown in Fig. 2, if only one instruction with opcode ‘inc’ needs to be instru-
mented, three functions are inserted before and after that instruction. Figure 3

356 Y. Yang et al.

shows the pseudo code implementation of three custom functions inserted in
Fig. 2 with some complex operations explained with annotations. The binary
instrumentation framework used in this paper is DynamoRIO. The pseudo code
in Fig. 3 shows how to use DynamoRIO API to obtain information of instruc-
tions. The get opcode API is to get the opcode of a binary instruction, src opnds
field refers to the source operands of an instruction, similarly, dst opnds field
refers to the destination operands of an instruction. The type field refers to the
type of the operand which can be one of reg (register), mem (memory reference),
imm (immediate number) or pc (jump address).

The binary instrumentation framework DynamoRIO used in this paper is a
dynamic instrumentation framework that provides the ability to insert function
calls before or after instructions. The inserted function calls are called Clean-
Call. When Inserting a CleanCall, DynamoRIO will save the current execu-
tion status of the instrumented program, including all registers, stack pointer
positions, and other information. In a CleanCall, the register information and
the memory information including the stored values on registers or memory
addresses of the instrumented program can be queried through the API pro-
vided by DynamoRIO. The function parameter type of the CleanCall can only
be primitive type or pointer address (actually uint64 t type). In order to get
the information of instrumented instruction in a CleanCall, we pass the mem-
ory address where the instruction is located as a parameter. In the CleanCall,
DynamoRIO API is used to decode the binary form of an instruction located at
the passed-in parameter into DynamoRIO objects. DynamoRIO API can also be
used to query the register and memory address information. In CleanCall, it is
allowed to write any C++code, so STL libraries and other complex libraries can
be used. In fact, the taint analysis mentioned later can be directly implemented
in a CleanCall.

Fig. 3. Rich Instrument Pseudo Code

Binary Level Concolic Execution on Windows 357

3.2 Dynamic Taint Analysis

The taint analysis is conducted on the instruction trace generated by Rich Instru-
ment technology. All instructions satisfy the following form:

Opcode(, dst1)(, dst2)(, dst3)(, dst4)(, dst5)(, src1)(, src2)(, src3)(, src4)(, src5).

The contents in parentheses are operands that may exist. Most instructions
only have one src operand and one dst operand. For example, the load instruction
is an instruction that loads the value on a memory address into a register, its src
operand is the memory address and its dst operand is the register. Instructions
with no less than one target operands are generally data transfer instructions or
arithmetic instructions. These data transfer instructions or arithmetic instruc-
tions are the key to taint analysis. Table 1 lists the commonly used instructions
and the corresponding categories which may cause the taint propagation.

Table 1. Tainted Instructions

category Instructions

data transfer mov, cmovcc, movzx, movups, movss, cwde, cdq, ...

stack operation push, pop, load, store

SIMD vmovdqu, vinsertf128, punppcklbw, punpcklqdq, ...

arithmetic operation add, sub, sbb, inc, dec, imul, cmpxchg, xchg, xadd, ...

logical operation and, or, xor, xorps, psrldq, shl, shr, not, neg, ...

bit operation bts, btr, bsf, bsr, rol, ror, sar, ...

string operation movs, rep movs, ...

In computer architecture, A memory address can store one byte by default,
a register can store many bytes. Each byte in a memory address or a register can
be represented by a unique ID. For the byte in a memory address, the memory
address itself can uniquely represent that byte. For the byte in a register, the
register id and the byte offset from the beginning of the register can uniquely
represent that byte. The granularity of the taint analysis implemented in this
paper is byte, which means that this article will analyze which tainted bytes will
taint a certain byte in an instruction.

At the beginning of taint analysis, a portion of data is firstly marked as
tainted. We track the encountered kernel-level system call NtReadFile and mark
the data read into memory as tainted. The function call or system call are also
abstracted as a self-defined special instruction but this kind of instruction has
no operands but just records the memory address of the file content read in and
the length of the data read in. Each byte read in will be marked as tainted and
put into a pool named as tainted byte pool.

For instructions that can cause taint propagation, it is necessary to check if
their source operands has been tainted. If some bytes in source operands exist

358 Y. Yang et al.

in tainted byte pool, that instruction and the corresponding operands contain-
ing the tainted bytes are tainted. Then, each byte of the destination operands
affected by tainted bytes in source operands will be marked as tainted and put
into tainted byte pool. The whole procedure is illustrated in the left part of
Fig. 4, if each byte in the source operand of mov instruction is tainted, the corre-
sponding byte in destination operand of mov instruction should also be tainted
and added to tainted byte pool. In another situation, if an instruction causes
taint propagation but its source operand is not tainted, its destination operand
should be untainted and each byte in the destination operand should be removed
in the tainted byte pool. The whole procedure is illustrated in the right part of
Fig. 4, if each byte in the source operand of mov instruction is not tainted, the
corresponding byte in destination operand of mov instruction should also be
untainted and removed from tainted byte pool.

Fig. 4. Taint Analysis

In addition, some instructions do not directly cause explicit taint propaga-
tion, but they will read the Eflags register. If some tainted instructions modify
the Eflags register, the modified flag bit of the Eflags register is taken as tainted
and the instruction which reads the tainted bit of the Eflags register is taken
as indirectly tainted. Figure 5 shows an example about the indirectly tainted
instruction. The cmp instruction in Fig. 5 is used to compare the values of the
first source operand (src1) and the second source operand (src2), and modifies
the values of the ZF and SF flag bit in the Eflags register based on the compar-
ison results. If the comparison result is that src1 and src2 are equal, the ZF flag
bit is set to 0. Based on the value of ZF, the jz instruction in Fig. 5 determines
whether to execute a jump. If ZF is 0, the jz instruction will cause the program
to jump to the address indicated by the source operand of jz instruction. That
is, whether the jz instruction performs the jump depends on the value of the

Binary Level Concolic Execution on Windows 359

Eflags register written by the cmp instruction. If the source operands of the
cmp instruction contain taint information, it is considered that the execution of
the jz instruction is also affected by taint information and jz instruction is indi-
rectly tainted. The indirectly tainted instructions such as jz or jne are important
because these instructions perform the branch jump operations in binary pro-
grams and are commonly referred to as branch jump instructions. The binary
symbolic execution framework Triton which will be described in the next sub-
section also depends on branch jump instructions to generate path constraints.

Fig. 5. Eflags Usage

Thus, for each of instructions in the original trace, we will check whether
the instruction has directly operated on tainted data or is indirectly tainted as
described above. If so, the directly or indirectly tainted instruction information
including specific values of the operands of the instruction in the original trace
will be retained and form a new sliced trace named as tainted trace. Note that,
due to hardware compatibility design, registers with different bits have inclusion
relationships. For example, AL register is of 8 bits, AX register is of 16 bits and
AL is lower half part of AX register. Similarly, AX register is the lower half part
of EAX register and EAX register is the lower half part of RAX register. If an
operand is a register, in addition to storing the value of the register itself, it also
needs to store the value of the largest register which contains that register. The
value of the largest register will be used in symbolic execution in next subsection.

3.3 Dynamic Symbolic (Concolic) Execution

Triton is used to perform symbolic execution in this paper. Symbolic execution is
a method of program analysis that uses abstract symbols instead of specific val-
ues as program inputs, simulates program execution, and generates program path
constraint. Triton provides API to symbolize registers and memory addresses.

360 Y. Yang et al.

Once symbolize a byte, Triton will generate a symbolic variable and maintain
a symbolic expression associated with the symbolic variable. Before simulating
the execution of an instruction, it is necessary to use API provided by Triton
to set specific values in the instruction operands. If the current instruction is a
branch instruction, Triton provides API to collect symbolic expressions and com-
bine symbol expressions into path constraints. Path constraints can be solved in
Triton and the solution results are the possible values of abstract symbols.

Fig. 6. Symbolic Execution

As shown in Fig. 6, the steps to perform symbolic execution in Triton are:

(1) Iterate each instruction, set up memory region for the bytes read by ReadFile
instruction and mark them as tainted and symbolized.

(2) Set up values for operands of an instruction, if the operand is a register,
if its largest register containing that register is not set before, also set the
concrete value for the largest register.

(3) Processing the instruction in Triton.
(4) If the instruction is a branch instruction, collect constraints for each branch.

Triton provides API to find those branches, and we need solve constraints
for branches that are not executed.

(5) If it is not a branch instruction, Triton will automatically update the values
and symbolic expressions of the destination operands of this instruction.

Taking the three instructions in the tainted trace as examples, the following
will explain the process of symbolic execution in detail.

1. mov ECX, [EAX]
2. cmp ECX, 6
3. jne 0x62

Binary Level Concolic Execution on Windows 361

Triton will iterate and execute these three instructions one by one. In the
first mov instruction, value in the EAX register is considered as an address and
this instruction will take 4 bytes of value from this address. Assume that this
address is filled by ReadFile instruction and need to be symbolized. Use the
API provided by Triton to set the value in the EAX and ECX register to their
values in the tainted trace and symbolize the 4 bytes starting from the address
[EAX]. The third jne instruction is a branch instruction, working similarly to
the jz instruction mentioned earlier. If the value in ECX register is 6, the jump
instruction (jne) will not be executed, otherwise, it will be executed. Triton
treats branch instruction jne specially to generate and solve the path constraint
to make the jne instruction execute or not execute.

4 Experiments

Implementations. This tool is an open source [31] Windows application which
contains 12,000 lines of C++ code. The whole solution named as WinTaintCE
is divided into two sub-tools: WinTaintCE-Trace and WinTaintCE-Concolic.
The WinTaintCE-Trace tool is implemented in 7000 lines of code containing
the implementation of online taint analysis and rich trace logging. The trace
generation tool WinTaintCE-Trace uses DynamoRIO as the basic framework.
WinTaintCE-Concolic tool is implemented in 5000 lines of code containing the
implementation of offline taint analysis and concolic execution based on tainted
trace. The trace generation tool WinTaintCE-Concolic uses Triton [23] as the
basic framework. The whole solution WinTaintCE is targeted at Windows and
can handle Windows API and system calls at binary level.

The Design of Experiments. The experiments are divided into three parts.
The first part is to verify the effectiveness of tools on real world Windows appli-
cation fuzzing. The second part is to verify the effectiveness of tools with and
without taint analysis. The third part is to verify the effectiveness of tools on
traditional formal analysis problems such as model verification and testing. The
organization of the experiments is as follows.

1 WinTaintCE vs Windows Fuzzing Methods: Comparing the new paths found
in real world Windows applications in binary form.

2 WinTaintCE with and without Taint Analysis: Comparing the instructions
need to be handled with and without taint analysis.

3 WinTaintCE vs Traditional Formal Methods: Comparing the coverage and
time in traditional formal problems such as model verification and testing.

4.1 The Experimental Setup

WinTaintCE Setting. The proposed WinTaintCE is a dynamic symbolic exe-
cution tool and it depends on actual program traces to do concolic execution. To
make program traces more effective, inside WinTaintCE, there is a small random
seed generator which is used to generate seeds of different lengths. That seed

362 Y. Yang et al.

generator is adopted from WinAFL. Note that, in testing, only 5–10 seeds are
generated from that generator. The rest seeds are generated through constraint-
solving based on the traces generated from the 5–10 seeds. Once a seed is gen-
erated, that seed will be used as input for WinAFL, run to see how many new
paths it can discover. In another words, we still use WinAFL to see how many
paths the proposed tool can find. In 1 h testing, WinTaintCE only uses 45 min
to do concolic execution, the rest 15 min are used by WinAFL to take all seeds
generated by WinTaintCE as the initial seeds and run for 15 min to check the
number of paths finally discovered.

WinAFL Setting. In experiments, WinAFL will run for 10 rounds from
scratch. In all the 10 rounds, the maximum paths found will be retained. The
initial seeds for each tested program are extracted from the test examples on
WinLibs repository [9]. For each round, the WinAFL is configured to run for
1 h. In the experiment, the experiment results prove that after 1 h, it is difficult
for WinAFL to discover new paths, and the number of paths increased very
slowly. So, 1 h is enough to see the effectiveness of different tools.

CBMC Setting. CBMC is one of the baselines. It can test C programs. In
this experiment, Simulink models are converted into C programs. In Simulink
models, the model design is similar to the circuit design, the core logic basically
does not include loops, but there is an outer loop that controls the number of
executions of the core logic. Each execution of the loop requires corresponding
input data to be provided. For comparison with formal methods, the Simulink
models in benchmarks have set to loop only 5 times. In this experiment, when
encountering loops, we directly set the outer loop bound in source code to 5,
the loop bound will be determined at compile time, thus, CBMC will know how
many times it should expand. The CBMC command is used as follows:

cbmc.exe test.c −−cover branch −−unwind 6 −−xml − ui (1)

Note that, we ensure the number of outer loops is 5, here the − − unwind 6
(unwind loops up to 6 times) option enables CBMC to fully expand all loops.

4.2 WinTaintCE vs Windows Fuzzing Methods

The Baselines. Sydr can only run on Linux but it mainly uses Triton. We
implement WinTriton on Windows based on the proposed framework. The Win-
Triton can be taken as the Triton which uses the full program trace and the
static path exploration. WinAFL is another state-of-art baseline on Windows.

The Benchmark. Existing benchmark is in deep binding with Linux system.
On Windows, the corresponding Windows version winlibs repository [9] contains
projects such as win-libiconv, win-libtidy, win-libsodium or win-avif. The win-
libfile is the commonly used c library for processing file on GitHub.

The Result. Table 2 shows the paths found in different libraries. In binary
program, the libraries such as memcpy s or strcmp used in the program are also
taken into consideration, which means that the path computation also considers

Binary Level Concolic Execution on Windows 363

used libraries. From the result, the proposed WinTaintCE improves the found
paths by at least 24%. The symbolic execution can cover many easy to cover
branches very quickly while the fuzzing method gradually improve the found
paths. One observation is that for a binary program, it will include many libiaries,
for example, VCRUNTIME140.dll or NTDLL.dll. These libraries contain many
branches which are pass checks. For symbol execution, covering these pass checks
is easy while for fuzzing, passing these checks is difficult. This explains why the
coverage increases fast for symbolic execution methods. WinTaintCE runs much
faster than WinTriton because WinTaintCE only executes tainted instructions.

Table 2. Total Paths Found in 1 h

Win-libfile Win-avif Win-libtidy Win-libiconv Win-libsodium

WinAFL 39 148 1442 93 16

WinTriton 789 153 1249 103 28

WinTaintCE 789 184 2970 214 269

Table 3 shows the paths found by WinAFL in different libraries at different
times. As can be seen, within 1 h, the increment in the number of paths found by
WinAFL was gradually decreasing. In most projects, WinAFL cannot find new
paths after 30 min. This proves that 1 h is enough to compare the effectiveness
of different tools.

Table 3. Paths Found for WinAFL at Different Times

Win-libfile Win-avif Win-libtidy Win-libiconv Win-libsodium

5 mins 33 127 631 71 11

15 mins 35 130 778 93 14

30 mins 39 145 1126 93 16

50 mins 39 147 1410 93 16

60 mins 39 148 1442 93 16

4.3 WinTaintCE with and Without Taint Analysis

The Benchmark. The same benchmarks used in previous subsection are used
here. In this subsection, the efficiency of taint analysis is illustrated here.

The Result. Table 4 shows the number of instructions before and after the
taint analysis. As can be seen, the reduction in the number of instructions is
very significant. In different binary programs, the reduction rate varies from
96% to 99%. Take win-libtidy as an example, If the taint analysis is not used,
over 1 million instructions need to be executed and analyzed. After taint analysis,
only 9000 instructions need to be analyzed. This improves the testing efficiency
and constitutes one reason why WinTriton (uses static path exploration and full
instruction trace) performs worse than WinTaintCE.

364 Y. Yang et al.

Table 4. Effectiveness of Taint Analysis.

Win-libfile Win-avif Win-libtidy Win-libiconv Win-libsodium

Origin Instr Num 52397 78298 1012355 38273 299160

Tainted Instr Num 218 2801 9024 183 1528

Improvement 99.6% 96.4% 99.1% 99.5% 99.5%

4.4 WinTaintCE vs Traditional Formal Methods

The Baselines. One of the baselines is the Simulink Design Verifier (SLDV).
Because SLDV [12] is a famous testing and verification tool which supports both
the static analysis and dynamic analysis. Another baseline tool is an academic
tool CBMC [5] which is a famous bounded model checking tool.

The Models in Benchmark. The Simulink models are used to compare
WinTaintCE with traditional formal methods. The non-CI-CPS models [20,21]
(i.e., RHB, AT, AFC) representing realistic CPS systems from domains includ-
ing IoT, smart home and automobile are included in the benchmark. As the
models contain state machines and continuous behaviors, Simulink Rapid Sim-
ulation Target is used to generate the code under testing, the generated code
depends on Simulink library which is in binary form. In addition to non-CI-CPS
models, we also include pure control logic models (i.e. NLGuidance, Euler321,
BasicTwoTanks, EB, Regulator) in control fields such as fuel control, road con-
trol based on Euler distance and neural network guidance. These models are
previously used in the Simulink verification survey [18]. The MHI1209 model is
an industry model [6] from the Mitsubishi Heavy Industries (MHI) company.

Table 5. Effectiveness.

Condition & Decision Coverage

Model WinTaintCE CBMC SLDV

NLGuidance 69% 69% 38%

RHB 91% 0% 0%

Euler321 94% 94% 94%

BasicTwoTanks 100% 100% 96%

EB 98% 98% 93%

MHI1209 97% 0% 0%

AFC 71% 0% 0%

AT 82% 0% 0%

Regulator 75% 75% 64%

The Result. Table 5 shows the coverage values for WinTaintCE, CBMC and
SLDV. CBMC and SLDV are run on source code but the proposed WinTaintCE

Binary Level Concolic Execution on Windows 365

is run on binary code. For complex non-CI-CPS models (RHB, MHI1209, etc.),
the generated code relies on Simulink library (*.lib) binary files to perform inte-
gral calculus or run embedded S-Function and the symbolic executor SLDV or
CBMC cannot handle those external binary libraries. That is why the coverage
achieved by SLDV or CBMC is 0%. In the meanwhile, WinTaintCE performs
significantly better than SLDV or CBMC. In other small or medium control logic
models, WinTaintCE performs similarly as SLDV or CBMC. WinTaintCE can
achieve similar results as those source code level symbolic execution tools.

5 Related Work

Dynamic symbolic execution (DSE) [2,10] has significant applications in com-
puter security, such as fuzzing, vulnerability discovery, and reverse-engineering.
For dynamic execution implementation, there are two mainstreams: one [19] is
to log trace at first and then perform symbolic execution on the trace, and the
other [17] is to do symbolic execution when the program is running. There are
various ways to search for errors in programs: applying static analysis tools to
source code [13] and binary code [1] manually during compilation, using dynamic
analysis tools, and formal verification tools, among others. The fuzzing [7,22]
technology and the dynamic symbolic execution [8] technology are widely used
to detect errors [25,32].

In the field of embedded systems [26–29], researchers also face the problem
about detecting errors. In large scale Simulink models, there may exist external
dependencies, for example, models may depend on neural network libraries to
handle image recognition issues. Most of the external libraries are in binary
form. Traditional source code based testing techniques are no longer able to
keep up with the development of existing model technologies, so there is an
urgent need for improvement. A large amount of Simulink users use Windows
as their operating systems. That is the why we propose the Windows concolic
execution technology in this paper.

In recent years, Windows fuzzing [15] has attracted the attention of
researchers. Existing technology is still based on coverage guided fuzzing not
based on symbolic execution. Granting the ability to execute dynamic symbolic
execution on the Windows operating system is an urgent issue that needs to
be addressed. Although there already exist many tools for symbolic execution,
the existing tools are mainly for Linux not for Windows. For dynamic symbolic
execution, one basic rule is to dynamically run it and use concrete values to
perform the symbolic execution. Obviously, on Linux, it is hard to run Windows
application. The app will crash if there are many Windows system calls. Thus,
it is necessary to implement a symbolic execution engine on Windows. As far
as we know, the proposed tool WinTaintCE in this paper is the first tool on
Windows which can perform taint analysis and dynamic symbolic execution.

366 Y. Yang et al.

6 Conclusion

This paper proposes a dynamic symbolic execution solution on Windows plat-
form and shows the effectiveness and efficiency of the proposed framework. To
reduce the number of instructions to be analyzed from millions to thousands,
the Rich Instrument and Taint Analysis techniques are proposed. The proposed
tool can explore about 24%–130% more paths than state-of-art baselines and
save 96%–99% of the number of instructions to be analysed. In the future, how
to cover complex float branches and string hash related branches are two prob-
lems worth exploring and researching, and we will keep researching about the
dynamic symbolic execution from the two mentioned aspects on Windows.

