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Abstract Aquaculture plays an increasing role in future food security. Thirty-four 
calories per person per day are provided by fish and fish products globally. However, 
the rearing, harvesting, and processing of fish produces enormous amounts of trash, 
which is an issue for the entire world. For every ton of fish consumed, approxi-
mately the same quantity of fish waste (FW) is disposed of either through ocean 
dumping or land disposal. Unutilized waste has an impact on a larger coastal zone 
at many ecosystem levels, reducing benthos, plankton, and nekton biomass, variety, 
and density, and altering the structure of natural food webs. Alternatives to pricey 
feed additives should be investigated in order to meet the sustainable development 
goals (SDGs) of preventing the depletion of valuable aquatic resources. Wastes from 
the fisheries sector could be treated with various methods and can be utilized for 
pigments, chitosan, and collagen, which can be used in fish feed, biomedical, and
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pharmaceutical industries. Currently, the production of biogas, biodiesel, biofertil-
izer, and bioplastic from non-recyclable fish waste is widely practiced. The various 
waste processing activities need additional inputs and outputs in order to recover 
energy and separate the necessary components from aquatic waste. The primary 
goal of our study towards sustainable aquaculture is the conversion of these wastes 
while also recovering important materials before disposal, which would also help in 
boosting the circular economy. 

Keywords Fish waste · Circular economy · Environment pollution · Green 
technology · Utilization · Bioactive compounds · Sustainable aquaculture 

1 Introduction 

In the twenty-first century, the fisheries and aquaculture sectors have received greater 
recognition for their vital role in ensuring global food security and nutrition. Nearly 
20% of the average per capita animal protein consumption of the world’s 3.2 billion 
people came from aquaculture (FAO 2021). Thirty-four calories per person per day 
are provided by fish and fish products globally. Choe et al. (2020) stated that large 
amounts of trash are produced during fish farming, fishing, and processing, which 
now became a global concern. Fish trimmings and some particular parts, such as 
fish heads, fish guts, fish tails and fish fins, fish skins, fish scales, and fish bones, 
are all included under the concept of “fish waste.” The terms “fish waste,” “fish 
processing waste,” “by-products,” “raw materials,” and “rest raw materials” have all 
been used in various research studies (Choe et al. 2020). According to Illera-Vives 
et al. (2015) and Karim et al. (2015), for every ton of fish consumed and disposed of 
via ocean dumping or land disposal, about the same quantity of fish waste (FW) was 
produced. Fish farm waste has the potential to alter natural food webs by negatively 
affecting the biomass, density, and variety of benthos, plankton, and nekton. Waste 
from fish farms can also have an impact on the neighborhood and be directly impacted 
by the effluent (Gowen 1991; Pillay 1991). To achieve sustainable and equitable 
global fisheries and aquaculture, revolutionary changes in policy, management, and 
innovative technology must be accelerated in order to utilize the growing amount of 
waste produced by the aquaculture industry. 

2 Fish Waste as a Secondary Source of Resource 

Depending on the region and species, the waste produced by aquaculture has a widely 
varied range of characteristics. Nearly 32 million tons of waste are produced from 
the residuals from the total amount of fish caught (more than 50%), which are not 
consumed as food (Arvanitoyannis et al. 2008). Large volumes of soluble-inorganic 
excretory waste and particulate organic waste are produced by aquaculture farms
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(Ackefors 1994). The average yield in the fish processing industry is calculated 
using a gutted fish with the head on, which is approximately 40%½ (Marsh and 
Bechtel 2012). During the processing of fish, only 35–40% of the flesh is edible; the 
remaining consists of bones, skin/scales, swim bladders, intestines, roes, liver, and 
blood (Sachindra and Mahendrakar 2015). Fish offals like heads, frames, tails, skin, 
bones, fins, and viscera are included in the disposal portion. Fishmeal is an essen-
tial component of commercial and formulated diets but it is also a major pollution 
source. Fishmeal contamination looks to be a global issue. Fishmeal can either be, 
intentionally or accidently, contaminated with heavy metals, persistent organic pollu-
tants (POPs), and pesticides. Alternatives to raw fishmeal protein sources should be 
researched by utilizing the waste in order to supply the large demand for fish while 
minimizing the current dependency on marine water and freshwater fishing resources 
for sustainable aquaculture. 

