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Preface

Biometric technology, which enables automatic person recognition based on physiolog-
ical or behavioral traits such as face, fingerprint, iris, gait, and signature, finds extensive
applications in modern society. In recent years, biometric recognition systems have
been widely deployed globally, spanning law enforcement, government, and consumer
sectors. Developing diverse and reliable approaches for trustworthy biometric applica-
tions has become imperative. In China, the proliferation of the Internet and smartphones
among its vast population, coupled with substantial government investments in security
and privacy protection, has led to the rapid growth of the biometricmarket. Consequently,
biometric research in the country has garnered increasing attention. Researchers have
been actively addressing various scientific challenges in biometrics, exploring diverse
biometric techniques, and making significant contributions to the field. The Chinese
Conference on Biometric Recognition (CCBR), an annual event held in China, serves
as a pivotal platform for biometric researchers. It provides an excellent opportunity to
exchange knowledge, share progress, and discuss ideas related to the development and
applications of biometric theory, technology, and systems.

CCBR 2023 took place in Xuzhou from December 1–3, marking the 17th edition
in a series of successful conferences held in prominent cities like Beijing, Hangzhou,
Xi’an, Guangzhou, Jinan, Shenyang, Tianjin, Chengdu, Shenzhen, Urumqi, Zhuzhou,
and Shanghai since 2000. The conference received 79 submissions, each meticulously
reviewed by a minimum of three experts from the Program Committee. Following a
rigorous evaluation process, 41 papers were chosen for presentation (51.9% acceptance
rate). These papers comprise this volume of the CCBR 2023 conference proceedings,
which covers a wide range of topics: Fingerprint, Palmprint and Vein Recognition;
Face Detection, Recognition and Tracking; Affective Computing and Human-Computer
Interface; Gait, Iris and Other Biometrics; Trustworthiness, Privacy and Personal Data
Security; Medical and Other Applications.

We would like to thank all the authors, reviewers, invited speakers, volunteers,
and organizing committee members, without whom CCBR 2023 would not have been
successful. We also wish to acknowledge the support of the China Society of Image
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and Graphics, the Chinese Association for Artificial Intelligence, Institute of Automa-
tion of Chinese Academy of Sciences, Springer, and China University of Mining and
Technology for sponsoring this conference.
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Unsupervised Fingerprint Dense
Registration

Yuwei Jia, Zhe Cui(B), and Fei Su

Beijing Key Laboratory of Network System and Network Culture,
Beijing University of Posts and Telecommunications, Beijing, China

cuizhe@bupt.edu.cn

Abstract. Fingerprint registration is still a challenging task due to the
large variation of fingerprint quality. Meanwhile, existing supervised fin-
gerprint registration methods need sufficient amount of labeled finger-
print pairs which are difficult to obtain. In addition, the training data
itself may not include enough variety of fingerprints thus limit such meth-
ods’ performance. In this work, we propose an unsupervised end-to-end
framework for fingerprint registration which doesn’t require labeled fin-
gerprint data. The proposed network is based on spatial transformer net-
works, and can be applied flexibly to achieve a better results by being
used recursively. Experiment results show that our method gets the state-
of-the-art matching scores while preserving the good ridge structure of
fingerprints, and achieves competitive matching accuracy through score
fusion when compared with supervised methods.

Keywords: Fingerprint Registration · Unsupervised Learning ·
Spatial Transformer Network · Recursive Registration

1 Introduction

Fingerprint is one of the most widely used biometric trait today. Despite the
widespread deployment of fingerprint recognition algorithms, large variation of
fingerprint images still leads to a significant decrease in the performance of fin-
gerprint matching algorithms [21]. In recent years, several supervised fingerprint
registration algorithms have been proposed to improve fingerprint matching per-
formance [1–5]. These methods have made significant contributions by estimating
elastic skin deformations to align fingerprints before matching. However, there
are still remained issues of insufficient registration accuracy due to the lack of
high quality fingerprint data. Cui et al. [2] proposes a phase-based fingerprint reg-
istration algorithm that achieves high matching scores but its speed and accuracy
are limited. Deep learning-based methods [3,4] exhibit faster speed, but the reg-
istration results and matching scores are not satisfactory enough due to the lack
of training data with large variation. The method proposed in [4] achieves state-
of-the-art performance in fingerprint registration, but this method still faces the
challenge of annotating the dataset, making it difficult to obtain a large and
diverse training set that includes an adequate variety of skin deformation types.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 3–12, 2023.
https://doi.org/10.1007/978-981-99-8565-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8565-4_1&domain=pdf
https://doi.org/10.1007/978-981-99-8565-4_1
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Unsupervised learning is an important approach to address the challenge of
annotating data and has been widely applied in tasks such as optical flow estima-
tion [8,9,16] and medical image registration [10,22] which are similar to finger-
print registration task. Although such methods based on unsupervised learning
don’t outperform supervised methods on benchmarks, they are still commonly
concerned due to the availability of a much larger amount of data without man-
ual labeling that can be utilized for unsupervised learning. As a result, there are
still many ongoing research efforts focused on unsupervised registration. How-
ever, these methods often do not consider the issue of impostor matches. Directly
applying these methods can result in high matching scores even in the presence of
impostor matches. Moreover, due to the lack of consideration for false matches,
these methods have a weak regularization strength on the predicted deforma-
tion field, leading to the distortion of the ridge structure in input fingerprints.
Although Yu et al. [6] has applied unsupervised learning methods to fingerprint
registration, it has not considered its influence on fingerprint matching, making
it difficult to apply this method in practical fingerprint recognition scenarios.

In this paper, we propose a fingerprint registration method which is based on
unsupervised learning and addresses the challenges of balancing speed, match-
ing scores and matching accuracy that have troubled previous fingerprint dense
registration methods. Our method uses Spatial Transformer Network (STN) to
perform fixed-interval sampling on the input fingerprint and searches for corre-
sponding points of these sampled points in the target fingerprint. These point
pairs are then interpolated as parameters of a thin-plate spline (TPS) model to
obtain a dense deformation field. The obtained dense deformation field is used
to warp the input fingerprint to align it with the reference fingerprint. Further-
more, we can recursively apply the proposed network to the input fingerprint
pairs as a refinement process to achieve higher matching scores. The main steps
of this method are as follows: (1) The minutiae features of fingerprint pairs
are extracted. (2) Minutiae-based initial registration is performed. (3) Network
refine registration is conducted after the initial registration. The methods used
in the first two steps are the same as those used in previous dense registration
methods [4].

The rest of this paper is organized as follows: Sect. 2 presents a literature
review of related work on fingerprint registration tasks. Section 3 describes the
details of the proposed method. Section 4 reports the experiment results of the
method. Section 5 concludes our findings.

2 Related Work

2.1 Fingerprints Dense Registration

Si et al. [1] introduce the problem of fingerprint dense registration and propose
a correlation-based method to solve this problem, which significantly increases
matching accuracy and greatly benefited fingerprint matching tasks. Subse-
quently, Cui et al. [2] make full use of the phase characteristics of fingerprints,
further increasing matching accuracy. However, it has slow registration speeds,
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often taking about 2 s, which can affect user experience in everyday applica-
tions. Deep learning methods [3,4] are further utilized to address the target of
increasing matching accuracy. These methods have faster registration speeds,
but result in lower matching scores. Additionally, existing deep learning-based
methods require the annotation of deformation fields for a pair of fingerprints
in order to perform training. However, obtaining accurate deformation fields is
highly challenging. These methods often synthesize fingerprint pairs by applying
existing deformation fields to a single fingerprint and using the synthesized pairs
as training data. This approach limits the variety of fingerprints, which is the
reason for lower matching scores.

2.2 STN for Fingerprint Registration

The Spatial Transformer Networks (STN) [7] has proposed a framework for
unsupervised image registration, which is used to unwrap input images. Dabouei
et al. [11] and Grosz et al. [12] apply STN to the unwrapping of contactless
fingerprints, achieving good results. However, these works only take a single
fingerprint as input and focus on perspective distortion correction for contactless
fingerprints. He et al. [17,20] apply STN in fingerprint matching, but it’s only for
partial fingerprint. Schuch et al. [16] use STN to predict the angular difference
between fingerprint pairs for registration, but applying rotation transformation
alone cannot achieve accurate registration results and only serves as an initial
alignment, which is less effective than methods based on key points. Tang et al.
[19] use STN to predict the affine transformation between fingerprint pairs for
registration, also only serving as the initial alignment process. Yu et al. [6] are
the first to apply STN in fingerprint registration. However, this method only
takes genuine matching into consideration and is not fit for fingerprint matching
problem. Additionally, the method they proposed obtain a sparse deformation
field, which is then converted into a dense deformation field through bi-cubic
interpolation which does not simulate the deformations of the fingerprint skin.

2.3 Unsupervised Image Registration

Methods for unsupervised image registration are designed based on STN, such
as unsupervised approaches in optical flow estimation [8,9,16] and in medical
image registration [10,22]. These methods make every effort to find the corre-
spondences between two images, but they rarely consider the scenario where
the content in the input image pairs belongs to different instances or categories.
Therefore, these methods cannot be directly applied in fingerprint dense regis-
tration. In fingerprint dense registration, if we attempt to align both genuine
and impostor pairs as accurately as possible, the improvement in the matching
score for impostor pairs is often greater than that for genuine pairs’s. This results
in lower matching accuracy and ultimately fails to provide positive assistance
to the entire fingerprint recognition system. The main reason for the decrease
in matching accuracy is that the smoothing approach used by these methods,
often by minimizing deformation field gradients, is not suitable for fingerprint
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dense registration. Our method integrates TPS into an end-to-end training pro-
cess, resulting in a sufficiently smooth deformation field, thus improves matching
accuracy. Additionally, our method can be applied recursively to input images,
ensuring high matching scores.

3 Proposed Method

Three main steps of our method are: (1) Extracting the minutiae features of
fingerprint pairs. (2) Minutiae-based initial registration. (3) Network refine reg-
istration. Step (1) and (2) are same as Cui et al. [4]. Minutiae features are
extracted by Verifinger SDK. Then, we compute the similarity between these
minutiaes and use spectral clustering to match them. With these matched minu-
tiaes, we employ TPS interpolation to obtain the initial registration deformation
field, aligning the input fingerprint to the reference fingerprint. Finally, we apply
network refine registration to the input fingerprint as follows.

3.1 Network Structure

The structure of the proposed unsupervised registration network is shown in
Fig. 1. In our network, two 256 × 256 images, Ii and Ir, are first inputted. They
then pass through a siamese network to extract features, resulting in Fi and
Fr. The dimensions of Fi and Ft are 256 × 256 × 32. Afterwards, the extracted
features Fi, Ft, and the element-wise Hadamard product of Fi and Ft are fused
by concatenating them along the channel axis. This results in the fused feature
F which has the size of 256 × 256 × 96. F is then fed into the LocalisationNet,
which outputs the corresponding points Pr of the input fingerprint to the fixed
points Pi of the reference fingerprint. Using these corresponding points, Thin
Plate Spline (TPS) interpolation is performed to obtain a dense deformation
field, Fd. This dense deformation field is then applied to Ii to generate Iw. The
intersection of Iw, Ir, and the mask M generated from Iw and Ir is used to
calculate the loss.

In this network, the FeatureNet is used to extract image features and its
structure is similar to [4]. It consists of 4 convolutional blocks, each comprising
a 7 × 7 convolutional layer, a batch normalization layer, and a ReLU activation
function. The first convolutional block has an input with 1 channel and output
with 32 channels, while the remaining three blocks have inputs and outputs
with 32 channels. The feature extraction layer is optional, as similar results
can be achieved by directly feeding the images into the LocalisationNet without
including the feature extraction layer.

LocalisationNet performs convolution and pooling operations on FeatureNet
or the input image itself to obtain sparse key points. There are two commonly
used structures for LocalisationNet, one with a sampling interval that is a mul-
tiple of 2, and the other with a sampling interval that is a multiple of 5. High
matching accuracy can be achieved when the sampling interval is 16 or 20.
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Fig. 1. Architecture of the proposed unsupervised fingerprint dense registration net-
work. Overall process is presented on a light purple background. FeatureNet is pre-
sented on a light green background. LocalisationNet is presented on a light yellow back-
ground. Elements in dashed lines or dashed arrows are optional. (Color figure online)

Since our prediction results are sparse, when using the warped fingerprint
as the input to the network, even though the sampling positions are the same,
the corresponding regions of the fingerprint are different. Therefore, we can use
the warped fingerprint as the input fingerprint and continue to feed it into the
network for recursive training or testing. Moreover, the number of recursive
iterations can be different for training and testing. This provides our network
with great flexibility.

3.2 TPS Module

Unlike Yu et al. [6], which uses bicubic interpolation to interpolate sparse defor-
mation fields into dense deformation fields, we adopted TPS [13] transformation
that better simulates human skin deformations. To incorporate TPS into end-
to-end training of the network, we made improvements to TPS, including key
point selection and solving linear equations using pseudo-inverse during TPS
computation.

Our network is a fully convolutional network that can be applied to images of
any size, but when the image size becomes too large, TPS interpolation requires
a significant amount of GPU memory which is proportional to the product of the
length and width of the image. Therefore, we have implemented point selection
to mitigate this issue. The key points output by the LocalisationNet are the
corresponding points on the input fingerprint for fixed sampling points on the
reference fingerprint. We calculate the L2 distance for each corresponding point
pair and sort them in descending order to obtain an ordered sequence. Using this
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sequence, we sort the key points and fixed sampling points. We then calculate
the number of pixels in M and select the top N points from both sets for TPS
interpolation.

While performing TPS interpolation, the linear equation system needs to be
solved. However, fixed sampling points at regular intervals often result in singular
matrices, making the linear equation system unsolvable. To enable end-to-end
training of the network, we replaced the operation of direct matrix inversion
during the linear equation solving process [13] with the calculation of pseudo-
inverse.

3.3 Loss Function

Due to the smooth nature of the TPS transformation we predict between two
images, unlike [4] we do not need a smoothing term in our loss function. Instead,
we utilize a simple variation of Mean Squared Error (MSE) loss like ED in [14],

ED(Ir, Iw,M) = M ∗ ρ(1 − Ir, 1 − Iw) (1)

where Ir is the target fingerprint, Iw is the warped fingerprint. M is the mask
generated by Ir and Iw. We get two mask form It and Iw using the closing
operation in morphology and obtain the intersection of these two masks as M .
ρ(x) = (x2 + ε2)γ is an empirical function with γ = 0.4 and ε = 10−7.

4 Experiments

4.1 Implementation Details

The experiments are conducted on Intel(R) Xeon(R) CPU E5-2620 v4 and two
NVIDIA GeForce1080Ti with 11G memory. The training and evaluating of net-
work are based on the Pytorch 1.10.2. We use Adam [15] optimizer with param-
eters: learning rate = 0.0001, β1 = 0.9, β2 = 0.999. We train 25 epochs with
batch size 16. We mainly used the training data from [4] as our training set,
but only utilized 20,918 pairs of latent fingerprints as training data. The data
augmentation methods were the same as [4].

4.2 Experiments Result

We performed testing on FVC2004 DB1 A. Following [3], we also employed score
fusion to increase matching accuracy. For score fusion, we used a Multi-Layer
Perceptron (MLP) with one input layer, one output layer, and two hidden lay-
ers, where the activation function was set as ReLU. We randomly sampled 5,500
pairs of genuine and impostor fingerprint matches from the training set of unsu-
pervised registration. The sampling intervals were set at 16, 20, and 32, and the
recursive iteration numbers were 1, 2, and 2 for the three networks, respectively.
By testing these combinations, we obtained three sets of matching scores. These
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Fig. 2. DET curves of image correlator and VeriFinger matcher on FVC2004 DB1 A

Table 1. Matching accuray of different dense registration algorithms for processing
fingerprints in FVC2004 DB1 A. In each cell, the FNMR on the left represents the result
calculated by the image correlator, and on the right represents the result calculated by
the Verifinger matcher.

Method EER FNMR@FMR=0 FNMR@FMR=10−2

Image Correlation [1] 0.073, 0.036 0.436, 0.074 0.151, 0.044

Phase Demodulation [2] 0.041, 0.030 0.166, 0.068 0.065, 0.034

DRN [3] 0.058, 0.040 0.306, 0.091 0.114, 0.051

UNet Registration [4] 0.045, 0.033 0.117, 0.078 0.061, 0.037

Ours 0.045, 0.020 0.173, 0.078 0.078, 0.029

Ours (Fusion) 0.042, 0.028 0.131, 0.072 0.071, 0.037

scores, along with the corresponding labels indicating whether they were gen-
uine matches, were utilized as training data to train the MLP. Score fusion was
applied to enhance the matching accuracy to a certain extent.”

With sampling every 20 points, our method achieves comparable matching
accuracy to [2] without score fusion, and significantly outperforms [3], which
employs supervised deep learning. When score fusion is applied, our method sur-
passes [2] in terms of matching accuracy. The DET curves on FVC2004 DB1 A
by VeriFinger matcher and image correlator are shown in Fig. 2. The matching
accuracy on FVC2004 DB1 A by VeriFinger matcher and image correlator are
shown in Table 1.

Although there is a gap between our method and the state-of-the-art in terms
of matching accuracy, we can achieve the highest matching score while preserving
the fingerprint ridge structure, as shown in Fig. 3. The average matching scores
of methods [1–4] on 2800 genuine pairs in FVC2004 DB1 A are 0.7662, 0.8473,
0.7979 and 0.7778, while our method achieves the highest score of 0.8597. This
result is obtained by recursively applying our method with sampling every 16
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Fig. 3. Genuine image pairs correlation distributions on FVC2004 DB1 A.

points for five recursions. As shown in Fig. 4, when sampled every 10 points and
recursively iterated 10 times, even the samples that perform unsatisfactory in
[1,2,4] can be surpassed by our proposed method in terms of VeriFinger score
and correlation coefficient.

Fig. 4. Registration examples of different dense registration methods for genuine
matching fingerprints. The numbers in the brackets are matching scores by VeriFinger
matcher and image correlator.
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4.3 Efficiency

When tested on FVC2004 DB1 A ,using two Nvidia 1080Ti GPUs, the time
required for dense registration is 0.08 s, and the fastest average time without
FeatureNet is 0.04 s. Both are much faster than the 0.15 s reported in [4]. Table 2
shows average time Costs of different dense registration algorithms for processing
a pair of fingerprints in FVC2004 DB1 A.

Table 2. Average time costs (in seconds) of different dense registration algorithms for
processing a pair of fingerprints in FVC2004 DB1 A.

Method Image Correlation [1] Phase Demodulation [2] UNet Registration [4] The Proposed Method

Time/s 3 1.99 0.53 0.46

5 Conclusion

This paper presents an unsupervised framework for fingerprint dense registra-
tion. Our method is the first to apply TPS in end-to-end training of finger-
print registration networks, which overcomes the challenge of annotating ground
truth data in learning-based fingerprint registration tasks. Our method enables
the use of trained networks to achieve the highest registration scores by adjust-
ing the recursion iterations. It can also to approach state-of-the-art matching
accuracy by combining multiple network scores. However, our method still faces
issues such as difficult parameter adjustment, insufficient matching on certain
datasets. In future work, we aim to enhance the matching accuracy by exploring
more advanced initial registration methods.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China 62206026.
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Abstract. Palm vein recognition technology offers advantages in terms of secu-
rity and privacy. However, traditional methods rely on predefined rules about
hand shape and positioning, affecting user experience. This paper focuses on
the research of ROI extraction algorithm for palm vein recognition, utilizing an
improved SSD [1] network to achieve multiple tasks such as palm classification,
ROI localization, and gesture correction. It enhances the localization accuracy
under various scenarios, including complex backgrounds and special hand shapes.
The proposed approach in this paper enables non-contact palm recognition tech-
nology, implementing 360-degree omnidirectional recognition, thereby improving
convenience and feasibility in its usage.

Keywords: Non-contact Palm vein recognition · multi-task fusion object
detection network · ROI extraction · complex scenarios

1 Introduction

In recent years, biometric technology and security products have received widespread
attention and expectations [3]. Biometric features based on surface characteristics such as
fingerprints and faces are easily obtained and forged, posing security risks. As an internal
biometric feature, palm vein recognition technology has the characteristics of accuracy,
stability, and real-time processing. Palm vein recognition technology uses near-infrared
imaging to capture the vein pattern information of a user’s palm, ensuring the privacy
and accuracy of the information data, and meeting the requirements for high-security
level applications.

ROI (Region of Interest) [3] extraction is an important step in palm vein recognition
technology, used to locate the region of the palm image that contains valid information.
Amulti-task fusion object detection network can simultaneously handle multiple related
tasks in object detection process, such as bounding box regression, classification, and
key-point detection. This can be applied to the research of ROI extraction algorithms in
palm vein recognition, improving the overall efficiency and accuracy of the palm vein
recognition system.
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This article introduces the software and hardware design scheme of a non-contact
palm vein recognition system, focusing on the design ideas and implementation process
of the palmROI extraction algorithm. Based on the collection of data samples in complex
scenarios and special gestures, precision testing experiments are conducted on ROI
extraction, and the new algorithm is applied to the palm vein recognition system. The
experimental results indicate that the new algorithm supports recognition in a plane of
360 degrees. Under the same conditions in other aspects, the palm vein recognition
system based on the new algorithm improves the false acceptance rate and the true
rejection rate.

The remaining part of this article is organized as follows: Sect. 2 provides an overview
of palm vein recognition and ROI extraction related works. Section 3 describes the
proposedmethodofROI extraction basedon the improvedSSDmodel. Section 4presents
the experimental results and performance evaluation. Finally, Sect. 5 summarizes this
article and discusses future research directions for palm vein recognition technology.

2 Related Works

2.1 Traditional ROI Extraction Method

Palm vein recognition technology uses infrared cameras to capture images of palm veins,
including the background and palm area. Traditional methods for ROI extraction involve
edge detection algorithms to obtain the hand contour, followed by locating specific points
such as the base of fingers, fingertips, and midpoint of the wrist to determine the ROI
[4] (Fig. 1).

Fig. 1. Flowchart for ROI extraction method.

The algorithm processing steps are as follows: 1) Cropping and scaling. 2) Seg-
mentation: The hand region is separated from background. 3) Finding key vectors: Key
vectors or reference points, such as the wrist or center point, are used to locate the ROI.
4) Selecting two optimal key vectors: One is selected between little finger and ring fin-
ger, another is between index finger and middle finger. 5) Locating the palm ROI: The
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position relationship between the two key vectors is determined to indicate the hand’s
orientation. 6) Extracting the palm ROI: Before cropping the ROI, the palm image is
rotated in the 2D plane based on the rotation angle θ calculated from the two optimal
key vectors. To address the limitation when the hand rotates in 3D space, a four-point
perspective transformation function is used to obtain the palm ROI.

These methods are known for their efficiency and clear logic. However, they heavily
rely on clear hand contours and accurate point positions, resulting in limited effectiveness
in scenarios with complex backgrounds and hand poses. Detection performance for palm
targets in such cases is generally suboptimal.

2.2 SSD Model for Multi-task Object Detection

Single Shot MultiBox Detector(SSD) [1] is a popular object detection model that effi-
ciently performs object detection and localization in images. It was introduced by Liu
et al. in 2016 and is known for its high accuracy, real-time performance, and simplicity.
SSD utilizes a series of convolutional layers to predict a set of default bounding boxes
at different scales and aspect ratios in the image. These default bounding boxes, also
known as anchor boxes or prior boxes, serve as templates for capturing objects of various
sizes and shapes.

The base network of SSD is typically a pre-trained convolutional neural network
(CNN), such as VGG16 or ResNet [2]. SSD incorporates feature maps from multiple
layers of the base network to capture objects at different scales. Lower-level featuremaps
contain high-resolution details necessary for detecting small objects, while higher-level
feature maps capture more semantic information useful for detecting larger objects. For
each predictor layer, a predefined set of default anchors at different scales and aspect
ratios is associated. The SSD model predicts the offsets and class probabilities for each
default box, adjusting them tomatch the ground-truth objects during training. Themodel
uses a combination of classification loss (e.g., softmax loss) and localization loss (e.g.,
smoothL1 loss) to optimize the network parameters.

While the SSD model performs well in rectangular object detection, it may have
limitations in locating distorted and irregular shapes. Since SSD uses predefined default
anchors that are typically rectangular, it may not accurately locate non-rectangular
objects. When objects have significant shape variations or complex contours, SSD may
struggle to capture the precise location of the object.

This paper proposes a novel approach to address these limitations and improve the
accuracy of ROI extraction. The approach leverages advanced techniques based on an
improved SSD multitask object detection network to robustly extract hand regions from
palm vein images captured by infrared cameras, even in challenging scenarios with
complex backgrounds and gestures. Experimental results demonstrate that our proposed
approach performs better in terms of effectiveness and robustness compared to traditional
methods.
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3 System Design

Develop an integrated palm vein recognition system that combines data acquisition and
identification, including hardware devices, embedded drivers, and upper computer soft-
ware. The system utilizes a wide dynamic range infrared lens and a fast exposure sensor
design to ensure clear and stable image acquisition in various complex environments.

3.1 Acquisition Equipment

Develop a high-precision and highly reliable palm vein recognition device with an image
resolution of no less than 1 million pixels. The hardware adopts a reflective imaging
structure, including core components such as an infrared filter, light source driver, and
main control circuit. The infrared filter allows only specific wavelengths of near-infrared
light to pass through, filtering out ambient light and enhancing imaging contrast. The
light source driver is responsible for controlling the brightness of the near-infrared light
source. The main control circuit manages the control of light intensity and processes the
image acquisition and transmission processes.

The diagram below illustrates palm vein acquisition module (Fig. 2).

Fig. 2. Prototype diagram of acquisition device.

3.2 Software System

The algorithm design process mainly includes the following steps: image acquisition,
denoising, ROI extraction, rotation correction, feature extraction, feature encoding, and
featurematching. Firstly, adjusting the exposure parameters for image capture. Secondly,
perform denoising on the images to reduce the influence of optical and electronic noise.
Thirdly, extract the ROI to obtain relevant information and remove background inter-
ference. Next is rotation correction to eliminate the impact of rotation on recognition
results. Then, perform normalization to eliminate the influence of image brightness on
recognition results. The final steps involve feature extraction, feature encoding, com-
pressing the features to improve matching efficiency; and feature matching, calculating
similarity for matching purposes (Fig. 3).
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Fig. 3. Algorithm flow.

Design an interactive software based on the QT framework. The software will have
the following functionalities: image acquisition, registration and recognition. The soft-
ware can display the acquired palm vein images in real-time. Additionally, the software
will display information such as recognition time and scores (Fig. 4).

Fig. 4. Software presentation diagram.

3.3 Improved SSD Model Algorithm

Based in the analysis above, a multiple-task fusion object detection network can be
developed. This network combines classification and bounding box regression tasks
to detect the presence of palms in complex scenes and accurately localize them. By
simultaneously addressing these tasks, the network can achieve improved performance
in challenging scenarios and providemore accurate hand region detection results (Fig. 5).
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Fig. 5. Improved SSD model structure. The input image size is 256 × 256 × 3. View the results
of a specific convolutional layer conv2_2.

The loss function referred to Formula (1) includes confidence loss Lconf (x, c) and
localization loss Lloc(x, l, g). In general cases, the localization loss is composed of
four parameters (x, y,w, h). Coordinate regression predicts the difference between the
predicted box p and the anchor box d , approaching the difference between the ground
truth box g and the anchor box d . Where N is positive sample based on the anchor box,
i represents predicted box, j is ground truth box, k is category [2].

L(x, c, l, g) = 1

N
(Lconf (x, c) + αLloc(x, l, g)) (1)
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{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
As SSD has limitations in terms of position prediction parameters (x, y,w, h), it can

only accommodate horizontal boxes. For cases involving rotated positions, the position
boxes may contain unnecessary background regions, and the labeled (x, y,w, h) lacks
practical meaning.

To address this problem, implement a method for locating arbitrary quadri-
lateral boxes. Represent anchor box d0 using point coordinates (x01, y01, x02, y02,
x03, y03, x04, y04) and dimensions (w0, h0), where d0m = (x0m, y0m) represents the coor-
dinates of a vertex of the quadrilateral box, and m = {1, 2, 3, 4}. For the ground truth,
since it could be a polygon, using an enclosing rectangle Gb and four point coordinates
Gq to represent it. The purpose of the enclosing rectangle is to determine the order of
the four point coordinates, and obtain (x0, y0,w0, h0) as a result (Fig. 6).
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Fig. 6. Anchor illustration diagram

Lloc(l, g) =
N∑
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smoothL1

(
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)
(4)
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(5)

lm = pm − d0m
i

h0i
(6)

The predicted box p = (x1, y1, x2, y2, x3, y3, x4, y4) can be represented as below:

xm = x0m + w0 × �xm
ym = y0m + h0 × �ym (7)

For m = {1, 2, 3, 4}, where xm, ym represent the coordinates of the predicted box p at
each corner, x0m, y0m represent the coordinates of the anchor box d0 at each corner, w0
and h0 represent the width and height of the anchor box d0, �xm, �ym represent the
offsets for each corner of the box.

In order to add key-point detection for subsequent tasks in object detection and
classification, we have added three additional points: Gq5, Gq6, and Gq7. The reference
point is chosen as the center point of the anchor box (x0, y0). Therefore, the index m can
take values from 1 to 7, where d05 = d06 = d07 = (x0, y0).

4 Experimental Results

4.1 Database Construction

Based on self-developed hardware device, the obtained data can be divided to seven
types. The examples of each type are shown as follows (Fig. 7):
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(a)                           (b)                         (c)

(d)                           (e)                          (f)

)h()g(

Fig. 7. Types of collected samples. (a) Single-colored background, appropriate size, clear palm.
(b) Partial hand, complete palm, clear image. (c) Large movable range, clear image. (d) Obstruc-
tion or accessories. (e) Different angles. (f) Complex background: including but not limited to
environmental brightness, external objects, self-interference, etc. (g) Different postures: fingers
clenched, bent; palm tilted, deformed, etc. (h) Multiple hands coexist.

Data annotation software enables automatic data labeling, supporting for differ-
ent resolutions, real-time saving, and undoing modifications. With this software the
annotation time for training sample set is about 10 images in 1 min (Fig. 8).

Fig. 8. Annotation software illustration. After marking mark1, mark2, and mark3, pressing the
key ‘a’ will automatically generate rectangular bounding boxes.

4.2 Experimental Analysis

In this section, we conducted a series of tests to evaluate the performance of our pro-
posed method for localizing arbitrary quadrilateral boxes. Firstly, we implemented ROI
extraction based on traditional algorithms as a control experiment (Fig. 9).
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Fig. 9. Experimental Process and results.

Then, we conducted experiments based on the new algorithm model. We compared
the predicted boxes with the ground truth boxes using evaluation metric Intersection
over Union (IoU). The IoU measures the overlap between these two boxes. A total of
2600 images were used as training samples.

By establishing two different test sets, we can verify the impact of deviation angles
on the test results. For the dataset test1 consists of hand rotations ranging from −90°
degrees to 90°, as well as dataset 2 consists of hand rotations ranging from −45° to 45°.
Each dataset underwent two types of testing, with different confidence threshold and
localization error.

In the first experiment, the confidence threshold was set to 0.98, indicating that only
output bounding boxeswith a prediction score higher than this thresholdwere considered
for further processing. This helped ensure high-confidence predictions and reduce the
chances of false positives. The localization error of the system was measured to be 0.21,
indicating the average distance between the predicted bounding box and the ground
truth bounding box. A lower localization error signified better accuracy in localizing the
ROI. While in the second experiment, the confidence threshold was set to 0.79 and the
localization error to be 0.40 (Table 1).

Table 1. Experiment results of recognition rate

Dataset Left hand detection Right hand detection Average rate

Test1-1 0.752143 0.881077 0.817939

Test1-2 0.787997 0.9454 0.868321

Test2-1 0.834174 0.941092 0.887729

Test2-2 0.871665 0.976293 0.924073
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The experiment showed that this algorithm can accurately locate the ROI and extract
key points. Even under large angle deviation or deformation of the palm, accurate local-
ization was still achievable. In the case of fingers being close together, key points of the
fingertips can be detected.

Despite slightly different recognition rates between left and right hands, it is sug-
gested that this can be improved by addressing the imbalance in the training data through
additional data collection (Fig. 10).

Fig. 10. Recognition output. Class 1 means left hand, and class 2 means right hand. ROI area
displayed with green anchors, three key points Gq5, Gq6,Gq7 were also identified and marked.
(a) Output graphs of appropriate palm. (b) Output graphs of palm in different angles. (c) Output
graphs of palmwith large angle deviation or deformation. (d) Output graphs of key point detection
in the case of fingers being close together.

5 Conclusion

Palm vein recognition technology will have greater development prospects and appli-
cation scenarios. Through experimental analysis, the new algorithm demonstrates
improved accuracy in ROI extraction and localization of palm vein images. It can adapt
to complex scenarios and hand gestures, playing a crucial role in enhancing the accuracy,
speed, and user experience of palm vein recognition system. Meanwhile, this algorithm
shows promise in achieving precise arbitrary quadrilateral object detection and key point
detection, offering potential applications in areas such as contactless palm print system
and multimodal biometric system. In the future, we will move towards the comprehen-
sive scenario of ‘palm vein recognition+’, constructing a multidimensional information
data application platform.
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Abstract. Palmprint has gained significant attention in recent years
due to its reliability and uniqueness for biometric recognition. However,
most existing palmprint recognition methods focus only feature repre-
sentation and matching under an assumption that palmprint images are
high-quality, while practical palmprint images are usually captured by
various cameras under diverse backgrounds, heavily reducing the qual-
ity of palmprint images. To address this, in this paper, we propose a
Unet-shape palmprint image super-resolution network (U-PISRNet) by
learning and recovering multi-scale palmprint-specific characteristics of
palmprint images. First, we project the palmprint images into the high-
dimensional shallow representation. Then, we employ the transformer-
based Unet-shape Encoder-Decoder architecture with skip-connections
to simultaneously learn multi-scale local and global semantic features of
palmprint images. Lastly, we reconstruct the super-resolution palmprint
images with clear palmprint-specific texture and edge characteristics via
two convolutional layers with embedding a PixelShuffle. Experimental
results on three public palmprint databases clearly show the effective-
ness of the proposed palmprint image super-resolution network.

Keywords: Super-resolution · palmprint images · swin transformer ·
Unet

1 Introduction

For biometric recognition, palmprint has served as one of the most promis-
ing biometric traits due to its rich unique characteristics, non-invasiveness,
user-friendliness and hygienic contactless acquisition manner [1]. Over the past
decades, there have been a number of methods proposed for palmprint recog-
nition, such as the sub-space-based, local direction encoding-based, and deep
learning-based methods. It is noted that most existing palmprint recognition
methods focus only on feature representation and matching under an assump-
tion that the palmprint images are high-quality. However, in real-world scenarios,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 24–33, 2023.
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palmprint images are usually captured by various cameras with differing reso-
lutions under diverse backgrounds and lighting conditions, which heavily affect
the quality of palmprint images. For this reason, how to improve the quality of
palmprint images plays a critical role for reliable palmprint recognition.

Image super-resolution (SR) has shown great potential in enhancing the
perceptual quality of images by reconstructing high-resolution (HR) images
from their low-resolution (LR) counterparts. In the literature, there have been
a variety of methods proposed for image SR, such as interpolation-based,
reconstruction-based, and learning-based methods. Due to the remarkable suc-
cess of deep learning in image processing and computer vision tasks, numer-
ous deep learning-based SR methods have been introduced in recent years. For
instance, Zhang et al. [2] proposed a channel attention-based RCAN to selec-
tively enhance informative features for improving SR images. Chen et al. [3]
presented a pure transformer-based network by employing self-attention mech-
anisms to capture long-range dependencies and spatial information for various
image restoration tasks, including super-resolution, denoising, and deraining.
While these SR methods have achieved encouraging performance, they usually
cannot be directly used for palmprint image SR due to the intrinsic characteris-
tics of palmprints, such as palmar ridge patterns and palmar flexion creases. To
address this, this paper specially focuses on the study of SR for palmprint images.

In this paper, we propose a Unet-shape palmprint image super-resolution
network (U-PISRNet) for palmprint image SR. Figure 1 shows the basic frame-
work of the proposed U-PISRNet, which consists of shallow feature extraction,
encoder, FRM, decoder, and image reconstruction sub-networks. First, the shal-
low feature extraction sub-network converts the original palmprint images into
its high-dimensional shallow representation via a single convolutional layer.
Then, the encoder sub-network utilizes three groups of global local feature
extraction modules (GLEMs) and down-sampling blocks to learn multi-scale
pixel-level and structure-level features of palmprint images. Third, we introduce
a bank of Feature Refinement Modules (FRM) to further refine the multi-scale
palmprint features by adaptively enhancing informative features. After that, we
employ the decoder sub-network to gradually recover the high-resolution feature
maps of palmprint images. Finally, based on both the shallow and high-level
palmprint feature maps, we reconstruct the super-resolution palmprint image
via two convolutional layers with embedding a PixelShuffle layer. Experimental
results on three widely used palmprint databases clearly show the effectiveness
of the proposed method.

The remaining sections of this paper are organized as follows: Sect. 2 provides
a brief review of related topics. Section 3 presents the proposed U-PISRNet.
Section 4 discusses the experimental results. Finally, Sect. 5 concludes this paper.

2 Related Work

Unet mainly consists of an encoder and a decoder with skip connections, allowing
the flow of information from the encoder to the decoder. This enables the Unet
can simultaneously learn both the global and local features. For this reason,
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Fig. 1. The main framework of the proposed U-PISRNet.

Unet has been widely used for various computer vision tasks, such as objection
detection and semantic segmentation, and achieved remarkable performance.
Recently, Unet has also been successfully applied for image super-resolution due
to its ability to capture fine-grained details and recover high-resolution minute
characteristics. For example, Lu et al. [4] proposed a modified Unet that removes
all batch normalization layers, one convolution layer, and introduces a mixed
gradient error for image super-resolution. Min et al. [5] propose a dual decoder
Unet (D2UNet) to explore both the detail and edge information of the data
for seismic image SR. In this paper, we propose a new Unet-shape palmprint
image super-resolution network by exploring the multi-scale palmprint-specific
features.

3 The Proposed U-PISRNet

As shown in Fig. 1, the proposed U-PISRNet consists of the shallow feature
extraction, encoder, FRM, decoder, and image reconstruction sub-networks. In
the following, we elaborate each component of the U-PISRNet.

3.1 Shallow Feature Extraction

Let ILR ∈ R
3×H×W denotes the input low-resolution (LR) palmprint images,

the shallow feature extraction sub-network employs a 3 × 3 convolution layer to
extract the low-level feature representation of palmprint images as follows.

Fl = fin(ILR), (1)

where fin(·) represents the function of the 3 × 3 convolutional layer. Fl ∈
R

C×H×W is the extracted low-level feature map, where C, H and W are the
numbers of the channel, height and width of Fl, respectively.
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3.2 Encoder

Having obtained the shallow palmprint representation, we design an encoder
sub-network to further exploit the intrinsic high-level semantic features of the
low-resolution palmprint images. The encoder sub-network (see Fig. 1) consists
of three global local feature extraction modules, each of which is followed with
a down-sampling block. Figure 2(a) shows the main idea of the GLEM, which
consists of N layers of swin-transformer for building the global feature long-range
dependencies, and two 3 × 3 convolution layers for extracting local features.

Fig. 2. (a) The basic architecture of the global local feature extraction module
(GLEM), and (b) the basic idea of the down-sampling block.

To obtain fine grained high-level palmprint features, we employ the
down-sampling block to produce different scales of high-dimensional features.
Figure 2(b) depicts the basic architecture of the down-sampling block, which
consists of a 3 × 3 convolution layer with the stride = 2, a Relu activation func-
tion, and a 3×3 convolution layer with the stride = 1. The down-sampling block
can be functioned as follows.

Gd ∈ R
2C×H

2 ×W
2 = ϕ(f↓(Gout)), (2)

where f↓(·) is the down-sampling function with the scaling factor of 2, and
ϕ(·) represents the Relu activation function. Gout is the palmprint feature
map generated by GLEM. The feature map generated by the entire encoder
is Ge ∈ R

8C× H
8 ×W

8 .

3.3 Feature Refinement Module (FRM)

To continuously refine and enhance the important encoded features of the palm-
print, we embed three feature refinement modules (FRMs) between the encoder
and decoder. Figure 3 shows the basic structure of the FRM, which consists of
two symmetrical channel attention modules, convolution layers, and also two
swin-transformer layers. The channel attention selectively amplifies informative
channels while suppressing less relevant ones, allowing us to focus most on dis-
criminative texture and edge features of palmprints. Simultaneously, the swin-
transformer layer captures long-range dependencies within the feature maps,
facilitating the integration of contextual information. By doing this, FRM can
refine the representation of the palmprint feature maps.
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Fig. 3. The basic architecture of the feature refinement module (FRM).

3.4 Decoder

Corresponding to the encoder, we construct a symmetric decoder to integrate
both local and global features from the encoder and skip connections, such that
the fine-grained contextual information can be preserved for the following palm-
print image SR. Unlike the down-sampling blocks in the encoder, the decoder
employs the up-sampling blocks, as shown in Fig. 4, to reshape the feature maps
into higher resolution feature maps. Specifically, the up-sampling block con-
sists of a 2 × 2 deconvolution layer with stride = 2, a Relu activation function,
and a 3 × 3 convolution layer with stride = 1. First, the deconvolution layer
decreases the channel dimension by 2× and increases the spatial dimension by
2× to the original dimension. Then, the ReLU activation function introduces the
non-linearity into the network to capture the complex patterns and relationships
in the palmprint features. After that, the convolution layer with stride = 1 is
employed to further refine the fusion palmprint features.

Fig. 4. The basic architecture of the up-sampling block.

The skip connections are used to fuse the multi-scale features from the
encoder with the up-sampled features from the decoder. In addition, the shallow
features extracted from the GLEM in encoder and the deep features extracted
from the up-sampling blocks are concatenated to reduce the loss of spatial infor-
mation caused by down-sampling.

3.5 Palmprint Image Reconstruction

Having obtained the fine-gained aggregation of multi-scale feature map (e.g.,
Glast ), the palmprint image reconstruction sub-network reconstructs the super-
resolution palmprint image via two 3×3 convolution layers with inserting a pixel
shuffle layer, as follows.

ISR = fout(Glast) + ILR, (3)
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where ISR ∈ R
3×H×W is the reconstructed super-resolution palmprint image,

and fout(·) denotes the convolution layers in the reconstruction sub-network.

4 Experiments

In this section, we conduct comparative experiments to evaluate our proposed
network. For the proposed U-PISRNet, we set the scale of up-sampling block
and down-sampling block to 2. Additionally, we used a channel number of 60 for
the shallow feature extraction sub-network. We selected ReLU as the activation
function and optimized our model using the Adam optimizer, with and. The
initial learning rate was set to 2 × 10-4, and we reduced it by half every 200
epochs. We implemented our model on the PyTorch framework and trained it
with one NVIDIA 3060Ti GPU.

4.1 Databases

The PolyU Multispectral Palmprint Database [6]: The PolyU Multispec-
tral Palmprint Database consists of 24,000 palmprint images captured from 250
volunteers using four different spectral bands: blue, green, red, and near-infrared
(NIR). Each volunteer provided 12 palmprint images under each spectral band,
resulting in four separate datasets with 6,000 images each.

The TJI Palmprint Database [7]: The TJI Palmprint Database contains
12,000 palmprint images collected from 300 individuals, and 20 palmprint images
were acquired for each palm of an individual.

The XJTU-UP Database [8]: The XJTU-UP Database contains 20,000 palm-
print images obtained from 100 subjects by using five different mobile phones,
including the iPhone 6S, HUAWEI Mate8, LG G4, Samsung Galaxy Note5,
and MI8, in two different environmental conditions. As a result, the XJTU-UP
actually contains ten sub-datasets, and each dataset consists of 2,000 palmprint
images from 200 different palms.

Figure 5 shows some typical palmprint images selected from the PolyU, TJI
and XJTU-UP databases. In the experiments, we train our proposed U-PISRNet
using 12000 training images from the PolyU database (including PolyU-Red and
PolyU-NIR). For fairness, we randomly selected five images per each palm from
the PolyU-Green, PolyU-Red, TONGJI, XJTU-UP, respectively, to form four
test sample set.

Fig. 5. Some representative palmprint ROI images selected from the (a) PolyU, (b)
TJI, and (c) XJTU-UP databases.
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4.2 Palmprint Image SR

To better evaluate the proposed U-PISRNet, we calculate the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) of the U-PISRNet on palm-
print image SR, and compare it with the state-of-the-art methods, including
RCAN [2], SAN [9], HAN [10], NLSA [11], SwinIR [12], and EDT [13]. Table 1
tabulates the SR results of different methods for palmprint image SR with scal-
ing factors of 2, 3, and 4 SR task. It can be seen that our proposed method
outperforms the CNN-based methods, such as RCAN, SAN, and HAN. This
is because our proposed method employs the transformer mechanism to cap-
ture long-range dependency, while the CNN-based methods usually focus only
on the local regions, such that more texture and edge features can be captured
by our proposed method for image super-resolution. Furthermore, the proposed
U-PISRNet also achieves higher PSNR and SSIM than the transformer-based
methods such as SwinIR and EDT for different SR scale factors. The possible
reason is that U-PISRNet leverages a fusion of the swin-transformer and Unet
architectures, such that multi-scale and global feature maps can be simultane-
ously learned. In contrast, the existing transformer-based methods usually adopt
a stacked chain architecture, making it hard to propagate and exploit lower-level
features, and resulting to a high information loss.

Table 1. The average PSNR and SSIM obtained by different methods for palmprint
image super-resolution with the scale factors of 2, 3 and 4 on the PolyU-Green, PolyU-
Red, TJI and XJTU-UP, respectively.

Method Scale
PolyU-Green PolyU-Red TJI XJTU-UP

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RCAN [2] ×2 39.31 0.9180 41.89 0.9450 46.37 0.9812 40.07 0.9501

SAN [9] ×2 39.34 0.9186 42.07 0.9452 46.51 0.9820 40.16 0.9567

HAN [10] ×2 39.32 0.9181 42.14 0.9461 46.54 0.9823 40.06 0.9548

NLSA [11] ×2 39.59 0.9217 42.17 0.9469 46.52 0.9821 40.16 0.9573

SwinIR [12] ×2 39.72 0.9230 42.24 0.9475 46.76 0.9826 40.25 0.9611

EDT [13] ×2 39.75 0.9232 42.27 0.9479 46.77 0.9827 40.28 0.9614

U-PISRNet(Ours) ×2 39.77 0.9234 42.30 0.9481 46.78 0.9828 40.31 0.9619

RCAN [2] ×3 37.17 0.8496 40.81 0.9256 41.75 0.956 37.51 0.8837

SAN [9] ×3 37.14 0.8487 40.79 0.9243 41.41 0.9525 37.87 0.8897

HAN [10] ×3 37.17 0.8497 40.82 0.9258 41.76 0.9561 37.53 0.8838

NLSA [11] ×3 37.28 0.8502 40.94 0.9262 41.78 0.9562 37.65 0.8843

SwinIR [12] ×3 37.84 0.8692 41.71 0.9403 41.66 0.9539 38.11 0.9007

EDT [13] ×3 37.82 0.8691 41.70 0.9402 42.14 0.9620 38.09 0.8997

U-PISRNet(Ours) ×3 37.94 0.8712 42.05 0.9419 42.61 0.9668 39.25 0.9428

RCAN [2] ×4 35.36 0.8472 38.97 0.912 38.76 0.9352 37.32 0.8923

SAN [9] ×4 35.42 0.8475 39.15 0.9129 38.83 0.9355 37.38 0.8929

HAN [10] ×4 35.42 0.8475 39.27 0.9135 38.91 0.9359 37.39 0.8929

NLSA [11] ×4 35.31 0.8465 39.28 0.9134 39.11 0.9378 37.42 0.8931

SwinIR [12] ×4 35.58 0.8481 39.83 0.9221 41.23 0.9485 37.68 0.8944

EDT [13] ×4 35.61 0.8479 40.09 0.9251 41.25 0.9486 37.71 0.8946

U-PISRNet(Ours) ×4 35.97 0.8485 40.16 0.9261 41.27 0.9489 37.83 0.9209
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4.3 Ablation Analysis

Our proposed U-PISRNet employs the swin-transformer layer for exploiting the
global relationship of palmprint features, the U-shape architecture for utilizing
the multi-scale palmprint features and the skip connection for multi-scale feature
fusion. In the following, we conduct a series of ablation experiments to evaluate
the effectiveness of these modules.

Effect of the Skip Connections: The skip connections in our U-PISRNet are
strategically incorporated at the 1, 1/2, and 1/4 resolution scales. To investigate
the impact of skip connections in U-PISRNet, we varied the number of skip
connections to 0, 1, 2, and 3, respectively, and correspondingly calculated the
PSNR and SSIM for image SR, as summarized in Table 2. We see that our U-
PISRNet improves the reconstruction performance with an increasing number
of skip connection. Hence, in this study, we empirically set the number of the
skip connections to 3 to better enhance the robustness of the proposed method.

Table 2. The PSNR and SSIM of the proposed network with varying number of the
skip connection

Skip Connection PolyU-Green PolyU-Red TONGJI XJTU-UP

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

0 39.55 0.9218 42.03 0.9461 46.57 0.9805 40.06 0.9594

1 39.61 0.9225 42.15 0.947 46.65 0.9818 40.12 0.9598

2 39.64 0.9227 42.19 0.9472 46.69 0.9821 40.17 0.9601

3 39.77 0.9234 42.30 0.9481 46.78 0.9828 40.31 0.9616

Effect of the FRM: To test the FRM, we gradually increased the FRM number
of the proposed network in the range of , and perform palmprint image SR,
as tabulated in Table 3. It shows that the proposed U-PISRNet with no FRM
(i.e., U-PISRNet-V0) achieves the lowest PSNR and SSIM, demonstrating the
importance of embedding FRM into our U-PISRNet. Moreover, it is observed
that our proposed network achieves the best image SR performance when the
number of FRM is set to 3. To this end, we empirically embed three FRMs into
our proposed U-PISRNet.

Effect of the GLEM: GLEM combines both CNN and transformer to simulta-
neously learn the local features and global structural information. To verify the
effectiveness of the GLEM, we formed three variants of the proposed network:
(1) the U-PISRNet with embedding no GLEM (referred to as w/o GLEM), (2)
the U-PISRNet with embedding only the convolution layers in GLEM (referred
to as GLEM w/o swin), and (3) the U-PISRNet with embedding only the swin-
transformer layers in GLEM (referred to as GLEM w/o CNN). Table 4 tables the
palmprint image SR results by using different U-PISRNet variants. It can be seen
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Table 3. The PSNR and SSIM of the proposed network with varying number of the
FRM.

Methods PolyU-Green PolyU-Red TONGJI XJTU-UP

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

U-PISRNet-V0 39.52 0.9217 42.01 0.9459 46.55 0.9803 40.02 0.959

U-PISRNet-V1 39.67 0.9229 42.21 0.9475 46.71 0.9823 40.22 0.9602

U-PISRNet-V3 39.77 0.9234 42.30 0.9481 46.78 0.9828 40.31 0.9616

U-PISRNet-V5 39.51 0.9216 42.15 0.9467 46.52 0.9809 40.13 0.9604

that the proposed U-PISRNet with embedding the complete GLEM consistently
outperforms the other three variants, demonstrating the promising effectiveness
of the GLEM. This is because the convolution layers of the GLEM can effectively
exploit the local palmprint characteristics, and meanwhile the swin-transformer
layers of the GLEM can capture the global palmprint structural information,
such that more complementary local and global information can be extracted
for the final super-resolved image reconstruction.

Table 4. The PSNR and SSIM of the proposed network with three variants of GLEM

Methods PolyU-Green PolyU-Red TONGJI XJTU-UP

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

w/o GLEM 37.49 0.9012 40.07 0.9162 44.66 0.9509 38.09 0.9298

GLEM w/o swin 39.67 0.9227 42.22 0.9473 46.71 0.9822 40.23 0.9605

GLEM w/o CNN 39.74 0.9232 42.27 0.9478 46.76 0.9826 40.27 0.9612

GLEM 39.77 0.9234 42.30 0.9481 46.78 0.9828 40.31 0.9616

5 Conclusion

In this paper, we propose a Unet-shape palmprint image super-resolution net-
work for palmprint image SR. The proposed method first maps a palmprint
image into the high-dimensional pixel-level representation and then simulta-
neously learns the multi-scale local and global palmprint-specific features via
encoder and decoder sub-networks. To clearly recover the intrinsic local patterns
of palmprint images, we further design GLEM and FRM to specially capture the
local palmprint details and global palmprint structural information. Experimen-
tal results on three benchmark databases have demonstrated the promising effec-
tiveness of the proposed U-PISRNet for palmprint image super-resolution. For
future work, it seems to be an interesting direction to extend our proposed net-
work to other hand-based biometric SR tasks such as palm-vein and finger-vein
image SR.
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Abstract. The tilt of the closed palm can make it impossible to accurately locate
the region of interest (ROI) in contactless palmprint recognition systems. In order
to accurately extract the closed palm ROI in the tilted stance, firstly, this paper
combines the skeleton point detection and perspective transformation techniques
for the correction of tilted images, and then adopts DeepLabv3+ network to elim-
inate complex backgrounds and combines Gaussian skin colour model to improve
segmentation accuracy. Convex packet detection is used to obtain the hand depres-
sion points, and combined with horizontal edge detection to filter out the final
valley points. Experiments on the open-source dataset 11k Hands and the home-
made dataset HUTB_Hands prove that the extraction success rate of the proposed
method reaches more than 95%, which is superior to other methods under the
same conditions.

Keywords: Contactless palmprint recognition · Tilt correction · Image
segmentation · Closed palm · Region of interest extraction

1 Introduction

Biometric identification has been an established research field, aiming to use biometric
features to identify individuals for access control.Among them, palmprints have received
much attention due to their unique advantages such as rich features, high stability and
not easy to wear out.

A typical palmprint recognition system generally consists of four modules: image
acquisition, region of interest (ROI) extraction, feature extraction, feature matching and
recognition. With the advancement of technology and health care needs, image acquisi-
tion technology gradually develops towards non-contact, which inevitably leads to the
problem of palm tilting, which in turn leads to deformation, distortion, and inaccurate
positioning of ROIs in the palmprint image. Extracting palm ROIs is one of the key steps
in palmprint recognition, which is the basis for subsequent feature matching. Most of
the existing methods require a lot of time and human resources, and are easily affected
by skin colour and light with poor segmentation accuracy.
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1.1 Current Status of Research on Palm Tilt Correction Methods

Skew correction of palm images is a hotspot and difficult problem within the field of
non-contact palmprint recognition. Currently, the mainstream correction methods are
depth information method and pose transformation method.

Depth information-based palm correction mainly uses 3D scanning equipment or
binocular stereo camera to obtain the depth coordinate information of the palm surface,
and then calculates the palm plane before correction. Zheng et al. [1] proposed a hand
recognition method based on features invariant to the projective transformation of the
map area, and achieved good results in a small sample database. Smith [2] et al. used
a 3D system for non-contact mode acquisition, and used high-resolution photometric
stereo to compensate for the resolution gap, so as to effectively obtain the palm texture
features. Palm correction by changing the hand posture is mainly done by changing the
tilt posture. Mikolajczyk et al. [3] applied 3D vision to the field of palmprint recognition,
which can correct for a small range of palm tilts. Cong Gao et al. [4], on the other hand,
proposed a new tilt correction method that focuses on correcting the tilt of labelled
images with salient features.

1.2 State of the Art in Closed Palm Region of Interest Extraction Research

Among the existing works, there are few studies on extracting regions of interest using
closed palms. The most common methods are edge detection, template matching, and
methods that combine techniques such as deep learning and computer vision.

In 2015, Ito et al. [6] proposed an edge detection-based method for extracting palm
ROIs by constructing palm contours by subtracting the main lines of finger edges for
binarised palm images. Shao et al. [7] determined the location of ROIs directly by
marking the points in unconstrained palmprint recognition. With the development of
techniques such as deep learning and computer vision, convolutional neural networks
have been used to handle palmprint ROI extraction. Bao et al. [8] used the CASIA
palmprint database to determine the location of finger valleys using a shallow network
consisting of four convolutional layers and two fully connected layers, and the extraction
results were comparable to Zhang [5].

In summary, although the extraction of a closed palm region of interest can be
achieved using mainstream methods, it is necessary to obtain a finer palm contour.
Most of the existing methods are unable to achieve the balance between the accuracy
of the region of interest extraction and the tilt correction of the palm in a non-contact
environment.
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1.3 Related Work

Fig. 1. Algorithmic framework diagram.

In this paper, a closed palm ROI extraction method is proposed to address the problems
of difficulty and lack of accuracy in the extraction of the closed palm region of interest
under tilted posture (Fig. 1), based on the existing research at home and abroad. The
palm is corrected to face the camera for the error caused by the palm in the tilted posture.
For the closed palm region of interest extraction, the segmentation accuracy is improved
by using DeepLabv3+ in combination with the Gaussian skin colour model. Then, the
connection between the palmmarker points is constructed to accurately extract the closed
palm region of interest.

2 Tilt Correction of Palm Image Based on Depth Information

The method of palm image tilt correction based on depth information consists of three
steps. First, the skeleton point detection technique is used to obtain the depth information
of the marked points of the palm. Then the super-definite equations are constructed and
solved to obtain the plane coefficients to construct the outer rectangle of the palm. Finally,
the palm is corrected by perspective transformation.
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2.1 Palm Plane Construction

To construct a 3D plane of the palm, a 3D plane needs to be fitted by obtaining the depth
coordinate information of the skeleton points of the palm. As in Fig. 2, the marked points
0, 5, 9, 13 and 17 are used as the coordinate points of the palms P1, P2, P3, P4 and P5
and substituted into the plane equation Z = aX + bY + c, i.e.

⎡
⎢⎢⎢⎢⎢⎣

x1 y1 1
x2 y2 1
x3 y3 1
x4 y4 1
x5 y5 1

⎤
⎥⎥⎥⎥⎥⎦

·
⎡
⎣
a
b
c

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

z1
z2
z3
z4
z5

⎤
⎥⎥⎥⎥⎥⎦
. (1)

where x1, y1, z1 are the position coordinates of the pixels in the spatial domain and a, b,
c are the plane equation coefficients. The fitted plane coefficientsX(a, b, c) are obtained
by solving the equation.

Fig. 2. Palm Skeleton Point
Information.

Fig. 3. Tilt-corrected feature point infographic.

2.2 Rectangular Construction Outside the Palm of the Hand

Constructing a hand outer rectangle by the obtained plane coefficients such that the
rectangle encompasses the entire palm. After that, P3 is used as a reference point to
make the symmetry point P6 of P1 and obtain the coordinates of P6.

P6(x, y, z) = 2 ∗ P3(x, y, z) − P1(x, y, z). (2)

where (x, y, z) is the three-dimensional coordinate information of the point. In order
to derive the coordinates of the four key points of the rectangle, assuming the three-
dimensional coordinates of P7. P7 should satisfy the following three conditions:

➀ The distance from P7 to P3 should be equal to the distance from P6 to P3;
➁ The vector formed by P7 and P3 should be perpendicular to the vector formed by P6
and P3;
➂ P7 should lie in the fitting plane.
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Let the coordinates of P3 be (x3, y3, z3) and P6 be (x6 , y6 , z6), then the system of
equations is derived

⎧⎨
⎩
(x7 − x3)2 + (y7 − y3)2 + (z7 − z3)2 − (x6 − x3)2 − (y6 − y3)2 − (z6 − z3)2 = 0

(x6 − x3) ∗ (x7 − x3) + (y6 − y3) ∗ (y7 − y3) + (z6 − z3) ∗ (z7 − z3) = 0
a ∗ x7 + b ∗ y7 − z7 + c = 0

.

(3)

where a, b and c are the coefficients of plane equation. Solve the system of equations to
obtain the coordinates of P7, and then use P3 as the reference point tomake the symmetry
point P8 of P7.

Repeat the above steps, assuming that the point A is obtained, the symmetry can be
obtained by the symmetry of the points B, C and D respectively. The outer rectangle of
the palm is then obtained, as shown in Fig. 3.

2.3 Palm Image Perspective Transformation

The outer rectangle of the palm is an irregular quadrilateral in the image, which can be
corrected to a rectangle on the image by a perspective transformation, thus making the
palm corrected.

The obtained points A, B, C and D are fed as parameters into the perspective trans-
formation function so that the four points form a standard rectangle under the image
coordinate system. The perspective transformation equation is shown in Eq. (4).

[
x′ y′ w′ ] = [

u v w
]
⎡
⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦. (4)

where u, v, w are the original image coordinates, corresponding to get the transformed
image chi-square coordinates as x′, y′, w′, and a11–a33 is the transformation matrix.
The transformed image coordinates x and y can be obtained according to the chi-square
coordinates.

x = x′

w′ = a11u + a21v + a31
a13u + a23v + a33

. (5)

y = y′

w′ = a12u + a22v + a32
a13u + a23v + a33

. (6)

Correctly deriving the coordinates of the four points in the 3D plane and includ-
ing the whole hand in the rectangular area are the keys to good or bad calibration. If
the coordinate information is inaccurate, the subsequent series of equation coefficients
will be inaccurate, resulting in a false calibration effect. If the whole hand is not cap-
tured, the hand part will be distorted in the calibration, and the calibration effect will be
unsatisfactory.
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3 Research on the Extraction of ROI for Closed Hand in Complex
Backgrounds

In palmprint recognition process, interference from complex backgrounds can make it
difficult to extract and recognise palmprint features. There are many types of complex
backgrounds, including skin folds and sweat, shadows and lighting variations in palm
images, background texture interference and background colour diversity interference
factors. The method proposed in this chapter mainly focuses on the above factors of
lighting variations, background colour diversity and background texture interference in
the complex background. Combined with the actual palmprint acquisition process, it
is proposed to use semantic segmentation to minimise the interference of the complex
background and improve the extraction accuracy of the palm contour.

3.1 Segmentation of the Palm Area on a Complex Background

The palm region segmentation algorithm is mainly divided into 4 steps. At first, the palm
image with complex background is coarsely segmented using DeepLabv3+ semantic
neural network to remove most of the complex background region. Then the mask is
inflated so that the size covers the palm region. After that, the Gaussian skin colour
model is used to obtain the fine palm contour. Finally, the palm contour is smoothed
using the median filter.

Taking semantic segmentation to a new level, the DeepLabv3+ network can accu-
ratelymatch every pixel point in an image to the correct object class. It uses null convolu-
tion to increase the perceptual field of the convolution kernel and improve the perceptual
range. It reduces parameter computation and improves model training and inference
speed by using depth-separable convolution. It uses multi-scale prediction and pyramid
technique for accurate segmentation of images of different scales and sizes, and improves
the accuracy of segmentation boundaries (Fig. 4).

Fig. 4. Framework diagram of the region of interest extraction algorithm for the closed hand.

3.2 Closed Hand Region of Interest Extraction

Convex package detection is performed on the obtained binarised closed palm image
to obtain the group of depression points between the fingers. The coordinates of each
depression point are determined according to the positional relationship between the
centre of mass point and the depression point. Using the relationship between the coor-
dinate points two-by-two, two lines L1 and L2 passing through the middle finger of the
index finger and the little finger seam of the ring finger are obtained. Finally, the end
point information of the horizontal edge of the palm is extracted by horizontal edge
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detection. And L1 and L2 are used as reference lines to screen out the final finger valley
points. The specific palm key points are shown in Fig. 5.

Critical Point Screening. The distance from each candidate point to the centre of
mass and the distance from each candidate point to the connecting lines L1 and L2 are
calculated. Candidate points that are not in the three finger fossae are first removed with
the constraints shown in Eqs. (7) and (8). Where P is the coordinate of the candidate
point, i is the subscript of the coordinate point in the candidate point set, C is the centre
of mass point, L1 and L2 are the derived finger seam lines.

Fig. 5. Information map of feature points extracted from the region of interest.

dist(Pi(x, y, z),C1(x, y, z)) ≤ 1/2 × dist(L1,L2),∀i ∈ Z+. (7)

dist(Pi(x, y, z),L1) ≤ 1/2 × dist(L1,L2), or
dist(Pi(x, y, z),L2) ≤ 1/2 × dist(L1,L2),∀i ∈ Z+. (8)

At this moment, the key points screened out are all at the finger fossa. The two points
with the longest distance among these points are the middle finger fossa point of the
index finger and the pinky fossa point of the ring finger. In the set of candidate points,
the formula for calculating the maximum value of the two-by-two distance is shown in
(9).

VP = arg max
i,j

{
dist

(
CPi(x, y, z),CPj(x, y, z)

)}
,∀i ∈ Z+. (9)

where P refers to the key point, and i, j are the subscripts of the key point set.
Convex packet detection is used to get the concave points and image processing is

performed using the connection between the marked points on the palm to finally obtain
the palm valley points and extract the region of interest of the palm.

4 Experiments

The experimental configuration and training parameters are shown in Table 1 below.
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Table 1. Experimental parameters.

Configuration Parameter Configuration Parameter

GPU 2060Ti Programming Language Python

Batch_size 16 learn rate 7e−3

Optimiser Sgd Momentum 0.9

Weight Decay 1e−4 Loss Cross Entropy Loss + Dice Loss

4.1 Palm Tilt Correction Experiment

4.1.1 Datasets

In this section of the experiment, the homemade dataset HUTB_Hands was used. Both
left and right hands of 50 subjects were collected as the initial database by using the
OAK-D binocular stereo camera. 20 images (10 for each left and right hand) were
collected for each subject. During the acquisition process, the hand was in a naturally
closed posture (i.e., the four fingers were naturally together and the thumb was open).
The appropriate distance from the camera was maintained as much as possible, and the
tilt angle and rotational direction of the palm were slowly changed. In the database,
we ensure that the palm can be captured at tilt angles of 0°, 10°, 20°, and 30°. Finally,
we detect the palm skeleton marker points through Google’s open-source MediaPipe,
to ensure to obtain the depth information of the marker points at multiple angles of the
palm.

4.1.2 Tilt Correction Experiment Results

The calibration results for the HUTB_Hands dataset are shown in Table 2. From the
experimental results, it can be seen that the palm tilt correction method proposed in this
paper can accurately correct the tilted palm back when the depth information of the palm
mark points is correctly captured.

Table 2. Tilt Correction Results.

Number of Skewed Pictures Number of successful calibrations Success rate

1000 1000 100%

The results of visualization the tilted palm correction are shown in Fig. 6.
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Fig. 6. Palm tilt correction effect.

4.1.3 Performance Analysis of Tilt Correction Methods

In the palm correction method, this paper uses palm images with different tilt angles for
experiments and uses cosine similarity, hash similarity, and histogram distance similarity
to check the robustness of the algorithm. The results are shown in Table 3.

Table 3. Comparative analysis of similarity of calibration results.

Tilt angle Cos similarity/(%) Hash similarity/(%) histogram distance similarity/(%)

10° 95.23 94.54 95.87

20° 90.58 89.65 91.65

30° 87.69 86.23 86.36

As can be seen from the table, the similarities are all above 85%, and the similarity
decreases as the tilt angle increases, which indicates that the method proposed in this
paper is more accurate and robust.

4.2 Closed Hand Region of Interest Extraction Experiment

4.2.1 Datasets

The correctedHUTB_Hands datasetwas expanded to 3,000 sheetswith panning, rotation
and colour enhancement to ensure the diversity of the dataset.
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4.2.2 Performance Analysis of Closed Hand Region of Interest Extraction
Methods

The selection of key points is crucial in the palm ROI extraction process. In this paper,
the correct key points are determined manually. The extraction is considered successful
if the selected key point region is detected to be within 20 pixel points of the correct
region.The ROI extraction success rate is the percentage of the number of images from
which palm ROIs have been successfully extracted to the total number of images in
the dataset. In this paper, among the total of 3000 database palm images, we compare
the proposed method with the traditional method proposed by Michael [9], the method
proposed by Ito [6], the palm ROI extraction using MediaPipe [11] skeleton points, and
the neural network [10] method using manually defined key point locations. The results
are shown in Table 4.

Table 4. ROI extraction success rate.

Method Successes/total Rate

Michael [9] 37/3000 1.2%

Ito [6] 2683/3000 89.43%

Neural Network [10] 2762/3000 92.07%

MediaPipe [11] 2843/3000 94.77%

Ours 2867/3000 95.47%

As can be seen from the table, the method proposed in this paper achieves more than
95% success rate in ROI extraction, which is better than other methods.

In addition, in order to prove the effectiveness of the method proposed in this paper,
314 high-quality closed palm images were extracted from the 11k Hands [12] public
palmprint image database for testing, as shown in Table 5.

From the table, it can be seen that the success rate of the proposed method reaches
98.4%, which is higher than other palmprint region of interest extraction methods,
proving the stability and effectiveness of the method in this paper.

Table 5. Public database ROI extraction success rate.

Method Successes/total Rate

Michael [9] 4/314 1.3%

Ito [6] 252/314 80.25%

Neural Network [10] 301/314 95.86%

MediaPipe [11] 305/314 97.13%

Ours 309/314 98.4%
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In order to test the robustness and universality of the proposed method, this paper
verifies the accuracy of ROI recognition in HUTB_Hands and 11k Hands datasets using
the algorithms of AlexNet, ResNet, VGG16 and CompCode, respectively. The results
are shown in Table 6 and Table 7.

Table 6. ROI recognition accuracy for HUTB_Hands dataset.

Method AlexNet ResNet34 VGG16 CompCode

Ito [6] 87.68% 93.53% 85.35% 95.68%

Neural Network [10] 92.56% 95.61% 89.28% 93.89%

MediaPipe [11] 90.58% 96.88% 91.54% 98.13%

Ours 95.85% 96.38% 93.61% 96.48%

Table 7. ROI recognition accuracy for 11k Hands dataset.

Method AlexNet ResNet34 VGG16 CompCode

Ito [6] 87.61% 90.43% 87.36% 90.56%

Neural Network [10] 89.23% 93.23% 85.59% 93.89%

MediaPipe [11] 92.33% 94.46% 90.18% 91.49%

Ours 90.56% 96.11% 89.46% 92.48%

From the recognition results, it can be seen that the method proposed in this paper
performs stably in each recognition algorithm, and the results are basically optimal. This
proves that the algorithm has strong robustness.

5 Conclusion

In this paper, a region of interest extraction method for closed palm under tilted state is
proposed to address the problems of tilted and closed palm posture. The proposed frame-
work firstly corrects the tilted posture by palm depth information, and then combines
DeepLabv3+ neural network with Gaussian skin colour model to achieve fine segmenta-
tion and obtain a complete palm image. Finally, convex packet detection and horizontal
edge detection are used to filter the key points to extract the palm ROI. Experiments on
the homemade dataset HUTB_Hands as well as the open-source dataset 11k Hands have
demonstrated that the extraction rate of the proposed method in this paper reaches more
than 95% in both cases.

Although the method proposed in this paper can stably and successfully correct
palm images with tilted poses during palm tilt correction, and can stably and efficiently
extract palm ROI regions during subsequent closed palm regions of interest extraction,
this method is only applicable to the study of region of interest extraction methods for
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specific closed palm cases, and is only applicable to complete palms rendered across
the entire image, which has relatively weak applicability. In the future research, we will
work on improving and enhancing the robustness and universality of the algorithm.
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Abstract. Contactless palmprint recognition provides high-accuracy
and friendly experience for users without directly contacting the recog-
nition device. Currently, many existing methods have shown relatively
satisfying performance, but there are still several problems such as the
limited patterns extracted by single feature extraction approach and the
huge gap between hand-crafted feature-based approaches and deep learn-
ing feature-based approaches. To this end, in this paper, we make use
of multiple palmprint features and exploit the benefits of hand-crafted
features and deep features in a unified framework using Canonical Cor-
relation Analysis (CCA) method, and present a comparative study on
CCA-based multi-feature fusion for palmprint recognition. In the exper-
iments, the best feature fusion scheme achieves 100% accuracy on Tongji
palmprint dataset and shows good generalization ability on IITD and
CASIA palmprint datasets. Extensive comparative experiments of differ-
ent approaches on three palmprint datasets demonstrate the effectiveness
of CCA-based multi-feature fusion method and the prospects of applying
feature fusion techniques in palmprint recognition.

Keywords: Palmprint recognition · multi-feature fusion · Canonical
Correlation Analysis · deep feature

1 Introduction

Faced with massive demand for accurate and reliable identity verification tech-
niques, biometrics are now playing indispensable roles in various fields. Among
existing biometric technologies, palmprint recognition has received increasing
attention. Palmprint has rich texture details such as main lines, wrinkles, ridges,
and valleys [1]. In addition to having a larger feature area, palmprint recogni-
tion has the advantages of high privacy, resistance to wear, and less susceptible
to emotions, age, and plastic surgery. Furthermore, it offers low-cost and user-
friendly acquisition process, thus having extensive application potential.

In the field of contactless palmprint recognition, most of methods mainly uti-
lize the single feature and obtain some considerable results. To exploit the multi-
ple features for further improving the recognition accuracy, various feature fusion
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 46–54, 2023.
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methods are introduced, and a widely-used feature fusion approach is based on
simple linear concatenation of different features, which has shown satisfactory
results in some cases. However, the linear concatenation-based method is not an
ideal choice when dealing with features with complex dimensions. In feature-level
fusion stage, a simple serial concatenation strategy is likely to bring a significant
amount of noise and redundancy to the fused features, adversely affecting the
discriminative power. Among existing feature fusion methods, canonical corre-
lation analysis (CCA) [2] is well-known method for fusing multiple features in
machine learning and pattern recognition.

In this paper, we select CCA as our feature fusion method for exploiting
multiple features, making use of the benefits of hand-crafted features and deep
features, and analyzing how different features contribute to final performance in
contactless palmprint recognition task. We specially make a comparative study
on multiple sets of CCA fusion schemes using ResNet [3], PCA [4], LDA [5],
and CompCode [6] as individual features. Extensive experiments on Tongji [7],
CAISA [8] and IITD [9] palmprint datasets are conducted to evaluate the effec-
tiveness and robustness of CCA-based feature fusion method.

2 Related Work

Recent years has witnessed the emergence of many effective palmprint recog-
nition algorithms, which can be generally classified into two categories: classic
hand-crafted-based methods and deep learning-based methods.

Handcrafted-based methods often extract lines, textures, and directional
information in palmprint using manually designed filters, dimensionality reduc-
tion techniques, and feature descriptors. Huang et al. [10] propose an enhanced
limited Radon transform to extract main line features. The pixel-to-area ratio
comparison is employed in the feature matching period. Gayathri et al. [11] uti-
lize the high-order Zernike moments to extract palmprint features and KNN
algorithm is used for palmprint classification. Li et al. [12] optimize the Hilditch
algorithm to extract main line features and employ edge detection techniques
to remove noise such as branches and short lines. Then the broken lines are
connected to obtain a single-pixel palmprint main line image. Jia et al. [13] pro-
pose histogram of oriented lines (HOL) based on histogram of oriented gradient,
using filters and an improved limited Radon transform to extract line orienta-
tion responses of palmprint pixels. These methods are able to achieve relatively
accurate recognition results.

Deep learning-based methods can learn more complex feature structures,
thus performing stronger generalization abilities. However, most networks are
proposed and optimized for other tasks such as face recognition and image clas-
sification. When such methods are applied to palmprint recognition, some pos-
sible improvements can be made. Zhong et al. [14] utilize ResNet-20 to extract
palmprint features and propose the centralized large margin cosine loss function
to maximize inter-class differences while minimizing intra-class differences. Liu
et al. [15] design a fully convolutional network with a soft-link triplet loss func-
tion for contactless palmprint recognition. Jia et al. [16] develop the EEPNet
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specifically for palmprint recognition by compressing the layers and enlarging
the convolutional kernels of MobileNet-V3 and five strategies are also intro-
duced to improve accuracy. All these models achieve favorable results on mul-
tiple datasets, demonstrating the powerful capabilities of deep learning-based
methods in palmprint recognition tasks.

All the above methods have proposed and optimized palmprint recognition
system from different perspectives, showing relatively satisfying performance,
but there are still problems such as limited pattern extracted by single recogni-
tion approach and huge gap between traditional approaches and deep learning
approaches. In this case, feature fusion may be one of the potential solutions for
a more accurate and robust palmprint recognition system.

The core idea of feature-level fusion is to fuse multiple feature vectors through
operations such as dimensionality reduction and concatenation. In the scenario
of contactless palmprint recognition, Jaswal et al. [17] fuse scale-invariant feature
transform (SIFT) features and statistical features based on texture-encoded co-
occurrence matrices. Bidirectional two-dimensional principal component analysis
is used to represent feature space, following with SVM for classification. Li et
al. [12] concatenate features of local binary patterns and two-dimensional local
preserving projection with Euclidean distance used for matching. These feature
fusion methods achieve the improved performance compared to their correspond-
ing single-feature approaches, demonstrating the effectiveness of feature fusion
for contactless palmprint recognition.

3 CCA-Based Multi-feature Fusion

Canonical Correlation Analysis (CCA) aims to find an optimal projection that
maximizes the correlation between multi-sets of features.

Taking two feature sets as an example, X = [x1, x2, ..., xn] ∈ R
p×n and Y =

[y1, y2, ..., yn] ∈ R
q×n, assuming that both sets have n samples and dimensions p

and q, respectively, the goal of CCA is to find a series of linear transformations
WX = [α1, α2, ..., αr] ∈ R

p×r and WY = [β1, β2, ..., βr] ∈ R
q×r to transform X

and Y to WT
XX ∈ R

r×n and WT
Y Y ∈ R

r×n with the maximum correlation.
Specifically, the first step is to calculate the covariance matrices of X and Y :

S =
(

V ar (X) Cov (X,Y )
Cov (Y,X) V ar (Y )

)
=

(
SXX SXY

SY X SY Y

)
, (1)

where SXX = V ar(X) denotes the variance of X, and SXY = Cov(X,Y ) means
the covariance of X and Y . Furthermore, the variance and covariance of the
transformed αTX and βTY after the linear transformations α ∈ R

p and β ∈ R
q

can be computed:

V ar
(
αTX

)
= αTV ar (X) α = αTSXXα,

V ar
(
βTY

)
= βTV ar (Y ) β = βTSY Y β,

Cov
(
αTX,βTY

)
= αTCov (X,Y ) β = αTSXY β.

(2)
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Based on the above expressions, the objective of CCA can be denoted as:

max J (α, β) =
αTSXY β√

(αTSXXα) · (βTSY Y β)
(3)

which can be further expressed in a constrained form as follows:

max αTSXY β,

s.t. αTSXXα = 1, βTSY Y β = 1.
(4)

It is possible for α (or β) to be singular, which can be addressed by regular-
izing the singular α (or β). Subsequently, α and β can be solved using eigenvalue
decomposition [2] or singular value decomposition (SVD) [18].

When dealing with multi-feature CCA problems, generalized CCA
(gCCA) [19] can be employed in a similar way. For instance, when incorpo-
rating a new feature set Z ∈ R

o×n to be projected with X and Y using CCA,
the covariance matrices between Z and X, as well as Z and Y , can be calculated
separately according to Eq. (1). Let’s denote the desired weight matrix corre-
sponding to the Z as WZ = [γ1, γ2, ..., γr] ∈ R

o×r, and the objective of gCCA
can be defined as follows:

max J (α, β, γ) =
αTSXY β√

(αTSXXα) · (βTSY Y β)
+

βTSY Zγ√
(βTSY Y β) · (γTSZZγ)

+
αTSXZγ√

(αTSXXα) · (γTSZZγ)
.

(5)

Then, similar methods can be employed to solve for WX , WY and WZ . Once the
weight matrices, also known as the projection matrices, are obtained, the original
multiple feature sets X, Y and Z can be projected onto the shared feature space
as [WT

XX;WT
Y Y ;WT

Z Z] ∈ R
3r×n, yielding a set of features with the maximum

mutual correlation.

4 Experiments

In this section, we conduct a series of comparative experiments to thoroughly
evaluate the performance of CCA-based multi-feature fusion for contactless
palmprint recognition. Specifically, we select four types of features, i.e., ResNet-
34 [3] as deep feature, PCA [4] and LDA [5] as subspace features, and Comp-
Code [6] as hand-crafted feature. The dimensions of these features are listed in
Table 1.
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Table 1. Dimensions of different features

Features ResNet-34 PCA LDA CompCode

Dimensions 256 120 80 1024

4.1 Datasets

We conduct experiments on the Tongji, CASIA, and IITD palmprint datasets.
Tongji [7] is a large-scale contactless palmprint dataset built by Tongji Uni-

versity, containing a total of 12,000 images from 600 different palms. During the
acquisition process, 300 subjects provide 10 palmprint images on each of their
left and right hands in two intervals. These collection samples include 192 males
and 108 females among which 235 are in the age group of 20–30 years old and
the rest are in the age group of 30–50 years old.

CASIA [8] is a contactless palmprint database established by the Institute of
Automation, Chinese Academy of Sciences, containing a total of 5502 palmprint
images on 620 different palms. The whole acquisition process is based on its
self-developed contactless palmprint acquisition device, and the image format
obtained is 648 × 480 JPEG grey-scale images.

IITD [9] is a contactless palm print database established by the Indian Insti-
tute of Technology, containing a total of 2603 palm print images of 460 different
palms. A total of 230 subjects, all aged 12 to 57 years, participate in the acquisi-
tion of this database. During this process, the subjects provide seven palmprint
images of each of their left and right hands in different poses, all in a bitmap
format of 800 × 600.

4.2 Experimental Results and Analysis

During the training phase of the ResNet-34, we divide Tongji dataset into a
training set of 9,600 palmprint images and a test set of 2,400 palmprint images.
The network is trained on the training set for 420 epochs until it converges. Then
we conduct within-dataset experiments on Tongji and cross-dataset experiments
on CASIA and IITD using the pre-trained ResNet-34. We evaluate multiple
fusion methods, including linear concatenation fusion and CCA-based multi-
feature fusion. The main experimental results are summarized in Table 2. We can
observe that among the various fusion methods, CCA-based approach achieves a
stable performance on all three datasets, and performs better than single feature-
based and linear concatenation fusion-based methods.

Comparison with Single Feature. The results shown in Table 2 indicate
that three classic single feature-based methods exhibit the limited recognition
performance, and deep learning-based features shows better accuracy than hand-
crafted features and subspace features. In addition, most CCA-based fusion
methods achieve a significant improvement in both accuracy and robustness
compared to single-features on all three datasets.
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Table 2. Accuracy (%) of different methods on Tongji, CASIA and IITD datasets.

Methods Features Tongji CASIA IITD

Single Feature ResNet 98.4 91.1 94.1

PCA 55.0 91.1 94.1

LDA 83.3 88.2 88.2

CompCode 71.5 86.8 92.0

Linear Concatenation Fusion ResNet+PCA 89.7 86.9 87.7

ResNet+PCA+LDA 96.1 88.4 82.1

ResNet+PCA+CompCode 67.4 84.9 91.7

ResNet+LDA+CompCode 78.6 89.5 92.0

ResNet+PCA+LDA+CompCode 78.6 89.6 92.0

CCA-based Multi-Feature Fusion ResNet+PCA 99.8 91.5 93.8

CompCode+PCA 97.6 87.7 88.6

ResNet+CompCode 95.5 84.7 82.0

ResNet+LDA 97.3 91.0 90.4

CompCode+LDA 86.3 84.7 86.4

PCA+LDA+CompCode 82.3 91.1 89.4

ResNet+PCA+LDA 99.9 92.6 94.4

ResNet+PCA+CompCode 89.9 92.8 92.7

ResNet+LDA+CompCode 100 94.4 93.7

ResNet+PCA+LDA+CompCode 94.1 93.8 93.0

Comparison with Linear Concatenation Fusion. We also evaluate three
settings using linear concatenation fusion. The results indicate that all the three
linear concatenation fusion methods exhibit unstable performance, especially
the fusion setting with four features shows a significant drop in performance on
Tongji dataset. Furthermore, it can be seen that when traditional features are
directly concatenated with deep learning feature, the accuracy improves com-
pared to single traditional features, but it still shows a poor performance com-
pared to deep learning feature alone. The reason for this phenomena may be that
linear concatenation leads to high dimension with a large amount of noise and
redundancy from different feature spaces, which can easily result in over-fitting
or under-fitting. Therefore, concatenation fusion is not an ideal solution.

Comparison of CCA-Based Multi-feature Fusion. We conduct multiple
sets of two-feature, three-feature, and four-feature CCA fusion experiments. To
evaluate the influences of feature normalization on the experimental results,
we compare four feature normalization methods, i.e., no normalization (None),
mean normalization (MeanStd), min-max normalization (MinMax) and unit-
length normalization (UnitLength), as shown in Fig. 1. It can be observed that
among the these feature normalization methods, unit-length normalization gets
relatively better results. Using unit-length normalization, most methods perform
more stably on the three datasets.
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Fig. 1. CCA-based multi-feature fusion with different feature normalization methods.

As shown in Table 2, most of the CCA-based fusion methods exhibit supe-
rior recognition accuracy and generalization capabilities compared to individual
features, particularly ResNet+PCA and ResNet+LDA+CompCode. These two
methods not only achieve highly recognition results on the Tongji dataset but
also show the improved generalization on the CASIA and IITD datasets. Com-
pared to two-feature CCA fusion, three/four-feature CCA fusion generally shows
the improved generalization capabilities on the CASIA and IITD datasets. This
implies that CCA fusion enhances the model’s ability to generalize to unseen
data. We also observe that ResNet+CompCode, ResNet+LDA+CompCode, and
PCA+LDA+CompCode show a significant decrease in accuracy on the Tongji
dataset. Therefore, we may conclude that the performance of CCA-based multi-
feature fusion depends on the combination of different features, and the selection
of appropriate features for CCA fusion becomes a crucial issue in practical appli-
cation scenarios.

Comparison with Other Methods. We also compare CCA-based multi-
feature fusion palmprint recognition methods with other representative methods
including deep learning -based methods and descriptor-based methods on the
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Tongji dataset. The results are summarized in the Table 3. It can be observed
that the CCA-based feature fusion methods still outperform these compared
methods, showcasing their superior performance.

Table 3. Comparison with other methods on Tongji dataset.

Type Methods Accuracy (%)

CCA-based Multi-feature Fusion ResNet+PCA 99.80

ResNet+PCA+LDA 99.90

ResNet+LDA+CompCode 100

Deep Learning-based C-LMCL [14] 99.97

VGG-16 [20] 98.93

PalmNet [21] 99.80

Descriptor-based LLDP [22] 99.71

CR CompCode [7] 98.78

HOL [13] 99.64

5 Conclusions

In this paper, we provide a comparative study on CCA-based multi-feature fusion
method for contactless palmprint recognition. The CCA-based fusion method
exploits multiple features and makes use of the benefits of hand-crafted fea-
tures and deep features for improving the performance of palmprint recognition.
In experiments, deep feature, subspace features, and hand-crafted feature are
extracted by ResNet, PCA, LDA, and CompCode, respectively, and different
settings of feature fusion methods are designed. Extensive experimental com-
parisons on Tongji, CASIA, and IITD palmprint datasets show the effectiveness
and robustness of CCA-based multi-feature fusion method.
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Abstract. At present, although the deep learning models represented
by convolutional neural networks and Transformers have achieved
promising recognition accuracies in finger vein (FV) recognition, there
still remain some unresolved issues, including high model complexity and
memory cost, as well as insufficient training samples. To address these
issues, we propose an unsupervised spiking neural network for finger vein
recognition (hereinafter dubbed ‘FV-SNN’), which utilizes Difference of
Gaussian filter to encode the original image signal into a kind of spiking
signal as input to the network, then, the FV-SNN model is trained in an
unsupervised manner and the learned spiking features are fed to a Lin-
earSVM classifier for final recognition. The experiments are performed
on two benchmark FV datasets, and experimental results show that our
proposed FV-SNN not only achieves competitive recognition accuracies,
but also exhibits lower model complexity and faster training speed.

