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Abstract The integration of cutting-edge technology, including deep learning, 
smartphone capabilities, and wearable devices, has sparked a transformative revo-
lution in fall detection systems, offering real-time monitoring and swift response in 
the event of a fall. This research study presents a fall detection system that harnesses 
advanced deep learning techniques, particularly 1D convolutional neural networks 
(CNNs), to achieve remarkable accuracy scores of 91% and 92%. Rigorously eval-
uated using the Sisfall and UMA Fall datasets, which consist of 9 and 25 features, 
respectively, obtained through meticulous hand engineering, this system demon-
strates its efficacy in detecting falls. The potential of this advanced fall detection 
system lies in its ability to significantly enhance the safety and well-being of individ-
uals by enabling timely assistance after a fall. By leveraging the power of artificial 
intelligence and state-of-the-art technology, the system promises to amplify the effi-
ciency of fall detection in real-world scenarios, providing reassurance and peace of 
mind for both individuals and their caregivers. Particularly beneficial for vulnerable 
populations like the elderly, this technology holds the promise of mitigating the risk of 
severe injuries and fatalities resulting from falls. The study’s findings underscore the 
substantial progress that can be achieved in fall detection by seamlessly integrating 
deep learning, smartphone technology, and wearable devices. This integration paves 
the way for a future where prompt assistance becomes standard practice, reducing 
the potential consequences of falls and ultimately improving the quality of life for 
those at risk. As this research sheds light on the immense benefits of advanced fall 
detection systems, it serves as a significant step forward in ensuring the safety and 
welfare of individuals, fostering a safer environment for everyone. 
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1 Introduction 

In the ever-evolving realm of medicine, remarkable progress has been made since the 
turn of the millennium, leading to a notable increase in life expectancy by five years. 
This momentous advancement has triggered a significant demographic shift, with 
the elderly population now accounting for 8.5% of the global populace. Projections 
by the esteemed National Institutes of Health (NIH) indicate that by the year 2050, 
this proportion will escalate to a staggering 20%. Among the many concerns tied to 
the geriatric community, the prevalence of falls stands out as a substantial risk factor 
and the second leading cause of mortality. According to the esteemed World Health 
Organization (WHO), an estimated 37.3 million accidents occur annually, necessi-
tating medical attention and leading to over 646,000 fatalities. Falls afflict around 
30% of individuals aged 65 and above each year, with this percentage surging to 
50% for those aged 80 and older. In response to this pressing issue, wearable health-
care applications have emerged as a promising solution, thanks to the advancements 
witnessed in hardware and operating systems. Particularly, automated fall detection 
systems (FDSs) have garnered significant interest in academic research circles due to 
their remarkable ability to identify and promptly report falls, consequently mitigating 
their impact and consequences on the elderly. 

Market projections suggest that automated fall detection systems are poised to 
capture 60% of the fall detection systems market share between 2019 and 2020, 
showcasing a compound annual growth rate (CAGR) of approximately 4% from 
2019 to 2029. Governments worldwide are investing in research pertaining to fall 
detection devices to address the substantial portion of healthcare expenditures allo-
cated to fall-related injuries [1, 2]. In conclusion, the advancements in medicine have 
led to an extended life expectancy, resulting in a demographic shift with a growing 
elderly population. Falls, being a significant concern for the elderly, are responsible 
for a considerable number of accidents and fatalities each year. Wearable health-
care applications, particularly automated fall detection systems, have emerged as a 
promising solution to this issue. Market trends indicate a rising demand for such 
systems, and governments recognize the need for investing in fall detection device 
research to mitigate healthcare costs associated with fall-related injuries. 

1.1 Fall Risk Factors 

The act of falling occurs when an individual encounters difficulty in maintaining their 
balance and attempts to regain an upright position. While young people possess the 
physical strength to recover their balance, older individuals face greater challenges 
due to their weakened physical state. The causes of such collapses can be diverse, and 
the term “risk factors for falls” encompasses all possible circumstances that might 
contribute to a fall. In truth, the incidence of falls is the result of a complex interplay
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of multiple factors. Therefore, understanding the likely risk factors associated with 
falls among the elderly is crucial. A comprehensive understanding of these risk vari-
ables enables the development of more effective strategies to prevent falls. Various 
factors, including biological, behavioral, demographic, and environmental elements, 
may contribute to falls. Extensive research has identified a range of potential hazards, 
which are outlined in Fig. 1. Falling from beds ranks as the second most common 
cause of fall-related injuries, second only to physiological issues [3]. Risk factors 
related to behavior are intertwined with people’s thoughts, emotions, and daily activ-
ities. These factors can be addressed through strategic interventions. For example, 
if a person experiences trips or falls due to excessive drug or alcohol misuse, their 
behavior patterns can be altered through appropriate treatment strategies. Environ-
mental risk factors stem from the immediate surroundings of an individual. Cracked 
sidewalks, uneven surfaces, and inadequate lighting are prominent examples of envi-
ronmental risk factors. Biological risk factors include an individual’s age, gender, and 
overall physical health. Acute and chronic diseases, diabetes, cardiovascular prob-
lems, vision impairments, balance issues, and high or low blood pressure are among 
the biological risk factors. While age and gender are unalterable biological charac-
teristics, illnesses can be prevented or managed through proper medical treatment, 
and both physical and mental well-being can be enhanced [2]. Falls are the result of 
a complex interplay of factors. Risk factors for falls include biological, behavioral, 
demographic, and environmental elements. Understanding these factors is crucial 
in developing effective strategies to prevent falls among the elderly. By addressing 
behavior-related risks through interventions and mitigating environmental hazards, 
the incidence of falls can be reduced. Additionally, managing and preventing diseases 
and promoting overall health play a vital role in minimizing the biological risk factors 
associated with falls.

1.2 Types of Falls Fall 

Up until the 1990s, categorizing fall was a significant problem. The largest obstacle 
was a lack of agreement among researchers. The majority of the classification at that 
time was based on the causes of falls. Depending on the position preceding a fall, 
there were three (other categories of falls also shown in (Fig. 2)) main categories of 
falls:

a. Fall from Bed

• At the time of the fall, the person is lying in bed either sleeping or not.
• From bed height to floor height, the body height decreases. The body typically 

experiences what feels like a free fall motion at that time.
• The body is in a position on the floor that is close to the bed.
• The entire procedure occurs in a series of smaller activities over the course of 

1–3 s.
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Fig. 1 Fall risk factors

Fig. 2 Other categories of falls
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b. Fall from Sitting

• At the start of the fall, the person is sitting on a chair or another piece of 
furniture approximately at the same height.

• The head descends in a free fall fashion until its height is reduced to the floor.
• The body is lying close to the chair in this position.
• The falling process is divided into 1–3 s sub-actions. 

c. Fall from Walking or Standing

• When the fall begins, the person is either standing or walking.
• The head lowers itself to the floor while lying on it from a level that is equal 

to the person’s height. It might move slightly while lying.
• Typically, the fall is unidirectional. 

1.3 Fall Detection 

Devices that are worn, devices that rely on cameras, and devices that measure the 
environment are the three primary categories that fall detection methods may be 
broken down into, devices that are worn, devices that rely on cameras, and devices 
that measure the environment which are the three primary categories that fall detec-
tion methods may be broken down into. Classification of fall detection is shown in 
Fig. 3. The persons who are at danger of falling are required to wear some kind of 
wearable gadget or apparel in the strategy that utilizes wearable technologies. The 
data that these sensors collect on the movement or posture of the body is then sent 
into a processing algorithm which determines whether or not a tumble has occurred. 
However, some users feel that wearable technology is excessively obtrusive and a 
hassle to carry about with them. They do not bother to continuously have a gadget 
on their person. In addition, there is an issue with the apparatus’ placement. Some 
actions, such as dozing or moving, may displace the device from its original position, 
resulting in less precise results. Sleeping and moving around are examples of such 
activities. It would seem that the camera-based technique is successful in resolving 
some of these issues. The cameras are set up in strategic locations so that they may 
carry out unobtrusive, round-the-clock surveillance on the elderly. In contrast to 
sensors, cameras have the capability of evaluating and analyzing a wide variety of 
characteristics simultaneously. When camera prices were higher, originally fewer 
people wanted these kinds of devices because they were more costly. These gadgets 
also have the capability of saving the data they collect so that it may be analyzed and 
consulted at a later time. The strategy known as the ambiance device requires the 
installation of certain sensors in close proximity to the individuals being monitored, 
including on a wall, floor, or bed. These sensors are responsible for collecting data, 
which are then used as input by an algorithm in order to identify whether or not a 
fall has happened. As a direct result of this, the incidence is reported to the carers.
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Fig. 3 Fall detection devices 

Because the associated individual does not have to wear a sensor, they do not have 
any concerns about any form of oversight [2]. 

