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Abstract. Small object detection has been a persistently practical and
challenging task in the field of computer vision. Advanced detectors often
utilize a feature pyramid network (FPN) to fuse the features generated
from various receptive fields, which improve the detection ability of multi-
scale objects, especially for small objects. However, existing FPNs typi-
cally employ a naive addition-based fusion strategy, which neglects cru-
cial details that may exist only at specific levels. These details are vital
for accurately detecting small objects. In this paper, we propose a novel
Hierarchical Focused Feature Pyramid Network (HFFPN) to enhance
these details while ensuring the detection performance for objects of
other scales. HFFPN consists of two key components: Hierarchical Fea-
ture Subtraction Module (HFSM) and Feature Fusion Guidance Atten-
tion (FFGA). HFSM is first designed to selectively amplify the infor-
mation important to small object detection. FFGA is devised to focus
on effective features by utilizing global information and mining small
objects’ information from high-level features. Combining these two mod-
ules contributes greatly to the original FPN. In particular, the proposed
HFFPN can be incorporated into most mainstream detectors, such as
Faster RCNN, Retinanet, FCOS, etc. Extensive experiments on small
object datasets demonstrate that HFFPN achieves consistent and sig-
nificant improvements over the baseline algorithm while surpassing the
state-of-the-art methods.

Keywords: Small object detection · Feature pyramid network ·
Self-attention

1 Introduction

Object detection is a widely studied task that aims to locate and classify the
objects of interest. In recent years, object detection has achieved remarkable
progress due to the powerful ability of Convolutional Neural Networks (CNNs)
and the availability of an enormous amount of data [4]. However, as an important
branch of object detection, small object detection has always been a bottleneck
for detector performance. Small objects, typically refer to objects with a pixel
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size of less than 1024 (32× 32) [18], have very important research significance in
practical scenarios such as remote sensing detection [1,14], disaster rescue [22,
38], and intelligent transportation system [20,31]. Unfortunately, the features
of small objects are extremely limited, making them susceptible to background
and noise interference. Moreover, these weak features are likely to be lost during
the feature extraction and downsampling process, leading to a noticeable drop
in detection performance when dealing with small objects. For example, Faster
R-CNN [24] achieves an mAP of 41.0% and 48.1% for medium and large objects
on the COCO dataset [18], respectively, but the result for small objects drops
significantly to only 21.2%. Therefore, as a task with both theoretical significance
and practical demand, how to effectively enhance the detection performance on
small objects is an urgent and important problem to be solved.
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Fig. 1. Pictorial demonstrations of existing feature pyramid networks.

In order to detect objects of various sizes, advanced detectors often adopt
a divide-and-conquer approach that utilizes larger receptive fields to detect
large objects and smaller ones to detect small objects. This principle is usually
reflected in the Feature Pyramid Network (FPN) [16]. As shown in Fig. 1, many
studies have noticed the importance of FPN and attempted to fuse low-level and
high-level features in a more effective manner to obtain better detection results.
Consequently, many FPN variants have been devised to achieve more comprehen-
sive feature fusion [7,19,27]. We collectively refer to them as the Expanded FPNs.
However, the fusion strategies of expanded FPNs are generally accomplished by
the element-wise addition operation, and the only difference between them is
the level of the fused features. In contrast, to extract detailed features that are
conducive to small object detection, the element-wise subtraction between the
corresponding levels may better obtain edge information [28]. It should be noted
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that in the high-level feature layers, the information of small objects is almost
submerged in the frequent downsampling process, and subtracting such features
cannot extract small object features. Instead, it may lead to the loss of main
body features. Therefore, a hierarchical feature fusion strategy is necessary. On
the other hand, we notice that the fused features have information of different
scales. Using global information can help to guide the refinement of each level
of features, thus improving detection performance [15].

Based on the above observations, we propose a novel approach called Hierar-
chical Focused Feature Pyramid Network (HFFPN). HFFPN mainly consists of
two parts: Hierarchical Feature Subtraction Module (HFSM) and Feature Fusion
Guidance Attention (FFGA). HFSM leverages the feature subtraction operation
to obtain the edge information of objects. To avoid erasure effects on main body
information caused by subtraction operations at higher semantic levels, HFSM
adopts a hierarchical subtraction strategy. Besides, the proposed FFGA intro-
duces a novel attention mechanism for small object detection by incorporating
both self-features and higher-level features in the generation of attention weights.
It deviates from the common self-attention methods [12,30], which solely relies
on the self-features. The adjacent feature levels often contain richer interaction
information, particularly with low-level features assisting high-level features in
exploring potential information on small objects.