3 Waste Generated from Fisheries Sector 

Fish waste is some portion of fish tissue, such as bones, guts, heads, and tails, which 
is not suitable for human food but can be utilized to make fishmeal. A survey claims 
that more than half of the fish captured are not consumed (Kristinsson and Rasco 
2000). Common by-products of finfish include trims, fish skins, fish heads, fish frames 
(bones with attached flesh), fish viscera (guts), and blood. According to Stevens et al. 
(2018), the following by-product fractions were present in the total wet weight of 
Atlantic salmon: viscera (12.5%), heads (10%), frames (10%), skins (3.5%), blood 
(2%), and belly flap (2%). Both raw and cooked shrimp, a significant part of the 
seafood business, are edible. In either event, only around 40% of the shrimp are fit 
for human consumption, and the remaining 60% are processed trash (shrimp shells) 
in the commercial shrimp processing sector (Barratt and Montano 1986; Dayakar 
et al. 2021). 

4 Challenges and Negative Impact of Fish Waste 

The bulk of by-products and wastes are produced during the processing of large 
quantities of fish, shrimp, and other aquatic species. Fish and shrimp processing 
effluents have very high levels of organic matter, nutrients, total suspended particles, 
fat, oil, pathogenic and other microorganisms. Therefore, the receiving coastal and 
marine habitats are quite likely to have negative consequences from fish and shrimp 
processing effluents. There are significant environmental issues as a result of the 
coastal region receiving about 40% of the oyster shell debris (Zhu et al. 2020). The 
garbage from shrimp is subsequently put into landfills, dumped in the ground, and 
dumped into the ocean, which causes significant surface pollution with an unpleasant 
odor in coastal areas, and raises serious environmental pollution concerns. In any
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event, it is commonly acknowledged that disposing of shrimp waste has a huge 
ecological impact (Kelleher 2005). The loss of valuable living resources makes 
shrimp waste a severe environmental issue. Environmental contamination hampers 
the healthy ecosystem and curses for endangered species (Morgan and Chuenpagdue 
2003). The material’s high susceptibility to spoilage is a significant issue with shrimp 
biomaterial valorization. Within an hour of processing, breakdown starts to occur in 
tropical temperatures, producing biogenic amines, which have a highly unpleasant 
odor. The biomaterial decomposes into actual waste if this decay cannot be prevented 
or stopped and becomes an expensive financial burden if it is not properly disposed 
of due to its high protein content. 

5 Need for Waste Management 

It is obvious that appropriate technology should be used to stop degradation and turn 
the biomaterial into useful goods. This is good for both environmental and economic 
reasons. Technology ought to offer methods for fractionation as well as techniques 
for delaying or stopping deterioration. Consequently, there is a lot of interest in recy-
cling fish waste. It’s an innovative idea to turn waste from the fish processing industry 
into marketable organic feed and fertilizer products. After the proper treatment, those 
biomaterials or biowaste which contain a variety of useful substances, can signifi-
cantly increase overall profitability. Fishmeal made from fish waste contains crude 
protein (58%), which is lower than the 60–70% found in high-quality fishmeal, but it 
is still a wholesome product that might be used as a source of fishmeal for fish at lower 
trophic levels. According to a study, fish processing waste is currently used to make 
up to 25% of fishmeal (Chiu et al. 2013). Fish waste does include a lot of monoun-
saturated, palmitic, and oleic acids and is a good source of fat (19% dry matter) and 
nutrients (Esteban et al. 2007). When compared to other fish oils, shrimp shell waste 
contains n-3 fatty acids in lipid that also contains additional beneficial components, 
like carotenoids (Amiguet et al. 2012; Sowmya and Sachindra 2012).  The bulk of  
the total fatty acids in shrimp oil are polyunsaturated fatty acids (PUFA), particularly 
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (Gulzar and Benjakul 
2019; Takeungwongtrakul et al. 2012). The two main n-3 fatty acids, i.e., EPA and 
DHA in PUFA are well known for their therapeutic and nutraceutical uses. Shrimp oil 
contains phospholipids, cholesterol, and carotenoids in addition to fatty acids (Raju 
et al. 2022). Different species of shrimp have different amounts of lipid components 
and carotenoids. In comparison to saturated and monounsaturated fatty acids, shrimp 
oil contains higher polyunsaturated fatty acids (PUFA) (Gulzar and Benjakul 2019). 
According to some reports, P. monodon meat and L. vannamei waste both have higher 
PUFA concentrations such as 44.3 and 43.57%, respectively (Gómez-Estaca et al. 
2017). Astaxanthin is present in large amounts in a number of sources of shrimp oil 
or shrimp processing by-products (SPBP). According to Yang et al. (2022), astax-
anthin monoester made up 59% of the carotenoid content in L. vannamei, with free 
astaxanthin making up 33% and astaxanthin diester (8%). Crustacea are an excellent
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source of the dietary fat-soluble vitamins that adults require (Stancheva and Dobreva 
2013). The preservation of human health depends on these fat-soluble vitamins, 
including vitamin A (retinol), vitamin D, and vitamin E (gamma-tocopherol). López 
et al. (2006) reported that vitamin A and vitamin E concentrations in oil extracted 
from the L. vannamei cephalothorax ranged from 0.9 to 1.6 mg/100 g. According to 
Gómez-Estaca et al. (2017), the oil from Litopenaeus vannamei waste contains up to 
65 mg/g of cholesterol. In this context, shrimp industry by-products must be given 
to aqua feed as a source of protein and a rich supply of carotenoids (particularly 
astaxanthin) to promote and augment overall growth, build muscle, improve skin 
pigmentation, and improve fish health thanks to its antioxidant properties (Haque 
et al. 2021, 2023). However, the remaining trout intestines from smoking fish were 
mentioned by Kotzamanis et al. (2001) as a potential source of fatty acids for gilthead 
bream. Utilizing trout offal in sea bream diets is an alternate, non-polluting method of 
employing fish industry by-products. The squid protein hydrolysate (SPH) contained 
61–64 (%) hydrophilic amino acids, crude lipids, 84–88 (%) crude protein, 6–7 (%) 
ash, 3 (%) sugar, and trace levels of NaCl, according to Kotzamanis et al. (2001). 