Keywords: Finger vein recognition · Unsupervised spiking neural
network · Difference of Gaussian filter

1 Introduction

With the increasing security requirements of personal identity authentication,
the traditional identity authentication technologies based on identity tags or
identity information will no longer meet the current needs. Relatively speaking,
biometric traits (e.g., fingerprint, facial, speech, gait, iris, and vein) have more
stable security by using physical characteristics of individual. Among, finger
vein (FV) traits have more friendly and safe properties than the other biometric
traits, due to the fact that finger veins are distributed under the epidermis of
the fingers, which can only be captured in vivo, and are hard to forge and steal.
Besides, the acquisition devices of FV can be designed to be smaller and non-
contact, which are more convenient and hygienic for users.
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The imaging principle of FV images is mainly because the hemoglobin in
vein blood can absorb near-infrared light to form shadows. However, due to the
variances of finger position, uneven light and noise, high quality imaging has
always been a luxury. In order to compensate for the impact of low-quality FV
images, some image enhancement techniques are used as preprocessing means,
and then feature extraction is carried out on the enhanced FV images.

Recently, deep convolutional neural networks (DCNNs) have achieved great
success in FV recognition tasks due to their ability to hierarchically learn high-
level semantic features. Among, some popular large-scale models, such as ResNet
and AlexNet, etc., have been introduced for end-to-end FV recognition. Consid-
ering that generally vein texture and structure features are used for discrimi-
nation, model lightweight is preferable. In [1], a dual-channel and lightweight
deep learning network was developed. In [2], a lightweight convolutional neu-
ral network combined with convolutional block attention module (CBAM) was
designed for FV recognition. In [3], a lightweight network, consisting of a stem
block and a stage block, was constructed for FV recognition.

As noted earlier, although the aforementioned network models have shown
good feature representation ability, they still face many problems of complex
model structures and excessive memory overhead. To address these issues and
seek more economical network model, we propose a novel FV recognition frame-
work based on an unsupervised spiking neural network (dubbed ‘FV-SNN’). The
backbone of the proposed FV-SNN contains two layers of spiking convolutional
block. First, Difference of Gaussian (DoG) filter is utilized to encode the original
image signal into a kind of spiking signal as input to the network, then, the FV-
SNN model is trained and the learned spiking features are fed to a LinearSVC
classifier to obtain the final recognition results. Compared with some popular
deep learning based FV recognition networks, our proposed FV-SNN not only
achieves competitive recognition accuracies, but also exhibits lower model com-
plexity and faster training speed.

2 Proposed FV-SNN Model

2.1 Framework of the FV-SNN Model

The schematic diagram of the basic flow of FV-SNN for FV recognition is shown
in Fig. 1. First, in the preprocessing step, the original image and corresponding
skeleton image are superimposed on top of each other, so as to highlight the
vein skeleton information. Then, the preprocessed image is further enhanced by
using the DoG filter, and is encoded into a discrete spike signal. Such spike signal
contains time steps corresponding to the delay encoding of image pixel inten-
sity, which will be used as input of the subsequent unsupervised spiking neural
network (SNN). Here, the designed SNN just provided two layers of spiking neu-
rons for feature learning, and the learning rule is based on the unsupervised
spike timing dependent plasticity (STDP). After finishing the training of SNN,
the output feature vectors of training samples are fed to the LinearSVC of svm
in the sklearn library for classifier training, and specify the penalty function
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Fig. 1. Schematic diagram of the basic flow of FV-SNN for FV recognition.

as C = 2.4. And finally, in the test step, the test image samples are processed
through the whole flow, and the outputs of the LinearSVC classifier are used to
determine their categories.

2.2 Preprocessing Strategy

Fig. 2. Example of original image and corresponding preprocessed images.

In order to highlight the vein structure and relieve the background interference
to the FV image, we carry out a series of preprocessing operations. First, his-
togram equalization and mean filtering are sequentially executed to enhance the
contrast and remove Gaussian noise. Then, Laplacian edge detection and median
filtering are performed afterward, here, the Laplacian operator is a second-order
differential operator that can sharpen the image to highlight the effect of finger
veins, and median filter can remove isolated noise in the background. Figure 2(a)
and (b) show an example of the original image and the preprocessed image after
median filtering. Subsequently, histogram equalization and morphological oper-
ations are performed again to discard small connected regions and holes in the
image, and connect broken lines and edges simultaneously. After, the current
image is further binarized and refined to obtain the skeleton map, as shown in
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Fig. 2(c). And finally, the skeleton map is further refined, expanded, and blurred,
and then superimposed on the original image in proportion, as shown in Fig. 2(d).
Here, the superposition formula of the skeleton image and the original image is
shown in Eq. (1).

SuperimposedImg = (1 − (skeletonImg/255)) × ROIImg. (1)

As observed from Eq. (1), the superimposed image not only retains the back-
ground information, but also reduces the pixel value in the skeleton image, thus,
the skeleton map is enhanced and it is more conducive to the subsequent edges
extraction of FV images.

2.3 DoG Filtering and Spike Coding

According to the rules of SNN, the input data should be spike signals with
time information. At the same time, considering that STDP needs to learn the
correlations between input spikes, we adopt DoG filter to help STDP for encoding
spike signals and constructing meaningful correlations. DoG filter can simulate
ganglion cell receptive field of the retinal in the visual pathway, which consists
of two Gaussian filters with different standard deviations, the specific formula is
shown in Eq. (2).

D(x, y, δ1, δ2) =
1√

2πδ1
e
− x2+y2

2δ21 − 1√
2πδ2

e
− x2+y2

2δ22 , (2)

where δ1 and δ2 represent two different standard deviations of Gaussian distribu-
tion, x and y are position coordinates of pixels, and D(x, y, δ1, δ2) is the output
of DoG filtering, which represents the contrast information of the image.

When the DoG filter is performed on the input FV image, it can efficiently
extract edges from the image. Concretely, the extracted FV edge features can
be obtained by using Eq. (3).

F (x, y) = I(x, y) ⊕ D̂(x, y, δ1, δ2), (3)

where F (x, y) is the extracted FV edge features, ⊕ is convolution operator, and
D̂ is the normalization of D, as calculated by using Eq. (4).

D̂(x, y, δ1, δ2) =
D(x, y, δ1, δ2) − D(x, y, δ1, δ2)mean

D(x, y, δ1, δ2)max

. (4)

As noted that in our FV-SNN model, we employ two DoG filters with the
same kernel size of 7, one DoG filter has two standard deviations of 1 and
2, which is used to simulate on-center ganglion cells for providing excitatory
input, while the second DoG filter has two standard deviations of 2 and 1, which
is used to simulate off-center ganglion cells for providing inhibitory input. For
visual intuition, the preprocessed input image sample as well as two DoG filtered
feature maps are shown in Fig. 3.
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Fig. 3. Preprocessed input image as well as two DoG filtered feature maps.

After obtaining the DoG filtered image, we need to encode the pixel inten-
sity of the image into discrete spike signals. Here, in order to inject time infor-
mation into the representation of the spike signals, we use the intensity delay,
which means, the time step to occupy the first dimension of the image tensor
is introduced, and considering that the larger the pixel intensity, the stronger
the external visual stimulus, we divide all image pixels into a batch of specified
time-steps. Supposing an input is represented by F number of feature maps,
each constitutes a network of H × W neurons. Let Tmax be the maximum time-
step, Tf,r,c represents the spike time of the neuron which located at the position
(r, c) in the feature map f , in which 0 ≤ f < F , 0 ≤ r < H, 0 ≤ c < W , and
Tf,r,c ∈ {0, 1, . . . , Tmax −1}⋃{∞}. Symbol ∞ indicates no spike. Therefore, the
input image is converted from 2 × H × W to a four-dimensional binary spike-
wave tensor S[t, f, r, c] with a size of Tmax × 2 × H × W , in which, S[t, f, r, c] is
calculated by Eq. (5).

S[t, f, r, c] =

{
0, t < Tf,r,c,

1, otherwise.
(5)

These spikes retention (cumulative structure) may repeat the spikes to
increase memory usage in future time steps, but can process all time-steps simul-
taneously and produce the corresponding outputs with very fast speed [4].

2.4 Structure of Unsupervised SNN

Drawing on the design concept of traditional CNN networks, our SNN model pro-
vides a two-layer spiking convolutional block, and each block contains a spiking
convolutional layer and a pooling layer. The structure of the presented unsuper-
vised SNN is shown in Fig. 4, in which T denotes the time step, C1 represents
the number of feature maps in the first spiking convolutional layer, and C2 rep-
resents the number of feature maps in the second spiking convolutional layer.
First, the preprocessed image is input into an image encoding layer of the SNN,
then, the encoded spike signal is processed by two sets of continuous spiking
convolutional layer and pooling layer, so as to obtain the final output spiking
feature representation.
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Fig. 4. Structure of the presented unsupervised spiking convolutional neural network.

In each spiking convolutional layer, the neuron is the non-leaky integrate and
fire model with at most one spike per stimulus. Each convolutional layer obtains
the potentials tensor by convolving the discrete spike-wave tensor, and only when
the neurons reach a given threshold, it will fire the spike again, thus continuing
to generate the spike-wave tensor transmission to the next layer. In addition,
each convolutional layer is updated by the STDP learning rule, as well as the
winners-take-all (WTA) and lateral inhibition mechanism. The STDP learning
rule follows the definition in [4] and its specific formula is as follows:

ΔWi,j =

{
A+ × (Wi,j − LB) × (UB − Wi,j) if Tj ≤ Ti,

A− × (Wi,j − LB) × (UB − Wi,j) if Tj < Ti.
(6)

where, ΔWi,j is the amount of weight change of the synapse that connecting the
postsynaptic neuron i and presynaptic neuron j, A+ and A− are the learning
rate and A+ > 0, A− < 0. (Wi,j − LB) × (UB − Wi,j) is a stabilizer that slows
down the weight changes when the synaptic weight Wi,j approaches the lower
limit LB or the upper limit UB. Here, the synaptic weight change does not
consider the exact time difference between two spikes, but only the order of the
spikes.

Before performing the STDP learning rule, the neuronal synapses first use
the WTA mechanism, which means, the winner first chooses according to the
earliest spike time and then according to the maximum potential. The winning
neuron inhibits other neurons in the feature map, but just be updated and copies
the updated weights into those neurons, such strategy ensures that a feature map
only learns specific features. In addition, the lateral inhibition mechanism is used
to inhibit the neuron distribution of other feature maps at the winner position,
thus also increases the chance of learning different features from different feature
maps.
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3 Experimental Results and Discussion

3.1 Datasets

The FV datasets used in our experiments include MMCBNU 6000 [5] and FV-
USM [6], which both provide the original and ROI images. Figure 5 shows the
original images, ROI images and preprocessed images of two datasets.

Fig. 5. Original, ROI, and preprocessed images of two FV datasets.

3.2 Experiments on MMCBNU 6000

For the MMCBNU 6000 dataset, the image coding layer adopts two DoG filters
with kernel size of 7, the first DoG filter has standard deviations of 1 and 2,
and the second filter has standard deviations of 2 and 1. In the image intensity
delay encoding, 15 time steps are used. Following the structure in Fig. 4, the first
convolutional layer consists of 16 feature maps with a convolution window size
of 5 × 5 and firing threshold of 10. The second convolutional layer consists of
24 feature maps with a convolution window size of 2 × 2 and firing threshold of
2. Two pooling layers have a pooling window with size of 2 × 2, and a step size
of 2 and a padding of 1. The learning rate of all convolutional layers is set to
A+ = 0.004, A− = −0.003, to speed up convergence, the first convolutional layer
introduces an adjustment mechanism of the learning rate, when A+ is less than
0.15, the learning rate A+ is multiplied by 2 per training session of 500 images
until A+ = 0.15, where the ratio of A− and A+ is always the same as the original.
The first convolutional layer trains 2 epochs, and the second convolutional layer
trains 5 epochs.

Table 1 shows the results of recognition accuracy, model training and clas-
sification time, and EERs corresponding to the original image, ROI image and
preprocessed input images respectively that performed on the MMCBNU 6000
dataset. The original image was adjusted to a size of 96 × 128 by using a bilin-
ear interpolation algorithm. ROI images are provided by the dataset itself and
directly utilized in the experiments. Preprocessed input images are derived from
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Table 1. Results of recognition accuracy, model training and classification time, and
EERs of the proposed FV-SNN on the original image, ROI image, preprocessed input
image of the MMCBNU 6000 dataset.

Input Accuracy(%) Time(s) EER(%)

Original Image 97.50 858 1.25

ROI Image 98.83 547 0.83

Preprocessed Image 99.16 491 0.42

the procedure in Sect. 2.2. For the division of training and test sets, the first 9
images of each finger were used as training set and the last 1 image as test set,
resulting in a total of 5400 training images and 600 test images.

It can be observed from Table 1, the original image of MMCBNU 6000 can
effectively improve the recognition accuracy after ROI interception and prepro-
cessing. Besides, the training and classification time is less than the original
image.

3.3 Experiments on FV-USM

For the FV-USM dataset, the network structure is similar to that has been used
for MMCBNU 6000 dataset, but the firing threshold of the first convolutional
layer is set to 4, thus, the output of the second convolutional layer is changed
to 20 feature maps, and the firing threshold of the second convolutional layer is
set to 1.

Table 2. Results of recognition accuracy, model training and classification time, and
EERs of the proposed FV-SNN on the original image, ROI image, preprocessed input
image of the FV-USM dataset.

Input Accuracy(%) Time(s) EER(%)

Original Image 98.67 858 0.66

ROI Image 96.13 321 1.93

Preprocessed Image 98.78 567 0.61

In the experiment, the bilinear interpolation algorithm was used to adjust the
original image to 128 × 96, and the ROI image of the second stage was adjusted
to 150 × 50, so that the ROI image of both stages could be trained and tested
together. 5 images of each finger class in each stage were selected as training
samples, with one remaining image as test sample, resulting in a total of 4920
training images and 984 test images. Table 2 shows the results of recognition
accuracy, model training and classification time, and EERs corresponding to
the original image, ROI image and preprocessed input images respectively that
performed on the FV-USM dataset. It can be seen obviously, the preprocessed
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input images of the FV-USM dataset can effectively improve the recognition
accuracy, and the training and classification takes less time than the original
images.

3.4 Comparison with Some FV Recognition Networks

In order to further evaluate the performance of the proposed FV-SNN model, we
compared it with two popular CNN-style models from the perspective of clas-
sification results and computational overhead, including pre-trained ResNet-152
and AlexNet, both have been well trained on ImageNet dataset. Considering that
above models both have very deep and complicated network structures, we also
introduced a purely supervised convolutional network with similar structures to
the FV-SNN, which is dubbed ‘Simple CNN’, concretely, the first convolutional
layer of Simple CNN outputs 16 feature maps with convolution kernel size of
5 × 5, and the output of the second convolutional layer is 32 feature maps with
convolution kernel size of 2 × 2. In each convolutional layer, ReLU activation is
used, and the last decision layer is a fully connected layer and a Softmax layer
with cross-entropy loss. It should be noted that the final decision layer performed
a 50% dropout. At the same time, in order to evaluate the effect of DoG filter-
ing, we also carried out experiments on Simple DCNN to determine whether to
use DoG filtering. Meanwhile, [2] has also been compared, in the reproduction,
the original parameter settings were maintained, but the dataset partitioning
method proposed in this article was adopted.

Table 3 and Table 4 show the comparison results of recognition accuracy,
model training and classification time, EER, and parameters quantity of the
compared models on MMCBNU 6000 and FV-USM datasets, respectively. The
results are obtained by using preprocessed input images. To accommodate the
AlexNet model, the preprocessed image in the MMCBNU 6000 dataset was
expanded to 120 × 256, and the preprocessed image in the FV-USM dataset
was set to 300 × 100. Overall, the number of parameters of the proposed FV-
SNN is far smaller than that of the CNN-style networks, but it still achieved
competitive accuracy and consumed relatively less time.

Table 3. Comparison results of recognition accuracy, model training and classifica-
tion time, EER, and parameters quantity of the compared models on MMCBNU 6000
dataset.

Models Accuracy(%) Time(s) EER(%) Parameters

ResNet-152 99.33 2094 0.17 116,544,432

AlexNet 99.16 370 0.21 60,730,355

Simple CNN 93.07 1435 1.83 15,964,092

Simple CNN + DoG 94.93 1654 1.21 15,964,492

CNN+CBAM [2] 99.30 655 0.17 1,261,848

FV-SNN 99.16 491 0.42 2336
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Table 4. Comparison results of recognition accuracy, model training and classification
time, EER, and parameters quantity of the compared models on FV-USM dataset.

Models Accuracy(%) Time(s) EER(%) Parameters

ResNet-152 99.28 1290 0.34 116,323,140

AlexNet 99.16 360 0.21 60,287,879

Simple CNN 77.56 1483 7.03 14,703,988

Simple CNN + DoG 87.91 1536 4.73 14,704,388

CNN+CBAM [2] 99.48 662 0.18 958,380

FV-SNN 98.78 567 0.61 2080

4 Conclusion

In this paper, we have proposed a two-layer unsupervised spiking convolutional
neural network for FV recognition, which namely FV-SNN. By introducing DoG
filtering and a series of preprocessing operations, we can obtain a kind of discrete
spiking signal coding that adaptively represents the correlation of pixels in the
image. Considering the huge number of parameters and high model complexity of
the popular deep CNNs, the proposed FV-SNN achieves the competitive recog-
nition accuracies as well as far smaller parameters than those of deep CNNs.
In addition, our FV-SNN can be trained in an unsupervised manner, thus, the
requirement for a large number of labeled samples has also been greatly eased.
In the future, we will focus on the supervised spiking convolutional neural net-
works to extract more discriminative vein features. In addition, we will also pay
attention to the combination with reward mechanisms, so as to avoid the use of
additional external classifiers.
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Abstract. Dorsal hand vein recognition has attracted more and more attention
from researchers due to its advantages of high recognition accuracy and good anti-
attack performance. However, in practical applications, it is inevitably affected by
certain external environments and bring out performance reduction, such as the
droplet problem, which is rarely solved in current research works nevertheless.
Facing this challenge, this paper proposes a feature-fused dorsal hand vein recog-
nition model. Firstly, both dorsal hand vein matching and classification tasks are
constructed via typical methods. Then, we introduce another classification task
to learn the droplet and non-droplet features. Finally, the output feature vector of
the droplet classification task is merged into other two tasks, meanwhile all the
tasks are jointly optimized for the core purpose of promoting the performance
of the dorsal hand vein matching task. The experimental result on our self-built
dataset shows that the poposed model reaches 99.43% recognition accuracy and
0.563%EER,which achieves significant performance improvement in EERmetric
compared with the typical model.

Keywords: Dorsal hand vein recognition · Feature-fused · Droplet problem ·
Convolutional neural network

1 Introduction

As a kind of vein recognition, dorsal hand vein recognition has the characteristics of
live detection, difficult to forge, and stronger anti-counterfeiting features compared with
other biometric technologies such as fingerprint, face, iris. In addition, with respect to
finger hand and palm hand veins, dorsal hand vein recognition take the advantages that
it is usually thicker and therefore more robust to the surrounding environment such as
temperature, pollution and physical damage.

From the perspective of its development, dorsal hand vein recognition can be divided
into traditional methods and deep learning methods, among which the typical traditional
methods can be listed as, SIFT [1], PCA [2], Sparse Representation [3], GraphMatching
[4], and avelet decomposition [5] et al.

These methods above can recognize dorsal hand vein quickly. However, the dis-
advantage is that these features are usually designed manually and are not a universal
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method. Moreover, these features are usually low-level or intermediate features, and it
is difficult to extract high-level semantic features of dorsal hand vein.

Deep learning model can be as the effective solution scheme to the above problems.
Compared with traditional methods, as a data-drivenmodel, deep learning-basedmodels
are no need to design specific manual features for different datasets. Moreover, consider-
ing the design of nonlinearity and depth, the high-level semantic features that are closer
to the essence of things can be extracted. Therefore, higher recognition accuracy can
aiso be obtained usually. Xiaoxia Li [6] et al. introduces deep learning into the field
of dorsal hand vein recognition for the first time, compares the performance of several
classical models, and confirms the necessity of fine tuning. H Wan [7] et al. extract the
region of interest (ROI) of dorsal hand vein images and the contrast limited adaptive his-
togram equalization (CLAHE), meanwhile gaussian smoothing filter algorithm is used
to preprocess the images, then the deep learning model is used to extract the features,
finally the recognition is carried out based on logistic regression. Gaojie Gu [8] et al.
proposes a transfer learning method to integrate local binary pattern (LBP) features into
the ResNet-50 framework to alleviate the loss of local information. Zhenghua Shu [9]
et al. design a recognition system for dorsal hand vein based on deep residual network
and attention mechanism (DRNAM) to extract cross-channel and spatial information
features. Jiaquan Shen [10] et al. put forward a triplet loss based finger vein recognition
method, which can improve the recognition accuracy and not need to re-train the new
categories of follow-up data.

Although the above deep learning-based models usually have good recognition per-
formance, there is extremely scarce the relevant research work for the scenario with
liquid droplets as far as we know. Through our experiments, it is found that the pres-
ence of liquid droplets has a great influence on the performance of models. To solve
this problem, a feature-fused dorsal hand vein recognition model is proposed in this
paper. Specifically, by means of introducing the extra droplet classification task, the
shared features in backbone network can be allowed to extract the higher differentiation
features. Meanwhile the matching ability of models can be further improved owing to
fusing droplet classification features.

2 Datasets and Models

2.1 Datasets

The images used in this paper are acquired by a self-designed dorsal hand vein acquisition
device as shown in Fig. 1(left). The device adopts a near-infrared light source with a
wavelength of 850 nm.

The datasets is assessed from 33 people with the age span of 18–50 years old.
Each person is captured with images of both left and right hands, and therefore the
dataset contains 66 categories. The training set and test set includes 414 and 383 images
respectively, and the verification set is splited 20% from the training set. To improve
algorithm robustness and alleviate overfitting, image enhancement operations such as
scaling, flipping, size and color distortion are adopted. A example of vein images is
shown in Fig. 1(middle,right). The image in middle includes droplets,while the image
in right not.
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Fig. 1. Experimental equipment (left) and vein images (middle, right)

2.2 Models

Fig. 2. Mobilenet (left) and the typical model (right, referenced by [12])

In order to take into account the application on embedded devices in the subsequent
work, the basic framework here adopts the lightweight model Mobilenet [11] as shown
in Fig. 2(left), and the structure is shown in the Fig. 2(left). It can be seen that the model
uses conv and conv dw(depthwise) for image feature extraction many times. Besides, the
following classification process is completed by 7 × 7 average pooling, full connection
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Fig. 3. Proposed (training stage, left) and Proposed (test stage, right)

layer and softmax activation function.HereLFEandHFEmeans low-level and high-level
feature extraction respectively.

Figure 2(right) shows the typical model structure which adopts the idea from the
paper [12]. Likewise, we introduce the dorsal hand vein classification task to facilitates
better convergence of the matching task. Moreover, the typical model includes LFE and
HFE modules the same as that of Mobilenet.

According to the problem that the existence of droplets limits model performance,
meanwhile inspired by the paper [13], a parallel branch for droplet classification (whether
droplet exists or not) is designed as shown in Fig. 3(left), which also utilizes LFE and
HFE modules The main difference lies in considering that this branch is as a binary
classification problem, the number of neurons from the last fully connected layer is set
to 2. Furthermore, the output feature vector of the first fully connected layer with 128
dimensions is concatenated into the typical model for the purpose of promote the feature
learning of droplets.

3 Loss Function

Based on the above model structure, the loss function can be divided into three parts,
namely, the droplet classification loss, the dorsal hand vein classification loss, and the
dorsal hand vein matching loss, which can be expressed by the formula as follows.

L = L1+ L2+ L3. (1)

L1 = −
∑

k
tk log yk . (2)

L2 = −
∑

k
pt log qt . (3)
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L3=max(d(anchor, positive)-d(anchor, negative)+margin,0) . (4)

Here L1, L2 and L3 indicate the loss of droplet classification task, dorsal hand vein
classification task and matching task, respectively. t and p are the true values, while y
and q are the predicted values. It can be seen that the two classification branches both
adopt cross-entropy function, and the difference lies in that the number of categories
for different problems is different. The droplet classification problem is served as a
binary classification problem, so the category number k = 2, while the dorsal hand vein
classification problem is used to classify different dorsal hand veins, which reflects a
multi-classification problem with a category number t = 66.

For the triplet matching loss of the main task of the dorsal hand vein matching, the
optimization process is completed by constructing triples and calculating the similarity
distance of the feature vectors between the same class and different classes, and the
core idea lies in making the similarity distance between the same class smaller and
smaller while the similarity distance of different classes is optimized larger and larger.
Where anchor, positive, and negative indicates the feature vector of reference image, the
feature vector with the same category as reference image, and the feature vector with the
different category as reference image respectively. In addition, d(·) indicates euclidean
distance and margin is a constant with the value of 0.2.

4 Training and Prediction

The model structure during training is shown in Fig. 3(left), and the optimal weight can
be obtained through the joint optimization of the different tasks above. As a contrast,
Fig. 3(right) shows the model structure during prediction. It can be clearly seen that
only the dorsal hand vein matching task participates in the prediction process based on
the weight previously trained. So the other two tasks can both be regarded as auxiliary
tasks to promote the optimization of the main task of the dorsa hand vein matching, and
finally improve the performance of the model.

5 Metrics

For matching tasks, the evaluation indexes commonly used are Accuracy, FAR (false
acceptance rate), TAR(true acceptance rate), and equal error rate (EER). Considering
that FAR and TAR are trade-off relation as the matching threshold changes. So for the
convenience of comparison, EER can represent the comprehensive performance between
FAR and TAR. Then,

Accuracy=(TP+TN)/(TP+TN+FP+FN). (5)

EER=FRR=FAR (6)

FAR=FP/(FP+TN). (7)
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FRR=FN/(TP+FN). (8)

TAR=1-FRR. (9)

Here FRR signifies false positive rate, and TP, FP, TN,FN are the number of true positive
matching cases, false positive matching cases, true negative matching cases and false
negative matching cases, respectively.

Under different matching thresholds, relevant FAR and TAR can be obtained, thus a
TAR-FAR curve can be constructed to visually observe the change trend of them. From
Eq. (6), (7), (8), (9), we can see that EER can be acquired by the horizontal coordinate
of intersection point between TAR-FAR curve and straight line y = −x+1.

6 Experiments

The comparison experiments are conducted between the proposed model and the typical
model. Here the model hyperparameters are set as that, epochs with the value 100 are
equally divided into two phases, where the learning rates are initialized as 1e–3 and
1e–4 respectively. ADAM optimizer is used to optimize the loss function, and dropout
is adopted after the global average pooling layer with a rate of 0.4.

From Table 1 we can clearly see that after fusing the output vector of the droplet
classification branch, the accuracy of the model is not significantly improved, but the
EER value is greatly reduced. The effectiveness above can bemainly explained from two
perspectives. On the one hand, the introduce of droplet classification branches promotes
the learning involved droplet information on shared features in the backbone network,
which refers to LFE module. On the one hand, the fusion feature can further learn the
feature representation of the samples containing droplets from the droplet classification
branch. Finally, the reason for the lack of significant improvement in accuracy can
be explained by the fact that although the improved model can promote the matching
performance via the above two aspects, however, the small number of such samples
containing droplets lead to the little impact on accuracy. We can also get a more intuitive
visual experience to compared EER through Fig. 4.

Table 1. Comparison experiments(Here bold indicates better).

Methods/metrics Accuracy EER

Typical model 99.38% 0.679%

Proposed 99.43% 0.563%
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Fig. 4. TAR-FAR curves

7 Conclusion

This paper put forward a hand vein recognition model for droplet problems. Specifically,
a droplet classification task is introduced and jointly optimized.Under the circumstances,
the shared features add extra droplet information, meanwhile the droplet features are
integrated into the original tasks. Accordingly, the sample features containing droplets
can be well learned through the above two ways. The experimental results have verified
the effectiveness of the improved model, and in the future, we plan to further study better
feature fusion modes.
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Abstract. Fingerprint recognition is assuming an increasingly pivotal
role in our modern information society. Its applications span across civil
domains such as door locks and mobile phone security, to more criti-
cal realms like public security and legal identification. However, tradi-
tional contact-based fingerprint recognition methods bear the drawbacks
of compromising the fingerprint’s intrinsic 3D structure and being suscep-
tible to contamination. In contrast, prevailing non-contact 3D fingerprint
collection methods encounter challenges related to limited coverage area
and the complexity of capturing an absolute height 3D representation. In
light of these issues, we present a novel approach: a 3D fingerprint recon-
struction and registration technique rooted in high-precision binocular
structured light. This innovative method promises to deliver comprehen-
sive and remarkably precise 3D fingerprint representations, addressing
the limitations of current methodologies.

Keywords: 3D fingerprint · binocular structured light · 3D fingerprint
reconstruction · 3D fingerprint registration

1 Introduction

Biometric identification is assuming an increasingly pivotal role in the mod-
ern information-driven society. Among the various biometric traits, fingerprints
stand out due to their uniqueness, ease of collection, and resilience against dam-
age. Conventional fingerprint recognition primarily relies on contact-based fin-
gerprints. However, this approach often compromises the spatial attributes of
one-dimensional fingerprints. Additionally, the collection process is susceptible
to factors like contamination and slippage. Consequently, scientists have turned
their attention towards non-contact 3D fingerprint techniques.

The current methodologies for 3D fingerprint reconstruction encompass tech-
niques grounded in stereo vision, structured light, photometry, as well as optical
coherence tomography (OCT) and ultrasound. Of these, stereo vision approaches
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typically employ two or more cameras. However, these solutions tend to be cost-
prohibitive and can encounter difficulties in addressing feature point match-
ing, making them ill-suited for objects rich in feature points, like fingerprints.
Photometry-based methods offer accurate high-frequency reconstruction, albeit
they cannot ascertain the absolute height of the 3D fingerprint. While OCT-
based strategies can reconstruct both epidermal and subdermal fingerprint lay-
ers, the exorbitant cost of OCT sensors and their limited capacity for large-scale
3D fingerprint imaging pose challenges. Ultrasound-based 3D fingerprint imag-
ing captures subsurface details but isn’t entirely non-contact and is relatively
compact. In comparison, the structured light approach employs multiple cam-
eras and a projector to yield highly accurate 3D fingerprint reconstructions;
however, the area of fingerprint capture is restricted.

Hence, we propose a novel method for 3D fingerprint reconstruction utilizing
a binocular structured light system. This system empowers two synchronized
cameras to capture fingerprint images of a single finger, generating dual 3D point
clouds. Subsequent software processing accomplishes registration and alignment
on the fingerprint plane, leading to precise registration parameters. As a result, a
meticulous alignment and fusion of the two fingerprint point clouds are achieved.

2 Related Work

The existing 3D fingerprint imaging methods can be mainly divided into the
following categories: (1) 3D fingerprint imaging based on photometry; (2) 3D
fingerprint imaging based on structured light; (3) 3D fingerprint imaging based
on stereo vision; (4) 3D fingerprint reconstruction based on ultrasound; (5) 3D
fingerprint imaging based on OCT fingerprint imaging. Among them, 3D finger-
print imaging based on photometry, structured light and stereo vision principles
can only image from the finger surface, while 3D fingerprint imaging based on
ultrasound and OCT can realize finger surface and internal and fingerprint imag-
ing.

Methods based on stereo vision usually require more than two cameras to cap-
ture objects simultaneously and then match them based on disparity or feature
correspondence. Parziale et al. [12] developed a contactless volume-equivalent
fingerprint capture device, The Surround Imager

TM
, using five cameras and an

array of 16 green LEDs. They first estimate the finger volume based on the
shape from silhouette method and unfold the 3D fingerprint to a 2D plane,
which can minimize the distortion of the fingerprint during the unfolding pro-
cess and establish the correspondence between image pixels. Then, based on the
corresponding relationship between the images, 3D fingerprint reconstruction
is realized by using stereo vision and photogrammetry algorithms. This method
can accurately reconstruct the shape of the fingerprint, but it is difficult to accu-
rately reproduce high-frequency information. Liu et al. [10,11] used SIFT, ridge
features, and details to establish the relationship between 3D fingerprints and
2D contactless fingerprint images based on the principle of stereo vision. They
used three cameras to reconstruct 3D fingerprints and used this method to build
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a database of 3D fingerprint stitched images of 541 fingers. 3D fingerprint recon-
struction based on the principle of stereo vision often suffers from the problems
of bulky equipment and difficult matching of feature points.

Photometric-based methods usually need to use multiple LEDs or other light
sources to create different lighting conditions and collect images, and then pro-
cess the collected images to calculate the surface normal of the object to recover
the shape information of the object. Xie et al. [16] proposed a real-time 3D fin-
gerprint acquisition method based on photometric stereo, using a camera and
some white LED lights, which can capture high-quality fingerprints. Kumar et
al. [8] used photometric stereo to restore the surface normal, using 7 symmetri-
cally distributed LEDs and a low-cost camera to reconstruct 3D fingerprints by
collecting 7 images, but this method is prone to distortion due to finger move-
ment. Lin et al. [9] built a photometric system using a camera and six colored
LEDs, which can achieve 3D fingerprint reconstruction with an average MSE =
0.1202 accuracy in 0.5 s with two shots. In addition, they built a database con-
taining 5520 color 2D fingerprints and 2760 3D fingerprints. The advantage of
the photometry-based method is that it can reconstruct the high-frequency infor-
mation in the fingerprint more accurately, which is beneficial for the recovery of
the ridge-valley features. However, the three-dimensional information obtained
by this method is the height of the normal integral of the fingerprint, not the
absolute height.

The structured light-based method usually requires the use of multiple cam-
eras and projectors to project the pattern onto the object, and then to capture
the deformed pattern and recover the depth information of the object according
to the deformation of the pattern. Wang et al. [15] used phase measurement
profilometry to reconstruct 3D fingerprints with ridge details based on the prin-
ciple of structured light. They also created a set of 430 2D fingerprint images
and corresponding 430 3D fingerprint unfolded images from 12 subjects. Yalla et
al. [17] proposed a method of sub-window technology based on the principle of
structured light, which can achieve high-quality 3D fingerprint acquisition. The
advantage of this method is that high-quality and high-resolution PPI 3D finger-
prints can be obtained. Huang et al. [6] proposed a novel 3D fingerprint imaging
system based on fringe projection technology, which uses a color CCD camera
and a DLP projector, combined with a four-step phase shift and an optimal
three-stripe selection algorithm, can obtain 3D fingerprint features and corre-
sponding color texture information. Chatterjee et al. [3] used a single structured
light system consisting of LED lights, sinusoidal gratings, and a CCD camera to
reconstruct 3D fingerprints using the Fourier transform analysis method (FTM).
The advantage of this method is the single-frame imaging, which can avoid noise
and influence caused by finger shaking. The advantage of structured light-based
3D fingerprint imaging is that it can achieve high-precision imaging, but there
are certain equipment requirements. High-speed, high-resolution cameras and
projectors are often the basis for powerful structured light systems.

OCT-based 3D fingerprint reconstruction is typically based on the principle
of interferometry. An OCT scanner is used to collect interference patterns, and
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information at different depths is obtained by measuring the time of flight of
different light beams. Considering the shortcomings of slow speed and unnec-
essary data generation when using OCT for frontal imaging, Auksorius et al.
[2] used full-field optical coherence tomography to perform fingerprint imag-
ing from inside the finger, proving that full-field optical coherence tomography
(FF-OCT) scanning can be used to generate images of sweat pores and internal
fingerprints. Auksorius et al. [1] collected fingerprints using a full-field opti-
cal tomography system consisting of a silicon camera and a near-infrared light
source, which can image fingerprints and sweat glands inside the human body.
Ding et al. [5] proposed an improved U-Net method (BCL-U Net) for OCT
volumetric data segmentation and fingerprint reconstruction, achieving the first
simultaneous automatic extraction of surface fingerprints, internal fingerprints,
and sweat glands. Ding et al. [4] proposed an end-to-end convolutional neural
network-based fingerprint reconstruction method that can extract both internal
and surface fingerprints from noisy OCT. The disadvantage of this method is
that the finger is placed on the glass during the capture process, so it is not
a complete non-contact fingerprint capture. The advantage of OCT-based fin-
gerprint imaging is that it is fast and can reconstruct the internal fingerprint,
but such systems are often expensive and do not take advantage of large-scale
deployment.

Ultrasonic 3D fingerprint reconstruction usually requires the use of profes-
sional ultrasonic transmitting and receiving equipment, and the processing of
received signals requires certain professional knowledge and experience of the
operator. Saijo et al. [13] developed an ultrasonic microscope system with a cen-
ter frequency of 100 MHz, which can realize ultrasonic impedance imaging and
three-dimensional ultrasonic imaging of living fingerprints, and realize the obser-
vation of sweat glands on the surface of fingerprints and glands on the back of
fingerprints. Jiang et al. [7] were the first to demonstrate the ability of MEMS
ultrasonic fingerprint sensors to image epidermal and subsurface layers of finger-
prints. Zhao et al. [18] proposed a prototype resonance-based multi-transducer
ultrasonic imaging system that could reconstruct fingerprints from the deep skin
layer by poropore location and epidermal structure. The advantage of using
ultrasound technology to reconstruct 3D fingerprints is that high-resolution 3D
fingerprints can be obtained, but it is difficult to extract features for fingerprint
identification.

3 Proposed Method

Note that the coordinates of a point M in three-dimensional space in the world
coordinate system, camera coordinate system, and projector coordinate system
are MW , MC , MP . After being projected by the projector and photographed
by the camera, the coordinates of the point in the camera pixel coordinate sys-
tem and the projector pixel coordinate system are mc and mp, respectively.
By calibrating the camera and projector, respectively, the internal and exter-
nal parameters of the camera and projector can be obtained AC , AP , EC , EP ,
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where EC , EP are external parameters of the camera and projector relative to
the same world coordinate system. Then the coordinate mc of point M in the
camera pixel coordinate system and its coordinate MC in the camera coordinate
system have the following relationship as Eq. (1) shows, where I3 is the 3 × 3
unit matrix:

[
mc

1

]
∼= AC

⎡
⎣ 0
I3 0

0

⎤
⎦

[
MC

1

]
(1)

Similarly, the coordinates mp of point M in the projector coordinate system
and its coordinates MP in the projector coordinate system have the following
relationship as Eq. (2) shows, where I3 is the 3 × 3 unit matrix:

[
mP

1

]
∼= AP

⎡
⎣ 0
I3 0

0

⎤
⎦

[
MP

1

]
(2)

In addition, there is the following relationship between the coordinate MC

of point M in the camera coordinate system and its coordinate MW in the
world coordinate system. Among them, RC and TC are the rotation matrix and
translation vector from the world coordinate system to the camera coordinate
system, respectively as Eq. (3) shows,

[
MC

1

]
= EC

[
MW

1

]
=

[
RC TC

0 1

] [
MW

1

]
(3)

Similarly, there is the following relationship between the coordinate MP of
point M in the projector coordinate system and its coordinate MW in the world
coordinate system, where RC and TC are the rotation matrix and the transla-
tion vector from the world coordinate system to the camera coordinate system,
respectively as Eq. (4) shows,

[
Mp

1

]
= Ep

[
MW

1

]
=

[
Rp Tp

0 1

] [
MW

1

]
(4)

Suppose the transformation relation between the camera coordinate system

and the projector coordinate system is represented by E =
[
R T
0 1

]
, then the

point M in the camera coordinate system is The coordinates MC and its coor-
dinates MP in the projector coordinate system have the following relationship
as Eq. (5) shows, where R and T are from the projector coordinate system to
the phase.

[
MC

1

]
∼=

[
R T
0 1

] [
Mp

1

]
(5)

After the camera calibration, you can get EC , EP , and substitute Eq. (3)
and Eq. (4) to get E. Then, according to the corresponding relationship between
MC and MP And triangulation principle can get the depth of point M .
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The algorithm we use in the coarse registration stage is the N-point SVD
decomposition algorithm, and the fine registration stage uses the ICP algorithm.
The basic principle of the ICP algorithm is to find the nearest neighbor points
in the source point cloud and the target point cloud according to certain con-
straints, and then calculate the optimal registration parameters to minimize the
error function. The error function is shown in Eq. (6),

min
R2,T2

E =
1
n

n∑
i=1

||qi − (R2qi + T2)||2 (6)

Among them, P and Q are the source point cloud and the target point cloud,
respectively, n is the number of nearest neighbor point pairs, pi is a point in the
target point cloud p, qi is the nearest point corresponding to pi in the source
point cloud Q, (pi, qi) is the nearest neighbor point, R2 is the rotation matrix,
and T2 is the translation vector.

Figure 1 shows the structure of the binocular structured light system. The
system consists of two cameras, a projector, and a computer. There are two-way
trigger and control lines between the left camera and the projector, and two-way
trigger and control lines between the projector and the right camera. There is a
one-way trigger line between the two cameras, and a two-way control and data
transmission line between the computer and the two cameras. When the device
is working, the left camera triggers the projector to project, and the projector
sends shooting signals to the left and right cameras. After that, the 19 deformed
patterns projected by the projector on the surface of the finger can be captured
by the left and right cameras, and the image data is also stored in the computer.

Figure 2 shows the complete process of 3D fingerprint reconstruction and
registration using a binocular structured light system. First, 19 binary fringes
are generated by software, then they are burned into a projector, and the binary
fringes are continuously projected on the finger surface, the binary fringes are
deformed by the height modulation of the finger surface. At this time, the left
and right cameras record at the same time, and two sets of deformed fringe
images are obtained, each with 19 pieces, corresponding to the deformed fringe
images recorded by the left and right cameras. Then, according to the calibration
parameters of the system, we using a stripe edge-based structured light method
[14] processes the two sets of images separately, and two sets of fingerprint point
clouds can be obtained.

After obtaining two sets of fingerprint point clouds, we use our registra-
tion method based on standard parts to obtain the calibration parameters for
the height plane where the system fingerprints are located, and then perform
high-precision registration on the two fingerprint point clouds. The fingerprint
registration method based on standard parts can be described as follows. First,
the average finger thickness d is calculated. Then, use a facet plate with tiny
features as a master and place the master at a height d from the reference plane.
Then, select at least three rough registration points on the standard part, and
use the N-point SVD decomposition algorithm and rough matching points to
perform rough matching to obtain rough registration parameters. Then, on this
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Fig. 1. System structure diagram (a) left-camera (b) projector (c) right-camera
(d) computer (e) fingerprint

basis, use the ICP algorithm to fine register the standard parts to obtain the final
registration parameters. The advantage of this method is that high-precision reg-
istration parameters can be obtained near the finger surface, that is, near the
fingerprint imaging surface, which is conducive to high-precision registration of
fingerprints and avoids noise due to insufficient registration precision.

Fig. 2. Flow chart of obtaining 3D fingerprint
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4 Experiments and Results

The binocular structured light system proposed in this paper is shown in Fig. 3.
It includes two cameras on the left and right and a projector in the center. Both
cameras are Daheng MER2-301-125U3M cameras with 2048 × 1536 resolution.
Anhua 4710 model optical engine for 1920 × 1080. Both cameras have the same
focal length 35 mm model Edmund59872 lens. The effective field of view of the
system is 5cmx4cm, and the working distance of the system is 215 mm.

Fig. 3. Physical image of the system

To measure the accuracy of the system, we first reconstruct a standard plane
using a binocular structured light system. Our system uses Zhang’s calibration
method, and the calibration accuracy is less than 0.1 mm. To further illustrate
that the system can reconstruct with high accuracy on the plane of the finger-
print, we use a calibration plate with a ring as the standard plane, as shown in
Fig. 4, and place the calibration plate on the plane of the average finger height
for reconstruction. To avoid the influence of the ring height on the calibration
plate, we cut off the ring part in the reconstructed point cloud for plane fitting.
The fitting results are shown in Fig. 5, where left figure is the fitting result of the
right camera and right figure is the fitting result of the left camera. The plane
fitting standard deviations of the plane point clouds reconstructed by the left
and right cameras are 0.007445 mm and 0.008745 mm, respectively, which are
both less than 0.01 mm, showing that our system can achieve highly accurate
reconstruction in the plane of average finger thickness and height.
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Fig. 4. Calibration plate for plane fitting

Fig. 5. Plane Fitting Accuracy of the System

The standard part used in the registration process is a small flat sheet with
fine small characters, as shown in Fig. 6. Considering that the area occupied by
the fingerprint is slightly smaller than the standard part, and we prefer to use
the part with fine small characters for registration, we cut off the smooth and
flat part on the right side of the point cloud of the standard part. We select eight
symmetrical points in the small patch and one point in the center as the rough
matching points (as shown in right figure of Fig. 6), and use the N-point SVD
algorithm for rough matching, and then use the ICP algorithm for fine match-
ing, and obtain The registration error of the standard parts is about 0.009 mm.
Then we use the binocular structured light system to reconstruct the fingerprint.
The reconstruction result of the right camera is shown in Fig. 9, and the recon-
struction result of the left camera is shown in Fig. 7. It can be seen from the
encapsulated meshes of the two point clouds that the ridge-valley information of
the fingerprint has been effectively reconstructed. Using the registration param-
eters obtained from the standard parts, the two fingerprints are registered. The
registration results are shown in Fig. 8. It can be seen that the reconstruction
results contain not only the ridge and valley information, but also the combined
fingerprints. The larger area contains more ridge-valley and detail features, which
is conducive to improving the accuracy of fingerprint recognition.



82 J. Wang et al.

Fig. 6. Standard part and its point cloud

Fig. 7. Fingerprint mesh

Fig. 8. The merged fingerprint mesh
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5 Conclusion

In general, by building a binocular structured light system and using a high-
precision structured light reconstruction algorithm, we collected two 3D fin-
gerprint point clouds, and completed the high-precision fingerprint point cloud
matching based on standard parts to enable registration parameters. Our work
provides fingerprint point clouds with more effective areas, which is conducive to
improving the accuracy of fingerprint recognition. In the future, we will further
map and expand the merged fingerprint grids to obtain extended fingerprints
compatible with 2D fingerprints.
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Abstract. With the emergence of various types of fingerprint sensors, the fin-
gerprint images collected by different sensors are distinct from each other due to
systemic deformation and the different imaging style. Most of the existing finger-
print recognition methods fail to consider the problem of cross-sensor fingerprint
verification. This paper proposes a cross-sensor fingerprint recognition system
based on style transfer and score fusion. The method uses a CycleGAN to unify
the styles of fingerprint images from different sensors and combines ResNeSt-50
with a spatial transformation network (STN) to extract fixed-length texture fea-
tures with two properties of domain alignment and spatial alignment. The texture
features are used to calculate the Texture Comparison Score, which is fused with
Minutiae Comparison Score to produce the final similarity score. Experiments are
carried out on the MOLF database and the self-collected database by the Xidian
University and show that the proposed method has achieved excellent results.

Keywords: Fingerprint Recognition · Cross-Sensor · Style Transfer · Score
Fusion

1 Introduction

At present, a large number of fingerprint recognition algorithms have been proposed.
When the same sensor is used for registration and verification, the existing fingerprint
recognition methods are considered effective. With the update of sensor technology and
the development of the Internet, the situation of authentication using different sensors is
becoming more and more diversified. Fingerprints for registration and verification are
captured by sensors with different acquisition technologies and interaction types. Most
of the existingmethods do not consider the problems caused by the systemic deformation
and the different imaging principles of different sensors for registration and verification.
In the last few years, deep learning have shown very high potential inmany research areas
as well as in the field of fingerprint-based biometrics [1, 2]. For fingerprint recognition
methods based on deep learning, due to the gap of datasets, when a model trained on a
unique dataset is directly applied to another dataset, the performance may become poor
[3], leading to defects in the practical application of most existing methods based on
deep learning.
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Improving the recognition accuracy between fingerprint images of the same person
from different sensors has become one of the key issues. The differences in image style
and the texture deformation are themain cause of performance degradation. In this paper,
a new cross-sensor fingerprint recognition method is proposed. This method adopts the
strategy of fusion of image texture and minutiae features. Firstly, the CycleGAN is used
to unify the style of images from the different sensors, and then a deep network with
spatial transformation network (STN) is designed for fixed-length feature extraction.
Then the comparison score is calculated, and finally it is fused with the comparison
score based on the minutiae to obtain the final recognition result.

2 Related Work

Research results in recent years have shown that the study of the influence of different
fingerprint sensors on automatic fingerprint comparison is of great significance [4].
Ross et al. [5] proved that when two different sensors are used to capture fingerprints,
the performance of the system drops sharply. Subsequently, Ross et al. [6] proposed
a non-linear calibration method, using the TPS model to register a pair of fingerprints
captured by different sensors and model the deformation of the fingerprints. Alshehri
et al. [7] proposed amethod of fusing comparison scores based on direction, gradient and
Gabor-Hog descriptor byweighted summation rules to solve the problem of cross-sensor
fingerprint comparison. These methods focus on using feature descriptors, as well as the
fusion of fingerprint scaling and nonlinear deformation correction. Tan et al. [8] used
two branches of minutiae attention network with reciprocal distance loss to recover the
features correspondence for contactless and contact-based fingerprint images from the
same fingers. Grosz et al. [9] proposed an end-to-end automatic fingerprint recognition
system that extracted minutiae texture features for comparison. Their methods were
implemented in PolyU Contactless 2D to Contact-based 2D Images Database and UWA
Benchmark 3D Fingerprint Database. Shao et al. [10] proposed a Joint Pixel and Feature
Alignment (JPFA) framework, which used a two-stage alignment method on the source
and target datasets to obtain adaptive features for palmprint recognition across datasets.
The performance of their method was not stable on different source and target databases.
Alrashidi et al. [11] proposed the Siamese network with the features extracted by the
Gabor-HoG descriptor, which was trained by adversarial learning. It can be seen that
researchers have made a lot of efforts, but the performance of the current solution is
unsatisfactory. This problem has important practical application value and deserves
further in-depth research.

In the process of fingerprint identification, the fingerprint minutiae are one of the
widely adopted fingerprint features. Besides, local structure features of minutiae, end-
to-end local texture features and fingerprint features based on the fusion of minutiae and
texture have also been extensively studied. Especially with the application of deep learn-
ing in the field of fingerprint recognition, the fusion of texture and minutiae features has
receivedmore andmore attention. One of themost representative feature descriptors that
combines fingerprint minutiae and local structures is the Minutia Cylinder-Code (MCC)
descriptor [12]. Jin et al. [13] used the kernel principal component analysis and thermal
kernel function to construct the projection matrix of the fingerprint comparison score of
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the training data set, and then used dynamic quantization technology to assign binary
bits to each feature element to obtain fingerprint fixed-length feature vector. Li et al. [14]
presented a kernel learning-based real-valued fingerprint feature and converted it into
compact and cancellable binary code via one permutation hashing. This scheme enables
accurate and efficient comparison as well as high security. Engelsma [15] designed a
double-branch feature extraction framework based on the Inception network, in which
one branch represented texture information, the other represented fingerprint minutiae
information, and 512-dimensional fixed-length features of fingerprints were extracted
after stitching. This framework achieved the effect close to the traditional method, but
its structure was more complicated and required higher computing resources. Since
fingerprint fixed-length feature representation on deep learning network has the huge
advantages of no need to manually design feature extraction operators and convenient
subsequent integration with template protection algorithms, this paper mainly focuses
on the fixed-length texture feature extraction based on deep learning and the fusion with
minutiae features to improve the efficiency of cross-sensor fingerprint recognition.

3 Proposed Method

We propose a cross-sensor fingerprint recognition framework from the perspective of
style transfer and correction of systematic deformation, including image preprocessing,
feature extraction and comparison strategy. Image preprocessing mainly includes style
transfer and fast enhancement. After that, the spatially aligned fixed-length texture fea-
ture is extracted by deep network with STN to calculate the texture comparison score.
At the same time, Verifinger is used to calculate the minutiae comparison score for the
pre-processed fingerprint image, and the final comparison score is obtained by fusing

Fig. 1. Framework of cross-sensor fingerprint recognition system.
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the texture Comparison score and the minutiae comparison score. The framework of
cross-sensor fingerprint recognition is shown in Fig. 1.

3.1 Style Transfer Based on CycleGAN

Cross-sensor fingerprint recognition is mainly aimed at fingerprint images from different
sensors. Different imaging conditions will produce different image styles, which will
seriously affect the recognition performance. Domain adaptation is an effective scheme
to solve the problem of image style differences. The core of domain adaptation is to
extract domain alignment features in different data sets and bring the knowledge learned
in onefield into another different but relatedfield to complete the target task [10]. Inspired
by this idea, a pixel-level alignment framework based on style transfer is proposed in
order to unify the style. It should be noted that the synthesized images generated after
style transfer must meet the following two conditions: 1) the synthesized target image
should be as similar to the target image as possible in style in order to reduce the gap,
2) the synthesized target images need to maintain the identity information in the source
database, that is, synthesized images generated from the same category still belong to
the same category. For meeting the above requirements, CycleGAN [16] is used to
generate synthesized images from the source images. In Fig. 1, the solid red wire box
is the pixel-level alignment part, implemented with CycleGAN. Where XT represents
target image, XS represents source image, XS→T represents pseudo target image, XT→S

represents pseudo source image,GT→S represents source domain image generator,GS→T

represents target domain image generator, DT and DS represent discriminators of target
domain and source domain respectively.

Fig. 2. Fingerprints of the self-collected database. The first row is the images of the same fin-
gerprint generated by different sensors, including FS200, TSV1011, URU4000 and FV1000. The
second row is to convert the corresponding image of the first row into the style of the FS200
database. The third row is to do image enhancement on the corresponding fingerprint images.

The purpose of using the fast texture enhancement algorithm is to improve the defi-
nition of the ridge structure in the recoverable area of the fingerprint image and remove
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the unrecoverable area. According to the estimated local ridge direction and frequency,
the ridge and valley structures in the fingerprint images are adaptively sharpened. The
directional Gabor filter is used to enhance the fingerprint image [17]. The enhanced
fingerprint image on the self-collected database is shown in Fig. 2. It can be seen that
the image style of the image processed by CycleGAN is indeed closer to the image style
of the target domain. Fingerprint images that are less missing in the source domain are
filled in and slightly conglutinated lines become clearer. The sharpness of the ridge after
the fast fingerprint enhancement algorithm is higher, which is convenient for subsequent
extraction of distinctive depth texture features.

3.2 Fingerprint Fixed-Length Feature Extraction Based ResNeSt with STN

In the end-to-end fingerprint fixed-length feature extraction, the ResNeSt [18] network is
used as the backbone. It can adaptively adjust the size of the receptive field to obtain infor-
mation of different receptive fields, effectively improving the feature extraction ability
of the network. We use the ResNeSt-50 to extract 1024-dimensional fixed-length feature
of fingerprint. The network model parameters of ResNeSt-50 are shown in Table 1. Here
we set the relevant parameters cardinal k = 1, and split to r = 2.

Table 1. The detailed model structure parameters of the ResNeSt-50 network we used (SA stands
for Split-Attention block)

Layer name Output size ResNeSt-50(2 × 64d)

Conv1 112 × 112 7 × 7, 64, stride 2

3 × 3 max pool, stride 2

Conv2_x 56 × 56
⎡
⎢⎢⎣
1 × 1, 128

SA[r = 2, k = 1], 128

1 × 1, 256

⎤
⎥⎥⎦ × 3

Conv3_x 28 × 28
⎡
⎢⎢⎣
1 × 1, 256

SA[r = 2, k = 1], 256

1 × 1, 512

⎤
⎥⎥⎦ × 4

Conv4_x 14 × 14
⎡
⎢⎢⎣
1 × 1, 512

SA[r = 2, k = 1], 512

1 × 1, 1024

⎤
⎥⎥⎦ × 6

Conv5_x 7 × 7
⎡
⎢⎢⎣
1 × 1, 1024

SA[r = 2, k = 1], 1024

1 × 1, 2048

⎤
⎥⎥⎦ × 3

1 × 1 global average pool, softmax
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Although convolutional neural networks define powerful classification models, they
are still limited by the lack of computational and parameter efficiency in terms of spatial
invariance to input data. It is necessary to extract fingerprint discriminative features with
spatial deformation alignment ability. A learnable module, Spatial Transformer Network
(STN), is introduced to allow the network to explicitly exploit the spatial information
of the images, perform spatial transformations based on the feature maps themselves
without the additional training supervision or modifying the optimization process and
learn invariance to translations, scaling, rotations and more common distortions. The
fixed-length feature extraction network framework with spatial alignment properties is
shown in Fig. 3. Experiments have shown that just correcting the rotation angle is suffi-
cient for fingerprint recognition [19] and only one value θ is returned to the localization
network. The fingerprint images before and after the transformation by the visualization
space transformation module are shown in Fig. 4.

Fig. 3. A fixed-length feature extraction network framework with spatial alignment properties

Fig. 4. Example of fingerprint images before and after the spatial transformation module

In the entire training process, the loss function CurricularFace [20] based on adaptive
curriculum learning appears be used to adaptively adjust the easy and difficult samples in
different training stages. At each stage, according to the difficulty of different samples,
different importance is assigned. This can make the intra-class distance larger and inter-
class distance smaller, so as to enhance the fingerprint recognition capabilities.
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3.3 Comparison by Decision-Level Fusion

The minutiae are the most commonly used feature of fingerprint images. Therefore,
we consider adding fingerprint minutiae information at the decision-making level. We
use Verifinger to extract fingerprint minutiae features, and obtain minutiae Comparison
scores. Then fingerprint texture Comparison score and minutiae Comparison score are
fused according to the formula s = ωtst + ωmsm to obtain the final similarity score
for calculating EER. In that, ωt , ωm are the weights of fingerprint texture features and
minutiae features respectively. Here we set ωt = 0.7, ωm = 0.3. The parameter is
obtained from experimental experience.

4 Experimental Results and Comparison

4.1 Experimental Setup

Databases. The public databases in the experiment are theMOLFDB1 andMOLFDB2
fingerprint databases [21, 22], published by the Image Analysis and Biometrics Lab of
the Indian Institute of Technology (IIT). The self-collection cross-sensor fingerprint
database was established by Xidian University, including the corresponding fingerprint
templates obtained by four kinds of collection instruments: FS200, TSV1011, URU4000
and FV1000. The collection plan for four databases is to require each of 20 volunteers
to collect fingerprints from the left ring finger to the right ring finger in turn, and collect
20 images for each finger. Each database has collected 160 types of different fingerprint
templates.

Image Cropping. Since the sizes of the images collected by each collection instrument
are not the same, we select the smallest image size as a fixed size for the MOLF DB1
and MOLF DB2, and crop all fingerprint images into a square ROI at this fixed size.
Here the fixed size is set to 256 × 256.

Synthesized Target Databases Generation. Data with better imaging quality was
selected as the target database of CycleGAN, and the images collected by other sen-
sors are used to generate corresponding synthesized target database with a style similar
to the target database. In this paper, MOLF DB1 and FS200 data are used as the target
database of the public database and the self-collecting database respectively.

Training and Testing Dataset Setup. In the fixed-length feature extraction experiment,
for the public database, MOLF DB1 and enhanced images are used as training data, and
MOLF DB2 and enhanced images are used as testing data. For self-acquisition libraries,
FS200 and enhanced images are used as training data, and the remaining libraries and
enhanced images are used as testing data.

Comparison Protocol. The cross-sensor comparison experiments are carried out on the
FVC protocols.
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4.2 Experimental Results

Experiment 1. In this experiment, the cross-sensor fingerprint comparison EERs on tex-
ture feature, on minutiae feature and on the fusion of both are shown in the Table 2. In
the table, “Tr” means the original images have been transferred by CycleGAN. “Enh”
means images are regulated by Fast Texture Enhancement. Molf-1 means MOLF DB1.
Molf-2 means MOLF DB2. As can be seen from the Table 2, when texture features
are used for comparison, CycleGAN style transfer has a positive effect on the com-
parison results on all databases. At the same time, on the basis of style transfer, the
performance is further improved by using the texture enhancement algorithm. After the
texture comparison score based on fixed-length feature and the one based onminutiae are
fused, the cross-sensor fingerprint recognition performance is greatly improved. And the
recognition results reflect that texture fixed-length features and fingerprint minutiae can
complement each other effectively. The performance on MOLF data is worse than the
others because the fingerprint images in MOLF DB2 have different degrees of defects.

Table 2. Experimental results with the fusion of minutiae and texture features (EER (%)).

Databases Texture Minutiae Fusion

Target Source Original Tr Tr + Enh Original Tr + Enh Tr + Enh

FS200 TSV1011 14.00 9.18 7.12 0.626 0.54 0.38

URU4000 14.61 11.05 6.45 0.638 0.55 0.36

FV1000 13.97 10.21 7.62 0.649 0.58 0.47

MOLF-1 MOLF-2 37.51 21.12 19.66 5.06 4.98 4.87

Experiment 2. On the basis of Experiment 1, the STN module was embedded in the
fixed-length feature extraction network. The experimental results are shown in Table 3.
Because the Verifinger SDK for Minutiae extraction does not require fingerprint orien-
tation correction, the “Minutiae” section does not increase the results of “STN”. The
results of “Tr + Enh + STN” under “Fusion” in Table 3 express that “Texture Feature”
are obtained by “Tr + Enh + STN” and “Minutiae” scores are obtained by “Tr + Enh”.
The addition of the STN module has improved most of the recognition results of the
self-collected databases to a certain extent. Only when using texture features for MOLF
database comparison, the index becomes worse, and the reason is that the fingerprint of
the MOLF dataset after cropped in the early stage has almost filled the image and has
no fingertip information, causing the spatial transformation to be counterproductive.
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Table 3. Comparison of fingerprint identification of embedded STN modules (EER (%))

Databases Texture Fusion

Target Source Tr + STN Tr + Enh + STN Tr + Enh + STN

FS200 TSV1011 8.35 6.56 0.30

URU4000 10.62 5.65 0.29

FV1000 8.54 7.41 0.36

MOLF-1 MOLF-2 23.30 21.28 4.70

4.3 Comparison of Results

Table 4. The results of comparing the previous methods on MOLF databases.

Data (MOLF DB1- DB2) Method EER (%)

200 classes Alshehri [7] 2.08

proposed method 0.82

1000 classes Alrashidi [11] 10.23

proposed method 4.70

The comparison results with the existing methods on the public cross-sensor finger-
print database are shown in Table 4. MOLF DB1 is target database and MOLF DB2
is source database. In the case of selecting 200 classes of fingerprints in the database,
the EER of our proposed method is 0.82%, better than the method of Alshehri et al.
[7]. When all the fingerprint categories in the public databases are used, the EER rises
to 4.70% due to the poor quality of fingerprint images in some categories. However,
compared with the method of Alrashidi et al. [11], the superiority of our method is
obvious.

5 Conclusion

A new cross-sensor fingerprint recognition method based on style transfer and score
fusion is proposed in this paper. The method achieves style transfer on cross-sensor
fingerprint images through CycleGAN network, uses ResNeSt-50 with STN to extract
fixed-length fingerprint texture feature representations, performs domain alignment and
deformation alignment on fingerprints, and obtains the final cross-sensor comparison by
decision-level fusion of Texture comparison Scores and Minutiae comparison Scores.
Experiments on two public fingerprint databases and four self-collected fingerprint
databases all achieves lower EER. Although the fingerprints differ in scale and reso-
lution, the main structure is invariant among fingerprints captured by different sensors,
which includes ridge patterns, ridge orientations, and minutiae. In view of this, future
studies should develop fingerprint enhancement algorithms for cross-sensor compari-
son that can enhance ridge patterns and minutiae and suppress inconsistencies such as
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micro-texture patterns. In addition, cross-sensor comparison requires the development
of new feature extraction techniques that are robust against variations of orientations,
scale, and resolution.
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Abstract. Vein recognition has been drawing more attention recently
because it is highly secure and reliable for practical biometric applica-
tions. However, the underlying issues such as uneven illumination, low
contrast, and sparse patterns with high inter-class similarities make the
traditional vein recognition systems based on hand-engineered features
unreliable. To address the difficulty of direct training or fine-tuning a
CNN with existing small-scale vein databases, a new knowledge transfer
approach is formulated by using pre-trained CNN models together with
a training dataset as a robust descriptor generation machine. A very
discriminative model, sparse coding of residual descriptors (SCRD), is
proposed by a hierarchical design of dictionary learning, coding, and clas-
sifier training procedures with the generated deep residual descriptors.
Rigorous experiments are conducted with a high-quality hand-dorsa vein
database, and superior recognition results compared with state-of-the-art
models fully demonstrate the effectiveness of the proposed models. An
additional experiment with the PolyU multispectral palmprint database
is designed to illustrate the generalization ability.

Keywords: CNN · deep residual descriptors · sparse coding · vein
recognition

1 Introduction

Vein pattern, an intrinsic biometric pattern imaged under near-infrared (NIR)
light, has emerged as a promising alternative for person identification. Compared
with extrinsic biometric features such as face, fingerprint, palm-print, and iris,
vein patterns including finger-vein, dorsa-vein, and palm-vein are highly secure,
private, and convenient. These properties are the basic requirements for practical
applications and are attracting more attention [1–3]. Despite the advantages of
adopting vein patterns for person identification, there still exist some inherent
issues (e.g., unavoidable environmental illuminations [4–6], ambient tempera-
ture effects [2,6], uncontrollable user behaviours [4,5] and NIR device degra-
dation [7–9]) which make the design of robust and accurate vein recognition
systems a challenging task. To alleviate the inherent influence of these issues,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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researchers [10,11] have proposed different algorithms targeted at a specific step
of the traditional vein recognition framework such as designing restoration meth-
ods to recover the details and proposing better feature extraction methods and
more robust matching strategies.

More recently, hand-engineered feature representation has been significantly
outperformed by CNN in almost all domains of image understanding including
object detection [12], categorization [13], and segmentation [14]. To find out an
improved solution for utilizing powerful CNN for discriminating vein patterns,
the idea of transferring the semantic knowledge encoded by both a pre-trained
CNN and the training dataset (e.g., ImageNet) as the representation of vein
patterns is proposed in this paper as the basis for constructing robust vein
recognition systems. Trained on large-scale datasets with a pre-defined archi-
tecture, CNN has been shown to achieve much better results on different image
understanding tasks [12–14] than those using traditional hand-engineered fea-
tures. Driven by the success of CNN, it is sensible to embrace deep learning for
vein recognition tasks. As shown in Fig. 1, the proposed descriptors are free from
the burstiness problem that exists in traditional SIFT features, where some of
the detected keypoints are repeated, thus degrading the discriminative ability of
the descriptors.

2 Sparse Dictionary Learning with Deep Residual
Descriptors

Based on the selected robust and discriminative deep residual descriptors, the
bag of feature (BoF) model is analyzed and deployed for final feature generation
and classification. Considering that the final descriptors for each sample should
be sparse and by setting the threshold relatively high for generating the feature
selection matrix in Stage II as shown in Fig. 1, an overcomplete dictionary and
soft membership indicators [15] are desired for obtaining good results.

2.1 Deep Residual Descriptors

In the proposed model, CNN together with its training dataset is defined as
a descriptor generation machine, and the output of the defined machine is a
discriminative feature descriptor pool as shown in Fig. 2.

When feeding a vein image into the pre-trained CNN of the machine as shown
in Fig. 1, the value of the softmax layer output, which indicates the relative simi-
larity of input to a certain class in the training data is obtained. Subsequently, by
setting a suitable threshold, the feature selection (FS) matrix can be calculated
as given in Eq. (1):

FStop-K = [F1, F2, . . . , F1000];Fi = {1, i � k; 0, other} (1)

With the matrix, the deep residual descriptors may be obtained by element-
wise matrix multiplication between FS and the original descriptor pool, as
described in Eq. (2):
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Fig. 1. Overview of the proposed deep residual descriptor generation system.

D = (FStop-K )T [D1,D2, . . . , D1000] (2)

where Di is (
M∑

j=1

dji )/M with dji being a 1× 4096-D feature vector from the pre-

vious 4096-D fully-connected layer and M is the total number of samples in each
training category. With such feature vectors describing one vein image, high-level
feature encoding methods with sparse dictionary learning algorithms are realized
for linear SVM training. Note that PCA is adopted to reduce the dimension of
the descriptors from 4096 to 1000.

2.2 Learning Discriminative Representation with SCRD

Considering the difference between the residual descriptors and the traditional
SIFT descriptors, suitable dictionary generation methods by modification to the
selected basis are analyzed.

Let X be a set of deep residual descriptors lying in a D-dimensional fea-
ture space, i.e., X = [X1, . . . , XN ]T ∈ R

N×D. The most widely used codebook
optimization model, the vector quantization (VQ) algorithm [16], is adopted by
applying K-means to solve the following objective function (3):
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Fig. 2. Deep descriptor pool of the defined machine.

min
C

N∑

n=1

min
k=1,...,K

‖Xn − Ck‖22 (3)

where C = [C1, . . . , CK ]T is the codebook to be optimized, and ‖ · ‖22 represents
the �2-norm of the reconstruction residual matrix. The encoding problem can be
solved by updating Ck with AkC, and A = [A1, . . . , AK ]T represents the recon-
struction coefficients. The overall optimization problem for solving the codebook
and coefficients simultaneously can be realized by re-formulating the objective
function (3) as:

min
C,Ak

N∑

n=1

‖Xn − AkC‖22

subject to Card(Ak) = 1, ‖Ak‖1 = 1, Ak � 0,∀k

(4)

where Card(Ak = 1) requires that only one element of Ak is nonzero, and Ak � 0
restricts that all elements of Ak are nonnegative. ‖Ak‖1 is the �1-norm operation,
which defines the summation of the absolute value of each element in Ak. Based
on these constraints, it can be concluded that the hard assignment [16] with
Card(Ak) = 1 in VQ will undoubtedly result in a coarse reconstruction with
large residual errors, thus degrading the discriminability of the coefficient repre-
sentation. When adopting VQ based dictionary generation and coding methods
for the residual descriptors, the performance will be worsened if N in X is small,
which is the prerequisite to ensure that the generated residual descriptors are
separable without intersection. To fully utilize the discriminability of the pro-
posed deep residual descriptors, different constraints are added to the dictionary
training and representation learning problems, resulting in functions (5)–(6),
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with which the off-line dictionary learning is carried out:

min
C,Ak

1
2

N∑

n=1

‖Xn − AkC‖22 + α

N∑

n=1

‖Ak‖1

subject to ‖Cj‖22 ≤ 1 ∀j ∈ {1, . . . , K}
(5)

where α is a tradeoff parameter between reconstruction error and sparsity con-
straint, and the �2-norm on Cj is used to prevent the arbitrarily small values
of Ak. After learning the overcomplete dictionary C [16], a similar model by
adding another constraint on the obtained coefficients is proposed for obtaining
the final representation:

min
Ak

1
2
‖Xn − AkC‖22 + β1‖Ak‖1 +

β2

2
‖Ak‖22 (6)

By optimizing function (6) under the �1 and �2 sparse coding scheme [16], a
discriminative and stable representation with the learned dictionary is obtained
for later classifier training and vein recognition.

To solve the recognition problem with multiple classes, the one-against-all
strategy is adopted to train multiple binary linear SVMs. Given the training
dataset {(Fi, yi)}Li=1, yi ∈ Y = {1, . . . , L}, the classifier aims at learning L
linear and binary functions {wT

c F |c ∈ Y}, and the label for a certain input F
can be predicted by Eq. (7):

y = min
c∈Y

wT
c F (7)

The parameters wc of the kernel can be obtained by solving the following
unconstrained convex function J(wc) with wc as a variable:

min
wc

{J(wc) = ‖wc‖22 + C
L∑

i=1

�L(wc, y
c
i , Fi)} (8)

where yc
i equals 1 if the class label yi is 1, otherwise yi equals −1, and �L(·) is an

improved hinge loss function defined as:

�L(wc, y
c
i , Fi) = [max(0, wT

c Fyc
i − 1)]2 (9)

3 Experiments and Discussion

3.1 Database and Baseline Model Setup

Dataset Setup. Experiments for baseline model setup and performance
comparison were conducted with the hand-dorsa vein database from CUMT-
Dataset [11], which was obtained from 98 females and 102 males with ages vary-
ing from 19 to 62. Similar to other work [11], the region of interest (ROI) for each
image in this database was extracted and normalized to a size of 224× 224 pix-
els. When carrying out experiments, half of the examples are randomly selected
as training data, and the remaining images are utilized for testing.
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As the key parameter to obtain the residual descriptor, the size for the dimen-
sion of the feature selection matrix in Fig. 1 was determined by 5-fold cross-
validation from {1, . . . , 50} with the training set. After obtaining the dimen-
sion R, PCA was adopted for transforming the R×4096 descriptors to R×1000
descriptors for better dictionary generation. For SCRD, the codebook size was
fixed as 512.

Baseline Model Setup. With the availability of the numbers of pre-trained
CNN models (e.g., VGG-16 [17], GoogLeNet [18], and ResNet-128 [19]) for
descriptor pool generation, an experiment on finding out the most appropri-
ate one for SCRD was designed, and three models including VGG-16 [17],
GoogLeNet [18], and ResNet-128 [19]) pre-trained with ImageNet were involved.
As shown in Table 1, the overall recognition rate using VGG was better than the
others for the SCRD model by a large margin, and the VGG based models were
used as the baseline for comparative experiments. Furthermore, the experimen-
tal results also reveal that the VGG based network structure is more capable of
discriminating the sparse vein structures.

Table 1. Recognition rate (%) of SCRD with different pre-trained models.

VGG GoogLeNet ResNet

SCRD 98.83± 1.02 91.25 ± 0.65 90.41 ± 0.78

3.2 Comparison with State-of-the-Arts

After obtaining the baseline formulations of SCRD, rigorous comparison exper-
iments are designed to demonstrate the superiority of the proposed model over
the current state-of-the-arts. After finding out the best parameter setup by cross-
validation with the training dataset, the genuine matching and imposter match-
ing on the testing set are conducted with the trained SCRD for obtaining the
FAR and FRR respectively, with which we obtain the EER as shown in Table 2
and Fig. 3.

To demonstrate the superiority of the proposed encoding and recognition
method over other types of CNN-based models on the hand-dorsa vein dataset,
four different kinds of formulations on utilizing CNN for vein recognition tasks.
The experimental results of these models with the hand-dorsa vein database are
listed in Table 2. It also indicates that modifying the methods of feature extrac-
tion (e.g., generating the deep residual descriptors) and feature encoding meth-
ods simultaneously may result in state-of-the-art performance. In addition, the
proposed generic approach of adopting CNN together with the training dataset
for deep descriptor generation may also be applicable to other image classifica-
tion tasks.
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Table 2. EER (%) with different pre-trained models, the benchmark performance
of the first four groups are the highlighted ones. Group 1 represents Direct Training
(DT) from scratch; Group 2 represents Fine-Tuning (FT); Group 3 represents Off-line
Feature Extractor (OFEx); Group 4 represents Off-line Feature Encoding (OFEn).A:
FingerveinNet; B: AlexNet; C: VGG; D: FV; E: VLAD.

Group DT FT OFEx OFEn Proposed

Methods A B B C B C D E SCRD

Accuracy (%) 2.089 2.711 3.104 3.641 4.215 2.835 1.028 1.031 0.016

Fig. 3. Comparison of ROC curves between the proposed models and representative
hand-engineered methods including (left) SIFT-based models, (middle) LBP-based
models, and (right) Geometrical feature-based models.

Comparison with Hand-Engineered Feature Based Models: The specific EER
results of different models are shown in Fig. 3. Judging from the EER result of
identification with the hand-dorsal vein database, it can be concluded that the
proposed deep residual descriptor encoding models perform better than the local
invariant feature (LIF) models with an EER of 0.016whereas the best of LIF is
0.820 of LBPs is 0.058 recognition results fully demonstrate the ability of the
proposed model in discriminating the sparse vein patterns with high inter-class
similarity.

Comparison with Geometrical Feature-Based Models: As can be seen from
the samples, different topological patterns between images make it possible to
use vein patterns for authentication. In this section, four representative meth-
ods including the maximum curvature (MC) from [20], the wide line detector
(WLD) [5], the principal curvature (PC) [21] and the repeated line tracking
(RLT) method from [22] are selected for performance comparison. The specific
EER results of different models are shown in Fig. 3.

As shown in Fig. 3, similar to the results from models based on hand-crafted
features, large performance improvements using the proposed model over the
other representative methods are shown as ranging from 1.841% to 3.005% on
the hand-dorsa vein dataset. Besides, by comparing the results in Fig. 3, the per-
formance gap between the best hand-crafted feature (DLBP) and the best geo-
metrical feature (MEC) indicates the limitation of geometrical features, which
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can only work well on some specific patterns [23] and are sensitive to differ-
ent variations. However, benefited from the proposed discriminative knowledge
transfer mechanism and the hierarchical descriptor encoding methods (e.g., the
sparse coding in this paper), the proposed model performs well across different
biometrical patterns, as evidenced by the superior results with the palmprint
datasets described in the following section.

3.3 Generalization Ability Evaluation

Table 3. Summary of EERs derived from recently published palm vein recognition
models using PolyU Multispectral Palmprint database.

Method Performance (EER %)

NPVM [24] 0.557

OPI [25] 0.012

NMRT; Hessian [26] 0.004; 0.430

CCGF [27] 0.102

CPOF [28] 0.140

QSHVR [11] 0.079

Proposed 0.021

In addition to the comparative experiments with hand-dorsa veins, the PolyU
Multispectral Palmprint Database was employed in this section to evaluate the
generalization ability of the proposed deep residual descriptor generation and
encoding algorithms, and only the NIR images of the PolyU database were used
for matching since the focus of the experiment is palm-vein identification. Similar
to the experiments setup in the previous sections, the NIR part of the whole
dataset is split into training and testing components randomly, with each of
them containing the same number of samples. The best parameter configuration
for SCRD is obtained by 5-fold cross-validation on the training dataset. After
finishing the training of palm-vein matching models, the genuine and imposter
matching are conducted on the testing set for obtaining the EER as reported in
Table 3 and Fig. 3, the proposed framework, utilizing deep residual descriptors
for pattern encoding and sparse coding for classification, is robust and general
for vein pattern based person identification.

4 Conclusion

The main contribution of this paper is a completely new knowledge transfer con-
cept of defining a pre-trained CNN together with its training dataset as a robust
descriptor pool, from which representation knowledge is transferred to enrich
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the domain-specific image representation and to increase the final classification
results. With the deep residual descriptor generation mechanism, discrimina-
tive representations for describing the sparse vein patterns with high inter-class
similarity were obtained by the proposed SCRD model, which incorporated the
sparse dictionary learning scheme for improving the semantic properties of the
representation. VGG was adopted as the basis for generating the baseline model,
and rigorous comparative experiments with both CNN-based models and other
state-of-the-art algorithms demonstrate the representation and generalization
ability of the proposed model. Furthermore, research on utilizing the proposed
model for other domain-specific image recognition tasks is ongoing.
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Fundamental Research Funds for the Central Universities under Grant 2023Q N1077.
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Abstract. Authentication through hand texture features is one of the
crucial directions in biometric identification, and some recognition meth-
ods based on traditional machine learning or deep learning have been pro-
posed. However, the generalization ability of these methods is not satisfy-
ing due to the different entities, backgrounds, and sensors. In this paper,
based on the three modalities of fingerprint, fingervein, and palmprint,
the texture prior knowledge extractor (PKE) is innovatively designed as
a unified paradigm for texture extraction, aiming to improve the model
generalization ability through prior knowledge. The feature vectors of
texture images are obtained for matching by a knowledge embedding
extractor (KEG) based on the Siamese Network. The credibility algo-
rithm is proposed for multimodal decision-level feature fusion. Cascad-
ing PKE and KEG is our proposed multimodal biometric generalization
model MultiBioGM. Experimental results on three multimodal datasets
demonstrate the effectiveness of our model for biometrics, which achieves
0.098%, 0.024%, and 0.117% EERs on unobserved data.

Keywords: Biometric · Multimodal fusion · Generalization · Prior
knowledge

1 Introduction

Domain D can be defined as a hypothetical feature space X and a marginal
probability distribution p (X), where the sampling space X = {x1, ..., xN} ∈ X .
Biometric recognition has made great progress with the rise of machine learning,
but most are based on the assumption that the sample data are independent
and identically distributed. If the p (X) of the test data domain differs from the
training domain, e.g., different environmental backgrounds and different sensors
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used for sampling, the performance of the model will be degraded [1], which
often needs to be solved by retraining or fine-tuning the model. For traditional
methods, different data domains require different parameters to be set to extract
features for recognition, and method procedures also need to be improved if
necessary. Alternatively, overfitting is due to the pursuit of high recognition
accuracy in the training set to the extent that it performs poorly on new samples
that the model has not observed in an individual. Convex optimization and
regularization is a good solution in this case.

To address the above issues, we propose MultiBioGM, a hand multimodal
biometric generalization model that can be used across datasets, which enhances
the generalization performance through human prior knowledge and solves the
open-set problem through deep metric learning. Excellent recognition results can
be achieved without retraining or parameter tuning on unobserved data. To the
best of our knowledge, MultiBioGM is the first hand multimodal recognition
model that combines fingerprints, fingerveins, and palmprints.

From the human prior knowledge, it is known that the hand texture features
of different individuals are unique. Therefore, we utilize the U-Net network with
an attention mechanism to learn stable texture intermediate domains DM as
the prior knowledge and change it to a multichannel stacked input structure to
accomplish the multimodal texture extraction task through a single model. In
order to balance the three modal of supervised training, we propose the proba-
bilistic balancing algorithm. For the pixel sample imbalance problem, the origi-
nal cross-entropy loss is replaced by focal loss, and the γ factor is modified to a
smoothed γ factor. We named the improved prior knowledge extractor Balanced
Stacked Network (BSNet). Feature vectors of the prior knowledge are obtained
through the Siamese Network to be matched using the proposed multimodal
decision-level feature fusion credibility algorithm. We provide the related code
at https://github.com/ZacheryZhang/MultiBioGM. The multimodal dataset is
combined using multiple publicly available unimodal datasets that do not inter-
sect, and the specific dataset information is shown in Table 1.

Table 1. Information about the combined multimodal datasets

Multimodal Fingerprint Fingervein Palmprint Categories Samples

Union DB1 FVC2000-DB1 [2] FV-USM [3] IITD [4] 80 400

Union DB2 NUPT-FPV [5] SCUT FVD [6] MPD [7] 100 500

Union DB3 NIST SD-10 [8] MMCBNU [9] TCPD [10] 550 5500

The rest of the paper is organized as follows. In Sect. 2, we discuss the related
work and the feasibility of our model. Section 3 describes the proposed model
MultiBioGM in detail, and Sect. 4 shows our experiments on three different mul-
timodal datasets and analyzes the results. Finally, Sect. 5 summarizes the present
work and provides recommendations for future research.

https://github.com/ZacheryZhang/MultiBioGM
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2 Related Work

One of the reasons for the rise of deep learning is the automation of the fea-
ture extraction process, the convolutional neural network (CNN) is the most
popular deep learning model in computer vision, Radzi et al. [11] successfully
introduced CNN into biometrics earlier. However, the performance of neural
networks in unconstrained environments is challenged and often requires more
training data and a more refined network structure to improve performance [12].
Domain transfer is another approach to address the performance degradation of
neural networks under unconstrained conditions. Shao Huikai et al. [13] proposed
using an autoencoder as a domain transfer method to accomplish cross-domain
recognition of palmprints. Nevertheless, such methods must train new knowledge
transfer models for different data domain samples.

Bimodal fingerprint and palmprint [14], fingervein and palmprint [15], and
fingerprint and fingervein [16] recognition methods have been proposed and
achieved recognition accuracies of 98.82%, 94.12%, and 99.70%, respectively.
Multimodal biometrics can outperform the traditional single-modal methods,
but most do not consider the generalization performance of the models. The
probability distributions are often different for heterogeneous datasets, and tra-
ditional deep learning methods need to learn as many different distributions as
possible [11]. However, the differences are often due to redundant image infor-
mation. It is feasible to use human prior knowledge to select features and thus
ignore redundant information, e.g., Rijun Liao et al. [17] proposed a gait recog-
nition method based on pose estimation, which reduces the influence of the view
background and clothing by extracting spatiotemporal features of the pose by
human design in order to improve the robustness of the system.

In the multimodal fusion problem, the model-independent approach is the
basic idea of traditional multimodal fusion [18], which can be divided into fea-
ture fusion, decision fusion, and hybrid methods, and the credibility algorithm
proposed in this paper is a decision fusion method.

3 Proposed Method

MultiBioGM accomplishes multimodal recognition tasks with a secondary struc-
ture, including a texture prior knowledge extractor PKE and a knowledge embed-
ding generator KEG (see Fig. 1). PKE processes the different modality original
images to obtain the prior knowledge images as the input of KEG. The embed-
ding vectors obtained by KEG and those stored in the template repository are
fed into the credibility algorithm to obtain matching results.

3.1 Prior Knowledge Extractor (PKE)

BSNet is proposed to simultaneously accomplish the task of image semantic seg-
mentation of fingerprint, fingervein, and palmprint by superimposing the chan-
nels based on U-Net. For the goal of better unrelated information elimination,
we use the attention mechanism to learn the DM representation.
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Fig. 1. The structure of MultiBioGM

DM is obtained by eliminating the feature dimensions with low or redundant
recognition contributions from the original sample space to obtain the dimen-
sionality reduction subspace. Compared with the disordered distribution and
large class spacing of the original data (Fig. 2b), the dimensionality reduction
results in a uniform distribution of the data falling into the hypersphere (Fig. 2a),
which enables the data to be mapped into a uniform feature space. Unlike lin-
ear transformation dimensionality reduction such as PCA, this method intu-
itively enhances the dimensionality reduction interpretability. The unobserved
data can be more uniformly distributed in X, improving the recognition model’
generalization performance. The image segmentation soft labels are obtained by
extracting the texture grayscale images of fingerprints, fingerveins, and palm-
prints using traditional methods, where the grayscale images’ values are viewed
as the probabilities of being a texture. However, since the probabilities in the soft

Fig. 2. Different datasets after t-SNE visualization



110 Z. Zhang et al.

labels obtained by different traditional methods tend to be unbalanced (Fig. 3), it
leads the model to segment only the modalities with greater overall gray values.
Therefore, our proposed probabilistic balancing algorithm processes the labels
in real time during training, clarifying the pixel points’ predicted probabilities
and solving the training underfitting problem.

Fig. 3. Probability imbalance labels

The probabilistic balancing algorithm first selects the top λ gray values in the
corresponding channels of the three modes to compute the mean triple (p̄0, p̄1, p̄2)
and selects the maximum mean among them, p̄ = max (p̄k), where k = 0, 1, 2,
and the channels corresponding to p̄ are maximally probabilistically comple-
mented through Eq. 1.

M = M
(

1 +
1 − p̄

p̄

)
(1)

where M is the channel image, after the maximum probability complementation
then recalculate the highest μ gray values of the mean triple (p̄0

′
, p̄1

′
, p̄2

′
), and

the probabilities of the different channels are then separately balanced with
weighting through Eq. 2.

Mk = Mk

max
(
p̄k

′
)

p̄k
′ , k = 0, 1, 2. (2)

λ and μ are hyperparameters. The probability distributions of different
modalities before probabilistic balancing are messy (Fig. 4a), especially for the
finger vein dataset FV-USM, but after applying the algorithm, it is evident that
different modalities obey similar probability distributions (Fig. 4b).

Since the texture foreground pixels as positive samples occupy less in the
overall image (Fig. 3a), there exists the problem of unbalanced sample distribu-
tion, so the focal loss is used to replace the original cross-entropy loss. The γ
factor is modified to be the smoothing γ factor, which ensures that difficult clas-
sification of samples to learn the effect at the same time without excessive loss
of easy classification of samples of concern, the modified loss function is shown
in Eq. 3.

Lbfc(p, y) = −αy(1 − p)log(γ) log(p) − (1 − α)(1 − y)plog(γ) log(1 − p) (3)



MultiBioGM: A Hand Multimodal Biometric Model 111

Fig. 4. Kernel density estimation (KDE) image presentation in Union DB1 dataset

p is the predicted probability, and y is the true labeling probability. In addi-
tion, adjusting α can make the positive examples learn better.

