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Abstract The use of natural resources has increased by 254% from 1970 to 2017 
globally. Similarly, the consumption of fish and fish products has also gained popu-
larity over the last few years. As per available records and data, it has been projected 
that about 75% of the fish biomass is discarded as biological waste which can be 
explored, recycled, and processed for further validation. Fish waste as a rich source 
of enzymes, bioactive peptides, polymers, and many other bioactive compounds 
has been studied by several researchers in the last decades. In this chapter, we would 
focus only on chitin, chitosan, its derivatives, and processing by-products in advanced 
applications dimensions. They have a huge potential for use in the field of biomed-
ical engineering, and in this article, we will concentrate on their usage in the areas 
of growth factor delivery, cancer diagnostics, cartilage and tendon repair, dentistry, 
drug administration, gene delivery, and bone tissue creation. Besides, they have also 
got used in food and cosmetic industries, nutraceuticals, and bioremediation. 
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1 Introduction 

Recent significant increases in several diseases concluding cardiovascular system, 
the change in lifestyle and food habits are the major advised prescription. As a part 
of this, the consumption of fish and fish products have been increased dramatically 
(Coppola et al. 2021; FAO  2018). As a result of it, the fish byproduct and biomass have 
also increased which environmentally, socially, and economically can best be utilized
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with effective fish waste management strategies (Ferraro et al. 2010; Mo et al.  2018). 
Among the by-products of the fish industry, different important bioactive and valuable 
components have been reviewed for use in the biomedical and pharmaceutical fields 
like enzymes, chitin, polyunsaturated fatty acids, minerals, collagen, peptides, etc. 
(Shahidi et al. 2019; Shavandi et al. 2019). 

In this chapter, we would exclusively discuss only on chitin, chitosan, and their 
derivatives in advanced application dimensions. Because they are natural biopoly-
mers, chitin and chitosan are non-toxic, biocompatible, and biodegradable. Chitosan 
is a chitin derivative produced by deacetylating chitin through enzymatic hydrolysis. 
They can be used to make a variety of forms, such as membranes, gels, nanoparticles, 
microparticles, nanofibers, beads, scaffolds, and sponges. 

Chitin, which is the second most prevalent polymer after cellulose and is a white, 
nonelastic, rigid, nitrogenous polymer of natural origin, was first discovered in 1884. 
It is a part of the exoskeleton of arthropods and a component of yeast and fungi’s 
cell walls. Chitosan, which is produced by enzymatic hydrolysis or deacetylation, 
is the primary chitin derivative. Although it cannot be dissolved in water or organic 
solvents, it can be dissolved in a variety of acids, such as acetic, hydrochloric, nitric, 
and perchloric (Rinaudo 2006; Sankararamakrishnan and Sanghi 2006; Kurita 2006). 
Chitosan has an electrically positive charge and is hence able to adhere to nega-
tively charged surfaces. As the cell surface is anionic, chitosan is believed to adhere, 
due to electrostatic interactions (Dash et al. 2011). Three different group types in 
chitosan make it possible to produce copolymerized components specifically for 
use in tissue engineering. Different modified chitosan can be created with various 
targeted effects depending on the level of deacetylation (DDA) and molecular weight 
(MW). Researchers have created a variety of chitin and chitosan composites that have 
shown to be future attractive candidates in the biomedical fields. 

2 Chitosan Processing 

The following steps (Fig. 1) are maintained for yielding chitosan (Rinaudo 2006; 
Roberts 1992). 

Based on the source the extraction process varies. The traditional extrac-
tion process involves steps like demineralization, deproteination, bleaching, and 
deacetylation.