In fall detection and prediction systems, camera-based sensors are widely 
employed. Separate cameras are utilized in such systems to monitor the routing activ-
ities of each individual. Camera-based methods are costly and necessitate a massive 
quantity of data storage and processing. This method of operation is extremely 
complex and requires a more potent GPU and CPU. In addition to their advan-
tages, camera-based systems have disadvantages such as privacy concerns and the 
incapacity to track beyond the camera’s field of view [2]. Because low-cost physical 
sensors are becoming more readily available, there has been a recent explosion in 
interest in wearable sensor-based computing systems. Real-time monitoring can be 
obtained via the employment of wearable-based devices rather than environment-
based monitoring equipment. As a result, collect data that belongs to the user. In 
these types of systems, the devices that are used are often microcontrollers that are 
outfitted with inertial measurement units. This helps to reduce the overall size of the 
device while also extending the battery’s lifespan. Wearable technology often results 
in reduced overall economic expenses as compared to context-aware technologies 
[1]. In addition to accelerometers, gyroscopes, and force sensors, the components 
of wearable technologies also include gyroscopes. However, it is challenging for an 
individual to wear multiple devices. In contrast, smartphone-based systems are inex-
pensive and can be utilized outside of controlled environments as the user goes about
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his or her daily life. Moreover, smartphones incorporate sensors such as accelerom-
eters, gyroscopes, and magnetometers. Thus, smartphones are frequently considered 
the most appropriate technology for applications in health care, security, athletics, 
fitness, gait analysis, and accident prediction [4]. Due to their proximity to the human 
body’s center of gravity, the sternum and the waist have been demonstrated to be the 
optimal locations for a wearable accelerometer designed to detect falls accurately. 
Certain studies have revealed that carrying a smartphone in a pocket can hinder the 
effectiveness of detection systems, particularly when the device is allowed to move 
freely within the pocket, and the accelerometer fails to determine the user’s movement 
accurately. Some suggested solutions propose optimal results when the smartphone 
is securely attached using an adjustable band around the chest, waist, or a similar 
fastening element. However, this rigid attachment compromises user comfort and 
limits their ability to access the smartphone’s standard features [5]. Smart watches 
are wristwatches with a miniature display, integrated sensors, and Internet connec-
tivity. Smartwatch manufacturers seek to develop a new form of wearable device 
capable of displaying brief communications such as SMS, RSS feeds, and Facebook 
notifications. Smartwatches enhance the system’s ergonomics and (typically) the 
resolution and range of the integrated accelerometers in comparison to smartphones. 
In contrast, the wrist movement (where the chronometer is affixed) does not always 
indicate the stability of the body. Therefore, abrupt limb movements that are not 
inherently associated with falls can readily produce false positives. (i.e., activities 
that are incorrectly identified as falls) [5]. A series of ambiance device approaches are 
installed in the immediate proximity of the associated individuals in the ambience 
device method, including on a wall, floor, and bed. Using the information collected 
from these sensors, an algorithm determines whether a fall has occurred. The incident 
is consequently conveyed to the attendants. As the individual is not required to wear 
a sensor, he or she is unconcerned about any type of surveillance [2]. 

1.4 Fall Prevention 

The prevention of falls is an essential aspect of providing for senior individuals, 
despite the impossibility of ensuring their complete prevention. There are, however, 
there are measures that can be taken to reduce the danger of accidents and guarantee 
the safety of the targeted population. This can be accomplished by routinely assessing 
and continuously monitoring recognized fall risk factors [6]. If these parameters’ 
values lie within an acceptable range, it can be presumed that the individuals are in a 
relatively secure zone. The following exercises and practices can help prevent falls: 

1. Observe their mobility pay close attention to whether they have trouble rising 
from a chair or walking unassisted. If they appear unsteady or cling to walls or 
objects frequently for balance, this may indicate an increased risk of collapsing. 
Encourage the use of canes and walkers, if necessary.
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2. Certain medications can cause vertigo, lethargy, and other adverse effects that 
increase the risk of falling. Discuss their medications with their healthcare 
provider to ensure that the prescribed medications are suitable and do not 
pose a fall risk. Any concerns regarding adverse effects should be addressed 
immediately. 

3. Consider their general health condition, including any chronic maladies, balance 
issues, or sensory impairments, when assessing their overall health. Regular 
medical examinations and communication with healthcare providers can assist 
in identifying and treating health conditions that may contribute to falls. 

4. Examinations of the eyes and eyewear on a regular basis: Vision problems can 
substantially increase the risk of falling. Encourage regular eye exams to detect 
any changes in vision, and ensure that they have the necessary eyewear (glasses 
or contact lenses). Vision correction can enhance spatial awareness and reduce 
the likelihood of stumbling or misjudging distances. 

5. Create a safe living atmosphere: Remove potential hazards from their living 
environment. Remove debris, secure any loose rugs or carpets, and clear all 
pathways. To provide additional support, install handrails along staircases and 
in restrooms. Ensure that there is adequate illumination in all areas, particularly 
at night. 

6. Encourage regular physical activity, regular exercise can improve strength, 
balance, and flexibility, all of which are crucial for preventing falls. Encourage 
them to participate in senior-specific activities such as walking, tai chi, and chair 
exercises. Before beginning any exercise program, it is essential to consult a 
healthcare professional to ensure that it is appropriate for the individual’s abilities 
and medical condition. 

7. Encourage a healthful lifestyle in order to preserve an individual’s overall health. 
This includes a healthy diet, sufficient hydration, and adequate rest. A nutrient-
dense diet can support bone health and muscle stamina. Staying hydrated helps 
maintain proper physiological functions, and adequate rest ensures that the 
individual is vigilant and less likely to be involved in an accident. 

These measures can substantially reduce the risk of falls, but they cannot eliminate 
the possibility entirely. A supportive environment, regular monitoring, and ongoing 
communication with healthcare professionals are essential for promoting the welfare 
and well-being of senior citizens. 

2 Background 

Falls are a common occurrence among people of all ages, but they are particularly 
prevalent among the elderly due to the gradual decline in their physical abilities. 
Falls can result in severe injuries such as fractures, concussions, and even fatalities. 
In recent years, significant research has focused on developing automated methods for 
detecting and analyzing falls. The use of advanced machine learning techniques for
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fall detection is gaining importance, as these techniques enable systems to learn from 
data collected through various sensors that capture information related to different 
aspects of falls. By applying machine learning algorithms to this data, the system 
can classify and identify fall events based on specific criteria. 

There are several machine learning and deep learning algorithms widely used for 
fall prevention and detection, including SVM, Artificial Neural Networks (ANNs), 
RF, KNN, NB, CNN, RNN, etc. These algorithms have shown promise in accu-
rately and efficiently detecting falls. Researchers aim to leverage the capabilities 
of these advanced algorithms to develop highly accurate and efficient fall detection 
systems that can help prevent falls in a timely manner and minimize their negative 
consequences [1, 2, 8]. 

3 Literature Review 

Important in healthcare and senior care, fall detection seeks to automatically detect 
accidents and alert caregivers or emergency services. By analyzing sensor data 
from peripheral devices or cameras, traditional ML algorithms can be used for 
detection of fall. A smartphone and smartwatch-based fall detection system is 
utilizing smartwatch and smartphones accelerometers, gyroscopes, and magnetome-
ters. The majority of smartphones contain a GPS module that can be added to other 
portable devices, like smart watches and bands. It is possible to connect a smart 
band, watch, or other portable device lacking a GPS module to a smartphone’s GPS 
module. In this instance, the mobile phone functions as both a monitoring device and 
an Internet gateway that can transmit real-time location information [9]. A variety 
of sensors, such as those on the wall, the floor, the bed, are installed throughout a 
person’s residence in order to track their movements while using an ambience device 
(Fig. 4). These sensors capture data, which are then analyzed by an algorithm to 
ascertain whether a fall occurred. If these sensors detect an accident, the monitoring 
service will notify the caretaker [8, 10]. Researchers discovered that smartphones 
and ambient devices can cooperate reasonably well, so they devised a novel method 
for fall detection using smartphones as the master monitoring device and ambient 
device sensors as subordinate sensors [7].

3.1 Traditional Machine Learning Approach for Fall 
Detection 

Traditional machine learning methods have gained significant popularity in the 
domain of fall detection due to their ability to analyze intricate data patterns and 
make well-informed decisions based on historical data examples. In contrast to 
deep learning models, which often demand large volumes of data and computational
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Fig. 4 Fall detection system

resources, traditional machine learning techniques can prove to be more practical and 
efficient, particularly in certain fall detection scenarios. The crux of the traditional 
machine learning approach lies in the model training phase. A variety of classifiers, 
including SVM, random forests, KNN, decision trees, etc. are employed. During 
the training process, the classifiers are fed with a labeled dataset, where each data 
sample is designated as either a fall or a non-fall instance. The model endeavors 
to discern meaningful patterns and associations between the extracted features and 
their corresponding class labels. By utilizing historical data and extracting informa-
tive features, these traditional machine learning models can effectively detect falls 
and differentiate them from regular movements. This capability plays a pivotal role in 
enhancing the safety and well-being of individuals, especially the elderly or those at 
risk of falling. Prompt detection of falls can lead to rapid responses, such as alerting 
caregivers, medical professionals, or emergency services, potentially minimizing the 
severity of injuries and improving the overall care for vulnerable populations. 

