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Abstract. With the increasing application of the AWES, the dynamic thermal
detection of the electrolyzer inspires great interest. The dimension of dynamic
thermal detection of the AWES is currently limited to only the inlet and outlet
temperatures. This study proposes a dual-layer characteristics temperature model
for AWES temperature monitoring. The DLCT model deals with the difficulty of
extracting characteristic temperature with its first layer of multi gaussian distri-
bution regression. The second layer model can clarify the disturbing signal using
linear regression and provide a quantized temperature distribution pattern of the
surface temperature. This DLCT model does not require additional modifications
to the AWES, nor any temperature sensor inside or on its surface. With the DLCT
model implemented during dynamic operation, the AWES can be more compre-
hensive monitored, and more insights can be gathered regarding the DLCT for
better thermal uniformity.
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temperature · Multi gaussian regression · Machine learning

1 Introduction

Hydrogen energy system can replace the fossil fuel system as a solution for many global
environmental issues, and water-electrolysis-based hydrogen production has gain its
maturity in term of both technology [1] and economic [2]. The alkaline water electroly-
sis system (AWES) is one of the most widely used, technically mature and cost-effective
high-power water electrolysis hydrogen production technology [1]. The AWES is con-
sidered to be able to provide medium term large-scale Renewable Energy-based green
hydrogen for the hydrogen energy system [3]. However, the fluctuating power out-
put of the renewable power system requires AWES to operate under similar unsteady
conditions, which brings up the necessity of thermal detection over AWES for more
detailed dynamic response. As status quo, in the operation and maintenance of AWES,
the only thermal parameters recorded are normally inlet and outlet temperature for the
electrolyzer.
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For the dynamic thermal detection of AWES, only recording the inlet and outlet
temperature means only acquiring the temperature of the inlet fluid and the gas-liquid
mixture at two positions on the end-face of the electrolyzer. The temperature of the
bulk structure is not recorded, neither on the surface nor from the inside. Such a lack
of understanding of dynamic thermal detection leads to the inability for the uniformity
of its temperature distribution and may even cause the ignorance of its inside hot spots.
In addition, the limit of indicative temperature also leads to over-simplification of the
evaluation criteria of the electrolyzer and brings difficulties in collecting sufficient tem-
perature distribution data over the dynamic operating conditions. In conclusion, only
recording the inlet and outlet temperature of the electrolyzer makes it difficult to under-
stand the thermal characteristics of the AWES, and, also, to provide more improvement
guidance as well as more analysis dimensions for the AWES, such as multi-physics
approaches [4, 5].

Hence, this study puts forward the dual-layer characteristic temperature (DLCT)
model, which is composed of two layers of the characteristic temperature (CT) regression
analysis over the side surface of the electrolyzer.

2 Modeling Method

As demonstrated in Fig. 1(a), the IR recorder is stationed to the side of the electrolyzer,
the captured IR image is drawn in Fig. 1 (b). As can be seen, due to characteristics of
the lye-gas mixture in the electrolyzer [5], the temperature is higher in the upper region
of the electrolyzer. The temperature of the metal plate (70.4 °C) is quite higher than the
gasket region (57.52 °C) in its adjacency. This unevenness is the first problem to be dealt
with, in collecting the CT of the electrolyzer surface. And there are the current collectors
with higher temperatures near the bottom, the CT analysis must be able to distinguish
these disturbing signals.

Fig. 1. (a) The apparatus of the infrared image collection, and (b) the recorded IR image with
temperature noted at different locations.
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The second problem comes with the obstacles and auxiliary parts on the electrolyzer.
As in Fig. 1 (b), the clamping bolts of the electrolyzer are positioned at the top,middle and
the bottom blocking the direction detection of the surface temperature. With larger rated
power, the AWES grows in size, and the number of clamping bolts also grows, leading
to more blocked surface area. And finally, the model should filter out the obstacles and
provide the overall surface temperature distribution with quantized parameters.

This study aims to tackle these two problems with two layers of CT analysis model.
The first layer CT model can extract the CT of the metal structure within the segment of
the IR image, implementedwithMGD regression. The second layermodel can clarify the
disturbing signal using linear regression, resume the surface temperature over the side of
the electrolyzer and provide an overall quantized temperature distribution pattern of the
surface temperature of the electrolyzer. This DLCT model does not require additional
modifications to the AWES, nor does it attach any temperature sensor inside or on the
surface of the electrolyzer.

3 First-Layer Characteristic Temperature Model

The IR image is first segmented as in Fig. 2 (a). The image is segmented into 12 vertical
segments as demonstration, and the IR image can also be horizontally segmented or
divided into a mesh grid.