Fig. 1 Processing of 
Chitosan crabs, shrimps

crustacean exoskeleton 

diluted HCL 
decalcification 

diluted NaOH 
deproteinization 
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3 Chitin/Chitosan from Aquatic Ecosystem 

Chitin may be isolated from shrimps, crabs, lobsters, and crayfish in the form of gran-
ules, sheets, and powders (Khor and Lim 2003; Khor 2014; Ehrlich et al. xxxx). Chitin 
has also been isolated from sponges and found to be effective in biomedical engi-
neering (Ehrlich et al. 2007; Brunner et al. 2009a, 2009b). Chitin is been documented 
to be obtained from protozoa or alga, foraminifera (Jeuniaux and Voss-Foucart 
1991). Diatoms, hydroids, coelenterates, brachiopods, polychaetes, pogonophorans, 
mollusks, and crustaceans have also been documented to yield chitin (Kurita 2006; 
Brunner et al. 2009a). The shell of all crabs and shrimps has been enlisted to provide 
the α-chitin (Stepnowski et al. 2004). 

4 Different Composite of Chitin and Chitosan 

Base Composite and type Reference 

Chitin The sponge-like 3D chitin Kim et al. 2008; Rinaudo 2008; 
Abe et al. 2004) 

Chitin Electrospun water-soluble carboxymethyl Menon et al. xxxx) 

Chitin Fiber Mikhailov et al. 2001) 

Chitin Electrospun transparent nano mats Shamshina et al. 2018) 

Chitosan Heparin-like composite fibrous membranes Li et al. 2018) 

Chitosan Nanofibers with carbon nanotubes, Fe3O4, and  
TiO2 

Bahmani et al. 2020) 

Chitosan Cellulose chitosan multifilament fiber Zhu et al. 2019) 

Chitosan Films and membranes Hu et al. 2016; Youssef et al. 
2016) 

Chitin Cellulose hydrogels Shamshina et al. 2014) 

Chitin MCC aerogels Shen et al. 2016) 

Chitosan CMC and Glycerol 2 phosphate hydrogels Azadi et al. 2018) 

Chitosan Hydroxypropylmethylcellulose and glycerol 
thermosensitive hydrogel 

Wang et al. 2016) 

Chitosan Cellulose hydrogel Kabir et al. 2018) 

Biomedical applications in the area of. 

1. Bone Tissue Engineering 

For effective bone tissue engineering, any implant/scaffold must be biocompat-
ible, biodegradable, and bioactive. Chitin and chitosan along with these proper-
ties also possess flexibility and porosity, but they lack mechanical strength and are 
unstable too (Mathur and Narang 1990). Hence different composites of chitin and
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chitosan have evolved to mitigate the disadvantages and have been used in bone 
tissue engineering. Enhancement of mechanical strength with different composites 
like alginate for resisting compressive force (Li et al. 2005) and poly(lactic-co-
glycolic)acid(PLAGA) (Jiang et al. 2006) composite was investigated with promising 
results. Further in one study the efficacy of heparin-modified chitosan-PLGA scaffold 
and recombinant human bone morphogenic protein (rhBMP-2)-heparin chitosan-
PLGA scaffold was investigated for osteointegration, osteoblastic proliferation, and 
differentiation, and rapid bone formation with a promising result (Jiang et al. 2010). 
Additionally, different composites have also been examined in bone tissue engi-
neering like arginine–glycine–aspartic acid conjugated UV-cross-linked chitosan 
(Tsai et al.  2012), poly-caprolactone-chitosan scaffolds (Wu et al. 2010; Thuaksuban 
et al. 2011), growth factors releasing porous poly-caprolactone-chitosan scaffolds 
(Im et al. 2003), bone morphogenic protein-2 and 7 incorporated chitosan scaffold 
(Yilgor et al. 2009), chitosan-collagen scaffold incorporated with rhBMP-2-PLGA 
(Shi et al. 2009), chitosan scaffold functionalized with heparin (Gümüşderelioğlu and 
Aday 2011). In one study poly L Lactic acid-chitosan scaffold was soaked in Ca2+ 

and PO4 
3−solutions for increasing the osteoconductive properties of this scaffold and 

the same was investigated to facilitate bone regeneration (Prabaharan et al. 2007). 
All of the above studies yield better results in terms of maintaining scaffold porosity, 
increasing osteoconductivity, improving mechanical attributes, reducing the rate of 
degradation of materials, and finally augmenting bone formation. 