To sum up, our contributions are summarized as follows:

– We design a brand-new Hierarchical Feature Subtraction Module (HFSM). It
fully utilizes the difference of information between feature layers and helps to
improve the performance of small object detection. The hierarchical strategy
employed in HFSM further enhances the robustness of the model.

– We introduce a Feature Fusion Guidance Attention (FFGA) to utilize the
global fused information. The self-attention mechanism used highlights useful
information and suppresses noise information by weighting the features of
itself, helping to explore potential information of small objects.

– Extensive experiments on the DOTA and COCO datasets demonstrate that
the proposed HFFPN significantly improves the performance of the baseline
algorithm and surpasses the current state-of-the-art detectors.

2 Related Work

2.1 Small Object Detection

With the development of deep learning, extensive research has been carried out
on small object detection. There have been numerous attempts to enhance the
performance of small object detection from different perspectives, all with the
common goal of increasing the exploitable features of small objects. SCRDet [37]
achieves a more refined feature fusion network by introducing flexible down-
sampling strides, allowing for the detection of a broader spectrum of smaller
objects with greater precision. R3Det [36] designs a feature refinement module
to enhance the detection performance of small objects. Oriented RepPoints [13]
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captures features from adjacent objects and background noise for adaptive point
learning, which utilizes contextual information to discover small objects.

2.2 Feature Pyramid Network

It is a consensus that the shallow layers are usually rich in detailed information
but lack abstract semantic information, while the deeper layers are on the con-
trary due to the downsampling. Smaller objects predominantly rely on shallow
features and can be more effectively detected by detectors with smaller receptive
fields. Feature Pyramid Network [16] combines the deep layer and shallow layer
features by building a top-down pathway to form a feature pyramid. PAFPN [19]
enriches the feature hierarchy by adding a bottom-up path, enhancing deeper
features without losing information from the shallow layers. HRFPN [27] utilizes
multiple cross-branch convolution to enhance feature expression. NAS-FPN [7]
searches for the optimal combination method for feature fusion in each layer.

2.3 Self-Attention

The attention mechanism exhibits an impressive capability to quickly concen-
trate on and distinguish objects within a scene, while effectively ignoring irrel-
evant aspects. And self-attention is also a powerful technique in deep learning
that allows a model to selectively focus on different parts of input, effectively
capturing dependencies and relationships within it. Spatial self-attention and
channel self-attention are two common kinds of self-attention. SENET [12] is the
first proposed channel attention. It uses a SE block to gather global informa-
tion through channel-wise relationships and enhance the representation capacity.
CBAM [30] can sequentially generate attention feature maps in both channel and
spatial dimensions for adaptive feature refinement, resulting in the final feature
map. Self-attention mechanism has shown outstanding performance in handling
small objects to some extent. SCRDet [37] utilizes pixel attention and channel
attention to highlight small object regions while mitigating the impact of noise
interference. CrossNet [14] develops a cross-layer attention module to enhance
the detection of small objects by generating more pronounced responses.

3 Methodology

3.1 Overview

In order to fully utilize the information of small objects, we propose a novel fea-
ture pyramid network, named HFFPN, as shown in Fig. 2. The detector receives
the input image I and sends it to the backbone network for feature extrac-
tion. The image feature Ci gradually becomes richer in semantic information
during the subsampling process while losing detailed information. Ci is then
passed through the proposed Hierarchical Feature Subtraction Module (HFSM)
to obtain intermediate feature Mi in a top-down manner. Next, Mi is further
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fused through convolution with a kernel size of 3 to obtain fused feature Pi.
Finally, Pi is sent to the proposed Feature Fusion Guidance Attention (FFGA)
to obtain focused feature Oi, which are particularly focused on effective informa-
tion, especially small objects. The focused feature Oi will be used by the model
to predict the category and location of objects.

3 3 convolution Attention mechanism

HFSM FFGA

Feature subtraction

Fig. 2. Overview of the proposed HFFPN, which consists of HFSM and FFGA.

3.2 Hierarchical Feature Subtraction Module

The Hierarchical Feature Subtraction Module (HFSM) is designed to enhance the
specific details of low-level features in the feature pyramid. Generally, features at
the bottom of pyramid have higher resolution and smaller receptive fields, and
contain local information such as edges, textures, and colors, which are crucial for
detecting small objects. However, the widely used fusion strategy, i.e., element-
wise addition, fails to enhance the local information due to its uniqueness at each
level. To cope with it, we propose HFSM that adopts the subtraction operation
with hierarchy to highlight the local information, thereby alleviating the above-
mentioned problem. The specific process of HFSM is as follows.

