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Preface

Welcome to the proceedings of the Sixth Chinese Conference on Pattern Recognition
and Computer Vision (PRCV 2023), held in Xiamen, China.

PRCV is formed from the combination of two distinguished conferences: CCPR
(Chinese Conference on Pattern Recognition) and CCCV (Chinese Conference on Com-
puter Vision). Both have consistently been the top-tier conference in the fields of pat-
tern recognition and computer vision within China’s academic field. Recognizing the
intertwined nature of these disciplines and their overlapping communities, the union
into PRCV aims to reinforce the prominence of the Chinese academic sector in these
foundational areas of artificial intelligence and enhance academic exchanges. Accord-
ingly, PRCV is jointly sponsored by China’s leading academic institutions: the Chinese
Association for Artificial Intelligence (CAAI), the China Computer Federation (CCF),
the Chinese Association of Automation (CAA), and the China Society of Image and
Graphics (CSIG).

PRCV’s mission is to serve as a comprehensive platform for dialogues among
researchers fromboth academia and industry.While its primary focus is to encourage aca-
demic exchange, it also places emphasis on fostering ties between academia and industry.
With the objective of keeping abreast of leading academic innovations and showcasing
the most recent research breakthroughs, pioneering thoughts, and advanced techniques
in pattern recognition and computer vision, esteemed international and domestic experts
have been invited to present keynote speeches, introducing themost recent developments
in these fields.

PRCV 2023 was hosted by Xiamen University. From our call for papers, we received
1420 full submissions. Each paper underwent rigorous reviews by at least three experts,
either from our dedicated Program Committee or from other qualified researchers in the
field. After thorough evaluations, 522 papers were selected for the conference, compris-
ing 32 oral presentations and 490 posters, giving an acceptance rate of 37.46%. The
proceedings of PRCV 2023 are proudly published by Springer.

Our heartfelt gratitude goes out to our keynote speakers: Zongben Xu from Xi’an
Jiaotong University, Yanning Zhang of Northwestern Polytechnical University, Shutao
Li of Hunan University, Shi-Min Hu of Tsinghua University, and Tiejun Huang from
Peking University.

We give sincere appreciation to all the authors of submitted papers, the members of
the Program Committee, the reviewers, and the Organizing Committee. Their combined
efforts have been instrumental in the success of this conference. A special acknowledg-
ment goes to our sponsors and the organizers of various special forums; their support
made the conference a success. We also express our thanks to Springer for taking on the
publication and to the staff of Springer Asia for their meticulous coordination efforts.
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We hope these proceedings will be both enlightening and enjoyable for all readers.

October 2023 Qingshan Liu
Hanzi Wang
Zhanyu Ma

Weishi Zheng
Hongbin Zha
Xilin Chen
Liang Wang
Rongrong Ji
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OKGR: Occluded Keypoint Generation
and Refinement for 3D Object Detection

Mingqian Ji, Jian Yang, and Shanshan Zhang(B)

PCA Lab, Key Lab of Intelligent Perception and Systems for High-Dimensional
Information of Ministry of Education, and Jiangsu Key Lab of Image and Video
Understanding for Social Security, School of Computer Science and Engineering,

Nanjing University of Science and Technology, Nanjing, China
{mingqianji,csjyang,shanshan.zhang}@njust.edu.cn

Abstract. Lidar-based 3D object detectors utilize point clouds to detect
objects in autonomous driving. However, the point clouds are sparse and
incomplete, which affects the detectors’ learning of shape knowledge and
limits the 3D detection performance. Previous works improve performance
through completing object shape at the point level or representation level,
such as voxel. The former increases computational burden, while the latter
has poor generalization ability to point-based detectors. In this paper, we
present an approach, namely Occluded Keypoint Generation and Refine-
ment (OKGR), which is effective to improve 3D detection performance
by completing object features at the keypoint level. Specifically, Occluded
Keypoint Generation (OKG) generates occluded keypoints to densify raw
keypoints and learns the offsets between the generated keypoints and pro-
totypes, while retaining the raw keypoints unchanged. Occluded Key-
point Refinement (OKR) assigns weights to the generated keypoints and
conducts these weights to features to obtain high-quality complete fea-
tures for detection. We apply our approach to two representative detec-
tors, PV-RCNN++ and PDV, and evaluate the detectors on KITTI and
Waymo Open Dataset. The experiments show significant performance
improvement. Particularly, our OKGR applied on PV-RCNN++ achieves
improvements of Pedestrian andCyclist of+3.19%, +2.53%APon average
difficulty levels on KITTI, and +2.18%, +2.29% mAPH on Waymo Open
Dataset. For more information, the supplementary material and code are
available at https://github.com/Mingqj/OKGR.

Keywords: 3D Object Detection · Point Clouds · Object Shape
Completion

1 Introduction

Lidar-based 3D object detection plays an important role in autonomous driving
systems. A large number of research have been conducted focusing on improving
3D detection performance. In early years, some Lidar-based 3D object detectors

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14436, pp. 3–15, 2024.
https://doi.org/10.1007/978-981-99-8555-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8555-5_1&domain=pdf
https://github.com/Mingqj/OKGR
https://doi.org/10.1007/978-981-99-8555-5_1
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[1–7] are proposed mainly about designing various structures and extracting fea-
tures using different representations such as voxels and keypoints, etc. These detec-
tors show impressive speed and accuracy in real-world scenarios. Yet, these works
disregard the effect of the properties of point clouds on detection performance.
More recently, some works [8,9] analyze the influence of the sparsity and incom-
pleteness of raw point clouds on detection performance, and address this issue from
the perspective of completing raw point clouds or voxels. SIENet [8] uses a com-
pletion network (PCN) [10] to complete the raw point clouds within candidate
boxes. However, the limitation of completing the entire raw point clouds is the
increased computational burden in scenarios with numerous objects. Instead, SPG
[9] designs a supervision scheme to complete object voxels. However, the limitation
of completing the voxels is that it only fits voxel-based 3D object detectors and can
not be applied to point-based 3D object detectors, because the virtual voxels can
hardly be converted back to the real points. In summary, the above issues motivate
us to design a completion method with less computational burden and it can be
applied to both voxel-based and point-based detectors.

In this paper, we propose a completion method at the keypoint level. Dif-
ferent from completing the entire raw point clouds, completing keypoints as a
small part of the raw point clouds is efficient. Also different from completing
the voxels, keypoint completion can be directly used in point-based detectors
and used in voxel-based detectors through voxelization. Specifically, our app-
roach consists of two parts, namely Occluded Keypoint Generation (OKG) and
Refinement (OKR). In OKG, we design a Keypoint Densification (KD) module
to generate occluded keypoints and a Shape Learning (SL) module to learn shape
knowledge. In this way, we can obtain the dense complete keypoints. In OKR,
we design a Density-and-Distance-based Weight Assignment (DWA) module to
assign a weight to each generated keypoint, and the weights will be conducted
to the corresponding features. In this way, the features of high confidence will
be enhanced, and these of low confidence will be weakened. Thus, we can get
high-quality features to improve detection performance. We apply our approach
to state-of-the-art detectors and achieve significant performance improvement.
Figure 1 shows the boxes and features of baseline and OKGR. We can see that
our approach can enhance the features of the occluded regions of the objects.
Thus, it can improve the detection ability for objects with severe occlusion. Our
contributions are summarized as follows:

1) We design an Occluded Keypoint Generation (OKG) method to generate
occluded keypoints via the Keypoint Densification (KD) module and learn
the shape knowledge via the Shape Learning (SL) module.

2) We present an Occluded Keypoint Refinement (OKR) method, and it combines
the priors of density and distance to refine the generated occluded keypoints via
the Density-and-Distance-based Weight Assignment (DWA) module.

3) Our approach is applied to two state-of-the-art detectors, PV-RCNN++ [11]
and PDV [12], and is evaluated on two benchmark datasets, KITTI [13]
and Waymo Open Dataset [14]. The results show the significant performance
improvement.
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Fig. 1. The box and feature visualization of baseline and ours. (a) and (b) are the
predicted boxes of baseline and ours. Blue boxes are the ground truths and green
boxes are the predicted boxes. (c) and (d) are the feature visualization of the baseline
and ours in BEV. The darker the color, the higher the feature quality. (Color figure
online)

2 Related Works

Since we use LiDAR-based detectors as the base detectors and design completion
modules on this basis, we review the related works on LiDAR-based 3D object
detection and object shape completion.

2.1 LiDAR-Based 3D Object Detection

Currently, research on LiDAR-based 3D object detection has been comprehen-
sively developed. The 3D object detectors are generally divided into different
categories according to the data representation [15], including point-based, grid-
based, and point-voxel-based methods. Point-based methods [1–4,16] detect 3D
objects from raw point clouds by using point-based backbones. For instance,
PointRCNN [1] uses PointNet++ [17] to extract points features and designs a
two-stage network to gradually get bounding boxes. Grid-based methods [5–
7,18–21] divide point clouds into grids by means of voxels or pillars to extract
features. Typically, SECOND [6] uses 3D sparse convolution [22] to extract voxel
features and designs a direction classifier to assist in predicting bounding boxes.
Point-voxel-based methods [11,12,23–25] combine the features of points and vox-
els using a set abstraction module for detection. For instance, PV-RCNN [23]
first uses 3D sparse convolution [22] and farthest point sampling [26] to extract
the features of voxels and points, respectively. Then, it designs a set abstraction
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and a RoI feature abstraction to finish the processes of voxel-to-keypoint and
keypoint-to-grid. These detectors achieve good performance, but they overlook
the sparsity and incompleteness of the point clouds. Instead, we consider this
issue and make improvements based on 3D object detectors.

2.2 Object Shape Completion

Recently, several approaches [8,9,27–29] about completing object shape in 3D
object detection have been proposed to improve detection performance. These
approaches can be divided into raw-point-cloud-based [8,27] and voxel-based
methods [9,28,29]. For the first type, SSN [27] develops a shape signature net-
work to complete the raw point clouds. SIENet [8] uses an off-the-shelf model
to complete the raw point clouds. These approaches help improve detection per-
formance, but the completion process is time-consuming in large scenarios. For
the second type, SPG [9] predicts shape occupancy to complete object voxels
under its supervision scheme. BtcDet [28] designs an auxiliary task to complete
object voxels by predicting shape occupancy in the detection framework. Simi-
larly, Sparse2Dense [29] completes object voxels in the constructed distillation
framework. These works complete the object voxels successfully by predicting the
shape occupancy, but this method can hardly transfer to point-based detection.
Based on these previous works, we present an effective approach to complete the
object shape at the keypoint level, which completes the object keypoints with
little computational cost. Furthermore, our approach can be inserted on both
voxel-based and point-based detectors. Substantial experiments demonstrate the
effectiveness of our approach.

3 Methodology

Based on the above motivation and related work, we propose to complete object
shape at the keypoint level via Occluded Keypoint Generation and Refinement
(OKGR) to improve detection performance.

3.1 Overview

As illustrated in Fig. 2, our approach based on a typical two-stage detection
framework mainly consists of Occluded Keypoint Generation (OKG) and Refine-
ment (OKR). The workflow of pipeline is summarized as follows:

Fig. 2. The overview of our method. Our approach mainly consists of two modules,
namely Occluded Keypoint Generation (OKG) and Occluded Keypoint Refinement
(OKR).
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Fig. 3. Occluded Keypoint Generation. It consists of two modules, namely Keypoint
Densification (KD) and Shape Learning (SL) module.

First of all, the detector utilizes a 3D backbone to extract features from raw
point clouds, while the raw keypoints are generated in the Keypoint Sampling
module. Then, the Region Proposal Network (RPN) generates proposals based
on these features. Next, the raw keypoints and proposals are sent to OKG to
generate the occluded keypoints, and then the generated keypoints are sent to
OKR for refinement. After that, the whole keypoints aggregate the features from
3D Backbone to enhance the features in Set Abstraction. Finally, the detector
predicts the 3D boxes and classes in RoI Head based on the enhanced features.
In detail, OKG is described in Sect. 3.2 and OKR is described in Sect. 3.3.

3.2 Occluded Keypoint Generation

As shown in Fig. 3, the Occluded Keypoint Generation consists of the Keypoint
Densification (KD) module and the Shape Learning (SL) module. Specifically,
in KD, we first densify keypoints with the aim of filling the keypoints in the
occluded regions with less computational complexity. Then, in SL, a recurrent
neural network based on predicting offsets is designed to learn the shape of the
generated keypoints while retaining the raw keypoints unchanged.

Keypoint Densification. Inspired by using a mirror to get complete object
shapes offline as a supervision in BtcDet [28] and Sparse2Dense [29], we also use
a method of symmetry to generate occluded keypoints. Unlike them, we use the
central symmetry to densify keypoints during detection, because it is difficult
to predict the object direction accurately in RPN, while the centers are easy to
predict. In detail, as shown in Fig. 3, the occluded keypoints Ro can be generated
by central symmetry, and they are defined as:

Ro = L(Rv, Ca), (1)

where L(·) is a linear function used to map coordinates through the ball query.
We define the keypoints as Rv and the centers of objects as Ca. In summary, we
can obtain dense keypoints via the KD module.
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Shape Learning. The occluded keypoints generated in the previous section do
not have the object shape, and this requires us to design a network to learn the
shape of the generated keypoints. Before that, prototypes with complete object
shape are necessary, and the detailed generation process is introduced in the sup-
plementary material. For the network, motivated by the recent lightweight point
cloud completion network PMPNet/PMPNet++ [30,31], we design the Shape
Learning (SL) module to predict the offsets between the generated occluded key-
points and prototypes, while retaining the raw keypoints unchanged. Figure 3
shows the architecture of SL, which consists of two stages. In the first stage,
the raw keypoints Rv and generated keypoints Ro are separately fed with path
searching information F 0

g [30] obeying a random normal distribution. The out-
puts are the modified generated keypoints R1

o, retained raw keypoints Rv and
previous path searching information F 1

g . Similarly, they are fed as inputs to the
second stage for further modification. Finally, we can get the modified dense key-
points

{
Rv, R

2
o

}
with complete object shape. For the specific network of each

stage, as shown in Fig. 4, the SA modules are used to extract features and coor-
dinates of raw keypoints and generated keypoints. The FP modules are used
to propagate the global features from SA3 and local features of generated key-
points {Fo1, Fo2} to the local coordinates {Po0, Po1, Po2} of generated keypoints
(marked in red in Fig. 4). The RPA modules can manipulate the path searching
information

{
F s
g0, F

s
g1, F

s
g1

}
of the generated keypoints. It should be noted that,

to balance sufficient training and fast inference, we train both two stages but
infer only the first stage. The experimental demonstration is in ablation studies
in Sect. 4.6.

Fig. 4. One stage of the Shape Learning module. It consists of the Set Abstraction
(SA) module [17], the Features Propagation (FP) module [17] and the Recurrent Path
Aggregation (PRA) module [30,31].

3.3 Occluded Keypoint Refinement

Generating new keypoints brings the noise inevitably. Thus, it is necessary to
evaluate the generated keypoints. We design the Density-and-Distance-based
Weight Assignment (DWA) module to assign the confident weights to generated
keypoints. This module consists of density calculation, distance calculation and
weight calculation.



Occluded Keypoint Generation and Refinement for 3D Object Detection 9

Density Calculation. The density information has been successfully used in
3D object detection, like PDV [12]. As prior knowledge, it can describe the
distribution of point clouds. KDE [32] is a typical method to estimate the prob-
ability distribution through a kernel function. In the Density-and-Distance-based
Weight Assignment (DWA) module, we first describe the density pw of the gen-
erated keypoints by KDE, and it is defined as:

pw =
1

N ′w

N
′

∑

i=1

K(
r

′
o − r

′
oi

w
), (2)

where K(·) is the kernel function [33]; w is the bandwidth and it is set to 0.2;
N

′
is the number of r

′
o; i is for counting from 1 to N

′
. For fine filtering, we use

the cylinders to cover the average proposals for effective computation instead of
the ball. Specifically, we choose the vertical cylinders to address the category of
pedestrian and cyclist, and the horizontal cylinders to address the category of
car. Thus, the filtered generated keypoints R

′
o is defined as:

R
′
o =

{
r

′
oi ||r′

oi − li|| < dm

}
, (3)

dm =

{ √
dx2

m + dy2
m/2, dzm > dmax√

dz2m + dmin
2/2, dzm ≤ dmax

, (4)

where || · || is the 3D distance; we define one element of Ro as ro, and r
′
o is ro

under the condition in Eq. (3); li will be described in Eq. (5); dm is the diameter
of the cylinder; (dxm, dym, dzm) are the length, width and height of the mth
proposal; dmin and dmax are the smaller and the larger between dxm and dym,
respectively. Therefore, we can calculate the density value of each generated
keypoint.

Distance Calculation. As illustrated in Fig. 5, there is a phenomenon that
the density of keypoints inside the object is similar to those of the keypoints
outside the object near the proposal box. Therefore, we introduce the distance
to address this issue. The distance l between the keypoints and the axis of the
cylinder is defined as:

l =
{

E(r
′
o, Ca), dzm > dmax

E(r
′
o, Ca) · |sin(θ − ϕ)|, dzm ≤ dmax

, (5)

where E(·) is the Euclidean distance of the generated keypoints r
′
o and center Ca

in bird’s eye view; θ is tilt angle of the average proposals; ϕ is the angle between
the line of connecting the keypoints and the center, and the Y-axis. Then, the
distance can be calculated by constructing the above geometric relation.
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(a) Density of the generated
keypoints

(b) Geometric
relationship

Fig. 5. Density distribution and geometric relation. (a) The density distribution of gen-
erated keypoints. The darker the color, the greater the density value. (b) The geometry
between distance and angle. The distances of different points with similar density are
different.

Weight Calculation. We introduce the above density pw and distance l to
construct a linear weight assignment. It is defined as:

W = Sp · (μ · pw + (1 − μ) · l−1), (6)

where Sp is the scores of proposals; μ is the weighting factor to balance the
density and distance and it is set to 0.7. We set a threshold Tthr to filter the
generated keypoints with extremely low confidence, and the value is set to 0.2.

3.4 Loss Function

The detector with OKGR is trained with the loss of region proposal network
Lrpn, shape learning Lsl and R-CNN Lrcnn. The whole loss of detector is the
summation of Lrpn, Lsl and Lrcnn, and each loss have the equal weight. It is
defined as:

L = Lrpn + Lsl + Lrcnn, (7)

where Lrpn and Lrcnn are the same as baseline. Lsl is defined as:

Lsl = Lcd + δLemd, (8)

where Lcd is the loss of Chamfer distance [30,31] for minimizing the moving path;
Lemd is the loss of Earth Mover’s distance [30,31] for minimizing the distance
between generated keypoints and prototypes, and the weighting factor δ is set
to 0.001.

4 Experiments

In this section, we will first introduce the datasets and evaluation metrics. Then,
we will introduce our implementation details of experiments. After that, we will
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show the results of experiments on the above datasets. In the end, we will conduct
the ablation studies and analyze each component of our methods.

4.1 Datasets and Evaluation Metrics

We evaluate our methods on KITTI [13] and Waymo Open Dataset [14]. The
evaluation metric for KITTI is average precision (AP), and the evaluation met-
ric for Waymo Open Dataset is mean average precision (mAP) and 3D mAP
weighted by Heading (mAPH). The detailed introduction and division of both
datasets are in the supplementary material.

4.2 Implementation Details

For KITTI, we apply an ADAM optimizer with an initial learning rate of 0.01 to
train our network on 2 NVIDIA 2080Ti GPUs for 80 epochs with batch size 4,
and the training time takes around 13 h on PV-RCNN++ with OKGR and 14 h
on PDV with OKGR. For Waymo Open Dataset, we apply an ADAM optimizer
with an initial learning rate of 0.01 to train our network on 4 NVIDIA 2080Ti
GPUs for 30 epochs with batch size 8, and the training time takes around 34 h
on PV-RCNN++ with OKGR and 36 h on PDV with OKGR. The learning
rate strategy and proposal refinement strategy are the same as PV-RCNN [23].
During training, data augmentation strategies of 3D object detection are utilized
as the same as the baseline [11,12].

Table 1. Comparisons on KITTI validation set.

Methods Car 3D AP R40 Ped. 3D AP R40 Cyc. 3D AP R40 Average

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PV-RCNN++ 91.83 84.32 82.25 63.46 56.73 52.27 91.80 73.22 68.62 82.36 71.42 67.71

with ours 92.33 84.75 82.66 67.45 59.67 54.91 94.89 75.51 70.96 85.89 73.31 69.51

Improvement +0.50 0.43 +0.41 +3.99 +2.94 +2.64 +3.09 +2.29 +2.34 +3.53 +1.89 +1.80

PDV 91.84 84.86 82.70 64.66 57.76 52.62 92.90 75.79 71.17 83.13 72.80 68.83

with ours 92.26 85.24 82.96 66.92 58.76 54.11 94.37 75.82 72.00 84.52 73.27 69.69

Improvement +0.42 +0.38 +0.26 +2.26 +1.00 +1.49 +1.47 +0.03 +0.83 +1.39 +0.47 +0.86

4.3 Evaluation on KITTI Dataset

As shown in Table 1, it reports the comparison results on KITTI validation
set. We re-implement PV-RCNN++ [11] and PDV [12] based on open-source
codes and train our approach based on both detectors. The results show that
our approach improves the performance of both baseline detectors on all cate-
gories and difficulty levels. Specifically, for PV-RCNN++, our approach improves
3D AP with 40 recall positions of average categories of +3.53%, +1.89%, and
+1.80% AP on easy, moderate, and hard difficulty levels. For PDV, our app-
roach improves 3D AP with 40 recall positions of average categories of +1.39%,
+0.47%, and +0.86% AP on easy, moderate, and hard difficulty levels. Besides,
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for categories of pedestrian and cyclist, our approach applied on PV-RCNN++
achieves stable improvements of +3.19%, +2.53% AP on average difficulty levels
and +1.58%, +0.78% AP based on PDV. The results show that our approach
can improve the 3D detection performance of the baseline on KITTI.

4.4 Evaluation on Waymo Open Dataset

As shown in Table 2, the results show that our approach improves the per-
formance of both baseline detectors on all categories and both LEVEL-1
and LEVEL-2 metrics. Specifically, compared to PV-RCNN++, our approach
increases the performance of +1.44% LEVEL-1 mAP, +1.52% LEVEL-1 mAPH,
+1.48% LEVEL-2 mAP and +1.59% LEVEL-2 mAPH on average categories,
respectively. Compared to PDV, our approach also increases the performance
of +0.93% LEVEL-1 mAP, +0.76% LEVEL-1 mAPH, +1.04% LEVEL-2 mAP
and +0.94% LEVEL-2 mAPH on average categories, respectively. Particularly,
for categories of pedestrian and cyclist, our approach applied on PV-RCNN++
achieves significant improvements of +2.18%, +2.29% mAPH on average diffi-
culty levels. The results further demonstrate that our approach is effective.

4.5 Model Efficiency

Table 3 shows the efficiency of OKGR on KITTI validation set. The evaluation
is based on a 2080Ti GPU with a batch size of 1. OKGR contains 1.7 million
parameters and adds 4.1 million fewer parameters than PCN [10] used in SIENet
[8]. Besides, we use OKGR to complete raw point clouds. OKGR costs about
extra 110 milliseconds on baselines and adds about 80 milliseconds less than
PCN. Compared to completing raw point clouds using PCN, OKGR complet-
ing representation only costs extra 28.7 milliseconds on PV-RCNN++ and 30.3
milliseconds on PDV. These indicate that OKGR is highly efficient for practical
application.

Table 2. Comparisons on the validation set of Waymo Open Dataset.

Methods Difficulty Vehicle Pedestrian Cyclist Average

mAP mAPH mAP mAPH mAP mAPH mAP mAPH

PV-RCNN++ with

OKGR Improvement

LEVEL-1 77.82 77.32 77.99 71.36 71.80 70.71 75.87 73.13

78.14 77.45 79.66 73.48 74.13 73.03 77.31 74.65

+0.32 +0.13 +1.67 +2.21 +2.33 +2.32 +1.44 +1.52

PV-RCNN++ with

OKGR Improvement

LEVEL-2 69.07 68.62 69.92 63.74 69.31 68.26 68.84 66.33

69.46 69.02 71.70 65.88 71.57 70.51 70.32 67.92

+0.38 +0.40 +1.78 +2.14 +2.26 +2.25 +1.48 +1.59

PDV with OKGR

Improvement

LEVEL-1 76.85 76.33 74.19 65.96 68.71 67.55 73.25 69.95

76.97 76.42 75.67 67.49 69.95 68.22 74.18 70.71

+0.12 +0.09 +1.48 +1.53 +1.24 +0.67 +0.93 +0.76

PDV with OKGR

Improvement

LEVEL-2 69.30 68.81 65.85 58.28 66.49 65.36 67.21 64.15

69.55 69.30 67.49 59.95 67.72 66.03 68.25 65.09

+0.25 +0.49 +1.64 +1.67 +1.23 +0.67 +1.04 +0.94
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Table 3. Inference time and model parameters on KITTI validation set.

Methods Completing Point

Clouds

Completing

Representation

Inference Time (ms) Parameters (M)

PV-RCNN++ – – 273.4 13.0

with PCN [10] � – 463.9(+190.5) 18.8(+5.8)

with OKGR � – 385.2(+111.8) 14.7(+1.7)

with OKGR – � 302.1(+28.7) 14.7(+1.7)

PDV – – 281.4 12.9

with PCN [10] � – 479.2(+197.8) 18.7(+5.8)

with OKGR � – 394.6(+113.2) 14.7(+1.8)

with OKGR – � 311.7(+30.3) 14.7(+1.8)

4.6 Ablation Studies

In ablation studies, we conduct experiments based on PV-RCNN++ to evaluate
the components of OKGR and verify the design of the SL module. The results are
shown in Table 4 and Table 5, respectively. In Table 4, by adopting the KD mod-
ule, the raw keypoints are densified by generating occluded keypoints without
the shape knowledge. The KD module improves the 3D detection performance
of +0.51% AP on moderate levels. The SL module is adjacent to the KD mod-
ule and designed to learn shape knowledge, which improves the performance of
+0.79% AP on moderate levels. Through the refinement via the DWA module,
we can get high-quality features for detection, and this module can continue to
improve the performance of +0.59% AP on moderate levels. In summary, our
approach can boost the baseline performance of +1.89% AP on moderate lev-
els, which demonstrates the effectiveness of our KD, SL and DWA modules. In
Table 5, we conduct ablation studies on the SL module to verify the rational-
ity of SL module design. We can see that training and inference on both the
first stage and the second stage can get the best AP (value with bold) on the
moderate level, but it requires much inference time. Instead, we train both the
first stage and the second stage, and only evaluate the first stage, which gets
competitive AP and requires less inference time (values with underline) than
the former. Besides, we only train and evaluate the first stage disregarding the
previous path searching information, which shows the bad performance. In sum-
mary, the design of the SL module is reasonable, and it can achieve the balance
between detection accuracy and inference speed.

Table 4. Ablation studies of OK
GR.

MethodsCar 3D Ped. 3D Cyc. 3D Average

AP Mod.AP Mod.AP Mod.

Baseline 84.32 56.73 73.22 71.42

+ KD 84.59 57.39 73.82 71.93

+ SL 84.71 58.91 74.54 72.72

+ DWA 84.75 59.67 75.51 73.31

Table 5. Ablation studies of SL.

Methods Training Inference Average

AP Mod.

Inference

Time

(ms)

Stage 1Stage 2Stage 1Stage 2

Baseline – – – – 71.42 273.4

+ OKGR� � � � 73.47 347.7

+ OKGR� � � – 73.31 302.1

+ OKGR� – � – 72.13 303.7
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5 Conclusion

In this paper, we propose to complete object features for 3D object detection
via Occluded Keypoint Generation and Refinement. Concretely, we design the
Occluded Keypoint Generation to generate points in object occluded region and
learn the shape knowledge at the keypoint level. Besides, Occluded Keypoint
Refinement is proposed to assign weights to the generated keypoints, and the
weights conduct to features to obtain high-quality features for detection. Exten-
sive experiments have demonstrated the effectiveness of our approach.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China (Grant No. 62322602, Grant No. 62172225), CAAI-Huawei MindSpore
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Abstract. Camouflaged object detection is a challenging task because of intrin-
sic similarity between background and foreground. In the existing models, many
confusing edge features eventually lead to bad predictions. In this paper, we pro-
pose an Interactive Task Learning Network, in which an improved fractional-order
differential operator is used to calculate the gradient intensity of the image. By
calculating average gradient and spatial frequency of image, it can adaptively learn
the fractional-order v and extract features from different directions. Experiments
on three camouflaged datasets indicate that the proposed method is effective and
progressiveness.

Keywords: Camouflaged object detection · Fractional edge · Interactive task
learning

1 Introduction

Camouflage is a survival skill of creatures learned in the long-term evolution process to
hide themselves from recognition by changing colors, approximating contrast, mimick-
ing shapes, and so on.Broadly speaking, camouflaged objects also refer to the objects that
are extremely small, highly similar to the background, or heavily obscured. Camouflage
object detection (COD) is not only beneficial to scientific value, but also important for
many basic tasks, including medical diagnosis (such as polyp segmentation [1] and lung
infection analysis [2]), agriculture (such as pest detection), industry (such as defective
parts detection), search and rescue [3].

COD is a very challenging task due to the nature of camouflage, that is, the high
intrinsic similarities between candidate objects and chaotic background, which make it
difficult to spot camouflaged objects for humans. To tackle this issue, numerous deep
learning-based methods have been broadly divided into three types. First is to design
more complex network for detecting camouflaged objects, such as C2FNet [4], UGTR
[5]. Second is to incorporate auxiliary tasks into joint learning, including edge extraction,
salient object detection, fixation graph and camouflaged object ranking. Third is tomimic
bio-inspired method, such as SINet [6].
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Object detection models based on edge guidance has achieved better results than
ordinary semantic segmentation models. But for the camouflaged objects with fuzzy
edges and occlusion, existing models are usually difficult to identify the complete struc-
ture or details of objects, resulting in unsatisfactory prediction results. This paper uses
both integral and fractional edge to highlight the weak gradient between foreground and
background. Factional-order derivative can produce a coarser edge transition compared
with integral-order derivative, which is conducive to strengthening high-frequency edge
and texture details while retaining part of low-frequency contour information. The work-
flow of the interactive task learning network (ITLNet) proposed in this paper is shown
in the Fig. 1. It is composed of two sub-task modules: camouflaged object edge detec-
tion module (CEDM) and camouflaged object detection module (CODM). Through the
mutual feedback and interactive learning of the two sub tasks, ITLNet can obtain rich
semantic guidance information and edge details, meanwhile, it maximizes the mining of
different levels of image features to capture camouflaged objects with accurate edges.
To sum up, our main contributions are as follows:

• A plug and play lightweight fractional edge perception module is proposed, which
improves the performance of camouflage object segmentation model.

• Experiments show that the proposed module can be used as an independent
lightweight end-to-end edge detection network.

Fig. 1. Interactive camouflaged object detectionmodel. CEDM refers to camouflaged object edge
detection, CODM refers to camouflaged object detection. Edge map obtained through CEDM can
enhance the edge of the prediction map when CODM works.

2 Related Work

In salient object detection task, Chen et al. [7] proposed a new Contour Loss, which uses
the object contour to guide model to learn more information within the boundary and
enhance local salient prediction while retaining accurate target boundaries. BPFINet
proposed by Zhou et al. [8] aggregated high-level semantic features, low-level edge
information and global features step by step through a U-shaped network model, and
proposed a new loss function to highlight pixels near the boundary to solve the imbalance
between background and objects. AFNet proposed by Feng et al. [9] refined the rough
prediction map step by step by constructing the attention feedback module, used addi-
tional boundary supervision in the last two decoding stages. They extracted the boundary
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details through average pooling, and calculated loss function using ground truth as a part
of whole loss function to guide the network training.

In the Camouflaged object detection task, Xu et al. [10] put forward an edge guidance
module to build connections between the regional branch and the boundary branch of
each side output. ERRNet proposed by Ji et al. [11] first integrated the low-level features
to obtain edge prior. And then crossedmodels themwith high-level semantic information
and compares potential camouflage regions and their complementary regions by consid-
ering neighbor prior, global prior, edge prior, and semantic prior.MGLproposed by Zhao
et al. [12] designed two interactive modules named region induced graph reasoning and
edge constrained graph reasoning to guide training process mutually. BGNet proposed
by Sun et al. [13] used edge prior to help recover the object structure step by step in the
decoding module to improve the performance of camouflaged object detection.

3 Interactive Task Learning Network

The texture of camouflaged object is very close to the background. The human visual
system often first discovers the edge position with the greatest difference from the
background when searching for camouflaged objects. Therefore, edges are important
clues for detecting camouflaged objects. This paper design a lightweight CNN module
CEDM to generate edge prediction map, and insert it into CODM to train end-to-end. In
order to overcome the weak feature extraction ability of the lightweight CNN module,
CEDM uses interpretable differential edge detection operators to assist itself to learn
edge feature.

Common first-order or second-order differential operators cannot detect the edge
of camouflage object well as they are almost embedded in background. We employ
fractional-order differential operator to strengthening high-frequency edge and tex-
ture details, while retaining part of low-frequency contour information. Therefore,
CEDM uses both integral-order and fractional-order differential operators to improve
the accuracy of edge prediction.

3.1 Integral and Fractional Edge

Integral Edge: Sobel [14] is a simple and efficient operator which combines the first-
order derivative and gaussian smooth function. We generate horizontal convolution ker-
nel Gx and vertical convolution kernel Gy based on a 3× 3 convolution kernel, as shown
in Eq. (1).

Gx =
⎡
⎣

−1 0 1
−2 0 2
−1 0 1

⎤
⎦, Gy =

⎡
⎣

−1 2 −1
0 0 0
1 2 1

⎤
⎦ (1)

After each point in the image is combined with convolution, we can calculate the
gradient as Eq. (2), where A is the image.

G =
√

(Gx ∗ A)2 + (
Gy ∗ A

)2 (2)
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To simplify the operation, we change it to Eq. (3).

G = |Gx ∗ A| + ∣∣Gy ∗ A
∣∣ (3)

Fig. 2. Fractional edge. (a) Amplitude-frequency curve. (b) original image. (c) object mask. (d)
Integral edge (Sobel). (d) Fractional edge (Tiansi).

Fractional Edge: Figure 2(a) shows the amplitude-frequency curve of the second
derivative, the first derivative and [0, 1] fractional-order derivative. We can see that
different orders in differential operation have different degrees of weakening effects
on low frequency signals, and their lifting effects in high frequency signals also show
different degrees of nonlinear growth. The fractional-order derivative between [0, 1]
enhances the intermediate frequency and high frequency signals while retaining the
nonlinear information of the low frequency signals.

⎡
⎢⎢⎢⎢⎢⎣

v2−v
2 0 v2−v

2 0 v2−v
2

0 −v −v −v 0
v2−v
2
0

v2−v
2

−v
−v
0

8
−v
v2−v
2

−v
−v
0

v2−v
2
0

v2−v
2

⎤
⎥⎥⎥⎥⎥⎦

(4)

Equation (4) is the fractional-order differential Tiansi [22]. It calculates separately in
8 directions while they have the same rotation direction. However, Tiansi operator can’t
achieve good results in the edge transition area and smooth area. To solve this problem,
we propose a method to adaptively calculating the fractional order between [0, 1] based
on image content.

The fractional-order v relates to the gradient and spatial frequency of the image,
and the larger the average gradient and spatial frequency of a certain area in the image,
the greater the likelihood of it being an edge, which needs to be enhanced. On the
contrary, when the average gradient and spatial frequency of a certain region are smaller,
it indicates that the probability of the region being a smooth region is higher, and some
detailed information of the region needs to be preserved in the calculation process.
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Therefore, an adaptive [0, 1] order fractional operator is proposed by calculating the
average gradient and spatial frequency of the image, and finding the relationship between
them and the order v to construct the corresponding mapping function.

The input image is divided into image blocks with a width of M and a height of N,
respectively. The spatial frequency SF(i, j) and the average gradient G(i, j) at pixel (i, j)
in input image are calculated as Eqs. (5)–(8):

SF(i.j) =
√
CF2(i, j) + RF2(i, j) (5)

CF(i.j) =
√√√√ 1

MN

M∑
i=1

N∑
j=1

((F(i, j) − F(i, j + 1)))2 (6)

RF(i.j) =
√√√√ 1

MN

M∑
i=1

N∑
j=1

((F(i, j) = F(i + 1, j)))2 (7)

G(i.j) = 1

(M − 1)(N − 1)

M−1∑
i=1

N−1∑
j=1

√
(F(i, j) − F(i, j + 1))2 + (F(i, j) − F(i + 1, j)2

2

(8)

CF(i, j) and RF(i, j) are column frequency and row frequency of pixel (i, j) respec-
tively. After calculating the spatial frequency SF(i, j) and average gradient G(i, j), the
order v will be obtained by constructing a mapping function. The mapping function is
as Eqs. (9) and (10):

Y = 1

π

(
tan(SF)_tan

(
G

))
(9)

v = (alpha − beta) ∗ tanh(Y ) − min(Y )

max(Y ) − min(Y )
+ beta (10)

where we set alpha to 0.7 and beta to 0.5 in Eq. (10). They are two parameters we set to
limit the range of fractional-order parameter v. Compared with the integer order operator
shown in Fig. 2, the fractional operator can detect the weak contrast edge between the
camouflage object and the background better, which can be used as the prior supervision
information of the camouflage target detection model to improve its performance.

3.2 Camouflaged Edge Detection Module

The proposed CEDM consists of two branches: horizontal branch and vertical branch.
First, the input images are sent into convolutional layerwith kernel size of 1×7 and7×1.
The low-level features of image are extracted along the horizontal and vertical directions
respectively. Then, ResBlock will reduce the number of channels. Considering that the
top-level feature map X4 generated in ResNet-50 has rich semantic information, which
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is used to assist to get location of camouflage objects. To this end, we design selection-
enhancement module to integrate features and improve the representation ability. Sobel
operator will yield information with abundant edge details, while improved fractional-
order Tiansi operator can retain low frequency texture details better. Finally, through
channel attention, the predicted edge map can guide CODM detect objects better. The
workflow in Fig. 4 is named a interactive task learning network (ITLNet) in this paper.

Fig. 4. The proposed interactive task learning network (ITLNet).

4 Performance Evaluation

4.1 Datasets and Experiment Settings

We carry out our experiments on three camouflaged datasets: CAMO, CHAMELEON
andCOD10K.The evaluation criteria contains:MAE (mean absolute error), Sα (structure
measure), Eφ (Enhanced-alignment measure), Fω

β (weighted F-measure).
All experiments are run on a TITAN RTX. In order to verify the effectiveness of

the proposed CEDM, we select three camouflaged object detection models as CODM
module which are SINet, PFNet and C2FNet. At the same time, the predicted edge maps
generated by CEDM are processed using the sigmoid function as weights to guide the
training of CODM (the weight matrix is represented by redge in the following text).
Through interactive guidance, a predicted image with precise edges is generated.

4.2 Quantitative Evaluation

By analyzing the quantitative comparison data of multiple models presented in Table 1
on three datasets for four evaluation indicators. *+I_CEDM and *+IF_CEDM in Table 1
represent the use of integer edges and integer+fractional edges, respectively. It can
be concluded that the detection performance of *+I_CEDM and *+IF_CEDM models
proposed in this paper are significantly superior to the SOD and GOD models (the 2–6
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rows in the Table 1). Compared to the COD benchmark model selected as an end-to-end
COD network, the multi task interaction network proposed in this paper performs better.
For example, C2FNet+IF_CEDM showed an average improvement of 0.58%, 1.22%,
1.01%, and 6.64% compared to C2FNet in four evaluation indicators; On the COD10K
dataset, the four evaluation indicators of SINet+IF_CEDM increased by 0.52%, 3.23%,
8.89%, and 15.7% compared to SINet, respectively. According to Sα, it can be seen
that the method proposed in this article detects the edges of camouflaged targets more
accurately. Finally, the model has improved in four evaluation indicators by introducing
[0, 1]-order fractional differentiation to compensate for the shortcomings of the Sobel,
which proves the effectiveness of fractional edges in SOD task.

Table 1. Quantitative comparison results.

COD10K CAMO CHAMELEON

Sα↑ E∅↑ Fω
β

↑ M↓ Sα↑ E∅↑ Fω
β

↑ M↓ Sα↑ E∅↑ Fω
β

↑ M↓
Segment Anything
[23]

0.783 0.798 0.701 0.050 0.684 0.687 0.606 0.132 0.727 0.734 0.639 0.081

FPN [19] 0.697 0.691 0.411 0.075 0.684 0.677 0.483 0.131 0.794 0.783 0.590 0.075

MaskRCNN [15] 0.613 0.748 0.402 0.080 0.574 0.715 0.430 0.151 0.643 0.778 0.518 0.099

Unet++ [20] 0.623 0.672 0.350 0.086 0.599 0.653 0.392 0.149 0.695 0.762 0.501 0.094

MSRCNN [21] 0.641 0.706 0.419 0.073 0.617 0.669 0.454 0.133 0.637 0.686 0.443 0.091

PFANet [16] 0.636 0.618 0.286 0.128 0.659 0.622 0.391 0.172 0.679 0.648 0.378 0.144

EGNet [17] 0.737 0.779 0.509 0.056 0.732 0.768 0.583 0.104 0.848 0.870 0.702 0.050

SINet [6] 0.771 0.806 0.551 0.051 0.751 0.771 0.606 0.100 0.869 0.891 0.740 0.044

SINet+I_CEDM 0.773 0.827 0.587 0.044 0.749 0.773 0.610 0.098 0.875 0.909 0.792 0.037

SINet+F_CEDM 0.775 0.832 0.600 0.043 0.733 0.773 0.612 0.098 0.877 0.916 0.797 0.035

PFNet [18] 0.800 0.868 0.660 0.040 0.782 0.852 0.695 0.085 0.882 0.942 0.810 0.033

PFNet+I_CEDM 0.809 0.876 0.664 0.038 0.785 0.860 0.700 0.082 0.886 0.936 0.819 0.032

PFNet+IF_CEDM 0.812 0.879 0.667 0.037 0.789 0.863 0.702 0.081 0.886 0.936 0.824 0.032

C2FNet [4] 0.813 0.809 0.686 0.036 0.796 0.854 0.719 0.080 0.888 0.935 0.828 0.032

C2NFet+I_CEDM 0.815 0.896 0.690 0.034 0.799 0.859 0.722 0.077 0.893 0.944 0.832 0.030

C2FNet+IF_CEDM 0.816 0.899 0.693 0.033 0.799 0.864 0.724 0.076 0.897 0.949 0.839 0.029

4.3 Qualitative Evaluation

SINet: The first benchmark of end-to-end camouflage target detection model. It divides
the detection process into two stages: target search and recognition, and its structural
design is robust and universal. Considering that SINet will generate two camouflage
maps: rough prediction map Cs and refined results Ci. We get Cs = Cs * redge + Cs.
Supplement structural details to optimize the network as much as possible within the
target during the recognition phase.
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Figure 5 shows a visualization example. Overall, the ITLNet (Fig. 5 (d) and (e)) is
significantly better than SINet. Specifically, whether it is images containing a single cam-
ouflage target or images with multiple camouflage targets, SINet is prone to incomplete
target detection, blurred edges, and misjudgment of the detected target object internally.
The ITLNet based on Sobel edge can focus more on the internal target for training and
optimization under the interactive learning of rich edge information and Semantic infor-
mation, which solves the above problems well. However, due to the limitations of the
Sobel operator in grayscale smooth regions, some edge regions of the predicted image
are blurry. Based on this, we try to compensate for this defect by introducing [0, 1]-order
fractional differentiation, as shown in Fig. 5 (e). The improved model can effectively
recognize complete edges in areas with high confusion in the front background, such as
adjacent parts of two fishes in the second row of Fig. 5.

Fig. 5. Results of detection by adding differential operators. We choose SINet as our comparison
network. From left to right are (a) original image, (b) ground truth, (c) SINet, (d) SINet+I CEDM,
(e) SINet+IF_CEDM.

PFNet: PFNet divides the entire detection process into two stages: positioning and
focusing. It adopts a U-shaped network architecture to achieve rough positioning and
focus refinement of camouflaged targets step by step, while generating four side output
prediction graphs cri (i = 1, 2, 3, 4). Similar to C2FNet as the reference network, in this
experiment, redge and cri multiply and then add the elements, i.e., cri = cri * redge + cri
(i = 1, 2, 3, 4,) to obtain a selected enhanced prediction map with more accurate edges.
According to Fig. 6, the PFNet prediction results shown in the second, the fourth, and the
fifth line in the figure are affected by background interference with highly similar colors
and texture structures in the surrounding area. The camouflage object in the fifth line is
missed in the overlapping area with the background, resulting in incomplete object. We
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construct an edge detection module by combining shallow convolutional networks with
traditional hard coding operators, and retains as much contour information as possible
to conduct interactive learning with PFNet to improve detection integrity and accuracy.
The results are shown in Fig. 6 (d) and (e).

Fig. 6. Results of PFNet. (a) original image, (b) ground truth, (c) PFNet, (d) PFNet+I CEDM, (e)
PFNet+IF_CEDM.

C2FNet: This model fully integrating feature maps at different levels and considering
rich global context information. Through two sets of feature cross layer integration
modules ACFMand context awarenessmodule DGCM, camouflage target detectionwas
achieved. However, for the five-layer feature maps generated by the feature extraction
network, the network only integrates mid to high level semantic features, completely
discarding the underlying features, which results in the loss of the rich structural details
contained in them, leading to issues such as edge blur and edge errors in the predicted
camouflage map. In this experiment, by utilizing redge processed feature map X43 and
X432 for each DGCM is enhanced and optimized, i.e., Xi = Xi ∗ redge +Xi, i = 43, 432.

Figure 7 is a partial visualization example image selected from the COD10K test
set. From the image, it can be seen that the prediction image generated by C2FNet has
poor detection performance in the front background gradient smooth area as mentioned
earlier, and the prediction image part shows no obvious contour. The results of proposed
ITLNet (Fig. 7 (d) and (e)) are superior to C2FNet in object’s integrity and edge accuracy.
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Fig. 7. Results of C2FNet. (a) original image, (b) ground truth, (c) C2FNet, (d) C2FNet+I CEDM,
(e) C2FNet+IF_CEDM.

4.4 Generalization of Edge Detection

Many object detection tasks, including camouflaged object detection face the common
problem of edge detection accuracy. In order to further analyze the effectiveness of the
proposed CEDM, we separate it into an end-to-end edge detection network. We select
some edge detection results fromCOD and SOD test dataset shown in Fig. 8. The CEDM
achieves good results whether they are salient objects or camouflaged objects. So, it has
more applications in the field of object segmentation and detection.
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Fig. 8. Edge detection results of the proposed CEDM on COD and SOD dataset.

5 Conclusion

In this paper, the problem of blurring edges in the detection result image existing in
camouflage target detection is deeply studied, and a camouflage target detection model
ITLNet based on edge perception is proposed. The model captures rich semantic infor-
mation and low-level details of the original image through two interactive guidance task
modules, CEDM and CODM, to achieve high accuracy of the detection result map. We
use Sobel operator to compensate for the loss of underlying structure information caused
by the deepening of network layers, and use improved Tianci operator to detect gradient
smooth areas and weak edge areas, and adaptively generate parameter v according to
the gradient and spatial frequency of the image. After applying CEDM to several cam-
ouflage detection models, the experimental results verify the progressiveness nature of
the proposed ITLNet model.
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Abstract. Utilizing part-level features provides a more detailed repre-
sentation, leading to improved results in person re-identification (ReID).
Yet existing works either use external tasks like pose estimation or strug-
gle to define part features, which limit the model’s learning capability.
In this work, we propose the Decomposed Transformer (DecTrans), a
transformer-based person ReID framework which exploits multifaceted
part features. In particular, DecTrans extracts local features using the
Vision Transformer (ViT) and then maps them into latent parts through
a novel Token Decomposition (TD) layer. In the TD layer, soft clus-
tering of ViT tokens forms clusters, and each token is decomposed into
components based on its similarity to all cluster centroids. Token com-
ponents referencing the same cluster are then regrouped to produce part
features, thereby retaining more feature details. To ensure tokens from
different pedestrians but referring to the same part are sufficiently clus-
tered together, we propose to remove id information from tokens before
clustering. Besides, we also propose a simple yet efficient data augmen-
tation named Image Graying, which has been experimentally validated
when used in conjunction with the TD layer. The DecTrans achieves
remarkable performance, e.g., mAP and Rank1 of 70.8%&87.1%, and
61.6%&67.7% on MSMT17 and Occluded-Duke, significantly outper-
forming state-of-the-arts.