Apart from this, nano-hydroxyapatite (nHAp), being osteoinductive and conduc-
tive, also have been investigated by incorporating chitin (Chang et al. 2013). Simi-
larly, the incorporation of nHAp with α-chitin and β-chitin, chitosan hydrogels for 
bone tissue engineering is investigated (Kumar et al. 2011; Sudheesh Kumar et al. 
2011; Madhumathi et al. 2009). Studies on HAp-incorporated chitin and chitosan, 
different polymeric and ceramic-like silk fibroin, carboxymethyl cellulose, gelatin, 
and carbon nanotube-incorporated chitin and chitosan have been reviewed and found 
to have improved mechanical strength with better and uniform mineralization (Fig. 2) 
(Li et al. 2006; Frohbergh et al. 2012). Osteoblast obtained from mesenchymal stem 
cells was seeded into a HAp-chitin scaffold and was studied for osteogenic proper-
ties (Ge et al. 2004). Similarly, goat mesenchymal stem cells were also studied in 
chitin composite for new bone tissue regeneration with good results (Liu et al. 2010). 
Reports on bioactive glass (BGC)-chitin/chitosan composite for use in load-bearing 
areas including nanocomposite, nano-silvers, solvent cast bioactive glass, the hybrid 
scaffold of Bioactive glass, surface modified BGC is recorded for better mechan-
ical strength, biocompatibility in the bone and dentistry (EBSCOhost xxxx; Hench 
et al. 1971; Jones 2013). Hybrid Chitin/chitosan-silica/titania and zirconia composite 
for bone formation and regeneration is also demonstrated by different researchers 
(Toskas et al. 2013; Jongwattanapisan et al. 2011).

2. Cartilage Repair 

Most of the time cartilage damage demands surgical interventions especially 
replacement owing to the fact of degenerative changes that may occur due to disease, 
trauma, or genetic irregularities. Conventional surgeries do not guarantee all the time
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Fig. 2 Examination of 
electrospun scaffolds 
morphology by atomic force 
and scanning electron 
microscopy. SEM images of 
chitosan nanofibers with 7% 
HA content and 0.1% 
genipin cross-linked 
CTS-GP a and 0.1% genipin 
cross-linked 1.0% GP 
b show distinctive nanofiber 
shapes at low magnification. 
(Reproduced from 
Biomaterials Journal, 
Frohbergh, et al., 2012, 
with permission)

a 

b 

a scarless operative site and hence suffer from loss of mobility and reduced function-
ality. Here lies the need for a cell scaffold composite that can stimulate, regenerate, 
and remain active in the scaffold environment. Chitosan has been found to have chon-
drogenesis properties. Porcine chondrocyte-seeded chitosan scaffold was studied 
with a positive outcome for chondrogenesis (Use and of Chitosan as a Cell Scaffold 
Material for Cartilage Tissue Engineering xxxx; Griffon et al. 2006). Chitosan micro-
spheres incorporated with transforming growth factor β showed improved chondro-
cyte growth (Kim et al. 2003; Lee et al. 2004). Chitosan-collagen-genipin scaffold 
demonstrated better viability of chondrocytes in rabbits (Yan et al. 2010). Utilizing 
the hemostatic characteristic of chitosan composite in cartilage regeneration resulted 
in the development of hyaline cartilage and the variation of pluripotent cells into 
chondrocytes (Hoemann et al. 2007; Hao et al. 2010). Chitin and chitosan hydrogels 
showed significant achievement in terms of regeneration of damaged cartilage and
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wound healing (Xi et al. 1999; Jin et al. 2009; Tan et al. 2009). Different hydrogel 
composite of chitosan is demonstrated to provide better chondrocyte survival (Park 
et al. 2013). The chitosan-based fibrous scaffold has been studied with better depo-
sition of the extracellular matrix (Subramanian et al. 2004). The hybrid scaffold of 
chitosan was evaluated for the mechanical integrity of cartilage formation (Neves 
et al. 2011). 