In the realm of fall detection methods, several researchers have proposed inno-
vative approaches. Ramachandran et al. [7] introduced a method that considers both 
sensor measurements and the individual’s biological profile. They used the UMA_ 
ADL_FALL_Dataset and employed Ordinal Logistic Regression, with KNN yielding 
the highest accuracy of 84.1%. Hussain et al. [8], on the other hand, utilized the Sisfall 
dataset and incorporated a low-pass IIR Butterworth filter and six extracted features. 
Remarkably, their algorithm achieved an impressive accuracy of 99.98% with SVM 
outperforming other methods. Toda and Shinomiya [10] took a unique approach 
using passive RFID (Fig. 5) sensors attached to footwear, applying the random forest 
algorithm. Their method achieved high accuracy with F-measure scores of 98% 
for person-dependent cases and 94% for person-independent cases. In a different 
study, Vallabh et al. [11] investigated fall detection using the "MobiFall" dataset, 
focusing on distinguishing between Activities of Daily Living (ADL) and fall activ-
ities. They employed various classification techniques, with KNN performing the 
best and achieving an accuracy of 87.5%. Chelli and Pätzold [12] evaluated KNN 
and ANN in identifying human activities, including falls. Both algorithms achieved 
high accuracies, with KNN at 81.2% and ANN at 87.8%. The researchers further
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improved their results by extracting additional features from acceleration and angular 
velocity data. In another perspective, Miawarni et al. [13] utilized SVM and deep 
learning techniques on the eHomeSeniors dataset, which included thermal sensors, 
reaching an accuracy of 84.62% by adjusting the gamma value without normalization 
or standardization. Conversely, Rashid et al. [14] simulated the Sisfall dataset and 
tested various algorithms, such as DT, NB, SVM, KNN, and Ensemble Classifiers. 
Fine KNN has emerged as the top-performing algorithm, achieving accuracies of 
83.76% and 84.64% in different experiments. The comparative analysis highlights 
that SVM, KNN, and ANN are commonly used and achieved high accuracies in fall 
detection tasks. Each method possesses its unique strengths and limitations, and the 
choice of the most suitable approach depends on factors such as dataset character-
istics, computational efficiency, and specific application requirements. Overall, the 
advancements in fall detection research showcase diverse algorithms and techniques, 
ranging from logistic regression to random forest and deep learning, that contribute 
to improving the accuracy and reliability of fall detection systems. 

Using sensor data to identify fall-related patterns and characteristics, traditional 
machine learning algorithms can detect falls effectively. For fall detection, decision 
trees and Naive Bayes are two additional machine learning algorithms that may 
require manual feature engineering. Both can be trained to detect falls by analyzing 
the features that are indicative of falls using sensor data. As with SVMs and random 
forests, however, traditional ML methods are used for fall detection, but they have 
limitations when compared to deep learning methods [3, 4, 10–12]. 

For fall detection using smartphones, peripheral devices, and ambient devices, 
deep learning models offer several advantages over conventional machine learning. 
These benefits include accurate detection, resistance to environmental changes,

Fig. 5 Alert-based fall detection system 
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feature extraction from raw data, real-time processing, scalability, transfer learning, 
individual user adaptability, non-intrusive monitoring, context-aware detection, 
continuous monitoring, integration with emergency services, and evolving models. 
These developments contribute to the creation of more dependable and effective 
fall detection systems, thereby enhancing the safety and well-being of individuals, 
especially the elderly and vulnerable populations. The advantages are describing 
below.

• Accurate Detection: 

Models employing deep learning can detect accidents with a high degree of preci-
sion. Traditional machine learning models require a substantial quantity of labeled 
data, and the model’s accuracy is highly dependent on the labeling quality. Deep 
learning, on the other hand, models can learn from unprocessed data and, with the 
assistance of complex neural networks, can recognize patterns and make accurate 
predictions.

• Robustness: 

Traditional machine learning models are more susceptible to environmental 
changes than deep learning models. Traditional machine learning models require 
consistent data with regard to quality, format, and sampling rate. However, deep 
learning models can adapt to changes in the environment and perform well despite 
chaotic or insufficient data.

• Feature Extraction: 

The ability of DL models to extract features from unprocessed data eliminates the 
need for domain-specific knowledge and feature engineering. Traditional machine 
learning models, in contrast, require time-intensive and domain-specific feature 
engineering.

• Real-Time Processing: 

Real-time data processing by deep learning models is essential for fall detection. 
Traditional machine learning models may require bulk processing, which may 
introduce latency into the system and pose a problem for applications requiring 
real-time processing.

• Scalability: 

Deep learning models are highly scalable and able to manage massive data 
volumes. Traditional machine learning models may struggle to scale as the model’s 
complexity and data volume increase.

• Individual User Adaptability: 

Deep learning models can adapt to the behavior and movement patterns of indi-
vidual users. By perpetually learning from data collected from a particular user, 
the model can customize fall detection based on the user’s unique characteristics 
and behaviors. This adaptability increases the accuracy of fall detection systems 
and decreases false alarms, making them more trustworthy for individual users.
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• Monitoring Without Invasion: 

Using smartphones, wearable devices, and ubiquitous devices for fall detection 
provides nonintrusive monitoring, enabling individuals to maintain their privacy 
and independence. These devices can be incorporated into users’ daily activities 
without causing discomfort or inconvenience. By analyzing sensor data from these 
devices, deep learning models enable unobtrusive fall detection without requiring 
individuals to wear or carry additional specialized equipment.

• Aware of Context Detection: 

Along with movement patterns, deep learning models can capture contextual infor-
mation to improve the accuracy of fall detection. By analyzing additional contex-
tual data such as time of day, location, and environmental conditions, deep learning 
models can differentiate between normal activities and falls more effectively. This 
context-aware approach reduces false positives and improves fall detection system 
reliability.

• Multimodal Data Fusion: 

Deep learning models can effectively combine data from multiple sensors to 
enhance the effectiveness of fall detection. Smartphones, wearable devices, and 
ambient devices frequently contain GPS, accelerometers, gyroscopes, barometers, 
and other sensors. Models employing deep learning can incorporate data from 
these various sensors, thereby obtaining a more complete picture of users’ move-
ments and activities. By integrating data from multiple modalities, the models can 
distinguish between normal activities and accidents more effectively.

• Continuous Observation: 

Models based on deep learning enable continuous monitoring of individuals, 
providing fall detection capabilities around the clock. Smartphones, wearable 
devices, and ubiquitous devices can collect data throughout the day, allowing 
users’ activities to be monitored in real time. This continuous stream of data can 
be processed by deep learning models, allowing falls to be detected promptly and 
appropriate actions to be taken.

• Compatibility with Emergency Services 

Fall detection systems based on deep learning can integrate seamlessly with emer-
gency services and caregiver notifications. When a fall is detected, the system 
can autonomously send alerts to designated caregivers or emergency services, 
ensuring that the individual in need receives immediate assistance. This inte-
gration expedites response times and improves the safety and well-being of all 
users.

• Evolving Models: 

As more data becomes available, deep learning models can evolve and develop 
continuously. By retraining the model with new labeled data, fall detection accu-
racy can be improved. This adaptability enables fall detection systems to remain 
current and enhance their performance by learning from new examples.
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• Computing Capabilities at the Edge: 

The optimization of deep learning models for edge computing enables fall detec-
tion to be performed directly on smartphones, wearable devices, and ambient 
devices. Computing at the network’s edge reduces the need for cloud-based 
processing, which can enhance response times and privacy. By executing deep 
learning models locally on the devices, fall detection can be conducted in real-time 
without the need for a constant Internet connection. This capability is especially 
advantageous in instances where network connectivity is limited or unreliable. 

3.2 Deep Learning Approach for Fall Detection 

Fall detection is a critical area of research aimed at ensuring the safety and well-being 
of vulnerable populations, particularly the elderly. Deep learning (DL) techniques 
have gained significant attention in recent years due to their ability to automatically 
learn intricate patterns and representations from raw data, often outperforming tradi-
tional machine learning approaches in various domains. In the context of fall detec-
tion, DL methods offer promising avenues for more accurate and robust detection 
systems. 

