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Abstract. In recent years, deep learning-based matting methods have
received increasing attention due to their superior performance. The
design of the loss function plays a important role in the performance
of matting models. Existing loss functions train the network by super-
vising it to learn specific value, gradient, and detailed information of the
ground-truth alpha matte. However, these loss functions only supervise
network learning based on the value of alpha matte, and the matting net-
work may not fully understand the uniqueness of the matting task. We
introduce a loss function which supervises image features. On one hand,
it effectively extracts useful information from the ground-truth alpha.
On the other hand, this loss function combines the mathematical model
of matting, which constrains the image features to satisfy local differ-
ences. Multiple experiments have shown that our loss function enhances
the generalization ability of matting networks.
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1 Introduction

Image matting is a challenging tasks in computer vision that aims to separate the
foreground from a natural image by predicting the transparency of each pixel. It
has been applied in the field of biometric recognition, such as finger-vein [1], gait
recognition [2,3], and face verification [4], as it can finely delineate the target
contours, thus facilitating biometric recognition tasks.

The image I can be represented as a convex combination of the foreground
F and the background B.

Ii = αiFi + (1 − αi)Bi αi ∈ [0, 1] (1)

where αi, Fi, and Bi respectively represent the transparency, foreground color,
and background color at position i in the image. This problem is a highly
underdetermined mathematical problem. There are three unknowns and only
one known in the equation. The trimap is introduced to provide additional con-
strains. It consists of three parts: the known foreground region where the alpha
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value is known to be 1, the known background region where the alpha value is 0,
and an unknown region where the alpha value needs to be determined. Existing
deep learning-based matting methods have greatly surpassed traditional methods
in terms of the quality of alpha mattes, attracting a rapid increase in attention
to deep learning-based matting methods.

The loss function is a fundamental component of deep learning, as it measures
the difference between the predicted output of a model and the true labels.
It provides guidance for model training and optimization objectives, allowing
the model to gradually improve its prediction accuracy. The alpha prediction
loss is computed as the average absolute difference between the predicted alpha
matte and the ground-truth alpha matte. The composition loss, introduced by
[5], utilizes the ground-truth foreground and background colors to supervise the
network at the pixel level. Gradient loss [6] has been proposed to improve the
sharpness of the predicted alpha matte and reduce excessive smoothness. The
Laplacian Pyramid loss [7], a multi-scale technique, is employed to measure the
disparities between the predicted alpha matte and the ground-truth alpha matte
in local and global regions. Indeed, the loss functions used for image matting
encompass supervision at the pixel level as well as supervision of the gradient and
detail changes in the alpha channel, which improves the accuracy and quality
of the matting results. But these loss functions only focus on the differences
between the alpha matte predicted by the network and the ground-truth alpha
matte. Consequently, the network may not effectively learn valuable information
inherent in the ground-truth across different feature layers. In general, increasing
the depth of a neural network can improve its representation ability to some
extent. To better train the network, it is common to add auxiliary supervision to
certain layers of the neural network. Some methods [8,9] supervise the multi-scale
features obtained by the decoder at different scales. However, directly supervising
neural networks with ground-truth alpha mattes causes the decoder at a small
scale to strictly approximate the ground-truth alpha mattes, which may result
in overfitting. Figure 1 provides an example. When the image matting method
is applied to scenarios different from the training images, the prediction of the
decoder at a small scale may not be accurate. Any prediction error of the decoder
would degrade the quality of alpha mattes.

We introduce a loss function called Alpha Local Difference Loss(ALDL),
which leverages the local differences within the ground-truth to supervise fea-
tures at various resolution scales. Unlike gradient loss, ALDL captures the dif-
ferences between the pixel and its surrounding pixels in the ground-truth, and
utilizes these differences as constraints to supervise the features of the image.
Gradient loss only describes the gradient of the central pixel in the x and y
directions, without explicitly capturing the specific variations between the cen-
tral pixel and local surrounding pixels. Furthermore, instead of applying strict
supervision on early decoders [8,9], ALDL is a loose supervision that leads the
matting network to learn the relationships between features, rather than strictly
adhering to specific numerical values.