3.2 Knowledge Embedding Generator (KEG)

Algorithm 1. Credibility algorithm
Input: The group of trimodal images to be matched (x, y, z), i-th match in the tem-

plate database (xi, yi, zi).
Output: Result of matching success or failure.
1: result ← success
2: credibility ← 0
3: step ← 1

4: dists ←
∥
∥
∥f̂ (x, y, z) − f̂ (xi, yi, zi)

∥
∥
∥
2

5: for dist in dists do
6: if dist <= threshold then
7: credibility ← credibility + step
8: end if
9: end for

10: if credibility = step then

11: if
∥
∥
∥f̂ (y) − f̂ (yi)

∥
∥
∥
2
> threshold then

12: result ← failure
13: end if
14: else if credibility = 0 then
15: result ← failure
16: end if
17: return result

In the KEG section, we use MobileNetV2, a widely used computer vision model
known for its ability to extract image features. This model uses a deeply separa-
ble convolution technique that helps to create a lightweight network. To ensure
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that the model can be applied to various scenarios, we incorporate MobileNetV2
as the backbone of the Siamese Network. We use the triplet loss optimization
target to generate image embeddings, which is well-suited for detecting slight
texture differences. During the model inference phase, we only utilize one of the
branches to map the image features into hyperspace. The expression for triplet
loss can be found in Eq. 4.

Ltriplet =
N∑
i

[
|f (xa

i ) − f (xp
i )|2 − |f (xa

i ) − f (xn
i )|2 + δ

]
(4)

The input is triple (xa
i , xp

i , x
n
i ), which are the anchor sample, the positive

sample, negative sample, and i stands for being the i-th input. xp
i are samples

from the same individual as the anchor example, xn
i are samples from different

individuals. f (x) represents the image embedding generated by the backbone
network, and δ is a positive real constant that serves to prevent model training
from taking shortcuts by placing the embeddings of xn

i closer to xp
i resulting in

a lower loss.
Let f̂ be the trained KEG and f̂(x) be the embedding vector of the input

image x. In order to realize accurate multimodal recognition, we propose the
credibility algorithm for decision-level feature fusion, which is described in Algo-
rithm 1.

4 Experiments

4.1 Implementation Details

In our experiments, the biometric images were uniformly resampled to 256× 512
size, and the images were all feature enhanced using the CLAHE algorithm. We
trained the BSNet using only 80% of the data from Union DB1, in addition, only
60% of the fingervein data from Union DB1 was selected for training the Siamese
Network, and the rest of the data was used for testing. The hyperparameters of
the BSNet in the PKE were set to α = 0.25, λ = 5, μ = 20, γ = 10, batch size
was four and trained for 250 epochs, and the learning rate was set to 0.0002.
The KEG’s Siamese Network width multiplier is set to 1, and 10 epochs are
fine-tuned on the model based on ImageNet. All experiments were performed on
eight Nvidia Tesla v100 GPUs.

4.2 Evaluation and Analysis

The performance of MultiBioGM on unimodal datasets was first tested (see
Fig. 5). On the left side are the ROC curves of the model on different datasets,
which shows that the model still has a notable capability on unimodal, and on the
right are the samples of the original images. The examples of the prior knowledge
images extracted by PKE, which are fingerprint, fingervein, and palmprint from
top to bottom, show that it is clear the irrelevant information has been effectively
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Fig. 5. Single modal testing

removed, and the texture information used for recognition has been accurately
preserved.

To demonstrate the effectiveness of MultiBioGM, the performance of no prior
knowledge and plain U-Net based on the same KEG and multimodal decision
benchmarks were tested, as shown in Table 2.

Table 2. Biometric performance testing

Union DB1 Union DB2 Union DB3

EER(%) F1(%) AUC(%) EER(%) F1(%) AUC(%) EER(%) F1(%) AUC(%)

KEG 7.21 80.528 77.460 13.68 75.371 71.550 26.13 63.705 67.132

U-Net+KEG 4.368 83.965 81.463 6.769 73.465 79.104 11.928 80.747 74.013

MultiBioGM 0.098 97.655 99.487 0.024 95.817 98.680 0.117 94.864 95.054

A horizontal comparison reveals that the recognition methods without prior
knowledge, especially on the large-scale dataset Union DB3, all have declined in
the generalization performance of the model, and the model does not have a good
performance improvement against different data distributions. By removing the
irrelevant background, plain U-Net performs well on the datasets involved in
training, with a slight performance improvement on the other datasets. Verti-
cally, if prior texture knowledge is not well learned, i.e., features are missing,
the model’s recognition performance is even worse than that of a model with
no prior knowledge, but with our proposed PKE, the model will learn accurate
texture knowledge and obey a uniform data distribution (Fig. 6). Combined with
our proposed MultiBioGM framework and plausibility algorithm, the EER was
reduced by 13.656% and 26.013% on heterogeneous datasets.
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Fig. 6. Kernel density estimation (KDE) image in three multimodal datasets

5 Conclusion

This work introduces human prior knowledge into a multimodal biometric model
based on hand features and achieves good generalization performance. U-Net is
improved to achieve good prior knowledge learning, and a credibility algorithm
is proposed to achieve multimodal decision fusion. The prior texture knowledge
learning is the decisive factor for the subsequent recognition effect, so the better
and lighter PKE texture extraction structure is a promising improvement direc-
tion in the future, and the generative model can also complement the feature
information inference to improve the model performance.
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Abstract. Learning age estimation from face images has attracted much
attention due to its favorable of various practical applications such as age-
invariant identity-related representation. However, most existing facial
age estimation methods usually extract age features from the RGB
images, making them sensitive to the gender, race, pose and illumina-
tion changes. In this paper, we propose an end-to-end multi-feature inte-
grated network for robust RGB-D facial age estimation, which consists
of a 2D triple-type characteristic learning net and a 3D depth features
leaning net.The triple-type characteristic learning net aims to extensively
exploit multiple aging-related information including the gender, race fea-
tures as well as the preliminary age features from RGB images, while
the depth-feature learning net learns the pose and illumination-invariant
age-related features from depth images. By incorporating these multi-
dimensional feature nets, our proposed integrated network can extract
the robust and complementary age features between RGB and depth
modalities. Extensive experimental results on the widely used databases
clearly demonstrate the effectiveness of our proposed method.

Keywords: Age estimation · RGB-D images · Multimodal ·
Multi-feature fusion

1 Introduction

Age estimation attempts to predict the real age value of a subject from one’s
face images, which has drawn wide research attentions in recent years due to
its broad practical applications such as age-invariant identity-related represen-
tation, demographics analysis and human-computer interface [1]. Over the past
decades, there have been a number of methods proposed for facial age estima-
tion, which can be roughly classified into two categories: single-feature-based and
multi-feature-based methods. The single-feature-based methods mainly extract
the age features from an RGB image for age estimation. For example, Akbari et
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al. [2] proposed an optimal transport-based learning framework for chronologi-
cal age estimation from a face image. Giovanna et al. [3] designed a fully auto-
mated system to perform face detection and subsequent age estimation based on
RGB image. However, the face age of facial images is the typical demographic
attribute, which is usually affected by several factors such as gender and race in
age estimation [4,5].

To improve the accuracy of age estimation, many recent studies have focused
on multi-feature learning [6,7]. For example, Kong et al. [8] proposed a deep
multi-stream ordinal facial age estimation network by learning multiple global
and contextual feature through a spatial attention mechanism. Deng et al. [6]
proposed a two-stream convolutional neural network to simultaneously learn the
age and gender features for age estimation. More state-of-the-arts can be found in
the recent facial age estimation survey [9]. However, these multi-feature methods
are usually sensitive to variations in pose and illuminations. It is well recognized
that depth image is robust to variations in illuminations pose and can provide
the complementary depth information of the facial features, and recent studies
also show that multi-features learned from RGB-D images can achieve significant
performance improvement on various vision task [10]. Motivated by this, in this
paper, we utilize both RGB and depth images for aging feature learning and age
estimation.

In this paper, we propose a joint multi-feature learning network for robust
facial age estimation based on RGB-D face images. Specifically, we simultane-
ously learn multiple features including the preliminary age features, race features
and gender features from RGB images, and learn the depth features from the cor-
responding depth images. Then, inspired by the fact that attention mechanism
can focus most on specific feature learning, we concatenate these feature maps
based on a channel attention module to learn the robust aging features. Finally,
we use a regression-rank age estimator to predict the final age number, which
can better utilize the order and continuity of age labels. Experimental results on
the widely used database show that our proposed network successfully learns the
robust age features from RGB-D face images and achieves promising estimation
performance.

The main contributions can be summarized as follows:

• We propose a joint 2D and 3D feature learning network for robust facial age
estimation based on RGB-D images. By integrating the complementary 2D
and 3D features, our proposed method can learn more discriminative age
features, and show promising robustness to variations in gender, race, pose
and illuminations.

• Unlike traditional multi-feature fusion, we use a channel attention module to
fuse the preliminary age, gender, race and depth feature map for adaptive
feature refinement and further learn robust age feature from the refined joint
features.

• We conduct extensive experiments on the baseline databases and the exper-
imental results clearly show that our proposed method achieves higher age
estimation accuracies than other state-of-the-arts.
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The remainder of this paper is organized as follows. Section 2 reviews the
related work. Section 3 shows the details of our proposed method. Section 4
presents the experimental results. Section 5 draws the conclusion of this paper.

2 Related Work

In this section, we briefly review two related topics, including the feature learning
of RGB-D images and the facial age estimation.

2.1 Feature Learning of RGB-D Images

RGB images have been widely used for feature learning and representation in
pattern recognition and computer vision tasks. However, they only contain the
2D information of the objects, which usually show large intra-class variances due
to pose and illumination changes. To address this, RGB-D images, which contains
not only 2D RGB descriptions but also the depth-based information, has been
successfully used for feature learning. In recent year, there have been a number
of feature learning methods based on RGB-D images for pattern recognition.
For example, Grati et al. [11] designed a RGB-D learned local representation for
face recognition based on facial patch description and matching. Uppal et al. [10]
proposed a two-level attention-based fusion learning for RGB-D face recognition,
which uses LSTM recurrent learning to fuse the feature maps of two modalities.
In this work, we jointly learn multi-type and multi-dimensional features from
RGB-D images for facial age estimation.

2.2 Facial Age Estimation

The facial age estimation aims to estimate the age number of a face, which can be
treated as the typical multiple classification problem. For example, Zheng et al.
[12] proposed a PCANet for age estimation, which treating each age as an inde-
pendent category. However, age is a continuous and ordered value. Therefore, to
make use of the continuity or order of age label, there has been various regression-
based and ranking-based methods proposed for age estimation in recent years.
For example, Xie et al. [13] used a expected value on the softmax probabilities
to calculate the regression age. Chen et al. [14] proposed a ranking-CNN model
by converting age estimation problem into multiple binary classification tasks.
Inspired by existing studies, in this paper, we simultaneously utilize regression
and ranking age prediction schemes to convert the age features into the final age
number.

3 Proposed Method

In this section, we first present the overall framework of the proposed method.
Then, we show how to perform the multi-feature learning and fusion of RGB-D
images for age estimation.
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Fig. 1. An overview of the proposed method. We first use four subnetworks to learn
the gender, preliminary age, race and depth features from the RGB-D images. Then,
we fuse these features based on the channel attention module and learn robust age
feature from the refined joint feature. Finally, we input the robust age feature into the
regression-ranking estimator to predict the final age.

3.1 The Framework of Proposed Network

Human aging estimation has several affected factors such as identity, gender,
race, and extrinsic factors. In addition, RGB-based age estimation methods are
sensitive to pose and illumination changes [10,15]. To overcome these, we aim
to learn multiple features from RGB-D images and fuse them to form the more
robust features for age estimation. Figure 1 shows the basic idea of the pro-
posed method, which mainly consists of multi-feature learning and fusion. For
multi-feature learning, we utilize three subnetworks to learn gender, race and
preliminary age features from RGB images, respectively. Then, we utilize one
subnetwork to learn depth features from the corresponding depth images. For
multi-feature fusion, we first use a channel attention module to connect the mul-
tiple types of feature maps. Then, we utilize a ConvNet to further learn the
robust age features. Finally, we fed the robust age features into the regression-
ranking estimator [14] to predict the final age. In the following, we present the
detailed procedures of the multi-feature learning and fusion of our proposed
method.

3.2 Multi-feature Learning

To learn more discriminative and robust features, we employ four subnetworks
to learn the preliminary age feature, gender feature, race feature and depth
feature from RGB-D images. As shown in Fig. 1, each subnetwork consists of 4
convolution blocks and 1 fully connected layer. Each convolution block includes a
convolutional layer, a nonlinear activation, a batch normalization, and a pooling
layer. For the GenderNet, the output of fully connected layer is a two-bits vector
such as [1, 0] for male and [0, 1] for female. For the RaceNet, the output of fully
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connected layer is a three-bits vector such as [1, 0, 0] for Asian, [0,1,0] for African
and [0, 0, 1] for European. For the AgeNet and DepthNet, the output of fully
connected layer is a one hundred-bits vector, which represents the preliminary
age such as [1, 0, . . . , 0] for 1 year old and [0, 0, . . . , 1] for 100 years old. Inspired
by the fact that the feature map of the last convolution layer contains more
discriminative features, we select the feature maps from the last convolution
blocks of each subnetwork to represent the gender features, the race features,
the preliminary age features and the complementary depth features. After that,
we fuse these features based on channel attention mechanism for robust age
estimation.

3.3 Multi-feature Fusion

Having learned multiple features from RGB-D images, we further fuse the
gender features, race features, the preliminary age features and the comple-
mentary depth feature maps based on the channel attention module. Thus,
the learning network can focus most on those feature maps with more con-
tribution. Specifically, we first denote Xg

i ,Xa
i ,Xr

i and Xd
i ∈ Rc×w×h as the

gender, age, race and depth feature maps, respectively, and the joint feature
map=[Xg

i ,Xa
i ,Xr

i ,Xd
i ] ∈ R4c×w×h is formed by channel connection. Then, the

joint feature map is reshaped to 4C vectors by max-pooling and fed into channel
attention module, which is composed of multi-layer perceptron with one hidden
layer. The output of the attention module is θam ∈ R4C×1, which is normalized
to [0, 1] with the sigmoid function. Third, the refined joint feature maps are
calculated as:

F
′
= F × θam, (1)

where F is the joint feature map and F
′

indicates the refined the joint feature
map. After that, we feed the refined joint features F

′
into the traditional Con-

vNet to further learn the robust age feature. Finally, we input the robust age
features into the regression-ranking estimator to predict the final age.

4 Experiments

In this section, we conducted age estimation experiments on the IIIT-D (RGB-
D) dataset [15,16] to evaluate the performance of our proposed method. Our
method was implemented within the PyTorch framework and the parameters
of the proposed networks were all initialized with the Xavier initialization. In
addition, the Adam was used as the optimizer. The learning rate and batch size
were empirically set to 0.001 and 16, respectively. The RLRP algorithm was
used to automatically adjust the learning rate. All experiments were performed
on the same machine with a GTX 2060s graphics card (including 2176 CUDA
cores), a i5-9600KF CPU, and a 32 GB RAM.



124 W. He et al.

4.1 Datasets and Preprocessing

The IIIT-D dataset contains 4,605 RGB-D images of 106 subjects. Due to its
limited samples, to enlarge the sample set, we first flip each image to obtain two
mirror-symmetric samples and then rotate them by ±5◦ and ±10◦. Moreover, we
add Gaussian white noise with variance of 0.001, 0.005, 0.01, 0.015 and 0.02 on
the original and the synthetic samples, such that each RGB-D image is finally
extended to 40 samples. Figure 2 shows the typical samples selected from the
IIIT-D dataset. In addition, we used MORPH2 (RGB) [17], FG-NET (RGB)
[18], and LAP (RGB) [19] datasets to pre-train the GenderNet, AgeNet and
RaceNet.

Fig. 2. Some typical RGB and the corresponding depth images selected from the IIIT-
D dataset.

4.2 Comparisons with the State-of-the-Art

To evaluate the performance of our proposed method on age estimation, we
compare the proposed method with four representative age estimation methods,
including the MFCL [20], FRUK [15], DCCFL [21], and TAFL [10]. Following
the standard age estimation proposal [22], we first train our method based on
training samples. Then, we predict the age number of the testing samples to cal-
culate the Mean Absolute Error (MAE) [23]. Table 1 tabulates the age estimation
results of different methods on the IIIT-D databases.

Table 1. The MAEs of different age estimation methods on the IIIT-D databases.

Method Modality Fusion MAEs

MFCL [20] RGB – 4.92

FRUK [15] RGB-D Score-based 4.34

DCCFL [21] RGB-D Feature-based 3.89

TAFL [10] RGB-D Attention-based 3.74

Ours RGB-D Attention-based 3.56

From Table 1, we can see that our proposed method consistently outperforms
the compared RGB-D-based methods by achieving lower MAEs.This is because
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our proposed method can extensively exploit the age-related features, such as
the gender, race, age and depth features. Moreover, our proposed network con-
catenates the multiple age-related feature maps based on a channel attention
module, such that more adaptive aging features can be refined. In addition, we
utilize a regression-ranking age estimator to predict the final age, such that our
proposed method can make a better trade-off between the continuity and order
of the age label. It is also noted that the RGB-D-based methods perform bet-
ter performance than the RGB-based methods for age estimation. The possible
reason is that RGB and depth images contains two modalities of information
(face texture and 3D shape information), which provide more complementary
robust age-related features, such that a better age estimation performance can
be obtained.

4.3 Ablation Analysis

It is seen that the proposed network comprises of four components: the Gen-
derNet, RaceNet, AgeNet and DepthNet. To better evaluate the effectiveness of
each component, in this section, we conduct ablation experiments to analyze the
performance of them. Specifically, we remove each component from the proposed
network and use the remainder to perform age feature extraction and calcula-
tion, including the proposed networks (a) without embedding GenderNet (joint
feature without Xg

i ), (b) without embedding RaceNet (joint feature without
Xr

i ), (c) without embedding AgeNet (joint feature without Xa
i ) and (d) without

embedding DepthNet (joint feature without Xd
i ). Figure 3(a) shows the MAEs

of the comparative experiments based on different components of the proposed
network on the IIIT-D dataset. We can see that the performance of the proposed
method is obviously reduced when any component is removed from the network,
demonstrating the effectiveness of the each component of the proposed network.

Fig. 3. The MAEs of the proposed method with (a) removing various components, and
(b) various fusion mechanism on the IIIT-D dataset.
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In addition, our proposed network uses the channel attention mechanism
based on max-pooling to fuse multiple features for age estimation. To validate the
effectiveness of our fusion method, we compare our fusion mechanism with three
cases: including the proposed networks (a) without using channel attention mech-
anism, (b) with using channel attention mechanism based on average-pooling,
(c) with using channel attention mechanism based on both max and average-
pooling. Figure 3(b) depicts the experimental results of the proposed network
with various fusion mechanism. It is observed that case (a) without using chan-
nel attention mechanism has the worst performance. This demonstrates that the
channel attention mechanism can better extract the age-specific features. Com-
pared with case (c) and our proposed method, case (b) with channel attention
mechanism based on average-pooling achieves an obvious lower MAE. This is
probably due to the fact that depth data is noisy. The case (b) based on the
average-pooling possibly extracts more noise features than the max-pooling and
max-average-pooling-based features.

5 Conclusion

In this paper, we propose a multi-modal learning framework for RGB-D age esti-
mation. We first simultaneously learn multiple age-related features including the
preliminary age features, race features and gender features from RGB images,
and further learn the depth features from the corresponding depth images. Then
we present a channel attention module based on max-pooling to effectively
fuse the multiple features, such that more robust age-specific features can be
obtained. Finally, we input the robust age features into regression-ranking esti-
mator to predict the final age. Extensive experimental results on the widely used
databases clearly demonstrate the effectiveness of our proposed method.
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Abstract. Human identification using tooth plays a crucial role in disaster victim
identification. Traditional tooth recognition methods like iterative closest point
(ICP) require laborious pairwise registration, so in this paper we focus on deep
learning methods for human identification using tooth. We propose a complete
workflow for tooth segmentation and recognition based on PointNet++ using the
3D intraoral scanning (IOS) model. Our method consists of two main compo-
nents: an improved PointNet++ based tooth segmentation approach and a tooth
recognition method that combines curvature feature extraction with improved
PointNet++ using the segmented tooth part. To evaluate the identification method,
we collect 240 IOS models, in which 208 models are used for training, and 32
models acquired for the second time are used for testing. The experimental results
achieve a recognition accuracy of 96.88% on the test set, which demonstrates the
potential of using the IOSmodel and deep learning methods for fully-automatedly
human identification using tooth.

Keywords: 3D intraoral scan · human identification using tooth · tooth
segmentation

1 Introduction

Human identification is one of the important issues inmodern society. Technologies such
as fingerprint recognition and facial recognition have been applied in various aspects of
life, such as unlocking mobile devices and access control systems. However, in large-
scale disasters, some commonly used biometric features for identity recognition, such
as face, fingerprints and iris, can be easily damaged, making it difficult to identify the
victims. Human identification using tooth (hereinafter referred to as tooth recognition) is
a reliable method of identification after large-scale disasters because tooth, being one of
the hardest tissues in the human body, are better preserved. Currently, DNA comparison
technology is the most widely used and effective individual identification technique in
forensic science. However, the investigation of mixed traces still poses a challenge in
forensic DNA analysis [1]. In addition, in cases such as identical twins and bone marrow
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transplants,DNA is unable to accurately identify individuals [2]. In these situations, tooth
recognition remains a valuable complementary method.

Common dental imaging techniques include panoramic dental radiographs (PDR),
cone-beam computed tomography (CBCT) and intraoral scanning (IOS). PDR employs
X-rays to generate 2D images of the oral cavity, providing information about the teeth and
their internal structures. CBCT provides high-resolution 3D images that can capture fine
details of the teeth and oral structures. However, CBCT requires expensive equipment
and specialized technical support, making it challenging to perform CBCT scans on
victims after large-scale disasters. IOS (see Fig. 1) is a non-radiation-based method
that is considered safer for patients. It enables fast acquisition of 3D images of the oral
structures, making it convenient for capturing and comparing data of victims. Therefore,
we choose IOS data for identity recognition research.

Fig. 1. An IOS model

Deep learning methods are employed for tooth segmentation and recognition in
this study because they can automatically learn useful features without the need for
manual feature engineering and exhibit better robustness in handling issues such as noise,
deformation, and scale variations in dental models. Compared to traditional iterative
closest point (ICP) [3, 4] methods that require laborious pairwise registration, deep
learning methods are more suitable for large-scale dental sample identification tasks.

Since 3D intraoral scanning captures complete information of the teeth and gingiva,
we first perform tooth segmentation on the IOS models, then utilize the segmented tooth
regions for identity recognition. PointNet [5] is a classic method for deep learning on
point clouds and can be used for segmentation and recognition of IOSmodels. However,
the PointNet series utilizes max pooling to obtain global features for recognition, which
ignores other features besides the maximum feature. In this paper, an improved model
is proposed based on PointNet++ [6], where the input of the model is augmented with
curvature information to enhance the important features such as tooth fissures that are
crucial for recognition and the network structure replaces max pooling with a weighted
feature aggregation mechanism (WFA) to better perform feature aggregation. The pro-
posed method has two different networks for segmentation and recognition, enabling
automatic segmentation of the tooth region in IOS models and identity recognition.

The main contributions of this paper are as follows:

1. A complete workflow for segmenting the tooth region in IOS models and performing
identity recognition.

2. Using deep learning recognition networks to perform tooth recognition instead of
superimposition to fill the gap in this field of research.
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3. The introduction of curvature extraction and weighted feature aggregation to
overcome the limitations of the PointNet++ model.

By employing the proposed method for segmenting IOS models and performing
recognition, the identity recognition accuracy achieves 96.88% on 32 tooth models.

2 Related Works

Tooth recognition is commonly used to determine the identities of victims in large-scale
disasters such as tsunamis and earthquakes. Traditionalmethods of tooth recognition rely
on manual comparison of dental records. However, relying on manual identification is
slow and inefficient. Since 2004, several studies [7, 8] have developed different methods
for encoding teeth and dental arches in PDRs for personal identification. These methods
utilize traditional computer vision techniques to manually design feature extraction and
feature matching methods for individual identification. However, they lack generaliz-
ability and work well in small-sample environments but struggle to perform on larger
datasets.

Given the advancements of deep learning in the field of face recognition, some
studies have applied deep learning algorithms to tooth identification from 2D images.
This approach avoids the need for manual feature design in traditional methods and
enhances generalizability. Fan et al. proposed DentNet [9] using convolutional neural
networks to extract features from PDRs for identity verification, achieving an accuracy
of 85.16%on a test set of 173 individuals. Lai et al. proposed LCANet [10], which further
improved the accuracy of deep learning-based tooth recognition algorithms. However,
these methods primarily rely on 2D images for recognition, and compared to 3D images,
they contain less information.

Currently, human identification using 3D tooth models involves performing 3D
superimposition of pre-mortem and post-mortem models and quantitatively analyzing
the degree of overlap for tooth recognition. The superimposition procedure requires
point cloud registration, for example Cheng et al. [11] used correspondence-based six-
degree-of-freedom (6-DoF) pose estimation for 3D point cloud registration. Gibelli et al.
conducted 3D-3D superimposition of tooth morphology on a small sample size, specif-
ically the maxillary first and second molars on both sides, demonstrating its potential
applicability in tooth identification [12–14]. Reesu and Abduo employed the iterative
closest point (ICP) algorithm for 3Dmodel registration in both dental arch and tooth-level
digital models and tooth recognition [3, 4]. Qnma et al. performed 3D superimposition
of the entire dental arch and introduced mutual information to address noise and outliers
in the traditional ICP algorithm for registration [15]. These methods have achieved good
accuracy, but the comparison time exponentially increases when each tooth model needs
to be superimposed and compared with all models in the database, making them unsuit-
able for large-scale sample identification. Deep learning has demonstrated high-level
performance in medical image processing, such as disease diagnosis [16]. However,
there is little research on 3D tooth recognition using deep learning models, and our
research is dedicated to filling this gap.
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3 A Complete Workflow for Tooth Segmentation and Recognition
Based on PointNet++

Our approach consists of two parts: 1) A tooth segmentation method based on improved
PointNet++. 2) A tooth recognition method that combines curvature feature extraction
and an improved PointNet++. The tooth recognition process using this method is illus-
trated in Fig. 2. First, the tooth segmentation network is used to segment the tooth part of
the IOS model. Then a set of segmented tooth parts with identity labels are used to train
the tooth recognition network. Finally, a set of tooth parts with corresponding labels are
used to test the identification result.

Fig. 2. System diagram of tooth recognition

3.1 Unit Network Structure and Set Abstraction Layer

Both tooth segmentation and recognition model need to extract features from the point
cloud of IOS model. In the feature extraction section, both networks use the same unit
structure. This unit structure consists of a multi-layer perceptron (MLP) followed by
feature aggregation using the weighted feature aggregation (WFA) method, as shown in
Fig. 3. With this unit structure, feature extraction can be performed on a set of points.

Fig. 3. Unit network structure

This unit is performed in a local region of points with a center point. Let pi denote the
coordinate of the center point of the region, and let Pi

local = {
pi1, pi2, . . . pik

}
represent
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the coordinates of k points in the whole local region. Each point pij is calculated byMLP
to get a feature vector f ij:

f ij = MLP
(
pij

)
. (1)

Then, WFA is performed to aggregate multiple features extracted byMLP into a sin-
gle feature. It is accomplished by using a sub-network to learn weights and then applying
these learnedweights to performweighted summation of the features. To perform feature
aggregation for all features

{
f i1, f i2, . . . f ik

}
within the region, the following formula is

used to learn the weights:

αij = MLP
((
pij − pi

) ⊕ (
f ij − fmeani

))
, (2)

here, pij − pi represents the subtraction of the coordinates of the neighborhood points
from the corresponding center point coordinates, and fmeani is the mean of all features{
f i1, f i2, . . . f ik

}
within the region. The aggregated feature f i is obtained by weighting

the feature vectors f ij with the weight vector αij, and can be expressed as:

f i =
∑k

j=1
αij � f ij, (3)

where � denotes the Hadamard product.
Themodule used for feature extraction in both segmentation and recognition network

is referred to as the set abstraction (SA) layer as shown inFig. 4.TheSA layer is composed
of the aforementioned unit structure. It starts by down-sampling the point cloud using
farthest point sampling (FPS) [6] to obtain a set of central points. These central points
are then used as centers to divide the space into spherical regions. Within each spherical
region, the unit structure mentioned earlier is applied to extract features. Each SA layer
has adjustable parameters, including the number of sampled points, denoted as Ni, and
the spherical radius, denoted as r. The SA layer enables the network to capture multi-
scale feature information by processing different regions of the point cloud with varying
Ni and r.

Fig. 4. Structure of the SA Layer

3.2 Tooth Segmentation Model

The proposed network architecture for tooth segmentation in this paper is shown in Fig. 5.
The input of the network is the point cloud data of the tooth model, represented as an
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Nx9 matrix. Here, N represents the number of points, and each point is represented by a
9-dimensional vector, including the 3D coordinates of the original position, 3D normal
vectors, and 3D zero-centered coordinates.

Fig. 5. Network structure of the tooth segmentation model

To better extract detailed information from the tooth model, there is a three-layer
MLP serving as a single-point preliminary feature extraction (SPFE) module before
the SA layers. More specific details of SPEF can be seen in our pervious study [17].
Following the SPFE are three SA layers that extract features at different scales. The
number of sampled points in each layer is 1024/512/256, and the spherical radius is
0.05/0.1/0.2, respectively. After the SA layers, feature propagation (FP) [6, 17] layers
which consist of interpolation, skip connection, andMLP are used for gradually restoring
the original number of points in the point cloud. Finally, a three-layer MLP outputs the
class labels (tooth or other) for each point.

3.3 Tooth Recognition Model

After tooth segmentation, the segmented tooth regions are used for human identification.
The tooth recognitionmethod involves preprocessing the segmented tooth regions, train-
ing the identification network on the preprocessed samples to learn identity information
and testing the performance of the trained model on the testing samples.

3.3.1 Data Preprocessing

Data preprocessing includes sampling, random rotation and translation, and curvature
extraction. Random rotation and translation are performed to augment the dataset. Cur-
vature extraction aims to enhance the feature information of the tooth samples. Fissures
are important structures of tooth and provide crucial feature information for tooth recog-
nition due to their resistance towear and change.As shown in Fig. 6, significant curvature
variations are observed in the fissure regions (yellow and red), distinguishing it from
other parts of tooth. Therefore, we extract curvature from the segmented tooth models
to strengthen these important features.

After data preprocessing, the point cloud models can be represented as an Nx7
matrix, where the first three dimensions represent the coordinates of the point cloud,
the fourth dimension represents curvature, and the last three dimensions represent the
normal vector of each point.
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Fig. 6. Visualization of curvature extraction of an IOS model (Color figure online)

3.3.2 Network Architecture for Tooth Recognition

The network architecture of the tooth recognition model consists of a feature extraction
part and fully connected layers as shown in Fig. 7. In the feature extraction part, the
input point cloud is processed to generate a global feature that is used for identification.
The fully connected layers serve as the classification component of the model, taking
the global feature as input and producing the output identity labels.

Fig. 7. Network structure of the tooth recognition model

The feature extraction part consists of three SA layers. The numbers of sampled
points for the first two SA layers are 512 and 256, respectively, and the corresponding
sphere radius values are 0.2 and 0.4. In the last SA layer, all the feature vectors obtained
from the previous layer are aggregated to generate a global feature. The global feature is
then passed through three fully connected layers which are responsible for learning the
relationships and patterns within the global feature. Finally, the output of the last fully
connected layer is the predicted class label that corresponds to the tooth model being
identified.

4 Experimental Results

4.1 Datasets

For tooth segmentation, we have collected 202 IOS models from 101 volunteers (one
upper tooth model and one lower tooth model for a volunteer), in which 160 for training
and 52 for testing. Each model is sampled to 32,768 points.
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For tooth recognition, we have collected 240 IOS models from 104 volunteers. For
the first time, 208 models were collected from 104 people for training, and for the
second time, 32 models were re-collected from 16 out of these 104 people for testing.
Both training and testing models are sampled to 10,000 points.

4.2 Implementation Details

The twonetworks are implemented usingPyTorch,with aGPUversion ofTeslaV100 and
Windows operating system. Both networks use the Adam optimizer, NLL loss function
and an initial learning rate of 0.001. Both networks use a learning rate reduced by a
factor of 0.7 every 20 epochs and are trained for a total of 100 epochs. For the tooth
segmentation network, the batch size is set to 4 during training. For the tooth recognition
network, the batch size was set to 8 during training.

4.3 Tooth Segmentation Performance

Figure 8 shows the segmentation result of our method, and the segmentation results com-
pared with other method are shown in Fig. 9. It can be seen that our method significantly
outperforms other method.

Fig. 8. Segmentation results of two IOS models using our method

Fig. 9. Experimental results of tooth segmentation compared with PointNet, PointNet++ and
PointCNN

4.4 Tooth Recognition Performance

Our recognition method tested on 32 tooth models achieves an accuracy of 96.88%,
correctly identifies 31 models of the total 32 models. Table. 1 shows the recognition
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results of our method compared with PointNet and PointNet++. Figure 10 shows the
training accuracy curve of our method and PointNet++ during training. By introducing
curvature extraction and WFA, our method significantly improves recognition rate and
has faster training speed as well.

Fig. 10. Training accuracy curve of our method and PointNet++

Table 1. Experimental results of tooth recognition compared with PointNet and PointNet++

Model Recognition rate

PointNet 0.7500

PointNet + + 0.8125

Our method 0.9688

4.5 Ablation Study

For tooth recognition, we conduct ablation study on curvature extraction and WFA.
Table. 2 shows the experimental results of our method with neither curvature extraction
nor WFA (Model 1), only with curvature extraction (Model 2), only with WFA (Model
3), and with both mechanisms (Model 4), respectively. Model 1 and Model 2 used max
pooling instead of the WFA. Because WFA can better utilize the internal information of
spherical neighbors and avoid information loss caused by max pooling, the recognition
rate has been greatly improved. Curvature extraction used for data preprocessing further
improves recognition rate by enhancing key information at the fissures.
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Table 2. Ablation study for tooth recognition

Model Curvature extraction WFA Recognition rate

1 0.8125

2
√

0.8750

3
√

0.9375

4
√ √

0.9688

5 Conclusion

In this paper, we propose a complete workflow for segmenting the tooth region in 3D
IOS models and performing identity recognition based on PointNet++. We introduce
curvature extraction and weighted feature aggregation (WFA) to overcome the limita-
tions of the PointNet++ model. Tooth segmentation is performed to isolate the tooth
region from the rest of the dental structure. This step allows for focused analysis and
reduces the computational complexity of subsequent stages. Tooth identification stage
first compute curvature to enhance the information of fissures, then feature extraction
is carried out using MLP and aggregate by WFA to better use the information of each
feature, finally fully connected layers outputs the recognition results. By leveraging deep
learning techniques and curvature patterns, the proposed identification method reaches
an accuracy of 96.88% on 32 testing dataset. The method has the potential to be applied
in various scenarios, including forensic investigations, disaster victim identification, and
dental recordsmanagement. In our future research, as tooth arrangementmay vary due to
orthodontic treatments or destruction of the disasters. Therefore, our next research direc-
tion involves investigating tooth recognition using single tooth or developing recognition
methods that are independent of tooth arrangement.
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Abstract. Since facial manipulation technology has raised serious con-
cerns, facial forgery detection has also attracted increasing attention.
Although recent work has made good achievements, the detection of
unseen fake faces is still a big challenge. In this paper, we tackle facial
forgery detection problem from the perspective of distance metric learn-
ing, and design a new Intra-Variance guided Metric Learning (IVML)
method to drive classification and adopt Vision Transformer (ViT) as
the backbone, which aims to improve the generalization ability of face
forgery detection methods. Specifically, considering that there is a large
gap between different real faces, our proposed IVML method increases
the distance between real and fake faces while maintaining a certain
distance within real faces. We choose ViT as the backbone as our exper-
iments prove that ViT has better generalization ability in face forgery
detection. A large number of experiments demonstrate the effectiveness
and superiority of our IVML method in cross-dataset evaluation.

Keywords: face forgery detection · metric learning · dynamic
margin · vit

1 Introduction

Recent years, face forgery generation methods have made some considerable
progress. Advances in deep learning, generative adversarial networks [1] and the
variational autoencoders [2], in particular, have made it very easy to generate
high-quality forged faces. Using this technology, attackers can easily create fake
news, smear celebrities, or compromise identity verification, leading to serious
political, social, and security consequences. Therefore, in order to reduce the
malicious abuse of face forgery, the development of effective detection methods
is the best solution.

In earlier face forgery detection researches [3–6], face forgery detection is
generally treated as a binary image classification task. Specifically, these meth-
ods typically use convolutional neural networks (CNNs) for image classification.
Using the existing CNN backbone and directly taking a face image as input, it
then classifies this face image as true or false. These methods can learn the data
distribution of the training set to achieve considerable performance in in-domain
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 140–149, 2023.
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test. However, these simple classification guidelines tend to find specific detec-
tion points within the data set and have poor generalization, indicating that deep
networks lack an understanding of forgery [7]. Since then, the mainstream of face
forgery detection research has gradually shifted to a more reasonable search for
falsified information, such as noise characteristics [8,9], local textures [10,11],
and frequency information [6,12] to more specifically identify fake information
in fake faces. Although the above methods achieve good results, they are eas-
ily limited to the seen forgery methods and difficult to detect unknown forgery
schemes. However, in the practical application process, there will always be new
forgery means and all kinds of noise disturbance, so the scheme without enough
generalization ability is easy to appear low accuracy.

To solve the problems mentioned above, we put forward two main considera-
tions to enhance the learning representation of face forgery detection. First of all,
for feature extraction network, Vision Transformer can be considered. Since ViT
series models divide images into multiple patches, it is easier and more likely to
explore the relationship between patches, and face forgery detection needs to find
out the differences between some patches and other patches. Secondly, in order
to ensure that we can learn the difference between real faces and fake faces, it is
necessary to use appropriate metric learning methods, so that the learned rep-
resentation is able to capture the essential difference between real faces and fake
faces, so as to guide the classification process through the difference of projected
features.

Fig. 1. The pipeline of our IVML method. A face image is inputted into the Vision
Transformer, and the extracted features are passed into the classifier and projector
composed of full connected layers (FC) respectively. Lbce is the binary cross entropy
loss. The entire framework is trained under the joint optimization of metric learning
loss and softmax loss.
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In this paper, we study facial forgery detection problem from the perspective
of distance metric learning, and propose an intra-variance guided metric learn-
ing (IVML) approach to drive classification and adopt ViT as the backbone.
The proposed IVML approach increases the inter-class difference between true
and false faces while ensuring that there are large differences of real faces. The
pipeline of our IVML method is shown in Fig. 1. Extensive experiments prove
the effectiveness of our proposed method, especially in cross-dataset evaluation.

2 Related Work

Face Forgery Detection. In order to improve the performance of face forgery
detection [3,6,7], many efforts have been made. Earlier work, such as [4,13],
utilizes state-of-the-art image classification backbones such as Xception [14] to
extract features from the cropped facial images, and then classifies them directly
through the fully connected network. However, such classification methods alone
tend to overfit training data and fail to explore the nuances between real and
fake face images. Therefore, many methods of distinguishing between true and
false based on fake face patterns have been proposed. Zhao et al. [11] propose
a multi-attention network architecture to capture local discrimination features
from multiple face attention regions. Zhou et al. [9] introduce a two-stream
deep network to detect fake faces by focusing on visual appearance and local
noise, respectively. Li et al. [12] consider the details of frequency and propose a
frequency perception model to separate real faces from fake faces. Meanwhile,
single-center loss is designed to compress the classification space of real sam-
ples and increase the direct boundary with fake samples to further improve the
accuracy. Cao et al. [15] use the method of reconstruction of real faces to make
the reconstruction network understand the features of real faces, and increase
the spatial attention mechanism to make the model more able to distinguish
between real and fake faces. Huang et al. [16] notice that the fake face generated
by the face exchange method would inevitably carry the identity information of
the second person, and they try to accurately capture the identity of the sec-
ond person’s face, so as to realize the judgment of the true and false faces. In
our work, we investigate facial forgery detection from the perspective of metric
learning, providing a new method for this problem.

Metric Learning. Although metric learning has shown clear advantages in
many tasks, the use of deep metric learning to improve the performance of face
forgery detection has been somewhat neglected. Central loss [17] and triplet
loss [18] are among the most commonly used methods in metric learning and
center loss is highly relevant to our work. The purpose of center loss is to learn
the characteristics of each class and push the characteristics of the same class
closer to its own center. But an obvious disadvantage of central loss is that it only
focuses on the proximity of the distance within the class, and does not consider
whether the distance between the classes is large enough. Triplet loss drives the
features of data samples with the same label closer to each other than features
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of data samples with different identities, while taking into account the reduction
of intra-class distance and the expansion of inter-class distance. However, triplet
losses can lead to problems with mining and huge data expansion. Kumar et
al. [19] adopt a triplet loss supervision network to detect face forgery. But the
triplet loss does not perform well on the pre-trained trunk. The single-center
loss (SCL) proposed by Li et al. [12] takes into account the diversity of forgery
situations, so only the center point of the real face is set, which makes the
real face more concentrated while the fake face is further away from the center
of the real face. However, SCL does not take into account that real faces are
also very different from each other, and it may be too strict for real faces. Our
proposed IVML method considers the intra-variance of real face images when
distinguishing real faces from fake ones.

3 Proposed Method

3.1 Intra-variance Guided Metric Learning

Softmax loss is usually used in the supervised training of deep networks for face
forgery detection. However, the features learned by softmax loss are inherently
less discriminative, as softmax loss only focuses on finding a decision boundary
to distinguish between different classes. Clearly, deep metric learning is a solu-
tion to the limitations of softmax loss, which generally compresses the intra-class
distance between true and false faces in projected space. The feature distribution
of fake faces varies according to the manipulation method. This is because gen-
erating models, manipulated regions, and some special operations bring unique
falsified information. The characteristic difference of samples produced by dif-
ferent operation methods makes it hard to get all the fake faces together in one
center. Therefore, forcing the forged faces together in the projected space often
leads to the poor accuracy. In addition, there is a very large gap between real
faces, and blindly reducing the intra-class distance of real faces may easily lead
to overfitting, so that the unseen real faces will be mixed with fake faces.

To address the above issues, we propose an intra-variance guided metric
learning (IVML) method, which not only enlarges the inter-class distance of fake
and real faces as much as possible, but also ensures that the intra-class distance
of real faces is large enough. As shown in Fig. 1, we take the real face farthest
from the real face center xr

c as the boundary of the real face, and expect the
distance of the fake face and real face center xr

c to be greater than the distance
of the farthest real face and the real face center xr

c . This design can increase
the inter-class distance between real and fake faces, and ensure a relatively loose
intra-class distance between real faces. In order to facilitate optimization, our
method utilizes the average distance between fake faces and xr

c in a batch and
increases the closest distance between real faces and xr

c . In addition, it is also
necessary to consider properly reducing the intra-class distance of real faces, and
optimizing the distance between real faces and xr

c . Then, the intra-variance loss
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function of our IVML method is formulated as follows:

Liv = − log
exp (d(xr

max,x
r
c) + d(xr

min,xr
c))

exp (d(xr
max,xr

c) + d(xr
min,xr

c)) + 1
N

∑N
n=1 exp

(
d(xf

n,xr
c)

) , (1)

where xr
max represents the real face farthest from xr

c , and xr
min denotes the real

face closest to xr
c . The batch size is 2N , in which N real samples and N fake

samples are taken, and xf
n is the n-th fake face in each batch. d(x,y) represents

the Euclidean distance or cosine distance between vectors x and y, i.e.,

dE(x,y) = −||x − y||2, (2)

dcos(x,y) =
xyT

||x||2||y||2 . (3)

Therefore, by integrating the softmax loss and the intra-variance loss, the
total loss function of our IVML method is given as

Ltotal = Lbce + λLiv (4)

in which Lbce is binary cross entropy loss, i.e., binary softmax loss, and λ is
a hyper-parameter that controls the trade-off between intra-variance loss and
binary softmax loss.

3.2 Vision Transformers

In our experiment, we use the ViT backbone proposed by Alexey et al [20]. It
splits the input image into 16 × 16 pixel blocks, and all the patches are first
flattened and then inserted into the insert block by linear projection. Before
entering the encoder, the vector obtained from the above processing is also con-
nected with the positional embedding. In addition, this set of vectors includes an
additional “category” tag. After the above operations are completed, the result-
ing combined vectors are then input into a Transformer encoder [21]. It consists
of multiple layers of multi-headed self-attention (MSA) and MLP blocks. A Lay-
erNorm is required before input into each block, and after block processing, a
residual connection module is required. Finally, the feature outputted by the
conversion encoder is used to represent the feature of the image.

VIT-S [22] is a model with a smaller number of parameters in the ViT, and
it has only six heads in the MSA, unlike the basic version, which has 12 heads.
The number of parameters for ViT-S is 22M, and the number of parameters for
Xception [4] is also 22M. In our experiments, we employ VIT-S and Xception as
backbones. Compared with CNN, Vision Transformer requires more training con-
tent. As suggested by Alexey et al. [20], a straightforward solution is using some
larger data sets. ImageNet-21k [23] contains approximately 14 million images,
grouped into 21K classes. The pre-trained model of ViT-S on ImageNet-21k is
public, so we directly use this public pre-trained model in the experiments.
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4 Experiments

4.1 Experimental Setup

Dataset. We evaluate our proposed IVML method on two challenging datasets,
FaceForensics++ (FF++) [4] and Celeb-DF [24]. FF++ is the most widely used
forgery dataset, including 720 videos for training, 140 videos for verification and
140 videos for test. It contains four manipulation methods, including identity
swapping methods (DeepFakes1, FaceSwap2) and expression swapping methods
(Face2Face [25], and NeuralTexture [26]), which is suitable for evaluating the
generalization of the model. Depending on the degree of compression, the FF++
dataset comes in three versions: c0 for raw data, c23 for lightly compressed
version data (high quality), and c40 for heavily compressed version data (low
quality). The high quality version (c23) is selected for our experiments. Celeb-
DF [24] is generated by face swapping for 59 pairs of subjects, which contains
590 real videos and 5,639 high-quality fake videos.

Evaluation Metric. We employ the common metric, Area Under the Receiver
Operating Characteristic Curve (AUC), to evaluate our method.

Implementation Detail. Our IVML approach is implemented by the PyTorch
deep learning framework [27], with the batch size of 256 on an NVIDIA GTX
3090 GPU. All face images are cropped and normalized to 224×224. In order to
ensure that the forged information will not be changed and improve the robust-
ness of the model, we only use random horizontal flipping for data enhancement.
Our method is optimized by the AdamW, the learning rate is 3e-5, and λ in
Eq. (4) is set to 1. All experiments are trained on FF++(c23) dataset. Experi-
ments on FF++ dataset belong to the intra-test results and on Celeb-DF dataset
represent the cross-dataset test.

4.2 Quantitative Results

Comparison of Different Backbones. This subsection compares the results
of ViT as backbone with the results of CNN as backbone, where ViT chooses
ViT-S and CNN chooses Xception. The test process is that images are extracted
by backbone and inputted into a one-layer full connected network to directly give
classification results. The results are shown in Table 1. We can see that ViT-S is
much higher than Xception both on the intra-testing and on cross-dataset tests,
especially on cross-dataset tests. The results proves the correctness of choosing
ViT-S as the backbone of face forgery detection method.

1 https://github.com/deepfakes/faceswap.
2 https://github.com/MarekKowalski/FaceSwap.

https://github.com/deepfakes/faceswap
https://github.com/MarekKowalski/FaceSwap
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Table 1. The AUC (%) comparison between CNN-based methods (Xception) and
ViT-based methods (ViT-S).

Backbone FF++ Celeb-DF

Xception [4] 95.73 65.27

ViT-S [22] 98.3798.3798.37 76.3476.3476.34

Comparison of Our IVML with Different Backbones. To prove the effec-
tiveness of our proposed IVML method, we take Xception and ViT-S as back-
bones respectively. The results are shown in Table 2. These experimental results
remarkably show that our IVML method is effective for face forgery detection.

Table 2. The AUC (%) comparison of our IVML method with different backbones.

Method Backbone FF++ Celeb-DF

Xception [4] Xception 95.73 65.27

IVML Xception 96.5196.5196.51 72.7372.7372.73

ViT-S [22] ViT-S 98.37 76.34

IVML ViT-S 99.3399.3399.33 78.8678.8678.86

Comparison of Our IVML with Euclidean Distance and Cosine Dis-
tance. In our IVML method, the calculation of distance is a very important
part. This subsection evaluate the performance of our IVML using Euclidean
distance and cosine distance, as shown in Table 3. It can be seen from this table
that the results of our IVML method with Euclidean distance and cosine distance
are similar on two datasets.

Table 3. The AUC (%) comparison of our IVML method with Euclidean distance and
cosine distance on two datasets.

Method Distance FF++ Celeb-DF

IVML Euclidean 99.3399.3399.33 78.86

IVML Cosine 99.21 79.0079.0079.00

Comparison with State-of-the-Art Methods. To verify the performance of
our IVML method for face forgery detection, we compare our method with the
classic and recent state-of-the-art methods on FF++ and Celeb-DF datasets.
From the Table 4, we find that our IVML method is competitive to these state-
of-the-art methods on FF++ and Celeb-DF datasets.



Intra-variance Guided Metric Learning for Face Forgery Detection 147

Table 4. The AUC (%) comparison with state-of-the-art methods.

Method FF++ Celeb-DF

Xception [4] 95.73 65.27

EN-b4 [28] 99.22 68.52

Face X-ray [6] 87.40 74.20

MLDG [29] 98.99 74.56

MAT(EN-b4) [11] 99.27 76.65

GFF [30] 98.36 75.31

Local-relation [10] 99.4699.4699.46 78.26

IVML 99.33 78.8678.8678.86

5 Conclusion

In this paper, we propose a metric learning method called intra-variance guided
metric learning (IVML) for face forgery detection. Specifically, our proposed
IVML method compresses the distance within real samples via the softmax loss,
enlarges the distance between the real and fake samples, and maintains a large
distance within the real samples via the intra-variance loss. Our experiments
also show that the generalization of Vision Transformer in face forgery detection
is much stronger than that of Xception. Extensive experiments on two datasets
have verified the effectiveness of our IVML method. In the future, we will explore
more deep metric learning methods, give full play to the role of metric learning,
and further improve the generalization ability of face forgery detection methods.
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dation of China under Grant 62006013.
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Abstract. Previous researches on face retrieval have concentrated on
using image-based queries. In this paper, we focus on the task of retriev-
ing faces from a database based on queries given as texts, which holds
significant potential for practical applications in public security and mul-
timedia. Our approach employs a vision-language pre-training model as
the backbone, effectively incorporating contrastive learning, image-text
matching learning, and masked language modeling tasks. Furthermore,
it employs a coarse-to-fine retrieval strategy to enhance the accuracy of
text-based face retrieval. We present CelebA-Text-Identity dataset, com-
prising of 202,599 facial images of 10,178 unique identities, each paired
with an accompanying textual description. The experimental results we
obtained on CelebA-Text-Identity demonstrate the inherent challenges
of text-based face retrieval. We expect that our proposed benchmark will
encourage the advancement of biometric retrieval techniques and expand
the range of applications for text-image retrieval technology.

Keywords: Text-based Face Retrieval · Visual-Language
Pre-trainning

1 Introduction

Face retrieval aims to sort the gallery face images according to their similarity
to the query [1]. Its practical applications in law enforcement, security, and mar-
keting have made it increasingly significant, particularly in aiding the work of
law enforcement agencies during criminal investigations. Typically, the query is
given as an image. Yet, face images might be not always available, or the image
quality is too low to be usable due to various factors such as large head poses or
non-uniform illumination. Using texts is another way to define the query for face
image retrieval. Text-based face image retrieval allows users to describe a face
in natural language without relying on photographic material, which enhances
accessibility and convenience. Additionally, facial descriptions can naturally pro-
vide hierarchical, from coarse to fine, information about a person’s appearance.
Law enforcement agencies could leverage such information to identify suspects
based on eyewitness accounts. Figure 1 schematically shows the process of text-
based face image retrieval.

Text-based image retrieval techniques have achieved promising results in
identifying pedestrians [2–4]. However, there are differences between the way
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 150–159, 2023.
https://doi.org/10.1007/978-981-99-8565-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8565-4_15&domain=pdf
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Text-Based Face Retrieval: Methods and Challenges 151

The person is young, smiling. This person has arched 

eyebrows, bangs, big lips, brown hair, oval face, 

narrow eyes, high cheekbones, wavy hair. This 

person is wearing lipstick, earrings, heavy makeup.

Face Image Database

Query Description Retrieval Results

. . .

Fig. 1. An Example of Text-based Face Retrieval. Given natural language description
of a face, our face retrieval system searches through a large-scale face database then
retrieve the most relevant face samples.

describing faces and pedestrians. The facial description often emphasizes local
facial features, while the description of pedestrians prioritizes overall behavior
and clothing. When observing a face, people usually form a general perception
first and focus on local features then. Furthermore, the absence of data poses
another hurdle in text-based facial recognition tasks. The sensitive nature of pri-
vacy concerns hinders the acquisition of a substantial amount of data, rendering
it both arduous and costly to obtain.

In response to these problems, drawing inspiration from [5], we present
CelebA-Text-Identity dataset, along with a vision-language pre-training based
baseline method and a coarse-to-fine retrieval strategy. We evaluate the proposed
method through experiments on CelebA-Text-Identity. The main contributions
of this study can be summarized as follows.

1. We propose a simple but effective approach as a baseline to establish a bench-
mark for text-based face retrieval, inspired by existing vision-language pre-
training models and text-based pedestrian retrieval methods.

2. We present a coarse-to-fine retrieval strategy to mimic the coarse-to-fine way
of human beings to identify faces.

3. We propose the CelebA-Text-Identity dataset, comprising a total of 30,000
facial images stemmed from 6,217 distinct identities, with each image being
accompanied by a corresponding textual description. We conduct experiments
on CelebA-Text-Identity dataset, establish a benchmark for text-based face
retrieval.

2 Related Work

Vision-Language Pre-training. Vision-Language pre-training (VLP) mod-
els can be broadly classified into two categories based on their pre-training
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tasks. The first [6,7] is image-text contrastive learning tasks, which utilize cross-
modal contrastive learning loss to align images and texts in a shared space. The
second category is language modeling-based tasks [8], in which auxiliary tasks
like Masked Language/Region Modeling, image captioning, and text-grounding
image generation are used to establish correspondences between images and
texts. Subsequent research [9,10] has confirmed the considerable performance
gains achieved by VLP models for cross-modal tasks and fine-grained visual
tasks. Our proposed approach utilizes the CLIP model, with ample cross-modal
knowledge to improve the performance of the text-based face retrieval task.

Text-Based Pedestrian Retrieval. The main challenge of text-based pedes-
trian retrieval is to establish the correspondences between images and texts. In
the initial stages of research, various cross-modal matching losses [11,12] were
introduced to align image-text features within a joint embedding space. Recently,
several research works [2–4] have explored knowledge from the CLIP model.
These studies have effectively directed the focus of the model towards intricate
details and inter-modal correlations, thereby narrowing down the semantic gaps
between text and image domains. In this work, we aim to improve the perfor-
mance of text-based face retrieval, by exploring effective fine-grained information
and diverse optimization objectives.

3 Proposed Method

To transfer the ample cross-modal knowledge of VLP to text-based face retrieval
task, our method builds upon the CLIP [6]. Given the unique characteristics
of faces, we modify the optimization objectives and propose a coarse-to-fine
retrieval strategy to better retrieve faces according to the text queries.

3.1 Model Architecture

As illustrated in Fig. 2, our method consists of an image encoder, a text encoder,
and a cross-modal encoder. Following Moco [13], we maintain paired momen-
tum encoders for unimodal encoders of the online model by exponential moving
average (EMA) strategy to help guide the online model to learn superior rep-
resentations. The EMA algorithm is formulated as follows: θ̂ = mθ̂ + (1 − m)θ,
where θ̂ and θ denote the parameters of the momentum and online encoders,
respectively. The momentum coefficient m ∈ [0, 1] controls the contribution of
previous parameter values to the current value.

Image Encoder. To avoid distortion to intra-modal information [9], we utilize
the approach described in CFine [4]. Specifically, we use a CLIP pre-trained ViT
model with the projector removed as our image encoder. Given an input image
I, we split the input into NI non-overlapping patches embedded with positional
information. A learnable class token [CLS] is prepended to the image patches
as an image-level global representations. Then, the NI + 1 patches are passed
into the transformer layers of image encoder, yielding a set of image embeddings
{vcls, v1, ..., vNI

} ∈ R
(NI+1)×d.
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Fig. 2. The architecture of the vision-language pre-training based model we proposed.
It comprises an image encoder, a text encoder and a cross-modal encoder. In order to
improve learning with noisy data, we use the momentum model as additional super-
vision during training. Modules connected by dashed lines will be removed during
inference stage.

Text Encoder. We utilize BERT [14] as text encoder. The input text T is
first tokenized as NT + 1 tokens, within a [CLS] token to indicate position.
The resulting token sequence is then passed through the first 6 layers of BERT
resulting text embeddings {tcls, t1, ..., tNT

} ∈ R
(NT+1)×d.

Cross-Modal Encoder. Following [10], the cross-modal encoder is initialized
using the last 6 layers of the BERT. The image and text embeddings are fed into
cross-modal encoder, and fused by the cross attention mechanism to capture
their semantic relationship. And the joint representation can be denoted by
{fcls, f1, ..., fNT

}, where fcls denotes the joint representation of I and T , and
fi(i = 1, ..., NT ) can be regarded as the joint representation of the image I and
the i-th token in the text T .

3.2 Optimization Objectives

We integrate contrastive learning (CL), image-text matching learning (ITM),
and masked language modeling (MLM) tasks, which serve to enforce the align-
ment constraints to discern subtle distinctions between faces.

Contrastive Learning. To make the subsequent cross-modal fusion easier, we
introduce CL task on the representations from the unimodal encoders, which is
divided into image-text contrastive (ITC) learning and intra-modal contrastive
(IMC) learning tasks. InfoNCE loss [15] is a widely-used CL loss, denoted as:

Lnce(u, v,Q) = −1
2
E(u,v) log

exp(sim(u, v)/τ)
∑

vi∈Q exp(sim(u, vi)/τ)
(1)

where the sim(u, v) = uT v
‖u‖‖v‖ denotes the cosine similarity, Q denotes a main-

tained queue, and τ is a learnable temperature parameter.
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Given a mini-batch of N image-text pairs (I, T ) into the unimodal encoders,
we obtain the global visual and textual representations vcls and tcls. Follow-
ing [10,13], the momentum unimodal encoders generate ˆvcls and ˆtcls, and we
maintain image and text queues denoted by Î and T̂ to store the output of the
momentum unimodal encoders, respectively. The ITC loss is formulated as:

Litc =
1
2
[Lnce(vcls, t̂cls, T̂ ) + Lnce(tcls, v̂cls, Î)] (2)

Following [16], we utilize IMC loss to learn the semantic difference between
positive and negative samples. The IMC loss is formulated as:

Limc =
1
2
[Lnce(vcls, v̂cls, Î) + Lnce(tcls, t̂cls, T̂ )] (3)

And the overall loss for Contrastive Learning is:

Lcl = Litc + Limc (4)

Image-Text Matching. In order to fuse vision and language representations, we
adopt ITM which is widely used in previous VLP studies. However, previous ITM
methods [10] ignore the sensitivity to sparsity and mismatch between different
modalities. To overcome these limitations, we use similarity distribution match-
ing (SDM) [3] loss, which is better at capturing the relationship between various
modes, and can better handle modal mismatch and sparsity. We use fcls as the
joint representation of the input image-text pair and fed into a fully-connected
layer to predict the matching probability φ(I, T ). We assume that matched image-
text pair (I, T ) is positive (with label 1) and construct negative examples (with
label 0) through batch-sampling [10]. The SDM loss can be denoted as:

Lsdm = E(I,T )KL(φ(I, T )‖y(I,T )) (5)

where KL(‖) is KL divergence and y(I,T ) is the true matching probability.
We refer to ALBEF [10], utilize the contrastive similarity between image and

text from Eq. 2, and then select the top 128 images with the highest similarities
to send them to the cross-modal encoder.

Masked Language Modeling. We employ MLM from BERT [14] to predict
masked textual tokens. Following BERT, the replacements consist of 10% ran-
domly selected tokens, 10% unchanged tokens, and 80% [MASK] placeholders.
Given a image-text pair with masked text (I, Tmsk), MLM loss is defined as the
cross-entropy H between φmlm and ymlm:

Lmlm = Ep(I,Tmsk)H(ymlm, φmlm(I, Tmsk)), (6)

where ymlm is a one-hot vector denoting the ground truth of the masked token
and φmlm(I, Tmsk) is the predicted probability for the masked token based on
the information of the contextual text Tmsk and the paired image I.

Joint Learning. Additionally, we incorporate ID loss [17] to reinforce the feature
representations of identical identities. And the overall optimization objective is
defined as:

L = Lcl + Lsdm + Lmlm + Lid. (7)
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3.3 Retrieval Strategy

We propose a coarse-to-fine retrieval strategy for face retrieval tasks, where each
query is represented by a set (Tg, Tl) of global, local features. Tg cover the over-
all appearance of the face, such as facial contour, facial shape, eye position, and
mouth shape, to describe the overall structure and appearance of the face. Tl focus
on the remaining local areas or details of the face, such as the eyes, nose, mouth,
and eyebrows. We use Tg before Tl for retrieval. For each round of retrieval, we
sort the resulting similarity and select the top p% samples as candidates for the
next round of retrieval.

4 Experiments

4.1 Experimental Settings

Dataset. Due to the lack of available face datasets with natural language descrip-
tions, we propose the CelebA-Text-Identity dataset for text-based face retrieval
based on the public CelebA face dataset [18]. The CelebA-Text-Identity dataset
comprises of 205,599 facial images of 6,217 unique identities, each accompanied
by a corresponding textual description. Following the example of Multi-Modal-
CelebA-HQ [5], the facial descriptions in CelebA-Text-Identity are generated
by utilizing all the facial attributes linked with the CelebA dataset. Textual
descriptions are produced using a context-free grammar (CFG) based on the pro-
vided attributes. To better align with common describing practices, the generated
description first provides overall impression, before focusing on facial details and
features. Figure 3 displays some examples from the CelebA-Text-Identity dataset.

The person is attractive, young. This person has big lips, rosy cheeks, pointy nose, mouth slightly open, wavy hair. She wears lipstick, 

earrings, heavy makeup.

The person is attractive, young, smiling. This person has bags under eyes, big lips, brown hair, high cheekbones, wavy hair. The

person is wearing lipstick, earrings.

The person is attractive, young. The woman has arched eyebrows, black hair, wavy hair. This woman wears necklace, lipstick, heavy

makeup.

The person is attractive, young. This person has big nose, black hair, bushy eyebrows, mouth slightly open, high cheekbones, wavy 

hair. The woman is wearing lipstick, heavy makeup.

The person is attractive, young. The woman has big nose, bushy eyebrows, rosy cheeks, mouth slightly open, high cheekbones, wavy 

hair. This woman is wearing necklace, lipstick, earrings, heavy makeup.

The person is attractive, young. The person is with bags under eyes, bushy eyebrows, mouth slightly open, high cheekbones, wavy hair. 

This person wears lipstick, heavy makeup.

The person is bald, chubby. This man is with bags under eyes, big nose, double chin, receding hairline, mustache, mouth slightly open. 

This person wears necktie.

The person is chubby. He has arched eyebrows, bags under eyes, big nose, bushy eyebrows, pointy nose, mouth slightly open, high 

cheekbones. This man wears necktie.

The person is bald, chubby. The man has bags under eyes, big nose, double chin, gray hair, receding hairline, narrow eyes, mouth 

slightly open, high cheekbones. The person wears necktie.

Fig. 3. Selected image-text pairs from CelebA-Text-Identity. Face images are selected
from CelebA and normalized to 256×256, with each image being accompanied by a cor-
responding textual description. Our textual descriptions covers all the attributes con-
tained in this person.

Evaluation Protocol. The dataset is classified into three distinct subsets: the
training subset, validation subset, and testing subset. The training subset com-
prises 162,779 images featuring 8,190 unique identities; the validation subset
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includes 19,867 images containing 985 identities; and the testing subset consists
of 19,962 images featuring 1,001 identities. There are no overlapping identities
between the training, validation, and testing subsets. Additionally, the simple-
testing subset contains 2,825 images with 605 unique identities, while the hard-
testing subset encompasses all 19,962 images with 1,001 unique identities. To cre-
ate the simple-testing subset, we selected front posed facial images while excluding
those with poor illumination and excessive blurriness.

Evaluation Metrics. We have chosen to utilize the Rank-k metrics (k = 1, 5,
10) as our primary evaluation criteria, which are widely employed in text-based
pedestrians retrieval research. The Rank-k measures the likelihood of locating at
least one corresponding image of a person within the top-k list of candidates when
a textual description is provided as a query. Moreover, for a comprehensive eval-
uation, we have also incorporated the mean Average Precision (mAP) and mean
Inverse Negative Penalty (mINP) [19] as additional retrieval standards. The mAP
metric assesses the model’s ability to accurately detect objects across all classes,
while the mINP metric places greater emphasis on detecting rare objects. A higher
Rank-k, mAP, and mINP values indicates better performance.

ImplementDetails. We use a 12-layer visual transformer CLIP-ViT-B/16 as the
pre-trained image encoder. The text encoder is initialized using the first 6 layers
of the BERT [14], and the cross-modal encoder is initialized using the last 6 layers
of the BERT. During the training process, the input image is initially resized to
224 × 224 and augmented through random horizontal flipping, random cropping
with padding, random erasing, and normalization. The maximum length of the
token sequence NT is set to 80, while the representation dimension d is set to 768.
We use Adam optimize for 50 epochs with a learning rate initialized to 1×10−5 and
cosine learning rate decay. At the beginning, we spend 5 warm-up epochs linearly
increasing the learning rate from 1 × 10−6 to 1 × 10−5. For random-initialized
modules, we set the initial learning rate to 5× 10−5. During the retrieval process,
we set p to 30. The models are implemented on PyTorch and are trained on a
NVIDIA RTX 4090 24G GPU.

4.2 Results

At present, there is no specifically designed method to address the challenge of
text-based face retrieval. We use methods based on state-of-the-art text-based
pedestrian retrieval for comparisons, and use the default parameters to train on
the CelebA-Text-Identity.

Table 1 contains the performance comparisons in terms of Rank-1/5/10
accuracies, map, and mINP, including the CLIP models fine-tuned with the
InfoNCE [15] loss. Our proposed method surpasses the current state-of-the-art
network IRRA [3] on both Simple and Hard testing, demonstrating the effective-
ness of our proposed method in text-based face retrieval. Specifically, we gains a
significant Rank-1 improvement of 3.45% and 1.57% on Simple and Hard testing,
respectively. Additionally, it can be seen that the CLIP-ViT-B/16 image encoder
yields better results. Thus, in this paper’s ablation study, we set the image encoder
as CLIP-ViT-B/16.
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Table 1. Performance comparisons with state-of-the-art methods on CelebA-Text-
Identity dataset.

Methods Simple-testing Hard-testing

Rank-1 Rank-5 Rank-10 mAP mINP Rank-1 Rank-5 Rank-10 mAP mINP

CMPM/C [12] 36.03 65.44 74.26 18.58 5.52 20.23 43.44 55.99 6.82 0.63

ViTAA [20] 38.47 69.31 80.21 19.92 6.18 21.19 44.75 56.81 7.29 0.76

Han et al. [2] 41.95 72.71 83.76 22.32 7.70 21.57 45.41 57.97 7.39 0.82

IRRA [3] 43.79 75.62 84.60 22.65 7.63 22.67 45.98 58.43 7.50 0.84

Baseline (CLIP-RN50) 38.24 69.23 80.99 20.70 6.71 21.89 44.65 57.32 7.48 0.73

Baseline (CLIP-ViT-B/32) 39.93 69.91 81.27 20.80 6.59 21.21 45.84 57.21 7.31 0.76

Baseline (CLIP-ViT-B/16) 41.31 71.86 83.16 21.63 7.49 21.72 46.06 57.18 7.44 0.80

Ours 47.24 75.72 87.32 24.10 8.43 24.24 46.73 60.02 7.92 0.91

4.3 Ablation Study

Effectiveness of Optimization Objectives. Since there is no public base-
line for text-based face retrieval task, we adopt the CLIP-ViT-B/16 model with
InfoNCE [15] loss as the baseline to facilitate the ablation study. The Rank-1,
Rank-5, Rank-10 accuracies (%) for are reported in Table 2. The experimental
results obtained by comparing models No.0 to No.1 demonstrate the efficacy of CL
loss in discerning semantic nuances between similar text and images. To demon-
strate the effectiveness of SDM loss, we compare it with the commonly used Image-
text matching (ITM) loss [13] (No.2 to No.3), the SDM loss promotes the Rank-1
accuracy of the ITM loss by 1.16% and 0.74%, respectively. These results demon-
strate that SDM loss well capturing the relationship between the two modalities.
Additionally, the outcomes garnered from comparing No.1 to No.4 and No.6 to
No.8 underscore the effectiveness of ID loss. Similarly, the results of contrasting
No.0 to No.5 and No.7 to No.9 provide compelling proof for the efficiency of MLM
loss.

Table 2. Ablation study on CelebA-Text-Identity without retrieval strategy.

No. Methods Components Simple-testing Hard-testing

Lcl Lsdm Lid Lmlm Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

0 Baseline 41.31 71.86 83.16 21.72 46.06 57.18

1 +Lcl � 42.54 72.68 83.42 21.96 45.77 58.27

2 +Lsdm � 42.35 72.30 82.44 22.61 46.40 59.02

3 +Litm [10] 41.19 71.92 83.67 21.87 45.58 57.39

4 +Lid � 39.50 69.98 81.45 20.82 43.44 55.99

5 +Lmlm � 42.05 72.63 83.50 21.47 45.41 57.61

6 +Lcl+Lsdm � � 43.79 74.62 83.49 22.28 46.23 56.84

7 +Lcl+Lid � � 43.27 73.01 84.77 22.20 46.01 57.74

8 +Lcl+Lsdm+Lid � � � 44.09 73.29 84.15 23.45 46.43 58.43

9 +Lcl+Lid+Lmlm � � � 44.54 73.76 84.68 23.39 46.18 58.25

10 Ours � � � � 45.82 74.35 85.32 24.06 46.62 58.15

Effectiveness of Retrieval Strategy. To investigate the impact of retrieval
strategy, we attempted distinct approaches: (1) Exclusively relying on local
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feature-based retrieval, (2) Utilizing all features concurrently, (3) Using local
features before global features, and (4) Using global features before local fea-
tures. The outcomes in Table 3, (1) suggest that relying on facial features can
roughly portray an individual’s identity. Implementing a sequential retrieval strat-
egy yields significant results on simple-testing when comparing (2), (3), and (4).
Using global features before local features is the best choice and using local fea-
tures before global features is the worst. It suggest that using local features before
global features may result in the information of global features being covered by
local features. However, sequential retrieval lacks efficacy when applied to hard-
testing. To our analysis, this is due to the visibility of facial features in simple-
testing is better, making it easier to extract crucial information about their iden-
tity through sequential retrieval.

Table 3. Performance comparisons with differnt retrieval strategies on CelebA-Text-
Identity dataset.

Strategies Simple-testing Hard-testing

Rank-1 Rank-5 Rank-10 Rank-1 Rank-5 Rank-10

(1) 41.26 71.49 80.74 20.05 43.29 53.80

(2) 45.82 74.35 85.32 24.06 46.62 58.15

(3) 44.76 74.31 84.17 23.93 46.54 58.22

(4) (ours) 47.24 75.72 87.32 24.24 46.73 60.02

5 Conclusion

In this paper, we study the problem of retrieving faces through texts. To our
best knowledge, this is the first study to explore this topic. We introduce the
CelebA-Text-Identity dataset, and employed a CLIP-based model as a baseline
to establish a benchmark for text-based face retrieval. We integrate contrastive
learning (CL), image-text matching learning (ITM), and masked language mod-
eling (MLM) tasks, and propose a coarse-to-fine retrieval strategy to learn the
fine-grained information of faces and texts. The experimental results prove the
superiority and effectiveness of our proposed method. Although our study primar-
ily focuses on text-based face retrieval, we believe that the techniques proposed
herein can be extended to other biometric recognition problems.
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Abstract. Compared with traditional 3D face recognition tasks using
high precision 3D face scans, 3D face recognition based on low-quality
data captured by consumer depth cameras is more practicable for real-
world applications. However, it is also more challenging to deal with the
variations of facial expressions, poses, occlusions, data noises, scanning
distance, and so on. In this paper, we propose a novel robust low-quality
3D face recognition method based on Facial Adversarial Sample Augmen-
tation, namely FASA-3DFR. It consists of two modules, namely facial
adversarial sample generation, and facial adversarial sample training. For
the first module, to enlarge the diversity of facial adversarial samples and
boost the robustness of 3DFR, we propose to utilize the Kullback-Leibler
divergence to maximize the distribution distance between the original
and adversarial facial samples. For the second module, a distribution
alignment loss is designed to make the distribution of facial adversarial
samples gradually close to the one of the original facial samples, and the
common and valuable information from both distributions can be effec-
tively extracted. Extensive experiments conducted on the CAS-AIR-3D
Face database show the effectiveness of the proposed method.

Keywords: Robust low-quality 3D face recognition · Facial
adversarial sample augmentation

1 Introduction

Over the past two decades, 3D face recognition (3DFR) solutions have demon-
strated impressive accuracy [1] when evaluated on high-precision 3D face
databases, such as Bosphorus and FRGC, etc. Despite these achievements, the
practical implementation of 3DFR still faces many challenges due to the limita-
tions of acquiring high-precision data. Sensors used for high-precision data collec-
tion are bulky, expensive, and time-consuming. In contrast, the increasing popu-
larity of consumer depth cameras, such as Microsoft Kinect and RealSense, has
made it feasible to capture 3D facial data more efficiently and cost-effectively.
However, the low resolution, noises and facial variations always lead to the data
acquired by these sensors with a low quality. Consequently, improving the accu-
racy and robustness of low-quality 3DFR becomes a significant and pressing
challenge.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 160–169, 2023.
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To address this issue, we introduce a facial adversarial sample augmentation
method from the viewpoint of general adversarial data augmentation [2]. Gener-
ally, adversarial data augmentation can introduce a rich diversity of facial samples
into the training set, thereby enhancing the robustness of the deep 3DFR network
[3]. Recently, some studies have utilized adversarial data to enhance 3DFR [4].
However, adversarial data augmentation is susceptible to the problem of robust
over-fitting, resulting in reduced accuracy on the original clean facial samples [5].
We attribute this issue to the distribution mismatch between facial adversarial
samples and the original facial samples, which hinders the network’s ability to
effectively extract shared features from both distributions, as depicted in Fig. 1.
To mitigate this challenge, we propose to decouple and maximize the distance
between the distribution of facial adversarial samples and the one of their cor-
responding original samples during the facial adversarial sample generation mod-
ule. Then during the facial adversarial sample training module, we minimize the
discrepancy between the distribution of facial adversarial samples and the one
of their corresponding original samples to extract their common information and
improve the recognition accuracy. This approach guides the model to better repre-
sent the data. Experimental results on the CAS-AIR-3D Face dataset demonstrate
the effectiveness of our proposed method.

Fig. 1. The channel-wise Batch Normalization statistics on randomly sampled 20 chan-
nels in Arcface18’s first layer for the clean and adversarial facial samples. It appears
that the clean and adversarial facial samples exhibit distinct feature statistics, suggest-
ing that they are sampled from different underlying distributions.

2 RelatedWork

2.1 Adversarial Data Augmentation

Adversarial data augmentation generates adversarial samples as additional train-
ing data by introducing small perturbations to the original inputs, which can cause
the model to make incorrect predictions. The objective of adversarial data aug-
mentation is to simulate real-world adversarial scenarios and enhance the net-
work’s robustness. However, existing studies have shown that the presence of
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adversarial samples may adversely affect the accuracy of objective classification
on original clean images. Madry et al. [6] demonstrated the effectiveness of reli-
able adversarial training in defending against adversarial attacks by deep neural
networks. Sinha et al. [7] proposed an efficient approach to ensure distributional
robustness through adversarial training. Kannan et al. [8] focused on matching
the logits obtained from clean images and their corresponding adversarial coun-
terparts, which guides the model to improve its internal representations of the
data. Recently, Xie et al. [9] argued that adversarial and clean samples are drawn
from distinct distributions, and they proposed to use Auxiliary Batch Normaliza-
tion (AuxBN) during adversarial training to improve the classification accuracy
over the original clean images. In this paper, we not only adopt the AuxBN strat-
egy to decouple the distribution of clean samples and adversarial samples but also
introduce a distribution decoupling loss for generating diverse adversarial sam-
ples. This strategy can effectively separate the two distributions, and enable more
accurate updates of the distribution parameters.

2.2 Low-Quality 3D Face Recognition

Early research on low-quality 3DFR relied on manually crafted facial descriptors.
However, these methods faced challenges when dealing with complex conditions.
Additionally, the datasets are very small in scale. To address the scarcity of low-
quality 3D facial data, Zhang et al. [10] introduced the Lock3DFace dataset, com-
prising 5,671 videos from 509 individuals. Later, Li et al. [11] released the CAS-
AIR-3D Face dataset, containing 24,713 videos from 3,093 individuals. Expand-
ing upon these datasets, Cui et al. [12] employed a cascaded structure to esti-
mate facial depth from a single face image, effectively enhancing face recogni-
tion accuracy in unconstrained scenarios. Mu et al. [13] proposed a lightweight
CNN incorporating spatial attention and multi-scale feature fusion, along with
a data augmentation method that significantly improved accuracy. Lin et al. [14]
employed a pix2pix network to restore the quality of low-quality faces and devised
the MQFNet to integrate features of varying qualities. Zhang et al. [15] leveraged
Continuous Normalizing Flow to transform the facial-specific distribution into
a flexible distribution for low-quality 3DFR. Jiang et al. [16] introduced Point-
Face which directly processes 3D facial point cloud data. Zhao et al. [17] designed
the LMFNet to better preserve low-level and high-level features extracted by the
network. In comparison with these low-quality 3D face recognition methods, this
paper focuses on the utilization of adversarial samples to augment data quantity
and diversity. Moreover, to address the balance between the accuracy of the orig-
inal clean samples and the robustness of facial variations, we proposed a distribu-
tion alignment approach to enhance the 3DFR accuracy.

3 ProposedMethod

Figure 2 shows the framework of our method. In the facial adversarial sample gen-
eration module, we use the original clean facial depth map xcln as input to the net-
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work Fθ which can be ArcFace18, LightCNN, etc. And we optimize the perturba-
tion ε through maxing decoupling object loss Ldis. Through iterations, we gener-
ate the facial adversarial sample xadv. Note that the original clean sample xcln and
adversarial sample xadv pass through different Batch Normalization branches in
the network. In the module of facial adversarial sample training, we train the deep
network Fθ to perform the 3DFR task using both the original clean and adversarial
facial samples. We calculate the adversarial loss Ladv on the adversarial samples,
the classification loss Lcln on the clean samples, and the distribution matching loss
Ldis over both of them. These three loss functions are employed for the training
of the 3DFR network.

Fig. 2. The framework of the proposed robust low-quality 3D face recognition method
based on Facial Adversarial Sample Augmentation, namely FASA-3DFR.

3.1 Facial Adversarial Sample Generation

For the task of 3DFR with deep network Fθ, the objective function can be formu-
lated as:

min
θ

E(x,y)∼D[L(x, y; θ)] (1)

where (x, y) ∼ D represents the data distribution, L represents the classification
loss like cross-entropy loss, θ corresponds to the network parameters, and x rep-
resents the training sample along with the true label y.

We can generate a facial adversarial sample for the given facial depth map x by
introducing a perturbation. This perturbation is designed to make the model give
an incorrect prediction for the adversarial sample. The vanilla facial adversarial
sample generation is maximizing the following optimization problem:
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max
ε∈Δ

E(x,y)∼D[L(x + ε, y; θ)] (2)

where ε is an adversarial perturbation, Δ is the space of perturbation. Through
randomly initializing a perturbation ε, adversarial samples xadv can be denoted as
xadv = xcln + ε. And xadv can be iteratively generated by the Projected Gradient
Descent (PGD) algorithm [6] as follows.

xt+1
adv = xt

adv + η · sign
(∇xL(xt

adv + ε, y; θ)
)

(3)

where xt+1
adv and xt

adv are adversarial examples with t + 1 and t iterations, x0
adv =

xcln, η is the step size for updating adversarial perturbation. ∇ is the gradient
operator.

In this paper, different from the above general approach for generating adver-
sarial samples, we aim to decouple the two kinds of sample distribution for enrich-
ing the sample diversities and improve the network robustness. So we simultane-
ously feed both the original clean sample xcln and the adversarial sample xadv into
the network Fθ to optimize the perturbation ε. And we also utilize an Auxiliary
Batch Normalization [9] in the network. The goal of facial adversarial sample gen-
eration is to maximize the Kullback-Leibler divergence of the original clean and
adversarial sample distributions, as below.

max
ε∈Δ

E(xcln∼Dcln,xadv∼Dadv)DKL (Fθ(xadv)||Fθ (xcln)) (4)

where (xcln, ycln) ∼ Dcln is the original clean sample distribution, (xadv, yadv) ∼
Dadv is the distribution of facial adversarial sample.

3.2 Facial Adversarial Sample Training

When facial adversarial samples are generated, how to effectively use these adver-
sarial samples becomes a key issue. In this paper, we introduced a sample distribu-
tion alignment loss to improve the accuracy of low-quality 3DFR. That is, we feed
both the original clean and adversarial samples into the same network, but with
different BN layers [9]. The main BN layer is used for the clean samples, while the
auxiliary BN layer is used for the facial adversarial samples. And then the deep
model is trained with the following sample distribution alignment loss.

The sample distribution alignment loss function is composed of three key com-
ponents. First, the distribution alignment term plays a crucial role in aligning
the distributions of clean and adversarial samples. It encourages the network to
extract features that are shared between these two sample domains, promoting
a smoother decision boundary, shown in Eq. 5. This term minimizes the discrep-
ancy between the predictions of xcln and xadv, effectively reducing the impact of
distribution mismatch and driving the decision boundary away from the samples.

Ldis = E(xcln∼Dcln,xadv∼Dadv)DKL (Fθ(xadv)||Fθ (xcln)) (5)

Second, the empirical risk term Lcln ensures that the network effectively
extracts relevant features from the clean sample distribution. This term promotes
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the accurate classification of the clean facial samples and prevents over-fitting.
The formula for Lcln is shown below.

Lcln = E(xcln,ycln)∼Dcln
[−

c∑

i=1

ycln,i log (Fθ(xcln,i))] (6)

Third, in order to enhance the network’s robustness, we also introduce a com-
mon adversarial sample classification loss Ladv shown in Eq. 7. This loss encour-
ages the model to learn more resilient representations and improves its ability to
withstand the adversarial perturbations.

Ladv = E(xadv,yadv)∼Dadv
[−

c∑

i=1

yadv,i log (Fθ(xadv,i))] (7)

Overall, the final objective function for low-quality 3DFR can be formulated
as follows:

Ltotal = Lcln + αLdis + βLadv (8)

where α and β are hyper-parameters, both of which are 0.1 in our experiments.
Algorithm 1 describes the proposed method in detail.

Algorithm 1. Pseudo code of the proposed FASA-3DFR method
Input: A training database of face depth map, a Network F with parameters θ, hyper-

parameters α, β, adversarial step size η , and attack step T
Output: An optimized network Fθ for 3DFR

for A mini-batch of face depth map sampled from the database do
Initialize the adversarial perturbation ε ← 0.
for t = 1, 2, . . ., T do

xcln and xadv go through the corresponding network structure respectively
Generate a mini-batch of adversarial samples using Eq. 4

end for
Update the model Fθ with the combined loss of Lcln, Ldis, and Ladv using Eq. 8

end for
return

4 Experiments

4.1 Databases

CAS-AIR-3D Face Database [11]. CAS-AIR-3D Face is a low-quality 3D face
database captured by Intel RealSense SR305. It consists of a total of 3093 individ-
uals and 24713 videos with a video resolution set to 640 × 480. It records 8 videos
for each individual, including 2 distance variations, 2 expression variations, 1 neu-
tral, and 1 occlusion variation. To the best of our knowledge, CAS-AIR-3D Face
is the largest low-quality 3D face database in terms of the number of individuals
and sample variations. Figure 3 shows some samples of the database.
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Fig. 3. Examples of CAS-AIR-3D Face dataset. The first row is the preprocessed facial
RGB images, and the second is their corresponding facial depth maps.

4.2 Implementation Details

Preprocessing. We perform preprocessing on low-quality 3D face scans follow-
ing [11]. Firstly, we employ the RetinaFace [18] to detect the facial region, and use
the PFLD method [19] to detect facial landmarks. These are used for cropping
the face depth maps. Next, we recover the 3D point clouds from the depth maps
and utilize the Point Cloud Spherical Cropping Method (SCM) [13] to remove the
background noise in the depth maps. Then, we apply a statistical filter to remove
outliers of the point cloud and project the 3D point cloud face back to the depth
map. Finally, we normalize the depth value to [0,255].

Implementation. We randomly flip the given facial depth maps to increase the
amount of data. The SGD optimizer is chosen with a learning rate of 0.01, which
decreases by 10% every 5 epochs. Weight decay and momentum are set to 0.0005
and 0.9, respectively. The batch size is 128, the step size η and attack step T in
adversarial training are set to 4/255 and 2.

4.3 Experimental Results

For a fair comparison, we follow the close-set protocol and data process pipeline
presented in [12]. We randomly sample 800 individuals as the testing set, and the
other 2293 individuals as the training set. In the testing set, we select one frontal
depth map with neutral expression at 0.5m as the gallery set, and the rest depth
maps are used as the probe set. The probe set is divided into six test subsets (PS,
PS+GL, PS+EP, DT+PS, DT+PS+GL, DT+PS+EP). The comparison results
are shown in Table 1.

As shown in Table 1, our proposed FASA-3DFR method combined with dif-
ferent network models has effect improvements. The network combined with Arc-
face18 obtains the highest average accuracy of 85.36% and achieves the state-of-
the-art performance on all subsets except DT+PS+EP. Specifically, on the exper-
iments with Arcface18 as the backbone, the gains were 0.95%, 2.26%, 1.00%,
1.08%, and 1.86% for the five subsets of PS, PS+GL, PS+EP, DT+PS, and
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Table 1. Comparison on the CAS-AIR-3D Face Dataset. Avg: average, PS: pose, GL:
glasses, EP: expression, DT: distance

Backbone Input Output Top-1 Identification Accuracy (%)

PS PS+GL PS+EP DT+PS DT+PS+GL DT+PS+EP AVG

LightCNN [20] (128,128,1) 256 91.91 84.00 83.77 67.66 55.75 58.67 73.08

FaceNet [21] (160,160,3) 512 92.82 85.35 87.70 70.93 58.74 64.28 76.69

MobileNet [22] (112,112,3) 512 96.39 91.62 93.14 78.57 68.20 72.61 83.47

ArcFace18 [23] (128,128,1) 512 96.58 91.97 93.55 79.93 69.60 75.06 84.58

Ours+LightCNN (128,128,1) 256 94.84 88.89 89.26 73.52 62.90 66.05 78.89

Ours+ArcFace18 (128,128,1) 512 97.53 94.23 94.55 81.01 71.46 74.62 85.36

DT+PS+GL, respectively. And we also conducted experiments on LightCNN
(without BatchNorm in the network structure). The results show that the aver-
age accuracy is even improved by 5.81%, and there is a significant improvement on
all subsets, proving the effectiveness of our method. In conclusion, our proposed
method is effective for low-quality 3D face recognition, and can better solve the
problem of accuracy degradation on the original clean facial samples caused by
the facial adversarial samples.

In Fig. 4, we further visualize the learned distributions of the original clean
samples and the generated facial adversarial samples. Compared to Fig. 1, it is
evident that the disparity between the distributions of the two sample types has
noticeably reduced. This indicates that the distribution of clean samples and the
one of facial adversarial samples can be well-aligned to each other, converging into
a unified distribution space.