In the domain of fall detection and activity recognition, numerous studies have 
explored the effectiveness of various machine learning techniques and deep learning 
methods. Syed et al. [15] introduced an innovative system that combines fall detection 
with the recognition of daily activities using data from the IMU accelerometer and 
gyroscope. Their CNN achieved an unweighted average recall rate of 88%, demon-
strating its superior performance compared to other methods. In a separate study, 
Luna-Perejon et al. [16] investigated the use of Gated Recurrent Neural Networks 
(RNNs) based on LSTM and GRU for real-time fall detection using wearable devices 
with accelerometers. The selected architecture achieved impressive F1-scores of 
above 0.98 for falls and 0.85 for background activities, showcasing the effectiveness 
of RNN-based models. Likewise et al. [17] examined three datasets containing falls 
and activities of daily living. They applied Singular Value Decomposition (SVD) 
and 1D convolutional neural networks (CNNs) for feature extraction and recogni-
tion. The combination of dimension reduction features like SMV + SVD improved 
the accuracy to 75.65%, demonstrating the effectiveness of the proposed approach. 
Moreover, Garg, Sankalp, Bijaya Ketan Panigrahi, and Deepak Joshi [18] proposed 
a Deep Neural Network (DNN) for fall detection, showcasing its robustness to noise 
and achieving high accuracy, sensitivity, specificity, precision, and F-Score. The DNN 
performed well even in noisy environments, making it a valuable tool for real-time 
fall detection applications. Additionally, Kumar, H. Senthil, et al. [19] presented a 
comprehensive fall detection and activity identification system that utilized a CNN for 
feature extraction and XGB for categorization. The gradient-boosted CNN achieved 
an unweighted average recall of 89%, surpassing previous approaches. Overall, these 
studies demonstrate the effectiveness of deep learning methods, such as CNNs and 
RNNs, in fall detection and activity recognition tasks. The combination of deep
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learning models with other techniques, like XGB, enhances the accuracy and robust-
ness of the systems. The proposed methods offer promising results for real-world 
fall detection applications, holding potential benefits in healthcare and elderly care 
settings. However, the choice of the most suitable method should consider factors 
such as dataset characteristics, computational resources, and specific application 
requirements. Wisesa, I. Wayan Wiprayoga, and Genggam Mahardika [20] utilized 
RNNs to analyze sensor data for fall detection and activity recognition. They used 
the UMA FALL ADL dataset, employing a one-layer LSTM architecture with 100 
hidden neurons. The best performance was achieved using X-axis accelerometer 
data, with good overall classification on falls. Combining all sensor data yielded 
lower performance. 

3.3 Observation and Findings

• Camera-based methods are expensive and require a powerful GPU and CPU, 
which makes them difficult to use and necessitates storing and processing an 
enormous quantity of data.

• The disadvantages of camera-based systems include privacy concerns and the 
incapacity to observe beyond the camera’s field of view.

• Smartphones are not compatible with wearable fall detection devices. A fall detec-
tion system must measure four to six g (one g = 9.8 m/s2), but smartphone 
accelerometer sensors may measure up to 2 g. Software adjustment can modify 
that.

• Using smartphone sensors like the accelerometer and gyroscope depletes the 
battery, which is a disadvantage for mobile devices. Optimization of software 
can extend the battery life of mobile devices.

• It may be difficult for medical professionals to comprehend technical terms such 
as energy consumption, battery backup, response time, and sensor installation.

• The use of wearable and ambient devices can provide users with greater privacy 
than camera-based fall detection systems, which pose significant privacy risks.

• In addition to detecting falls, wearable devices can monitor pulse rate, blood 
pressure, and sleep patterns.

• According to this study, KNN and SVM have the highest accuracy for mobile-
based approaches, while CNN and RNN have the highest accuracy for ambience-
based approaches.

• Deep learning models offer superior performance, reduced need for feature 
engineering, increased scalability and adaptability.

• As a solution, a hybrid approach combining smartphones and ambient devices 
with a model of deep learning is employed. A hybrid approach that incorporates 
inexpensive wearable and ambient devices can assist in problem resolution.

• In addition to detecting injuries, wearable devices can provide alerts and noti-
fications for medication reminders, appointment reminders, and other vital 
information to elderly.
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• The Sisfall dataset and the UMA Fall dataset are widely utilized in the field of 
fall detection research and are regarded as significant assets for the development 
and evaluation of fall detection algorithms and systems. 

4 Proposed Model 

One-dimensional CNN networks have emerged as prominent deep learning models 
in fall detection systems. They are utilized to extract meaningful features from input 
signals, which are then employed for classification. In the context of fall detection, 
1D CNNs can analyze sensor data from peripheral devices or cameras to identify 
patterns related to falls. They are particularly effective at detecting temporal patterns 
in sequential data, which is often the case in fall detection applications [4, 15, 19]. 

IoT and cloud technologies have become integral components of fall detection 
system development and implementation. By placing Internet of Things devices, such 
as sensors, on the body or in the environment, falls or changes in motion indicative 
of falls can be detected. The data collected by these sensors can then be transmitted 
to the cloud for processing and analysis using machine (Fig. 6) learning algorithms 
like 1D CNN. Leveraging cloud technology enables remote monitoring and real-time 
alerts in the event of a fall. Caregivers or medical professionals can receive alerts on 
their mobile devices or computers and respond promptly to provide assistance. The 
cloud also facilitates the storage and analysis of large volumes of data, which can be 
utilized to improve the accuracy and effectiveness of fall detection systems over time. 
Moreover, the integration of IoT and cloud technologies enables the development 
of more sophisticated fall detection systems with additional capabilities such as 
predictive analytics and personalized feedback. 

Fig. 6 Proposed model
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To address fall detection among the elderly, we are currently designing a revo-
lutionary system that combines smartphone and ambient device technology. Our 
proposed system utilizes deep learning to create a highly accurate fall detection model 
capable of distinguishing between falls and non-falls. This model forms the basis of 
an IoT-based alert system that incorporates both a smartphone and an ambient device, 
enabling the detection of falls both indoors and outdoors. If a fall occurs indoors, the 
model sends an alert to a family member inside the house, whereas it notifies a nearby 
caretaker about the user’s location in the case of an outdoor fall. For falls occurring 
outside, the system automatically alerts a nearby caregiver. Wearable devices such 
as smartwatches and smart bands are connected (Fig. 7) to the system via Bluetooth 
and WiFi. However, even in instances where a person is not wearing any wearable 
devices while at home or does not own a smartphone, the system can still detect 
falls using ambient sensors. When a person falls outside, the system utilizes their 
smartphone and peripheral devices to detect the fall. The system remains connected 
to a cloud server, allowing the alert system to reach all nearby caregivers within the 
same network. Furthermore, the system prioritizes the fatality rate and issues alerts 
accordingly. 

Our fall detection system represents an innovative solution aimed at improving the 
quality of life for the elderly. By harnessing advanced technology, we can detect falls 
with greater accuracy, ensuring prompt medical attention and potentially saving lives. 
The deep learning-based model can distinguish between falls and other movements, 
providing precise alerts only when necessary. The IoT-based alert system is a crucial 
feature that ensures that caregivers are promptly notified, irrespective of whether the 
user is indoors or outdoors. This feature is particularly vital in emergency situations

Fig. 7 Proposed model scheme 
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where every second counts. Additionally, the system’s ability to prioritize high-risk 
falls ensures immediate attention from caregivers. The flexibility of our system is 
also noteworthy, as it can detect falls even without wearable devices or smartphones. 
This capability is especially valuable for individuals who may forget to wear their 
devices or do not own a smartphone. Through our groundbreaking technology, we 
believe that our fall detection system has the potential to revolutionize the elderly 
care industry. Accurate and timely fall detection can significantly enhance the quality 
of life for the elderly and their caregivers [3, 4, 9, 19]. 

4.1 Proposed Model Architecture 

The proposed model architecture starts by collecting data from two sources: a wear-
able device and an ambient device. The wearable device records data from sensors 
like accelerometers and gyroscopes, while the ambient device captures audio or 
video recordings. These two sets of data are combined to create a comprehensive 
dataset. The data then goes through preprocessing and feature extraction steps. This 
involves cleaning the data to remove any noise or outliers and performing sensor 
fusion to integrate information from the different sensors (Fig. 8). Relevant features, 
such as statistical measures or frequency-domain features, are extracted from the 
preprocessed data. After preprocessing, the dataset is divided into two groups: the 
training data and the test data. The training data is used to train two deep learning 
models: a 1D CNN. The 1D CNN model learns spatial patterns from the data using 
multiple convolutional layers and pooling layers for down-sampling. The output of 
the CNN is then flattened and connected to fully connected layers for classification. 
This allows the model to learn temporal dependencies in the data. Finally, the output 
from the fully connected layers is used for classification tasks [4, 15, 18, 19].

Once the models are trained, the preprocessed data is inputted into both models to 
detect fall events. The models produce probabilities indicating the likelihood of a fall 
event occurring. These probabilities are compared against a predetermined threshold 
to determine whether a fall has happened or not. In the case of an indoor fall, the 
alert system is triggered to notify the nearest family member. For outdoor falls, the 
system alerts the nearest caregiver. 

To facilitate the alert system, the models are integrated into a cloud system. This 
cloud system enables real-time processing and analysis of the data, ensuring prompt 
detection of fall events. Once a fall is detected, the cloud system sends notifications 
to the designated recipients, such as the nearest family member or caregiver. These 
notifications can be delivered through various means, such as mobile applications, 
email, or SMS (Fig. 9). The integration with the cloud system allows for scalability, 
remote access, and efficient management of the alert system. The process loops back 
to the data processing step after triggering the alert system, allowing continuous 
monitoring and analysis. The process continues until no fall events are detected [3, 
4, 18, 19].