3. Tendon and Ligament Repair 

As with cartilage, tendon and ligament repair also have drawbacks of scar tissue 
formation. For any technology to be used in the repair process must meet high tensile 
strength along with regenerative capacity. A polyelectrolyte complex of alginate-
chitosan gave better adhesion attributes (Majima et al. 2005). Similar findings 
along with enhanced strength were found in the hyaluronic acid chitosan complex 
(Funakoshi et al. 2005a). Other studies using hyaluronic acid chitosan complexes 
with osteoblast seeds also produced results that were more favorable in terms of 
increased mechanical strength (Fig. 3) (Funakoshi et al. 2005b; Irie et al.  2011). As 
chitin is degraded first, hence alone chitin fabric sometimes gave poor regeneration 
of non-healed ligament with evidence of scar tissue, but if a composite is formed with 
PCL the outcome was found to be encouraging (Funakoshi et al. 2006; Sato et al. 
2000). The role of chitosan in treating ligament injury lies in favoring the deposition 
of collagen type I (Tendon healing in vivo and in vitro: chitosan improves range 
of motion after flexor tendon repair 2013). Similar studies were also carried out by 
other scientists indicating the outcome at per (Shao et al. 2010a, 2010b). 

a b  

Fig. 3 a A braiding machine was used to produce a three-dimensional scaffold from 13 braids that 
measured 40 mm long, 7 mm broad, and 0.7 mm thick. b The braided fibers and longitudinal axis 
formed a 30-degree angle. (Reproduced from J. Biomed. Mater. Res. A Irie et al., 2010 with 
permission)
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4. Skin Regeneration 

As already discussed the hemostatic properties of chitin and chitosan, may 
be well employed for the healing of varied types of dermatological conditions 
(Taravel and Domard 1995, 1996; Ma et al.  2001). Cotton fiber type chitosan with 
rapid healing and presence of polymorphonuclear cells (Ueno et al. 1999), growth 
factor incorporated chitosan with better healing (Mizuno et al. 2003), chitosan-
alginate polyelectrolyte complex with better wound stability (Yan et al. 2000; 
Wang et al. 2002), chitosan-collagen scaffold providing more fibroblast infiltra-
tion (Ma et al. 2003), chitosan acetate bandaging with improved antibacterial and 
anti-inflammatory property (Burkatovskaya et al. 2008), growth factor incorpo-
rated collagen-chitosan complex in burn wound with enhanced neo-angiogenesis 
(Guo et al. 2011), atelocollagen-chitosan in excisional wound healing198, chitosan 
hydrogels for skin tissue healing (Kumar et al. 2013) have been investigated and 
documented for ease of ready to hand reference. 

5. Liver Regeneration 

As the liver’s extracellular matrix contains glycosaminoglycans, hence chitin and 
chitosan are used in different hepatic engineering and regeneration because these 
glycosaminoglycans are also a part of chitin and chitosan (Li et al. 2003a) and have 
been recorded to modulate the actions of vascular endothelial cells (Chupa et al. 
2000). Different composites along with their applications have been listed below. 

Composites Application References 

Chitosan-collagen Increased hepatocyte 
compatibility 

Wang et al. 2003) 

Chitosan-collagen-heparin Artificial liver with more 
blood compatibility 

Wang et al. 2005) 

Chitosan-galactose Increased hepatocyte 
attachment 

Park et al. 2003) 

Chitosan-fructose Increased liver cell metabolic 
activities 

Li et al. 2003a; Li et al.  2003b) 

Chitosan-fibroin Increased hepatocyte 
attachment 

She et al. 2009) 

Chitosan-galactosylated 
hydroxyapatite 

More albumin secretion and 
elimination of urea 

Fan et al. 2010) 

Chitosan-poly ether-ether 
ketone 

The proliferation of 
progenitor cells 

Piscioneri et al. 2011) 