Fig. 4. Channel-wise Batch Normalization statistics on randomly sampled 20 channels
in Arcface18’s first layer for the clean and adversarial facial samples. It shows that the
discrepancy between the clean and adversarial sample distribution diminishes, progres-
sively converging toward a unified distribution space.

Ablation Study. To further demonstrate the effectiveness of the method, we
conducted ablation experiments under the CAS-AIR-3D Face setting. We verify
the impact of different loss items in our method by using the backbone network
Arcface18. In particular, we trained four networks: (1) using the original clean
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sample classification loss only; (2) using both clean sample classification loss and
the adversarial sample classification loss; (3) using both clean sample classifica-
tion loss and the distribution alignment loss; (4) using clean sample classification
loss, adversarial sample classification loss, and distribution alignment loss. Table 2
summarizes the recognition accuracy of all these models.

As can be seen from Table 2, all components improve the network to different
degrees compared to the baseline network except the DT+PS+EP subset, indi-
cating that these modules can effectively improve the feature extraction capability
of the backbone network and reduce the loss of features for low-quality 3DFR.

Table 2. Ablation study on the CAS-AIR-3D Face dataset.

Lcln Ladv Ldis Top-1 Identification Accuracy (%)

PS PS+GL PS+EP DT+PS DT+PS+GL DT+PS+EP AVG

� 96.58 91.97 93.55 79.93 69.60 75.06 84.58

� � 97.43 93.96 94.34 80.47 70.57 74.04 84.96

� � 97.43 94.06 94.48 80.77 71.06 74.29 85.14

� � � 97.53 94.23 94.55 81.01 71.46 74.62 85.36

5 Conclusion

In this paper, we introduce a novel robust low-quality 3DFR method based on
the Facial Adversarial Sample Augmentation strategy. In particular, we use the
KL-based distribution decoupling loss to generate diverse facial adversarial sam-
ples to improve the robustness of the deep 3DFR model. And we use the distri-
bution alignment loss to extract common and valuable features from both dis-
tributions. Comprehensive experimental results validate the effectiveness of the
proposed method for low-quality 3D face recognition.
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Abstract. Facial expression recognition (FER) aims to comprehend
human emotional states by analyzing facial features. However, previous
studies have predominantly concentrated on emotion classification or sen-
timent levels, disregarding the crucial dependencies between these factors
that are vital for perceiving human emotions. To address this problem,
we propose a novel affective priori topology graph network (AptGATs).
AptGATs explicitly captures the topological relationship between the two
labels and predicts both emotional categories and sentiment estimation
for robust multi-task learning of FER. Specifically, we first constructed
an Affective Priori Topology Graph (AptG) to elucidate the topological
relationships between affective labels. It employs different affective labels
as nodes and establishes edges from the level of cognitive psychology. We
then introduced a graph attention network based on AptG that models the
relationships within the affective labels. Moreover, we propose a parallel
superposition mechanism to obtain a richer information representation.
Experiments on the wild datasets AffectNet and Aff-Wild2 validate the
effectiveness of our method. The results of public benchmark tests show
that our model outperforms the current state-of-the-art methods.

Keywords: Facial Expression Recognition · Multi-Task Learning ·
Graph Attention Networks

1 Introduction

Facial expression recognition has been a long-standing focus in the field of com-
puter vision. Nowadays, the automatic analysis system for recognizing facial
expressions has been extensively applied in various industries such as online edu-
cation, special medical services, intelligent transportation, and virtual reality [1].

Nevertheless, it still faces serious challenges that restrict its application in real-
istic scenarios, such as large intra-class differences, small inter-class differences,
subjectivity, and ambiguity of discrete categories [2]. Consequently, researchers
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have introduced VA models [3] that can broadly characterize emotions to com-
pensate for the lack of intricate details. Muse [4] introduced a challenge tourna-
ment to evaluate uncontrolled dimensions. Toisoul et al. [5] has developed an end-
to-end federated estimation framework with integrated face alignment. However,
these works tend to solely focus on mining information from individual labels, dis-
regarding the inherent dependencies across different label spaces. In fact, these
relationships encompass crucial semantic information. Therefore, we propose a
dependency-guided Multitask learning framework that captures intricate details
while preserving intuitive information.

Fig. 1. Representation of the spatial relationship distribution of emotion on AffectNet.

In addition, we observed the presence of topological relationships in the multi-
label data. Wang et al. [6] leverages label co-occurrence counts to guide the infor-
mation transfer in Graph Convolutional Network. Lee et al. [7] employed struc-
tured knowledge graphs to model the relationships between labels. To effectively
utilize this dependency, we propose a novel topology-based graph attention net-
work for modeling real relations. We visualize the data distribution of valence
arousal and discrete expression in Fig. 1. The contributions of this work can be
summarized as follows:

• We design a versatile topological graph (AptG) to explore real-world emotion
expressions. AptG has the capability to hierarchically aggregate label depen-
dencies, aiding Graph Attention Network in guiding emotion representations.
Our AptG can be easily extended to various emotion recognition scenarios.

• We introduce a parallel superposition mechanism designed to achieve multi-
scale interaction between visual and topological information. This mechanism
enhances the acquisition of more comprehensive representations.

• Experimental results on several challenging datasets show the effectiveness of
our proposed model.
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2 Related Works

2.1 Facial Expression Recognition

With the development of convolutional neural networks, deep learning methods
began to be widely used in FER with remarkable results [1]. Farzaneh [8] intro-
duced a deep centre of attention loss method to estimate feature attention weights
to enhance discrimination. Jang et al. [9] present a novel single shot face-related
task analysis method. Xue et al. [10,11] proposed a Transformer-based module
for correcting attention and pooling noise. Although the aforementioned meth-
ods have made considerable progress, the ambiguity and subjectivity of discrete
expressions remain unresolved. Huang et al. [12] proposed a multi-task frame-
work for learning age-invariant identity-related representations while synthesizing
faces. He et al. [13] proposed a loss function that integrates expression and action
units. Nonetheless, the mentioned work ignores the potential topological relation-
ships between affective labels, which still limits their capacity in realistic scenarios.

2.2 Graph Attention Networks

Graph Attention Network (GAT) [14], which introduces attention mechanisms
specifically tailored to the graph domain, has gained significant traction among
researchers. Wu et al. [15] developed a novel adaptive dependency matrix to cap-
ture temporal trends. Guo et al. [16] utilized a region selection mechanism to
extract target structure and part-level information. Liu et al. [17] introduced a
multi-scale aggregation scheme to capture robust motion patterns in skeleton-
based action recognition. For FER, Kumar [18] leveraged the relationship between
landmark and optical flow patches to aid micro-expression classification. Panagi-
otis et al. [19] employed random relations to support the recognition task. In con-
trast, we propose a topological relationship graph that cross-fertilizes with cogni-
tive psychology theory, capturing the potential associations of affective labels.

3 Method

To link affective informations with image representations, we propose the affec-
tive priori topological graph-guided framework (AptGATs) that jointly learns
sentiment estimation and expression classification, as shown in Fig. 2. We design
AptG for the hierarchical aggregation of label topology information, and we have
also introduce AptGAT to further learn label dependencies. Furthermore, we pro-
pose the parallel superposition mechanism that integrates label dependencies and
image representations, leading to enhanced feature representations.

3.1 Affective Priori Topology Graph (AptG)

Affective Priori Topological Relationships. The topological relationship
between affective labels include priori topological relationships and affective topo-
logical relationships. They focus on intra-space and inter-space relationships of
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Fig. 2. Overview of our proposed model. The shared stem CNN extracts features from a
batch of labelled face images. AptGAT models the label information derived from AptG.
Lastly, PS incorporates the affective label information generated by AptGAT with the
image features at M different stages, which are subsequently fed into the classifier. The
final output of the model is a combined prediction of the inputs.

labels, respectively. We perform hierarchical aggregation of topological features
to enhance the adequacy and robustness of the final features. By incorporating
scales commonly employed in cognitive psychology [20], we standardize the affec-
tive topological relations as

AR =
[−0.51

0.59
−0.40
0.20

−0.64
0.60

0.40
0.20

−0.40
−0.20

0.20
0.45

1.00
1.00

]
, (1)

where each row represents the value of the transformation of the seven axis of the
basic emotion space to the axis of the VA (Valence-Arousal) sentiment space.

Topology Graph Construction. To make efficient use of label information, we
propose a versatile method for constructing an affective priori topological graph.
The affective priori topological graph GApt = (V,EApt, AApt) establishes the
topological relationships among the various labeled nodes, where V represents the
set of labels V = {V1, V2, ..., VN}, N is the number of vertices. E refers to the set of
edges. A ∈ R

N×N is a weight matrix, where each element (i, j) denotes the weight
assigned to the edges connecting nodes Vi and Vj . Specifically, our topology graph
comprises two components: affective topology graph Gexp = (V,Eexp, Aexp), and
priori topology graph Gpri = (V,Epri, Apri).

As we all know, most extraneous noise will make samples from different classes
look more similar. To suppress extraneous noise and minimize computational
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expenses, we propose a mask matrix Mask ∈ R
N×N to enable self-loops and dis-

regard node associations within the label space:

Maskij =
{

1, if i = j
0, if i �= j

. (2)

We utilize the matrix Mask to transform the conventional prior matrix [19] into
our modified prior matrix Apri = Mask�Aemo, where � is the element-wise prod-
uct. Therefore, Apri will allocate greater attention to highly relevant nodes. Fur-
thermore, although Gpri = (V,Epri, Apri) yields more robust features while reduc-
ing computational complexity, this aggregation within spaces ignores the depen-
dencies between spaces. To tackle this issue, we devise Gexp = (V,Eexp, Aexp) to
enable the network to learn the topology between labels:

[Aexp]ij =
{ |aij |, if(i ∈ Cat ∧ j ∈ Dim)||(j ∈ Cat ∧ i ∈ Dim)

0, else , (3)

where aij represents the value of column j in row i of matrix AR. “Cat” and “Dim”
are indexed sets representing the classification and dimension labels, respectively.
Additionally, we employ absolute values to disregard the polarity of the values.
This approach allows us to emphasize the magnitude of the data and prevent the
learning of noisy information. Meanwhile, since Aexp and Apri are non-negative,
the aggregation of the two may produce extreme maxima.

[AApt]ij =

⎧⎨
⎩

∣∣∣[Aexp]ij
∣∣∣ +

∣∣∣[Apri]ij
∣∣∣ , if

∣∣∣[Aexp]ij
∣∣∣ +

∣∣∣[Apri]ij
∣∣∣ < τ

1, if
∣∣∣[Aexp]ij

∣∣∣ +
∣∣∣[Apri]ij

∣∣∣ ≥ τ
(4)

denotes the final correlation matrix obtained through summation calculations. In
our experiments, we empirically set a threshold τ = 1 to suppress outliers.

3.2 AptG Guided GAT (AptGAT)

To fully leverage the constructed topological graph GApt, a graph guided graph
attention module (AptGAT) was designed to implement the modelling of affective
label dependencies. Specifically, the update process for the kth level nodes is:

H(k+1)
w = AptGAT (AAptH

(k)
w W k), (5)

where H
(k)
w = {−→

h 1,
−→
h 2, ...,

−→
h N},

−→
h i ∈ R

F represents the node representations in
the kth layer, W ∈ R

F×F is a learnable matrix. Specifically, we compute linear
combinations of features corresponding to the normalized attention coefficients
eij like [14], which are attributed to the neighboring nodes. Thus, we produce the
output of each node:

−→
hi

(k+1) = LeakyReLU

⎛
⎜⎝ ∑

j∈Ni

exp(eij)∑
k∈Ni

exp(eik)
W

−→
hj

(k)

⎞
⎟⎠ , (6)

where Ni is some neighborhood of node i in GApt. Our initial label embedding h0 is
obtained from a 300-dimensional GloVe embedding trained on the Wikipedia [21].
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3.3 Parallel Stacking of AptGAT and CNN

We propose a parallel stacking (PS) interaction mechanism. This mechanism can
drive multi-scale interactions between visual information extracted from stem
CNN and topological information derived from AptGAT:

y(k) = Conv1×1(x(k) ⊗ σ(H(k)T )) + x(k), (7)

where (·)T , ⊗, and + denote matrix transpose, multiplication, and sum operations
respectively. x(k) and H(k) are the image feature and label dependencies at the kth
AptGAT layer. Unlike solely overlaying label information in the final identification
stage, the inclusion of multiple residual operations allows for the maximization of
both geometric and semantic information utilization.

4 Experiments

4.1 Datasets

We trained and evaluated our model using the publicly available FER datasets
AffectNet [22] and Aff-Wild2 [23]. AffectNet is currently the largest publicly avail-
able dataset in real-world conditions. It comprises over 1 million facial images
obtained from the Internet. Aff-Wild2 is the pioneering dataset encompassing
annotations for the three behavioral tasks of Expression, AUs, and VA, compris-
ing 564 videos with approximately 2.8 million frames. Following our methodology,
we train and evaluate our model exclusively on a subset of the database containing
frames annotated with classification and VA labels.

4.2 Comparison with the State of the Art

Table 1 and Table 2 report the performance comparison of our method against the
state-of-the-art methods on Aff-Wild2 and AffectNet datasets. Our model outper-
forms these recent state-of-the-art methods with 66.91% and 49.69%. [11] utilized
a significantly larger number of parameters (65M) to achieve a comparable effect
to ours (8M). We achieve comparable performance to [5] in VA metrics despite
their tailored loss function and large-scale feature extraction network.

Table 1. Performance comparison on Aff-Wild2.

Methods Acc.(%) CCC-A CCC-V

Baseline (DenseNet121) 46.77 0.44 0.41

EmoGCN [19] 48.92 0.51 0.46

AptGATs (Ours) 49.69 0.51 0.48



176 R. Wang and X. Sun

Table 2. Performance comparison of our method against the state-of-the-art methods
on AffectNet. ∗ indicates Transformer-based models.

Methods Acc.(%) Valence Arousal

CCC PCC RMSE↓ SAGR CCC PCC RMSE↓ SAGR

AffectNet [22] 58 0.60 0.66 0.37 0.74 0.34 0.54 0.41 0.65

Face-SSD [9] – 0.57 0.58 0.44 0.73 0.47 0.50 0.39 0.71

VGG-FACE [24] 60 0.62 0.66 0.37 0.78 0.54 0.55 0.39 0.75

ResNet-18 – 0.66 0.66 0.39 0.78 0.60 0.60 0.34 0.77

EmoFAN [5] 62 0.73 0.73 0.33 0.81 0.65 0.65 0.30 0.81

DACL [8] 65.20 – – – – – – – –

EmotionGCN [19] 66.46 0.77 – – – 0.65 – – –

TransFER∗ [10] 66.23 – – – – – – – –

MViT∗ [25] 64.57 – – – – – – – –

APViT∗ [11] 66.91 – – – – – – – –

Baseline(DenseNet121) 64.06 0.75 0.73 0.33 0.80 0.65 0.65 0.33 0.79

AptGATs(Ours) 66.91 0.78 0.78 0.32 0.81 0.69 0.69 0.31 0.81

4.3 Ablation Studies

Evaluation of Different Graph. Experimental results shown in Table 3 show
that Gpri performs worse than Gexp and GApt, which is caused by the lack of rela-
tionships between label spaces and by the over-smoothing effect resulting from
the presence of numerous low-quality noise edges. The fusion of priori information
provides an accuracy gain of 0.2% to our affective topographical information.

Table 3. Performance comparisons of different graphs on AffectNet. All variants have
the same framework. Indicators with ↓ are expected to have a smaller value.

Methods Acc.(%) Valence Arousal

CCC PCC RMSE↓ SAGR CCC PCC RMSE↓ SAGR

AptGATs(Gpri) 65.31 0.77 0.77 0.33 0.81 0.68 0.68 0.32 0.79

AptGATs(Gexp) 66.71 0.78 0.79 0.32 0.82 0.69 0.69 0.32 0.81

AptGATs(GApt) 66.91 0.78 0.78 0.32 0.82 0.69 0.69 0.31 0.81

Evaluation on AptGAT Module. To showcase the effectiveness of the mod-
ule, we incorporated a single AptGAT into four different stem CNNs. Table 4 illus-
trates the observed improvements in all case, with accuracy boosts ranging from
0.87% to 1.67%. This improvement can be attributed to the module’s ability to
capture the dependencies between affective labels, thus providing a robust and
contributing representation. Moreover, the versatility of our gain module extends
to any emotional data as it is decoupled from the dataset itself.
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Table 4. Evaluation of different backbones on AffectNet. The result is denoted by the
tuple (a, b), where ‘a’ represents the baseline and ‘b’ represents adding the AptGAT.

BackBone Acc.(%) Δ(%) CCC-A CCC-V

Resnet50 (64.92, 65.79) +0.87 (0.66, 0.67) (0.77, 0.77)

IR50 (63.94, 65.61) +1.67 (0.65, 0.62) (0.76, 0.76)

DenseNet121 (64.06, 65.04) +0.98 (0.65, 0.66) (0.75, 0.76)

MobileNetv2 (64.48, 65.34) +0.98 (0.64, 0.68) (0.75, 0.76)

4.4 Hyper-parameters Analysis

Impact of the Number of AptGAT. The results depicted in Fig. 3 demon-
strate superior performance in all scenarios compared to the case without Apt-
GAT. The performance starts to drop off when exceeds 5. This is due to the prob-
lem of vanishing gradients caused by the overstacking of GAT layers.

Fig. 3. The evaluation of number(M) of AptGAT on AffectNet.

Table 5. Evaluation(%) on AffectNet using different values for α and ρ.

α ρ

0.1 0.2 0.3 0.4

0.2 66.29 66.91 65.99 65.79

0.3 66.02 65.79 66.82 65.37

0.4 66.17 65.82 66.68 65.10

0.5 65.99 66.77 66.47 66.05

Impact of α and ρ in GAT α is the hyperparameter of the activation function in
GAT, ρ represents the drop rate. Table 5 demonstrates that optimal results were
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achieved when all values were set to 0.2. A small value of ρ is not conducive to gath-
ering information during node updates. Conversely, a large value of ρ can result
in over-smoothing.

5 Conclusion

We present a novel topological graph-guided network for facial expression recog-
nition that addresses the issue of small inter-class differences and ambiguity of dis-
crete categories. Specifically, our approach incorporates an affective priori topo-
logical graph-guided module to establish connections between and within diverse
emotion spaces. Moreover, we introduce a parallel fusion mechanism to enhance
the richness of representations. Our method outperforms existing approaches,
highlighting the potential of discrete models in achieving generalized sentiment
representation. For future research, we suggest exploring the utilization of multi-
label modeling relationships to assist relabeling methods in addressing label
uncertainty, which is a common challenge across various datasets.
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Abstract. The rapid advancements in computer vision have stimu-
lated remarkable progress in face forgery techniques, capturing the ded-
icated attention of researchers committed to detecting forgeries and
precisely localizing manipulated areas. Nonetheless, with limited fine-
grained pixel-wise supervision labels, deepfake detection models per-
form unsatisfactorily on precise forgery detection and localization. To
address this challenge, we introduce the well-trained vision segmentation
foundation model, i.e., Segment Anything Model (SAM) in face forgery
detection and localization. Based on SAM, we propose the Detect Any
Deepfakes (DADF) framework with the Multiscale Adapter, which can
capture short- and long-range forgery contexts for efficient fine-tuning.
Moreover, to better identify forged traces and augment the model’s sensi-
tivity towards forgery regions, Reconstruction Guided Attention (RGA)
module is proposed. The proposed framework seamlessly integrates end-
to-end forgery localization and detection optimization. Extensive exper-
iments on three benchmark datasets demonstrate the superiority of our
approach for both forgery detection and localization. The codes are avail-
able at Link.

Keywords: Deepfake · SAM · Adapter · Reconstruction learning

1 Introduction

Amongst the diverse human biometric traits, the face is endowed with relatively
abundant information and holds significant prominence in identity authentica-
tion and recognition. Nonetheless, with the rapid progress of computer vision
technology, an array of face-changing techniques has emerged. Therefore, both
industry and academia are in urgent need of robust detection methods to miti-
gate the potential misuse of face forgery technology.
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Currently, the majority of forgery detection methods treat the task as a
binary classification problem [1–3] and utilize convolutional neural networks
(CNNs) for feature extraction and classification. Although continuous advance-
ments in forged face detection technology in recent years, accurate localization
of forged regions remains a challenge, particularly for models that solely pro-
vide classification results. The precise identification of forged regions holds the
utmost importance for uncovering the intentions and interpretability of the per-
petrators. It allows individuals to discern fake images based on the forged regions
and observe the discrepancies between forged and genuine images.

Due to the limited fine-grained pixel-wise forgery labels, some forgery local-
ization methods [4–6] trained from scratch usually suffer overfitting. Recently,
Meta introduces the pioneering foundational segmentation model, i.e., Segment
Anything Model (SAM) [7,8], demonstrating robust zero-shot segmentation
capabilities. Subsequently, researchers have explored diverse approaches such
as Low-Rank Adaptation (LoRA) [9] to fine-tune SAM on downstream tasks
including medical image segmentation and anomaly detection. However, these
methods usually yield unsatisfactory positioning outcomes in face forgery local-
ization due to their weak forgery local and global context modeling capacities.

This study focuses on: 1) investigating how SAM and its variants perform in
the deepfake detection and localization task; 2) designing accurate and robust
pixel-level forgery localization methods across various datasets. For the former
one, due to the limited multiscale and subtle forgery context representation
capacity, SAM [7] without or with fine-tuning [9,10] cannot achieve satisfactory
forgery detection and localization results, which can be alleviated via the pro-
posed SAM based Multiscale Adapter. On the other hand, we find that SAM
and its variants are sensitive by the forgery boundary and domain shifts, which
can be mitigated by the proposed Reconstruction Guided Attention module.

Our main contributions are summarized as follows: (1) We are the first to
explore the availability of SAM and its fine-tuning strategies in the deepfake
detection area. Based on SAM, a novel and efficient Detect Any Deepfakes
(DADF) framework is proposed. (2) We propose the Multiscale Adapter in SAM,
which can capture short- and long-range forgery contexts for efficient fine-tuning.
(3) We propose the Reconstruction Guided Attention (RGA) module to enhance
forged traces and augment the model’s sensitivity towards forgery regions.

2 Related Work

Binary Classification Based Face Forgery Detection. Face forgery detec-
tion is predominantly treated as a binary (real/fake) classification task. Plenty
of deep learning based methods are developed for detecting face forgery. Dang
et al. [11] incorporated an attention mechanism to emphasize the forgery area,
leading to improved accuracy in forgery classification. Alternatively, Nguyen et
al. [12] proposed a capsule network designed specifically for identifying counter-
feit images or videos. However, the above-mentioned methods only provide the
result of forgery on the scale of the whole image, thus ignoring the identification
of the forged region, which lack sufficient interpretability.
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Joint Face Fogery Detection and Localization. Face forgery localization
precisely identifies manipulated regions of a face at the pixel level. A hybrid
CNN-LSTM model [13] was proposed for learning the distinctive boundary vari-
ations between manipulated and non-manipulated regions. Nguyen et al. [14]
proposed to utilize multi-task learning to detect and locate manipulated regions
in both images and videos. However, there are still no works investigating vision
segmentation foundation models for joint face forgery detection and localization.
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Fig. 1. Framework of the proposed Detect Any Deepfakes (DADF).

3 Methodology

As illustrated in Fig. 1, the proposed SAM-based [7] architecture involves an
image encoder with the Multiscale Adapters for feature extraction, a Recon-
struction Guided Attention (RGA) module for forged feature refinement and a
mask decoder for forgery mask prediction. Based on the predicted mask, a clas-
sification head consisting of global average pooling and fully connected layers is
cascaded for real/fake classification. In consideration of the limited data scale
in the face forgery detection task, we freeze the main parameters (i.e., Trans-
former layers) of the SAM encoder and insert learnable specific modules to mine
task-aware forgery clues. Specifically, we incorporate a concise and efficient Mul-
tiscale Adapter module along each transformer layer to capture forgery clues
with diverse receptive fields using a multi-scale fashion.

First, we tokenize the input image x into visual tokens xp = P (x) via the
Patch Embedding layer (denoted as P (·)). During this process, defaulted patch
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size 14×14 is used. Then N fixed Transformer layers Li, i ∈ {1, ..., N} with
learnable Multiscale Adapter R(·) are used for extracting short- and long-range
contextual features Ztran, which is then mapped to task-aware forgery features F
via a dimension-matched learnable linear Task Head T (·). The feature encoding
procedure can be formulated as

Ztran = Ln(...L2(R(L1(R(xp))), F = T (Ztran). (1)

As for the Multiscale Adapter (see the middle red block in Fig. 1 and Fig
in Supplementary Materials, the output features x′ of each Transformer layer
are passed by a 1 × 1 convolution, and then split into three branches f(·), g(·),
and h(·). Each branch uses different convolution kernel sizes and dilated rates
for complementary forgery context mining. Therefore, the multiscale short- and
long-range features Sout1 can be formulated as:

Sout
′
= Concat(f(Conv1×1(x

′)), g(Conv1×1(x
′)), h(Conv

′
1×1(x

′))),

Sout1 = Conv
′′
1×1(Sout

′
),

(2)

where f(·), g(·) and h(·) denote a convolution with kernel size 1 × 1 cascaded
with a convolution with kernel size 3 × 3 and dilated rates 1, a convolution with
kernel size 3 × 3 cascaded with a convolution with kernel size 3 × 3 and dilated
rates 3, and a convolution with kernel size 5×5 cascaded with a convolution with
kernel size 3 × 3 and dilated rates 5, respectively. Sout

′
is the result of merging

features of the three branches, which is then re-projected to the original channel
size via a 1 × 1 convolution to obtain Sout1.

Finally, the resultant multi-scale features Sout1 are added together to the
original features x′ passed over a 1 × 1 convolution operation Conv

′′′
1×1, ensur-

ing the preservation of the original information. The final multiscale contextual
features Sout can be formulated as:

Sout = Sout1 + Conv
′′′
1×1(x

′). (3)

3.1 Reconstruction Guided Attention

In order to enhance the sensitivity to deep forged regions and explore the com-
mon and compact feature patterns of real faces, we propose a reconstruction
learning method, namely Reconstruction Guided Attention (RGA). In the train-
ing process, we simulate the forged faces by introducing white noise G(·) on the
real faces. Based on the noisy inputs, the model gradually performs feature
reconstruction to obtain the reconstructed features FGau.

xGau = G (x) , FGau = Φ
(
xGau

)
, (4)

where Φ denotes the whole image encoder. After the feature reconstruction pro-
cess performed by the image encoder, we compute the absolute difference S
between the original features and the reconstructed features. In this calculation,
the function |.| represents the absolute value function.

S =
∣
∣FGau − F

∣
∣ . (5)
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Subsequently, an enhancer ϕ(·) with 1 × 1 convolution is employed to high-
light and enhance regions that might contain forgeries, which is cascaded with
the Softmax function layer α(·) to generate the forgery-aware attention map.
Finally, we perform element-wise multiplication based refinement operation ⊗
between the obtained attention weights and the original features to obtain the
final features Ffinal, which are then sent for the mask decoder. The procedure
can be formulated as:

Ffinal = [α(ϕ(S)) ⊗ ϕ(F )] + F. (6)

After obtaining the features F from the real faces and the reconstructed
features FGau from the anomalies/forgeries simulation, we calculate the recon-
struction loss Lrec for each batch M with L1 norm. Notably, the reconstruction
loss Lrec is exclusively trained on real samples. Ablation studies on calculating
Lrec for fake faces and all (real+fake) faces can be found in Table 5.

Lrec =
1
M

∑

i∈M

∥
∥FGau

i − Fi

∥
∥
1
. (7)

In the training stage, the RGA module leverages the abnormal simulated
faces as one of the inputs and gradually recovers the intrinsic features of the real
faces. Through this reconstruction process, SAM models can better understand
the common and compact feature patterns of real faces, and even pay more
attention to unknown forged regions in the inference stage.

3.2 Loss Function

The overall loss function Loverall of DADF consists of three components: seg-
mentation loss Lseg, classification loss Lcls, and feature reconstruction loss Lrec.
The segmentation loss Lseg represents the semantic loss, while the binary cross-
entropy loss Lcls measures the binary real/fake classification error. The feature
reconstruction los Lrec captures the reconstruction error.

Loverall = Lseg + λ1Lrec + λ2Lcls, (8)

where the hyperparameters λ1 and λ2 are used to balance the different compo-
nents of the loss, which are set to 0.1 according to empirical observations.

4 Experiments

4.1 Datasets and Experimental Setup

Datasets. FaceForensics++ (FF++) [15] utilizes four different algorithms.
The video data also provide versions with different compression ratios: original
quality (quantization = 0), high quality (HQ, quantization = 23) and low quality
(LQ, quantization = 40). DF-TIMI [16] dataset contained 16 pairs of similar
people, each of whom lived 10 videos. DFD [15] was created specifically for
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DeepFake technology. These videos were procured from the YouTube platform,
consisting of 363 authentic videos and 3068 fabricated videos, which have been
further categorized as high-quality (HQ) and low-quality (LQ). FMLD [4] com-
prises 40,000 synthetic faces generated using StyleGAN and PGGAN models.

Implementation Details. We use the SAM-based [7] ViT-H model as the
backbone with a null input prompt setting. We train models with a batch size
of 4 and adopt the AdamW optimizer with a learning rate (lr) 0.05. We train
models with maximum 50 epochs while lr halves every 20 epochs. As for the
RGA module, white noise is employed as a noise source, which is incorporated
into the data using a normal distribution with a zero mean and a variance of
1e − 6.

Evaluation Metrics. Two commonly used metrics, namely Binary Classifica-
tion Accuracy (PBCA) and Inverse Intersection Non-Containment (IINC) [11]
are employed for forgery localization. For fair comparisons, we follow the same
evaluation protocols as [4] for face forgery localization. In terms of evaluating
the performance of face forgery detection, Accuracy (ACC) is adopted.

4.2 Intra-dataset Testing

Results of Face Forgery Localization. Table 1 presents the results of the
forgery localization on FF++ (HQ) [15] and FMLD [4]. The proposed DADF
outperform the classical face forgery localization model [4] by 0.87% and 0.2%
PBCA on FF++ (HQ) and FMLD, respectively. We can also find from the
results of SAM [7] that direct finetuning SAM cannot achieve acceptable face
forgery localization performance due to its heavy model parameters and limited
task-aware data. Despite slight improvement via parameter-efficient fine-tuning
strategies, SAM with LoRA or Prompt still has performance gaps with the pre-
vious localization method [4]. Thanks to the rich forgery contexts from the Mul-
tiscale Adapter and the strong forgery attention ability of RGA module, the pro-
posed DADF improves baseline SAM [7] by 3.67%/−1.04% and 1.97%/−0.76%
PBCA/IINC on FF++ (HQ) and FMLD, respectively.

Results of Face Forgery Detection. Table 2 presents the detection accu-
racy (ACC) of our model on various forgery techniques, namely Deepfake (DF),
Face2Face (FF), FaceSwap (FS), and NeuralTextures (NT), using the challeng-
ing FF++ (LQ) [15]. It is clear that the proposed DADF performs significant
improvements in classification accuracy compared to previous methods among
different forgery techniques. This highlights the effectiveness of our Multiscale
Adapter and RGA module in enhancing the detection capabilities, compared
with the original SAM [7] and its variants (SAM+LoRA [9] and SAM+Prompt
[10]). Specifically, the proposed DADF improves more than 3% ACC compared
with the second-best method on Face2Face detection.
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Table 1. Results of the forgery localization on FF++ (HQ) [15] and FMLD [4].

Dataset FF++ (HQ) FMLD

Methods PBCA(%)↑ IINC(%)↓ PBCA(%)↑ IINC(%)↓
Multitask [14] 94.88 4.46 98.59 3.52

DFFD Reg [11] 94.85 4.57 98.72 3.31

DFFD Mam [11] 91.45 13.09 96.86 23.93

Locate [4] 95.77 3.62 99.06 2.53

SAM [7] 92.97 4.25 97.29 3.40

SAM+LoRA [9] 93.12 4.78 98.06 3.51

SAM+Prompt [10] 94.60 3.48 98.01 2.82

DADF (Ours) 96.64 3.21 99.26 2.64

Table 2. The forgery detection performance (ACC(%)) on FF++ (LQ) [15].

Methods DF FF FS NT Average

Steg. Features [17] 67.00 48.00 49.00 56.00 55.00

Cozzolino [18] 75.00 56.00 51.00 62.00 61.00

Bayar & Stamm [19] 87.00 82.00 74.00 74.00 79.25

Rahmouni [20] 80.00 62.00 59.00 59.00 65.00

MesoNet [21] 90.00 83.00 83.00 75.00 82.75

SPSL [22] 93.48 86.02 92.26 92.26 91.00

Xception [22] 97.16 91.02 96.71 82.88 91.94

Locate [4] 97.25 94.46 97.13 84.63 93.36

SAM [7] 89.32 84.56 91.19 80.01 86.27

SAM+LoRA [9] 90.12 85.41 91.28 80.15 86.74

SAM+Prompt [10] 97.34 95.84 97.44 84.72 93.83

DADF (Ours) 99.02 98.92 98.23 87.61 95.94

4.3 Cross-Dataset Testing

In order to assess the generalization ability of our method on unseen domains
and unknown deepfakes, we conducted cross-dataset experiments by training
and testing on different datasets. Specifically, we train models on FF++ (LQ),
and then test them on DFD (LQ), DF-TIMIT (HQ), and DF-TIMIT (LQ).
The results shown in Table 3 demonstrate that the proposed DADF outperforms
other methods in terms of average performance among the three testing settings.

4.4 Ablation Study

To validate the effectiveness of the Multiscale Adapter and Reconstruction
Guided Attention module, ablation experiments are conducted on FF++ (HQ).
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Table 3. Results of cross-dataset face forgery detection.

Dataset DFD (LQ) DF-TIMIT (HQ) DF-TIMIT (LQ) Average

Method AUC(%)↑ EER(%)↓ AUC(%)↑ EER(%)↓ AUC(%)↑ EER(%)↓ AUC(%)↑ EER(%)↓
MesoNet [20] 52.25 48.65 33.61 60.16 45.08 53.04 34.64 53.95

MesoIncep4 [20] 63.27 40.37 16.12 76.18 27.47 66.77 35.62 61.10

ResNet50 [23] 60.61 42.23 41.95 55.97 47.27 52.33 49.94 50.17

Face X-ray [24] 62.89 39.58 42.52 55.07 50.05 49.11 51.81 47.92

DFFD [11] 60.60 42.32 32.91 61.16 39.32 57.06 44.27 53.51

Multi-task [14] 58.61 44.49 16.53 77.86 15.59 78.50 30.24 66.95

F3Net [25] 58.89 39.87 29.12 58.33 45.67 52.72 44.56 50.30

Xception [22] 59.73 43.12 33.82 62.83 40.79 57.44 44.78 54.46

SAM [7] 50.61 49.13 43.19 57.94 45.71 54.39 46.50 53.82

SAM+LoRA [9] 53.71 48.29 43.64 56.67 47.64 53.02 48.33 52.66

SAM+Prompt [10] 57.25 45.28 44.32 55.07 48.17 52.54 49.91 50.96

DADF (Ours) 63.21 39.52 46.37 53.20 50.62 49.74 53.40 47.48

Efficacy of the Multiscale Adapter. It can be seen from the first two rows of
Table 4 that compared with baseline SAM-only fine-tuning, SAM with Multiscale
Adapter improves 3.34%/−0.85% PBLA/IINC for forgery localization and 8.21%
ACC for forgery detection on the FF++ (HQ).

Table 4. Ablation studies on the FF++ (HQ) [15] dataset.

Baseline (SAM) Multiscale Adapter RGA Localization Detection

PBLA(%)↑ IINC(%)↓ ACC(%)↑
� 92.97 4.25 86.27

� � 96.31 3.40 94.48

� �� 95.61 3.96 92.64

� � � 96.64 3.21 95.94

Efficacy of the RGA. As shown in the last two rows of Table 4, equipping with
RGA module can improve the baseline SAM by 2.64%/−0.29% PBLA/IINC for
forgery localization and 6.37% ACC for forgery detection on the FF++ (HQ).
Similarly, based on the SAM with Multiscale Adapter, the RGA module can
further benefit the forgery localization by 0.33% PBLA and detection by 1.46%
ACC. As for the loss function Lrec calculation for RGA, it can be seen from
Table 5 that the performance drops sharply when Lrec calculated for fake faces
and all (real+fake) faces, which might result from the redundant features of real
faces and less attention on anomalies.

4.5 Visualization and Discussion

We visualize some representative forgery samples with their mask labels and
predictions in Fig. 2. It is evident that the forgery localization quality from the
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Table 5. Ablation studies of Lrec calculation on FF++ (HQ) [15] dataset.

Data Localization Detection

PBLA(%)↑ IINC(%)↓ ACC(%)↑
Real & Fake 92.15 3.62 91.42

Fake 93.34 3.56 92.16

Real 96.64 3.21 95.94

Input SAM Input SAM
SAM

+LoRA
DADF
(Ours) GT

DF

FF

FS

Glasses

Hair

NT

SAM
+LoRA

DADF
(Ours) GT

Fig. 2. Visualization of face forgery localization results of various methods.

proposed DADF outperforms SAM and its LoRA fine-tuning in accurately local-
izing and closely resembling the ground truth, particularly in fine-grained details
such as edge, boundary, and face-head contexts. Besides, the proposed Multi-
scale Adapter is a parameter-efficient fine-tuning strategy alternative to tune the
entire Transformer layers. Remarkably, by adjusting only 18.64% parameters of
the SAM, substantial benefits on face forgery detection and localization are
achieved, including reduced training costs and improved practical performance.

5 Conclusion

In this paper, we introduce a Segment Anything Model based face forgery detec-
tion and localization framework, namely Detect Any Deepfakes (DADF). Specif-
ically, we propose the Multiscale Adapter and Reconstruction Guided Atten-
tion (RGA) to efficiently fine-tune SAM with rich contextual forgery clues and
enhance the robustness of forgery localization. Extensive experimental results
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validate the effectiveness of the proposed DADF across different qualities of face
images and even under cross-domain scenarios.
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Abstract. Lacking of sufficient generalization ability on novel perspec-
tives and expressions, drivable face NeRF, is still a challenging problem.
In this paper, we concentrate on two aspects of the drivable face NeRF,
the representation power of the driving signal and the efficiency of NeRF
rendering. Firstly, we look into the utilization of world-space keypoints
as the driving signal of the dynamic face. We realize this by a keypoint
lifting strategy based on front keypoints to obtain stable and robust
world-space keypoints, which are used to drive the deformation field and
the Neural Radiance Field in the canonical space simultaneously. Second,
the world-space keypoints are utilized to guide the NeRF to efficiently
sample points near the face surface, and the coarse level in the origi-
nal NeRF can be skipped, which significantly accelerates the rendering
speed. We have verified the effectiveness and superiority of our method
through good experiments.

Keywords: Neural radiance field · Novel expression synthesis · Novel
view synthesis · Dynamic NeRF

1 Introduction

Generating realistic and controllable portraits, is a highly important and chal-
lenging problem in the field of computer vision. There are a wide range of appli-
cations, such as remote conferencing, virtual anchors, film production, and more.
In the foreseeable future, the metaverse will increasingly occupy people’s lives.
Generating high-quality avatars for each individual is an indispensable step in
building the metaverse.
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In recent years, neural rendering has garnered widespread attention. It uti-
lizes neural networks to implicitly represent three-dimensional scenes, thereby
exhibiting excellent 3D consistency. Also, it requires only sparse images as input
and can render remarkably high-quality images from any viewpoint. However,
the initial framework of NeRF suffers from the limitation of static scenes and
low rendering speed, which limits its applications.

In this paper, we apply neural rendering techniques to the tasks of novel
viewpoint synthesis and facial expression driving for human faces and realize a
drivable dynamic face NeRF, which can perform any expressions according to
the driving signals as illustrated in Fig. 1. Our approach takes as input multi-
view images of faces with different expressions and outputs facial images with
specified expressions from any arbitrary viewpoint. This method can be employed
to create realistic facial avatars for users. To the best of our knowledge, our model
is the first to simultaneously satisfy the criteria of utilizing stereo data, modeling
dense expressions, and being uncomplicated in its preprocessing requirements.

In the course of conducting this research, we predominantly face two chal-
lenges: Firstly, devising an effective approach to make the model movable, which
encompasses determining the optimal model architecture and selecting the suit-
able driving signal. The second issue we consider is how to optimize the model’s
training and testing speed as much as possible. To tackle the first challenge, we
employ a strategy that fuses conditional NeRF and deformation field to establish
a dynamic NeRF model. We develop a keypoint lifting strategy that yields pre-
cise world-space keypoints as driving signal. In response to the second challenge,
we utilize keypoints in the world-coordinate system to guide NeRF sampling.
We bypass the coarse level of NeRF and focus solely on sampling points which
are in close proximity to facial keypoints. This substantially enhances rendering
efficiency and diminishes the overall model size. The main contributions of this
paper are summarized as follows:

(1) We proposed a new drivable dynamic face NeRF that is capable of synthe-
sizing high-fidelity photos from any viewpoints of human faces, which can
perform realistic expressions according to driving signals.

(2) We introduce the world-space keypoints into the framework, which not only
improves the fidelity of the driven faces, however, also helps accelerate the
model.

(3) The experiments show that our method outperforms previous methods and
achieves faster speed.
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Fig. 1. First column: the world-space keypoints that are utilized as the driving signals.
Other columns: the corresponding rendered images from different perspectives.

Fig. 2. Overview of our drivable face NeRF pipeline. Leveraging multi-view images
and camera poses, 2D keypoints are extracted for each viewpoint using a face tracker.
Employing Front view-based Direct Linear Transformation (DLT), 3D keypoints are
acquired, enhancing sampling probability near the face during ray sampling. The sam-
ple points, world space keypoints’ driving signals, and latent code are fed into a defor-
mation network, transitioning them into the canonical space, where color and voxel
density of sample points are computed. Through the rendering equation, the color of
rays is determined. (Color figure online)

2 Related Work

Neural Rendering. The Neural Radiance Field [10] has received widespread
attention since its inception. It directly models the color and occupancy of the
scene as an implicit field, which is represented by a neural network. Then, novel
views of the scene can be obtained by applying the rendering equation to the
implicit field. Since then, numerous studies have made significant contributions
to NeRF in static scenes from various perspectives, including extending NeRF
to scenes in the wild [8] and at a large scale [12,16], integrating NeRF with
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computational imaging [7,9], and others. For a comprehensive account of the
progress, interested readers may refer to [13].

Dynamic Neural Radiance Field. A straightforward idea to make NeRF
models drivable is to make NeRF be conditioned on driving signals like time
[2] or expressions [1,3,17]. NeRFACE [1] performs 3D facial reconstruction from
monocular videos. However, it approximates images of different head poses under
the same viewpoint as if they originate from distinct perspectives., resulting in
jittering in the torso region during head pose changes. In our work, we utilize
genuine stereo data, thereby eliminating such issues. Works such as MofaNeRF
[17] and HeadNeRF [3] explore the construction of parametric facial models using
conditional neural radiance fields. However, their methods only suitable for dis-
crete expressions, which are insufficient for creating facial avatars. In our work,
we utilize Meta’s MultiFace dataset, which encompasses a rich variety of facial
expressions. As a result, our model can generate realistic facial images with con-
tinuous expressions. Another related technique of dynamic NeRF is to integrate
a deformation field to warp a sample point from picture space to canonical space
which is represented by a conventional NeRF, like HyperNeRF [11]. HyperNeRF
[11] is dedicated to addressing the issue of deformation fields being unable to
capture topological changes. The adaptively learned latent codes, though unin-
terpretable, excel at interpolation but fall short in effectively controlling digital
faces.

Sampling Efficiency. NeRF [10] suffers from poor sampling efficiency. NSVF
[4] maintains explicit sparse voxels to concentrate sampling in regions containing
objects. In our method, we don’t need extra data structures like sparse voxels.
MVP [5] samples exclusively within the volume anchored to facial meshes. How-
ever, in most cases, ground truth face mesh is unknown. In our work, we only
use keypoints lifted from 2d keypoints by face tracker to guide sampling, which
also effectively improves sampling efficiency.

3 Proposed Approach

The overall framework of our drivable face NeRF is shown in Fig. 2. In this
section, we first introduce the architecture of drivable face NeRF, where a key-
point attention module is employed to capture the relations between world-space
keypoints and the relations are sent to MLPs to model pose and expression
variations. Then, we introduce how to get the world-space keypoints from the
multi-view images. Finally, we elaborate a keypoints-based sampling strategy
that only samples the points near the face surface to boost sampling efficiency.

3.1 Dynamic Face NeRF

The dynamic face NeRF is composed of three parts, world-space keypoints atten-
tion model, deformation field and canonical radiance field.
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World-Space Keypoints Attention. Given world-space keypoints a ∈ R
k×3

which are human face keypoints in world coordinate, k denotes the number
of world-space keypoints, we use a self-attention module [14] to capture the
relationship between different world-space keypoints. World-space keypoints are
linear embedded to Q,K ∈ R

k×10, V ∈ R
k×3 by Wq,Wk ∈ R

3×10,Wv ∈ R
3×3,

where
Q = aWq,K = aWk, V = aWv. (1)

Then

att = softmax(
QKT

√
d

)V + k. (2)

Deformation Field. Conventional NeRF model has trouble in modeling large
head and torso movement. Therefore, we employ a deformation field to capture
the significant movement, transforming sampling points from the photo space to
the canonical space. A deformation field is defined as D : (x, att) → Δx, where
x is the sampling point which has been positional encoded. By x → x + Δx, we
transform it to canonical space.

Canonical Radiance Field. Although deformation field can represent
humans’ movement, small changes over different frames such as micro-
expressions, are out of the ability of a single deformation field. So we concate-
nate world-space keypoints attention into the input of the canonical radiance
field, promoting our model to more accurate expressions. Our canonical model
is defined as

F : (x,d, att) → σ, c, (3)

where x is the three dimensional coordinate of sampling points and d is the cor-
responding view direction, both are positional embedded. We use the following
rendering equation to turn the result volume density and color into RGB values
of rays.

RGB =
∫ zfar

znear

σ(r(t))c(r(t),d)T (t)dt, (4)

where

T (t) = exp(−
∫ t

znear

σ(r(s))ds. (5)

We use image reconstruction loss to train our model.

3.2 Driving NeRF by World-Space Keypoints

Let I denote a set of cameras. Given a set of 2d points {pi|i ∈ I} that are
projections from different views of a 3D point, solving a set of over-determined
equations defined by projection relations through SVD can recover the coordi-
nate of the 3D point, which is also called direct linear transformation (DLT).
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In practice, the 2D detection models cannot perform well in every view. In
most of the cases, keypoints from the front view are more accurate and stable
than that from the side views, as we can see in Fig. 4. Therefore, we propose front
view based DLT to find the potentially best world-space 3D points matching the
2d positions.

Consider a 3D point, denote the homogeneous coordinate of its front view
projection as p0 = (x0, y0, 1), its depth from front view as d and its 3D position
in world coordinate as qw, and denote intrinsic and extrinsic parameters of the
front view camera as K0, T0, we know

qw = T−1
0 K−1

0

[
dp0
1

]
. (6)

Given another view i and the corresponding projection matrix from world space
to the photo space as Pi, we have pi × Piqw = 0. Denote [L|R] = PiT

−1
0 K−1

0 ,
where L ∈ R

3×3 ,R ∈ R
3×1, we have (pi × Lp0)d + (pi × R) = 0, which finally

gives us an equation of type
[

f i
1

f i
2

]
d +

[
gi1
gi2

]
= 0. (7)

Considering equations corresponding to all {i ∈ I|i �= 0}, let F =[
f1
1 , f1

2 , . . . , f i
1, f

i
2, . . .

]T , G =
[
g11 , g

1
2 , . . . , g

i
1, g

i
2, . . .

]T , the solution can be writ-
ten as

d =
F · −G

F · F
. (8)

3.3 Keypoint-Based Efficient Sampling

In the original NeRF [10], a two-stage model is proposed to capture the detail
of the scene: a coarse-level model that samples random points along the ray and
models the rough geometry, and a fine-level model in which points along a ray
are more likely to be selected if they have higher volume density in coarse level
model.

In our method, we find that with world-space keypoints, we only need to
sample the points which have the shortest distance to the set of world-space
keypoints. It helps us get rid of the coarse level model, leading to higher speed
and lower GPU memory cost. Specifically, we first sample N points uniformly
for each ray and calculate keypoints distance. We define the distance between a
sample point p and the keypoint set S as

dp =
1
3

min
i,j,k∈S,i�=j �=k

(‖i − p‖2 + ‖j − p‖2 + ‖k − p‖2), (9)

where i, j, k traverse the set of keypoints S. If the minor distance along the ray
r, dmin = minp∈r dp is smaller than a threshold, we randomly sample half points
between the two points with the smallest distance among the N points and half
points randomly. Otherwise, we randomly sample all points.
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3.4 Training

Loss Function. The drivable face NeRF is trained using the loss function:
L = Lrecon + λLlatent. The first term is the reconstruction loss, which measures
the L2 distance between the predicted color and the ground truth color The
second term is a regularization term of latent code as in [1], which penalizes
large values of latent code.

4 Experimental Results

Dataset. We use the publicly available dataset Multiface [15], a dataset for
research on high quality digital humans released by Meta Reality Labs Research,
to verify the effectiveness of our model. Five types of data are given: Multiview
photos, unwrapped textures, meshes, audio and metadata which mainly provide
intrinsic and extrinsic data of cameras. Since the whole dataset takes over 100T
hardware memory, we take the data from id 00264381 to conduct the following
experiments.

Data Pre-processing. We resize all images to 333 × 512 to maintain a proper
i/o speed. Then we use the opensource package mediapipe [6] to detect 2d
facial keypoints. The world-space keypoints are then generated as described in
Sect. 3.2.

Implementation Details. The deformation network and canonical network
share a structure that contains 6 hidden layers and a skip connection from the
input layer to the 4-th hidden layer. We use Adam optimizer to train our model
and set the initial learning rate to 5e−4. An exponential learning rate decay
strategy with a 0.1 decay factor and 250000 decay steps is adopted. The model
is trained with 400000 iterations to get convergence. In each iteration, we sample
128 random rays. The algorithm is implemented on pytorch 1.10.2, and is run
on Ubuntu 18.04.4 system. We use 8 Nvidia 3090Ti GPUs to train our model,
with a batch size of 32.

4.1 Comparison with SOTA

We compare our results with the state-of-the-art method NerFACE [1]. We report
two metrics PSNR and LPSIS, which are widely used in evaluating NeRF-type
models.
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Fig. 3. First line: Qualitative results of novel expression synthesis. Second line: Qual-
itative results of novel view synthesis. From left to right: Original image, NerFACE,
ours w/o kpts sampling, and ours.

Novel View Synthesis. In this experiment, we take all images with different
expressions and divide the images into training and testing datasets according to
different cameras. We have two settings, 37 views for training and three views for
testing, 27 views for training and 13 views for testing. The results are shown in
first row of Fig. 3 and Table 1. One can see that using 3D keypoint can effectively
improve the model’s performance and our method outperforms the NerFACE.

Table 1. Results for novel view synthesis

37 Train views 27 Train views

PSNR LPSIS PSNR LPSIS

NerFACE [1] 26.851 0.084 25.683 0.141

ours(w/o kpts sampling) 27.012 0.081 25.873 0.136

ours 27.621 0.088 25.98 0.145

Novel Expressions Synthesis. In this experiment, we take 40 expressions for
training and 2 expressions for testing. Example results are shown in Fig. 3. It
can be seen that the proposed method has achieved better rendering results than
NerFACE. We list novel expressions synthesis results in Table 2. To demonstrate
the experimental results comprehensively, we divided the 40 test angles into five
groups according to their yaw. We can see that using world-space keypoints or
not has a substantial impact on the model’s generalization ability, which shows
that the relationship between world-space keypoints and the whole scene can be
captured more easily than 2d keypoints.
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Table 2. Result for novel expressions synthesis

group1 group2 group3 group4 group5 average

PSNR LPSIS PSNR LPSIS PSNR LPSIS PSNR LPSIS PSNR LPSIS PSNR LPSIS

NerFACE [1] 30.08 0.108 29.537 0.098 28.601 0.106 28.502 0.116 29.418 0.117 28.724 0.111

ours (w/o
kpts
sampling)

30.806 0.116 30.316 0.108 29.048 0.112 29.138 0.126 30.462 0.124 29.406 0.119

ours 29.973 0.123 30.252 0.117 30.182 0.108 29.474 0.121 30.143 0.114 29.906 0.116

4.2 Ablation Study

We conduct two ablation studies to show the effectiveness of our method.

Fig. 4. Comparison of face tracker, reprojection of DLT-obtained results and ours result
(from top to bottom). The red box highlights the areas where our results significantly
outperform the others. (Color figure online)

Front View vs DLT. We compare Front view based direct linear transfor-
mation with direct linear transformation as in Fig. 4. Since the ground truth of
world-space keypoints is unknown, we can only assess the performance of our
method by projecting world-space keypoints to different perspectives. Images
from various perspectives are selected to comprehensively demonstrate our
experimental results. From Fig. 4, qualities of tracking results of different view-
points are not equal and those from front views are often better because land-
mark detection model is expected to perform poorly in large poses. When the
face tracker has a larger error in a certain perspective, results of DLT will shift
in the wrong direction, which can be reflected in the reprojection results. This is
because DLT assigns equal weights to all viewpoints. In our method, we assign
infinite weight to the front view, which has smaller errors, in order to produce
more stable results than DLT. Even though the face tracker may produce signif-
icant errors in some perspectives, Front view based DLT is barely affected and
can still obtain high-quality world-space keypoints.
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Table 3. Comparison of inference time and model size

inference time model size

ours(w/o kpts sampling) 7.26 s 2.25M

ours 5.23 s 1.41M

Keypoint Based Sampling Rendering. As we can see in Table 3, compared
with the two stage method, keypoint based sampling reduces inference time
and have a smaller model size. On the other hand, we compare our model with
one stage model and one stage NerFACE as in Table 4. One stage methods
can only randomly sample points and much computation is wasted. Keypoint
sampling enable the model to sample more points near the face, thus achieving
high performance.

Table 4. Ablation study of keypoint based sampling

37views 27views novel expression

NerFACE [1] 24.894 25.696 28.386

one stage 24.844 26.044 28.766

ours 25.98 27.621 29.772

5 Conclusion

In this paper, we have presented a novel method for dynamic face modeling. We
first acquire high quality world-space keypoints from multi-view photos. Utilizing
world-space keypoints, we achieve better performance compared to the previous
method. Moreover, we propose keypoints based sampling to reduce inference
time and model size.
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Abstract. In recent years, adversarial examples have played a significant role in
protecting image privacy and improving the robustness of deep learning models.
Most adversarial example generations are conducted in uncompressed domain;
however,most images are compressed in storage andnetwork transmission, and the
compression definitely degrades the adversarial effectiveness. Absolute moment
block truncation coding (AMBTC) is popular for image compression. This paper
aims to study the adversarial face example generation for AMBTC format. The
method is proposed and optimized in compressed trio-data domain (CTD), the
adversarial face example generation is optimized directly on the trio data of each
block rather than on each pix. Since CTDmethod optimizes the trio data, it reduces
the computational overhead. The experiments on LFW face database confirm that
CTD method has satisfactory anti-compression ability for AMBTC format, and
simultaneously has satisfactory image quality.

Keywords: Adversarial face example · AMBTC · Anti-compression

1 Introduction

In recent years, deep learning models have been widely used in many fields. However,
various studies have shown that thesemodels are highly susceptible to adversarial attacks,
resulting in security concerns. Therefore, adversarial examples are crucial for evaluating
the robustness of deep learning models. Meanwhile, adversarial examples can lead to
some positive and beneficial effects. For example, a large number of face images are
shared on some social networks (such as Facebook and Instagram).Adversarial examples
can successfully fool face detection models, and protect the privacy of face photo.

Most adversarial examples are generated in uncompressed domain. In practice, in
order to save transmission bandwidth or storage space, the original images are gener-
ally compressed to remove redundancy. However, the adversarial examples are highly
sensitive to image compression. The distortion introduced by the image compression
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greatly reduces adversarial effectiveness [1, 2]. Moreover, attackers can only intercept
the lossy compressed data of images rather than the original images. And some channels
do not support transmitting uncompressed adversarial images. Therefore, the adversarial
example generation in compressed domain is more practical than that in uncompressed
domain.

The generated adversarial examples should still maintain certain adversarial effec-
tiveness after compression. However, due to the distortions caused by compression, the
adversarial optimization process must be designed specifically for various compres-
sion formats, because the procedures of different compression formats are completely
different.

Absolutemoment block truncation coding (AMBTC) is a popular image compression
format due to its fast encoding speed and low computational cost [3, 4]. However, as
a lossy compression format, it also introduces distortions that reduce the adversarial
effectiveness. Currently, no research has been done to generate adversarial examples
for AMBTC format. Since face is one of the most widely used biometric modality, this
paper proposes the adversarial face example generation method for AMBTC. The main
contributions of this work are summarized as follows.

(1) In compressed trio-data domain (CTD), the adversarial face example generation is
optimized directly on the trio data of the blocks.

(2) The proposed CTD method has both anti-compression ability for AMBTC format
in untargeted and targeted attack modes, and and simultaneously has satisfactory
image quality.

(3) Since CTD method optimizes the trio data instead of each pix, it reduces the com-
putational overhead and can strongly suppress the adversarial effectiveness loss due
to compression.

2 Related Works

The early adversarial examples are generated in uncompressed domain. Szegedy et al.
[5] used the Limited Memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS)
to solve the least perturbation equation that misclassifies the outputs. Goodfellow et al.
believed that the success of adversarial attacks stemmed from the linear structure of
the network models, and proposed a Fast Gradient Sign Method (FGSM) [6]. Kurakin
et al. proposed a basic iterative approach (BIM) [7] to generate adversarial examples
that were closer to normal examples. As a extension of FGSM, BIM sometimes is also
called iteration FGSM (I-FGSM). Madry et al. proposed the projected gradient descent
(PGD) algorithm [8] based on BIM.

In traditional adversarial examples generations, the adversarial effectiveness defi-
nitely degrades in compressed domain, such as JPEG, AMBTC and other compression
formats. This is because the adversarial perturbations are greatlyweakened anddestroyed
by compression. To solve this problem, a special design is required according to the prin-
ciples and characteristics of the compression formats. To resist JPEG compression, Shin
et al. [9] leveraged the differentiable operations to approximate the non-differentiable
rounding process. Wang et al. [10] designed a compression approximation model (Com-
Model) based on coding and decoding. The model learned the transforms from the
original-compressed pairs of images to approximate JPEG compression format.
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Some adversarial example generation methods in compressed domain are conducted
in frequency domain. Shi et al. [11] used the gradients in the frequency domain to guide
rounding to produce the quantization discrete cosine transform (DCT) coefficients of the
adversarial image. Sharma et al. [12] added the perturbation to low frequencies to avoid
the adversarial effectiveness loss due to JPEG compression. Duan et al. [13] removed the
image details (high-frequency coefficients) to generate adversarial examples. Zhou et al.
[14] employed a low-pass filter to impose adversarial perturbations on the low frequency
bands. Zhang et al. [15] no longer restricted adversarial perturbations, but regularized
the source model to use more low-frequency features through adversarial training.

Although AMBTC is a popular image compression format, the anti-compression
adversarial examples for AMBTC are absent. The compression/decompression proce-
dures of JPEG andAMBTC are completely different, so the existing works for JPEG for-
mat are unsuitable for AMBTC. In this paper, a CTD method is designed for adversarial
face example generation in AMBTC domain.

3 Methodology

3.1 Absolute Moment Block Truncation Coding

AMBTC [16] is a lossy compression format. First, an original image is divided into
several non-overlapping blocks of size m × m. For each block P, the average value p is:

p =
∑m×m

j=1 pj

m × m
(1)

where pj is the j-th pixel in P. The bitmap in each block isM, which is divided into two
groups, M0 and M1, where M = M0 ∪ M1 and M0 ∩ M1 = Ø, M0 = {00, 01,…, 0q}
andM1 = {10, 11,…, 1(m × m − q)}. q andm × m − q represent the pixel numbers of “0”
and “1”, respectively. The lowlight and highlight values, namely the mean pixel values
inM0 and M1, are:

L =
⎢
⎢
⎢
⎣1

q

∑

pj<p

pj

⎥
⎥
⎥
⎦ (2)

H =
⎢
⎢
⎢
⎣ 1

m × m − q

∑

pj≥p

pj

⎥
⎥
⎥
⎦ (3)

In decompression, the pixels in M0 are replaced by L; while the pixels in M1 are
replaced by H.
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For color images, the Red, Green, and Blue components are separated into R, G, and
B channels. AMBTC is conducted on each channel separately.

Figure 1 shows an example of AMBTC compression and decompression. For ease
of explanation, the pixel values are normalized to the range of [0,1].

Fig. 1. AMBTC compression and decompression.

3.2 Method in Uncompressed Domain

The output of a classifier is C(x) ∈ �K , where x is an example, � is the probability
simplex, K is the number of classes. An untargeted adversarial example x′ satisfies:

arg maxk C(x′)k �= y (4)

where y is the true label of x, k refers to the predicted class, and ||x′–x|| should be small
for some distance metric ||·||.

x′ can be found by solving argmaxx′ l(C(x
′
), 1y) s.t. ||x′–x||<d, where l(·,·) is the loss

function, and 1y ∈ RK is a one-hot coding vector and the y-th element is set to 1.
For FGSM [8]:

x′ + x+ ∈ ·sign(∇x′ [l(C(x′), 1y)]x′=x) (5)

where ε represents the total perturbation amplitude.

3.3 Threat Model

In uncompressed domain, the adversarial images are generated on the original image, and
are transmitted to themodel through the network. However, in order to save transmission
bandwidth or storage space, the original images are generally compressed to remove
redundancy in practice. The situation is shown in Fig. 2.

The detailed process is specified as follows. Firstly, the adversarial example x′ is
compressed to tx′ by AMBTC:

tx′ = trio_Blocks(x′,m) = {{H1,L1,M1}, · · ·, {Hi,Li,Mi}, · · ·{Hn,Ln,Mn}} (6)

Each block has a piece of trio data. An image is divided into n blocks. Hi, Li, and
Mi refer to the highlight value, lowlight value and bitmap of the i-th block, respectively.
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m is the side length of the block. tx′ must be decompressed to obtain the decompressed
image x1:

x1 = I(tx′) (7)

If m increases, the compression ratio increases, and the similarity between x′ and
x1 decreases. Many perturbations are directly erased due to the AMBTC compression,
so the adversarial effectiveness degrades sharply. When m is larger, this degradation
becomes more remarkable, and leads to:

argmaxkC(x
′
)k �= argmaxkC(x1)k (8)

Fig. 2. Traditional attack through the network for compression.

As shown in Fig. 3, an attacker intercepts the compressed information t and generates
the adversarial compressed information t’. t’ replaces t and is transmitted to the model
over the network.

Fig. 3. Attack in compressed domain through the network for compressed format.

3.4 Method in Compressed Trio-Data Domain

CTD method directly optimizes the trio data, avoiding the perturbation loss caused by
compression. Only the trio data need to be optimized, so the compression process is not
included in each iteration process, and the computational overhead is reduced.
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The whole process is shown in Fig. 4. The decompressed image I is put into the
model to calculate the loss with the Target Label y’. Then the gradients of the trio data
are obtained, and gradient descent optimization is performed to decrease the loss. The
optimized intermediate trio data is t’.

Given the trio data of an original image, a step gradient is calculated by Eq. (9).

G = ∇(Hi,Li)l
(
C(I(trio_Blocks(x,m))), y′) (9)

where l(·,·) represents the loss function. For classification tasks, it computes the cross-
entropy of the predicted label and actual output. For feature extraction tasks, it computes
the similarity between features.

The i-the block has the trio data {Hi,Li,Mi}. The bitmapMi contains only 0 and 1, the
direct optimization causes the highlight mean value and lowlight mean value at a pixel
to be converted to each other, which definitely seriously reduces the image quality. Thus
only the highlight mean value Hi and the lowlight mean information Li are optimized.

Fig. 4. CTD method for generating adversarial images in AMBTC format.

4 Experiments and Discussions

4.1 Dataset and Implementation Details

The experiments are carried out on the facial recognition system (FRS). IResnet50 [17]
is used as the backbone and ArcFace [18] is used as supervisory head during training.
FRS is trained on CASIA-WebFace. It is tested on LFWand the accuracy reaches 97.3%.

Both untargeted attacks and targeted attacks are tested. For untargeted attacks, 3000
face images are selected from LFW. If FRS identifies the images x and adversarialx′ as
two different identities, the attack is successful. For targeted attacks, 3000 pairs of face
images with different identities are selected, and one image of each pair is attacked. If
FRS identifies the adversarial image x′ and the other face image in the pair as the same
identity, the attack is successful. m is set to 4, 8, 12, 16 for compression.

FGSM, BIM, and PGD are conducted for comparisons. In PGD and CTD, infinite
norms limit the disturbance amplitude.
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4.2 Comparisons

Untargeted Attack. Table 1 shows the SR and PSNR in untargeted attacks. SR is
attack success rate, and PSNR measures the similarity between the final decompressed
adversarial examples and its original image. The larger the two, the better the attack
effect and image quality. ε limits the disturbance amplitude.

Table 1. Anti-compression testing of adversarial examples for AMBTC in untargeted attacks

m = 4 m = 8 m = 12 m = 16

SR PSNR SR PSNR SR PSNR SR PSNR

ε = 2 FGSM 0.27% 32.00 1.13% 28.07 12.13% 26.28 56.83% 24.70

BIM 0.90% 32.10 0.60% 28.08 8.73% 26.29 53.30% 24.71

PGD 0.60% 32.12 0.43% 28.08 8.33% 26.29 52.63% 24.71

CTD 6.07% 31.96 21.20% 27.98 51.63% 26.22 85.80% 24.65

ε = 3 FGSM 0.50% 31.67 4.37% 28.01 18.90% 26.26 61.73% 24.70

BIM 11.23% 31.99 0.87% 28.06 9.93% 26.28 54.07% 24.71

PGD 3.40% 31.99 0.50% 28.06 9.30% 26.28 53.70% 24.70

CTD 49.93% 31.73 61.63% 27.87 77.83% 26.14 95.20% 24.60

ε = 4 FGSM 1.57% 31.17 11.77% 27.89 28.10% 26.21 67.43% 24.68

BIM 49.03% 31.85 1.73% 28.04 11.10% 26.28 55.47% 24.70

PGD 24.50% 31.80 1.23% 28.03 11.23% 26.27 55.70% 24.70

CTD 90.33% 31.48 88.60% 27.75 91.93% 26.05 98.43% 24.53

ε = 5 FGSM 4.77% 30.56 22.47% 27.69 40.50% 26.13 73.27% 24.65

BIM 84.20% 31.70 4.30% 28.02 12.80% 26.27 56.83% 24.70

PGD 62.37% 31.56 5.07% 27.97 14.10% 26.25 58.57% 24.69

CTD 99.17% 31.22 97.90% 27.61 97.10% 25.95 99.50% 24.46

The scatters corresponding to SR and PSNR are plotted in Fig. 5, in which the image
quality and SR are simultaneously considered. ε values are from 1 to 10. The closer
to the upper righter corner the curve is, the better attack performance is. At m = 4,
BIM sometimes achieves similar performance to CTD. This is because the loss caused
by compression is very small if m is small. When m increases, CTD outperforms other
methods more remarkably.

Targeted Attack. Table 2 shows the SR and PSNR in targeted attacks. The com-
parison results are similar to those of untargeted attack. CTD has both satisfactory
anti-compression ability and image quality.

The scatters corresponding to SR and PSNR are plotted in Fig. 6. With the increase
of m, the image quality gradually decreases. The increase of SR is accompanied by the
decrease of image quality for eachmethod. But CTD has a highest SR at the same PSNR.

Figure 7 shows that the adversarial images at different m values for untargeted and
targeted attack. “None” is the compressed image without attacks of the original image.
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Fig. 5. Scatters of PSNR vs. SR in untargeted attacks.

Table 2. Anti-compression testing of adversarial examples for AMBTC in targeted attacks

m = 4 m = 8 m = 12 m = 16

SR PSNR SR PSNR SR PSNR SR PSNR

ε = 1 FGSM 23.83% 32.23 5.20% 28.12 2.20% 26.32 0.83% 24.75

BIM 28.00% 32.24 4.27% 28.13 1.87% 26.32 0.80% 24.75

PGD 16.83% 32.25 3.07% 28.13 1.63% 26.32 0.77% 24.75

CTD 54.73% 32.19 24.63% 28.10 12.30% 26.29 3.77% 24.73

ε = 2 FGSM 62.17% 32.06 15.37% 28.10 4.33% 26.31 1.27% 24.74

BIM 75.50% 32.17 8.83% 28.12 2.50% 26.31 0.87% 24.74

PGD 56.47% 32.18 6.57% 28.12 2.13% 26.31 0.83% 24.74

CTD 96.30% 32.02 71.87% 28.02 41.17% 26.24 14.40% 24.69

ε = 3 FGSM 82.93% 31.72 33.93% 28.04 9.47% 26.28 1.93% 24.74

BIM 95.30% 32.07 14.63% 28.10 3.23% 26.31 0.97% 24.74

PGD 87.30% 32.06 11.90% 28.10 3.03% 26.31 0.90% 24.74

CTD 99.80% 31.80 94.23% 27.92 71.47% 26.17 30.83% 24.64

ε = 4 FGSM 91.47% 31.23 53.03% 27.92 17.60% 26.23 3.00% 24.72

BIM 99.27% 31.96 21.77% 28.09 4.10% 26.30 1.00% 24.74

PGD 97.47% 31.87 21.17% 28.06 4.47% 26.29 1.17% 24.74

CTD 100% 31.58 98.90% 27.80 88.57% 26.08 48.37% 24.58
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Fig. 6. Scatters of PSNR vs. SR in targeted attacks.

Fig. 7. Compressed adversarial images with ε = 4. (a) untargeted attack; (b) targeted attack.

5 Conclusions

This paper proposes CTD method for generating AMBTC-resistant adversarial exam-
ples. It focuses on optimizing directly on trio data. CTD method has both satisfactory
compression resistance and image quality. The compression process is not included in
each iteration process, so the computational overhead is reduced. The experiments on
LFW database show that the adversarial face examples confirm the advantages of CTD
method. In future works, we will try to extend our method to other compression formats.
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Abstract. To address the issue of facial variation interference, this
paper proposes a novel approach for single sample face recognition.
Inspired by human visual perception, we introduce an attribute dis-
entanglement module to separate identity features from attribute fea-
tures using canonical correlation analysis. Due to the lack of attribute
labels in the single sample set, we utilize the attribute features of the
generic set to construct the SOM attribute space. Then, we fine-tune
the network by reducing the distance between the attribute features of
single sample and the attribute space. Finally, we use feature adversar-
ial augmentation module to generate more intra-class features and train
more robust classifier. Experimental results on AR, LFW and FERET
datasets show significant improvements in accuracy and generalization
performance compared to other methods.

Keywords: Single-sample Face Recognition · Attribute
Disentanglement · Adversarial Feature Generation

1 Introduction

Face recognition is a widely used biometric recognition method due to its non-
invasive nature, high accuracy, and convenient data acquisition. However, in
real-world applications, face recognition systems often face the challenge of hav-
ing access to only one sample per identity, which significantly limits their per-
formance. Under such single-sample per person (SSPP) [13] constraint, facial
attributes like expression, mustache, hair style, and eyeglasses are strongly cou-
pled with facial identity, posing a significant challenge for learning accurate face
representation.
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This challenge leads to the need for performing identity-attribute disentan-
glement during the face representation learning process. In this paper, we aim to
make face features more robust to attribute variations, allowing identity infor-
mation to be captured more precisely. Specifically, based on Canonical Correla-
tion Analysis (CCA), we set up an additional attribute classifier and designed a
novel loss function, which aims to lower the correlation coefficients of attribute
information and identity information to encourage the separation of these two
components.

However, this method only works well on datasets with human labeling of
facial attributes, which we utilized as a generic set for representation pretraining.
When it comes to single sample sets for downstream recognition, attribute anno-
tations are usually inaccessible. This problem poses a significant challenge for
learning identity-attribute disentanglement on single sample sets. To solve this
issue, this paper constructs a Self Organizing Map (SOM) [14]-based attribute
space using the attribute feature set obtained from the disentanglement result
of the generic dataset. Then, we fine-tune the network by reducing the distance
between the attribute features of single sample and the attribute space.

Additionally, to further enhance the learning of disentanglement on single
sample sets, we propose using adversarial feature augmentation to generate vir-
tual face features. We set up a Generative Adversarial Network (GAN) [15] to
learn the probabilistic distribution of facial attribute and identity features, then
sample a large number of virtual features to enlarge the training set. With suf-
ficient training instances, learning a decent identity-attribute disentanglement
becomes easier.

We evaluated our method on the AR [16], LFW [8], and FERET [17] datasets,
achieving high face recognition accuracies of 95.2%, 98.34%, and 99.30%, respec-
tively. This represents an absolute improvement of +0.53%, +0.43%, and +5.40%
compared to previous methods. Rigorous ablation experiments prove that both
identity-attribute disentanglement and adversarial feature augmentation make
noticeable contributions to the overall model performance.

2 Related Work

Existing deep single-sample face recognition methods can be divided into
two categories: virtual sample methods and generic learning methods [9–11].
When training deep models directly using a single-sample training set, lim-
ited training samples often lead to model over fitting. Therefore, the direct
solution is to generate multiple virtual samples or features based on a single
training sample to expand the training set, thereby transforming the single-
sample problem into a general face recognition problem. Generic learning meth-
ods introduce an additional generic sample set with rich intra-class varia-
tion information to learn variation information as prior knowledge for the
network, improving the accuracy of single-sample face recognition problems.
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The key to virtual sample methods is to increase intra-class variation within
the samples. Because the newly generated virtual samples are highly corre-
lated with the original single-sample dataset, their contribution to classification
improvement is limited. In recent years, various deep learning-based virtual sam-
ple methods have been proposed to better simulate the real intra-class distribu-
tion of facial images. Some methods employ novel network architectures and gen-
eration processes, using GANs to create virtual samples. For example, Zakharov
et al. [1] represent intra-class variations using extracted facial landmarks and
employ meta-learning strategies to generate high-quality virtual samples during
adversarial training. Tran et al. [2] introduced a Disentangled Representation
learning-Generative Adversarial Network (DR-GAN) to separate pose features
from the features, enabling pose-controllable face generation.

Some researchers argue that generating virtual images also requires input
feature extractors, when remapped to the feature space, may lead to identity
information loss. Therefore, several methods based on virtual features have been
proposed. For instance, Yin et al. [3] assume that intra-class variations of feature
vectors follow a Gaussian distribution, allowing the sampling of different virtual
features for individual samples from the corresponding distribution. Min et al. [4]
learn intra-class variation information from a general sample set through feature
clustering.

The aforementioned methods often treat the features extracted from indi-
vidual samples as the centers of their respective classes, without considering
the inherent variation information carried by each individual training sample.
Consequently, feature correction methods have also gained widespread attention.
In recent years, Pang et al. introduced the Variation Disentangling Generative
Adversarial Network (VD-GAN) [5] and the Disentangling Prototype plus Vari-
ation model (DisP+V) [6], which generate image centers and feature centers of
the training images separately.

3 Method

3.1 Design of Network Structure

To address the issue of attribute interference in single-sample training data, this
paper introduces a method based on attribute disentanglement and adversarial
generation. It employs a attribute disentanglement network to separate identity
information and attribute information within deep facial features and introduces
a attribute disentanglement loss to measure the degree of information separa-
tion. Simultaneously, a generative adversarial network is constructed to generate
features based on the disentangled identity features, enhancing the robustness of
the classification network to intra-class variations in facial images. The network
architecture is illustrated in Fig. 1.
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Fig. 1. Framework of our Method. Step 1: Train the backbone network and attribute
disentanglement module by using the CelebA dataset as a generic set. Step 2: Use the
attribute features disentangled from the generic set to construct the SOM attribute
space, and align single sample attribute features with the attribute space. Step 3:
Generate feature to increase intra-class variations.

3.2 Pretrained Attribute Disentanglement

The pre-trained attribute disentanglement module consists of four components:
feature separation, identity feature classification, attribute disentanglement,
and attribute classification. It separates the original features into identity and
attribute features. The identity features are used for facial identity recognition,
while the attribute features contain information related to facial variations in
the image. A attribute disentanglement loss is then used to minimize the correla-
tion between these features by utilizing the correlation coefficient. This loss term
enhances facial identity recognition and reduces the impact of facial changes.

Deep Feature Extraction and Disentanglement. We employ FaceNet as
the deep feature extraction network to map facial images to a deep feature space,
represented as x = FaceNet(Im), where x ∈ i 1×512 represents the image features,
and Im represents the original image. Based on the principles of the ’P+V’
model at the feature level, image features x simultaneously contain identity-
related features and attribute features related to variations. So we used a feature
disentanglement module to separate identity features xd ∈ R

1×512 and attribute
features xs∈ R

1×512, as shown in Fig. 1.

Identity and Attribute Classifiers. After obtaining the identity features
of the facial image, denoted as xd ∈ R

1×512, the aim is to map the identity
information into the feature category space using a deep neural network. To
achieve this, we use the Arcface loss, which increases the angular margin between
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classes, as the loss function for the identity classifier. The Arcface loss can be
expressed as follows:

Lid = − 1
N

N∑

i=1

log
es cos(θyi

+m)

es cos(θyi
+m) +

∑
j �=yi

es cos θj

(1)

where N represents the number of classification categories, yi represents the
category label. If we view class probabilities as angles within a full circle, then
m can be interpreted as the penalty factor for the angular distance between two
categories, and s represents the radius of this circle, which corresponds to the
regularized feature.

For acquired attribute features xs ∈ R
1×512, due to intricate facial

image variations, this section employs CelebA dataset pretraining. This dataset
includes annotated attribute attributes, used to pretrain the network. 17 discrim-
inative attribute labels from this dataset serve as label data for the attribute clas-
sifier. To counter noise, noise label classification is introduced during attribute
classification, assuming noise in every facial image. This leads to 18 attribute
labels. Given each image’s noise label, the data’s noise part lacks facial informa-
tion; this label is set to 1 in one-hot encoding. The final loss for the attribute
classifier can be expressed as:

La = − 1
N

N∑

i=1

yi log (f (xs)) = − 1
N

N∑

i=1

es cos(θyi)

es cos(θyi) +
∑

j �=yi
es cos(θj)

(2)

where N represents the number of attribute categories, set to 18.

Attribute Disentanglement Loss. After separating identity features xd and
attribute features xs, their correlation acts as regularization to aid feature disen-
tanglement. Batches of facial images are employed to compute correlations, mit-
igating feature randomness. Therefore, batch identity features are represented
as Xp−d = [xd1, xd2, ..., xdn], and batch attribute features are represented as
Xp−s = [xs1, xs2, ..., xsn], where n represents the number of features. For ease of
calculation, batch identity and attribute features are mapped to one-dimensional
vectors:

X
′
p−d = WT

d Xp−d, X
′
p−s = WT

s Xp−s (3)

where, WT
d and WT

s ∈ R
L×1 represent mapping matrices that map Xp−d and

Xp−s to X ′
p−d and X ′

p−s ∈ R
1×n, respectively. At this point, vectors Xp−d

′

and X ′
p−s ∈ R

1×n represent identity and attribute features within this batch.
The calculation of the correlation coefficient between these two is as follows:

ρ
(
X ′

p−d,X
′
p−s

)
=

cov
(
X ′

p−d,X
′
p−s

)

√
D

(
X ′

p−d

)√
D

(
X ′

p−s

) (4)
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Since the covariance between two independent random variables is zero, ρ can be
used as a loss term for measuring correlation to reduce the correlation between
identity and attribute features. For ease of calculation, ρ2 is used as the corre-
lation loss and can be expressed as:

Lc = ρ2
(
WT

d Xp−d,W
T
s Xp−s

)
(5)

Finally, the sum of the identity category loss, attribute category loss, and
identity-attribute correlation loss mentioned above is computed as the ultimate
network loss:

Lloss = αLid + βLa + γLc (6)

where α, β, and γ represent the respective coefficients for the loss terms.

3.3 Fine-Tuned Attribute Disentanglement

Transitioning to single-sample tasks, lacking attribute labels hampers proper
attribute classifier usage. To address this, the CelebA dataset serves as a generic
set for creating a attribute space with its features. Then, we calculate the dis-
tance between the attribute features and the feature spaces. Recognizing human
visual systems’ advantage in complex information processing, we used a Self-
Organizing Map (SOM) network to construct the attribute space, shown in
Fig. 1. Assuming the set of attribute features separated from the generic set
is Xc

s = [xc1
s , xc2

s , ..., xcM
s ], where M represents the number of attribute features

in the generic set, Xc
s is used as input to construct the SOM network Sc as the

attribute space.
For a single-sample image feature xt, identity features xt

d = Fsplit(xt), and
attribute features xt

s = xt − Fsplit(xt) are computed using Fsplit network. Iden-
tity features xt

d are trained with the identity classifier in Sect. 3.2. For attribute
features xt

s, Mean Square Error (MSE) loss measures the distance to attribute
space, facilitating attribute feature training. The attribute loss can be expressed
as:

Lmse =
1
m

m∑

i=1

(
xti

s − ni
c

)
(7)

where, m is feature dimension, xti
s is the i-th dimension of attribute feature xt

s,
and ni

c is the i-th dimension of winning neuron for xt
s in attribute space.

3.4 Feature Adversarial Generation

In single sample face recognition, limited training samples and diverse test sam-
ples cause disentanglement networks to deviate from true category centers. Mis-
classification is common due to small intra-class distances and sample variations.
To address this, we propose using obtained identity features as category centers
and generating virtual features. This improves classification margin and miti-
gates center deviations.
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Unlike traditional GANs, infoGAN uses real features and noise for inter-
pretable attribute generation. The mutual information constraint between gen-
erated features and input information ensures the interpretability of the genera-
tion process. It includes a feature generator (G), discriminator (D), and category
classifier (Q) for authenticating features and categories.

Using the attribute space Sc constructed in Sect. 3.3, the identity feature
xd is used as input, and the obtained winning neurons are used as attribute
feature xs. The generated attribute feature xs, disentangled identity feature xd,
and noise information are sampled and input into the Generative Adversarial
Network, represented as follows:

x̂ = G (f (xd)) = G (xd + xs + Wcc) (8)

where x̂ is the generated image feature, Wc are noise weights, and c∈ R
1×512 is

Gaussian noise, simulating diverse facial image variations.
The use of randomly generated Gaussian noise can generate numerous intra-

class variation images, denoted as X̂ = [x̂0, x̂2, . . . , x̂C ], where C represents the
number of virtual features generated for the same class, set to 100.

Here, feature classifier Q measures the correlation between undisentangled
real feature x and virtually generated feature x̂. Both maintain identical identity
labels before and after generations. The identity classifier ensures consistent
labeling, preserving identity information during feature generation. This method
prioritizes identity preservation, boosting classification efficiency over pre- and
post-generation mutual information calculations.

The final feature generation network loss can be expressed as:

Loss = Ex∼pz(z) [log (1 − D (G (xd + xs + Wcc)))]
+ Ex∼pdata(x)[log D(x)] − λ[soft max(x) + softmax(x̂)]

(9)

4 Experimental Results

To validate our method’s efficacy in single-sample face recognition, we conducted
experiments, comparing them with state-of-the-art techniques. The AR [16],
LFW [8], and FERET [17] datasets were employed, with FaceNet extracting
512-dimensional deep facial features. The disentanglement network pre-training
utilized the CelebA dataset [7] to enhance identity and attribute features sepa-
ration. In training, a attribute classifier used 17 selective variation labels, and
images were resized to 160 × 160. As in prior works [12], we adopted Accuracy
(acc) as our metric.

4.1 Results on AR Dataset

In this section, we conducted experiments using 100 classes from the AR dataset.
80 classes were used for training and testing in single-sample, while the remaining
20 classes were used as a generic set. The first image of each class was used
as the training sample. We compared our proposed method with commonly
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Table 1. AR Dataset Comparison Experiment

Method Acc Method Acc

AGL 59.95 SSAE 85.21

BlockFLD 62.92 SSLD 94.67

ESRC 71.88 SSPP-DAN 93.33

SVDL 72.56 KWV 94.31

RHDA 90.65 VD-GAN 79.70

SGL 87.30 FaceNet 86.30

FDDL 95.00 ours 95.20

used algorithms for single-sample face recognition, including traditional and deep
learning methods. The results are shown in Table 1.

According to the experimental results, our proposed method achieved a min-
imum 5% improvement compared to traditional methods like AGL, RHDA, and
SVDL. Additionally, our proposed method achieved a 0.53% improvement over
other deep learning methods like SSLD and KWV. These results highlight the
robustness of our proposed method in handling facial variations such as expres-
sions, lighting, and occlusions.

4.2 Results on LFW Dataset

Compared to AR, LFW contains a greater amount of unconstrained variation
information, including over 13,000 facial images from more than 5,000 categories.
We used 158 classes from LFW for training and testing in single-sample recog-
nition, and 1522 classes for the generic set. Results are in Table 2.

Table 2. LFW Dataset Comparison Experiment

Method Acc Method Acc

AGL 31.90 SSPP-DAN 97.91

BlockFLD 18.10 Center-Fea 90.60

ESRC 33.60 CJR-RACF 95.50

SVDL 33.50 DisP+V 96.70

VQ 42.92 UP 94.80

RHDA 32.90 FaceNet 93.80

SSLD 92.70 ours 98.34

Our proposed method achieved a high classification accuracy of 98.34% even
with complex and unconstrained facial variations. Compared to other deep learn-
ing methods, our proposed method showed a minimum of 0.43% improvement in
accuracy. In comparison to the DisP+V method of generating virtual features,
our proposed method still achieves a 1.64% improvement.
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4.3 Results on FERET Dataset

In this section, we used the FERET-b dataset, where 200 classes were used for
experimental validation, with each class containing 7 intra-class samples. The
experimental results are shown in Table 3.

Table 3. FERET Dataset Comparison Experiment

Method Acc Method Acc

SRC 53.44 SSPP-DAN 93.30

ESRC 58.90 KCFT 93.17

CPL 93.67 FaceNet 91.40

TDL 89.33 ours 99.30

Our proposed method outperformed traditional methods like SRC, ESRC,
CPL, and deep learning methods like SSPP-DAN and KCFT by at least 5.4%.
These results highlight the effectiveness of our method in achieving high classifi-
cation accuracy, even in the presence of common facial variations such as lighting
and pose changes.

4.4 Ablation Study

To validate the effectiveness of our method, this section conducted ablation
experiments on two modules to compare the accuracy on different datasets. The
experimental results are shown in Table 4.

Table 4. Ablation on Attribute Disentanglement and Feature Augmentation Module

Attribute Disentanglement Feature Augmentation Acc

AR LFW FERET

86.3 93.8 91.4

� 92.2 96.8 98.3

� � 95.2 98.3 99.3

Experimental results reveal the substantial enhancements from the proposed
attribute disentanglement and feature augmentation modules compared to rely-
ing solely on FaceNet-extracted features. The disentanglement and augmentation
modules achieved 5.9% and 3% improvements on the AR dataset, respectively.
The disentanglement module alone achieves 92.2% accuracy in AR’s natural
images. Despite LFW dataset variations, the augmentation module outperforms
the disentanglement module, adding 1.5% accuracy.