Empowering Elderly Safety: 1D-CNN and IoT-Enabled Fall Detection … 531

Fig. 8 Proposed model 
architecture
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Fig. 9 Alert system scheme 

4.2 Methodology 

Data Collection 

In this study, two datasets were used: the Sisfall dataset [21] and the UMA Fall 
dataset [22]. The Sisfall dataset was collected with the participation of 38 volun-
teers, who were divided into two categories: elderly and young adults. The geriatric 
group consisted of 15 participants (8 males and 7 females), while the young adults 
group consisted of 23 participants (11 males and 12 females). All participants were 
retirees from the Universidad de Antioquia and parents of active employees. It is 
important to note that all participants were in good health, without any gait problems 
(Fig. 10). The young adults performed activities of daily living (ADLs) and simu-
lated falls, while the elderly individuals were advised not to perform falls and certain 
activities due to physical limitations or medical advice. Notably, a 60-year-old Judo 
expert, who was one of the participants, simulated both accidents and ADLs. Prior 
to their involvement in the study, all participants provided informed consent. The 
study protocol was approved by the Bio-Ethics Committee of the Medicine Faculty 
at the Universidad de Antioquia UDEA (Medellin, Colombia) in accordance with the 
principles outlined in the Declaration of Helsinki. The dataset was collected using a 
custom-built embedded device that included a Kinets MKL25Z128VLK4 microcon-
troller (NPX, Austin, Texas, USA), an Analog Devices ADXL345 accelerometer (16 
g, 13 bits ADC), a Freescale MMA8451Q accelerometer (8 g, 14 bits ADC), and an 
ITG3200 gyro. The device was attached to the participants’ waists, allowing accu-
rate differentiation between activities using a single accelerometer system. For this 
study, only the acceleration data captured by the ADXL345 sensor was utilized due 
to its energy efficiency and wider range. However, the data collected by the second 
accelerometer and the gyroscope is also available for future research purposes. The 
sensor orientation was established with the positive z-axis facing forward, the positive 
y-axis aligned with gravity, and the positive x-axis positioned on the participant’s 
right side. All experiments were conducted with a sampling frequency of 200 Hz 
from the beginning of the recording.
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Fig. 10 Data collection technique 

The UMA Fall dataset [22] was created by Santoyo-Ramón, José Antonio, 
Eduardo Casilari, and José Manuel Cano-García. The main objective of this dataset 
was to track the movements of participants during falls. In the initial experimental 
setup, 17 participants were equipped with smartphones connected wirelessly to four 
sensing nodes, or “motes,” which were placed on their chest, waist, wrist, and ankle. 
Texas Instruments CC2650 SimpleLinkTM Bluetooth low energy/multi-standard 
Sensor Tag modules were used as the sensing nodes. Each Sensor Tag module 
comprised an ARM CC2650 microcontroller, MEMS sensors, and an InveSense 
MPU-9250 Inertial Measurement Unit (IMU) with triaxial sensors for accelerom-
eter, gyroscope, and magnetometer readings. The Sensor Tags were powered by a 
CR2032-type battery, allowing for wireless communication and full mobility. These 
sensing motes used a 2.4 GHz wireless MCU with ultra-low power consumption, 
supporting communication via BLE, 6LowPAN, or ZigBee. In the experimental 
setup, a smartphone has served as the central device of a Bluetooth Low Energy 
(BLE) piconet, acting as the master, while the four Sensor Tags has functioned as 
slaves. The smartphone received packets containing readings from the Sensor Tags. 
To assess fall detection algorithms, the researchers compared their performance using 
various sampling frequencies ranging from 5 to 256 Hz. To avoid Bluetooth network 
saturation, the Sensor Tags were set to transmit data at 20 Hz. The firmware of the 
Sensor Tags was modified to transmit the readings from the three IMU triaxial sensors 
via BLE at a rate of 50 ms. Furthermore, a smartphone, equipped with its own IMU, 
acted as a fifth sensor and was consistently placed in the subject’s trouser pocket to 
capture thigh movement. The smartphone measurements were recorded at a sampling 
frequency of 200 Hz. This comprehensive dataset provides valuable information for 
evaluating fall detection algorithms and understanding human movements during 
falls in real-world scenarios. 

After the original signal has undergone preprocessing, the next stage is featuring 
extraction for classification purposes. Typically, two types of feature extraction 
methods are used [8]; one employs nine features (Figs. 11 and 12) comprised data 
from all sensors, and the other employs 25 features (Figs. 13 and 14). These extracted



534 R. Modak et al.

Fig. 11 Sisfall dataset with nine features

features include the signal’s maximum amplitude, minimum amplitude, mean ampli-
tude, variance, kurtosis, skewness, angular velocity, acceleration. These characteris-
tics provide valuable information that can be used to distinguish and classify distinct 
patterns or signal characteristics. By taking into account these distinct characteris-
tics, machine learning algorithms can effectively analyze and classify signal data for 
subsequent analysis or decision-making processes. 

For an accelerometer signal: Let us assume that the accelerometer signal is denoted 
by a(i), where i ranges from 1 to N (total number of samples).

• Maximum amplitude: Max_Acceleration = max(a(i)). 

– This formula calculates the maximum value of the acceleration signal. It finds 
the highest recorded acceleration value in the signal.

• Minimum amplitude: Min_Acceleration = min(a(i)). 

– This formula calculates the minimum value of the acceleration signal. It finds 
the lowest recorded acceleration value in the signal.

• Mean amplitude: Mean_Acceleration = (1/N) * sum(a(i)). 

– This formula calculates the mean (average) value of the acceleration signal. It 
sums up all the acceleration values in the signal and divides the sum by the 
total number of samples.
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Fig. 12 Sisfall dataset with nine features (Line Plots)

• Variance: Variance_Acceleration = (1/N) * sum((a(i) - Mean_Acceleration) ^2). 

– This formula calculates the variance of the acceleration signal. It measures the 
spread or dispersion of the acceleration values around the mean. It sums up the 
squared differences between each acceleration value and the mean and then 
divides that sum by the total number of samples.

• Kurtosis: Kurtosis_Acceleration = (1/N) * sum(((a(i) Mean_Acceleration)/sqrt 
(Variance_Acceleration)) ^4). 

– This formula calculates the kurtosis of the acceleration signal. Kurtosis is a 
measure of the "tailedness" or the presence of outliers in the distribution of the 
signal. It normalizes the fourth moment of the acceleration signal by dividing 
it by the variance.

• Skewness: Skewness_Acceleration = (1/N) * sum(((a(i) - Mean_Acceleration)/ 
sqrt (Variance_Acceleration)) ^3). 

– This formula calculates the skewness of the acceleration signal. Skewness 
measures the asymmetry of the signal’s distribution. It normalizes the third 
moment of the acceleration signal by dividing it by the variance. 

For a gyroscope signal: Let us assume that the gyroscope signal is denoted by 
g(i), where i ranges from 1 to N (total number of samples).

• Maximum amplitude: Max_AngularVelocity = max(g(i)).
• Minimum amplitude: Min_AngularVelocity = min(g(i)).
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Fig. 14 Sisfall dataset with 25 features (Line Plots)

• Mean amplitude: Mean_AngularVelocity = (1/N) * sum(g(i)).
• Variance: Variance_AngularVelocity = (1/N) * sum((g(i) - Mean_ 

AngularVelocity) ^2).
• Kurtosis: Kurtosis_AngularVelocity = (1/N) * sum(((g(i) - Mean_ 

AngularVelocity)/sqrt (Variance_AngularVelocity)) ^4).
• Skewness: Skewness_AngularVelocity = (1/N) * sum(((g(i) - Mean_ 

AngularVelocity)/sqrt (Variance_AngularVelocity)) ^3). 

For a magnetometer signal: Let us assume that the magnetometer signal is denoted 
by m(i), where i ranges from 1 to N (total number of samples).

• Maximum amplitude: Max_MagneticField = max(m(i)).
• Minimum amplitude: Min_MagneticField = min(m(i)).
• Mean amplitude: Mean_MagneticField = (1/N) * sum(m(i)).
• Variance: Variance_MagneticField = (1/N) * sum((m(i) - Mean_MagneticField.

• Angular Velocity: Angular Velocity (ω) = Δθ /Δt. 

– In a three-dimensional scenario, where an object can rotate around multiple 
axes, the formula for angular velocity (ω) is represented as a vector: 

ω = (ωx, ωy, ωz), 

where ωx represents the angular velocity around the x-axis, ωy represents the 
angular velocity around the y-axis, and ωz represents the angular velocity around 
the z-axis. The values of ωx, ωy, and ωz can be calculated using differentiation
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(taking the rate of change) of the respective angular displacement with respect to 
time. 