Keywords: Person ReID · Vision Transformer

1 Introduction

Person re-identification (ReID) verifies pedestrians’ identities captured by non-
overlapping cameras. Some approaches adopt global features, characterizing the
entire body [34,37]. However, this representation lacks fine-grained information
and has limited discriminative power for similar-looking pedestrians with differ-
ent IDs, especially in occluded scenarios. Alternatively, part-to-part matching-
based ReID methods, such as [18,22], have shown superior performance.
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Fig. 1. Illustration of part feature responses. (a) Part features by uniform partitioning.
(b) Part features based on pose estimation. (c) Latent part features by our DecTrans.

These methods aim to estimate critical semantic parts and extract well-
aligned part features. Some [7,18,25] utilize body-part features from external
tasks like pose estimation. However, the reliability of such tasks is uncertain, and
the features might not adapt well to ReID due to cross-task differences. Oth-
ers [22,26] extract part features directly on uniform grids of pedestrian images.
Additionally, Sun [22] refines part pooling to assign outliers to the nearest part,
enhancing within-part consistency. However, due to diverse poses and non-rigid
body deformations, these models struggle with accurate part alignment.

Recently, transformers have made strides in person ReID [11], achieving
notable results, which randomly rearrange and group patches within each pedes-
trian image. This haphazard grouping lacks a specific meaning for each patch
group and doesn’t ensure group alignment for matching purposes. Based on
these insights, we propose applying clustering to guide transformer tokens into a
series of latent parts, as depicted in Fig. 1. Specifically, we employ soft k-means
clustering [8] on images within each training batch to ensure gradient backprop-
agation. To enhance cluster centroid stability, we integrate the dynamic routing
mechanism [21]. Through soft clustering, our aim is for tokens corresponding to
the same latent part across pedestrians to cluster around centroids with con-
sistent semantics, despite their distinct IDs. Therefore, we refine each token by
stripping its ID information, and creating an id-irrelevant token. This involves
subtracting its projection in the direction of the ID vector.

We integrate id-irrelevant token refinement, soft clustering with dynamic
routing, and cluster-based token decomposition into a unified Token Decom-
position (TD) layer. This layer more explicitly guides tokens towards relevant
latent parts with multifaceted representations. Finally, we construct the Decom-
posed Transformer (DecTrans) comprising a transformer token extractor, the TD
layer, parts-based classification heads, and a global classification head featuring
the common [class] token, as shown in Fig. 2.

Our main contributions can be summarized as follows: i) We introduce a
plugin Token Decomposition (TD) layer rooted in soft clustering. This layer
decomposes local features (tokens) into groups of feature components aligned
with latent parts, facilitated by dynamic routing. ii) We introduce the notion
of id-irrelevant tokens within the TD layer. This involves removing ID informa-
tion or splitting each token into two vectors for clustering: an id vector and a
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purely latent part vector. iii) DecTrans achieve state-of-the-art performance on
prevalent ReID datasets, by synergizing with the TD layer and a simple data
augmentation technique called Image Graying.

2 Related Work

To tackle challenging issues in person ReID, e.g. background interference, partial
occlusion, viewpoint change, pose change, previous works focus on extracting dis-
criminative features. Some works capture contextual information from a global
perspective [34,37], while some other works attain fine-grained features from
local image parts [7,18,22,25,26]. For example, inspired by the spatial structure
of the human body, some works [22,26] use horizontal partitioning to obtain
fine-grained parts. However, a prerequisite assumption for them is that the body
parts of pedestrians are relatively aligned; otherwise, there would be a prob-
lem of spatial semantic misalignment. To achieve part alignment, external cues
are harnessed, e.g. pose estimation [7,18], human parsing [25], but this would
significantly increase model complexity and harm efficiency.

The Transformer [24] was originally proposed for natural language process-
ing, which can effectively process sequence data. Later, many works [9,14] have
also proved its effectiveness in computer vision. The success of Vision Trans-
former (ViT) [5] well proves that a pure transformer-based architecture can
effectively perform image classification. Hence a lot of research efforts have
been made to explore transformer-based models for addressing various vision
tasks [1,17,27,39]. In person re-identification, [11] utilizes a pure transformer
with side-information embedding and a Jigsaw patch module to learn reliable
feature representations; [38] adds the “partially marked” learnable vector to learn
discriminative features, and integrates part arrangement into self-attention; [16]
propose a novel end-to-end Part-Aware Transformer (PAT) to discover diverse
discriminative human parts with a set of learnable part prototypes; [31] use
Transformer to aggregate multiscale features of pedestrian images.

3 Methodology

3.1 Vision Transformer as Feature Extractor

Following TransReID [11], the image I ∈ R
H×W×C is divided into N −1 patches

{Iip|i = 1, 2, . . . , N − 1}. These patches undergo flattening and linear projection,
yielding N patch embeddings, together with an extra learnable [class] token that
serves as the global pedestrian representation. The position and side information
embeddings [11] are appended to the patch embeddings as N initial tokens, i.e.,
the [class] token x0

1 and N − 1 patch tokens {x0
i |i = 2, 3, . . . , N}. These initial

tokens traverse l − 1 transformer layers, resulting in encoded tokens xl−1 =
{xl−1

i |i = 1, 2, . . . , N}, where xl−1
1 means the encoded [class] token.
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Fig. 2. Overall architecture of the proposed DecTrans. We first extract Vision Trans-
former (ViT) tokens as local features, and then design the Token Decomposition (TD)
layer to generate part features via soft clustering with dynamic routing on these tokens.

3.2 Token Decomposition (TD) Layer

Soft Clustering with Dynamic Routing. Soft k-means clustering starts
with an initial estimation of K centroids, which can be manually defined or
randomly selected, and iteratively updated through similarity calculation. To
stabilize the cluster centroids, we adopt dynamic routing [21], which facili-
tated by a trainable projection matrix, ensures consistent and stable feature
mapping. For each encoded token xl−1

i (abbr. xi), we project it onto K pre-
diction vectors x̂k|i using the kth cluster oriented trainable projection matrix
Wk. The centroid ck is a weighted sum over x̂k|i from all the input tokens as:
ck =

∑
i sk|ix̂k|i, x̂k|i = Wkxi. Where sk|i is the scaled similarity to the kth

centroid, serving as the coupling coefficient. Coupling coefficients for xi across
clusters sum to 1 and are calculated using an iterative dynamic routing:

stk|i = softmax
(

Wkxi · ck
||ck||

)

, ct+1
k =

∑N
i=1 c

t
k|ixi

∑N
i=1 s

t
k|i

(1)

where ct+1
k represents the kth centroid vector in the (t + 1)th iteration. We pro-

pose a novel Token Decomposition (TD) layer to direct local features toward
latent parts, as outlined in Algorithm 1.

Centroids start as the mean of token components: c0k = 1
N−1

∑N
i=2 Wkxi, and

we iterative update centroids and coupling coefficients. This involves cosine sim-
ilarity between centroids and token projections onto those centroids via the pro-
jection matrix. Rather than using cluster centroids as part features, we decom-
pose each input token into K components according to its similarity to each
centroid, and group the components referring to the same centroid together.
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Fig. 3. Illustration of id-irrelevant tokens generation.

Finally, the [class] token and the decomposed components {rk(i)xi}Ni=2 are con-
catenated, i.e., Zk, to go through the transformer to generate the part feature.

Id-irrelevant Tokens. The tokens of an image share the same id information,
whereas we expect to cluster them into different latent parts each with a specific
semantic. For different images (ids), we expect the cluster centroids with the
same semantics to be close to each other. See an illustration in Fig. 3, where one
color denotes one id while different shapes represent different semantics.

Algorithm 1. Token Decomposition Layer
Input: Image X = {xi} ∈ R

N×C , # of clusters K, projection matrix W ∈ R
K×C×C .

Output: Component groups Zk ∈ R
N×C , k = 1, . . . ,K.

1: for i = 2 to N do
2: x̂i = xi − µ(xT

i x) x
||x|| , x̂i = normalize(x̂i).

3: end for
4: for k = 1 to K do
5: Centroids Initialization: c0k = 1

N−1

∑N
i=2 Wkx̂i

6: end for
7: for t = 1 to T do

8: rt
k = softmax

(

Wkx̂i · ut−1
k

||ut−1
k

||

)

9: ut
k =

∑N
i=2 r

t
k(i)Wkx̂i/

∑N
i=2 r

t
k(i)

10: end for
11: for k = 1 to K do
12: Zk = [x1, {rk(i)xi}N

i=2]
13: end for
14: return Z = {Zk}

We propose the concept of the id-irrelevant token, i.e., removing id infor-
mation from tokens, and then effectively clustering the refined feature vectors.
In particular, the most intuitive choice for the id vector is to use the [class]
token. However, the global [class] token focuses on representing id information
for salient regions of the body rather than for all tokens. Therefore, the average



34 Y. Zhang et al.

of all tokens except the [class] token, which is closer to the axis, is adopted as
the id vector x to be removed from other tokens:

x =
1

N − 1

N∑

i=2

xi. (2)

Then, the id-irrelevant token is expressed as x̂i = xi − µ(xT
i x) x

||x|| , i = 2...N .
Where µ ∈ [0, 1] represents the removing ratio. As shown in Fig. 3, after the
refinement by removing id information, tokens with the same semantics (shapes)
are closer, to whatever id (color) they have.

3.3 Data Augmentation for TD Layer

We empirically find that most wrongly retrieved samples have a similar color as
the query, as shown in Fig. 4(a). Thus, we propose a data augmentation method
called Image Graying to alleviate the impact of color information. As shown in
Fig. 4(b), the wrongly retrieved samples are sorted to lower ranks with the Image
Graying. We use the probability of 0.1 to perform the Image Graying operation,
which is calculated as Gray = 0.299R + 0.587G + 0.114B. In addition, we also
use a data augmentation method called CutMix [30], which replaces some part
of an image with the same part of another image, and the final label is weighted
according to the cropping ratio, as shown in Fig. 4(c).

Fig. 4. Data augmentation operations. (a) Results before Image Graying. (b) Results
after Image Graying. (c) Principle of CutMix operation.

3.4 Training and Inference

We optimize the whole network by constructing ID loss and triplet loss on both
the global feature and latent part features. The ID loss LID is the cross entropy
loss without label smoothing: LID = −∑N

i=1 yi log pi.

LID = −
∑N

i=1
yi log pi (3)
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where yi is the ground truth, pi is the predicted probability, and N is the number
of classes. For a set of triplets (a, p, n), the triplet loss LT with soft margin is

LT = log(1 + exp(‖fa − fp‖22 − ‖fa − fn‖22)). (4)

Finally, the DecTrans outputs both the global feature fg and K local features
referring to K latent parts as {f1

l , f
2
l , ..., f

K
l }, and the overall loss is,

L = LID(fg)+LT (fg)+
1
K

K∑

j=1

(LID(f j
l ) + LT (f j

l )) (5)

In inference, we concatenate the global and part features from two images and
calculate their cosine similarity for ranking.

4 Experiments

4.1 Datasets and Evaluation Metrics

We validate the performance of DecTrans on typical person ReID datasets,
including Market-1501 [35], DukeMTMC-reID [20], MSMT17 [29] and Occluded-
Duke [18]. Occluded-Duke is obtained by re-splitting the training, query, and
gallery sets in DukeMTMC-reID such that all query images contain occlusion.
For the evaluation metrics, we use the Cumulative Matching Characteristic
(CMC) at Rank1 and the mean Average Precision (mAP) on all datasets.

4.2 Implementation Details

Pedestrian images are resized to 256 × 128. We use data augmentation methods
including random horizontal flip, padding, random crop and random erase, the
proposed Image Graying, as well as CutMix. For the input of the transformer, we
split each image into patches of size 16, and the step size of the sliding window is
12. The batch size is set to 64, with four images per ID. In DecTrans, we use the
same pre-trained model as TransReID for a fair comparison. The SGD optimizer
is employed with a momentum of 0.9 and a weight decay of 1e− 4. The learning
rate is initialized to 0.08 and cosine annealing is used as the scheduling of the
optimizer. All the experiments are performed with two Nvidia 2080Ti GPUs
using the PyTorch toolbox and APEX with FP16 training.
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4.3 Comparisons to State-of-the-arts

Table 1. Comparison with the state-of-the-art methods, based on CNN (upper part)
and ViT-B/16 (lower part) in the general Person ReID task.

Model MSMT17 Market1501 DukeMTMC
mAP Rank1 mAP Rank1 mAP Rank1

OSNet(ICCV19) [37] 52.9 78.7 84.9 94.8 73.5 88.6
ABDNet(ICCV19) [3] 60.8 82.3 88.3 95.6 78.6 89
PGFA(ICCV19) [18] – – 76.8 91.2 65.5 82.6
CBN(ECCV20) [40] 42.9 72.8 77.3 91.3 67.3 82.5
RGA-SC(CVPR20) [34] 57.5 80.3 88.4 96.1 – –
SAN(AAAI20) [13] 55.7 79.2 88.0 96.1 75.7 87.9
SCSN(CVPR20) [4] 58.5 83.8 88.5 95.7 79 91
HOReID(CVPR20) [25] – – 84.9 94.2 75.6 86.9
PAT(ICCV21) [16] – – 88.0 95.4 78.2 88.8
ISE(CVPR2022) [33] 51.0 76.8 87.8 95.6 – –
PNL+BDB(CVPR2022) [6] 53.4 79.0 88.4 95.4 79.0 89.2
TransReID(ICCV21) [11] 67.4 85.3 88.9 95.2 82 90.7
DecTrans 70.8 87.1 90.9 96.0 83.5 90.9

We compare the DecTrans with current state-of-the-art methods in Table 1. We
can see the proposed DecTrans achieves the best performance on all these typical
person ReID datasets. Especially, compared to TransReID, the previous best-
performing transformer-based method, our DecTrans gains large performance
improvements, i.e., 3.4% in mAP, 1.8% in Rank1 on the large scale MSMT17
dataset, and 2.0%, 0.8% on Market1501 with a small scale. These results can
also show the great potential of our method on large-scale datasets, as Dec-
Trans involves the trainable projection matrices in dynamic routing, which would
be more adequately trained over larger datasets. As shown in Table 2, for the
occluded dataset of Occluded-Duke, the DecTrans has an improvement of 2.4%
in mAP, and 1.3% in Rank1, demonstrating the robustness of DecTrans against
the interference of pedestrian occlusion.

4.4 Ablation Study

Analysis of Components in DecTrans. We experiment on the largest
dataset MSMT17 to verify the effects of TD layer and data augmentation meth-
ods, as shown in Table 3. For the baseline, we adopt a pre-trained ViT model
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Table 2. Comparison with the state-of-the-art methods based on CNN (upper part)
and ViT-B/16 (lower part) in the Occluded-Duke dataset.

Method Rank1 Rank5 Rank10 mAP

HACNN(CVPR18) [15] 34.4 51.9 59.4 26.0
DSR(CVPR18) [10] 40.8 58.2 65.2 30.4
PCB(ECCV18) [22] 42.6 57.1 62.9 33.7
PGFA(ICCV19) [18] 51.4 68.6 74.9 37.3
RandErasing(AAAI20) [36] 40.5 59.6 66.8 30.0
HOReID(cvpr20) [25] 55.1 – – 43.8
SORN(TCSVT20) [32] 57.6 73.7 79.0 46.3
SGSFA(ACML20) [19] 62.3 77.3 82.7 47.4
MoS(AAAI21) [12] 61.0 – – 49.2
OAMN(ICCV21) [2] 62.6 77.5 – 46.1
MHSA(TNNLS22) [23] 59.7 74.3 79.5 44.8
BPBreID(CVPR23) [28] 66.7 – – 54.1
PAT(CVPR21) [16] 64.5 – – 53.6
TransReID(ICCV21) [11] 66.4 – – 59.2
DecTrans 67.7 81.7 86.4 61.6

the same as TransReid, also using viewpoint and camera ID as side information,
and use the [class] token as the final representation of the image.

Observing the results, CutMix leads to a 0.3% enhancement in mAP. Image
Graying correlates with improvements: 0.7% in Rank1, 0.5% in Rank5, and 0.6%
in Rank10. We then proceed to combine CutMix and Image Graying with the
TD layer individually. Notably, both data augmentation techniques contribute
positively to the extraction of intricate features facilitated by the TD layer.
Lastly, a comparison is made between the TD layer and the JPM layer [11] within
the context of data augmentation. The results reveal the TD layer’s superiority,
achieving a higher mAP at 70.8% compared to JPM’s 70.0%.

Analysis of Token Decomposition (TD) Layer. The TD layer in DecTrans
includes id-irrelevant token processing, soft k-means clustering with dynamic
routing, and regrouped token components. We further verify the validity of the
TD layer by TD w/o id-irr. (TD layer with originally encoded tokens rather than
the id-irrelevant tokens), TD w/o decomp. (TD layer without token decomposi-
tion), and k-means clustering with different cluster numbers K.

As shown in Table 4, when tokens are not refined through the removal of id
information, referred to as TD w/o id-irr., there is a notable decrease in per-
formance. This decline underscores the challenge of disentangling a significant
number of highly correlated tokens. Similarly, utilizing the centroid vector alone
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Table 3. Ablation study results of DecTrans.

Methods Rank1 Rank5 Rank10 mAP

baseline 83.8 92.0 94.1 65.6
+CutMix 83.8 91.8 94.1 65.9
+Gray 84.5 92.5 94.7 65.6
+TD 85.4 92.4 94.2 67.3
+TD +CutMix 85.5 92.8 94.6 68.8
+TD +Gray 85.9 93.0 94.9 68.2
+JPM +Gray +CutMix 86.8 93.5 95.3 70.0
+TD +Gray +CutMix 87.1 93.5 95.4 70.8

as the representation of the latent part (TD w/o decomp.) also leads to per-
formance degradation due to the reduced information within centroids, thereby
affirming the efficacy of the decomposition process. Additionally, we explore var-
ious cluster numbers, detailed in the lower part in Table 4. The results show that
the cluster number K = 4 yields the best performance.

Visualisation and Analysis. To clearly demonstrate the effects of the id-
irrelevant tokens, Fig. 5 depicts the statistical distribution of the cosine similar-
ity of tokens to the vector representing id information, i.e., x (the average of
all tokens), before refining (left part) and after refining (right part). The are
two peaks in each sub-figure, which represent the centroids of background and
foreground tokens respectively. The higher peak shows that most tokens are very
similar before refining (around 0.8 on the left), and spread out (about 0.6 on
the right) after the id-irrelevant refining. The “spread out” means, most of the

Table 4. Ablation study results of the TD layer.

Methods Rank1 Rank5 Rank10 mAP

TD w/o id-irr 86.4 93.5 95.3 69.9
TD w/o decomp 86.5 93.3 95.2 70.0
TD 87.1 93.5 95.4 70.8
TD (#clusters=2) 86.4 93.5 95.3 69.5
TD (#clusters=3) 86.4 93.4 95.2 69.8
TD (#clusters=4) 87.1 93.5 95.4 70.8
TD (#clusters=5) 87.0 93.5 95.2 70.5
TD (#clusters=6) 86.7 93.6 95.3 70.4
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refined tokens are far away from the vector of id information, and these refined
tokens are more conducive to clustering.

Fig. 5. Distribution of the cosine similarity of tokens to the id vector (x). The left and
right sub-figures are similar distributions before and after the id-irrelevant refinement.

Fig. 6. Visualisation of attention maps about the latent part represented by groups
of decomposed token components. (a) and (c) is the input pedestrian images, and (b)
and (d) is the attention maps of latent parts on these images.

As shown in Fig. 6, the proposed DecTrans successfully attends to multi-
ple semantically meaningful parts on pedestrians. Furthermore, the kth cluster
centroid for different input images attends to the part with similar semantics
(Fig. 6(b) vs. (d)). Meanwhile, our proposed DecTrans can adapt to the input
image and localize to flexible, irregular, and more semantic body parts compared
to the uniform partition and pose estimation methods.

5 Conclusion

In this paper, we propose to apply soft clustering to force transformer tokens to
be mapped into a series of latent parts for part-to-part matching based on person
ReID. We develop the DecTrans that maps ViT tokens into latent parts each
with the same semantic using a novel Token Decomposition (TD) layer. Besides,
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we also devise a data augmentation method called Image Graying, which has
been experimentally proven effective when used with our TD layer. Extensive
experiments validate the effectiveness and superiority of DecTrans over lots of
state-of-the-art methods. In the future, we will continue to explore more effective
ways of clustering applied in ReID models for better performance.
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Abstract. Few-shot object detection aims to detect novel objects with
few annotated examples and this task has been extensively investi-
gated by meta-learning-based paradigm. However, most of the previous
approaches suffer from: 1) Most of the previous methods only perform
two-branch interaction in the detection head which lacks the interaction
of low-level semantic features. 2) Traditional method is difficult to cap-
ture the fine-grained differences between categories due to fixed weights.
To alleviate these issues, we proposed a simple yet effective method,
named Aggregation Hyper-Transformer (AHT) framework, which can
generate corresponding weights into the primary network by hypernet-
works mechanism. In particular, we design a novel Dynamic Aggregation
Module and a Conditional Adaptation Hypernetworks, which apply the
aggregated category vectors as conditions to dynamically generates class-
specific parameters. Benefiting from the above two modules, our method
significantly exceeds the previous meta-learning methods and provides
new insights for my community.

Keywords: Few-shot object detection · Hypernetwork · Meta-learning

1 Introduction

Object detection is one of the important topics in the field of computer vision,
which aims to predict the coordinates and corresponding categories of each
instance in the image. There have been significant advancements in object
detection techniques [21,22], with deep learning-based approaches achieving
remarkable results. However, traditional object detection methods require large
amounts of labeled data for training, which are expensive and time-consuming to
collect. Therefore, Few-shot object detection(FSOD) task [9,26,31] is proposed
and tries to address this difficulty by enabling the detector with very limited
training data.

In particular, there are mainly two kinds of approaches to address such
challenges: transfer-learning-based and meta-learning-based methods [26]. For
transfer-learning-based framework [20,23,26,30], newly added detection head
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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dimensions are directly fine-tuned on the novel class through the generalization
knowledge derived from training on the base classes. It is extremely sensitive to
the sample in the fine-tuning stage which requires carefully designing the frozen
portion of the model [30]. More importantly, this paradigm suffers from signif-
icantly negative generalization effects, such as catastrophic forgetting for base
classes [23,33]. On the contrary, the meta-learning-based methods [9,28,31,33]
refer to simulating few-shot tasks through a two-branch structure formed by
sampling support sets in base classes. With the process of learning to learn, the
two-branch framework has a stronger generalization ability in the novel class,
compared with the traditional transfer-learning-based framework.

Fig. 1. Illustrations of hypernetwork for few shot object detection.

Although the aforementioned meta-learning-based methods have achieved
pretty-well performance, it still restricted by the following limitations:

1) Most meta-learning-based methods [5,16,31] only perform two-branch inter-
action in the detection head, resulting in the misalignment of low-level seman-
tic features, which significantly affects the final object detection performance.

2) [8] exploits the deep cross-branch interactions by fully Feature Pyramid Cross
Transformer. Nevertheless, the updated method based on fixed weights is
difficult to capture the fine-grained differences between categories during the
interactions of query and support branch [2,14,19].

To solve the above problems, we propose a new Aggregation Hyper-
Transformer (AHT) approach, which can effectively provide multi-level fine-
grained two-branch interactions and dynamically generate class-specific primary
network weights with a feed-forward meta-learning manner. Concretely, we first
build a Dynamic Aggregation Module (DAM). By deriving the global depen-
dency of each instance’s local parts in the support sets, the inter-image promi-
nent features are adaptively generated into aggregated weight. On the other
hand, as shown in Fig. 1, we propose a novel Conditional Adaptation Hyper-
networks (CAH) module for FSOD. Here, the hypernetworks refers to using
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another network to predict the weights of a primary network. Inspired by previ-
ous Hypernetwork-based methods [34], our CAH uses the aggregated weight vec-
tors as the conditions of hypernetwork and dynamically generates class-specific
parameters. Benefitting from the above two modules, our method provides fine-
grained two-branch fusion and effectively improves performance.

In summary, the contributions of this work are as follows: 1) We propose
a novel few-shot object detection method AHT that firstly incorporates corre-
sponding weights into the meta-learning-based method by hypernetworks. Dif-
ferent from previous interactions in the detection head, the AHT can achieve
deeper and fine-grained cross-branch fusion. 2) We design two new modules,
including Dynamic Aggregation Module and Conditional Adaptation Hypernet-
works. They are utilized to extract inter-image prominent features and generate
class-specific parameters. 3) Extensive experiments show that, without bells and
whistles, AHT exhibits competitive performance compared to state-of-the-art
methods, revealing the effectiveness of our approach.

2 Related Work

2.1 Object Detection

Object Detection. Object detection is a critical task in computer vision that
involves identifying and localizing objects. Early methods of object detection can
be divided into two general approaches: one-stage and two-stage methods. One-
stage detectors [15,21] directly predict the bounding boxes and the corresponding
class labels on the extracted features. On the contrary, the two-stage detectors
[22,24] need to generate region proposals through the Region Proposal Network
(RPN) network, and then predict the detection results based on the proposals.
However, these detectors are trained with sufficient labeled data and are not
designed for data-scarce scenarios.

Few-Shot Object Detection. Few-shot object detection aims to recognize
novel class objects using a few labeled examples. Existing works mostly focus on
two paradigms: transfer-learning and meta-learning paradigms. Specifically, the
transfer-learning-based approaches [23,26,30] first train a basic detector with
large base samples. Then, the detection head of the pre-trained models would
be finetuned to transform the acquired knowledge to the target few-shot field.
However, due to serious negative transfer and catastrophic forgetting, the meta-
learning-based approaches [9,28,31] are proposed, which apply the learning-to-
learn (i.e., meta-learning) to effectively adapt to new categories and learn to
distinguish similar classes. Inspired by previous works, in this paper, we propose
a novel Aggregation Hyper-Transformer (AHT) approach, which can improve
the generalization ability of meta-learning-based method.

2.2 Hypernetworks

Hypernetworks [6] are neural networks that are utilized to generate the parame-
ters of another neural network (called a main network). Hypernetworks can not
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only ensure the flexibility of the network but also reduce the amount of param-
eters of the network. For example, to improve the generalization ability, Ha et
al. [6] use hypernetwork to replace the convolution layers for image recognition
tasks. Hyperseg [18] uses hypernetwork to generate the parameters of the decoder
in semantic segmentation. On the other hand, to improve the performance of few-
shot tasks, TAFE-Net [27] generates task aware feature embeddings for few shot
learning. Sylph [32] predict the parameters of classification head by hypernet-
works. Hypertransformer [34] use transformer to generate a CNN model directly
from few-shot samples. Inspired by these hypernetwork-based frameworks, we
use support features as the conditions of hypernetworks to dynamically generate
class-specific parameters which use for multi-level cross-branch fusion.

3 Method

3.1 Preliminaries

Following the previous works [5,16,20,26], the few-shot detection task involves a
base set of classes, denoted as Cb, with a plentiful of annotated data, represented
by Db. Additionally, there is a novel set of classes, labeled as Cn(Cn∩Cb=∅), with
no overlap with Cb, and only N instances available for each category, denoted by
Dn. The goal is to optimize a few-shot detection model that can detect objects
rq from both base and novel classes in testing. Here the rq following the meta-
learning paradigm [8,9,16]:

argmax
θ

Pθ(rq|Iq, Îs), (1)

where the probability Pθ(·) is calculated by few-shot detection model parameters
θ, using a query image Iq and N support instances (N -shot) of each category Îs

as input data. Meanwhile, the whole learning procedure is organized into a two-
stage paradigm (i.e., the meta-knowledge is collected across Db and finetunes it
on Dn.).

3.2 Overview

Inspired by the feed-forward meta-learning manner [5,8,16], we propose a sim-
ple yet novel approach, called Aggregation Hyper-Transformer(AHT), to fur-
ther enhance the capabilities of transformer-based detectors in few-shot scenar-
ios. The fundamental insight driving AHT is that despite the traditional meta-
learning paradigm having shown auspicious results, the interaction between the
query and support branch only occurs within the detection head, resulting in
the misalignment of low-dimensional features, which significantly affects the final
object detection performance [8].

Recently, [8] exploits the deep cross-branch interactions by fully Feature
Pyramid Cross Transformer. However, the method is fixed weights which has
difficulty capturing fine-grained differences between categories [14,19], as well
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as the prominent features of a set of support images Îs cannot be effectively
extracted due to coarse-grained averaging [8]. Therefore, as shown in Fig. 2, our
model performs dynamic aggregation on the supported image Îs to enhance the
aggregated weight and adaptively generates class-specific weights with hyper-
network strategy.

Formally, features of the query and support branch would be fed into a fea-
ture pyramid cross transformer for instance-level cross-attention. In particular,
we design the Dynamic Aggregation Module(DAM), it takes the set of sup-
port features as input for extracting inter-image prominent information when
aggregating the support features into aggregated weight. On the other hand, we
propose Conditional Adaptation Hypernetworks(CAH) which use the aggregated
weight vectors as conditions to generate class-specific weights. By introducing the
Dynamic Aggregation Module and Conditional Adaptation Hypernetworks, our
model provides multi-level and higher-quality two-branch interactions. Finally,
we use an RPN-based head and ROI Align to generate proposal features by con-
trastive training strategy [5], stimulating the detection head to accurately match
the real category in the query image.

Fig. 2. The architecture of the Aggregation Hyper-Transformer (AHT) approach for
few shot object detection.

3.3 Dynamic Aggregation Module

The Dynamic Aggregation Module (DAM) can generate aggregated weight vec-
tors as the conditions of hypernetwork while preserving each category’s notable
information from N instances. It receives input from the support branch, denoted
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as fs ∈ RN×Ci×Hs×Ws . Similar to a vanilla transformer, we map the input sup-
port sets fs to K,V , while mapping a group of learned embeddings Hi ∈ RCi×Ci

to Q. After the weighted combination of attention mechanism, features of each
instance in the support branch are initially aggregated by:

fh
s = softmax(

QKT

√
dk

)V, (2)

where the dk is scaling factor. It is worth noting that features fq ∈ R1×Ci×Hq×Wq

from the query branch in which the input sizes are different from the initial
aggregated feature fh

s . To ensure that the useless information in the support
features is suppressed so that the two-branch interacts effectively, we execute
the global representation of fh

s and then derive the global dependency of each
instance’s local parts to acquire the aggregation weights wh

s ∈ RN×Ci×Hs×Ws ,
which represent the proportion of the useful information carried in each support
image. It is defined as:

wh
s =

GAP (fh
s ) fh

s

||GAP (fh
s )|| ||fh

s || , (3)

Here, the GAP represents the global average pooling operation. The support sets
features fh

s are finally aggregated into conditional weights Ac ∈ R1×Ci×Hs×Ws

as the initial conditions of the hypernetwork:

Ac =
1
N

N∑

i=1

wh
s,i · fh

s,i. (4)

where
∑

denotes the sum operation of vectors. Benefitting from the above oper-
ations, DAM highlights the salient information when aggregating the support
features into conditional vectors.

3.4 Conditional Adaptation Hypernetworks

Hypernetwork can generate a set of weights with respect to the original class-
specific conditions, which would be used to interact with the query features in
which after being encoded by the multi-head attention module.

{
W u = dropout(Ac · HW , pi

u),
B u = dropout(Ac · HB , pi

b).
(5)

where pi
u and pi

b are ratio [11], dim(HW ) = dim(HB) ∈ RCi×Ci are learned
weights. Furthermore, W b and B b are directly generated by the linear projec-
tion of Ac. Based on this set of weights, a dense and fully-connected hypernet-
work architecture is formed for the interaction with the query branch.

fh
q = B u · (W u · fq + W b) + B b. (6)
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As shown in Fig. 2, fh
q and fs will be used as the input of the joint feature

extraction and interaction in the next Aggregate Hyper-Transformer block. After
N = 3 stages of blocks, we gather Aggregated features that fully interact with
the salient semantic features of the support branch. Additionally, we introduce
query-perspective information to acquire Coupled features in the support branch.

3.5 The Classification-Regression Detection Head

After multi-level interactions between query and support branch, we follow [22]
to adopt RPN for query and support branch respectively to generate more pre-
cise candidate proposals. Then, ROI Align is used to extract the initial RoI
query features fr

q ∈ RPq×Cr×Hr
q ×W r

q and support features fr
s ∈ R1×Cs×Hr

s ×W r
s

for each proposal. To achieve high-level semantic interaction, we directly send
fr

q and fr
s to Feature Pyramid Cross Transformer [8] which conducts instance-

level cross-attention. Then, we use Multi-Relation Matching [5] to enforce the
final similarity learning which employs a contrastive training strategy. Finally, a
binary classification and box regression layer are used for final detection.

Table 1. Experimental results on VOC dataset.

Method/ Shot Novel Set 1 Novel Set 2 Novel Set 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

TFA w/fc [26] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA w/cos [26] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

Meta-DETR [33] 40.6 51.4 58.0 59.2 63.6 37.0 36.6 43.7 49.1 54.6 41.6 45.9 52.7 58.9 60.6

FSOD-UP [29] 43.8 47.8 50.3 55.4 61.7 31.2 30.5 41.2 42.2 48.3 35.5 39.7 43.9 50.6 53.5

TTP-PRD [12] 54.6 – 56.5 – 61.4 37.9 – 44.4 – 47.6 42.8 – 46.6 – 51.2

DeFRCN [20] 53.6 57.5 61.5 64.1 60.8 30.1 38.1 47.0 53.3 47.9 48.4 50.9 52.3 54.9 57.4

CoCo-RCNN [17] 33.5 44.2 50.2 57.5 63.3 25.3 31.0 39.6 43.8 50.1 24.8 36.9 42.8 50.8 57.7

FCT [8] 49.9 57.1 57.9 63.2 67.1 27.6 34.5 43.7 49.2 51.2 39.5 54.7 52.3 57.0 58.7

LVC [10] 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6

ours 53.9 64.9 62.0 68.2 69.0 27.1 33.9 41.5 45.7 51.4 40.9 50.4 53.3 63.2 64.0

4 Experiments

4.1 Experimental Setting

Dataset. We follow the previous works [9,26] and evaluate our approach on
PASCAL VOC [4] and MS COCO [13] datasets, utilizing the same data splits
provided by [26] for a fair comparison. For PASCAL VOC, our model is trained
on the trainval sets of VOC 2007 and VOC 2012, and tested on VOC 2007 test
set. We have three random split groups, where each group contains 15 base classes
and 5 novel classes. Each novel class has K = 1, 2, 3, 5, 10 annotated instances for
few-shot training. We report AP50 of novel classes (nAP50) on PASCAL VOC
07 test set. For MS COCO, we utilize a 5k subset of the COCO2014 validation
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set for evaluation and the remaining COCO2014 training and validation set for
training. The 20 classes overlapped with PASCAL VOC are selected as novel
classes with K = 10, 30 shots, the remaining 60 classes are selected as base
classes. We report COCO-style mAP, mAP50, mAP75 on validation set.

Implementation Details. Our model based on Pyramid Vision Transformer
(PVT) [25]. Our model is trained with AdamW optimizer over 4T A100 GPUs
and the batch size is set to 8. The initial learning rate of 0.0002, weight decay
of 0.0001. For PASCAL VOC dataset, the total number of training iterations is
10,000 and the learning rate divided by 10 after 7,500 and 10,000 iterations. For
MS COCO dataset, the total number of training iterations is 110,000 and the
learning rate divided by 10 after 85,000 and 100,000 iterations.

4.2 Comparison Results

PASCAL VOC. We present the results of our method on PASCAL VOC in
Table 1. It can be observed that as the number of annotation instances increases,
the performance of our model gradually improves. More importantly, the experi-
mental results show that our method achieves significant improvement compared
with the previous works. For example, for Novel Set 3, our approach surpasses
the previously best method by 4.2% and 5.1% in 5-shot and 10-shot scenarios.
In Novel Set 1, our approach surpasses the previously best method by 1.0% and
1.6% in 5-shot and 10-shot scenarios.

Table 2. Experimental results on MS COCO dataset.

Method/ Shot 10 shot 30 shot

AP AP50 AP75 AP AP50 AP75

MPSR [30] 9.8 17.9 9.7 14.1 25.4 14.2

TFA w/fc [26] 10.0 19.2 9.2 13.4 24.7 13.2

TFA w/cos [26] 10.0 19.1 9.3 13.7 24.9 13.4

FSOD-UP [29] 11.0 – 10.7 15.6 – 15.7

FSCE [23] 11.9 – 10.5 16.4 – 16.2

FADI [1] 12.2 22.7 11.9 16.1 29.1 15.8

Meta Faster R-CNN [7] 12.7 25.7 10.8 16.6 31.8 15.8

ours 14.0 24.7 13.5 17.5 29.3 17.9

MS COCO. We also evaluate our method on MS COCO dataset with the
standard COCO metrics. As shown in Table 2, our method outperforms other
methods in most evaluation metrics. Particularly, our model achieves 1.3% and
0.7% improvement in 10-shot and 30-shot AP respectively, which proves the
effectiveness of our approach.
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Table 3. Ablation study of different modules.

Method Shot Avg.

DAM CAH 1 2 3 5 10

(a) 53.9 60.3 59.8 68.3 65.7 61.6

(b) � 53.6 63.8 64.3 66.3 67.6 63.1

(c) � 55.9 63.2 62.7 66.1 66.4 62.9

(d) � � 54.1 64.9 62.0 68.2 69.0 63.6

4.3 Ablation Study

To verify the effectiveness of our model architecture, we conduct comprehensive
ablation studies on the Novel Set 1 of Pascal VOC dataset. For fair comparison,
the baseline detector based on FCT [8], which is the first vision transformer based
detection model for few-shot object detection and also a robust meta-learning
method that considers multi-level feature interactions. The architecture consists
of a stack of cross transformer layers, which perform dual feature aggregation
for both query and support branch. Ablation study results are shown in Table 3.

Impact of Dynamic Aggregation Module (DAM). The dynamic aggre-
gation module highlights the salient information by aggregating the support
features into conditions. As shown in Table 3(b), when only using the dynamic
aggregation module, the average performance significantly improves by 1.5%.
This indicates that the dynamic aggregation module is beneficial to highlight
meaningful and salient information.

Effectiveness of Hypernetwork. Hypernetwork can generate class-specific
parameters that will be used to interact with the query features. In Table 3(c),
we find that the hypernetwork module gains 1.3% points on the average per-
formance. Besides, The refined hyperparameters enable fine-grained interactions
between the query and support branch, which improves few-shot detection per-
formance under lower-shot settings. Specifically, the improvements are particu-
larly significant under 1-shot (+2.0% mAP), 2-shot (+2.9% mAP), and 3-shot
(+2.9% mAP) scenarios.

Table 4. Ablation study on each component in our model using different variants.

variant 1 shot 2 shot 3 shot 5 shot 10 shot

(a) linear 44.3 55.3 56.1 60.8 61.4

(b) learned CLS 47.3 58.4 57.2 64.1 64.2

(c) intra-support 53.2 60.6 59.3 65.2 66.1

(d) w/o bernoulli 53.8 60.9 59.4 65.4 66.9

(e) detection hpy 53.2 59.8 58.5 64.6 67.2

(f) w/o cross 47.1 57.7 56.4 63.8 62.7

(g) ours 54.1 64.9 62.0 68.2 69.0
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Alternative Model Settings

1) Different aggregation manners. In Table 4, we explore several compar-
ative experiments about the different model settings. In the rows of (a)-(b), we
utilize the basic MLP method and prepend a learnable token [cls] (similarity to
ViT [3]) to directly aggregate the features of support sets. The results show the
effectiveness of our current hypernetwork scheme because more useless informa-
tion being suppressed during the interactions of the two-branch.

2) Details of hypernetwork. In the DAM module, we use the average global
pooling operation to highlight the salient information when aggregating the
support features. Similarly, we explore prominent information of intra-image
through simply global pooling (i.e., Table 4(c)). We can observe that it has no
obvious helpful effect on extracting the salient information of the support sets.
Possibly, this is due to the fact that global pooling cannot directly eliminate the
impact of intra-image useless information. In addition, Table 4(d) shows that
smoothing hypernetwork weights distribution can slightly improve the perfor-
mance of the model.

3) Location and input of hypernetwork. As shown in Table 4(e), hyper-
network weight generated based on coupled features have a negative impact on
proposal features. Besides, as shown in Table 4(f), if the input of the hypernet-
work does not introduce query-perceptual information, which means both the
query and support branch adopt self-attention mechanism, the performance of
the model will be significantly negatively affected. It effectively demonstrates
the value of multi-level and high-quality interactions between the two-branch.

Fig. 3. Visualization results of the intermediate feature maps.
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4.4 Visualization of Our Module

To analyze the behavior of our module, we visualize the feature maps output
by AHT as a heatmap. As shown in Fig. 3, we find that our AHT enhances the
aggregation of the query and support branch, highlighting information similar
to class-specific support features in the query image.

5 Conclusion

We propose a novel and effective meta-learning framework AHT, which inte-
grates hypernetwork to generate corresponding weights for the first time.
We extensively experiment with different Hypernetwork strategies, in which
Dynamic Aggregation Module is proposed to highlight the salient feature in
support sets when generating aggregated weight. Furthermore, we build Con-
ditional Adaptation Hypernetworks that dynamically generates class-specific
weights interacting with the query branch. Despite its simplicity, Exhaustive
experiments validate the effectiveness of our method which outperformed the
previous meta-learning methods on the current benchmarks.
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Abstract. Recently, deep-learning based salient object detection meth-
ods have gained great progress. However, there still exists some problems
such as inefficient multi-level feature fusion, unstable multi-scale context-
aware feature extraction, detail loss caused by upsampling and unbal-
anced distribution. To efficiently fuse multi-level features, we propose
an attention-guided bi-directional feature refinement module (ABFRM)
including top-down and bottom-up processes, which applies different
attention-based feature fusion strategies for different directional pro-
cesses. To obtain stable multi-scale contextual features, we design a
serial atrous fusion module (SAFM), which uses serial atrous convolu-
tional layers with small dilation rates. To reduce detail loss caused by
upsampling with a large factor, we devise an upsampling feature refine-
ment module (UFRM), which utilizes the combination of deconvolution
and bilinear interpolation. To address unbalanced distribution from both
foreground and background perspectives, we propose a novel hybrid loss,
which contains Intersection-over-Union (IoU) and background boundary
(BGB) losses. Comprehensive experiments on five benchmark datasets
demonstrate that our proposed method outperforms 13 state-of-the-
art approaches under four evaluation metrics. The code is available at
https://github.com/xuanli01/PRCV210.

Keywords: Salient object detection · Attention-guided bi-directional
feature refinement · Serial atrous fusion · Upsampling feature
refinement · Background boundary loss

1 Introduction

Salient object detection (SOD), which aims to detect and segment the most
attractive objects in an image, is an efficient pre-processing procedure of many
computer vision tasks.
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Fig. 1. Challenges in SOD. (a) is the ground truth. (b) is our method. In (c), we
replace the ABFRM in our method with a BiFPN layer [15]. In (d), we replace the
SAFM in our method with ASPP module [2]. In (e), we replace the UFRM with bilinear
interpolation. In (f), we replace our loss with the combination of BCE and IoU losses.

Although great progress has been made recently, there are still four big chal-
lenges in SOD. First, low-level features contain rich details but large amount of
noises. High-level features contain accurate location information but lack enough
details. To incorporate fine details and precise location at each level, researchers
design many multi-level feature fusion algorithms [5,10,15,19,21] which can be
divided into unidirectional and bi-directional methods. Compared with unidi-
rectional methods [5,19], bi-directional methods [10,15,21], which contain both
top-down and bottom-up processes, use both higher and lower level features to
refine the features of each level. Top-down feature fusion is expected to be the
process of utilizing accurate location information of high-level features to filter
the low-level features. Bottom-up feature fusion is expected to be the process of
utilizing rich detail information of low-level features to refine the high-level fea-
tures. Most current bi-directional methods adopt the same fusion strategy in the
top-down and bottom-up processes without fully considering the purposes of dif-
ferent directional processes, which may introduce noises and coarse boundaries
(e.g., BiFPN [15] in Fig. 1(c)). Second, models are difficult to capture the visual
context of scale-varying objects under the limited receptive field. To alleviate
this issue, atrous spatial pyramid pooling (ASPP) module [2] or its variants are
applied to capture multi-scale contextual information through parallel atrous
convolutional layers with different dilation rates. However, a convolutional layer
with a large dilation rate is hard to extract stable features (e.g., a failure case of
ASPP module [2] to detect objects of different scales in Fig. 1(d)), which is caused
by the weakness of association relationships among sampling points [26]. Third,
many methods [17,18,25] directly apply interpolation algorithms to upsample
the output of the final layer by a large factor to obtain the final saliency predic-
tion maps, which is so rough for salient objects with elaborate structures that
the details may be lost (see Fig. 1(e)). Fourth, unbalanced distribution in SOD
refers to the phenomenon that images are usually dominated by the backgrounds.
A model is biased to predict pixels to be background, if all pixels are treated
equally by its loss function, e.g., Binary cross entropy (BCE) loss. To address
the unbalanced distribution, some works [11,28] utilize Intersection-over-Union
(IoU) loss or its variants to assist BCE loss by giving more focused on the fore-
ground, which is incomplete without handling the background. In Fig. 1(f), some
salient regions predicted by these methods may still have low confidence scores
due to the bias of background.
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For the first challenge, to fuse multi-level features efficiently, we propose
an attention-guided bi-directional feature refinement module (ABFRM) which
contains both top-down and bottom-up processes corresponding to top-down
location refinement module (TLRM) and bottom-up detail refinement module
(BDRM), respectively. For the purpose of the top-down process, TLRM utilizes
high-level features to generate spatial attention to filter noises in the low-level
features. To achieve the goal of the bottom-up process, BDRM uses the low-
level features to generate channel attention to refine high-level features with the
rich detail information. For the second challenge, we devise a serial atrous fusion
module (SAFM). For the sake of stable multi-scale context-aware feature extrac-
tion, SAFM adopts multiple serial atrous convolutional layers with small dilation
rates, which have almost the same receptive field as an atrous convolutional layer
with a large dilation rate. Features extracted from atrous convolutional layers of
different depths correspond to contextual information of different scales. For the
third challenge, we propose an upsampling feature refinement module (UFRM),
which aims to enhance the details lost during the process of upsampling with a
large factor by an integration of deconvolution and bilinear interpolation. For the
fourth challenge, we are inspired by the powerful unbalanced distribution han-
dling capability of boundary loss [6] to design a background boundary (BGB)
loss, which modifies boundary loss [6] to only regularize the background. Then,
we combine BGB loss with IoU loss, forming a hybrid loss to settle the unbal-
anced distribution from both foreground and background perspectives.

Fig. 2. Overall architecture of our proposed method. Red and black connectors indicate
supervision and information flow, respectively (better viewed in color). (Color figure
online)

2 Proposed Method

2.1 Overall Architecture

The overall architecture is shown in Fig. 2. Firstly, we utilize ResNet-50 [4] as
the backbone to extract the multi-level features from the input images. For
ease of statement, i ∈ {1, 2, 3, 4, 5} indicates the i-th level from bottom to top.



Feature Refinement from Multiple Perspectives for SOD 59

We denote the backbone features as F = {Fi}5i=1. To reduce computation, we
discard F1 from stage-1 due to its large spatial size. Then, we fuse multi-level
backbone features by feeding them into the ABFRM. The output features are
denoted by R = {Ri}5i=2. After that, we feed R into the saliency predictor (SP)
which is comprised of SAFM and UFRM to obtain and further refine multi-scale
contextual features. We upsample the output of UFRM by a factor of 2 via a
bilinear interpolation operation to get the final prediction S1. Details of each
component are discussed below.

Fig. 3. Illustration of the proposed TLRM. Red and black connectors indicate super-
vision and information flow, respectively (better viewed in color). (Color figure online)

2.2 Attention-Guided Bi-directional Feature Refinement Module

The ABFRM, which is composed of TLRM and BDRM, aims to efficiently aggre-
gate multi-level backbone features to obtain feature representation with fine
detail and accurate location information. In practice, we first pass backbone fea-
tures through the TLRM to obtain location refined features which are denoted
by B = {Bi}4i=2. Then, the location refined features are fed into the BDRM to
get the detail refined features.

Top-Down Location Refinement Module. This module aims to introduce
precise location information from high-level backbone features Fi+1 to low-level
backbone features Fi to highlight salient object regions and reduce the influ-
ence of complex background regions, which is shown in Fig. 3. Specifically, we
first pass Fi+1 through a 3 × 3 convolutional layer and two group convolutions
with two convolutional layers in each group to increase receptive field. Then, we
obtain spatial attention Ai via a softmax function. After that, we upsample the
attention map by a factor of 2 and use it to weight the features generated by
feeding Fi into a 3 × 3 convolutional layer. At last, a 3 × 3 convolutional layer
and a residual connection are applied to acquire the final output of the TLRM.
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Fig. 4. Illustration of the proposed BDRM (better viewed in color).