Ablation experiments confirm the disentanglement module’s effectiveness in
mitigating attribute variations’ impact on accuracy, while the featrue augmen-
tation module enhances accuracy against common and complex scenarios.
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5 Conclusion

This study addresses the challenge of balancing visual and attribute informa-
tion in single-sample face recognition. We propose an approach using attribute
disentanglement and adversarial augmentation. Our method employs a feature
disentanglement network to separate identity from attribute features. Utilizing
identity features as category centers, a generative adversarial network creates
virtual features, enhancing classification accuracy. Experimental results on AR,
LFW, and FERET datasets show our method maintains strong classification per-
formance under complex facial variations, effectively distinguishing intra-class
and inter-class differences.
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Abstract. To deal with the problem of cross-domain speech emotion
recognition (SER), in this paper, we propose a novel dynamic graph-
guided transferable regression (DGTR) method. Specifically, a retar-
geted discriminant linear regression in the source domain is utilized to
make the projection matrix discriminative. Meanwhile, an adaptive max-
imum entropy graph is designed for similarity measurement for different
domains. Experiments on four popular datasets show that our method
can achieve better performance compared with several related state-of-
the-art methods.

Keywords: regression · transfer learning · speech emotion recognition

1 Introduction

Speech emotion recognition (SER) can automatically identify human emotions
from speech signals. It has demonstrated impressive performance in a variety
of practical applications, e.g., forensic trials, intelligent interaction, in-car board
systems [1]. The objective of SER is to train a classifier with labeled speech
samples and identify the unlabeled samples into emotion categories, including
happiness, surprise, disgust, sadness, anger, and fear. In practice, the training
samples might significantly differ from the testing samples due to altered record-
ing conditions, different languages, or different reception equipment, which would
lead to different distributions of training and test data and poor recognition per-
formance [2].

To tackle the above problem, transfer learning is an efficient technique, which
can facilitate the knowledge transfer from the source domain to the target
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 225–234, 2023.
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domain. Over the past two decades, numerous transfer learning methods have
been proposed [3]. For example, in [4], Pan et al. propose a transfer component
analysis (TCA) approach for domain adaptation. In [5,6], Long et al. present
a joint distribution adaptation (JDA) algorithm and a transfer joint matching
(TJM) algorithm, which can efficiently mitigate the distance across domains. In
[7], Wang et al. present a novel balanced distribution adaptation (BDA) algo-
rithm to deal with the cross-domain recognition problem. In [8], Zhang et al. put
forward a joint transfer subspace learning and regression (JTSLR) method for
hyperspectral image classification. In [9], Li et al. propose a transferable linear
regression method to improve the performance of cross-domain SER.

The aforementioned methods can achieve appealing performance, but they
neglect the relevance of category spaces between source and target domains and
do not efficiently utilize label information of the source domain. Moreover, the
similarity metrics are usually fixed, which cannot well describe the similarities
across domains. To this end, motivated by linear regression and transfer learn-
ing, we propose a novel cross-domain SER method, named dynamic graph-guided
transferable regression (DGTR). It utilizes the source labels to guide the pro-
cedures of transfer, and designs a dynamic graph to effectively minimize the
distribution gap across two domains.

2 Proposed Method

2.1 Problem Formulation

The Discriminant Regression. As a classic method commonly used in clas-
sification tasks, linear regression is used to measure the correlation between
samples and labels, which can be formulated as follows:

min
W

‖Y − WT X‖2F (1)

where X ∈ R
d×n is the feature matrix, n and d denote the numbers of samples

and features, respectively, W ∈ R
d×c is the projection matrix, and Y ∈ R

c×n is
the label matrix. To alleviate the inherent tension between the model flexibility
and overfitting [10], Eq. (1) can be rewritten as

min
W

‖T − WT X‖2F
s.t. ∀{i, j, j �= li}, Tli,i − Tj,i ≥ 1

(2)

where li represents the class number of the i-th sample and li = k if the i-th
sample belongs to the k-th class. T ∈ R

c×ns is the retargeted label matrix to be
trained. If xi belongs to the j-th class, Tj,i is 1. Otherwise, it is 0.

To make the model be more tolerant to noises, we impose an �2,1-norm on
the projection matrix W . Then we can obtain

min
W

‖T − WT X‖2F + ‖W‖2,1

s.t. ∀{i, j, j �= li}, Tli,i − Tj,i ≥ 1
(3)

where ‖W‖2,1 is defined as
∑d

i=1

√∑c
j=1 W 2

ij .
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The Dynamic Graph Regularization. During the projection from high-
dimensional space to low-dimensional subspace, the inherent local geometric
structure of data may be destroyed. To address this issue, we introduce a graph
Laplacian, which is expressed as

Ls =
Ds − (ST + S)

2
(4)

where Ls is the Laplacian matrix, Ds is a diagonal matrix, whose elements are
represented as

∑
j

sij+sji

2 . S is the similarity matrix and its optimal form is a
block diagonal structure. According to [11], by imposing a rank constraint, the
similarity matrix S can exhibit the desired block diagonal structure, while the
corresponding graph will possess c connected components. The rank constraint
is mathematically expressed as follows:

rank(Ls) = n − c (5)

To reduce the computational complexity, according to [12], Eq. (5) can be rewrit-
ten as

min
S

c∑

i=1

σi(Ls) = 0

s.t. sT
i 1 = 1, 0 � si � 1

(6)

where σi(Ls) is the i-th smallest eigenvalue of Ls and σi(Ls) � 0. According to
Ky Fan’s theorem [13], we have

c∑

i=1

σi(Ls) = min
WT W=I

Tr(WT XLsX
T W ) (7)

where WT X represents a low-dimensional feature matrix. The orthogonal con-
straint WT W = I is imposed to prevent trivial solutions.

We introduce an adaptive learning strategy into the process of transfer learn-
ing, which can learn an adaptive manifold structure by adaptively updating the
similarity matrix [14]. As discussed in information entropy theory, the informa-
tion entropy reflects the average uncertainty of all possible positions where the
information from the information sources is transmitted. It can be expressed as

γ =
k∑

i=1

pilog
1
pi

(8)

Here, k represents the number of information sources, and pi represents the
probability of the i-th information source for a sample. A smaller γ indicates
an unstable state. We aim to continuously update the similarity matrix S until
it reaches a stable state. Thus, we maximize the following information entropy
of S:

max∑n
j=1 sij=1,sij>0

n∑

i=1

n∑

j=1

(−sij logsij) (9)
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where sij is the (i, j)-th entry of S. We embed S into the graph constraint of the
low-dimensional feature matrix WT X, resulting in a dynamic maximum entropy
graph constrained model. Then we can obtain

min
F,S

Tr(WT XLsX
T W ) +

n∑

i=1

n∑

j=1

(sij logsij)

s.t. WT W = I,

n∑

j=1

sij = 1, sij > 0

(10)

Objective Function. By combining Eq. (3) and Eq. (10), the objective function
of DGTR is formulated as follows:

min
W,T,S

‖T − WTXs‖2
F + 2α

(
Tr(WTXLsX

TW ) + β
n∑

i=1

n∑

j=1

(sij log sij)
)

+ γ‖W‖2,1

s.t. ∀{i, j, j �= li}, Tli,i − Tj,i ≥ 1, WTW = I,

n∑

j=1

sij = 1, sij > 0

(11)
where α, β, and γ are the trade-off parameters.

2.2 Optimization

Since Eq. (11) has an �2,1−norm, which is tricky to optimize. Thus, we first
transform Eq. (11) into the following form:

L = ‖T − WT Xs‖2F + 2α
(
Tr(WT XLsX

T W ) + β
n∑

i=1

n∑

j=1

(sij log sij)
)

+ γTr(WT GW ) + Tr(φ
(
WT W − I)

)
(12)

where φ is a Lagrange constraint. G ∈ R
d×d is a diagonal matrix and its i-th

element is
Gii =

1
2‖wi‖2 + ε

(13)

where wi represents the i-th row of W and ε represents a constraint with small
values. Equation (12) can be solved by updating one variable while fixing the
others. The steps are given as follows:

(1) Fix S, W and update T : The sub-problem of updating T can be written
as follows:

min
∀{i,j,j �=li},Tli,i

−Tj,i≥1
‖T − WT Xs‖2F (14)

Here we define V = WT Xs, so Eq. (14) can be rewritten as

min
∀{i,j,j �=li},Tli,i

−Tj,i≥1

n∑

i=1

‖T:,i − V:,i‖2 (15)

According to [15], the optimal solution for T can be obtained column by column.
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(2) Fix T , S and update W : The partial derivative of L w.r.t. W is

∂L
∂W

= (XsX
T
s W − XsT

T + 2αXLsX
T W + γGW + W ) (16)

Let ∂L
∂W = 0, W can be updated by the following equation:

W = (XsX
T
s + 2αXLsX

T + γG + I)−1(XsT
T ) (17)

(3) Fix T , W and update S: The problem about S can be formulated as

min
S

2Tr(WT XLsX
T W ) + 2β

n∑

i=1

n∑

j=1

(sij log sij)

s.t. W ≥ 0,WT W = I,

n∑

j=1

sij = 1, sij > 0

(18)

For convenience, by defining V = XT W , we have the following Lagrangian
function of S:

L(S) =
n∑

i=1

n∑

j=1

‖vi − vj‖22sij + 2β
n∑

i=1

n∑

j=1

(sij log sij)−

n∑

i=1

ϕi(
n∑

i=1

sij − 1) −
n∑

i=1

n∑

j=1

φijsij

(19)

where ϕ and φ are the Lagrangian operators. By the KKT condition, we can
derive the update rule for variable S as follows:

si,j =
exp

(
−‖vi−vj‖2

2
2β

)

∑n
j=1 exp

(
−‖vi−vj‖2

2
2β

) (20)

The above three steps are repeated until the objective converges or the max-
imum times of iteration reaches.

3 Experiments

3.1 Experimental Settings

To demonstrate the efficacy of DGTR, four emotional datasets are used in
our experiments, including Berlin, CVE, IEMOCAP, and TESS [16]. In addi-
tion, four common emotions, i.e., anger (AN), happiness (HA), neutral (NE),
and sadness (SA), are chosen. We compare DGTR with the following methods,
i.e., traditional linear discriminant analysis (LDA), TCA [4], JDA [5], TJM [6],
BDA [7], transfer linear discriminant analysis (TLDA) [17], joint transfer sub-
space learning and regression (JTSLR) [8], and transferable discriminant linear



230 S. Jiang et al.

regression (TDLR) [9]. Moreover, the deep domain adaptation methods are also
used, including dynamic adversarial adaptation network (DAAN) [18], multi-
representation adaptation network (MRAN) [19], deep subdomain adaptation
network (DSAN) [20], and batch nuclear-norm maximization (BNM) [21].

In our experiments, one dataset is served as the source domain and the other
dataset is served as the target domain, resulting in 12 cross-domain SER tasks,
i.e., C→B, I→B, T→B, B→C, I→C, T→C, B→I, C→I, T→I, B→T, C→T, and
I→T. Each dataset is divided into 10 parts, among which seven parts are used
for training and three parts are used for testing.

We pre-reduced the feature dimension for each group using PCA to
retain 98% of energy. The values of the three trade-off parameters, i.e.,
dynamic graph regularization parameter α, maximum entropy parameter
β, and sparse regularization parameter γ, are searched in the range of
{10−3, 10−2, 10−1, 1, 10, 102, 103}.

Table 1. Recognition accuracy (%) of different algorithms using low-level features.

Settings Compared methods DGTR

LDA TCA JDA TJM BDA TLDA JTSLR TDLR

C→B 60.22 65.98 60.82 67.01 57.27 59.79 66.72 69.83 71.13

I→B 50.14 50.52 53.61 53.61 59.21 56.41 52.73 52.58 56.70

T→B 54.67 55.43 51.97 57.66 56.41 54.21 55.77 58.59 56.89

B→C 58.62 53.21 48.51 48.08 50.41 55.56 50.76 57.69 67.87

I→C 40.79 40.38 51.28 41.03 49.32 54.49 46.17 49.63 48.08

T→C 52.65 54.37 55.46 52.45 53.21 56.72 58.13 56.46 62.18

B→I 42.28 43.73 37.42 43.21 48.52 32.44 44.21 41.45 50.85

C→I 40.71 46.77 46.77 47.29 44.10 50.19 48.13 50.59 50.97

T→I 38.66 44.23 40.92 46.89 47.53 44.23 47.55 42.67 49.56

B→T 52.85 55.52 56.33 53.59 63.78 54.87 55.78 53.22 56.50

C→T 55.41 54.56 55.95 56.66 55.61 53.21 58.73 57.88 58.58

I→T 50.11 55.33 50.40 50.16 51.87 52.54 54.73 51.48 59.38

Average 49.76 51.67 50.79 51.47 53.10 52.06 53.28 53.51 57.39

3.2 Experimental Results and Analysis

Table 1 and Table 2 show the recognition results of different algorithms on the
12 cross-domain tasks using low-level and deep features, respectively. Compared
with all baseline methods, it can be seen that whether using low-level features
or deep features, our proposed DGTR method can achieve the best recogni-
tion results under 12 experimental settings. To be specific, in Table 1, the aver-
age accuracy of our method is 7.63% greater than that of the traditional LDA
method. The reason is that LDA does not consider the difference between the
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Table 2. Recognition accuracy (%) of different algorithms using deep features.

Settings Compared methods DGTR

JDA BDA JTSLR DAAN* MRAN* DSAN* BNM*

C→B 58.76 56.71 53.61 67.90 70.68 65.43 42.90 70.10

I→B 57.73 56.83 63.92 65.12 66.05 67.59 60.19 61.86

T→B 63.92 53.83 58.76 66.05 55.25 61.73 43.83 55.67

B→C 56.41 56.71 47.44 38.58 45.30 47.03 60.27 71.79

I→C 51.17 46.85 49.36 40.31 45.49 48.75 45.30 51.28

T→C 57.69 51.78 49.36 43.57 44.34 59.88 41.65 62.26

B→I 47.36 32.58 48.85 48.29 48.24 48.98 45.55 46.40

C→I 43.88 40.44 43.65 38.78 40.62 40.20 30.00 43.21

T→I 45.81 45.98 41.79 41.07 39.55 38.91 36.26 45.88

B→T 51.67 46.83 69.71 57.16 53.35 70.11 46.65 54.38

C→T 51.25 57.10 62.71 52.10 58.47 57.79 42.40 57.08

I→T 56.25 47.81 53.75 43.90 45.78 55.10 47.28 51.88

Average 53.49 49.45 53.58 50.23 51.09 55.12 45.19 55.82

source and target domain feature distributions. Besides, the regression-based
transfer learning methods, like TDLR, JTSLR, and our method, achieve supe-
rior results compared with other transfer learning methods, i.e., TCA, JDA,
TJM, BDA, and TLDA. This might be attributed to that the regression meth-
ods can utilize the abundant label information in the source domain to describe
the relationships between corresponding features. In Table 2, it can be seen that
most transfer learning methods perform better than deep domain adaptation
methods.

We further investigate the sensitivity of the parameters in our proposed
method. The results are depicted in Fig. 1. From the figure, we can notice that
our method is stable and recognition accuracies are high within a large parameter
range.

Fig. 1. Parameter sensitivity of the proposed DGTR w.r.t. (a) α, (b) β, and (c) γ.
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Fig. 2. Ablation analysis and convergence curves of DGTR.

To verify the importance of each item in the proposed model, we conduct
the ablation study. Our model includes three special cases. Setting α = 0, which
means the dynamic graph regularization is ignored; setting β = 0, which means
the maximum entropy item is ignored; and setting γ = 0, which means the sparse
regularization is ignored.

Figure 2 (a) shows the recognition accuracy of different cases. From the figure,
we can see that the recognition accuracy decreases regardless of which parameter
being 0. This proves that each term plays a positive role in our model.

We also give the convergence curves of DGTR, which are shown in Fig. 2(b).
It can be seen that DGTR is stable within only a few (T < 20) iterations. which
proves the convergence property of our method.

Moreover, we give the visualization analysis of our method using the t-SNE
algorithm in Fig. 3. From the figure, we can find that the samples belonging to
the same categories are close, and those from different categories are kept away
from each other. This result demonstrates that DGTR can effectively reduce the
feature distribution disparity across two domains.

Fig. 3. t-SNE visualization on the tasks C→B (the first two figures) and B→C (the
last two figures). The “∗” and “+” indicate the source and target data, respectively.
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4 Conclusion

In this paper, we propose an dynamic graph-guided transferable regression
(DGTR) method for cross-domain SER. It utilizes a retargeted learning tech-
nique for discriminative linear regression in the source domain. Meanwhile, we
introduce an adaptive maximum entropy graph as the distance metric across
domains. Moreover, we impose an �2,1-norm on the projection matrix to make
the model robust. Experimental results show the superiority of DGTR over some
state-of-the art methods.
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Abstract. To gain a deeper understanding of user sentiments, multimodal senti-
ment analysis has gained significant attention. However, prior research has high-
lighted the dominance of the text modality, while audio and visual modalities have
been less explored. To maximize the utilization of information from non-verbal
modalities within multimodal data and to enhance the feature representation capa-
bilities of audio and visual modalities, we introduce a multi-scale feature fusion
framework based on the Conformer architecture. Initially, the Conformer module
is employed to encode non-verbal modalities, yielding multi-scale hidden rep-
resentations. We then incorporate attention mechanisms to consolidate sentiment
orientationwithin eachmodality. Subsequently, an attention-based statistical pool-
ing layer is utilized to fuse multimodal features for sentiment classification and
regression tasks. Experimental results on the CH-SIMSv2s datasets demonstrate
that our proposed framework achieves state-of-the-art performance.

Keywords: Multimodal sentiment analysis · Conformer · Multi-scale features ·
Attention mechanism

1 Introduction

With the rapid rise of short video platforms,more people are using socialmedia to express
themselves, creating diverse multimodal data rich in personal emotional content. Mul-
timodal sentiment analysis deals with understanding emotions in videos, encompassing
images, audio, and text.

Previous benchmarks often emphasized fusion techniques, relying on joint represen-
tation learning to create a unified multimodal view [6–8]. However, as [1] points out,
extracting sentiment from text is comparatively easier due to pre-trained language mod-
els, while handling sparse non-verbal modalities poses greater challenges. Many studies
tend to rely heavily on textual information, with significant classification accuracy drops
when text is removed [1–3]. In real-world scenarios, text may suffer from imperfections
due to speech recognition errors [4, 5], making effective use of non-verbal information
a critical challenge in multimodal sentiment analysis.
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To enhance acoustic and visual representations, we propose using the Conformer
architecture for non-verbalmodalities andBERT for text.We also introduce amulti-scale
feature fusion framework that combines hierarchical visual and acoustic representations
with textual ones. Finally, we employ attentive statistical pooling to create comprehen-
sive sentiment representations. Our experiments utilize a Chinese dataset with videos
from movies and TV shows, featuring diverse facial expressions and emotionally-rich
vocalizations, making it a suitable testbed for non-verbal information exploration.

In summary, the main contributions of this work are as follows:

• We propose a multimodal sentiment analysis framework called AVMFA-Conformer
(Acoustic Visual Multi-scale Feature Aggregation Conformer), which utilizes the
Conformer architecture to enhance representation learning in acoustic and visual
modalities. It effectively captures both local and global information from the visual
modality by employing multi-head self-attention and convolutional neural networks.

• We introduce a straightforward multimodal fusion approach that emphasizes the
expressive capabilities of acoustic and visual modalities. This method integrates fea-
tures from the acoustic and visual modalities at various scales and employs self-
attention mechanisms to consolidate emotional information within each modality.

• Weconducted extensive experiments on the CH-SIMSv2s [13] dataset, and the results
demonstrate that our proposed model surpasses previous state-of-the-art models in
multimodal sentiment analysis tasks.

2 Related Work

Multimodal sentiment analysis has attracted significant attention in recent years, leading
to the development of various models. LF-DNN [0] is a late fusion deep neural network
that extracts modality-specific features and utilizes late fusion strat-egy for final predic-
tion. On the other hand, EF-LSTM [9] is an early fusion model that combines input-level
features and employs Long Short-TermMemory (LSTM) networks to learn multimodal
representations. In contrast, TFN [7] employs tensor fusion to capture interactions among
unimodal, bimodal, and trimodal data. LMF [10] improves upon TFN by using low-rank
tensor fusion techniques to enhance model efficiency. MulT [6] is a multi-modal trans-
former that utilizes directional pairwise cross-modal attention to transform one modality
to another. MISA [1] is a model that learns modality-invariant andmodality-specific rep-
resentations by combining similarity, reconstruction, and prediction losses. MTFN is a
multi-task tensor fusion network that calculates a multi-dimensional tensor to capture
interactions among unimodal, bimodal, and trimodal data.

In recent years, Transformer-based variants have emerged in different domains and
achieved remarkable results. The Conformer [15] module, initially proposed for speech
recognition tasks, incorporates CNN layers into the Transformer structure to simultane-
ously capture local and global features, leading to outstanding performance. It has since
been applied to speech enhancement [23], speech separation [24] and speech verification
[26] demonstrating excellent performance. In the visual domain, Conformer [25] adopts
a hybrid network structure that combines CNN and Transformer in parallel, leveraging
both convolutional operations and self-attention mechanisms to enhance feature repre-
sentation learning. It has achieved promising results in object detection. However, in
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sentiment analysis tasks, no work has yet utilized the Conformer model, combining the
ideas of CNN and Transformer to enhance feature expression capability.

3 Methods

Fig. 1. The overall architecture of Acoustic Visual Multi-scale Feature Aggregation Con-former
(AVMFA-Conformer)

An overview of our method is shown in Fig. 1. Each modality feature is first extracted
using specific methods. Then they are fed into the model for further processing.

3.1 Feature Extraction

For fair comparisons, we utilize the standard low-level features that are provided by the
respective benchmarks and utilized by the state-of-the-art methods.

Text Features. The pre-trained BERT [17] model was used to learn contextual word
embeddings. This model consists of 12 stacked Transformer layers. The final text feature
was obtained from the 768-dimensional hidden state representation.

Acoustic Features. TheOpenSMILE [19] toolkit was used to extract low-level descrip-
tor features from the eGeMAPS [18] feature set with a sampling rate of 16000 Hz. This
feature set includes 25 dimensions such as MFCC1-4, F0, and Pitch.

Visual Features. The OpenFace [19] toolkit was employed to extract 177 dimensions
facial features, including 68 facial landmarks, 17 facial action units, head pose, head
direction, and gaze direction.

3.2 Conformer Block

The Conformer block consists of four stacked modules: the feed-forward module, self-
attention module, convolution module, and the final second feed-forward module. The
key components of the Conformer module are themulti-head self-attention (MHSA) and
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the convolution module. The MHSA in Conformer adopts the relative positional encod-
ing schemeproposed inTransformer-XL [20]. The convolutionmodule afterMHSAcon-
sists of Pointwise convolution, 1DDepthwise convolution, andBatchNorm after the con-
volution layer, which helps in training deep models more easily. Each Conformer block
includes two Macaron-like feed-forward modules (FNN), with 1/2 residual connections
sandwiched between the MHSA and convolution modules (Conv). Mathematically, the
input xi-1 to a Conformer block i, the output xi of the block is:

∼
xi= xi−1 + 1

2FNN(xi−1) (1)

x
′
i =∼

xi +MHSA
(∼
xi

)
(2)

x
′ ′
i = x

′
i + Conv

(
x

′
i

)
(3)

xi = LayerNorm
(
x

′ ′
i + 1

2FNN
(
x

′ ′
i

))
(4)

Note that xi-1 ∈ Rd×T, and xi ∈ Rd×T, where d denotes the Conformer encoder
dimension and T denotes the frame length.

3.3 MFA with Multi-headed Self-attention and Attentive Statistics Pooling

Previous studies [6] indicate that the low-level feature maps can also contribute towards
the accurate classification for audio and image. Based on this experience, in our system,
we concatenate the output feature maps from each Conformer block for each modality,
and this aggregation leads to an obvious performance improvement. And then feed them
into self-attention layer:

X
′ = Concat(x1, x2, . . . , xL). (5)

where X’∈RD×T andX= [X1, X2,…,XT]∈RD×T. L denotes the number of Conformer
blocks and D = d × L.

Furthermore, we perform a self-attention [21] followed by a concatenation of all
the six transformed modality representations from Conformer blocks to capture unified
emotional information within each modality.

The Transformer leverages an attentionmodule that is defined as a scaled dot-product
function:

Attention(Q,K,V ) = softmax
(
QKT√

d

)
V . (6)

where, Q, K, and V are the query, key, and value matrices. The Transformer computes
multiple such parallel attentions, where each attention output is called a head. The ith

head is computed as:

headi = Attention
(
QWq

i ,KWk
i ,VWv

i

)
. (7)
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W i
q/k/v ∈Rd×d are head-specific parameters to linearly project thematrices into local

spaces.
Next, average pooling is applied to the hidden representations of the audio and visual

modalities to align with the frame length of the text. Then, they are concatenated along
the feature dimension. cc attentive statistics pooling [6, 22] to capture the importance of
each frame. Specifically, for a frame-level feature Xt at time step t, we firstly calculate
scalar score et and normalized score αt as:

et = vT f (WXt + b) + k. (8)

αt = exp(et)∑T
τ=1exp(eτ )

. (9)

whereW ∈ RD×D, b ∈ RD×1, v ∈ RD×1 and k are the trainable parameters for attention.
f(·) denotes the Tanh activation function. After that, the normalized score αt is adopted

as the weight to calculate the weighted mean vector
∼
μ and weighted standard deviation

∼
σ , which are formulated as:

∼
μ=

T∑
t=1

αtXt . (10)

σ̃ =
√√√√ T∑

t=1

αtXt � Xt − μ � μ. (11)

where μ = 1
T

∑T
τ Xτ and � denotes the Hadamard product. The output of the pooling

layer is given by concatenating the weighted mean μ̃ and weighted standard deviation
σ̃ . Finally, the sentiment embedding is extracted from a high dimension representation
to a low dimension representation with Gelu using the fully-connected linear layer.

4 Experiments Setup

4.1 Dataset

In this study,we conducted experiments using theChinesemultimodal sentiment analysis
dataset, CH-SIMSv2s which is the labeled part of CH-SIMSv2. It includes a larger
number of instances with ambiguous and ironic text modalities, indicating a significant
presence of instances with weak text modality dependence. Specifically, CH-SIMSv2s
consists of 145 videos with a total of 4,402 video seg-ments. The classification labels
are positive emotion (label: 1) and negative emotion (label: −1). The regression labels
range from −1 to 1 and represent the intensity of emotion, with values {−1.0, −0.8,
− 0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0} denoting the transition from negative to
positive emotions.
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4.2 Evaluation Criteria

The classification metrics include binary classification accuracy (Acc_2) and F1 score
(F1_Score). In addition, Acc2_weak is used to further evaluate the performance of the
model on weak emotion instances marked within the range [−0.4, 0.4]. The regression
metrics consist of mean absolute error (MAE) and Pearson correlation (Corr) for fine-
grained prediction assessment. Furthermore, R-square is used to compare the proportion
of data explainability across different models.

4.3 Baselines

Previous Models. To validate the effectiveness of the proposed model, comparisons
need to be made with existing models. Models that utilize unified multimodal annota-
tions for supervision include the following: TFN uses a tensor fusion network to model
single-modality, bimodal, and trimodal information in multimodal sentiment analysis.
LMF improves upon TFN by using low-rank tensor fusion techniques to enhance model
efficiency. MFN [8] and Graph-MFN [11] are memory fusion networks that model inter-
actions within and across specific views, summarizing them through multi-view gated
memory. By using cross-modal transformers, MulT transforms the information from
the other two modalities to the target modality, extracting cross-modal features and
modeling long-range temporal dependencies of modalities. MISA employs modality
representation learning to decompose multimodal data into modality-specific represen-
tations and modality-invariant representations. MAG-BERT [12] applies multimodal
adaptation gates at different layers of the BERT backbone. Self-MM [14] utilizes semi-
supervised learning to guide single-modality representation learning and promote mul-
timodal effects. Other methods that use single-modality annotations to guide single-
modality representation learning and promote multimodal effects include: MTFN [27],
MLF_DNN [27], MLMF [27].

State of the Art. The AV-MC [13] framework stands as the state-of-the-art (SOTA)
model in CH-SIMSv2 dataset. The designed modality Mixup module can be regarded as
an augmentation, which mixes the acoustic and visual modalities from different videos.
Through drawing unobserved multimodal context along with the text, the model can
learn to be aware of different non-verbal contexts for sentiment prediction.

5 Experiments Results

5.1 Quantitative Results

Experimental results for multimodal sentiment analysis are presented in Table 1, includ-
ing the performance of several previously proposedmodels. All models underwent train-
ing and testing within the same experimental environment, utilizing five random seeds.
The averaged results from these seed experiments were computed for each model to
minimize result variability.
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Most baseline models show subpar performance on datasets emphasizing acoustic
and visual information. This is particularly evident in the Acc2_weak indicator, high-
lighting the current ineffectiveness of existing benchmark tests for fine-grained emotion
intensity prediction. In contrast, the AVMFA-Conformer model outperforms the AV-MC
model across all metrics. This suggests that the Conformer module, replacing the com-
monly used LSTM network in most benchmarks, is more effective in modeling both
local and global features. The combination of multi-scale acoustic and visual features
enriches sentiment polarity information, while the attention mechanism in the fusion
stage enables the model to focus on pertinent information and reduce the weight of
redundant data, ultimately achieving more precise sentiment classification.

Table 1. Comparison of performance of baseline models on the CH-SIMS v2s dataset. Models
with (*) were trained on multitask learning, and the best results are highlighted in bold.

Model Acc_2 F1_score Acc2_weak Corr R_squre MAE

LMF 72.28 71.98 69.32 49.26 38.15 40.14

MFN 78.28 78.24 69.42 67.21 37.11 31.78

Graph_MFN 71.95 70.98 68.98 45.89 19.07 41.36

MAG_BERT 75.01 75.11 70.9 61.13 40.66 35.89

TFN 79.24 79.29 70.72 69.66 39.57 33.77

EF_LSTM 79.52 79.6 71.82 67.16 42.71 32.28

Mult 79.68 79.39 72.6 68.32 47.15 32.71

MISA 77.37 77.4 71.16 66.66 47.54 34.32

Self_MM 79.57 78.21 71.5 65.21 30.73 33.1

AV-MC 80.66 80.72 72.54 73.33 52.59 29.4

MLF_DNN* 77.48 76.54 70.23 63.84 40.81 36.63

MTFN* 80.19 80.17 71.09 70.19 46.14 32.15

MLMF* 76.94 76.59 69.88 65.21 48.46 31.61

Ours 83.44 83.43 76.52 73.95 53.77 30.13

5.2 Ablation Study

In order to understand the contribution of eachmodule in themodel, ablation experiments
were conducted as shown in Table 2.
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Table 2. Ablation Study. Here, a、v means audio and visual, mfa means the multi-scale fea-
ture aggregation, conformer means the Conformer block, and (-) means removal of a particular
component.

Model Acc_2 F1_score Acc2_weak Corr R_squre MAE

a(-)mfa 82.5 82.52 75.11 73.37 52.43 30.61

v(-)mfa 82.18 82.23 74.2 72.59 51.45 31.06

a&v(-)mfa 81.84 81.86 73.58 72.59 51.15 31.18

a(-)conformer 82.68 82.62 75.28 73.43 52.99 30.42

v(-)conformer 79.92 79.91 71.84 70.59 48.06 31.65

a&v(-)conformer 79.06 79.03 71.13 70.49 48.01 31.65

a&v(-)self_attention 82.8 82.78 76.02 73.71 51.58 30.52

Ours 83.44 83.43 76.52 73.95 53.77 30.13

It can be observed that the performance of the model is least affected when only the
acoustic modality is used without multi-scale feature aggregation or without using the
Conformer encoder, indicating a weaker contribution of the acoustic modality. On the
other hand, the performance of the model is more significantly affected when the visual
modality loses low-level features or when the Conformer encoder is not used.

Specifically, without the Conformer encoder, the model’s performance decreases by
2.88% in Acc_2, 4.18% in Acc2_weak, and 8.25% in R_square. This indicates that the
Conformer encoder effectively captures the sentiment orientation in facial expressions,
particularly evident in the CH-SIMSv2 dataset with rich facial expression information.
Overall, the best performance is achieved when both modules are present, especially the
visual Conformer module. In addition, experiments were conducted by removing the
multi-scale features and using self-attention mechanism.

5.3 Impact of the Number of Conformer Blocks

The hidden representations output by the Conformer blocks serve as the input to the
subsequent feature fusion module, which means that the number of Conformer blocks
directly affects the quantity of feature representations received by the fusion module.
Therefore, it is necessary to investigate the relationship between the number of Con-
former blocks and the final performance. In this study, we simultaneously varied the
number of Conformer blocks for both the audio and visual modalities. The specific
results are shown in Table 3, and it can be observed that setting the number of blocks to
6 yields the best performance.
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Table 3. The impact of the number of Conformer blocks on performance

Conformer blocks Acc_2 F1_score Acc2_weak Corr R_squre MAE

2 82.19 82.19 74.74 72.81 51.81 30.93

3 82.73 82.79 75.32 72.97 52.78 30.59

4 82.61 82.58 75.44 72.86 50.73 31.07

5 82.22 82.22 74.95 73.36 52.33 30.56

6 83.44 83.43 76.52 73.95 53.77 30.13

8 81.78 81.79 74.33 72.44 50.84 30.84

6 Conclusion

We introduce theAVMFA-Conformermodel,which leverages theConformer framework
alongside multiscale feature aggregation. The Conformer module efficiently extracts
both local and global features from the acoustic and visualmodalities, enriching the infor-
mation for sentiment analysis. The incorporation of the MFA mechanism and attention
pooling seamlessly integrates multiscale features from non-verbal data while diminish-
ing the impact of redundant information within each modality. Our experiments on the
publicly available CH-SIMSv2s dataset validate the efficacy of ourmodel, particularly in
enhancing the classification of weak sentiments. In our future research, we will explore
the incorporation of multitask mechanisms and delve deeper into the role of cross-modal
representations.
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Abstract. In practical scenarios, person re-identification tasks often
face the problem of insufficient available pedestrian images. In response
to this problem, a few-shot person re-identification method based on
hybrid pooling fusion and Gaussian relation metric is proposed. Firstly,
a hybrid pooling fusion method is proposed. In this method, max pooling
and average pooling layers are introduced after each feature extraction
layer, and the adaptive weight allocation mechanism is introduced in the
fusion of post-pooling and non-pooling features, which realizes more rep-
resentative pedestrian feature extraction. Secondly, a composite metric
method of Gaussian relation metric is proposed in the metric module.
This method realizes the comprehensive metric of pedestrian features in
kernel space and relation level and improves the reliability of pedestrian
similarity measurement. Finally, experiments on three small datasets,
Market-Tiny, Duke-Tiny, and MSMT17-Tiny, demonstrate the effective-
ness of the proposed method.

Keywords: Person re-identification · Hybrid pooling fusion · Gaussian
relation metric · Few-shot

1 Introduction

Person re-identification [1] involves identifying specific pedestrians by analyz-
ing pedestrian image information in surveillance video. Due to occlusion, illu-
mination, perspective, and other reasons, obtaining many marked pedestrian
image data is difficult. Therefore, only unlabeled and a small number of usable
pedestrian images can be obtained in practice. This makes the deep person re-
identification network [2] based on massive data-driven face severe challenges.

Few-shot learning [3] aims to efficiently adapt to new categories or tasks
using a limited amount of labeled data. This method mainly solves the fol-
lowing problems: 1) Learning and recognition challenges involving missing or
inaccurate class labels within extensive datasets. 2) Learning and recognition
challenges arise from correct labeling but constrained dataset size. Notably, few-
shot person re-identification also confronts challenges stemming from both of
these categories.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 249–258, 2023.
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In addressing the challenge of person re-identification in scenarios with lim-
ited annotations, Lv et al. [4] proposed a fusion model based on Bayesian infer-
ence, which uses the spatiotemporal information of the camera to improve the
probability of generating correct positive sample pairs to improve the network
performance. Ding et al. [5] proposed a clustering method based on dispersion,
which comprehensively considers the gap between the classes within the cluster
and effectively deals with the impact of unbalanced data distribution.

To solve the problem of insufficient sample size, scholars have proposed
few-shot learning methods, mainly including generative model and meta-metric
learning methods. Methods for generating model, Mehrotra et al. [6] proposed
an adversarial residual pairwise network, which exploited the GAN framework’s
generative power to improve the model’s recognition performance by learning
residual pairs. Schwartz et al. [7] proposed a few-shot learning method of the
Delta encoder, which used the Delta encoder to minimize the difference between
synthetic and biological samples and improve the recognition ability. Such meth-
ods often have high network complexity and make it easy to introduce noise data,
which reduces the model’s generalization ability and recognition performance.

In contrast, the methods based on meta-metric learning have a simpler model
structure and calculation process. It can learn the similarities and differences
between tasks and quickly generalize them to new tasks. Vinyals et al. [8] pro-
posed a matching network model, which uses the attention mechanism to realize
the dynamic weighting of samples and dynamically adjust the attention to dif-
ferent categories to improve the model’s recognition performance. Snell et al.
[9] proposed a prototype network model, which learns a category prototype for
each type of sample, and captures the feature distribution between categories
through the learned prototype vector so that the model has good generalization
performance. Sung et al. [10] proposed a relational network model in which the
neural network was used to construct the correlation module, and the ReLU func-
tion was used to calculate the distance between samples to analyze the matching
degree, thus improving the recognition performance of the model. Although such
methods have shown good performance in the recognition tasks of birds and cars,
they still have the following problems when dealing with the recognition tasks of
complex images: (1) The feature extraction networks are relatively shallow, and
it is difficult to capture enough rich and specific feature information when facing
sample images with complex appearance and pose changes. (2) The metric meth-
ods are relatively simple, and it is easy to fall into the curse of dimensionality
when facing high-dimensional sample features. Moreover, despite the plethora of
studies addressing the challenge of few-shot learning with limited sample sizes,
these studies have not been extensively employed in person re-identification,
primarily because of various interfering factors.

To solve the above problems, this paper adopts the meta-metric learning
method. We propose a few-shot person re-identification method based on hybrid
pooling fusion and Gaussian relation metric. When dealing with pedestrian
images with complex appearance and pose changes, the proposed algorithm
can effectively alleviate the problems of insufficient extraction ability of feature
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extraction networks and unreliable similarity measurement. The main contribu-
tions of this work are summarized as follows:

– Feature level: Hybrid pooling fusion modules are introduced in different
feature extraction layers. Firstly, the sample features obtained by each layer
are processed by Max pooling and Average pooling operations simultaneously
to obtain a feature representation with both local detail information and
global statistical information. Then, the obtained feature representations are
weighted and fused by the adaptive weighting mechanism according to their
contribution to the person re-identification task to obtain more discriminative
sample features.

– Metric level: A method combining Gaussian kernel and Relation metrics is
introduced. On the one hand, the Gaussian kernel function’s nonlinear map-
ping property better captures the complex relationship and similarity between
features. On the other hand, the reliable relationship between pedestrians is
established by the Relation metric. Combining the two measures fully uses
the kernel similarity and relationship information between features to improve
the recognition performance of the person re-identification.

2 Few-Shot Person Re-identification Method Based
on Hybrid Pooling Fusion and Gaussian Relation
Metric

The proposed network architecture consists of two fundamental components: a
feature extraction module and a composite metric module. The feature extrac-
tion module incorporates various layers for feature extraction and hybrid pooling
fusion modules. In parallel, the composite metric module includes the Gaussian
kernel metric module and the Relation metric module. The comprehensive struc-
ture of this network is visually illustrated in Fig. 1.

Fig. 1. Overall network architecture diagram
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2.1 Hybrid Pooling Fusion Module

The white box between the Blocks layers in Fig. 1 shows that the hybrid pooling
fusion module consists of Max pooling, Average pooling, and Adaptive weight
assignment algorithms. Firstly, the Max pooling and Average pooling operations
are introduced into the output of each feature extraction layer, and different
sampling and statistical operations are performed on the features of each layer.
Secondly, the Adaptive weight mechanism is used to assign weights to the output
features after and without pooling according to their contribution to the person
re-identification task. Finally, each layer’s more representative and discriminative
feature representation is obtained by the weighted fusion method and passed to
the next layer for further processing.

Pooling Operations: We can obtain the statistical properties of different fea-
tures by using Max pooling and average pooling. On the one hand, the Max
pooling operation can extract the most significant feature of each layer fea-
ture map, the maximum value, to effectively capture the local details and edge
features of pedestrian samples. On the other hand, the Average pooling oper-
ation provides global statistical features to obtain the overall distribution and
smoothness of pedestrian samples by calculating the average of sample feature
maps. Therefore, the Max pooling and Average pooling operations can obtain
feature representations with both local detail information and global statistical
information. This comprehensive feature representation can better describe the
structure and characteristics of pedestrian images, improve features’ diversity
and expression ability, and thus improve recognition accuracy.

Adaptive Weight Mechanism: The non-trainable weight coefficients are con-
verted into trainable parameter data types and bound to the model by intro-
ducing the nn.Parameter() function. This allows the model to adaptively assign
weights according to the importance of corresponding features during training.
Through this method, the essential features are weighted to highlight the critical
features of pedestrians, such as body parts and texture information. At the same
time, unimportant features will be assigned smaller weights, thus reducing the
impact of noise and secondary information. It improves the discrimination and
robustness of features in person re-identification tasks.

The combination of pooling operation and adaptive weight allocation mecha-
nism can effectively alleviate the problems that the features contain more noise,
and the model is not sensitive to different scale features caused by the lack of a
convolutional layer in the feature extraction module. In this way, more discrim-
inative pedestrian sample features can be extracted.

2.2 Composite Metric Module

As illustrated in the lower right dashed box of Fig. 1, the composite metric mod-
ule comprises two branches: the Gaussian kernel metric branch and the Relation
metric branch. Specifically, the sample features from the support set and query
set, extracted via the feature extraction module, first pass through two Conv
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Blocks. Then, the obtained features are input into the Gaussian kernel metric
branch and Relation metric branch simultaneously to obtain the corresponding
metric score.

The Gaussian kernel metric score formula is as follows:

SG
i,j = K (fcmfφ (xi) , fcmfφ (xj)) = e−γ‖fcmfφ(xi)−fcmfφ(xj)‖2

. (1)

where SG
i,j is the matching score of the Gaussian kernel metric module, K() rep-

resents the Gaussian function formula, K (x, y) = e−γ‖x−y‖2
, γ represents the

hyperparameter of the Gaussian function, which is adaptively adjusted according
to the similarity score, fcm represents the two convolution blocks, fφ represents
the feature extraction module containing the hybrid pooling fusion module, xi

rdenotes the support set sample corresponding to the i-th category, and xj rep-
resents the query set sample.

The Relation similarity score formula is as follows:

SR
i,j = fR

(
fcm

(
1
P

P∑
p=1

fφ (xi,p) ||fφ (xj)

))
. (2)

where SR
i,j represents the matching score generated by the relation metric mod-

ule, fR denotes the relation metric method, which comprises a fully connected
layer, ReLU function, and Sigmoid function. Additionally, P signifies the total
number of images within each pedestrian category, xi,p corresponds to the p-th
sample belonging to the i-th category, and || signifies the feature concatenation
operation.

The joint metric score formula for the dual metric module is as follows:

Si,j = λ ∗ SG
i,j + (1 − λ) ∗ SR

i,j . (3)

where λ signifies the weight coefficient assigned to the joint metric score.
The proposed method uses mean square error to calculate the loss value of

the Gaussian kernel metric and relation metric and obtains the joint loss through
the weighted fusion method. The specific formula is as follows:

loss=
ϕ

C × Q

C−1∑

i=0

Q∑

j=1

(
SG
i,j (i)− 1(yi =yj)

)2

+
1 − ϕ

C × Q

C−1∑

i=0

Q∑

j=1

(
SR
i,j (i)−1 (yi =yj)

)2

.

(4)
where ϕ represents the joint loss weight coefficient, C denotes the total number of
distinct pedestrian categories within the support set, and Q signifies the number
of samples within the query set. The variables yi and yj correspond to the
labels of the support set and query set samples. When yi = yj , 1 (yi = yj) is 1.
Otherwise, it is 0.

The combination of the Gaussian kernel metric and relation metric can com-
prehensively consider the kernel similarity and complex relation information
between pedestrian features. This method has more expressive power and dis-
crimination in few-shot learning and can better solve the problem of person
re-identification with scarce samples and significant intra-class differences.
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Table 1. The Details of the Created Datasets. Tiny Datasets are composed of 200
randomly selected pedestrians from the Original Datasets.

Dataset Name Number of
Pedestrians

Total Data
Volume

Original Datasets DukeMTMC-reID 1,812 36,411

Market-1501 1,501 32,668

MSMT17 4,101 126,441

Tiny Datasets Duke-Tiny 200 10,775

Market-Tiny 200 7228

MSMT17-Tiny 200 13,199

3 Experiment and Analysis

3.1 Dataset Introduction

In this paper, we created three smaller datasets: Market-Tiny, Duke-Tiny,
and MSMT17-Tiny, through random sampling from the original Market-1501,
DukeMTMC reID, and MSMT17 datasets. The details are presented in Table 1.

3.2 Experimental Setup

In our experiments, we trained our model using three datasets: Market-Tiny,
Duke-Tiny, and MSMT17-Tiny, under two distinct scenarios: 5-way 1-shot and
5-way 5-shot. The parameters λ and ϕ are set to 0.4 and 0.4, respectively, and
the epoch is set to 200, with each epoch comprising 100 episodes, resulting in a
total of 20,000 episodes during the entire training process. Each training episode
sets the number of query samples per class to 12. In each episode, there were
65 sample images in the 1-shot scenario and 85 sample images in the 5-shot
scenario.

After the end of each epoch, we perform 100 validation tasks to calculate
the accuracy of the validation dataset while maintaining the limited number of
query images in the training task. To evaluate the final recognition accuracy of
the model, 600 episodes were evaluated.

3.3 Experiments of Various Combinations

To assess the impact of the proposed components on recognition results, we
conducted multiple ablation experiments on three datasets: Market-Tiny, Duke-
Tiny, and MSMT17-Tiny, using the relation network as the baseline. We verify
the effectiveness of the hybrid pooling fusion module and Gaussian kernel met-
ric. Among them, HP stands for hybrid pooling fusion module; GS stands for
Gaussian kernel metric. The results are presented in Table 2.
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Table 2. Tabular presentation of experimental analyses for different combinations in
the 5-way scenario. (%)

Methods Market-Tiny Duke-Tiny MSMT17-Tiny

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Baseline 89.06 94.44 84.47 94.14 65.13 77.70

Baseline+HP 91.52 96.10 87.45 95.75 70.30 83.60

Baseline+GS 91.16 95.81 87.89 95.40 71.14 82.48

Baseline+HP+GS 92.64 96.56 88.82 96.16 72.10 84.51

Table 2 shows that based on the Relation network, after adding the hybrid
pooling fusion module proposed in this paper, The average recognition accu-
racy of the network is improved in three datasets of Market-Tiny, Duke-Tiny
and MSMT17-Tiny and two modes, by 2.46% and 1.66%, 2.98% and 1.61%,
5.17% and 5.90%, respectively. This demonstrates that this paper’s hybrid pool-
ing fusion module can extract more representative pedestrian features. Based
on the relation network, after adding the Gaussian kernel metric, the average
recognition accuracy of the network is improved by 3.42% and 1.26%, 2.10% and
1.37%, 6.01% and 4.78%, respectively, in the two modes of the three datasets. It
shows that the composite metric method combining Gaussian kernel metric and
relation metric can metric samples more reliably, thereby improving the recogni-
tion accuracy of the network. Finally, when the hybrid pooling fusion module and
the Gaussian kernel metric method are added to the network at the same time,
the average recognition accuracy of the network is greatly improved in the two
modes of the three datasets, which is increased by 4.35% and 2.02%, 3.58% and
2.12%, 6.97% and 6.81%, respectively. This shows that using the two methods
proposed in this paper simultaneously improves the robustness and effectiveness
of the model and makes the model performance achieve the best effect.

3.4 Comparative Experiments with State-of-the-art Methods

To validate the efficacy of the suggested network, comparative experiments are
carried out with 11 advanced few-shot learning methods on three datasets of
Market-Tiny, Duke-Tiny, and MSMT17-Tiny. It includes the Matching network,
Prototypical network, Relation network and MAML Network, CBG +Bsnet net-
work, UARRnent network, FRN network, FRN+TDM network, BSNet network,
DeepBDC network and SetFeat network. The experimental results are shown in
Table 3.

The data in Table 3 shows that compared with existing few-shot learning
methods, the proposed algorithm achieves the highest recognition accuracy in the
context of two experimental scenarios conducted across three datasets. On the
one hand, the feature embedding module of the above few-shot learning methods
uses a single convolutional network. In contrast, the hybrid pooling fusion module
proposed in this paper is introduced into the feature extraction layer, which
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Table 3. Comparison with state-of-the-art techniques in the 5-way scenario. (%)

Method Market-Tiny Duke-Tiny MSMT17-Tiny

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching [8] 84.62 92.69 79.78 92.21 59.74 74.57

Prototype [9] 85.46 94.04 78.66 92.12 53.15 76.59

Relation [10] 89.06 94.44 84.47 94.14 65.13 77.70

MAML [11] 83.83 91.74 80.21 92.57 62.33 77.61

CBG+Bsnet [12] 88.97 94.85 85.07 93.10 68.51 80.11

UARenet [13] 89.59 95.09 84.22 94.17 68.57 82.19

FRN [14] 85.05 94.41 63.71 83.53 59.65 78.92

FRN+TDM [15] 89.72 94.79 75.95 90.48 67.85 82.14

BSNet [16] 88.84 94.15 85.77 92.78 68.67 81.22

DeepBDC [17] 89.53 95.86 82.65 93.61 70.02 83.52

SetFeat [18] 89.85 95.06 84.16 93.71 67.70 82.26

Ours 92.64 96.56 88.82 96.16 72.10 84.51

adaptively fuses pedestrian features under different distributions according to
the importance of features to obtain more representative sample features. On the
other hand, the method of learning two similarity measures simultaneously in this
paper can effectively improve the robustness of the model. Compared with BSNet
and CBG+BSNet, which also use the dual-metric method, the proposed dual-
metric method can better deal with the noise features existing in the pedestrian
sample feature space, and make the model have stronger nonlinear modeling
ability, better robustness, and generalization performance.

In summary, when compared to other few-shot learning methods, the hybrid
pooling fusion and Gaussian relation metric approach proposed in this paper
demonstrate greater competitiveness in addressing the challenge of person re-
identification with limited sample sizes.

3.5 Comparison of Visualization Results

In order to visualize the effect of the proposed network, the Gard-Cam visualiza-
tion method is used to generate heat maps, and the Matching network, Prototypi-
cal network, Relation network, MAML network, CBG+Bsnet network, UARenet
network, FRN Network, FRN+TDM network, BSNet network, DeepBDC net-
work, and SetFeat network for effect comparison. The heatmap shows the output
features of the network feature embedding module, where the darker the color is,
the more attention the network pays to the region. It can be seen by observing
the heat maps of different methods in Fig. 2. On the given pedestrian sample
images, our methods focus more on areas that are more discriminative towards
pedestrians. Therefore, in response to the problem of insufficient sample size, it
has been proven that this method can extract more robust pedestrian features.
The effectiveness of this method has been verified.
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Fig. 2. Visualization of heat maps

4 Conclusion

This paper proposed a hybrid pooling fusion and Gaussian relation metric
method for few-shot person re-identification to address the challenge of lim-
ited pedestrian data in the person re-identification task. The proposed hybrid
pooling fusion mechanism was introduced into the feature embedding module to
alleviate the insensitivity of the model to features of different scales caused by
the lack of convolution layers, and more discriminative feature representations
of pedestrian data could be extracted. In addition, the improved relation metric
module comprehensively considered the kernel similarity and complex relation-
ship information between pedestrian features to generate more reliable similarity
measurement scores. For future endeavors, we intend to leverage the proposed
algorithm as a foundational framework for conducting further research in cross-
domain re-identification challenges, particularly within contexts characterized
by limited pedestrian image data. We aim to address person re-identification
issues within natural and uncontrolled open environments.
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Abstract. Domain generalizable (DG) person re-identification (ReID)
aims to perform well on the unseen target domains by training on mul-
tiple source domains with different distribution, which is a realistic but
challenging problem. Existing DG person ReID methods have not well
explored the domain-specific knowledge based on the Transformer. In
this paper, we propose a Prompt-based transformer framework which
embeds domain-specific knowledge into different domain prompts, which
are optionally optimized by different source domains. Furthermore, we
exploit a pretext task of masking and predicting for DG ReID to broaden
the understanding of model about data by learning from the signals of the
corresponding matching image, which enables interaction between image
pairs and improves the ability of generalization. Extensive experiments
demonstrate that our method achieves state-of-the-art performances on
the popular benchmarks.

Keywords: Domain generalizable person re-identification · Prompt
learning · Pretext task

1 Introduction

Person Re-Identification (ReID) aims to recognize the identity of a person via
retrieving a given pedestrian probe across non-overlapping camera views. It can
be seen as a general biometric recognition problem because the learned person
representation for ReID includes both biometric features (e.g., hair, skin, and
body pattern) and external appearance (e.g., clothes and accessories). Conven-
tional supervised ReID technology has been extensively studied in [1–4]. How-
ever, directly applying the model pretrained to the unseen domain suffers from
significant performance degradation due to the domain shift. Moreover, the label-
ing work is expensive and time-consuming. To deal with these issues, some unsu-
pervised domain adaptation (UDA) methods [5,6] are proposed. But it still need
to collect enough target domain training data for finetuning. Therefore, domain
generalization (DG) based methods [7,8] has recently emerged to address this
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problem, which resorts to learning a model in available source domains and
directly testing in the unseen domain, that is more practical and challenging.

Existing generalizable person Re-ID approaches can be divided into two cat-
egories: the meta-learning based methods and the Mixture of Experts (MoE)
based methods. The method based on meta-learning [9,10] is aiming to mimic
real train-test domain shift situations and modeling the domain-invariant rep-
resentations. However, these methods do not consider the complementary infor-
mation of domain-specific characteristics enough, which limits the generaliza-
tion capability on the unseen target domain. Mixture of Experts (MoE) based
mechanisms [8] have shown promising results in improving the generalization
ability on target domains of Re-ID models, since it captures and utilizes domain-
specific information well. However, these methods only choose some parameters,
e.g. Batch Normalization, or some layers of the network, to model the domain-
specific characteristics, which limits the interaction with the whole network to
fully incorporate the domain knowledge.

To solve this issue, we propose a prompt-based transformer pipeline for
domain generalizable Person ReID via modeling stronger domain experts. The
transformer-based methods [13] have achieved striking performance in visual rep-
resentation tasks thanks to the self-attention module for preserving more detailed
relationship between different image patches. Furthermore, prompt learning
approaches [14] has widely used in downstream tasks, integrating with task-
specific information for model training. Inspired by the success of Transformer
and prompt learning that are not explored in domain generalizable Person ReID,
we design different domain prompt to carry different source domain knowledge,
which is achieved by conditionally inputting the image combined with the corre-
sponding domain prompt token. In this way, we can get robust domain experts
for domain-specific leaning.

Moreover, self-supervised learning is proved to be effective to improve DG
[11,12] because solving pretext tasks allows a model to learn generic features
regardless of the target task, and hence less over-fitting to domain-specific biases.
Therefore, we explore the usage of pretext tasks specifically for DG Re-ID. We
argue that person re-identification is essentially an image matching task. It needs
to pay more attention to the interaction between image pairs, which benefits
to learn more stable representations for improving the generalization ability of
model under various scenario conditions, instead of only the classification in
semantic space and data transformation. Specifically, we extend the Masked
Autoencoders (MAE) [31] to learn the relationship of matching image pairs via
randomly masking a certainty portion of one image’s patches, while keeping the
other intact. They are encoded by a shared encoder and in decoder, the masked
image will predict the missing patches and get complementary information from
the matching full image via the cross-attention layers.

Our main contributions can be summarized as follows:

– We develop a prompt learning based transformer pipeline for domain gener-
alization Re-ID to better capture domain-specific knowledge.
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– We propose a pretext task focusing on image matching for DG ReID methods
and prove its effectiveness.

– Extensive experiments demonstrate the effectiveness of our framework under
various testing protocols.

2 Related Work

Generalizable Person Re-identification. Generalizable Re-ID aims to
improve the generalization performance on unseen domains, which supposes the
target data is invisible during training.

Style Normalization and Restitution (SNR) [26] encourage the separation
of identity-relevant features and identity-irrelevant features for better discrim-
ination. Memory-based Multi-Source Meta-Learning (M3L) [28] network ran-
domly splits the source domains into meta-train and meta-test to simulate the
train-test process of domain generalization with a non-parametric classifier for
stable identification. Meta Batch-Instance Normalization (MetaBIN) [10] pro-
poses a learnable balancing parameter between Batch Normalization (BN) and
Instance Normalization (IN) to learn generalizable and discriminative features.
The Relevance-aware Mixture of Experts (RaMoE) [8] adds an expert branch
for each source domain and designs a voting network for integrating multiple
experts. However, it suffers from a large model size with the increase of the
number of source domains, which limits the ability of application and the inter-
action with the whole network to fully incorporate the domain knowledge.

Pretext Tasks with Self-supervised Learning. Self-supervised learning
methods are widely used in unsupervised feature representation learning and
achieve excellent results in many tasks. It is often referred to as teaching the
model with free labels generated from data itself such as the shuffling order
of patch-shuffled images [11] or rotation degrees [29]. It is also widely used in
person re-identification to model the similarity or dissimilarity between samples,
e.g. ICE [30] mines hardest samples for the hard instance contrast, which reduces
intra-class variance. However, these approaches often depend on careful selection
of data augmentations to learn useful invariances.

3 The Proposed Method

In this paper we solve the domain generalizable Person ReID by designing
domain prompts for the Transformer-based ReID model and introducing a mask-
predict pretext task for domain generalization. Let {Dk}Kk=1 denotes the K

source domain datasets. Each domain Dk = {(xk
i , y

k
i )}Nk

i=1 has its own label
space, where Nk is the total number of samples in the source domain Dk and yk

i

represents the groundtruth of sample xk
i . During the inference time, we directly

test on unseen target domains without additional model updating.
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Fig. 1. The framework of the proposed Prompt-based transformer framework for DG
person Re-ID with image matching. The inputs are a pair of positive samples w or w/o
random mask with a certain proportion. In the domain prompt learning strategy, the
images in Dk is conditionally input combined with the corresponding domain token
promptk to gather domain-specific information specifically. Furthermore, the pretext
task for image pairs allows the decoder with cross-attention layers pay more attention
to the interaction between images and hence less over-fitting to domain-specific biases.

The proposed Prompt-based transformer pipeline with image matching is
shown in Fig. 1. We randomly sample a pair of positive samples as inputs and
randomly mask one of the image with a certain proportion at the patch level.
In the domain prompt learning strategy, the images in Dk is conditionally input
combined with corresponding domain token promptk. In this case, the domain
prompts can learn more discriminative domain feature in each source domain. In
addition, we extend the MAE decoder with image matching pairs as the pretext
task to allows the model to pay more attention to the generic features regardless
of the target task, and hence less over-fitting to domain-specific biases.

3.1 Baseline

ViT is used as the backbone of our model, with the class token as the feature
embedding. Then, we apply the classification loss and the triplet loss to optimize
the network, with the features encoded in the same label space, formulated as:

Lbase = Lid + Ltri, (1)
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where

Lid = − 1
N

N∑

i=1

logp(yi|xi), (2)

Ltri = max(0, d(xi, x
+
i ) − d(xi, x

−
i ) + α). (3)

where d(xi, x
+
i ) represents the distance between the anchor and positive samples,

d(xi, x
−
i ) represents the distance between the anchor and negative samples, and

α is a margin that controls the separation between positive and negative samples.

3.2 Domain Prompt Learning Strategy

The domain prompt learning strategy is aiming to generate domain prompts
carrying with the domain-specific knowledge. The designed domain prompts are
similar to the class token. They can pass all the self-attention layers and MLP
layers. Different from the class token, the optimization of domain prompt is
conducted in individual domain space, which is formulated as:

Ldom = − 1
K

K∑

k=1

Nk∑

i=1

1
Nk

logp̂(yk
i |xk

i ), (4)

where p̂(yk
i |xk

i ) = θ(φ(promptk)). In this case, the whole model can take advan-
tage of the domain information instead of some specific layers to give a more
accurate prediction.

3.3 The MAE Component Based Image Matching

Masked autoencoders (MAE) are a type of denoising autoencoders that learn
representations by reconstructing the original input from corrupted (i.e., masked)
inputs. We argue that pedestrian re-identification is fundamentally an image
matching task, which requires a focus on the interaction between image pairs,
beyond the semantic space classification and data augmentation through self-
transformation. Learning from matching image pairs allows the model to capture
more robust representations ultimately and improve generalization.

We randomly mask a high percentage of image patches for image matching
learning. Both masked and unmasked images are encoded by a parameter shared
encoder. We extend the decoder blocks cross-attention layers, where the tokens
from unmasked image guide the recovery of masked patches, i.e. the encoded
unmasked tokens concatenated with recoverable parameters act as the query
Q = [t1, t2, ..., tv,mask1,mask2, ...,maskm], where v and m is number of visible
patches and masked patches respectively, and the corresponding encoded tokens
of matching image acts as key and value K,V = [t1, t2, ..., tn] where n is the
numbers of total image tokens and n = v + m. The task of reconstruction is
training with Mean Squared Error (MSE) loss.

Finally, the overall training objective of the proposed method can be formu-
lated as:

Lall = Lbase + Ldom + Lmse. (5)
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Table 1. Comparison with state-of-the-art methods under protocol-2 and only the
training sets in the source domains are used for training. The words in bold indicate
the best performance.

Method Reference D+C+Ms→M M+C+Ms→D

mAP R-1 mAP R-1

QAConv [24] ECCV 2020 39.5 68.6 43.4 64.9

CBN [25] ECCV 2020 47.3 74.7 50.1 70.0

SNR [26] CVPR 2020 48.5 75.2 48.3 66.7

DAML [27] CVPR 2021 49.3 75.5 47.6 66.5

M3L [28] CVPR 2021 51.1 76.5 48.2 67.1

Ours this paper 52.4 75.8 56.1 71.2

Method Reference M+D+C→Ms Ms+D+M→C

mAP R-1 mAP R-1

QAConv [24] ECCV 2020 10.0 29.9 19.2 22.9

CBN [25] ECCV 2020 15.4 37.0 25.7 25.2

SNR [26] CVPR 2020 13.8 35.1 29.0 29.1

DAML [27] CVPR 2021 11.7 31.1 28.6 29.3

M3L [28] CVPR 2021 13.1 32.0 30.9 31.9

MetaBIN [10] CVPR 2021 14.8 36.1 29.3 29.4

Ours this paper 21.3 45.6 35.0 34.8

4 Experiments

4.1 Datasets

We evaluate our approach on several person re-identification datasets: Mar-
ket1501 [16], DukeMTMC-reID [17], MSMT17 [15], CUHK03 [18], CUHK-SYSU
[19], PRID [20], GRID [21], VIPeR [22], and iLIDs [23]. For simplicity, we denote
Market1501, DukeMTMC-reID, MSMT17, CUHK03, CUHK-SYSU as M, D,
MS, C3, and CS in the following. For protocol-1, we use the training data in
M+C3+CS+MS datasets and then tested on four small datasets (i.e., PRID,
GRID, VIPeR, and iLIDs), respectively. For protocol-2, we choose one domain
from M+MS+D+C3 for testing and the remaining three domains for training.

4.2 Implementation Details

All images are resized to 256 × 128. ViT pretrained on ImageNet is used as back-
bone. We set batch size to 64, including 16 identities and 4 images per identity.
We optimize the model using the SGD optimizer employed with a momentum
of 0.9 and the weight decay of 1e-4. The learning rate is initialized as 0.008
with cosine learning rate decay. In the pretext task of patch masking, we use a
masking rate of 50%.
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Table 2. Ablation study on the effectiveness of promp learning and the design of MAE
based on matching image pairs. The experiment is conducted under protocol-1. The
final results are highlighted in bold.

Method →PRID →GRID →VIPeR →iLIDs

mAP R-1 mAP R-1 mAP R-1 mAP R-1

Baseline 70.7 63.3 55.0 44.8 67.9 58.9 81.9 73.3

Baseline+prompt learning 70.5 62.0 56.0 47.0 68.5 58.9 83.2 75.0

Baseline+prompt learning+MAE 70.6 61.0 55.9 46.4 70.3 60.8 81.5 73.3

Baseline+prompt learning+Matching MAE 72.2 64.0 56.9 47.2 71.5 62.7 84.0 76.7

Fig. 2. The analysis of the mask ratio of the input images under the setting of
D+C+MS→M in protocol-2.

4.3 Comparison with State-of-the-arts

To demonstrate the superiority of our method, we compare it with some state-
of-the-art methods on four widely used benchmark datasets under protocol-2.
The results are shown in Table 1. In our experiment, only the training sets in the
source domains are used for training time. The results show that our methods
could outperform previous methods by a large margin on all the benchmarks.
Specifically, the results surpasses other methods by at least 5.0% and 4.0% in
average mAP and Rank-1 respectively.

4.4 Ablation Studies

We study ablation studies on the effectiveness of each component under protocol-
1, as shown in the Table 2. As seen, when adding the “prompt learning” into the
baseline, the baseline can be gained in multiple different tasks, which validates
that the prompt learning based method can help integrate the domain-specific
information and distinguish between different source domains.

The second and forth rows denotes when we apply the pretext task base image
matching, the performance can be further improved in different benchmark. In
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this way, the interaction between image pairs is well exploited for improving gen-
eralization. We also compare the method MAE which only explores the intrinsic
information from the image itself as the third and forth rows, and the great
performance drop also shows the superiority of our methods.

4.5 Parameter Analysis

We analyze the impact of the mask ratio of the input images at the setting of
D+C+MS→M in protocol-2. As illustrated in Fig. 2, large mask ratio means
more identity information need to be recovered, which increases the difficulty
of model training, while small ratio is not enough for model to learn helpful
information. The performance achieve best when the mask ratio is 50%.

5 Conclusion

In this paper, we have proposed a Prompt-based pipeline with Image Match-
ing for Domain generalizable (DG) person re-identification (ReID). The domain
prompt learning is designed to better model domain-specific knowledge and
improve the discriminative ability of model. In addition, we exploit a pretext
task with image matching for DG ReID to broaden the understanding of model
about data, which enables interaction between image pairs and improves the
ability of generalization. Extensive experiments shows that our method brings
general improvements and achieves state-of-the-art performances on the popular
benchmarks.

Acknowledgments. This work is partially supported by National Natural Science
Foundation of China (Grants no. 62176271), and Science and Technology Program of
Guangzhou (Grant no. 202201011681).
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Abstract. Gait recognition in the wild is a cutting-edge topic in bio-
metrics and computer vision. Since people is less cooperative in the wild
scenario, view angles, walking direction and pace cannot be controlled.
It leads to high variance of effective sequence length and bad spatial
alignment of adjacent frames, which degrades current temporal model-
ing method in gait recognition. To address the aforementioned issue, we
propose a multi-level and multi-time span aggregation (MTA) approach
for comprehensive spatio-temporal gait feature learning. With embedded
MTA modules, a novel gait recognition architecture is proposed. Results
of extensive experiments on three large public gait datasets suggest that
our method achieves an excellent improvement on gait recognition per-
formance, especially on the task of gait recognition in the wild.

Keywords: Gait Recognition in the Wild · Temporal Aggregation

1 Introduction

Gait recognition identifies pedestrians by their body shapes and walking pat-
terns. Compared with other biometrics, e.g., iris, face, and fingerprint, gait is
difficult to be imitated but easy to be captured at a relative long distance.
Therefore, it has enormous potential in criminal investigations and security cer-
tification.

Conventional gait recognition is often set to constrained scenarios, which
means the camera angle or walk direction is fixed and the pedestrian is highly
cooperative. However, for gait recognition in the wild, such prerequisites are
no longer available, which leads to a dramatic performance decline of current
methods [2,4,5].

The challenge of gait recognition in the wild is relevant to many factors. In
this paper we focus on a specific issue, i.e. the temporal feature fusion in deep
ConvNets. The original convolutional neural networks are designed for general
static image recognition. Gait is considered a pattern of both shape appearance
and motion. The ConvNets are good at representing the former, to tackle with

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 269–279, 2023.
https://doi.org/10.1007/978-981-99-8565-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8565-4_26&domain=pdf
https://doi.org/10.1007/978-981-99-8565-4_26


270 S. Zhu et al.

the latter temporal processing module is required. To facilitate the gait image
sequence, existing methods either treat the sequence as a set [6] or tackle the
temporal modeling as one dimensional or three dimensional convolution [7,8].

Lin et al. [8] use the local temporal aggregation (LTA) module to aggregate
temporal features from consecutive frames. However, the LTA module is only
used at the beginning of their framework. Fan et al. [7] use a module named
MCM to do the aggregation at the end of their model. The success of these
methods implies the potential of short-term temporal features for gait recogni-
tion. However, the aggregation operation only plays a role of pre-processing or
post processing. Considering the bottom-up process of training a convolutional
neural network, the temporal aggregation is actually either pure-holistic or pure-
local. We argue that the temporal aggregation should be performed at multiple
stages or levels of convolution for a comprehensive representation.

We also observe that the effective length, i.e. consecutive frames of good
quality, of a gait silhouette sequence exhibits a high variance in the wild scenario.
It is caused by the undersample issue introduced by short appearing period of
people. To cover a wider range of time span or scale in temporal dimension,
multiple temporal sampling is also necessary.

Based on the aforementioned observations, we propose a novel method for
gait recognition in the wild by introducing the Multi-span and multi-level Tem-
poral Aggregation (MTA). The proposed MTA can be embedded into many
existing gait recognition framework. In this paper, we adopt the GaitBase [5] for
its effectiveness and simplicity. Experimental results on both wild and conven-
tional benchmarks show that the propose MTA is very effective.

In summary, we make the following several contributions.

– We propose a novel multi-level and multi-span aggregation method for tem-
poral modeling of silhouette sequence for gait recognition in the wild.

– We conduct experiments on several public gait datasets, which demonstrate
that multiple temporal features aggregation improves the performance on gait
recognition task, especially on the gait recognition in the wild.

2 Related Works

Since deep learning has achieved a great progress, this paper only focus on deep
gait recognition methods. A recent survey can be found in [9]. We investigate
relevant studies from three aspects: the new challenge of gait recognition in the
wild, notable works of deep gait recognition and the temporal modeling in deep
gait recognition respectively.

2.1 Gait Recognition in the Wild

In the past decade, gait recognition in a controlled environment has made excel-
lent progress [9]. Public gait datasets are typically collected with strict con-
straints. More specifically, subjects are asked to walk along a straight way in front
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of a green screen background [10] or simple background [11,12]. However, such
requirements are not feasible in a real scenario. Partial and temporal occlusions,
view variations introduced by arbitrary walk directions, diverse carrying arti-
cles and background clutters are inevitable [13]. These challenging factors make
Gait Recognition in the Wild a different problem from conventional studies using
constrained data. Recent reports [2,4,5] that the performance of approaches for
conventional gait recognition drop dramatically in the wild benchmarks. Most
current methods suffer an over 40% accuracy degradation.

This research topic is advanced by recent progress in public gait datasets.
GREW dataset by Zhu et al. [2] first introduces the concept of Gait Recogni-
tion in the Wild. A similar dataset sample from supermarket surveillance video
named Gait3D is also proposed [3]. New datasets enable the new study. Zheng et
al. [4] propose a novel method for wild recognition by introducing channel-wise
temporal switch. Since the topic is new the number of relevant study is small.
However, the new topic is more challenging and of more important application
potential.

2.2 Temporal Modeling in Deep Gait Recognition

Following the categorization by Zheng et al. [4], there are four kinds of tempo-
ral modeling methods in deep gait recognition, i.e. set-based, LSTM-based, 1D
CNN-based, and 3D CNN-based respectively. GaitSet by Chao et al. [6] regard
the gait sequence as an image set, and aggregate frame feature to set feature
by pooling operation. It should be pointed out that such pooling operation is
not equivalent to temporal pooling since the order is random. As a common
sequence modeling tool, long short-term memory (LSTM) are adopted to gait
recognition [20]. Besides pooling spatio-temporal convolution i.e. 3D convolu-
tion is another widely used temporal modeling method in ConvNets, MT3D and
GaitGL by Lin et al. [8,21] employ 3D convolution to integrate spatial and tem-
poral information. Although reasonable, 3D convolution suffers from efficiency
issues. A compromised or balanced way of temporal modeling is use one dimen-
sional convolution instead of 3D ones. GaitPart [7] and CSTL [22] are typical
work of this category. Different from the aforementioned four approaches, Zheng
et al. [4] propose to switch channels between frames to integrate temporal cues.

Since the sequence is well sampled and normalized in the constrained scenario
gait recognition, simple temporal modeling method is sufficient. However, when
facing the new challenge of gait recognition in the wild, such normalization is no
longer available. In the wild scenario, the gait sequence is usually undersampled,
which leads to big variations in effective sequence length. Besides that big indi-
vidual variations also make the spatial registration of adjacent frames not well
established. Thus, subtle motion is not naturally included in the convolution
process. In general simple temporal modeling method in prior arts cannot meets
the demand of recognition-in-the-wild. To this end, we propose a comprehensive
temporal modeling method.
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3 Proposed Method

We propose a novel framework to extract multi-level and multi-timespan features
from gait silhouette sequence, which is referred as MTA (Multiple Temporal
Aggregation). It consists of four components: 1) a backbone network to extract
gait features from gait sequence; 2) a temporal pooling module to aggregate
feature along temporal dimension; 3) a horizontal pyramid pooling module to
obtain abundant multi-scale spatial feature; 4) separate fully-connected networks
and BNNeck [14] layers for classification. The proposed framework is illustrated
in Fig. 1. Since GaitBase [5] is a good baseline for gait recognition, the proposed
model is based on GaitBase, where the key difference is a different backbone
network.
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Fig. 1. Framework of the proposed gait recognition method. The temporal aggregation
(TA) is performed at a multiple time spans (with scale n = 3, 5, and 7). Besides that
the TA module is embedded into multiple convolutional blocks at different levels or
stages. To establish a complete recognition pipeline, the stacked convolution-temporal
aggregation blocks are followed by a temporal pooling module and a horizontal pyramid
pooling module, a BNNeck module [14] and a fully-connected (FC ) layer.

3.1 Backbone Network

The backbone network is used for extracting gait features from input silhouettes.
In gait recognition, most methods take a relatively shallow network with sev-
eral convolution layers as backbones. These models work well for gait datasets
captured in a controlled environment with high-quality silhouettes [5]. How-
ever, for gait recognition in the wild, we find that such shallow architectures are
insufficient because of the low-quality silhouettes introduced by occlusion and
illumination variations. Since the ResNet provides a good deep architecture, we
adopt a ResNet-like backbone based on GaitBase [5].

The original backbone of GaitBase [5] can only extract frame-level gait fea-
ture. It ignores the temporal features, which we consider very useful. To extract



Multiple Temporal Aggregation Embedding for Gait Recognition in the Wild 273

multi-level and multi-time span features, we introduce three temporal aggre-
gation modules in different time span at the end of each block. Details of the
temporal aggregation module will be introduced in the following section.

To further improve the fitting ability of backbone, we increase the depth of
layers compared with the original GaitBase [5]. Specifically, our backbone has
four blocks. The block structure is similar to GaitBase except for the layer num-
bers. The channel number of the four blocks are 32, 64, 128 and 256 respectively.
To achieve a comprehensive multi-level feature representation, We use concate-
nating operation to combine temporal features extracted from previous levels:

Inputx+1 = concat(Ox, OTA1, ...OTAx−1), (1)

where Inputx+1 means the input of block x+1, concat denotes for concatenating
operation, Ox is the output of block x, and OTAn means the output of temporal
aggregation modules of block n.

3.2 Temporal Aggregation Module

The temporal aggregation module is designed to aggregate short-term temporal
features. Specifically, we use a 3D convolution with a kernel size of n × 1 × 1
to aggregate adjacent n frame features by the convolution operation. As the
convolution kernel sliding along the temporal dimension, it aggregates feature
of adjacent frames. We consider that the temporal aggregation module can not
only extract short-term features, which are considered to be discriminative for
periodic gait [7], but also reduce the impact of noise on one frame by aggregating
consecutive frames.

The inputs of temporal aggregation module are frame-level features extracted
by convolutional layers. We use a residual structure. Specifically, the total feature
can be formulated as:

Ftotal = ReLU(Fframe + FTA), (2)

where Fframe is the frame-level feature, FTA means the temporal aggregation of
this frame.

In addition, we consider that the pace and stride of a pedestrians can change
frequently, so we use aggregation modules in three different time spans, i.e.
(3 × 1 × 1), (5 × 1 × 1), and (7 × 1 × 1) respectively. The temporal aggregation
features can be formulated as

FTA = Relu(FTA3 + FTA5 + FTA7), (3)

where FTA3+FTA5+FTA7 indicates temporal aggregation features from (3×1×1)
and (5×1×1) temporal aggregation modules. To extract multi-level clip features,
we add the three temporal aggregation modules at the end of each block.
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4 Experiments

4.1 Datasets

Existing public gait datasets can be roughly divided into two categories: con-
strained and less constrained. The constrained gait datasets are usually captured
with stringent requirements for pedestrians. For example, in OU-MVLP [10],
subjects are asked to walk in a straight-line path. Meanwhile, the background
is simple or even a green screen. So that the silhouette of people can be eas-
ily obtained by background subtraction. On the contrary, less constrained gait
datasets are directly sampled from captured real-world surveillance video. For
example, some gait datasets are constructed from videos captured by cam-
eras established in public places [2,3]. Pedestrians can walk freely but are not
restricted on a certain route. To consider the performance of our method on both
constrained and less constrained gait recognition tasks, we evaluate our method
on the following three widely-used gait datasets: OU-MVLP [10], GREW [2] and
Gait3D [3].

GREW [2] is a large public gait dataset, which contains 26,345 subjects.
GREW is sampled from real surveillance videos with manual annotations and
thus it can be used for the so-called Gait Recognition in the Wild. We use the
same protocol used in [5] including 20,000 subjects for training and 6,000 subjects
for test.

Gait3D [3] is another public wild gait dataset, which contains 4,000 subjects
and over 25,000 sequences captured by 39 cameras of arbitrary 3D viewpoints
in a supermarket. We also adopt the same protocol used in the OpenGait chal-
lenge [5], in which 3,000 subjects are used for training and 1,000 subjects for
test.

OU-MVLP [10] is one of the largest multi-view gait datasets. It contains
10,307 subjects, and each subject contains two sequences with 14 views ranging
0◦−90◦, 180◦−270◦. We use the same protocol as reference [6], i.e. 5,153 subjects
for training and 5,154 subjects for test respectively.

4.2 Implementation Details

The hyper parameters of our model are set as the same on the three gait datasets
except for batch size. Batch size is set to (32 × 4) for GREW and Gait3D, but
(32 × 8) for OU-MVLP. SGD is selected as an optimizer in the training phase.
We set the initial learning rate as 0.1 and the weight decay as 0.0005. The mar-
gin of triplet loss is set to 0.2. The length of each silhouette sequence is fixed
and set to 30 in training phases, while the whole silhouettes are used in test
phases. The number of training iterations is 180,000 for GREW and Gait3D and
110,000 for OU-MVLP. We choose Euclidean distance to calculate the similarity
of gait embeddings generated from gait recognition models. The data augmenta-
tion strategy is also applied, including horizontal flipping, rotation, and random
perspective on GREW and Gait3D for better performance. In the test phase,
rank-n accuracy is used to evaluate the performance of our method.



Multiple Temporal Aggregation Embedding for Gait Recognition in the Wild 275

Table 1. Average rank-n accuracies (%) on GREW dataset. Accuracies of GaitSet,
GaitPart, and GaitGL are cited from [2].

Method Rank-1 Rank-5 Rank-10 Rank-20

GaitSet [6] 46.28 63.58 70.26 76.82

GaitPart [7] 44.01 60.68 67.25 73.47

GaitGL [8] 47.28 63.56 69.32 74.18

MTSGait [4] 55.32 71.28 76.85 81.55

GaitBase [5] 60.1 – – –

MTA (Ours) 72.85 84.15 87.75 90.48

Table 2. Performance on Gait3D dataset. Performances of GaitSet, GaitPart, and
GaitGL are cited from [3]

Method Rank-1(%) Rank-5(%) mAP(%) mINP

GaitSet [6] 42.60 63.10 33.69 19.69

GaitPart [7] 29.90 50.60 23.34 13.15

GaitGL [8] 23.50 38.50 16.40 9.20

MTSGait [4] 48.70 67.10 37.63 21.92

GaitBase [5] 64.6 – – –

MTA (Ours) 71.10 84.79 63.29 37.10

4.3 Comparison and Discussion

We conduct experiments on three gait datasets and compare performance with
several state-of-the-art methods, i.e., GaitSet [6], GaitPart [7], GaitGL [8] and
GaitBase [5].

The comparison on GREW and Gait3D datasets are displayed in Table 1
and Table 2. Our method achieves 72.85% rank-1 accuracy on the GREW
dataset, which clearly outperforms the state-of-the-arts. Similar results can also
be observed on the Gait3D dataset. The effectiveness and robustness of our
method is well demonstrated on the gait recognition in the wild task, which
implies that the proposed temporal aggregation can reduce the influence of chal-
lenging factors in the wild scenario.

There are considerable low-quality gait silhouette sequences in GREW and
Gait3D datasets. One obvious reason is that there are many noises like back-
ground clutter, occlusion. The other challenge is the inaccurate silhouettes. Dif-
ferent from conventional gait sequence captured in front of green screen, the
body boundary of pedestrian is automatically detected by model-based method
like mask R-CNN [2]. Due to the aforementioned difficulties and the performance
limit, quite a number of the silhouettes are incomplete. It is much more challeng-
ing than the pixel-level noise in the Gaussian Mixture Model background sub-
traction. We observe that such incompleteness does not necessarily appear con-
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Table 3. Average rank-1 accuracies (%) on OU-MVLP dataset for 0◦∼90◦ views.

Method Probe View Average (0◦∼90◦)

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

GaitSet [6] 79.33 87.59 89.96 90.09 87.96 88.74 87.69 87.34

GaitPart [7] 82.57 88.93 90.84 91.00 89.75 89.91 89.50 88.93

SRN [24] 83.76 89.70 90.94 91.19 89.88 90.25 89.61 89.33

GaitGL [8] 84.9 90.2 91.1 91.5 91.1 90.8 90.3 89.99

3DLocal [25] 86.1 91.2 92.6 92.9 92.2 91.3 91.1 91.06

GQAN [26] 84.99 90.34 91.26 91.40 90.63 90.57 90.14 89.90

MTA (Ours) 84.3 89.4 90.9 91.3 89.8 90.4 89.4 89.36

Table 4. Average rank-1 accuracies (%) on OU-MVLP dataset for 180◦∼270◦ views.

Method Probe View Average

180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ 180◦∼270◦ All

GaitSet [6] 81.82 86.46 88.95 89.17 87.16 87.6 86.15 86.76 87.05

GaitPart [7] 85.19 88.09 90.02 90.15 89.03 89.10 88.24 88.55 88.74

SRN [24] 85.76 88.79 90.11 90.41 89.03 89.36 88.47 88.85 89.09

GaitGL [8] 88.5 88.6 90.3 90.4 89.6 89.5 88.8 89.39 89.7

3DLocal [25] 86.9 90.8 92.2 92.3 91.3 91.1 90.2 90.69 90.9

GQAN [26] 87.09 89.37 90.46 90.64 90.02 89.81 89.10 89.50 89.70

MTA (Ours) 87.3 88.4 89.7 89.9 87.9 88.8 87.8 88.54 89.0

tinuously. The proposed temporal aggregation of consecutive frames can reduce
the negative effects to some extents. Other factor like temporal partial occlusions
can also be tackled by this aggregation method.

The comparisons on OU-MVLP datasets are shown in Table 3 and 4. Our
method achieves 89.0% average rank-1 accuracy. Compared with other state-of-
the-art methods, our model shows competitive performance on this dataset. It
should be pointed out that our method is not designed for tackling conventional
gait recognition task. There is a sacrifice of accuracy for the robustness in the
wild. Even though our method is still comparable to the leading methods on
OU-MVLP. It shows that our method is not only an Ad-hoc method for the wild
scenario but also a robust method for general gait recognition.

4.4 Ablation Study

In the proposed method, the key component is the multiple temporal aggregation
module. We design three frameworks to analyze the contribution of this mod-
ule. The first framework is without any temporal aggregation modules, and the
remaining part is the same as the original framework. The second framework is
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Table 5. Ablation experiments on GREW dataset.

Method single-span multi-spans rank-1

MTA (ours) x x 62.31

� x 70.28

x � 72.85

with a multi-level temporal aggregation module with a single time span. In other
words, we add a single temporal aggregation module at end of each backbone
blocks. And the time span is 3×1×1. The third framework is with the complete
multiple temporal aggregation module, and the spans we set are 3×1×1, 5×1×1,
and 7 × 1 × 1 respectively. The only difference between single-span and multi-
span is that the former performs aggregation in a single period, while the latter
are carried out in three periods. Other parts of these frameworks and the exper-
imental conditions are the same. We trained this framework on GREW [2] with
180k epochs. By comparing the performance of the three frameworks, we can
find out the impact of both multi-level aggregation and multi-span aggregation.

The results are shown in Table 5. As can be seen, compared with the frame-
work without any temporal aggregation module, the aggregation with multi-
level but single-span achieves an excellent improvement (+7.97% rank-1 accu-
racy rate) on GREW [2]. It indicates that the multi-level temporal aggregation
embedding works well on gait recognition tasks in the wild, even just with a
single time span.

Compared with the single-span framework, the result shows that multi-span
aggregation can further improves the results (+2.57% rank-1 accuracy rate on
GREW). It implies that the gait cycle length and pace variations do have an
impact on the performance of gait recognition in the wild and the multi-span
strategy can reduce the negative influence.

It should be pointed out that due to limits in computing power we only
investigate three time-spans and four levels. Although the model is larger than
some exiting gait recognition model, the size is still normal. Some recent studies
suggest that exploring big model can boost the performance. It can be expected
that the performance of proposed method can be further improved by expanding
the aggregation range and nesting larger backbones.

5 Conclusion

In this paper, we discussed the impact of short-term temporal features in the
task of gait recognition in the wild. We consider that these features are discrimi-
native for periodic gait and more robust in the wild scenario. We propose a novel
aggregation method for gait recognition named MTA to extract multi-span and
multi-level temporal features. The proposed MTA module can be embedded into
many existing gait recognition architectures. Extensive experiments were con-
ducted on three public gait datasets including OU-MVLP, GREW, and Gait3D.
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The result shows that our method achieves excellent performance improvements
on two gait datasets in the wild (GREW and Gait3d), and shows competitive
performance on conventional constrained gait dataset (OU-MVLP). The result of
ablation study also shows that multi-level and multi-span temporal aggregation
module works well on gait datasets in the wild.
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Abstract. Recently, large deep models have achieved significant
progress on gait recognition in the wild. However, such models come
with a high cost of runtime and computational resource consumption.
In this paper, we investigate knowledge distillation (KD) for gait recog-
nition, which trains compact student networks by using a cumbersome
teacher network. We propose a novel scheme, named Frame Correlation
KD (FCKD), to transfer the frame correlation map (FCM) from the
teacher network to the student network. Since the teacher network usu-
ally learns more frame correlations, transferring such FCM from teacher
to student makes the student more informative and mimic the teacher
better, thus improving the recognition accuracy. Extensive experiments
demonstrate the effectiveness of our approach in improving the perfor-
mance of compact networks.

Keywords: Gait recognition · Knowledge distillation · Frame
correlation map

1 Introduction

Gait recognition is a task to identify pedestrians utilizing walking patterns with-
out explicit cooperation. Compared with other biometrics characteristics such
as fingerprints and face, gait is hard to disguise and does not require a close
distance to capture, thus benefiting the application in criminal investigation,
identity verification, and suspect tracking [1].