A low-pass filter is applied to the angular velocity signals to remove high-
frequency noise or vibrations. The cutoff frequency determines the point at which the 
filter starts attenuating the high-frequency components. A Butterworth filter is used, 
which provides a maximally flat response in the passband. The ‘filtfilt’ function is 
used to apply the filter to the angular velocity signals and ensure zero-phase filtering. 
The ‘b’ and ‘a’ coefficients of the filter are obtained from the [8] ‘butter’ function. 
The filtered angular velocity signals for each axis are concatenated into a single array 
‘w’ using the np concatenate function. The Euclidean norm (magnitude) of the vector 
is computed and assigned to a new feature called ‘ANGULAR_velocity’. 

Using the aforementioned formulas, we were able to identify the top 25 hand-
engineered features (Fig. 12). These include the accelerometer (ADXL345) axes: 
‘ADXL345_x’, ‘ADXL345_y’, ‘ADXL345_z’, the gyroscope (ITG3200) axes: 
‘ITG3200_x’, ‘ITG3200_y’, ‘ITG3200_z’, and the magnetometer (MMA8451Q) 
axes: ‘MMA8451Q_x’. Additionally, the following features (Fig. 13) were also  
included: Accelerometer Maximum Amplitude: ‘Acc Max Amplitude’, Accelerom-
eter Minimum Amplitude: ‘Acc Min Amplitude’, Accelerometer Mean Amplitude: 
‘Acc Mean Amplitude’, Accelerometer Variance: ‘Acc Variance’, Accelerometer 
Skewness: ‘Acc Skewness’, Gyroscope Maximum Amplitude: ‘Gyro Max Ampli-
tude’, Gyroscope Minimum Amplitude: ‘Gyro Min Amplitude’, Gyroscope Mean 
Amplitude: ‘Gyro Mean Amplitude’, Gyroscope Variance: ‘Gyro Variance’, Gyro-
scope Skewness: ‘Gyro Skewness’, Magnetometer Maximum Amplitude: ‘Mag Max 
Amplitude’, Magnetometer Minimum Amplitude: ‘Mag Min Amplitude’, Magne-
tometer Mean Amplitude: ‘Mag Mean Amplitude’, and Magnetometer Variance: 
‘Mag Variance’. The same feature extraction technique was utilized for the UMA 
Fall dataset. 

Proposed Deep Learning Model 

In our proposed method for detecting falls using the Sisfall dataset and UMA Fall 
dataset, we utilize a 1D convolutional neural network (1DCNN) model. 1DCNN 
(convolutional neural network): This model utilizes convolutional layers to extract 
relevant features from the input data. By applying filters and aggregation opera-
tions, the CNN learns spatial patterns and captures crucial data for fall detection 
[4, 15, 17, 19]. 

One-Dimensional Convolutional Neural Network (1DCNN) 

1D CNNs operate on sequential data with a single dimension, such as time series or 
text. They use convolutional layers to extract features from the input data, similar 
to other CNNs. In 1D CNNs, the convolutional operation is performed along the 
temporal or spatial axis of the data, as opposed to across two-dimensional spatial 
dimensions, as in image data. In a 1D CNN, an input sequence is convolved with a 
filter of a fixed size by gliding over the sequence and computing a dot product between 
the filter weights and the values in the current window. This procedure generates a
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feature map that emphasizes the presence of particular patterns or features in the 
input sequence. A 1D CNN can capture various levels of granularity in the input 
data by employing multiple filters of varying sizes. Typically, the resultant feature 
maps are transmitted through activation functions and aggregating layers to further 
process the features and reduce the data’s dimension. On the extracted features, one 
or more fully connected layers may be used to accomplish classification or regression 
[4, 17–19]. 

One-dimensional convolutional neural networks (1DCNNs) can be used for fall 
detection. The input signal is first passed through a convolutional layer, which 
performs feature extraction. The output of the convolutional layer is then passed 
through a max-pooling layer, which down samples the feature map. Finally, the output 
of the pooling layer is passed through a fully connected layer for classification. 

The output of the convolutional layer can be computed using the following 
equation: 

y[i] = b +
∑

( j = 0 to  m − 1)w[ j] x[i + j], (1) 

where y[i] is the output at position i, b is the bias term, w[ j] is the weights of the 
filter, x[i + j] is the input values, and m is the size of the filter. 

The output of the max-pooling layer can be computed using the following 
equation: 

y[i] = max(x[is : is + k]), (2) 

where y[i] is the output at position i, x[is: is + k] is the input segment of length k 
starting at position i*s, and s is the stride. 

The output of the fully connected layer can be computed using the following 
equation: 

y = f
(
b +

∑
(i = 0 to  n  − 1) w[i] x[i]

)
, (3) 

where y is the output, b is the bias term, w[i] is the weights, x[i] is the inputs, n is 
the number of inputs, and f is the activation function. In this study, we employ a 1D 
convolutional neural network (CNN) model that is well-suited for extracting unique 
features from datasets with present window lengths. The size of the testing set is 
20% of the total dataset. StandardAero is utilized to normalize the input features so 
that the data have a mean of zero and a standard deviation of one. We transform the 
input data into a 3D tensor so that it can be processed by the 1D CNN. The tensor has 
three dimensions, which include sample count, time increments, and characteristics. 

Algorithm 

This algorithm describes the steps taken in the provided code to train a CNN model 
for fall detection and evaluate its efficacy.
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• Import required libraries: pandas, numpy, sklearn, keras, matplotlib.
• Load the dataset and split it into input (X) and output (y) variables.
• Split the data into training and testing sets using train_test_split() from sklearn.
• Scale the input features using StandardScaler from sklearn.
• Reshape the input data to a 3D tensor for use with 1D CNN.
• Build a 1D CNN model using Sequential () from keras.
• Add Conv1D and MaxPooling1D layers to the model.
• Flatten the output from the Conv1D layer and add Dense layers to the model.
• Compile the model using binary_crossentropy loss function, adam optimizer, and 

accuracy metric.
• Train the model using fit() from keras.
• Plot the training and validation accuracy and loss using matplotlib.
• Make predictions on the testing data using predict () from keras.
• Convert the probabilities to class labels.
• Print the classification report using classification_report() from sklearn.
• Plot the confusion matrix using confusion_matrix() from sklearn and matplotlib. 

Explanation of the algorithm 

Data Preparation: 

Imports required libraries such as Pandas, NumPy, Sklearn, and Keras. This is the 
initial step. The next step in the data preparation process is the import of the data. 
Following that, the data are separated into the two variables that were input. 

Data Preprocessing: 

The next stage is to preprocess the data, where the data is divided into training and 
testing sets with the help of the train test split function from sklearn. Eighty % of 
the data will be used for training, while the remaining 20% will be used for testing. 
StandardScaler, which is included in sklearn, is used to do the scaling on the input 
features. In this stage, the features are standardized by first calculating the mean and 
then scaling the mean down to the unit variance. The input data is reformatted into 
a three-dimensional tensor so that it can be processed by the one-dimensional CNN 
model. 

Building the 1D CNN Model: 

In order to construct the 1D CNN model (Fig. 15), the model architecture is specified 
by utilizing the Sequential API that is provided by Keras. Two convolutional layers 
have been added, each with 128 and 256 filters correspondingly. After each convolu-
tional layer comes a max-pooling layer, which helps minimize the spatial dimensions 
of the data. The output is then flattened by the model, and it is run through a dense 
layer that has 64 units and a dropout layer in order to prevent overfitting. In the end, 
a dense layer that only contains a single unit and uses sigmoid activation is added 
in order to do binary classification. The Adam optimizer is used in the compilation 
process, along with binary cross-entropy loss.
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Fig. 15 CNN model building 

Training and Testing the Model: 

The training of the model is carried out using the fit technique with a batch size of 
32 and a total of 10 epochs. Matplotlib is used to create plots of the training and 
validation accuracies as well as the losses. 

Evaluation and Performance Analysis: 

Model Analysis Metrix 

A classification model’s efficacy is evaluated using the metrics True Positive (TP), 
False Positive (FP), True Negative (TN), and False Negative (FN). These metrics 
provide granular insight into the model’s ability to correctly classify instances into 
their respective classifications.



542 R. Modak et al.

• True Positive (TP): This metric represents the number of instances correctly clas-
sified by the model as positive (class 1) instances. It measures the number of 
instances in which the model correctly predicted the positive class.

• False Positive (FP): This metric indicates the number of instances incorrectly 
classified as positive (class 1) by the model. It measures the number of instances 
in which the model predicted the positive class, but the actual class was class 0 
(negative).

• True Negative (TN): This metric represents the number of instances correctly 
classified by the model as negative (class 0). It measures the number of times the 
model correctly predicted the negative class.

• False Negative (FN): This metric represents the number of instances improperly 
classified by the model as negative (class 0). It quantifies the number of situations 
in which the model predicted a negative class, but the actual class was positive 
(class 1).

• These metrics are used to calculate additional performance metrics, including 
accuracy, precision, recall, and F1-score.

• Precision: Precision is the ratio of true positives (TP) to the sum of true positives 
(TP) and false positives (FP). It measures the proportion of correctly identified 
positive instances among all predicted positive instances.

• Recall: Recall is the ratio of true positives (TP) to the sum of true positives (TP) 
and false negatives (FN). It measures the proportion of correctly identified positive 
instances among all actual positive instances.