Fig. 5. Illustration of our proposed SAFM (better viewed in color).

Bottom-Up Detail Refinement Module. This module (see Fig. 4) aims to
use rich detail information from low-level TLRM features Bi−1 to refine the high-
level TLRM features Bi. Specifically, we first dowsample Bi−1 via a maxpooling
operation with the kernel size of 2 and stride of 2. Two 3×3 convolutional layers
are applied for transition of the Bi and dowsampled Bi−1, respectively. We
utilize a cross-channel concatenation operation to merge these two transitioned
features. Then, we adopt global average pooling (GAP), two 1× 1 convolutional
layers and a softmax function to get channel attention. After that, we weight
the merged transitioned features with the channel attention via element-wise
multiplication. At last, a 3 × 3 convolutional layer and a residual connection are
applied to gain the final output of the BDRM.

2.3 Serial Atrous Fusion Module

Modeling multi-scale visual context is of vital importance to SOD, for the rea-
son that salient objects have large variations in scale, shape and position. To
achieve this, some methods apply ASPP-like modules, which use parallel atrous
convolutional layers with different dilation rates to gather multi-scale context
cues. Nevertheless, the information under a kernel with a large dilation rate is
lack of steady relevance due to the sparsity of the kernel, leading to unstable
feature extraction.
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In this paper, we design a SAFM (see Fig. 5), which utilizes three serial
atrous convolutional layers with a dilation rate of 2 to capture multi-scale context
cues without large dilation rates. In SAFM, neurons can gain larger receptive
field, as the serial atrous convolutional layers go deeper. Specifically, we first
integrate the low-level ABFRM features Ri with the upsampled high-level SAFM
features Xi+1 through an element-wise addition operation to aggregate multi-
level features. Then, we use three serial 3 × 3 atrous convolutional layers with
the dilation rate of 2 to extract multi-scale contextual features. After that, we
concatenate the input of the first atrous convolutional layer and outputs of three
atrous convolutional layers along the channel dimension to fuse the multi-scale
contextual features. At last, a 3 × 3 convolutional layer is adopted to enhance
the fused features and a residual connection is applied to get the final output
Xi of the SAFM.

Fig. 6. Illustration of the proposed UFRM (better viewed in color).

2.4 Upsampling Feature Refinement Module

To acquire the final prediction, some methods [17,18,25] directly use interpo-
lation algorithms to upsample the output of the final layer by a factor of 4.
However, upsampling with a large factor via a simple interpolation algorithm
(e.g., bilinear interpolation) may result in losing details.

To resolve this issue, we propose a UFRM (see Fig. 6) to enhance the details
lost during the process of upsampling with a large factor. The UFRM contains
two upsampling branches with different methods. For one branch, we apply bilin-
ear interpolation to upsample the lowest-level SAFM features X2 by a factor of
2. For the other branch, we first upsample X2 via a 4 × 4 deconvolution with a
stride of 2. Then, we apply two 3×3 convolutional layers to obtain large receptive
field. After that, we combine features containing context cues of different scales
via cross-channel concatenation and adopt a 3×3 convolutional layer to enhance
the merged features. To better recover fine details, we combine the output of the
two branches via an element-wise addition operation, which can attain comple-
mentation in methods. At last, a 3 × 3 convolutional layer is applied to get the
final output of the UFRM. The ultimate prediction is obtained using bilinear
interpolation to upsample the UFRM output by a factor of 2, not 4.
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2.5 Objective Function

To avoid the impact of the unbalanced distribution in SOD, most existing meth-
ods apply IoU loss, which optimizes holistic regions rather than focusing on
single pixel. The IoU loss pays more attention to the foreground. An intuitive
thought is that the background also needs to be involved in dealing with the
unbalanced distribution to improve the performance.

In this paper, we design a BGB loss, which only constrains the background
by removing the foreground regularization of boundary loss [6]. Boundary loss [6]
takes the form of a distance metric on the space of contours, instead of regions.
To comprehensively address the unbalanced distribution, we combine IoU loss
with BGB loss Li

bgb to form a hybrid loss Li
h, which achieves complementation

in the focuses (i.e. foreground and background) and regularization methods (i.e.
regions and a distance metric on the space of contours). For BGB loss, concretely,
each pixel in the background will be assigned with a weight D(p) which measures
the distance between its position p and the boundary. Pixels more far from the
boundary between the foreground FG and background BG correspond to larger
D(p). We take the minimum distance between p ∈ BG and q ∈ FG as D(p),
which is calculated by

D(p) = min
q∈FG

‖p − q‖2 (1)

where L2 distance is used to calculate the distance between p and q. The BGB
loss is obtained by weighted average calculation, which is expressed as

Li
bgb =

1
∑

p∈BG

1

∑

p∈BG

Si(p) � D(p) (2)

where {Si}5i=2 are obtained by passing {Xi}5i=2 through a 3 × 3 convolutional
layer and a bilinear interpolation operation. � is a Hadamard product. Finally,
the hybrid loss is denoted by

Li
h = Liou(Si, GT ) + Li

bgb (3)

where GT is the ground truth. The IoU loss Liou and BCE loss Lbce have the
same expressions as [28]. To gain better spatial attention to assist location in
TLRM, we propose to explicitly guide the learning process of the spatial atten-
tion with pseudo-labels. In practice, we generate the pseudo-labels for the spatial
attention by dilating GT , which can make the spatial attention more focused on
the location of salient objects and less focused on details under the constraint
of the pseudo-labels. BCE loss is applied for this constraint, which is

Li
sa = Lbce(Ai,MaxPool(GT )) (4)

where the dilation operation is implemented by a maxpooling operation with
the kernel size of 25 and stride of 1. The final loss L is the combination of Li

h

and Li
sa, which is
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Table 1. Quantitative comparison. Bold and italic indicate the best and second-best
performance, respectively.

Method DUT-OMRON DUTS-TE ECSSD HKU-IS PASCAL-S

Fβ ↑ Fω ↑ M ↓ Eγ ↑ Fβ ↑ Fω ↑ M ↓ Eγ ↑ Fβ ↑ Fω ↑ M ↓ Eγ ↑ Fβ ↑ Fω ↑ M ↓ Eγ ↑ Fβ ↑ Fω ↑ M ↓ Eγ ↑
F3Net20 .766 .747 .053 .876 .840 .835 .035 .918 .925 .912 .033 .946 .910 .900 .028 .958 .835 .816 .061 .895

ITSD20 .756 .750 .061 .867 .804 .823 .041 .898 .899 .894 .031 .953 .895 .910 .034 .932 .785 .812 .066 .863

MINet20 .755 .738 .056 .873 .828 .825 .037 .917 .924 .911 .033 .953 .909 .897 .029 .960 .829 .809 .064 .898

LDF20 .773 .752 .052 .881 .855 .845 .034 .929 .930 .915 .034 .951 .914 .904 .028 .960 .843 .822 .060 .905

GateNet20 .746 .729 .055 .868 .807 .809 .040 .903 .916 .894 .040 .943 .899 .880 .033 .953 .819 .797 .067 .884

MSFNet21 .778 .757 .050 .876 .856 .841 .034 .931 .929 .916 .033 .954 .914 .903 .027 .959 .843 .822 .061 .901

DCNet21 .774 .760 .051 .885 .843 .840 .035 .923 .934 .920 .031 .957 .914 .905 .027 .962 .837 .820 .062 .902

VST21 .756 .755 .058 .872 .817 .828 .037 .916 .920 .910 .033 .957 .900 .897 .029 .960 .829 .816 .061 .902

PFSNet21 .774 .756 .055 .883 .846 .842 .036 .922 .932 .920 .031 .953 .919 .910 .026 .962 .837 .819 .063 .895

ICON22 .772 .761 .057 .879 .838 .836 .037 .919 .928 .918 .032 .954 .910 .902 .029 .958 .833 .818 .064 .893

RCSBNet22 .778 .752 .049 .870 .856 .839 .035 .920 .927 .916 .034 .948 .923 .909 .027 .959 .848 .826 .059 .907

EDN22 .785 .770 .049 .885 .851 .845 .035 .928 .932 .918 .032 .955 .919 .908 .026 .962 .847 .827 .062 .904

DPNet22 .778 .767 .049 .882 .861 .870 .028 .933 .926 .918 .031 .947 .924 .921 .023 .968 .843 .835 .054 .898

Ours .798 .781 .049 .889 .872 .860 .032 .936 .940 .925 .031 .956 .929 .918 .024 .964 .855 .834 .060 .910

L =
5∑

i=1

1
2i−1

Li
h +

1
32

4∑

i=2

Li
sa (5)

3 Experiments

3.1 Experimental Setup

Datasets. The performance of our method is evaluated on five benchmark
datasets: DUTS-TE [16], DUT-OMRON [23], ECSSD [22], HKU-IS [7] and
PASCAL-S [8]. We choose DUTS-TR [16] as the training dataset like previous
methods.

Evaluation Metrics. To quantitatively validate the proposed model, we adopt
four evaluation metrics, including mean F-measure (Fβ) [1], weighted F-measure
(Fω) [12], Mean Absolute Error (M) [14] and E-measure (Eγ) [3].

Implementation Details. DUTS-TR [16] is used to train our network. ResNet-
50 [4], pre-trained on ImageNet, is used as the backbone network. Horizontal
flipping, random cropping and multi-scale input images are applied to augment
the images. We adopt the warm-up and linear decay strategies with a maximum
learning rate of 0.005 for the backbone network and 0.05 for other parts. Our
network is trained end-to-end using stochastic gradient descent (SGD) optimizer.
Momentum and weight decay are set to 0.9 and 0.0005, respectively. We train
the model for 48 epochs with a mini-batch size of 32. During testing, each image
is resized to 352 × 352 to predict the saliency map without any post-processing.
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Fig. 7. Visual comparison of the proposed method with other state-of-the-art SOD
models.

Table 2. Ablation study on different losses.

BCE IoU BGB DUT-OMRON DUTS-TE

Fβ ↑ Fω ↑ M ↓ Eγ ↑ Fβ ↑ Fω ↑ M ↓ Eγ ↑
� .733 .713 .059 .859 .799 .802 .041 .897

� � .752 .740 .059 .868 .824 .824 .039 .914

� � .748 .718 .057 .866 .820 .809 .040 .907

� � � .755 .738 .057 .870 .828 .824 .039 .915

� .757 .740 .058 .871 .832 .823 .038 .920

� � .764 .742 .056 .867 .842 .829 .038 .922

3.2 Comparison with State-of-the-Art Methods

We compare the proposed model with 13 state-of-the-art saliency detection
methods, including F3Net [17], ITSD [27], MINet [13], LDF [18], GateNet [26],
MSFNet [25], DCNet [20], VST [9], PFSNet [11], ICON [28], RCSBNet [5], EDN
[19] and DPNet [21]. VST [9] takes T2T-ViT [24] as the backbone and other
methods take ResNet-50 [4] as the backbone. For fair comparisons, the saliency
maps provided by these methods are evaluated by a unified code.

Quantitative Comparison. The comparison results of 13 methods under four
evaluation metrics are shown in Table 1. It can be seen that our proposed method
performs well on multiple datasets, especially DUT-OMRON and ECSSD. It is
worth noting that we achieve the best Fβ value for all datasets.

Visual Comparison. Figure 7 shows some saliency maps produced by our
approach and other SOTA models. It can be observed that our method can deal
with various challenging scenarios including cluttered backgrounds (1st row),
large objects (2nd row), small objects (5th row), inverted reflection in water
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Table 3. Ablation study on different architectures. #Params indicates the number of
parameters of the model.

UFRM SA TLRM BDRM SAFM DUT-OMRON DUTS-TE #Params (M)

Fβ ↑ Fω ↑ M ↓ Eγ ↑ Fβ ↑ Fω ↑ M ↓ Eγ ↑
.764 .742 .056 .867 .842 .829 .038 .922 24.05

� .768 .751 .055 .873 .845 .834 .037 .924 24.20

� � .771 .755 .056 .878 .856 .845 .035 .930 24.59

� � .777 .757 .052 .879 .860 .846 .035 .930 24.59

� � � .789 .772 .052 .886 .863 .849 .035 .931 25.06

� � � � .798 .781 .049 .889 .872 .860 .032 .936 25.95

Table 4. Quantitative comparison of our ABFRM and other bi-directional multi-level
feature fusion approaches [10,15] by replacing the ABFRM in our full model with
a BiFPN layer [15] and the ASFF module [10]. #Params indicates the number of
parameters of the model.

Model DUT-OMRON DUTS-TE #Params (M)

Fβ ↑ Fω ↑ M ↓ Eγ ↑ Fβ ↑ Fω ↑ M ↓ Eγ ↑
ASFF .784 .766 .051 .883 .865 .852 .033 .933 25.49

BiFPN .788 .770 .051 .882 .867 .853 .033 .932 25.16

Ours .798 .781 .049 .889 .872 .860 .032 .936 25.95

(3rd row), low-contrast (4th row) and multiple objects (4th, 5th and 6th rows).
Compared with other competitors, the saliency maps generated by our approach
are apparently clearer and more accurate.

3.3 Ablation Study

In this section, we investigate the importance of each component in our model
on DUT-OMRON and DUTS-TE datasets. We remove the serial atrous convolu-
tional layers, cross-channel concatenation and residual connection from SAFM
to replace SAFM. The ABFRM is decomposed into TLRM and BDRM. The
UFRM is replaced by bilinear interpolation.

Impact of Loss Functions. Table 2 shows the study on the impact of different
loss functions, including BCE, IoU and BGB losses. It can be seen from the
comparison results that BGB loss can improve the performance of the model
regardless of how it is combined with BCE and IoU losses. The combination of
IoU and BGB losses achieves the best result, which indicates the effectiveness of
our hybrid loss.

Impact of Each Module. We progressively add UFRM, TLRM without the
constraint of Li

sa (SA), TLRM, BDRM and SAFM to evaluate their performance,
which is shown in Table 3. The model is trained using IoU and BGB losses.
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Table 5. Quantitative comparison of our SAFM and the ASPP module [2] by replacing
the SAFM in our full model with the ASPP module [2]. #Params indicates the number
of parameters of the model.

Model DUT-OMRON DUTS-TE #Params (M)

Fβ ↑ Fω ↑ M ↓ Eγ ↑ Fβ ↑ Fω ↑ M ↓ Eγ ↑
ASPP .791 .773 .049 .886 .869 .856 .032 .935 25.95

Ours .798 .781 .049 .889 .872 .860 .032 .936 25.95

The model can be boosted by each module and obtain the best result with the
combination of all components, which proves that all components are necessary
for the proposed method. Moreover, we compare the ABFRM with other bi-
directional multi-level feature fusion approaches (i.e. a BiFPN layer [15] and
ASFF module [10]) in Table 4. The results show that our ABFRM performs
better in the accuracy with little increasement of the number of parameters. In
Table 5, we compare the SAFM with ASPP module [2] to verify the effectiveness
of our multi-scale contextual feature extraction. It can be seen from the results
that our SAFM performs better with the same number of parameters.

4 Conclusion

In this paper, our purpose is to address four SOD problems including inefficient
multi-level feature integration, unstable multi-scale contextual feature acquisi-
tion, detail loss due to upsampling with a large factor and unbalanced distri-
bution. First, we propose an ABFRM, which applies TLRM for top-down fea-
ture fusion and BDRM for bottom-up feature fusion, to efficiently aggregate
multi-level features. Second, we design a SAFM to acquire stable multi-scale
contextual features. Third, we devise a UFRM to supplement lost details caused
by upsampling with a large factor. Fourth, we propose a new hybrid loss to
solve unbalanced distribution from both foreground and background aspects.
Comprehensive experiments on five public benchmark datasets demonstrate the
superiority of our model over the state-of-the-art approaches.
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Abstract. Multi-modal tracking has increasingly gained attention due
to its superior accuracy and robustness in complex scenarios. The pri-
mary challenges in this field lie in effectively extracting and fusing
multi-modal data that inherently contain gaps. To address the above
issues, we propose a novel regularized single-stream multi-modal track-
ing framework, drawing inspiration from the perspective of disentangle-
ment. Specifically, taking into account the similarities and differences
intrinsic in multi-modal data, we design a modality-specific weights
sharing feature extraction module to extract well-disentangled multi-
modal features. To emphasize feature-level specificity across different
modal features, we propose a cross-modal deformable attention mecha-
nism for the adaptive integration of multi-modal features with efficiency.
Through extensive experiments on three multi-modal tracking bench-
marks, including RGB+Thermal infrared and RGB+Depth, we demon-
strate that our method significantly outperforms existing multi-modal
tracking algorithms. Code is available at https://github.com/ccccwb/
Multimodal-Detection-and-Tracking-UAV.

Keywords: Visual object tracking · Multi-modal tracking ·
Multi-modal Fusion · Cross-modal vision transformer

1 Introduction

Visual object tracking (VOT) [1,4,5,9,12,29] is appealing due to extensive appli-
cations like video surveillance, autonomous driving, and augmented reality. In
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OursDual-StreamSingle-Stream

Modalities
Distribution

Fused
Feature

Fig. 1. Comparison of feature extraction strategies. The top three rows display the
RGB, thermal infrared, and fused features, respectively. The final row illustrates the
distribution relationships between modalities, with the x-axis representing sample val-
ues and the y-axis representing probabilities. The single-stream strategy suffers from
a feature entanglement problem, whereas the dual-stream strategy exhibits an over-
disentanglement phenomenon. In contrast, our method can disentangle multi-modal
features well, providing more discriminative information for accurate localization.

recent years, numerous cutting-edge RGB trackers and datasets have been devel-
oped. However, the performance of RGB tracking tends to decrease in condi-
tions such as rain, fog, and low light due to the limitations of visible sensors.
Therefore, many recent works pay attention to the multi-modal tracking tasks,
mainly including the RGB+Thermal infrared (RGB-T) and RGB+Depth (RGB-
D) [22,30]. These approaches leverage either thermal infrared or depth images to
provide additional temperature or depth information about the object, thereby
enhancing the tracker’s robustness and enabling all-weather tracking.

Previous trackers mainly use two feature extraction strategies. One is
the single-stream strategy which simultaneously extracts multi-modal features
[10,41], i.e., using identical network parameters. This data-friendly strategy
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neglects the heterogeneous properties of each modality, leading to a severe
feature entanglement problem. The second column of Fig. 1 shows that this
strategy focuses on common patterns but fails to capture the target object
completely, yielding inadequate fused features for the target object. The other
is the dual-stream strategy which extracts modality-specific features [28,36],
which might overlook the collaborative cues between modalities and result in an
over-disentanglement phenomenon. The third column of Fig. 1 shows that this
strategy emphasizes specific modal information, but overloads the fused feature
with much object-irrelevant information. Both strategies cannot fully exploit
the potential of multiple modalities, reducing the performance of multi-modal
trackers.

From the perspective of disentanglement, we propose a novel regularized
single-stream multi-modal tracking framework to efficiently disentangle and fully
fuse the features of different modalities for multi-modal tracking. Specifically, we
design our regularized single-stream multi-modal tracking framework based on a
one-stream one-stage transformers tracker [4,24]. Firstly, we propose a modality-
specific weights sharing feature extraction module for appropriately disentan-
gling multi-modal features and preserving homogeneous properties. This method
not only extracts well-disentangled features but also conserves a large number
of parameters. In addition, to facilitate faster feature extraction, we extended
the asymmetric attention mechanism [4] to multi-modal tracking tasks. Fur-
thermore, we propose an object-aware cross-modal deformable attention module
to integrate features from different modalities. This adaptive module empha-
sizes feature-level specificity more efficiently and effectively compared to exist-
ing methods [8,19,25,34,36], which is especially vital for the fusion of well-
disentangled features. As shown in the fourth column of Fig. 1, our method can
appropriately disentangle multi-modal features and take full advantage of well-
disentangled features, greatly improving the performance of the tracker.

Extensive experiments on several multi-modal tracking benchmarks prove
that our proposed method sets a new state-of-the-art performance, achieving
a real-time running speed of 36 FPS on a NVIDIA RTX3090 GPU. The main
contributions are summarized as:

– From the perspective of disentanglement, we systematically analyze the
importance of appropriately disentangling multi-modal features and propose
a regularized single-stream multi-modal tracking framework.

– We propose a modality-specific weights sharing feature extraction module
and an object-aware cross-modal deformable attention module to extract and
fuse well-disentangled features.

– Extensive experiments demonstrate that our proposed method attains state-
of-the-art performance across several multi-modal tracking benchmarks,
including RGBT234, LasHeR, and DepthTrack.
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2 Related Work

2.1 Multi-modal Tracking

Based on MDNet [21], Wang et al. [25] presented a novel tracking framework to
diffuse instance patterns across RGB-T data in the spatial-temporal domain.
Zhang et al. [36] designed a complementarity and distractor-aware RGB-T
tracker based on the Siamese network [12]. Using DiMP [1] as a baseline, Gao
et al. [8] proposed a dual-fused modality-aware tracker to learn informative and
discriminative representations. Zhang et al. [35] jointly modeled appearance and
motion cues using ECO tracker [5] and motion estimator. Different from the
above methods, Zhao et al. [37] integrates RGB features with bird’s-eye-view
representations to better explore cross-modality 3D geometry for RGB-D track-
ing. From the perspective of disentanglement, we propose a regularized single-
stream multi-modal tracking framework. A similar work is MANet++ [18], which
proposed a multi-adapter network to jointly perform modality-shared, modality-
specific, and instance-aware target representation learning. In contrast to the
intricate network structure of MANet++, our method emphasizes the extraction
and fusion of well-disentangled features in a simple but effective manner. This is
achieved through a modality-specific weights sharing feature extraction module,
augmented with a cross-modal deformable attention feature fusion module.

2.2 Transformers Tracking

Recently, several transformer-based VOT methods demonstrates excellent per-
formance. Transformer trackers fall into two categories: CNN-Transformer-based
trackers and fully-Transformer-based trackers [24]. The former category is mainly
characterized by the use of two Siamese-like identical network pipelines. For
instance, Yan et al. [29], building upon DETR [2] propose an encoder-decoder
transformer tracking architecture. Chen et al. [3] present a Transformer track-
ing method based on siamese-like feature extraction and attention-based fusion
mechanism. Feng et al. [7] designed a cross-modal model with shallow fusion
and weight optimization based on [3]. The latter category exclusively employs
transformers for feature extraction and integration. For example, Ye et al. [32]
propose a one-stream one-stage tracking framework with a candidate early elimi-
nation module, while Cui et al. [4] design a similar synchronous modeling scheme
with an asymmetric attention module. Drawing on [32], Zhu et al. [11] develop
a visual prompt multi-modal tracking method, which learns the modal-relevant
prompts to adapt the frozen pre-trained model to multi-modal tracking tasks. In
this work, based on [4] we design a regularized single-stream multi-modal track-
ing framework to explore the importance of well-disentangled feature extraction
in multi-modal tracking tasks.
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Fig. 2. Our proposed regularized single-stream multi-modal tracking framework. First,
well-disentangled features are extracted using modality-specific weights sharing mod-
ule with the asymmetric attention mechanism. Subsequently, multi-modal features are
fused by applying a cross-modal fusion module. Lastly, the target object is localized
employing a pyramidal corner head.

3 Methodology

3.1 Preliminary

Given a video with initial target bounding box B0, VOT aims to estimate the
location of the target in subsequent frames Xi. The tracking model can be
expressed as Bi = F (Xi;X0, B0), in the multi-modal tracking Xi = (Xv

i ,Xa
i ),

which symbolizes the RGB modality and another modality, respectively.
Given the simplicity and effectiveness of MixFormer [4], we adopt it as the

foundation model for our proposed method. Specifically, the model input Xv
i

contains the search region, template, and online template patch. First, the input
will be mapped into non-overlapped patch embeddings using a convolutional
layer with kernel size and stride of 16. Additionally, two different positional
embeddings are added to the search and templates patch embeddings respec-
tively. Subsequently, the concatenated search and templates tokens Hv

0 are fed
to an L-layer asymmetric encoder:

Hv
l−1 = AsymAttentionl(LNv(Hv

l−1)) + Hv
l−1, l = 1, 2, . . . , L (1)

Hv
l = MLPl(LNv(Hv

l−1)) + Hv
l−1, l = 1, 2, . . . , L (2)

where AsymAttention represents the asymmetric mixed attention between search
and templates tokens. Finally, search tokens Sv

0 are split from Hv
L, and the

predicted result is obtained through a pyramidal corner head.

3.2 Our Approach

Overall Architecture. From the perspective of disentanglement, we propose a
regularized single-stream multi-modal tracking framework, which is composed of
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two submodules. First, a modality-specific weights sharing module is introduced
to extract well-disentangled features. Second, we propose an object-aware cross-
modal feature fusion module, aimed to emphasize the feature-level specificity of
different modal features. The overall architecture is illustrated in Fig. 2.

Modality-Specific Weights Sharing. Based on the foundation model in Sect.
3.1, we implement our regularized single-stream multi-modal tracking frame-
work. Given the inputs Xi = (Xv

i ,Xa
i ), tokens H0 = (Hv

0 ,Ha
0 ) are derived using

an identical embedding layer and positional embeddings. Then the rest of for-
ward propagation process can be formulated as:

Hl−1 = CMAsymAttnl(LNv(Hv
l−1),LNa(Ha

l−1)), l = 1, 2, . . . , L (3)
Hl = MLPl(LNv(Hv

l−1),LNa(Ha
l−1)), l = 1, 2, . . . , L (4)

where CMAsymAttn denotes the cross-modal asymmetric attention mechanism.
As shown in Fig. 2, this mechanism allows each search feature to query all tem-
plate features and itself while each template feature only queries itself. In this
module, only the layer normalization has a counterpart, while the attention
mechanism and the multi-layer perceptron share the same parameters. This
strategy greatly reduces the computation of the Vision Transformer (ViT) [6]
backbone, while facilitating implicit cross-modal fusion for search frame features.
An experimental analysis is conducted to examine the importance of modality-
specific layer normalization in Sect. 4.3.

Object-Aware Cross-Modal Encoder. To emphasize feature-level specificity
of well-disentangled features, we design an object-aware cross-modal fusion mod-
ule. Current feature fusion methods [19,25,28,34,36] neglect the misalignment
problem in multi-modal data. Consequently, they rely on implicitly learning
alignment relations from a large volume of data. This impedes the full utiliza-
tion of well-disentangled features, limiting further enhancement of performance.
Drawing on the success of the deformable attention mechanism [27,40], we pro-
pose an object-aware cross-modal fusion module to address the misalignment
problem in a highly efficient way.

Given the output search features S0 = (Sv
0 , Sa

0 ) from the multi-modal back-
bone, we always use an adjusting layer (1 × 1 Conv and GroupNorm [26]) to
change the channel numbers as necessary. The fusion process in the L′-Layer
encoder can then be expressed as:

Sl−1 = CMDAttnl(LN(Sl−1)), l = 1, 2, . . . , L′ (5)
Sl = MLPl(LN(Sl−1)), l = 1, 2, . . . , L′ (6)

where CMDAttn denotes the cross-modal deformable attention mechanism. In
each block, we keep the modality-specific weights sharing strategy mentioned
above. As a result, our fusion module can produce highly discriminative fused
features, which aids in accurately localizing the target object. Finally, the fused
features SL′ are used to predict the target state via a pyramidal corner head.
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Fig. 3. Illustration of the proposed cross-modal deformable attention. We employ the
query feature to compute the sampling offsets and attention weights for each reference
point, followed by sampling and aggregating across all features. Finally, this aggregated
feature is reintroduced to respective modal feature.

Cross-Modal Deformable Attention. In contrast to other fusion methods
that focus on fixed spatial locations [19,25,34–36], our cross-modal deformable
attention mechanism only attends to a small set of key sampling points around
a reference point in each modality. This mechanism emphasizes the feature-level
specificity of different modal features, resulting in more discriminatively fused
features. The detailed design is depicted in Fig. 3.

Consider multi-modal features {xm}M
m=1, where xm ∈ R

C×H×W . For conve-
nience, we let x = Concat({xm}M

m=1) ∈ R
MC×H×W represents the concatenation

of multi-modal features, zq ∈ R
MC is a query element from x, and pq is the cor-

responding reference point. The deformable attention module for each query zq

can then be expressed as:

CMDAttnq(zq, pq, {xm}) =
H∑

h=1

Wh ·
[

M∑

m=1

K∑

k=1

Ahmkq · W ′
hxm (pq + Δphmkq)

]
,

(7)
where Wh ∈ R

C′×C and W ′
h ∈ R

C×C′
are learnable weights for h-th attention

head. Δphmkq and Ahmkq are sampling offset and attention weight for k-th sam-
pling point. Δphmkq ∈ R

2, bilinear interpolation is used for features sampling.
Ahmkq lies in the range [0, 1], normalized by

∑K
k=1 Ahmkq = 1. Compared to

standard attention fusion strategies [10], our method adaptively focuses on the
region of interest in each modality, avoiding attention to potentially irrelevant
global information. Additionally, our approach also greatly reduces computa-
tional load, by assigning only a small fixed number of keys to each query zq.
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3.3 Training and Inference

Training. In line with commonly used training configurations [4,29,32]. We
train the model using AdamW [17] with weight decay 10−4. For data augmenta-
tions, we use horizontal flip and brightness jittering. JET colormaps are applied
to another modality [31]. We initialize the model with the pre-trained model
from [4]. The base learning rate starts at 4 × 10−4 and decreases to 4 × 10−5.
The overall loss function combines �1 and CIoU [38] losses from predicted Bi

and target B̂i bounding boxes, as follows:

Lloc = λ�1L1(Bi, B̂i) + λciouLciou(Bi, B̂i), (8)

where λ�1 = 5 and λciou = 2 are the respective weighting factors of two losses,
determining the contribution of each loss component to the total loss.

Online template updates play an important role in VOT, capturing temporal
information and handling object deformation. Similar to [4], we adopt a score
prediction module to estimate the confidence score of current predicted bounding
box. This module is initially pre-trained in the RGB modality and its loss is
computed using standard cross-entropy loss.

Inference. During the inference phase, taking into account the computational
load of multi-modal tracking, we utilize only a single online template. The online
templates are updated only when the specified update interval is reached, at
which point the sample with the highest confidence score is selected. In our
work, we maintain a constant update interval of 200.

4 Experiments

4.1 Implementation Details

Basic Setting. Our trackers are implemented in Python using PyTorch, trained
on 4 NVIDIA A100 GPUs. The regularized single-stream backbone employs the
ViT-Base model [6] and the cross-modal fusion module utilizes a 2-layer encoder.
Template images are 128×128 pixels, twice the target bounding box, while search
images are 288× 288 pixels, covering 4.5 times the target area. Each GPU holds
16 image pairs, resulting in a total batch size of 64. We conduct training for
150 and 100 epochs for RGB-T and RGB-D tracking, respectively, and train the
score prediction module for 50 and 30 epochs.

Datasets and Metrics. In our work, we conduct comparative experiments on
two RGBT datasets and one RGB-D dataset, namely LasHeR [14], RGBT234
[13], and DepthTrack [30]. LasHeR is a large-scale benchmark for RGB-T track-
ing, notable for its high alignment accuracy. It includes 979 training videos
and 245 testing videos. In contrast, RGBT234 includes 234 videos with weakly
aligned pairs of visible and thermal infrared images. For RGB-T tracking, we use
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Fig. 4. Overall performance on LasHeR dataset.

Table 1. Overall performance on the RGBT234 dataset. The best three results are
highlighted in red, blue, and green fonts.

mfDiMP [34] SiamCDA [36] MIRNet [10] DMCNet [19] ProTrack [31] Li et al. [15] ViPT [11] Ours

MPR(↑) 0.646 0.760 0.816 0.839 0.795 0.846 0.835 0.882

MSR(↑) 0.428 0.569 0.589 0.593 0.599 0.613 0.617 0.664

Table 2. Overall performance on the DepthTrack dataset. The best three results are
highlighted in red, blue, and green fonts.

CA3DMS [16] DAL [23] DeT [30] SPT [39] ProTrack [31] ViPT [11] DMTracker [8] Ours

F-score(↑) 0.223 0.429 0.532 0.538 0.578 0.594 0.608 0.620

Re(↑) 0.228 0.369 0.506 0.549 0.573 0.596 0.597 0.615

Pr(↑) 0.218 0.512 0.560 0.527 0.583 0.592 0.619 0.625

the training split of LasHeR to train our network. The performance is evaluated
using the maximum precision rate (MPR) and maximum success rate (MSR).
DepthTrack is a large-scale RGB-D tracking benchmark, which comprises 150
training and 50 test videos. It employs precision (PR), recall (Re), and F-score
[20] to assess the accuracy and robustness of target localization. For RGB-D
tracking, we train our model using the training sets from DepthTrack and eval-
uate its performance on the test sets from the same benchmark.

4.2 Comparison with State-of-the-Arts Multi-modal Trackers

To demonstrate the effectiveness of our method, we conduct extensive experi-
ments comparing it with state-of-the-art trackers on three multi-modal track-
ing benchmarks. The overall tracking performances of RGB-T benchmarks are
shown in Fig. 4 and Table 1. Our method exhibits superior performance over
other state-of-the-art trackers across all metrics on both RGB-T benchmarks.
Specifically, on the LasHeR benchmark, our method achieves 55.3%/68.9% in
MPR/MSR. On the RGBT234 benchmark, our method achieves 66.4%/88.1%
in MPR/MSR. As presented in Table 2, our work has also surpassed all previ-
ous SOTA trackers on the RGB-D benchmark and obtained the highest F-score



Feature Disentanglement and Adaptive Fusion 77

0 10 20 30 40 50
Location error threshold [pixels]

0

20

40

60

80

100

D
is
ta
n
ce

P
re
ci
si
o
n
[%

]

Precision plot

[88.2] Ours

[86.0] Ours-concat
[78.6] Mixformer-pixel fusion

0.0 0.2 0.4 0.6 0.8 1.0
Overlap threshold

0

20

40

60

80

O
v
e
rl
a
p
P
re
ci
si
o
n

[%
]

Success plot

[66.4] Ours

[65.1] Ours-concat
[59.7] Mixformer-pixel fusion

Fig. 5. Comparison of different features fusion methods on the RGBT234 dataset.

of 62.0%. The excited performance and significant promotion demonstrate the
effectiveness of our proposed multi-modal tracking framework.

4.3 Ablation Study

To verify the effectiveness and give a thorough analysis of our proposed approach,
we perform a detailed ablation study on the RGBT234 dataset.

Modality-Specific Layer Normalization. To demonstrate the effectiveness
of our proposed feature extraction strategy, we performed comparative tests on
the single-stream strategy, dual-stream strategy, and our method. The results
are shown in Table 3, it demonstrates the importance of modality-specific layer
normalization in multi-modal transformer tracking, and supports the claim of
MSCLIP [33]: transformers can support learning across multiple modalities and
allow knowledge sharing.

Different Feature Fusion Methods. To highlight the performance of our
proposed feature fusion module, we juxtapose our method with the feature con-
catenation fusion method, which incorporates three layers of ConvBN. For more
comprehensive comparision, we include a pixel-level fusion method [31] in our
comparison. We plot the performance in Fig. 5, which demonstrates that our
proposed method is vital to emphasize the specificity of different modalities.

Single/Dual-Modal Analysis. To underscore the benefits of multi-modal
data in tracking, we devise two additional experiments using the large version of
MixFormer: MixFormer+RGB and MixFormer+T. The former utilizes the pre-
trained model from [4], while the latter is fine-tuned using the LasHeR dataset.
As demonstrated in Table 4, our method can enhance multi-modal tracking per-
formance without the need to specifically focus on the characteristics of thermal
infrared or depth images.
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Table 3. Comparison of differ-
ent feature extraction strategies on
RGBT234 dataset.

Single-stream Dual-stream Ours

MPR(↑) 0.859 0.851 0.882

MSR(↑) 0.640 0.642 0.664

Table 4. Comparison of single and dual
modal data on the RGBT234 dataset.

Mixformer+RGB Mixformer+T Ours

MPR(↑) 0.762 0.765 0.882

MSR(↑) 0.580 0.563 0.664

5 Conclusion

We propose a regularized single-stream tracking framework for multi-modal
tracking, from the perspective of disentanglement. With the aid of two sub-
modules we proposed, our method is capable of extracting well-disentangled
multi-modal features and subsequently fusing them by emphasizing feature-level
specificity. Empirical evaluations demonstrate that our method offers notable
improvement over existing trackers in the realm of multi-modal tracking.
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Abstract. RGB-Infrared object detection in aerial images has gained
significant attention due to its effectiveness in mitigating the challenges
posed by illumination restrictions. Existing methods often focus heav-
ily on enhancing the fusion of two modalities while ignoring the opti-
mization imbalance caused by inherent differences between modalities.
In this work, we observe that there is an inconsistency between two
modalities during joint training, and this hampers the model’s perfor-
mance. Inspired by these findings, we argue that the focus of RGB-
Infrared detection should be shifted to the optimization of two modal-
ities, and further propose a Modality Balancing Mechanism (MBM)
method for training the detection model. To be specific, we initially
introduce an auxiliary detection head to inspect the training process
of both modalities. Subsequently, the learning rates of the two back-
bones are dynamically adjusted using the Scaled Gaussian Function
(SGF). Furthermore, the Multi-modal Feature Hybrid Sampling Module
(MHSM) is introduced to augment representation by combining comple-
mentary features extracted from both modalities. Benefiting from the
design of the proposed mechanism, experimental results on DroneVe-
hicle and LLVIP demonstrate that our approach achieves state-of-the-
art performance. The code are available at (https://github.com/ccccwb/
Multimodal-Detection-and-Tracking-UAV).

Keywords: RGB-Infrared object detection · Aerial image · Modality
balancing mechanism · Multi-modal feature hybrid sampling

1 Introduction

Object detection in aerial images [4,6] plays a vital role in computer vision field
with various applications, such as traffic control [13], video monitoring [14], and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14436, pp. 81–93, 2024.
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structural health monitoring [3]. Current studies for detecting objects in aerial
images primarily use visible images, which perform well in favorable lighting
and weather conditions. However, these methods are sensitive to poor lighting,
limiting their effectiveness in low-light situations. To address this limitation,
infrared images have gained popularity in recent years owing to their thermal
sensing properties [12,20]. This advancement has boosted the development of
RGB-IR detection through visible-infrared paired aerial images.

Fig. 1. Toy experiments illustrating the optimization imbalance. (a) Loss curve and
performance of two independently trained detectors. (b) Loss curve and performance
of two jointly trained detectors. In this case, the gradient from the detection heads of
the two modalities is not propagated back to the backbone.

Current RGB-Infrared object detection methods [1,8,18,20,25,26] typically
follow a two-step pipeline. Initially, separate backbones are employed to extract
features from two modalities. These features are then combined using fusion
modules, facilitating the classification and regression of bounding boxes. How-
ever, these methods encounter challenges in fusing the features from the two
modalities due to disparities in data characteristics and variations in imaging
positions. To address this issue, researchers have proposed methods such as
MBNet [27] and TSFADet [24], which introduce carefully designed fusion mod-
ules to mitigate illumination imbalance and misalignment challenges in feature
fusion. Nevertheless, it is noteworthy that these methods primarily emphasize
feature fusion and do not comprehensively address the optimization imbalance
arising from inherent modality differences [7,11,15,21].

In this paper, we conduct a few toy experiments to empirically show the opti-
mization imbalance in multi-modal training. Figure 1(a) and Fig. 1(b) illustrate
the model, loss curve, and performance during independent training and joint
training, respectively. By comparing the loss curves under these two conditions,
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it can be observed that the optimization of visible modality is inhibited to a cer-
tain extent. Then comparing the performance of the model in the two cases, it
is evident that the performance of the visible modality is significantly impacted.
These findings demonstrate that the optimization imbalance in the multi-modal
training process hampers the model’s ability to effectively utilize and integrate
information from both modalities.

To alleviate the optimization imbalance, we propose a simple yet effective
strategy, Modality Balancing Mechanism (MBM). Specifically, we introduce an
auxiliary detection head to assess the training process of both modalities. Then
the learning rates of the two backbones are adaptively updated by the Scaled
Gaussian Function (SGF). Furthermore, the Multi-modal Feature Hybrid Sam-
pling Module (MHSM) is introduced to enhance feature representation by aggre-
gating complementary features from both the visible and infrared modalities. It is
worth emphasizing that the proposed method is a plug-and-play method, which
can be seamlessly integrated into the existing detection framework. Extensive
experimental results on DroneVehicle [20] and LLVIP [12] show that our method
achieves new state-of-the-art performance.

The main contributions of the paper are as follow:

– We show the optimization imbalance between the two modalities during joint
training and then propose a new plug-and-play method, which can be seam-
lessly integrated into the existing detection frameworks to alleviate the opti-
mization imbalance.

– We propose a Modality Balancing Mechanism (MBM) to adaptively adjust
the learning rate of two modalities and a Multispectral Feature Hybrid Sam-
pling Module (MHSM) to effectively aggregate information from both modal-
ities.

– We validate the effectiveness of our method on DroneVehicle and LLVIP,
which outperforms other state-of-the-art models. Our method is also shown
the capability to be combined with existing detectors to consistently improve
performance at a low cost.

2 Related Work

2.1 Object Detection in Aerial Images

Current object detection techniques can be broadly classified into two categories:
two-stage [19] and one-stage [16] methods. Two-stage methods first generate can-
didate regions, and then predict the category and refine the bounding box for
each candidate region. In contrast, one-stage methods integrate recognition and
detection into a straightforward deep neural network. Although these methods
achieve promising performance in natural scenes, they can not be adept at effec-
tively handling multi-angle objects in aerial imagery, like vehicles.

To address these issues, Oriented bounding boxes (OBB) based detection
methods are emerging, which leverage rotating modules to predict the orienta-
tion of the object. By directly or indirectly introducing angles into the regional
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suggestion network, the two-stage detectors generate candidate boxes with ori-
entation [5,23]. One-stage OBB detectors usually output the oriented bounding
box with direction directly using feature refinement and step-wise regression [9].
However, the method solely relying on visible images is limited to adapting to
light changes and diverse weather conditions. Therefore, recent researchers have
incorporated infrared images to address this challenge.

2.2 RGB-Infrared Object Detection

The introduction of infrared images provides rich and diverse information for
detection, compensating for the limitations of visible light in low-light and
adverse weather conditions. Most of the RGB-Infrared object detection methods
first utilize separate backbones to extract features from two modalities. Then
fusion modules are designed to combine features for detection. According to the
phrase of feature fusion, these methods can be classified into three categories:
early fusion, mid fusion, and late fusion [28]. Mid fusion, occurring at the fea-
ture level, enables the integration of shared features between RGB and infrared
modalities, making it the most extensively explored approach. [1,8,17,18,22].
CIAN [25] emphasizes the effectiveness of the cross-modal interactive attention
mechanism in capturing complementary information and improving the accu-
racy of multispectral pedestrian detection. AR-CNN [26] effectively learns from
weakly aligned multimodal data in the context of multispectral pedestrian detec-
tion. MBNet [27] proposed the difference fusion module and the illumination
aware module to realize the adaptive alignment and fusion of features. UA-
CMDet [20] incorporates uncertainty-aware learning to handle the challenges of
cross-modal data captured by a drone. TSFDet [24] achieves feature alignment
by learning geometric transformations on the network. While these methods
improve the effectiveness of fusion, it is worth noting that existing joint training
strategies fail to fully exploit the advantages offered by all modalities, leading to
an imbalance in backbone optimization [7,15]. In this work, we aim to address
this problem through adaptive control of optimization for each modality.

3 Method

In this section, we introduce the overview of the overall framework (§3.1), and
elaborate on the proposed modality balancing mechanism (§3.2) and multi-modal
feature hybrid sampling module (§3.3).

3.1 Overview

Given RGB-Infrared image pairs {(Ivis
i , Iir

i )}N
i=1, our goal is to train a multi-

modal detection model by exploring the consensus of RGB and IR modalities.
Figure 2 gives the overall framework of the proposed method, which is seamlessly
integrated into the existing detection methods. It consists of a modality balanc-
ing mechanism and a multi-modal feature hybrid sampling module. The features
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Fig. 2. Overview of the proposed method. The dotted lines in the figure connect oper-
ations that exist during training only.

of visible fvis ∈ R
C×H×W and infrared f ir ∈ R

C×H×W are first extracted by
two independent feature encoders, where C denotes the number of channels,
H and W denote the height and width, respectively. With these features, we
inspect the training status by auxiliary detection head and dynamically adjust
the learning rate of two modalities. Then, two types of features are adaptively
aggregated by spatial location and modalities attention. Finally, following the
previous detection methods [23,24], the total loss function is defined as follows:

L = Lcls + Lreg + Lrpn + λLaux, (1)

where Lcls, Lreg, and Lrpn is commonly used classification loss, regression, and
rpn loss, respectively. Laux serves as an extra loss to monitor the optimization
of the two modalities. λ is a hyperparameter to balance different losses.

3.2 Modality Balancing Mechanism

Imbalanced optimization of backbones leads to the suppression of informative
features. To alleviate the influence of imbalanced optimization, we propose a
Modality Balancing Mechanism (MBM) to adaptively control the learning rate
of two modalities. Firstly, we introduce an auxiliary detection head to inspect
the optimization relationship between the two modalities. This is achieved by
calculating the loss of the corresponding modality through the auxiliary head.
Subsequently, utilizing these two losses, we employ a Scaled Gaussian Function
(SGF) to compute the update ratio. Finally, the learning rate of the two modal-
ities is dynamically adjusted throughout the training cycles.

Optimization Inspection. To obtain the optimization status of each modality
in the joint training, an auxiliary detection head is introduced. The architecture
of the auxiliary detection head is the same as the ordinary detector, which con-
tains a projection linear layer Fproj , a classification branch Fcls, and a regression
branch Freg.

Taking the visible feature fvis as an example, the classification logits cvis

and regression offsets tvis of the auxiliary head can be expressed as:

ĉvis = Fcls(Fproj(fvis)), t̂vis = Freg(Fproj(fvis)). (2)
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The weights of the auxiliary detection head are trained by standard detection
losses as follows:

Lvis
aux =

1
N

N∑

i=1

Lcls(ĉvis
i , cvis

i ) +
1
N

N∑

i=1

Lreg(t̂vis
i , tvis

i ), (3)

where N represents the size of a mini-batch, while cvis
i and tvis

i denote the
classification and regression ground truth of the ith sample, respectively. The
terms Lcls and Lreg correspond to the cross-entropy loss and Smooth L1 loss,
respectively. The operation of the IR modal is the same as the RGB modal,
and the total auxiliary loss is Laux = Lvis

aux + Lir
aux. The auxiliary detection

head is alternate optimized during the training phase. Its loss can reflect the
optimization status of backbones in each training iteration.

Scaled Gaussian Function. To achieve balanced optimization between the
two modalities, we employ an inhibitory coefficient that reduces the optimiza-
tion rate of the more optimized modality. The optimization level of a given
modality can be assessed by examining its associated auxiliary loss. A lower loss
value signifies a more optimized backbone for the modality under consideration.
As a result, the optimization disparity between two distinct modalities can be
quantified by their corresponding auxiliary loss. To accomplish this, the Scaled
Gaussian Function (SGF) is employed.

SGF (Laux) = A
1

σ
√

2π
e− (Laux−μ)2

2σ2 , (4)

where A serves as a scaling factor, which ensures that the sampling value at the
mean μ is equal to the current learning rate. The mean value μ and standard
deviation σ of the SGF are defined as follow:

μ = Max(Lvis
aux,Lir

aux), σ = α
Max(Lvis

aux,Lir
aux)

Min(Lvis
aux,Lir

aux)
, (5)

where α is a hyperparameter to ensure the stability of training. Assigning the
bigger auxiliary loss to μ ensures that the learning rate of the less optimized
modality remains constant while suppressing the learning rate of the more opti-
mized modality. Therefore, the learning rates modulated by SGF are obtained:

ηvis = SGF (Lvis
aux), ηir = SGF (Lir

aux). (6)

Parameter Updating. We further improve the Stochastic Gradient Descent
(SGD) to balance the optimization of two backbones. With the modulated learn-
ing rate, the update of parameters is as follows:

θvis
t+1 = θvis

t − ηvis∇θvisL, θir
t+1 = θir

t − ηir∇θirL, (7)

where t signifies the iteration number, η denotes the modulated learning rate, and
L(·) represents the loss function. θvis, θir are the visible and infrared backbones
parameter, respectively.
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Fig. 3. Multi-modal feature hybrid sampling module.