Gait recognition has achieved impressive progress [2–6] in the past decade.
However, many researches [7–10] indicate that existing methods perform poorly
in the wild. Different from in-the-lab datasets [11,12] performing well with
relatively small and shallow neural networks, in-the-wild datasets [9,10] col-
lected outdoors are more complex. To alleviate this problem, GaitBase [7]
and DeepGaitV2 [8] have been proposed. They employ larger and deeper net-
work architectures and have achieved state-of-the-art performance on outdoor
datasets [9,10]. But large networks come with a high cost of runtime and compu-
tational resource consumption, which limits the application of gait recognition
systems in widespread surveillance systems.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 280–290, 2023.
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In order to obtain efficient and compact models, we study the knowledge
distillation (KD) method, popularized by Hinton et al. [13], which represents a
way of transferring the soft probabilities of a cumbersome teacher network to a
compact student network for improved performance. KD has achieved significant
success in various vision tasks. However, it is less studied in gait recognition. The
reason is that gait networks trained with simple indoor datasets are small and
shallow. It is challenging to use KD without a complex and large teacher network.
With the recent GaitBase [7] and DeepGaitV2 [8] method, we are able to explore
the effect of KD in gait recognition.

Gait has many modalities as input, such as skeleton, point clouds, silhouette
sequence, and so on. Most methods recently consider a gait silhouette sequence
as input in gait recognition. Compared with full-color images containing rich
appearance clues, the gait silhouette sequence pays more attention to the motion,
which derives from the frame-by-frame difference and correlations. To learn more
temporal information, we propose a new KD scheme named Frame Correlation
KD (FCKD), which focuses on transferring the frame correlation map (FCM)
from the teacher network to the student network.

FCM contains the correlation between each pair of frames in a silhouette
sequence. As a continuous process, gait exhibits small differences between adja-
cent frames but significant differences between further apart frames in a gait
cycle. If a network accurately predicts the FCM, we can consider that it has the
ability to determine whether two frames are adjacent. Furthermore, we can infer
that such a network has learned the temporal information in a gait cycle. By
mimicking such FCM of the teacher network, the improvement of the student
is evident. As illustrated in Fig. 1, with our proposed method, DG2D(16)1 [8]
achieves a similar level of accuracy as GaitBase [7] with only 0.72 MegaBytes
parameters2.

To conclude, our main contributions are threefold:

1) We propose a new KD architecture for training accurate compact gait recog-
nition networks.

2) We present a novel KD scheme (FCKD), which focuses on transferring the
FCM of the teacher network to the student network and assists the student
in learning more temporal information.

3) Extensive experiments demonstrate the effectiveness of our approach to
improve the state-of-the-art compact networks on outdoor datasets [9,10].

2 Related Work

Gait Recognition. Deep neural networks have been the dominant solution to
gait recognition in the past decade. Various methods were proposed to improve

1 DG2D represents DeepGaitV2-2D and DG3D represents DeepGaitV2-3D. (16) rep-
resents that the number of first-stage channels is 16.

2 We only consider the backbone for all experiments.
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Fig. 1. Performance comparison on Gait3D [9]. Red triangles represent the results of
FCKD and the others represent the results without KD. (32) and (16) represent the
number of first-stage channels. We can get a higher Rank-1 result with FCKD, with
no extra parameters increased.

Teacher model

Student model

BNN

BNN

FC module

FC module

Feature Map

Feature Map

TP,HP

TP,HP

Frame Correlation Module

Fig. 2. Pipeline of the proposed Frame Correlation KD (FCKD). We introduce a
FC module to obtain the frame correlation map (FCM). Knowledge transfer is then
employed to the FCMs of the teacher network and student network. The vanilla KD
loss is used in our approach.
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the capability of networks and accordingly enhanced the effectiveness of gait
recognition. For instance, GaitSet [2] deemed each sequence as an unordered set
and utilized a maximum function to compress the sequence of frame-level spatial
features. GaitPart [3] carefully explored the local information of input silhou-
ette sequences and integrated temporal dependencies using the Micro-motion
Capture Module. LagrangeGait [6] designed a second-order motion extraction
module to capture second-order information in the temporal dimension and
a lightweight view-embedding module taking the view itself into considera-
tion. Although these methods have achieved successful performance on indoor
datasets such as CASIA-B [11] and OU-MVLP [12], they performed not very
well on the challenging outdoor dataset [9,10]. To solve these problems, Open-
Gait [7] rethought deep gait networks’ design principles for applications and
proposed a simple and strong architecture named GaitBase. It took a ResNet-
like [14] network as the backbone and demonstrated good performance on out-
door datasets. Under the encouragement of GaitBase, DeepGaitV2 [8] has been
proposed recently, which achieved better results by employing a larger network.

Knowledge Distillation. Knowledge distillation (KD) has been widely devel-
oped in recent years. The concept, popularized by Hinton et al. [13], represents
the process of training a compact student network with the objective of match-
ing the soft probabilities of a cumbersome teacher network. It has been applied
to various vision tasks such as image classification [13,15], semantic segmenta-
tion [16], video person re-identification [17,18].

However, KD has little application in gait recognition. Only GaitPVD [19]
was proposed to solve cross-view gait recognition with the same structure
of teacher and student, which limited its application in cross-architectures.
Recently DeepGaitV2 [8] has gotten state-of-the-art performance with a large
network. This encouraged us to propose an effective and cross-architectural archi-
tecture named FCKD to learn a well-performed compact network. Different from
previous works using person pair distances [17] or triplet distances [18] in video
person re-identification, we rely on a different aspect, which focuses on transfer-
ring the FCM of teacher network to student network.

3 Proposed Method

3.1 Overview

Gait recognition can be viewed as a task of predicting a label for each silhouette
sequence from C categories. We employ the KD strategy to transfer the knowl-
edge of a cumbersome network T to a compact network S for better training.
Apart from a vanilla scheme, logits distillation, we present a Frame Correlation
KD (FCKD) scheme, to transfer frame correlation knowledge from the cumber-
some network to the compact network. The pipeline is illustrated in Fig. 2, where
TP is Temporal Pooling operation, HP is Horizontal Pooling operation [20], and
BNN is BNNeck [21]. In Sect. 3.2, we introduce vanilla KD. We then detail the
FCKD in Sect. 3.3.
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Fig. 3. Proposed FC module for computing the Frame Correlation Map (FCM) of a
network. Here N is feature channels, V is the number of frames, H and W is the height
and width of image respectively. GAP is the global average pooling. We compute the
cosine similarity of each pair of features and obtain the final FCM.

3.2 Vanilla KD

In addition to the compact student network S, KD uses the cumbersome pre-
trained teacher network T to help the student network. The results of them can
be represented as zs ∈ R

C and zt ∈ R
C , where C is the number of classes.

We directly use class probabilities produced from the teacher network as soft
targets for training the student network. The loss function is given as

qt = softmax(
zt

τ
), qs = softmax(

zs

τ
), (1)

LKD = KL(qt||qs), (2)

where qs represents the class probabilities from the student network, qt repre-
sents the class probabilities from the teacher network, τ is a hyper-parameter to
adjust two probabilistic distributions, and KL(·) is the Kullback-Leibler diver-
gence between two probabilistic distributions.

3.3 Frame Correlation KD

As shown in Fig. 3, we propose a FC module to get a frame correlation map
(FCM), which represents the gait frame correlation of a silhouette sequence.
We first utilize global average pooling to compute the intermediate feature map
P ∈ R

N×V . Then we compute the cosine similarity of each feature pair and
obtain the final frame correlation map M . Formally, M is computed by

M = sim(PT , P ), (3)

where T is transpose and sim(·) is a similarity function. Specifically, we use the
cosine similarity for all experiments.

To transfer frame correlation knowledge from the teacher network to the
student network, a straightforward approach is to minimize the distance between
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the FCMs of the teacher network and the student network. Specifically, we adopt
the mean squared error (squared �2 norm) loss as below:

LFC =
v∑

i=1

v∑

j=1

(M t
ij − Ms

ij)
2, (4)

where v is the number of frames, M t and Ms represent the FCMs of teacher
network and student network.

Student optimization. The FCKD objective is composed of two distillation
loss items (LKD and LFC) and a conventional triplet loss item (LTR). The whole
student optimization process is

L = LTR + αLKD + βLFC , (5)

where α and β are hyper-parameters to balance the contributions of the total
loss L. We do not use the conventional cross-entropy loss (LCE). The reason is
that with the conventional cross-entropy loss (LCE) and KD loss, the result of
the student is relatively weak.

Fig. 4. A silhouette sequence in Gait3D [9]. Adjacent frames are similar but further
apart frames are dissimilar.

4 Experiments

In this section, we validate the effectiveness of our FCKD on outdoor datasets:
Gait3D [9] and GREW [10].

4.1 Datasets and Evaluation Metrics

Gait3D [9] is one of the latest gait datasets in the wild. It contains 4,000 sub-
jects and 25,309 sequences extracted from 39 cameras. 3D Skinned Multi-Person
Linear and 2D silhouettes are provided. In our experiments, only 2D silhouette
information is employed, as shown in Fig. 4. Following Gaitbase [7], 3,000 sub-
jects are collected as the training set and the rest 1,000 subjects consist of the
test set.

GREW [10] is one of the largest gait datasets in the wild, containing 26345
subjects and 128671 sequences collected from 882 cameras. It is divided into
two parts with 20000 and 6000 subjects as the training set and the test set
respectively.

Our experiments follow the official protocols strictly. Rank-1 accuracy is used
as the primary evaluation metric. Rank-5 accuracy, Rank-10 accuracy, and mean
average precision (mAP) are also used as evaluation metrics.
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Table 1. Results for KD recognition on Gait3D. (128), (64), and (32) represent the
number of first-stage channels.

Teacher Params (M) Rank-1 (%) Student Params (M) Rank-1 (%)

DG3D (128) 118.32 75.6 (75.8†) DG3D (64) 29.72 74.6→74.7 (+0.1)

DG3D (64) 29.72 74.6 (72.8†) DG3D (32) 7.44 71.0→73.2 (+2.2)

DG3D (32) 7.44 71.0 (69.4†) DG3D (16) 1.86 65.5→66.3 (+0.8)

DG2D (64) 11.43 69.1 (68.2†) DG2D (32) 2.87 66.5→67.7 (+1.2)

DG2D (32) 2.87 66.5 (62.9†) DG2D (16) 0.72 60.2→64.1 (+3.9)

†Reported in the original paper [8].

4.2 Implementation Details

Network Architectures. As shown in Table 1, we set KD experiments for 3D
and 2D respectively. In the 3D experiment, DG3D (128), DG3D (64), DG3D (32)
serve as the teacher network for teaching DG3D (64), DG3D (32), DG3D (16)
respectively. In the 2D experiment, DG2D (64), DG2D (32) serve as the teacher
network for teaching DG2D (32), DG2D (16) respectively. We use 22-layer and
[1, 4, 4, 1]-stage DeepGaitV2 for all experiments. Our code is on the codebase
by Chao et al. [7] and all the networks are retrained.

Training Details. For hyper-parameters in Equation (5) and Eq. (1), we set
α = 1, β = 0.04 and τ = 1 for all experiments. Since our code is on the codebase
by Chao et al. [7], we used most of the default settings from it.

Table 2. Results on Gait3D dataset.

Method Source Params (M) Rank-1 (%) Rank-5 (%) mAP (%)

Current state of art results

GaitGL [5] ICCV 2021 2.49 29.7 48.5 22.3

SMPLGait [9] CVPR 2022 – 46.3 64.5 37.2

DANet [22] CVPR 2023 – 48.0 69.7 –

GaitGCI [23] CVPR 2023 – 50.3 68.5 39.5

GaitBase [7] CVPR 2023 7.00 64.3 (64.6† ) 79.6 55.5

Results w/ and w/o distillation schemes

DG2D (16) [8] – 0.72 60.2 79.3 51.2

DG2D (ours) – 0.72 64.1 (+3.9) 81.1 54.7

DG3D (32) [8] – 7.44 71.0 (69.4‡ ) 85.0 62.3

DG3D (VKD [17]) ECCV 2020 7.44 71.3 (+0.3) 84.9 63.3

DG3D (TCL [18]) ICASSP 2022 7.44 71.3 (+0.3) 85.8 63.3

DG3D (ours) – 7.44 73.2 (+2.2) 85.5 64.1

†Reported in the original paper [7].

‡Reported in the original paper [8].
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Table 3. Results on GREW dataset.

Method Source Params (M) Rank-1 (%) Rank-5 (%) Rank-10 (%)

Current state of art results

GaitGL [5] ICCV 2021 2.49 47.3 63.6 69.3

GaitGCI [23] CVPR 2023 – 68.5 80.8 84.9

GaitBase [7] CVPR 2023 7.00 60.1 – –

Results w/ and w/o distillation schemes

DG2D (16) [8] - 0.72 53.8 69.7 75.7

DG2D (ours) – 0.72 59.0 (+5.2) 74.5 79.7

DG3D (32) [8] - 7.44 71.2 (73.1† ) 83.3 87.3

DG3D (ours) – 7.44 74.9 (+3.7) 86.1 89.6

†Reported in the original paper [8].

4.3 Results

KD Results. As can be seen from Table 1, our FCKD method helps the student
network train significantly. Specifically, the improvements for DG3D (32) and
DG2D (16) are 2.1% and 3.9%. However, the improvements for DG3D (64) and
DG3D (16) are limited, with only 0.1% and 0.8% increase. For DG3D (16),
it is too small to get a significant improvement. Different from DG2D (16),
DG3D (16) needs to study both the spatial information of one silhouette image
and the temporal dimension information of the input sequence. It is challenging
for DG3D (16) with only 1.86 MegaBytes parameters. And for DG3D (64), as
the difference in result accuracy compared to DG3D (128) is marginal, it has
difficulties in learning more useful information.

Gait3D. We compare our proposed FCKD with other methods on Gait3D [9]
dataset. The results are reported in Table 2. Compared with VKD [17] using
person pair distances and TCL [18] using triplet distances, FCKD obtains better
results. This demonstrates that learning frame correlation maps from the teacher
network can effectively assist the student network in training. Finally, we obtain
two networks with 64.1% and 73.2% accuracy, while their sizes are only 0.72 and
7.44 MegaBytes, respectively.

GREW. We then evaluate the proposed FCKD on GREW [10] dataset. As
shown in Table 3, the improvements for DG3D (32) and DG2D (16) are 3.7%
and 5.2%, which further confirms the effectiveness of our approach in improving
the performance of compact networks.

4.4 Ablation Study

We investigate the effectiveness of different components in our FCKD archi-
tecture. Specifically, we employ DG3D (64) as the teacher network and DG3D
(32) as the student network. As shown in Table 4, with our distillation term
(LFC), the improvement for DG3D (32) is 2.2%. It indicates the effectiveness of
FCKD. However, with the conventional cross-entropy loss (LCE) and KD loss,
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Table 4. Ablation study on Gait3D.

Network LTR LCE LKD LFC Rank-1 (%)

DG3D (64) (teacher)
√ √ × × 74.6

DG3D (32) (student)
√ √ × × 71.0√ √ √ × 69.4√ × √ × 71.0√ × √ √

73.2

the result of the student is relatively weak. The possible explanation is that the
test of gait recognition is applied by comparing the similarity between the inter-
mediate features and the features in the gallery. The soft label of the teacher
network contains relational information between different classes, which is ben-
eficial for the student network to learn the intermediate features of the teacher.
Adding ground truth label information may affect the student to learn the soft
labels. Consequently, it affects the student to learn the intermediate features of
the teacher.

5 Conclusion

In this paper, we propose a novel Frame Correlation Knowledge Distillation
(FCKD) for gait recognition in the wild. Different from previous works using
person pair distances or triplet distances, we focus on transferring the FCM of
the teacher network to the student network. Extensive experiments have been
conducted on Gait3D and GREW. The results demonstrate that learning frame
correlation maps from the teacher network can effectively assist the student net-
work in training compared with other state-of-the-art gait recognition methods
and KD methods.
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Abstract. This paper introduces a novel irisCode template protection
scheme, integrating the Indexing First One (IFO) hashing and Bloom
filter methodologies. The scheme eliminates pre-alignment needs, while
a proposed bit-binding strategy extends the IFO hashed code’s utility
for biometric cryptosystems without explicit error correction code con-
struction. This strategy ensures authentication accuracy by preserving
the Jaccard distance between input irisCodes. Testing on the CASIA
v3-interval database confirms the superior performance of our approach
over existing iris recognition methods.

Keywords: Iris Recognition · Biometric Template Protection

1 Introduction

Conventional recognition system relies on the personal ownership of secret data,
i.e., “what we have” such as passwords, PINs, and access cards, for system access.
The authentication methods rely on passwords, access cards, etc., and possess
insufficiency because they can be easily lost, stolen, guessed, forgotten, or shared
[1]. Moreover, there is a trade-off between password memorability and strength
since complex password offer higher security but are difficult to be remembered
by users.

Contrary to conventional recognition system, biometric recognition offers a
more advanced approach by leveraging unique traits like fingerprint patterns,
facial features, iris structures, hand geometry, voice patterns, palm-prints, sig-
natures, and gaits.This approach eliminates the need for complex passwords
or additional access cards, offering dependable and convenient authentication
around the world [1,2].
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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In biometric authentication, Iris patterns offer a reliable method for iden-
tification due to their unique and stable nature. Iris recognition systems have
improved with Daugman’s irisCode, a binary array capturing iris details. During
enrollment, an eye image generates an enrollment irisCode (Ie), which is stored
for future authentication. For authentication, a user’s iris image generates a
query irisCode (Iq). If the Hamming distance (d) between Ie and Iq is below a
threshold (t), the user is authenticated; otherwise, access is denied [2].

Security and Privacy Concerns in Iris Recognition: IrisCode stored in
the database contains discriminative information about individual users that
possess several security and privacy threats such as brute-force and reconstruc-
tion attacks, etc., which could reveal sensitive information about individual users
[3]. Since the human iris is permanently associated with each individual, a com-
promised irisCode implies a permanent loss of identity.

Researchers have been actively working on irisCode protection in databases.
One approach is using cryptographic techniques like one-way hash functions.
However, achieving consistent and reliable hashes with biometric data variation
is challenging due to the inherent variability in biometric acquisition. On the
other hand, encrypting the irisCode requires a pre-shared secret, which intro-
duces key management issues. Motivated by the aforementioned challenges, Bio-
metric template protection (BTP) has emerged as an appropriate solution to
safeguard biometric data stored in databases [4]. Biometric template protection
is mainly divided into two categories:

1. Biometric Cryptosystem (BCS)
2. Cancellable Biometric (CB)

BCS and CB are designed to solve the current security and privacy threats
[3]. The core idea of BCS is to ‘bind’ a cryptographic key with biometric data
through key binding or to extract a key from biometric data directly for personal
authentication. Over time, researchers have proposed various heuristic functions
in the field of biometric authentication, as highlighted in the works of Barman
et al. [5]. The majority of the proposed methods are based on two primary
cryptographic constructions: the “fuzzy vault” introduced by Juels and Sudan
[6], and the “fuzzy commitment” proposed by Juels and Wattenberg [4].

These cryptographic constructions aim to generate secure helper data, which
is stored in the database as a replacement for the original probe biometric data.
The helper data contains sufficient information for the genuine user to recon-
struct a secret that was bound to it during the enrollment phase, enabling secure
authentication.However, deploying such schemes reliably in practice poses chal-
lenges. One of the main obstacles is the inherent noise and randomness present in
biometric data. In order to allow genuine users to regenerate a stable secret key
from the helper data, error correction strategies are necessary. This introduces
the problem of selecting an appropriate error correction code that offers suffi-
cient error tolerance capability for genuine users while simultaneously preventing
imposters from exploiting the error correction mechanism [7].

Cancellable biometrics is an important approach for generating secure and
privacy-preserving biometric templates. This concept was originally introduced
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by Ratha et al. in their work [8]. It aims to transform the original biometric data
in non-invertibly manner, creating a new representation suitable for authentica-
tion in transformed domain. By storing the transformed templates enhances the
system’s security, and in case of a compromise, new templates can be generated
to prevent unauthorized access.

2 Literature Review

In recent years, significant advancements have been made in protecting irisCode
stored in databases by employing a cancellable approach. The pioneering work
by Chong et al. [11] introduced the irisCode-encoding scheme, which is based on
the concept of random projection to project individual biometric features to a
lower-dimensional subspace using a user-specific randomly generated orthogonal
matrix (known as a token).Other cancellable schemes that utilized the random
projection concept are also proposed by Zuo et al. [9] and Pillai et al. [10]. Both
of their works require randomly generated matrices to project or distort (using
a random permutation matrix) the original iris data to generate its protected
instances. Ouda et al. [11] proposed to encode the irisCode to generate its pro-
tected instance, namely Bio-code, using a random key.

Starting in 2013, Rathgeb et al. [12] proposed an alignment-free cancellable
biometrics based on adaptive Bloom Filter. This approach efficiently compared
biometric templates like irisCode without alignment at pre-matching stages. The
Bloom filter transformation involved partitioning irisCode into sub-matrices and
converting them to Bloom filter vectors. It achieved non-invertibility by map-
ping biometric features to a Bloom filter using a many-to-one approach and
an application-specific secret key for template renewal and irreversibility.The
Bloom filter exhibited comparable accuracy to the original counterparts. How-
ever, the restoration of biometric templates was found to be successful with
low complexity [13]. Additionally, using smaller key spaces for accuracy preser-
vation posed unlinkability attack risks. Moreover Gomez et al. [14] enhanced
the Bloom filter-based template protection proposed in [12] by introducing a
Structure-Preserving Feature Re-Arrangement, significantly improving unlinka-
bility and countering cross-matching attacks.

In 2017, Lai et al. [15] introduced a novel iris-cancellable biometrics scheme,
Indexing-First-One (IFO) hashing to generate cancellable IFO hashed code. For
IFO hashcode generation, the irisCode first undergoes random permutation, fol-
lowed by a p-ordered Hadamard product. It follows that the positions of the first
‘1’ in each row of the product code are recorded (Min-hashing), then modulo
thresholding is applied for enhanced security, i.e., improve non-invertibility. A
unique aspect of IFO hashing is that the normalized Hamming distance between
enrollment ifoe and query IFO codes ifoq remains equivalent to the Jaccard
distance between corresponding irisCodes, even post-IFO hashing, that is:

dH(ifoe, ifoq) = dJaccard(Iq, Ie) + ε, (1)
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where, dH(, ) is the normalized Hamming distance measure, dJaccard(., .) is the
Jaccard distance measure, and ε is the error of approximation, converging to
zero with increasing hashed code length. In IFO hashing, a pre-alignment step is
necessary to ensure proper alignment for consistent and reliable hashing results.

Sadya et al. [16] proposed Locality Sampled Code (LSC) for cancellable
irisCode generation. This approach utilizes the principles of Hamming hash-
based Locality Sensitive Hashing (LSH) to extract random bit strings from
irisCode. In order to achieve non-invertibility, LSC incorporates a modulo thresh-
olding technique, similar to that used in IFO hashing. However, LSC necessitates
a pre-processing step for irisCode to tackle alignment-related issues. The LSC
process generates 33 shifted instances of the probe iris feature, which are subse-
quently transformed into LSC templates for comparative analysis.

Lee et al. [17] proposed a cancellable biometrics scheme called Random Aug-
mented Histogram of Gradients (RHoG) for enhancing the security and privacy
of iris templates. The RHoG method consists of two main processes. Firstly,
the unaligned iris code is augmented using random augmentation seeds. This
is followed by a gradient orientation grouping process to transform the result-
ing iris template into an alignment-robust cancellable template. As a result,
the generated cancellable iris template exhibits alignment robustness, allowing
direct comparison during the matching stages without the need for pre-alignment
techniques.

3 Motivation and Contributions

Upon conducting an in-depth literature review, we discovered that existing solu-
tions exhibit a complementary relationship through their heuristic designs. For
instance, Bloom filters are invertible, but IFO medthod effectively address this
issue, although it requires pre-alignment. This complementarity extends to com-
bination of cancellable schemes and biometric cryptosystems. While cancellable
schemes avoid error correction codes in template matching, they struggle with
noise during stable key regeneration. This paper aims to explore the mutual com-
plementarity between IFO and Bloom filter approaches, as well as between can-
cellable schemes and biometric cryptosystems. Our main contribution is an inno-
vative irisCode template protection scheme that uniquely integrates IFO hash-
ing and Bloom filters, providing high cancelability without alignment require-
ments. Additionally, we have introduced a bit-binding strategy to extend its
applicability for biometric cryptosystems, eliminating the need for explicit error
correction code construction. Experimental results show that our approach out-
performs existing biometric template protection schemes, achieving the lowest
Equal Error Rate (EER) on the CASIA-Irisv3-interval database, demonstrating
its promising potential for secure iris recognition systems.

4 Overview Idea

We have adopted the alignment-free IFO methodology, integrated with the
Bloom filter, to generate an IFO vector that boasts both alignment freedom and
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strong non-invertibility [18]. The principal contribution of our work is a novel
template protection method, namely Code-Block Encoding (CBE) scheme,
that fuses the biometric cryptosystem and the cancellable approach, thereby
enhancing the robustness and security of the iris recognition system.

Bit Binding: Our method binds a single bit of information (0 or 1) to a pair of
uniformly and randomly generated codewords (c0, c1). This process is conducted
over a finite field F

n
q , where n is the vector dimension and q is the field size.

If the bit value is 0, a helper string h is formed by adding the enrollment IFO
vector to c0 (i.e., h = ifoe + c0). If the bit value is 1, c1 is used for the same
operation, resulting in h = ifoe + c1.

Bit Recovery: For the recovery of the information about b, given {c0, c1},
stored together with h as a whole helper data; one can compute the distance
solution by subtracting a query IFO vector from the helper string and {c0, c1}
respectively, follows:

h − ifoq − c0 = dH(ifoe, ifoq) + cb − c0, and
h − ifoq − c1 = dH(ifoe, ifoq) + cb − c1,

which yields a resultant set of distance solutions

S = {dH(ifoe, ifoq), dH(ifoe, ifoq) + δ}
= {dJaccard(Iq, Ie) + ε, dJaccard(Iq, Ie) + ε + δ}
≈ {dJaccard(Iq, Ie)

︸ ︷︷ ︸

error-free term

, dJaccard(Iq, Ie) + δ
︸ ︷︷ ︸

error term

}

with δ = cb−c(b+1) mod (2) denotes the error that leads to possibly larger Jaccard
distance between the enroll irisCode and query irisCode due to the differences
between the introduced codewords {c0, c1}. It’s important to note that δ = 0 only
when the same codeword is used in both the binding b and recovery b processes.
The second line above utilizes the inherent Jaccard distance preserving property
of the IFO, following Eq. 1. The validity of the third line is based on the premise
that the length of the IFO vector is sufficiently large leading to negligible ε.

Given the preceding discussion, it becomes apparent that for sufficiently large
IFO vector lengths, we can derive an ’almost’ error-free distance solution by
simply selecting the minimum solution from the set S. This corresponds to the
Jaccard distance between the enrolled and query irisCodes. As a result, the bind
bit value b, which should ideally correspond to the minimum distance solution,
can be retrieved in the following manner:

b∗ = arg min
b∈{0,1}

(h − ifoq − cb). (2)

Given that b∗ corresponds to the solution with the minimum Jaccard distance
dJaccard(Iq, Ie), a tolerance threshold t can be imposed to ensure that the system
releases b∗ if and only if dJaccard(Iq, Ie) ≤ t. This demonstrates the ability to
retrieve bits based on the irisCode Jaccard distance, even after the application
of IFO hashing.
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5 Main Construction

The central construction of the code-blocks encoding process, which includes bit
binding and retrieval, is visually represented in Fig. 1. This process consists of
repeating the binding of bit information n times, resulting in sequences of helper
strings (h1, . . . , hn) and a corresponding set of codewords {c0, c1}1, . . . , {c0, c1}n.
These helper strings and codewords sets are collectively stored as helper data in
the database to assist in future bit retrieval processes. The retrieved bit infor-
mation can then be employed for verification or authentication purposes.

Fig. 1. Overview of the design for the proposed code-blocks encoding scheme.

5.1 Bit Binding

Initially, the enrollment irisCode with dimensions Ie ∈ {0, 1}20×512 is processed
using the Bloom Filter technique. The output from this step is then subjected
to IFO transformation to generate an IFO vector ifoe ∈ F

n
q .

1. Random Codewords Pair {c0, c1} Generation: Two irisCodes r0, r1 ∈
{0, 1}20×520 are sampled uniformly at random. These are then processed
through the Bloom filter and subsequently through the IFO hashing pro-
cedure to generate two random codewords {c0, c1}. The codewords are same
size with the IFO vector.

2. Random bit (b) generation: A single bit of information b ∈ {0, 1} is sample
uniformly at random.

3. Helper Data generation: Based on the value of b (either 0 or 1), perform an
addition operation between the selected codeword (i.e., c0 if b = 1, otherwise)
and the IFO vector to generate the Helper-string h = ifoe + cb to be stored
together with {c0, c1} in database.
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5.2 Bit Retrieval

Given query irisCode with dimensions Ie ∈ {0, 1}20×512 is processed using the
Bloom Filter technique. The output from this step is then subjected to IFO
transformation to generate an IFO vector ifoq ∈ F

n
q .

1. Bit Recovery: Perform subtraction in between the helper data h and query
IFO vector ifoq to yield an intermediate output of ifoq − h. With the
knowledge in the codewords pair {c0, c1}, return the recovered bit informa-
tion as b∗ based on the minimum value calculated by subtracting c0 and
c1 from the intermediate output, which can be mathematically described
as b∗ = arg minb∈{0,1} (ifoq − h − cb). It follows that a tolerance thresh-
old t can be imposed to ensure that the system releases b∗ if and only if
dJaccard(Iq, Ie) ≤ t.

6 Experiments and Discussion

This section delivers an in-depth overview of our experimental setup, the
database employed, and a thorough discussion and comparison of the results
against state-of-the-art works.

Experiment Set-Up: For the iris-image preprocessing and irisCode extraction,
we utilized tools from [19], specifically the Iris-Toolkit v3 from Wavelab USIT
(University of Salzburg). Our proposed scheme was implemented in MATLAB
(Version R2022b) on a personal computer equipped with a 500 GB HDD, an
Intel Core i5 4th-Gen CPU operating at 4.80 Hz, and 16 GB DDR4 memory.
To conduct the experiments, we employed the CASIA-IrisV3-Internal dataset,
focusing on the left eye of subjects, each having 7 iris images. This resulted in a
total of 868 irisCodes for evaluation.

Experiment Parameters: Several parameters need consideration in the orig-
inal IFO hashing scheme, including the hashed code length (n), K-window (K),
P-Hadamard multiplication (P ), and the modulo threshold (τ). As our focus is
on bit-binding and bit-retrieval performance, we’ve chosen not to emphasize the
parameters (K,P, τ) related to IFO’s cancelability. In line with the claims of
[15], asserting that a smaller τ results in stronger non-invertibility of the IFO
hashed code, we’ve set K = n, P = 1 and τ = 78. Consequently, the parameters
to be evaluated in our code-blocks encoding scheme are reduced to two: the IFO
hashed code length n and the key length N . All the while, we have set t = 0.8580
for the tolerant threshold.

Experiment Protocol, Results, and Comparison: We executed both intra-
class (genuine) and inter-class (imposter) matches, resulting in 4406 genuine and
19936 imposter comparisons over the retrieved bit string (key). It is impor-
tant to note that the correct release of the retrieved bit is conditional on
dJaccard(Iq, Ie) ≤ t. Thus, our proposed scheme can operate under a fuzzy setting
where the bit string does not necessarily need to be exactly equal.
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We conducted two experiments: one requiring an exact match of the retrieved
bit string, and another allowing for a certain Hamming distance. Our scheme
achieved an EER of only 0.52% when a certain Hamming distance is allowed,
outperforming existing state-of-the-art works (Table 1 and Table 2). When an
exact match is required, our scheme showed promising performance with a low
false acceptance rate (FAR) of less than 0.05%, while maintaining an acceptable
false rejection rate of approximately 1.5% (Table 1). Figure 2 illustrates the intra-
class and inter-class matching score distributions from our experiments using
different n = 100 and n = 20000. As the hashed code length (n) increases, it can
be clearly observed that the computed minimum distance solution (as per Eq. 2)
for both inter-class and intra-class matching significantly overlaps with the actual
Jaccard distance between the enrolled and queried irisCodes. This demonstrates
the Jaccard distance-preserving property of our proposed code-based encoding
scheme.

Table 1. FAR/FRR & EER’s % under different parameter settings of key length (N)
and IFO hashed code length (n) in CASIA-IrisV3-Internal.

Keylength
N
(column)

IFO Hashed Codelength n (row)

100 1000 10000 20000

FAR/FRR EER FAR/FRR EER FAR/FRR EER FAR/FRR EER

8 13.7/0.5 1.79 0.9/0.7 0.8 0.5/1.3 0.6 0.3/1.5 0.6

16 13.6/0.8 1.48 0.9/0.4 0.62 0.06/1.2 0.57 0.03/1.4 0.54

32 9.2/0.9 1.50 1.4/0.4 0.69 0.07/1.1 0.55 0.03/1.3 0.55

64 2.1/2.3 1.32 1.8/0.4 0.55 0.09/1.1 0.62 0.04/1.1 0.53

128 1.9/0.5 1.06 2.8/0.3 0.56 0.1/1.0 0.54 0.03/1.2 0.52

Fig. 2. The graph illustrates the inter-class (blue) and intra-class (red) score distri-
butions and the computed minimum Jaccard distance during the bit retrieval in the
proposed Code Block Encoding (CBE) scheme (black for intra-class and magenta for
inter-class) for n = 100 (left) and n = 20,000 (right). (Color figure online)
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Table 2. Comparison of EER’s % between the proposed CBE and the state-of-the-art
Iris template protection scheme for the CAISA-IrisV3-Interval dataset.

Author’s Year Alignment Required Iris Images Protected EER (%)

Lai et al. [18] 2017 No 868 (Left) 0.69

Lai et al. [15] 2017 Yes 868 (Left) 0.54

Sadhya et al. [16] 2019 Yes 395 (Class) 0.105

Chai et al. [20] 2019 No 868 (Left) 0.62

Lee et al. [17] 2022 No 868 (Left) 0.62

Proposed CBE 2023 No 868 (Left) 0.52

6.1 Conclusions

This paper presents a Code-Block Encoding (CBE) scheme, an approach that
synthesizes the benefits of biometric cryptosystems and cancellable template
generation, traditionally used in irisCode template protection. The CBE method
adeptly addresses the individual limitations of each strategy, providing the key
binding ability of biometric cryptosystems without necessitating explicit error
correction code construction, and ensuring accurate matching outcomes inherent
to cancellable template generation. Experimental evidence showcases the CBE’s
ability to effectively handle exact matches and scenarios with allowable variations
in retrieval bit information, suggesting its high potential for secure and high-
performance Iris template protection.
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Abstract. In recent years, barefootprint-based biometrics has emerged as a novel
research area. Comparedwith other biometrics, barefootprints aremore covert and
secure. However, due to the absence of large-scale datasets and the limited train-
ing data, it is difficult to achieve high accuracy for barefootprint recognition. In
this paper, a barefootprint dataset named BFD is first proposed containing 54118
images from 3000 individuals of different genders, ages and weights. A novel
barefootprint recognition network named BFNet is secondly proposed, which is
enhanced by adding SENet, adjusting the width and depth of the network, and
using an improved triplet loss function. Experiments show that BFNet achieves
an accuracy of 94.0% and 98.3% respectively in Top-1 and Top-10 for the bare-
footprint identification task. BFNet achieves 98.9% of Area Under Curve (AUC)
for the barefootprint verification task, with the False Acceptance Rate (FAR) of
0.00106 and the Equal Error Rate (EER) of 0.054.

Keywords: Barefootprint Recognition · Attention Mechanism · Triplet Loss ·
Deep Learning

1 Introduction

Compared with other biometric traits such as fingerprints [1], faces [2], voiceprints
[3], irises [4], signatures [5] and DNA [6], on which traditional biometric recognition
is based, barefootprint is not only stable and unique, but also more covert and non-
intrusive. With the increasing concern for personal privacy and security of biometric
systems, barefootprint recognition has become a more secure, effective and reliable
method in the field of biometric identification.

The barefootprint can be used as a biometric trait for biometrics because it possesses
both uniqueness and stability. There are significant individual differences in human gait,
foot bones and posture maintenance ability, and the variability in center of pressure
(COP) between individuals increases with age [7]. However, consistent features such as
size, shape and orientation can be reproduced over time [8], highlighting its homogene-
ity and stability [9]. Furthermore, given the rarity of walking barefootprint in public,
barefootprint is a private and secure biometric feature.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Current barefootprint recognition methods are still limited by three urgent problems.
First, most of the barefootprint datasets used in the current studies are self-built with a
small size,which pose a challenge for training larger anddeeper neural networks. Second,
current methods require manual annotation of barefootprint images, which not only
introduces subjectivity but also demands substantial manpower and resources. Third,
the features embedded in barefootprints are mainly shape contour features, and the
similarity between contours of different barefootprints is relatively high, which poses a
greater challenge to the study of barefootprint recognition network [10], and there is no
automatic barefootprint recognition network with high accuracy under the validation of
large-scale datasets at present.

Compared with previous studies, a larger-scale barefootprint dataset was used to
train a deep learning-based automatic barefootprint recognition network. Our network
requires no manual labeling of barefootprint images and achieves higher accuracy on
larger-scale datasets. The contributions of this article are as follows:

– The largest barefootprint dataset (BFD) to date, containing 54,118 images of bare-
footprints from 3,000 individuals. Of these, 26,127 are of left feet and 27,991 are of
right feet.

– The barefootprint recognition network (BFNet). The framework consists of a pre-
processing module, a feature extraction module and a task module, and achieves an
accuracy of up to 98.4% in the large-scale dataset without manual labeling at all.

2 Related Work

Barefootprints Recognition Methods Based on Collection Scenario. Depending on
the volunteer’s movement during collection, barefootprint identification can be divided
into static and dynamic identification methods. Nakajima et al. identify individuals
by the orientation and position between paired standing barefootprints [11]. Perfor-
mance parameters such as error acceptance rate and accuracy were analysed by Rohit
et al. through static barefootprints [12]. Dynamic barefootprint sequences were used for
identification by Todd et al. [13].

Barefootprints RecognitionMethods Based on Sample Type. Barefootprint samples
include plantar photographs, ink stamped barefootprints, optical imaging barefootprints
and foot pressure images. The first two mainly show the shape, contour, texture and
detail features, while the latter two, in addition, provide a better representation of foot
pressure features. Researchers have extracted barefootprint features from different types
of samples [14] and performed barefootprint analysis [15] and identification [16].

Barefootprints Recognition Methods Based on Identification Approach. With
advances in computer technology, barefootprint recognition methods have evolved from
mathematical metrics to deep learning. In the early days, researchers manually extracted
barefootprint features and calculated their Euclidean distances [17]. With the develop-
ment of machine learning techniques, algorithms such as principal component analysis
[18], Bayesian decision making [19] and support vector machines [20] were introduced
for barefootprint recognition. Recently, deep learning has made breakthroughs in bare-
footprint recognition, such as feature extraction using neural networks such as Alexnet
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[21], VGG [22], Resnet [23] and Inception [24]. In addition, the combination of convo-
lutional neural networks and deep hashing has proven effective in the field of podiatry
image retrieval [25].

Comparedwith othermethods, optical imaging barefootprint allows for better extrac-
tion of features such as texture, shape and pressure. Dynamic barefootprints can reflect
features such as walking habits and posture. Therefore, a deep learning-based bare-
fooprint recognition frameworkwas proposed to automate the extraction of barefootprint
features and greatly improve recognition efficiency and reliability.

3 Method

In our work, a framework for barefootprint recognition was proposed, as shown in Fig. 1,
including a self-built barefootprint dataset (BFD), a data pre-processingmodule, a feature
extraction module, and two task modules, including the barefootprint recognition task
and the barefootprint verification task. In the feature extraction module, a barefootprint
network (BFNet) was proposed for feature extraction, as shown in Fig. 2.

Fig. 1. The Framework of Our Method

Fig. 2. The Structure of BFNet

3.1 Feature Extraction Network

Since the skip connect of the Inception_Resnet network structure can avoid the problem
of gradient vanishing and output the features as compact 128-dimensional feature vectors
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for feature recognition and further analysis, this network structure can extract the bare-
footprint featureswell in the field of barefootprint recognition. Therefore, amodel named
BFNet was proposed for barefootprint recognition by enhancing Inception_Resnet_V1
network in three ways.

The SENet attention mechanism was added between the three BFNet_Block and
Reduction modules, as shown in Fig. 3, to allow the model to better focus on the bare-
footprint features. SENet, through Squeeze and Excitation operations, can adaptively
learn the importance of each channel and adjust the weight of important channel fea-
tures according to the needs of barefootprint recognition tasks, thereby enhancing the
performance of the model [26].

Fig. 3. SE_BFNet Module

To adapt to the self-built barefootprint dataset BFD, the width and depth of
BFNet_Block was adjusted so that it can learn the barefootprint features at different
scales. As shown in Fig. 4, the 1 × 1 convolutional network branch was added to the
BFNet_Block to better extract channel features such as size and pressure. The conven-
tional convolutional networkwas replacedwith a depth-separable convolutional network

Fig. 4. BFNet_Block. (a) BFNet_Block_A; (b) BFNet_Block_B; (c) BFNet_Block_C.
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in BFNet_Block [27]. By decomposing the convolution operation into Depthwise Con-
volution and Pointwise Convolution, it allows themodel tomakemore flexible trade-offs
between channel features and spatial features, reducing the number of parameters and
computational effort, making the BFNet model smaller, more flexible and easier to train,
and thus better adapted to the barefootprint dataset and the barefootprint recognition task.

3.2 Loss Function

In the field of deep learning, Triplet Loss is a commonly used loss function. Therefore,
in this paper, an optimised version of Triplet Loss is employed to measure the similarity
between barefoot samples. In the field of barefootprint recognition, Anchor and Positive
are barefootprint images from the same individual, whereas Anchor and Negative are
barefootprint images from different individuals. The minimum distance between the
Positive and Negative is controlled by introducing a threshold α, and the purpose of the
loss function is to make the loss as small as possible [28], where the loss is defined in
Eq. (1).

The optimised triplet loss function replaces the squared Euclidean distance with
the non-squared Euclidean distance [29], as defined in Eq. (2). When the barefootprint
samples are close together, the non-square Euclidean distance has a larger value, which
improves the learning efficiency of the model. When the barefootprint samples are far
away, the gradient of the non-square Euclidean distance is smaller, effectively avoiding
the problemof gradient explosion. In addition, this improvement alsomakes the threshold
α directly for the physical distance of the Euclidean space, making the loss functionmore
stable, efficient and readable. As shown in Eq. (3), theT is the combination of all possible
triples in the dataset, and the xai , x

p
i , x

n
i are Anchor, Positive and Negative, respectively.
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4 Experiments and Evaluation

4.1 Image Acquisition and Image Pre-processing

For biometric recognition, having a large-scale barefootprint dataset becomes a key
factor for the model to achieve high accuracy. There is no publicly available large-scale
barefootprint dataset. Based on this, Dalian Everspry Barefootprint Sequence Collection
and Analysis Comparison System V2.0 was used to collect 54,118 barefootprint images
from 3,000 individuals to build the largest Barefootprint Dataset (BFD) at present. Of
these, 26,127 are of left feet and 27,991 are of right feet.
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Fig. 5. Barefootprint samples from BFD.

The volunteer population was diverse in terms of gender, age, height and weight.
They include both males and females, covering ages from 17 to 69, heights from 1.51 to
1.95 m, and weights from 40 to 109 kg. The barefootprint samples are shown in Fig. 5.

Pre-processing operations were performed on barefootprint images, where Fig. 6
shows the barefootprint optical image pre-processing process, including normalization
operations, binarization, detection and annotation, rotation and alignment, cropping and
scaling to better train the model.

Fig. 6. Pre-processing Operations. (a) Original Image; (b) Binarization; (c) Detection and
Annotation; (d) Rotation and Alignment; (e) Cropping and Scaling.

4.2 Experimental Settings

Data Preparation. The dataset was divided into a training set and a test set according to
8:2, with the training set using the ten-fold cross-validationmethod. For the barefootprint
validation task, matching and mismatching image pairs were generated as the test set,
generating a total of 115,020 image pairs.

Environment Setup. Our experiments were done on a GPU A100, Windows 10
environment, using the tensorflow 1.12 framework with python 3.6.

Parameters Setup. During training, each epoch comprised 20 batches. Each batch
processed barefootprints from45 individuals, with at least 2 images per person. The input
size of the barefootprint images is 160 × 160 and the feature vector is 128 dimensions.
According to the experimental results, the loss function works best when the distance
threshold α is set to 0.2. The initial value of the learning rate was 0.1 and was optimised
using Adaptive Gradient (AdaGrad).
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4.3 Results and Analysis

Intergration Strategy. In order to verifywhere the attentionmechanism is best placed in
the BFNet, intergration strategy experiments were conducted. The experimental results
show that the third approach obtained the highest top1 accuracy of 94% for the bare-
footprint recognition task on the dataset DBF, as shown in Table 1, which is 1.5% and
1.3% better than the other two approaches respectively. Therefore, method d was chosen
to add an attention mechanism into BFNet (Fig. 7).

Fig. 7. Intergration Strategy. (a) BFNet_Block; (b) Standard SE_Block; (c) Pre_SE_Block; (d)
Post_SE_Block.

Table 1. The Performance of Different Intergration Strategy.

Model Top-1 Accuracy Top-10 Accuracy

BFNet_Block 88.7% 97.5%

Standard SE_Block 92.5% (+3.8%) 98.1% (+0.6%)

Pre_SE_Block 92.7% (+4.0%) 98.2% (+0.7%)

Post_SE_Block 94.0% (+5.3%) 98.3% (+0.8%)

Barefootprint Recognition. Two tasks were used to show the performance of our app-
roach in the field of barefootprint recognition. Task one is barefootprint recognition,
where given a barefootprint image, the model predicts in a dataset which person this
barefootprint belongs to. Our model BFNet performs a retrieval in the test set based
on the feature vector and uses the classifier’s prediction score as the basis for retrieval
ranking. Experimental results show that our method achieves an accuracy of 94.0% in
top1 and can reach a maximum accuracy of 98.4%. The Top1 to Top 20 accuracy of the
model is shown in Table 2.

To test the effectiveness of our model, we also compared the model before and after
the improvements. It can be seen from the Fig. 8 that the improved model is able to
obtain higher recognition results in the Top-k accuracy for the barefootprint recogniton
task.

Barefootprint Verification. Task two is barefootprint verification, where two bare-
footprint images were determined whether they belong to the same person. As this is a
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Table 2. The Accuracy of Top-k (1 ≤ k ≤ 20).

Top-k Top-1 Top-2 Top-3 Top-4 Top-5

Accuracy 94.0% 96.9% 97.2% 97.8% 97.9%

Top-k Top-6 Top-7 Top-8 Top-10 Top-20

Accuracy 98.1% 98.2% 98.2% 98.3% 98.4%

Fig. 8. The Comparison of Baseline Method and Proposed Method.

binary classification problem, a threshold was introduced for the determination. When
the Euclidean distance between the feature vectors of two barefootprint images is greater
than the threshold, these images were considered to belong to different individuals, and
vice versa. The thresholds were randomly set in steps of 0.01 between 0 and 4 and the
best threshold was determined based on the accuracy. The Receiver Operating Char-
acteristic (ROC) Curve was plotted based on the True Positive Rate (TPR) and False
Positive Rate (FPR) at different thresholds, as shown in Fig. 9. The experiments show
that the model accuracy reaches 94.7%with the best threshold value and the Area Under
Curve (AUC) is 0.989.

Fig. 9. ROC Curve.

To verify the security of theBFNet, the FalseAcceptanceRate (FAR)was introduced.
This is the probability that the model misidentifies the barefootprints of different people
as the same person, which is a more serious error in biometric systems. Therefore, more
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attention was focused on this evaluation metric. Experiments show that our model has
a FAR of 0.00106, which is highly secure. The Equal Error Rate (EER) of our model is
only 0.054, which means that the model has a low probability of false recognition. The
results of all evaluation metrics are shown in Table 3.

Table 3. The Performance of Our Method

Model AUC ACC FAR EER

BFNet 0.989 0.947 0.00106 0.054

Comparison Experiments. To verify the effectiveness of the proposed method, we
compare it with other models for barefootprint recognition task. The Table 4 shows that
both Top-1 and Top-10 accuracy of BFNet are higher than other models, reflecting that
the recognition performance of the proposed method is significantly better than other
models.

Table 4. The comparison of BFNet and other models

Model Top-1 Top-10

Inception_Resnet [30] 86.6% 97.0%

Inception [31] 86.1% 96.7%

Transformer [32] 79.9% 88.5%

Resnet50 [33] 92.6% 97.9%

VGG-16 [34] 85.7% 96.5%

BFNet 94.0% 98.3%

5 Conclusion and Future Work

In this paper, a large-scale barefootprint dataset (BFD) consisting of 54118 images from
3000 individuals is proposed, which is the largest publicly available dataset that can be
used to evaluate barefootprint recognition algorithms. In addition, a barefootprint recog-
nition network namedBFNet is secondly proposed.By integrating attentionmechanisms,
depthwise separable convolutional networks, and an improved triplet loss function, as
well as optimizing the network structure, the model can extract distinctive barefootprint
features, including spatial features and channel features. Experimental results show
that our model is able to achieve good results in both barefootprint recognition and
barefootprint verification tasks.

In futurework,we plan to further investigate how to handle the substantial differences
in barefootprints from the same individual due to deformations, aswell as how to perform
feature extraction and barefootprint recognition for incomplete barefootprints.
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and CNN

Mingyu Cai, Ming Wang, and Shunli Zhang(B)

Beijing Jiaotong University, Beijing, China
{23126412,slzhang}@bjtu.edu.cn

Abstract. Gait recognition is a biometric technology based on the human walk-
ing state. Unlike other biometric technologies, gait recognition can be used for
remote recognition and the human walking pattern cannot be imitated. Gait recog-
nition has wide applications in the field of criminal investigation, security and
other fields. Most of the current mainstream algorithms use Convolutional Neural
Network (CNN) to extract gait features. However, CNN only captures the local
image features in most cases which may not inherently capture global context
or long-range dependencies. In order to solve the above problems and to extract
more comprehensive and precise feature representations, we propose a novel Gait
recognition algorithm jointing Transformer and CNN by introducing the attention
mechanism, called GaitTC. The framework consists of three modules, including
the Transformer module, CNN module and feature aggregation module. In this
paper, we conduct the experiments on CASIA-B dataset. The results of the exper-
iments show that the proposed gait recognition method achieves relatively good
performance.

Keywords: Gait recognition · Deep Learning · Transformer · CNN

1 Introduction

At present, with the continuous development of the computer vision, researchers have
proposedmany gait recognitionmethods.Most of the existingmethods are bulit based on
the CNN and can be roughly divided into two categories. One category is the template-
based gait recognition framework. It mainly uses some statistical functions, including
Max, Mean, etc., to calculate the gait statistics whithin a gait sequence cycle. These
methods first extract the temporal features of the gait sequence, and then extract the
spatial features through the CNN. TheCNNhas primarily been designed for local feature
extraction, which may not effectively capture global information. As a result, there can
be limitations or potential inaccuracies in recognition results when relying solely on
CNN-based approaches. The other category mainly extracts the temporal and spatial
features of the gait sequence with fixed input length. These methods may greatly limit
the length of the input gait sequence and reduce the robustness of the model. Therefore,
this paper proposes a novel gait recognition model by jointing Transformer and CNN,
GaitTC, which has the following advantages:
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(1) The Transformer can reduce the number of operations on sequence by using parallel
computing, which greatly improves the efficiency.

(2) The Transformer restores positional dependence among image blocks by encoding
the positions of segmented image blocks. This allows the model to better capture
the spatial features.

In view of the existing problems of the existing gait recognition methods and the
advantages ofTransformer itself, this paper develops a newTransformer-CNN-based gait
recognition framework to better extract the spatio-temporal features of gait sequences
and to achieve higher performance. The main work and contributions of this paper are
as follows:

(1) This paper proposes a new gait recognition framework based on Transformer and
CNN,which can effectively extract the global feature of gait sequence by introducing
Transformer. Compared with traditional Recurrent Neural Network(RNN) and CNN
based methods, the proposed method with Transformer can improve the efficiency
and better extract the global features.

(2) After the Transformer module, CNN is used to further extract the gait features
of each frame. Then, the frame-level features are aggregated into sequence-level
features to improve the representation ability of the gait features and the accuracy
of the recognition.

(3) The proposed method is experimented on CASIA-B dataset, and compared with
other gait recognition methods such as ViDP [1], CMCC [2], CNN-LB [3], GaitSet
[4] in different wearing conditions and perspectives. The experimental results show
that the the proposed method achieves good performance in most conditions.

2 Related Work

In this section, we provide a brief overview of the two important types of gait recognition
methods: appearance-based methods and model-based methods.

2.1 Model-Based Methods

Themodel-based gait recognitionmethodsmainly build the humanmodel for gait recog-
nition. These methods usually require a structure model to capture the static character-
istics of human, and a motion model to capture the dynamic characteristics [5]. The
structure model describes the structure of a person’s body, including the stride, height,
trunk and other body parts. The motion model is used to simulate the motion trend and
trajectory of different body parts of a person during walking. The existing model-based
gait recognition methods can be divided into two categories. One is to capture the evolu-
tion of these parameters over time by fitting a model. In these body parameter estimation
methods, the angle of the body skeleton joints during walking is mainly obtained, such
as the angular movement of knees and legs at different stages; the other is to estimate
the parameters of the body (length, width, step frequency, etc.) directly from the original
video. Gait recognition based on three-dimensional human body modeling belongs to
this type. By analyzing video, image and other data, the motion parameters of the human
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body are obtained, and a complete gait sequence is constructed. Then the sequence is con-
verted into the corresponding coordinate information to realize the extraction of human
motion features, so as to reconstruct the 3D model of the human body. Zhao et al. [6]
constructed a human skeleton model with 10 joints and 24 degrees of freedom by using
multiple cameras to capture the movement process of the human body. In order to obtain
better performance, several features extracted from different directions are combined
into a complete set of features for recognition, which can improve the stability of this
method. At the same time, a gait recognition method based on geometric description [7]
has also been proposed. This methodmainly learns the deep features of the gait sequence
by locating the skeletal joint coordinates.

Although the above methods can provide more complex gait feature information and
can effectively perform gait recognition in complex environments, in actual scenes such
as shopping malls and banks, due to the inability to deploy a large number of cameras,
it is not possible to shoot gait sequences from multiple angles of the camera at the same
time; at the same time, realizing the 3D human body model requires a lot of computing
resources and a lot of computer computing power, which is not conducive to the training
and development of the model. How to meet the low-cost sequence extraction without
consuming a lot of computer resources is one of the main problems.

2.2 Appearance-Based Methods

With the development and maturity of deep learning algorithms, many gait recognition
methods based on deep learning have emerged. At present, most of the networks used
in gait recognition are CNN and RNN.

Since CNNs have excellent image classification capabilities, gait recognition based
onCNNshas also occured. Shiraga et al. [8] proposed theGEINet network structure. This
network consists of three modules. The first two modules include a convolutional layer,
a pooling layer, and a normalization layer, respectively. The last module is composed
of two fully connected layers. At the same time, the input of the network is a gait
energy map. The gait feature reflects the accumulation of gait energy during a person’s
walking process. Compared with other methods, GEINet focuses on subtle inter-subject
differences in the same action sequence. Liao et al. [9] proposed a posture-based spatio-
temporal network through theGEI,which has better effect on gait recognition in complex
states. In addition, Huang et al. [10] proposed to extract the local features of human gait
sequence according to the parts of the body. The human body composition is defined as
six local paths, i.e. the head, left arm, right arm, trunk, left leg and right leg, and features
are extracted fromeachpath.At the same time, a 3D localCNNnetwork is introduced into
the backbone. The backbone contains three network blocks, and each block is composed
of two CNN layers. Finally, the ReLU function is used as the activation function to
output the obtained features. Wolf et al. [11] proposed a gait recognition method based
on 3DCNN. This method captures the spatiotemporal information of the gait in multiple
sequence frames. This method can well summarize the gait characteristics in a variety
of perspective changes.
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3 Method

In this section, we will introduce the implementation of the proposed method in detail.
Firstly, we overview the proposed Transformer and CNN based gait recognition frame-
work. Secondly, we explain the Transformer model in detail. Finally, we describe the
CNN Module and Feature Aggregation Module.

3.1 GaitTC

We propose a Transformer-CNN-based gait recognition method built upon the tradi-
tional Transformer model. The overview structure of the proposed method is shown
in Fig. 1 which is designed to generate more robust gait feature representations. To
address the issue of limited effectiveness of the traditional Transformer model on small-
scale datasets, we incorporate the CNN module after the Transformer model. Firstly,
the Transformer module is used to extract the global features, and the corresponding
attention weights of each image block are obtained. Then, CNN is used for local feature
extraction. At the same time, CNN also makes up for the defect that the Transformer
model has poor effect on the feature extraction in small-scale datasets.

Fig. 1. The proposed gait recognition framework with Transformer and CNN

3.2 Network Structure

This section will mainly introduce the model of GaitTC. The model is mainly divided
into three modules, namely Transformer module, CNN module and feature aggregation
module. The Transformer module is mainly used to extract the most useful global infor-
mation from the input gait sequence. Then, the output of the Transformer module is put
into the CNN module to extract more comprehensive gait features. Finally, we use the
feature aggregation module to fuse the features.
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3.2.1 Transformer Module

This module uses the Transformer to operate the input gait silhouette. Firstly, the gait
silhouettemap is divided into image blocks and linearly projected, and then input into the
Transformer module for processing. In the linear projection process, each input image
block is mapped to a d-dimensional vector, and each vector needs to be multiplied by
a linear matrix E. At this time, the image block is a vector with a dimension of d after
smoothing. Next, in order to enable the model to encode the position of the image block
vector, before entering the model, we embed the position information of each image
block into the vector of the corresponding image block, and then embedded vector is
connected with a learnable class marker. The internal value of the vector can be learned
and adjusted during the model training process to obtain a feature representation with
attention weight.

In the Transformer, the encoder module has two important sub-modules, which are
Multi-Head Self-attention (MSA) and Multi-Layer Perceptron (MLP) modules. The
encoder will receive the image block of the gait sequence as input, and the input image
block will first pass through the normalization layer. In the normalization layer, the input
values of all neurons are normalized in the feature dimension, which greatly reduces the
training time and improves the training performance. Subsequently, the output of the
normalization layer is input to the multi-head attention module, and then the output
corresponding to the multi-head attention module is connected with the original input
through the residual network. The output after the normalization layer will be sent to the
multi-layer perceptron layer to simulate more complex nonlinear function relationships.
The residual network will be used for two modules in the Transformer encoder to retain
the gradient information of the module during the training process, avoiding the problem
that the gradient disappears during the training process.

In the multi-head self-attention module, the multiple self-attention operations will
be performed according to the number of heads in the attentionmodule. In each attention
head, the d-dimensional flattened image block vector pwill bemultiplied by themultiple
attention weight matrices Wq, Wk , and Wv to obtain Query, Key, Value, as shown in
Eq. (1):

[q, k, v] = [p · Wq, p · Wk , p · Wv], (Wq,Wk ,Wv ∈ Rd×dH ) (1)

MSA captures the information from different aspects at different positions of each
head, which also allows the model to encode more complex features in gait sequences
in parallel. At the same time, due to the use of parallel computing mechanism, the
time cost of multi-head attention calculation is similar to that of single-head attention
mechanism,which improves the performance of themodel to a certain extent and reduces
the consumption of computing resources.

The multi-layer perceptron module contains two fully connected layers and a GeLU
function. Finally, the Transformer module utilizes a residual structure to connect the
output of the multi-layer perceptron with the original vector output through the multi-
head attention mechanism, output the attention value between each image block and
other image blocks, and then pass it to the next module for further feature extraction.
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3.2.2 CNN Module and Feature Aggregation Module

The CNN module extracts features by extracting feature blocks with attention weights
output of the Transformer. Themodulemainly includes three convolution pooling layers,
and the kernel size, and step size of the convolution kernels in each layer are equal. In
order to extract more detailed information, the convolution with the kennel size of 3 * 3
* 3 is used to extract the features of each frame. The feature contains the spatial infor-
mation of each frame and the time information of the gait sequence, so that the feature
representation is more complete. The higher-level features extracted by the convolution
operation will be put into the feature aggregation module.

In the feature aggregation module, the model aggregates the features extracted from
each subject under a fixed number of frames, that is, the features of each frame in the
gait sequence are aggregated into a sequence set. The module will first calculate the
maximum value, average value and median value of each element of the feature of
each frame, respectively, and splice the obtained feature. In order to better represent
the set-level features of each sequence, the spliced feature will be finally performed.
Global average pooling and global maximum pooling are used to aggregate frame-level
features, and the sum of the two is used as the feature representation of the final gait
sequence.

4 Experimental Results

4.1 CASIA-B Dataset

The experiments in this paperwere conducted on the current popular gait dataset CASIA-
B, which contains 124 subjects. In order to make the experimental results more rigorous
and reliable, we conduct the experiment in different sample scale conditions. According
to the different proportions of sample division between the training set and the test set,
the experiment is divided into three parts, which include small sample training (ST),
medium sample training (MT) and large sample training (LT). The training set of small-
scale samples contains 24 subjects, the medium-scale sample training set contains 62
subjects and the large-scale sample training set contains 74 subjects. The rest subjects
will taken as the test set. Through different division of LT,MT and ST, the performance of
themodel under different conditions can be tested, which can better reflect the robustness
of the model.

4.2 Results and Analysis

In this section, the experimental results of this model are compared with some excellent
gait recognition algorithms, including CNN-LB, GaitSet, MGAN [12], AE [13], ViDP,
CMCC and so on.

Small-scale sample data is closer to practical applications for gait recognition tasks,
because for recognition tasks, the number of samples to be identified in practical appli-
cations( i.e., test data) is much larger than the number of samples during training (i.e.,
training data), so the accuracy of small-scale samples can better reflect the performance
of the proposed method. According to the experimental results conducted in small-scale
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sample data (as shown in Table 1), it can be seen that the accuracy varies in different
cross-views. Under normal conditions, the experients maintain better accuracy under
cross-views such as 36°, 126°, and 144°, which is 13% higher than the 0° under the
same condition. In the complex state, it is 10% higher than the 0°. Besides, according to
the results, it can be observed that the accuracy of the proposed method is higher than
the existing excellent methods in some cases. The results show that the proposed method
achieves appealing performance at difficult angles such as 0°, 90° and 180°. However,
the accuracy is slightly lower than GaitSet under the 36° view angle.

Table 1. The accuracy of the proposed GaitTC on the CASIA-B under the ST condition.

Gallery NM#1–4 0°–180°

Probe 0 18 36 54 72 90 108 126 144 162 180 Mean

ST NM ViDP – – – 59.1 – 50.2 – 57.5 – – – –

CMCC 46.3 – – 52.4 – 48.3 – 56.9 – – – –

CNN-LB 54.8 – – 77.8 – 64.9 – 76.1 – – – –

GaitSet 64.6 83.3 90.4 86.5 80.2 75.5 80.3 86.0 87.1 81.4 59.6 79.5

GaitTC 75.8 85.9 88.9 87.4 81.9 77.9 83.4 88.5 88.4 83.6 68.9 82.8

BG GaitSet 55.8 70.5 76.9 75.5 69.7 63.4 68.0 75.8 76.2 70.7 52.5 68.6

GaitTC 64.6 73.8 76.7 74.3 67.4 64.1 69.0 77.0 75.4 70.8 58.3 70.1

CL GaitSet 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9

GaitTC 40.8 47.9 50.0 45.8 46.9 44.5 47.8 49.7 44.8 37.1 29.9 44.1

Under the medium sample condition, the experimental results are shown in Table 2.
The accuracy is improved compared with the small samples in some cases, but the
accuracy maintains small margin compared to the GaitSet under normal conditon(NM)
and walking with bag condition(BG). In the case of wearing coat or jacket (CL), the
accuracy improvement is significant. Compared with the GaitSet, the accuracy of the
proposed is higher by 5% to 10% in the case of wearing a jacket.

We can observe that as the number of training samples increases, the accuracy
improves. However, in the practical application the number of training samples is often
less than the number of the test, which requires the model to maintain good recognition
ability in small-scale training. By comparing the results with other methods, the average
accuracy reached 82.8% under NM conditions, 70.1% under BG conditions, and 44.1%
under CL conditions, which are better than the GaitSet. Therefore, the proposed method
has better performance and stronger robustness.

Secondly, in the same sample division, the model can work well under the NM con-
dition. In the three divisions, the average accuracy of the NM is higher than BG and CL
condition. At the same time, it can be observed from the results that the people in BG
condition is easier to be identified than the CL condition. The accuracy in NM condi-
tion is 10% to 20% higher than that in complex condition (BG and CL). Furthermore,
the gait recognition framework proposed in this paper achieves better gait recognition
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Table 2. The accuracy of the proposed method GaitTC on the CASIA-B under the MT condition

Gallery NM#1–4 0°–180°

Probe 0 18 36 54 72 90 108 126 144 162 180 Mean

MT NM AE 49.3 61.5 64.4 63.6 63.7 58.1 59.9 66.5 64.8 56.9 44.0 59.3

MGAN 54.9 65.9 72.1 74.8 71.1 65.7 70.0 75.6 76.2 68.6 53.8 68.1

GaitSet 86.8 95.2 98.0 94.5 91.5 89.1 91.1 95.0 97.4 93.7 80.2 92.0

GaitTC 87.2 95.4 97.5 94.7 91.1 88.4 91.9 94.9 96.5 93.9 83.9 92.3

BG AE 29.8 37.7 39.2 40.5 43.8 37.5 43.0 42.7 36.3 30.6 28.5 37.2

MGAN 48.5 58.5 59.7 58.0 53.7 49.8 54.0 51.3 59.5 55.9 43.1 54.7

GaitSet 79.9 89.8 91.2 86.7 81.6 76.7 81.0 88.2 90.3 88.5 73.0 84.3

GaitTC 80.3 88.3 90.8 86.3 81.3 77.3 82.0 87.4 91.6 89.3 76.0 84.6

CL AE 18.7 21.0 25.0 25.1 25.0 26.3 28.7 30.0 23.6 23.4 19.0 24.2

MGAN 23.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5

GaitSet 52.0 66.0 72.8 69.3 63.1 61.2 63.5 66.5 67.5 60.0 45.9 62.5

GaitTC 64.9 77.1 76.1 74.4 71.4 68.0 69.9 73.1 71.4 68.4 55.1 70.0

performance than other methods, and the accuracy in different partition is higher than
other models. There are two main reasons: First, the Transformer module preferentially
extracts the attention value of each image block, and retain the gradient of the original
data through the residual network, which will be more convenient for the subsequent
CNN pooling module to extract gait features. On the other hand, the Transformer mod-
ule with global receptive field not only extracts the global feature representations in
advance, but also further mines the local feature representations after introducing the
CNN pooling module, thus improving the performance of the model (Table 3).
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Table 3. The accuracy of the proposed method GaitTC on the CASIA-B under LT condition.

Gallery NM#1–4 0°–180°

Probe 0 18 36 54 72 90 108 126 144 162 180 Mean

LT NM CNN-3D 87.1 93.2 97.0 94.6 90.2 88.3 91.1 93.8 96.5 96.0 85.7 92.1

GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

GaitTC 93.9 98.0 98.9 97.9 95.0 93.4 95.1 97.2 97.6 98.0 92.0 96.1

BG CNN-LB 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4

GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

GaitTC 89.4 94.0 97.9 95.7 94.7 91.2 92.3 95.5 95.4 93.7 88.5 93.5

CL CNN-LB 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0

GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

GaitTC 79.8 90.4 88.8 85.8 85.2 81.6 81.9 87.7 87.4 85.2 70.2 84.0

5 Conclusion

In thiswork,we propose a novel Transformer-based gait recognition framework,GaitTC.
It includes the Transformer model, CNN pooling module and feature aggregation mod-
ule. The proposed model not only capture global context to extract the global feature
representations, but also can obtain the local feature representation using the CNN pool-
ing module. The multi-head self-attention mechanism in this model has good robustness
to image noise and incompleteness. At the same time, the residual structure and the
layer normalization structure further improve the performance of the algorithm. In the
comparative experiments with other models, the accuracy of the model in this paper is
higher than other models in most perspectives. The experimental results show that the
model also shows excellent performance under three different sample scales.
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Abstract. The trade-off between security and verification performance
is inevitable towards biometric template protection. The system devel-
oper has to sacrifice some genuine acceptance rate and tune the match-
ing threshold to tolerating more false acceptance. To alleviate this prob-
lem, we introduce a new method of feature transformation and match-
ing, which consists of a random undersampling and local-global match-
ing mechanism for the hashing-based cancellable biometrics. This method
manages to enlarge the gap between the mean of genuine/ impostor score
distributions. As such, the decision environment is improved and the bio-
metric system could provide more resistance to authentication attacks.
Comprehensive experiments are conducted on the fingerprint FVC2002
and FVC2004 datasets, and the results demonstrate that the proposed
method improves the decision environment in terms of decidability and
verification performance.

Keywords: Authentication Attack · Biometric Template Protection ·
Cancellable Biometrics · Decision Environment

1 Introduction

Cancellable biometrics (CB) [1,2] is an approach that utilizes a feature
transformation-based technique by employing an auxiliary data-guided trans-
formation function to convert the original biometric feature into an irreversible
template, also known as a cancellable template. Let f(·) represent the cancellable
transformation function, x and x′ denote biometric features belonging to the
same individual, and r represent the auxiliary data. In a cancellable biometric
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scheme, the cancellable template f(x, r) → c is generated, which preserves the
relative similarity between x and x′, even in the presence of minor differences.
This ensures that f(x, r) ∼ f(x′, r), allowing the authentication process to be
conducted in the transformed domain without disclosing the original biometric
information. Cancellable biometrics has gained widespread acceptance within
the community due to its simplicity and satisfactory verification rates [3–5].

Numerous cancellable biometric schemes have been proposed, including
Index-of-Max (IoM) hashing [6], which provides privacy protection for biometric
features. However, IoM-based cancellable biometric systems still rely on decision
schemes based on matching thresholds, which introduce security threats and fail
to ensure the privacy of biometric features. Specifically, in a matching threshold-
based decision environment, attackers can repeatedly guess biometric templates
until they exceed the matching threshold and gain unauthorized access to the
system [7]. From a statistical perspective, as the overlap region between the dis-
tributions of genuine and impostor matching scores increases, the performance
of the system decreases [8–10].

In view of the above discussion, a straightforward method to improve the
security of the system is to increase the matching threshold τ [9]. However, this
leads to an increment in the false rejection rate (FRR) of the system, which
refers to a case of trade-off between security and performance [11]. This problem
is further exacerbated in classical cancellable biometrics due to the performance
degradation issue [12,13].

In this paper, we deduce the performance degradation issue as the weak deci-
sion environment problem of biometric template protection. The concept of a
weak decision environment is inspired by Daugman’s work [14], where the deci-
sion environment refers to the performance indicator that is based on the separa-
tion between the genuine/impostor score distributions. In our context, the weak
decision environment refers to the case where the means of genuine/impostor
score distributions are close to each other, limiting the selection of a high match-
ing threshold.

To improve the decision environment of the existing cancellable biometric
schemes, we propose an enhanced matching mechanism that aims to maximize
the intra/inter-class variances. In short, the proposed matching mechanism is
a partial matching-based score quantization scheme that produces highly confi-
dent matching scores, where the mean of the genuine matching score distribu-
tion approaches 1, while the mean of the impostor matching score distribution
approaches 0. This allows for a higher matching threshold while reducing the
sacrifice of the verification performance of the system.

The contributions of this paper are highlighted as follows:

– We propose a random undersampling and local-global matching mechanism
to enhance the verification performance and decidability (d′) of existing can-
cellable biometric schemes. This mechanism increases the separation between
the means of genuine and impostor score distributions, enabling the selection
of a higher matching threshold and reducing the Equal Error Rate (EER).
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– We conduct comprehensive experiments on benchmark datasets, including
FVC2002 [15] and FVC2004 [16], to validate the improvement in verification
performance for IoM hashing. The experimental results demonstrate that the
proposed mechanism effectively enhances IoM hashing by achieving lower
EER and higher d′ compared to the unenhanced counterpart.

2 Related Work

Type-4 attacks in biometric systems exploit information from the system, such
as matching scores, to estimate a biometric preimage. These attacks pose a seri-
ous threat, resembling feature reconstruction attacks when the stored biometric
sample is not adequately protected. However, there is limited research on enhanc-
ing the tolerance of existing cancellable biometric schemes against this type of
attack. To understand other attacks in biometric systems, refer to [17].

One straightforward approach to estimating a guessed biometric template is
a brute-force attack, as formalized by Ratha et al. [2] for minutia point-based
fingerprint systems. The attack complexity is determined by the probability
of matching each guessed minutia to one in the enrolled fingerprint template.
However, the exhaustive search required by this attack makes it inefficient for
large template sizes.

Uludag and Jain [18] proposed a hill climbing-based attack model for
unprotected minutiae-based fingerprint systems. This attack involves initializing
guessed minutiae templates, iteratively injecting them into the system, selecting
the best matching template based on intercepted scores, and performing oper-
ations like perturbation, insertion, replacement, and deletion on the guessed
template. This attack reduces the number of guessed minutiae points using grid
formulation and orientation quantization, improving efficiency compared to the
brute-force approach.

Marta et al. [19,20] employed the Nelder-Mead algorithm to exploit the pri-
vacy aspect of online signature and face verification systems. They aimed to
maximize the similarity score between the enrolled template and the guessed
instance, using the Downhill Simplex algorithm inversely. This iterative attack
process involved establishing multiple randomly guessed instances, computing
centroids, identifying vertices with the highest and lowest matching scores, and
updating the guessed templates with the Nelder-Mead algorithm. Successful
attacks implied the reconstruction of the original biometric feature, highlighting
the importance of biometric template protection (BTP).

Pashalidis [21] introduced the simulated annealing attack to demonstrate the
possibility of type-4 attacks in BTP-enabled systems. This iterative modification
process aims to improve the guessed biometric template until a desirable authen-
tication outcome is achieved. By replacing a vicinity in the initially guessed fin-
gerprint template with a randomly generated one, the attack gradually refines
the template. Occasionally, the attack accepts replacements with lower matching
scores to reduce the local optimal problem.

Galbally et al. [22] used genetic algorithms to reconstruct iris images with-
out prior knowledge of the binary irisCode stored in the system. Rozsa et al.
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[8] employed genetic algorithms to test the security and privacy aspects of a
PMCC-protected fingerprint system. The attacks aimed to compromise security
by guessing inputs for the PMCC scheme and achieve a sufficient matching score,
while privacy referred to guessing the original fingerprint template. The privacy
aspect was protected since the guessed template was not identical to the original.

Lai et al. [23] demonstrated the vulnerability of a face-based distance-
preserving transformation scheme to type-4 attacks. They estimated a protected
template highly similar to the pre-stored protected template using a known bio-
metric sample. The attack involved obtaining a sample input and establishing
a noise distribution based on it. Multiple noise samples were generated by per-
turbing the sample, and the attack stopped when the similarity score surpassed
the matching threshold. This attack was particularly effective when the original
face template was transformed into a smaller sub-space.

In summary, type-4 attacks exploit information from biometric systems to
estimate a biometric preimage. Brute-force attacks, hill climbing-based attacks,
and iterative algorithms like simulated annealing and genetic algorithms have
been proposed to perform such attacks. Protecting the privacy and security of
biometric templates through techniques like biometric template protection is
crucial in mitigating the impact of these attacks.

3 Proposed Method

3.1 Overview

The proposed method enhances a biometric system’s decision environment by
separating the mean of genuine and impostor score distributions. It involves a
two-phase matching mechanism: transformation and matching. In the transfor-
mation phase, the input biometric template is randomized and converted into
multiple local cancellable templates. In the matching phase, the query template
set is compared to the pre-stored template set, producing local similarity scores.
These scores are quantized based on a local threshold, resulting in a final match-
ing score calculated by averaging the quantized scores. This approach effectively
separates the mean of genuine and impostor score distributions, with higher
similarity yielding higher matching scores.

3.2 Transformation Phase (enrollment)

During the transformation (or enrollment) phase, the proposed scheme aims
to convert the input biometric template into multiple instances of cancellable
templates (see Fig. 1 and Fig. 2). Let x ∈ R

a represent the original biomet-
ric feature, where a is the feature dimension. Additionally, let f(·) denote the
cancellable transformation function, R ∈ R

q×e denote the auxiliary data, and
p = {pi | pi ∈ [1, a]k} denote the permutation seed, where k controls the under-
sampling size. The proposed scheme follows the following steps to generate a set
of local cancellable templates c = {ci} (Algorithm 1):
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Fig. 1. Illustration of the proposed enhanced matching mechanism to transform the
input biometric feature x ∈ R

a to the local cancellable template set c = {c1, c2, . . . , cn}.

Fig. 2. Step 2 of the registration stage is shown in detail, using IOM as an example of
the conversion method.

1. Random undersampling: Random undersampling is applied to x to obtain n
permuted biometric features vi. Using the random undersampling function
perm(·), we compute vi = perm(x, pi) for i = 1, . . . , n. Here, each pi is ran-
domly chosen from [1, a]k. The resulting vi are independent of each other due
to the random undersampling process.

2. Local cancellable template generation: Each vi is transformed into a local can-
cellable template ci by applying the cancellable transformation function with
the auxiliary data Ri. Thus, we compute ci = f(vi, Ri) for i = 1, . . . , n. To
enhance the randomness of the local cancellable templates, different auxiliary
data Ri are employed for each ci, forming a set of auxiliary data R = {Ri}.

At the end of enrollment, the cancellable template set c = c1, ..., cn are stored
in storage for authentication purposes. It is noted that the intermediate product,
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i.e., v = v1, ..., vn is deleted after the generation of the cancellable template set c.
In the event that the template storage is compromised, the user can revoke and
renew the enrollment by replacing the p and R. Since multiple randomization
processes are involved, it is unlikely that the renewed cancellable template set
(c′) can collide with the compromised cancellable template set (c).

3.3 Matching Phase (Verification)

During the matching (or verification) phase, the individual provides the bio-
metric feature x′ to the system for generating the query template set c′ =
{c′

1, c
′
2, . . . , c

′
n} , then the c′ is matched to the pre-stored c. In contrast to the

standard matching that uses a simple matcher (e.g., Hamming similarity or
Euclidean similarity), the proposal enhanced matching mechanism is a partial
matching-based score quantization scheme that is built upon the local matchings
of each local cancellable template. Given the enrolled template set c = {c1, ..., cn}
and the query template set c′ = {c′

1, c
′
2, . . . , c

′
n}, the procedures (algorithm 2) to

obtain the global similarity score sG are:

1) Local similarity comparison: Similarity comparison between ci and c′
i is per-

formed based on the system’s original matcher (e.g., normalized Euclidean
similarity) to obtain the local matching score si where i = 1...n. A local score
vector s = {s1, ..., sn} is formed after n numbers of similarity comparison.

2) Local score quantization: For each si ∈ s, a unit-step function is applied to
quantize each si to 0 or 1. Given that each si is calculated from each pair of ci
and c′

i , the proposed enhanced matching mechanism determines the ci and c′
i

as a high-similarity pair when si ≥ τL. After that, each si ∈ s is computed as

si =

{
0, if si < τL

1, if si ≥ τL
(1)

where τL is the parameter to control the quantization process.
3) Global score calculation: Compute the global similarity score sG = 1

n

∑n
i=1 si

where each si ∈ s.
The sG is passed to the decision module to determine the identity of the
individual based on the system matching threshold τG, where the individual
is recognized as genuine user when sG ≥ τG. If sG < τG, the individual is
recognized as impostor. On the whole, the value of the sG is amplified by the
local matchings. Given the similar input x and x′, the proposed enhanced
matching mechanism produces the c = {c1, ..., cn} and c′ = {c′

1, ..., c
′
n}. Since

the ci and c′ are highly similar, the enhanced matching mechanism could
produce an sG that is close to 1.
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Algorithm 1: Enhanced match-
ing mechanism - Transformation
Input(From User): Biometric

feature x,
Can-
cellable
transfor-
mation
f(.), Per-
mutation
seeds p =
{p1, . . . , pn},
Transfor-
mation
auxiliary
data R =
{R1, . . . , Rn}

Parameters: number of local n
Output: A set of cancellable

templates
c = {c1, c2, . . . , cn}

for i ← 1 to n do
// Step 1: Set random
undersampling

Random undersampling x
based on pi to produce vi

// Step 2: Local
cancellable
transformation

Compute ci = f(vi, Ri)
return c = {c1, . . . , cn}

Algorithm 2: Enhanced match-
ing mechanism - Matching
Input (From User): Query

template
set c′ =
{c′

1, . . . , c
′
n}

Input (From System): Enrolled
tem-
plate
set c =
{c1, . . . , cn},
Local
quanti-
zation
thresh-
old
τL

Output: Global similarity score
sG

// Step 1 and 2: Local
similarity comparison +
score quantization

Initialize score vector s = [0]n
for i ← 1 to n do

si = similarity(ci, c′
i)

if si ≥ τL then
si = 1

else
si = 0

// Step 3: Global score
calculation

Compute sG = 1
n

∑n
i=1 si

return sG

4 Experiments and Discussions

This section presents the experiment results and discussions on the proposed
enhanced matching mechanism. The experiments are conducted on a machine
with Solid-State Drive (NVMe)@1024 GB, Intel Core i7-12700K CPU@3.61 GHz
and Memory DDR4@64 GB. Realization of the schemes are written using MAT-
LAB R2022b.
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4.1 Dataset and Feature Extraction

This subsection shows the employed datasets and feature extraction methods
in the experiments. For the fingerprint modality, six benchmarking datasets,
i.e., FV C2002(DB1,DB2,DB3) [15] and FV C2004(DB1,DB2,DB3) [16] are
employed. Each fingerprint subset consists of 100 subjects and 8 fingerprint
images per subject. Fingerprint vector extraction technique [24] is adopted to
extract the fingerprint vector x ∈ R

256 from the fingerprint image. Given a
fingerprint image, the fingerprint vector extraction processes are: (i) Extract
the minutiae point set from the image and transform it to Minutia Cylinder
Code (MCC) descriptor [25] and (ii) KPCA-based learning to convert the MCC
descriptor to the fixed-length fingerprint vector x ∈ R

256. Since the adopted
technique is a learning-based method, the first 3 fingerprint images from each
subject are employed for learning phase, while the remaining 5 fingerprint images
are used to generate the fingerprint vector. A total of 500 (100 × 5) fingerprint
vectors x ∈ R

256 are extracted.

4.2 Matching Protocol and Evaluation Metric

We evaluated the verification performance using the FVC full matching protocol
[26]. In our experiments, we generated these score distributions as follows:

For genuine matching attempts, we crossmatched all cancellable templates
from the same subject, resulting in n(C2

m) genuine matching scores. For impostor
matching attempts, we crossmatched cancellable templates generated from the
first biometric feature of different subjects, resulting in C2

n impostor matching
scores in each experiment. Each experiment produced 1000 genuine and 4950
impostor matching scores.

Each experiment was conducted five times with different sets of auxiliary
information. This was done to obtain more precise readings of the EER and d′

[14]. d′ is an important metric to quantify the decision-making capability of the
system using the formula:

d′ =
|μgen − μimp|√
0.5(σ2

gen + σ2
imp)

(2)

A higher value of d′ indicates a greater separation between the score distribu-
tions, indicating a higher decision-making power for the biometric system.

The experiments were conducted under the worst-case assumption where the
auxiliary information (e.g., transformation key R for cancellable transformation
and permutation seed P for the proposed enhanced matching mechanism) was
accessible to the adversary (stolen-token scenario). The same auxiliary informa-
tion was shared among the subjects in each experiment. In our experiments, we
tested the proposed method based on the existing fingerprint-based cancellable
biometric scheme, Index-of-Max (IoM) Hashing [6].

In the experiment, we have these parameters: downsampling times n, i.e.,
the number of p; downsampling size k, i.e., dimension of p; length of the iom
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matrix group liom; the number of matrices in the iom matrix group s; and local
threshold τL. Where, we set k to 100, liom to 16, and the s to 100, and discuss
the size of n and τL in the next section.

4.3 Parameter Estimation

Effect of Parameter τL: In the matching phase, a local matching is performed
between pre-stored cancellable templates and query templates. This produces a
local similarity score vector, denoted as s, where each element si ranges from
0 to 1. To enhance the matching mechanism, the scores in s are quantized to
either 0 or 1 using a parameter called τL. However, setting τL inappropriately
can lead to unfavorable scenarios.

When τL is set to a high value (Scenario-1), it becomes difficult for the
genuine comparison scores (si) to meet the requirement of si ≥ τL. Consequently,
a majority of the scores in s are quantized to 0, resulting in a very low final
matching score (sG) for genuine comparisons. This leads to a high FRR and low
d′ in the system.

When τL is set to a low value (Scenario-2), the impostor comparison scores
(si) easily exceed τL and are quantized to 1. As a result, the calculated sG value
becomes high. This causes the impostor score distribution to overlap with the
genuine score distribution, leading to a high false acceptance rate (FAR) and
low d′.

To evaluate the effect of τL, experiments were conducted with different values
of τL (with an interval of ± 0.1) while keeping the number of comparisons (n)
fixed at 100 (see Table 1). The experiments focused on examining the impact of
τL on FAR, FRR, and d′.

The experimental results, presented in tabulated form, confirmed the
expected outcomes. When τL was set to a low value, the FAR was high and d′

was low, as the impostor scores dominated and overlapped with genuine scores.
Increasing τL significantly reduced FAR while slightly increasing FRR. However,

Table 1. Effect of different τL in IoM Hashing-based fingerprint system (FVC2002 [27]
and FVC2004 [16]). The result is the average of five experiments.

Subset τL FAR FRR d’ Subset τL FAR FRR d’

0.61 52.36 0.30 1.13 0.61 54.31 0.88 1.07

0.71 0.22 0.18 7.68 0.71 1.37 1.32 3.89FVC2002 DB1

0.81 0 23.24 1.06

FVC2004 DB1

0.81 0 44.96 0.84

0.61 52.42 0.46 1.12 0.61 54.20 2.80 1.04

0.71 0.31 0.48 6.31 0.71 5.40 4.90 2.96FVC2002 DB2

0.81 0 18.94 1.24

FVC2004 DB2

0.81 0 52.26 0.71

0.61 53.86 2.10 1.04 0.61 55.53 2.74 1.00

0.71 3.96 3.66 3.25 0.71 4.21 4.38 3.19FVC2002 DB3

0.81 0 51.88 0.74

FVC2004 DB3

0.81 0.02 38.52 0.93
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the slight increase in FRR was deemed acceptable compared to the substantial
decrease in FAR. For example, in the tested IoM-based fingerprint system in
FVC2002 DB1, the performance changed from FAR = 52.36%, FRR = 0.30%,
d′=1.13 to FAR = 0.22%, FRR = 0.18%, d′=7.68 when τL increased from 0.61
to 0.71. Further increments in τL led to continued improvement in d′, but when
τL was set too high, FRR began to increase due to genuine scores not surpassing
τL, causing the final matching scores to resemble impostor scores.

The results demonstrated that an inappropriate setting of τL could lead to
Scenario-1 and Scenario-2. However, it was observed that τL = 0.71 yielded the
best improvement in EER and d′ for the tested schemes.

Effect of Parameter n: The final matching score is calculated by averaging
the quantized local scores. In the proposed matching mechanism, the parameter
n is employed to control the number of cancellable templates generated and the
quantity of local similarity scores produced during the matching phase.

Several experiments are conducted by setting the n from 1 until 100 while the
parameter τL is fixed to 0.71 (see Table 2). It is noted there is only 1 local simi-
larity score when n = 1; and hence, the recognition performance of the system
is easily affected by the outlier in the genuine and impostor matchings, which is
not favorable. The experimental results for the targeted systems under different
n are tabulated in the tables below. In addition, Fig. 3 visualizes the genuine
and impostor score distributions for the IOM hashing-based finger system under
the cases of (a) The cancellable biometric scheme is operated in its original con-
struction, (b) The cancellable biometric scheme is enhanced by the proposed
enhanced matching mechanism with parameter n = 30 and (c) The cancellable
biometric scheme is enhanced by the proposed enhanced matching mechanism
with parameter n = 100.