This work’s main contributions can be summarized as follows:
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Fig. 1. From left to right, the images are the input, trimap, ground-truth, the predicted
results by the MatteFormer and ours. We can see that there are serious errors in the
prediction of the intermediate details of alpha. These errors are the result of inaccurate
alpha prediction caused by low-resolution feature estimation.

1. We propose a loss function called Alpha Local Difference Loss specifically
designed for matting networks, which utilizes the supervision of local fea-
ture relationships. This loss function can be easily integrated into existing
networks with hardly any need to add extra parameters.

2. Through experiments conducted on multiple networks and datasets, our
Alpha Local Difference Loss demonstrates the ability to improve the gener-
alization capability of matting networks, resulting in enhanced object details
in the matting process.

2 Methodology

In this section, we illustrate how to define the difference between each point
and its local neighboring points based on the local information of the ground-
truth alpha. The local difference is embedded into the image features, and the
Alpha Local Difference Loss is proposed to constrain the network in learning this
difference. Furthermore, an analysis is conducted to determine which features in
the neural network should be supervised.

2.1 Local Similarity of Alpha Labels and Features

Consistent with the assumption of closed-form matting [10], we assume that pix-
els within a local region have the same foreground color F and background color
B. According to Eq. (1), we can obtain the pixel value difference ΔI between
two points x and y within a local region. Similarly, by using the ground-truth
alpha, we can also obtain the alpha value difference Δα between point x and y.

Ix − Iy = αxF + (1 − αx) − αyF − (1 − αy)B = (αx − αy)(F − B) (2)

ΔI = Δα(F − B) (3)

Δf = Δα(fF − fB) (4)
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Fig. 2. The process of calculating ALDL

It can be observed that there is a linear relationship between the color value
difference ΔI and the F − B within a local region on the image. Because F and
B are invariant within the local region, F − B is a fixed vector. By analogy, we
can consider feature difference Δf as a linear combination of features fF and
fB . In spatial terms, for two features fF and fB within a local region, Eq. (4) is
obtained. The features should also be constrained to satisfy this relationship as
much as possible. This relationship embodies the intrinsic meaning of matting,
and it is believed that it will help the network learn to synthesize Eq. (1).

2.2 The Design of Loss Function

For a position i, let ∂ {i} denote the set of points within the M1 × M2 region R,
where M1 and M2 respectively denote the height and width of the R, and pixel i
is located at the center position of the R. The set of values for the ground-truth
alpha at position i is: ∂ {αi} = {αi1, αi2, αi3, ..., αiM1×M2}. It is worth noting
that αij is a scalar. We can compute the differences between αi and each element
in its set ∂ {αi}.

dif (αi, αij) = αi − αij (5)

simα (αi, αij) = 1 − |dif (αi, αij)| (6)

simf (fi, fij) = ϕ(cos(norm(fi), norm(fij))) (7)

loss =
∑

i

∑

j

simα (αi, αij) − simf (fi, fij) (8)
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dif (αi, αij) represents the difference between the alpha value of the central
pixel i and the alpha values of other positions within the region R. To facilitate
computation, we normalize the values between 0 and 1 using the simα function.
The smaller the difference between αi and αij , the closer the value of simα tends
to approach 1. Given the feature X ∈ RH/r×W/r×C , for any point at the location
i in X, ∂ {fi} = {fi1, fi2, fi3, ..., fiM1×M2}, where fiM1×M2 ∈ R1×1×C , r is the
downsampling factor. In order to align the resolution of alpha with the feature,
the ground-truth alpha is downsampled to obtain ∂ {αr

i }. Each element in the set
∂ {αr

i } and ∂ {fi} corresponds to each other based on their spatial positions. It is
worth noting that our goal is to correspond the vector Δf with the scalar Δα, so
the similarity between the two features is calculated to convert the vector into a
scalar. The definitions of distance between features is (7), norm(fi) denotes the
calculation of the norm of vector fi, ϕ represents a mapping function, cos refers
to the calculation of the cosine similarity. The aim is to maintain consistency
in terms of both the differneces of alpha values and the differneces of features
between each point and its neighboring adjacent points. Hence, the definition of
Alpha Local Difference Loss is Eq. (8).