3.3 Multimodal Feature Hybrid Sampling Module

To integrate and align the information from both features more effectively, we
introduce a hybrid sampling method based on multi-modal characteristics to
address the issue of weakly misaligned features.

Figure 3 presents a schematic representation of the proposed module. Given
visible feature fvis and infrared feature f ir, the combined feature can be rep-
resented by Q = (fvis

⊕
f ir) ∈ R

2C×H×W , with concatenation along channel
dimension. Firstly, for an arbitrary coordinate (x, y), we take its combined fea-
ture vector q = Q(x, y) ∈ R

2C×1×1 as the query to generate sampling bias
coordinates for the features of visible and infrared modalities by two distinct
fully connected layers:

{(�x,�y)}u = Fu
offset(q), (8)

where {(�x,�y)} ∈ R
M represents the M offsets relative to query point (x, y).

Foffset denotes the fully connected layers. Note that this operation is employed
on both RGB and IR modalities. For simplicity, we denote u as the two modal-
ities. With the offsets, the sampled coordinates can be obtained as follows:

pu =

{
xu = xu + �x

yu = yu + �y
. (9)

The sampling weight is also determined linearly by the query q.

wu = Fu
weight(q). (10)

Secondly, we aggregate these features on sampling coordinates to produce
fused features. The aggregation includes self-aggregation and cross-aggregation.
Taking the visible modality as an example, the offset {(�x,�y)}vis is averagely
divided into two groups, and the sampling coordinates of self-aggregation and
cross-aggregation are calculated, as follows:

{pvis
self , pvis

cross} ∈ pvis. (11)
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For the visible modality, self-aggregation collects the features of the visible
modality at the sampling coordinates, while cross-aggregation collects the fea-
tures of the infrared modality at the sampling coordinates. Subsequently, the
fused features of the two parts are obtained as follows:

f̃vis = MLP (wvisfvis(pvis
self ) + wirf ir(pvis

cross)), (12)

f̃ ir = MLP (wirf ir(pvis
self ) + wvisfvis(pir

cross)). (13)

The two features after sampling are combined to obtain a more compre-
hensive feature representation, enabling the model to better capture informa-
tion from different perspectives of the modalities and improving the interaction
between them. With those two features, the fused features can be represented by
ffused = CBR(f̃vis

⊕
f̃ ir) ∈ R

C×H×W . Finally, the two features are reduced in
dimension by CBR (Conv, BN, ReLu) and inputted into the detection head to
get the final results, including scores and oriented bounding boxes.

4 Experiment

4.1 Settings

Datasets. To evaluate the efficacy of the proposed method, we evaluate two
RGB-IR datasets captured from aerial photography perspectives: 1) The Dron-
eVehicle dataset [20] is a comprehensive collection of drone-based data specifi-
cally designed for RGB-Infrared vehicle detection. It contains a total of 17,890
training samples and 1,469 validation samples. All images have a resolution of
640 × 512 pixels. It includes five categories: car, truck, bus, van, and freight car.
2) The LLVIP dataset [12] focuses on pedestrian detection and primarily consists
of scenes captured in low-light environments. In comparison to the DroneVehicle
dataset, the LLVIP dataset is more spatially aligned. It comprises 15,488 pairs of
RGB-infrared images, with 12,025 pairs allocated for training and the remaining
3,463 pairs utilized for testing.

Metrics. The evaluation metric used is Mean Average Precision (mAP), which
calculates the average value of Average Precision (AP) across different categories.
In the DroneVehicle dataset, the IoU threshold is set at 0.5, while in the LLVIP
dataset, the IoU threshold ranges from 0.50 to 0.95 with a step size of 0.05.

Implementation Details. Our method relies on the widely-used detection
toolbox MMDetection [2]. During the training phase, we adopt the same hyper-
parameter settings as the original Oriented R-CNN [23] and utilize ResNet-50
[10] as the backbone network. To train our proposed method, we run 36 epochs
with an initial learning rate of 0.005 and a batch size of 8. The weight decay and
momentum values are set to 0.0001 and 0.9, respectively. The training process
for both datasets is conducted on a single NVIDIA A100 GPU.
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Table 1. Comparison of performances with state-of-the-art methods on DroneVehicle
dataset.

Modality Detectors car bus truck van freight car mAP

RGB Faster R-CNN(OBB) [19] 67.88 66.98 38.59 23.20 26.31 44.59

RetinaNet(OBB) [16] 79.51 70.54 35.77 26.89 35.34 47.61

S2ANet [9] 90.05 89.00 52.69 45.90 55.36 66.60

Oriented R-CNN [23] 88.25 89.00 61.47 47.16 49.19 67.01

IR Faster R-CNN(OBB) [19] 88.58 67.86 37.20 33.70 33.80 53.25

RetinaNet(OBB) [16] 90.03 85.09 40.64 37.11 36.29 57.83

S2ANet [9] 90.11 89.62 59.09 48.29 52.90 68.00

Oriented R-CNN [23] 90.13 89.65 60.00 49.89 53.96 68.72

RGB + IR CIAN(OBB) [25] 89.98 88.90 62.47 59.59 60.22 70.23

AR-CNN(OBB) [26] 90.08 89.38 64.82 51.51 62.12 71.58

UA-CMDet [20] 87.51 87.08 60.70 37.95 46.80 64.01

TSFADet [24] 90.01 89.70 69.15 55.19 65.45 73.90

Ours 90.38 90.17 69.53 63.04 66.46 75.92

Fig. 4. Qualitative results of the proposed method. Scene 1 is a low-light scene, and
Scene 2 is a dark scene. Red boxes are incorrect bounding boxes. (Color figure online)

4.2 Comparison with State-of-the-Art Methods

We compare our method with multiple state-of-the-art methods on the Dron-
eVehicle and LLVIP. The results are shown in Table 1 and Table 2.

On the aerial imagery dataset DroneVehicle, our approach achieved state-
of-the-art performance, with 75.92% mAP. Oriented R-CNN provides the best
results among those single modality methods. However, compared with a sin-
gle method, those multispectral methods generally achieve better performance.
Among that multi-modal method, TSFADet obtains 73.90% mAP through fine
characteristic fusion methods. Compared with TSFADet, the proposed method
improves by 2.02% mAP. This improvement is primarily attributed to the fact
that previous methods focused solely on feature fusion methods, neglecting
the problem of unbalanced optimization between visible modality and infrared
modality. Consequently, they failed to obtain a more effective feature represen-
tation from the backbone before fusion. As shown in Fig. 4 is the visualizations
results of the proposed method. It can be seen that our method can provide
more accurate detection in various scenarios compared to the baseline.
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Table 2. Comparison of performances with
state-of-the-art methods on LLVIP dataset.

Modality Detectors mAP

RGB+IR UA-CMDet [20] 62.2

CFT [17] 63.6

AMSF-Net [1] 64.5

DCMNet [22] 61.5

Ours 65.1

Table 3. The ablation study of the
proposed modules.

Methods mAP

Baseline 71.74

Baseline + MBM 75.20

Baseline + MHSM 75.02

Baseline + MBM+ MHSM 75.92

Fig. 5. The generalization experiment. Fig. 6. Hyperparameter α experiment.

In the pedestrian detection dataset LLVIP, our approach also delivers com-
petitive results. We compared with four state-of-the-art methods, namely UA-
CMDet [20], CFT [17], AMSF-Net [1], and DCMNet [22]. The results are shown
in the Table 2. Our method achieves the result of 65.1% mAP, better than other
multi-modal methods. Unlike the DroneVehicle dataset, the pixel-level discrep-
ancy in the visible-infrared images of the LLVIP dataset is smaller, resulting
in a reduced modality imbalance phenomenon. Nevertheless, our method still
achieves competitive performance.

4.3 Ablation Study

We conducted comprehensive ablation experiments to demonstrate the effective-
ness of our method.

Baseline Comparison. We conduct comprehensive ablation experiments on
the two proposed modules, and the corresponding experimental results are pre-
sented in Table 3. To ensure a fair comparison, Oriented R-CNN is used as the
baseline. The baseline achieved 71.74% mAP. On this basis, we added the MBM
and MHSM modules, resulting in an increase of 3.46% and 3.18% in mAP, respec-
tively. These results demonstrate that the proposed method enables the model
to capture more effective information and improve its performance.
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Generality of the Proposed Method. We integrate our method into dif-
ferent popular detectors: Faster R-CNN [19], Roi-Transformer [5], Oriented R-
CNN [23], Retina Net [16] and S2ANet [9]. The results are provided in Fig. 5.
Compared with the baseline, integrating our method into Faster R-CNN, Roi-
Transformer, Oriented R-CNN, Retina Net and S2ANet obtains 5.67%,5.50%,
4.18%, 3.63% and 4.28% mAP improvements, respectively. The experimental
results validate the effectiveness and generality of our method.

Impacts of the Value of α in MBM. The α in Eq. 5 is used to adjust the
standard deviation of SGF. We explore the impacts of the different settings of
α. The results are shown in Fig. 6. Finally, we select α = 0.1.

5 Conclusion

In this work, we present the optimization imbalance between two modalities
during joint training. Inspired by these findings, we propose a Modality Balanc-
ing Mechanism (MBM) to inspect the training process and adaptively updated
the learning rate of both modalities. Furthermore, an effective fusion module
is introduced to enhance feature representation by aggregating complementary
features from both modalities. Experimental results on DroneVehicle and LLVIP
demonstrate that our approach achieves state-of-the-art performance.
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Abstract. The plumpness of the Pacific oyster gonad, the reproductive organs of
both male and female oysters which are buried within the flesh of the oyster in
the shell, has important implications for the quality and breeding of subsequent
parents. At present, only the conventional method of breaking their shells allows
for the observation and study of the interior tissues of Pacific oysters. In this paper,
the gonad of Pacific oyster was observed by small animal Magnetic Resonance
Imaging (MRI), and a multi-effective feature fusion network algorithm R-SINet
was proposed for the detection of unapparent target, in Nuclear Magnetic Res-
onance (NMR) images, which can effectively solve the problem that the gonads
of Pacific oysters are difficult to identify from the background images. In addi-
tion, the gray histogram of the segmented gonad region was calculated, and it
was found that the female and male had differences in gray value. The sex of
oyster was nondestructively detecting by this task. Firstly, established the Oyster
gonad datasets; secondly, a compact pyramid refinement module that combines
with high-level semantic features and low-level semantic features was proposed,
designed a lightweight decoder to improve the accuracy of feature fusion; thirdly, a
switchable excitationmodel capable of adaptive recalibration is proposed to obtain
an attention map. Experimental results on the Oyster gonad datasets demonstrate
the effectiveness of the method. Comparing R-SINet’s experimental findings to
those of popular algorithm models, such as the benchmark algorithm SINet_v2,
revealed promising results.

Keywords: Pacific oyster gonad · Unapparent object detection · Gray value
calculation · R-SINet

1 Introduction

Pacific oysters are very popular in aquaculture industry because of their large size,
short breeding cycle, and high efficiency. The selection of Pacific oysters with mature
and plump gonads for parental breeding is the key to quality and yield improvement.
In addition, distinguishing between male and female individuals based on grayscale
differences is of great significance for subsequent selection of specific gender oyster
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individuals for breeding.With the rapid development of small animal imaging technology
and convolutional neural network, we can now use a small animal imaging system to
obtain Pacific oyster Magnetic Resonance Imaging (MRI) images which can clearly and
intuitively observe the gonad part of oysters without the harm to live Pacific oysters; it
can solve the problem of high similarity between organs and tissues and insignificant
color differences in MRI images when segmenting the gonads by detecting unapparent
objects in MRI images with relatively complex backgrounds, which is important for
improving the integrity and accuracy of segmenting the gonads of Pacific oysters.

Small animal MRI is a branch of magnetic resonance imaging, which is becoming
an important tool for studying the internal structure of small animals [1]. In 2001, the
first clinical study of canine intervertebral disc disease was conducted using MRI tech-
nology in China. In 2019, Zhang et al. [2] applied small animal MRI systems to study
Alzheimer’s disease (AD), providing multimodal imaging techniques to help diagnose
early AD. In 2022, Hang et al. [3] used 7.0T small animal MRI equipment to nonin-
vasively observe brain injury in a rat model of classic heat stroke. Small animal MRI
techniques started earlier abroad. In 1990, Button et al. used 0.35T small animal MRI to
observe the growth and morphology of tumors in mice. B Webster [4] wrote a practical
small animal MRI manual in 2010. In 2021, S Gilchrist et al. [5] designed a gating unit
for synchronized control of the small animal heart and respiration using small animal
MRI. While in 2022, Liu et al. [6] conducted a multimodal animal MRI study for mem-
ory generalization in mice. The above-mentioned studies show that specialized small
animal MRI techniques provide technical support for the study of small animal organ
tissues. However, nowadays, small animalMRI techniquesmainly focus on the detection
and study of terrestrial animals, there are few studies in the field of marine organisms,
especially in shellfish organisms.

In recent years, with the iterations and advances in computer vision, unapparent
object detection identification techniques have developed rapidly. In 2020, Fan et al.
[7] first proposed a camouflaged object detection technique, designed the SINet net-
work architecture aimed at identifying small target objects in complex backgrounds. In
2021, Lv et al. [8] proposed a hierarchical localization of target regions, introducing
reverse attention [9] to capture more details of the spatial structure and designed the
LSR algorithm model; Zhai et al. [10] built an edge-shrinkage graph inference module
to guide the learning of feature representations of camouflaged objects; Fan et al. [11]
proposed the SINet_v2 network architecture with optimization improvements based on
SINet. In 2022, Jia et al. [12] performed both amplification and repetition operations for
camouflage object segmentation to achieve accurate localization of camouflage objects
by iteration and target object amplification and proposed the SegMaR algorithm model.
However, when these existing detection and segmentation algorithms for unapparent
object detection are used to train MRI grayscale images, the local feature extractions in
all of these algorithms are coarse and the global feature fusion is ignored. This results
in inadequate local feature extractions and loss of global information in the segmented
grayscale images, which in turn cause incomplete segmentation targets and unclear
boundaries, and the overall level of the evaluation index of segmentation decreases.
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In summary, to address the lack of small animal MRI technology in shellfish aquatic
applications and the inability of existing unapparent object detection algorithms to
accurately segment grayscale images, our main contributions are five-fold:

– We propose a new network algorithm (R-SINet), which can effectively enhance the
integrity of feature extraction in gray scale images of Pacific oysters.

– A Compact Pyramid Refinement Module (CPRM) is proposed to integrate adjacent
semantic features, and a lightweight decoder is designed to improve the accuracy of
feature fusion.

– A Switchable Excitation Model (SEM) is proposed, by automatically choosing and
changing activation operators based on the channel demands of different network lay-
ers, the model can achieve multi-effect feature fusion for unapparent object detection
and improve segmentation accuracy.

– Extensive experimental results on self-built Oyster gonad datasets demonstrate the
effectiveness of our R-SINet over other state-of-the-art methods.

– The gray value difference ofmale and female gonadswas obtained by gray histogram,
which laid a foundation for subsequent nondestructive detection of Pacific oyster sex.

2 Method

The technology roadmap of this paper is shown in Fig. 1.

Fig. 1. Technology roadmap.
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The network framework diagram of this paper is shown in Fig. 2, which consists of
two phases.

Fig. 2. R-SINet network architecture diagram.

The scope search stage mainly carries out feature extraction of grayscale images to
obtain the position and scope of the target object. The scope recognition stage uses the
group inversion attention module (GRA) [11] to obtain more detailed edge information
and then switches the global adaptive channels through the switchable excitation model
(SEM) to obtain more accurate global feature information, and finally completes the
detection and segmentation of the target object in the grayscale images.

2.1 Compact Pyramid Refinement Module (CPRM)

The common pyramid models [13, 14] at this stage have problems such as large compu-
tation, large memory consumption, and slow inference speed. To solve such problems,
this paper adds a lightweight feature pyramid module after effectively fusing neighbor-
ing features, deeply fuses high-level and low-level features, and proposes a Compact
Pyramid Refinement Module (CPRM), which improves the efficiency while ensuring
accuracy.

First, use Res2Net50 [15] network for image I ∈ RW×H×3 extracting features fk
(k ∈ {1, 2, 3, 4, 5}), obtaining 5 features with a resolution of fk = H

2k
+ W

2k
of features

and then expand the perceptual field by the texture enhancement module (TEM). The
features to be selected are obtained from theTEMf′k. . After that, the neighboring features
are aggregated by using the Neighbor Connection Decoder (NCD) to keep the semantic
information consistent within the same layer and semantically consistent across layers.
Since low-level features have larger resolutions consume more computational resources
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and contribute less to the performance improvement, we only use f3, f4, and f5 as the
feature images f nck = FNC

(
f ′
k ;Wu

NC

)
, u ∈ {1, 2, 3}, and each feature image is represented

by the following equation:
⎧
⎪⎪⎨

⎪⎪⎩

f nc5 = f ′
5

f nc4 = f ′
4 ⊗ g

[
δ2↑

(
f ′
5

);W 1
NC

]

f nc3 = f ′
3 ⊗ g

[
δ2↑

(
f nc4

);W 2
NC

]
⊗ g

[
δ2↑

(
f ′
4

);W 3
NC

] (1)

where g
(·;Wu

NC

)
denotes the 3 × 3 convolution operation after normalization by batch

processing, and δ2↑(·) denotes the operation of sampling twice on the features to be
selected, to ensure the shape matching between features. Using ⊗, the corresponding
elements are multiplied one by one to reduce the gap between adjacent features.

The compact pyramid refinement uses the idea of depth direction separable
convolution [16]. The specific equation is shown below:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1 = Conv1×1(f )
f di2 = Convdi3×3(f1), i = 2, 4, 8

f2 = ReLU
(
BN

(
f di2

)
, i = 2, 4, 8

)

f3 = Conv1×1(f2) + f

(2)

where f denotes the input of the feature image, Convn×n denotes the input for the n ×
n the convolution operation, di denotes the dilation rates.

In this way, the lightweight decoder with feature pyramid refinement proposed in
this paper can aggregate multi-level features from top to bottom and achieve efficient
feature capture at all levels. The structure diagram of the compact pyramid refinement
module is shown in Fig. 3.

Fig. 3. Compact Pyramid Refinement Module.



Pacific Oyster Gonad Identification and Grayscale Calculation 99

2.2 Switchable Excitation Model (SEM)

In the scope recognition stage, the features between the levels are fused under the premise
of ensuring the computational rate, and perform the image inversion operation, as shown
in the following equation:

rk1 =
⎧
⎨

⎩

¬
[
σ
(
δ4↓(Ck+1)

)
,E

]
, k = 5

¬
[
σ
(
δ2↑(Ck+1)

)
,E

]
, k ∈ {3, 4} (3)

where ¬ denotes the inverse operation, which is performed on the matrix E performs
the inverse operation. The matrix E represents a matrix with all elements 1. δ4↓ and δ2↑
denote down-sampling 4 times and up-sampling 2 times, respectively.

By grouping inversion attention, more attention is paid to the local feature informa-
tion of the target edges, but still lacks attention based on the global scope. In this paper,
we propose a switchable excitation module that automatically decides to select and inte-
grate attention operators to compute attention graphs. The Switchable Excitation Model
(SEM) proposed in this paper is added before the iterative refinement operation, so that
it trains the Sigmoid values of each channel and obtains the corresponding weights for
each channel, and finally gives more attention to the channels with larger weights while
suppressing the channels with smaller weight values. The structure of the switchable
excitation model is shown in Fig. 4. SEM improves the excitation module of the atten-
tion model, which consists of two sub-modules, the decision module and the switching
module. The feature map of the current network layer is defined as x ∈ RC×H×W , and
the procedure for x calculating the attention value of is as follows:

The GAP(·) the global average pooling extracts the global feature information from
the squeeze module can be formulated as follows:

m = GAP(x) (4)

where m ∈ RC×1×1 represents the global information embedding, m as the input to the
decision module and the switching module.

To use the information aggregated in the squeeze operation to determine the impor-
tance of different operations, this paper adds to Eq. F(·) that aims to fully capture the
decision information from channel dependencies. This paper is designed to use a simple
gating mechanism with Sigmoid activation:

w = σ(F(m)) = σ(Wdm) (5)

where F(·) denotes the decision function of the fully connected network, Wd ∈ RN×C

denotes the weight of the fully connected network.
Based on the decision vectorw, in the switching module, define EO to denote a set of

excitation operators and set its size to N = 3, , using the fully connected network (FC)
[17], the convolutional neural network (CNN) [18] and the instance augmentation (IE)
[19] as alternate excitation operators, and proposing the w the computational attentional
feature map of v ∈ RC×1×1 to adjust the proportion of each excitation operator in the
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switching module and combine the results of each operator in the form of dot product
to obtain the final attentional feature map v which is formulated as follows:

v = σ
(
vfcwfc

) � σ(vcnnwcnn) � σ(viewie) (6)

Fig. 4. Switchable Excitation Model.

3 Experiments and Analysis of Results

3.1 Establishment of the Datasets

To balance the variability of the growth of Pacific oysters in winter and summer seasons,
a total of 300 Pacific oysters of similar shape and individual size were randomly selected
in December 2021, June 2022 and February 2023, respectively, under the same culture
environment. MRI images were acquired using 7.0T high field strength small animal
magnetic resonance imaging system equipment, as shown in Fig. 5. The main technical
specifications of the equipment: 7.0T magnet, aperture width of 20 cm, 660 mT/m
gradient intensity, 7 groups of high-order uniform field coils, gradient power supply of
500 V/300 A, and the highest image pixel resolution of 10 μm. The main parameter
settings: the longitudinal slice length was set to 2 mm, the number of slices per Pacific
oyster was 20, and the echo time of transverse (T2) relaxation (TE) was set to 30 ms.
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Fig. 5. Photographs taken with NMR equipment.

A total of 4000 Pacific oyster MRI images were obtained after screening, and the
gonadal boundaries of the original images were labeled with labelme software to build
the Oyster gonad datasets. The annotated images were randomly divided into training
and test sets in the ratio of 7:1, of which 3500 were used for training the segmentation
model and 500 were used for the tested model. An example map of partial Oyster gonad
datasets annotation is shown in Fig. 6.

Fig. 6. Example of partial Oyster gonad datasets annotation.
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3.2 Experimental Environment and Evaluation Index

The hardware and software parameters used in this study are configured as shown in
Table 1.

Table 1. Software and hardware parameters configuration.

Software and hardware environment Configuration

Small animal MRI system Bruker BioSpec 70/20 USR

Processor Inter(R) Core(TM) i9-9820X

Graphics Processor NVIDIA Corporation GP100GL

Graphics processor computing platform CUDA 10.2, cuDNN 7.4

Compile the program Pycharm, Anaconda

Frame Pytorch

Programming Languages Python 3.6

The input image size of the experiments in this paper is 352 × 352, the epoch size
is 50 during training, and the batch size is 8. The specific hyperparameter settings of
the algorithm model in this paper are shown in Table 2. The training is performed using
Adam optimizer [20], and the whole training process takes about 75 min.

Table 2. R-SINet algorithm hyperparameter settings.

Parameters Numerical value

Input size 352 × 352

Learning rate 0.0001

Batch size 8

epoch 50

Number of iterations 3

Optimizer Adam

Themodel evaluationmetrics include S-measure (Sα) [21], enhanced-matching eval-
uation metrics E-measure (E�) [22], weighted F-measure (ωF) [23] and Mean absolute
error (MAE) [24].
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3.3 Ablation Experiments

The ablation experiments were tested in the Oyster gonad datasets using the same hyper-
parameters, and the test results are shown in Table 3. The experimental results prove that
the addition of the two models has a positive effect on the results of the algorithm, which
performs well in all four evaluation indexes, and shows the best results after incorpo-
rating the two models into the overall framework at the same time, which verifies the
effectiveness of the two models.

Table 3. Impact of two models proposed in this paper on the algorithm.

SINet_v2 CPRM SEM Sα ↑ E� ↑ ωF ↑ MAE ↓
No. 1

√
0.866 0.910 0.865 0.037

No. 2
√ √

0.885 0.912 0.866 0.030

No. 3
√ √

0.867 0.923 0.880 0.028

No. 4
√ √ √

0.889 0.929 0.882 0.020

3.4 Comparative Experiments and Analysis of Results

To verify the performance level of the proposed R-SINet, it was tested with the SINet
[7], LSR [8], SINet_v2 [11] and SegMaR [12] in the Oyster gonad datasets and the
same running environment, respectively, and the quantitative evaluation results of the
experimental comparison are shown in Table 4. The values of the proposedR-SINet algo-
rithm are better than the results of the four unapparent object detection segmentation
algorithms of the comparison experiments.

Table 4. Evaluation results of different algorithms in the four evaluation indexes.

Algorithm Sα ↑ E� ↑ ωF ↑ MAE ↓
SINet (2020) 0.663 0.888 0.476 0.068

LSR (2021) 0.658 0.917 0.745 0.056

SINet_v2 (2021) 0.865 0.910 0.863 0.038

SegMaR (2022) 0.653 0.918 0.474 0.059

R-SINet (Ours) 0.889 0.929 0.882 0.020
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3.5 Visualization Results

Some of the visualized segmentation results are shown in Fig. 7. This figure shows that
the contour structure of the segmented gonads of Pacific oysters obtained by the method
of this paper is closer to the true value map, and the gonad edge is clearer than the other
four algorithms, which confirms the effectiveness of the method.

Fig. 7. Partial visualization of gonadal segmentation results of Pacific oyster compared.

3.6 Gray Value Calculation

Based on the method of Pacific Oyster gonad recognition proposed in this paper, the
partitioned gonad part is mapped to the original image to obtain the grayscale image
of the region. In the form of gray histogram, 50 of the 500 test images are randomly
selected and the gray value is calculated. As can be seen from Fig. 8, there are two peaks
in the gray histogram of the female and male of the oyster, and the distance between the
peaks on the horizontal axis is large, which proves that there are obvious differences in
the gray values of the gonads of the female and male oysters. The gray images of small
animal NMR can be used to determine the sex of Pacific oysters.
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Fig. 8. Gray histogram curve of male and female oysters.

4 Conclusion

In this paper, based on themagnetic resonance imaging of the Pacific oyster, we identified
and segmented the Pacific oyster gonads by the method of unapparent object detection,
and proposed the R-SINet algorithm to improve the accuracy of oyster gonad segmenta-
tion. The model obtains the optimal test results in four evaluation metrics, which proves
the effectiveness and robustness of the method. In addition, we intuitively found that
there were large differences in gray values between the gonads of female and male
oysters by using gray histogram, which provided a new technique and means for the
subsequent selection of oyster sex.
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Abstract. Few-shot object detection involves detecting novel objects
with only a few training samples. But very few samples are difficult to
cover the bias of the new class in the deep model. To address the issue, we
use self-supervision to expand the coverage of samples to provide more
observation angles for new classes. In this paper, we propose a multi-
task approach that combines self-supervision with few-shot learning to
exploit the complementarity of these two domains. Specifically, our self-
supervision as an auxiliary task to improve the detection performance
of the main task of few-shot learning. Moreover, in order to make self-
supervision more suitable for few-shot object detection, we introduce the
denoising module to expand the positive and negative samples and the
team module for precise positioning. The denoising module expands the
positive and negative samples and accelerate model convergence using
contrastive denoising training methods. The team module utilizes loca-
tion constraints for precise localization to improve the accuracy of object
detection. Our experimental results demonstrate the effectiveness of our
method on the Few-shot object detection task on the PASCAL VOC and
COCO datasets, achieving promising results. Our results highlight the
potential of combining self-supervision with few-shot learning to improve
the performance of object detection models in scenarios where annotated
data is limited.

Keywords: Few-shot object detection · Self-supervised learning ·
End-to-End Detector

1 Introduction

Object detection [8,15,19–22] is a fundamental task in computer vision that
involves identifying and localizing objects within an image or video. However,
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traditional approaches to object detection rely heavily on large amounts of
labeled data for training. This labeling process is both time-consuming and
resource-intensive, which can be a significant challenge in scenarios where new
objects need to be detected with limited training samples, such as rare cases
and rare animals. To address this issue, few-shot object detection has emerged
as a promising approach that aims to detect novel objects with only a few train-
ing examples. Few-shot object detection [7,11,17,23,24,29] has the potential to
significantly reduce the amount of labeled data required for training, thereby
easing the burden of the labeling process.

Despite significant advancements in few-shot object detection concerning the
scarcity of labeled samples, effectively addressing the bias towards covering novel
classes still poses a challenge in this field. At the same time, self-supervision
[9,12] holds substantial promise in effectively mitigating the issue of limited
samples within the realm of few-shot object detection, thereby furnishing it with
a wider range of informative and varied data. By harnessing the capabilities of
self-supervised learning, we can acquire more efficient object representations,
consequently enhancing the accuracy and robustness of object detection.

In this paper, we propose a novel approach to few-shot object detection by
combining self-supervision with DETR variants [2,16,25,33] in a multi-task man-
ner. Our method leverages the self-supervised branch to predict embeddings of
a separate self-supervised image encoder on object regions. Similar to the back-
bone, the self-supervised image encoder learns transformation-invariant embed-
dings, which are distilled into the detector’s embeddings. While self-supervision
is an auxiliary task, our primary goal is to improve the detection performance
of few-shot object detection.

While self-supervised learning has shown the capability to extract diverse
features by leveraging inter-sample correlations, enhancing the model’s ability
to generalize in low-data scenarios, further adaptations are needed to optimize
self-supervision for few-shot object detection. To address this issue, we intro-
duce a denoising module and a team module similar to Team-DETR [18] in the
self-supervised branch. The denoising module employs a contrastive denoising
training by adding both positive and negative samples, which helps the model
avoid duplicate outputs of the same target samples with the same ground truth.
The team module groups queries at the decoder side and provides guiding queries
in terms of scale and spatial position. Effectively strengthening the constraint of
the self-supervised branch on the model and improves detection performance.

The main contributions are summarized as follows:

• We combine self-supervised learning with few-shot object detection in a multi-
task manner. Self-supervision as an auxiliary task mainly improves the per-
formance of the main task of few-shot object detection.

• We only introduced a denoising module and a team module in the self-
supervised branch. Improved the constraint ability of the self-supervised
branch on the model while makes it more compatible with the main branch
and accelerating its convergence speed.
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• Thorough experimental results show that the proposed self-supervised aux-
iliary tasks are substantially effective for accurate few-shot object detection.
Our method achieves significant performance improvements in both PASCAL
VOC [6] and COCO [14] datasets.

2 Related Work

2.1 Self-supervised Learning

Self-supervised Learning (SSL) [4,27,31] has shown great potential in generat-
ing powerful representations, and has even outperformed supervised methods on
challenging vision benchmarks. These learned representations have been shown
to transfer well to object detection tasks. Recent research has proposed several
methods that combine SSL with DETR, a popular object detection framework.
One such method is UP-DETR [5], which pretrains DETR in a self-supervised
manner by detecting and reconstructing random patches from the input image.
Another method, DETReg [1], incorporates region priors from unsupervised
region proposal algorithms to provide weak supervision for pretraining. Our
research is focused on leveraging self-supervision as an auxiliary task to improve
the detection performance of the main task. We aim to further advance the
field of object detection by exploring the potential of self-supervised learning in
conjunction with existing methods.

2.2 Few-Shot Object Detection

Recently, there has been extensive research focused on DETR and its variants.
However, these methods often suffer from a significant performance drop when
applied to few-shot object detection scenarios. To address this limitation, Meta-
DETR [32] was proposed, which incorporates meta-learning into the DETR
framework. This allows for image-level detection by effectively leveraging the
correlation among various support classes. Building upon this work, we introduce
self-supervised learning to further improve the detection performance. By lever-
aging self-supervision as an auxiliary task, we aim to improve the performance
of object detection, particularly in few-shot scenarios. Our research contributes
to the ongoing effort to advance the field of object detection by exploring the
potential of combining self-supervised learning and meta-learning with existing
methods such as DETR.

3 Methodology

In this section, we first detail the setup for the FSOD problem. Then, we
introduce multi-task self-supervised few-shot object detection method, as shown
in Fig. 1. Our method takes Meta-DETR as the baseline. We combine self-
supervision with DETR variants in a multi-task manner. Self-supervised branch
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aims to predict the embeddings of a separate self-supervised image encoder eval-
uated on object regions. In order to solve the problem of Meta-DETR conver-
gence speed and improved the constraint ability of the self-supervised branch on
the model. We only introduced a denoising module and a team module in the
self-supervised branch.

Query Features

Feature
Extractor

Feature
Extractor

Aggregation
Module

label

box

emb

Self-Supervise ModuleQuery Image

Support Images

Transformer 
Noise

positive negative

Weight Sharing Positive Noise

Negative Noise GT
Few-Shot Detection Results

Fig. 1. Overview of our proposed method. Self-supervised auxiliary tasks are shared
with the main task in feature extractor and transformer weights.

3.1 Problem Setting

As in previous work [7,24,34,35], we use the standard problem setting for FSOD
in our paper. Specifically, the training data set consists of a base class set
Dbase = {xbase, ybase} with a large number of samples and a novel class set
Dnovel = {xnovel, ynovel} with only a few samples, where x and y represent
training samples and labels, respectively. The number of samples for each class
in the novel class set is K, thus constructing the k-shot problem. The classes
in the base class set are Cbase, the classes in the novel class set are Cnovel, and
the classes in the two sets are disjoint, that is, Cbase

⋂
Cnovel = ∅. We use an

effective way to exploit the training set is to mimic the few-shot learning setting
via episode based training. In each training iteration, an episode is formed by
randomly selecting C classes from the training set with K labelled samples from
each of the C classes to act as the sample set S = {(xi, yi)}m

j=1)(m = K × C),
as well as a fraction of the remainder of those C classes samples to serve as the
query set Q = {(xj , yj)}n

j=1.This sample/query set split is designed to simulate
the support/test set that will be encountered at test time. A model trained from
sample/query set can be further fine-tuned using the support set, if desired. In
this work we adopt such an episode-based training strategy.
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3.2 Self-supervised Auxiliary Branch

Self-supervised task include their region localization and embedding compo-
nents. Keeping the main task unchanged during pre-training, we only include
self-supervised auxiliary tasks during fine-tuning. At a high level, we operates by
predicting object localizations that match those from an unsupervised region pro-
posal generator, while simultaneously aligning the corresponding feature embed-
dings with embeddings from backbone(RestNet-101)instead of a self-supervised
image encoder like DETReg, see Fig. 1.

Query Image

Transformer
Noise

Feature
Extractor

lable

bbox

emb
positive negative

Fig. 2. Self-supervised Auxiliary Branch

Region localization takes a set of M boxes b1, ..., bm output by an unsuper-
vised region proposal method and optimizes a loss that minimizes the differ-
ence between the detector box predictions and these M boxes. The loss involves
matching the predicted boxes and these M boxes. Selecting boxes policies is
Top-K,similar to DETReg. Three prediction heads: fbox which outputs predicted
bounding boxes, fcat which predicts if the box is object or background, and femb

which reconstructs the object embedding descriptor using backbone, These out-
puts as: b̂i = fbox(vi), ẑi = femb(vi), p̂i = fcat(vi). We adopt a pairwise matching
loss Lmatch(yi, ŷσ(i)) to search for a bipartite matching between y and ŷ with
the lowest cost:

σ̂ = arg min
σ∈ΣN

N∑

i

Lmatch(yi, ŷσ(i)) (1)

where σ̂(i) denotes the optimal assignment between predictions and targets.
Since the matching also needs to consider both classification and localization,
the matching loss is formalized as:

Lmatch(yi, ŷσ(i)) = Lcls(ci, ĉσ(i)) + Lbox(bi, b̂σ(i)) (2)

We define the Self-supervised loss as:

Lssl(y, ŷ) = λfLclass(ci, P̂σ̂(i)) + λbLbox(bi, b̂σ̂(i)) + λeLemb(zi, ẑσ̂(i)) (3)

Embedding components learn a strong object embedding, we encode each
box region bi via a separate encoder network and obtain embeddings zi that
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are used as a target for the embeddings ẑj (see the blue arrows in Fig. 2). The
difference with DETReg is that we don’t use SwAV [3] but backbone to ensure
the invariance of image transformation embedding. We argue that swav gives
the model additional guidance in addition to guaranteeing invariance. We intro-
duce an additional MLP femb that predicts the object embedding ẑj from the
corresponding DETR query embedding v̂j . The loss is the L1 loss between ẑj

and zi .
Lemb(zi, zj) = ‖zi − ẑj‖1 (4)

where Lclass is the class loss, that can be implemented via Cross Entropy Loss or
Focal Loss, and Lbox is based on the the L1 loss and the Generalized Intersection
Over Union (GIOU) loss.

The Denoising Module using Contrastive DeNoising (CDN) enables the
self-supervised branch to accelerate convergence. We generate two types of CDN
queries: positive queries and negative queries. Each CDN group has a set of
positive queries and negative queries. The reconstruction losses are L1 and GIOU
losses for box regression and focal loss for classification. The loss to classify
negative samples as background is also focal loss. We define the loss as Ldn.

The Team Module improves queries on the decoder side. The original
queries are divided into groups,each responsible for predicting objects within
a specific scale range. B̂i is the prediction box of the i-th query qi. When the
distance between the center point of B̂i and Âi exceeds the threshold η, a penalty
is imposed on B̂i. σ is the number of boxes to be penalized. The loss function is
expressed as

Lpos =
1
σ

N−1∑

i=0

1{‖B̂
{x,y}
i −A

{x,y}
i ‖2>η}‖B̂

{x,y}
i − A

{x,y}
i ‖2 (5)

3.3 Multi-Task Learning

The Multi-Task Learning trains tasks together to overcome the shortage of anno-
tated data. It provides each task with inductive bias to trigger regularization
effect between one another. We combine Meta-DETR with a self-supervised
branch in a multi-task manner.(see Fig. 1).

Here we briefly introduce the loss function of the Meta-DETR main task.
Similar to Deformable DETR. Lmeta(y, ŷ) is applied to every layer of the trans-
former decoder.

Lmeta(y, ŷ) =
N∑

i=1

[Lcls(ci, ĉσ(i)) + Lbox(bi, b̂σ(i))] (6)

The total loss in training stage is :

Ltotal = Lmeta + λssl(Lssl + Ldn + Lpos) (7)

Experiments show that the best results are obtained when the value of λssl is
0.17, which indicates that the self-supervised branch only plays an adjustment
role for the main task.
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4 Experiments

In this section, we first describe the details in the experiments, and then perform
extensive experiments on the benchmarks using PASCAL VOC [6] and COCO
[14] dataset. For fairness, we strictly adhere to the construction and evaluation
protocol for FSOD data. Finally, we provide ablation analysis and visualizations.

4.1 Implementation Details

Our method is based on Meta-DETR [17], which uses Deformable DETR [22]
with Resnet-101, and strictly keeps the parameters of Meta-DETR unchanged in
all our experiments. We utilize the same data split as [24] to evaluate our method
for fair comparison. When using the PASACL VOC and COCO datasets for
evaluation, the latent knowledge is set to 64 × 256 and 128 × 256, namely N=64,
m=256 and N=128, m=256, respectively. All our experiments are obtained on
one 3090 GPU,using the AdamW optimizer with an initial learning rate of 2 ×
10−4 and a weight decay of 1×10−4 and batch size is set to 32. In the base training
stage, we train the model for 50 epochs for both Pascal VOC and MS COCO.
Learning rate is decayed at the 45th epoch by 0.1. In the few-shot fine-tuning
stage, the same settings are applied to fine-tune the model until convergence.

4.2 Few-Shot Object Detection Benchmarks

Results on PASCAL VOC. There are a total of 20 classes in the PASACL
VOC dataset, which is divided into a base class set with 15 classes and a novel
class set with 5 classes. We have three combinations of the base class set and
the novel class set division, the same as the existing work. Each class in the base
class set has a large number of samples, while each class in the novel class set
has only k samples, in the experiment k=1, 2, 3, 5, 10, these k samples are in
this class randomly selected from the sample. In the second stage, we extract k
samples for each base class in the base class set, and fine-tune the model together
with the novel class set. The experimental results are shown in Table 1.

As shown in Table 1, our experimental results show an improvement in
accuracy when samples are scarce compared to existing works. This shows that
self-supervision can make up for the sample defects of small sample object detec-
tion and improve the detection performance.

Results on COCO. The COCO datasetis a more challenging object detection
dataset, which contains 80 classes including those 20 classes in Pascal VOC.
We adopt the 20 shared classes as novel classes, and adopt the remaining 60
classes as base classes. Same as the baseline, we choose k=10, 30 for comparative
experiments.We use train 2017 for training, and perform evaluations on val 2017.
Standard evaluation metrics for MS COCO are adopted. Results are averaged
over 5 randomly sampled support datasets. The experimental results are shown
in Table 2.
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Table 1. FSOD performance (novel AP50(%)) on three splits of PASCAL VOC
dataset. *indicates the result of the baseline,which is the first model to use Deformable
DETR for few-shot

Method/Shot Class Split 1 Class Split 2 Class Split 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Meta-YOLO [11] 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

metaDet [26] 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1

Meta R-CNN [30] 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

TFA w/fc [24] 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA w/cos [24] 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8

MPSR [28] 41.7 43.1 51.4 55.2 61.8 24.4 – 39.2 39.9 47.8 35.6 – 42.3 48.0 49.7

SRR-FSD [35] 47.8 50.5 51.3 55.2 56.8 32.5 35.3 39.1 40.8 43.8 40.1 41.5 44.3 46.9 46.4

FSCE [23] 44.2 43.8 51.4 61.9 63.4 27.3 29.5 43.5 44.2 50.2 37.2 41.9 47.5 54.6 58.5

Meta-DETR* [32] 40.6 51.4 58.0 59.2 63.6 37.0 36.6 43.7 49.1 54.6 41.6 45.9 52.7 58.9 60.6

Ours 42.1 52.2 57.7 59.5 64.3 37.3 37.1 43.1 49.5 55.1 42.4 46.0 54.3 58.3 59.8

Table 2. FSOD performance (novel AP(%)) on COCO dataset. *indicates the result
of the baseline,which is the first model to use Deformable DETR for few-shot

Method/Shot Shot Number

10 30

AP AP50(%) AP75(%) AP AP50(%) AP75(%)

FRCN-ft-full [30] 5.5 10.0 5.5 7.4 13.1 7.4

Meta-YOLO [11] 5.6 12.3 4.6 9.1 19.0 7.6

Meta R-CNN [30] 8.7 19.1 6.6 12.4 25.3 10.8

SSR-FSD [35] 11.3 23.0 9.8 14.7 29.2 13.5

CME [13] 15.4 24.6 16.4 16.9 28.0 17.8

DCNet [10] 12.8 23.4 11.2 18.6 32.6 17.5

FSCE [23] 11.1 – 9.8 15.3 – 14.2

Meta-DETR* [32] 19.0 30.5 19.7 22.2 35.0 22.8

Ours 19.3 31.3 19.8 22.3 36.0 23.0

The COCO dataset has many more categories than VOC dataset, but Table 2
proves that our method is still effective in improving the detection accuracy, and
performs exceptionally well compared with other region-based methods under
the metric AP0.50.

4.3 Ablation Analysis

In this section, we separately explore the influence of the self-supervised mod-
ule and denoising module on the experimental results through experiments. All
ablation experiments in this section, like most existing works, are based on Novel
Set 1 of PASCAL VOC.
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The Effect of the Self-supervised Module. We conduct ablation experi-
ments to validate the effectiveness of the self-supervised module, without denois-
ing module and team module.

Table 3. The effect of the self-supervised module.

Model/Shot 1 2 3 5 10

Baseline 40.6 51.4 58.0 59.2 63.6

self-supervised module 41.7 51.9 57.0 59.4 63.9

Ours 42.1 52.2 57.2 59.5 64.3

Table 3 shows the comparison results of the experiments. Taking 1-shot
and 2-shot as an example, the accuracy is improved by 1.1% and 0.5% when
using the self-supervised module compared to not using it. This shows that the
self-supervised module is effective in improving the performance of the model.

The Weights of Self-supervised Branch. In our method, the weights of
self-supervised branch is a very important hyperparameter. When the weights
is small, the self-supervised branch is less effective. In the case of large weights,
the self-supervised branch will have an excessive impact on the model, making
the model more focused on the accuracy of auxiliary tasks and affecting the
performance of small-sample target detection.

Table 4. The weights of self-supervised branch. Only the weights of self-supervised
branch is different here, other settings are exactly the same.

λssl/Shot 1 2 3 5 10

0.1 40.0 52.0 56.8 58.6 63.9

0.17 42.1 52.2 57.2 59.5 64.3

0.3 38.2 52.1 56.5 58.9 64.3

0.5 41.9 51.2 55.8 58.0 63.9

0.7 42.1 49.7 56.4 58.1 62.5

Table 4 shows the impact of different weights of self-supervised branch on
model performance. We can see that when the weights of self-supervised branch
is 0.17, the overall accuracy is the best.
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Fig. 3. Visualize our 10-shot object detection on the boat class on the COCO dataset
as an example.

4.4 Visualization

As shown in Fig. 3, we use the COCO dataset 10-shot as an example to visualize
the boat in the novel class set. In Fig. 4, we visualize the results by taking the
1-shot of the VOC dataset 1-split as an example. “bus”, “cow”, “bird”, and
“motorbike” are categories in the novel class set, and the rest are in the base
class set. We can see that our method can detect more novel classes of objects.

Fig. 4. Visualization of Our Model on the Novel Class Set: “Bus”, “Cow”, “Bird” and
“Motorbike”.
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5 Conclusion

In this paper, we propose a multi-task-based self-supervised few-shot object
detection model. We combine self-supervision with DETR in a multi-task manner
for few-shot object detection. The self-supervised branch is used as an auxiliary
task, and the few-shot object detection is used as the main task. We mainly
focus on the detection performance of the main task. Our motivation is to use
self-supervision to compensate for the number of samples in few-shot object
detection. At the same time, We introduce a denoising module and team module
to makes it more compatible with the few-shot object detection. Experimental
results show that our model has better performance compared to other networks.
We hope that our proposed method can be helpful for improving the accuracy
of DETR as an end-to-end object detector in few-shot object detection.
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Abstract. The attention mechanism has been widely applied in visual
tracking tasks due to its remarkable ability to capture global dependen-
cies. However, there are two issues in previous attention-based meth-
ods: redundancy of template information and inappropriate utilization
of information streams. In this work, we propose a spatial positioning
attention mechanism that addresses these issues by selective template
feature enhancement and elimination of redundant information streams,
respectively, significantly improving tracking accuracy and speed. Fur-
thermore, previous trackers fail to focus on channels containing crucial
target information within the template features and search region fea-
tures. To tackle this, we introduce a channel focus attention mechanism
to perform channel weight rescaling, which allows the tracker to concen-
trate on those target-related channels, improving its localization capa-
bility. Extensive experiments on four well-known datasets, GOT-10k,
LaSOT, TrackingNet, and TNL2K, show that CSTrack outperforms all
previous state-of-the-art trackers, running at over 70 FPS.

Keywords: Visual tracking · Vision Transformer · One-stream tracker

1 Introduction

Visual object tracking (VOT) is a fundamental task in computer vision, which
aims to estimate the position of the target in the subsequent frames based only
on its position in the first frame. Due to its balance of accuracy and speed,
the Siamese framework has become the dominant tracking framework, repre-
sented by [1,16,25,29]. However, traditional Siamese-based trackers suffer from
two notable drawbacks. First, the fusion of template features and search region
features in traditional Siamese trackers relies on CNN-based methods, which
inevitably confront the long-range dependency dilemma. This limitation hinders
their ability to capture the necessary contextual information for accurate track-
ing. Second, two-stream trackers separate the processes of feature extraction and
feature fusion, resulting in information loss and impacting the overall tracking
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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performance. To address these issues, recent works [5,9,11,24,30,31], introduce
attention mechanisms to VOT tasks, effectively getting rid of the long-range
dependency dilemma and bringing about significant improvements in tracking
performance. Furthermore, one-stream trackers like SimTrack [4] are proposed to
mitigate information loss. These trackers perform feature extraction and feature
fusion of template features and search region features simultaneously, thereby
enhancing their ability to retain critical information for accurate tracking.

In VOT tasks, the template encompasses crucial information about the tar-
get, like its size and color. However, previous trackers blindly enhance tem-
plate features, resulting in template information redundancy that hinders target
identification and localization while also impacting tracking speed. Additionally,
using the information stream from the search region to the template introduces
useless background information from the search region into the template. This
degrades the quality of template features and hampers the localization of the
tracking target within the search region. As a result, we propose a spatial posi-
tioning attention mechanism to tackle the aforementioned issues. Concretely, we
design the Gate module to control the template feature enhancement. By selec-
tively applying template feature enhancement at specific feature fusion layers,
we reduce template information redundancy and speed up tracking. Simultane-
ously, we remove the information stream from the search region to the template.
This prevents interference from irrelevant background information in the search
region, ultimately improving the localization capability of our tracker.