References

1. Aslanyan, H., Arutunian, M., Keropyan, G., Kurmangaleev, S., Vardanyan, V.:
BinSide: static analysis framework for defects detection in binary code. In: 2020
Ivannikov Memorial Workshop (IVMEM), pp. 3–8. IEEE (2020)

2. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 1–39 (2018)

3. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Usenix Conference on
Operating Systems Design & Implementation (2009)

4. Chipounov, V., Kuznetsov, V., Candea, G.: S2E: a platform for in-vivo multi-path
analysis of software systems. ACM SIGPLAN Not. 39(4), 265–278 (2012)

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

6. Contributor, O.: Simulink benchmark. Web (2022). https://github.com/
EmbedSystemTest/SimulinkTest

7. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: {AFL++}: combining incremental
steps of fuzzing research. In: 14th USENIX Workshop on Offensive Technologies
(WOOT 20) (2020)

8. Gerasimov, A., et al.: Anxiety: a dynamic symbolic execution framework. In: 2017
Ivannikov ISPRAS Open Conference (ISPRAS), pp. 16–21. IEEE (2017)

9. Github Company: Winlibs (2023). https://github.com/winlibs
10. Godefroid, P., Levin, M.Y., Molnar, D.: SAGE: whitebox fuzzing for security test-

ing: SAGE has had a remarkable impact at Microsoft. Queue 10(1), 20 (2012)
11. Google Company: Winafl (2023). https://github.com/googleprojectzero/winafl
12. Inc., M.: Simulink design verifier. Web (2022). https://nl.mathworks.com/

products/simulink-design-verifier.html
13. Ivannikov, V., Belevantsev, A., Borodin, A., Ignatiev, V., Zhurikhin, D., Avetisyan,

A.: Static analyzer SVACE for finding defects in a source program code. Program.
Comput. Softw. 40, 265–275 (2014)

14. JonathanSalwan: Triton examples. Web (2023). https://github.com/
JonathanSalwan/Triton/tree/master/src/examples/cpp

15. Jung, J., Tong, S., Hu, H., Lim, J., Kim, T.: WINNIE: fuzzing windows applica-
tions with harness synthesis and fast cloning. In: Network and Distributed System
Security Symposium (2021)

https://doi.org/10.1007/978-3-540-24730-2_15
https://github.com/EmbedSystemTest/SimulinkTest
https://github.com/EmbedSystemTest/SimulinkTest
https://github.com/winlibs
https://github.com/googleprojectzero/winafl
https://nl.mathworks.com/products/simulink-design-verifier.html
https://nl.mathworks.com/products/simulink-design-verifier.html
https://github.com/JonathanSalwan/Triton/tree/master/src/examples/cpp
https://github.com/JonathanSalwan/Triton/tree/master/src/examples/cpp

Binary Level Concolic Execution on Windows 367

16. Lattner, C.: LLVM: an infrastructure for multi-stage optimization (2003)
17. Molnar, D.A., Wagner, D., et al.: Catchconv: symbolic execution and run-time type

inference for integer conversion errors. UC Berkeley EECS (2007)
18. Nejati, S., Gaaloul, K., Menghi, C., Briand, L.C., Foster, S., Wolfe, D.: Evaluating

model testing and model checking for finding requirements violations in simulink
models. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 1015–1025 (2019)

19. Padaryan, V.A., Kaushan, V., Fedotov, A.: Automated exploit generation for stack
buffer overflow vulnerabilities. Program. Comput. Softw. 41, 373–380 (2015)

20. Roohi, N., Wang, Y., West, M., Dullerud, G.E., Viswanathan, M.: Statistical veri-
fication of the Toyota powertrain control verification benchmark. In: International
Conference on Hybrid Systems: Computation and Control (2017)

21. Sankaranarayanan, S., Fainekos, G.: Simulating insulin infusion pump risks by in-
silico modeling of the insulin-glucose regulatory system. In: Gilbert, D., Heiner,
M. (eds.) CMSB 2012. LNCS, pp. 322–341. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33636-2 19

22. Sargsyan, S., Hakobyan, J., Mehrabyan, M., Mishechkin, M., Akozin, V., Kurman-
galeev, S.: ISP-fuzzer: extendable fuzzing framework. In: 2019 Ivannikov Memorial
Workshop (IVMEM), pp. 68–71. IEEE (2019)

23. Saudel, F., Salwan, J.: Triton: a dynamic symbolic execution framework. In: Sym-
posium sur la sécurité des Technologies de l’information et des Communications.
pp. 31–54. SSTIC, Rennes, France (Jun 2015)

24. Security, C.I.: Miasm. Web (2023). https://github.com/cea-sec/miasm
25. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-

tion. In: NDSS, vol. 16, pp. 1–16 (2016)
26. Su, Z., et al.: Code synthesis for dataflow based embedded software design. IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst. 41, 49–61 (2021)
27. Su, Z., et al.: MDD: a unified model-driven design framework for embedded control

software. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(10), 3252–
3265 (2022)

28. Su, Z., et al.: PHCG: optimizing simulink code generation for embedded system
with SIMD instructions. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.
42, 1072–1084 (2022)

29. Su, Z., et al.: STCG: state-aware test case generation for simulink models. In: 60th
ACM/IEEE Design Automation Conference (DAC). ACM (2023)

30. Vishnyakov, A., et al.: Sydr: cutting edge dynamic symbolic execution. In: 2020
Ivannikov ISPRAS Open Conference (ISPRAS), pp. 46–54. IEEE (2020)

31. Yang, Y.: Wintaintce. Web (2023). https://github.com/GrowingCode/
WinTaintCE-SETTA

32. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM: a practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX
Security 2018), pp. 745–761 (2018)

https://doi.org/10.1007/978-3-642-33636-2_19
https://doi.org/10.1007/978-3-642-33636-2_19
https://github.com/cea-sec/miasm
https://github.com/GrowingCode/WinTaintCE-SETTA
https://github.com/GrowingCode/WinTaintCE-SETTA

Cheat-FlipIt: An Approach to Modeling
and Perception of a Deceptive Opponent

Qian Yao1,2 , Xinli Xiong1,2 , and Yongjie Wang1,2(B)

1 College of Electronic Engineering, National University of Defense Technology,
Hefei 230037, China

{yaoqian21,xiongxinli ,wangyongjie17}@nudt.edu.cn
2 Anhui Province Key Laboratory of Cyberspace Security Situation Awareness

and Evaluation, Hefei 230037, China

Abstract. The modeling of opponent deception in an intelligent game
system is not sufficient. However, an opponent agent may launch decep-
tive actions to consume defense resources, such as feint. We focus on mod-
eling a deceptive opponent. We extend the FlipIt game model and present
Cheat-FlipIt model, in which the opponent agent may feint to flip the
resources first, and then control the resources after a decay interval. The
defense agent models and perceives the cheating behavior of the oppo-
nent agent. DQN has some shortcomings such as over-fitting and insuf-
ficient exploration, and is not suitable for opponent-deception environ-
ment. To address the problems of opponent-deception and non-stationary
environment, we present NLD3QN, which incorporates Noisynet, LSTM,
Dropout and Dueling Q-Network into the DQN. We further propose a
series of cheat strategies of the opponent agent. The defense agent adopts
NLD3QN to perceive the cheating behavior of opponents. The proposed
approach are evaluated in the Cheat-FlipIt game environments. Experi-
mental results performed on 1 vs. 1 games show that NLD3QN demon-
strates superior performance to the baseline DQN. Confronted with a
deceptive opponent, the winning rate of NLD3QN is 73.3%, while DQN’s
winning rate is 26.67%.

Keywords: Opponent modeling · FlipIt game · Reinforcement
learning · Deceptive opponent

1 Introduction

Intelligent game technology provides a new solution for agents to make decisions
in a game environment. In recent years, intelligent game has achieved great
success [2,18,23], which relies on the organic combination of game theory and
deep reinforcement learning paradigm. When there are opponent agents in a
same environment, the environment will become a non-stationary system. The
relationship between the agents may be cooperation, competition or hostility. In

X. Xiong—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 368–384, 2024.
https://doi.org/10.1007/978-981-99-8664-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_21&domain=pdf
http://orcid.org/0000-0002-2642-6865
http://orcid.org/0000-0002-9997-3747
https://doi.org/10.1007/978-981-99-8664-4_21

Cheat-FlipIt: An Approach to Perception of a Deceptive Opponent 369

recent years, the issues of cooperation and competition have been widely studied.
In fact, opponent agents may be bounded rational or deceptive to induce defense
agents to make wrong decisions in the game process. The hostile and deceptive
opponent agents have not been pay much attention.

However, with the development of artificial intelligence technology, the cost
of opponent deception is lower. In this paper, we construct a Cheat-FlipIt model
to simulate a scenario of opponent derception, which is an extension of the FlipIt
game [21] model. In a FlipIt game, the defender and the opponent compete for
controlling a sensitive resource, such as a private key, a database, etc. In fact,
it’s not easy to model the opponent deception, this paper considers a scenario
of controlling sensitive resources and adopts the extended FlipIt game model.
Cheat-FlipIt game model is a binary model, the sensitive resources can be con-
trolled by defense agent or opponent agent. In the Cheat-FlipIt game model,
the opponent agent may cheat to flip the resources first, and then control the
resources after a decay interval. The cheating behavior of the opponent aims at
confusing the defense agent and inducing it to make wrong decisions.

For solving the Cheat-FlipIt model, the traditional Nash equilibrium solution
may not be obtained. This occurs because Nash equilibrium needs to find the
global optimal solution, and its convergence conditions are not easily satisfied.
Therefore, Deep reinforcement learning(DRL) is considered to find the near-
optimal solution. DRL is a widely used approach to solve game models [11,27].
DRL combines reinforcement learning(RL) and deep learning(DL), and it has
shown great performance in a wide variety of single-agent stationary settings.
DQN [14] is a representative algorithm of DRL. However, DQN does not perform
well in the non-stationary game environment, due to its shortcomings of over-
fitting, over-estimation and insufficient exploration. The Cheat-FlipIt simulates
a scenario where opponent agents may execute deceptive actions. It makes the
game environment more non-stationary. DQN performs worse in such a scenario.

In the Cheat-FlipIt model, the defense agent needs to perceive opponent
agent’s intention explicitly or implicitly and model the opponent agent’s behav-
ior. Therefore, to solve the defects of DQN confronted with a deceptive opponent,
we propose NLD3QN, which integrates Noisynet, LSTM, Dropout, Dueling Q-
Network and Constrained Q-Learning into Deep Q-Network. LSTM [7] can
analyze historical interactive data, so as to identify opponent’s deception behav-
ior. Noisynet [5] improves the exploration ability of the defense agent. Dropout
[19] solves the problem of over-fitting. Dueling Q-Network [24] has improved the
decision-making ability. And Constrained Q-Learning [25] alleviates the problem
of over-estimation. As a result, NLD3QN has improved its performance in many
aspects. It can well identify opponent deception and adapt to the non-stationary
game environment.

In conclusion, the deceptive action is introduced into the FlipIt game model,
and the Cheat-FlipIt model is presented. And we propose a series of Cheat and
Flip strategies of opponent agents, introduced in Sect. 3.3. NLD3QN improves
the performance of DQN in many aspects and is used to solve the Cheat-FlipIt
model. NLD3QN shows extraordinary superiority than DQN when confronted

370 Q. Yao et al.

with a incompletely rational opponent agent. The method in this paper can be
used to identify the cheating behavior of opponent agent, and can be applied to
the field of intelligent robot confrontation. The contributions are summarized as
follows:

• The cheating behavior of opponents are considered in the intelligent game
model, and the Cheat-FlipIt model is proposed. The opponents may cheat to
flip the resources first, and then control the resources after a decay interval.
And we propose five Flip strategies: exp decay, random decay, gaussian decay,
fixed decay and half decay.

• The NLD3QN approach is proposed to solve the Cheat-FlipIt model, which
integrates Noisynet, LSTM, Dropout, and Dueling Q -Network into Deep
Q-Network. NLD3QN improves the performance in many aspects compared
with DQN.

• We comprehensively evaluate NLD3QN in various Cheat-FlipIt scenarios. The
experimental results demonstrated that NLD3QN shows extraordinary supe-
riority when confronted with a deceptive opponent agent. The winning rate of
defeating a deceptive opponent of NLD3QN is 73.3%, while DQN’s winning
rate is 26.67%.

The reminder of the paper is organized as follows. Section 2 introduces the
related works about intelligent games, opponent modeling and deep reinforce-
ment learning. Section 3 proposes the Cheat-FlipIt model. Section 4 introduces
the architecture and implementation details of NLD3QN approach. Section 5
analyzes the experimental results. Section 6 summarizes the paper.

2 Related Work

Intelligent games depend on the organic combination of game theory and deep
reinforcement learning paradigm. The key technologies in intelligent games are
opponent modeling and deep reinforcement learning. Opponent modeling is used
to deal with the problem of non-stationary game environment. Deep reinforce-
ment learning is used to solve the intelligent game model, through the interaction
between the agents and the environment.

Opponent modeling includes explicit and implicit modeling. Explicit model-
ing infers the opponent’s intention directly by observing its behavior. DPIQN
[10] adds a policy inferring module into DQN. Switching Agent Model (SAM)
[3] identifies, tracks, and adjusts to the non-stationary agent. Yuxi et al. [13]
makes a portrait of an opponent by using MADDPG in a competitive environ-
ment, and encodes the behavior of the opponent into a knowledge graph. Learn-
ing with Opponent-Learning Awareness(LOLA) [4] explicitly infers the other
agents. Enhanced Rolling Horizon Evolution Algorithm (RHEA) [20] takes the
historical information as training data, and the parameters of the opponent
model are updated by online optimization. Self Other-Modeling [16] predicts the
actions of the other agents and updates the learning agent’s belief. Implicit mod-
eling [1] tries to adopt a confrontational strategy without identifying the oppo-
nent’s behavior. Deep Reinforcement Opponent Network (DRON) [9] encodes

Cheat-FlipIt: An Approach to Perception of a Deceptive Opponent 371

the observation of its opponent into DQN. Gleave et al. [6] presents that an
agent can affect its opponent’s observation through its actions and cause the
opponent make a wrong decision.

The deceptive opponents have not been pay much attention in the existing
game models. Macheng et al. [17] considers that an adversary agent may confuse
the defense agent by adopting a deceptive policy, and proposes Soft Q-learning
to achieve active perception. However, the modeling of opponent deception is
not detailed enough.

RL is widely used to solve the game model. Lisa et al. [15] uses adaptive Q-
Learning solving the FlipIt game. Laura et al. [8] uses DQN to solve the FlipIt
game. However, the Q-Learning or classic DQN can’t adapt to the non-stationary
environment well when the opponent’s strategy or game environment changes.
Therefore, when an incompletely rational opponent agent launches a feint, DQN
can’t identify the opponent’s deception and adopt correct defense strategies. Zhu
et al. [27] adopts adaptive DQN for a non-stationary environment. However, the
opponent adopts a fixed strategy in this work. In fact, the opponent’s strategy
may also be random, deceptive and unpredictable.

There are inevitable shortcomings when DQN solves the intelligent game
model, such as over-fitting, insufficient exploration and over-estimation. During
the training process, dropout technology randomly drops some units from the
neural network. It breaks up the co-adaptations among specific hidden units,
and is used to solve the over-fitting problem. To overcome the over-estimation
problem, some methods [12,22] have been proposed. To strengthen the explo-
ration ability, NoisyNet adds gaussian noise to the fully-connected layer. Dueling
Q-Network splits the last layer of the neural network in state value function and
advantage function. And then both streams are combined into a single output
to estimate the Q-values. Constrained Q-Learning [25] takes a constrained mean
value as the lower bounds of Q value, which is used to solve the over-estimation
problem.

In conclusion, the existing game models without paying much attention in
the deceptive opponents. How to perceive opponent’s behavior and identify its
cheating behavior is worth to research. RL is the mainstream method to solve
the intelligent game. However, the RL algorithm has the defects of over-fitting
[26], over-estimation and insufficient exploration, which can’t adapt to the decep-
tive and uncertain game environment and can’t infer the incompletely rational
opponent agent’s behavior.

3 Cheat-FlipIt Game Model

In this Section, the proposed Cheat-FlipIt game model are introduced.
Section 3.1 introduces the assumptions of the Cheat-FlipIt game model.
Section 3.2 presents the details of the Cheat-FlipIt model. Section 3.3 proposes
the opponent’s strategies.

372 Q. Yao et al.

3.1 Assumptions

The assumptions of Cheat-FlipIt game model are made as follows.

• Assuming that the opponent is not affected by the defense mechanism and
launches an attack according to its strategy.

• Assuming that when the defense agent and the opponent control the resources
at the same time, the defense agent controls the resources.

• Assuming that the defense agent can observe the opponent’s cheat actions,
but can’t observe the flip actions. The flip actions need to be obtained by
implicit reasoning based on historical interaction data.

3.2 Model

In a FlipIt game [21], the defender and the opponent compete for controlling
a sensitive resource, such as a private key, a database, etc. In this paper, the
opponent’s deception behavior is integrated into the FlipIt game. We propose an
extension of the FlipIt model, called Cheat-FlipIt. In this model, the opponent
launches cheat actions in advance to confuse the defense agent, and then actually
controls the resources after a decay interval. The Cheat-FlipIt game model is
shown in Fig. 1.

FlipCheat

Flip

Opponent agent

Defense agent

Time steps

Flip

Control power

Flip

Cheat Flip

Flip

Cheat

launching
an attack

completing
an attack

Fig. 1. illustration of Cheat-FlipIt game (Color figure online)

Here, the blue area represents the defense agent controls the resources cur-
rently, while the red area represents the opponent agent controls. There are
Cheat and Flip strategies for the opponent in the Cheat-Flip model. Due to
the cheat action of opponent agent is introduced, the light red area indicates
the cheat attack (cheat strategy), which will be observed by defense agent. The
dark red area is the real attack (flip strategy), which is partially observable for
defense agent. The real attacks need to be obtained by implicit reasoning based
on historical interaction data. If the player decides to flip, it will control the
resource and spend the cost meanwhile.

In the Cheat-FlipIt game, N d denotes a defense agent and N o denotes an
opponent agent. T i

LM is the interval of time steps since the last move of the
players N i. Defense agent N d has full information of itself T d

LM , but it only

Cheat-FlipIt: An Approach to Perception of a Deceptive Opponent 373

has cheat information of opponent T o
CH . N d perceives and reasons the strategy

of the opponent πρo

based on observed opponent’s actions ao
t . Where, ρ is a

perceptual vector. The defense agent needs to identify the opponent’s action ao
t

is cheat or flip. Then, N d decides whether to control the resources according to
the inferred information πρo

. In the Cheat-FlipIt game process, the observation
of N d is affected by the joint actions of both sides. Cheat-FlipIt game model
can be expressed as a 6-tuple (N ,S,A, τ,R, π).

• N =
{N d,N o

}
denotes the defense agent and opponent agent.

• S = {s1, s2, · · · , sn} represents the states observed by N d, expressed by st =
(T d

LM , T o
CH | πρo

) ∈ S.
• A =

{Ad,Ao
}

denotes the action space available to N d and N o in state S
respectively, expressed as ad

t = {flip, void} ∈ Ad, ao
t = {cheat, flip, void} ∈

Ao.
• τ

{
s, ad, ao, s′} denotes the transferring probability to a state s′ ∈ S from the

state s ∈ S when N d chooses ad and N o chooses ao .
• R =

{Rd,Ro
}
, Rd and Ro represent the reward function of N d and N o.

The four circumstances are discussed as follows. (1) If a player does nothing,
the rewards and costs are both zero. (2) If a player flips and T d

LM ≤ T o
LM ,

it will not receive benefits bflip but need to consume the cost cflip instead,
because the control power originally belongs to it. (3) If a player flips and
T d

LM > T o
LM , the player regains control prower from its opponent N o. It

will receive benefits bflip and need to spend the costs cflip meanwhile. (4)
If the opponent decides to launch a feint, the cost and reward are both zero
(assuming that the cheat cost can be ignored, it will only be consumed when
the player controls the resource). In summary, rt are expressed as follows.

rt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if at = void

−cflip if at = flip and T d
LM ≤ T o

LM

bflip − cflip if at = flip and T d
LM > T o

LM

0 if at = cheat

(1)

• π =
{
πd, πo

}
represents the strategies adopted by N d and N o respectively.

Opponent strategy πo mainly includes cheat and flip strategy. N d perceives
and infers the opponent’s strategy πρo

by analyzing the historical interactive
data. Then N d executes πd correspondingly.

An 1 vs. 1 scenario of the Cheat-FlipIt game is performed, including a defense
agent N d and an opponent agent N o. The Q function of N d is expressed as

Q(s, a|πo) =
∑

ao

πo(ao|s)
∑

s′
τ

(
s, ad, ao, s′

) [
R(s, ad, ao, s′) + γEa′

[
Q(s′, a′ | πo)

]]

(2)
where, γ ∈ [0, 1) denotes the discount factor. The Q-function is calculated by

πo to avoid the exponential increase in computation. The Cheat-FlipIt model is
updated by batch gradient descent.

374 Q. Yao et al.

3.3 Opponent Strategies

The opponent agent’s strategy is a double-driven attack, which means it can be
divided into launching an attack (cheat) and completing an attack (flip). The
opponent strategies enhance the concealment and deception of the attack, as
shown in Table 1. The opponent agent does not control the resources immediately
when launching an attack (cheat), and then controls the resources after a decay
time (flip). The cheat strategy is a feint to consume the resources of the defense
agent. The definitions of Cheat and Flip strategies are as follows.

Table 1. The Cheat and Flip strategies of opponent.

Flip Cheat

Period Uniform Random period

exp decay Period+exp decay Uni+exp decay Ran period+exp decay

random decay Period+rand decay Uni+rand decay Ran period+rand decay

gaussian decay Period+gauss decay Uni+gauss decay Ran period+gauss decay

fixed decay Period+fixed decay Uni+fixed decay Ran period+fixed decay

half decay Period+half decay Uni+half decay Ran period+half decay

Definition 1. Cheat strategy means that the opponent agent launches a feint
to consume the resources of the defense agent, but actually does not control the
resources.

The cheat strategies adopted in this paper are period, uniform and random
period strategy.

• Period. Period strategy means the opponent N o flips with fixed δ time steps
[21], represented by st = δ. Where, st represents the interval of time steps of
flipping.

• Uniform. Uniform strategy represents the opponent N o flips with uniform
u time steps, represented by st = u.

• Random period. A random factor ζ(|ζ| < δ) is introduced into Period
strategy, represented by st = δ + ζ.

Definition 2. Flip strategy means that the opponent agent actually controls the
resources at a decay interval after launching a feint.

The flip strategies adopted in this paper are exponential decay, random decay,
gaussian decay, fixed decay and half decay.

• Exponential decay. The decay of time-inteval follows exponential distribu-
tion from feint attack to actually controlling resources.

• Random decay. The decay of time-inteval is random from feint attack to
actually controlling resources.

Cheat-FlipIt: An Approach to Perception of a Deceptive Opponent 375

• Gaussian decay. The decay of time-inteval follows gaussian distribution
from feint attack to actually controlling resources.

• Fixed decay. The decay of time-inteval is a fixed value from feint attack to
actually controlling resources.

• Half decay. The decay of time-inteval obeys the rule of half reduction from
feint attack to actually controlling resources.

4 NLD3QN Approach

4.1 The Architecture of NLD3QN

Because of the influence of the opponent’s deceptive strategy, the process of
Cheat-FlipIt game is non-stationary, dynamic and uncertain. Thus, we pro-
pose NLD3QN to adapt to the Cheat-FlipIt game environment. NLD3QN
aims at defending against the potentially deceptive opponent in a Cheat-FlipIt
game environment. To solve the problems of opponent deception and non-
stationary environment, NLD3QN combines NoisyNet, LSTM, Dropout, Dueling
Q-Network and Constrained Q-Learning into DQN. NLD3QN improves perfor-
mance in many ways and it can get a strategy that adapts to a non-stationary
and deceptive environment. LSTM analyzes historical interactive data, identifies
opponents’ deception strategies, and reduces the probability of wrong decision-
making of defense agents. The architecture of NLD3QN is shown in Fig. 2.

Fig. 2. The architecture of NLD3QN

NLD3QN is improved based on a three-layer fully connected network. There
are 64 units in each layer. The first layer is directly connected with the observa-
tion space, and Dropout is used to prevent over-fitting. Then, a layer of LSTM
with 64 units is added to process the historical interaction data and infer the
opponent’s deceptive strategy. Dueling Q-Network is divided into state value
function V and action advantage function A after the third full connection layer.
To enhance the exploratory ability of decision-making, NoisyNet is added before
the action advantage function A. Finally, the two streams are merged into one
stream, and then the Q value is calculated by Cons-QL.

In summary, the existing defects of DQN are over-fitting, over-estimation,
insufficient exploration, etc. NLD3QN solves these classic problems. In addi-
tion, LSTM identifies the opponent’s cheating behavior by analyzing historical
interaction data. The components of NLD3QN are introduced as follows.

376 Q. Yao et al.

• NoisyNet adds the gaussian noise to the network to enhance the explore
ability of the NLD3QN. The gassian noise is represented as ξ ≡ (μ + σ) � ε,
where (μ + σ) are learnable parameter vectors, ε denotes a zero-mean noise.

• LSTM is a specific form of recursive neural network, which learns from the
past interactive data to better analyze the deceptive strategy of the opponent
agent.

• Dropout is used during the training process of NLD3QN to overcome the
over-fitting problem. Owing to dropout training, NLD3QN is more suitable
for the uncertain environment.

• Dueling Q-Network is adopted to improve the performance of NLD3QN. It
splits the last layer of the neural network in two parts: the state-value function
S and the advantage function A.

• Constrained Q-Learning(Cons-QL) adopts a constrained mean value as the
lower bounds of Q value. It’s used to solve the over-estimation problem.

4.2 The Training Procedure of NLD3QN

The training procedure of NLD3QN is shown in Algorithm 1.

Algorithm 1: The training procedure of NLD3QN.
1 Initialize replay memory M , Cheat-FlipIt simulator env, and observation s
2 Initialize evaluation network with random weights θ, dropout p, LSTM l, and

noise ξ; target network with weights θ−

3 Initialize the parameter of the advantage function α, the parameter of the
state-value function β

4 for t = 1 to T do
5 Choose an action ad ← Q(s, a, ξ; θ, α, β, l)

6 Take ad in env and observe ao, r, s′

7 Infer πo is cheat or flip

8 Store transition τ
{
s, ad, ao, s′} in M

9 Sample minibatch of transition τ
{
sj , a

d
j , a

o
j , s

′
j

}
randomly from M

10 for j = 1 to minibatch do
11 if s′

j is the terminal state then

12 Q(sj , a
d
j |πo) ← R(sj , a

d
j , a

o
j , s

′
j)

13 end

14 Q(sj , a
d
j | πo) ← ∑

ao πo(ao | sj)
∑

s′ τ(sj , a
d
j , a

o
j , s

′
j)[

R(sj , a
d
j , a

o
j , s

′
j) + γEa′

[
Q(s′

j , a
′
j , ξ

′; θ−, α, β, l | πo)
]]

15 Calculate Q value using Cons-QL Q(sj , a
d
j | πo)

16 Execute a gradient descent step to minimize the loss
1
n

∑n
i=1 (Q(sdj , a

d
j | πo) − QE(sdj , a

d
j | πo))2

17 end
18 Update the target network θ− ← θ every C steps

19 end

Cheat-FlipIt: An Approach to Perception of a Deceptive Opponent 377

It is essential to infer opponents’ intention from the past interactive data for
defense agents. LSTM uses time series to analyze the input data, which can be
adopted to analyze the deceptive behavior of the opponent. DRL interacts with
the environment and makes sequential decisions without given prior information.