6. Nerve Regeneration 

Peripheral nerve regeneration and repair frequently involve chitin and chitosan. 
Schwann cell, one of the key cells in nerve tissue engineering showed better migra-
tion, adhesion, and proliferation with chitosan fiber (Yuan et al. 2004). The effective-
ness of the chitosan complex in additional research on cell adhesion, proliferation,
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and migration has been evaluated (Cao et al. 2005; Mingyu et al. 2004; Cheng et al. 
2003; Chiono et al. 2008). The viability and proliferation of different neural cells 
were studied in chitosan-collagen composite (Yang et al. 2010) and laminin-coated 
chitosan membrane (Guo et al. 2012). 

5 Application in the Field of the Delivery System 

Any kind of regeneration, repair, and healing is always associated with growth factors 
and can be influenced by different drugs and gene therapy. In these domains, chitin 
and chitosan are crucial. Here we will briefly review the effect of these in tabular 
form. 

Different drug delivery implant has been prepared like chitosan scaffold for 
5-Fluorouracil (Denkbaş et al.  2000), chitosan-pectin cross-linked scaffold with 
pentoxifylline incorporated films (Lin and Yeh 2010a), pentoxifylline loaded 
chitosan-alginate scaffold (Lin and Yeh 2010b), ketoprofen loaded Chitosan-
carboxymethyl β–CD (Prabaharan and Jayakumar 2009), ampicillin-loaded alginate 
microspheres in chitosan-nano-hydroxyapatite scaffolds (Shi et al. 2007), dexam-
ethasone impregnated Chitosan scaffold (Duarte et al. 2009), tetracycline loaded 
chitosan-hydroxyapatite scaffolds (Teng et al. 2009), amikacin and vancomycin 
loaded chitosan sponge (Noel et al. 2010), collagen-chitosan for transdermal drug 
delivery (Thacharodi and Panduranga Rao 1996), vitamin B2 as a model drug in 
glucose-cross-linked N-alkylated chitosan membranes (Li et al. 2002), nifedipine 
incorporated chitosan membrane (Thacharodi and Rao 1993), collagen-chitosan as a 
carrier of propranolol (Thacharodi and Panduranga Rao 1995) and the results demon-
strated better release, stability with lowered enzymatic degradation. Carboxymethyl 
chitin has also been used for drug delivery (Jayakumar et al. 2010). 

Besides, the delivery of growth factors may be attributed to chitin and chitosan. 
The incorporation of bFGF into chitosan was in periodontal regeneration (Tığlı et al. 
2009). bFGF was also incorporated in chitosan-alginate scaffold and found to be a 
potential carrier system for tissue repair and regeneration (Ho et al. 2009). Chitosan 
microsphere scaffolds have been used for the evaluation of carriers of ALP and BMP-
2 (Reves et al.  2009). CS composite has also been used for the delivery of VEGF for 
hard tissue regeneration (Riva et al. 2010). The administration of rhBMP-2 for bone 
regeneration has been successfully shown using the chitosan-collagen scaffold (Shi 
et al. 2009). 

Chitosan-based DNA/siRNA complexes sometimes have the problem of early 
and immature release of nucleic acids (Buyens et al. 2012) and less penetration to 
cells. Hence, complexes with improved performances have been investigated with 
promising results. Enhanced cell penetration has been achieved by surface modifi-
cations of chitosan by ligands like transferrin (Mao et al. 2001; Chan et al. 2007), 
folate (Kim et al. 2006), mannose (Gao et al. 2003), and galactose (Gao et al. 2003; 
Park et al. 2001) have yielded good results. For increased stability, chitosan has been 
modified by Quaternization (Kean et al. 2005; Thanou et al. 2002), glycosylation
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(Thanou et al. 2002; Strand et al. 2008), and hydrophobic modification (Lee et al. 
2012). Fusogenic peptides and pH-sensitive neutral lipids have been added to several 
research projects to improve DNA/siRNA. Plans to mute RANK signaling utilizing 
chitosan hydrogel as a siRNA reservoir and vector have also been examined (Kang 
et al. 2017). 