From Fig. 3, it is observed that the mean of genuine/impostor score distribu-
tions are close to each other when the IOM hashing is not enhanced. After apply-
ing the proposed enhanced matching mechanism, the mean of genuine/impostor
score distributions is highly separated. In this sense, the proposed enhanced
matching mechanism achieves the effect of improving d′.

From the Table 2, it is observed that the EERs are starting at the highest
point when n = 1. This is as expected where the final matching score sG is
directly calculated by quantizing one local matching score si where i = 1. In this
case, the outlier(s) in the genuine and impostor comparisons could easily affect
the verification performance of the system. It is observed that the increment of n
leads to the higher separation between the genuine/impostor score distributions
(higher d′) and better verification performance (lower EER) in the systems. This
implies the parameter n is taking effect in enhancing the decision environment of
the system in terms of EER and d′. The performance of the system has improved
significantly when n increased from 1 to 30. After that, the improvement of the
decision environment is at a slower pace when n > 30 and the trend of EER
and d′ slows down when n > 100. Considering the storage pressure, we decide
to choose n = 100.
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(a)original (b)n=30 (c)n=100

Fig. 3. The genuine and impostor score distributions for the finger system are compared
between the original and enhanced systems with n = 30 and n = 100, using threshold
= 0.71.

Table 2. Effect of different n in IoM Hashing-based fingerprint system (FVC2002 and
FVC2004 dataset). The result is the average of five experiments.

n
Equal Error Rate

(EER)(%) d’
n

Equal Error Rate

(EER)(%) d’
n

Equal Error Rate

(EER)(%) d’

FVC2002 DB1 FVC2002 DB2 FVC2002 DB3

1 6.93 2.87 1 6.96 2.92 1 14.28 2.06

5 1.37 6.16 5 2.11 5.54 5 8.30 2.97

10 1.42 6.46 10 1.82 5.69 10 5.68 3.05

15 0.56 6.90 15 1.45 5.89 15 5.04 3.12

30 0.42 7.27 30 0.69 6.03 30 4.12 3.15

50 0.28 7.62 50 0.52 6.25 50 4.17 3.24

100 0.20 7.68 100 0.40 6.31 100 3.81 3.25

150 0.16 7.63 150 0.38 6.24 150 3.52 3.26

200 0.19 7.71 200 0.41 6.31 200 3.08 3.27

250 0.13 7.71 250 0.38 6.29 250 3.21 3.25

FVC2004 DB1 FVC2004 DB2 FVC2004 DB3

1 11.83 2.30 1 11.83 2.30 1 15.25 2.04

5 7.01 3.46 5 10.02 2.67 5 9.35 2.93

10 3.76 3.57 10 10.54 2.80 10 9.35 2.93

15 3.48 3.72 15 6.54 2.85 15 6.21 3.09

30 2.07 3.77 30 7.38 2.87 30 5.00 3.11

50 1.95 3.86 50 6.15 2.93 50 5.03 3.14

100 1.34 3.89 100 5.35 2.96 100 4.18 3.19

150 1.11 3.89 150 4.49 2.95 150 4.03 3.17

200 0.96 3.90 200 4.14 2.95 200 3.96 3.19

250 0.90 3.90 250 3.93 2.95 250 3.60 3.19

In short, it is observed that n = 100 serves the best effect. Therefore, n = 100
is concluded to be the best-tuned setting in the experiment.

Summary of Parameter Estimation: It is concluded that the n should be
set higher to improve the verification performance and d′, while the τL is varied
based on the tested system. The best-tuned setting of the proposed enhanced
matching mechanism for the IoM hashing is n = 100, τL = 0.71.
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Table 3. Comparison of the EERs and d′ in the system under (i) original construction
and (ii) enhanced by the proposed enhanced matching mechanism. The result is the
average of five experiments.

Method Subset EER(%) d’

Similarity Metric: Normalized Euclidean Similarity

IoM Hashing [6] FVC2002 DB1 6.93 2.87

DB2 6.96 2.92

DB3 14.28 2.06

FVC2004 DB1 11.83 2.30

DB2 16.01 1.97

DB3 15.25 2.04

IoM Hashing (enhanced) (n =100, τL = 0.71) FVC2002 DB1 0.20 7.68

DB2 0.40 6.31

DB3 3.81 3.25

FVC2004 DB1 1.34 3.89

DB2 5.35 2.96

DB3 4.18 3.19

4.4 Performance and Security Analysis

Performance Analysis. This subsection presents the verification performance
and decidability of the proposed enhanced matching mechanism. A comparison
of the system performance in terms of EER and d′ to the original counterparts
(cancellable biometric schemes) is conducted for validating the improvement of
EER and d′. The proposed enhanced matching mechanism is operated using the
best-tuned parameters. From the Table 3, it is observed that the EERs of the
system after applying the proposed enhanced matching mechanism is averagely
lower compared to the unenhanced system. Besides that, it is observed that
the d′ of the cancellable biometric schemes is largely increased after applying
the proposed matching mechanism. This is attributed to the local quantization
mechanism in the proposed scheme that could maximize the intra/inter-class
variances and enable the high separation between the mean of genuine/impostor
matching score distributions.

Security Analysis. This section analyzes the feasibility of the attacker to
recover the original biometric input x from the leaked information, thus showing
that the proposed scheme can achieve biometric security and privacy protection.
The proposed enhanced matching mechanism takes a single biometric template
x as input and generates a cancellable template set c = {c1, ..., cn}. The trans-
formation phase involves random undersampling of p into permuted biometric
features v = {v1, ..., vn}, with p = {p1, ..., pn} representing permutation seeds.
The vi are independent due to randomization. Each vi undergoes a cancellable
transformation to yield local cancellable templates ci, where Ri represents aux-
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iliary data for the cancellable biometric scheme. In summary, v = {v1, ..., vn}
and R = {R1, ..., Rn} are transformed into c = {c1, ..., cn}. Random under-
sampling ensures that each vi contains partial information of X, resulting in
uncorrelated ci. The intermediate product v is deleted and not stored after the
enrollment phase. Furthermore, we evaluate the resistance to similarity-based
attack (SA) [28] for proposed method. By carrying out an SA, the experimental
results demonstrate that the attack success rate is 0. Therefore, it would be chal-
lenging for attacker to reconstruct the original biometric feature. The proposed
scheme can ensure the security and privacy of biometric features.

5 Conclusion and Future Work

In this paper, we propose an enhanced matching mechanism to improve the deci-
sion environment for the IoM hashing in terms of verification performance and
d′. With the genericity, the enhanced matching mechanism could be propagated
to any cancellable biometric scheme that accepts vectorized biometric features
as input. Comprehensive experiments are conducted to examine the proposed
enhanced matching mechanism on the benchmarking fingerprint FVC datasets.
The effectiveness of the proposed enhanced matching mechanism varies due to
several reasons: (i) employed cancellable biometric scheme, (ii) performance of
original biometric feature (iii) transformation parameters (e.g., n and τL) and
(iv) type of biometric system. As for future work, we aim to further improve the
robustness of the matching process and allow higher τL to be employed.
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Abstract. This research focuses on analyzing vulnerabilities in the
IoM hashing technique concerning its susceptibility to preimage attacks,
which poses a significant security concern in biometric template pro-
tection (BTP) systems. To address these vulnerabilities and achieve
a balanced trade-off between performance and security, we propose a
novel approach called R-IoM hashing. This method introduces innova-
tive mitigation strategies to minimize information leakage and enhance
the resistance to preimage attacks. By employing a dimensionality reduc-
tion technique during the IoM hashing process, R-IoM hashing effec-
tively eliminates extraneous data, ensuring improved security without
compromising computational efficiency. Through comprehensive experi-
ments, we demonstrate the effectiveness of R-IoM hashing. Notably, this
approach maintains remarkably low error rates while showcasing robust
resilience against preimage attacks compared to conventional IoM hash-
ing. This substantial improvement in security positions R-IoM hashing
as a promising solution for real-world BTP applications. Our research
underscores the importance of accurate distance measurement in fea-
ture comparison, identifies vulnerabilities in IoM hashing, and intro-
duces a practical and efficient solution through R-IoM hashing to enhance
the reliability and security of biometric-based systems. This paper con-
tributes valuable insights into biometric template protection and offers
a potential avenue for future research and implementation in security-
critical environments.

1 Introduction

Traditional authentication systems [1] predominantly rely on the personal pos-
session of confidential information, commonly referred to as “what we have”,
including but not limited to passwords, Personal Identification Numbers (PINs),
and access cards. However, these methods are not infallible, as such credentials
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can be easily lost, stolen, guessed, forgotten, or shared, presenting a significant
vulnerability [2]. Furthermore, a notable trade-off exists between the memora-
bility of passwords and their security strength; intricate passwords offer superior
security but present challenges in recall for users.

In contrast, biometric recognition [3,4] presents a more sophisticated and
secure alternative, utilizing distinct biometric characteristics as a form of authen-
tication. Such characteristics span a wide array of individual anatomical and
behavioral traits, encompassing fingerprint patterns, facial structures, iris con-
figurations, hand dimensions, vocal characteristics, palm-prints, handwritten sig-
natures, and even an individual’s unique walk, or gait. This technique obviates
the necessity for users to memorize complicated passwords or to carry supple-
mentary access cards. Owing to their superior reliability, user-friendliness, and
ubiquity, biometric recognition systems have been extensively adopted for per-
sonal authentication on a global scale.

Facial recognition [5,6], a widely adopted biometric authentication
method, capitalizes on the unique features of an individual’s face to verify iden-
tity. During enrollment, an individual’s facial features are captured and con-
verted into digital templates, which are saved in a database for future reference.
However, this storage methodology exposes a significant vulnerability. If the
database storing these facial templates is compromised, these templates could
be stolen and potentially misused for unauthorized access or identity fraud.
Unlike passwords or access tokens, which can be changed or reissued if compro-
mised, facial templates are inherently linked to the user and cannot be altered
or replaced. Therefore, securing the database and the facial templates it houses
is a crucial task in ensuring the integrity and dependability of facial recognition
systems.

Biometric template protection (BTP) methods [7–9] have been introduced
to tackle the security concerns related to the storage of fingerprint templates.
The primary goal of these methods is to fortify the stored templates against
potential security breaches and more importantly, enable template revocation in
the event of a compromise. A predominant category of BTP is Cancelable Bio-
metrics (CB) [10], which involves the transformation of the biometric template
into a new, protected form using a non-invertible function. This transformed
template can then be stored in the database, with the original biometric data
remaining secure. In the event of a database breach, these transformed templates
cannot be reverted back to the original biometric data, preserving the privacy
of the users. Furthermore, a new transformation function can be generated and
a new template created if the original is compromised, effectively revoking the
old template. Specifically, for a CB scheme to be effective and reliably imple-
mented, they must satisfy certain essential criteria which are noninvertibility,
revocability, unlinkability, and performance preservation [8].

1.1 IoM Hashing

The IoM hashing [11] is one of the state of the art cancellable biometric sheme
that make use of the notion of Locality Sensitive Hashing (LSH) [12] to perform
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hashing on the input biometric feature and transform into a hashed template
that can be securely stored in the database to replace the original counterpart.
It is widely being studied due to its simplicity and high efficienty in generating
cancellablel template.

Step 1. Given an input feature vector w ∈ R
�, generate m random matri-

ces (H1, . . . , Hm), where each matrix Hi ∈ (H1, . . . , Hm) is of dimen-
sion R

n×� consists of entries that are independent and identically dis-
tributed according to a Gaussian distribution with mean 0 and variance
1, denoted as N (0, 1).

Step 2. (for i = 1, . . . ,m) Let Hiw = zi, where zi = (zi1, zi2, . . . , zin) is the
output vector of n dimensions. Then, define

yi = arg max
j∈{1,2...,n}

zij ∈ Z,

where arg max operation returns the maximum index (position) value
in the vector zi corresponds to the maximum value among the rele-
vant entries for j = 1, . . . , n. The resultant output vector is denoted as
(y1, . . . , ym) ∈ Z

m.

Below depicts a toy example of IoM hashing with m = 2, n > 2:

Input : Random matrices {H1,H2},Feature vector w ∈ R
�

Output : {H1,H2}, (y1, y2) = (0, 1)

IoM can be employed for two-factor authentication, where the projection matri-
ces {H1, . . . , Hm} are not stored along with the hashed code y in a database,
rather used as auxiliary tokens associated with an individual. These tokens are
then presented along with the corresponding biometric data w for authentication
purposes.

Nonetheless, it is instructive to analyze the system under a stolen token
scenario [13], where these projection matrices become publicly available. Under
such circumstances, we assume for the purposes of this study that any auxiliary
information such as the projection matrices, aside from y, is publicly accessible.
This assumption forms the basis for our analysis in the rest of the paper.
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2 Motivation

In many applications involving feature comparison, distance measurement plays
a critical role [14]. Two of the most common distance metrics used for measuring
the distance between features are the cosine distance and the Euclidean distance.
The cosine distance is defined as 1− A·B

‖A‖‖B‖ , where A and B represent two feature
vectors, and · denotes the dot product. In contrast, the Euclidean distance is
given by ‖A − B‖2 =

√∑n
i=1(ai − bi)2, where ai and bi are the components of

vectors A and B, respectively.
These distance metrics fundamentally consider the magnitude of the fea-

ture vectors in computation, i.e., the absolute value of ||A||, ||B|| or ||A − B||.
Therefore, when designing distance-sensitive hashing schemes such as LSH, it
is essential to include or preserve such magnitude information. By doing so, we
not only ensure the hashing process reflects the original data structure, but also
potentially improve the performance of the subsequent machine learning or data
mining tasks.

On the other hand, previous research has highlighted potential vulnerabili-
ties of IoM hashing in BTP to preimage attacks [15–18]. These studies, such as
Genetic algorithm enabled similarity based attack (GASA) [18] and Constrained-
Optimized Similarity-based Attack (CSA) [16], have uncovered a specific rela-
tionship between the increase in IoM hashed codelength and its resemblance to
a supervised learning problem that is prone to overfitting when the hashed code
length is small. It has been observed that increasing the length of the hashed
code can alleviate the overfitting issue, but it also exposes IoM hashing to a
higher vulnerability to preimage attacks. This scenario illustrates the inherent
trade-off between performance and security within systems that employ IoM
hashing.

Motivated from above, this paper is primarily aimed at addressing the inher-
ent trade-off issue by mitigating the storage of ‘unwanted’ data that could poten-
tially ease pre-image attacks on a database. It is important to clarify that our
goal is not to entirely prevent pre-image attacks on IoM hashing. Instead, we
aim to curtail the dimensionality of IoM hashing without compromising its per-
formance. By discarding ‘unwanted’ or extraneous information, we aim to limit
information leakage, which in turn could dampen the efficacy of existing pre-
image attacks on IoM hashing.

3 Methodology

We herein present the our proposed improvement over traditional IoM hashing.
This methodology, termed as the Reduced-IoM (R-IoM) hashing scheme, aims
to minimize the redundancy and dimensionality of the hashed code length. This
optimization yields substantial benefits in terms of system storage and compu-
tational time, particularly within the context of authentication procedures. The
R-IoM hashing can be summarized into two major steps:
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Step 1. Given an input feature vector w ∈ R
�, generate m random matrices

(H1, . . . , Hm), where each matrix Hi ∈ (H1, . . . , Hm) is of dimension
R

n×� consists of entries that are independent and identically distributed
according to a Gaussian distribution with mean 0 and variance 1, denoted
as N (0, 1).

Step 2. (for i = 1, . . . ,m) Let Hiw = zi, where zi = (zi1, zi2, . . . , zin) is an output
vector of n dimensions. Define

yi = sign( max
j=1,2...,n

(|zij |)) ∈ {−1, 1}. (1)

In this context, the max operation retrieves the maximum value in the
vector zi, i.e., value that largest compared to zero, and the function
sign(.) discretizes this maximum value into the binary set {−1, 1}, based
on its sign. Let hi be the row of Hi that corresponds to this maximum
value, such that hiw = yi. The resultant output vector is denoted as
(y1, . . . , ym) ∈ {−1, 1}m and the corresponding transform matrix formed
as Ĥ = (h1, . . . , hm) ∈ R

m×�.

Below depicts a toy example of R-IoM hashing with m = 2, n = 2:

Input : Random matrices {H1,H2},Feature vector w ∈ R
�

Output : Ĥ = (h1, h2) =
[
a11 a12 · · · a1�

b21 b22 · · · b2�

]
, y = (y1, y2) = (1,−1)

To summarize, the proposed R-IoM comes with numerous notable features that
different from the traditional IoM hashing:

1. Instead of merely tracking the index of the maximum value, R-IoM records
the absolute maximum value, i.e., the value that holds the greatest distance
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from zero. This methodology allows for the retention of crucial information
within the vector, which becomes particularly significant when computing
distances between hashed codes. This is underpinned by the fact that the
magnitude of a vector substantially influences the distance computation, i.e.,
Cosine, Euclidean distances.

2. As more ‘useful’ information being retain as only the absolute maximum value
after matrix multiplication (Hiw), it means that only the corresponding row
hi should take effect during hashing. This allow us to remove redundancy by
only storing hi rather than the whole matrix Hi involved during IoM hashing.

4 Experiment and Discussion

For input biometric samples, we employ MagFace [19], a pre-trained CNN model,
to generate universal face feature embeddings of dimensionality � = 512 as input
feature vector hashed code generation. In our evaluation, we utilize the Labelled
Faces in the Wild (LFW) dataset [20], which consists of 7,701 images of 4,281
subjects.

Following the protocol described in Huang et al. [20], we divide 6,000 face
pairs from the LFW dataset into two disjoint subsets for cross-validation. Each
subset contains 3,000 genuine pairs (matching faces) and 3,000 impostor pairs
(non-matching faces). We compute the pair-wise Hamming distance between
the two hashed codes to evaluate the similarity between face pairs. This process
yields 3,000 genuine and 3,000 impostor test scores, enabling us to assess the
performance of the MagFace model on the LFW dataset for face recognition
tasks.

Performance over Small Hashed Code Length (m): Figure 1 presents the
Equal Error Rate (EER) results for both IoM hashing and the proposed R-
IoM hashing methods from the experiments conducted. These experiments were
carried out with a constant parameter of n = 1000 and a progressively increasing
hashed code length of m = 5, 10, 15, . . . , 99. The results clearly illustrate that the
proposed R-IoM hashing method outperforms conventional IoM hashing overall.
It’s noteworthy that R-IoM hashing can attain an EER less than 1.5% at a
hashed code length of 10, whereas IoM hashing only manages to achieve an
EER greater than 10% under the same conditions.

Performance over Large Parameter n: It is worth recall that R-IoM produce
output that is corresponds to maximum amplitude among n entries follows Eq. 1.
The quantization process, through sign(.) is applied only to the largest entries
in the projected data (after matrix multiplication). This selectiveness is vital,
as these maximum values are typically distanced from the decision boundary of
the sign(.) function, contributing to the stability of their sign.

As n enlarges, the entries chosen for quantization embody greater magnitudes
and showcase more stable signs. These features support the sign(.) function in
assigning either −1 or 1 depending on the initial sign of the data value, thereby
yielding a substantially more robust and reliable hashed code representation.
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Figure 2 vividly illustrates the distributions of genuine and imposter test
scores as the parameter n progressively escalates from 2 to 100, with m held
constant at 512. The genuine test scores-which are anticipated to display min-
imal variances between their hashed codes-provide a compelling testament to
the robustness of our scheme. As n increases, the Hamming distance, a mea-
sure of error between the R-IoM hashed codes, tends towards zero, implying an
exact match amongst authentic users. This convergence to zero not only demon-
strates the efficacy of the proposed R-IoM methodology but also underlines its
robustness in encoding accurate representations. In effect, the scheme offers high
resistance to noise and minor input data fluctuations, resulting in reliable and
consistent hash code representations. The resilience of this method underscores
the potential for its application in security-sensitive domains that necessitate
the utmost reliability and precision.

Efficacy over Pre-image Resistance: Table 1 displays the results of an attack
study, conducted by [16], which includes the performance of two pre-image
attacks on traditional IoM hashing using the LFW dataset. For assessing the
effectiveness of these attacks, two new metrics were proposed: the Successful
Attack Rate (SAR) and the False Acceptance Increment (FAI). SAR is deter-
mined by recording the acceptance rate of the generated preimage during the
attack. FAI, on the other hand, is calculated by subtracting the False Match Rate
(FMR) from the SAR (i.e., FAI = SAR − FMR). This calculation provides a
more accurate depiction of the true attack performance, excluding false positives.
Consequently, a higher FAI score suggests a more effective attack performance.
Notably, R-IoM capability of preserving low EER even for hashed codelength
smaller than 32 suggests stronger resistance over the studied pre-image attacks
that demostrating less than 5% of SAR and 2.5% of FAI.

Table 1. Pre-image attack results recorded by [16], observably the efficacy of GASA
and CSA drop as the hashcode length decreases.

Hashcode length (m) GASA [18] CSA [16]

SAR (%) FAI (%) SAR (%) FAI (%)

8 10.94 1.16 11.06 1.28

16 12.41 2.97 11.14 1.70

32 3.96 1.27 4.83 2.14

64 5.40 3.16 12.03 9.79

128 7.54 6.44 42.13 41.03

256 24.11 23.39 92.08 91.36

512 64.12 63.51 99.19 98.58



R-IoM: Enhance Biometric Security 347

Fig. 1. EER vs hashedcode length m for both IoM hashing and R-IoM hashing.

Fig. 2. Genuine and imposter test scores distributions with increasing n and constant
m = 512.
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5 Conclusion

Ensuring robust security for biometric templates stored in databases is critical
for reliable individual recognition and authentication in security systems. Our
investigation focuses on IoM hashing, a widely acclaimed biometric template
protection (BTP) technique known for its efficiency and easy implementation.
However, despite its merits, IoM hashing is susceptible to preimage attacks such
as GASA and CSA, presenting a trade-off between performance and security
that needs attention.

To address this compromise, our research introduces a novel approach called
R-IoM hashing, which effectively rebalances this trade-off. Instead of aiming
for complete eradication of preimage attacks, which may be infeasible, R-IoM
hashing employs a strategic dimensionality reduction during the IoM hashing
process to eliminate unnecessary data.

Our efforts culminate in experimental results showcasing the efficiency of R-
IoM. The methodology achieves an impressive length reduction of the hashed
code down to only m = 10, while maintaining a remarkably low Equal Error
Rate (EER) of less than 1.5.

To reinforce our confidence in the proposed method, we draw from existing
pre-image attack studies, which reveal that a reduction in hashed code length cor-
responds to a considerable impairment in the effectiveness of preimage attacks.
This theoretical deduction gains empirical support through experimental com-
parisons between the EER of traditional IoM and the proposed R-IoM hashing
methods. R-IoM demonstrates a significantly lower EER, validating its robust-
ness against potential preimage attacks. This underscores the potential of R-IoM
hashing as a more secure and resilient solution.

Through this research, we aim to shed light on a promising direction for
enhancing the balance between performance and security in biometric template
protection. By leveraging the advantages of R-IoM hashing, we can better safe-
guard biometric data while maintaining system efficiency, offering a valuable
contribution to the field of biometric security.
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Abstract. Biometric authentication, with its unique and convenient
features, is gaining popularity as a secure access control method for
diverse systems and services. However, the inherent ambiguity of biomet-
ric data poses challenges when integrating it with cryptographic systems
that require 100% accuracy, such as personal information number gener-
ation. To address this, we propose SP2IN, a face bio-cryptosystem that
utilizes a Low-Density Parity-Check Sum-Product decoder and fuzzy
commitment. In our innovative face biometric cryptosystem, we employ
fuzzy commitment for secure key extraction from biometric input, ensur-
ing the protection of sensitive facial information without compromis-
ing the privacy of the raw data. To tackle facial biometric noise, we
use a Low-Density Parity-Check Sum-Product decoder for error correc-
tion against variations. Our system was rigorously tested on public face
datasets (LFW, AgeDB, CALFW), showcasing outstanding recognition
rates: 99.43% (LFW), 90.43% (CALFW), 92.63% (AgeDB30).

Keywords: Biometric cryptosystem · Face bio-cryptosystem · Fuzzy
Commitment · Key Generation · Secure Access Control

1 Introduction

As the demand for convenient authentication with high information security
continues to grow, conventional identification technologies relying on passwords
and credentials no longer suffice [1,2].

Biometrics, especially face recognition, has emerged as a dependable method
for individual identification owing to its inherent uniqueness and convenience.

Y. Liu and Y. Zhou—These authors contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 350–362, 2023.
https://doi.org/10.1007/978-981-99-8565-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8565-4_33&domain=pdf
https://doi.org/10.1007/978-981-99-8565-4_33


SP2IN: Leveraging Fuzzy Commitment 351

However, due to the irrevocable nature of biometric features, once lost, it become
permanently ineffective [3]. Furthermore, as the application of recognition sys-
tems expands, concerns about the security and privacy of the biometric features
themselves have also drawn increasing attention [4]. Safeguarding the security
of the feature templates used in recognition systems has become an ongoing
research focus in the field of biometric recognition. To address these challenges,
various biometric cryptosystem (BC) schemes have been proposed [3,5–7] for
generating cryptographic keys from biometric data.

Among various BC schemes, the fuzzy commitment scheme [8] is a represen-
tative BC with two steps: commitment and de-commitment. Given a binary bio-
metric vector b, the commitment step selects a codeword c ∈ C, where C is a set
of n-bit codewords generated from certain Error Correction Codes (ECCs), with
the same length as b. The difference between the biometric and the codeword
is denoted as δ = b XOR c. The commitment is represented as {hash(c), δ},
where hash(·) is a cryptographic hashing algorithm like SHA256. As hash(·) is
a one-way hashing function, the commitment {hash(c), δ} ensures no disclosure
of any information about the biometric data. In the de-commitment step, given
an input biometric data denoted by b′, a codeword c′ is calculated from the
commitment: c′ = b′ XOR δ. The codeword c′ can be restored as the original c
by the ECC if the distance between b′ and b is smaller than a certain threshold.
Fuzzy commitment has been applied to various biometric modalities, including
iris [9], face [10], fingerprints [11], and others.

However, several challenges remain for the practical implementation of fuzzy
commitment for face recognition systems. Ideally, face features should be the
same for the same user and distinguishable for different users, but achieving this
is unrealistic. ECCs may be one of the best options to achieve this task, but
achieving 100% error correction for the same user and 0% for different users is
highly unlikely in practice. Secondly, most existing fuzzy commitment schemes
are evaluated with controlled biometric datasets, assuming cooperative scenarios
[12], which is not usually practical in reality.

Motivated by the aforementioned challenges, we propose a new fuzzy com-
mitment scheme based on the LDPC error correction coding approach integrated
with the Sum-Product (SP) decoder for unconstrained face recognition. Specifi-
cally, state-of-the-art face recognition models are employed to generate discrim-
inative features, followed by a feature transformation pipeline, which converts
real-valued features into binary features suitable for error correction coding. Con-
sidering that the error rates of binary features from the same user tend to be
relatively high due to intra-class variation, they often exceed the error-correcting
capability of LDPC, we introduce a random masking technique, bitwise AND
the binary features to decrease the bit error rate to a level that aligns with the
error correction capability of LDPC.

The main contributions of this paper are as follows: 1) We introduce an SP
decoder based fuzzy commitment BC, namely SP2IN, which is modality-agnostic
and applicable to any fixed-length biometric feature vector; 2) A comprehensive
evaluation has been carried out on three public unconstrained face datasets,
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including LFW, CALFW, and AgeDB30. Our system demonstrates outstanding
key recovery performance with genuine match rates of 99.43% on LFW, 90.43%
on CALFW, and 92.63% on AgeDB30.

2 Related Work

The fuzzy commitment scheme, tailored for binary biometrics, draws inspiration
from cryptographic bit commitment [8]. It allows for a certain degree of error
in the submitted value by utilizing ECCs that fall within the error correction
range of the code. Hao et al. [9] demonstrated an early application of the fuzzy
commitment scheme to iris biometrics, employing a combination of two ECCs,
namely Hadamard and Reed-Solomon. They utilized a (64, 7) Hadamard ECC
capable of correcting at least 15 random bit errors and generating a 7-bit word.
The 2048-bit iris template was partitioned into 32 blocks, each containing 64
bits. Additionally, a Reed-Solomon code (32, 20) was used to handle errors at
the block level (burst) and correct up to 6 incorrect 7-bit words. The process
resulted in a 140-bit key obtained by employing 32 input words to decode 20
output words. Despite these efforts, the key recovery rate showed a significant
decline when tested on a challenging dataset. Bringer et al. [13] introduced an
iterative soft decoding ECC, a combination of two Reed-Muller ECCs, which
greatly improved the accuracy of the fuzzy commitment scheme.

Chen et al. [14] developed a fuzzy commitment system for ordered feature
vectors utilizing BCH codes. In a similar vein, Li et al. (2012) proposed a binary
fixed-length feature generation approach based on minute triplets to enable fin-
gerprint fuzzy commitment, employing BCH codes. Additionally, Yang et al.
[15] implemented a fuzzy commitment scheme based on BCH codes to establish
associations between finger-vein templates and secret keys, storing the resulting
helper data on a smart card.

In [16], a fuzzy commitment scheme based on the Euclidean distance is pro-
posed. Unlike traditional security schemes that utilize binary feature vectors,
this novel approach can accommodate real-valued feature vectors used in recent
deep learning-based biometric systems. In [17], LDPC coding is employed to
extract a stable cryptographic key from finger templates, integrated into a bio-
cryptosystem scheme. In [18], an iris-based cryptographic key generation scheme
is introduced, utilizing information analysis and following the principles of the
fuzzy commitment scheme. This scheme employs high-entropy biometric tem-
plates, resulting in 400-bit cryptographic keys with 0% FAR and an FRR of
3.75%. In [19], the authors developed a face template protection method using
multi-label learning and LDPC codes. Initially, random binary sequences are
hashed to create a protected template, and during training, they are encoded
with an LDPC encoder to generate diverse binary codes. Subsequently, deep
multi-label learning is applied to map each user’s facial features to distinct binary
codes. Finally, the LDPC decoder removes the noise caused by intra-variations
from the output of the CNN, achieving a high Genuine Accept Rate (GAR) with
a 1% False Accept Rate (FAR) on PIE and the extended Yale B datasets.
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The fuzzy commitment scheme has been proven to provide secure and
privacy-preserving biometric authentication. However, certain areas have
received relatively less attention in research. One such area is the optimization
of error-correcting codes used in existing fuzzy commitment schemes for face
recognition. Further investigation in this domain could lead to improved perfor-
mance of ECCs in these schemes. Additionally, it is worth noting that commonly
used datasets such as FRGC [20], FERET [21], PIE [22], and Extended Yale B
[23] have been extensively employed in works like [19,24]. As a result, fuzzy
commitment schemes for unconstrained face recognition scenarios have not been
well explored, despite the fact that such unconstrained settings pose greater
challenges and necessitate more robust solutions.

3 Proposed Method

3.1 Overview

During the registration phase, a given input image x ∈ RH∗W∗3 is used to
extract discriminative features v ∈ R512 using state-of-the-art face recognition
models by v = f(x), where f(·) represents the feature extractor. Then the binary
instances b′

x ∈ {0, 1}n, can be obtained by b′
x = g(v), where g(·) is the feature

transformation function composed of feature quantization and binarization.
Next, a randomly generated key k is used to generate a set of n-bit codewords

C using the LDPC encoder. The commitment is saved as {hash(c), δ}, where
δ = b′

x XOR c. Here, c is a codeword c ∈ C, and hash(·) donates a one-way
hashing function, such as SHA256.

During the authentication and key retrieval phase, given a query image y ∈
RH∗W∗3 from the same person, a binary instance b′

y can be extracted in the
same way, such as b′

y = g(f(y)). Then, the codeword c′ can be recovered by
c′ = b′

y XOR δ, where the stored δ can be de-committed. If the distance between
b′

x and b′
y is within the ECC’s error correction capability, the codeword c′ can

be restored to its original form c by the ECC system.
In this work, based on Arcface [25], we address the problem using a well-

designed feature transformation function and SP decoder. The feature transfor-
mation function uses feature quantization and binarization techniques to convert
deep features into binary instances. To ensure security, a key is generated by a
pseudorandom number generator (PRNG) and encoded into a codeword by an
LDPC encoder [26]. We adopt the lifting factor z = 10, therefore the code length
is N = 52∗10. The message length is K = 10∗10. In the end, XOR is applied to
codeword and binary templates to generate the commitment. During the authen-
tication phase, the de-committed codeword is obtained using the SP decoder. In
the subsequent subsections, a detailed discussion of the feature transformation
and XOR masking is presented.

3.2 Binarization Transformation

The feature transformation has several objectives: 1) state-of-the-art face models
generate fixed-length and real-valued vectors as features, so it is necessary to
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convert them into binary strings suitable for ECC; 2) Maintain recognition ability
and accuracy in the binary domain; 3) Given a specific LDPC code scheme,
bridge the gap between bit error rates observed from binary features of the same
user and the error correction capabilities provided by the LDPC code.

We adopt the best feature quantization and binarization approaches pre-
sented in [24,27], namely the quantization based on equally probable intervals
and the linearly separable subcode binarization (LSSC) [28]. In order to convert
the vector v into an integer vector z, the following equation is utilized:

z = QLuT (v) ∈ {1, q}512, (1)

here, the function QLuT uses quantization schemes based on equal probability
intervals, as suggested by Rathgeb et al. [1] and Drozdowski et al. [2]. The first
step is to calculate the probability density of each feature element. Then, the
feature space for each element is divided into q integer-labeled equally-probable
intervals, according to the obtained probability density. Thus, each element of
the feature vector is distributed an integer in corresponds to the interval it
belongs to. The resulting quantized feature vector z is then used to map to a
binary feature vector b ∈ {0, 1}512∗m using a second lookup table:

b = BLuTϕ(z) ∈ {0, 1}512∗m. (2)

In Equation (2), BLuT represents the index-permuted LSSC, while ϕ refers
to the permutation seed. Note that m = q − 1, represents the bit length of
the binary entries in BLuT . Note that the L1 norm of the distance between
two binary values generated by LSSC is equal to the distance between the two
quantized values.

3.3 Error Gap Optimization

To minimize the intra-class Hamming distance, we raise a random masking strat-
egy. This strategy is used to bridge the gap between the bit error rate obtained
from the intra-class binary features and the system’s error correction capabili-
ties. In this approach, a binary vector r is generated as a random bit string, with
κ percent of the bits being set to 0. Each binary vector is then bitwise AND with
the mask r to produce the new binary vector:

b′ = b AND r, (3)

where r = sgn(u − κ), and u ∈ U(0, 1)512∗m. The distance between any two
samples after masking can be computed as follows:

D = ||(b′ AND r) XOR (b AND r)||1
= ||b′ XOR b||1 − 0.5 ∗ ||r||1,

(4)

The intra-class and inter-class Hamming distances can be mediated by different
masks r. A proper mask r should result in a smaller intra-class distance within
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the error correction capability, while a larger inter-class distance beyond the
error correction capability. We iteratively find the best κ that can lead to 95%
of the inter-class distance after masking to be larger than a given threshold τ .
In other word,

P (||bi XOR bj||1 − 0.5 × ||r||1 > τ) = 0.95, (5)

where bi and bj are from different users.
Note that r is set for application-specific and can be exposed to the public.

In effect, r can also be user-specific, and using a user-specific r would improve
the performance but also needs extra security measures to protect the r. On the
other hand, raising the τ parameter can result in a zero FMR, but this leads to
the consequence of a lower genuine match rate (GMR) or utility.

4 Experiments and Results

4.1 Feature Extractors and Datasets

In our experiment, we used the advanced pre-trained model Arcface [29]
(resnet100 [30] trained on the ms1mv3 [31] dataset). The experiment focused on
recognition performance on three mainstream benchmarks: LFW [32], CALFW
[33], and AgeDB-30 [34]. LFW contains 13,233 face images from 5,749 different
identities and was also used to build the CALFW dataset, which focuses on
challenges related to face recognition, particularly adversarial robustness, and
similar-looking faces. AgeDB comprises 16,488 images of 568 celebrities with
a challenging subset called AgeDB-30, featuring identities with a 30-year age
difference. Both LFW and AgeDB-30 datasets contain 3,000 genuine and 3,000
impostor comparisons for evaluating face recognition performance.

4.2 Ablation Studies

This section evaluates the recognition performance of binary features generated
at various LSSC intervals q. By estimating the cosine distance of deep facial
features, the comparison scores between deep facial feature pairs are obtained.
The accuracy of the identification performance is evaluated based on standard
protocols. Decidability (d′) [35] is also used to indicate the divisibility of paired
and unpaired1 comparison scores. The d′ is defined as

d′ =
|μm − μnm|√
1
2 (σ2

m + σ2
nm)

, (6)

where μm and μnm are the means of the paired and the unpaired comparison
trials score distributions, and σm and σnm are their standard deviations, respec-
tively. The greater the decidability values, the better the ability to distinguish
between paired and unpaired comparison trial scores.
1 Paired corresponds to intra-user, unpaired corresponds to inter-user, these terms are

used interchangeably.
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As shown in Table 1, consistent with [24,27], the LSSC can achieve com-
parable performance to the deep features in terms of accuracy. Dividing the
feature space into larger intervals generally leads to better performance. The
performance reaches a plateau quickly using more than eight intervals.

Table 1. Ablation study of feature transformation (LFW, Arcface).

accuracy d′ paired unpaired

Deep features 99.82 ± 0.27 7.97 14.71 ± 5.11 49.88 ± 3.58

LSSC-2 (sign) 99.68 ± 0.34 6.40 24.65 ± 4.80 49.94 ± 2.86

LSSC-4 99.75 ± 0.30 6.64 21.18 ± 3.90 41.64 ± 1.95

LSSC-8 99.82 ± 0.27 6.70 19.28 ± 3.48 37.49 ± 1.64

LSSC-16 99.83 ± 0.24 6.71 18.22 ± 3.26 35.24 ± 1.50

The parameter τ in (5) is used to control the generation of the masking bits,
and we test the accuracy of the b′ after masking with τ = [0.05, 0.5]. As shown
in Fig. 1, the accuracy of CALFW improves according to the increase in τ . It
can also be seen that the performance is largely preserved compared to deep
features. For example, the bit masking operation on features from Arcface can
achieve an accuracy similar to their deep features counterparts.

Next, we must decide which τ is the best for the SP decoder. Features of
CALFW extracted from Arcface are adopted as the testing dataset, and the
key retrieval performance in GMR and FMR is evaluated. The result is shown
in Fig. 2. It can be seen that FMR decreases as τ increases, but the GMR will
also drop. The τ that drives FMR only above 0.1% is selected to keep a balance
between FMR and GMR. It can be seen that SP can earn a 0.13% FMR at
τ = 0.24. This τ is adopted for the best parameters for the SP decoder for all
datasets and feature extractors subsequently.

Moreover, Fig. 3 shows the distributions, at each phase, of the paired and
unpaired Hamming distances. It can be seen that the feature transformation
using LSSC and random masking preserves the separation of paired and unpaired
distributions. On the other hand, we can find that the random masking (+ LSSC-
4 + mask) can decrease the Hamming distance to comply with the requirements
of the LDPC. Consequently, the paired distances can be decreased to 15.64%
on CALFW, which is within the error correction capability and suitable for the
adopted LDPC. Meanwhile, the unpaired distance is decreased to 26.02% on
CALFW, which is still beyond the error correction capability.
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Fig. 1. Ablation study on τ concerning
accuracy on transformed binary features
(CALFW).

Fig. 2. Ablation study on τ concern-
ing key retrieval accuracy (CALFW, 100
iterations).

Fig. 3. Distribution of distances across different stages (CALFW).

Fig. 4. Key retrieval performance in GMR and FMR vs. decoding iterations.

4.3 Key Retrieval Performance of the Proposed Method

This section evaluates the performance under decoding iterations ranging from
1 to 100. The performance of different decoding strategies is shown in Fig. 4.
We can observe that both GMR and FMR increase with decoding iterations.
So, choosing the appropriate number of decoding iterations is crucial for system
accuracy. Fewer iterations can lead to fewer FMR, while more iterations can
lead to more GMR without overly compromising FMR. On the other hand,
we observed that SP achieves favorable performance on LFW. Specifically, SP
achieves a GMR of 99.33% (in Table 2) on Arcface in terms of GMR@0FMR.

In Table 2, we present the GMR and FMR values at 100 iterations
(GMR|FMR@iter100 column). Under this setting, the GMR of CALFW and
AgedDB30 can be improved significantly, while only slightly comprising on
FMR. In comparison (SP-GMR@FMR0 vs. SP-GMR|FMR@iter100), Arcface
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Table 2. Accuracy of key retrieval performance (Arcface).

Dataset Deep Feat. LSSC-4 SP SP

GMR@FMR0 GMR|FMR@iter100

LFW 99.67 99.63 99.33 99.43|0.07

CALFW 91.53 91.13 85.27 90.43|0.20

AgedDB30 96.13 95.27 89.73 92.63|0.07

Average 95.78 95.34 91.44 –

can achieve 90.43% (85.27%) at FMR = 0.20% (0FMR), and 92.63% (89.73%)
at FMR = 0.07% (0FMR).

4.4 Comparison with Others

Table 3. Comparison with relevant face-based secure systems.

Reference (year) Category Performance

Boddeti et al. [36] (2018) homomorphic encryption 96.74%@0.1%FMR

Dong et al. [37] (2021) fuzzy vault Rank1 = 99.9%

Zhang et al. [38] (2021) fuzzy extractor 30%@2.1e−7FMR

Gilkalaye et al. [16] (2019) fuzzy commitment 36.94%@0.05%

Ours fuzzy commitment 99.17%@0%FMR

In this section, we conducted a comprehensive comparison of our results with
state-of-the-art secure face templates evaluated on LFW. Table 3 presents the
performance of the proposed fuzzy commitment scheme with existing works on
LFW. Compared to existing key generation schemes, our proposed approach
outperforms them. The results demonstrate the effectiveness and superiority of
our fuzzy commitment scheme in performance.

We would like to emphasize that the homomorphic encryption approach pro-
posed in [36] is specifically designed for performing matching in the encryption
domain. In contrast, the CNN approaches presented in [39] and [19] assign a
unique binary code to each user during the enrollment phase, which is exclu-
sively used for training the deep CNN. This means that re-training is required
whenever a new user is added to the system, making these approaches imprac-
tical for real-world deployment.

5 Security Analysis

In our system, we ensure unlinkability and cancellability by generating a random
key for each user during the enrollment process. This guarantees that once the
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Fig. 5. Unlinkability evaluation.

stored commitment is compromised, a new commitment can be generated using
a different random key, preserving the unlinkability property. Moreover, using
different keys for different enrollments prevents information leakage from cross-
matching attacks, where an adversary attempts to infer information by matching
commitments from different applications.

In this section, we focus on evaluating the unlinkability property following a
protocol outlined by [40]. The experiments were conducted using the SP parame-
ters with Arcface on the LFW and AgeDB-30 datasets. A cross-matching attack
is performed by comparing the binary commitments generated from the same
person in different applications (with different k). The adversary exploits the
matching score distributions to determine whether the commitments belong to
the same person. The matching distance of the same subject in different appli-
cations is referred to as the paired distance. In contrast, the matching distance
of other subjects in various applications is referred to as the unpaired distance.

In [40], two distinct measures for linkability are defined: a local measure
D↔(s) ∈ [0, 1] and a global measure Dsys

↔ . The local measure D ↔ (s) eval-
uates the specific linkage scores s on a score-wise level. On the other hand,
the global measure Dsys

↔ ∈ [0, 1] assesses the unlinkability of the entire system
and provides a standard for various systems, regardless of the score. A value of
Dsys

↔ = 1 indicates that the system is fully linkable for all scores of the paired
subjects, meaning there is a high level of linkability among the commitments.
Conversely, a value of Dsys

↔ = 0 suggests that the system is fully unlinkable
for all scores, indicating a high level of unlinkability among the commitments.
The global measure Dsys

↔ = 0, provides an overall evaluation of the system’s
unlinkability performance.

In evaluating our scheme, we compute the mated and Non-mated scores on
the selected dataset among the commitments. The distributions of these scores
are illustrated in Fig. 5. The results demonstrate that our scheme achieves good
unlinkability, as indicated by the global measure Dsys

↔ , which consistently reaches
a value of 0.01 for all datasets. This signifies a high level of unlinkability among
the commitments in our system.
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6 Conclusion

This paper introduces a bio-cryptosystem that utilizes face features to establish
a secure cryptographic key. The process involves using the state-of-the-art face
feature extractor, Arcface, to generate face features from facial images. These
features are then transformed into a fixed-length binary string through a care-
fully designed function and masked using a specific scheme.

To encode the secret key, the scheme incorporates LDPC to convert the key
into a codeword. The final commitment is generated by XORing the codeword
with the binary face features. When it comes to key retrieval, an SP decoder is
used to decode the committed codeword and reconstruct the user’s secret key.

The proposed bio-cryptosystem can be effectively applied in various key man-
agement scenarios, such as generating private keys for blockchain wallets and
providing enhanced security for users. As a future direction, the authors suggest
extending the proposed scheme to other biometric modalities and optimizing the
execution efficiency, accuracy, and overall security even further.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Nos. 62376003, 62306003) and the Anhui Provincial Natural Science
Foundation (No. 2308085MF200).

References

1. Yan, J., Blackwell, A., Anderson, R., Grant, A.: Password memorability and secu-
rity: empirical results. IEEE Secur. Priv. 2(5), 25–31 (2004)

2. Spafford, E.H.: OPUS: preventing weak password choices. Comput. Secur. 11(3),
273–278 (1992)

3. Sandhya, M., Prasad, M.V.N.K.: Biometric template protection: a systematic lit-
erature review of approaches and modalities. In: Jiang, R., Al-maadeed, S., Bouri-
dane, A., Crookes, D., Beghdadi, A. (eds.) Biometric Security and Privacy. SPST,
pp. 323–370. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47301-
7 14

4. EuropeanParliament, General Data Protection Regulation (GDPR). https://gdpr-
info.eu/

5. Lei, J., Pei, Q., Wang, Y., Sun, W., Liu, X.: PRIVFACE: fast privacy-preserving
face authentication with revocable and reusable biometric credentials. IEEE Trans.
Dependable Secur. Comput. 19, 3101–3112 (2021)

6. Walia, G.S., Aggarwal, K., Singh, K., Singh, K.: Design and analysis of adaptive
graph based cancelable multi-biometrics approach. IEEE Trans. Dependable Secur.
Comput. 19, 54–66 (2020)

7. Xi, K., Hu, J.: Bio-cryptography. In: Stavroulakis, P., Stamp, M. (eds.) Handbook
of Information and Communication Security, pp. 129–157. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-04117-4 7

8. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings of the
6th ACM Conference on Computer and Communications Security, ser. CCS 1999,
ACM. New York, NY, USA, pp. 28–36. ACM (1999)

9. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively.
IEEE Trans. Comput. 55(9), 1081–1088 (2006)

https://doi.org/10.1007/978-3-319-47301-7_14
https://doi.org/10.1007/978-3-319-47301-7_14
https://gdpr-info.eu/
https://gdpr-info.eu/
https://doi.org/10.1007/978-3-642-04117-4_7


SP2IN: Leveraging Fuzzy Commitment 361

10. Kelkboom, E.J.C., Gökberk, B., Kevenaar, T.A.M., Akkermans, A.H.M., van der
Veen, M.: “3D face”: biometric template protection for 3D face recognition. In: Lee,
S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 566–573. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-74549-5 60

11. Li, P., Yang, X., Qiao, H., Cao, K., Liu, E., Tian, J.: An effective biometric cryp-
tosystem combining fingerprints with error correction codes. Expert Syst. Appl.
39(7), 6562–6574 (2012)

12. Rathgeb, C., Uhl, A.: A survey on biometric cryptosystems and cancelable biomet-
rics. EURASIP J. Inf. Secur. 2011(1), 3 (2011)

13. Bringer, J., Chabanne, H., Cohen, G., Kindarji, B., Zémor, G.: Optimal iris fuzzy
sketches. In: 2007 First IEEE International Conference on Biometrics: Theory,
Applications, and Systems, pp. 1–6. IEEE (2007)

14. Chen, B., Chandran, V.: Biometric based cryptographic key generation from faces.
In: 9th Biennial Conference of the Australian Pattern Recognition Society on Dig-
ital Image Computing Techniques and Applications, pp. 394–401. IEEE (2007)

15. Yang, W., et al.: Securing mobile healthcare data: a smart card based cancelable
finger-vein bio-cryptosystem. IEEE Access 6, 36939–36947 (2018)

16. Gilkalaye, B.P., Rattani, A., Derakhshani, R.: Euclidean-distance based fuzzy com-
mitment scheme for biometric template security. In: 2019 7th International Work-
shop on Biometrics and Forensics (IWBF), pp. 1–6 (2019)

17. Dong, X., Jin, Z., Zhao, L., Guo, Z.: Bio can crypto: an LDPC coded bio-
cryptosystem on fingerprint cancellable template. In: 2021 IEEE International
Joint Conference on Biometrics, pp. 1–8. IEEE (2021)

18. Adamovic, S., Milosavljevic, M., Veinovic, M., Sarac, M., Jevremovic, A.: Fuzzy
commitment scheme for generation of cryptographic keys based on iris biometrics.
IET Biometrics 6(2), 89–96 (2017)

19. Chen, L., Zhao, G., Zhou, J., Ho, A.T., Cheng, L.-M.: Face template protection
using deep LDPC codes learning. IET Biometrics 8(3), 190–197 (2019)

20. Phillips, P.J., et al.: Overview of the face recognition grand challenge. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2005), vol. 1. pp, 947–954. IEEE (2005)

21. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation method-
ology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell.
22(10), 1090–1104 (2000)

22. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE)
database. In: Proceedings of fifth IEEE International Conference on Automatic
Face Gesture Recognition, pp. 53–58. IEEE (2002)

23. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumi-
nation cone models for face recognition under variable lighting and pose. IEEE
Trans. Pattern Anal. Mach. Intell. 23(6), 643–660 (2001)

24. Rathgeb, C., Merkle, J., Scholz, J., Tams, B., Nesterowicz, V.: Deep face fuzzy
vault: implementation and performance. Comput. Secur. 113, 102539 (2022)

25. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for
deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4690–4699 (2019)

26. Multiplexing and Channel Coding, Release 16. 3GPP Standard TS 38.212, V16.0.0
(2019)

27. Drozdowski, P., Struck, F., Rathgeb, C., Busch, C.: Benchmarking binarisation
schemes for deep face templates. In:2018 25th IEEE International Conference on
Image Processing, pp. 191–195. IEEE (2018)

https://doi.org/10.1007/978-3-540-74549-5_60


362 Y. Liu et al.

28. Lim, M.-H., Teoh, A.B.J.: A novel encoding scheme for effective biometric dis-
cretization: linearly separable subcode. IEEE Trans. Pattern Anal. Mach. Intell.
35(2), 300–313 (2012)

29. Dang, T.K., Truong, Q.C., Le, T.T.B., Truong, H.: Cancellable fuzzy vault with
periodic transformation for biometric template protection. IET Biometrics 5(3),
229–235 (2016)

30. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

31. Deng, J., Guo, J., Zhang, D., Deng, Y., Lu, X., Shi, S.: Lightweight face recog-
nition challenge. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops (2019)

32. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
a database for studying face recognition in unconstrained environments. In: Work-
shop on Faces in Real-Life Images: Detection, Alignment, and Recognition (2008)

33. Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age
face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197
(2017)

34. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.:
AgeDB: the first manually collected, in-the-wild age database. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pp. 51–59 (2017)

35. Daugman, J.: Biometric decision landscapes. University of Cambridge, Computer
Laboratory, Technical report (2000)

36. Boddeti, V.N.: Secure face matching using fully homomorphic encryption. In: 2018
IEEE 9th International Conference on Biometrics Theory, Applications and Sys-
tems (BTAS), pp. 1–10. IEEE (2018)

37. Dong, X., Kim, S., Jin, Z., Hwang, J.Y., Cho, S., Teoh, A.B.J.: A secure chaff-
less fuzzy vault for face identification system. ACM Trans. Multimedia Comput.
Commun. Appl. 17, 1–22 (2021)

38. Zhang, K., Cui, H., Yu, Y.: Facial template protection via lattice-based fuzzy
extractors. Cryptology ePrint Archive (2021)

39. Kumar Jindal, A., Chalamala, S., Kumar Jami, S.: Face template protection using
deep convolutional neural network. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 462–470 (2018)

40. Gomez-Barrero, M., Galbally, J., Rathgeb, C., Busch, C.: General framework to
evaluate unlinkability in biometric template protection systems. IEEE Trans. Inf.
Forensics Secur. 13(6), 1406–1420 (2017)

http://arxiv.org/abs/1708.08197


Homomorphic Encryption-Based Privacy
Protection for Palmprint Recognition

Qiang Guo1, Huikai Shao1(B), Chengcheng Liu1, Jing Wan1, and Dexing Zhong1,2,3

1 School of Automation Science and Engineering, Xi’an Jiaotong University, Xi’an 710049,
Shaanxi, China

shaohuikai@xjtu.edu.cn
2 Pazhou Lab, Guangzhou 510335, China

3 Research Institute of Xi’an Jiaotong University, Hangzhou 311215, Zhejiang, China

Abstract. Palmprint recognition is a promising biometric technology. Currently,
the research on palmprint recognition focuses on the topic of feature extraction
and matching. However, due to the characteristic that biometric traits cannot be
modified at will, how to secure and protect the privacy of palmprint recognition
is a neglected and valuable topic. In this paper, we propose a privacy-preserving
framework for palmprint recognition based on homomorphic encryption. Spe-
cially, for any given eligible palmprint recognition network, it is encrypted layer
by layer to obtain both image key and network key. Particularly, the introduced
homomorphic encryption strategy does not cause any loss of recognition accu-
racy, which ensures the wide applicability of the proposed method. In addition, it
greatly reduces the risk of exposing plaintext images and model parameters, thus
circumventing potential attacks against data and models. Adequate experiments
on constrained and unconstrained palmprint databases verify the effectiveness of
our method.

Keyword: Palmprint recognition · Homomorphic encryption · Image key

1 Introduction

In recent years, biometric technologies have developed rapidly. Face recognition [1] and
fingerprint recognition [2] are widely used in various industries. Due to its rich texture
information, contactless capture and high privacy, palmprint recognition has also gained
widespread attention [3]. Currently, privacy and security issue is one of the key problems
that need to be solved in palmprint recognition from theory to application. Image theft
and attacks against recognition models are the main attack methods, both of which
can cause biometric systems to work incorrectly. Biometric data is often associated to
personal information, and mistaken recognition results will pose a significant threat to
property of user. Therefore, protecting palmprint image and model is an important topic
for privacy protection.

In the past few years, many algorithms for biometric image encryption have been
proposed. Conventional image encryption schemes cannot work without first decrypting

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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them [4]. So the current approaches on biometric privacy security mostly focus around
homomorphic encryption [5] and federated learning [6]. However, these methods still
have the following problems: (1) biometric images are stored in plaintext in servers;
(2) encrypted biometric systems aim to strike the balance between security and accu-
racy. To address these issues, we propose a palmprint image encryption and recognition
framework based on homomorphic encryption.

The contributions can be briefly summarized as follows:

(1) An effective privacy-preserving framework is proposed for palmprint recognition.
Homomorphic encryption is incorporated with palmprint recognition. The private
information in the palmprint image is encrypted and invisible, which avoids attacks
against the images.

(2) The specific key network can perform sophisticated inference on the encrypted
palmprint images, and there is no degradation in recognition accuracy compared
with the plaintext system.

(3) Experiments are conducted on several palmprint databases with constrained and
unconstrained benchmarks, which show the effectiveness of the method.

2 Related Work

2.1 Palmprint Recognition

Palmprint recognition has gained the attention of researchers as a secure and friendly bio-
metric identification technique. Before the deep learning theorywas proposed, palmprint
recognition methods were mainly classified as texture-based, code-based, and subspace-
basedmethods [7].Wu et al. [8] extracted a stable line feature consisting ofmain lines and
wrinkles to describe the palmprint image. Zhong et al. [9] applied Deep Hash Network
(DHN) to convert palmprint images into distinguished binary codes for recognition. As
research progresses, many attacks against deep learning models are emerging. To solve
the potential threats, we propose a convolutional network encryption method to improve
the system security.

2.2 Homomorphic Encryption

The most widely used homomorphic encryption concept developed so far is the fully
homomorphic encryption. Xiang et al. [10] proposed a privacy-preserving online face
authentication system based on a fully homomorphic encryption scheme. Sun et al.
[11] designed a face feature ciphertext recognition method by combining automorphism
mapping and Hamming distance. However, these feature-level homomorphic encryption
algorithms are difficult to prevent replay attacks. Byrne et al. [12] designed a KeyNet
method for privacy protection of images in modern cameras. Inspired by this idea, this
paper proposes an image-level homomorphic encryption algorithm to protect image
privacy in palmprint recognition.
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Fig. 1. Palmprint recognition framework based on image-level homomorphic encryption.

3 Method

As shown in Fig. 1, we propose a privacy-preserving framework for palmprint recogni-
tion based on image-level homomorphic encryption. The initial network is first passed
through the encryption function to obtain the encrypted network. In the process of net-
work encryption, the image key is gained, and the raw palmprint images can be converted
to the encrypted images. Besides, the encryption function contains the privacy parameter
α. A larger α means deeper encryption.

3.1 Image-Level Homomorphic Encryption

A secure encryption framework should assume the following public and private infor-
mation: (1) the image key is secret and controlled by the administrator [12]; (2) the
source convolutional network N is secret and the encrypted network is public; (3) the
encrypted palmprint images are public, and the original images can only be recovered
by a private image key.

Based on the above idea, we choose generalized doubly stochastic matrix as the basis
of the encryption function.

For a networkN (x)with all linear layers, it can be simplified to the form of a product
of weight matrices for each layer:

N (x;W ) =
∏

k

Wkx, (1)

where k represents the number of network layers, Wk represents the network weight
matrix of the k-th layer, and x is the input. Given a doubly stochastic matrix A, the input
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x and parameter matrix W of the linear layer can be replaced by the image key A0 and
the network key Ai respectively:

∧
N (x;W ) = N (A0x;AWA−1) = AkWkA

−1
k−1 · · · (A2W2A

−1
1 )(A1W1A

−1
0 )A0x. (2)

For the non-linear activation function g in the network, there exists a generalized matrix
A that is commutative with g:

Ag((A−1x)) = g(AA−1x) = g(x). (3)

In summary, for a convolutional network consisting of a linear layer and a nonlinear
excitation function, we encrypt it according to Eq. 4 to obtain the encryption network
and palmprint image key. Ni represents the i-th layer of network N (x):

Ni =
{
Ni(xi−1,AWA−1

i−1) if Ni linear

Ni(xi−1) else
. (4)

3.2 Metric Learning-Based Palmprint Recognition

Deep metric learning determines identity by calculating the distance between palmprint
images. So the direction of model optimization is to reduce the distance of intra-class
samples and increase the distance of inter-class samples. In this paper, triplet loss [13]
and arcface loss [14] are applied as the loss functions.

The inputs of triplet loss are anchor sample xa, positive sample xp and negative
sample xn. The optimization strategy is to constrain the distance between the anchor and
negative samples to be larger than that between the anchor and positive samples by a
threshold m:

Ltriplet = max(D(xa, xp) − D(xa, xn) + m, 0), (5)

where D(·) is the distance calculation function. In this paper, m is empirically set to 0.8.
Arcface loss is a loss function based on an improvement of softmax loss:

Larcface = − 1

N

N∑

i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
n∑

j=1,j �=yi

escosθj
, (6)

where n andN represent the number of classes and batch size, and yi represents the label
of the i-th palmprint image. θj is the angle between the weight Wj and feature xi of the
i-th sample. θyi is the target optimization angle, andm is the optimization margin. In this
paper, s and m are set to 0.5 and 30 based on experience.
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4 Experiments and Results

4.1 Dataset

XJTU-UP palmprint database adopts an unconstrained collection method to acquire
palmprint images. The organizers used five smartphones to capture the hand images of
100 volunteers under two lighting conditions. The brands of the mobile phones include
Samsung (denoted as S), LG (denoted as L), Xiaomi (denoted asM), Huawei (denoted as
H), and iPhone (denoted as I). The two lighting conditions include natural light (denoted
as N) and lighting environment (denoted as F). Therefore, the whole database can be
divided into ten sub-databases, i.e., SN, SF, LN, LF, MN, MF, HN, HF, IN, and IF. Some
typical ROI images are shown in Fig. 2.

Fig. 2. Typical ROI samples in the XJTU-UP database. (a) is in HF, (b) is in HN, (c) is in IF, and
(d) is in IN.

PolyU Multispectral Palmprint database is captured in four spectrum conditions
(Blue, Green, Red, and Near-Infrared). The whole database can be divided into four
sub-databases: Blue, Green, Red, and NIR. There are 6,000 palmprint images in each
sub-database. Some typical ROI images are shown in Fig. 3.

Fig. 3. ROI samples of PolyU Multispectral Palmprint database. (a) is in Blue, (b) is in Green,
(c) is in NIR, and (d) is in Red. (Color figure online)

4.2 Implementation Details

In experiments, to illustrate the generality of our method, three network structures are
adopted: LeNet-5 [15], the self-designed 11-layer network (ConvNet), andAlexNet [16].
For each database, the palmprint images are divided into two parts according to a 3:1
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ratio: the training set and the test set. In this paper, accuracy and Equal Error Rate (EER)
are utilized as evaluation indicators of performance.

The experiments are implemented using the Pytorch framework on NVIDIA GPU
RTX 2080 SUPER and CPU i7-3.0 GHz processors. The initial learning rate is set to
0.0001 for training with epoch 40, batch size 32, and Adam optimizer.

4.3 Experimental Results

4.3.1 Performance of Encrypted Network

Theperformance of three networks before and after encryption inXJTU-UPdatabase and
PolyU Multispectral Palmprint database are shown in Tables 1 and 2. The abbreviations
of “Alex” and “Conv” stand for AlexNet and ConvNet, respectively. * indicates that the
privacy parameter α takes any integer value during the encryption process. It can be
observed that there is no loss in accuracy for encrypted networks.

Table 1. Performance on XJTU-UP palmprint database

Database Triplet loss Arcface loss

Accuaray (%) EER (%) Accuaray (%) EER (%)

LeNet Alex Conv LeNet Alex Conv LeNet Alex Conv LeNet Alex Conv

HF Unencrypted 80.50 90.80 93.70 18.98 9.64 6.27 90.10 92.10 92.00 9.82 8.13 8.44

Encrypted* 80.50 90.80 93.70 18.98 9.64 6.27 90.10 92.10 92.00 9.82 8.13 8.44

HN Unencrypted 74.40 80.30 91.20 26.62 18.80 8.84 82.70 90.20 88.30 18.18 10.27 12.53

Encrypted* 74.40 80.30 91.20 26.62 18.80 8.84 82.70 90.20 88.30 18.18 10.27 12.53

IF Unencrypted 88.20 93.10 94.40 11.47 7.16 6.04 94.00 94.10 92.90 6.09 6.31 7.33

Encrypted* 88.20 93.10 94.40 11.47 7.16 6.04 94.00 94.10 92.90 6.09 6.31 7.33

IN Unencrypted 71.20 87.10 94.70 29.38 13.29 5.60 80.70 88.10 85.10 18.84 12.44 16.04

Encrypted* 71.20 87.10 94.70 29.38 13.29 5.60 80.70 88.10 85.10 18.84 12.44 16.04

LF Unencrypted 84.90 93.20 92.80 14.98 6.36 7.38 91.10 95.50 89.00 8.53 4.76 11.91

Encrypted* 84.90 93.20 92.80 14.98 6.36 7.38 91.10 95.50 89.00 8.53 4.76 11.91

LN Unencrypted 75.30 85.70 90.10 25.47 14.13 10.31 86.50 90.00 88.90 13.20 10.36 11.64

Encrypted* 75.30 85.70 90.10 25.47 14.13 10.31 86.50 90.00 88.90 13.20 10.36 11.64

MF Unencrypted 87.20 92.10 93.50 12.62 8.36 6.89 92.50 95.50 94.20 7.96 4.71 6.27

Encrypted* 87.20 92.10 93.50 12.62 8.36 6.89 92.50 95.50 94.20 7.96 4.71 6.27

MN Unencrypted 75.70 86.50 89.10 24.00 13.47 11.33 87.60 88.60 85.90 13.11 11.29 15.16

Encrypted* 75.70 86.50 89.10 24.00 13.47 11.33 87.60 88.60 85.90 13.11 11.29 15.16

SF Unencrypted 88.40 92.50 94.00 11.29 7.20 6.40 90.40 95.80 92.20 9.24 4.53 8.22

Encrypted* 88.40 92.50 94.00 11.29 7.20 6.40 90.40 95.80 92.20 9.24 4.53 8.22

SN Unencrypted 74.70 82.70 89.60 24.80 17.64 10.13 84.60 87.80 88.90 16.44 11.91 11.64

Encrypted* 74.70 82.70 89.60 24.80 17.64 10.13 84.60 87.80 88.90 16.44 11.91 11.64
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Table 2. Performance on PolyU Multispectral Palmprint database

Database Triplet loss Arcface loss

Accuaray (%) EER (%) Accuaray (%) EER (%)

LeNet Alex Conv LeNet Alex Conv LeNet Alex Conv LeNet Alex Conv

Blue Unencrypted 92.60 94.60 95.90 7.47 5.70 3.92 97.10 98.60 97.00 3.13 1.28 3.19

Encrypted* 92.60 94.60 95.90 7.47 5.70 3.92 97.10 98.60 97.00 3.13 1.28 3.19

Green Unencrypted 91.40 93.10 95.10 9.01 6.85 5.18 96.20 98.80 97.10 4.25 1.27 3.01

Encrypted* 91.40 93.10 95.10 9.01 6.85 5.18 96.20 98.80 97.10 4.25 1.27 3.01

NIR Unencrypted 90.60 95.10 97.00 9.79 4.79 2.84 97.30 99.20 96.70 2.63 0.98 2.92

Encrypted* 90.60 95.10 97.00 9.79 4.79 2.84 97.30 99.20 96.70 2.63 0.98 2.92

Red Unencrypted 90.40 95.10 96.00 10.04 4.86 4.06 97.30 98.60 97.10 2.61 1.47 2.93

Encrypted* 90.40 95.10 96.00 10.04 4.86 4.06 97.30 98.60 97.10 2.61 1.47 2.93

4.3.2 Performance of Encrypted Image

Typical examples of encrypted images are shown in Fig. 4. The encryption method
can accomplish personalized encryption for both RGB and grayscale spaces, and the
encrypted images cannot be interpreted by other image keys.

Fig. 4. Examples of encrypted images. (a) is the original image, (b) (c) (d) are the encrypted
images of (a) under different privacy parameter α.

4.3.3 Hyperparameter Tuning

We use LeNet-5 network and Arcface loss on PolyUMultispectral Palmprint database to
explore the effect of privacy parameter α on the performance of cryptographic network,
and the results are as shown in Table 3. In the cases ofmismatch between the network key
and image key, when α is relatively small (such as 2 and 4), the decrease in recognition
accuracy of cryptographic network is not yet significant, from 97.01% to 84.92%. But
when it is taken as 8, the recognition accuracy decreases to 67.54%. It can be seen that
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with the increase of α, the privacy and security of palmprint image and system are also
increasing, while the network parameters will also increase. Therefore, in the actual
palmprint recognition system, appropriate privacy parameters should be chosen.

Table 3. The impact of privacy parameter α on network performance

Network State α Network parameters(M) Keys Accuarcy(%)

Unencrypted – 54.79 – 97.01

Encrypted 2 54.81 No paired 95.23

Encrypted 4 54.89 No paired 84.92

Encrypted 8 59.84 No paired 67.54

Encrypted 8 59.84 Paired 97.01

5 Conclusion

In this paper, a palmprint recognition framework based on homomorphic encryption is
proposed to address the privacy leakage problem in palmprint recognition. Unlike other
mehtods towards a single specific network, our homomorphic encryption framework
is more flexible and pervasive: any compliant palmprint recognition network can be
encrypted. Meanwhile, the recognition accuracy of encrypted network is the same as
that of the source network. In addition, the image key provides a solution for the imple-
mentation of image-level homomorphic encryption for palmprint data. The framework
we proposed is fully experimented on XJTU-UP and PolyU Multispectral Palmprint
databases, and competitive results are obtained.
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Abstract. In disease detection, generative models for data augmen-
tation offer a potential solution to the challenges posed by limited
high-quality electroencephalogram (EEG) data. The study proposes a
temporal-spatial feature-aware denoising diffusion probabilistic model
(DDPM), termed TF-DDPM, as an EEG time-series augmentation
framework for autism research. The module for predicting noise is CCA-
UNet based on the channel correlation-based attention (CCA) mech-
anism, which considers the spatial and temporal correlation between
channels, and uses depthwise separable convolution instead of traditional
convolution, thereby suppressing the interference from irrelevant chan-
nels. Visualization and binary classification results on synthetic signals
indicate that proposed method generates higher quality synthetic data
compared to Generative Adversarial Networks (GAN) and DDPM.

Keywords: electroencephalogram (EEG) · Denoising Diffusion
Probability Model (DDPM) · synthetic data

1 Introduction

Medical images have notably benefited from the advancements in deep learning
techniques, leading to transformative applications in areas such as radiology,
psychiatric diagnostics, and neuropathology [3,16,20]. EEG, which captures the
electrical activity of the cerebral cortex by placing electrodes on the scalp, pro-
vides medical data with a high temporal resolution. Distinct EEG patterns are
observed in individuals with neurodevelopmental disorders, like Autism Spec-
trum Disorder (ASD), when compared to neurotypical individuals. Such differ-
ences underscore the potential of EEG as a valuable diagnostic instrument for
neural disorders [4–6].

However, the scarcity of high-quality medical data has become a limiting
factor for the performance of deep learning models. These challenges manifest
in various ways: an inability to achieve both high temporal and spatial res-
olutions, incomplete data information, and insufficient training data, etc. An
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 375–384, 2023.
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increasing number of data augmentation studies are being proposed to address
these issues, with GAN being one of the most widely applied and technologically
advanced methods [7–11]. GAN and its variants have been widely adopted in
medical images augmentation, such as Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) Image, as well as in the fusion of multi-
modal images [12–15,28,29]. Their potential is further realized in the domain of
EEG data augmentation, particularly for artifact removal, imputation of missing
sequences, and data expansion [1,2,17–20,33–35]. Nevertheless, the stability of
GAN training and the issue of mode collapse remain research challenges [21].

A novel generative model, the Diffusion Model, offers more stable training and
diversified data generation. It has been proven effective in image generation [22],
and its potential application for EEG data augmentation is garnering increasing
interest [23,24]. A noteworthy approach involves utilizing the EEGWave sub-
model to predict noise, thereby eliminating artifacts in the synthetic data [25,31].
Currently, the majority of augmentation studies tend more towards converting
EEG time series into spectral images, while the potential of frameworks that
directly utilize time series as input has not been fully explored [30,32,35].

In this context, building upon DDPM, we introduce a novel model, TF-
DDPM, designed to generate synthetic EEG data for autism research. The
model employs EEG time series as input and utilizes a submodule, CCA-UNet,
which integrates the CCA mechanism, to predict noise. The CCA mechanism,
an enhancement of the self-attention mechanism, is considered a point-wise con-
volution method and, when combined with channel-wise convolution techniques,
replaces the conventional inter-channel convolution. By considering the tempo-
ral and spatial correlations between various EEG channels, proposed method
amplifies contributions from correlated channels while mitigating interference
from uncorrelated ones. In comparison to WGAN-GP and DDPM, the synthetic
signals generated by proposed model exhibits closer resemblance to real signals,
both temporally and spatially. We validate this through visual interpretations
and binary classification results between ASD and Typical Development (TD)
cases.

2 Method

2.1 TF-DDPM

The TF-DDPM [22] is depicted in Fig. 1. At each time step t, a Gaussian-
distributed noise εt with scale βt is added to the original time series:

xt =
√

αtxt−1 +
√

βtεt, where αt = 1 − βt (1)

After T steps, the original data x0 is transformed into noise data xT that follows
the standard Gaussian distribution. The process progressively transforms the
distribution q(x0) into q(xT ):

q(xT ) = q(x0)
T∏

t=1

q(xt|xt−1), where q(xt|xt−1) = N (xt;
√

αtxt−1, βtI) (2)
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A new xT is initially sampled from N (0, I). Then, the intractable posterior
distribution q(xt−1|xt) is approximated by pθ(xt−1|xt), allowing the derivation
of pθ(x0), which in turn generates new data x0 that follows the same distribution
as the original input. The optimization objective of maximizing the likelihood
distribution pθ(x0) can be rewritten in the following form via variational lower
bound inference:

max pθ(x0) = minEq

[ T∑

t=2

DKL( q(xt−1|xt,x0) || pθ(xt−1|xt) )
]

(3)

Both q(xt−1|xt,x0) and pθ(xt−1|xt) are assumed to follow a Gaussian distribu-
tion:

q(xt−1|xt,x0) = N (xt−1; μ̃(xt,x0), β̃tI) (4)

pθ(xt−1|xt) = N (xt−1; μ̃θ(xt,x0), β̃tI) (5)

where μ̃(xt,x0) =
1√
αt

(xt − 1 − αt√
1 − ᾱt

εt)

μ̃θ(xt,x0) =
1√
αt

(xt − 1 − αt√
1 − ᾱt

εθ(xt, t,p))

β̃t =
βt(1 − ᾱt−1)

1 − ᾱt

ᾱt = α1α2 · · · αt

where εθ(xt, t,p) represents the predicted value of the noise εt, and p is the
Pearson correlation coefficient tensor PCMs introduced in Fig. 2. Consequently,
the optimization objective is equivalent to minimizing the discrepancy between
the two noises, as

DKL( q(xt−1|xt,x0) || pθ(xt−1|xt) ) ∝ ||εt − εθ(xt, t,p)||2 (6)

Therefore, the formula for the reverse process is given by:

xt−1 =
1√
αt

(xt − 1 − αt√
1 − ᾱt

εθ(xt, t,p)) +
βt(1 − ᾱt−1)

1 − ᾱt
z

where z ∼ N (0, I) (7)

2.2 CCA-Unet

The CCA-UNet is employed for the prediction of noise, denoted as εθ(xt, t,p).
This framework is an enhancement of the UNet architecture used in the DDPM
as presented in reference [22], as illustrated in Fig. 2. The primary components
of the entire structure encompass three Down modules for the downsampling
process and three Up modules for the upsampling process. Each Down module is
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Fig. 1. The architecture of TF-DDPM. Three sections show the forward process, train
process, and reverse process, respectively.

composed of two time embedding (Embed) blocks, one channel correlation-based
attention (CCA) block, and a common convolution (Conv) block. In contrast,
each Up module consists of two Embed blocks, one CCA block, one upsampling
(Samp) block, and a Conv block. The Embed block also utilizes the CCA, which
is treated as a point-wise convolution.

The UNet architecture integrates a multi-head attention mechanism. The
self-attention query Q and key-value pairs (K,V ) are directly derived by applying
a linear transformation to the input X. In the CCA variant, the scalp electrode
distribution with 129 electrodes is initially transformed into a 17 × 17 matrix.
Only the elements representing the electrodes of C (either 125 or 126) channels
are retained, with their values being their channel indices. All other elements
are set to zero, for instance, the element denoting the reference electrode Cz.

Subsequently, the Pearson correlation coefficients between the C channels
of N samples are computed, yielding the Pearson Correlation Matrix tensor,
denoted as PCMs ∈ R

N×C×17×17. This tensor is treated as an image and
serves as an additional input within the CCA block. Within the CCA, the query
Q ∈ R

N×Cin×C and the key K ∈ R
N×Cout×C are obtained by executing a two-

dimensional convolution on PCMs, thereby transforming the 17 × 17 electrode
distribution into a vector of length C, where Cin and Cout represent the input and
output channel numbers, respectively. The PCMs inherently depict the inter-
channel correlations. Given that the convolution process modifies the channel
number, we convert the C channels into a two-dimensional matrix based on the
electrode distribution, ensuring the preservation of spatial correlations between
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channels. Consequently, the entire CCA module essentially acts as a point-wise
convolution guided by channel correlation.

Therefore, within the Embed block, we enhance the standard convolution to
a depthwise separable convolution. This involves initially employing the CCA for
point-wise convolution, followed by channel-wise convolution. Such a modifica-
tion effectively circumvents arbitrary inter-channel fusion and facilitates easier
network training.

Fig. 2. The architecture of CCA-UNet with its sub-modules: (a) Down block, (b) Up
block, (c) CCA block, (d) Embed block, and some abbreviations in the model diagram.

3 Experiments

3.1 Dataset

The experimental data for this study is sourced from the National Database for
Autism Research under the project titled “Multimodal Developmental Neuroge-
netics of Females with ASD” [26]. The study engaged 143 participants diagnosed
with ASD and 137 TD participants.

EEG recordings were acquired using a 128-channel HydroCel geodesic sensor
net system, sampled at a frequency of 500 Hz. Sequentially, a 1 Hz high-pass filter,
a 60 Hz notch filter, and a 100 Hz low-pass filter were employed to suppress noise.
After excluding channels with an impedance exceeding 200 Kohm and unused
channels, 125 channels were retained for the ASD dataset, and 126 channels for
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the TD dataset. Each channel consists of 512 data points. Our focus was solely
on the resting-state data. Each epoch from every participant was treated as an
individual sample. All epochs across all ASD/TD participants were considered
as training sets for their respective categories.

3.2 Experimental Details

Separate models were trained for both ASD and TD class data, with identical
hyperparameters set for both models: a time step T of 1000, a learning rate of
0.001, and a batch size of 128 for the training set. The CCA-UNet model was
trained using Mean Squared Error (MSE) loss function. We set WGAN-GP [19],
DDPM [22] as the baseline and evaluated the quality of the synthetic data using
two methods: visual inspection and classification accuracies.

3.3 Visual Inspection

For each channel, the averages were calculated across all segments for all sub-
jects, producing 125-channel time series. Figure 3 and Fig. 4 show the differences
between the synthetic signal generated by different methods and the real signal
in the time domain and space-frequency domain, respectively. The visualization
results show that compared with DDPM and WGAN-GP, the time series of the
synthetic signal generated by TF-DDPM is closer to the real time series, and the
spatial distribution of energy in different frequency bands of the brain is more
similar to the real signal.

Fig. 3. Comparison of averaged real and generated data by different models. The first
row shows TD images and the second row shows ASD images. Columns 1 to 4 show
images from real data, TF-DDPM, DDPM, and WGAN-GP, respectively.
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3.4 Classification Accuracies

Classification accuracies serves as a quantitative measure of the generation effect.
We utilized a 1D-ResNet network as our classifier. Our evaluation method fol-
lowed the approach proposed by [27]. We test the accuracy acc1 of classifiers
trained with synthetic data on real data to evaluate the substitutability of syn-
thetic data. Similarly, we test the accuracy acc2 of classifiers trained on real
data with synthetic data to evaluate the authenticity of synthetic data. The test
accuracy acc3 obtained after training the classifier through the mixed set of syn-
thetic data and real data is an auxiliary indicator, which can directly reflect the
effect of data synthesis.

Fig. 4. Real and generated signal PSD top plots. The first four columns show TD
images and the last four show ASD images. Rows 1 to 4 show images from real data,
TF-DDPM, DDPM, and WGAN-GP respectively.

The classification results are summarized in Table 1. The three classifica-
tion accuracies of the synthetic data generated by the proposed model are all
higher than those of the other two models, indicating that our synthetic data
has stronger substitutability and authenticity.

Table 1. The three classification accuracy rates tested by 1D-XResNet on the synthetic
data generated by WGAN-GP, DDPM and TF-DDPM respectively.

Accuracy (%) acc1 acc2 acc3

WGAN-GP [19] 75.6 78.3 87.8

DDPM [22] 75.4 84.1 89.2

TF-DDPM 84.3 88.2 93.7
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4 Conclusion

Although there are observable discrepancies between the synthetic data gener-
ated by TF-DDPM and actual data, such as smaller peaks and troughs in time
series across channels and a generally lower energy in the alpha frequency band,
the gap has been notably narrowed in comparison with DDPM and WGAN-GP.
This improvement can be attributed to the deep separable convolution based on
the channel attention mechanism. By placing heightened emphasis on the volt-
age values of more pertinent channels and sidelining those from irrelevant chan-
nels, the deep convolution effectively learns an underlying relationship between
channels, a relationship that is guided by the Pearson correlation coefficient ten-
sor. Subsequent channel-wise convolution prevents indiscriminate inter-channel
blending. As a result, the synthetic signals produced by proposed model manage
to preserve inherent spatial domain information, and exhibit enhanced perfor-
mance in both the time and frequency domains. It is worth noting that we did
not completely avoid the convolution between channels, because we found that
this would make the loss function difficult to converge, so how to solve this
problem is our next exploration goal.

However, since the essence of the diffusion model is to predict noise at each
step rather than the data itself, it’s not a given that DDPM would necessarily
outperform GAN in terms of synthetic quality. Furthermore, prediction errors
accumulate progressively during the backpropagation process. Both an exces-
sively large and an overly small time steps T can lead to outputs saturated
with noise. The diffusion parameter βt also influences the output since it deter-
mines the scale of the noise being eradicated. In summary, it might be suggested
that exploring the optimal T and diffusion parameters could be of considerable
interest.
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Abstract. Medical image data are often limited due to expensive acqui-
sition and annotation processes. Directly using such limited annotated
samples can easily lead to the deep learning models overfitting on
the training dataset. An alternative way is to leverage the unlabeled
dataset which is free to obtain in most cases. Semi-supervised meth-
ods using a small set of labeled data and large amounts of unlabeled
data have received much attention. In this paper, we propose a novel
semi-supervised method for medical image segmentation that uses par-
tial class supervision. Specifically, for a given multi-class label, we extend
it to generate several labeled images with partial classes annotated while
others remain unannotated. The unlabeled part in the partially anno-
tated label is supervised by a pseudo-labels approach. In addition, we
project the labeled pixel values into pseudo-labels to achieve rectified
pixel-level pseudo-labels. In this way, our method can effectively increase
the number of training samples. The experimental results on two pub-
lic medical datasets of heart and prostate anatomy demonstrate that
our method outperforms the state-of-the-art semi-supervised methods.
Additional experiments also show that the proposed method gives bet-
ter results compared to fully supervised segmentation methods.

Keywords: Medical image segmentation · Data augmentation · Label
combination

1 Introduction

Accurate and reliable medical image segmentation is essential for computer-
aided diagnosis and surgical navigation systems and is required for many clin-
ical applications [1,2]. Medical image segmentation based on deep learning has
shown excellent results with state-of-the-art segmentation performance [3,4].
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Deep-supervised models usually require a large number of training samples to
achieve great segmentation performance. However, it is challenging to acquire
accurate pixel-wise annotation for medical image segmentation tasks [5,6]. The
annotation process relies on experienced physicians and is extremely expensive
and time-consuming, especially for 3D image data. Therefore, for a collected
medical image dataset, there are only a small number of images are labeled by
experts and a large portion of the images are unannotated.

Recently, semi-supervised methods [7,8,24–26] aim to utilize a large amount
of unlabeled data to achieve better segmentation performance. One line of
research to alleviate the scarcity of medical image data challenge is to apply
data augmentation. The goal of data augmentation is to generate large annotated
training images with minimum effort. Recent data augmentation approaches can
be roughly divided into single-sample and multi-sample augmentation. For exam-
ple, single-sample data augmentation applies geometric transformations (e.g.,
translation, flipping, and color transformations) on a single image. These single-
sample data augmentation methods perform small transformations on images
and have limited ability to simulate diverse and realistic examples. Also, these
methods are highly sensitive to the choice of parameters. The multi-sample aug-
mentation is to combine several images together to generate training images
and corresponding labels. For example, mixup [9–13] is the main approach to
achieve multi-sample data augmentation. However, these methods are proposed
for image classification tasks, and they may change the boundary of the target
object, leading to unrealistic segmentation results. In particular, the shape and
morphology of different objects (such as organs or tumors) in medical images
are unique, and directing using multi-sample augmentation may lead to worse
and unstable segmentation performance.

In semi-supervised segmentation methods, another line of research is to gen-
erate pseudo labels for those unannotated images. A segmentation network first
produces segmentation probability results and some pseudo-label generation
strategies simply use pre-defined thresholds to generate the groundtruth [14,15].
These methods can produce a large number of labels with high confidence while
having some unreliable noise labels. To summarize, these pseudo-label genera-
tion approaches have the following drawbacks. First, with extremely imbalanced
class distributions, high-confident pseudo labels are always biased toward the
classes with major distributions [16]. Second, the discrepancy between easy and
hard samples also makes it difficult to find the best thresholds for selecting
high-confident pseudo labels. In order to solve these problems, Cross-Pseudo-
Supervision (CPS) [17] employs network perturbations to train two different
segmentation networks in parallel and constrain the pseudo-labels with consis-
tency regularization.

Although these semi-supervised methods greatly improve the segmentation
results by leveraging a large number of unlabeled images, these methods still
require accurate and precise pixel-level annotations of all the categories. It
remains difficult for experts to label every category in each image. This moti-
vates us to use partially labeled images for medical image segmentation tasks. In
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Fig. 1. Overview of the proposed label combination for medical image segmentation.
After labeling arrangement, a single image can be expanded into multiple images con-
sisting of different categories, as shown in Fig. a. During the training process, the
labeled part of each image is supervised by the real label LK , and the unlabeled part
is supervised by the pseudo-label LN , and the real label performs pixel-level correction
on the pseudo-label, as shown in Fig. b. The two networks have the same structure
and their weights, i.e., θ1 and θ2, are initialized differently.

this paper, we propose a novel data augmentation method to generate additional
training samples. Our method aims to generate partially labeled images and use
augmented partial supervision in the network design. Our method extends the
pseudo-label generation approach in CPS to create partial pseudo-labels which
can incorporate more supervision information into the training process.

Specifically, for an image with N distinct categories annotated, a label com-
bination step is to select a set of labels from these N classes. We denote that K
category is selected for supervision, and the remaining N − K labels are unan-
notated. The labeled part in the image is supervised by the original annotation
and the remaining pixels from N − K classes are supervised by pseudo-label
methods. Similar to CPS, we also perturb the two branch networks with dif-
ferent initialization parameters, constraining the reliability of pseudo-labels by
the consistency principle. In addition, considering the characteristics of the label
combination method, that is, each image contains accurately labeled categories,
we map the selected K category annotation back to the pseudo-label mask and
generate corrected pseudo supervision. Therefore, the pseudo supervision mask
generated by our method contains augmented labels for the remaining N − K
category and partial real labels, which in turn improve the reliability of the label
augmentation step.

To this end, our data augmentation method of label combination does not
change the morphological information of medical objects. Our method effec-
tively expands the amount of data and alleviates the problem of the insuffi-
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cient sample size of medical images. Additionally, each augmented image com-
bines pseudo-supervised labels and manual labels which eases the learning pro-
cess. To evaluate our data augmentation method, we verified it on two public
medical image datasets, ACDC dataset and the prostate dataset. Our method
outperforms the state-of-the-art semi-supervised methods and fully-supervised
approaches. Excellent accuracy is achieved by training the network for only 400
epochs roughly on these two datasets. In contrast, general semi-supervised med-
ical image segmentation requires thousands or more epochs to provide similar
results.

2 Method

Figure 1 shows the overview of our method. A labeled image is first used to
generate multiple augmented labels by our label combination method. The input
image is processed by two networks with identical structures and their weights
are initialized differently. Following CPS, one network can generate pseudo labels
for the other. In our method, for one label combination selection, a rectified
pseudo label is created. Totally, we have two supervision losses on two different
labels, LK for the selected manual label and LN is defined as our rectified pseudo
label.