Moreover, as highlighted in SiamRPN++ [16], different feature channels rep-
resent distinct information. However, previous trackers treat all feature channels
equally, which limits their ability to effectively identify and localize the tar-
get. In this work, we introduce a channel focus attention mechanism to perform
feature channel weight rescaling, which enables the tracker to concentrate on
target information-rich feature channels, improving tracking performance. Fur-
thermore, we propose a one-stream tracker named CSTrack, which excels in
handling complex tracking scenarios like background clutter.

Our contribution can be summarized as follows. (1) We propose a spatial
positioning attention mechanism (SPA) to address the template feature infor-
mation redundancy and the inappropriate use of information stream, improv-
ing the localization capability and tracking speed. (2) We introduce a channel
focus attention mechanism (CFA) that allows our tracker to concentrate on chan-
nels that contain critical target information. (3) We design a one-stream tracker
CSTrack, which incorporates both spatial and channel dimensions to locate the
tracking target, significantly improving the tracking accuracy, while maintaining
a high frame rate of 70 FPS. (4) Extensive experimental results on well-known
datasets including GOT-10k, LaSOT, TNL2K, and TrackingNet, demonstrate
that CSTrack suppresses all previous state-of-the-art trackers.

2 Related Work

Previous Trackers. The preliminary Siamese-based trackers are two-stream
trackers, in which the feature extraction and feature fusion of the template and
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Fig. 1. The architecture of our tracker CSTrack.

search region are divided into two steps. SiamFC [1] is the first to apply the
Siamese framework to VOT tasks, laying the foundation for subsequent research,
like [2,6,10,16,25,29,33]. Due to the short-range property of CNNs, some works
like [5,9,15,22,24,26,30,31], introduce attention mechanisms into VOT tasks,
breaking the long-range dependency dilemma. However, in these trackers, the
template and search region are fed into the feature fusion module after feature
extraction, leading to information loss and limiting tracking performance. To
address the limitations of two-stream trackers, Chen et al. propose a one-stream
tracker SimTrack [4], which integrates feature extraction and feature fusion into a
single module, significantly improving tracking performance. However, previous
trackers blindly enhance template features and use inappropriate information
stream, which restricts the localization capability.

Channel Attention Mechanism. Distinct feature channels represent differ-
ent types of information, such as category and color. Consequently, it is cru-
cial to assign varying levels of importance to these channels. In light of this,
SENet [13] conducts feature channel weight rescaling through Squeeze (S) and
Excitation (E) operations. SKNet [17] integrates channel information at different
scales, taking into account the importance of each channel in a comprehensive
manner. However, previous trackers treat all feature channels equally and cannot
concentrate on the channels that are relevant to the target. To overcome this



CSTrack 123

limitation, we employ a channel focus attention mechanism that realizes channel
weight rescaling, which makes the tracker able to focus on the important feature
channels, improving the anti-interference capability.

3 Method

3.1 Overview

As depicted in Fig. 1, our CSTrack adopts the prevailing one-stream architecture,
where the feature extraction and fusion of the template image and the search
region image are performed simultaneously. During tracking, the template image
t ∈ R

Ht×Wt×3 and the search region image s ∈ R
Hs×Ws×3 are split into patches

of size P × P and flattened, obtaining the patch sequence tp ∈ R
Nt×(P 2·3) and

sp ∈ R
Ns×(P 2·3), where Nt = HtWt/P 2, Ns = HsWs/P 2. Next, the sequences

tp and sp are sent into a linear projection layer to obtain the template feature
embedding Et ∈ R

Nt×d and the search image feature embedding Es ∈ R
Ns×d,

where d means the feature embedding dimension. The feature tokens, Et and
Es, are concatenated into a feature sequence with a length of Nt + Ns, which
is subsequently fed into the CSBlock module for feature integration to produce
the target localization feature Ep ∈ R

Ns×d. Finally, the feature Ep is sent into
the prediction head to obtain the predicted position and size of the target. In
brief, the tracking process can be formulated as follows.

[tp; sp] = SplitAndConcat(t, s),
[Et;Es] = LinearProjection([tp; sp]),

Ep = CSBlock([Et;Es]),
[x, y, w, h] = PredictionHead(Ep),

(1)

where [; ] denotes the feature concatenation operation.

3.2 CSBlock

As illustrated in Fig. 2, the CSBlock module comprises three key components:
spatial positioning attention (SPA), channel focus attention (CFA), and MLP
module. The SPA module is applied to capture the spatial global feature depen-
dencies and obtain the target information. The CFA module conducts fea-
ture channel weighting rescaling to highlight channels containing critical target-
related information. Lastly, the MLP module is utilized to enhance the repre-
sentation capability of both template features and search region features. The
operation of the i-th layer of the CSBlock module can be expressed as follows.

[Ei′
t ;Ei′

s ] = [Ei
t ;E

i
s] + CFA(LN([Ei

t ;E
i
s])),

[Ei′′
t ;Ei′′

s ] = [Ei′
t ;Ei′

s ] + SPA(LN([Ei′
t ;Ei′

s ])),

[Ei+1
t ;Ei+1

s ] = [Ei′′
t ;Ei′′

s ] + MLP(LN([Ei′′
t ;Ei′′

s ])),

(2)

where LN means the layer normalization operation.
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Fig. 2. The architecture of our CSBlock.

Spatial Positioning Attention. In VOT tasks, the attention mechanism plays
a vital role in template feature enhancement, search region feature enhancement,
and template-search region feature fusion. These tasks involve four distinct infor-
mation streams: template feature enhancement (t → t), search region feature
enhancement (s → s), and the fusion of template features and search region fea-
tures (t → s, s → t). While previous trackers using four information streams
achieve significant improvements in tracking performance, they also exhibit two
notable drawbacks. Firstly, these trackers perform template feature enhancement
with the information stream t → t at each layer. However, experimental results
indicate that excessive template feature enhancement leads to template infor-
mation redundancy, thereby degrading their quality. Since template information
serves as the only ground truth in tracking, its quality directly influences tracking
performance. Moreover, excessive template feature enhancement also slows down
the tracking speed. Secondly, due to the presence of massive background infor-
mation in the search region, the information stream s → t introduces unwanted
background information into the template features, blurring the target informa-
tion and hindering accurate tracking.

As displayed in Fig. 2, we propose the spatial positioning attention mecha-
nism to address the aforementioned issues. Our approach differs from previous
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methods in that we selectively perform template feature enhancement (t → t)
only at specific feature layers. Through experiments and analysis, we find that
template features in layer 0 directly represent the target information. There-
fore, we only perform template feature enhancement in odd layers to preserve
the integrity of layer 0 template features, prevent redundancy of template infor-
mation, and improve both tracking accuracy and speed. The Gate module is
employed to control the template feature enhancement process. Furthermore,
we remove the information stream s → t. This modification aims to reduce
the interference caused by background information in the search region. In other
words, the template features will only carry out feature enhancement operations.

The execution process of the SPA module is illustrated in Fig. 2. Initially,
the template features Et and the search region features Es undergo a linear
projection layer, obtaining the corresponding feature tokens q, k, and v. For the
template features, the feature tokens kt and vt are transmitted to the search
region branch for information fusion (t → s). Subsequently, the Gate module
determines whether template feature enhancement (t → t) should be performed
based on specific conditions. As for the search region features, the feature tokens
ks and vs are concatenated with kt and vt, respectively, to conduct search region
feature enhancement (s → s) and information fusion (t → s). Ultimately, the
template features E

′
t and the search region features E

′
s are concatenated and

passed to the subsequent module. In summary, the execution process of the SPA
module of the i-th CSBlock is defined as follows (the i starts from 0).

qt, kt, vt = LinearProjection(Et)
qs, ks, vs = LinearProjection(Es)

Gate(Et, i) =

{
Attention(qt, kt, vt), i is odd
Et, i is even

E
′
t = Gate(Et, i), E

′
s = Attention(qs, [kt; ks], [vt; vs]),

(3)

Channel Focus Attention. As highlighted in SiamRPN++ [16], different fea-
ture channels represent distinct target information, such as category and shape.
Effectively utilizing the channel information in template and search region fea-
tures can improve the localization capability of the tracker. In contrast to previ-
ous trackers that ignore the feature channel information, inspired by SENet [13],
we propose a channel focus attention to realize channel weight rescaling, focusing
on the channels that represent the target information. Specifically, as depicted
in Fig. 2, the features undergo a pooling operation along the spatial dimension.
Subsequently, the weights of each channel are obtained through the sigmoid
activation. The input features accomplish channel attention assignment in the
weight rescaling module. Owing to the CFA module, critical channels can be
focused on and tracking performance is significantly improved.
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3.3 Prediction Head and Loss

We employ the prediction head module to estimate the position and size of the
target. The feature token Ep is transformed into a 2D feature map and passed
through three separate convolution branches, which are responsible for center
classification, size regression, and offset regression, respectively. Specifically, the
center classification branch is in charge of estimating the corresponding position
of the center of the tracking target. The size regression branch is used to predict
the width and height of the target. The offset regression branch is employed to
compensate for discretization errors. Finally, the outputs of these branches are
combined to derive the final predicted position and size of the target.

In the training stage, we employ the weighted focal loss to supervise the
classification branch. The L1 loss and the generalized IoU loss [23] are used for
the two regression branches, respectively. In short, the loss function is formulated
as follows.

Loss = λcenterLfocal + λiouLiou + λL1L1, (4)

where λcenter, λiou and λL1 are trade-off weights to balance joint optimization.

4 Experiment

4.1 Implementation Details

Model. In our CSTrack, the size of the template image is 128×128 and the size
of the search region image is 256× 256. ViT-base [7] is adopted as the backbone
network, which has 12 layers. We initialize the network parameters using the
MAE [12] pre-training model, in order to converge quickly. The patch size P ×P
is 16 × 16, and the feature embedding dimension d is 768.

Training. The training sets of GOT-10k [14], LaSOT [8], TrackingNet [21],
and COCO [18] datasets are used for model training. For the GOT-10k test
set, we follow the default protocol to train the model using only the GOT-10k
training set. The horizontal flip and brightness jittering are employed for data
augmentation. We train our tracker using 2 RTX 3090 GPUs, with each GPU
hosting 32 image pairs. The whole tracker is optimized with the AdamW [19]
optimizer with the weight decay to 10−4. The initial learning rate of the network
is 4×10−5 and that of the rest parameters is 4×10−4. The whole training process
consists of 300 epochs with 60k image pairs per epoch. The learning rate decays
by a factor of 10 after 240 epochs. For the GOT-10k dataset, we train only 100
epochs, with the learning rate decaying by a factor of 10 after 80 epochs.

4.2 Comparisons with the State-of-the-Art Trackers

GOT-10k. GOT-10k [14] is a large-scale dataset including more than 10,000
video sequences, with 180 test sequences. For the GOT-10k test set, we strictly
follow the default protocol to train our model using only the GOT-10k training
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set. As illustrated in Table 1, owing to the selective template enhancement strat-
egy, the tracking performance of our CSTrack significantly outperforms that of
SimTrack [4] (AO: 1.0%, SR0.5: 1.1%, and SR0.75: 1.7%).

TrackingNet. TrackingNet [21] is a large-scale short-term dataset contain-
ing a large number of video sequences in the wild, of which 511 are test video
sequences. As shown in Table 1, CSTrack achieves AUC (82.8%), PNorm (87.4%),
and P (81.2%), significantly exceeding the tracker CSWinTT [24] that utilizes
information stream s → t, proving the effectiveness of our method.

Table 1. State-of-the-art comparisons on TrackingNet [21], TNL2K [27], GOT-10k [14]
and LaSOT [8]. The best two results are shown in red and green fonts.

Tracker Source GOT-10k [14] TrackingNet [21] TNL2K [27] LaSOT [8]

AO SR0.5 SR0.75 AUC PNorm P AUC P AUC PNorm P

SiamFC [1] ECCVW2016 34.8 35.3 9.8 57.1 66.3 53.3 29.5 28.6 33.6 42.0 33.9

SiamRPN++ [16] CVPR2019 – – – 73.3 80.0 69.4 41.3 41.2 49.6 56.9 49.1

DiMP [2] ICCV2019 61.1 71.7 49.2 74.0 80.1 68.7 44.7 43.4 56.9 65.0 56.7

KYS [3] ECCV2020 63.6 75.1 51.5 74.0 80.0 68.8 44.9 43.5 55.4 63.3 –

PrDiMP [6] CVPR2020 63.4 73.8 54.3 75.8 81.6 70.4 47.0 45.9 59.8 68.8 60.8

Ocean [33] ECCV2020 61.1 72.1 47.3 – – – 38.4 37.7 56.0 65.1 56.6

SiamFC++ [29] AAAI2020 56.9 69.5 47.9 75.4 80.0 70.5 38.6 36.9 54.4 62.3 54.7

STMTrack [10] CVPR2021 64.2 73.7 57.5 80.3 85.1 76.7 – – 60.6 69.3 63.3

AutoMatch [32] ICCV2021 65.2 76.6 54.3 76.0 – 72.6 47.2 43.5 58.3 67.5 59.9

DTT [31] ICCV2021 63.4 74.9 51.4 79.6 85.0 78.9 – – 60.1 – –

TrDiMP [26] CVPR2021 67.1 77.7 58.3 78.4 83.3 73.1 – – 63.9 73.0 61.4

STARK [30] ICCV2021 68.0 77.7 62.3 81.3 86.1 – 52.5 – 66.0 75.5 70.8

TransT [5] CVPR2021 67.1 76.8 60.9 81.4 86.7 80.3 50.7 51.7 64.9 73.9 69.0

SiamPW [25] CVPR2022 64.4 76.7 50.9 – – – – – 55.8 – 57.0

CNNInMo [11] IJCAI2022 – – – 72.1 – – 42.2 41.9 53.9 61.6 53.9

SBT [28] CVPR2022 66.4 77.3 59.2 – – – – – 65.9 – 70.0

UTT [20] CVPR2022 67.2 76.3 60.5 79.7 – 77.0 – – 64.6 - 67.2

TransInMo [11] IJCAI2022 – – – 81.6 – – 51.5 52.6 65.3 74.6 69.9

SLTrack [15] ECCV2022 67.5 78.8 58.7 78.1 83.1 – – – 66.4 73.5 –

CIA [22] ECCV2022 67.9 79.0 60.3 79.2 84.5 75.1 50.9 – 66.2 – 69.6

SparseTT [9] IJCAI2022 69.3 79.1 63.8 81.7 86.6 79.5 – – 66.0 74.8 70.1

CSWinTT [24] CVPR2022 69.4 78.9 65.4 81.9 86.7 79.5 – – 66.2 75.2 70.9

SimTrack [4] ECCV2022 69.8 78.8 66.0 81.5 86.0 – 53.7 52.6 66.2 76.1 –

CSTrack Ours 70.5 79.7 67.1 82.8 87.4 81.2 53.3 52.5 66.8 75.9 71.6

TNL2K. TNL2K [27] is a large-scale evaluation dataset comprising 700 test
video sequences with various challenges like occlusion and deformation. As illus-
trated in Table 1, our CSTrack obtains AUC (53.3%) and P (52.5%). Since tar-
gets in TNL2K are often small, SimTrack [4] is able to track small targets better
by using two template feature maps, the original-size template feature and the
center-cropped template feature. However, our CSTrack utilizes the same size
feature map in all layers. This is good for the tracking of large-size targets but
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not suitable for the identification and localization of small targets. This is the
research direction for our future work.

LaSOT. LaSOT [8] is a large-scale long-term tracking dataset consisting of 280
long test sequences with an average of 2500 frames. As presented in Table 1, our
CSTrack achieves AUC (66.8%), PNorm (75.9%), and P (71.6%), demonstrating
the effectiveness of the SPA module and the CFA module.

4.3 Ablation Study

Params, MACs and Speed. As shown in Table 2, the Params and MACs of
our tracker are 93.5M and 29.1G, respectively. Notably, the tracking speed of
our tracker is 70.6 FPS, which far exceeds the requirement for real-time tracking
(over 35 FPS), demonstrating the help of the SPA module in tracking speed.

Table 2. Params, MACs and Speed of our
designed tracker CSTrack.

Tracker Params (M) MACs (G) Speed (FPS)

CSTrack 93.5 29.1 70.6

Table 3. The performance of different tem-
plate feature enhancement strategies on the
GOT-10k [14] dataset.

# Layer AO SR0.5 SR0.75 FPS

1 All 69.3 79.1 65.2 68.4

2 None 67.7 77.0 62.2 74.5

3 0-th layer 66.7 76.0 61.6 73.4

4 Odd layers 69.9 79.6 66.0 74.3

5 Even layers 69.8 79.5 66.4 73.0

6 Every 3 layers 69.0 78.0 65.3 78.2

7 First half 69.5 79.5 66.4 71.2

8 Second half 68.5 78.2 64.7 76.9

Table 4. The performance of different
usage of CFA on GOT-10k [14].

# E Layer AO SR0.5 SR0.75

t s odd even

1 ✓ ✓ ✓ ✓ 69.2 78.8 65.4

2 ✓ ✓ ✓ – 70.1 80.2 66.9

3 ✓ ✓ – ✓ 69.0 78.5 65.2

4 ✓ – ✓ – 69.8 79.9 66.4

Table 5. The performance of SPA and
CFA on GOT-10k [14] dataset.

# Module AO SR0.5 SR0.75

SPA CFA

1 – – 69.3 79.1 65.2

2 ✓ – 69.9 79.6 66.0

3 ✓ ✓ 70.1 80.2 66.9

SPA Module. We explore the effect of performing template enhancement at dif-
ferent layers on tracking performance. As shown in results #1 and #2 in Table 3,
omitting the template enhancement operation significantly degrades the track-
ing performance. This indicates that the interaction between template feature
elements is crucial for robust tracking, highlighting the necessity of template
enhancement. Results #2 and #3 indicate that the layer 0 template features
contain essential original information about the target, and those information
should be retained. Next, results #4, #5, and #6 demonstrate that performing
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spaced template enhancements can prevent template information redundancy
and speed up tracking. Finally, results #7 and #8 reveal that template feature
enhancement in the earlier layers yields greater benefits in improving perfor-
mance compared to the later layers. This can be attributed to the fact that
the features in the earlier layers directly represent template information. By
enhancing these features, the information stream t → s can transmit discrim-
inative template features to the search region branch for effective information
fusion.

CFA Module. We investigate the effect of the CFA module on performance
from two aspects. Firstly, we explore the usage of the CFA module at different
positions. Experiments #1, #2, and #3 in Table 4 correspond to three usage
positions: all layers, odd layers, and even layers, respectively. Since the template
enhancement operation is performed only at the odd layer, using the CFA mod-
ule only at the odd layer highlights the important channels and significantly
enhances the subsequent feature enhancement. At the same time, utilizing the
CFA module in all layers results in channel information redundancy, which hin-
ders target localization. Furthermore, we explore the usage of the CFA module on
different features. Results #2 and #4 demonstrate that both template features
and search region features need to focus on the target-related feature channel,
which facilitates target discrimination.

Search Region Original Attention Our SPA Search Region Original Attention Our SPA

Fig. 3. Visualization of attention maps of the original attention mechanism and our
proposed SPA mechanism. The red box denotes the tracking target. (Color figure
online)

Module Ablation. We conduct experiments to investigate the effect of the
SPA module and the CFA module on tracking performance. Results #1 and #2
in Table 5 demonstrate the effectiveness of the SPA module in addressing the
issue of template information redundancy. By selectively enhancing template
features and removing the information stream s → t, the quality of template
features is improved, leading to enhanced tracking performance. Furthermore,
in experiment #3, we applied the CFA module to our tracker. The CFA module
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allows our tracker to focus on important feature channels, which significantly
enhances the localization ability of the tracker. This improvement in localization
ability further contributes to the overall enhancement of tracking performance.

4.4 Visualization of Attention Maps

To intuitively demonstrate the advantages of our proposed SPA mechanism,
we visualize attention maps of its and the original attention mechanism. As
depicted in Fig. 3, our SPA mechanism accurately distinguishes the tracking
target from similar objects, whereas the original attention mechanism falls short
in this regard. This improvement can be attributed to our selective template
feature enhancement strategy, which effectively addresses the issue of template
information redundancy. Meanwhile, the information stream s → t is removed
to ensure the quality of the template features. In summary, our SPA mechanism
exhibits enhanced robustness compared to the original attention mechanism.

4.5 Visualization of Tracking Performance

There are always many tracking challenges in real-world tracking scenarios, e.g.,
motion blur and scale variations. Therefore, we visualize the tracking perfor-
mance of our CSTrack and the state-of-the-art trackers CSWinTT [24] and
SparseTT [9] in typical tracking challenges. In our approach, the useful informa-
tion in template features is retained, improving the template quality. In addition,
CSTrack can focus on those target-related channels, which are beneficial for tar-
get localization. As displayed in Fig. 4, our CSTrack is still able to robustly track
the target in complex tracking challenges.

Fig. 4. Visualization of the tracking performance of our proposed CSTrack and state-
of-the-art trackers CSWinTT [24] and SparseTT [9].

5 Conclusion

In this work, we propose a spatial positioning attention mechanism (SPA) to
effectively address two key issues that existed in previous tracking methods: the
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redundancy of template information and the inappropriate use of information
stream. The SPA module not only significantly improves tracking performance,
but also accelerates tracking speed. In addition, we introduce a channel focus
attention mechanism (CFA) that allows the tracker to focus on the channels
containing critical target information in the template features and search region
features, enhancing the target discrimination capability of the tracker. Further,
we design a one-stream tracker CSTrack, which can cope well with complex track-
ing challenges. Extensive experiments demonstrate that our CSTrack noticeably
outperforms previous state-of-the-art trackers, running at over 70 FPS.
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Abstract. In recent years, object detection has made significant strides
due to advancements in deep convolutional neural networks. However,
the detection performance for small objects remains challenging. The
visual information of small objects is easily confused with the back-
ground and even more likely to get lost in a series of downsampling
operations due to the limited number of pixels, resulting in poor rep-
resentations. In this paper, we propose a novel approach namely Fea-
ture Implicit Enhancement via Super-Resolution (FIESR) to learn more
robust feature representations for small object detection. Our FIESR
consists of two detection branches and requires two steps of training.
Firstly, the detector learns the relationship between low-resolution and
corresponding original high-resolution images to enhance the representa-
tions of small objects by minimizing a super-resolution loss between the
two branches. Secondly, the detector is fine-tuned on original resolution
images to fit extremely large objects. Additionally, our FIESR could be
applied to various popular detectors such as Faster-RCNN, RetinaNet,
FCOS, and DyHead. Our FIESR achieves competitive results on COCO
dataset and is proved effective and flexible by extensive experiments.

Keywords: Small Object Detection · Super Resolution · COCO

1 Introduction

Small Object Detection (SOD), as a sub-field of generic object detection, which
concentrates on detecting those objects with small size, is of great theoretical
and practical significance in various scenarios. Although significant progress has
been made in object detection in recent years, the performance of detecting
small objects is often much lower than that of normal objects. One of the most
important reasons is that as the scale of an object decreases, its appearance
tends to become blurrier, making it easier to be confused with the background.
Moreover, the visual information of small objects is more likely to get lost in a
series of downsampling operations due to the limited number of pixels, resulting
in poor representations. Take the famous COCO [1] dataset as an example, the
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14436, pp. 133–145, 2024.
https://doi.org/10.1007/978-981-99-8555-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8555-5_11&domain=pdf
https://doi.org/10.1007/978-981-99-8555-5_11


134 Z. Xu et al.

Fig. 1. Comparisons of our FIESR and FCOS [2]. FCOS only detects large objects;
our FIESR can detect small objects in step I, but might ignore some extremely large
objetcs; after fine-tuning in step II, it can detect both small and large objects.

objects occupying an area less than or equal to 322 pixels come to the “Small”
category. As shown in Fig. 1, small objects usually occupy only a small part of
the image. Such poor-quality appearance provide insufficient information for a
detector.

The most direct and effective approach to improve the performance of SOD
is to use high-resolution images or feature maps. Thus, combined with super-
resolution task, object detection task can utilize more visual information of small
objects. Current super-resolution based approaches can be divided into image-
level and feature-level styles. Some works [3–5] use a super-resolution network
to preprocess the input images and some works [6–8] use a GAN [9] to recon-
struct the RoI region of images or feature maps. However, these methods either
introduce a large amount of computation from extra parameters, or cannot be
applied to one-stage detectors without RoI operation.

There are two key observations: 1) Ref. [10,11] show that the performance
of the detector can be further improved under the original structure and param-
eters with some training strategies. 2) The structure of the backbone and neck
is similar in both two-stage and one-stage detectors, which is mostly agnostic to
whether to use RoI operation. Inspired by these two observations, we propose
a new small object detection method for feature implicit enhancement based
on super-resolution (FIESR), which can be easily applied to both two-stage and
one-stage detectors without introducing redundant computation and parameters
during inference. Our method consists of two detection branches (A and B which
is used only for training) and a super-resolution module (SRM) for the neck of
branch B. The purpose of our FIESR is to facilitate the detector in learning more
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robust feature representations by minimizing the distance between the super-
resolution feature maps generated by SRM and the high-resolution feature maps
generated by branch A. The bottleneck of super-resolution module lies in gener-
ating features for small objects. To generate superior super-resolution features,
the detector allocates more attention to small objects. Our method undergoes
a two-step training process. In the step I, we utilize a pre-trained detector fed
with original high-resolution images to supervise the training of final detector fed
with low-resolution images. As shown in Fig. 1, although the detector is trained
to successfully detect small objects, it might struggle to detect extremely large
objects. To address this limitation, we employ the step II, where final detector
focus on fitting these extremely large objects on original high-resolution images,
while the capability of detecting small objects is mostly maintained.

Our contributions could be summarized as follows:

– We propose a novel detection method based on super-resolution, FIESR, to
improve SOD performance. Our method utilizes high-resolution feature maps
as supervision, enabling detectors to capture the differences in feature rep-
resentations at high and low resolutions by minimizing a super-resolution
loss. It significantly enhances the feature representations specifically for small
objects.

– Our FIESR improves the detector performance without introducing extra
parameters and computational overhead during inference. Moreover, it is
generic and can be easily applied to various popular detectors.

– On the popular dataset COCO [1] for generic object detection, we verify
the effectiveness of our FIESR on various detection architectures, including
anchor-based one-stage, anchor-free one-stage and two-stage detectors.

2 Related Works

2.1 General Object Detection

Object detection can be mainly divided into two streams: two-stage and one-
stage detection. On the one hand, two-stage object detection methods initially
generate roughly localized regions of interest (RoIs) using a region proposal
network. Subsequently, these RoIs are refined and classified more accurately by
a detection head. Faster RCNN [12] is a classic two-stage detector.

On the other hand, one-stage object detection methods directly predict the
class and location of objects from the feature maps. Furthermore, within the
one-stage detection stream, there are anchor-based and anchor-free detection
methods. RetinaNet [13], a one-stage and anchor-based detector, solves the
class imbalance problem by introducing a focal loss. ATSS [14] improves the
detection performance by optimizing the sampling strategy on the basis of reti-
nanet. DyHead [15] introduces scale-aware, spatial-aware and task-aware atten-
tion to improve the performance of the detection head. While FCOS [2], a main-
stream one-stage and anchor-free detector, predicts the width and height of the
objects from the feature maps without predefined hyper-parameters of anchors.
Although these detection methods are implemented in different ways, they all
use the similar backbone and neck such as ResNet [16] and FPN [17].
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2.2 Small Object Detection Based on Super-Resolution

Small object detection is a challenging computer vision task due to the lack
of available information on small objects. There are four dominant research
directions for small object detection: 1) data-augmentation; 2) scale-aware; 3)
context-modeling; 4) super-resolution. In the following, we mainly introduce the
detection method based on super-resolution.

Small object detection based on super-resolution are mainly divided into
image-level and feature-level. The most straightforward image-level approach
is using a super-resolution model to generate high-resolution images. Hu et al.
[4] apply bilinear interpolation to generate high-resolution images. [5] uses the
detector as the discriminator and the super-resolution module as the generator
to jointly train the GAN [9] and the detector. There are two major problems
with these methods. On the one hand, it takes a lot of time and computation for
super-resolution model to generate high-resolution images. On the other hand,
the super-resolution model may generate some non-object image parts that are
not important for detection. Bai et al. [6] proposed SOD-MTGAN, an end-to-
end model, which resolves these two problems to a certain extent by applying
a super-resolution module on the RoIs instead of the whole image. However, it
does not take the context information of RoIs into account. Some feature-level
approaches were proposed, because the features contain contextual information
after the information extraction via network layers. Perceptual GAN [7] is a
notable approach focusing on the features of RoIs. Noh et al. [8] solved the
problem by applying dilated convolutions to match the relative receptive fields
of high-resolution feature maps and low-resolution feature maps. However, these
methods are currently designed for two-stage detectors and cannot be readily
applied to one-stage detectors.

Unlike these methods, our method assists the neck and backbone components
to learn and enhance small object features by incorporating a super-resolution
module during training. Additionally, the detector performs detection without
super-resolution module during inference.

3 Methods

Most detectors have used FPN [17] or its variants to utilize the multi-scale
semantic information. When an image I ∈ R

3×H×W is input to a detector, it
generates multi-scale feature maps P = {Pl ∈ R

C×H′×W ′}. Here, l indicates
the pyramid level and (H ′,W ′) is typically

(⌊
H
2l

⌋
,
⌊
W
2l

⌋)
in a standard FPN

implementation. Based on these multi-scale features, there are detection heads
that perform classification prediction, bounding box height and width regression,
and offset regression, respectively.

According to [10,11], FPN alone may not fully extract the information
present in the image for the detection task, especially the information of small
objects. To address this issue, we propose FIESR illustrated in Fig. 2, which uti-
lizes super-resolution to assist FPN in extracting more information from small
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Fig. 2. The pipeline of the proposed small object detection (FIESR). Our FIESR con-
sists of two detection branches and a SRM. ScaleLoss not only separates the foreground
and background, but also enables the detector to allocate more attention to the infor-
mation of small objects. During inference, FIESR only uses branch A. The baseline
can be mainstream type of detectors (e.g. Faster-RCNN [12], RetinaNet [13], or FCOS
[2]).

objects, thereby generating improved feature representations. In the following
sections, we will introduce our method in detail.

3.1 Overall Architecture

As shown in Fig. 2, our method consists of two detection branches (A and B)
and a super-resolution module (SRM). The original high-resolution (HR) image
is input to branch A and low-resolution (LR) image is input to branch B. By
minimizing the distance between the super-resolution feature maps and high-
resolution feature maps respectively generated from the two branches, our pro-
posed framework enables the detector to learn more robust feature representa-
tions.

Given a HR image Ihr ∈ R
3×H×W , we first downsample it to get cor-

responding LR image I lr ∈ R
3×H

2 ×W
2 . Then, high-resolution feature maps

P hr = {P hr
l ∈ R

C×H′×W ′} is generated in branch A , and low-resolution feature
maps P lr = {P lr

l ∈ R
C×H′

2 ×W ′
2 } is generated in branch B. Next, P lr is fed to the

SRM to recover the super-resolution feature maps P sr = {P sr
l ∈ R

C×H′×W ′}.
SRM provides detectors with more detailed information during training by recon-
structing super-resolution feature maps. According to [18], SRM is a residual
bilinear module shown in Fig. 3.
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Fig. 3. Illustration of super-resolution module (SRM).

The classic super-resolution task needs to restore the details of the entire
image, so the loss that treats all the pixels equally is often used for it. However, in
object detection task, foreground objects are of greater importance. Additionally,
large objects cover more pixels, resulting in their dominance over small objects
in the loss calculation. This can potentially hinder the recovery of small object
features. To effectively utilize the super-resolution task for assisting the detection
task, we adopt a ScaleLoss, denoted as Lfea, that balances the loss of foreground
and background as well as large and small objects. Lfea is defined as:

Lfea(P hr, P sr) = α
C∑

c=1

H∑

h=1

W∑

w=1

Mh,wSw,h(P sr
c,h,w − P hr

c,h,w)2

+ β

C∑

c=1

H∑

h=1

W∑

w=1

(1 − Mh,w)Sw,h(P sr
c,h,w − P hr

c,h,w)2
(1)

Mh,w =

{
1, (h,w) ∈ foreground
0, (h,w) ∈ background

(2)

where α, β are the weights of foreground and background, h,w are the horizontal
and vertical coordinates of the feature maps. M ∈ {0, 1}H×W is defined as a
binary mask to separate the foreground and background. S denotes the scale
mask, which is set according to the area occupied by the object, the larger the
area (h,w) belongs to, the smaller the value of its position. S is defined as:

Sh,w =

{
1

HrWr
, if(h,w) ∈ r

1∑H
h=1

∑W
w=1(1−Mh,w)

, otherwise
(3)

where Hr and Wr denote the height and width of the ground-truth box r.
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3.2 Training

This section outlines the training process of our method. Two steps are involved,
as shown in Algorithm 1.

Step I: The super-resolution task is employed to assist the detector in learn-
ing the ability to implicitly extract large-scale features of small objects. We
utilize a pretrained detector Dp in branch A to supervise the training of the
final detector D in branch B from scratches. Currently, branch A serves as a
label generator exclusively for the SRM and its parameters are not updated
during this process. The training loss in this step, denoted as L1:

L1(P lr, P hr, P sr) = Ldet(P lr) + λLfea(P hr, P sr) (4)

where λ is a hyper parameters to balance the loss. Ldet(P lr) is the detection loss
of P lr as the input of the detection head. In this step, D learns more robust
feature representations for small objects.

Algorithm 1. FIESR Algorithm Pipeline
inputs: HR image I, pre-trained detector Dp and initialized detector D
outputs: Trained detector D
(1). Step I:
Branch A use the parameters of Dp and is frozen
Branch B use the parameters of D

for i in range(iterations) do
(1). Downsample HR image to get LR image
(2). Extract (P lr, P hr, P sr)
(3). Train D by minimizing L1(P lr, P hr, P sr) shown as Eq. 4

end for
(2). Step II:
Branch A and B both use the shared parameters of D

for i in range(iterations) do
(1). Downsample HR image to get LR image
(2). Extract (P hr, P sr)
(3). Train D by minimizing L2(P hr, P sr) shown as Eq. 5

end for

Step II: The purpose of this step is to adapt the final detector to large
objects. At the same time, to preserve the ability learned in step I, branch A
and B both use the shared parameters of D. Thus, different from step I, the
detection head is now trained on original high-resolution (HR) images in branch
A. Note that we only allow the gradient of SRM propagate to branch B to ensure
the forward learning of features. We denote the training loss as L2:

L2(P hr, P sr) = Ldet(P hr) + γLfea(P hr, P sr) (5)
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where γ is a hyper parameters to balance the loss. Ldet(P hr) is the detection loss
of P hr as the input of the detection head.

Inference: Once training is done, the inference procedure is the same as a nor-
mal detector. Since the detector has the ability to generate better representa-
tions of small objects through two-step training, detection is performed directly
on the original high-resolution image without SRM. This allows for more effi-
cient and faster detection compared to other super-resolution based methods, as
our method does not require additional computational cost for super-resolution
processing.

Table 1. Ablation study on the generalization of our method when applying to popular
object detection methods. ‘†’ represents multi-scale training. ‘♦’ means that the baseline
is first trained 12 epochs on the LR images, and then fine-tuned 12 epochs on the HR
images without branch B.

Method Epochs AP APS APM APL

Faster-RCNN [12] 24 38.4 21.5 42.1 50.3

Faster-RCNN♦ 12 + 12 38.7 23.0 42.4 49.5

+FIESR 12 + 12 39.4 24.0 42.8 49.7

RetinaNet [13] 24 37.4 20.0 40.7 49.7

RetinaNet♦ 12 + 12 38.1 21.5 42.4 49.8

+FIESR 12 + 12 38.7 22.7 42.7 50.1

DyHead [15] 24 43.3 25.8 47.2 57.0

DyHead♦ 12 + 12 44.0 28.0 47.9 56.7

+FIESR 12 + 12 44.4 28.2 48.2 57.0

FCOS† [2] 24 38.5 21.9 42.8 48.6

FCOS♦† 12 + 12 39.0 23.4 42.8 50.2

+FIESR 12 + 12 39.4 24.3 43.2 49.6

4 Experiments and Details

4.1 Dataset and Details

We evaluate our method on the popular object detection COCO [1] dataset,
which contains 80 object classes. We use the 120K train images for training and
5k val images for testing for all the experiments. Average Precision is adopted
as evaluation metric, i.e., mAP, APS, APM and APL. The last three measure
performance with respect to objects with different scales.

We conduct experiments on different detection framework, including two-
stage models [12,19], anchor-based one-stage models [13,15], and anchor-free
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one-stage models [2]. All experiments are conducted with mmdetection with
Pytorch [20] framework. And the pre-trianed detector Dp is obtained by the
mmdetection official site. All the detectors are trained in two steps, and each
step trains 12 epochs with SGD optimizer, where the momentum is 0.9 and the
weight decay is 0.0001. There are four hyper-paramters in the total training
objectives, we set α = 0.0005, β = 0.00025, λ = 1.0, γ = 0.4 for all the two-stage
models and α = 0.001, β = 0.0005, λ = 1.0, γ = 0.4 for all the one-stage models.
Other settings are consistent with baseline.

4.2 Ablation Study

We conduct a series of ablation studies to demonstrate the effectiveness and
efficiency of our method.

Table 2. Ablation study on the compatibility of our method when applying to different
backbones on FCOS. DCN represents deformable convolution network [21]. ResNet-101
has more layers than ResNet-50.

Method Backbone Epochs AP APS APM APL

FCOS [2] ResNet-50-DCN 24 42.5 25.1 46.3 55.9

FCOS♦ ResNet-50-DCN 12 + 12 43.2 26.4 46.4 55.9

+FIESR ResNet-50-DCN 12 + 12 44.2 28.5 47.6 57.3

FCOS [2] ResNet-101 24 39.4 22.4 42.9 51.8

FCOS♦ ResNet-101 12 + 12 40.6 24.2 44.7 52.0

+FIESR ResNet-101 12 + 12 41.4 26.5 45.1 52.0

Table 3. Ablation study on different super-resolution loss and level outputs from FPN
[17]. We use FCOS [2] with ResNet50 as baseline.

L1Loss ScaleLoss FPN1 FPN2 FPN3 AP APS APM APL

38.3 22.6 42.0 49.0

✓ ✓ ✓ ✓ 38.2 22.3 41.9 48.7

✓ ✓ 38.3 23.9 41.5 48.7

✓ ✓ ✓ 38.9 23.7 42.6 49.5

✓ ✓ ✓ ✓ 38.9 24.0 42.3 49.7
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Generalization on Existing Object Detectors: We evaluate the general-
ization ability of our method by applying it to popular object detectors, such as
Faster-RCNN [12], RetinaNet [13], FCOS [2] and DyHead [15]. These methods
represent a wide variety of object detection frameworks (e.g., two-stage vs. one-
stage, anchor-based vs. anchor-free). Since our method is trained 12 epoches on
LR images in step I, we set up a comparative experiment where the detector
is trained 12 epoches on LR images and fine-tuned 12 epoches on HR images
without our method. As shown in Table 1, our method outperforms baseline by
1.0∼1.3 AP and 2.4∼2.7 APS. Although the baseline we set is better than the
original baseline, our method outperforms it by 0.4∼0.7 AP and 0.2∼1.2 APS.
Even in multi-scale training, our method can achieve better results.

Cooperation with Different Backbones: We evaluate the compatibility
of our method with different backbone. As shown in Table 2, we apply our
method to FCOS [2] using ResNet-50-DCN [21] and ResNet-101 as backbone.
Our method outperforms original baseline by 1.7 AP and 3.4 APS with ResNet-
50-DCN backbone and by 2.0 AP and 4.1 APS with ResNet-101 backbone.

Comparison with Different Super-Resolution Loss and Level Out-
puts from FPN: We compare our method with different super-resolution loss
(L1Loss or ScaleLoss for Eq. 1) and different level outputs from FPN. We use the
largest three levels output features of FPN (1, 2, 3) as SRM input (1 is highest
resolution feature map, 2 is second and so on). As shown in Table 3, while we
using L1Loss, SRM cannot help detector to improve performance because of the
imbalance between foreground and background, large objects and small objects.
Moreover, we observe that the different levels of feature maps from FPN are
added to SRM to improve the performance of the detector in different scales of
objects, which matches the structure of FPN. When the three levels of feature
maps are used as SMR input, the comprehensive performance of the detector is
the best.

Comparison with Different Fine-Tuning strategies: We compare whether
to use branch B in step II for fine-tuning. We experiment on FCOS [2] with

Table 4. Ablation study on different fine-tuning strategies.

Method Backbone Epochs AP APS APM APL

FCOS [2]♦ ResNet-50 12 + 12 38.3 22.6 42.0 49.0

+FIESR/wo branch B ResNet-50 12 + 12 38.8 22.8 42.6 49.7

+FIESR ResNet-50 12 + 12 38.9 24.0 42.3 49.7

FCOS [2]♦ ResNet-50-DCN 12 + 12 43.2 26.4 46.4 55.9

+FIESR/wo branch B ResNet-50-DCN 12 + 12 43.9 27.9 47.4 57.7

+FIESR ResNet-50-DCN 12 + 12 44.2 28.5 47.6 57.3
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Table 5. Comparison with other object detectors using ResNet-50 on COCO minival
set.

Method Epochs AP APS APM APL

Cascade-RCNN [19] 20 41.0 22.7 44.4 54.3

FCOS [2] 12 38.7 22.9 42.5 50.1

RepPoints [22] 24 38.6 22.5 42.2 50.4

ATSS [14] 12 39.3 24.3 43.3 51.3

BorderDet [23] 12 41.4 23.6 45.1 54.6

Deformable DETR [24] 36 43.8 26.4 47.1 58.0

DyHead [15] 12 42.6 26.1 46.8 56.0

FIESR 12 + 12 44.4 28.2 48.2 57.0

ResNet-50 and ResNet-50-DCN. As shown in Table 4, step II with branch B
achieves better performance than step II without branch B, particularly when it
comes to small objects, which validates the effectiveness of our FIESR.

4.3 Main Results

To verify the effectiveness performance of the proposed method, it is compared
with other classic detection methods [2,14,15,19,22–24] in the literature. In this
comparison, we choose DyHead [15] with ResNet-50 as baseline and apply our
method to it, to make fair comparisons with other methods. As shown in Table 5,
all the detectors use the same backbone (ResNet-50), and our method achieves
44.4 mAP, especially 28.2 APS for SOD which gains the best performance.

5 Conclusion

In this paper, we have proposed a novel detection framework based on super-
resolution, FIESR, to improve the performance of small objects detection with-
out introducing additional computational cost during inference. FIESR can be
easily applied to both two-stage and one-stage detectors. By minimizing a super-
resolution loss between the original high-resolution and super-resolution features,
FIESR enables the detector to learn more robust feature representations, partic-
ularly for small objects. As future work, our method could be further improved in
the following aspects: how to train the super-resolution module more efficiently,
and how to design new modules on the detection head to assist the learning of
the detector.
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Abstract. Achieving rapid and accurate detection of juvenile abalone is a pre-
requisite for estimating the number, density and size of juvenile abalone. Juve-
nile abalone are densely distributed in the breeding process, and the intra-class
occlusion between each other is serious. Microorganisms in the water form inter-
class occlusion for juvenile abalone, resulting in incomplete detection information.
There is a lack of effective detection methods for juvenile abalone. To address the
above problems, this paper proposed the SODL-YOLOv7 juvenile abalone detec-
tion method based on the establishment of the JAD (Juvenile abalone detection)
dataset. First, the SODL backbone network for dense small target detection is
proposed to improve the attention to small targets by incorporating null convolu-
tion kernels and pooling kernels with different sampling rates in the spatial null
convolution and pooling layers; then, the ACBAM (Adaptive convolutional block
attention module) is established to apply the adaptive pooling layer of channel
space attention module, so that the network can pay more attention to the young
abalone occlusion region and further improve the detection effect. Finally, the
method of used in this paper was tested on the JAD dataset, with the results that
the AP (average precision) reached 99.4%, an increase of 4.1% compared with
the benchmark method YOLOv7, an increase of 9.2% compared with the instant-
teaching method, and an increase of 2.2% compared with the TOOD method,
therefore verifying the effectiveness of the method of this paper.

Keywords: abalone detection · occlusion detection · intra-class occlusion ·
inter-class occlusion · YOLOv7

1 Introduction

The nutritional value of abalone is extremely high and the market demand is large.
However, due to the slow natural growth rate, it is difficult to meet the market demand.
Artificial breeding is the main mode of abalone production. Juvenile abalone are small
in size and large in number, and holding groups lead to serious obscuration, making
it difficult to accurately monitor their numbers through manual observation. However,
with the development of convolutional neural network technology, accurate and efficient
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juvenile abalone detection has become possible, effectively avoiding the limitations of
manual detection.

Traditional visual object detection techniques rely on hand-designed feature extrac-
tors and shallow classifiers. Zhang et al. [1] extracted gray image features to detect
vehicles accurately and rapidly. Chen et al. [2] used Histogram of Oriented Gradient
(HOG) for flexible and accurate detection. Kumar et al. [3] demonstrated the feasibility
of using machine learning and SIFT for disaster area identification. Arreola et al. [4]
developed a UAV target recognition system based on Haar cascade classifier. Malepati
et al. [5] improved facial image detection using Haar-like features. Kovač et al. [6] pro-
posed a finger vein recognition algorithm based on adaptiveGabor filter and SIFT/SURF.
However, these techniques only extract shallow features, leading to low accuracy and
high false detection rates, limiting their application in abalone detection.

Deep learning techniques have provided a new solution for detecting juvenile
abalone, significantly improving the accuracy of detecting small target objects. Han
et al. [7] introduced a two-branch siamese network to calculate the similarity between
image regions for detection, enabling the detection of small target objects with limited
training samples.Other researchers have proposedmethods such asQueryDet [8],Drone-
YOLOv5 [9], Swin Transformer with YOLOv5 [10], slice-assisted hyperinference [11],
and multiscale feature fusion [12] to improve small target detection. However, detecting
juvenile abalone remains challenging due to their dense distribution, variable shape,
and the issues of obscuration and interference, necessitating more effective detection
methods.

This paper compares and analyzes abalone detection methods in intensive farming.
Ye et al. [13] proposed an improved Faster R-CNN algorithm using VGG16 for feature
extraction, achieving good detection results. However, VGG16’s computational volume
hampers realtime detection. Peng et al. [14] introduced the Piecewise Focal Loss (PFL)
function for sample balancing, obtaining a 94% mean average precision (mAP). But
further exploration needed for occlusion. Teh et al. [15] proposed an enhanced Mask
R-CNNmodel with 97.48% accuracy, but its computational complexity is unsuitable for
dense abalone detection.

YOLOv7 [16] target detection algorithm has relatively high detection accuracy and
is suitable for small target detection. In this paper, we improve the YOLOv7 model and
propose a SODL-YOLOv7method for abalone detection during the nursery period based
on the problems in the above literature and the characteristics of the task based on juvenile
abalone detection. The components of this research include (1) Create JAD datasets; (2)
Embedding the SODL small target detection network in the YOLOv7 backbone network
to solve the problem of low detection rate and high false detection rate; (3) Introduce
the improved ACBAM attention module to solve the intra-class inter-class occlusion
problem.

2 Methods

The technical route of this study is shown in Fig. 1. In this paper, we proposed the
SODL-YOLOv7 juvenile abalone detection method based on YOLOv7 [16], and the
network structure diagram is shown in Fig. 2. Among them, the gray underlined part is
the method proposed in this paper.
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Fig. 1. Technology Road Map.

Fig. 2. SODL-YOLOv7 network structure.

2.1 SODL Small Target Detection Network

InYOLOv7, the backbone network consists of CSPDarknet53 [17], a deep convolutional
neural network with 53 convolutional layers. To address the limitations of the network in
detecting small targets like juvenile abalone, we propose modifying the YOLOv7 back-
bone by incorporating the SODL small target detection network. The SODL network
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replaces the traditional convolutional operation in YOLOv7 and offers several advan-
tages. Firstly, it enhances the model’s ability to capture details and features of small
targets, improving detection accuracy and recall. Secondly, the SODL network utilizes
atrous convolution to better understand the features of juvenile abalone at different scales
and capture contextual information in the images. This helps handle the high variabil-
ity in size and shape of juvenile abalone, reducing cases of missed and false detection.
Additionally, the SODL network improves themodel’s understanding of the position and
relationships of juvenile abalone in the image, leading to enhanced detection accuracy.
The structure of the SODL small target detection network is depicted in Fig. 3.