6 Application in Wound Healing 

Chitin and different composite membranes have been tested from the perspective 
of wound healing and found to possess excellent biocompatibility, minimal or less 
tissue reaction, and regenerative and antibacterial properties (Singh et al. 2008; Azad 
et al. 2004). Similar results were also obtained with chitosan membrane (Santos 
et al. 2013), chitosan composites (Pang et al. 2008), silver sulfadiazine incorpo-
rated chitosan alone (Mi et al. 2003), and chitosan-alginate composite (Meng et al. 
2010), argon plasma treated chitosan membranes in fibroplasia (Zhu et al. 2005). 
Different wound dressing materials based on chitosan hydrogel composite gave 
excellent results (Queiroz et al. 2003). Porous chitosan membrane proved to possess 
good hemostatic as well as excellent epithelialization properties (Mi et al. 2001). 
The different composite sheets of chitosan (Wang et al. 2012), diverse sponges of it 
(Lee et al. 2000), and composite bandages in non-cytotoxic in nature (Sudheesh 
Kumar et al. 2012). According to all of the aforementioned studies, chitin and 
chitosan, as well as their composites, have excellent bioacceptability, good regener-
ative properties, epithelialization, hemostasis, adhesion, stability, antibacterial and 
anti-inflammatory properties, and, most importantly, have improved wound healing. 

7 Application in Cancer Diagnosis 

Chitin and chitosan are frequently employed in the diagnosis and treatment of cancer 
among other purported biological purposes. In cancer imaging heavy metal-free lumi-
nescent zinc sulfide (ZnS) is considered bio-friendly to healthy and cancer cells over 
the use of heavy metal-containing nanocrystals such as cadmium sulfide, cadmium 
selenide, and zinc selenide (Derfus et al. 2004). However, in an in-vitro study chitosan 
encapsulated ZnS nanoparticle is used in cancer imaging (Higuchi et al. 2008) and 
the study shows the yield of mannosylated ZnS of size 120 nm after functionalizing 
with D-Mannose and its low cytotoxicity toward healthy and cancer cells. Moreover, 
its specificity of the binding property toward mannose-bearing KB cells under fluo-
rescence microscopy encourages receptor-mediated imaging with nanoparticles as 
well as in cancer therapy (Higuchi et al. 2008). 

The report of various researchers from across the world clearly demonstrates the 
importance of chitin and chitosan as therapeutic agent in cancer biology through 
the direct death of malignant cell lines and as a vehicle for anticancer medication
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delivery systems. Chitosan’s anti-cancerous properties are mostly attributed to the 
maturation and infiltration of cytolytic T-lymphocytes via enhanced interleukin-1 and 
interleukin-2 production (Lin et al. 2007). Some researchers have shown anticancer 
efficacy through the direct destruction of tumor cells by triggering apoptosis (Gibot 
et al. 2015). 