5 Experiments

The experiments are performed in a Cheat-FlipIt game simulator. Section 5.1
introduces the environmental settings. Section 5.2 describes the baseline algo-
rithms. Section 5.3 analyzes the experimental results.

5.1 Environmental Settings

The series of experiments are conducted in a Cheat-FlipIt game simulator. The
environmental parameters of the Cheat-FlipIt game are as follows. The cost of
flipping equals 5, the reward of flipping equals 1, the numbers of episodes equal
10000, and the steps of one episode equal 200.

5.2 Baselines

In this section, the three baseline algorithms are introduced, including DQN,
ND3QN and NRD3QN. Then we presents the hyperparameters used in this
experiment.

• DQN [14]. DQN is an improved algorithm of Q-Learning, which uses deep
neural network to solve Q value.

• ND3QN. It is an improved algorithm based on DQN, which integrates
Noisynet, Dropout, Dueling Q-network and Cons-QL into DQN.

• NRD3QN. It is an improved algorithm based on ND3QN, which integrates
RNN into ND3QN.

The components of the four algorithms are shown in Table 2.

Table 2. Components of four algorithms.

Components NLD3QN ND3QN NRD3QN DQN

Noisynet ✓ ✓ ✓ -

LSTM ✓ - - -

Dropout ✓ ✓ ✓ -

Dueling Q-network ✓ ✓ ✓ -

Cons-QL ✓ ✓ ✓ -

RNN - - ✓ -

- indicates that there are no values.

The hyperparameters of the four algorithms are as follows. buffer size = 2000,
batch size = 32, learning rate = 0.003, τ = 0.003, discount factor γ = 0.99, the
frequency of update network f = 5, the probability of dropout p = 0.05.

378 Q. Yao et al.

5.3 Analysis of Experimental Results

Evaluation Index

• Last score. The average rewards of last 100 episodes received by N d in 10000
episodes of the Cheat-FlipIt game.

• Winning rate. The number of times the defense agent wins in fifteen scenarios
of opponent’s combination strategies (the confidence interval is 95%).

Experimental Results. When the opponent adopts the cheat strategy of uni-
form and five strategies to control the resources, the comparison results of defense
agent vs. opponent agent are shown in Figs. 3.

Fig. 3. Defense agent vs. opponent agent with cheat strategy of uniform. (a)(f)(k)(p)
exp decay; (b)(g)(l)(q) gaussian decay; (c)(h)(m)(r) random decay; (d)(i)(n)(s)
fixed decay; (e)(j)(o)(t) half decay.

As can be seen from the Figs. 3, the agents of both sides tend to converge
gradually after 1000 episodes of game and still fluctuate in a small range. It
shows that the game process is non-stationary and will be affected by the oppo-
nent agent’s strategy. When an opponent adopts a cheat strategy of uniform
and various flip strategies, NLD3QN, NRD3QN and ND3QN all can beat their

Cheat-FlipIt: An Approach to Perception of a Deceptive Opponent 379

opponent, while DQN often loses to its opponent. Because of the over-fitting,
over-estimating and insufficient-exploration of DQN. In addition, DQN can’t
learn the opponent’s strategies from historical interactive data. While NLD3QN
is integrated with LSTM, which can learn the opponent’s deceptive strategies
from historical interactive data. In terms of convergence, NLD3QN and ND3QN
have better convergence, followed by NRD3QN, and DQN is the worst. This is
because NLD3QN, NRD3QN and ND3QN are all integrated with Dropout tech-
nology, which can solve the problem of over-fitting. In terms of identifying the
opponent’s deception strategy, when the opponent flips with fixed or half decay,
the defense agent has the best performance of identifying deception. When the
opponent flips with exponential or gaussian decay, the performance of defense
agent is moderate. When the opponent flips with random decay, the performance
of defense agent is not very good. It indicates that the more randomized and
dynamic the opponent’s deception strategy is, the more difficult it is for the
defense agent to identify the opponent’s deception.

When the opponent adopts the cheat strategy of period and five strategies
to control the resources, the comparison results are shown in Figs. 4.

Fig. 4. Defense agent vs. opponent agent with cheat strategy of period. (a)(f)(k)(p)
exp decay; (b)(g)(l)(q) gaussian decay; (c)(h)(m)(r) random decay; (d)(i)(n)(s)
fixed decay; (e)(j)(o)(t) half decay.

380 Q. Yao et al.

The winning rate of DQN is the lowest, and the convergence of DQN is the
most unstable. Instead, the performance of NLD3QN, NRD3QN and ND3QN are
better. As shown in Fig. 4 (a)(f)(k)(p), NLD3QN has the best ability to identify
opponent deception, and it can continuously maintain its advantage over the
opponent.

When the opponent adopts the cheat srategy of random period and above
strategies to control the resources, the comparison results are shown in Figs. 5.

Fig. 5. Defense agent vs. opponent agent with cheat strategy of random period.
(a)(f)(k)(p) exp decay; (b)(g)(l)(q) gaussian decay; (c)(h)(m)(r) random decay;
(d)(i)(n)(s) fixed decay; (e)(j)(o)(t) half decay.

Figures 5 show that when the opponent adopts exponential decay, gaussian
decay or random decay strategies, the performance of identifying opponent decep-
tion is not very good. The performance of ND3QN is slightly better, the perfor-
mance of NLD3QN and NRD3QN are moderate, and the performance of DQN is
the worst. And the convergence of DQN is unstable and the winning rate of DQN
is the lowest. When the opponent adopts fixed decay and half decay strategies to
control the resources, the defense agent using these four algorithms can defeat the
opponent. And the convergence of NLD3QN and ND3QN is more stable, followed
by NRD3QN, and DQN is the worst. From the comprehensive Figs. 5, it can be

Cheat-FlipIt: An Approach to Perception of a Deceptive Opponent 381

concluded that when the opponent’s deception strategy and control strategy are
randomized, dynamic and uncertain, there is a higher requirement for the defense
agent to identify deceptive behaviors of the opponent.

The all comparison results of the four algorithms are shown in Table 3. The
data in the Table 3 is the last score of defense agent vs. opponent agent. In some
cases, the average scores of both sides are unstable and the last score can’t judge
the outcome, represented by �. The criteria for judging the results are as follows.
Firstly, the premise is that the defense agent should defeat the opponent agent;
on this basis, the last scores of defense agents are compared. As can be seen from
Table 3, the winning rate of NLD3QN is 73.33%, the winning rate of NRD3QN
and ND3QN are 66.67%, while the winning rate of DQN is 26.67%. NLD3QN
is more generalized and can adapt to more opponent deception strategies. this
is because LSTM can analyze the historical interaction data to better learn the
opponent’s deception strategy. DQN can defeat the opponent when it adopts
flip strategy of half decay. However, when the opponent adopts other strategies,
DQN almost loses to the opponent. It indicates that the generalization of DQN
is not satisfactory, and it is not suitable for other deception scenarios. When the
flip strategy of the opponent agent adopts exponential decay and random decay,
the four algorithms are all ineffective at identifying deception.

Table 3. Last score of the defense agent vs. opponent agent

Opponent Winning rate

NLD3QN NRD3QN ND3QN DQN

73.33% 66.67% 66.67% 26.67%

period+exp decay 94.69/4.71 ✓ 32.56/49.99✗ 52.51/80.84✗ 36.29/110.21✗

period+rand decay 42.09/45.86✗ 53.55/42.20 ✓ 33.61/62.09✗ 55.50/65.20✗

period+gauss decay 28.93/86.57✗ 77.45/19.40 ✓ 69.95/29.95 � 16.54/71.61 ✗

period+fixed decay 82.14/13.86 ✓ 74.96/22.69 ✓ 97.41/-1.41 ✓ 38.67/70.13 ✗

period+half decay 82.09/19.81 ✓ 113.48/-19.73 ✓ 39.44/90.86✗ 12.83/8.92 ✓

uniform+exp decay 102.94/-14.54 ✓ 82.46/22.24 ✓ 48.78/49.92 ✓ 36.63/110.37 ✗

uniform+rand decay 48.20/44.20 ✓ 47.20/51.55✗ 68.67/29.23 ✓ 30.21/101.09✗

uniform+gauss decay 69.59/31.41 ✓ 56.96/43.69 ✓ 57.14/37.71 ✓ 28.33/82.82 ✗

uniform+fixed decay 91.76/2.14 ✓ 87.58/7.67 ✓ 69.13/23.47 ✓ 58.31/31.09 ✓

uniform+half decay 102.94/-14.54 ✓ 94.02/-6.07 ✓ 103.56/-19.21 ✓ 90.92/2.98 ✓

ran per+exp decay 42.72/76.98✗ 29.20/65.35✗ 60.44/26.01 � 41.03/78.77✗

ran per+rand decay 40.00/58.85 ✗ 46.65/52.60✗ 58.11/34.49 ✓ 35.23/47.72✗

ran per+gauss decay 64.60/34.50 ✓ 69.64/22.96 ✓ 67.59/27.91 ✓ 30.24/104.56✗

ran per+fixed decay 84.61/5.44 ✓ 54.13/70.12✗ 91.64/-1.19 ✓ 29.77/43.68✗

ran per+half decay 96.39/-9.64 ✓ 99.04/-15.51 ✓ 96.11/-13.76 ✓ 86.36/5.74 ✓

✓ represents winning; ✗ represents losing; � represents drawing.

The results of ablation experiment of ND3QN are shown in Table 4. Dropout
technology has the greatest influence on winning rate. It shows that the oppo-

382 Q. Yao et al.

nent’s deception strategy makes the environment more non-stationary, and
dropout can prevent over-fitting and adapt to the non-stationary environment
well. Dueling Q-network, Noisynet and Constrained Q-Learning are also helpful
to improve the performance. Combining the results of Table 3, LSTM improves
the winning rate and reward value of the defense agent.

Table 4. Ablation experiments of ND3QN.

Opponent Winning rate

w-Dropout w-Dueling w-Noisynet w-Cons QL

20.00% 73.33% 66.67% 66.67%

period+exp decay 12.78/53.67 ✗ 31.11/75.54 ✗ 3.11/46.79✗ 52.51/80.84✗

period+rand decay 34.30/112.20✗ 60.05/41.25� 52.26/42.59� 33.61/62.09 ✗

period+gauss decay 11.73/77.32 ✗ 52.01/41.59 ✓ 28.02/84.68 ✗ 69.95/29.95 �
period+fixed decay 35.27/108.33 ✗ 77.34/45.01 ✓ 84.16/6.79 ✓ 97.41/-1.41 ✓

period+half decay 78.94/26.41 ✓ 103.35/-13.65 ✓ 111.45/-15.90 ✓ 39.44/90.86✗

uniform+exp decay 59.40/52.05� 60.85/37.25 ✓ 59.44/41.21 � 48.78/49.92 ✓

uniform+rand decay 37.65/74.15✗ 60.54/34.46 ✓ 70.10/27.10 ✓ 68.67/29.23 ✓

uniform+gauss decay 38.88/83.22✗ 58.38/39.77 ✓ 64.39/36.91 ✓ 57.14/37.71 ✓

uniform+fixed decay 12.50/34.10 ✗ 78.67/17.28 ✓ 73.04/25.66 ✓ 69.13/23.47 ✓

uniform+half decay 60.88/44.52 ✓ 100.80/-12.35 ✓ 108.16/-21.06 ✓ 103.56/-19.21 ✓

ran per+exp decay 35.05/110.95 ✗ 45.49/40.96 � 57.66/37.84 ✓ 43.12/86.98✗

ran per+rand decay 13.74/46.71✗ 47.76/37.64 � 55.18/34.42 � 59.57/34.28 ✓

ran per+gauss decay 2.86/53.24 ✗ 46.04/45.11 ✓ 57.50/40.40 ✓ 62.89/32.11 ✓

ran per+fixed decay 46.16/68.64 ✗ 80.16/6.14 ✓ 92.76/-6.21 ✓ 89.23/-1.03 ✓

ran per+half decay 75.30/13.05 ✓ 99.99/-13.94 ✓ 97.22/-12.37 ✓ 82.44/9.76 ✓

w is the abbreviation of without.

6 Conclusion

In this paper, we model a deceptive opponent and extend the FlipIt game model.
We present Cheat-FlipIt model, in which the opponent agent may cheat to
control the resources first, and then actually flip the resources after a decay
interval. We further propose a variety of flip strategies of opponent agents. The
defense agent needs to model and perceive the cheating behavior of the opponent
agent. We present NLD3QN to solve the Cheat-FlipIt game model. To address
the problems of opponent-deception and non-stationary environment, NLD3QN
incorporates Noisynet, LSTM, Dropout, Dueling Q-Network and Constrained
Q-Learning into DQN. Defense agent adopts NLD3QN to perceive and infer
the cheating behavior of opponents. Moreover, we verify that NLD3QN is capa-
ble of dealing with opponent peeception by conducting experiments in 1 vs. 1
game scenarios. NLD3QN is superior to DQN when confronted with a deceptive

Cheat-FlipIt: An Approach to Perception of a Deceptive Opponent 383

opponent. The winning rate of NLD3QN is 73.3%, while DQN’s winning rate is
26.67%. The method in this paper can be applied to the field of intelligent robot
confrontation.

References

1. Bard, N., Johanson, M., Burch, N., Bowling, M.: Online implicit agent modelling.
In: Proceedings of the 2013 International Conference on Autonomous Agents and
Multi-Agent Systems, pp. 255–262 (2013)

2. Brown, N., Sandholm, T.: Superhuman AI for multiplayer poker. Science
365(6456), 885–890 (2019)

3. Everett, R., Roberts, S.J.: Learning against non-stationary agents with opponent
modelling and deep reinforcement learning. In: AAAI Spring Symposia (2018)

4. Foerster, J.N., Chen, R.Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., Mordatch,
I.: Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326
(2017)

5. Fortunato, M., et al.: Noisy networks for exploration. arXiv preprint
arXiv:1706.10295 (2017)

6. Gleave, A., Dennis, M., Wild, C., Kant, N., Levine, S., Russell, S.: Adversarial
policies: attacking deep reinforcement learning. arXiv preprint arXiv:1905.10615
(2019)

7. Graves, A.: Long Short-Term Memory. Supervised Sequence Labelling with Recur-
rent Neural Networks, pp. 37–45 (2012)

8. Greige, L., Chin, P.: Deep reinforcement learning for FlipIt security game. In: Ben-
ito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.)
COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol. 1072,
pp. 831–843. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93409-
5 68

9. He, H., Boyd-Graber, J., Kwok, K., Daumé III, H.: Opponent modeling in deep
reinforcement learning. In: International Conference on Machine Learning, pp.
1804–1813. PMLR (2016)

10. Hong, Z.W., Su, S.Y., Shann, T.Y., Chang, Y.H., Lee, C.Y.: A deep policy inference
q-network for multi-agent systems. arXiv preprint arXiv:1712.07893 (2017)

11. Hu, Y., Han, C., Li, H., Guo, T.: Modeling opponent learning in multiagent
repeated games. Appl. Intell. 53, 1–17 (2022)

12. Kumar, A., Zhou, A., Tucker, G., Levine, S.: Conservative q-learning for offline
reinforcement learning. In: Advances in Neural Information Processing Systems,
vol. 33, pp. 1179–1191 (2020)

13. Ma, Y., et al.: Opponent portrait for multiagent reinforcement learning in compet-
itive environment. Int. J. Intell. Syst. 36(12), 7461–7474 (2021)

14. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

15. Oakley, L., Oprea, A.: QFlip?: an adaptive reinforcement learning strategy for the
FlipIt security game. In: Alpcan, T., Vorobeychik, Y., Baras, J.S., Dán, G. (eds.)
GameSec 2019. LNCS, vol. 11836, pp. 364–384. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32430-8 22

16. Raileanu, R., Denton, E., Szlam, A., Fergus, R.: Modeling others using oneself
in multi-agent reinforcement learning. In: International Conference on Machine
Learning, pp. 4257–4266. PMLR (2018)

http://arxiv.org/abs/1709.04326
http://arxiv.org/abs/1706.10295
http://arxiv.org/abs/1905.10615
https://doi.org/10.1007/978-3-030-93409-5_68
https://doi.org/10.1007/978-3-030-93409-5_68
http://arxiv.org/abs/1712.07893
https://doi.org/10.1007/978-3-030-32430-8_22
https://doi.org/10.1007/978-3-030-32430-8_22

384 Q. Yao et al.

17. Shen, M., How, J.P.: Active perception in adversarial scenarios using maximum
entropy deep reinforcement learning. In: 2019 International Conference on Robotics
and Automation (ICRA), pp. 3384–3390. IEEE (2019)

18. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017)

19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

20. Tang, Z., Zhu, Y., Zhao, D., Lucas, S.M.: Enhanced rolling horizon evolution algo-
rithm with opponent model learning. IEEE Trans. Games 15, 5–15 (2020)

21. Van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: Flipit: the game of “stealthy
takeover”. J. Cryptol. 26, 655–713 (2013)

22. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
30 (2016)

23. Vinyals, O., et al.: Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning. Nature 575(7782), 350–354 (2019)

24. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling
network architectures for deep reinforcement learning. In: International Conference
on Machine Learning, pp. 1995–2003. PMLR (2016)

25. Yao, Q., Wang, Y., Xiong, X., Wang, P., Li, Y.: Adversarial decision-making for
moving target defense: a multi-agent Markov game and reinforcement learning
approach. Entropy 25(4), 605 (2023)

26. Zhang, C., Vinyals, O., Munos, R., Bengio, S.: A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893 (2018)

27. Zhu, J., Wei, Y., Kang, Y., Jiang, X., Dullerud, G.E.: Adaptive deep reinforcement
learning for non-stationary environments. Sci. China Inf. Sci. 65(10), 202204 (2022)

http://arxiv.org/abs/1804.06893

Making an eBPF Virtual Machine Faster
on Microcontrollers: Verified

Optimization and Proof Simplification

Shenghao Yuan(B) , Benjamin Lion, Frédéric Besson ,
and Jean-Pierre Talpin

Inria, Rennes, France
{shenghao.yuan,benjamin.lion,frederic.besson,jean-pierre.talpin}@inria.fr

Abstract. As a revolutionary kernel extension technology, Berkeley
Packet Filters (BPF) has been applied for various operating systems
from different domains, from servers (Linux’s extended BPF) to micro-
controllers (RIOT-OS rBPF). Previous works have formally proved the
memory isolation property for the non-optimized rBPF virtual machine
in the Coq proof assistant. In this paper, we introduce a verified opti-
mization for rBPF, and highlight a novel proof approach for optimization
correctness: a simplification process is first used to transform monadic
models with option state to simplified non-monadic models with inline
arguments; then the optimization correctness theorem is split into i)
proving simplification correct and ii) proving the optimization correct-
ness on simplified models. Our proof approach enjoys a fruitful proof
simplification. Preliminary experiments demonstrate satisfying perfor-
mance.

Keywords: BPF · Optimization · Verification · Monad Simplification

1 Introduction

One of the worst decision in software engineering is to compromise the correct-
ness of the application in order to gain some runtime performance. As the saying
goes, premature optimization is the root of all evil. The optimization of a pro-
gram often comes with trade-off and good practices therefore advocate to first
produce a modular and correct application, then looking for places to optimize.

This design strategy has been applied on the rBPF [19] virtual machine,
whose correctness has been fully verified in the Coq proof assistant [3]. The cor-
rectness proof ensures that the interpreter is isolated: it will not allow rBPF
instructions to modify memory regions in which it has insufficient permissions.
The defensive function check mem acts as a safeguard to enforce this require-
ment. The first proof of correctness in [18] defines a verified implementation of the
check mem function which checks every memory access at runtime against the
list of all memory blocks, regions and permissions registered with the CompCert
memory model of the virtual machine. As check mem is often used by the inter-
preter (typically, every time a memory instruction is called), optimizing its imple-
mentation would obviously speed up execution. Since the rBPF instruction set
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 385–401, 2024.
https://doi.org/10.1007/978-981-99-8664-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_22&domain=pdf
http://orcid.org/0000-0002-8467-5827
http://orcid.org/0000-0001-6815-0652
http://orcid.org/0000-0002-0556-4265
https://coq.inria.fr/
https://compcert.org/
https://doi.org/10.1007/978-981-99-8664-4_22

386 S. Yuan et al.

is used by operating systems for embedded devices and microcontrollers with
low energy and resources, both correctness and performance are critical.

The interpreter has been formalized in Coq, candidates for optimization can
be formally defined as a new implementation of the check mem function and can
be proved to preserve the semantics. The difficulty is to reason compositionally
on the correctness of the interpreter with respect to the new check mem function.

The formalization of the rBPF interpreter uses the native check mem func-
tion, which is not optimized. For a given rBPF memory instruction, the check
mem function iterates over all memory regions, in sequence, to find whether
the instruction points to a valid memory region. While such implementation
is correct, the performance can be improved by changing the order in which
check mem iterates over the memory regions.

In this paper, we consider an alternative implementation of the check mem
function as a candidate for runtime optimization. When an rBPF memory
instruction is executed for the first time, the check mem function iterates sequen-
tially over the memory regions until the accessed memory is reached, as the non-
optimized check mem does. The accessed memory region is stored in a cache, so
that when the same instruction is called for a second time, the check mem first
looks at the cache before iterating over all the other memory regions.

We provide the following contributions. The first contribution is to prove
that the new check mem function is correct, i.e., that the new interpreter per-
forms the same behaviours as the non-optimized one. The main contribution is
however the workflow employed to equally optimise and simplify these proofs,
by the definition of a series of transformations on the monadic definition of the
interpreter. The last contribution is to experimentally demonstrate that the new
check mem function is an optimization, by running benchmarks on the optimized
and non-optimized interpreters.

The background material is presented in Sect. 2. The design choices for the
new check mem function are presented in Sect. 3, and the proof of correctness
of the new interpreter is given in Sect. 4. Benchmarks are given in Sect. 5 and
demonstrates that the new function is an optimization for the presented cases.
Section 6 presents related works and Sect. 7 concludes.

2 Background

The CompCert Verified Compiler. CompCert is a C compiler, both programmed
and proved correct in Coq, that generates efficient code for the ARM, PowerPC,
RISC-V, and x86 processors. Two important CompCert concepts are used in
this paper:

– A value v ∈ val in CompCert can either be a 32-bit Vint(i) or 64-bit Vlong(i)
integer, a pointer Vptr(b, o) to a block b with offset o, a floating-point number
or the undefined value Vundef .

– A CompCert memory m consists of a collection of separate blocks (b ∈ block)
with a fixed size.

Verified Optimization for eBPF Virtual Machine on Microcontrollers 387

BPFs. Berkeley Packet Filters [11] (BPF) was designed originally for the purpose
of network packet filtering. The Linux community adopted the concept of BPF
and implemented eBPF (extended BPF) to run custom in-kernel VM code, for
the untrusted kernel extension [6]. eBPF was then ported to micro-controllers,
yielding RIOT-OS [2]’s specification: rBPF.

Both eBPF and rBPF take eBPF binary programs as input because the rBPF
ISA is a subset of the eBPF one. The main difference is:

– eBPF depends on a sophisticated online verifier (e.g., [7]) to guarantee secu-
rity, e.g., a binary eBPF program can not cause any memory leaks.

– As an MCU architecture cannot host such a large verifier, rBPF has a tiny
verifier and adopts dynamic defensive strategies in its interpreter to ensure
security. For instance, the rBPF interpreter only allows executing an rBPF
memory instruction after the defensive function chek mem checks this mem-
ory operation is valid at run-time. This requires rBPF users to additionally
declare all memory regions used by their eBPF programs.

CertrBPF [18,20] is a fully verified version of RIOT-OS rBPF that

– proves that rBPF isolates faults in the Coq proof assistant, and
– provides an end-to-end verification workflow to generate verified C programs

from the CertrBPF specification in Gallina, the functional language embed-
ded in the Coq proof assistant.

3 Design

This section introduces the check mem optimization algorithm as well as the
corresponding implementation.

3.1 High Level Intuition

Two scenarios for the optimized check mem function are graphically depicted in
Fig. 1. We detail the steps in each scenario.

The input binary, on the left of Fig. 1, contains two memory instructions,
at location i and j. The list of memory regions are displayed next to the input
binary array, and duplicated for readability (although, in practice, only one array
of memory regions exists). The cache, in doted line, is initialized with 0.