• F1-score: The F1-score is the harmonic mean of precision and recall. It provides a 
balanced measure of the model’s performance by considering both precision and 
recall. F1-score is calculated as (2 * Precision * Recall)/(Precision + Recall).

• Support: Support refers to the number of instances for each class in the dataset. 
It can be represented by the sum of true positives (TP) and false negatives (FN) 
for a specific class.

• Accuracy: Accuracy is the ratio of correct predictions (sum of true positives 
and true negatives) to the total number of predictions. It measures the overall 
correctness of the model’s predictions.

• Macro avg: Macro average calculates the average precision, recall, and F1-score 
across all classes. It treats each class equally, regardless of its support. To calculate 
macro average precision, recall, and F1-score, you would take the average of the 
respective metric values for each class.

• Weighted avg: Weighted average calculates the average precision, recall, and F1-
score, taking into account the support of each class. It gives more weight to the 
metrics of the class with higher support. 

1DCNN Model for Sisfall Dataset 

After applying the trained model to the testing data of the Sisfall dataset and gener-
ating predictions, a threshold of 0.5 is used to transform the projected probabilities 
into class labels.
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The 1DCNN model demonstrated an accuracy score of 89% for the normal Sisfall 
dataset and 91% for the Sisfall dataset with 25 features. This suggests that the model 
accurately predicted 89% of outcomes in the Sisfall dataset with nine features and 
91% of outcomes in the Sisfall dataset with nine features. In (Fig. 16) is a plot of 
training loss and validation loss over epoch, training accuracy and validation accuracy 
over epoch, and a confusion matrix of 0, 1 for Not fall and fall situations for Sisfall 
Dataset with 9 features, also (Fig. 17) show for Sisfall dataset with 25 features. 

Comparing 1DCNN Models with 9 Features and 25 Features Using the Sisfall Dataset 

Model 2, the 1DCNN with 25 features, demonstrates slightly superior performance 
compared to Model 1, the 1DCNN with 9 features, in terms of precision, recall, and 
F1-score for both classes. It accomplishes greater precision and recall, resulting in 
a higher F1-score. Both models exhibit high accuracy, with Model 2 obtaining a 
slightly higher accuracy of 0.91 than Model 1, which achieves an accuracy of 0.89. 
The macro and weighted average metrics for Model 2 are also greater, indicating a 
superior performance across all classifications. On the basis of these results, it can be

Fig. 16 1DCNN Model Matrix Sisfall with nine features
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Fig. 17 CNN model matrix Sisfall dataset with 25 features

concluded that the CNN model with 25 features outperforms the CNN model with 
nine features on the Sisfall dataset. 

Model 1: 1DCNN with Sisfall Dataset 9 Features

• Class 0 has a precision of 0.87 and class 1 has a precision of 0.92.
• Class 0 has a recall F1 rate of 0.93, while class 1 has a recall F1 rate of 0.86.
• Class 0 has an F1-score of 0.90, whereas class 1 has an F1-score of 0.89.
• Accuracy: 0.89 is the model’s accuracy.
• The average precision, recall F1, and F1-score at the macro level are 0.90, 0.89, 

and 0.89, respectively.
• The weighted average precision is 0.90, recall F1 is 0.89, and the F1-score is also 

0.89 (Table 1).

Model 2: 1DCNN with Sisfall Dataset 25 Features

• Class 0 has a precision of 0.88, whereas class 1 has a precision of 0.95.
• Class 0 has a recall F1 rate of 0.95, while class 1 has a recall F1 rate of 0.87.
• Class 0 has an F1-score of 0.91, while class 1 has an F1-score of 0.91.
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Table 1 1DCNN with nine features Sisfall dataset 

Precision Recall F1 F1-score Support 

0 0.87 0.93 0.90 209,768 

1 0.92 0.86 0.89 209,662 

Accuracy 0.89 419,430 

Macro avg. 0.90 0.89 0.89 419,430 

Weighted avg. 0.90 0.89 0.89 419,430

• The model is accurate to 0.91 degrees.
• The average precision, recall F1, and F1-score at the macro level are 0.91, 0.91, 

and 0.91, respectively.
• The weighted average precision is 0.91, the recall F1 is 0.91, and the F1-score is 

0.91 (Table 2). 

1DCNN Model for UMA Fall Dataset 

For the UMA Fall dataset with nine features and for the UMA Fall dataset with 
25 features, the 1DCNN model exhibited an accuracy score of 90% and 92%, 
respectively. 

This indicates that 90% of outcomes in the UMA Fall dataset with 9 features 
and 91% of outcomes in the UMA Fall dataset with 25 characteristics were correctly 
predicted by the model. For the UMA Fall dataset with nine features, a plot of training 
loss and validation loss over epoch, training accuracy and validation accuracy over 
epoch, and a confusion matrix of 0, 1 for Not fall and fall circumstances are shown 
in (Fig. 18). UMA fall with 25 features is shown in (Fig. 19).

Comparison of 1D CNN Models with 9 Features on the UMA Fall Dataset 

Model 2, the 1D CNN with 25 features, outperforms Model 1, the 1D CNN with 
9 features, in terms of precision, recall, and F1-score for both classes. It achieves 
higher precision, recall, and F1-score values for both classes. Both models show 
high accuracy, with Model 2 achieving a slightly higher accuracy of 0.92 compared 
to Model 1 with an accuracy of 0.90. The macro and weighted average metrics for 
Model 2 are also higher, indicating better overall performance across all classes.

Table 2 1DCNN with 25 features’ Sisfall dataset 

Precision Recall F1 F1-score Support 

0 0.88 0.95 0.91 209,768 

1 0.95 0.87 0.91 209,662 

Accuracy 0.91 419,430 

Macro avg. 0.91 0.91 0.91 419,430 

Weighted avg. 0.91 0.91 0.91 419,430 



546 R. Modak et al.

Fig. 18 1DCNN model matrix UMA fall with nine features

Based on these results, it can be concluded that the 1D CNN model with 25 features 
performs better than the 1D CNN model with nine features on the UMA Fall dataset. 

Model 1: 1D CNN with nine Features

• Precision: For class 0, the precision is 0.89, and for class 1, it is 0.94.
• Recall: For class 0, the recall F1 is 0.90, and for class 1, it is 0.73.
• F1-score: For class 0, the F1-score is 0.93, and for class 1, it is 0.82.
• Accuracy: The accuracy of the model is 0.90.
• Macro average: The macro average precision is 0.92, recall F1 is 0.85, and F1-

score is 0.88.
• Weighted average: The weighted average precision is 0.91, recall F1 is 0.90, and 

F1-score is 0.90 (Table 3).

Model 2: 1D CNN with 25 Features

• Precision: For class 0, the precision is 0.90, and for class 1, it is 0.95.
• Recall: For class 0, the recall F1 is 0.98, and for class 1, it is 0.76.
• F1-score: For class 0, the F1-score is 0.94, and for class 1, it is 0.85.
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Fig. 19 1DCNN model matrix UMA Fall with 25 features

Table 3 1DCNN with 9 features UMA Fall dataset 

Precision Recall F1 F1-score Support 

0 0.89 0.90 0.93 25,066 

1 0.94 0.73 0.82 10,990 

Accuracy 0.90 36,056 

Macro avg 0.92 0.85 0.88 36,056 

Weighted avg 0.91 0.90 0.90 36,056

• Accuracy: The accuracy of the model is 0.92.
• Macro average: The macro average precision is 0.93, recall F1 is 0.87, and F1-

score is 0.89.
• Weighted average: The weighted average precision is 0.92, recall F1 is 0.92, and 

F1-score is 0.91 (Table 4).
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Table 4 1DCNN with 25 features UMA Fall dataset 

Precision Recall F1 F1-score Support 

0 0.90 0.98 0.94 25,066 

1 0.95 0.76 0.85 10,990 

Accuracy 0.92 36,056 

Macro avg. 0.93 0.87 0.89 36,056 

Weighted avg. 0.92 0.92 0.91 36,056 

4.3 Experiment Setup 

In this study, machine learning experiments were conducted using Google Colab 
and an HP laptop. The HP laptop featured a ninth-generation i7 processor, 16 giga-
bytes of RAM, and a one-terabyte solid-state drive. Our development environment 
for executing machine learning tasks was Jupyter Notebook. Cloud-based platform 
Google Colab gave us access to potent computational resources. It allowed us to 
utilize Google’s high-performance GPUs and TPUs to expedite our machine learning 
experiments. We utilized Colab’s collaborative features to readily share and collab-
orate with other researchers on our code and findings. We utilized the HP laptop’s 
local computational capability and storage capacity for specific experiments. The 
i7 ninth-generation CPU ensured the efficient processing of our machine learning 
algorithms, while the 16 gigabytes of RAM enabled us to manage large datasets and 
intricate models. The one terabyte SSD was sufficient for storing our datasets, models, 
and intermediate results. Our primary development environment was Jupyter Note-
book, which allowed us to write and execute code in an interactive and reproducible 
manner. To implement and evaluate our models, we utilized numerous machine 
learning libraries and frameworks, such as TensorFlow and Keras. The adaptability 
and extensive data visualization support of Jupyter Notebook assisted us in analyzing 
and interpreting our experimental results. By combining Google Colab and our HP 
laptop, we obtained a comprehensive experimental configuration that enabled us 
to conduct effective machine learning research. This configuration provided us with 
the flexibility to utilize both cloud-based resources and local computational capacity, 
allowing us to address a variety of research challenges and gain insightful knowledge. 