6 Bioactive Compounds from Fish and Shellfish Waste 

6.1 Chitin and Chitosan 

The shells of crustaceans like shrimp, crabs, and others, as well as fungi, insects, 
algae, and mushrooms, are plentiful with chitin, the second-most abundant polysac-
charide in the world (Arcidiacono and Kaplan 1992). One of the most preva-
lent renewable biopolymers, chitin resembles cellulose and is mostly made up of 
unbranched chains of 1,4-N-acetyl-D-glucosamine (Ngasotter et al. 2023a). Chitin 
is not only an essential component of invertebrates; vertebrates also contain chitin. 
Contrary to cellulose, chitin has a carbon to nitrogen ratio of 8 to 1 (Struszczyk 2006). 
Chitin comes in three varieties: chitin A, chitin B, and chitin C. The form, which is 
usually derived from crab and shrimp shells, is frequently used. Chitin is commer-
cially marketed, too. Chitin’s chains are arranged anti-parallel to one another. Strong 
hydrogen bonds are present in α-chitin due to its anti-parallel structure, which boosts 
its stability (Sikorski et al. 2009). 

Chitin’s intermolecular hydrogen bonding prevents it from dissolving in water 
(Minke and Blackwell 1978). However, derivatives of chitin can be created that are 
soluble in water, such as chitosan or carboxymethyl chitin. Chitosan, a naturally 
occurring carbohydrate polymer that has been altered, is produced when chitin is 
deacetylated (Yeul and Rayalu 2013). Nitrogen makes about 6–7% of chitin and 7– 
9.5% of chitosan in its deacetylated state. Numerous extremely beneficial features of 
chitin and chitosan, such as immunological function, hemostasis and wound healing, 
antioxidant activity, antibacterial activity, and the removal of heavy metals and other 
impurities, are present in these two substances.
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Recently, there has been a lot of interest in the separation and application of chitin 
in both its micro and nano forms, especially nano chitin in the form of nanocrystals or 
nanowhiskers (100–800 nm in length and 6–60 nm in width) and nanofibers (several 
m in length and 10–100 nm in width) (Ngasotter et al. 2022, 2023b; Sampath et al. 
2022). There are two methods for converting native chitin into nano chitin: (I) Top-
down technique, which uses physical or chemical processes such as acid hydrolysis, 
high-pressure homogenization, ultra-sonication, grinding, and TEMPO-mediated 
oxidation. (ii) Bottom-up method, which converts chitin solutions or gels into nano 
chitin via electrospinning, self-assembly, and dissolution-regeneration (Yang et al. 
2020). For some valuable characteristics, it led to an increase in the use of nano 
chitin in the fields of packaging, food, biomedical, biological, and cosmetics. Chitin 
nanocrystals, for instance, have been utilized to successfully stabilize Pickering oil-
in-water emulsions (Cheikh et al. 2021). Nano chitin, which functions as dietary fiber, 
can reportedly block the breakdown of fat, according to several in vitro research on 
digestive systems (Zhou et al. 2020, 2021). Other potential uses for nano chitin in 
food include enhancing saltiness and serving as a reinforcing nano filler in a variety 
of packaging films (Somsak et al. 2021). 