When a memory instruction of the input binary is interpreted, the check mem
function is called. As the cache is initially empty, the optimized check mem
behaves, on the first call, as the non-optimized check mem function and iterates
sequentially over the memory regions to find if the instruction is valid. When
the function finds the valid memory region (e.g., mr a for the i-th instruction
and mr b for the j-th instruction), the cache is updated with the index of that
memory region (e.g., a for the i-th instruction and b for the j-th instruction).

The second time that an instruction is interpreted, the optimized check mem
function behaves differently to the non-optimized check mem function. The

https://ebpf.io/

388 S. Yuan et al.

memory region that the cache points to is first checked. If that memory region is
valid for the instruction, the cache keeps the reference, and we call such case a
cache hitting. If not, all other memory regions are checked, in sequence, until one
a valid one is found. The cache is updated with the new valid one (e.g., the j-th
memory instruction, on the second time, belongs to the memory region mr c).

Fig. 1. check mem optimization

3.2 Optimized check mem Function

We fix perm, chk , mrs, cache, addr , and pc, to respectively denote a CompCert
permission, a CompCert memory chunk (size of memory block to access), a list
of memory regions, a cache where elements of the list are indexes in the list
of memory region, a memory address, and a program counter. We also write
l[n �→ v] for updating the n-th element of list l with value v.

The new optimized check mem (Algorithm 1) is explained as follows: it first
checks if the cache is empty (line 2), if the cache is not empty, the algorithm
calls the function check one mem region to check if the memory address addr is
within the history memory region with the index cache[pc] (line 3). If the result
is valid which represents cache hitting, then the algorithm directly returns true
and the old cache (line 7). The other two cases cache empty (line 9) and cache
missing (line 5) are similar: performing the iteration of all memory regions by
the recursive function check all mrs (line 10).

The iteration is from right to left which is implemented according to the argu-
ment n starting from the number of memory regions. When n arrives 0, repre-
senting that there is no valid pointers for all memory regions, the check all mrs
function returns false and the old cache (line 12). check all mrs skips the region
cache id during the iteration (line 14). If check all mrs finds that the address
addr is not within the current memory region indexed by n, it invokes the recur-
sion to check the (n − 1)th memory region (line 18). Otherwise, it returns true
and the updated cache with the new memory region (line 20).

https://compcert.org/doc/html/compcert.common.Memtype.html#permission
https://compcert.org/doc/html/compcert.common.Memtype.html#permission
https://compcert.org/doc/html/compcert.common.AST.html#memory_chunk

Verified Optimization for eBPF Virtual Machine on Microcontrollers 389

The function check one mem region is used to calculate if the input address
addr satisfies that the memory interval [addr, addr+ chk) is in the range of the
id-th memory region, it also checks alignment and permission of the interval.

Algorithm 1: The check mem optimization algorithm
Data: (perm : permission), (chk : memory chunk), (mrs :

list memory region), (cache : list nat), (addr : val), (pc : int)
Result: (is valid : bool), (new cache : list nat)

1 check mem :
2 if cache[pc] ! = null then
3 is valid ← check one mem region(mrs[cache[pc]], perm, chk, addr) ;
4 if ! is valid then
5 return check all mrs(size(mrs), id, perm, chk,mrs, cache, addr, pc);

/* cache missing */

6 else
7 return (true, cache) ; /* cache hitting */

8 else
9 return check all mrs(size(mrs), 0, perm, chk,mrs, cache, addr, pc) ;

/* cache empty */

Data: (n : nat), (cache id : nat), (perm : permission), (chk :
memory chunk), (mrs : list memory region), (cache : list nat), (addr :
val), (pc : int)

Result: (is valid : bool), (new cache : list nat)
10 check all mrs :
11 if n = 0 then
12 return (false, cache);
13 else if n = cache id then
14 return check all mrs(n − 1, cache id, perm, chk,mrs, cache, addr, pc);
15 else
16 is valid ← check one mem region(mrs[n], perm, chk, addr) ;
17 if ! is valid then
18 return check all mrs(n − 1, cache id, perm, chk,mrs, cache, addr, pc);
19 else
20 return (true, cache[pc �→ n]); /* cache updating */

3.3 Implementation

The Coq development reuses the CertrBPF Gallina specification which makes
use of an option-state monad M to capture undefined behaviors (an option type
has two cases: ∅ denoting failure and �x� denoting success with result x) and
memory-related side effects. We recall the definition of an option-state monad,
for any value type A and state type state:

M state A := state → option(A × state)

390 S. Yuan et al.

The optimized rBPF interpreter takes a new state that lifts the existing
CertrBPF state with an additional field cache. We stipulate:

– cache represents a list of caches with the same length of the input rBPF binary
list, i.e., each memory instruction in the binary list has the same location as
the corresponding cache in the cache list.

– the value of each cell of cache should be within range [0,mrs num] where
mrs num is the number of memory regions. Initially, each cache cell is empty
(0 by default), when it is updated with a cache id, this cache points to the
corresponding memory region with index cache id − 1.

Our new interpreter implementation introduces a flag ‘opt flag : bool’: when
users set the flag with true, the optimization is enabled. If opt flag = false, our
specification is equivalent to the formally verified CertrBPF interpreter where
fuel is for the termination of the interpreter (4096 by default) and ctx ptr points
to the start address of a special memory region of rBPF, named context, that is
used to store all input values for rBPF programs. The bpf interpreter returns a
value from an option-state monad with val the type of the bpf interpreter status:

bpf interp (opt flag : bool) (fuel : nat) (ctx ptr : val) : M state val .

Benefiting from the CertrBPF workflow [18], an executable C program could
be automatically extracted from our Gallina model.

4 Proof

The monadic definition of the rBPF interpreter is such that every sub func-
tion of the interpreter is a monadic function defined over the same state. The
benefit of having a monadic model is that the binding operator of the monad
composes the value and threads the state over each function. For instance, given
f1 : A → M state B and f2 : B → M state C , then the composition is simply the
binding of f1 and f2, written as do x ← f1 ; f2 . The drawback, however, is that
every function is defined over the same option-state monad with a global state.
As a consequence, if the global state changes (e.g., due to an optimization), all
invariants have to be proved again. More details are given in Subsect. 4.1.

Alternatively, each function of the model can be defined over the projection
of the state that the function modifies. For instance, if the function f1 only
modifies the substate s of the state state, the projection f ′

1 has the new signature
f ′
1 : A×s → (B×s). The benefit of such approach is that if the global state state

is modified (e.g., due to an optimization), but the modification is not in s, then
the invariant of f ′

1 still hold, without additional proof. The drawback, however,
is that composition of f ′

1 and f ′
2 (for some projection of f2) is no longer as simple

as the monadic binding as the signatures may not coincide. We call simplification
the transformation that takes a function defined over an option-state monad and
returns the projected function as detailed above.

Verified Optimization for eBPF Virtual Machine on Microcontrollers 391

Our strategy is then the following. We keep the monadic model for design, as
monadic composition makes specification easier. We use the simplification trans-
formation, as detailed in Subsect. 4.2, on the rBPF interpreter with optimization,
and prove the correctness of the check mem optimization. Last, we prove that
the simplification is correct with the equivalence proof in Subsect. 4.3.

4.1 Challenge

Following the workflow of CertrBPF, our new proof model adopts the monadic
form with an option state monad M . The standard refinement proof adopted
by CompCert and CertrBPF is to prove the theorem optimization correctness
that the two models (non-optimized and optimized) preserve a proper forward
simulation relation.

The simulation relation match states ⊆ state× state is straightforward: the
equality between all other fields in two states, except for the cache.

match states(st1, st2)
def
=

∧
⎧
⎪⎨

⎪⎩

st1.pc = st2.pc

st1.f lag = st2.f lag

. . .

Theorem optimization_correctness: ...

(Hsim: match_states st1 st2)

(Hinterp: bpf_interp false fuel input_v st1 = �(res, st1')�),
∃ st2',

bpf_interp true fuel input_v st2 = �(res, st2')� /\

match_states st1' st2'.

Theorem optimization correctness only considers the case when the monadic
interpreter returns successfully because the existing isolation proof [18] guaran-
tees the monadic CertrBPF interpreter (i.e., opt flag = false) never crashes.

We illustrate the challenge of directly proving the correctness of the optimiza-
tion within our monadic model and present our solution in the next section.

We first introduce the function tree of our Gallina model because the proof
process of the theorem follows this tree structure. We highlight four nodes of the
function tree, as depicted in Fig. 2:

– bpf interp: The top function of our new CertrBPF model;
– step: It interprets single rBPF instruction with an initial state, and results

a new state;
– upd reg: The leaf node that updates the register map field of the global

monad state;
– check mem: The key function where the opt flag = true branch enables the

check mem optimization. We underline that the optimized case and the non-
optimized one return different states as the former can modify the cache field
of the global state.

392 S. Yuan et al.

Fig. 2. Function tree of the optimized interpreter. Left is the monadic model with
the global state. Right is our simplified model. The grey region includes the shared
functions whose simulation proofs can be eliminated on the right side.

To complete this standard state-based refinement proof, it then requires a
forward simulation proof of each node in Fig. 2. The main reason is that all
monadic functions in the tree share the same global state and check mem has
different effects on this state, depending on the optimization flag opt flag. The
existing experience from CertrBPF has shown evidence that this way is quite
complex and spends a lot of time proving many trivial but very detailed lemmas.

There are several potential ways that may tackle the challenge.

– dependent type: CertrBPF adopts ‘implementation-proof-separation’ way that
this proof model doesn’t contain any proof invariant. We could try to re-
implement CertrBPF by embedding some invariant in a dependent-type form,
and it may simplify the final simulation proof.

– monadic laws: Our proof model is monadic, therefore we could consider proof
based on monadic laws. Similar to monad transformer in Haskell, we define
monad projection and injection, along with the related laws, in order to
declare the side-effect on the global state of each sub functions e.g., upd reg
and check mem.

Our solution is much more direct: we forget the monadic structure, and
replace the global state with proper inline arguments, by a so-called simplifi-
cation process. It results in a fruitful proof simplification of the final theorem:
we omit the simulation proof of most shared functions since they have the exactly
same behavior in both optimized and non-optimized models.

4.2 Simplification

The simplification is to

– replace the global state with the essential local parameters derived from fields
of the state;

– replace the monad along with monad operations to the normal Gallina func-
tions, and

https://existing.experience/

Verified Optimization for eBPF Virtual Machine on Microcontrollers 393

– simplify the simulation relation (match states) to the equivalence between
outputs of models, in our cases, they are the non-optimized model and the
check mem optimized model.

As depicted in Fig. 3, the simplification process consists of four steps:

Fig. 3. The simplification process.

f (: a) : M state b

(step1) ⇒ f1 (: a) (: state) : option (b × state)

(step2) ⇒ f2 (: a) (: t1) (: t2) . . . (: tn) : option (b × t1 × t2 × . . . × tn)

(step3) ⇒ f3 (: a) (: tj) (: tj) . . . : option (b × ti × tj × . . .)

(step4) (f, fopt) ∈ R ⇒ (f3, f
opt
3) ∈ Rsimpl

Step 1: Remove Monad Along with Standard (and Non-standard) Monad Oper-
ations. We unfold our option state monad M and its operations, then we move
the initial state to an argument for readability: this syntax-level transformation
doesn’t modify the semantics of Gallina programs.

Step 2: Replace the Global State with Inline Arguments. Assume the global state
contains several fields with the signature t1 × t2 × . . . × tn, we construct a new
function by:

1. unfold the initial state as a list of arguments with types t1, t2, . . . , tn, and
2. replace the final state with the projection of all its components.

Step 3: Bottom-Up Delete Unused Arguments and Outputs. According to the
function tree of our monadic model, we remove all unused arguments and reduce
fields of outputs starting from leaf nodes. Only modified components allow to
output and their types are reserved in the type signature.

For instance, the initial monadic functions (see comments) and the final sim-
plified versions of upd reg, step, and bpf interpreter are shown as follows:

– upd reg only modifies the register map regmap field in the global state,
therefore we only reserve this type in the input and output.

– step takes most fields of the monadic state, except for the bpf flag, because
we only execute step when the interpreter status is normal. step returns
a new pc (affected by Branch instructions), a new register map (modified
by most instructions, e.g., alu), a new CompCert memory (because of Store

394 S. Yuan et al.

instructions), a bpf flag (produced by e.g., div-by-zero, etc.), and a new cache
(updated by the check mem optimization). Some fields are not returned, such
as the binary instruction list l, the input binary size len and the memory
region list mrs, which naturally represents they are unchanged by step.

– bpf interpreter takes all components of the global state as parameters and
returns the final result if successful.

(* * r Definition upd_reg (r: reg) (v: val) : M state unit := ... *)

Definition upd_reg (r: reg) (v: val) (rs: regmap): regmap := ...

(* * r Definition step (opt_flag: bool) : M state unit := ... *)

Definition step (opt_flag: bool) (pc: int) (cache: list nat)

(l: list int64) (len: nat) (rs: regmap) (mrs_num: nat)

(mrs: MyMemRegionsType) (m: mem):

option (int * regmap * mem * bpf_flag * list nat) := ...

match ins with

| Alu ... => match step_alu ... with

| ∅ => ∅
| �(rs', f)� => �(pc, rs', m, f, cache)�
end

...

(* * r Definition bpf_interpreter (fuel: nat) (ctx_ptr: val)

(opt_flag: bool) : M state val := ... *)

Definition bpf_interpreter (opt_flag: bool) (fuel: nat) (ctx_ptr: val)

(pc: int) (cache: list nat) (l: list int64) (len: nat)

(rs: regmap) (mrs_num: nat) (mrs: MyMemRegionsType) (m: mem):

option (val * int * regmap * mem * bpf_flag * list nat) := ...

Step 4: Simplify the Simulation Relation. Since the simplified model doesn’t
have any states, the simulation relation R can be equivalently replaced by a
much simpler and more intuitive input-output relation Rsimpl: the simulation
relation of a pair of initial states of function f and fopt is transformed into
an input relation that the simplified f3 and fopt

3 have the same input value of
simplified arguments; the simulation of finial state is also translated into the
relation that f3 and fopt

3 have the same value for simplified output fields.
For example, the lemma step preserves simulation relation declares an input-

output relation derived from match states.

– input : The initial simulation relation is replaced by the constraint that all
inline input arguments (pc, register map, CompCert memory, and bpf flag)
must be identical for the optimized function (opt flag = true) and the non-
optimized one.

– output : The final simulation relation is expressed as two parts:
• Explication: all fields that are used in match states also exist in the out-

put should be identical, e.g., the new pc value pc′.
• Implication: all fields that do not appear in the output are unmodified,
e.g., the read-only memory region list mrs.

Verified Optimization for eBPF Virtual Machine on Microcontrollers 395

Lemma step_preserves_simulation_relation: ...

(Hstep: step false pc cache l len rs mrs_num mrs m = �(pc', rs', m',

f', cache'�),↪→

∃ cache1,

step true pc cache l len rs mrs_num mrs m = �(pc', rs', m', f',

cache1)�.↪→

Last, the construction of the final state is replaced by finding a new cache.

4.3 Equivalence Proof

This section mainly discusses two theorems:

– The simplification is correct (Theorem 1): prove the equivalence between the
initial monadic models and the simplified models;

– The check mem optimization is correct (Theorem 2): prove that the non-
optimized model and the optimized model are equivalent.

Theorem 1 (Simplification Correctness). Assume the monadic interpreter
bpf interp takes initial state st1 and successfully outputs result res and final
state st2, the simplified version bpf interpreter passes all fields of st1 as argu-
ments, it returns the same result.

Theorem simplification_correctness: ...

(Hinterp: bpf_interp opt_flag fuel ctx_ptr st1 = �(res, st2)�),
bpf_interpreter opt_flag fuel ctx_ptr (pc_loc st1) (cache st1)

(ins st1) (ins_len st1) (regs_st st1) (mrs_num st1)

(bpf_mrs st1) (bpf_m st1) =

�(res, pc_loc st2, regs_st st2, bpf_m st2, flag st2, cache

st2)�.↪→

Proof. The key part is that the monadic check mem function may modify the
global state, therefore a related lemma is proved to show this function has no
effect on all other fields that are used by all consequent monadic functions.

Theorem 2 (Optimization Correctness). Assume the simplified rBPF
interpreter accepts the same arguments, the one disabling the check mem opti-
mization returns the same result as another enabling the optimization.

Theorem optimization_correctness_simpl: ...

(Hmem_disjoint: memory_regions_disjoint mrs_num mrs m0)

(Hcache_inv: cache_inv cache l mrs_num)

(Hinterp: bpf_interpreter false ... = �(res, pc, rs, m, f, cache)�),
∃ cache1,

bpf_interpreter true ... = �(res, pc, rs, m, f, cache1)�.

396 S. Yuan et al.

This theorem requires two assumptions:

– the user declared memory regions mrs are disjoint: there is no overlap between
any two memory regions. This one is directly derived from the memory invari-
ant of the original isolation proof.

– Due to the new field cache, an additional invariant is used to formalize the
stipulation mentioned in Subsect. 3.3 for proving Theorem 2: cache inv spec-
ifies the length of the cache list and the valid range of each element in the
list.

Proof. We first case analysis on rBPF instructions, the proof of the non-
memory instructions is trivial because both non-optimized and optimized mod-
els execute identical behaviors. The memory instruction cases are non-trivial
because the check mem function of two models has different behaviors: the
optimized model may update cache. Therefore we prove an important lemma
check mem preserves simulation relation that indicates two models return the
same result pointer ptr but different caches.

Lemma check_mem_preserves_simulation_relation: ...

(Hcheck: check_mem false mrs_num ... = Some (ptr, cache')),

∃ cache1,

check_mem true mrs_num ... = Some (ptr, cache1).

Next, the check mem lemma proof consists of three cases of the cache in the
optimized model:

– cache not exists (cache id = 0): This is the simplest case which represents
the cache is empty and the optimized model performs the normal memory
checking as same as the non-optimized version, the only difference is that once
it finds a valid pointer, it updates the cache with the corresponding memory
region index before output. In this case, the proof is trivial.

– cache exists (cache id
= 0): the optimized model observes the cache is not
empty, there are two cases,

• cache missing : The input address is not valid in the corresponding mem-
ory region of cache id, therefore the optimized model performs the nor-
mal memory checking as same as the non-optimized version but skips the
memory region cache id (Algorithm 1: line 16–17). This case proves by
induction on the number of memory regions mrs num and returns a new
cache.

• cache hitting : The proof is also by induction on mrs num, and this case
doesn’t modify the cache because the input address is valid in the cor-
responding memory region of cache id. The proof requires that the non-
optimized version is also (and only) valid in this memory region where
we use the assumption that memory regions are disjoint.

Verified Optimization for eBPF Virtual Machine on Microcontrollers 397

5 Evaluation

Our experimental objects are the original non-verified rBPF interpreter (i.e.,
vanilla-rBPF), CertrBPF, and the optimized CertrBPF. Our measurements
focus on the memory requirements of the virtual machines and the instruction
execution throughput.

5.1 Experimental Evaluation Setup

Our experiments are performed on a nrf52840dk support board which uses an
Arm Cortex-M4 microcontroller, a popular 32-bit architecture (arm-v7m). The
code is compiled using the Arm GNU toolchain version 12.2. The compilation is
using level 2 optimization enabled and the following GCC options:

– -foptimize-sibling-calls: optimize all tail-recursive calls and in turn,
bound the stack usage;

– -fwrapv, -fwrapv-pointer: both signed and pointer arithmetic wrap around
according to the two’s-complement encoding;

– -fno-strict-aliasing: there is no aliasing assumption.

The last three options are passed for the purpose of avoiding a possible
mismatch between the CompCert semantics and the GCC semantics.

5.2 Memory Footprint

We first evaluate the memory footprint of the CertrBPF interpreter and the
CertrBPF-opt implementation, compared to vanilla-rBPF. We measure i) Flash
size: all read-only data, including the actual code; ii) Stack : the approximate
RAM used for stack space.

Table 1. Memory footprint of rBPF engines

Size Vanilla-rBPF CertrBPF CertrBPF (opt)

Flash 2018 B 1502 B 2114 B

Stack 356 B 68 B 96 B

We compare the required memory by the different implementations in
Table 1. In terms of Flash, the check mem optimized CertrBPF increases the
footprint because of the additional cache field, compared to CertrBPF, but this
optimized version is comparable with Vanilla-rBPF. In terms of Stack, both
CertrBPF and optimized CertrBPF have less stack usage, compared to Vanilla-
rBPF. One reason is that Vanilla-rBPF has an extra call module that occupies
approximately 108 B.

398 S. Yuan et al.

in
cr

sq
ua
re

bi
ts
wa
p fib

so
ck

bu
f

m
em

cp
y
1

m
em

cp
y
n

fle
tc
he
r3
2

so
rt

0

50

100
E
xe
cu

ti
on

ti
m
e
(%

)

Vanilla-rBPF CertBPF CertBPF (opt)

Fig. 4. Performance of runtime (optimized) CertBPF generated code relative to
Vanilla-rBPF generated code on a Arm Cortex-M4 processor. Shorter is better. The
baseline, in blue, is Vanilla-rBPF without optimizations. The optimization is in green.
(Color figure online)

5.3 Experiments

We evaluate the performance of actual benchmarks using CertrBPF (enable and
disable the check mem optimization):

– The first four benchmarks test pure computation tasks mainly consisting
of rBPF alu operations and one extra exit instruction (for the purpose of
validating the rBPF verifier). These results are averaged over 1000 runs to
guarantee accuracy.

– Then, we select three special cases with more memory operations but fewer
alu32 operations: the classical BPF socket buffer read/write, memory copies
only 1 element (average over 1000 times), and memory copies many elements.

– Finally, we benchmark the performance of actual IoT data processing using
the Fletcher32 algorithm or a sort algorithm.

Summary. As shown in Fig. 4, the optimized CertrBPF speedups most of the
benchmarks, compared to the original CertrBPF.

For the first four benchmarks, the possible reason for the performance
improvement of the optimized CertrBPF may be that GCC with optimizations
changes the layout of the final binary forms generated from the source C rBPF
interpreters because of the additional cache-related functions. Therefore, the
evaluation result produces slight difference, e.g., incr in CertrBPF is 5.750µs,
and incr in CertrBPF (opt) is 5.376µs.

We observe that the optimized CertrBPF is slower than the original
CertrBPF in the case of memcpy 1, but still faster than Vanilla-rBPF. This

Verified Optimization for eBPF Virtual Machine on Microcontrollers 399

slow-down is caused by copying only one element: it takes the additional expense
to update cache but then exits before benefiting from any acceleration of cache.
The benchmark memcpy n (n = 60) shows the optimized version enjoys speedup
due to the extra cache. This behavior is also visible in our data processing bench-
marks.

Discussion. We could image the worst case of the optimized CertrBPF: one
rBPF program frequently switches one pointer to different memory regions, and
it results in a lot of cache updating but never cache hitting. For this worst
case, users should disable the check mem optimization, another alternative is
to design an advanced rBPF verifier that adopts static analysis techniques to
determine whether the optimization should be enable or not.

6 Related Work

Monadification. Many existing research works on lifting non-monadic functions
into a monadic form, i.e., monadification, for quite various purposes: Martin et
al. [5] describe an algorithm to automatically transform non-monadic programs
into monadic form for structuring and modularizing functional programs. Simon
et al. [17] present a framework in Isabelle/HOL for automatic memoization of
recursive functions which uses monadification to produce immediate represen-
tation of recursive functions with the state monad. Akira et al. [14] consider
the formally-verified transformation from Coq to low-level C code, they propose
a monadification algorithm that inserts proper monads into programs for the
preservation of critical properties, e.g., absence of overflows.

The simplification presented in this paper is the opposite operation of monad-
ification by forgetting the monadic structure and localizing the global state as
proper arguments. This choice makes us benefit from a fruitful proof simplifica-
tion: most shared functions between the optimized model and the non-optimized
one are free of proof.