Firstly, the input image I passes through the backbone network to obtain
the image feature Ci:

Ci =

{
I, i = 0,

F(Ci−1), i = 1, . . . , t
, (1)

where F(·) denotes the convolution block in backbone and t is the number of
feature layers.

Secondly, Ci is then processed by HFSM to obtain the intermediate feature
Mi. The proposed HFSM aims to better extract detailed information from differ-
ent feature levels. The subtraction operation can capture the differential infor-
mation between two feature levels, which often includes fine-grained or edge
information, crucial for detecting small objects. Afterwards, the intermediate
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features are further fused through a 3 × 3 convolutional layer. These processes
can be represented by the following equations:

Mi =

⎧⎪⎨
⎪⎩

σ(Ci), i = t,

σ(Ci) ⊕ UP(Mi+1), i = l + 1, . . . , t − 1
1
2 (σ(Ci) ⊕ UP(Mi+1)) ⊕ |σ(Ci) � UP(Mi+1)| , i = 2, . . . , l,

, (2)

Pi = conv3×3(Mi). (3)

where σ(·) denotes a 1 × 1 convolution, and UP(·) represents upsampling with
ratio of 2. ⊕ and � denote element-wise addition and element-wise subtraction,
respectively. |·| indicates the operation of taking absolute values. l is a hyperpa-
rameter for hierarchical strategy.

3.3 Feature Fusion Guidance Attention

Feature Fusion Guidance Attention (FFGA) is a generalized self-attention mech-
anism that can effectively focus on useful information, especially small object
information. In the feature pyramid, the fused features contain multi-scale infor-
mation from different levels, and adjacent levels have stronger complementary
abilities in feature distribution due to their similar receptive fields. Based on the
features between adjacent levels, self-attention is designed to guide the current
level of features to focus on useful parts, which can effectively improve the qual-
ity of each feature layer and thus improve detection performance. Specifically,
the process of FFGA guiding feature focusing can be expressed as Fig. 3.
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Fig. 3. Diagram of the FFGA.

Firstly, the input of FFGA are the current layer feature Pi ∈ R
C×H×W and

the up one Pi+1 ∈ R
C× H

2 ×W
2 . These two features are concatenated along the
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channel dimension to obtain the guided feature Fg ∈ R
2C×H×W . Fg is then

sequentially fed into the channel attention (CA) and spatial attention (SA)
modules, and we obtain the attention feature Fa ∈ R

2C×H×W . Afterwards, Fa is
passed through a 1×1 convolution to generate the attention map Wa ∈ R

1×H×W .
This map is multiplied as attention weight with the current layer feature Pi to
obtain the focused feature Oi ∈ R

C×H×W after attention guidance. This process
can be represented by the following formulas:

Fg = concat(Pi, UP(Pi+1)), (4)
Fa = SA(CA(Fg)), (5)
Wa = conv1×1(Fa), (6)

Oi =

{
Pi ⊗ Wa, i = 2, . . . , t − 1,

Pi, i = t,
, (7)

where the composition of channel attention and spatial attention has been
detailed in Fig. 3. They have a similar structure that mainly consists of an aver-
age pooling layer, a 1 × 1 convolution layer followed by a ReLU activation, and
a 1 × 1 convolution layer followed by a sigmoid activation. The input feature
generates attention focusing on channel and spatial dimensions in the two mod-
ules respectively. After dimension expansion, they are element-wise added to
the original feature, allowing the original feature to obtain a different degree of
attentional gain in the channel and spatial dimensions.

4 Experiments

4.1 Datasets

DOTA [32] is a rotation-based small object dataset in the remote sensing field.
It contains 2, 806 images with a total of 188, 282 instances. The detection targets
in DOTA include 15 common categories in remote sensing images, namely Bridge
(BR), Harbor (HA), Ship (SH), Plane (PL), Helicopter (HC), Small vehicle (SV),
Large vehicle (LV), Baseball diamond (BD), Ground track field (GTF), Tennis
court (TC), Basketball court (BC), Soccer-ball field (SBF), Roundabout (RA),
Swimming pool (SP), and Storage tank (ST). COCO [18] is the most popular
dataset for object detection. Due to its definition of small object and special-
ized evaluation metric mAPs, COCO is commonly used as a well recognized
benchmark for small object detection.