Fig. 3. SODL small target detection network structure.

The specific implementation process of SODL small target detection network is as
follows: first, a 640 × 640 × 3 feature map is input to the network, and next, the input
feature map is convolved using a void rate of 6, 12, and 18 to obtain multiple feature
maps of different scales, as shown in Eq. (1).

fi = Conv3×3(x, ri) (1)

where Conv3×3 denotes the 3 × 3 convolution operation, x is the input feature map, and
ri denotes the different void rates.

Then, the input feature map is pooled using the global pooling layer to obtain a
global contextual feature: f4 = Poolglobal(x).

Next, these feature maps at different scales are stitched together to obtain the
multiscale feature maps: fout = Concat(f 1, f 2, f 3, f 4).

Finally, the multiscale feature map is convolved using a 1x1 convolution layer to
obtain the output feature map: y = Conv1× 1(fout). Where Conv1×1 denotes the 1x1
convolution operation and y is the output feature map.

2.2 ACBAM Attention Module

This paper replaces the CBS attentionmechanism inYOLOv7with the improvedCBAM
attention mechanism, as shown in Fig. 4. The CBAM attention mechanism is improved
by adding an adaptive pooling layer, and then the ACBAM attention mechanism is
proposed, as shown in Fig. 5. The adaptive pooling layer allows different degrees of
weighted pooling for each spatial location and each channel, thus enhancing the model’s
focus on the target. Applying ACBAM to juvenile abalone detection can improve the
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model’s ability to understand juvenile abalone images, calculate attention weights in
channel and spatial dimensions, thus making the network pay more attention to the
important parts of the occluded objects and reduce the influence of the occluded parts
on the results, thus achieving more accurate juvenile abalone detection.

Fig. 4. CBAM structure.

Fig. 5. Improved ACBAM structure.

First, the ACBAM module performs a dimensionality reduction operation on the
input feature map M using an adaptive pooling layer to obtain the global average z of
the channel dimensions, i.e.:

z = 1

H × W

H∑

i=1

W∑

j=1

Mi,j (2)

where, H ,W denote the height and width respectively.
Then the pooling operation is performed on M using global average pooling to get

the feature information of each channel. Next, a small fully connected neural network
is used to compress M into a one-dimensional vector y, while entering a second fully
connected layer to Sigmoid activate y and replicate it as the number of channels of M .
Multiply the vectors activated by Sigmoid and the corresponding elements ofM to obtain
the weighted channel feature map M ′. The specific formula is as follows:

M ′ = σ(Wv · Sigmoid(Wg · M )) · M (3)
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where M is the channel feature map, Wg is the weight of the first fully connected
layer,Wv is the weight of the second fully connected layer, and Sigmoid is the Sigmoid
activation function.

Next, the ACBAM module takes the weighted channel feature map M ′ as the input
feature map of this module and uses a 3 × 3 convolutional layer to extract the channel
information of the featuremap to obtain theweighted spatial featuremapN ′. An adaptive
pooling operation is performed on the feature mapN ′ to obtain a vector of size, and then,
N ′ is passed through a convolution layer to obtain a weight vector s for calculating the
importance in spatial dimensions, and then s is Sigmoid activated and replicated to the
size of N . Multiplying this Sigmoid activated vector with the corresponding elements
of N yields the weighted spatial feature map N ′′. The weighted channel feature mapM ′
and the weighted spatial feature map N ′′’ are stitched together as the output final feature
map. The specific equation is shown as follows:

N ′′ = σ(Ws · Sigmoid(Conv(Wp · [N ′;M ′]))) · M ′ (4)

where, Wp is the weight of the first convolution layer, Ws is the weight of the second
fully connected layer, and Sigmoid is the Sigmoid activation function.

ACBAM improves the network’s ability to capture juvenile abalone features, enhanc-
ing detection accuracy and recall. It adjusts channel and spatial feature importance for key
parts like the head, eyes, and antennae. ACBAM enhances head feature representation,
mitigating occlusion effects and promoting robust feature learning. This improvesmodel
generalization, enabling better detection in various breeding conditions and densities.

3 Experimental Results and Analysis

3.1 Experimental Data Preprocessing

In order to better solve the problem of dense distribution of juvenile abalone, we first
went to Rongcheng Marine Farm for research to understand the growth environment
of juvenile abalone and the attachment substrate style of juvenile abalone to ensure the
accuracy of the experiment, and the culture environment is shown in Fig. 6.

Fig. 6. Environment of the farm.
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In this paper, a JADdataset was established based on the growth environment of juve-
nile abalone, and the image acquisition environment is shown in Fig. 7. This includes the
necessary camera bracket for the high-definition camera, tile type attachment base, and
juvenile abalone. The camera usedwas a 4K camerawith theReelVisionUSB4KHDR01
for filming. In order to simulate the light conditions in the real environment, the photos
in the dataset were taken at the same time to ensure constant light intensity, and the tile
type attachment base underneath the juvenile abalone was used to imitate the natural
growing environment of the juvenile abalone.

Fig. 7. Image acquisition environment.

The camera was placed at a distance of about 10.5 cm from the tiles, and a total of
2016 images were captured. The final number of images was 2000 after screening, which
were then randomly divided into training and test sets according to the ratio of 8:1. The
environment was consistent at the time of filming, as shown in Fig. 8, and there was
a slight overlap between juvenile abalone. The dataset has a resolution of 3840*2140
pixels and is stored in “jpg” format. When the dataset is fed into the network, all images
are scaled to 640 × 640 pixels, reducing training time and memory usage.

Fig. 8. Part of the juvenile abalone pictures.

The LabelImg labeling tool was used to label the 2000 images and generate.xml
labeling files to output the juvenile abalone ID and coordinate position information. The
final accuracy is then obtained by testing the test set against the weights trained from
the training set. Some of the annotated images are shown in Fig. 9.
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Fig. 9. Part of the labeled images.

3.2 Experimental Environment and Evaluation Index

Table 1. Software and hardware configuration.

Experimental environment Configuration

Operating System CentOS7

Processors Intel(R) Xeon(R) Silver 4210

Graphics Processors NVIDIA Corporation GP100GL

Graphics Processor Computing Platforms CUDA 11.0, cuDNN 8.1

Frame Pytorch

Compile Program Pycharm, Anaconda

Operating System Python 3.7

The hardware and software configurations in this paper are shown in Table 1. The
model was trained under CentOS7 with NVIDIA Corporation GP100GL GPU and
Intel(R) Xeon(R) Silver 4210 CPU. In this paper, the input image size is 640 × 640,
epoch is 100, and batch_size size is set to 32. The model parameters of this paper are
configured as shown in Table 2. The experiments in this paper are conducted on the JAD
dataset, and the basic framework for the experiments is the YOLOv7 network, using an
initial learning rate of 0.001.

All model training for the experiments in this paper was conducted on the training
set of the JAD dataset, and all model testing was conducted on the test set of the JAD
dataset.
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Table 2. Model parameters.

Parameter Name Configuration

Input Size 640 × 640

Learning Rate 0.001

Label Smoothing 0.01

Number of samples 2000

Category 1

Epoch 100

Batch_size 32

3.3 Experimental Results and Analysis

The loss of the training process is shown in Fig. 10. From the figure, we can see that
the network fluctuates a lot in the first 5–10 epoch of training, and when the network is
trained to nearly 50 epoch, it has tended to converge, and both the training and validation
sets have good performance. Figure 11 shows the AP50 and AP75 values, and it can
be seen that AP50 reaches 99.4% and AP75 reaches 93.6%, both of which have a high
accuracy rate.

Fig. 10. Loss of training process.

Fig. 11. Network model AP50 value and AP75 value.
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In order to verify the effectiveness of the network proposed in this paper, the juvenile
abalone detection results of the SODL-YOLOv7 model proposed in this paper were
comparedwith those of theYOLOv7model [16], the instant-teachingmodel [18], and the
TOOD model [19] based on the JAD dataset, and the specific experimental comparison
results are shown in Table 3.

Table 3. Comparison of the performance of different models.

Models AP50(%) Increase(%) AP75(%) Increase(%)

instant-teaching Model 90.2 2.2 80.3 11.5

TOOD Model 97.2 9.2 82.1 13.3

YOLOv7 95.3 4.1 90.4 3.2

SODL-YOLOv7 Model 99.4 -- 93.6 --

As seen in Table 3, the SODL-YOLOv7model in this paper improved AP50 by 4.1%
and AP75 by 3.2% relative to the YOLOv7 model; Compared with the instant-teaching
model, the SODL-YOLOv7 model in this paper has improved AP50 by 9.2% and AP75
by 13.3%; Compared with the TOOD model, the SODL-YOLOv7 model in this paper
has improved AP50 by 2.2% and AP75 by 11.5%. The experimental results show that
the detection results of the SODL-YOLOv7 model proposed in this paper are better than
those of the YOLOv7 model, the instant-teaching model and the TOOD model when
the identified juvenile abalone have similar color texture, dense individuals and certain
occlusion. The visualization results of the specific performed target detection are shown
in Fig. 12.

Fig. 12. Visualization results.
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4 Conclusion

This paper designs a SODL-YOLOv7 network framework for helping to overcome the
detection problem of juvenile abalone and to realize the detection of dense juvenile
abalone based on the YOLOv7 algorithm. The JAD nursery abalone dataset was first
constructed with a total of 2000 images. The SODL small target detection network
and ACBAM attention module have been added to improve the detection accuracy and
efficiency. The SODL small target detection network improves the detection accuracy
of small targets by improving the YOLOv7 backbone network by adding multiscale
adjustable convolution; By adding an adaptive pooling layer, the ACBAM attention
module dynamically learns to adjust the poolingmethod based on the input featuremaps,
enabling the network to better adapt to feature maps of different sizes and focus more on
the target region,which helps the network to better process and identify occluded objects,
thus improving the accuracy and efficiency of detection. Finally the model achieves
optimal results on the JAD dataset. The solution proposed in this paper can effectively
improve the accuracy and efficiency of juvenile abalone detection and achieve good
practical application. To lay the technical foundation for further operations that follow,
such as abalone baiting estimation, abalone population estimation, and abalone density
estimation, the model trained using this algorithm can be deployed into an embedded
device with a camera to perform realtime detection of abalone.
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6. Kovač, I., Marak, P.: Finger vein recognition: utilization of adaptive gabor filters in the
enhancement stage combined with sift/surf-based feature extraction. SIViP 17(3), 635–641
(2023). https://doi.org/10.1007/s11760-022-02270-8

7. Han, G., Ma, J., Huang, S., et al.: Few-shot object detection with fully cross-transformer.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 5321–5330 (2022)

https://doi.org/10.1007/s12652-021-03332-4
https://doi.org/10.1007/s11760-022-02270-8


Improved Detection Method 157

8. Yang, C., Huang, Z., Wang, N.: QueryDet: cascaded sparse query for accelerating high-
resolution small object detection. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13668–13677 (2022)

9. Li, K., Ou, O., Liu, G.B., Yu, Z.F., et al.: Target detection algorithm of remote sensing image
based on improved YOLOv5. Comput. Eng. Appl. 59(9), 207–214 (2023)

10. Gong,H.,Mu,T., Li,Q., et al.: Swin-Transformer-enabledYOLOv5with attentionmechanism
for small object detection on satellite images. Remote Sensing 14(12), 2861 (2022)

11. Akyon, F.C., Altinuc, S.O., Temizel, A.: Slicing aided hyper inference and fine-tuning for
small object detection. In: 2022 IEEE International Conference on Image Processing (ICIP).
IEEE, pp. 966–970 (2022)

12. Zeng, N., Wu, P., Wang, Z., et al.: A small-sized object detection oriented multi-scale feature
fusion approach with application to defect detection. IEEE Trans. Instrum. Measur. 71, 1–14
(2022)

13. Ye,M., Li, J.: Abalone counting based on improved Faster R-CNN. In: 2022 2nd International
Conference on Bioinformatics and Intelligent Computing, pp. 206–210 (2022)

14. Peng, F., Miao, Z., Li, F., et al.: S-FPN: a shortcut feature pyramid network for sea cucumber
detection in underwater images. Expert Syst. Appl. 182, 115306 (2021)

15. Hong, K.T., Abdullah, S.-S., Hasan, M.K., et al.: Underwater fish detection and counting
using mask regional convolutional neural network. Water 14(2), 222 (2022)

16. Wang, C.Y., Bochkovskiy, A., Liao, H.-M.: YOLOv7: Trainable bag-of-freebies sets new
state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696 (2022)

17. Wang, C.Y., Liao, H.-M.,Wu, Y.H., et al.: CSPNet: A new backbone that can enhance learning
capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 390–391 (2020)

18. Zhou, Q., Yu, C., Wang, Z., et al.: Instant-teaching: an end-to-end semi-supervised object
detection framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4081–4090 (2021)

19. Feng, C., Zhong, Y., Gao, Y., et al.: TOOD: task-aligned one-stage object detection. In: 2021
IEEE/CVF International Conference on Computer Vision (ICCV). IEEE Computer Society,
pp. 3490–3499 (2021)

http://arxiv.org/abs/2207.02696


MVP-SEG: Multi-view Prompt Learning
for Open-Vocabulary Semantic

Segmentation

Jie Guo1, Qimeng Wang2, Yan Gao2, Xiaolong Jiang2, Shaohui Lin3,5,
and Baochang Zhang1,4(B)

1 Hangzhou Research Institute, School of General Engineering, Beihang University,
Beijing, China

bczhang@buaa.edu.cn
2 Xiaohongshu Inc., Beijing, China

3 East China Normal University, Shanghai, China
4 Nanchang Institute of Technology, Nanchang, China

5 KLATASDS-MOE, Shanghai, China

Abstract. CLIP (Contrastive Language-Image Pretraining) is well
developed for open-vocabulary zero-shot image-level recognition, while
its applications in pixel-level tasks are less investigated, where most
efforts directly adopt CLIP features without deliberative adaptations.
In this work, we first demonstrate the necessity of image-pixel CLIP fea-
ture adaption, then provide Multi-View Prompt learning (MVP-SEG)
as an effective solution to achieve image-pixel adaptation and to solve
open-vocabulary semantic segmentation. Concretely, MVP-SEG deliber-
ately learns multiple prompts trained by our Orthogonal Constraint Loss
(OCLoss), by which each prompt is supervised to exploit CLIP feature on
different object parts, and collaborative segmentation masks generated
by all prompts promote better segmentation. Moreover, MVP-SEG intro-
duces Global Prompt Refining (GPR) to further eliminate class-wise seg-
mentation noise. Experiments show that the multi-view prompts learned
from seen categories have strong generalization to unseen categories, and
MVP-SEG+ which combines the knowledge transfer stage significantly
outperforms previous methods on several benchmarks. Moreover, quali-
tative results justify that MVP-SEG does lead to better focus on different
local parts.
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Fig. 1. In the first row, the carefully designed prompts effectively focus on the corre-
sponding object parts and demonstrate superior localization compared to the left-most
picture, which is the result of a single handcrafted prompt. The second row shows that
using multi-view learnable prompts yields comparable results to the carefully designed
prompts. Importantly, multi-view learnable prompts are flexible and can adapt to a
wide range of objects without being limited to specific concepts like “head” or “tail”.

1 Introduction

Open-vocabulary zero shot semantic segmentation [2,9] localizes objects from
arbitrary classes, either seen or unseen during training time, with pixel-level
masks. Compared to traditional segmentors working under closed-vocabulary
setting [6,25], open-vocabulary methods find wider applications in image editing
[14], view synthesis [18], and surveillance [23], while requiring to integrate zero-
shot capability into the system.

Large-scale visual-language pre-training models such as CLIP [19] and
ALIGN [10] are widely used to incorporate zero-shot capability into visual sys-
tems. CLIP, for example, trains on a large dataset of image-text pairs to embed
semantic concepts into its parameters, serving as a knowledge base for down-
stream tasks.

MaskCLIP [25] pioneers the use of CLIP for open-vocabulary segmentation
at the pixel level. It directly applies pretrained CLIP text features as a semantic
classifier for pixel-level classification, without additional modifications. However,
we believe that adapting CLIP from image to pixel can further improve segmen-
tation performance. In Fig. 1, original CLIP prompt features (leftmost in the
first row) primarily focus on the most distinctive parts of objects. This occurs
because CLIP is pre-trained using image-level contrastive loss, which may lead
to incomplete and partial segmentation.

We use prompt learning to adapt CLIP features from image to pixel while
preserving zero-shot capability. Prompt learning [26] fine-tunes CLIP for down-
stream tasks by adjusting prompt parameters, avoiding the need for costly train-
ing. To improve image-to-pixel adaptation for segmentation, we propose using
multiple prompts inspired by part-based representation [22]. As shown in the
first row of Fig. 1, the carefully designed prompts capture different object parts,
resulting in better coverage by combining the result of these prompts. On top of



160 J. Guo et al.

this, by switching carefully designed prompts with learnable ones, we get com-
parable segmentation results to carefully designed ones without relying on the
prior knowledge of humans.

We propose MVP-SEG: Multi-View Prompt learning for open-vocabulary
semantic segmentation. MVP-SEG utilizes multi-view learnable prompts with
different focusing object parts for image-to-pixel CLIP adaptation and improves
segmentation performance. To ensure prompt diversity, we introduce the Orthog-
onal Constraint Loss (OCLoss) to enforce orthogonality among the prompts.
Additionally, the Global Prompt Refining (GPR) module reduces class-specific
noise for improved segmentation. Extensive experiments validate the effective-
ness of MVP-SEG.

In all, we propose three main contributions:

– We demonstrate that image-to-pixel adaptation is important for adopting
exploiting CLIP’s zero-shot capability in open-vocabulary semantic segmen-
tation, and the proposed MVP-SEG successfully yields such adaptation with
favorable performance gains.

– We design the OCLoss to build multi-view learnable prompts attending to
different object parts so that collaboratively they yield accurate and complete
segmentation. We also introduce GPR to eliminate class-wise segmentation
noise.

– We conduct extensive experiments on three major benchmarks, MVP-SEG+
which combine MVP-SEG with the commonly used knowledge transfer stage
reports state-of-the-art (SOTA) performance on all benchmarks and even
surpass fully supervised counterparts on Pascal VOC and Pascal Context
datasets.

2 Related Work

2.1 Vision-Language Models

Vision-language (VL) models pre-trained with web-scale image-text pairs infuse
open-world knowledge into aligned textual and visual features, upon which
zero-shot visual recognition [24] and generation [20] bloom in recent years.
Recognition-purpose VL models can be categorized as two-stream [10,19] or one-
stream [12] depending on whether multimodal inputs are processed separately
or all together. Amongst, CLIP [19] is more popular in downstream applica-
tions and it is contrastively trained using 400 million image-text pairs. ALIGN
[10] adopts an even larger dataset with 1.8 billion pairs but with considerable
noise. For a zero-shot generation, BLIP-v2 [11] have shown outstanding gener-
ation quality in executing text-guided image generation. In this work, we build
upon the zero-shot capability of CLIP to realize semantic segmentation in open
vocabulary.
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2.2 Zero-Shot Segmentation

Zero-shot segmentation performs pixel-level classification covering unseen classes
during training. SPNet [21] and ZS3Net [2] are the representatives of discrimina-
tive [1] and generative [2,9] lines of work, the former projects visual embeddings
towards semantic embeddings, while the later generates pixel-level features for
the unseen using semantic embeddings. Following ZS3Net, fruitful generative
methods are proposed [9] to mind the object-to-pixel feature gap considering
structural consistency and uncertainty. Besides, self-training is widely adopted
in zero-shot segmentation [2] to boost performance.

2.3 Prompt Learning

The idea of prompting originates from NLP (Nature Language Processing) and
has been exploited for transferring VL-pretrained models to down-stream tasks
in forms like “a photo of a [CLS]”. Via prompting, one can eschew tuning huge
VL models but use it as a fixed knowledge base, wherein only task-related infor-
mation is elicited. Nonetheless, finding the optimal prompt is not trivial by
hand, thus prompt learning [26] is proposed to automate this process with lim-
ited labeled data. CoOp [26] introduces continuous prompt learning such that
a set of continuous vectors are end-to-end optimized via down-stream supervi-
sion [13], and CoOp applies learnable prompts on the text encoder of CLIP to
replace sub-optimal hand-crafted templates.
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Fig. 2. The overview of MVP-SEG and MVP-SEG+. The MVP-SEG+ consists of
MVP-SEG and a knowledge transfer stage. In MVP-SEG, we train multi-view prompts
by Classification Loss, Segmentation Loss and Orthogonal Constraint Loss. The CLIP
text and image encoders are fixed. In the knowledge transfer stage, the segmentation
backbone is trained by the pseudo labels generated by MVP-SEG.

3 Method

In this section, we first give a brief introduction to the open-vocabulary semantic
segmentation task, then we introduce our proposed MVP-SEG and MVP-SEG+
in detail.
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3.1 Problem Definition

Semantic segmentation performs pixel-level classification to localize objects from
different classes in the input image. Under traditional close-vocabulary settings,
target classes form a finite set, and all classes are present in both training and test
sets. Open-vocabulary semantic segmentation aims to generalize beyond finite
base classes and segments objects from novel classes unseen during training.
In order to quantitatively evaluate segmentation performance under this open-
vocabulary setting, object classes in existing segmentation datasets are divided
as seen and unseen subsets [25]. Specifically, models are trained on labeled seen
classes and evaluated on both seen and unseen classes. Additionally, we also visu-
alize segmentation results on arbitrary rare classes as in Fig. 1 in the Appendix
to further validate our open-vocabulary capability.

3.2 MVP-SEG

The architecture of MVP-SEG is illustrated in Fig. 2. Note that MVP-SEG learns
multiple prompts by training only on seen classes.

Multi-view Prompt Learning. In this stage, we adopt a two-stream network
architecture separately employing an image and a text encoder. We modify a
fixed CLIP image encoder as our vision encoder. In specifics, the original CLIP
vision encoder adopts a transformer-style attention pooling layer AttnPool on
the last feature map X to get the representation vector of the input image. X is
projected into Q, K, V by 3 linear layers Projq, Projk and Projv respectively,
then AttnPool is performed on Q, K, V to get the final representation vector as:

AttnPool(Q,K, V ) = Projc(
∑

i

softmax(
(q̄kT

i )
T

)vi)) (1)

where q̄ is the spatial-wise averaged Q. ki and vi are the features of K and V at
spatial location i. T is a constant scaling factor. Following MaskCLIP [25], we
remove the query and key embedding layers Projq and Projk, then apply Projv
and Projc on feature map X to obtain the final image feature map F , where

F = Projc(Projv(X)) (2)

In practice, Projc and Projv are implemented as 1 × 1 convolution layers.
For the text encoder, we use a fixed CLIP text encoder to ensure feature

alignment with the visual counterpart. For each class, we combine the class
name with learnable prompts to form the inputs for the text encoder. We first
initialize k + 1 prompts P , where P = {p0, p1, p2, ...pk}. p0 is the global classifi-
cation prompt and p1, p2, ..pk represent k segmentation prompts. Each prompt pi
contain 32 tokens, where pi ∈ R

32×512. For class c, we concatenate each prompt
with the class name as:

sic = CONCAT(pi,W(clsc)) (3)
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here W denotes the word embedding function that maps clsc to word embedding
vectors. We feed each sentence sic to the CLIP text encoder and get the text
representation vector tic, where t0c and tic(i > 0) indicates global classification
vector and segmentation vector of class c.

Each representation vector tic is used as a classifier to perform pixel-level
classification on the feature map F to get the mask map mi

c, where m0
c is the

global classification mask and m1
c ,m

2
c ...m

k
c are the segmentation masks.

The fused segmentation result mf is computed by summing all segmentation
masks as:

mf = softmax(τ1
k∑

i=1

mi) (4)

where τ1 is a learnable scalar parameter.
In order to ensure different prompts result in masks attending to varied

object parts and collectively they provide better segmentation, we design the
Orthogonal Constraint Loss (OCLoss) to supervise prompt learning. For each
segmentation prompt pi ∈ R

32×512, we first average the token dimension to get
its average vector p′

i, where p′
i ∈ R

1×512, then applied the OCLoss which is
formulated as:

LOC =
k∑

i=1

k∑

j=i+1

|p′
i · p′

j |
‖p′

i‖‖p′
j‖

(5)

Global-Prompt Refinement. To incorporate CLIP’s strong capability in zero-
shot image classification into segmentation, we introduce Global-Prompt Refine-
ment (GPR) module which uses a global classification prompt to obtain image
classification scores and refine the segmentation mask by eliminating class-wise
noises. The image-level classification score gc is obtained by weighting and sum-
ming m0

c as

gc = sigmoid(
m0

c · softmax(γm0
c)

τ2
) (6)

where τ2 is a learnable scalar parameter and γ is a constant scale factor. The
global classification loss is as:

Lcls = −
∑

c

yclog(gc) (7)

here yc equals 1 if category c exists in this image, and else 0. The classification
prompt tends to focus on the most class-discriminative object parts for better
classification. More visualizations can be found in Fig. 3 in the Appendix.

The final segmentation mask mc is obtained by multiplying the global clas-
sification score with fused segmentation masks:

mc = mf
c gc (8)

The segmentation loss is formulated as:

Lseg = −
H∑ W∑ C∑

c=1

m∗
c log(mc) (9)
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where m∗
c is the ground-truth mask of category c. C is the number of segmen-

tation classes. H and W denote the height and the width of the input image
respectively. The overall loss function is obtained by summing the above losses as

L = λ1Lseg + λ2Lcls + λ3LOC (10)

Note that in the prompt learning stage, the image encoder and text encoder
are fixed, only prompt vectors P and temperature τ1, τ2 are learnable, so that
the image-text feature alignment within CLIP is preserved. In addition, our
experiments also demonstrate that prompts trained on limited seen categories
generalize well to unseen categories.

3.3 MVP-SEG+

We term the entire framework in Fig. 2 as MVP-SEG+, consisting of MVP-SEG
and knowledge transfer stage.

Knowledge Transfer. The learned prompts in MVP-SEG are used to generate
pseudo labels to transfer zero-shot knowledge from CLIP down to a segmentation
network.

Following the application of MaskCLIP+ [25], the transfer learning stage
contains two steps: pseudo-label training and self-training. At the pseudo-label
training step, images are fed into MVP-SEG to generate the pseudo labels for
the segmentation model. The classifier of segmentation model is replaced by
the multi-view prompts of MVP-SEG to preserve the open-vocabulary capa-
bility. In self-training stage, the segmentation model in MVP-SEG+ starts to
train itself with self-generated pseudo labels. For more details, please refer to
MaskCLIP+ [25].

4 Experiments

To evaluate the efficacy of MVP-SEG and MVP-SEG+, we conduct comprehen-
sive experiments on three widely-adopted benchmarks. In this section, we first
analysis the performance and ablation study of MVP-SEG. Then, we compare
MVP-SEG+ with the SOTA zero-shot segmentation method to show the effec-
tiveness of our proposed method to adapt CLIP to pixel-level tasks. At last, we
show the open-vocabulary ability of our method on unlabeled web images.

4.1 Datasets

Three semantic segmentation benchmarks are used in our experiment. PAS-
CAL VOC 2012 [7] contains 1426 training images with 20 object classes and 1
background class. PASCAL Context [16] annotates PASCAL VOC 2010 data
with segmentation masks of 10,103 images covering 520 classes, among which 59
common classes are used as foregrounds. COCO Stuff dataset [3] is an extension
of the COCO dataset, 164,000 images covering 171 classes are annotated with
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segmentation masks. We follow the common zero-shot experimental setups as
implemented in [25]. For PASCAL VOC, we ignore the background class, and
potted plant, sheep, sofa, train, tv monitor are selected as 5 unseen classes while
others are used as seen. For PASCAL Context, the background is not ignored
and cow, motorbike, sofa, cat, boat, fence, bird, tv monitor, keyboard, aeroplane
are unseen. For COCO Stuff, frisbee, skateboard, cardboard, carrot, scissors, suit-
case, giraffe, cow, road, wall concrete, tree, grass, river, clouds, playing field are
used as unseen classes.

4.2 Evaluation Metrics

We utilize the mean intersection-over-union (mIoU) on seen and unseen classes
to evaluate semantic segmentation performance. Additionally, we also report the
harmonic mean of seen and unseen mIoUs (hIoU).

4.3 Implementation Details

We adopt MMSegmentation1 as our codebase. In the prompt learning stage,
we use the encoders from CLIP-ResNet-502 to extract image and text features.
We use 1 global classification and 3 multi-view segmentation prompts unless
otherwise stated. All learnable prompts are implemented using unified context
[26] with 32 context tokens. The weighting parameters λ1, λ2, λ3 for Lseg,Lcls

and LOC are empirically set to 1, 3, 100 respectively. The softmax scale factor γ

Fig. 3. Comparison of segmentation results between MVP-SEG+ and
MaskCLIP+ [25]. The first row is the input image, the second row is the pre-
diction result of MaskCLIP+ and the third row is our result.

1 https://github.com/open-mmlab/mmsegmentation.
2 https://github.com/openai/CLIP.

https://github.com/open-mmlab/mmsegmentation
https://github.com/openai/CLIP
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Table 1. Cross-dataset generalization test experiments. Columns represent different
test sets, and rows represent the dataset used to learn prompts. Baseline indicates
default prompts in MaskCLIP.

mIoU(U) Pascal VOC (20) Pascal Context (59) COCO Stuff (171)

baseline 40.2 26.9 12.2

Pascal VOC (20) 45.9 29.8 13.9

Pascal Context (59) 47.8 35.7 19.5

COCO Stuff (171) 50.0 38.7 19.9

is set to 10. We use SGD optimizer to optimize learnable prompts with learning
rate set to 2e−4 and 5e−4 weight decay. We also adopt linear warmup strategy
with 1k warmup iters and 1e-3 warmup ratio. The prompt learning step takes 8k
iterations with batch size 8. All the experiments are conducted using 4 T A100
GPUs.

In the knowledge transfer stage, we use the same settings as MaskCLIP [25]
for fair comparison. We choose DeepLabv2 [4] as the segmentation backbone
for PASCAL VOC and COCO Stuff and DeepLabv3+ for PASCAL Context.
The training schedule is set to 20k/40k/80k for PASCAL VOC/PASCAL Con-
text/COCO Stuff. The first 1/10 training iterations adopt MVP-SEG guided
learning and the rest adopts self-training.

4.4 Ablation Studies on MVP-SEG

Comparison with Baseline. We adopt MaskCLIP [25] as our baseline.
MaskCLIP feeds handcrafted prompts into the CLIP text encoder with 85 tem-
plates as described in [8].

We compare segmentation performance with MaskCLIP on the unseen classes
to demonstrate the zero shot ability of MVP-SEG. As show in Table 2, MVP-SEG
achieves significant improvements (+8.4% in COCO Stuff, +12.7% in PASCAL
VOC) on the unseen classes over baseline method using only 4 learned multi-view
prompts (1 global classification prompt and 3 multi-view segmentation prompts).
This result shows that, multi-view learnable prompts effectively contribute to the
improvement of CLIP performance on pixel-level tasks.

Table 2. Ablation study of results of MVP-SEG on COCO Stuff and PASCAL VOC
dataset, we adopt MaskCLIP [25] as the baseline model for comparison. Note that the
number of multiple prompts without GPR is 3.

Method OCLoss GPR COCO Stuff PASCAL VOC

mIoU(U) mIoU(S) mIoU hIoU mIoU(U) mIoU(S) mIoU hIoU

Baseline – – 12.2 10.0 10.2 11.0 40.2 41.9 41.5 41.1

Single Prompt ✗ ✗ 15.8 15.1 15.2 15.5 41.8 46.9 45.6 44.2

Multiple Prompt ✗ ✗ 16.4 16.0 16.0 16.2 45.8 48.4 47.7 47.0

Multiple Prompt ✓ ✗ 19.9 16.1 16.4 17.9 45.9 51.1 49.8 48.3

Multiple Prompt ✓ ✓ 20.6 17.7 18.0 19.2 52.9 53.4 53.2 53.1
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Study on Segmentation Prompts. As shown in Table 2, by replacing 85
manual prompts (as shown in the first row) with 1 learnable prompt (as in row
2), we get 3.6% performance improvement on unseen classes on the COCO Stuff
dataset and 1.6% improvement on PASCAL VOC dataset. This result reveals
the efficacy of learnable prompts for adapting CLIP features for segmentation.
Increasing the number of learnable prompts is also beneficial for the performance.
After deploying the OCLoss (as shown in row 4), the mIoU on unseen classes on
COCO Stuff continues to increase from 16.4% to 19.9%, further indicating that
our insight on multi-view prompt learning method is effective. We further test
the optimal number of prompts with experiments on the COCO Stuff dataset.
As depicted in Fig. 4 in the Appendix, the performance (on unseen classes using
OCLoss) increases as the number of prompts increases and reaches the peak at
3 prompts, thus our default number for multi-view segmentation prompts is 3.

We also visualize text embeddings under different learnable prompts in MVP-
SEG with t-SNE [15]. As illustrated in Fig. 5 in the Appendix, text embeddings
of different prompts are scattered in the feature space, which proves that the
learned multi-view segmentation prompts are diverse. Moreover, visualization in
Fig. 1 shows that the learned prompts do contain high-level reasonable semantic
information. More importantly, the segmentation results using different prompts
tend to be complementary such that combining them together can yield more
accurate and complete masks. For more visualizations please refer to Fig. 6 in
the Appendix.

To further verify the advantages of multi-view learnable prompts, we also
compare the segmentation performance of our prompts with manually designed
ones. We select a set of animal-related classes including cat, dog, horse, cow, bear,
giraffe from COCO Stuff for comparison. As stated in Sect. 1, We carefully hand-
pick prompts related to body parts ( “the leg of {}”,“the head of {}”, and “the
tail of {}” ) for animal-related segmentation. As shown in Table 1 in Appendix,
manual prompts outperform the MaskCLIP baseline with 1.0% mIoU, indicating
the feasibility of adopting multiple handcrafted prompts for segmentation. More
importantly, we outperform both MaskCLIP and handcrafted prompts, showing
the superiority of MVP-SEG.

The Influence of GPR. We use the GPR module to further refine segmen-
tation masks with the image-level classification capability of CLIP. Row 5 of
Table 2 shows that adding GPR can comprehensively improve performances on
both seen and unseen classes. hIoU result on COCO Stuff dataset is improved
from 17.9% to 19.2%, and on PASCAL VOC increases from 48.3% to 53.1%.
Visualization results also show that GPR can improve segmentation by filtering
out masks of false positive classes (please refer to Fig. 2 in the Appendix).
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Table 3. Comparison with the SOTA methods. Depending on whether the unseen
classes are visible during training, previous methods can be divided into inductive
methods (top part) and transductive methods (middle part). Our method belongs to
the latter. MVP-SEG+ and Fully Sup indicate the DeepLab models train by MVP-SEG
pseudo label fully-supervised annotations respectively.

Method ST COCO Stuff Pascal VOC Pascal Context

mIoU(U) mIoU(S) mIoU hIoU mIoU(U) mIoU(S) mIoU hIoU mIoU(U) mIoU(S) mIoU hIoU

SPNet [21] ✗ 8.7 35.2 32.8 14.0 15.6 78.0 63.2 26.1 – – – –

ZS3Net [2] ✗ 9.5 34.7 33.3 15.0 17.7 77.3 61.6 28.7 12.7 20.8 19.4 15.8

CaGNet [9] ✗ 12.2 35.5 33.5 18.2 26.6 78.4 65.5 39.7 18.5 24.8 23.2 21.2

SIGN [5] ✗ 15.5 32.3 – 20.9 28.9 75.4 – 41.7 – – – –

Joint [1] ✗ – – – – 32.5 77.7 – 45.9 14.9 33.0 – 20.5

ZegFormer [6] ✗ 33.2 36.6 – 34.8 63.6 86.4 – 73.3 – – – –

SPNet [21] ✓ 26.9 34.6 34.0 30.3 25.8 77.8 64.8 38.8 – – – –

ZS3Net [2] ✓ 10.6 34.9 33.7 16.2 21.2 78.0 63.0 33.3 20.7 27.0 26.0 23.4

CaGNet [9] ✓ 13.4 35.5 33.7 19.5 30.3 78.6 65.8 43.7 – – – –

SIGN [5] ✓ 17.5 31.9 – 22.6 41.3 83.5 – 55.3 – – – –

STRICT [17] ✗ 30.3 35.3 34.9 32.6 35.6 82.7 70.9 49.8 – – – –

MaskCLIP+ [25] ✗ 54.7 – 39.6 45.0 86.1 – 88.1 87.4 66.7 – 48.1 53.3

MVP-SEG+ ✓ 55.8 38.3 39.9 45.5 87.4 89.0 88.6 88.2 67.5 44.9 48.7 54.0

Fully Sup [25] ✗ – – 39.9 – – – 88.2 – – – 48.2 –

The Generalization of Multi-view Learnable Prompts. Experiment
results in Table 2 show that learned prompts not only improve performances
on seen classes but also significantly boost unseen classes as well. To further
study the generalization ability of our learned prompts, we evaluate the perfor-
mance by training prompts on one dataset but test on other datasets. As shown
in Table 1, prompts trained on other datasets outperform the baseline by a large
margin.

4.5 Comparison with State-of-the-Art

From Table 3, we can conclude: 1) Our method can effectively improve the per-
formance of novel classes. MVP-SEG+ improves the previous SOTA method by
1.1%, 1.3% and 0.8% mIoU of unseen classes on COCO Stuff, Pascal VOC and
Pascal Context respectively; 2) Our method consistently outperforms previous
SOTA on all datasets (+0.3%, +0.5% and +0.6% hIoU); 3) Our proposed method
can effectively adapt powerful CLIP to pixel level tasks so that the performance
of MVP-SEG+ is competitive or even surpass fully supervised counterparts. To
the best of our knowledge, this is the first time such a result has been achieved.

Visual comparison with MaskCLIP+, which is one of the SOTAs, is illus-
trated in Fig. 3, and our method obtains more complete masks compared, and
false positive classes can be filtered. Furthermore, we also illustrate the perfor-
mance of our method on web-crawled images which contain rare object classes
that are not visible in any training set. As shown in Fig. 1 in the Appendix,
MVP-SEG can correctly attend to rare objects such as Iron Man and Captain
America, and MVP-SEG+ segments them with favorable accuracy.
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5 Conclusion

In this work, we propose multi-view prompt learning (MVP-SEG) to settle open
vocabulary semantic segmentation with pre-trained CLIP. At first, we demon-
strate the efficacy of adapting pretrained CLIP model from image-to-pixel level
for open-vocabulary segmentation, then introduce multi-view prompt learning,
inspired by part-based representation, to convey this adaptation. Multi-view
learnable prompts are optimized by our Orthogonal Constraint Loss (OCLoss)
to ensure the part-wise attention of each prompt so that collaboratively they
yield better segmentation results. In addition, we design Global Prompt Refining
(GPR) adopting a global learnable prompt to remove class-wise noises and refine
segmentation masks. MVP-SEG+ reports SOTA open-vocabulary segmentation
performance on all three widely-used benchmarks and reveals superior results
than fully-supervised counterparts on PASCAL VOC and PASCAL Context
datasets.
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Abstract. Partially supervised instance segmentation aims to segment
objects on both limited seen categories and novel unseen categories (with-
out annotated masks), thereby eliminating expensive demands of mask
annotation for new categories. Existing work mainly utilize the pipeline
model of detection first and then segmentation, and explores how to pro-
vide more discriminative regions of interest for the class-agnostic mask
head, but these methods do not perform well when faced with com-
plex scenes. In this work, we propose a novel method, named CCMask,
that combines Context Feature Pyramid Network (Context-FPN) and
Memory Contrastive Learning Head (MCL Head) to achieve effective
class-agnostic mask segmentation. Specifically, we introduce a Context-
FPN to obtain context-rich feature map via context extraction module,
which will benefit the subsequent task heads. In the MCL Head, we
employ foreground/background query memory queue to store queries
from recent training batches, this helps the MCL Head learns the gen-
eral concepts of foreground and background. These strategies collectively
contribute to improve the discrimination between foreground and back-
ground. Exhaustive experiments on COCO dataset demonstrate that our
method achieves state-of-the-art results.

Keywords: Partially supervised instance segmentation · Contrastive
learning · Feature Pyramid Network

1 Introduction

Instance segmentation is a fundamental task in computer vision, with wide-
ranging applications in various domains such as human pose estimation,
autonomous driving, and remote sensing image analysis. Current methods have
achieved impressive results in this task by relying on abundant pixel-level anno-
tated data. However, the high cost of mask annotation for new categories has
limited instance segmentation in a narrow range of classes, hindering its fur-
ther development. In contrast, bounding box annotation is easier to obtain and
less expensive. As a result, recent research has proposed the task of partially
supervised instance segmentation to address this issue. In this task, all object
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14436, pp. 172–184, 2024.
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categories are divided into two sets: seen categories and unseen categories. Seen
categories have instance mask annotations, while unseen categories only have
bounding box annotations. The goal of this task is to take advantage of the
partial supervision information to improve the mask prediction performance of
the mask segmentation model in unseen categories.

Fig. 1. Visualization results of OPMask [1], ContrastMask [18] and our CCMask when
an image contains multiple overlapping instances, the results show that our CCMask
performs more precisely segmentation on both seen and unseen objects.

As the pioneering approach of this task, MaskX R-CNN [10] designs a weight
transfer function that transfers the parameters of each object category from the
bounding box head to the partially supervised mask head. However, current
mainstream methods utilizes class-agnostic mask head to separate foreground
and background within each region of interest (RoI), instead of predicting a
mask for per category. Therefore, the key to addressing this problem is to pro-
vide class-agnostic mask head with RoIs that has more distinctive foreground
and background. ContrastMask [18] introduces an extra contrastive learning
head to tackles this issue. In ContrastMask, it first generates queries and keys
from foreground/background regions by utilizing the annotated masks of seen
categories and pseudo masks of unseen categories as region priors. Specifically,
in each mini-batch, it obtains a foreground/background query by averaging the
features of all foreground/background regions, and meanwhile generates keys by
random sampling from these regions. Then, it applies contrastive loss to pull
together query and keys from foreground and push apart with background keys,
and vice versa. Compared to other methods, ContrastMask achieves competitive
segmentation performance by fully leveraging the information from both seen
categories and unseen categories. However, as shown in Fig. 1, when an image
contains multiple overlapping instances, ContrastMask often gets confused: 1) for
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large instances, it habitually produces defective masks, particularly for unseen
categories; 2) it has difficulty in distinguishing foreground and background as
well as differentiating between different instances. The reasons for this issue are
that the RoIs lack contextual information from larger receptive fields and the
queries in contrastive learning are difficult to represent the characteristic of the
foreground/background because of the fact that they all come from the current
batch.

To address these problems, in CCMask, we design a Context Feature Pyramid
Network (Context-FPN) and Memory Contrastive Learning Head to collabora-
tively improve the learning capability of the class-agnostic mask segmentation
model. In Context-FPN, we capture rich contextual information from different
large receptive fields by using a module consist of multi-path dilated convolu-
tional layers with different dilation rates, named as context extraction module
(CEM). Then, we employ Content-Aware ReAssembly of FEatures (CARAFE)
[16] instead of traditional upsampling operators to reduce information loss dur-
ing the top-down pathway of the FPN [12]. By employing Context-FPN, we
aggregate more discriminative features, facilitating learning of the following task
heads. In the MCL Head, we maintain two memory query queues (QMQ) to store
queries from the foreground and the background regions: the queries from the
latest batch are enqueued, and the oldest are dequeued. The size of the queue
is independent of the batch size, allowing them to be large. This enhances the
diversity and representation of queries and enables our class-agnostic segmenta-
tion model to better learn the general concept of foreground and background. We
perform comprehensive experiments to evaluate the effectiveness of our CCMask,
and the results demonstrate that our approach achieves state-of-the-art perfor-
mance on COCO dataset [13]. In summary, our CCMask main contributions are
the following:

– We design a context feature pyramid network (Context-FPN), which captures
abundant contextual information from various large receptive fields and com-
pensate for the intrinsic defect in feature upsampling of FPN. It produces
more reliable feature representations for the MCL Head and significantly
improves the segmentation performance of our CCMask on large foregound
objects.

– We maintain two query memory queues (QMQ) in our memory con-
trastive learning head (MCL Head), which are used to store the fore-
ground/background queries from recent batches. It enhances the ability of
the MCL Head to separate foreground from background.

– CCMask significantly surpasses all previous SOTA partially-supervised
instances segmentation methods. Concretely, our method achieves 39.5 mAP
for mask segmentation in the nonvoc → voc setting with the ResNet-50 [8] as
backbone. Furthermore, we conduct extensive ablation experiments to ana-
lyze the impact of each of our contributions and the results prove that each
of them is effective.

2 Related Work
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Contrastive Learning. By introducing contrastive learning, various computer
vision tasks such as image generation, image classification, semantic segmenta-
tion, and instance segmentation can be improved. Park et al. [15] proposes patch-
wise contrastive learning to maximize the mutual information between the same
location of input and generated images. By incorporating both pixel-pixel and
pixel-region contrastive calculations, Wang et al. [17] fully exploits the seman-
tic similarity between annotated pixels in the task of semantic segmentation.
Yang et al. [20] proposes a contrastive learning-based few framework that inte-
grates contrastive learning into both pretraining and meta-training stages to
improve the few-shot learning image classification. C2AM[19] proposes cross-
image foreground-background contrastive learning for class-agnostic activation
maps generation using unlabeled image data.

Feature Pyramid. Feature pyramid is a method used to deal with multi-scale
problems and widely applied in object detection, instance segmentation and
other fields. FPN [12] builds a feature pyramid through lateral connections and
top-down pathway. PAFPN in PANet [14] improves its performance by adding
an additional bottom-up pathway on FPN. Nas-FPN [5] use neural architec-
ture search to discover a new and powerful feature pyramid structure. Based on
FPN, FaPN [11] incorporates a feature alignment module and a feature selec-
tion module to generate multi-scale features for dense image prediction. A2-FPN
[9] improve multi-scale feature learning through attention-guided feature aggre-
gation. Our Context-FPN aims to obtain contextual information from larger
receptive fields.

Partially Supervised Instance Segmentation. Instance segmentation is
one of the research hotspots in the computer vision, which aims to segment
all object instances in an image. Mask R-CNN [7] extends Faster R-CNN [6]
with a fully convolutional network branch for generating segmentation masks.
Due to its excellent performance and extensibility, Mask R-CNN [7] has become
an important benchmark model. In partially supervised instance segmentation,
seen categories have both box and mask annotations while unseen categories
only have box supervision. Due to the requirement of extensive mask annota-
tions in instance segmentation tasks, partially supervised instance segmentation
tasks have been proposed. MaskX R-CNN [10] addresses this problem by learn-
ing a weight transfer function that maps bounding box weights to mask weights.
ShapeProp [22] learns salient regions from bounding box head and propagates
them into an intermediate shape representation, which is a more accurate shape
prior. CPMask [4] captures the underlying commonalities, including shape com-
monalities from seen categories and appearance commonalities from all cate-
gories, and generalizes them to unseen categories. OPMask [1] uses the object
mask prior from bounding box head to help the class-agnostic mask head focus
on foreground in each RoI. ContrastMask [18] achieves promising performance
by integrating a contrastive learning module, which learns on both seen and
unseen categories.
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3 CCMask

In this section, we first introduce the overall framework of CCMask. Then, we
elaborate the design details of the context feature pyramid network and the
memory contrastive learning head. Finally, we explain the loss function of our
segmentation model.

Fig. 2. The whole architecture of CCMask.

3.1 Overview

As illustrated in Fig. 2, our CCMask is built upon the architecture of Mask R-
CNN [7], it replaces the original FPN [12] with the Context-FPN and adds an
extra MCL Head. The Context-FPN can provide more discriminative features
for subsequent heads. The MCL Head takes an RoI feature map as input and
outputs an enhanced feature map. Finally, we mix the RoI feature map, Class
Activation Map (CAM) [21] and the enhanced feature map from MCL Head as
the input of the class-agnostic mask head, which can help the mask head predict
a segmentation map. Next, we will depict each component of our model.

3.2 Context-FPN

FPN [12] is a classic framework designed to learn multi-scale feature represen-
tations. However, intrinsic defects in feature extraction and fusion inhibit FPN
from further aggregating more discriminative features. To tackle these limitations
in FPN, our Context-FPN introduces an additional context extraction module to
extract more contextual information and employs CARAFE [16] as upsampling
operator to mitigate the information loss caused by traditional upsampling oper-
ation during the feature fusion stage. These two approaches effectively address
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the shortcomings of FPN and enable it to generate more discriminative feature
maps. The framework of our Context-FPN is illustrated in Fig. 3.