To the best of our knowledge, the closest related work is AutoCorres
[8,9]. AutoCorres is a formally verified tool that abstracts monadic C repre-
sentations (deep embedding in Isabelle/HOL) into shallow embedding forms
in Isabelle/HOL. One of its steps, named ‘local variable lifting’, translates a
monadic C representation into a simplified monadic representation where local
variables are lifted out of the program’s global state. AutoCorres and our sim-
plification differ in the following ways:

– AutoCorres considers a verified transformation between two monadic repre-
sentations, while our method targets the non-monadic form; and

– AutoCorres provides an automatic proof for this lifting step, whereas we
handle our simplification process manually.

Verified Optimization. There has been a good deal of work on proving the cor-
rectness of optimizing transformations for various functional languages, such as
CompCert [10], CakeML [12], and CertiCoq [1]. In the context of BPF, Linux

400 S. Yuan et al.

eBPF adopts JIT techniques as well as many modern JIT-related optimizations
to accelerate the execution time of eBPF programs. However, existing formal ver-
ification research [13,15,16] on eBPF JITs primarily focuses on the correctness
of the JITs compilation instead of verified optimizations.

When turning to RIOT-OS rBPF, both the unverified Vanilla-rBPF and
verified CertrBPF consider fewer (verified) optimizations. To address it, this
paper presents a verified check mem optimization for rBPF.

7 Conclusion and Future Work

This paper presents a verified optimization algorithm for the formally verified
CertrBPF virtual machine, and introduces a simplification process from monadic
functions to non-monadic form for the purpose of simplify the proof that the opti-
mization is correct. The algorithm implementation and proofs of our optimized
virtual machine are formalized in Coq and are available on the repository [4].

Next step, we aim at: i) designing an algorithm, similar to AutoCorres, for the
automatic simplification of monadic programs; ii) exploring a monadic frame-
work in Coq to prove the correctness of optimized programs in a monad form: we
plan a monadic state transformer to only modify state without changing monad,
by reusing the existing monad transformer technique.

References

1. Anand, A., et al.: CertiCoq: a verified compiler for Coq. In: CoqPL, Paris, France
(2017)

2. Baccelli, E., et al.: RIOT: an open source operating system for low-end embedded
devices in the IoT. IoT-J 5(6), 4428–4440 (2018)

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013)

4. CertrBPFOpt: a verified optimization of CertrBPF (2023). https://gitlab.inria.fr/
syuan/certrbpfopt

5. Erwig, M., Ren, D.: Monadification of functional programs. Sci. Comput. Program.
52(1), 101–129 (2004). https://doi.org/10.1016/j.scico.2004.03.004

6. Fleming, M.: A Thorough Introduction to eBPF (2017)
7. Gershuni, E., et al.: Simple and precise static analysis of untrusted Linux kernel

extensions. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2019, New York, NY, USA,
pp. 1069–1084. Association for Computing Machinery (2019). https://doi.org/10.
1145/3314221.3314590

8. Greenaway, D.: Automated proof-producing abstraction of C code. Ph.D. thesis,
UNSW Sydney (2014)

9. Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: formal
verification of c code without the pain. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2014,
New York, NY, USA, pp. 429–439. Association for Computing Machinery (2014).
https://doi.org/10.1145/2594291.2594296

https://gitlab.inria.fr/syuan/certrbpfopt
https://gitlab.inria.fr/syuan/certrbpfopt
https://doi.org/10.1016/j.scico.2004.03.004
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/2594291.2594296

Verified Optimization for eBPF Virtual Machine on Microcontrollers 401

10. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

11. McCanne, S., Jacobson, V.: The BSD packet filter: a new architecture for user-level
packet capture. In: USENIX Winter Conference, San Diego, California, USA, vol.
46, pp. 259–270. USENIX (1993)

12. Myreen, M.O., Owens, S.: Proof-producing synthesis of ml from higher-order logic.
In: Proceedings of the 17th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2012, New York, NY, USA, pp. 115–126. Association
for Computing Machinery (2012). https://doi.org/10.1145/2364527.2364545

13. Nelson, L., Geffen, J.V., Torlak, E., Wang, X.: Specification and verification in the
field: applying formal methods to BPF just-in-time compilers in the Linux kernel.
In: 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2020), pp. 41–61. USENIX Association, USA, November 2020. https://
www.usenix.org/conference/osdi20/presentation/nelson

14. Tanaka, A., Affeldt, R., Garrigue, J.: Safe low-level code generation in Coq using
monomorphization and monadification. J. Inf. Process. 26, 54–72 (2018). https://
api.semanticscholar.org/CorpusID:4571133

15. Van Geffen, J., Nelson, L., Dillig, I., Wang, X., Torlak, E.: Synthesizing JIT com-
pilers for in-kernel DSLs. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12225, pp. 564–586. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53291-8 29

16. Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., Tatlock, Z.: Jitk: a trustworthy
in-kernel interpreter infrastructure. In: 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2014), Broomfield, CO, pp. 33–47.
USENIX Association, October 2014. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/wang xi

17. Wimmer, S., Hu, S., Nipkow, T.: Verified memoization and dynamic programming.
In: International Conference on Interactive Theorem Proving (2018). https://api.
semanticscholar.org/CorpusID:14004609

18. Yuan, S., Besson, F., Talpin, J.P., Hym, S., Zandberg, K., Baccelli, E.: End-to-end
mechanized proof of an eBPF virtual machine for micro-controllers. In: Shoham,
S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13372, pp. 293–316. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-13188-2 15

19. Zandberg, K., Baccelli, E.: Minimal virtual machines on IoT microcontrollers:
the case of Berkeley Packet Filters with rBPF. In: PEMWN, pp. 1–6. IEEE,
Berlin/Virtual, Germany (2020)

20. Zandberg, K., Baccelli, E., Yuan, S., Besson, F., Talpin, J.P.: Femto-containers:
lightweight virtualization and fault isolation for small software functions on low-
power IoT microcontrollers. In: Proceedings of the 23rd ACM/IFIP International
Middleware Conference, Middleware 2022, New York, NY, USA, pp. 161–173.
Association for Computing Machinery (2022). https://doi.org/10.1145/3528535.
3565242

https://doi.org/10.1145/2364527.2364545
https://www.usenix.org/conference/osdi20/presentation/nelson
https://www.usenix.org/conference/osdi20/presentation/nelson
https://api.semanticscholar.org/CorpusID:4571133
https://api.semanticscholar.org/CorpusID:4571133
https://doi.org/10.1007/978-3-030-53291-8_29
https://doi.org/10.1007/978-3-030-53291-8_29
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi
https://api.semanticscholar.org/CorpusID:14004609
https://api.semanticscholar.org/CorpusID:14004609
https://doi.org/10.1007/978-3-031-13188-2_15
https://doi.org/10.1145/3528535.3565242
https://doi.org/10.1145/3528535.3565242

An Optimized Solution for Highly
Contended Transactional Workloads

Chunxi Zhang1(B), Shuyan Zhang2, Ting Chen2, Rong Zhang2, and Kai Liu1

1 Shanghai Stock Exchange, Shanghai 200000, China
{chxzhang,kliu}@sse.com.cn

2 East China Normal University, Shanghai 200000, China
{shyzhang,tingc,rzhang}@dase.ecnu.edu.cn

Abstract. High contention frequently explodes in E-commerce sce-
nario when promotions are held. However, modern multi-core main-
memory databases cannot achieve ideal performance under high con-
tention. Transactions contending for the same resources must be exe-
cuted serially in traditional architecture to guarantee correctness, which
severely chokes database management systems. In this paper, we pro-
pose to optimize the transaction processing scheme for highly contended
E-commerce workloads. First, we analyze the characteristics of these
workloads in detail. Second, we design to filter ineffective operations at
IO layer instead of sending them to executing layer, considering the lim-
ited number of items involved in the promotion. Third, we make out
a homogeneous operation merging scheme to share database execution
resources, e.g., locks, and improve parallelization. We implement a pro-
totype, Filmer, to demonstrate our idea. Filmer launches filtering and
merging for contended transactions to make full use of system resources
and improve parallelization. Extensive experiments show that filtering
and merging improve the throughput by up to 1.95× and 2.55× respec-
tively.

Keywords: transaction processing · concurrency control · high
contention

1 Introduction

Large-scale transaction processing is increasingly critical in emerging businesses,
especially E-commerce. One of the most representative applications is the pro-
motional activities widely expected by global customers, running on some spe-
cial on Alibaba’s platform. Alibaba processes up to 491, 000 transactions per
second during the promotion [8]. As the backbone of the transactional business,
database management systems (DBMSs) face increasing pressure, which requires
it to have the ability to handle intensive workloads with the characteristics of
high concurrency and serious skews.

During the promotion, lots of users read (R) or write (W) the same inventory
at the same time, resulting in transactions rush to access the same item. The
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 402–418, 2024.
https://doi.org/10.1007/978-981-99-8664-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_23&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_23

An Optimized Solution for Highly Contended Transactional Workloads 403

remaining ineffective operations will greatly waste system resources. Besides,
severe conflicts caused by R-W, W-R, or W-W operations and high concurrency
bring a lot of data contention, which drags down the latency or leads to a large
number of request timeouts. Contention processing is one of the most costly
actions in relational DBMS. Optimistic concurrency control protocol (OCC)
exhibits poor performance due to frequent rollback under high contention [6];
Even if the concurrency control protocol is optimized [16,20], contention caused
by W-W conflicts cannot be relieved, which leads to low parallelism among
transactions [11].

Fortunately, E-commerce applications have weak requirements for database
consistency [5]. Many methods can be used to mitigate the contention for data
from read operations. One of the representative ways is to use Read/Write Sep-
aration architecture (RW-Sep), by separating the reads and writes to different
servers. In E-commerce, high contention is mainly caused by the write operations
for stock reduction, because every sale transaction needs to subtract the stocks.
In order to improve the performance of DBMSs, the traffic is usually intercepted
by queuing [12] the requests at the service layer. But this solution highly couples
with the business. Once the business changes, the service layer code also needs
to be modified.

In this paper, we design and implement Filmer, a prototype system, to han-
dle E-commerce workloads with intensive contention. Compared with traditional
processing scheme, Filmer optimizes transaction processing at different levels
of database implementation. First, at IO layer, Filmer records failed operations
to filter the subsequent ineffective operations and avoids resource wasting at the
execution layer. Second, at the execution layer, we propose to merge homoge-
neous operations, which can make conflicting writes share the same write lock.
This enables the transactions the operations belong to can be executed in par-
allel and reduces the number of data modifications. Lastly, Filmer implements
the architecture of binding workers to a logical data partition to further relieve
central lock contention [13]. To the best of our knowledge, Filmer is the first
work to filter ineffective traffic in DBMSs, and the first to propose a strategy
to share resources among write operations. Experiments show that ineffective
traffic filtering and homogeneous operation merging can lead up to 1.95x and
2.55x increase in throughput, respectively.

2 Preliminaries and Overview

In this section, we first analyze the characteristics of workloads in E-commerce
scenario. Then, we identify the difficulties when dealing with these workloads
and propose an optimized transaction processing scheme. Finally, we give an
overview of our design in Filmer.

2.1 Characteristics of E-Commerce Workloads

When an E-commerce business starts a promotion, the price of items will be
reduced within a specified time, which greatly increases the probability of cus-

404 C. Zhang et al.

tomers rushing for items at the same time, and the best-selling items are quickly
sold out. Accordingly, we summarize the characteristics of these workloads into
the following three points:

High Contention. Customers snap up items in a short time, and thus the
concurrency of transactions is very high. Lots of transactions request to read or
write the same tuple in database due to the relatively small number of items
involved in promotions, resulting in a high conflict rate of operations.

Definition 1. Homogeneous Operations shall satisfy the following three
conditions:

(1) They are UPDATE operations generated from the same SQL template.
(2) They only add or subtract a constant from the attribute value(s).
(3) They access the same tuple.

Numerous Homogeneous Operations. Homogeneous operation is defined in
Definition 1. In Example 1, two users want to buy the item pk = 3 in inventory R
by operations O1 and O2, both of which have the same SQL Template “UPDATE
R SET c = c - ? WHERE pk = ? AND c ≥ ?;” and reduce the stock of the
same item c.

Example 1.

O1: UPDATE R SET c = c - 1 WHERE pk = 3 AND c ≥ 1;
O2: UPDATE R SET c = c - 2 WHERE pk = 3 AND c ≥ 2;

Since items involved in a promotion usually cover a very small portion of the
whole stock and lots of customers rush for the popular items, there will be a
large number of such homogeneous operations, e.g., O1 and O2, contending for
the same tuples, e.g., pk = 3.

Numerous Ineffective Operations. Since the quantity of each item for pro-
motion is limited, the items may have been sold out when many purchase requests
arrive at the database. A lot of operations that still try to reduce the number
of sold-out items are doomed to fail. We call these operations ineffective opera-
tions. If RW-Sep architecture is adopted or a cache is built at the service layer,
inconsistency read to the sold-out items will attract more ineffective operations
to DBMS and aggravating the waste of system resources.

2.2 Optimized Scheme

Traditionally, DBMS allocates one worker thread to each transaction. Since each
thread manages different transactions, contention between threads for shared
data resources inevitably arise when transactions are executed concurrently. A
study in Dora [13] proves that contention in central lock manager can become
a system bottleneck. In order to mitigate the contention pressure introduced
to the lock manager, we implement the transaction access model by logically

An Optimized Solution for Highly Contended Transactional Workloads 405

binding threads to data partitions, that is data on the same partition can only
be accessed by a unique thread. The lock table for data changes from global to
local, which significantly reduces the contention of global resources.

Because operations on the same data are handed over to the same thread, the
thread-to-data model provides an opportunity to merge homogeneous operations
and share locks among different transactions. For example, O1 2 is generated for
O1 and O2 in Example 1. O1 2: UPDATE R SET c = c - 3 WHERE pk = 3 AND c ≥ 3; In
this way, transactions that would otherwise have to be executed serially can be
executed in parallel without changing the transaction semantics, which greatly
increases the concurrency among transactions and multiple data updates can
be reduced to one. In addition, we build an ineffective operation recognizer by
introducing a filter table to filter numerous ineffective operations in workloads,
identify them at the IO layer and return fail immediately, so as to reduce the
waste of system resources as much as possible.

2.3 System Overview

Filmer is a prototype implemented as an in-memory database to improve pro-
cessing performance with intensive contention. Since OCC always suffer poor
performance due to frequent aborts under intensive contention, Filmer adopts
a pessimistic protocol, two-phase locking (or 2PL) [2], for its concurrency con-
trol. For simplicity, we implement a single-versioned 2PL in Filmer, which is
enough to demonstrate our idea. Retaining more data versions does not help
resolve W-W conflicts.

The overall architecture and the workflow of Filmer are shown in Fig. 1. The
operations sent by a client reach IO Manager (IOM) first. IOM consists of a
filter and a dispatcher. filter identifies the ineffective operations, and returns fail
to the client directly; otherwise, the operations will be handed over to dispatcher
for subsequent processing. dispatcher is responsible for two tasks. One is to
dispatch the general CRUD operations, i.e., insert, delete, select and update, to
the corresponding worker based on the primary keys of the data to be accessed.
The other one is to pass transaction operations, i.e., begin, commit, or rollback,
to Transaction Manager (TM).

Workers

IO Manager

Dispatcher

Transac�on
Executor

Log M
anager

Context
Manager

Transac�on
Controller

Transac�on
Manager

Opera�ons Effec�ve
opera�ons

Storage

Write back

Filter

Lock
Table

Lock
Table

Lock
Table

Logging

Commit

Create/Delete

Fig. 1. The Overall Architecture and Workflow of Filmer

406 C. Zhang et al.

In Transaction Executor (TE), data is divided into disjoint logical parti-
tions according to primary keys. Each partition is managed by a different worker
and each worker maintains its own local lock table. The worker thread fetches a
set of homogeneous operations at a time, and locks the data to be accessed using
a local lock table. Operations that are unable to obtain the lock will be placed in
waiting queue and be executed after the lock is released. If the operation locks
data successfully, the worker will read the required data from the storage first,
and then record updated results in transaction context. Our execution strategy
guarantees that the worker can merge all the homogeneous operations that have
arrived and execute them together. Different operations of the same transac-
tion are likely to be executed by different threads, but all the information of a
transaction will be stored in its transaction context.

The transaction controller chooses different execution methods for different
transaction operations. For a begin (resp., abort) operation, it only needs to
create (resp., delete) the context of the corresponding transaction. For a commit
operation, it notifies the Log Manager (LM) to write the redo log. After the log
is persisted, LM sends a commit message to context manager. At this point, a
transaction is actually completed. IOM replies to the client that the transaction
has been committed. At the same time context manager processes the messages
one by one, writing updates in the transaction context to the storage.

All threads in IOM, TM and TE, are executed in a non-blocking style, which
helps to avoid frequent context switching in kernels.

3 Ineffective Operations Filtering

In order to avoid unnecessary resource contention, we choose to filter ineffective
operations at IOM, the entrance of the whole system. In this section, we first
give a method to identify ineffective operations, then elaborate the entire filtering
process.

Definition 2. If a single-point UPDATE operation U intends to subtract a pos-
itive number from current value of attribute α, and the integrity constraint on
α requires it to belong to a left-closed interval, then U is a Count-Constraint
Update (CC-Update) and α is a constraint-attribute of U .

Definition 3. If an UPDATE operation U intends to add a positive number to
current value of attribute α, then U is a Count-Supplement Update (CS-
Update), and α is a constraint-attribute of U .

An Optimized Solution for Highly Contended Transactional Workloads 407

Algorithm 1. Identify CC-Update and CS-Update
Input: UPDATE operation s
Output: the category of s
1: array Ψ ← expressions split by “,” after “SET” in s
2: array Ω ← predicates split by “AND” after “WHERE” in s
3: n ← the number of tuples that s attempts to modify
4: for all expression e in Ψ do
5: α ← attribute that e attempts to modify
6: if n=1 and e is to subtract a positive number from α then
7: for all predicate p in Ω do
8: if p has the form “α ≥ constant” then
9: return 1

10: end if
11: end for
12: else if e is to add a positive number to α then
13: return 2
14: end if
15: end for
16: return 0

3.1 Ineffective Operation Identification

During promotion, UPDATE operations have a high probability of being ineffec-
tive as declared in Sect. 2. We define two kinds of updates for our problem as in
Definition 2–3. A stock reducing operation is a typical CC-Update because the
quantity of items is required to be a positive integer. In contrast, a re-stocking
operation is a CS-Update. Usually, although the items have been sold out, there
will still be a lot of updates trying to reduce the numbers, i.e., CC-Updates,
which become ineffective inevitably. Obviously, the same CC-Update can only be
performed a limited number of times if no CS-Update with the same constraint-
attribute is launched. In order to efficiently identify ineffective operations and
save system overhead, our filtering behavior is only aimed at CC-Update.

We describe the details of identifying CC-Update and CS-Update in Algo-
rithm 1. For an update s, we initialize array Ψ and Ω to record its expressions and
predicates respectively, then calculate n, the number of tuples that s attempts
to modify (Line 1 to 3). For each expression, if n = 1 and it subtracts a positive
number from attribute α, we check whether there is an integrity constraint on
α in the predicate, and if so, it is a CC-Update (Line 6 to 11). Otherwise, if the
expression adds a positive number to α, it is a CS-Update (Line 12 to 14). In
other cases, we return 0, i.e., other types. The time complexity of the algorithm
is O(EP), where E and P are the number of expressions and predicates.

We design a Filter Table to record ineffective updates so as to determine
if a CC-Update is still effective. Each entry in the table is defined by a triple as
< Table name, Primary key, Column id >. Table name and Primary key spec-

408 C. Zhang et al.

ify the tuple that U is trying to modify, and Column id refers to the constraint-
attribute of U. If a CC-Update U is found to be ineffective, its operation infor-
mation will be in the filter table. If a CC-Update has more than one constraint-
attributes, we will add multiple entries in filter table.

Pre-processing

Filter table
look-up

Dispatcher

Filtered out

Transac�on
Executor

Filter table

CC-Updates and
CS-Updates

Others

CC-Updates with
intersec�on Delete

Add

Filter

Opera�ons

Fig. 2. Filtering Procedure Fig. 3. Merging Procedure

3.2 Filtering Procedure

The whole filtering process is shown in Fig. 2. As mentioned before, requests
sent by clients first arrive at IOM. IOM compiles the operations and obtain
the primary keys of the tuples it about to access according to its predi-
cate. If the location predicate is not based on primary keys, we need first
locate the keys. For example, if it is based on the secondary index, we need
to first access the secondary index to get the values of corresponding pri-
mary keys. If the operation is an UPDATE, we use Algorithm 1 to determine
the specific type of operation. If it is a CC-Update or CS-Update, then its
< Table name, Primary key, Column id > will be extracted, probably more
than one, for comparison with the entries in the filter table. If they are found to
have a intersection, there are two cases:
1) For a CC-Update, an ineffective operation is found. IOM filters out the

operations and returns fail directly to the client.
2) For a CS-Update, IOM deletes the intersecting entries from the filter table

and dispatch the operation since a CS-Update is likely to make the CC-
Update with the same constraint-attribute no longer ineffective.

For all other cases, operations will be dispatched to TE directly according
to their primary key values. When a CC-Update fails because of violating the
integrity constraint on a constrain-attribute, TE inserts new entries into filter
table.

Filter table is a concurrent data structure that needs to be accessed by multi-
ple threads. Since IOM needs to do checking for each CC-Update or CS-Update
in filter table, filter table is frequently read, but it is only written when adding
or deleting entries in or from it. Therefore, we use copy-on-write technology [17]

An Optimized Solution for Highly Contended Transactional Workloads 409

to implement it. In a high contention scenario, filter table is usually small and
only used for popular items that have been sold out, and thus the copying cost
is little.

Theorem 1. The filtering behavior does not affect the conflict-serializability of
transactions.

Proof.

(1) If no operation is filtered in transaction T, then all operations are executed
in DBMS normally.

(2) If an operation in transaction T is filtered, it means that the operation
failed. Because of the atomicity of transactions, T will be aborted eventually
as if it never happened.

Accordingly, filtering will not affect transaction conflict-serializability in DBMS.

4 Homogeneous Operations Merging

In this section, we introduce the key ideas of operation merging, and discuss the
details of the whole merging procedure.

4.1 Design of Merging

If we want to merge operations, we should first screen out the candidate opera-
tions that may have homogeneous companions. For an operation, if it does not
satisfy the following two conditions, it can not be merged:
1) It is an UPDATE operation;
2) It only adds or subtracts a constant from the attribute value(s).

For such an operation, we simply assign it a unique string as its pattern, and
then put it together with the pattern into PO-Map (Pattern-Operation Map),
such as O5 with its pattern “3#” in Fig. 3. Otherwise, for a mergeable operation
candidate, we construct its unique pattern using its pivotal information which
includes the tables it accesses, the primary key value of the tuple to be accessed,
the attributes it attempts to modify and the corresponding arithmetic operators,
the attributes and relational operators in condition predicates. Then we put the
mergeable candidate into PO-Map with the pattern as shown in Fig. 3. After
doing this, operations with the same pattern are homogeneous. For example,
in Fig. 3, O1 and O2 have the same pattern “R3c-c≥” which means they both
access the tuple with pk = 3 on table R, do subtraction on attribute c, and both
require c to be greater than or equal to a certain value.

The second concern is how to merge operations in a candidate list. The
processing of assignment expression after set is quite simple. We only need to
add or subtract a constant value from the attribute. In Fig. 3, “set a = a+1”
and “set a = a+3” in O3 and O6 are merged into “set a = a+4”. In contrast,

410 C. Zhang et al.

the merging of predicates is a little complicated. We classify the predicates in
an operation into two categories: location predicates and condition predi-
cates. Location predicates refer to the predicates used to access the index, which
determine the location of the target tuples. Since homogeneous operations access
the same tuple, their location predicates must be equal and have been used in
pre-processing. Thus, there is no need to merge them. Besides location predi-
cates, we call all the other predicates in SQL statements condition predicates,
which are used to further check whether the tuples found by location predicates
meet some additional conditions. The merging of condition predicates needs to
be configured according to the logic of the application. The easiest way is to take
the intersection, such as merging “c ≥ 1” and “c ≥ 2” in O1 and O2 into “c ≥
2”. However, if the two operations perform the reduction of the quantity of a
item when the item is in stock, it is obvious that the merged operation generated
by the above merging method do not conform to the semantics of the original
operations. In this scenario, we can accumulate the values after the relational
operators, i.e., “c ≥ 3”. Currently, we only support these two ways of predicate
merging. However, predicates in OLTP workloads are not complex and usually
only appear in the form of “column op constant”, and thus it is not difficult to
specify how they are merged based on application logic.