6.2 Pigment Composition 

Carotenoid is obtained after processing shrimp, crab, trout, lobster, crayfish, salmon, 
snapper, and tuna industry waste. The most common pigments found in both plants 
and animals, ranging from red to yellow, are carotenoids, which are found in the lipids 
of fish waste. In a racemic combination, astaxanthin contains three stereoisomers 
that combine to create a complex with a protein that builds up in the exoskeleton of 
crustaceans (Haque et al. 2021). Due to its unique binding properties, astaxanthin 
is primarily found in crustacean waste in combination with other substances. With 
proteins (carotenoproteins) or lipoproteins (carotenolipoproteins), the pigment forms 
a chemical compound (Higuera-Ciapara et al. 2006). Carotenoids are extracted from 
the head, body carapace, and leftover shrimp waste using a variety of organic solvents 
(Sachindra 2006). The extracted residue can be used to create chitin and/or chitosan, 
and the recovered carotenoids can successfully substitute synthetic carotenoids in 
formulations for aquaculture feed (Haque et al. 2021). The level of redness in seafood 
directly affects its price or quality. The antioxidant action is reportedly ten times more 
powerful than carotene (Naguib 2000). It is utilized in the culinary, cosmetic, and 
salmonid and crustacean feed industries (De Holanda and Netto 2006). 

6.3 Polyunsaturated Fatty Acids 

Shrimp waste has a substantial amount of mono- and poly-unsaturated fatty acids, 
which combined account up 34% of the product’s total fatty acids, according to the
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fatty acid composition of the waste. Furthermore, it seems to contain a lot of saturated 
fatty acids. According to reports from India, the acetone extract made from shrimp 
waste contains a lot of saturated fatty acids (Sachindra et al. 2006). According to 
Bragagnolo and Rodriguez-Amaya, penaeid shrimp from the Brazilian region had a 
significant concentration of unsaturated fatty acids, demonstrating that the compo-
sition of fatty acids varies depending on the kind of shrimp (2001). According to 
Senphan and Benjakul (2012) and Takeungwongtrakul et al., the cephalothorax and 
hepatopancrease of shrimp are important sources of highly unsaturated omega-3 
fatty acids, such as eicosapentaenoic acid (EPA, 20:5n3) and docosahexaenoic acid 
(DHA, 22:6n3) (2012). Following these acids, saturated fatty acids and monounsat-
urated fatty acids (which together constituted up 37.5% of the lipid extracted from 
the cephalothorax of the Pacific white shrimp, L. vannamei) are found (Gulzar and 
Benjakul 2019). 

6.4 Essential Amino Acids 

All necessary amino acids, with the exception of tryptophan, are present in both 
the original shrimp waste and the powder created after fermented shrimp waste was 
lyophilized (Bhaskar et al. 2010). Glutamic acid and aspartic acid were found to be 
dominated as amino acids in caratenoproteins, extracted from shrimp waste using 
enzymatic extraction (Simpson and Haard 1985). In aquaculture, by-product from 
fish waste can be utilized as an immunostimulant and growth promoter (Amar et al. 
2000). Fish waste protein hydrolysates are known to be superior in terms of nutrition 
as feed ingredients because they contain a high concentration of important amino 
acids (Gildberg and Stenberg 2001). These traits obviously indicate the material’s 
potential relevance as a dietary element that will support wellness in the diets of 
young fish and penaeid shrimps. 