2.3 The Supervisory Position of ALDL

[11] indicates that different layers in a convolutional neural network tend to learn
features at different levels. Shallow layers learn low-level features such as color
and edges and the last few layers learn task-relevant semantic features. If the
features at shallow layers are supervised to capture task-related knowledge, the
original feature extraction process in the neural network would be overlooked.
Therefore, we only supervise the features outputted by the decoder. Addition-
ally, our supervision relationship is derived from the ground-truth alpha in local
regions, which can be considered as extracting features at a lower-level semantic
level. Alpha Local Difference Loss should not be used for supervising features
representing higher-level semantic features with very low resolution. As shown in
the Fig. 2, taking MatteFormer [9] as an example, its decoder outputs features
with resolutions of 1/32, 1/16, 1/8, 1/4, and 1/2. Supervision is only applied
to the features with resolutions of 1/8, 1/4, and 1/2 in the decoder, while the
feature with a resolution of 1 is not supervised in order to reduce computational
cost.

3 Experiments

To validate the effectiveness of the suggested Alpha Local Difference Loss func-
tion, we extensively perform experiments on various matting baselines using
multiple benchmark datasets. The performance is assessed in real-world scenar-
ios to verify its generalization capability.
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Fig. 3. Y-axis: the SAD error on AIM-500. X-axis: the correlation coefficient between
the difference of alpha and the difference of feature.

Table 1. The effectiveness of implementing ALDL

AIM-500 AM-2K P3M

MSE SAD Grad Conn MSE SAD Grad Conn MSE SAD Grad Conn

GCA 40.00 35.25 27.86 35.89 14.49 9.23 8.92 8.17 17.49 8.50 13.41 7.90

GCA+ALDL 38.33 35.65 27.82 36.13 15.28 9.45 8.75 8.50 16.98 8.27 12.92 7.74

MatteFormer 34.32 31.25 23.53 31.25 17.00 9.93 9.81 9.16 22.62 10.07 14.39 9.63

MatteFormer+ALDL 31.11 28.23 21.79 28.21 15.68 9.68 9.73 8.93 21.42 9.93 14.48 9.51

VitMatte 15.69 19.35 12.99 18.74 7.65 6.50 6.07 5.46 11.34 6.40 10.33 6.79

VitMatte+ALDL 15.45 17.76 12.85 17.09 7.87 6.44 5.83 5.41 10.84 6.16 9.82 5.56

- MSE values are scaled by 10−3

- The best results are in bold

3.1 Datasets and Implementation Details

We train models on the Adobe Image Matting [5] dataset and report perfor-
mance on the real-world AIM-500 [8], AM-2K [12], P3M [13]. AIM-500 contains
100 portrait images, 200 animal images, 34 images with transparent objects,
75 plant images, 45 furniture images, 36 toy images, and 10 fruit images. The
AM-2k test set comprises 200 images of animals, classified into 20 distinct cate-
gories. P3M-500-NP contains 500 diverse portrait images that showcase diversity
in foreground, hair, body contour, posture, and other aspects. These datasets
comprise a plethora of human portrait outlines and exhibit numerous similar-
ities to datasets employed for tasks like gait recognition and other biometric
recognition tasks. Our implementation is based on PyTorch. No architectural
changes are required. We only modify the loss function. The height M1 and
width M2 of the local region R are both set to 3, and the center position of
R belongs to an unknown region in the trimap. Various matting models utilize
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distinct loss functions. In order to effectively illustrate the efficacy of ALDL,
we directly incorporate ALDL into the existing loss function. In line with the
approach outlined in [14], four widely adopted metrics are employed to assess
the quality of the predicted alpha matte. These metrics include the sum of abso-
lute differences (SAD), mean squared errors (MSE), gradient errors (Grad), and
connectivity errors (Conn). Four matting baselines, namely: GCA Matting [15],
MatteFormer [9], VitMatte [16], AEMatter [17] are evaluated. GCA implements
a guided contextual attention module to propagate opacity information based
on low-level features. MatteFormer introduces prior-token for the propagation
of global information. VitMatte proposes a robust matting method based on Vit
[18].