4.2 Experiment Settings

We employed Resnet50 and Resnet101 [11] pre-trained on ImageNet [25] as back-
bone networks. We utilized the SGD algorithm with a momentum of 0.9 and a
weight decay of 0.0001 for network optimization. The initial learning rate warms
up at a rate of 0.001 per iteration for the first 500 iterations. The training sched-
ule for all experiments was consistent. We trained 12 epochs on the two datasets,
and the learning rate decays at the epoch 8 and 11 with ratio of 0.1. The code
for all experiments was built on the MMdetection [2] platform.
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4.3 Comparison Results

Results on DOTA. We selected the RoI Transformer [5], a general method
for aerial object detection, as the baseline algorithm. Table 1 reports the com-
parison result on DOTA test set. With Resnet50 as the backbone, our method
obtains 76.64% mAP50, improving the performance of baseline by approximately
1%, thereby surpassing the performance of the state-of-the-art algorithms. With
Resnet101 as the backbone, HFFPN also increases the baseline’s performance
by 0.87% mAP50, achieving the best result on the DOTA dataset. These results
fully demonstrate HFFPN’s advantages on small object detection and reflect its
potential applications. Figure 4 provides a more intuitive visual comparison.

Table 1. Comparison with state-of-the-art methods on DOTA test set. The reported
results come from AerialDetection [6] and OBBDetection [33]. ‡ indicates that it is the
result of our re-implement. Note that we only list some classes for better display.

Methods Backbone GTF SV SH SBF HA SP mAP50

Single-stage Methods

RSDet [23] R152-FPN 68.50 70.20 73.60 64.30 66.10 69.30 74.10

R3Det [36] R152-FPN 66.10 70.92 78.21 61.81 68.16 69.83 73.74

S2A-Net [9] R50-FPN 71.11 78.11 87.25 60.36 65.26 69.13 74.12

R3Det-DCL [35] R152-FPN 69.70 76.84 87.30 63.50 68.96 68.79 75.54

Two-stage Methods

SCRDet [37] R101-FPN 68.36 68.36 72.41 65.02 66.25 68.24 72.61

Gliding Vertex [34] R101-FPN 77.34 73.01 86.82 59.55 72.94 70.86 75.02

ReDet [10] ReR50-ReFPN 74.00 78.13 88.04 61.76 72.10 68.07 76.25

Oriented R-CNN [33] R101-FPN 76.92 74.27 87.52 65.51 74.36 70.15 76.28

Anchor-free Methods

PIoU‡ [3] R50-FPN 68.90 77.58 81.57 60.47 57.68 65.12 69.68

O2-DNet [29] H-104 61.21 71.32 78.62 60.93 58.21 66.98 71.04

DRN [21] H-104 64.10 76.22 85.84 57.65 69.30 69.63 73.23

CFA [8] R101-FPN 67.17 79.99 84.46 54.86 73.04 70.24 75.05

Oriented RepPoints [13] R101-FPN 71.76 79.95 87.33 59.15 75.23 73.75 76.52

RoI-Trans.‡ [5] R50-FPN 76.65 78.40 87.55 60.12 74.89 69.70 75.70

RoI-Trans.‡ R101-FPN 75.75 78.11 87.46 63.80 76.05 71.35 76.02

RoI-Trans. (Ours) R50-HFFPN 78.11 78.33 87.71 65.24 75.39 72.99 76.64

RoI-Trans. (Ours) R101-HFFPN 79.84 77.97 87.68 65.00 76.36 71.67 76.89

Results on COCO. On the COCO dataset, we applied HFFPN to two-
stage [24], one-stage [17], and anchor-free [26] detectors, respectively. Table 2
shows the performance gain brought by HFFPN. Although the overall mAP
improvement is not significant due to the small proportion of small objects in
the COCO dataset, the consistent and significant increase in the mAPs metric
indicates that HFFPN makes detectors more capable of detecting small objects
while maintaining their detection capabilities of other scales of objects.
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Table 2. Comparison experiment on COCO. The baseline results come from [2].