4.2 Merging Procedure

In TE, each thread is responsible for a logical data partition and maintains
its PO-Map locally. As mentioned in Sect. 3.2, the operations that arrive at
dispatcher are pre-processed, that is, we already know the primary key values
of the tuples to be accessed. If an operation has more than one target tuple,
dispatcher splits it to ensure that the operation dispatched to the thread need not
access other data partitions. Each target tuple corresponds to a sub-operation.
After splitting, all operations are single-point queries based on primary keys, and
the pattern of an operation is calculated by dispatcher as mentioned in Sect. 3.2.
For example, in Fig. 3, the attribute d in O4 has a secondary key, the filter pre-
processes O4 by using the predicate “d = 5” to find the corresponding primary
key values. In this case, we assume that O4 has two target tuples with primary
key values of 1 and 2, thus the dispatcher splits O4 into two sub-operations,
namely O4-1: SELECT a FROM T WHERE pk=1 and O4-2: SELECT a FROM T WHERE

pk=3. Then, according to the primary key, the corresponding worker thread is
assigned and the operation is put into the operation list located by the pattern in
PO-Map of the thread. In Fig. 3, worker1 and worker2 are assigned to operations
which access the tuple with pk = 1 and tuple with pk = 3 respectively. If PO-
Map does not have the pattern, dispatcher insert a new entry for it.

The worker fetches one entry from its PO-Map at a time. If there is more
than one operation in its operation list, we merge the operations with the
approaches mentioned in Sect. 4.1. For example, in Fig. 3, O1 and O2 are merged
to “UPDATE R SET c = c - 3 WHERE pk = 3 AND c ≥ 3”, O3 and O6
are merged to “UPDATE T SET a = a + 4 WHERE pk = 1”. Data lock is
needed before an operation is executed. Like traditional write locks, a write lock

An Optimized Solution for Highly Contended Transactional Workloads 411

requested by a merged operation is not compatible with other write or read
locks. However, in order to guarantee the serializability of transactions, merged
write locks are shared by multiple transactions, and no transaction is allowed
to reenter the lock, even though it seems that some merged transactions have
already taken possession of the lock. Therefore, we need to ensure that in the
transaction to which a mergeable operation belongs, no other operation that
accesses the same data as the mergeable operation, otherwise a deadlock will
occur. In addition, if there is only one operation in the list, we lock the data
and do execution directly, such as O5, O4-1 and O4-2 in Fig. 3. If the merged
operation fails the predicate check, TE will take it apart again and execute them
one by one.

At this stage, all updates to data are localized. Updates are written back to
the storage when the transaction is committed. When a transaction is executed,
the locks it requests and the updates are recorded in its context. For updates
made by merged operations, they only need to be recorded in the context of
one transaction. This method reduces the number of times transactions operate
the memory. However, if a transaction that has been merged aborts, in order to
assure the atomicity of transactions, we must abort all the transactions that have
been merged with it, which are recorded in merging set. Besides, transactions
in the same merging set must also be committed at the same time, so as to
avoid partial fail among transactions. We can configure the merge granularity to
ensure the performance considering partial rolling back.

Discussion About Serializability. Supposing n UPDATE operations are
merged executed, we treat the n transactions to which these operations belong
as a big transaction BT . In schedule S, it involves m BT s. According to 2PL,
S is conflict-equivalent to a serial schedule in which m BT s are executed one by
one. In a BT , there is no conflict between operations other than those involved
in the merging, otherwise a deadlock will happen. Merged operations are essen-
tially exchangeable according to the additive commutative law although they
are conflicting. Therefore, the individual transactions that make up a BT can
be regarded as executed in any serial order. Therefore, our scheduling is always
serializable.

5 Evaluation

Settings. Filmer is deployed on a single server, which is equipped with 2
Intel Xeon Gold 6126 @ 2.60 GHz CPUs, 256 GB memory, 8 TB HDD disk
configured in RAID-5. Each CPU has 12 physical cores and 24 logical cores, and
enables hyperthreading. We choose two open source DBMSs for comparison, i.e.,
MySQL(v5.7.27) and PostgreSQL(v10.10), and the number of connection is set
to 20 defaultedly for the best performance under high conflict.

Workloads. Traditional benchmarks, e.g., TPC-C [4] or SmallBank [1], nei-
ther simulate contention situation nor control the contention intensity. We use

412 C. Zhang et al.

PeakBench [21], a benchmark based on Alibaba “11· 11” promotion, to evalu-
ate the performance of our design. Our experiments take two transactions from
PeakBench, i.e., Submit Order and Select Order, as write transaction and read
transaction respectively to demonstrate the effects of filtering and merging. Sub-
mit Order is to reduce the stock, which generates the most contention during
promotion. Select Order has three read statements to check the information of
an order submitted by a specified customer.

Default Configuration. Zipf parameter α is to control the conflict rate. We set
α to 2 to simulate a high-conflict workload. The concurrency factor representing
the degree of concurrency is set to 50 for high concurrency. The higher the value
of α and the concurrency factor, the more intensive the contention are. The
number of workers in Transaction Executor (TE) and IO Manager (IOM)
are set to 2 and 4 respectively. The isolation level is serializable. Submit Order
is used in following experiments if not specified.

5.1 Micro Exploration of Filtering and Merging

We launch two sets of experiments to explore the effect of Filtering and Merging
on the performance of DBMS under different application scenarios.

Influence of Filtering We turn off merging to show the effectiveness of
filtering.

In Fig. 4, it shows the change of throughput and latency of Filmer by switch-
ing on (filter-on) or off (filter-off) filtering. The stock level of each item is 300K.
Success filter-on (resp., failure filter-off) represents the performance of successful
(resp., failed) transactions with filter-on (resp.,filter-off). In Fig. 4(a), we can see
that at the beginning, the quantity of items is sufficient. Thus, the throughput
of failed transactions is 0 and using filtering or not has almost no obvious influ-
ence on performance. From the 15th second, some items are sold out, resulting
in the occurrence of failed transactions. At this time, if filter-on, the throughput
of successful transactions is better than that with filter-off, and the latency in
Fig. 4(b) increases instantaneously for multiple threads suddenly update or read
the filter table at the moment. Subsequently, the throughput of failed transac-
tions rises along with the number of sold-out items. Finally, filter-on achieves
1.5x higher throughput than filter-off. On the whole, as the filtering of ineffective
operations saves the resources of workers, the processing efficiency of successful
transactions is also improved.

In Fig. 5 we demonstrate the performance of traditional DBMSs, MySQL and
PostgreSQL, in handling the same workloads as used in Fig. 4. we can see that the
performance of MySQL is relatively stable compared to PostgreSQL. When items
are not sold out, the performance of MySQL is better than that of PostgreSQL,
owning to the advantages of the lock-based concurrency control in MySQL in
handling high-conflict workloads. Once there are items sold out, MySQL has
lower throughput for both successful and failed transactions than PostgreSQL.
PostgreSQL has a higher efficiency in handling ineffective operations. As is shown
in Fig. 5(b), the latency of handling of failed transactions in PostgreSQL is only

An Optimized Solution for Highly Contended Transactional Workloads 413

about 13% of that in MySQL. It is because of the optimistic mechanism in
PostgreSQL, which avoids lock waiting for ineffective operations. Filmer takes
the advantages of both MySQL and PostgreSQL, using 2PL when processing
successful transactions, and filtering ineffective operations to avoid waiting for
locks. For PostgreSQL, the failure throughput is at most about 2× higher than
that of the success throughput; however, for Filmer, it can be up to 5× if
filter-on. Filtering is effective to tackle with failed transactions.

Fig. 4. Performance Fluctuation with
Merge-off on Filmer.

Fig. 5. Performance Fluctuation on
MySQL and PostgreSQL

Fig. 6. Scalability of IOM to Handle
Ineffective Operations with Merge-off.

Fig. 7. Performance of Filmer under
High Conflict with Merge-off.

In Fig. 6, we generate even harsher scenario by setting concurrency factor
to 100. The inventory of each item is set to 0. In this scenario, there is only
throughput for failed transactions. We illustrate the throughput and latency by
varying the number of IO threads and workers. The first 4 sets of experiments
are all conducted with the number of workers set to 2, and the number of IO
threads increases from 1 to 4. When the number of IO threads is only 1, IOM is
the bottleneck. At this time filtering make IOM more busy for its additional com-
puting task, which leads to slightly lower performance. When the number of IO
threads increase from 2, the throughput and latency will not change significantly
under filter-off. The reason is that the ineffective transactions contend with each
other, and must be executed serially, which makes TE a bottleneck. In such a
case, even when we double the number of workers (4-4 in Fig. 4), the perfor-
mance remains unchanged. When the number of IO threads increases from 1 to
4, filter-on performance increases proportionally. This is because IO threads can

414 C. Zhang et al.

deal with ineffective operations in parallel without locking serially under filter-
on. When the number of IO threads changes to 5, TE becomes the bottleneck
due to effective conflicting read operations still need to be processed serially
by the same worker, and thus the performance can not be further improved.
Finally, the throughput of filter-on is 1.95 times of that of filter-off. In short,
when DBMS handles workloads with high contention, increasing the number
of threads of TE does not always improve performance, but filtering ineffective
operations in advance can greatly improve the scalability of DBMS.

In Fig. 7, the inventory of each item is also set to 0 for exploring the per-
formance of filtering under high conflict with different concurrency factor. The
larger the concurrency factor is, the more transactions need to be processed
simultaneously. When the concurrency factor increases, the throughput keeps
increasing and filter-on has an obvious dominance over filter-off. Especially,
when concurrency factor increases from 50 to 100, throughput changes gently if
filter-off. Even worse, the latency of filter-off increases much higher than that of
filter-on. Overall, filtering reduces the process of ineffective operations in DBMS,
which makes the performance significantly better.

Influence of Merging. In this part, we switch off filtering to show the effec-
tiveness of merging. The number of each item is set to 100M to ensure that all
the transactions can be successfully submitted.

In Fig. 8, we change α to observe the impact of different conflict rate on per-
formance. If α = 0, i.e., items are accessed evenly, merging improve the through-
put of Filmer at the cost of higher latency. Since the workload of each worker
is balanced, there are fewer operations that can be merged at one time. More-
over, the merging process is time-consuming. Hence, the latency is higher when
merge-on. When α increases to 1, merging is obvious better in both throughput
and latency. When α is 2.5, merge-on is about 2.4× better in throughput than
that of merge-off with only 40% latency. If the merged big transactions are con-
tending for resources, they still need to be executed serially. Therefore, when
contention grows, the performance deteriorate even if merge-on. Comparing the
throughput for α = 2.5 and α = 0, the damping for Filmer with merge-on,
MySQL and PostgreSQL are about 45%, 86% and 77%, respectively. It can be
seen that merging is effective in processing high-conflict transactions.

Fig. 8. The Influence of Conflict Rate
on Filmer with Filter-off.

Fig. 9. Merging Scalability on Different
Number of Workers with Filter-off.

An Optimized Solution for Highly Contended Transactional Workloads 415

In Fig. 9, we test the scalability of merging. We set α = 0 because TE obvi-
ously cannot scale under high conflict rate. In order to fill up the workers as
evenly as possible, we set the number of IO threads and concurrency factor to 6
and 100, respectively. As a single worker thread can only perform each operation
serially, even if the homogeneous operations are merged, the transactions cannot
be executed in parallel. Moreover, the commit time of the merged transactions
is decided by the latest transaction submitted involved in merging. Therefore,
when the number of workers is 1, the throughput of the two are similar and the
latency of merge-on is much higher. When the number of workers increases, con-
flicting transactions can be executed in parallel after merging, which decreases
the latency. Even with the lowest conflict rate, the advantage of merging is obvi-
ous. The scalability of Filmer’s processing of homogeneous operations is not
ideal, because lots of logs need to be written to disk when a bunch of Submit
Order submitted, which becomes a bottleneck.

In Fig. 10, we illustrate performance in throughput and latency by changing
concurrency factor from 1 to 100. Since a transaction needs to wait for all the
conflicting transactions that arrived before to be processed before it can be
executed, increasing concurrency in a traditional DBMS will not increase the
throughput, but will only allow the system to store more transaction context
and build a longer wait queue. When merge-off, increasing concurrency does
not increase the throughput, but only makes the latency higher. On the other
hand, when we merge homogeneous operations, the larger the concurrency factor
is, the more operations can be executed in one merge. The throughput can
be up to 2.55× higher than that of merge-off. Meanwhile, as the transaction
processing efficiency is improved as a whole, the latency is also reduced. When
the concurrency factor is 100, the latency of merge-on is only 44% of that of
merge-off.

Fig. 10. Performance of Filmer under
High Conflict with Filter-off.

Fig. 11. Merging Performance by
Adjusting of Transaction Ratios with
Filter-off.

We adjust the ratio between reads and writes in Fig. 11, by using Submit
Order and Select Order as the test workloads. The write ratio in Fig. 11 refers
to the proportion of Submit Order in workloads. From the results, we can see
that even if the write ratio is extremely low (only 10%) in high-concurrency

416 C. Zhang et al.

and high-contention scenario, the throughput increases by 34%, and the latency
decreases by 31% with merge-on. With the increasing of writes, the advantage
of merge-on becomes more and more obvious. When the write ratio is 1, the
throughput of merge-on is 2× higher than that of merge-off, but the latency
increases only 54%. We can conclude that in the highly contended workloads,
merging can improve system performance by optimizing the processing of write
transactions.

5.2 Macro Evaluation of FILMER

To further observe the mutual influence of filtering and merging, we turn on
merging to test the change of performance over time when the number of items
is insufficient in Fig. 12. All other settings are the same as Fig. 4. Before the 6th

second, the items are enough, there are no failed transactions, and the through-
put and latency of filter-on and filter-off are the same. Compared with Fig. 4, the
occurrence of failed transactions is earlier, because merging improves through-
put. At the 6th second, the performance of successful transactions under filter-on
suddenly deteriorates for a short period, and the latency is higher than the peak
latency in Fig. 4. In addition to the multi-threads read and write to the filter
table, this is also affected by the split of the merged operation. When a merged
operation generated from multiple homogeneous operations executes unsuccess-
fully, the TE will split them again into single operations to execute one by one.
When there are sold-out items that have not been inserted into the filter table,
some merged operations will fail. This process affects the performance of the
system, resulting in unsatisfactory performance of successful and failed transac-
tions under filter-off in the subsequent period. When filter-off, a large quantity
of ineffective operations flood into TE, so that the merged operation splitting
continues to occur, occupying system resources, and then all transaction process-
ing slows down. By contrast, when filter-on, it will mitigate splitting effectively.
Therefore, merging had better be used together with filtering.

Fig. 12. Overall Performance with Merging and Filtering.

An Optimized Solution for Highly Contended Transactional Workloads 417

6 Related Work

Recently, great efforts have been put to improve the performance of DBMSs
when dealing with highly contended workloads. Two design principles are pro-
posed by Orthrus [16]. One is to arrange special threads to manage concurrency
control (CC). Each CC thread is responsible for a disjoint subset of the database
objects to avoid data movement and reduce synchronization overhead. The other
one is to grant locks to transactions in a consistent order to avoid deadlocks.
Contention-aware lock scheduling algorithm [19] improves lock-based protocols
by capturing the contention and the dependencies among concurrent transac-
tions. Its algorithm preferentially grants locks to transactions that block many
others. Our work does not focus on locking scheduling, and this algorithm com-
plements our work. MOCC [20] introduces locking mechanism in OCC. When
a transaction accesses data with high temperature, it needs to acquire a lock
to reduce the rollback rate of transactions. None of these work have targeted
the optimization of homogeneous operations or ineffective operations in highly
contented E-commerce workloads.

Workload sharing has been studied for a long time. Multi Query Optimization
(MQO) [18] executes a subquery only once no matter how many times the sub-
query appears in an OLAP query. This method only supports sharing resources
in a single query, provided there are multiple similar subqueries in the query.
MQJoin [9] and CJOIN [3] use pipelining to share resource in joins. But joins are
not common in OLTP workloads. Strife [14] uses a dynamic partitioning app-
roach that allows contention transactions to be executed without concurrency
control, but this makes the system limited, even on the same physical machine
can produce distributed transactions. SharedDB [7] and BatchDB [10] take
OLTP workloads into consideration. SharedDB batches queries and compiles
them into a big plan. Different queries share operators. BatchDB separates OLTP
replica and OLAP replica, and resources can be shared among OLAP queries.
The focus of these research is to deal with OLAP queries. OLTPShare [15] is the
closest to our work, which proposes to merge statements in OLTP workloads to
adapt to high loaded scenarios. However, it only merges single-point read-only
statements instead of writes. Moreover, OLTPShare requires that the statement
to be merged must be the only statement in its transaction, which is not required
by Filmer.

7 Conclusion

This paper designs an efficient transaction processing scheme for highly con-
tended E-commerce workloads, and implements the prototype system Filmer
to verify the effectiveness of the scheme. Filmer logically binds threads to data,
sets a filter at IO layer to intercept ineffective operations, and merges homo-
geneous operations in transaction executor. By filtering, it saves the system
resources, improves the scalability of transaction processing. Merging increases

418 C. Zhang et al.

the parallelism of transaction processing, reduces the number of data modifica-
tion, and finally improves the performance of DBMS. Combining of filtering and
merging will get better performance.

References

1. Alomari, M., Cahill, M., Fekete, A., Rohm, U.: The cost of serializability on plat-
forms that use snapshot isolation. In: ICDE, pp. 576–585. IEEE (2008)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley, Boston (1987)

3. Candea, G., Polyzotis, N., Vingralek, R.: Predictable performance and high query
concurrency for data analytics. VLDB 20(2), 227–248 (2011)

4. Council, T.P.P.: TPC-C benchmark (1992). https://www.tpc.org/tpcc/
5. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: SOSP,

pp. 205–220 (2007)
6. Faleiro, J.M., Abadi, D.J.: Rethinking serializable multiversion concurrency con-

trol. VLDB 8(11), 1190–1201 (2015)
7. Giannikis, G., Alonso, G., Kossmann, D.: SharedDB: killing one thousand queries

with one stone. VLDB 5(6), 526–537 (2012)
8. Huang, G., et al.: X-Engine: an optimized storage engine for large-scale e-commerce

transaction processing. In: SIGMOD, pp. 651–665 (2019)
9. Makreshanski, D., Giannikis, G., Alonso, G., Kossmann, D.: MQJoin: efficient

shared execution of main-memory joins. VLDB 9(6), 480–491 (2016)
10. Makreshanski, D., Giceva, J., Barthels, C., Alonso, G.: BatchDB: efficient isolated

execution of hybrid OLTP+OLAP workloads for interactive applications. In: SIG-
MOD, pp. 37–50 (2017)

11. Narula, N., Cutler, C., Kohler, E., Morris, R.: Phase reconciliation for contended
in-memory transactions. In: OSDI, pp. 511–524 (2014)

12. Oracle: Oracle Database 12c: Advanced Queuing Whitepaper (2015)
13. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-oriented transaction

execution. VLDB 3(1–2), 928–939 (2010)
14. Prasaad, G., Cheung, A., Suciu, D.: Handling highly contended OLTP workloads

using fast dynamic partitioning. In: International Conference on Management of
Data, SIGMOD/PODS 2020 (2020)

15. Rehrmann, R., Binnig, C., Böhm, A., Kim, K., Lehner, W., Rizk, A.: OLTPshare:
the case for sharing in OLTP workloads. VLDB 11(12), 1769–1780 (2018)

16. Ren, K., Faleiro, J.M., Abadi, D.J.: Design principles for scaling multi-core OLTP
under high contention. In: SIGMOD, pp. 1583–1598 (2016)

17. Rodeh, O.: B-trees, shadowing, and clones. TOS 3(4), 2 (2008)
18. Sellis, T.K.: Multiple-query optimization. TODS 13(1), 23–52 (1988)
19. Tian, B., Huang, J., Mozafari, B., Schoenebeck, G.: Contention-aware lock schedul-

ing for transactional databases. VLDB 11(5), 648–662 (2018)
20. Wang, T., Kimura, H.: Mostly-optimistic concurrency control for highly contended

dynamic workloads on a thousand cores. VLDB 10(2), 49–60 (2016)
21. Zhang, C., Li, Y., Zhang, R., Qian, W., Zhou, A.: Benchmarking on intensive

transaction processing. Front. Comp. Sci. 14(5), 1–18 (2020)

https://www.tpc.org/tpcc/

DeepTD: Diversity-Guided Deep Neural
Network Test Generation

Jin Zhu1, Chuanqi Tao1,2,3,4(B), Hongjing Guo1, and Yue Ju1

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, China

{taochuanqi,guohongjing,juyue}@nuaa.edu.cn
2 Ministry Key Laboratory for Safety-Critical Software Development

and Verification, Nanjing, China
3 State Key Laboratory for Novel Software Technology, Nanjing, China

4 Collaborative Innovation Center of Novel Software Technology
and Industrialization, Nanjing, China

Abstract. Coverage-guided Fuzz Testing (CGF) techniques have been
applied to deep neural network (DNN) testing in recent years, generating
a significant number of test samples to uncover inherent defects in DNN
models. However, the effectiveness of CGF techniques that utilize struc-
tured coverage metrics as coverage criteria is currently being questioned.
A few unstructured coverage metrics, such as surprise adequacy, only
take into account the diversity of the test samples against the training
set, while ignoring the diversity of the test samples themselves. In addi-
tion to this, the existing surprise adequacy metrics have some limitations
in their applications. Therefore, this paper proposes DeepTD, a diversity-
guided deep neural networks test generation method. Firstly, DeepTD
selects high-loss test samples from each class on average, ensuring these
test seeds possess a strong ability to reveal model errors. Then, DeepTD
transforms these test seeds to enhance the diversity of the generated
samples. Finally, Cluster-based Surprise Adequacy is designed to guide
the generation of test samples. To evaluate the effectiveness of DeepTD,
six DNN models are selected as subjects, covering two well-known image
datasets. Experimental results demonstrate that the Cluster-based Sur-
prise Adequacy outperforms the two existing metrics not only in com-
putational efficiency but also in discovering more model defects. What’s
more, the test samples generated by DeepTD are on average 6.04% and
3.24% more effective for model retraining in MNIST and CIFAR10 com-
pared to baseline methods, respectively.

Keywords: Coverage-guided fuzz testing · Deep neural network · Test
samples diversity · Test generation

1 Introduction

With the rapid development of artificial intelligence technology, more and more
deep neural network (DNN) models are deployed in intelligent software systems
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 419–433, 2024.
https://doi.org/10.1007/978-981-99-8664-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8664-4_24&domain=pdf
https://doi.org/10.1007/978-981-99-8664-4_24

420 J. Zhu et al.

and widely used in industrial production, social life, etc. However, the problems
of reliability, safety, and robustness of DNN models are becoming more and more
prominent, especially in safety-related fields, such as autonomous driving [2] and
medical imaging [22], which may cause serious consequences in case of failure.
Therefore, how to guarantee the quality of DNN models is a crucial issue.

Unlike traditional software testing, DNN is essentially a mathematical model
that fits the intrinsic laws of the data in an approximate way, and it is impossible
to show the execution logic of each step like traditional software. The current
effective way to test DNN models is to expose the intrinsic defects of DNN
models through a large amount of test data. Therefore, designing effective test
sample generation methods for DNN models is a hot research topic in the field
of DNN testing in recent years. Coverage-guided Fuzz testing has demonstrated
a strong error-revealing capability in traditional software, and is able to utilize
limited test data to automatically generate a large amount of test data with high
coverage. Therefore, the CGF method is also applied to test sample generation
for DNN models [16,23,26].