6.5 Alpha-Tocopherol 

Tocopherol content in fish waste varied depending on the species, age, sex, fish 
waste component, and type of extraction process (Afonso et al. 2016; Gómez-Estaca 
et al. 2017; Gulzar and Benjakul 2018). Brown shrimp meat and fermented shrimp 
waste (head and cephalothoraxes) had tocopherol values of 7.73 mg per 100 g and 
50.5 mg per 100 g, respectively (Merdzhanova et al. 2018). Gomez-Estaca et al. 
(2017) found a greater tocopherol concentration (1.26 g/100 g) in the waste extract 
from the cephalothorax, cuticles, tails, and pleopods of L. vannamei. Fish’s muscular 
and reproductive systems need tocopherol, a fat-soluble vitamin with antioxidant 
properties (vitamin E) (Afonso et al. 2016). Additionally, tocopherol is necessary to 
prevent lipid peroxidation in the food system as well as the oxidation of low-density 
lipoprotein in living things (Mathur et al. 2015).
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6.6 Fish Calcium 

Calcium deficiency in the diet can be treated with calcium powder made from the 
tuna’s backbone. The main calcium-containing ingredients are dolomite, bone meal, 
and oyster shell. In the building business, calcium is utilized to generate early 
strengthening agents. In the culinary and agricultural industries, calcium is used 
as a food antiseptic to keep fruits and vegetables from going bad and to make 
cheese-making simpler. 

6.7 Carotenoproteins 

The processing waste from shrimp and other crustaceans can be utilized to make 
carotenoproteins, which are high-density lipoproteins connected to stable carotenoid 
complexes (Dayakar et al. 2022). In their ovaries and eggs, carotenoprotein is found 
as carotenolipoproteins, while in the exoskeletons of crustaceans, it is found as 
chitinocarotenoids and crustacyanins (Pattanaik et al. 2020). According to research 
by Sowmya et al. (2011), carotenoproteins are bioactive natural colorants that have 
the ability to boost farmed species’ growth, coloration, and immunity (Pattanaik et al. 
2021). In order to fully use these species, carotenoprotein can be produced from 
shrimp shells and head debris and used as a functional addition in foods, drinks, and 
animal feeds to promote growth (Dayakar et al. 2023). 

7 Role of Bioactive Substances from Fish Waste 

7.1 Antioxidant Activity 

Oxidation is the term for the typical physiological process that occurs in living organ-
isms. Chitosan, protein hydrolysate, carotenoprotein, astaxanthin, and tocopherol are 
examples of bioactive fish waste products that exhibit potent antioxidant effects via a 
variety of methods (Ambigaipalan and Shahidi 2017; Chintong et al. 2019). Chitosan 
demonstrated lowering potential, DPPH radical scavenging activity, and preven-
tion of carotene bleaching (Younes et al. 2014). By using shrimp shell hydrolysates 
(SSH) and shrimp shell protein hydrolysates (SPH), researchers were able to lessen 
the oxidative deterioration of cholesterol, the bleaching of beta-carotene caused by 
cupric ions, and the DNA damage brought on by peroxyl and hydroxyl radicals 
(Ambigaipalan and Shahidi 2017). Likewise, Pangasius viscera spray-dried protein 
hydrolysate showed strong antioxidant activity (Hassan et al. 2019). According to 
Sila et al. (2013), deep-water pink shrimp shell waste-derived astaxanthin showed 
superior antioxidant activity to commercial antioxidant BHA. Astaxanthin demon-
strated strong anti-oxidant activity against the DPPH and ABTS radicals, as well
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as the ability to prevent the bleaching of β-carotene and quenched singlet oxygen. 
The amount of conjugated double bonds, the hydroxyl (OH) group, the keto (C=O) 
group, and the chemical makeup of astaxanthin all have an impact on the antioxidant 
activity (Chintong et al. 2019). 

7.2 Activities Against Microbes 

Chitosan from the shell of L. vannamei has demonstrated antibacterial efficacy 
against Gram-positive and Gram-negative bacteria, according to Vilar et al. (2016). 
S. maltophilia, B. subtilis, and E. cloacae can all be inhibited by chitosan at concen-
trations as low as 78, 625, and 156 g/mL, respectively. Astaxanthin showed a strong 
inhibitory impact on E. coli, S. mutans, P. auriginosa, S. typhi, and S. aureus. Astax-
anthin’s ability to interact and break bacterial cell membranes due to its lipophilic 
nature may contribute to its ability to have an antibacterial impact (Sukmawati et al. 
2020). 