2.1 Network Architecture

Our segmentation network consists of two parallel branch networks F (shown
in Fig. 1). These two networks are with the same structure and use different
initialization weights θ1 and θ2. Therefore, these two networks perturb the same
input image to produce two different segmentation confidence maps P1 and P2.
The network and its outputs are defined as follows:

P1 = F (x; θ1), Y ∗
1 = Max(P1) (1)

P2 = F (x; θ2), Y ∗
2 = Max(P2) (2)

where P1 and P2 are the segmentation confidence maps with softmax normal-
ization. Y ∗

1 and Y ∗
2 are the predicted one-hot maps calculated by P1 and P2.

2.2 Label Combination

Conventional semi-supervised segmentation methods aim to learn the segmen-
tation network by simultaneously exploring labeled and unlabeled images. For
example, CPS proposes a data augmentation method to generate pseudo labels
for these unlabeled images. Different from it, our method can produce multiple
augmented training samples by generating partially labeled annotation while the
remaining pixels are recognized as unlabeled. The introduced data augmented
method is achieved by the label combination step.
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Mathematically, for an image x and its corresponding labels y in the orig-
inal dataset D with N distinct categories. These categories denoted by C =
{c0, c1, c2, c3, ....cN−1}. During label combination, we select K classes as labeled,
and the remaining N −K categories are recognized as unannotated. In the exper-
iments, we select 1,2,... N − 2 categories, and a maximum of N − 2 categories
is to avoid generate fully labeled foreground. Totally, for a given image, we can
produce n augmented images, where n = C1

N +C2
N +...+CN−2

N . CK
N denotes that

number of choices that we select K categories from N classes. Compared to CPS
which only expands training images for unlabeled images, our data augmenta-
tion can generate n times training samples for the labeled images. Our network
design is to augment multiple partially labeled images from one fully-labeled
image.

During the training, for each label combination, we can create two types of
supervision. The first one is simply labeled by the selected K categories. We
denote the partially labeled mask as:

LK =
{

ci, if ci ∈ K
0, if ci ∈ N − K

(3)

The other loss supervision is computed from pseudo labels. And a pseudo-
label mask Y ∗ is first calculated. Then we add partial labels of selected K cate-
gories into the Y ∗

i to generate the rectified pseudo label LN as:

LN =
{

LK , if ci ∈ K
Y ∗, if ci ∈ N − K

(4)

These two types of labels are used as supervision in the loss part of the
network.

2.3 Loss Function

The training objective consists of two losses: supervised loss Ls and pseudo-
supervised loss Lps. The supervision loss Ls is formulated to use the standard
pixel-wise loss on the labeled images over the two parallel segmentation networks:

Ls =
1

Da

∑
x

′
i∈Da

1
W × H

W×H∑
i=0

(L(P1i, LK) + L(P2i, LK)), (5)

where W and H are the width and height of the input image.
The pixel-wise pseudo-supervised loss Lps for the rectified pseudo mask LN

is:

Lps =
1

Da

∑
x′
i∈Da

1
W × H

W×H∑
i=0

(L(P1i, L2N ) + L(P2i, L1N )). (6)

For loss function L, we use the weight cross entropy loss function and the
Dice loss function. Considering the problem of category imbalance in medical
image segmentation, we use weighted cross entropy w = [w0, w1, w2, ..., wN−1]
to impose more weight on categories with fewer annotations. Finally, the total
training loss is L = Ls + Lps.
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3 Experiments

3.1 Dataset and Evaluation

Dataset: We evaluated the proposed approach on two public MRI datasets.

ACDC Dataset. ACDC dataset consists of 2-dimensional cineMRI images from
150 patients. The cine-MRI images were obtained using two MRI scanners of var-
ious magnetic strengths and different resolutions. For each patient, manual anno-
tations of the right ventricle (RV), left ventricle (LV) and myocardium (MYO)
are provided. It was hosted as part of the MICCAI ACDC challenge 2017.

Prostate Dataset. Prostate dataset contains 48 T2-weighted MRI 3D volumes
of prostate. Expert annotations are provided for two structures of the prostate:
the peripheral zone and the central gland. The 48 subjects in the Prostate dataset
are randomly divided into 2 sets of 33 (training), and 15 (testing) subjects in
the experiments. It was hosted in the medical decathlon challenge in MICCAI
2019.

Evaluation Metrics. We adopt the Dice coefficient to evaluate the performance
of each method, which computes the similarity of two segmentation masks.

3.2 Implementation Details

Our approach is implemented using the pytorch framework, where the backbone
of both branch networks is resnet50 and appended with dilated convolution.
In addition, we initialize the weights of the two parallel networks with weights
pre-trained on ImageNet. We train our model using the SGD approach with
momentum fixed at 0.9 and weight decay set to 0.0001. We use the learning rate
warmup approach, and the learning rate is decayed with the initial learning rate
(0.001) multiplied by (1 − iter

max iter ) × 0.9. We train ACDC for 350 epochs, and
Prostate for 400 epochs.

3.3 Experimental Results

Comparison with Semi-supervised Methods. As shown in Table 1, we com-
pare our method with several previously reported semi-supervised methods on
ACDC dataset and Prostate dataset. These semi-supervised method use the size
of unlabeled (XU ) and test sets (Xt): (a) |XU | = 63, |Xt| = 30 for ACDC
dataset, (b) |XU | = 22, |Xt| = 15 and val sets |Xval| = 2 for Prostate dataset.
Due to the limited annotation images, small labeled sets (|XL| = 8, or |XL| = 7)
are used individually for Prostate or ACDC datasets. For label combination,
we set K = 1 and K = 2 for the ACDC dataset and use K = 1 for Prostate
dataset. We follow the experimental settings of other semi-supervised methods
which divide the ACDC dataset into 70 images for training, and 30 images for
testing. We also divide the ACDC dataset to 100 images for training, and 50
images for testing. The experimental results are denoted by Ours′ and Ours∗,
respectively. We use the same dataset division for Prostate dataset.
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Our methods with different varieties outperform these previously reported
semi-supervised segmentation methods. The experimental results show that our
data augmentation provides additional partial supervision and our segmentation
model can boost the medical image segmentation performance. Our method with
weight cross-entropy (WCE) loss supervision yields slightly better results than
using DICE as the loss function. Network with both WCE and DICE as loss
function gives the best performance.

Table 1. Comparison of the proposed method with other semi-supervised learning
and data augmentation methods. Ours′ means dividing the ACDC dataset as other
semi-supervised methods (70(training), 30(tests); Ours∗ means dividing the ACDC
dataset to 100(training), 50(testing). Prostate dataset follows the same setting as
ACDC dataset.

Method Prostate Method ACDC

self -training [19] 0.598 URPC [27] 0.831

Mixup [12] 0.593 CPS [17] 0.788

Data Augment [20] 0.597 MC-Net [28] 0.865

DTC [21] 0.587 SS-Net [29] 0.868

CPS [17] 0.567 ACTION [30] 0.872

ICT [22] 0.567 MONA [31] 0.877

Pseudo-labels joint [23] 0.696 ARCO-SG [32] 0.894

Ours′(WCE+Dice) 0.744 Ours′(WCE+Dice) 0.909

Ours∗ (Dice) 0.708 Ours∗(Dice) 0.890

Ours∗ (WCE) 0.703 Ours∗(WCE) 0.899

Ours∗ (WCE+Dice) 0.744 Ours∗ (WCE+Dice) 0.900

Comparison with Fully-Supervised Methods. As shown in Table 2, we
also conduct an experiment to compare our method with fully-supervised meth-
ods. The experimental results of fully-supervised methods on Prostate dataset
are reported in [18]. Results of our method with label combination parameter
K = 1, 2, 3 are listed in Table 2. Our method employs partial class supervi-
sion outperforms several fully-supervised approaches. Also, experimental settings
with large K give better results. The main reason is that label combination with
large K provides more augmented training images into the supervision of the
training process.
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Table 2. Comparison of the proposed method with other fully-supervised learning and
data augmentation methods. The experimental results are reported [18]. The backbone
of fully-supervised methods is nnUNet. NoDA: No augmentation; moreDA: sequential
augmentation; Spatial SS: designed search space; TrivialAugment: natural image SOTA
method; DDAug: MCTS + search space.

Method Prostate(N= 3)

NoDA 0.7236

moreDA 0.7123

TrivialAugment 0.7258

Spatial SS 0.7290

DDAug 0.7320

K = 1 K = 2 K = 3

Ours 0.744 0.746 0.753

4 Conclusion

In this paper, we propose a new low-cost data augmentation method for semi-
supervised medical image segmentation, which expands the sample size of the
dataset and enhances the data diversity of the dataset through label combina-
tion. Different from most semi-supervised methods that only utilize unlabeled
images in the data augmentation step, our label combination strategy provides
a novel way to use labeled images in the data augmentation. A fully labeled
image is expanded to a set of partially labeled images. To this end, our method
can effectively alleviate the challenge of data insufficiency in the medical image
analysis domain. Experimental results on ACDC and Prostate datasets demon-
strate the effectiveness of this method, even superior to the fully supervised
segmentation method.
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Abstract. Vehicle re-identification is a crucial research direction in
computer vision for constructing intelligent transportation systems and
smart cities. However, privacy concerns pose significant challenges, such
as personal information leakage and potential risks of data sharing. To
address these challenges, we propose a federated vehicle re-identification
(FV-REID) benchmark that protects vehicle privacy while exploring
re-identification performance. The benchmark includes a multi-domain
dataset and a federated evaluation protocol that allows clients to upload
model parameters to the server without sharing data. We also design a
baseline federated vehicle re-identification method called FVVR, which
employs federated-averaging to facilitate model interaction. Our experi-
ments on the FV-REID benchmark reveal that (1) the re-identification
performance of the FVVR model is typically weaker than that of non-
federated learning models and is prone to significant fluctuations and (2)
the difference in re-identification performance between the FVVR model
and the non-federated learning model would be more pronounced on a
small-scale client dataset compared to a large-scale client dataset.

Keywords: Vehicle re-identification · Federated learning · Benchmark

1 Introduction

Vehicle re-identification [1–3] is an important research, which can be used to
identify and track vehicles, enabling various applications such as traffic man-
agement [4], video surveillance [5], and criminal investigation [6]. However, as
surveillance cameras are frequently dispersed across various locations and orga-
nizations, with data being centralized in their respective data centers, traditional
vehicle re-identification methods based on centralized learning encounter a list
of problems such as data privacy, data security, and data centralization.

In 2017, Google’s research team proposed the concept of federated learning
with the goal of enabling edge devices, such as smartphones, to participate in
model training without sharing raw data. This federated learning approach effec-
tively reduces the risk of privacy breaches by only exchanging model parameters
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 395–406, 2023.
https://doi.org/10.1007/978-981-99-8565-4_37
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Fig. 1. An overview of privacy protection in federated vehicle-re-identification.

between clients and servers. Since its inception, many researchers [7–9] have
been developing different methods to improve efficiency, accuracy, and privacy
protection during model training. Consequently, federated learning has potential
in real-world applications, such as healthcare [10–12], finance [13], and telecom-
munications [14]. We notice that researchers [15–17] have already applied feder-
ated learning to person re-identification and achieved certain progress. However,
compared to person re-identification, vehicle re-identification faces a more com-
plex spatio-temporal scope. Generally speaking, vehicles might travel a greater
distance in a short time compared to persons, possibly leading to vehicle re-
identification being conducted over a broader geographical range. Regarding the
number of cameras, the most complex client dataset used federated person re-
identification [15] only has 15 cameras, but in our constructed federated vehicle
re-identification benchmark, the number of cameras in one client dataset reaches
326. Hence, federated vehicle re-identification would encounter great challenge.

In this paper, we propose a federated vehicle re-identification (FV-REID)
benchmark to explore re-identification performance as well as protect vehicle
privacy. The FV-REID benchmark includes four aspects. First, we gather five
publicly available well-annotated vehicle image datasets (i.e., VeRi [18], Vehi-
cleID [19], VRID [20], Boxcars116k [21], and Cityflow [22]) as client datasets
to create a multi-domain dataset for federated scenarios. Second, we design a
federated evaluation protocol in which each client is allowed to upload model
parameters to the server without sharing their data, thus ensuring privacy pro-
tection, as shown in Fig. 1. Third, we design a baseline federated vehicle re-
identification method, called FVVR. It employs the most common aggregation
strategy, namely, federated-averaging (FedAvg), to facilitate model interactions
between the server and clients. We utilize ResNet50 as the backbone for both
the server and client models and use the cross-entropy loss function for model
training. Due to variations in the number of identities among clients, our FVVR
method only aggregates parameters of the same backbone between the server
and clients. We conduct extensive experiments on the FV-REID benchmark to
establish the baseline performance for future studies.



FV-REID: A Benchmark for Federated Vehicle Re-identification 397

2 Related Work

2.1 Vehicle Re-identification

In recent years, there has been extensive research of vehicle re-identification
technology. Researchers have proposed various methods for feature extraction
[2,3] and metric learning [23,24]. Shen et al. [2] designed a graph interactive
transformer method, which combines graphs and transformers to enable cooper-
ation between local and global features. Wang et al. [3] developed a multiscale
attention network to exploit distinct features of vehicle images in the unknown
domain. Chu et al. [23] introduced a viewpoint-aware metric learning method to
enhance ReID accuracy. Yu et al. [24] proposed an unsupervised vehicle ReID
approach using self-supervised metric learning based on a feature dictionary.
These methods aim to improve the accuracy of vehicle re-identification. How-
ever, the issue of vehicle privacy protection and data security has not been ade-
quately addressed. It is important to note that these methods have the potential
to violate the personal privacy of vehicle owners if visual features, such as color,
shape and identification information, are misused or leaked.

2.2 Federated Learning

Federated learning is receiving a lot of attention from both academic and indus-
trial fields due to its great potential to protect data privacy. Recently, federated
learning has been applied to person re-identification. For exmaple, Zhuang et
al. [15] proposed a federated person re-identification benchmark and improved
algorithms to optimize its performance. Sun et al. [16] focused on improving
the normalization layer and improving the performance of federated learning
in image classification tasks. Zhang et al. [17] proposed a federated spatial-
temporal incremental learning approach to continuously optimize the models
deployed in many distributed edge clients. Although vehicle re-identification is
similar to person re-identification, the activity range of vehicles usually involves
a larger space-time area, which increases the heterogeneity among different client
datasets, making federated vehicle re-identification a significantly difficult task.

3 Federated Vehicle Re-identification Benchmark

3.1 Multi-domain Dataset

We use five different vehicle datasets VeRi [18], VehicleID [19], VRID [20],
Boxcars116k [21] and Cityflow [22], which vary in number of images and cam-
eras, camera angles, and camera environments to bulid a multi-domain dataset.
Datasets statistics are shown in Table 1. The vehicle images in these datasets
cover a broad distribution. VeRi comprises images from 20 cameras, VRID from
326 cameras, Boxcars116k from 137 cameras, and Cityflow from 40 cameras.
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Table 1. Statistics of 5 client datasets of FV-REID benchmark.

Datasets Cameras Train Test

IDs Images Query Gallery

IDs Images Images

VeRi 20 575 37743 200 1678 11579

VehicleID Small – 13164 113346 800 5693 800

Medium 1600 11777 1600

Large 2400 17377 2400

VRID 326 1000 5000 1000 2000 3000

Boxcars116k 137 11653 51691 11125 12734 26415

Cityflow 40 238 30410 95 1669 4856

3.2 Federated Evaluation Protocol

Each dataset is associated with a specific client, and in total, there are five
clients and one server. To ensure that each client’s data privacy is protected,
there is no sharing of data between clients or between the clients and the server.
This approach effectively safeguards the confidentiality of each client’s data. In
evaluating the accuracy of vehicle re-identification, we utilize two metrics: the
rank-1 accuracy [25] and the mean average precision (mAP) [26]. While rank-1
is a useful indicator, mAP is a more comprehensive measure of performance,
particularly when multiple gallery images are matched to a query. The server
model is applied to report baseline performance. Furthermore, because VRID,
Boxcars116k, and Cityflow have no standard re-identification data division, we
design data divisions as follows. For VRID and Boxcars116k, the test set is
divided into a query set, which contains 25% images of all identities in the test
set, and a gallery set, which includes the remaining images in the test set. Due
to Cityflow not releasing an annotated test set, we split the test set from the
original training set. In particular, images of identity 1 to identity 95 are used
for the test set, and the rest seems to be the training set. Overall, our approach
prioritizes data privacy and accuracy in vehicle re-identification, ensuring that
each client’s data is kept secure while still achieving high levels of performance.

3.3 FVVR Baseline Method

As shown in Fig. 2, both the server and client models use the same backbone,
namely ResNet50 [27], and the cross-entropy (CE) loss function. At the beginning
of model training, the sever first initializes the global model, denoted as w0, then
the FVVR method is implemented as follows.

Step-1: The server sends a global model to clients. At the start of the t-th
training round, it sends the global model ωt to clients to participate in training.

Step-2: Clients implement local training. Each client connects the global
model ωt to its identity classifier ϑt−1 to form a new model (ωt, ϑt−1). Then,
clients are updated as follows.
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Fig. 2. Illustration of the FVVR baseline method.

Fig. 3. Performance on VeRi.

(ωt
k, ϑ

t
k) ←

{
(ωt, Init(ϑk)), t = 0(
ωt, ϑt−1

k

)
, otherwise

, (1)

where k is a client number; ← represents gradient updating; ωt
k, ϑt

k represent
the backbone model and identity classifier of client k after training, respectively.

Step-3: Clients upload updated backbone model parameters ωt.
Step-4: Sever aggregates client model parameters ωt to obtain a new global

model ωt+1 via federated-average [28], as follows.

ωt+1 =
∑
k∈C

nk

n
ωt
k, (2)

where C represents the set of clients, n represents the total image number of all
client datasets; nk is image number of the k-th client dataset. Steps 1 to 4 are
continuous executed T times to obtain the final server model ωT .
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4 Experiment and Analysis

4.1 Setup

The hardware device is a GeForce RTX 4090 GPU. Software tools are Pytorch
1.10.0, CUDA 11.3, and Python 3.8. The operating system is Ubuntu 20.04.
The ImageNet pre-trained ResNet50 is applied as the backbone for server and
client models. The learning rate is initialized at 0.01, and as training progresses,
the learning rate decreases 0.1 times every 20 rounds. The total round is set
to 120, and in each round, the local training epoch is set to 1. The stochastic
gradient descent (SGD) optimizer is used for training, and each batch consists
of 32 256 × 256 sized images randomly sampled from each client dataset.

Table 2. Performance of the FVVR and non-federated learning (NFL) models.

Datasets Model Rank-1(%) mAP(%)

VeRi FVVR 58.05 32.91

NFL 66.25 46.51

VehicleID Small FVVR 74.47 77.41

NFL 79.67 82.45

Medium FVVR 72.77 75.32

NFL 76.73 79.52

Large FVVR 70.22 72.81

NFL 75.02 77.82

VRID FVVR 83.27 70.92

NFL 88.28 79.21

Boxcars116k FVVR 63.04 55.11

NFL 82.44 74.51

Cityflow FVVR 36.61 15.93

NFL 42.98 22.68

4.2 Federated Performance and Analysis

Table 2 shows the experimental results of FVVR on five datasets. For the VeRi
dataset, the FVVR model’s Rank-1 and mAP are 58.05% and 32.91%, respec-
tively, while the non-federated learning (NFL) model’s Rank-1 and mAP are
66.25% and 46.51%, respectively. It can be seen that Rank-1 and mAP of the
FVVR model are 8.2% and 13.6% lower than those of the NFL model, respec-
tively. For the VehicleID dataset, the test set is divided into three subsets [19]:
small, medium, and large. For the large test subset, the FVVR model’s Rank-1
and mAP are 70.22% and 72.81%, respectively, while the NFL model’s Rank-1
and mAP are 75.02% and 77.82%, respectively. From the comparison results on
FVVR model and NFL model, it can be observed that the performance of the
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Fig. 4. Performance on VRID.

Fig. 5. Performance on Boxcars116k.

Fig. 6. Performance on Cityflow.
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FVVR model is generally lower than that of the NFL model, which indicates
that applying federated learning to vehicle re-identification impacts the model’s
performance, and there remain significant challenges to be addressed. Besides,
it can also be observed that compared to the performance on smaller datasets,
the FVVR model’s performance on larger datasets is more similar to the NFL
model’s performance. This is because, as indicated in Eq. (2), larger datasets
have a more significant weight during the aggregation process, reflecting their
importance in the overall distribution of data. Furthermore, a larger dataset is
more stable for learning, resulting in better performance.

To gain a more intuitive understanding of the experimental results and
trends, Figs. 3, 4, 5, 6, and 7 show the Rank-1 accuracy and mAP of FVVR
training for 120 epochs in the five datasets. We perform a test every ten epochs
of communication and observe that the FVVR fluctuates continuously during
the training process. For example, on the Citylflow dataset, Rank-1 is 36.61% at
epoch 100, which is 7.73% higher than that at epoch 90.

Due to the heterogeneity of the client data, the convergence fluctuations using
the FVVR method in the training process are relatively significant. Therefore, to
better evaluate the performance of the FVVR method, we conduct three exper-
iments in different time periods for FVVR and take the average of the results as
the final experimental benchmark result. The experiments also demonstrate that
the FedAvg aggregation strategy is not optimal and that further improvements
and refinements are needed in future research.

4.3 Performance Comparison to Non-Federated State-of-the-art

As shown in Tables 3 and 4, we compared the FVVR model with the state-of-
the-art methods on the VeRi and VehicleID datasets. We found that on the VeRi
dataset, the FVVR’s performance is 39.25% lower in Rank-1 and 55.09% lower
in mAP compared to the RPTM method. Additionally, the server performance
on the VeRi dataset has a significant gap compared to other advanced meth-
ods, while on the VehicleID dataset, the difference is marginal. For example, in
the large subset of VehicleID, the FVVR performance is 22.68% lower in rank-1
and 7.69% lower in mAP compared to the RPTM method. The experiments
reveal that federated vehicle re-identification generally underperforms compared
to non-federated vehicle re-identification. Furthermore, the performance of fed-
erated vehicle re-identification on larger datasets is more similar to that of its
non-federated counterpart, while the disparity is more pronounced on smaller
datasets.
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Fig. 7. Performance on small, medium, large subsets of VehicleID.

Table 3. Comparison of FVVR and state-of-the-art on VeRi.

Method Rank-1 mAP Reference

RPTM [29] 97.30 88.00 WACV 2023

VehicleNet [30] 96.78 83.41 IEEE TMM 2020

TransReID [31] 97.1 82.3 ICCV 2021

ANet [32] 96.8 81.2 Neurocomputing 2021

MSINet [33] 96.8 78.8 CVPR 2023

CAL [34] 95.4 74.3 ICCV 2021

Git [2] 96.86 80.34 IEEE TIP 2023

FVVR 58.05 32.91 Ours

Table 4. Comparison of FVVR and state-of-the-art on VehicleID.

Method Small Medium Large Reference

Rank-1 mAP Rank-1 mAP Rank-1 mAP

PNP LOSS [35] 95.5 – 94.2 – 93.2 – AAAI 2022

RPTM [29] 95.5 84.8 93.3 81.2 92.9 80.5 WACV 2023

VehicleNet [30] 83.64 – 83.15 – 79.46 – IEEE TMM 2020

ANet [30] 87.9 – 82.8 – 80.5 – Neurocomputing 2021

CAL [34] 82.50 87.80 78.20 83.80 75.10 80.90 ICCV 2021

GiT [2] 84.65 90.12 80.52 86.77 77.94 84.26 IEEE TIP 2023

FVVR 74.47 77.41 72.77 75.32 70.22 72.81 Ours

5 Conclusion

This paper presents a federated vehicle re-identification (FV-REID) benchmark,
aiming to delve deeper into vehicle re-identification performance while safeguard-
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ing vehicular privacy. To simulate authentic federated scenarios, we construct a
multi-domain dataset tailored for federated contexts, harnessing five public vehi-
cle image datasets. Our evaluation protocol ensures that clients only upload
model parameters, precluding raw data sharing, thereby robustly preserving
privacy. Additionally, we design a baseline federated vehicle re-identification
method named FVVR, which employs the federated-averaging strategy for
model interaction. Through comprehensive experiments, a baseline performance
is established, laying the groundwork for future research.
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Abstract. In recent years, deep learning-based matting methods have
received increasing attention due to their superior performance. The
design of the loss function plays a important role in the performance
of matting models. Existing loss functions train the network by super-
vising it to learn specific value, gradient, and detailed information of the
ground-truth alpha matte. However, these loss functions only supervise
network learning based on the value of alpha matte, and the matting net-
work may not fully understand the uniqueness of the matting task. We
introduce a loss function which supervises image features. On one hand,
it effectively extracts useful information from the ground-truth alpha.
On the other hand, this loss function combines the mathematical model
of matting, which constrains the image features to satisfy local differ-
ences. Multiple experiments have shown that our loss function enhances
the generalization ability of matting networks.

Keywords: Natural Image Matting · Loss Function · Deep Learning

1 Introduction

Image matting is a challenging tasks in computer vision that aims to separate the
foreground from a natural image by predicting the transparency of each pixel. It
has been applied in the field of biometric recognition, such as finger-vein [1], gait
recognition [2,3], and face verification [4], as it can finely delineate the target
contours, thus facilitating biometric recognition tasks.

The image I can be represented as a convex combination of the foreground
F and the background B.

Ii = αiFi + (1 − αi)Bi αi ∈ [0, 1] (1)

where αi, Fi, and Bi respectively represent the transparency, foreground color,
and background color at position i in the image. This problem is a highly
underdetermined mathematical problem. There are three unknowns and only
one known in the equation. The trimap is introduced to provide additional con-
strains. It consists of three parts: the known foreground region where the alpha
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 407–416, 2023.
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value is known to be 1, the known background region where the alpha value is 0,
and an unknown region where the alpha value needs to be determined. Existing
deep learning-based matting methods have greatly surpassed traditional methods
in terms of the quality of alpha mattes, attracting a rapid increase in attention
to deep learning-based matting methods.

The loss function is a fundamental component of deep learning, as it measures
the difference between the predicted output of a model and the true labels.
It provides guidance for model training and optimization objectives, allowing
the model to gradually improve its prediction accuracy. The alpha prediction
loss is computed as the average absolute difference between the predicted alpha
matte and the ground-truth alpha matte. The composition loss, introduced by
[5], utilizes the ground-truth foreground and background colors to supervise the
network at the pixel level. Gradient loss [6] has been proposed to improve the
sharpness of the predicted alpha matte and reduce excessive smoothness. The
Laplacian Pyramid loss [7], a multi-scale technique, is employed to measure the
disparities between the predicted alpha matte and the ground-truth alpha matte
in local and global regions. Indeed, the loss functions used for image matting
encompass supervision at the pixel level as well as supervision of the gradient and
detail changes in the alpha channel, which improves the accuracy and quality
of the matting results. But these loss functions only focus on the differences
between the alpha matte predicted by the network and the ground-truth alpha
matte. Consequently, the network may not effectively learn valuable information
inherent in the ground-truth across different feature layers. In general, increasing
the depth of a neural network can improve its representation ability to some
extent. To better train the network, it is common to add auxiliary supervision to
certain layers of the neural network. Some methods [8,9] supervise the multi-scale
features obtained by the decoder at different scales. However, directly supervising
neural networks with ground-truth alpha mattes causes the decoder at a small
scale to strictly approximate the ground-truth alpha mattes, which may result
in overfitting. Figure 1 provides an example. When the image matting method
is applied to scenarios different from the training images, the prediction of the
decoder at a small scale may not be accurate. Any prediction error of the decoder
would degrade the quality of alpha mattes.

We introduce a loss function called Alpha Local Difference Loss(ALDL),
which leverages the local differences within the ground-truth to supervise fea-
tures at various resolution scales. Unlike gradient loss, ALDL captures the dif-
ferences between the pixel and its surrounding pixels in the ground-truth, and
utilizes these differences as constraints to supervise the features of the image.
Gradient loss only describes the gradient of the central pixel in the x and y
directions, without explicitly capturing the specific variations between the cen-
tral pixel and local surrounding pixels. Furthermore, instead of applying strict
supervision on early decoders [8,9], ALDL is a loose supervision that leads the
matting network to learn the relationships between features, rather than strictly
adhering to specific numerical values.

This work’s main contributions can be summarized as follows:
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Fig. 1. From left to right, the images are the input, trimap, ground-truth, the predicted
results by the MatteFormer and ours. We can see that there are serious errors in the
prediction of the intermediate details of alpha. These errors are the result of inaccurate
alpha prediction caused by low-resolution feature estimation.

1. We propose a loss function called Alpha Local Difference Loss specifically
designed for matting networks, which utilizes the supervision of local fea-
ture relationships. This loss function can be easily integrated into existing
networks with hardly any need to add extra parameters.

2. Through experiments conducted on multiple networks and datasets, our
Alpha Local Difference Loss demonstrates the ability to improve the gener-
alization capability of matting networks, resulting in enhanced object details
in the matting process.

2 Methodology

In this section, we illustrate how to define the difference between each point
and its local neighboring points based on the local information of the ground-
truth alpha. The local difference is embedded into the image features, and the
Alpha Local Difference Loss is proposed to constrain the network in learning this
difference. Furthermore, an analysis is conducted to determine which features in
the neural network should be supervised.

2.1 Local Similarity of Alpha Labels and Features

Consistent with the assumption of closed-form matting [10], we assume that pix-
els within a local region have the same foreground color F and background color
B. According to Eq. (1), we can obtain the pixel value difference ΔI between
two points x and y within a local region. Similarly, by using the ground-truth
alpha, we can also obtain the alpha value difference Δα between point x and y.

Ix − Iy = αxF + (1 − αx) − αyF − (1 − αy)B = (αx − αy)(F − B) (2)

ΔI = Δα(F − B) (3)

Δf = Δα(fF − fB) (4)
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Fig. 2. The process of calculating ALDL

It can be observed that there is a linear relationship between the color value
difference ΔI and the F − B within a local region on the image. Because F and
B are invariant within the local region, F − B is a fixed vector. By analogy, we
can consider feature difference Δf as a linear combination of features fF and
fB . In spatial terms, for two features fF and fB within a local region, Eq. (4) is
obtained. The features should also be constrained to satisfy this relationship as
much as possible. This relationship embodies the intrinsic meaning of matting,
and it is believed that it will help the network learn to synthesize Eq. (1).

2.2 The Design of Loss Function

For a position i, let ∂ {i} denote the set of points within the M1 × M2 region R,
where M1 and M2 respectively denote the height and width of the R, and pixel i
is located at the center position of the R. The set of values for the ground-truth
alpha at position i is: ∂ {αi} = {αi1, αi2, αi3, ..., αiM1×M2}. It is worth noting
that αij is a scalar. We can compute the differences between αi and each element
in its set ∂ {αi}.

dif (αi, αij) = αi − αij (5)

simα (αi, αij) = 1 − |dif (αi, αij)| (6)

simf (fi, fij) = ϕ(cos(norm(fi), norm(fij))) (7)

loss =
∑

i

∑

j

simα (αi, αij) − simf (fi, fij) (8)
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dif (αi, αij) represents the difference between the alpha value of the central
pixel i and the alpha values of other positions within the region R. To facilitate
computation, we normalize the values between 0 and 1 using the simα function.
The smaller the difference between αi and αij , the closer the value of simα tends
to approach 1. Given the feature X ∈ RH/r×W/r×C , for any point at the location
i in X, ∂ {fi} = {fi1, fi2, fi3, ..., fiM1×M2}, where fiM1×M2 ∈ R1×1×C , r is the
downsampling factor. In order to align the resolution of alpha with the feature,
the ground-truth alpha is downsampled to obtain ∂ {αr

i }. Each element in the set
∂ {αr

i } and ∂ {fi} corresponds to each other based on their spatial positions. It is
worth noting that our goal is to correspond the vector Δf with the scalar Δα, so
the similarity between the two features is calculated to convert the vector into a
scalar. The definitions of distance between features is (7), norm(fi) denotes the
calculation of the norm of vector fi, ϕ represents a mapping function, cos refers
to the calculation of the cosine similarity. The aim is to maintain consistency
in terms of both the differneces of alpha values and the differneces of features
between each point and its neighboring adjacent points. Hence, the definition of
Alpha Local Difference Loss is Eq. (8).

2.3 The Supervisory Position of ALDL

[11] indicates that different layers in a convolutional neural network tend to learn
features at different levels. Shallow layers learn low-level features such as color
and edges and the last few layers learn task-relevant semantic features. If the
features at shallow layers are supervised to capture task-related knowledge, the
original feature extraction process in the neural network would be overlooked.
Therefore, we only supervise the features outputted by the decoder. Addition-
ally, our supervision relationship is derived from the ground-truth alpha in local
regions, which can be considered as extracting features at a lower-level semantic
level. Alpha Local Difference Loss should not be used for supervising features
representing higher-level semantic features with very low resolution. As shown in
the Fig. 2, taking MatteFormer [9] as an example, its decoder outputs features
with resolutions of 1/32, 1/16, 1/8, 1/4, and 1/2. Supervision is only applied
to the features with resolutions of 1/8, 1/4, and 1/2 in the decoder, while the
feature with a resolution of 1 is not supervised in order to reduce computational
cost.

3 Experiments

To validate the effectiveness of the suggested Alpha Local Difference Loss func-
tion, we extensively perform experiments on various matting baselines using
multiple benchmark datasets. The performance is assessed in real-world scenar-
ios to verify its generalization capability.
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Fig. 3. Y-axis: the SAD error on AIM-500. X-axis: the correlation coefficient between
the difference of alpha and the difference of feature.

Table 1. The effectiveness of implementing ALDL

AIM-500 AM-2K P3M

MSE SAD Grad Conn MSE SAD Grad Conn MSE SAD Grad Conn

GCA 40.00 35.25 27.86 35.89 14.49 9.23 8.92 8.17 17.49 8.50 13.41 7.90

GCA+ALDL 38.33 35.65 27.82 36.13 15.28 9.45 8.75 8.50 16.98 8.27 12.92 7.74

MatteFormer 34.32 31.25 23.53 31.25 17.00 9.93 9.81 9.16 22.62 10.07 14.39 9.63

MatteFormer+ALDL 31.11 28.23 21.79 28.21 15.68 9.68 9.73 8.93 21.42 9.93 14.48 9.51

VitMatte 15.69 19.35 12.99 18.74 7.65 6.50 6.07 5.46 11.34 6.40 10.33 6.79

VitMatte+ALDL 15.45 17.76 12.85 17.09 7.87 6.44 5.83 5.41 10.84 6.16 9.82 5.56

- MSE values are scaled by 10−3

- The best results are in bold

3.1 Datasets and Implementation Details

We train models on the Adobe Image Matting [5] dataset and report perfor-
mance on the real-world AIM-500 [8], AM-2K [12], P3M [13]. AIM-500 contains
100 portrait images, 200 animal images, 34 images with transparent objects,
75 plant images, 45 furniture images, 36 toy images, and 10 fruit images. The
AM-2k test set comprises 200 images of animals, classified into 20 distinct cate-
gories. P3M-500-NP contains 500 diverse portrait images that showcase diversity
in foreground, hair, body contour, posture, and other aspects. These datasets
comprise a plethora of human portrait outlines and exhibit numerous similar-
ities to datasets employed for tasks like gait recognition and other biometric
recognition tasks. Our implementation is based on PyTorch. No architectural
changes are required. We only modify the loss function. The height M1 and
width M2 of the local region R are both set to 3, and the center position of
R belongs to an unknown region in the trimap. Various matting models utilize
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distinct loss functions. In order to effectively illustrate the efficacy of ALDL,
we directly incorporate ALDL into the existing loss function. In line with the
approach outlined in [14], four widely adopted metrics are employed to assess
the quality of the predicted alpha matte. These metrics include the sum of abso-
lute differences (SAD), mean squared errors (MSE), gradient errors (Grad), and
connectivity errors (Conn). Four matting baselines, namely: GCA Matting [15],
MatteFormer [9], VitMatte [16], AEMatter [17] are evaluated. GCA implements
a guided contextual attention module to propagate opacity information based
on low-level features. MatteFormer introduces prior-token for the propagation
of global information. VitMatte proposes a robust matting method based on Vit
[18].

3.2 Proof of the Local Similarity Hypothesis Between Alpha
and Feature

In order to validate the effectiveness of the local similarity hypothesis in improv-
ing image matting, during the inference stage, we extracted the feature outputs
from the intermediate layer. Based on (6) and (7), the correlation coefficient of
simα and simf for each point in the unknown region of the trimap have been
calculated. It can be observed that the higher the correlation coefficient, the
better the matting performance of the method from Fig. 3. This indicates that
if the features satisfy the local differences defined by ground-truth alpha, it can
improve the quality of the matting.

3.3 Generalization

ALDL was applied to three different baselines and compared with their coun-
terparts without ALDL, as shown in the Table 1. It can be observed that for
MatteFormer and VitMatte, ALDL improves their generalization ability on three
datasets. This suggests that constraining the relationships between local features
can help the network better understand the matting task. The combination of
GCA with ALDL demonstrates its generalization ability, particularly on the
P3M dataset. GCA incorporates a shallow guidance module to learn feature
relationships, but evaluating the quality of these relationships poses a challenge.
In contrast, ALDL explicitly constrains local feature relationships using ground-
truth alpha, aligning with the objective of GCA’s shallow guidance module.
Consequently, the addition of ALDL to GCA results in moderate performance
improvements on the AIM-500 and AM-2K datasets. GCA consistently per-
forms well according to the Grad metric, indicating that ALDL excels at cap-
turing intricate details, accurately defining contours, and proves advantageous
for downstream tasks involving matting.
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Table 2. Ablation experiment of ALDL

AIM-500 AM-2K P3M

MatteFormer R1 R2 MSE SAD Grad Conn MSE SAD Grad Conn MSE SAD Grad Conn

34.32 31.25 23.53 31.25 17.00 9.93 9.81 9.16 22.62 10.07 14.39 9.63

� 26.99 23.95 20.59 23.41 15.42 9.10 9.14 8.23 18.11 8.69 13.32 8.16

� 33.16 29.10 23.23 28.92 15.63 9.39 9.94 8.52 22.18 9.74 14.65 9.28

GCA 40.00 35.25 27.86 35.89 14.49 9.23 8.92 8.17 17.49 8.50 13.41 7.90

� 38.33 35.65 27.82 36.13 15.28 9.45 8.75 8.50 16.98 8.27 12.92 7.74

� 39.04 35.23 28.34 35.82 15.39 9.81 8.96 8.80 17.31 8.53 13.26 7.80

- MSE values are scaled by 10−3

- R1: ALDL supervises features with resolutions of 1/2, 1/4, 1/8. R2: ALDL supervises
features with all resolutions of decoder output.

3.4 Ablation Study of Deep Supervision

An ablation experiment was conducted using MatteFormer, as its decoder’s out-
put features are supervised with ground-truth. The difference is that ALDL
supervises the local differential relationships between features, while Matte-
Former directly supervises the alpha values at the feature level. As shown in
the Table 2, MatteFormer marked with R1 or R2 denotes removing the struc-
ture that originally outputs alpha values from the decoder and instead directly
supervising the feature level with ALDL. GCA marked with R1 or R2 represents
the application of the ALDL to the intermediate layer features of the decoder.
Experimental results demonstrate that applying ALDL to features, which is a
relatively weak constraint, yields better performance than directly supervising
with alpha values. Additionally, since ALDL explores local information from
ground-truth, which essentially belongs to low-level features, it is more suitable
for shallow features rather than deep features.

4 Conclusion

This study focuses on the loss function of deep image matting methods. We
analyzed the shortcomings in the loss functions of existing matting models, and
proposed the alpha local difference loss function, which takes the ground-truth
alpha matte and the composition formula of image matting as the starting point,
to supervise the image features. Extensive experiments are performed on several
test datasets using state-of-the-art deep image matting methods. Experimental
results verify the effectiveness of the proposed ALDL and demonstrate that
ALDL can improve the generalization ability of deep image matting methods.
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Abstract. Video anomaly detection (VAD) aims to detect abnormal
behaviors or events during video monitoring. Recent VAD methods use
a proxy task that reconstructs the input video frames, quantifying the
degree of anomaly by computing the reconstruction error. However, these
methods do not consider the diversity of normal patterns and neglect
the scale differences of the abnormal foreground image between different
video frames. To address these issues, we propose an unsupervised video
anomaly detection method termed enhanced memory adversarial net-
work, which integrates a dilated convolution feature extraction encoder
and a feature matching memory module. The dilated convolution fea-
ture extraction encoder extracts features at different scales by increasing
the receptive field. The feature matching memory module stores multiple
prototype features of normal video frames, ensuring that the query fea-
tures are closer to the prototypes while maintaining a distinct separation
between different prototypes. Our approach not only improves the pre-
diction performance but also considers the diversity of normal patterns.
At the same time, it reduces the representational capacity of the pre-
dictive networks while enhancing the model’s sensitivity to anomalies.
Experiments on the UCSD Ped2 and CUHK Avenue dataset, comparing
our method with existing unsupervised video anomaly detection meth-
ods, show that our proposed method is superior in the AUC metric,
achieving an AUC of 96.3% on the UCSD Ped2 dataset, and an AUC of
86.5% on the CUHK Avenue dataset.

Keywords: Anomaly detection · Dilated convolution · Feature
matching

1 Introduction

With the widespread application of video surveillance technology, video anomaly
detection has emerged as an essential component in areas such as security pro-
tection [1], autonomous driving [2], industrial intelligence [3], medical assistance
[4]. Video anomaly detection is the process of detecting abnormal behaviors or
events during video monitoring.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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Video anomaly detection is typically implemented using a proxy task [5] that
reconstructs the input video frames or predicts the future frames, quantifying the
degree of anomaly by computing the reconstruction or prediction error. Existing
proxy task can be classified into two categories: reconstruction discrimination
and future frame prediction method. Representative reconstruction discrimina-
tion algorithms include convolution autoencoder [5], U-Net [6], and generative
adversarial networks [7]. In cases where the abnormality features subtle and
gradual changes, these reconstruction-based methods struggle to capture the
presence of anomalies, does not explicitly consider the diversity of normal pat-
terns. The future frame prediction approach assumes that normal events occur
in an orderly manner, while abnormal events are sudden and unpredictable. In
order to suppress the generalization ability of the Auto-encoder, Gong et al. [8]
proposed a Memory-augmented Auto-encoder (MemAE) for anomaly detection.
MemAE receives information from the encoder and then uses it as a query to
retrieve some similar memory slots which are then combined to yield new encod-
ing features for the decoder to reconstruct. The MemAE is trained on normal
data, thus encouraged to store normal patterns in the memory. Park et al. [9]
proposed an unsupervised learning approach to anomaly detection that explic-
itly considers the diversity of normal patterns, while reducing the representation
capacity of CNNs. They utilize a memory module with a novel update scheme, in
which the items within the memory capture prototypical patterns of normal data.
However, these methods do not guarantee sufficient similarity between different
memory contents and different query features, thus limiting the enhancement of
query features. Additionally, the types of anomalous behaviors are diverse, and
the sizes and scales of anomalous regions in video frames vary. When quanti-
fying the degree of anomaly through reconstruction error, for certain abnormal
video frames with relatively small anomalous regions, the reconstruction error is
minor, leading to potential misclassification as normal frames.

To address above problem, we propose an enhanced memory adversarial net-
work anomaly detection framework that contains a dilated convolution feature
extraction encoder and a feature matching memory module, which is used for
efficient video anomaly detection tasks. The proposed network aims to increase
the prediction error of abnormal frames, reduce the prediction error of normal
frames, thereby improving the accuracy of our anomaly detection, and enhanc-
ing the network’s sensitivity to anomalies. Due to the remarkable capability
of dilated convolutions to capture significant information across larger areas,
we propose a dilated convolution feature extraction encoder that facilitates the
extraction of features at various scales. To constrain the generalization ability of
the prediction network, we added a feature matching memory module between
the encoder and decoder of the generator. This module can learn and store multi-
ple prototypes feature exist in the feature space of normal video frames. By using
these prototypes feature, we match and enhance the features of video frames.
Additionally, we propose to use the infoNCE loss [10] in the feature matching
memory module to ensure that the query features are closer to the memory items
while maintaining a distinct separation between different memory items.
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2 Method

The overall architecture is shown in Fig. 1. Our model consists of a generator
network, a discriminator network and an optical flow network. We first input
consecutive frames Ise = {I1, I2, ..., In} into the dilated convolution feature
extraction encoder. It utilizes dilated convolutions with varying dilation rates
to extract features of different scales from these input frames. Then these fea-
tures are fed into feature matching memory module and connect them to the
nearest memory item to enhance the features. Next, the enhanced features are
input into the decoder to generate the future frames Ît. The ground truth is It.
When abnormal frames are input, a large error between the predicted frame and
the ground truth indicates that anomalous events have occurred. Additionally,
we introduce LiteFlownet [11] optical flow network to enhance the motion fea-
ture correlation between adjacent frames, which makes Ît closer to It. Finally, we
employ a patch GAN discriminator [12] to discern the predicted frames during
adversarial training. Each of the components are discussed next.

Fig. 1. The overall architecture of our proposed method.

2.1 Dilated Convolution Feature Extraction Encoder

From a given sequence of n frames Ise, the high level features can be extracted by
encoder. However, different input frames may contain features of varying sizes
and scales. In order to extract features of different scales, we employ dilated
convolutions to increase the receptive field. In regular convolution, the size and
shape of each convolution kernel define its receptive field, which determines
the range of the input image it can “see”. Dilated convolution, on the other
hand, enlarges the span of the convolution kernel by inserting zero values, thus
expanding the range of the receptive field. Figure 2 illustrates that a dilated
convolution with a 3× 3 kernel and a dilation rate of 2 is equivalent regular
convolution with a 5× 5 kernel. Hence, we employ dilated convolutions with
different dilated rates to extract features of different scales.
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Fig. 2. (a) is the dilated convolution receptive field with an dilated rate of 2, (b) is the
regular convolution receptive field.

Firstly, we utilize dilated convolution D1 conv with a dilation rate of 1 to
extract small-scale features from the input Ise. Then, we employ dilated con-
volution D2 conv with a dilation rate of 2 to extract medium-scale features.
Finally, dilated convolution D4 conv with a dilation rate of 4 are used to extract
large-scale features. Additionally, the multi-scale features are summed element
by element in the form of a residual connections. The specific process is detailed
below:

q1 = cat(Ise,D1 conv(Ise))
q2 = cat(q1,D2 conv(q1))
qt = cat(q2,D4 conv(q2))

(1)

2.2 Feature Matching Memory Module

As shown in the Fig. 1, we propose a feature matching memory module to be
added between the dilated convolution feature extraction encoder and decoder,
it study the diverse patterns of normal video frames helps the generator pro-
duce high-quality predictions for normal frames and low-quality predictions for
abnormal frames, thereby limiting the excessive expressive power of the pre-
diction network. Inspired by [9], feature matching memory module contains M
items, which prototypical patterns of normal data on the items in the memory.
It read and update the M items to store the diverse patterns of normal video,
an InfoNCE [10] loss is introduced to encourage the query features to be close
to the nearest memory item and the memory items are far enough apart.

Read. In order to enhance the features qt ∈ R
H×W×C from dilated convolution

feature extraction encoder, we need to read the items. The features qt are inputed
into feature matching memory module and divided into H × W query features
qk
t ∈ R

1×1×C(k = 1, 2, ...,K;K = H × W ) along the channel dimension. For
each query qk

t , the SoftMax function is applied to calculate the cosine similarity
wk,n

t (n = 1, ..., N) between it and each memory items pn to obtain matching
probabilities, as follows:

wk,n
t =

exp((pn)T qk
t )

∑N
n‘=1 exp((pn)T qk

t )
(2)
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For each query feature qk
t , we calculate a weighted average of the matching

probability weight wk,m
t and memory item pn, resulting in the processed feature

p̂k
t ∈ R

1×1×C as follows:

p̂k
t =

N∑

n=1

wk,n
t pn (3)

Once the corresponding p̂k
t is found for each qk

t query, p̂k
t will form a feature

tensor of the same size as qt, denoted as p̂t ∈ R
H×W×C . The qt and pt are then

concatenated along the feature channel dimension to obtain a feature tensor ft

as the input to the decoder, as follows:

ft = cat(qt; p̂t) ∈ R
H×W×2C (4)

Update. For each memory item pn, we find all the query features qk
t correspond-

ing to pn, and update it using these query features qk
t based on the weights wk,n

t ,
as follows:

pn ←− f(pn +
∑

k

wk,n
t

z
qk
t ) where z = maxk∈ϕn

(wk,n
t ) (5)

The function f(.) represents the L2 norm, which is employed to maintain
the L2 norm of the updated memory item ||pn||2 as 1. Additionally, the variable
Z denotes the maximum similarity among the set of matching probabilities,
ensuring that the normalized weighting coefficient remains within the range of 0
to 1. Furthermore, the set ϕn comprises indices k that correspond to the query
feature qk

t matched with pn.
In order to encourage the query features to be close to the nearest mem-

ory item in feature matching memory module, reduce intraclass differences, and
ensure that the memory items in the module are far enough apart to consider
diverse patterns of normal video frames, we introduce the infoNCE loss as fol-
lows:

lnce =
T∑

t

−log
exp(pn+qk

t /τ)
∑N

n exp(pnqk
t /τ)

where n+ = argmax
n∈N

wk,n
t (6)

Where n+ is an index of the nearest memory item for the query qk
t , and τ is

a temperature hyper-parameter per. The set pn contains one memory item that
is closest to the query feature and N − 1 memory items that are far from the
query feature.

Intuitively, this loss is the log loss of a N-way softmax-based classifier that
tries to classify qt as pn. It helps each query feature find the memory item with
the highest matching degree, while ensuring that different memory items are
sufficiently far apart to avoid confusion. Therefore, it can effectively assist the
feature matching memory module in classifying different memory items pn, so
as to learn diverse patterns of normal video frames, provide better prediction
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for normal frames and worse prediction for abnormal frames, and alleviate the
problem of over-generalization of prediction networks.

3 Experiments

3.1 Implementation Details

We resize each video frame uniformly to the size of 256 × 256 and use the first 4
frames to predict the 5th frame. For the feature matching memory module, we
set H and W of the query feature map to 32, the C to 512, and the M to 10.
The generator was optimized using the Adam optimizer, with a learning rate of
2e−4, while the discriminator was optimized using the Adam optimizer, with a
learning rate of 2e−5. All models are trained end-to-end using PyTorch, with an
Nvidia GTX TITAN Xp. The frame-level area under the curve (AUC) was used
in evaluating the performance of our proposed network.

3.2 Comparison with Existing Methods

Table 1 presents a performance comparison between our proposed method and
other existing approaches on two widely-used anomaly datasets. These methods
are classified into three categories: reconstruction discrimination methods, future
frame prediction methods, and other methods. Our method demonstrates strong
performance on both the UCSD Ped2 and CUHK Avenue dataset, achieving
AUC scores of 96.3% and 86.5%, respectively.

Compared to the other methods, the result of our method is more accurate
on the Avenue dataset, our method also performs best on all the two datasets.
Particularly, the performance of our method is respectively 0.4% and 2.3% bet-
ter than method presented by Hu et al. [18] on the UCSD Ped2 dataset and
the Avenue dataset in reconstruction discrimination methods. Moreover, in con-
trast to future frame prediction methods, our approach exhibits 0.5% better
performance on the Avenue. Notably, our method’s frame-level AUC exceeds
that of the future frame prediction methods presented by Liu et al. [1] as an
anomaly detection baseline. This result highlights the superior performance of
our network compared to recent anomaly detection methods in terms of AUC.

3.3 Ablation Study

Given that our network contains two major processing units such as feature
matching memory module and dilated convolution feature extraction encoder,
an ablation study was carried out in order to evaluate their effectiveness in terms
of performance. Table 2 shows result for the combinations of two components:
1) Not using any modules. 2) when the feature matching memory module are
excluded, the network has the dilated convolution feature extraction encoder. 3)
the effectiveness of the feature matching memory module, excluding the dilated
convolution feature extraction encoder, is demonstrated in the third row. 4) The
overall performance of the entire network is presented in the bottom row.
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Table 1. Comparison with existing methods for video anomaly detection in terms of
AUC (%) on two benchmark datasets.

Type Methods Ped2 Avenue

Other Tang et al. [13] 96.3 85.1

Morais et al. [14] - 86.3

Reconstruction Fan et al. [15] 92.2 83.4

Wu et al. [16] 92.8 85.5

Zhou et al. [17] 94.9 86.1

Hu et al. [18] 95.9 84.2

Predict Liu et al. [1] 95.4 85.1

Yang et al. [19] 95.9 85.9

Zhou et al. [20] 96.0 86.0

Ours 96.3 86.5

Table 2. Comparison between different processing units in the proposed network in
terms of AUC. Note: DCFE encoder represents dilated convolution feature extraction
encoder, and FMM module represents feature matching memory module.

DCFE encoder FMM module Avenue Ped2

85.1 95.4

� 85.6 95.7

� 86.1 95.9

� � 86.5 96.3

The AUC performance of the proposed network with different combinations
of components on the Ped2 and Avenue dataset is shown in Table 2. The per-
formance of the baseline, which enhanced by incorporating additional compo-
nents such as the feature matching memory module and dilated convolution
feature extraction encoder. The network utilizing all two modules achieved the
highest performance, reaching 96.3% for the Ped2 dataset and 86.5% for the
CUHK Avenue dataset. These results validate the effectiveness of the dilated
convolution feature extraction encoder in extracting features of different scales.
Furthermore, the feature matching memory module significantly contributed to
accurately restoring various patterns of normal frames.
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Fig. 3. Four ROC curves are plotted corresponding to four combinations in Table 2.
Note: DCFE encoder represents dilated convolution feature extraction encoder, and
FMM module represents feature matching memory module.

In particular, Fig. 3 shows the frame-level ROC curves using different modules
for Avenue and Ped2 dataset, respectively. Wherein the black curve represents
the feature matching memory module, the green curve represents the dilated
convolution feature extraction encoder, and the blue curve represents the base-
line. The red curve represents the combination of dilated convolution feature
extraction encoder and feature matching memory module, reaching 86.5% for
Avenue dataset.

3.4 Visual Analysis

In order to visually and clearly validate the effectiveness of the method proposed
in this paper, we conducted a visual validation on the Avenue dataset, and
the detection results and visualization results of some test videos are shown in
Fig. 4. Figure 4 (1) shows the PSNR results of the test set, with the pink area
indicating a sharp decrease in PSNR, corresponding to the abnormal parts in the
video clips. Figure 4 (2) displays the visualization results of the pink abnormal
area, showing the predicted frame, target frame, and the difference map of the
abnormal parts. The red box in the difference map outlines the contour of the
corresponding abnormality.

In the test video segments, there were three significant decreases in PSNR
scores, indicating a large prediction error between the predicted frames and the
ground truth frames, which implies the occurrence of abnormal events. In parts
(a), (b), and (c), a significant decrease in the PSNR score occurs, and the visual
interface shows some abnormal events, and the difference heatmap also displayed
the outline of the abnormal objects. All three segments exhibited anomalous
screens, lacking correlation between the preceding and following video frames.
The visualization results further confirmed the model’s effectiveness in detecting
diverse anomalies.
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Fig. 4. The figure (1) represents the PSNR score of the test video in the CUHK Avenue
dataset. Three pink areas represent abnormal events. The figure (2) shows the predicted
frame and target frame and difference map corresponding to the abnormal events in the
upper figure. The red boxed area indicates the abnormal region. (Color figure online)

4 Conclusions

This study presents an enhanced memory adversarial network which integrates
the dilated convolution feature extraction encoder and feature matching mem-
ory module to address the challenges encountered in video anomaly detection.
These challenges include the excessive expressive power of neural networks, lack
of explicit consideration for the diversity of normal patterns, and insufficient sen-
sitivity to abnormal events. Experiments on two anomaly benchmark datasets
show that our network outperforms the existing methods. The ablation study
shows that both the dilated convolution feature extraction encoder and the fea-
ture matching memory module have been very effective in improving system
performance. Moreover, the stability and accuracy of the video anomaly detec-
tion model are further improved.
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Abstract. Crowd counting is a crucial task in computer vision, offering
numerous applications in smart security, remote sensing, agriculture and
forestry. While pure image-based models have made significant advance-
ments, they tend to perform poorly under low-light and dark conditions.
Recent work has partially addressed these challenges by exploring the
interactions between cross-modal features, such as RGB and thermal, but
they often overlook redundant information present within these features.
To address this limitation, we introduce a refined cross-modal fusion
network for RGB-T crowd counting. The key design of our method lies
in the refined cross-modal feature fusion module. This module initially
processes the dual-modal information using a cross attention module,
enabling effective interaction between the two modalities. Subsequently,
it leverages adaptively calibrated weights to extract essential features
while mitigating the impact of redundant ones. By employing this strat-
egy, our method effectively combines the strengths of dual-path features.
Building upon this fusion module, our network incorporates hierarchical
layers of fused features, which are perceived as targets of interest at vari-
ous scales. This hierarchical perception allows us to capture crowd infor-
mation from both global and local perspectives, enabling more accurate
crowd counting. Extensive experiments are conducted to demonstrate
the superiority of our proposed method.

Keywords: Crowding counting · Self-attention · RGB-T ·
Transformer

1 Introduction

Crowd counting involves the process of determining the number of people in
images with varying crowd densities [6,8,9]. It poses a significant challenge due
to obstacles like occlusions, scale variations, and complex backgrounds. Although
object detection-based methods also encounter these issues, crowd counting faces
even more demanding scenarios, including densely packed crowds and varying
shooting perspectives. These inherent characteristics of the task demonstrate
its applicability in various domains, such as traffic target detection, biometrics,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
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and agricultural and forestry yield prediction. Over the past few years, consid-
erable efforts have been dedicated to this field in order to achieve more robust
performance.

Currently, crowd counting methods predominantly utilize RGB or grayscale
images as input to the network. Early approaches employed convolutional neu-
ral networks (CNNs) for directly regressing crowd numbers. However, this app-
roach often led to large loss values, making the network susceptible to overfit-
ting. To address this challenge, Zhang et al. [1] proposed the use of density maps
instead of direct number regression. They also introduced a multi-column convo-
lutional architecture to enable multi-scale target perception. Subsequent works in
crowd counting have largely focused on the density regression task. While CNNs
excel at capturing local features, they encounter difficulties in learning global long-
distance dependencies. To tackle this issue, Vaswani et al. [3] introduced a self-
attention mechanism capable of capturing global dependencies. Building upon this
idea, TransCrowd [4] was the first to employ a pure Transformer model for crowd
counting. Another notable work, MAN [5], integrated global attention and learn-
able local attention into their considered network. This combination improved the
model’s performance in capturing both local and global information.

These works have laid a solid foundation for in-depth exploration and appli-
cation in this field. However, models relying solely on single RGB or grayscale
inputs struggle to adapt effectively to low-light scenes. To overcome these limi-
tations, researchers have started incorporating additional modalities to enhance
performance across various scenarios. Under well-illuminated conditions, RGB
images offer rich information, while thermal images struggle to differentiate
individuals from the background. Conversely, in dark environments, thermal
images provide clearer information, while RGB images become less informative.
CFF [19] proposed the use of depth information as an auxiliary task to improve
RGB crowd counting performance. IADM [12] introduced a cross-modal collab-
orative representation learning framework and released the RGBT-CC dataset,
the first dataset for RGB-T crowd counting. MAFNet [11] designed a dual-
branch RGB-T crowd counting network that utilized an attention mechanism
to capture global long-range information from both RGB and thermal modali-
ties. DEFNet [20] employed a combination of techniques, including multi-modal
fusion, receptive field enhancement, and multi-layer fusion, to enhance crowd vis-
ibility while suppressing background noise. These studies primarily focus on fus-
ing two modalities, leading to significant performance improvements. However,
they overlook the potential redundancy between the two types of information,
which limits the overall performance improvement of the network.

To overcome the aforementioned challenges, we propose a refined cross-
modal fusion network for RGB-T crowd counting. By leveraging information
from both RGB and thermal modalities in parallel, CrowdFusion addresses the
limitations imposed by relying on a single modality. Our method introduces a
refined cross-modal feature fusion module that facilitates effective feature inter-
action. The primary objective is to combine the information from both modalities
while mitigating the impact of feature redundancy. To achieve this, the module
incorporates a cross-attention mechanism that combines complementary modal
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information. Moreover, adaptive calibration weights are employed to alleviate
feature redundancy. This ensures that the fused features capture the most rel-
evant and informative aspects of the crowd counting task. Furthermore, our
model aggregates features at different levels to facilitate the perception of tar-
gets at various scales. This multi-level feature aggregation enhances the model’s
ability to handle crowd counting in diverse scenarios. Through extensive exper-
iments conducted on the RGBT-CC dataset, we demonstrate the superiority of
our proposed method, highlighting its performance compared to some existing
methods.

Fig. 1. The overall framework of the proposed method.

2 Proposed Method

The overall framework of the proposed CrowdFusion is schematically shown in
Fig. 1. Given image pairs of RGB-T, we first send them to a shared backbone
to generate multi-scale feature maps for the crowd counting task. The pairs of
features from different stages are fed into the refined cross-modal feature fusion
module. Then, the fusion features are aggregated before final density regression
layers.

2.1 Backbone

Without loss of generality, we adopt the initial 10 layers from the pre-trained
VGG-16 [17] as our backbone. We divide the backbone into three stages. In addi-
tion to the first maxpooling layer, we use the output after the next two max-
pooling layers as the first two stages and the final output as the last stage. The



430 J. Cai et al.

RGB input R and thermal input T are fed to the shared backbone, respectively,
for modality-specific representation learning. The features from each stage are
extracted through the backbones and then fed to the refined cross-modal feature
fusion module for feature interaction.

2.2 Refined Cross-Modal Feature Fusion Module

The refined cross-modal feature module consists of feature interaction and adap-
tive calibration. It can be used for aggregation and refinement of features at
different levels. We denote the extracted features of R and T at ith stage as F i

t

and F i
r , respectively. First, the input feature is transformed into 1D sequences

to leverage the attention mechanism. Given a feature map Fm ∈ R
H×W×C from

the mth modal, it is divided into HW
k2 blocks with k × k resolution, and then

these blocks are stretched into a patch sequence x ∈ RM×D before feeding into
patch embedding layer, where M = HW

K2 and D = CK2. The patch size is
sequentially set as [2, 2, 4]. The embedding dimension D is specified as 512. The
patch sequence x goes through three linear transformations, generating Query
(Q), Key (K), and Value (V ) respectively. The traditional multi-head attention
mechanism [3] operates on single-modality data with Qm,Km, Vm from the same
modality, as defined by

Attention(Qm,Km, Vm) = softmax

(
QmKT

m√
dk

Vm

)
, (1)

where
√

dk is the dimension of Qm and Km. To handle multi-modal data, we
adopt a cross-modal self-attention mechanism, allowing for input patch embed-
dings from different modalities. Specifically, the mechanism uses Q from one
modality (e.g., thermal) and K,V from another (e.g., RGB):

CrossAttention (Qt,Kr, Vr) = softmax

(
QtK

T
r√

dk
Vr

)
, (2)

CrossAttention (Qr,Kt, Vt) = softmax

(
QrK

T
t√

dk
Vt

)
, (3)

where Qr,Kr, Vr and Qt,Kt, Vt represent RGB and thermal features, respec-
tively. The multi-head attention outputs F̂t and F̂r are concatenated for further
refinement.

Previous works [10,11] also interact features through complex attention
mechanisms, but they ignore the redundancy of information between the two. To
solve this problem, we utilize a feature refining method [7,18] to purify the cross-
modal features. First, we divide the concatenated features f ∈ R

Hf×Wf×Cf into
four parts. The feature maps from each part are denoted as fr ∈ R

Hf×Wf×C
′

where C
′

= Cf

4 and r ∈ {1, 2, .., 4}. In each part, the multi-scale spatial infor-
mation is learned independently, and a local cross-channel interaction is estab-
lished. To decrease the computational cost, group convolution is utilized. We
set the multi-scale kernel size k ∈ [3, 5, 7, 9] with the corresponding group size
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g ∈ [1, 4, 8, 16]. Here, g and k satisfy the following condition: g = 2
k−1
2 . The

method for multi-scale feature fr extraction is as follows:

fr = Conv (f, gr, kr × kr) , r ∈ {1, 2, .., 4}. (4)

The processed feature maps are then concatenated. After extracting multi-scale
feature maps, we perform channel-wise attention weight extraction on different
scales of feature maps. The specific calculation is as follows:

dr = σ(W2δ(W1 [Avg(fr)])), dr ∈ R
C

′ ×1×1 (5)

where Avg represents global average pooling operator, W1 and W2 represent the
fully-connected layers, δ is ReLU operation and σ refers to Sigmoid function.
The entire multi-scale channel attention weight vector is then computed as:

d = Cat(d1, d2...dr). (6)

A soft attention mechanism is employed to dynamically select different spatial
scales across channels, guided by the compact feature descriptor dr. A soft weight
softr is assigned by Softmax function. Afterwards, we perform a multiplication
between the calibrated weights of the multi-scale channel attention softr and
the feature maps of the corresponding scale fr

j as follows:

Zr = fr � softr, (7)

where � represents the channel-wise multiplication. Finally, the refined outputs
are expressed as follows:

M = Cat(Z1, Z2, ..., Zr), r ∈ {1, 2, .., 4} . (8)

For each stage, we obtain refined feature maps Mi, and then aggregate these
feature maps together before sending them to the final regression layer. We
upsample the final feature to 1/8 of the input resolution. Then we use a simple
regression head which consists of one 3 × 3 convolution layers and one 1 × 1
convolution layer. Instead of using [22], we use a Bayesian loss [21] to measure
the difference between the network output and groundtruth.

3 Experiment Analysis

In this section, we will first briefly introduce the dataset and evaluation met-
rics and then give some detailed information about the experiment. Then, our
method is compared with some state-of-the-art (SOTA) methods. Finally, the
effectiveness of our method is verified by ablation studies.
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3.1 Dataset and Metrics

We utilize the RGBT-CC [12] dataset, with 1030 training, 200 validation, and
800 testing RGB-T image pairs, each of 640×480 resolution. We evaluate perfor-
mance using Root Mean Square Error (RMSE) and Grid Average Mean Absolute
Error (GAME):

RMSE =

√√√√ 1
N

N∑
i=1

(Pi − P̂i)2, (9)

and

GAME(l) =
1
N

N∑
i=1

4l∑
j=1

|P̂ j
i − P j

i |, (10)

where N is the total test image pairs, and Pi and P̂i are the ground truth and
estimated counts, respectively. Note that GAME(0) equates to Mean Absolute
Error (MAE).

3.2 Implementation Details

All the experiments of our method are implemented on the platform of PyTorch
with a GeForce RTX 3090 GPU. The initial learning rate and weight decay are
set to be 1e−5 and 1e−4, respectively. We choose Adam as the optimizer with
batch size 1.

3.3 Comparison with SOTA Methods

In order to conduct quantitative comparisons, our method is compared to
recent prominent approaches including, HDFNet [13], SANet [2], BBSNet [14],
MVMS [15], IADM [12], BL [21], CSCA [10] and CmCaF [16] on RGBT-CC [12].
As depicted in Table 1, our proposed method demonstrates exceptional perfor-
mance. Compared to CSRNet+IADM [12], our method surpasses it by achieving
improvements of 21.52%, 17.49%, 17.69%, and 13.38% for GAME(0)–(3), respec-
tively, and a 23.00% improvement in RMSE. In comparison to the recent method
CSRNet+CSCA [10], our approach achieves notable improvements of 17.27%,
24.08%, 27.89%, 24.80%, 23.45% for GAME(0)–(3), and RMSE, respectively.
When compared to CmCaF [16], our method exhibits significant advantages
in GAME(0)–(2) and RMSE, while showing similar performance in GAME(3).
Furthermore, we present qualitative results of our network output under differ-
ent crowd densities in the dataset, as depicted in Fig. 2. The prediction results
highlight the effectiveness of our method, although we acknowledge a certain
gap in the predicted values, particularly in the third column of image pairs.
This discrepancy can be attributed to significant scale changes, complex lighting
environments, and severe occlusion. In summary, the above results validate the
superiority of our proposed method.
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Table 1. Comparison of some SOTA methods with ours on RGBT-CC.

Method GAME(0) GAME(1) GAME(2) GAME(3) RMSE

HDFNet [13] 22.36 27.79 33.68 42.48 33.93

SANet [2] 21.99 24.76 28.52 34.25 41.6

BBSNet [14] 19.56 25.07 31.25 39.24 32.48

MVMS [15] 19.97 25.10 31.02 38.91 33.97

MCNN+IADM [12] 19.77 23.80 28.58 35.11 30.34

BL [21] 18.70 22.55 26.83 34.62 32.67

CSRNet+IADM [12] 17.94 21.44 26.17 33.33 30.91

CSRNet+CSCA [10] 17.02 23.30 29.87 38.39 31.09

BL+IADM [12] 15.61 19.95 24.69 32.89 28.18

CmCaF [16] 15.87 19.92 24.65 28.01 29.31

Ours 14.08 17.69 21.54 28.87 23.80

3.4 Ablation Study on Refined Cross-Modal Feature Fusion Module

We first establish a baseline to show the improvement of our proposed mod-
ule. This baseline is to gather the features of the cross-modal inputs through a
shared backbone, and then directly feed them into the density regression layer to
obtain the predicted output. The experimental results are presented in Table 2.
As shown, our method achieves 8.63%, 7.24%, 6.79%, 3.67% improvement in
GAME(0)–(3), and 13.17% improvement in MSE. This indicates the effective-
ness of the proposed module.

Table 2. Ablation study on the refined cross-modal feature fusion module on RGBT-
CC.

Method GAME(0) GAME(1) GAME(2) GAME(3) RMSE

Baseline 15.41 19.07 23.11 29.97 27.41

Baseline + MAF [11] 16.33 19.14 22.53 28.78 27.83

Baseline + CSCA [10] 15.22 18.37 21.91 28.44 27.04

CrowdFusion 14.08 17.69 21.54 28.87 23.80

We further compare our method with other cross-modal fusion methods,
namely MAF [11] and CSCA [10]. For a fair comparison, we place them in the
same baseline and then aggregate their features to obtain the output of the
network. As shown in Table 2, our method has achieved significant performance
improvements on GAME(0)–(2) and RMSE. This indicates that our proposed
module can effectively refine the cross-modal features extracted from the shared
backbone. GAME(3) achieves similar performance to MAF and CSCA. It can
be seen that as the number of regional blocks increases, the prediction perfor-
mance of the network decreases. This indicates that the network pays too much
attention to the global counting effect, while the prediction in local areas is not
good.



434 J. Cai et al.

Fig. 2. Qualitative results. The first, second, and third rows correspond to RGB image,
thermal image, and density map predicted by our network, respectively.

3.5 Ablation Study on Loss Function

The network used in this work uses a density map-free loss, i.e., Bayesian loss [21].
To this end, we further explore the impact of DM loss [22] on network perfor-
mance. It built a new OT loss to improve the network’s predictive ability in
low-density regions. The comparison results are presented in Table 3. It can be
seen that Bayesian loss is superior to DM loss. Although it exhibits excellent
performance in high-density scenarios, its performance is limited to relatively
sparse datasets. Therefore, we select Bayesian loss as the optimization objective.

Table 3. Ablation study on different loss functions on RGBT-CC.

Method GAME(0) GAME(1) GAME(2) GAME(3) RMSE

Ours+DM loss [22] 18.81 21.12 24.47 30.06 40.79

Ours+Bayesian loss [21] 14.08 17.69 21.54 28.87 23.80

4 Conclusion

In this paper, we introduce a refined cross-modal fusion network for RGB-T
crowd counting. Our method focuses on enhancing the cross modal feature
fusion module to effectively process dual-modal information. We introduce a
cross-attention module that facilitates interaction between the two modalities,



CrowdFusion 435

enabling improved feature representation. Moreover, we incorporate adaptive
calibration techniques to extract informative features while reducing the impact
of redundant ones. To further enhance the feature fusion process, our network
employs hierarchical layers of fused features, which capture targets of inter-
est at different scales. This hierarchical perception allows for a comprehensive
understanding of crowd information from both global and local perspectives,
leading to more accurate crowd counting. We evaluate our proposed method on
the RGBT-CC dataset and demonstrate its superior performance compared to
several existing methods.
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Abstract. Weakly supervised video anomaly detection aims to detect
anomalous events with only video-level labels. Nevertheless, most exist-
ing methods ignore motion anomalies and the features extracted from
pre-trained I3D or C3D contain unavoidable redundancy, which leads
to inadequate detection performance. To address these challenges, we
propose a cross-modal attention mechanism by introducing optical flow
sequence. Firstly, RGB and optical flow sequences are input into pre-
trained I3D to extract appearance and motion features. Then, we intro-
duce a cross-modal attention module to reduce the task-irrelevant redun-
dancy in these appearance and motion features. After that, optimized
appearance and motion features are fused to calculate the clip-level
anomaly scores. Finally, we employ the MIL ranking loss to enable better
separation between the anomaly scores of anomalous and normal clips
to achieve accurate detection of anomalous events. We conduct extensive
experiments on the ShanghaiTech and UCF-Crime datasets to verify the
efficacy of our method. The experimental results demonstrate that our
method performs comparably to or even better than existing unsuper-
vised and weakly supervised methods in terms of AUC, obtaining AUC
of 91.49% on the ShanghaiTech dataset and 85.49% on the UCF-Crime
dataset, respectively.

Keywords: Video anomaly detection · Weakly supervised ·
Cross-modal attention mechanism

1 Introduction

With the gradual increase in security awareness, increasingly more surveillance
cameras are being deployed in public places (e.g., shopping malls, banks, inter-
sections, etc.). The primary function of video surveillance is to detect abnor-
mal events such as road accidents, criminal activities, etc. Currently, anoma-
lous events are commonly defined as events that deviate from the norm. Video
anomaly detection aims to discover anomalous events, and locate their start and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
W. Jia et al. (Eds.): CCBR 2023, LNCS 14463, pp. 437–446, 2023.
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end timestamps in the video [1]. Previous algorithms for video anomaly detection
mainly focus on unsupervised anomaly detection [2–5]. However, these methods
are prone to false detection for new, unlearned normal events. Furthermore,
these methods, focusing solely on learning the feature representation of normal
events, fail to optimize the false detection of abnormal events. Consequently, the
accuracy of abnormal event detection is low.

To address the above problems, researchers have proposed weakly super-
vised video anomaly detection methods [6–10]. These methods utilize normal
and abnormal videos with video-level labels to train the models which can learn
more distinguishing features between normal and abnormal events. Moreover,
models trained with anomalous events can learn the feature representation of
abnormal events, which can lower the false detection rate of abnormal events
and further enhance the detection performance of abnormal events. Sultani et
al. [6] proposed a MIL ranking model to detect abnormal events. Tian et al. [10]
proposed a weakly supervised anomaly detection method based on feature mag-
nitude learning. Zhong et al. [7] proposed a graph convolutional network to tackle
the noise labels and applied a supervised action classifier to weakly supervised
anomaly detection. Zhang et al. [8] proposed a Temporal Convolutional Net-
work (TCN) to encode preceding adjacent snippets to solve real-time anomaly
detection tasks. Wan et al. [9] proposed dynamic multiple-instance learning loss
and center loss for video anomaly detection. They use the former to expand
the inter-class distance between normal and anomalous instances, while the lat-
ter is utilized to narrow the intra-class distance of normal instances. However,
these methods have two main limitations. The first one is ignoring motion infor-
mation. There are two main types of anomalies in videos namely appearance
and motion anomalies [11]. Appearance anomalies can be considered as unusual
object appearance in a scene, such as a bicycle or truck appearing on a pedes-
trian walkway. Motion anomalies can be considered as unusual object motion
in a scene, such as road accidents or fighting. Therefore, the information for
appearance and motion modality are both crucial for anomaly detection [12].
However, the aforementioned works use only RGB sequences which can repre-
sent appearance information effectively yet not represent motion information,
resulting in low detection rate of anomalous events. The second one is that fea-
tures extracted from pre-trained I3D or C3D contain redundant information. The
aforementioned works directly use features extracted from pre-trained I3D [13]
or C3D [14] to detect abnormal events. However, these features are trained for
the video action classification yet not specific for the video anomaly detection,
resulting in unavoidable redundancy.

To address the above limitations, we propose a cross-modal attention mech-
anism by introducing optical flow sequences. Firstly, RGB and optical flow
sequences are input into pre-trained I3D network to extract appearance and
motion features. However, the features extracted from pre-trained I3D have task-
irrelevant redundancy. Therefore, we introduce the Cross-modal Attention Mod-
ule (CAM) to reduce the redundancy. Specifically, both appearance and motion
features are input into the CAM. One of them acts as the primary modality,
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while the other serves as the secondary modality. We utilize the global informa-
tion from the primary modality and the cross-modal local information from the
secondary modality to filter out the task-irrelevant redundancy. Then, optimized
appearance and motion features are fused to calculate the clip-level anomaly
scores. Finally, we employ the highest scored instances in the anomalous and
normal videos to calculate the MIL ranking loss which enables better separation
between the anomaly scores of abnormal normal instances. The MIL ranking
loss is utilized to train the network to obtain an anomaly detection model which
can accurately identify anomalous events in the video.

2 Method

The overall architecture of our method is shown in Fig. 1. A given pair of videos,
namely an abnormal video Ba (i.e., positive bag) and a normal video Bn (i.e.,
negative bag), is divided into N RGB snippets

{
vRGB
i

}N

i=1
and optical flow

snippets
{
vFlow
i

}N

i=1
(i.e. instances). Then we employ pre-trained I3D network

to extract appearance features Fappearance = {fapperance
i }Ni=1 and motion fea-

tures Fmotion =
{
fmotion
i

}N

i=1
for RGB snippets

{
vRGB
i

}N

i=1
and optical flow

snippets
{
vFlow
i

}N

i=1
. After that, we propose the Cross-modal Attention Module

(CAM) to reduce the task-irrelevant redundancy in these appearanceFappearnace

and motion features Fmotion. The optimized appearance features F̄appearnace =
{
f̄apperance
i

}N

i=1
and motion features F̄motion =

{
f̄motion
i

}N

i=1
are fused, and then

fed into three fully connected layers to calculate the anomaly scores (i.e. {sai }Ni=1,{
sbi

}N

i=1
) for each instance in the positive and negative bags. Finally, we train

the network with the MIL ranking loss to enable better separation between the
anomaly scores of anomalous clips and that of normal clips.

Fig. 1. Overview of our proposed method.
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2.1 Cross-Modal Attention Module

To obtain the features for appearance and motion modality, the RGB snippets{
vRGB
i

}N

i=1
and the optical flow snippets

{
vFlow
i

}N

i=1
are input into pre-trained

I3D network, respectively. However, the I3D network is pre-trained on the Kinet-
ics dataset which is for video action classification tasks yet not for video anomaly
detection tasks. Thus, the appearance and motion features extracted from pre-
trained I3D contain inevitable redundancy.

Inspired by literature [15], we introduce the Cross-modal Attention Module
(CAM) to address the above challenge. The features for appearance and motion
modality are fed into CAM. One of them acts as the primary modality, while
the other serves as the secondary modality. The primary modality provides the
modality-specific global information context, whereas the secondary modality
provides the cross-modal local information. Then, global and local information
are aggregated to filter out task-independent redundancy in the primary modal-
ity. The CAM is shown in Fig. 2. For the convenience of expression, we take the
example that the appearance modality is the primary modality and the motion
modality is the secondary modality. When the roles of the two modalities are
switched, the same operations are performed.

Fig. 2. Cross-modal Attention Module

Firstly, the appearance features F appearance for main modality are fed into
the average pooling layer to acquire global information. Then, we adopt a convo-
lutional layer FG to fully capture the channel dependencies and produce global
perceptual descriptors MG. These processes are formulated as follows.

Xg = AvgPool (F appearance) (1)

MG = FG (Xg) (2)
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Since multiple modalities provide information from different perspectives,
we obtain cross-modal local information from the motion features Fmotion for
auxiliary modality to detect task-independent redundancy in main modality. We
introduce the convolutional layer FL to produce a cross-modal local perception
descriptor ML as follows.

ML = FL
(
Fmotion

)
(3)

We obtain the channel descriptor M for feature optimization by multiplying
the modality-specific global-aware descriptor MG with the cross-modal local-
focused descriptor ML. We adopt the Sigmoid function to produce channel-level
optimization weights that optimize the features F appearance for primary modal-
ity. Therefore, the information redundancy is filtered out through the cross-
modal attention mechanism. These processes are formulated as follows.

M = MG ⊗ ML (4)

F̄ appearance = σ(M) ⊗ F appearance (5)

Where σ (·) is the Sigmoid function, ⊗ denotes the multiplication operator.
Then the optimized appearance features F̄ appearance and motion features

F̄motion are fused as follows.

v = cat(F̄ appearance, F̄motion) (6)

2.2 Ranking Loss

Inspired by literature [6], we combine the ranking loss function and hinge loss
function to form the loss function that enables better separation between the
anomaly scores of abnormal and normal instances. The loss function is formu-
lated below.

l (Ba, Bn) = max
(

0, 1 − max
i∈Ba

f
(
vi
a

)
+ max

i∈Bn

f
(
vi
n

)
)

(7)

Where va is the fused features of the positive bag, vn is the fused features of
the negative bag, f (va) and f (vn) denote the scores of instances in the positive
and negative bags respectively, max

i∈Ba

f
(
vi
a

)
and max

i∈Bn

f
(
vi
n

)
represent the highest

scores of instances in the positive and negative bags respectively.
Since videos consist of a sequence of segments, the anomaly score should vary

smoothly between video segments. Moreover, since abnormal behaviors rarely
occur and last for short time in real-world scenarios, the abnormal scores of the
instances in the positive bags should be very sparse. Therefore, we introduce
smoothness item and sparsity item b as follows.

a =
n−1∑

i

(
f

(
vi
a

) − f
(
vi+1
a

))2
(8)
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b =
n∑

i

f
(
vi
a

)
s.t.f

(
vi
a

) �= max
(
f

(
vi
a

))
(9)

To prevent overfitting during network training, we also introduce regulariza-
tion term ‖W‖F . The final ranking loss function is formulated below.

L (W ) = l (Ba, Bn) + λ1a + λ2b + ‖W‖F (10)

Where λ1 and λ2 are the weights of smoothness item and sparsity item respec-
tively.

3 Experiments

3.1 Dataset

ShanghaiTech is a medium-sized dataset from fixed-angle street video surveil-
lance. It has 13 different background scenes and 437 videos including 307 normal
videos and 130 abnormal videos.

UCF-Crime is a large-scale anomaly detection dataset. The dataset covers
13 types of anomalies. The training set consists of 800 normal videos and 810
abnormal videos with video-level labels. The test set consisted of 150 normal
videos and 140 abnormal videos with frame-level labels.

3.2 Comparison with State-of-the-Art Methods

To verify the effectiveness of our proposed method, we compare it with exist-
ing methods on the ShanghaiTech and UCF-Crime datasets, respectively. The
detection results on the ShanghaiTech and UCF-Crime datasets are shown in
Table 1, respectively.

It can be seen from Table 1 that the AUC score of our method has obvi-
ous advantages over unsupervised methods on the two datasets. These methods,
including Frame-Pred [3], Mem-AE [2], MNAD [4], GCL [16] and GODS [20],
are prone to false detection for new, unlearned normal events. Furthermore,
these methods, focusing solely on learning the feature representation of normal
events, fail to optimize the false detection of abnormal events. Consequently,
the accuracy of anomaly detection is low. Some studies, including GCN [7],
Zhang et al. [8], Sultani et al. [6], Peng et al. [21], AR-Net [9] and CLAWS [17],
employ weak supervision for anomaly detection, enabling the learning of more
distinguishing features between normal and abnormal events. These approaches
further enhance the detection performance of abnormal events compared to unsu-
pervised anomaly detection methods. However, the above methods have several
challenges. These challenges include ignore motion anomalies and redundancy in
extracted RGB and optical flow features. Our proposed method utilizes motion
features and appearance features from optical flow sequences and RGB sequences
respectively to improve the detection rate of abnormal events, and then intro-
duces a cross-modal attention mechanism to filter out the task-irrelevant redun-
dancy. Therefore, our proposed method achieves promising performance.
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Table 1. The detection results on the ShanghaiTech dataset

Supervision Method AUC (%) ShanghaiTech AUC (%) UCF

Unsupervised Lu et al. [19] - 65.51

Frame-Pred [3] 73.40 -

Mem-AE [2] 71.20 -

MNAD [4] 70.50 -

GODS [20] - 70.46

GCL [16] 78.93 71.04

Weakly Supervised GCN [7] 84.44 82.12

Zhang et al. [8] 82.50 78.66

Sultani et al. [6] 85.33 77.92

AR-Net [9] 91.24 -

CLAWS [17] 89.67 83.03

Peng et al. [21] - 84.89

Ours 91.49 85.02

3.3 Ablation Studies

To verify the effectiveness of each part of our proposed method, we conduct
ablation studies on the ShanghaiTech and UCF-Crime datasets. We design the
following 4 sets of experiments. (1) We use the method of Sultani et al. [6]
as baseline. Such method uses the I3D network to extract features from RGB
sequence and then inputs these features into the network model consisting of 3
fully connected layers. (2) We replace the RGB sequence used by baseline with
optical flow sequence. (3) We add optical flow sequence. (4) We add both optical
flow sequence and CAM module. The performance of the 4 sets of experiments
on the ShanghaiTech dataset and the UCF-Crime dataset are shown in Table 2.

Table 2. Ablation studies on ShanghaiTech and UCF-Crime dataset

Number Baseline RGB Optical CAM AUC (%) ShanghaiTech AUC (%) UCF

1 � � - - 85.33 77.92

2 � - � - 88.10 81.1

3 � � � - 89.60 83.56

4 � � � � 91.49 85.02

It can be seen from Table 2 that the baseline achieves only 85.33% AUC
and 77.92% AUC on the ShanghaiTech and UCF-Crime datasets, respectively.
When we replace the RGB sequence used by baseline with optical flow sequence,
the AUC increases to 88.10% and 81.1% on the ShanghaiTech and UCF-Crime
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datasets, respectively. When we add optical flow sequence, the AUC is boosted to
89.60% and 83.56% on the ShanghaiTech and UCF-Crime datasets, respectively.
The above results indicate that optical flow sequence contributes to the overall
performance. When both optical flow sequence and CAM module are added,
the AUC increases to 91.49% and 85.02% on the ShanghaiTech and UCF-Crime
datasets, respectively. This experiment verifies the effectiveness of the proposed
CAM module. The above results show that our proposed method achieves the
best performance.

3.4 Visual Analysis

To verify the effectiveness of our proposed method more intuitively, we visualize
the detection performance of our proposed method on some test videos from the
UCF-Crime dataset, and show the visualization results in Fig. 3.

Fig. 3. The visualization results on some test videos from the UCF-Crime dataset

Specifically, Fig. 3(a) represents the visualization results for normal videos. It
can be seen from Fig. 3(a) that the abnormal score generated by normal video is
low, and almost close to 0. Figure 3(b)–(e) respectively represent the visualiza-
tion results of abnormal videos including abuse, arrest, vandalism, and explosion,
where pink shadowed areas indicate the time period in which the abnormal event
occurred. It can be seen from Fig. 3(b)–(e) that the abnormal score increases
rapidly when the abnormal event occurs, but the abnormal score is low in nor-
mal state. Figure 3(f) shows the visualization results of the abnormal robbery
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video. It can be seen from Fig. 3(f) that the score of some abnormal frames is low
due to the perspective distortion problem caused by the object being far away
from the camera and the occlusion problem. Therefore, overall performance of
our proposed method is excellent.

4 Conclusion

In this article, we propose a weakly supervised video anomaly detection method
based on a cross-modal attention mechanism. Firstly, RGB and optical flow
sequences are input into pre-trained I3D to extract appearance and motion fea-
tures. Then, a cross-modal attention mechanism optimization is introduced to
reduce redundant information in these appearance features and motion features.
After that, optimized appearance and motion features are fused to calculate the
clip-level anomaly scores. Finally, the MIL ranking loss is utilized to train the
network to obtain an anomaly detection model which can accurately identify
anomalous events in the video. Extensive experiments on the ShanghaiTech and
UCF-Crime datasets show that our method outperforms the current state-of-
the-art methods. In the future, we consider how to use optical flow sequence to
more effectively assist RGB sequence to obtain better video anomaly detection
performance.
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