Methods Backbone mAP mAP50 mAP75 mAPs mAPm mAPl

Faster RCNN [24] R50-FPN 37.4 58.1 40.4 21.2 41.0 48.1

Faster RCNN R50-HFFPN 37.6 58.4 40.7 21.9 (+0.7) 40.9 48.3

RetinaNet [17] R50-FPN 36.5 55.4 39.1 20.4 40.3 48.1

RetinaNet R50-HFFPN 36.6 55.7 39.1 21.2 (+0.8) 40.3 48.0

FCOS [26] R50-FPN 36.6 56.0 38.8 21.0 40.6 47.0

FCOS R50-HFFPN 36.6 55.9 38.7 21.7 (+0.7) 40.2 47.2

4.4 Ablation Study

To further verify the advantages and effectiveness of the proposed method, we
conduct a series of experiments on the DOTA dataset. The baseline algorithm
is RoI Transformer with Resnet50.
Evaluation for Component Effectiveness. To evaluate the effects of HFSM
and FFGA, we carry out several ablation experiments, and the experimental
results are shown in the Table 3. Without any improvement schemes, the mAP50

detected by the baseline is 75.70%. The introduction of HFSM and FFGA gradu-
ally improves the detection accuracy to 76.24% and 76.64%. The results indicate
that each combination in HFFPN brings improvement to the detector.
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Fig. 4. Visualization on DOTA test set. The yellow circles highlight the difference of
detection result. We can easily find that HFFPN (second row) can help detect more
small objects and achieve higher accuracy in classification and regression. (Color figure
online)
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Evaluation on Different Settings of l in HFSM. Hierarchical level l, as
a hyperparameter in HFSM, determines in which feature layers the operation
of feature subtraction is performed. Specifically, the feature subtraction module
will be introduced when the level lower than l. Table 4 shows the results under
different values of l. When l is 2, the performance of baseline with HFFPN
reaches the highest. Assuming we do not employ the hierarchical strategy by
setting l equals to 5, where feature subtraction is performed between each level of
features, we would observe a significant drop in results. The hierarchical strategy
ensures that the subtraction is performed only on detailed features, making it
applicable to a wide range of input images and thus enhancing the model’s
robustness.
Comparison with Other FPNs. Table 5 presents performance of the baseline
algorithm with different FPNs. It can be observed that some expanded FPNs do
enhance the detector’s performance to some extent, but the improvements are
not as significant as those of the proposed HFFPN.
Evaluation on Different Detectors. To verify that the proposed HFFPN is
a common method for most detectors, experiments were conducted on several
different detectors. Table 6 shows the comparison results of these detectors with
or without using HFFPN. The experimental results show that the use of HFFPN
has led to performance improvements for all detectors, strongly indicating the
universality and effectiveness of the proposed method.

Table 3. Evaluation on the effectiveness of each
component. FS, HS, CA and SA denote feature
subtraction, hierarchical strategy, channel atten-
tion, and spatial attention, respectively.

Baseline FS HS CA SA mAP50

� 75.70

� � 76.13

� � � 76.24

� � � � 76.38

� � � � 76.41

� � � � � 76.64

Table 4. Results of differnent l.

l 2 3 4 5

mAP50 76.64 76.33 76.07 75.59

Table 5. Comparison with other
FPNs.

Backbone mAP50 mAP

R50-FPN [16] 75.70 46.27

R50-PAFPN [19] 76.26 46.56

R50-HRFPN [27] 76.33 46.85

R50-NASFPN [7] 73.71 45.03

R50-HFFPN 76.64 47.07
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Table 6. Improvements on DOTA by applying HFFPN to different detectors.

Methods Backbone mAP50 mAP

PIoU [3] R-50-FPN 69.68 40.05

PIoU R-50-HFFPN 70.26 (+0.58) 40.55 (+0.50)

Gliding Vertex [34] R-50-FPN 72.65 40.93

Gliding Vertex R-50-HFFPN 73.24 (+0.59) 41.42 (+0.49)

Oriented RCNN [33] R-50-FPN 75.72 46.78

Oriented RCNN R-50-HFFPN 76.14 (+0.42) 46.85 (+0.07)

RoI-Trans. [5] R-50-FPN 75.70 46.27

RoI-Trans. R-50-HFFPN 76.64 (+0.94) 47.07 (+0.80)

5 Conclusion

To better utilize the detailed information for small object detection, this paper
proposes a hierarchical focused feature pyramid network. It mainly contains a
hierarchical feature subtraction module and feature fusion guidance attention.
This design overcomes the problem of neglecting edge information that exists
in common FPN methods, thus improving the detection ability of small objects
without affecting the detection performance of objects at other scales. Compar-
ison and ablation experiments on multiple datasets demonstrate the excellent
performance of the proposed method, fully verifying the effectiveness of HFFPN.
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