7.3 Anti-inflammatory Activity 

The body’s physiologically necessary defense mechanism against pathogens, free 
radicals, and dead cells is inflammation. Pro-inflammatory cytokines including NF-, 
IL-1, and IL-6 are blocked by anti-inflammatory substances (Santos et al. 2015). The 
inflammatory response of astaxanthin isolated from L. vannamei waste in rat alveolar 
macrophages stimulated by phorbol myristate and lipopolysaccharide (LPS) was 
studied (Santos et al. 2015). Astaxanthin was isolated from the shell of an Asian tiger 
shrimp using a solvent extraction approach, and it demonstrated anti-inflammatory 
effects that increased the stability of the erythrocyte membrane (Sukmawati et al. 
2020). 

8 Green Technologies for Efficient Utilization of Fish Waste 

8.1 As Feed Ingredients 

According to Yang et al. (2006), lactic acid fermentation of biowaste could cause 
the fiber to be broken down and increase the amount of water-soluble carbohy-
drates in the fermented products. Biowaste frequently contains biological compo-
nents such as chitin, protein, lipids, pigments, flavorings, and calcium carbonate 
(Bueno-Solano et al. 2009). “Fish waste to Wealth” is an approachable way to deal 
with fish processing waste and turn it into organic fertilizer and feed additives that
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are self-stabilizing. The use of fish waste in animal feed is currently a highly sought-
after alternative because it not only lowers the cost of animal feed and production 
but also benefits the environment and ecosystem (Westendorf 2000). Fish waste can 
be added to poultry feed as a probiotic supplement and nitrogen source (Hammoumi 
et al. 1998). 

8.2 Fish Protein Concentrate (FPC) 

A stable protein concentration made from entire fish is called fish protein concentrate 
(FPC). Removing water, oil, bones, and other materials increased the protein concen-
tration. A variety of whole fish may now be processed into protein concentrate, which 
has little similarity to the original raw material. 

Types of FPC: There are mainly three major types of FPC, which were defined 
by the Food and Agriculture Organization of the United. 

Type A: A powder with a maximum total fat concentration of 0–75% that is almost 
tasteless and odorless. Type B: A powder with a maximum fat level of 3% and an 
odor or flavor that is unrestricted but unquestionably fishy. Type C: Common fish 
meal produced in an environment that meets acceptable hygiene standards. 

8.3 Bioremediation Agent 

Diverse aquatic pollutants can be removed from water and wastewater using deriva-
tives of chitin and chitosan, which has proved to have good potential. Metal cations, 
metal anions, radionuclides, dyes, phenol-substituted protein anions, and other 
contaminants are removed by using derivatives of chitin and chitosan (Bhatnagar 
and Silanpaa 2009). 

8.4 Nutraceuticals and Flavoring Agent 

Leucine, an important amino acid, has been found in shrimp head hydrolysates, which 
are suitable in the animal feed industry. Glutamic acid, aspartic acid, alanine, and 
glycine in shrimp head hydrolysates also act as flavor enhancers (Randriamahatody 
et al. 2011).
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8.5 Removal of Metal and Dye from Wastewater 

Wastewater from a range of industries, including mining, textile, leather, paper, and 
plastic, contains metal, acid, and dye (He et al. 2020). Through the food supply 
chain, these heavy metals can be consumed by living things and passed on to people, 
posing health risks (Nunez-Gomez et al. 2017). Since these poisons are poisonous 
and challenging to remove from contaminated water, they represent a serious risk 
to living things and the ecosystem as a whole (Druzian et al. 2019). To remove Fe, 
Al, Mn, Co, and Ni from mine-affected water, the idea of using shrimp shell powder 
as a biopolymer was taken into consideration (Nunez-Gomez et al. 2017). Due to 
the high chitin and calcium carbonate content of shrimp shell powder, it successfully 
removed heavy metals from mine-affected water (Nunez-Gomez et al. 2017). A cheap 
and efficient adsorbent for extracting heavy metals from wastewater may be debris 
from shrimp shells. Shrimp waste was used to extract chitosan, and ionic gelation 
techniques were used to create chitosan nanoparticles (Ali et al. 2018). The efficiency 
of the freshly created nano-chitosan particles in removing Fe (II) and Mn (II) ions 
from water was tested. The outcomes demonstrated that nano-chitosan had a 99.8 and 
95.3% efficiency in removing Fe (II) and Mn (II) ions, respectively, with adsorption 
capacities of 116.2 and 74.1 mg/g (Ali et al. 2018). Shrimp shell waste was processed 
into hydro char (SHC) utilizing the deproteinization and deacetylation method, then 
hydrothermal carbonization (Nirmal et al. 2020). This carbon-rich hydrochar created 
from shrimp shell waste has the potential to be a starting point for energy- and carbon-
sequestering technologies (Kannan et al. 2017). Additionally, shrimp shell waste and 
its active components have a variety of uses. For example, shrimp waste’s chitosan can 
be used to remove radioactive materials, create artificial fish bites, destroy benzene, 
and act as an oil spill dispersion (Rostamian et al. 2019). 