3.2 Proof of the Local Similarity Hypothesis Between Alpha
and Feature

In order to validate the effectiveness of the local similarity hypothesis in improv-
ing image matting, during the inference stage, we extracted the feature outputs
from the intermediate layer. Based on (6) and (7), the correlation coefficient of
simα and simf for each point in the unknown region of the trimap have been
calculated. It can be observed that the higher the correlation coefficient, the
better the matting performance of the method from Fig. 3. This indicates that
if the features satisfy the local differences defined by ground-truth alpha, it can
improve the quality of the matting.

3.3 Generalization

ALDL was applied to three different baselines and compared with their coun-
terparts without ALDL, as shown in the Table 1. It can be observed that for
MatteFormer and VitMatte, ALDL improves their generalization ability on three
datasets. This suggests that constraining the relationships between local features
can help the network better understand the matting task. The combination of
GCA with ALDL demonstrates its generalization ability, particularly on the
P3M dataset. GCA incorporates a shallow guidance module to learn feature
relationships, but evaluating the quality of these relationships poses a challenge.
In contrast, ALDL explicitly constrains local feature relationships using ground-
truth alpha, aligning with the objective of GCA’s shallow guidance module.
Consequently, the addition of ALDL to GCA results in moderate performance
improvements on the AIM-500 and AM-2K datasets. GCA consistently per-
forms well according to the Grad metric, indicating that ALDL excels at cap-
turing intricate details, accurately defining contours, and proves advantageous
for downstream tasks involving matting.
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Table 2. Ablation experiment of ALDL

AIM-500 AM-2K P3M

MatteFormer R1 R2 MSE SAD Grad Conn MSE SAD Grad Conn MSE SAD Grad Conn

34.32 31.25 23.53 31.25 17.00 9.93 9.81 9.16 22.62 10.07 14.39 9.63

� 26.99 23.95 20.59 23.41 15.42 9.10 9.14 8.23 18.11 8.69 13.32 8.16

� 33.16 29.10 23.23 28.92 15.63 9.39 9.94 8.52 22.18 9.74 14.65 9.28

GCA 40.00 35.25 27.86 35.89 14.49 9.23 8.92 8.17 17.49 8.50 13.41 7.90

� 38.33 35.65 27.82 36.13 15.28 9.45 8.75 8.50 16.98 8.27 12.92 7.74

� 39.04 35.23 28.34 35.82 15.39 9.81 8.96 8.80 17.31 8.53 13.26 7.80

- MSE values are scaled by 10−3

- R1: ALDL supervises features with resolutions of 1/2, 1/4, 1/8. R2: ALDL supervises
features with all resolutions of decoder output.

3.4 Ablation Study of Deep Supervision

An ablation experiment was conducted using MatteFormer, as its decoder’s out-
put features are supervised with ground-truth. The difference is that ALDL
supervises the local differential relationships between features, while Matte-
Former directly supervises the alpha values at the feature level. As shown in
the Table 2, MatteFormer marked with R1 or R2 denotes removing the struc-
ture that originally outputs alpha values from the decoder and instead directly
supervising the feature level with ALDL. GCA marked with R1 or R2 represents
the application of the ALDL to the intermediate layer features of the decoder.
Experimental results demonstrate that applying ALDL to features, which is a
relatively weak constraint, yields better performance than directly supervising
with alpha values. Additionally, since ALDL explores local information from
ground-truth, which essentially belongs to low-level features, it is more suitable
for shallow features rather than deep features.

4 Conclusion

This study focuses on the loss function of deep image matting methods. We
analyzed the shortcomings in the loss functions of existing matting models, and
proposed the alpha local difference loss function, which takes the ground-truth
alpha matte and the composition formula of image matting as the starting point,
to supervise the image features. Extensive experiments are performed on several
test datasets using state-of-the-art deep image matting methods. Experimental
results verify the effectiveness of the proposed ALDL and demonstrate that
ALDL can improve the generalization ability of deep image matting methods.
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