Fig. 3. The structure of our Context FPN.

Context Extract Module. CEM simply contains several convolutional layers
and its input is the output of the last layer in the bottom-up pathway of FPN.
Specifically, as shown in Fig. 3, CEM consists of multi-path dilated convolu-
tional layers with different dilation rates: 3, 6, 12, 18, and 24 in our study. These
convolutional layers can capture contextual information of various large recep-
tive fields. Moreover, in order to enhance the perception of foreground objects
boundary, these dilated convolution layers also incorporate deformable convolu-
tions. In addition, to effectively fuse multi-scale information, we employ dense
connections within the CEM, where the output of each dilated convolutional
layer is concatenated with the input feature maps and fed into the next dilated
convolutional layer.

Content-Aware RAassembly of FEatures. CARAFE is an effectively
upsampling algorithm. On each location, CARAFE firstly predicts multiple
reassembly kernels in a content-aware manner, and then reassembles the features
inside a predefined nearby region via a weighted combination. Feature upsam-
pling is then accomplished by rearranging the generated features as a spatial
block. Compared to the traditional bilinear interpolation, CARAFE can aggre-
gate more contextual information within a large receptive field. CARAFE also
outperforms deconvolution as it can dynamically generate reassembly kernels
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based on local content, rather than applying the same kernel across the entire
image.

3.3 Memory Contrastive Learning Head

The inclusion of contrastive learning in segmentation model aims to better sep-
arate foreground from background. However, in previous methods, the number
of queries used for contrastive learning was limited by the batch size. Clearly,
due to experimental equipment constraints, the number of queries per train-
ing batch was small. To address this issue, we propose the Memory Contrastive
Learning head, it can better learn the general concept of foreground and back-
ground by reusing the queries from the immediately preceding batches. As illus-
trated in Fig. 4, compared to the CL Head of ContrastMask, our MCL Head only
adds two additional queues to store foreground queries and background queries,
respectively. Nevertheless, the experimental results demonstrate that our app-
roach significantly improves the segmentation performance of the segmentation
model.

Fig. 4. The flowchart of our MCL Head, which includes an additional QMQ compared
to the CL Head of ContrastMask.

Query Memory Queue. The introduction of QMQ decouples the number of
queries from the batch size. Our queue size can be much larger than the batch
size and can be flexibly set as a hyper-parameter. The queries in the queue are
continuously updated, with query from the current mini-batch enqueued and
query from the oldest mini-batch dequeued. Moreover, removing the query from
the oldest mini-batch can be beneficial as they are the most outdated.

Memorial Queries Pixel-Region Contrastive Loss. The core design philos-
ophy of our memorial queries pixel-region contrastive loss function is to involve
the queries from both QMQ and current batch in the contrastive learning,
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thereby facilitating the learning of the MCL Head. In each mini-batch, we utilize
the Ground-truth masks of seen categories and CAM [21] of unseen categories
as region priors to indicate foreground and background separation. We get a
foreground query by averaging the sum of the features of all foreground regions,
and denoted as q+. Similarly, we can obtain a q− for the background regions.
Then, we perform random sampling within these regions to obtain a set of fore-
ground keys and a set of background keys, denoted as K+ and K−. We put
the queries from current batch into the QMQ to replace the oldest queries. The
length of the QMQ is N , and the number of q+/q− in a batch is n. The memorial
queries pixel-region contrastive loss consists of two symmetrical formulations for
foreground and background, and is defined as follows:

Lcon = Lq+

K+,K− + Lq−

K−,K+ , (1)

Lq+

K+,K− = − 1
N

1
|K+|

N∑

i=1

∑

k+∈K+

[
sim(q+i , k+)/τ

−log
(
exp(sim(q+i , k+)/τ) +

∑

k−∈K−
exp(sim(q+i , k−)/τ)

)]
.

(2)

We describe in detail the loss function for foreground in Eq. (2), where sim(·, ·)
denotes the cosine similarity and the τ is a temperature hyper-parameter. Sim-
ilarly, we can obtain the loss function for background Lq−

K+,K− .

3.4 Loss Function

The overall loss function of our CCMask as follows:

L = Lbox + Lmask + λLcon, (3)

where the box detection loss Lbox and the mask loss Lmask are inherited from
Mask R-CNN. The contrastive loss Lcon has been elaborately introduced in
Eq. (1), and the λ is a weight parameter.

4 Experiments

4.1 Experimental Setup

We conduct our experiments on the COCO dataset [13]. In order to train on
partially supervised setting, we split the 80 COCO clsasses into voc and nonvoc
category subsets where “voc” categories are the 20 classes of the PASCAL VOC
dataset [3] while “nonvoc” include the remaining 60 classes. Each time we select
on subset as seen categories and the other subset as unseen categories. We train
our model on COCO-train2017 and test on COCO-val2017. We adopt the typ-
ical metrics for instance segmentation to evaluate our model, including mAP,
AP50, AP75, APS , APM and APL. These metrics are calculated on the unseen
categories.
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Implementation Details. We implement all experiments based on MMDetec-
tion [2]. All experiments are conducted with a batchsize of 8 over 4 RTX 3090
GPUs for 12 epochs. We use the ResNet [8] as backbone. The size of QMQ is
120. We linearly warmup the λ of Lcon (Eq. (3)) from 0.25 to 1.0. Besides, the
hyper-parameters in CARAFE [16] follow the default setting.

4.2 Experimental Results

In this subsection, we compare our CCMask to other recent methods for partially
supervised instance segmentation.

Quantitative Results. The quantitative results on partially supervised setting
are shown in Table 1. When using ResNet-50 as the backbone, our CCMask
achieves new state-of-the-art performance of 39.5/34.7 mAP in the nonvoc → voc
and voc → nonvoc settings, it even outperforms the previous models that uses
ResNet-101 [8] as the backbone. Similarly, our method also achieves excellent
performance adopting the ResNet-101 as the backbone, it outperforms OPMask
[1] (the state-of-the-art method) by mAP in nonvoc → voc and voc → nonvoc
settings, respectively.

Qualitative Results. To further demonstrate the contributions of these two
improvement strategies, we visualize the segmentation results of our model in
various scenarios: with and without Context-FPN, with and without MCL Head.
As shown in Fig. 5, the results indicate that our two strategies can improve the
segmentation performance of the model on both visible and invisible classes from
different aspects.

4.3 Ablation Study

We conduct ablation experiments to verify the effects of main components in
CCMask. The backbone network is ResNet-50. All experiments are conducted
in the nonvoc → voc setting, and the results are evaluated on unseen categories.

Effectiveness of Context-FPN. The results are shown in Table 2. In our
CCMask, by using CEM to capture contextual information from different large
receptive fields, the performance is increased by 1.9 mAP compared with
“CCMask w/o CEM”. In addition, we performs another experiment, “CCMask
w/o CARAFE”, and the results also demonstrates the effectiveness of CARAFE.

Effectiveness of MCL Head. We next validate the design of our MCL Head.
As shown in Table 2, the performance of CCMask significantly degrades by 5.2
mAP when removing the MCL Head. We then conduct a variant, “CCMask w/o
QMQ”: only use queries from current batch, it gets 37.0 mAP. This evidences
the effectiveness of our MCL Head and the necessity of leveraging more queries
during contrastive learning.



CCMask 181

Table 1. Quantitative comparisons on COCO dataset. “nonvoc → voc” means that the
categories in nonvoc is seen categories while the categories in voc is unseen categories.

Method Backbone nonvoc → voc voc → nonvoc

mAP AP50 AP75 APS APM APL mAP AP50 AP75 APS APM APL

Mask
R-CNN
[7]

ResNet-
50
[8]

23.9 42.9 23.5 11.6 24.3 33.7 19.2 36.4 18.4 11.5 23.3 24.4

MaskXR-
CNN
[10]

28.9 52.2 28.6 12.1 29.0 40.6 23.7 43.1 23.5 12.4 27.6 32.9

CPMask
[4]

– – – – – – 28.8 46.1 30.6 12.4 33.1 43.4

ShapeProp
[22]

34.4 59.6 35.2 13.5 32.9 48.6 30.4 51.2 31.8 14.3 34.2 44.7

OPMask
[1]

36.5 62.5 37.4 17.3 34.8 49.8 31.9 52.2 33.7 16.3 35.2 46.5

ContrastMask
[18]

35.1 60.8 35.7 17.2 34.7 47.7 30.9 50.3 32.9 15.2 34.6 44.3

CCMask 39.5 64.0 41.7 20.3 39.3 51.7 34.7 55.7 36.8 18.3 38.7 50.3

Mask
R-CNN
[7]

ResNet-
101
[8]

24.7 43.5 24.9 11.4 25.7 35.1 18.5 34.8 18.1 11.3 23.4 21.7

MaskXR-
CNN
[10]

29.5 52.4 29.7 13.4 30.2 41.0 23.8 42.9 23.5 12.7 28.1 33.5

CPMask
[4]

36.8 60.5 38.6 17.6 37.1 51.5 34.0 53.7 36.5 18.5 38.9 47.4

ShapeProp
[22]

35.5 60.5 36.7 15.6 33.8 50.3 31.9 52.1 33.7 14.2 35.9 46.5

OPMask
[1]

37.1 62.5 38.4 16.9 36.0 50.5 33.2 53.5 35.2 17.2 37.1 46.9

ContrastMask
[18]

36.6 62.2 37.7 17.5 36.5 50.1 32.4 52.1 34.8 15.2 36.7 47.3

CCMask 41.5 66.4 43.6 22.1 41.8 54.2 36.4 57.0 38.3 19.8 41.0 52.6
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Fig. 5. Qualitative results on COCO dataset in nonvoc → voc setting. The results
show that MCL Head can improve the model’s ability to distinguish foreground and
background, as well as different instances, and Context-FPN can improve the model’s
segmentation performance on large objects.

Table 2. Ablation on the impact of each component.

Method nonvoc → voc

mAP AP50 AP75 APS APM APL

CCMask 39.5 64.0 41.7 20.3 39.5 51.7

CCMask w/o CEM 37.6 61.6 39.5 19.4 37.8 49.4

CCMask w/o CARAFE 39.2 63.8 41.4 18.9 39.1 51.4

CCMask w/o MCL Head 34.3 60.7 33.9 17.3 33.7 47.1

CCMask w/o QMQ 37.0 60.9 38.6 19.1 36.4 48.7

5 Conclusion

We propose a novel approach CCMask for partially supervised instance seg-
mentation. CCMask first utilizes Context-FPN to obtain feature maps with rich
contextual information from different receptive fields. Then, it employs the MCL
head to enhance the discrimination between foreground and background within
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ROIs. Benefiting from these two effective strategies, our model achieves state-
of-the-art results on the COCO dataset under the partially supervised setting.
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Abstract. While recent large models have greatly improved track-
ing performance, not all scenes require a large and complex network.
Dynamic networks can adapt the architecture to different inputs, lead-
ing to notable accuracy and computational efficiency. However, exist-
ing dynamic architectures and decision mechanisms designed for classi-
fication are not applicable to the tracking task. This paper proposes a
dynamic tracking framework based on scene perception, named Dynam-
icTrack. We classify tracking scenes into easy and hard categories, and
propose a dynamic architecture with an easy-hard dual-branch to han-
dle different scenes respectively. Unlike previous works in classification
that selectively prune a subset of the backbone, complete execution of
the entire backbone is necessary for tracking. Hence, we maintain two
complete transformer backbones for the dual branches and vary the num-
ber of input tokens to achieve modeling at different granularities. Then,
we propose a scene router that automatically selects the optimal branch
for each input frame. The router directly assesses the scene complexity
of features extracted by the easy branch for decision-making, without
relying on the tracking head output. This enhances decision efficiency
during dynamic inference. Moreover, we introduce two techniques that
benefit DynamicTrack optimization, namely, the Gumbel-Softmax trick
and cross-branch transmission (CBT). The former increases the stochas-
ticity of decisions and prevents mode collapse into trivial solutions. The
latter establishes information transmission between the two branches,
facilitating discriminative power and learning efficiency. Extensive exper-
iments on four benchmarks demonstrate that the proposed Dynamic-
Track achieves SOTA performance and accuracy-speed trade-offs.

Keywords: Object tracking · Dynamic network · Scene router

1 Introduction

Visual object tracking is a fundamental task in computer vision. It aims to
estimate the position and shape of a given target in a video sequence. The con-
tinuous and arbitrary changes in targets and scenes pose challenges to learning
an effective and efficient tracking model. Current mainstream trackers, such as
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Fig. 1. Examples of “easy” and “hard” images for the object tracking task.

Siamese-based [1,9,16,34] methods and transformer-based methods [4,6,29,30],
have achieved remarkable success. However, these trackers aim to use a fixed
feed-forward structure, i.e., static network, to generalize all scenes. The static
network requires the same computational cost for all inputs during inference,
potentially leading to redundancy in processing easy scenes and insufficiency in
hard scenes. This static inference paradigm limits the model’s representation
power, efficiency, and interpretability.

Biological vision researches [14,22] suggest that humans can rapidly locate
targets on the left “easy” images, while need more time to search targets on the
right “hard” images, as shown in Fig. 1. Easy images usually refer to scenes with
singular composition, simple texture and strong target-to-background contrast.
Hard images have opposite characteristics and may be accompanied with dis-
tractors. The human brain processes images of different complexities at varied
speeds. This property motivates the dynamic tracking network, which adaptively
selects the inference architecture based on the scene complexity.

Dynamic networks have been extensively studied in the classification task.
A common paradigm is to automatically select a subset of a multi-stage back-
bone using early exiting [23] or layer skipping [24,27] mechanisms. However, the
tracking task depends on multi-stage features to model targets of arbitrary cat-
egories and scales. Discarding a portion of features would lead to a significant
performance degradation [5,16]. Thus, it is necessary to completely execute the
entire backbone, and existing dynamic architectures are not applicable to the
tracking task. Furthermore, dynamic classification networks usually add a head
network, typically a fully connected layer classifier, at the intermediate layer
for adaptive decision-making [12,23]. While the tracking head includes match-
ing, classification and regression subnetworks. Incorporating a tracking head for
decisions brings large computational redundancy.

To address the above issues, we propose a dynamic tracking framework based
on scene perception, named DynamicTrack. First, we design a dynamic architec-
ture with an easy-hard dual-branch to handle different scenes respectively. The
dual branch contains two complete transformer trackers with the same structure
but different number of input tokens. Representing the image as less tokens is
sufficient for many easy scenes and enjoys high computational efficiency. While
increasing input tokens enables a more fine-grained representation, which can
adapt to hard scenes but incurs a higher computational burden. To balance
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Fig. 2. A comparison of AO and speed of SOTA trackers on GOT-10k test set. Our
DynamicTrack achieves SOTA performance and accuracy-speed trade-offs (74% AO,
77FPS).

accuracy and efficiency, we design a scene router that adaptively selects the
optimal inference route for each input frame. The router directly assesses the
scene complexity of features extracted by the easy branch to determine whether
to continue with the easy branch or switch to the hard branch. This process
avoids using the tracking head and significantly improves decision efficiency
during dynamic inference. Finally, we introduce two techniques advantageous
to DynamicTrack optimization. 1) We employ the Gumbel-Softmax trick [15]
to increase the stochasticity of decisions. It prevents mode collapse into trivial
solutions, i.e., always selecting the more accurate hard branch. 2) We design
a cross-branch transmission (CBT) module to transmit the large receptive field
context from the easy branch to the hard branch. It facilitates the discriminative
power and learning efficiency of the hard branch.

The main contributions of this work are as follows:

– We propose a dynamic tracking framework based on scene perception, named
DynamicTrack. It customizes an easy-hard dual-branch network to handle
different scenes respectively.

– We propose a scene router to perceive the complexity of tracking scenes
and achieve adaptive decision-making. Moreover, we introduce the Gumbel-
Softmax trick and a CBT module to facilitate optimization.

– Extensive experiments on four benchmarks prove SOTA performance and
accuracy-speed trade-offs of our method.

2 Related Work

Visual Object Tracking. In the early development of VOT, DCF-based meth-
ods [2,7,11] are dominant trackers due to their favorable ability in modeling tar-
get appearance variation. With the development of deep learning, SiamFC [1]
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formulates tracking as a similarity matching problem by training on large-scale
image pairs. Later, numerous improvements have been made, including backbone
design [16,33], scale regression [9,16,34] and online update mechanism [10,31].
Recently, transformer is introduced to VOT. Some works [4,26,29] embed trans-
formers into the two-stream Siamese pipeline, and others [3,6,30] adopt a one-
stream pipeline by the attention mechanism. The above works all adopt the
static inference paradigm, which limits the model’s representation power, effi-
ciency, and interpretability. In contrast, the proposed DynamicTrack customizes
the dynamic inference architecture for easy and hard scenes respectively, yielding
a unified and efficient dynamic tracker.

Dynamic Network Dynamic networks can adapt structures or parameters to
the input during inference. Branchynet [23] introduces the early exiting strategy,
allowing easy samples to be output at shallow exits without executing deeper
layers. MSDNet [12] adopts a multi-scale architecture and dense connections to
improve the joint optimization of multiple classifiers. SkipNet [27] and Conv-
AIG [24] propose a layer skipping strategy. The network depth can be adapted
on the fly by skipping the calculation of intermediate layers. DVT [28] cas-
cades multiple transformers with increasing numbers of tokens and activates
them sequentially to achieve dynamic inference. However, these methods are all
designed specifically for the classification task and are not applicable to object
tracking.

DynamicDet [18] proposes a dynamic architecture for object detection,
including two identical detectors and a router. Our method shares a similar
spirit. Differently, we customize two trackers with different number of input
tokens, motivated by the redundancy of existing models in numerous easy scenes.
Moreover, our decision mechanism and optimization strategies are more suitable
for the tracking task and can flexibly generalize multiple tracking benchmarks.

3 Method

This section presents the proposed DynamicTrack. As shown in Fig. 3(a),
DynamicTrack consists of an easy-hard dual-branch network and a scene
router. The easy-hard dual-branch network cascades two VIT-based trackers
OSTrack [30] with increasing number of tokens of the template and search region.
The template and search image pairs are first split into a small number of tokens
and fed into the easy branch encoder. Then the router determines the inference
route based on the output search region tokens. If the scene is classified as
“Easy”, the router selects the tracker head of the easy branch for prediction.
Otherwise the router switches to the hard branch, where the original image
pairs are split into more tokens and processed by the encoder with CBT and
the corresponding tracker head. CBT transmits the priors of the easy branch
to the hard branch to facilitate learning. In the following section, we depict the
proposed easy-hard dual-branch network and the scene router in detail.
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3.1 Easy-Hard Dual-Branch Network

Token Representation. The input is a pair of template z ∈ R
3×Hz×Wz and

search region x ∈ R
3×Hx×Wx . They are first split and flattened into patch

sequences zp ∈ R
Nz×(3·P 2) and xp ∈ R

Nx×(3·P 2), where P is the patch size
and Nz = HzWz/P 2, Nx = HxWx/P 2 are the number of patches. A linear pro-
jection maps zp and xp to token embeddings. Learnable position embeddings are
then added to the token embeddings. Finally, the template tokens Z and search
tokens X are concatenated as H0 ∈ R

N×D, where N = Nz + Nx is the number
of tokens and D is the token dimension. The concatenated H0 are fed into the
encoder with L layers.

Fig. 3. (a) An Overview of our DynamicTrack. The template and search image pairs
are first split into a small number of tokens and fed into the easy branch encoder. Then
the router determines the inference route based on the output search region tokens.
Easy images are directly output through the tracker head, while hard images are split
into more tokens and enter the hard branch. (b) The structure of the encoder with
CBT in the hard branch.

For the easy branch, we set the patch size Peasy = 32 and denote the
input tokens as H0

easy ∈ R
Neasy×D. For the hard branch, we set the patch size

Phard = 16 and denote the input tokens as H0
hard ∈ R

Nhard×D, Nhard = 4·Neasy.
Since the computational cost grows quadratically with respect to the token num-
ber, the easy branch is highly efficient in processing easy images. While the hard
branch represents the input as more tokens, achieving a more fine-grained rep-
resentation of hard images.

Encoder with Cross-Branch Transmission. Since the two branches have the
same structure and training objective, the hard branch can use the tokens and
relations in the easy branch as priors to improve learning efficiency. Moreover,
the easy branch has a larger receptive field, which can provide global context to
facilitate discriminative power. Thus we propose the cross-branch transmission
(CBT) module to transmit these priors from easy branch to hard branch.
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The structure of encoder with CBT is shown in Fig. 3(b). For token transmis-
sion, we leverage the tokens HL

easy output by the final encoder layer in the easy
branch as it has the most discriminative power. We use a MLP and upsampling
to align HL

easy with the input tokens H l
hard in each layer of the hard branch,

then add them by element,

H l
fuse = fl(H l

easy) + H l
hard, l ∈ {1, ..., L − 1} (1)

where fl : RNeasy×D → R
Nhard×D denotes the MLP and upsampling operations.

Here we upsample the tokens of the template and the search region separately.
Given the fused tokens H l

fuse, query Ql, key Kl and value V l are generated to
calculate the attention. The multi-level attention maps A1

easy, ...,A
L
easy in the

easy branch are also transmitted to the hard branch, which can provide shallow
and deep relation priors. Specifically, we first concatenate them and obtain the
auxiliary attention map Aaux using MLP and upsampling. Then the attention
module utilizes both its own tokens and Aaux simultaneously,

Attention(H l
fuse) = Softmax(Al

fuse + rl(Aaux))V l,

Al
fuse = Ql(Kl)�/

√
D, Aaux = Concat(A1

easy, ...,A
L
easy)

(2)

where Al
fuse ∈ R

Nhard×Nhard , Aaux ∈ R
L×Neasy×Neasy and rl : RL×Neasy×Neasy

→ R
Nhard×Nhard denotes the MLP and upsampling operations. Note that we

split Aaux into [Azz,Azx,Axz,Axx] for upsampling separately, where Azx is the
relation between the template and the search region and the rest are similar. This
way prevents different kinds of relations affecting each other during upsampling.
Finally, a feed-forward network (FFN) are followed to obtain the output tokens
H l+1

hard for the next layer.

3.2 Scene Router

Not all tracking scenes require a fine-grained hard branch, and the inference
architecture should depend on the input image. Therefore, we design an adaptive
router based on scene perception, that is, a simple yet effective decision-maker
for the dynamic tracker. As shown in Fig. 3(a), the scene router receives the
search region tokens XL

easy of the final encoder layer in the easy branch. The
search region contains current tracking scene information, including composition,
texture and target-to-background contrast. We first pool XL

easy along the spatial
dimension to obtain a scene vector. Then a MLP maps this scene vector into a
two-dimensional decision vector s corresponding to the probabilities of selecting
easy and hard branches, respectively. The computational burden of our router
can be neglected as it involves only two nonlinear transformations on the vector.
Moreover, the scene router directly evaluates the tokens. If the hard branch is
selected, the tracker head of the easy branch is skipped for efficient inference.
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Gumbel-Softmax Optimization. We employ the IOU metric, a general eval-
uation criterion in tracking, as the supervision for optimizing the router. An
intuitive attempt is to directly calculate the cross-entropy loss between the IOU
and the decision vector s. However, this hard optimization tends to mode col-
lapse, i.e., the router will always select the most accurate hard branch as it yields
a higher IOU. To mitigate this problem, we use the Gumbel-Softmax [15] trick
to introduce stochasticity by adding noise to s. Concretely, given a distribution
with (two) class probabilities s = {s1, s2}, gumbel sampling can be written as,

arg max
k∈{1,2}

(log sk + gk) (3)

where gk is noise sample drawn from Gumbel distribution. The Gumbel-Softmax
defines a continuous, differentiable approximation by replacing the argmax with
a softmax,

y = Softmax((log sk + gk)/τ) (4)

where τ is the temperature of the softmax. The training loss of the router is the
cross-entropy between the Gumbel-Softmax vector y = {y1, y2} and IOU,

Lrouter = −IOU · y1 − (1 − IOU) · y2 (5)

By incorporating the Gumbel-Softmax trick, we can perform probabilistic sam-
pling based on the decision scores. Consequently, when the decision scores of the
easy and hard branches are close, the router has a probability to select the easy
branch rather than exhibiting a consistent bias towards the hard branch.

4 Experiments

4.1 Implementation Details

Network Architecture. The implementation of DynamicTrack is developed
by two OSTrack [30] trackers. We remove the candidate elimination module
to maintain a consistent number of tokens in each encoder layer, enabling the
utilization of CBT. The tracker head consists of a classification branch, a local
offset branch and a box size branch. The template and search region resolution
are 128 × 128 and 256 × 256 respectively. The temperature τ in Eq. 4 is set to 1.
The speed is measured on a single 3080Ti GPU.

Training Procedure. The training procedure comprises two steps. In step 1,
we train the easy-hard dual-branch network. The training loss is the summation
of the losses of the two branches, where the loss calculation of each branch follows
OSTrack [30]. In step 2, we freeze the parameters of the dual branch and only
utilize Eq. 5 to train the scene router. Both stages are trained with AdamW on
LaSOT [8], GOT-10k [13], TrackingNet [21] and COCO [17]. The training set in
step 1 follows OSTrack. The step2 training takes 5 epochs, with each containing
60000 pairs. The batch size is 4 and the learning rate is 4 × 10−6.
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Table 1. SOTA comparisons on four tracking benchmarks. The top three results are
highlight with red, green and blue fonts, respectively.

Method LaSOT TrackingNet UAV123 GOT-10k

AUC Pnorm P AUC Pnorm P AUC P AO SR50 SR75

SiamFC [1] 33.6 42 33.9 57.1 66.3 53.3 49.4 72.5 34.8 35.3 9.8

ECO [7] 32.4 33.8 30.1 55.4 61.8 49.2 52.5 74.1 31.6 30.9 11.1

SiamRPN++ [16] 49.6 56.9 49.1 73.3 80 69.4 64.2 84 51.7 61.6 32.5

DiMP [2] 56.9 65 56.7 74 80.1 68.7 64.2 84.9 61.1 71.7 49.2

SiamRCNN [25] 64.8 72.2 – 81.2 85.4 80 – – 64.9 72.8 59.7

Ocean [34] 56 65.1 56.6 69.2 79.4 68.7 62.1 82.3 61.1 72.1 47.3

AutoMatch [32] 58.3 – 59.9 76 – 72.6 64.4 83.8 65.2 76.6 54.3

TrDiMP [26] 63.9 – 61.4 78.4 83.3 73.1 67 87.6 67.1 77.7 58.3

TransT [4] 64.9 73.8 69 81.4 86.7 80.3 68.1 87.6 67.1 76.8 60.9

STARK [29] 67.1 77 – 82 86.9 – 69.2 88.2 68.8 78.1 64.1

MixFormer-22k [6] 69.2 78.7 74.7 83.1 88.1 81.6 70.4 91.8 70.7 80 67.8

UTT [19] 64.6 - 67.2 79.7 – 77 – – 67.2 76.3 60.5

SimTrack-B [3] 69.3 78.5 – 82.3 86.5 – 69.8 89.6 68.6 78.9 62.4

OSTrack-256 [30] 69.1 78.7 75.2 83.1 87.8 82 68.3 71 80.4 68.2

DynamicTrack 70 78.9 76.2 83.8 88 82.6 69.9 89.1 74 83.6 71.3

4.2 Comparison with State-of-the-arts

We compare our DynamicTrack with recent SOTA trackers on four tracking
benchmarks.

GOT-10k. GOT-10k [13] test set contains 180 videos covering a wide range
of common challenges in tracking. Following the official requirements, we only
use the GOT-10k training set to train our models. We report the average over-
lap (AO) and success rate (SR50, SR75) in Table 1. DynamicTrack outperforms
other SOTA one-stream trackers OSTrack-256 [30] and MixFormer-22k [6] by
3% and 3.3% in AO, respectively. The SR75 of DynamicTrack reaches 71.3%,
outperforming OSTrack-25 by 3.1%. This proves the excellent discriminative
power and localization accuracy of our method in various scenes. Moreover,
Fig. 2 illustrates the performance and speed comparison. Our method achieves
a good balance between accuracy and inference speed.

LaSOT. LaSOT [8] is a challenging large-scale long-term tracking benchmark,
containing 280 videos for testing. Methods are ranked by AUC, normalized pre-
cision (Pnorm) and precision (P). As reported in Table 1, DynamicTrack achieves
the best performance in terms of AUC, normalization precision and precision.
DynamicTrack performs slightly better than MixFormer-22k [6], getting 0.8%
AUC improvement. Besides, the inference speed of DynamicTrack (77FPS) is
2× faster than MixFormer-22k (30FPS).
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TrackingNet. TrackingNet [21] contains 511 testing sequences, which covers
diverse target classes. Table 1 shows DynamicTrack gets the best AUC of 83.8%,
surpassing OSTrack-256 [30] and MixFormer-22k [6] by 0.7%.

UAV123. UAV123 [20] is a large-scale aerial tracking benchmark involving 123
challenging sequences with more than 112K frames. Table 1 shows our method
achieves competitive results (rank at second) compared with the previous SOTA
trackers. The AUC of DynamicTrack is slightly lower than that of MixFormer-
22k [6], i.e., 69.9 vs 70.4. We believe that the variations of targets and scenes
are drastic in aerial tracking conditions. Thus MixFormer with an online update
mechanism is more adaptable.

Table 2. The analysis of the dynamic architecture and decision mechanism. The
reported GFLOPs are the average GFLOPs on the corresponding dataset.

GOT-10k LaSOT

AO GFLOPs FPS AUC GFLOPs FPS

1 Base 71.1 29 74 68.7 29 74

2 Easy branch 65.4 7.4 102 65.4 7.4 102

3 Hard branch w/o CBT 71.6 36 60 69.3 36 60

4 Hard branch 73.4 37.1 51 70.7 37.1 51

5 Router w/o gumbel 73.5 36.5 53 70.3 35.6 56

6 Router 74 27 77 70 25.2 80

4.3 Ablation Study and Analysis

Table 2 analyzes the effect of each component in the proposed DynamicTrack.

Dynamic Architecture. Our baseline ( 1 ) is the original OSTrack without the
candidate elimination module. The easy branch ( 2 ) has excellent efficiency, with
only 1/4 GFLOPs of 1 . Moreover, using easy branch for all inputs also yields
good performance, i.e., 65.4 on GOT-10k and 65.4 on LaSOT, outperforming
most Siamese-based trackers in Table 1. This proves that the easy branch is
sufficient in processing many simple scenes. The hard branch ( 4 ) achieves better
performance at the cost of computation and speed, thus adapting to complex
scenes. It improves 8% AO on GOT-10k and 5.3% AUC on LaSOT with 5×
GFLOPs compared with easy branch ( 4 vs 2 ). When the scene router ( 6 ) is
introduced for adaptive decision, DynamicTrack can achieve an accuracy-speed
trade-off. Compared with baseline ( 1 ), the performance gains are 2.9% and 1.3%,
and the GFLOPs are reduced by 6.9% and 13.1% on GOT-10k and LaSOT,
respectively. Moreover, we find that DynamicTrack performs even higher AO
than only using hard branch on GOT-10k ( 6 vs 4 ). This can potentially be
attributed to that over-processing in certain simple scenes is detrimental.
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Gumbel-Softmax Trick. The router w/o Gumbel-Softmax always selects the
hard branch, whose accuracy, GFLOPs and FPS are similar to only using hard
branch ( 5 vs 4 ). While the router w/ Gumbel-Softmax can prevent this trivial
solution and effectively improve inference efficiency, reducing 26% and 29.2%
GFLOPs on GOT-10k and LaSOT respectively ( 6 vs 5 ). This proves the neces-
sity of Gumbel-Softmax for adaptive decision-making.

CBT. Hard branch w/o CBT is optimized from scratch without any priors,
resulting in slight improvements compared to the baseline. ( 3 vs 1 ). The intro-
duction of CBT can significantly improve performance ( 4 vs 3 ). This proves
that the information of easy branch is also valid for hard branch.

Fig. 4. Visualization of heatmaps for easy and hard images. 1st col: easy images, 2nd
col: easy branch’s heatmaps on easy images, 3rd col: hard images, 4th col: easy
branch’s heatmaps on hard images, 5th col: hard branch’s heatmaps on hard images.
The numbers indicate the 0-dim of the decision vectors, and a smaller one indicates a
harder scene.

Visualization of Scene Perception. Figure 4 visualizes the heatmaps of our
method on easy and hard images, respectively. The easy images (1st col) usually
contain singular composition, clean background and strong target-to-background
contrast. Our scene router selects the easy branch to process these scenes and
the heatmaps (2nd col) can effectively focus on targets. While hard images (3rd
col) have the opposite characteristics and may be accompanied with distractors.
The easy branch confuses these targets (4th col) and the router will select the
hard branch to represent them accurately (5th col).

5 Conclusion

This paper proposes a dynamic tracking framework based on scene perception,
DynamicTrack. We first design an easy-hard dual-branch network to support
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dynamic inference. It customizes the inference architecture for different scenes
by varying the number of tokens in the transformer backbone. Then we propose
a scene router to perceive the complexity of scenes and determine the inference
route. Furthermore, we introduce two tricks to facilitate DynamicTrack opti-
mization. Extensive experiments demonstrate the SOTA performance and the
accuracy-speed trade-off of our method.
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Abstract. To address the difficulty in expressing the correlation between different
local features extracted by the current person re-identification feature extraction
methods, and the challenge of effectively integrating local features with global
features, a Hybrid Pose Attention Network (HPAN) for person re-identification is
proposed. In HPAN, the high-resolution network HRNet-W32 serves as the back-
bone for person re-identification and pose estimation, extracting global features
and local key point heatmaps of the human images, and then generating local key
point features. Self-attention is used to extract the correlation between each local
key point feature, generating local pose features. Furthermore, a Hybrid Pose and
Global Feature Fusion (HPGFF) module is adopted to fuse the global features and
local pose features, creating integrated features. To evaluate, we conduct experi-
ments on five publicly available datasets, and HPAN has all achieved competitive
or state-of-the-art results.

Keywords: Re-identification · Pose Estimation · Local Feature · Feature
Correlation · Fusion

1 Introduction

Person Re-Identification (Re-ID) is a significant field and research hotspot in computer
vision. The goal of person Re-ID is to automatically locate all pedestrian images of a
given query object across multiple non-overlapping cameras. In practical applications,
combining person Re-ID with techniques like pedestrian detection and pedestrian track-
ing to form a person Re-ID system can be applied in fields such as video surveillance,
criminal investigation, unmanned supermarkets, and others.

In recent years, due to the development of deep learning and the enhancement of
computer hardware, person Re-ID has made significant progress [1–4]. Particularly in
feature extraction, deep neural networks often extract discriminative features [5–8].
Regarding the features extracted by neural networks, we can divide them into global
features and local features according to the size of the region. Global features can repre-
sent the holistic attributes of pedestrians with good invariance, but are easily affected by
the background. For similar appearances, global features are also difficult to distinguish
subtle differences. Therefore, it is challenging to use them alone in person Re-ID tasks.
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Local features are extracted from specific regions in the image and contain rich fine-
grained information. Many person Re-IDmethods are based on local features to identify
pedestrian identities [9–13]. For example, in PCB [14], Sun et al. horizontally sliced the
whole pedestrian picture and then extracted features from each slice separately. In DSR
[15], He et al. divided the entire pedestrian picture into lots of equal-sized blocks, using
the set distance between the blocks to identify pedestrian identities. In VPM [16], Sun
et al. performed self-supervised learning on the whole image and part of the image after
being divided into blocks, learning local features in the image through self-comparison.

In person Re-ID methods, it is a common method to use pose estimation networks
to extract local information for expressing pedestrians [8, 17–21]. The HORe-ID [18]
model proposed by Wang et al. used a graph structure and adaptive graph convolution
layer to learn local and edge features of pedestrians. The PGFA [17] model based on
the pose model had two branches, one generated key point information and heatmaps
and the other branch extracted global features. The PFD [19] method used ViT [22] and
matching mechanism to extract and separate pose and patch features.

Despite these methods having extracted local features of pedestrians, the correlation
among these local features isminor, and they are insensitive to large-scale action changes
and scaling [23]. In recent years, person Re-ID methods based on transformers have
placed more emphasis on the correlation among local features. In ViT [22], Dosovitskiy
et al. equally divided the entire image into lots of patches of the same size, and used
multi-head attention to get the correlation between the patches.

Although local features can represent fine-grained information, a large number of
unordered, unrelated local features lack unified global guidance. Therefore, many cur-
rent studies often combine local features with global features [24–27]. For example, in
transformer-based methods, PFD [19] and TransReID [28] computed loss for the col-
lections of global and local features separately, achieving better results than ViT [22]
that only used a ‘cls’ token. In PGFA [17], Miao et al. combined global features and
pose-guided features by concatenation for identity prediction.

Although the above methods have realized the fusion of local features and global
features, some of them calculate losses for global features and local features separately
[19, 28], some provide additional clues for extracting local features through global
features, and some just do simple calculations on global features and local features
[13, 27]. There still lacks an effective mechanism to integrate the coarse-grained global
features and the fine-grained local features, so that the fused features have both sufficient
detail information of local features and global guidance of global features.

To address the difficulty in expressing the correlation between each local feature
in the local feature extraction methods of current person Re-ID, and the challenge of
effectively fusing local features and global features, this paper proposes a Hybrid Pose
Attention Network (HPAN) for person Re-ID.

The main contributions include: (1) the high-resolution network HRNet-W32 serves
as the backbone in HPAN for person Re-ID and pose estimation to extract global fea-
tures of the human image and local key point heatmaps, and then generate local key
point features. (2) Self-attention mechanism is used to extract the correlation between
each local key point feature and generate local pose features. (3) Hybrid Pose and Global
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Feature Fusion (HPGFF) module is proposed to fuse global features and local pose fea-
tures to generate the fused features. (4) For evaluation, we test on five publicly available
datasets, Market-1501, DukeMTMC, MSMT17, CUHK03, and Occ-duke. The exper-
imental results demonstrate our HPAN can achieve competitive or State-Of-The-Art
(SOTA) performance.

2 The Proposed Method

The network structure of HPAN is shown in Fig. 1, which includes two sub-networks,
a pose estimation sub-network and a person Re-ID sub-network. Both of these sub-
networks adopt HRNet-W32 as the backbone network. First, we input the preprocessed
pedestrian images into the two sub-networks. The pose estimation sub-network generates
S pose key point heatmaps {H 1,H2, . . . ,Hs}, and the person Re-ID sub-network gener-
ates the global feature map Fg of the person image. The global feature map Fg and the
S key point heatmaps {H 1,H2, . . . ,Hs} are multiplied element-wise, yielding S local
key point feature maps

{
Fp1,Fp2, . . . ,FpS

}
. After passing through the self-attention

module, we obtain a local pose feature map Fhp. The global feature map Fg and the local
pose feature map Fhp are fused through the HPGFFmodule, resulting in the final feature
map Fh. Then, Global Average Pooling (GAP) is implemented, and a feature vector is
obtained as the input for similarity measurement.

Fig. 1. The general workflow of HPAN
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2.1 Local Key Point Features

For the pose estimation sub-network, we output the high-resolution feature map, and
a 1 × 1 convolution is performed to obtain a key point heatmap with 13 chan-
nels. For the person Re-ID sub-network, we generate the corresponding feature maps
{X128,X256,X512,X1024} through the bottleneck corresponding to the input channel num-
ber. These feature maps are then upsampled so that the correspondingW and H of each
feature map are equal, and these feature maps are concatenated to obtain the final global
feature map Fg with 1920 channels. We perform a 1 × 1 convolution on the global
feature map and reduce its dimensionality to get a feature map with 256 channels,
which is then point-multiplied with the heatmap to obtain the 13 local key point features{
Fp1,Fp2, . . . ,Fp13

}
.

2.2 Self-Attention

After obtaining the local feature maps of different key points, each feature map reflects
the feature information of the corresponding key point.We use self-attention to associate
and aggregate information from each key point. For the feature maps that contain each
key point, we concatenate them to obtain concat

(
Fp1,Fp2, . . . ,Fp13

)
, and use a 1 × 1

convolution Convp to generate the feature map Fp containing each key point, as shown
in Eq. (1),

Fp = Convp
(
concat

(
Fp1,Fp2, . . . ,Fp13

))
(1)

Here, Convp is a 1 × 1 convolution, concat is the concatenation of feature maps in the
channel dimension, and

{
Fp1,Fp2, . . . ,Fp13

}
is the collection of each key point feature

map.
Fp does not contain the association between key points. In order to capture the

correlation between each key point, we inputFp into two 1×1 convolution layersConvQ
and ConvK to obtain two new feature maps, and then transform them into matrices Q
and K of size N ×C and C ×N . Here, N represents all pixels in each channel, as shown
in Eq. (2),

N = H × W (2)

Here, H and W represent the height and width of the feature map, C represents the
number of channels of the feature map. The relation mapping M is generated by Q
multiplied by K and normalized by SoftMax, as follows,

M = SoftMax(QK) (3)

A point (i, j) in M represents the correlation between the i-th pixel and the j-th
pixel. We input Fp into another 1× 1 convolution ConvV to generate a feature map and
re-transform it into a matrix V of size N × C, then multiply it with M to integrate the
relation mapping into the original V . Then we get the feature map, and perform residual
connection with Fp. Through a 1× 1 convolution Convhp, we obtain the final local pose
feature map Fhp, as shown in Eq. (4),

Fhp = Convhp
(
VM + Fp

)
(4)
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2.3 Hybrid Pose and Global Feature Fusion (HPGFF)

Based on the concept of the Asymmetric Fusion Non-local Block (AFNB) [29], the
HPGFF module, as shown in Fig. 2, includes two inputs, a global feature map Fg and a
local pose feature map Fhp. The sizes of these two feature maps are C ×H ×W , where
C is the number of channels in the feature map, and H and W are the length and width
of the feature map, respectively. First, we transform Fhp and Fg into three nonlinear
mapping features, as shown in Eq. (5),

Fq = Wq · Fhp,Fk ′ = PPM k
(
Wk · Fg

)
,Fv′ = PPM v

(
Wv · Fg

)
(5)

where Wq,Wk ,Wv are three 1 × 1 convolutions. PPM is pyramid pooling [30] used to

reduce the computational overhead of themodule itself. The obtainedFq ∈ R
C

′ ′×(H×W ),

Fk ′ ∈ R
C

′×S ,Fv′ ∈ R
S×C

′
,whereC ′′ is the number of channels after theWq convolution,

S is the pixel of pyramid pooling,C
′
is the number of channels afterWk ,Wv convolutions,

numerically equal to H ×W . Then we calculate the relationship of pixels in Fq and Fk ′
by matrix operation, normalize the relationship matrix M by SoftMax, and convert the
pixels in the relationship matrixM between 0 and 1, as shown in Eq. (6),

M = SoftMax
(
F ′T
k · Fq

)
(6)

The obtained M ∈ S × (H × W ), then we multiply it by Fv′ that has been through
pyramid pooling to get Fc, as shown in Eq. (7),

Fc = M · Fv′ (7)

Each pixel in Fc reflects the weight of the corresponding Fhp in Fg . These weights
are selected from all pixels in Fg . The final output result or fusion feature Fh obtained
by convolution Convh is shown in Eq. (8),

Fh = Convh
(
concat

(
Fc,Fhp

))
(8)

Fh is taken as the final output feature map, and after global average pooling, a feature
vector is obtained as the input for similarity measurement.

2.4 Loss Function

The task of person Re-ID is decomposed into two tasks, person classification and person
similaritymeasurement.Weuse the cross-entropy function and triplet loss function based
on hard sample mining respectively as the loss functions for these two tasks. The loss
function of the overall task is the sum of these two loss functions, as shown in Eq. (9),

L = LcrossEntropy + Ltri (9)

Here, LcrossEntropy represents the cross-entropy loss function, and Ltri represents the
triplet loss function.
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Fig. 2. Structure diagram of the HPGFF module

2.5 Training Strategy

We resize all images to a resolution of 256× 128 and apply random horizontal flipping
and random erasing for data augmentation in the training set. The backbone network,
HRNet-W32, is pretrained on ImageNet before further training. Each training batch size
is 64, where we randomly select 16 pedestrian identities, each with 4 images. For the
optimizer, we use Adam to optimize our network, with the weight decay parameter set to
0.0005. During training, we set the epoch to 600, with an initial learning rate of 0.0008.
The learning rate lr for each epoch is shown in Eq. (10) [21],

(10)

3 Experiments

3.1 Datasets and Evaluation Metrics

Datasets. We conduct experiments on five publicly available datasets, Market-1501
[31], DukeMTMC [32], MSMT17 [33], CUHK03 [34], and Occluded-DukeMTMC
(Occ-Duke) [17]. The information about these datasets in shown in Table 1.

Evaluation Metrics. We utilize Rank-1 and mean Average Precision (mAP) for fair
comparison. All experiments are performed in the single query setting.
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Table 1. Information about datasets

Dataset #ID #cam #image Training Query Gallery

Market-1501 1,501 6 32,668 12,936 2,228 19,732

DukeMTMC 1,404 8 36,441 16,522 2,228 17,661

MSMT17 4,101 15 126,441 32,621 11,659 82,161

CUHK03 1,467 2 14,097 7,365 1,400 5,332

Occ-Duke 1,404 8 36,441 15,618 2,210 17,661

3.2 Comparison with SOTA Methods

Comparisons on Unoccluded Datasets. We evaluate our HPAN model across four
unoccluded datasets, Market-1501, DukeMTMC, MSMT17, and CUHK03, and com-
pare with various SOTA methods in Table 2. From Table 2, we can observe that the
method we proposed achieves competitive results. Specifically, for the Market-1501
dataset, our Rank-1 is only about 0.1% lower than the SAN method, but our mAP is
2.5% higher, which is currently the highest. Compared with the PFD method which
is also based on pose estimation, our method improves Rank-1 by 0.5% and mAP by
0.9%. Our method achieves the SOTA performance in terms of Rank-1 and mAP on
the DukeMTMC dataset, with 91.8% and 84.5% respectively. Meanwhile, our Rank-1
surpasses the PFD method by 1.2%, and mAP is improved by 2.3%. Our method also
achieves good performance on MSMT17 and CUHK03 datasets. Our method achieves
84.7% Rank-1 and 64.1% mAP on MSMT17. Although the mAP is 1% and 3.3% lower
thanPFDandTransReIDmethods respectively, ourRank-1 achieves a competitive result,
improving by 2% compared to PFD. Our method achieves 85.6% Rank-1 and 84.1%
mAPonCUHK03. For theRank-1, ourmodel is only 1.2% lower than the SCSNmethod,
but our mAP is 0.1% higher than it, which is currently the highest.

Comparisons on Occluded Dataset. We also evaluate our HPAN model on occluded
dataset Occ-Duke. As shown in Table 3, we categorize the baselines into two categories,
CNN-based methods and Transformer-based methods. We can observe that our method
achieves a significant improvement on the Occ-Duke dataset, achieving 72.9% Rank-1
and 62.0% mAP. Compared with the PFD method, our method significantly improves
Rank-1 by 5.2% and mAP by 1.9%. It can be seen that although our method is designed
for holistic person Re-ID tasks, it still achieves competitive results on the occluded
pedestrian dataset, which proves the robustness of our proposed method.
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Table 2. Performance comparison on the holistic Re-ID datasets Market-1501, DukeMTMC,
MSMT17 and CUHK03. *represents the second best current result, and the best result is shown
in bold.

Method Market-1501 DukeMTMC MSMT17 CUHK03

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

PCB [14] 92.3 77.4 81.8 66.1 – – – –

DSR [15] 83.6 64.3 – – – – – –

BOT [11] 94.1 85.7 86.4 76.4 – – – –

VPM [16] 93.0 80.8 83.6 72.6 – – – –

SAN [12] 96.1 88.0 87.9 75.7 79.2 55.7 – –

OSNet [9] – – – – 78.7 52.9 – –

DG-Net [35] – – – – 77.2 52.3 – –

CBN [10] – – – – 72.8 42.9 – –

Circle [1] 94.2 84.9 – – 76.3 – – –

RGA-SC
[21]

– – – – 80.3 57.5 81.1 77.4

BDB [36] – – – – – – 79.4 76.7

DSA-reID
[37]

– – – – – – 78.9 75.2

SCSN [38] – – – – – – 86.8 84.0*

ISP [39] – – – – – – 76.5 74.1

ADC +
2O-IB [26]

– – – – – – 80.6 79.3

MVPM [4] 91.4 80.5 83.4 70.0 71.3 46.3 – –

SFT [24] 93.4 82.7 86.9 73.2 73.6 47.6 – –

CAMA [25] 94.7 84.5 85.8 72.9 – – – –

IANet [13] 94.4 83.1 87.1 73.4 75.5 46.8 – –

FED [20] 95.0 86.3 89.4 78.0 – – – –

PGFA [17] 91.2 76.8 82.6 65.5 – – – –

HORe-ID
[18]

94.2 84.9 86.9 75.6 – – – –

PFD [19] 95.5 89.6* 90.6 82.2* 82.7 65.1* – –

PAT [3] 95.4 88.0 88.8 78.2 – – – –

DeiT [2] 94.4 86.6 89.3 78.9 81.9 61.4 – –

ViT [22] 94.7 86.8 88.8 79.3 81.8 61.0 – –

(continued)
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Table 2. (continued)

Method Market-1501 DukeMTMC MSMT17 CUHK03

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

TransReID
[28]

95.2 88.9 90.7* 82.0 85.3 67.4 – –

HPAN
(ours)

96.0* 90.5 91.8 84.5 84.7* 64.1 85.6* 84.1

Table 3. Performance comparison on the occluded Re-ID dataset Occluded-DukeMTMC.
*represents the second best current result, and the best result is show in bold.