8.6 Plankton Production in Aquaculture Ponds 

Using a natural fermentation technique, the underutilized fish processing waste 
was cost-effectively converted into fish hydrolysate. Utilizing them as bio-organic 
manure, liquid organic fertilizer, feed additive, feed supplement, and feed binder 
during feed technology has improved their value. According to Sahu et al. (2014), the 
nutrients include calcium (2.24%), magnesium (1.75%), phosphorus (1.98%), potas-
sium (0.65%), sulfur (1.52%), boron (10.4 ppm), and nitrogen (2.95%). For growth 
and optimal production, plankton and fish food organisms need both macronutri-
ents and micronutrients. A liquid organic fertilizer called fish hydrolysate (Plank-
tofert) has all the necessary nutrients in exactly the right amounts. Micronutrients 
and macronutrients used in pond ecosystems at the recommended fertilization rate 
are economical, environmentally benign, and have no negative effects on the water’s 
quality or fish growth (Sahu et al. 2014). Both macro and micronutrients are present 
in fish hydrolysate in a balanced way. It has macronutrients like N:P:K::1.5:0.5:0.4
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and micronutrients like copper, magnesium, iron, and zinc (Sahu et al. 2014). At low 
inclusion levels, the application of fish hydrolysate generally has a positive impact 
on growth performance and feed consumption. 

8.7 Energy Conversion Strategy 

Because it offers a significant surface area for electrochemical processes, the porous 
carbon material is a useful electrode material for energy applications (Kannan et al. 
2017). Chitin is a nitrogen-based polymer found in large quantities in shrimp shell 
waste that may be a rich source of porous carbon. The inclusion of heteroatoms 
(such as S and P) may also boost the electrochemical activity, catalytic effectiveness, 
and adsorption capacity of this supply of carbon with nitrogen (Zheng et al. 2021). 
Waste from shrimp shells was used to produce catalysts with a high specific surface 
area that were co-doped with phosphorus (Zheng et al. 2021). Moreover, the catalyst 
made from shrimp shells demonstrated superior long-term stability compared to its 
commercial counterpart. Therefore, N, P-doped catalysts based on shrimp shells may 
be effective in air–cathode microbial fuel cells for generating electricity (Zheng et al. 
2021). 

8.8 Biodegradable Plastic Production 

Polyethylene and polypropylene, two plastic materials generated from petroleum, 
take a very long time to break down and are particularly bad for the environment 
(Elhussieny et al. 2020). It is therefore exciting to create biodegradable plastic from 
a natural biopolymer that may be broken down by bacteria, such as chitosan (Wang 
et al. 2018). In this case, glycerol was employed as a plasticizer while shrimp shell 
waste that had been extracted for chitosan and cassava peel starch were combined 
to create bioplastic (Saridewi and Malik 2019). The freshly created bioplastic was 
mechanically and physically robust and included 7% chitosan (Saridewi and Malik 
2019). In a different study, Thammahiwes et al. (2017) used either calcified or uncal-
cified shrimp shell powder (2.5%) as filler for the production of bioplastics based on 
wheat gluten (WG). Consequently, trash from rice straws and shrimp shells could 
be used to produce biodegradable bioplastic from natural sources (Elhussieny et al. 
2020). 

8.9 Biogas Production 

Biogas is made up of a variety of substances that are broken down during anaerobic 
digestion, namely methane CH4, carbon dioxide CO2, hydrogen sulfide H2S, and
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hydrogen H2. Due to its high level of organic carbon, fish waste has the potential to 
be an acceptable source for the creation of methane. Biogas generation is however 
constrained by the high ammonia nitrogen content in fishery biomass. Co-digestion 
can be used to handle fish waste anaerobically. The right co-substrate mixture compo-
sition is the main problem with the co-digestion process. The C:N ratio, macro- and 
micronutrients, pH, biodegradable organic matter, hazardous chemicals, and dry 
matter are a few of the critical factors that must be in balance (Tomczak-Wandzel 
et al. 2013). 