4.4 Result Analysis 

In this detailed comparison of various models (Fig. 20), their respective accuracies 
are examined in a classification task. Ramachandran et al. [7] employed Ordinal 
Logistic Regression, achieving an accuracy of 84.1%. Vallabh et al. [11] used KNN, 
reaching an accuracy of 87.5%. Chelli and Pätzold [12] utilized ANN, obtaining a 
higher accuracy of 87.8%. Miawarni, Herti, et al. [13] applied SVM, resulting in 
an accuracy of 84.62%. Rashid et al. [14] introduced Cubic SVM with an accuracy
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Fig. 20 Comparison with others

of 84.64%. Syed, Abbas Shah et al. [15] combined CNN with XGBoost, achieving 
an accuracy of 88%. Luna-Perejon et al. [16] used LSTM and GRU, obtaining an 
accuracy of 76%. Cho and Yoon [17] combined SVD with CNN, reaching an accuracy 
of 75.65%. Garg et al. [18] employed DNN, achieving an accuracy of 86.2%. Kumar 
et al. [19] also combined CNN with XGBoost, resulting in an accuracy of 88%. 
Wisesa et al. [20] used RNN, achieving an accuracy of 86.63%. Additionally, the 
proposed 1DCNN (Sisfall) model demonstrated an accuracy of 91%, showcasing its 
ability to accurately detect falls. The 1DCNN (UMA Fall) model achieved an even 
higher accuracy of 92%, indicating its superior performance compared to the other 
models (Table 5). 

4.5 Limitations 

Limited Resources: The development and maintenance of an efficient Fall Detec-
tion System (FDS) requires considerable resources. Obtaining extensive and diverse 
datasets, undertaking field trials, and ensuring data privacy and security all require 
financial investments. Additionally, expertise and personnel are required for data 
acquisition, model development, and system deployment. These aspects may not be 
fully realized due to limited resources, which may have an effect on the system’s 
overall performance and scalability. 

Limited Computational Power: Implementing sophisticated deep learning models, 
such as 1DCNNs, often demands significant computational power. Training and 
executing these models efficiently can be computationally costly and may necessitate 
high-performance hardware, such as GPUs or specialized processors. The inability
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Table 5 Comparative result table 

Name of Model Accuracy (%) 

Ramachandran et al. [7] (Ordinal Logistic Regression) 84.1 

Vallabh et al. [11] (KNN) 87.5 

Chelli and Pätzold [12] (ANN) 87.8 

Miawarni et al. [13] (SVM) 84.62 

Rashid et al. [14] (Cubic SVM) 84.64 

Syed et al. [15] (CNN with XGB) 88 

Luna-Perejon et al. [16] (LSTM and GRU) 76 

Cho and Yoon [17] (SVD with CNN) 75.65 

Garg et al. [18] (DNN) 86.2 

Kumar et al. [19] (CNN with XGB) 88 

Wisesa et al. [20] (RNN)) 86.63 

Proposed 1DCNN (Sisfall) 91 

Proposed 1DCNN (UMA Fall) 92

to investigate and utilize more complex models can be hampered by a system’s 
limited computational capacity, thereby compromising its potential accuracy and 
performance. 

To address these constraints, resource management and strategic planning are 
required. Effectively allocating resources, such as prioritizing data collection efforts 
based on available funding, can mitigate the effect of limited resources. Exploring 
optimization techniques, model compression methods, or utilizing cloud computing 
resources can assist in circumventing computational power limitations. Although 
these constraints present challenges, it is essential to acknowledge them and pursue 
solutions that maximize the system’s potential within the constraints available. Even 
with limited resources and computational capacity, it is possible to develop an alert 
system with effective performance and usability by maximizing available resources 
and investigating alternative approaches. 

5 Future Scope 

Future emphasis should be placed on the following areas to improve the effectiveness 
and usability of the Fall Detection System (FDS): 

Integrating the alert system with a cloud infrastructure is a necessary and logical 
step in developing a scalable and effective solution. The advantages of cloud connec-
tivity include scalability, dependability, and accessibility. The system can achieve 
real-time monitoring, seamless integration with other systems, and remote access 
from a variety of devices and locations by utilizing cloud hosting. This permits the
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generation of timely alerts and improves the system’s overall functionality. To facil-
itate cloud integration, a comprehensive system for applications that can connect 
with smartphone wearable devices like smart watches and smart bands must be 
developed. Moreover, integration with ambient devices is necessary. This integrated 
system enables the transmission of location data to caregivers via IoT technology in 
the event of an outdoor fall. In such situations, the alert system can quickly identify 
the nearest caregiver and notify them of the exact location, allowing for immediate 
intervention. Additionally, if a fall occurs inside the home, the system should be able 
to alert family members or other individuals who are present. This ensures that the 
individual in need can receive immediate assistance. By leveraging cloud infrastruc-
ture and integrating multiple devices and systems, the proposed solution improves the 
alert system’s effectiveness and efficiency. The ability to seamlessly connect wear-
able devices, utilize IoT technology for outdoor fall detection, and notify caregivers 
and family members in real time greatly enhances the system’s overall safety and 
response capabilities. 

Expand and diversify the dataset to enhance the model’s ability to generalize, it is 
essential to acquire a more extensive and diverse dataset. By collecting information 
from a variety of sources, environments, and demographics, the model will be able 
to manage a wider variety of real-world scenarios. This can include information 
from various sensors, locations, and user profiles, taking into account age, gender, 
and physical abilities. Moreover, data augmentation techniques can be utilized to 
artificially increase the dataset’s size and diversity, emulating various scenarios and 
enhancing the models generalizability. 

Utilize advanced deep learning models, the efficacy of the system can be improved 
by incorporating more complex and sophisticated deep learning models. Recur-
rent neural networks (RNNs), attention-based models, and transformer models 
have demonstrated superior performance in time series analysis and sequential data 
processing domains. Exploring these models enables the identification of intricate 
patterns and long-term dependencies within the data, resulting in enhanced accuracy 
and predictive abilities. 

Real-World testing and field trials for assure the alert system’s practical applica-
bility, it is essential to conduct exhaustive real-world testing and field trials. Eval-
uating the model’s performance under real-world conditions provides invaluable 
insight into its usefulness and efficacy. Field evaluations can help identify any limita-
tions or enhancement areas that must be addressed, ensuring that the system performs 
accurately and reliably in real-world situations. 

Security and Privacy Considerations, it is of the utmost necessity to ensure 
the security and privacy of the collected data. Implementing comprehensive data 
anonymization techniques and adhering to applicable privacy regulations will 
increase stakeholder and user confidence. Prioritizing data security and privacy 
protects the integrity and secrecy of personal information, thereby enhancing user 
confidence in the system.
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6 Conclusion 

In conclusion, the study focuses on enhancing elderly fall detection systems through 
the integration of deep learning and IoT technologies. The results demonstrate the 
impressive effectiveness of the proposed 1DCNN models, accurately detecting falls 
in different datasets with accuracies of 91% and 92% on the Sisfall and UMA Fall 
datasets, respectively. 

A significant aspect highlighted in the study is the incorporation of fatality rates 
into the alert system. This consideration enables caregivers and family members to 
be promptly notified in critical situations, allowing for timely assistance and poten-
tially saving lives. This proactive approach adds an extra layer of safety and support 
to the fall detection system, making it more effective in real-world scenarios. The 
thesis provides valuable insights into the field of fall detection by introducing novel 
models that outperform existing approaches in terms of accuracy. Future research 
and development should focus on further refining deep learning algorithms, incor-
porating diverse datasets, integrating advanced sensor technologies, and considering 
fatality rates to further enhance the system’s accuracy, applicability, and reliability. 

Continued efforts in research and development are essential to optimize the 
proposed fall detection models and address any limitations. Successfully integrating 
these technologies into healthcare and assisted living environments will significantly 
improve the safety and well-being of individuals at risk of falls. By incorporating 
fatality rates into the alert system, the fall detection technology can promptly notify 
caregivers or family members in critical situations, ensuring timely assistance and 
potentially saving lives. This crucial feature reinforces the system’s overall effective-
ness and its potential positive impact on vulnerable individuals’ lives. Ultimately, 
advancements in fall detection technology, along with the integration of fatality 
rates, have the potential to enhance the overall quality of life for at-risk individuals 
by providing timely assistance and minimizing the risks associated with falls. The 
findings of this research contribute to the ongoing development of reliable and effec-
tive fall detection systems, further improving the safety and well-being of vulnerable 
individuals in real-world settings. 
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