Fig. 2. (a) The violin graphs of each segment in an IR image, (b) the temperature distribution and
MGD analysis results of segment No. 4, (c) the temperature distribution andMGD analysis results
of segment No. 5, and (d) the temperature distribution and MGD analysis results of segment No.
8.
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3.1 Multi-Gaussian Distribution Analysis

Here,MGD regression is performed to extract the CTwithin each segment. The gaussian
distribution is also called the normal distribution [6]. In this study, for convenience, the
gaussian distribution is converted to the frequency of occurrence, rather than probability.
As a result, the temperature gaussian distribution formula can be changed into:

h(t) = h × e− (t−t0)
2

2w2 + h0 (1)

In which, t represents temperature, h(t) represents the frequency of occurrence of a
certain temperature within in the adjacency of t. h represents the height of the frequency
peak and is used to determine the significance of this distribution. t0 is the expectation
of the distribution, and the potential CT in the segment. w represents the width of the
gaussian distribution and the h0 represents the bottom noise of the segment.

However, as in Fig. 2 (b), (c), (d) the complexity of the distributionwithin on segment
does not fit a single gaussian distribution. Hence, this study combines several gaussian
distributions into the MGD model [7]. Within each segment, the distribution of the
temperature signals can be described by:

hi(t) = h1 × e
− (t−t0,1)

2

2w21 + h2 × e
− (t−t0,2)

2

2w22 + h3 × e
− (t−t0,3)

2

2w23 + h0 (2)
(
h1,t0,1,w1

)
,
(
h2,t0,2,w2

)
and

(
h3,t0,3,w3

)
three sets of parameters represent the relevant

parameters of three Gaussian distributions, among which t0,1, t0,2, t0,3 are the three
potential CT of the region. In this paper, SciPy based on python is used to carry out the
regression of the above equation [8].

3.2 First Layer CT Model Results

The result CTs within each segment come from the actual surface of the electrolyzer.
For in Fig. 2 (b) and compared with Fig. 1 (b), the higher CT represents the temperature
of the metal plate, whereas the lower CT represents the gasket. Likewise, the clamping
bolts, and the current collectors, can also be screened out of the CTs. Finally, the CT
with higher height of frequency of occurrence is chosen as the CT of the temperature of
this segment. Likewise, in Fig. 2 (c), the lower, however, more concentrated represents
the clamping bolts at the middle in Fig. 1 (b), and the peak with higher temperature is
the surface of the electrolyzer, which is recognized as the CT of the segment. And in the
Fig. 2 (d), there are also two peaks in the figure. The peak with higher CT represents the
hot current collectors near the bottom of the IR image, and the lower peak represents
the surface temperature of the electrolyzer and should be acknowledged as the CT of the
segment.

4 Second-Layer Characteristic Temperature Model

4.1 Regression Method

The potential CTs of each segment of the IR image are plotted in the Fig. 3(a), and CTs
have been selected. In the top and bottom segment, there is no CT of the surface because
a large proportion of the image is taken up by the clamping bolts and background. Rest
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of the segments have CT on the surface, except segment No. 6 where the clamping bolt
is dominant. And the linear relationship between CTs on the electrolyzer surface and
segment positions is explicit.

Fig. 3. (a) The potential CTs of each segment, and (b) the result of the second layer CT model.

Hence linear regression should be applied to analyze the distribution pattern. The
temperature distribution of each segment on the electrolyzer surface can be expressed
as:

Ti = a × xi + b, i ∈ [1, n] (3)

In which, Ti represents the CT of a certain segment, xi ∈ N represents the position
of the segment, and a, b ∈ R are the parameters for the temperature distribution pattern.
a Stands for the slope of the linear equation and b for the intercept. This study also
employs the built-in method from SciPy to conduct the second layer CT model.

4.2 Second Layer CT Model Results

The Pearson correlation is 0.97, which means the segment position has a very strong
linear relationship with the CT [9]. As shown in the Fig. 3(b), the slope of the linear
relationship between CT and segment position is − 3.06, which means every time we
check one segment just beneath another, theCTwill likely be 3.06 °C lower. The intercept
of the equation is 79.80 °C, which means based on the estimation of the second-layer
model, the CT on the top of the electrolyzer surface will be near 80 °C. And the CT s of
any other segments hindered by obstacles can be derived from this linear relationship.

More importantly, the second-layer CT model provides us with the quantized tem-
perature distribution pattern on the electrolyzer surface, which can be introduced to
examine the thermal uniformity of the electrolyzer design and operation. The slope in
linear regression can describe the significance of the temperature variation of the elec-
trolyzer, and the intercept can predict the maximum temperature on the electrolyzer
surface.



Dual-Layer Characteristic Temperature 81

5 Conclusion

In summary, this study introduces the DLCT model to deal with two major problems of
AWES dynamic thermal detection, the extraction of characteristic temperatures and hin-
derance of auxiliaries. The first layer employs MGD regression to evaluate the segment
temperature and produces multiple potential CTs. The CT is then selected for each seg-
ment, and fed into the second layer, where linear regression is implemented to provide
quantized distribution pattern.

And the results of the DLCT not only provide global AWES CT, but also quantized
temperature distribution pattern, which will bring in richer dimensions for detecting and
optimizing the dynamic operation of the electrolyzer. As a result, the AWES can be
more comprehensive monitored during dynamic operation, and more guidance can be
gathered with the DLCT for better thermal uniformity.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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