8.10 Biofertiliser Production 

Anaerobic digestion waste is also recycled as a vital supply of a nutrient-rich 
substance as biogas facilities which become more popular. Digestate can be used 
as a biofertilizer after a few unit operations. The digestate still contains elements like 
nitrogen, phosphorus, and potassium. Fish waste contains high-quality digestate, 
which can be used to make fertilizer for farms. To acquire the proper level of NPK, 
the final by-product of digestion is mixed with organic waste using the same minerals 
as the original transformation (nitrogen, phosphorous, and potassium). Biogas plant 
waste enables us to conserve energy, lessen our carbon impact, and use fossil fuels 
less frequently. As a result, co-digested waste and biofertilizer quality are connected 
(Koszel et al. 2015). Fish hydrolysate, also known as “Planktofert” and “Shelfifert,” 
is a natural liquid fertilizer for fish that contains more than 40 trace minerals and 
elements. The underutilized fish processing waste is a great resource for making 
organic fertilizer with additional value and bio-additives. 

8.11 Bio-oil/biodiesel Production 

Fish oil is produced in significant amounts by the fish processing sector. This waste 
product might be converted into renewable energy. Due to the high hydrogen and 
low carbon content of fish oil, a lot of research has been done on its potential as a 
fuel. Fish bio-oil is a viable fuel for diesel engines due to its properties. It is higher 
quality and has a higher heating value than methyl-esterified vegetable oil waste, 
which is conventional diesel fuel. Diesel engines could be able to run on biodiesel 
made from fish waste, especially at low temperatures.



368 R. Haque et al.

9 Recent Trends and Future Prospects in Aquaculture 
Research 

The development of biotechnologies for the complete utilization of shrimp wastes 
still faces challenges and is constrained. The technical limitations of biocatalysts, 
biotransformation, and fermentation technologies include the restricted stability 
and reuse of enzymes, the difficulty of maintaining continuous reactions, and the 
constrained overall sample capacities. Although most shrimp waste is currently 
converted into animal feed, some of it is also turned into bioactive substances with 
additional value including chitin, chitosan, carotenoid, and protein. The fish meal, 
which was prepared from fish heads, skin, intestines, fins, gills, livers, kidneys, and 
scales, was determined to be mercury-free by Murthy et al. (2013). These compounds 
have also shown promise as base materials for catalysts, energy conversion, and 
wastewater remediation. Despite the fact that the recovered bioactive chemicals are 
known to provide a variety of biological benefits, including applications in food 
and medicine, their extraction calls for dangerous materials such as powerful acids 
and bases. Once more, the extraction procedure results in some dangerous wastes 
and effluents that endanger the environment. Therefore, the complete exploitation 
of waste without producing any new garbage is the direction that shrimp processing 
waste will go in the future. 

10 Conclusion 

Aquaculture waste can be treated by following a lot of techniques. Making biogas, 
biodiesel, and biofertilizer from non-recyclable fish waste is the best approach to 
handle sick or dead fish as well as mixed rubbish. The harmful biomass is also recy-
cled and transformed into useful heat, power, or fuel. Fish viscera-based waste has the 
most potential for producing protein hydrolysate. Pigments, chitosan, and collagen 
separation for the cosmetics, culinary, biomedical, and pharmaceutical industries are 
some of the most well-liked contemporary uses of aquaculture waste. The various 
waste processing activities need additional inputs and outputs in order to recover 
energy and separate the necessary components from aquatic waste. A wide range 
of bioactive substances, such as chitin, chitosan, protein, carotenoids, polyunsat-
urated fatty acids, -tocopherol, and minerals, can be found in fish waste. These 
bioactive compounds, according to the literature, exhibit a variety of bioactivities, 
such as antioxidant, antimicrobial, anti-hypertensive, anti-inflammatory, and anti-
proliferative ones. However, the feed industries frequently use these active substances 
to improve the nutritive content and practical qualities of foods. Functional foods 
can be made from bioactive ingredients that have healthful nutritional and nutraceu-
tical properties, such as protein hydrolysate and astaxanthin. Fish waste has recently 
been transformed into hydro char, porous carbon, and nanopowder, all of which
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have uses in biochemical engineering fields such bioremediation, energy conver-
sion, and the creation of bioplastics. Therefore, it is more likely that future fish waste 
use will concentrate on producing environmentally friendly energy and wastewater 
remediation. 
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