The coverage criterion is one of the most important parts of the CGF meth-
ods. A well-designed coverage criterion can effectively guide DNN test sample
generation. Most current methods use structured metrics as coverage criterion,
but their effectiveness has been questioned. Whereas some unstructured coverage
metrics, such as test sample diversity, have been demonstrated to be effective
in guiding DNN testing [1,8]. Kim et al. [8] referred to the diversity of test
samples with respect to the training set as surprise adequacy, and proposed
two surprise adequacy metrics, Likelihood-based Surprise Adequacy (LSA) and
Distance-based Surprise Adequacy (DSA). The higher the surprise adequacy
value, the greater the difference between the test samples and the training sam-
ples, and the more likely to reveal the hidden errors of the DNN model. Zohreh
et al. [1] took into account the diversity of the test samples themselves, and
proposed three metrics for the diversity of the test samples, namely Geomet-
ric Diversity, Normalized Compression Distance, and Standard Deviation. The
experiments proved that the three diversity metrics can effectively guide the
testing of DNN models.

Although the above two methods consider the diversity of test samples, they
only consider one aspect of it, which is obviously not comprehensive enough.
Therefore, in connection with the above definition of diversity of test samples,
this paper gives the following more complete description of the diversity of test
samples. The diversity of the test sample is not only reflected in its own diversity,
but also in the fact that it is also more diverse compared to the training set.
What’s more, the above two surprise metrics are cumbersome and restrictive in
their computation. LSA requires the feature matrix of the training set to be non-
singular during the computation process, and DSA needs to traverse the samples
of the whole training set for every computation, which limit the application of
the two surprise metrics in real environments. In addition to this, seed selection
is a key step in the CGF technique, but most of the existing methods use a
randomized strategy to screen the seed samples, ignoring the ability of the seed
samples to reveal model errors.

DeepTD: Diversity-Guided Deep Neural Network Test Generation 421

To address the above problems, this paper proposes a diversity-guided test
sample generation method for deep neural networks (DeepTD). Firstly, DeepTD
selects test samples with high loss values from each class of samples as test seeds
on average, which ensures that the test seeds have high error-revealing ability
and the generated test samples cover all classes. Then, DeepTD transforms the
test seeds to enhance the diversity of test samples in the same class. Second,
DeepTD designs Cluster-based Surprise Adequacy to address the problems with
the two surprise indicators. In this paper, we conduct an experiment evaluation
of DeepTD on 2 classical deep learning datasets and the corresponding 6 models.
The experiment results show that DeepTD generates more diverse test samples
compared to DLFuzz and RobOT. In terms of guiding model retraining, DeepTD
is on average 6.04% more effective for model retraining on MNIST compared to
the baseline method, and 3.24% more effective on CIFAR10.

The main contributions of the paper are as follows:

– This paper proposes a seed selection strategy based on loss values and takes
into account the classes of seeds. Some of the samples with high loss values in
each class are selected as test seeds on average in the test set, which improves
the error-revealing ability of the seeds.

– The paper summarizes the diversity of test samples proposed in existing
research, gives a more complete description of the diversity of the test sample.
The diversity of test samples is reflected not only in the samples themselves
but also in their contrast with training samples.

– Guided by the diversity of test samples in two aspects, this paper proposes
to transform the seeds as well as to design Cluster-based Surprise Adequacy
which are more effective than the existing surprise adequacy metrics.

– Experiments on 2 public image datasets and 6 DNN models in this paper
demonstrate that the test samples generated by DeepTD can effectively guide
model retraining, and compared with the existing methods, DeepTD can
achieve up to 15.97%, 9.38%, 10.22%, 6.22%, 20.69%, and 29.59% retraining
effect on 6 models.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the relevant basic concepts. Section 3 describes DeepTD in detail.
Section 4 presents the experimental settings for our study and discusses the
experimental results for the research questions. Section 5 shows the threats to
validity for DeepTD. Section 6 provides an overview of related work, and finally,
Sect. 7 concludes the paper.

2 Background

2.1 Deep Neural Networks

A deep neural network typically consists of three layers: the input layer, hid-
den layer, and output layer, each containing numerous neurons [12]. Weight and
bias parameters are set between these layers. Training a neural network is essen-
tially learning these parameters that allow the neural network to fit the patterns

422 J. Zhu et al.

inherent in the data. The input layer specifies the input format, the hidden layer
extracts the input features, and the output layer produces the prediction result.
According to the prediction results, the deep neural network can be divided into
two categories: the prediction results are discrete values, the classification model,
and the prediction results are continuous values, the regression model.

2.2 Coverage-Guide Fuzz Testing for DNN

Coverage-guide Fuzz testing (CGF) is an essential testing technique in tradi-
tional software that has been applied to DNN testing in recent years because
of its reliability and effectiveness. This technique uses a coverage criterion as
a feedback to perform specific mutations on a given test seed to generate new
test samples with maximum coverage and maximum possible exposure of model
errors. The CGF testing technique consists of four main parts, seed selection,
seed mutation, coverage analysis and test result determination.

Seed Selection: Seed selection is mainly reflected in two aspects: 1) what strat-
egy is adopted to select some samples from the data set to build a seed queue;
2) what strategy is adopted to select seeds from the seed queue for mutation.

Seed Mutation: Seed mutation is the core of CGF technique. It mainly includes
the use of domain knowledge [24], white noise [3], adversarial generative networks
[27], etc. to design mutation strategies, and at the same time limit the degree of
mutation so that the mutated data and the original seed have semantic invari-
ance.

Coverage Analysis: This part mainly uses the test adequacy criterion [8,13,14]
of DNN to analyse the execution of the DNN model by the mutated seeds and
then extracts valuable information. This information determines whether to add
the mutated seed to the seed queue and to guide the seed mutation.

Test Result Determination: This part mainly determines whether the pre-
diction result of DNN on mutated seeds passes or not. Since the decision logic of
DNN model is closed to testers, it is generally unknown whether the prediction
result of DNN model meets the expectation or not, which is also the difficult
point of DNN testing. Currently differential testing [19] and metamorphic testing
[21] are the main methods to solve DNN testing oracles.

3 Approach

The main structure of DeepTD is shown as Fig. 1. Firstly, samples with high
loss value are selected from the test set to construct a seed queue according to
the category, and then the brightness and saturation of each seed sample in the
seed queue are randomly transformed. Next, we will maximize the error behavior
of the model and Cluster-based Surprise Adequacy (CSA) of the sample as the
joint optimization objective, use the gradient ascending algorithm to calculate
the gradient of the objective function, and add the gradient to the seed as a

DeepTD: Diversity-Guided Deep Neural Network Test Generation 423

Fig. 1. Overview of DeepTD

disturbance to generate intermediate samples. Finally, it determines whether
the intermediate samples satisfy the constraints, which determines whether the
intermediate samples are added to the seed queue or become new generated
samples.

3.1 Seed Selection and Transformations

Diverse test samples can improve the ability of fuzz testing to explore the inter-
nality of DNN models, and can reveal as many errors as possible that cannot be
exposed by the original test set. As the basis of fuzz testing, seed samples have a
profound impact on the diversity of generated samples. According to the labels
of the seed samples, DeepTD selects the samples with high loss values in each
class of test samples on average. The higher the loss value of a sample, the more
likely it is to reveal errors in the model. Although the average selection of each
class of samples ensures that the classes of seed samples are more diverse, but
in order to improve the diversity of the same class of samples, the seed samples
also need to be transformed.

In order to get closer to the different states of the samples in the real envi-
ronment, DeepTD chooses to transform the brightness and saturation of the
samples. The brightness and saturation of the sample will change with illumina-
tion, distance and other factors in the real environment, which are the two most
common transformations. To achieve this, DeepTD uses the built-in brightness
and saturation transformation functions in the tensorflow framework [17], as
shown below:

Tensorflow.image.random brightness(image,max delta,seed=None),image
represents the input image sample, max delta indicates that the function ran-
domly adjusts the brightness of the image between [-max delta, max delta].
DeepTD sets max delta = 0.3.

Tensorflow.image.random contrast(image, the lower and upper, seed, seed =
None), image input images of samples, lower and upper denote that the function
randomly adjusts the contrast of the image between [lower, upper]. DeepTD sets
lower and upper to 0.3, 1, respectively.

424 J. Zhu et al.

3.2 Cluster-Based Surprise Adequacy

As a manifestation of diversity, the more surprise the test sample, the more
diverse it is compared to the training set, and the higher the likelihood of trig-
gering model errors. In order to measure the surprise of test samples, DeepTD
designs a Cluster-based Surprise Adequacy (CSA). Compared with DSA and
LSA proposed by the literature [8], the calculation process of CSA is more con-
cise and efficient.

Let D be a DNN model and x be a input. For an input x, D(x) represents the
output of the model, and Di(x) represents the output of ith layer of the model.
X represents the training set. According to the training label, X is divided into
k sets {X1,X2, ...,Xj , ...,Xk(1 << j << k)}, k denotes the number of classes.
For each training sample x in Xj , we can obtain Di(x), and all Di(x) constitute
the output feature set X ′

j . Then X ′
j is divided into n clusters using K-Means

[6], with n determined by the Silhouette Coefficient [20], and the cluster centers
are {Cj

1 , C
j
2 , ..., C

j
h, ..., Cj

n(1 << h << n)}. For a test input t in the test set
T , the output feature Di(t) is obtained. Based on its class label y, we use the
corresponding the already trained K-Means to determine the cluster it belongs
to and get its cluster center Cj

h. The csa of test input t is calculated as follows:

csa =
∥
∥
∥Di(t) − Cj

h

∥
∥
∥
2

(1)

CSA evaluates the surprise of a test sample primarily by measuring the distance
of the test sample from the cluster center of the cluster in which it is located.
The further the test sample is from the cluster center, the more surprise the test
sample is. This distance is measured by the 2-norm.

3.3 Test Samples Generation

DeepTD uses a gradient ascent algorithm to maximize the objective loss function,
solves for the gradient, and then attaches the gradient as a perturbation to
the seed samples to generate test samples. The objective function is defined as
follows:

obj =
k∑

i=1

p (ci) − p(c) + λ × csa (2)

Where given a sample, the probability vector distribution of the DNN model at
the softmax layer can be denoted as (p (c1) , p (c2) , . . . , p (cn)), each component
is the probability that the model predicted sample belongs to each class. p(c)
denotes the largest probability value in the probability vector, and c is its cor-
responding class label. ci(1 << i << k) denotes one of the k class labels with
the largest predicted probability other than c. In this paper, k is set to 5. The
first half of the objective function aims to make the generated test samples cross
the decision boundaries of the DNN model, so that the model will happen the
misclassification behavior. The second half maximizes the surprise adequacy of
the generated samples, making the generated samples more diverse relative to

DeepTD: Diversity-Guided Deep Neural Network Test Generation 425

Algorithm 1. Seed Mutation
Input: tested model D, seed queue seed queue, seed labels lables, training set

train set, learning rate lr, iteration times iter times
Output: adversarial test samples adv samples
1: Initialization: adv samples = ∅
2: D con ← construct contrast model()
3: while seed in seedqueue do
4: seed list = [seed]
5: c ori = labels[seed]
6: while len(seed list > 0) do
7: x = seed list.pop()
8: c, c topk = D.predict(x)
9: csa = cal CSA(x, D, train set)

10: obj = sum(c topk) - c + λ × csa
11: grads = ∂obj/∂x
12: while iter in range(iter times) do
13: perb = processing(grads)
14: x′ = x + perb × lr
15: dis = dis constraint(x, x′)
16: if csa max < csa and dis < ε then
17: seed list.append(x′)
18: end if
19: c′ = D.predict(x′)
20: if c′ != c ori then
21: adv samples.append((x′, c ori))
22: end if
23: end while
24: end while
25: end while

the training samples. Algorithm 1 shows the process of seed sample mutation.
The algorithm takes tested model D, the seed queue seed queue, the seed sam-
ple labels labels, the training set train set, and the pre-set learning rate lr and
iteration times iter times as inputs. The algorithm outputs the generated adver-
sarial sample adv samples. seed list is used to store the intermediate samples
generated from each seed. The algorithm first extracts the seed samples from
the seed queue as well as the corresponding labels and stores the seed samples in
seed list (line 2–4). Then for each sample in seed list, compute the maximum
predicted probability c, the top k predicted probabilities c topk below c, and the
Cluster-based Surprise Adequacy csa. Bring them into the objective function
to calculate the gradient grads with respect to the sample x (line 6–10). The
derived gradient grads are further processed to generate a perturbation perb,
which is multiplied by the learning rate lr and added to the seed sample x to
generate an intermediate sample x′ (line 12–13). Based on whether the surprise
value can be boosted or not and the distance constraint between the samples,
it is decided whether the intermediate samples should be retained for the next
iteration to generate the test samples. dis constraint() is used to compute the

426 J. Zhu et al.

Euclidean distance between the samples (line 14–18). If the generated inter-
mediate sample is predicted by the model to be inconsistent with the original
label, it indicates that the sample is an adversarial test sample and is added to
adv samples along with the true label (line 19–21). The above is a one iteration
process and after many iterations, more adversarial test samples are generated.

The total number of seed samples set by the algorithm is 200, the learning
rate is 0.1, the number of iterations is 5, and the distance threshold is 0.05.
The objective function weight is set to 1, with larger values indicating that the
algorithm prefers generating samples that enhance surprise adequacy.

4 Experiments

The experiment is implemented based on the following frameworks, Tensorflow
2.5.0 and Keras 2.4.3. We develop and evaluate on a computer with a 12th
generation Intel(R) Core(TM) i7-12700F 2.10 GHz, 32 GB RAM, an NVIDIA
GTX 3080 GPU, and Windows 11 as the host operating system.

4.1 Dataset and Models

The experiment utilizes MNIST [9] and the models LeNet-1, LeNet-4, LeNet-
5 [10], CIFAR10 and the models ResNet-20, ResNet-32, ResNet-44 [7] as the
objects of study. MNIST is an image dataset of handwritten numerals (0 9).
The CIFAR10 dataset contains images of 10 types of real-world objects (birds,
airplanes, etc.). See Table 1 for specific details.

Table 1. Details of the DNN models and datasets

Dataset Model Parameters Layers Accuracy

MNIST LeNet-1 7206 8 0.9855

LeNet-4 69362 9 0.9897

LeNet-5 107786 10 0.9908

CIFAR10 ResNet20 274442 73 0.9046

ResNet32 470218 115 0.9113

ResNet44 665994 157 0.9147

4.2 Evaluation Metrics and Baselines

Mistake-n denotes the number of misclassified samples in the first n priority sam-
ples screened to assess whether the surprise adequacy metrics are able to detect
more misbehaviour in the model. Standard Deviation (STD) [1], Likelihood-
based Surprise Coverage Score (LSC) and Distance-based Surprise Coverage

DeepTD: Diversity-Guided Deep Neural Network Test Generation 427

Score (DSC) [8] are used as metrics for assessing the diversity of the test set.
STD is used to assess the diversity of the test samples with respect to the test
samples of the same class. To get the diversity of the whole test set, we define
STDtotal, calculated as follows:

STDtotal =
n∑

i=0

STDi ÷ n (3)

STDi denotes the STD value for each class of samples in the test set, and n
denotes the number of classes. Larger STDtotal indicate more diverse samples of
the same class. DSC and LSC are used to assess the diversity of the test samples
relative to the training samples of the same class. Accuracy (ACC) is used to
determine whether the generated samples are able to guide model retraining.
The baseline methods used in this experiment are DLFuzz [5] and RoBot [25],
details of which are given in Sect. 6.

Table 2. Effectiveness and efficiency results of CSA, DSA and LSA on six models

Models Methods Time Mistake-100 Mistake-200 Mistake-300 Mistake-500 Mistake-1000

LeNet-1 DSA 76 2 4 6 15 22

LSA 3 2 4 5 5 13

CSA 1 28 44 60 82 110

LeNet-4 DSA 76 1 3 3 5 9

LSA 3 0 1 1 4 8

CSA 1 23 41 54 68 84

LeNet-5 DSA 76 1 3 6 8 11

LSA 3 1 4 4 8 13

CSA 1 37 59 71 79 88

ResNet-20 DSA 70 12 21 32 49 95

LSA 7 8 21 31 44 82

CSA 2 58 110 154 232 402

ResNet-32 DSA 74 12 20 33 54 96

LSA 9 11 17 29 44 78

CSA 2 74 134 190 292 479

ResNet-44 DSA 74 13 25 30 47 90

LSA 13 6 19 27 50 92

CSA 2 71 136 181 262 427

4.3 Research Questions and Results

RQ1: Is CSA more efficient compared to DSA and LSA calculations,
and can it detect more misbehaviour of the model?
To evaluate the efficiency of the computation of different metrics, we measure
the time consumed to compute the surprise adequacy of all test samples in the
test set on different models. Then, based on the surprise adequacy of the test

428 J. Zhu et al.

samples, we prioritise the test samples. The higher the surprise adequacy, the
higher the priority of the test samples. Some of the high priority test samples
are then selected to determine whether the model has more misbehaviour. The
evaluation indicators use Mistake-n,n are taken as 100, 200, 300, 500, 1000,
respectively.

The experimental results are shown in Table 2. In terms of computational
efficiency, the average time consumed by CSA on the LeNet series of models is
1 s, the average time consumed on the ResNet series of models is 2 s, and the
overall average is 1.5 s. The average time consumed by DSA on the LeNet series
of models is 76 s, and the average time consumed on the ResNet series of models
is 72.6 s, and the overall average is 74.3 s. The average time consumed by LSA on
the LeNet series model is 3 s, on the ResNet series model is 2 s, and the overall
average is 2.5 s. From the results, CSA takes the least time, followed by LSA,
with an average of only 1 s more compared to CSA. DSA takes the most time
on average, which is approximately 49 times as much as CSA and 30 times as
much as LSA. The computational time consumed by DSA is further prolonged
when computing larger test sets. This also limits the use of DSA in large-scale
datasets. In terms of revealing the misbehaviour of the models, the number
of misclassified samples screened by CSA on the six models about Mistake-100,
Mistake-200, Mistake-300, Mistake-500, Mistake-1000 are on average 48, 87, 118,
169, 265, respectively, and for DSA are 6, 12, 18, 29, 53, LSA is 4, 11, 16, 25, 47
respectively. In the case of screening the same number of priority samples, CSA
discovers 4 to 7 times more misclassified samples than DSA and 5 to 10 times
more than LSA. This is strong evidence that CSA has a greater ability to detect
model misbehaviour.

Result of RQ1: Compared with the already existing two surprise adequacy
metrics, DSA and LSA, CSA is not only more computationally efficient, but
also can discover more erroneous behaviours of the model.

RQ2: Are the test samples generated by the DeepTD method more
diverse?
To answer RQ2, 1000 samples are randomly selected from the test samples gen-
erated by DeepTD and other baseline methods, and then STDtotal, LSC, and
LSC are calculated to evaluate the diversity of these samples.

Figure 2 show the diversity results of test samples generated by all methods
on MNIST. It is clear from Fig. 2 that DeepTD is significantly higher than the
other two methods in the three metrics of diversity. Considering the average
diversity in the three models, DeepTD is 0.8254, 0.3213, 0.1407 for STDtotal,
DSC and LSC, respectively, 0.4181, 0.254, 0.0803 for RobOT, respectively and
0.7612, 0.1853, 0.0913 for DLFuzz, respectively. On STDtotal, DeepTD is nearly
twice as high compared to the RobOT method. On CIFAR10, DeepTD is higher
than the other two methods in STDtotal and DSC, but lower than DLFuzz in
LSC. As can be seen in Fig. 3, DeepTD, although performing slightly worse in
terms of LSC, still has an overall advantage in all three metrics.

DeepTD: Diversity-Guided Deep Neural Network Test Generation 429

Fig. 2. Evaluation results of diversity of test samples generated by different methods
on MNIST

Fig. 3. Evaluation results of diversity of test samples generated by different methods
on CIFAR10

Result of RQ2: The test samples generated by the DeepTD method show
high diversity on both MNIST and CIFAR10 compared to the baseline method,
proving that DeepTD can generate more diverse test samples.

RQ3: Can the test samples generated by DeepTD guide model retrain-
ing?
In order to answer RQ3, this section uses PGD [15], FGSM [4] adversarial sam-
ples generation methods to generate adversarial samples, which are mixed with
the test set to construct the mixed test set. Then from the generated test sam-
ples, 500, 1000, 1500 samples are randomly selected and mixed with the training
set to retrain the model and observe whether the model’s accuracy is improved
under the mixed test set.

Table 3 shows the number of samples generated by each method on different
models and the effect of retraining on Sample-n. Sample-n denotes the new train-
ing set of n generated samples mixed with the original training set. In terms of the
number of generated samples, DeepTD generates more test samples compared
to all other baseline methods except LeNet-1. In terms of the effect of retraining,
on MNIST, DeepTD is 0.32% to 15.5% more effective in retraining the model on
LeNet-1, LeNet-4, and LeNet-5 compared to the other baseline methods, with an
average of 6.04%. On CIFAR10, DeepTD on ResNet-20, ResNet-32, and ResNet-
44 outperforms the other baseline methods by 0.88% to 7.91%, with an average
of 3.24%. On randomly selecting 500 samples for LeNet-5 retraining, DeepTD

430 J. Zhu et al.

Table 3. The effect of retraining models with test samples generated by different
methods

DataSets Methods Samples PGD + Original Test Set FGSM + Original Test Set

Sample-500 Sample-1000 Sample-1500 Sample-500 Sample-1000 Sample-1500

Lenet-1 DeepTD 2489 2.99% 7.03% 13.93% 10.23% 15.78% 15.97%

RobOT 3025 0.05% 0.11% 0 0.51% 0.28% 0.68%

DLFuzz 2241 0.33% 0.40% 0.26% 2.12% 2.15% 2.30%

Lenet-4 DeepTD 2486 0.91% 3.69% 5.60% 6.96% 9.18% 9.38%

RobOT 2303 0.10% 0.01% 0.06% 1.09% 1.14% 1.19%

DLFuzz 1896 0.25% 0.24% 0.35% 4.09% 4.62% 4.54%

Lenet-5 DeepTD 2422 0.48% 3.34% 5.75% 7.51% 9.06% 10.22%

RobOT 1752 0.11% 0.07% 0.07% 1.53% 1.55% 1.54%

DLFuzz 1863 0.58% 0.58% 0.74% 8.00% 8.74% 8.06%

Resnet-20 DeepTD 3551 4.46% 5.21% 6.22% 2.54% 3.34% 3.55%

RobOT 3441 2.75% 3.30% 2.62% 1.30% 1.08% 0.98%

DLFuzz 1973 3.14% 3.57% 3.88% 0.94% 1.02% 1.15%

Resnet-32 DeepTD 3505 26.54% 28.71% 30.69% 25.78% 26.73% 27.37%

RobOT 2889 21.52% 22.95% 22.78% 21.46% 22.74% 22.36%

DLFuzz 1923 24.61% 25.19% 26.20% 24.10% 24.23% 24.47%

Resnet-44 DeepTD 3440 26.07% 28.16% 29.59% 24.51% 26.02% 27.12%

RobOT 2435 22.15% 22.81% 22.85% 21.47% 21.62% 22.26%

DLFuzz 1968 24.59% 25.35% 26.19% 23.63% 23.71% 23.59%

is slightly lower than DLFuzz, but in addition, the contribution of the samples
generated by DeepTD to model retraining is better than DLFuzz and RobOT
methods.

Result of RQ3: In summary, both the number of samples generated and the
improvement in model retraining demonstrate that the test samples generated by
DeepTD are capable of guiding model retraining to improve model robustness.

5 Threats to Validity

Internal. This is mainly reflected in the implementation of the DeepTD method,
the implementation of the comparison method, and the implementation of the
code for analysing and evaluating the experimental results. In addition, the code
implementation used for the analysis and evaluation of the experimental results
was carefully checked to ensure that the results are error-free.

External. The threat mainly comes from the deep learning dataset used in this
paper and the DNN model to be tested. To verify the effectiveness of DeepTD,
our work adopts two well-known datasets and six models of different sizes, struc-
tures, and complexity. What’s more, DeepTD also used adversarial generation
methods to construct mixed test sets. Due to the joint optimization goal designed
by DeepTD being only applicable to classification models, this paper only con-
ducts experiments on test samples generation on classification models in the
image field. How DeepTD can be applied to regression models as well as larger
scale datasets is part of our future work.