Chitin inhibits an elevated serum level of proinflammatory mediators chitinase-3 
like protein-1 (CHI3L1) in breast cancer, colorectal cancer, ovarian cancer, leukemia, 
lymphoma, metastatic prostate cancer, lung cancer, and glioblastoma by blocking the 
synthesis of vascular endothelial growth factor C. (VEGF-C). Additionally, other 
forms of chitin, such as chitin-glucan-aldehyde-quercetin conjugation and silver-
embedded chitin nanocomposites, exhibit biocompatible cytotoxicity in human 
breast cancer (MCF-7) cells (Solairaj et al. 2017) and in macrophage cancer cell line 
(J774) respectively (Singh et al. 2018). Further, in the drug delivery system doxoru-
bicin coated with chitin-based poly L lactic acid composite nano gel and ellagic 
acid in chitin nanoparticle shows cytotoxic effect in the liver (Arunraj et al. 2014) 
and breast (Pirzadeh-Naeeni et al. 2020) carcinoma respectively. Similarly, chitin, 
chitosan, and chitosan oligosaccharides are also used in cancer therapy. A 2015 study 
by Gibot et al. found that the apoptotic impact increased in RPMI7951 cells, cell 
proliferation decreased in SKMEL38 cells, and cell adhesion quality decreased in 
A 375 cells (Gibot et al. 2015). Moreover, chitosan oligosaccharide in colorectal 
cancer abolished tumor progression (Mattaveewong et al. 2016), and modulated 
cell autophagy in the A549 lung cancer cell line in oral squamous cell carcinoma 
producing the cytotoxic effect by arresting cell cycle and apoptosis without any 
adverse effect on adjacent noncancerous cells (Wimardhani et al. 2014). This chitosan 
also shows anti-cancerouse effects in liver carcinoma in mice (Jiang et al. 2015), 
and lung cancer A549 cell line (Gao et al. 2020). In lung cancer, the A549 cell line 
chitosan selenate shows its potent activity in the apoptosis of cancer cells. In addition, 
many chitosan nanoparticles are employed in anti-cancerous drug delivery systems, 
including chitosan oligosaccharide conjugated to 5-fluorouracil and vanillin, chitosan 
oligosaccharide conjugated to indomethacin, and chitosan graphene oxide attached 
to thioguanine (Hasanzade and Raissi 2019; Lee et al. 2017; Li et al.  2016). 

8 Application in Dentistry 

Chitosan is been widely studied in dental engineering for its biocompatibility, non-
toxicity, biodegradability, and antimicrobial activities. Apart from that, it has the 
property to form film and gel which is very helpful for application in the dental field 
(Fiorillo 2019; Husain et al. 2017). Chitosan has widely been used for caries preven-
tion as well as in conservative dentistry (Ortiz and Boyce 2008). One remarkable 
study report denotes better periodontal health and condition with chitosan brushing 
(Zeza et al. 2017). Chitosan has also been proven to reduce the bleeding time after the 
extraction of teeth (Pippi et al. 2017). It has been investigated for anti-inflammatory
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and pain relief properties with significant outcomes in dental affection and engi-
neering (Lope-Lopez et al. 2015). Chitosan also proved to combat demineralization 
in dental affection cases (Uysal et al. 2011). The form of toothpaste of chitosan has 
been used to reduce the oral bacterial count (Mohire and Yadav 2010). 

9 Other Applications of Chitin and Chitosan Apart 
from Biomedical Spheres 

Chitin and chitosan are employed in a variety of industries, including food and 
cosmetics, nutraceuticals, water treatment, and bioremediation, in addition to 
biomedicine. The usage of chitin and chitosan in bioremediation is significant due 
to the conversion of contaminants and interaction with heavy metals and removal 
in an aqueous solution (Hayes et al. 2008; Barriada et al. 2007). Papayafish scale 
collagen has been found to have iron-clearing properties from groundwater (Irawan 
et al. 2018). Chitin and chitosan are utilized in the food industry as food additives and 
have also been included in food packaging materials because of their antioxidant and 
antibacterial properties. Silver thiosulfate and actinides are two industrial pollutants 
that have been treated using chitin-based biomaterials (Kosyakov et al. 2002). Chitin 
has also been used in the paper industry for increasing strength. 

10 Conclusion and Future Scope 

Fish processing is now becoming a major industry in many countries and fish by-
products are being widely used in many sectors including biomedical applications. 
The vast source of collagen, proteins, oils, chitin, and chitosan is derived from the 
fish industry. The encouraging biomedical applications of chitin and chitosan have 
attracted the attention of researchers to explore their use in a more intensive and 
easier application, as well as making the research into a new dimension for appli-
cation in biomedical spheres. Still, the user has yet to be investigated in light of 
biocompatibility, degradability, acceptability, and bioactivity. Further, the research 
program should be oriented to develop composites of chitin and chitosan more fruit-
fully in various biomedical applications. The same has to reach the hand of clinicians 
at a reachable price. The research should be aimed to transfer from laboratories to 
clinics. 
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