DeepTD: Diversity-Guided Deep Neural Network Test Generation 431

6 Related Work

6.1 Test Coverage Criteria for DNN

The test adequacy of software is a key indicator for evaluating and guarantee-
ing the quality of software, and traditional software testing has formed a set
of relatively mature test adequacy metrics, such as branch coverage, conditional
coverage, MC/DC coverage, etc. However, the composition mechanism and oper-
ation theory of DNN models are different from those of traditional software, so
it is difficult to apply the test coverage criteria for traditional software to DNN
models directly. Researchers have proposed structural and unstructural test cov-
erage criteria for DNN models to evaluate the adequacy of testing.

The structural coverage criterion quantifies the degree to which the internal
structure of a DNN model is covered by the test dataset. Pei et al. [18] proposed
the first white-box test coverage criterion for DNNs, neuron coverage, which
quantifies the ratio of the number of neurons activated in the test samples to
the total number of neurons in the DNN. Ma et al. [14] defined multi-granularity
coverage criterion for DNNs at the neuron level and network level, including K-
multipartite region neuron coverage, neuron boundary coverage, Top-K neuron
coverage, and so on from the perspectives of output distribution, sequence of
active neurons, and so on.

The current unstructured coverage criterion mainly refers to surprise cov-
erage. Kim et al. [8] proposed two kinds of surprise adequacy indicators from
the perspective of the diversity of test samples to training samples, and then
designed the surprise coverage criterion on this basis.

6.2 Test Samples Generation for DNN

Coverage-guide Fuzz testing, as an important part of DNN testing, aims to use
a small number of valid test samples as seeds to generate a large number of test
samples that do not meet the model expectations and cover the model bound-
ary regions as much as possible. Pei et al. first proposed a neuron coverage
criterion, which was then combined with differential testing aimed at maximis-
ing the difference in output results of different DNN models and neuron coverage
to generate test samples. Guo et al. [5] proposed the DLFuzz method to maxi-
mize neuron coverage and model prediction differences between the original and
mutated samples, while defining four neuron selection strategies to select neurons
that are more likely to improve coverage. Lee et al. [11] proposed an adaptive
neuron selection strategy, which utilizes the static and dynamic characteristics
of the neurons during the generation of test samples to automatically select the
appropriate neurons. Zhang et al. [28] proposed the CAGFuzz method, which
uses neuron coverage as a guide to generate test samples using adversarial neural
networks. Wang et al. [25] proposed the RobOT method from the perspective of
model robustness, which can guide the selection or generation of test samples to
improve the robustness of the model.

432 J. Zhu et al.

7 Conclusion

In this paper, we propose DeepTD, a diversity-guided deep neutral network test
generation method. The method makes some changes in two key aspects of CGF-
seed selection and seed mutation. On seed selection, guided by enhancing the
diversity of test samples to the same class of test samples, the samples with
high loss values in the test set are selected evenly by class, and brightness and
saturation transformations are applied. On seed mutation, guided by enhancing
the diversity of test samples to the same class of training samples, Cluster-based
Surprise Adequacy is proposed to guide test sample generation. Experiments on
2 image datasets and 6 DNN models demonstrate the effectiveness of DeepTD.
In the future, the DeepTD method will be improved to be used on regression
models and more complex datasets.

Acknowledgment. This work is supported by the National Natural Science Founda-
tion of China (No. 62202223), the Natural Science Foundation of Jiangsu Province (No.
BK20220881), the Open Fund of the State Key Laboratory for Novel Software Tech-
nology (No. KFKT2021B32), the Fundamental Research Funds for the Central Univer-
sities (No. NT2022027) and the Postgraduate Research Practice Innovation Program
of NUAA (No. xcxjh20221613).

References

1. Aghababaeyan, Z., Abdellatif, M., Briand, L., Ramesh, S., Bagherzadeh, M.: Black-
box testing of deep neural networks through test case diversity. IEEE Trans. Softw.
Eng. (2023)

2. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for
direct perception in autonomous driving. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 2722–2730 (2015)

3. Du, X., Xie, X., Li, Y., Ma, L., Zhao, J., Liu, Y.: Deepcruiser: automated guided
testing for stateful deep learning systems. arXiv preprint arXiv:1812.05339 (2018)

4. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

5. Guo, J., Jiang, Y., Zhao, Y., Chen, Q., Sun, J.: DLFuzz: differential fuzzing testing
of deep learning systems. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 739–743 (2018)

6. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm.
J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy. In: 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE), pp. 1039–1049. IEEE (2019)

9. LeCun, Y.: The MNIST database of handwritten digits (1998). https://yann.lecun.
com/exdb/mnist/

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

http://arxiv.org/abs/1812.05339
http://arxiv.org/abs/1412.6572
https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/

DeepTD: Diversity-Guided Deep Neural Network Test Generation 433

11. Lee, S., Cha, S., Lee, D., Oh, H.: Effective white-box testing of deep neural net-
works with adaptive neuron-selection strategy. In: Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 165–176
(2020)

12. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep
neural network architectures and their applications. Neurocomputing 234, 11–26
(2017)

13. Ma, L., et al.: DeepCT: tomographic combinatorial testing for deep learning sys-
tems. In: 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 614–618. IEEE (2019)

14. Ma, L., et al.: DeepGauge: multi-granularity testing criteria for deep learning sys-
tems. In: Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, pp. 120–131 (2018)

15. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

16. Odena, A., Olsson, C., Andersen, D., Goodfellow, I.: TensorFuzz: debugging neural
networks with coverage-guided fuzzing. In: International Conference on Machine
Learning, pp. 4901–4911. PMLR (2019)

17. Pang, B., Nijkamp, E., Wu, Y.N.: Deep learning with tensorflow: a review. J. Educ.
Behav. Stat. 45(2), 227–248 (2020)

18. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing
of deep learning systems. In: proceedings of the 26th Symposium on Operating
Systems Principles, pp. 1–18 (2017)

19. Riccio, V., Jahangirova, G., Stocco, A., Humbatova, N., Weiss, M., Tonella, P.:
Testing machine learning based systems: a systematic mapping. Empir. Softw.
Eng. 25, 5193–5254 (2020)

20. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

21. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic
testing. IEEE Trans. Softw. Eng. 42(9), 805–824 (2016)

22. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Ann. Rev.
Biomed. Eng. 19, 221–248 (2017)

23. Tao, C., Tao, Y., Guo, H., Huang, Z., Sun, X.: DLRegion: coverage-guided fuzz
testing of deep neural networks with region-based neuron selection strategies. Inf.
Softw. Technol., 107266 (2023)

24. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th International Con-
ference on Software Engineering, pp. 303–314 (2018)

25. Wang, J., et al.: Robot: robustness-oriented testing for deep learning systems. In:
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pp. 300–311. IEEE (2021)

26. Xie, X., et al.: DeepHunter: a coverage-guided fuzz testing framework for deep neu-
ral networks. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, pp. 146–157 (2019)

27. Zhang, P., Dai, Q., Ji, S.: Condition-guided adversarial generative testing for deep
learning systems. In: 2019 IEEE International Conference on Artificial Intelligence
Testing (AITest), pp. 71–72. IEEE (2019)

28. Zhang, P., Ren, B., Dong, H., Dai, Q.: CAGFuzz: coverage-guided adversarial gen-
erative fuzzing testing for image-based deep learning systems. IEEE Trans. Softw.
Eng. 48(11), 4630–4646 (2021)

http://arxiv.org/abs/1706.06083

Author Index

B
Besson, Frédéric 385
Bu, Zhe 226

C
Cao, Qinxiang 262
Chen, Haiming 206, 331
Chen, Liqian 314
Chen, Ting 402
Chen, Wu 55
Chen, Zhenbang 72
Chen, Zixuan 206, 331

F
Fan, Guangsheng 314

G
Gao, Chen 351
Geng, Jia 21
Guo, Hongjing 419

H
Han, Shaocong 38
Hao, Zhiyu 226
He, Zhangyue 55
Hong, Weijiang 72
Hu, Denghang 1
Hu, Ruiqi 21
Huang, Binyu 189
Huang, Jintao 92
Huang, Peishan 72
Huang, Yu 189
Huang, Zhiqiu 298

J
Ji, Zekun 112
Ju, Yue 419

K
Kong, Qichao 132

L
Li, Minglong 72
Li, Rongchen 206, 331
Li, Yuhan 72
Li, Zhihui 21
Li, Zhiqi 351
Li, Zidong 279
Lion, Benjamin 385
Liu, Bo 152
Liu, Huiyu 132
Liu, Jiamou 55
Liu, Kai 402
Liu, Kairong 21
Liu, Zhiming 152
Lu, Yuteng 243
Luan, Xiaokun 243
Lv, Fei 92
Lv, Shichao 92

M
Ma, Xiaoxing 189

N
Ni, Xinpeng 171

O
Ouyang, Lingzhi 189

P
Peng, Chengyao 331

S
She, Zhikun 21
Shi, Zhiqiang 92
Su, Ting 132
Su, Weihao 206, 331
Sun, Haiying 132
Sun, Hao 226
Sun, Meng 243
Sun, Weidi 243

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
H. Hermanns et al. (Eds.): SETTA 2023, LNCS 14464, pp. 435–436, 2024.
https://doi.org/10.1007/978-981-99-8664-4

https://doi.org/10.1007/978-981-99-8664-4

436 Author Index

T
Talpin, Jean-Pierre 385
Tang, Yanni 55
Tao, Chuanqi 419
Teng, Jiadong 152

W
Wan, Xinyi 262
Wang, Gaosheng 92
Wang, Ji 72, 314
Wang, Jue 132
Wang, Mengxi 331
Wang, Rui 351
Wang, Shuling 112
Wang, Weiwei 279
Wang, Yifan 351
Wang, Yongjie 368
Wu, Yulun 171
Wu, Zhilin 1

X
Xia, Bican 171
Xiao, Yang 226
Xiao, Yingmin 298
Xiong, Xinli 368

Xu, Han 314
Xu, Xiong 112

Y
Yan, Yixuan 331
Yang, Yixiao 351
Yang, Zhibin 298
Yao, Qian 368
Yin, Banghu 314
You, Feng 279
Yuan, Shenghao 385

Z
Zhang, Chunxi 402
Zhang, Rong 402
Zhang, Shuyan 402
Zhang, Weidong 92
Zhang, Yi 38
Zhao, Kaiqi 55
Zhao, Ruilian 279
Zheng, Lixiao 331
Zhou, Chengsheng 226
Zhou, Yong 298
Zhu, Hongsong 226
Zhu, Jin 419

	 Preface
	 Organization
	 Contents
	String Constraints with Regex-Counting and String-Length Solved More Efficiently
	1 Introduction
	2 Overview
	3 Preliminaries
	4 String Constraints with Regex-Counting and String-Length
	5 Cost-Enriched Finite Automata
	6 Solving RECL Constraints
	6.1 From SATRECL to NELIA(CEFA)
	6.2 Solving NELIA(CEFA)

	7 Experiments
	7.1 Benchmark Suites and Experiment Setup
	7.2 Performance Evaluation
	7.3 Evaluation on Problem Instances with Large Bounds
	7.4 Empirical Justification of the Technical Choices Made in the Decision Procedure

	8 Conclusion
	References

	Reachability Based Uniform Controllability to Target Set with Evolution Function
	1 Introduction
	2 Problem Formulation
	3 Reachability Based Theoretical Foundation
	3.1 Approximation of Reachable Set
	3.2 Hausdorff Semi-distance Based Control Synthesis
	3.3 Reachability Verification

	4 Reachability Based Heuristic Framework
	5 Improvements of Reachability Based Framework
	5.1 K-Arm Bandit Model Based Improvement
	5.2 Reference Trajectory Based Further Improvement

	6 Examples and Discussions
	7 Conclusion
	References

	Enhancing Branch and Bound for Robustness Verification of Neural Networks via an Effective Branching Strategy
	1 Introduction
	2 Preliminaries
	2.1 Neural Network Verification
	2.2 Branch and Bound

	3 Enhancing BaB with a Better Branching Strategy
	3.1 Improvement to Lower Bound by Splitting
	3.2 Better Splitting Decision

	4 Experimental Evaluation
	4.1 Benchmarks
	4.2 Experiment Results

	5 Conclusion
	References

	Graph-Based Log Anomaly Detection via Adversarial Training
	1 Introduction
	2 Related Work
	2.1 Log-Based Anomaly Detection
	2.2 Generative Adversarial Network for Anomaly Detection

	3 Framework
	3.1 Problem Statement
	3.2 Log Preprocessing
	3.3 Graph Construction
	3.4 Graph Representation Learning
	3.5 Adversarial Training Model
	3.6 Anomaly Detection

	4 Experiments and Results
	4.1 Datasets and Evaluation Metrics
	4.2 Baselines and Implementation Details
	4.3 RQ1: Comparison with Baseline Models
	4.4 RQ2: Robustness w.r.t. Data Contamination
	4.5 RQ3: Ablation Study

	5 Conclusion
	References

	Formal Verification Based Synthesis for Behavior Trees
	1 Introduction
	2 Background
	2.1 Behavior Trees
	2.2 Linear Temporal Logic
	2.3 Communicating Sequential Processes

	3 Problem Formulation
	4 Proposed Approach
	4.1 CSP Modelling and Verification
	4.2 Grammar-Based MCTS

	5 Demonstration
	5.1 Experimental Setup
	5.2 Comparison Experiment
	5.3 Ablation Experiment
	5.4 Discussion

	6 Related Work
	7 Conclusion
	References

	SeHBPL: Behavioral Semantics-Based Patch Presence Test for Binaries
	1 Introduction
	2 Overview
	2.1 Challenges
	2.2 Behavioral Semantics
	2.3 Insights
	2.4 Running Example

	3 Approach Design
	3.1 Source Code Parsing
	3.2 Behavioral Semantics Extracting
	3.3 Behavioral Semantics Matching

	4 Evaluation
	4.1 Testing Data Setup
	4.2 Evaluation Setup
	4.3 Evaluation on Effectiveness
	4.4 Evaluation of Efficiency
	4.5 Performance of Behavioral Semantics

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Session Types with Multiple Senders Single Receiver
	1 Introduction
	1.1 Related Work

	2 A Motivating Example
	3 MSSR Session Types
	3.1 Session -Calculus
	3.2 Global and Local Session Types
	3.3 Projection and Well-Formed Global Types
	3.4 Consistency of Global Types and Local Types

	4 Type System
	5 A Communication Type System for Progress
	5.1 Typing Rules

	6 Modelling Rust Multi-threads in MSSR Session Types
	7 Conclusion and Future Work
	References

	Understanding the Reproducibility Issues of Monkey for GUI Testing
	1 Introduction
	2 Empirical Study Methodology
	2.1 Notations and Definitions
	2.2 Experimental Method
	2.3 Experimental Setup

	3 Experimental Results Analysis
	3.1 RQ1: REPRODUCIBILITY RATE
	3.2 RQ2: ROOT CAUSE

	4 Discussions and Implications
	4.1 How Does Throttle Affect Monkey's Reproducibility Rate?
	4.2 Can R&R Tools Improve Monkey's Reproducibility Rate?
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion and Future Work
	References

	Multi-dimensional Abstraction and Decomposition for Separation of Concerns
	1 Introduction
	2 Linking Formal Methods
	2.1 Formal Theories of Different Aspects
	2.2 UTP for Linking Formal Theories

	3 rCOS Theory for Component-Based Architecture
	3.1 rCOS Theory of Semantics and Refinement of OO Programming
	3.2 Model of Interface Contracts of Components

	4 rCOS Support to Separation of Concerns in MDE
	4.1 Use Case Driven Requirements Model Building
	4.2 Component Development Process
	4.3 System Development

	5 Conclusions
	References

	Solving SMT over Non-linear Real Arithmetic via Numerical Sampling and Symbolic Verification
	1 Introduction
	2 Preliminaries
	2.1 Real Arithmetic Formula
	2.2 Zero-Dimensional Systems and Real Zeros

	3 Numeric Sampling via Random Global Optimization
	4 The Main Algorithm
	4.1 Using Numeric Samples to Simplify the Formula
	4.2 DPLL-Based Splitting Procedure
	4.3 Model Generation and Verification
	4.4 Reducing the Equation Set to Zero-Dimensional System
	4.5 Determine Satisfiability of Inequality

	5 Experiment
	5.1 Experiment Preparation
	5.2 Instances
	5.3 Comparison to Symbolic Computation Tools
	5.4 Comparison to State-of-the-Art SMT Solvers

	6 Conclusion and Future Work
	References

	Leveraging TLA+ Specifications to Improve the Reliability of the ZooKeeperCoordination Service
	1 Introduction
	2 ZooKeeper and TLA+
	2.1 ZooKeeper and Zab
	2.2 TLA+ Basics

	3 Protocol Specification
	3.1 Development of Protocol Specification
	3.2 Ensuring Quality of Protocol Specification

	4 System Specification
	4.1 Essentials of a Super-Doc in TLA+
	4.2 Development of the Super-Doc
	4.3 Ensuring Quality of the Super-Doc

	5 Test Specification
	5.1 Obtaining the Test Specification
	5.2 Improving the Accuracy of Specification
	5.3 Test Specification in Action

	6 Related Work
	7 Conclusion and Future Work
	References

	Modeling Regex Operators for Solving Regex Crossword Puzzles
	1 Introduction
	2 Preliminaries
	3 Modeling Regex Operators
	3.1 The Function (r,p,l)
	3.2 Refinement

	4 Solving Regex Crossword Puzzles
	4.1 The Definitions
	4.2 Rcps: Regex Crossword Puzzle Solver

	5 Experiments
	5.1 Experiment Setup
	5.2 Effectiveness and Efficiency of Rcps

	6 Related Work
	7 Conclusion
	References

	Software Vulnerability Detection Using an Enhanced Generalization Strategy
	1 Introduction
	2 Related Works
	2.1 In-Domain Vulnerability Detection Methods
	2.2 Cross-Domain Vulnerability Detection Methods

	3 Approach
	3.1 Data Preparation
	3.2 Meta Learning Model
	3.3 Detection Model

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experiment Results

	5 Conclusion
	References

	HeatC: A Variable-Grained Coverage Criterion for Deep Learning Systems
	1 Introduction
	2 Class Activation Mapping
	3 HeatC Coverage Criterion
	3.1 Generation of Heat Feature Buckets
	3.2 Test Adequacy Evaluation and Test Sample Selection

	4 Evaluation
	4.1 Experiment Design
	4.2 Experiment Results

	5 Conclusion
	References

	Formalization of Lambda Calculus with Explicit Names as a Nominal Reasoning Framework
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Syntax and Alpha-Equivalence
	2.1 Names
	2.2 The Syntax of Lambda Calculus
	2.3 Alpha Equivalence
	2.4 Substitution
	2.5 An Alpha-Structural Induction Principle

	3 The Church-Rosser Theorem
	3.1 Rule Induction Principles
	3.2 Proof of Church-Rosser

	4 Application: First-Order Logic Extended with Dynamically-Defined Predicates
	5 Conclusions
	References

	Vulnerability Report Analysis and Vulnerability Reproduction for Web Applications
	1 Introduction
	2 Basic Concepts and Related Techniques
	2.1 Vulnerability Report
	2.2 Natural Language Processing
	2.3 Test Scripts and Testing Framework of Web Applications

	3 Vulnerability Report Analysis and Vulnerability Reproduction Approach for Web Applications
	3.1 Overview
	3.2 Syntactic Dependency Patterns Summarising from Vulnerability Reports
	3.3 Automated Parsing of Vulnerability Reports
	3.4 Automatic Vulnerability Reproduction Based on Semantic Similarity Between CIS and Event of Web Application

	4 Experiment
	4.1 Experimental Subjects and Environment
	4.2 Analysis of Experimental Results

	5 Conclusion
	References

	Run-Time Assured Reinforcement Learning for Safe Spacecraft Rendezvous with Obstacle Avoidance
	1 Introduction and Related Work
	2 Background
	2.1 Reinforcement Learning
	2.2 Run-Time Assurance

	3 Safe Spacecraft Rendezvous
	3.1 Relative Motion Dynamics
	3.2 Safety Constraints
	3.3 Run-Time Assured RL Algorithm

	4 Experiments
	4.1 Spacecraft Rendezvous Environment
	4.2 Reward Shaping
	4.3 Hyperparameters

	5 Results
	5.1 Training Performance Analysis
	5.2 Simulation and Expanded Test

	6 Conclusions
	References

	An Abstract Domain of Linear Templates with Disjunctive Right-Hand-Side Intervals
	1 Introduction
	2 Preliminaries
	2.1 Fixed Partitioning Slots Based Powerset Domain of Intervals
	2.2 Mixed-Integer Linear Programming
	2.3 Template Constraint Matrix Abstract Domain

	3 An Abstract Domain of Linear Templates with Disjunctive Right-Hand-Side Intervals
	3.1 Domain Representation
	3.2 Domain Operations
	3.3 Extrapolations
	3.4 Transfer Functions

	4 Implementation and Experiments
	5 Related Work
	6 Conclusion
	References

	Deducing Matching Strings for Real-World Regular Expressions
	1 Introduction
	2 Background
	2.1 Regex
	2.2 Research Problem
	2.3 The Current Status of Existing String Generation Tools

	3 Overview
	4 Modeling and String Generation Algorithms
	4.1 Extension of Functions to Regex
	4.2 Reduction Rules for Regex
	4.3 Effective Representation of Unicode Character Classes
	4.4 Induction System for Regex
	4.5 String Generation Algorithm

	5 Evaluation
	5.1 Datasets
	5.2 Tools for Comparison
	5.3 Evaluation of Random String Generation
	5.4 Statistics for Full Matching and Partial Matching
	5.5 Results on Real Projects

	6 Related Work
	7 Conclusion
	References

	Binary Level Concolic Execution on Windows with Rich Instrumentation Based Taint Analysis
	1 Introduction
	2 Background
	3 Overall Framework
	3.1 Rich Instrument
	3.2 Dynamic Taint Analysis
	3.3 Dynamic Symbolic (Concolic) Execution

	4 Experiments
	4.1 The Experimental Setup
	4.2 WinTaintCE vs Windows Fuzzing Methods
	4.3 WinTaintCE with and Without Taint Analysis
	4.4 WinTaintCE vs Traditional Formal Methods

	5 Related Work
	6 Conclusion
	References

	Cheat-FlipIt: An Approach to Modeling and Perception of a Deceptive Opponent
	1 Introduction
	2 Related Work
	3 Cheat-FlipIt Game Model
	3.1 Assumptions
	3.2 Model
	3.3 Opponent Strategies

	4 NLD3QN Approach
	4.1 The Architecture of NLD3QN
	4.2 The Training Procedure of NLD3QN

	5 Experiments
	5.1 Environmental Settings
	5.2 Baselines
	5.3 Analysis of Experimental Results

	6 Conclusion
	References

	Making an eBPF Virtual Machine Faster on Microcontrollers: Verified Optimization and Proof Simplification
	1 Introduction
	2 Background
	3 Design
	3.1 High Level Intuition
	3.2 Optimized check_mem Function
	3.3 Implementation

	4 Proof
	4.1 Challenge
	4.2 Simplification
	4.3 Equivalence Proof

	5 Evaluation
	5.1 Experimental Evaluation Setup
	5.2 Memory Footprint
	5.3 Experiments

	6 Related Work
	7 Conclusion and Future Work
	References

	An Optimized Solution for Highly Contended Transactional Workloads
	1 Introduction
	2 Preliminaries and Overview
	2.1 Characteristics of E-Commerce Workloads
	2.2 Optimized Scheme
	2.3 System Overview

	3 Ineffective Operations Filtering
	3.1 Ineffective Operation Identification
	3.2 Filtering Procedure

	4 Homogeneous Operations Merging
	4.1 Design of Merging
	4.2 Merging Procedure

	5 Evaluation
	5.1 Micro Exploration of Filtering and Merging
	5.2 Macro Evaluation of Filmer

	6 Related Work
	7 Conclusion
	References

	DeepTD: Diversity-Guided Deep Neural Network Test Generation
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Coverage-Guide Fuzz Testing for DNN

	3 Approach
	3.1 Seed Selection and Transformations
	3.2 Cluster-Based Surprise Adequacy
	3.3 Test Samples Generation

	4 Experiments
	4.1 Dataset and Models
	4.2 Evaluation Metrics and Baselines
	4.3 Research Questions and Results

	5 Threats to Validity
	6 Related Work
	6.1 Test Coverage Criteria for DNN
	6.2 Test Samples Generation for DNN

	7 Conclusion
	References

	Author Index