Method
(CNN-based)

Rank-1 mAP Method
(Transformer-based)

Rank-1 mAP

PCB [14] 42.6 33.7 PAT [3] 64.5 53.6

RE [27] 40.5 30.0 DeiT [2] 60.6 53.1

FD-GAN [5] 40.8 – ViT [22] 60.5 53.1

DSR [15] 40.8 30.4 TransRe-ID [28] 66.4 59.2

PGFA [17] 51.4 37.3

PVPM [6] 47.0 37.7

ISP [39] 62.8 52.3

HORe-ID [18] 55.1 43.8

MoS [7] 61.0 49.2

OAMN [8] 62.6 46.1

PFD [19] 67.7 60.1*

FED [20] 68.1* 56.4

HPAN (ours) 72.9 62.0

3.3 Ablation Studies

Ablation experiments are conducted to fully verify the effectiveness of the modules in
HPAN, and the results are shown in Table 4. The methods for the ablation experiments
include, M1(only the global feature map Fg is used), M2 (neither self-attention nor
HPGFF are used. The obtained local key point feature map undergoes 1×1 convolution
to obtain the local pose feature map, and the local pose feature map is fused with the
global feature map using a residual connection), M3 (only self-attention is used. The
local pose feature map is obtained using self-attention, and fused with the global feature
map Fg using a residual connection), and M4 (HPAN).
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Table 4. Ablation Studies on Market-1501, DukeMTMC and CUHK03

Method Market-1501 DukeMTMC CUHK03

Rank-1 mAP Rank-1 mAP Rank-1 mAP

M1 95.4 88.5 89.4 81.2 84.2 81.8

M2 95.5 89.1 90.0 82.3 84.3 82.2

M3 95.7 89.9 91.0 82.9 84.5 82.7

M4 96.0 90.5 91.8 84.5 85.6 84.1

�(M3-M1) 0.3 1.4 1.6 1.7 0.3 0.9

�(M3-M2) 0.2 0.8 1.0 0.6 0.2 0.5

�(M4-M3) 0.3 0.6 0.8 1.6 1.1 1.4

�(M4-M1) 0.6 2.0 2.4 3.3 1.4 2.3

As can be observed from Table 4, we find compared with M1 and M2, the method
with self-attention (M3) improves both mAP and Rank-1. This demonstrates that using
self-attention can extract the correlation between key points and learn the correlation of
local features of each key point, which results in better performance. Compared with the
method of only using the self-attention (M3), the method using both the self-attention
and HPGFF (M4) shows an extra increase in mAP and Rank-1. It demonstrates the
effectiveness of the HPGFF module. By the HPGFF, fusing the global features with
local pose features, the global features can guide the local features, resulting in a final
feature that ismore discriminative. In short, the ablation experiments on the three datasets
quantitatively demonstrate the effectiveness of the self-attention and theHPGFFmodule.

3.4 Visualization of Attention Maps

To further analyze the difference between the global feature map and the fused feature
map, we visualize the attention maps of the features of our model, using the Gram-
CAM tool to identify areas that the network considers important. Figure 3 shows the
comparison of attention maps of global features extracted by the backbone network
HRNet-W32 and the fused features obtained by HPAN. In the subfigures of Fig. 3, the
left image is the original image, the middle is the global feature attention map, and the
right is the fused feature attention map obtained by HPAN. From the figure, we can see
that in addition to global features, HPAN can also focus on discriminative local human
key point features.
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Fig. 3. Visualization of attention map

4 Conclusion

This paper presents a person Re-ID method HPAN, based on hybrid pose attention. The
self-attention within it can mine and generate local pose features from the associations
among extracted local key point features. The fusion module HPGFF combines the
extracted global features with the local pose features to generate more distinguishable
and robust features. Our HPAN model shows superior performance on five popular
datasets, surpassing SOTA methods.
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Abstract. Recently, a considerable number of top-performing Trans-
former based trackers have been proposed. However, most of them mainly
focus on utilizing low-frequency information from a spatial-spectral anal-
ysis perspective, limiting their performance in complicated scenes. To
address this problem, we propose a spectral tracker that explores how to
capture high and low-frequency information for robust tracking jointly.
Specifically, we design a novel dual-spectral information extraction and
aggregation module (DSM) consisting of a high and low-frequency branch
to capture and combine complementary frequency information of a
Transformer effectively. Firstly, we divide the local window in the high-
frequency branch to focus on more fine-grained high-frequency informa-
tion. Then, in the low-frequency branch, we apply AvgPooling with a
low-pass effect on a Transformer to amplify its low-frequency informa-
tion. Furthermore, we design a shared MLP strategy to polarize the
dual-frequency branching to high and low-frequency information atten-
tion. Finally, we utilize an MLP to complementarily fuse high and low-
frequency information for frequency domain modeling. Comprehensive
experiments on five tracking benchmarks (i.e., GOT-10k, TrackingNet,
LaSOT, UAV123 and TNL2K) show that our spectral tracker achieves
better performance than the state-of-the-art trackers.

Keywords: Object Tracking · Vision Transformer · Spectral Domain ·
Single-stage Backbone

1 Introduction

Visual tracking aims to estimate the future state of target object in sequential
video frames, given its initial state. This is a highly challenging task in computer

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. Comparison of the attention weight maps estimated by our proposed Spec-
tralTrack and existing state-of-the-art Transformer-based visual tracker OSTrack [7].

vision due to factors such as heavy occlusion, abrupt changes, interference from
similar objects and large deformation, among others. Although many trackers
[1–6] have been proposed in the past few years and achieved high performance
on existing benchmark datasets, these trackers almost invariably ignore the role
of spectral domain information in the tracking process.

The traditional image processing approaches mainly include two types: spa-
tial and spectral. Coincidentally, most studies focus more on exploiting spatial
domain information to extract effective feature representations at the spatial
level for object tracking. In the earlier years, the classic Siamese-based trackers
[1–4,8] only extracted the spatial level features to model the entire architec-
ture. With the introduction of Transformer from NLP to the visual domain,
Transformer-based trackers [5,6,9,10] have led the modeling of trackers in a
new direction. However, most trackers still focus only on spatial domain-level
modeling to interpret Transformer. Recently, a growing body of research has
indicated that attention mechanisms are more adept at capturing low-frequency
signals but are slightly less effective at capturing high-frequency signals. It is
mentioned in [11,12] that the global shapes and structures of the scene or object
in the image represents the low-frequency signal, and conversely, local edges
and textures are within the realm of high-frequency signals. Although the inter-
pretation in the two recent Transformer-based works [7,13] is still based on the
spatial domain, spectral domain-related signals exist in their feature information
structure. However, these signals merely represent ambiguous frequency domain
information that is difficult to control. This ambiguity can be attributed to the
co-existence of high and low-frequency modeling within Transformer, without
considering the strength of the spectral modeling capability.

Through the above analysis, we propose a Transformer-based spectral
tracker, namely SpectralTracker, which utilizes explicit high and low-frequency
signals of spectral domain to model the whole tracking process. Specifically,
Dual-Spectral Module (DSM) is the core component of our method. It comprises
two seemingly independent but interconnected spectral modeling branches that
can capture and model the high and low-frequency feature information between
the target template and the search region. In addition, we build our Spectral-
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Tracker backbone with Patch Embedding and stacked multiple blocks of DSM,
and finally supplement it with a simple convolution-based prediction head to
form our entire tracking framework. By adopting this design, we can extract and
aggregate the frequency domain features from both the target template and the
search region, which effectively resolves the following problems in the tracking
process: Firstly, the Transformer model tends to exhibit weaker high-frequency
modeling capability, which results in difficulties in capturing local details among
neighboring regions, and prevent the full utilization of its global high-frequency
modeling ability. Secondly, filling all layers of the model with low-frequency infor-
mation degrades high-frequency information, such as local textures, and weakens
the overall modeling capability of the Transformer. Comparison of the attention
weight maps estimated is shown in Fig. 1.

Our main contributions are three-fold: (1) We propose a novel Dual-Spectral
information extract and aggregate Module (DSM). This allows for efficiently
extracting the high and low-frequency signals of the spectral domain simultane-
ously in the DSM’s high and low-frequency branches. (2) We propose a simple
tracking backbone network with Dual-Spectral Module (DSM) as the core com-
ponent to model the spectral features. Furthermore, we have designed a shared
MLP strategy to enhance attention to high and low-frequency information at
the same position. (3) Our tracker achieves comparable results to state-of-the-
art trackers on multiple tracking benchmarks.

2 Related Work

2.1 Visual Tracking

Numerous trackers [1–4,8,14,15], which belong to Siamese trackers, use AlexNet
or ResNet as the backbone of shared weights to extract the features of tem-
plate and search region. A correlation operation is applied in these trackers as
an important aggregation module. In recent years, with Transformer has been
widely used in the field of computer vision, resulting in the emergence of sev-
eral excellent trackers based on Transformer. TransT [5], STARK [6], TREG
[9], TrDiMP [10], TrTr [16], MixFormer [13] and OSTrack [7] take innovative
advantage of Transformer and achieve impressive performance. However, the
theoretical support of both Siamese trackers and Transformer trackers is based
on spatial domain modeling, which invariably focuses on the spatial informa-
tion in the image and even only adds the temporal domain information between
sequences to improve the tracking effect, while the frequency domain information
always be ignored. In particular, the one-stream compact trackers MixFormer
and OSTrack perform fuzzy frequency modeling, resulting in the loss of global
high and local low-frequency information.

2.2 Frequency Modeling in Visual Transformer

As pointed out in [17], ViT [18] and its variants are more proficient at cap-
turing global low-frequency spectral domain information, such as shapes and
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lines, than local high-frequency information, such as object edges and textures,
within a scene. IFormer [12] expresses the same view that ViT’s self-attention is a
global operation for information exchange between patch tokens, which is better
at capturing global information. However, this does not mean that ViT cannot
model local high-frequency information, as demonstrated by LITv2 [11], which
can also capture fine-grained local high-frequency information by combining the
corresponding means with ViT. CvT [19] is a variant of ViT that combines con-
volutional operations, which are good at capturing local high-frequency spectral
information. Therefore, we propose a Dual-Spectral Module that utilizes a com-
bination of operations, such as attention window division and AvgPooling, to
simultaneously model high and low-frequency features extraction and aggrega-
tion in a compact architecture. Our proposed SpectralTracker is a simple, com-
pact, and efficient spectral-based tracker capable of capturing both local and
global spectral information.

3 Method

In this section, we will describe our compact, dual-spectral tracking framework,
named SpectralTracker. In the following, we will elaborate on our Module with
Dual-Spectral information extraction and aggregation in Sect. 3.1. Then, we
introduce the whole SpectralTracker in detail in Sect. 3.2 and Sect. 3.3.

Fig. 2. Dual-Spectral Module (DSM) is the core component of our SpectralTracker,
which consists of a high-frequency branch, a low-frequency branch and a shared MLP.

3.1 Dual-Spectral Module

Being the core design of our SpectralTracker, the Dual-Spectral Module (DSM) is
designed to extract parallelly high and low-frequency features of token sequences
and simultaneously model spectral information between them. In contrast to
the traditional Attention mechanism [20], DSM performs mutually independent
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attention operations to model high and low-frequency features on the concate-
nated token sequences. This dual-spectral mechanism can be effectively imple-
mented by having high and low-frequency branches in the module. As shown
in Fig. 2, the attention-based Dual spectral mechanism could be implemented
efficiently via the following process:

High-Frequency Branch. Given a concatenated token sequences T , which
is concatenated by template token sequences Tz ∈ R

Nz×N and search token
sequences Tx ∈ R

Nx×N . Nz and Nx are the numbers of patches of template and
search region, respectively, and N represents the dimensional size of the space
of a high-dimensional feature projection.

To implement modeling of local high-frequency information, we reshape
and divide the token sequences T into a local attention window of size 1 × 1
firstly, then map the token sequences on multiple feature spaces to gener-
ate feature map queries, keys and values. Formally, we generate them by a
linear projection, reshape them to R

3×h×(Nz+Nx)×N
′
, then divide them into

Qhf ,Khf , Vhf ∈ R
h×(Nz+Nx)×N

′
, where Qhf ,Khf , Vhf are the queries, keys, val-

ues of the high-frequency branch, h is the number of heads and N
′
= N/3h. Local

window division is reflected in R
3×h×(Nz/n+Nx/n)×N

′×n, where n is the number
of local attention windows. The formulation of our high-frequency branch is as
follows:

Qhf ,Khf , Vhf = Div(FC(T )). (1)

Attenhf = SoftMax

(
Qhf · KT

hf√
dh

)
Vhf . (2)

Attenhf = Attenhf + MLPshared(LN(Attenhf )) (3)

where (·) denotes scaled dot, dh is the dimensionality of Khf . Qhf , Khf and Vhf

all contain the position encoding for their queries, keys and values. Additionally,
position encoding is included in the low-frequency branch, which is described
below.

Low-Frequency Branch. The low-frequency branch information in the module
is modeled as follows: The branch’s input is still T , which still represents the
information of the target template and the search region, the queries Qlf is still
computed by feeding T into a linear layer. Since the average pooling operation
is a low-pass filter and to maximize the attention mechanism’s ability to capture
low-frequency signals better, we process the input token sequences T through an
AvgPooling operation to generate low-frequency keys Klf and values Vlf that all
are distinct from the other branch. In this way, the interference of high-frequency
signals is weakened. As a result, the branch can not only focus on modeling low-
frequency information but also reduce the computation complexity of attention.

For the computation of keys Klf and values Vlf , we first split the input
token sequences T into sequences belonging to the target template (Tz) and the
search region (Tx). We then embed the two token sequences using AvgPooling
and concatenate the resulting outputs. Finally, we feed the concatenated output
into a linear layer:

Qlf = FC(T ). (4)
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Fig. 3. The overall architecture of our SpectralTracker consists of a backbone based
on DSM and a prediction head, which is an end-to-end tracking architecture.

Tlo = Concat [AvgPool (Tz) ,AvgPool (Tx)] . (5)

Klf , Vlf = Div(FC(Tlo)). (6)

where Klf , Vlf ∈ R
h×(Pz+Px)×N , P is the resolution of the target template

and search region token sequences after the AvgPooling operation. Similarly,
queries, keys and values also contain their position encoding. Besides, Attenlf is
calculated in the same way as Attenhf .

It is worth noting that the inputs of the first DSM and subsequent DSMs in
the backbone are different, as illustrated in Fig. 2.

Shared MLP in Both Branches. Throughout the module, since the parallel
high and low-frequency branches are unconnected in both input and output, they
are entirely independent. Suppose the DSM with these two independent branches
is applied to the whole tracking architecture. In that case, it is difficult to achieve
simultaneous attention to the high and low-frequency signals, as demonstrated
in the ablation experiments below.

In the point cloud [21], shared MLP transforms and extracts features for
each point simultaneously. Inspired by this, we designed a shared MLP in both
branches. Therefore, the high and low-frequency information at the same location
of the two branches should be transformed and extracted synchronously instead
of being considered as two completely independent branches. It provides a more
expressive frequency domain feature for the complementary fusion of the MLP
at the backbone end.

3.2 Dual-Spectral for Tracking

Overall Architecture. The overall architecture is depicted in Fig. 3. The core
idea of SpectralTracker is to explore how to jointly capture high and low-
frequency information for robust tracking. SpectralTracker consists of a DSM-
based backbone and a prediction head based on a fully convolutional network.
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In contrast to the recent single-stream trackers with space domain modeling, we
model the whole tracking process from the spectral domain perspective.

DSM-Based Backbone. To extract and aggregate target features in the spec-
tral domain, we propose a single-stage backbone by stacking n DSMs. This
backbone aims to model the entire tracking process by leveraging high and low-
frequency information in the spectral domain.

Inspired by the input pre-processing in [18], given a pair of images, namely,
the template image patch and the search region patch, we first reshape and
flatten them into 2D patch embeddings tz and tx. Then due to the mechanical
requirements of the Transformer in the dual-spectral branch, we project tz and tx
into an N-dimensional abstract space by employing a learnable linear projection
with parameter E. Finally, we add trainable position embeddings Pz and Px

after the projection of token sequences are completed. The relevant equations
are expressed as follows:

Tz = [tzE] + Pz = [(τ1
z E + ρ1z), · · · , (τNz

z E + ρNz
z )], (7)

Tx = [txE] + Px = [(τ1
xE + ρ1x), · · · , (τNx

x E + ρNx
x )]. (8)

where the size of outputs Tz and Tx are Nz × N and Nx × N , respectively, the
token sequences Tz and Tx are concatenated as T , as mentioned in Sect. 3.1.

The token sequences T will be fed into the first DSM’s high and low-
frequency branches to generate the corresponding spectral domain features,
e.g., T 1

hf , T 1
lf ∈ R

(Nz+Nx)×N . These features will be fed into the high and low-
frequency branches of the subsequent N-1 DSMs in parallel and independently.
At the final DSM, the obtained dual-frequency information, Tn

hf and Tn
lf will be

concatenated together, and an MLP layer will be applied to achieve the transfor-
mation and merge modeling of the high and low-frequency feature information.
Finally, the final spectral domain feature of the entire backbone is output and
fed into the prediction head.

3.3 Prediction Head and Total Loss

Similar to [7], we estimate the bounding box of the tracked object directly by a
full convolution-based prediction head and compute the classification map, local
bias, and bounding box size using several stacked Conv-BN-ReLU layers. For the
loss calculation, we employ the Gaussian weighted focal loss (referred as Lcls)
for the classification task. For the localization task, we adopt L1 loss. We use the
generalized IoU loss (denoted as LG) for bounding box regression. Finally, our
model is trained in an end-to-end fashion, and the total loss function follows:

Ltotal = λ1Lcls + λ2L1 + λ3LG (9)

where λ1 = 1, λ2 = 5, λ3 = 2 are the weight to balance the contributions of each
loss function.
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4 Experiments

4.1 Implementation Details

We adopt the training splits of the COCO [22], LaSOT [23], GOT-10k [24]
and TrackingNet [25] as the training dataset. Our tracker is implemented using
Python 3.7 and PyTorch 1.9.0. SpectralTracker training is conducted on 2 T
V100 GPUs and the mini-batch size is set to 32, resulting in a total batch size of
64. We optimize the network using AdamW [28] with an initial learning rate of
4 × 10−5 for the DSM-based backbone, 4 × 10−4 for the rest, and weight decay
set to 1×10−4. For the full data training, we set the total training epochs to 300,
sampled 60,000 image pairs per epoch, and adjusted the learning rate downward
by a factor of 10 after 240 epochs. For the GOT-10k training, we set 100 epochs
and adjusted the learning rate after 80 epochs.

4.2 State-of-the-Art Comparison

To verify the validity of the proposed models, we compare them with state-of-
the-art trackers on five different benchmarks.

Table 1. Performance comparisons with state-of-the-art trackers on the test set of
LaSOT [23], TrackingNet [25] and GOT-10k [24]. The best two results are shown in
red and blue fonts.

Method Source GOT-10k [24] TrackingNet [25] LaSOT [23]

AO SR0.5 SR0.75 AUC Pnorm P AUC Pnorm P

SiamPRN++ [3] CVPR19 51.7 61.6 32.5 73.3 80.0 69.4 49.6 56.9 49.1

DiMP [26] ICCV19 61.1 71.7 49.2 74.0 80.1 68.7 56.9 65.0 56.7

Ocean [27] ECCV20 61.1 72.1 47.3 – – – 56.0 65.1 56.6

TrDiMP [10] CVPR21 67.1 77.7 58.3 78.4 83.3 73.1 63.9 – 61.4

TransT [5] CVPR21 67.1 76.8 60.9 81.4 86.7 80.3 64.9 73.8 69.0

AutoMatch [28] ICCV21 65.2 76.6 54.3 76.0 – 72.6 58.3 – 59.9

STARK [6] ICCV21 68.8 78.1 64.1 82.0 86.9 – 67.1 77.0 –

KeepTrack [29] ICCV21 67.1 77.2 70.2 – – – – – –

UTT [30] CVPR22 67.2 76.3 60.5 79.7 – 77.0 64.6 – 67.2

CSWinTT [31] CVPR22 69.4 78.9 65.4 81.9 86.7 79.5 66.2 75.2 70.9

AiATrack [32] ECCV22 69.6 63.2 80.0 82.7 87.8 80.4 69.0 79.4 73.8

MixFormer-22k [13] CVPR22 70.7 80.0 67.8 83.1 88.1 81.6 69.2 78.7 74.7

SimTrack-B/16 [33] ECCV22 69.4 78.0 64.3 82.5 87.0 80.4 69.6 78.6 74.1

OSTrack-256 [7] ECCV22 71.0 80.4 68.2 83.1 87.8 82.0 69.1 78.7 75.2

SpectralTracker Ours 73.5 82.9 69.8 83.4 88.0 82.1 68.9 78.2 74.5
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Table 2. Comparison with state-of-the-art on UAV123 [34] and TNL2K [35] in terms of
success score (AUC). The best two results are shown in red and blue fonts, respectively.

Method SiamBAN
[4]

STMTracker
[36]

ToMP-50
[37]

TransT
[5]

STARK
[6]

MixFormer-1k
[13]

TransInMo∗

[38]
OSTrack-256
[7]

SimTrack-B/16
[33]

SpectralTracker
(Ours)

UAV123 [34] 63.1 64.7 66.9 68.1 68.2 68.7 69.0 68.3
69.8 70.2

TNL2K [35] 41.0 – – 50.7 – – 52.0 54.3
54.8 55.8

GOT-10k. The GOT-10k [24] is a large-scale dataset containing over 10,000
videos of real-world moving objects. Notably, GOT-10k proposes a protocol
requiring the tracker to train only with its training set. In our study, we also fol-
lowed this protocol to train our model and submit them to the official platform
for evaluation. As shown in Table 1, we compared our tracker’s average overlap
(AO) and success rates (SR0.5 and SR0.75) with those of other state-of-the-art
trackers and achieved a new state-of-the-art performance.

TrackingNet. TrackingNet [25] is a recently released large-scale short-term
tracking dataset that provides a containing 511 video sequences in the test set.
Our evaluation results on the testing dataset of TrackingNet are shown in Table 1.
Our proposed method gets a success score (AUC) of 83.4%, a normalized preci-
sion score (PNorm) of 88.0%, a precision score (P) of 82.1%.

UAV123. UAV123 [34] is a large-scale aerial tracking benchmark involving 123
challenging sequences with more than 112K frames, which are captured from
low-altitude UAVs. As shown in Table 2, our SpectralTracker has achieved the
best performance.

LaSOT. The LaSOT [23] is a large-scale benchmark with high-quality anno-
tations, consisting of 1400 challenging sequences with an average video length
is over 2500 frames. Compared with the top-performing trackers, as shown in
Table 1, our model has a good performance in challenging videos.

TNL2K. We also evaluate our tracker on TNL2K [35] benchmark, which
includes 700 video sequences. We evaluate our tracker on the dataset as shown
in Table 2. It can be observed that SpectralTracker performs the best among all
compared trackers.

4.3 Ablation Studies

In order to explore the role of the components of the proposed tracker, we have
carried out comprehensive ablation studies on the GOT-10k dataset. First, we
discuss the use of high and low-frequency branches with or without discussion,
then explore the effectiveness of shared MLPs. Finally, we discuss the number of
DSM that make up the backbone. The comparison results are shown in Table 3.

High and Low-Frequency Branches. Comparing experimental results
between high-frequency modeling (experiment 1 ) and low-frequency modeling
(experiment 2 ), it is apparent that the former outperforms the latter signifi-
cantly. The reason for this difference lies in the ability of the high-frequency
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branch to capture local details of the target object, while the low-frequency
branch captures the overall shape or structure of the scene or target. However,
when comparing the results of experiments 1 , 2 and 6 , it is found that the joint
modeling of high-frequency and low-frequency components yields better results
than either of the two alone. The joint modeling approach significantly improves
the limitations of single-frequency modeling and spatial-domain modeling.

Table 3. Ablation studies on the variants of our tracker in GOT-10k benchmark [24].

Methods Number of DSM Got-10k

High-Frequency Branch Low-Frequency Branch Shared MLP 8 10 12 AO SR0.5 SR0.75

1 � � 0.708 0.801 0.662

2 � � 0.587 0.686 0.464

3 � � � 0.701 0.801 0.644

4 � � � � 0.703 0.802 0.651

5 � � � � 0.715 0.808 0.669

6 � � � � 0.735 0.829 0.698

Shared MLP. Based on the excellent effect of experiment 1 , experiments 3

introducing the low-frequency branch led to a decrease in performance, which
proves that independent high-frequency and low-frequency branches cannot fur-
ther improve tracking performance. By observing experiments 1 , 3 and 6 , intro-
ducing the shared MLP strategy can significantly improve the performance of
dual spectral tracking. With this strategy, ensuring that the independent dual-
spectral branches will model at the same position is easier, further improving
the effect.

Number of DSMs. Compared to experiments 4 , 5 and 6 , the overall perfor-
mance of the tracker gradually improves with an increase in the number of DSMs.
However, as the number of DSMs used in the backbone increases, training and
testing of the structure become slower, and the model becomes larger and more
cumbersome, and lead to a relatively less pronounced improvement. Therefore,
we do not desire to sacrifice other performance factors to pursue better results
and limit the number of DSMs to 12.

5 Conclusion

In this work, we proposed a novel, simple, Transformer-based tacking frame-
work, which fully explores the joint capture of high and low-frequency signals of
the spectral domain for robust tracking. We designed a Dual-Spectrum Module
(DSM) that allows the extraction and aggregation of information in the fre-
quency domain and only consists of high-frequency and low-frequency branches.
Furthermore, we introduced a shared MLP to guide the dual-spectral branch
to intensify high and low-frequency attention in a more polarized manner at
the same location. Extensive experiments on five visual tracking benchmarks
demonstrate that our SpectralTracker obtains state-of-the-art performance.
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Abstract. The problem of background clutter (BC) is caused by dis-
tractors in the background that resemble the target’s appearance,
thereby reducing the precision of visual trackers. We consider these simi-
lar distractors as noise and formulate a denoising task to solve the visual
tracking problem. We propose a target denoising method based on a dif-
fusion model for visual tracking, referred to as DiffusionTracker, which
introduces the diffusion model to distinguish between targets and noise
(distractors). Specifically, we introduce a reverse diffusion model to elim-
inate noisy distractors from the proposal candidates generated by the
Siamese tracking backbone. To handle the difficulty that distractors do
not strictly conform to a Gaussian distribution, we incorporate Spatial-
Temporal Weighting (STW) to integrate spatial correlation and noise
decay time information, mitigating the impact of noise distribution on
denoising effectiveness. Experimental results demonstrate the effective-
ness of the proposed method, with DiffusionTracker achieving a precision
of 64.0% on BC sequences and a success rate of 63.8% on BC sequences
from the LaSOT test datasets, representing improvements of 11.7% and
10.2% respectively over state-of-the-art trackers. Furthermore, our pro-
posed method can be seamlessly integrated as a plug-and-play module
with cutting-edge tracking algorithms, significantly improving the suc-
cess rate for tracking task in background clutter scenarios.

Keywords: Visual Tracking · Diffusion Model · Siamese Network ·
Deep Learning · Denoising

1 Introduction

Visual tracking is one of the fundamental tasks in computer vision, widely used in
the civil and military fields [8,30]. In real-world applications, there are distractors
similar to the target in appearance around the target to be tracked, which is
known as the background clutter (BC) problem as shown in Fig. 1. This problem
causes the tracker to fail to distinguish between the target and the distractors
(Fig. 2).
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Fig. 1. The distractors (yellow) in (a) bear-17, (b) bicycle-7, (c) bird-2, and (d) bird-15
from the LaSOT dataset. (Color figure online)

Fig. 2. The framework of our DiffusionTracker.

Current state-of-the-art trackers have improved the extraction of feature
embeddings by employing deeper network structures, attention mechanisms, and
search area constraints [4,15,28], which rely on target appearance information to
enhance tracking performance. However, these methods overlook the potential
spatial probability distribution relationship between distractors and the target,
leading to difficulties to distinguish objects in the background that are similar
to the target, resulting in tracking loss.

This paper proposes a method that addresses the tracking task by converting
it into a denoising problem. Our approach utilizes a diffusion model to remove
distractors, which are treated as noise, in the background that share a similar
appearance with the target. Specifically, we first construct a tracking pipeline
to generate candidates that contain targets and distractors, each assigned a
confidence score. Then, we train the diffusion model to explore the potential
probability distribution of the distractors and remove them during the backward
diffusion process. By leveraging the spatial probability distribution relationship
between the distractors and the target, our method achieves more accurate target
tracking in the presence of background clutter, while utilizing a Spatial-temporal
Weighted (STW) strategy. Our contributions are summarized as:

1. The proposed DiffusionTracker introduces reverse diffusion to gradually elimi-
nate noisy candidates for distractor discrimination, which improves the track-
ing success rate in scenarios containing background clutter.



DiffusionTracker: Targets Denoising Based on Diffusion Model 227

2. Based on spatial-temporal weighting, the proposed tracker utilizes spatial
distribution information and noise decay time to enhance the confidence of
distractors, enabling noise samples that do not meet the Gaussian distribution
to also benefit from reverse diffusion.

3. The proposed method achieved superior performance on four public datasets:
LaSOT, GOT-10k, TrackingNet, and OTB-2015. The proposed method can
be combined with cutting-edge tracking algorithms as a module to improve
the tracking performance in scenes with background clutter.

2 Related Works

In this section discusses the algorithms that are closely related to this paper,
including the visual tracking based on Siamese Network and diffusion model.

2.1 Visual Tracking Based on Siamese Network

Siamese Network and Self-correlation Networks are two popular approaches in
visual tracking that have gained significant attention due to their effectiveness
and unique characteristics.

Siamese Networks revolutionize tracking task by employing end-to-end net-
works that extract adaptive cross-correlation features to discriminate between
the target and the background. SiamRPN [16], a notable method in this cat-
egory, improves tracking efficiency by introducing bounding box regression
based on anchors instead of multi-scale estimation. Building upon SiamRPN,
SiamRPN++ [15] enhances feature extraction using ResNet as the backbone
network, resulting in more robust feature maps. Another approach, Target-aware
deep tracking (TADT) [18], incorporates attention mechanisms based on Siamese
networks to select effective feature channels. Based on the Siamese Network,
methods based on the Transformer utilized the self-attention layer instead of
the cross-correlation layers, such as Transformer tracking (TransT) [4], effec-
tively incorporating semantic information such as target posture and spatial
self-structure. This technique significantly enhances feature extraction by cap-
turing rich semantic information.

Despite the enhancement of feature embeddings that describe the appear-
ance of objects, these tracking algorithms have not fully utilized the distribution
information of similar distractors and the target. As a result, the success rate of
tracking in background clutter scenarios still requires further improvement.

2.2 Diffusion Model

Diffusion models progressively add noise on image data and then learn to recover
the original data. These models add noise in a smooth manner and estimate the
score function to guide the denoising process.

Diffusion models have been extensively utilized in various image processing
tasks, such as Image Super Resolution, Semantic Segmentation, and Anomaly
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Fig. 3. The Reverse Diffusion process for time t during inference.

Detection [1,3,17,20]. For image resolution tasks, methods like Super-Resolution
via Repeated Refinement (SR3) [23] and Cascaded Diffusion Model (CDM) [12]
employ diffusion models to achieve high-quality results in super-resolution and
inpainting. Some approaches [21,24] utilize pre-trained autoencoders to shift
the diffusion process to the latent space for efficient training. In semantic seg-
mentation, generative pre-training with diffusion models has proven effective in
leveraging learned representations for accurate label utilization. Methods like
Decoder Denoising Pretraining (DDeP) [2] and ODISE [27] have demonstrated
promising results in label-efficient semantic segmentation. Diffusion models also
excel in anomaly detection by modeling normal data and reconstructing healthy
approximations. AnoDDPM [26] and DDPM-CD [10] utilize diffusion models
to detect anomalies in input images, outperforming adversarial training-based
alternatives.

While diffusion models have found widespread applications, their utilization
in detection or tracking tasks remains challenging. In this context, our paper
represents the first attempt to apply a diffusion model in a tracking task, serving
as an academic exploration of generative algorithms.

3 Method

In this section, we introduce our DiffusionTrack to distinguish targets from the
distractors, including the architecture, training process and inference process in
Sect. 3.1, Sect. 3.1 and Sect. 3.1, respectively.

3.1 Architecture

The network architecture encompasses a primary tracking framework network
and a reverse diffusion model with Spatial-temporal Weighted.
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Tracking Framework. The tracking framework network, which is based on a
Siamese network, is utilized for extracting image features and generating mul-
tiple proposal bounding boxes, including input heads, feature embeddings, and
prediction heads.

Fig. 4. Some examples of the datasets for experiments.

The Siamese network contains two input heads, including the template
branch for the template image patch Z and anther head for the search region
patch X. Both the template patch and the search region patch are then reshaped
into dimensions of 3 × 128 × 128 and 3 × 256 × 256, respectively.

For feature embeddings extraction, we modify the backbone network, uti-
lizing a modified version of ResNet50 [11] with the convolution stride of the
down-sampling layer in the fourth stage to 1 to enhance feature resolution for
the tracking task. The output of the fourth stage in ResNet50 is set as feature
output fZ and fX for both two branches. In order to capture the correlation
between the template feature map fZ and the search region feature map fX, a
self-attention layer is employed to generate a feature map fS that encapsulates
semantic information.

The prediction head comprises two branches to predicts 1024 coordinates: a
classification branch for confidence scores and a bounding box regression branch.
Each branch consists of a multi-layer perceptron (MLP) with three linear layers
and a ReLU activation function.

Reverse Diffusion Model. The reverse diffusion model fθ with the learn-
able parameter θ is employed to discern candidate boxes resembling the target
object from proposal bounding boxes containing noise, as shown in Fig. 3. The
distractors are removed, while the vaild boxes are retained.

Feature Encoder. To avoid extracting high-level features at each step of the
reverse diffusion process, the feature encoding network shares parameters with
the tracking framework network. Furthermore, during each frame of tracking,
image features fS are extracted in a single pass. In the reverse diffusion process,
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noisy boxes zT are generated by utilizing Gaussian random sampling based on
the previous frame’s target position, where T is the total number of the reverse
diffusion steps. Corresponding features are then extracted from the image fea-
tures for each bounding box.

Tracking Decoder. In the Reverse Diffusion model, the tracking decoder is used
to find out the noise ε0 from the noisy boxes zt, where t ∈ [1, 2, ..., T ] is the
reverse step. The tracking decoder separates the boxes from the encoder into
valid boxes and noise. The noise boxes are removed, and the valid boxes are
retained as shown in Fig. 3. Similar with Sparse R-CNN, there are regression
and classification heads in the tracking decoder. The output features obtained
from the feature encoder are fed into the detection head of the decoder, resulting
in regression and classification results for the boxes.

Spatial-Temporal Weighted. Considering that real distractors may not strictly
follow a Gaussian distribution, we introduce the spatial-temporal weighted
(STW) strategy. We utilize the proposal boxes from the tracking framework as
the candidates. The boxes from the Reverse Diffusion Model serve as weighted
reference samples for noise removal. Since the Reverse Diffusion Model and pro-
posal boxes do not strictly correspond on a one-to-one basis, we have designed
two weighting methods based on spatial and temporal aspects. Firstly, in terms
of spatial weighting, we calculate the Intersection over Union (IoU) between the
predicted noisy box zt from the Reverse Diffusion Model and the proposal box
B to measure their correlation. A higher IoU indicates a higher likelihood of the
proposal box being noise. Secondly, in terms of temporal weighting, during the
reverse diffusion process, boxes that disappear earlier (corresponding to smaller
t) are more likely to be the distractor.

3.2 Training Process

Giving a group of noisy boxes zt = [b0, b1, ..., bn, ..., bN ], n ∈ [1, 2, ..., N ], we
utilize the reverse process to distinguish the distractors (noise) ε0 and the target
(zt −ε0). bn is the coordinate of the bounding box, including the center position,
weight, and height. The purpose of the training process is learning a network fθ

to estimate ε0 for each step t.
We model the denoising process as the reverse diffusion process. Given a

group of noisy boxes zt and the input image X, the objective function can be
represented as:

Ltrain =
1
2
||fθ(zt, t,X) − ε0||2 (1)

where ε̂0 = fθ(zt, t, x) is the forecast value of ε0. zt, ε0 is unknown for each step t.
We can obtain these samples during the forward process of the diffusion model.
Given a input image X with target’s bounding box z0 obeyed distribution q(z0),
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the noisy boxes groups z1, z2, ..., zt, ..., zT are obtained by cumulatively adding
Gaussian noise ε0 ∼ N(0, I):

zt =
√

αtzt−1 +
√

1 − αtε0 (2)

where the variance of Gaussian distribution is βt ∈ (0, 1), and α = 1−βt. Accord-
ing to the linear properties of Gaussian distribution, zT can be represented by
z0, ε0, and {αt}:

zT = ᾱ
1
2
T z0 + (1 − ᾱT )

1
2 ε0 (3)

where ᾱT =
∏T

t=0 αt. During the forward process, {zt} from each step and ε0
are recorded as the input and the label in Eq.(1).

3.3 Inference Process

During reverse diffusion process, the noisy boxes zT is restored to z0 step by
step. According to Bayes Rule, the distribution of zt−1 can be represented as:

q(zt−1|zt, z0) = q(zt|zt−1, z0)
q(zt−1|z0)
q(zt|z0) (4)

where q(zt|zt−1, z0), q(zt−1|z0), and q(zt|z0) can be calculated as:

q(zt−1|z0) =
√

ᾱt−1z0 +
√

1 − ᾱt−1ε0 ∼ N(
√

ᾱt−1z0, 1 − ᾱt−1) (5)

q(zt|z0) =
√

ᾱtz0 +
√

1 − ᾱtε0 ∼ N(
√

ᾱtz0, 1 − ᾱt) (6)

q(zt|zt−1, z0) =
√

αtzt−1 +
√

1 − αtε0 ∼ N(
√

ᾱtzt−1, 1 − ᾱt) (7)

Substituting Eqs. (4), (5), and (6) into Eq. (3), we can obtain:

q(zt−1|zt, x0) ∝ exp(−1

2
((

αt

βt
+

1

1 − ᾱt−1
z2t−1 − (

2
√

αt

βt
zt +

2
√

ᾱt

1 − ᾱt−1
z0) + C(zt, z0))) (8)

where C(zt, z0) is the set of terms in the Eq. (8) that are not related to zt−1.
According to the form of the Gaussian probability density function, the Eq. (9)
can be balanced by completing the square, and the mean μzt

and variance σ2
zt

can be calculated as:

μzt
= −

√
αt(1 − ᾱt−1)

1 − ᾱt
zt +

√
ᾱt−1βt

1 − ᾱt
z0 (9)

σ2
zt

=
1

αt

βt
+ 1

1−ᾱt−1

(10)

By substituting Eq. (2) into Eq. (9), we obtain:

μzt
=

1√
αt

(zt − βt√
(1 − ᾱt)

ε̂0) (11)

During the inference process, ε̂0 can be predicted by the diffusion network fθ.
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Table 1. Ablation Study on LaSOT dataset.

Method diffusion model STW Success - All (%) Success - only BC (%)

Baseline 64.9 57.9

DiffusionTracker- � 63.7 59.3

DiffusionTracker � � 67.3 63.8

4 Experiments

To validate the effectiveness of the proposed method, we carry out exten-
sive experiments comparing the state-of-the-art methods on four challenging
datasets, including LaSOT [9], GOT-10k [14], TrackingNet [19], and OTB-
2015 [25], as shown in Fig. 4.

In this section, firstly, we provide the implementation details of the proposed
method in Sect. 4.1. Then, we conduct the ablation study, general datasets eval-
uation on four datasets, tracking attributes evaluation, and compatibility exper-
iment are conducted in Sect. 4.2, Sect. 4.3, Sect. 4.4 and Sect. 4.5, respectively.

4.1 Implementation Details

The training sets of TrackingNet, LaSOT, and GOT-10k are used to train the
proposed tracking method. The training samples consist of image pairs from the
same sequence with common data augmentation techniques, such as translation
and brightness correction. The backbone branch is initialized with ResNet50,
pre-trained on the ImageNet dataset [22]. The proposed model is trained using
AdamW, with the learning rate of the backbone set to 1e−5 and the learning
rate of the other branches set to 1e−4. The training process and subsequent
experiments were conducted on a computer equipped with V100 GPUs.

4.2 Ablation Study

The proposed tracking methods take advantage of both the reverse diffusion and
the STW. We perform an ablation study from these two modules on the LaSOT
test dataset. The experimental results are listed in Table 1. The baseline method
TransT [4] is based on the self-attention module.

The advantages of the proposed method are obvious both in terms of position
precision and success rate. Compared with the baseline method TransT [4], the
proposed method achieves higher precision and success rate utilizing the reverse
diffusion and STW. The utilization of the reverse diffusion model enables effec-
tive differentiation of distractors. However, the distractors do not strictly adhere
to a Gaussian distribution, which limits the effectiveness of the diffusion model.
By incorporating the STW module, our approach employs spatial-temporal con-
fidence weighting, allowing non-Gaussian background objects to benefit from the
guidance of the diffusion model. Through the integration of the diffusion model
and STW module, our method achieves more accurate target detection, resulting
in an improved overlap rate between the detection box and ground truth.
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4.3 General Datasets Evaluation

We compare the proposed method against the state-of-the-art tracking methods,
including TransT [4], SiamFC++ [28], SiamMask [13], JCAT [29], MixFormer [5],
TADT [18], ASRCF [6], ECO [7], and SiamRPN++ [15]. The overall performance
(%) on LaSOT [9] and other datasets is shown in Fig. 5 and Table 2.

Fig. 5. Quantitative ablation study on LaSOT test dataset.

In the LaSOT test dataset, the occurrence of background clutter presents a
similar phenomenon to the presence of distractors in the background. As shown
in Fig. 5, the proposed method outperforms the baseline with a precision of 66.5%
and a success rate of 67.3%. This improvement in performance can be attributed
to the effective enhancement of the tracker’s discriminative capability achieved
through the utilization of the reverse diffusion module, leading to an enhanced
success rate in tracking.

Table 2. General Datasets Evaluation on OTB-2015, GOT-10k, and TrackingNet.

OTB-2015 GOT-10k TrackingNet

Method APE AOR AO SR0.5 Precision NormPrecision Success

SiamFC++ [28] 91.5 68.3 59.5 69.5 75.4 70.4 80.0

SiamRPN++ [15] 90.3 69.6 51.7 61.5 73.3 69.4 80.0

TADT [18] 78.4 65.0 36.7 38.9 54.0 67.1 59.3

JCAT [29] 87.0 63.5 66.6 76.3 74.6 68.8 78.3

ECO [7] – 69.1 31.6 30.9 56.1 48.9 62.1

ASRCF [6] 92.2 69.2 31.3 31.7 30.2 15.3 27.3

TransT [4] – 69.4 72.3 82.4 81.4 86.7 80.3

SiamMask [13] – – 51.4 58.7 66.4 77.8 72.5

Ours 92.4 70.4 72.5 82.7 81.6 87.2 80.9
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Other datasets such as GOT-10k [14], TrackingNet, and OTB-2015 are also
employed for comparison in Table 2. Specitially, for GOT-10k, AO means average
overlap rate and SR0.5 means success rate. The parameters 0.5 is the thresh-
old of the success rate. Leveraging spatial-temporal and distractors distribution
information, the proposed method effectively extracts more precise features for
challenging targets, yielding a superior performance with 81.6% precision for
TrackingNet and 92.4% APE for OTB-2015. The proposed method is capable
of utilizing high-resolution image information as input for the diffusion model,
assisting in the reverse diffusion process to differentiate background objects that
are similar and select accurate target candidate regions. our method consistently
achieves better results than state-of-the-art tracking methods in terms of APE
and AOR.

Fig. 6. Quantitative experiment on the LaSOT test dataset.

4.4 Attributes Evaluation

We compare our method with the state-of-the-art tracking methods on LaSOT
test datasets with different attributes, including Partial Occlusion (PO), Back-
ground Clutter (BC), Out-of-view (OV), Fast Motion (FM), Full Occlusion (FO),
Scale Variation (SV), Rotation (RO), and Deformation (DEF).

Figure 6 illustrates the superior performance of our method compared to
the baseline approach across various challenging attributes. What’s more, Fig. 7
allows a qualitative comparison between the performance of the proposed method
and the baseline algorithm TransT [4] on the sequences containing background
clutter from LaSOT test dataset. Benefiting from the reverse diffusion and STW
modules, our proposed method achieves a tracking success rate of 63.8% and a
tracking accuracy of 64.0%.
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4.5 Compatibility Experiment

We combine the proposed method as a pluggable module with state-of-the-
art tracking algorithms. By utilizing this approach, we can differentiate targets
from distractors in the proposal candidates provided by cutting-edge tracking
algorithms. Our experiments are conducted on the LaSOT test dataset, which
includes the BC attribute. As shown in Table 3 and Fig. 7, the proposed method
can be effectively integrated with tracking algorithms that utilize the proposal
candidate strategy, leading to enhanced tracking performance over 4% in back-
ground clutter scenarios.

Fig. 7. Quantitative experiment on the LaSOT test dataset.

Table 3. Compatibility Experiment on the sequences containing BC problem in LaSOT
test dataset.

Method Precision (%) Success (%) Precision (+ours) (%) Success (+ours) (%)

SiamFC++ [28] 46.7 48.0 48.1 ↑ 52.9 ↑
SiamRPN++ [15] 42.6 44.9 45.7 ↑ 49.3 ↑
ASRCF [6] 31.5 32.6 35.2 ↑ 37.8 ↑

5 Conclusion

This paper proposed a visual tracking method for the background clutter prob-
lem, utilizing the Siamese network and diffusion model. Firstly, reverse diffusion
is employed, treating the process of distinguishing the target from background
interferences as a denoising process. Secondly, the spatial-temporal weighted
module was introduced to support the evaluation of background interferences
that do not conform to a Gaussian distribution, determining whether they are
noise. According to the experimental results, the proposed method achieves a
high success rate while preserving high positional precision for visual tracking.
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In the future, to further mitigate the impact of the probability distribution of
distractors on the proposed method, we will combine feedback reinforcement
learning techniques to model the actual distribution of distractors and incorpo-
rate it into the inference process of reverse diffusion. This enhancement could
further improve the tracking success rate.
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dation of China Mobile (NO. R23100TM and R23103H0).
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Abstract. Objects are often organized in a hierarchy where coarse-
grained categories are comprised of subordinate fine-grained classes.
Comparing with the fine-grained labels, the coarse-grained labels are
much affordable to obtain. The coarse-grained labels can boost the semi-
supervised learning (SSL) by offering extra regularization on the fea-
ture space of finer-grained recognition. However, coarse-grained labels
are ignored by most of works in SSL. An intuitive way to utilize the
coarse labels for SSL is to impose an extra coarse-grained categorization
constraint, which will cause the class confusion between fine-grained cat-
egories belonging to the same coarse-grained category thus is sub-optimal
for SSL. In this paper, we present an instance-proxy loss (IPL) to boost
the separability of the fine-grained classes within the same coarse-grained
class, as well as keep the intra-class feature space of coarse-grained classes
compact. Specifically, IPL includes instance-level loss and proxy-level
loss to impose constraints on both instance-to-instance and instance-to-
proxy relations. Our approach outperforms the state-of-the-art meth-
ods on three benchmark datasets, showing significant improvement with
small proportion of fine-grained labels, e.g., it brings 10.14% accuracy
improvement on CUB-200-2011 with 15% of labeled data.

Keywords: Semi-supervised Learning · Fine-grained Visual
Categorization · Instance-level loss · Proxy-level loss

1 Introduction

Recently, the impressive progress of deep learning highly depends on the large-
scale labeled datasets. However, labeling can be a time-consuming work requiring
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expert knowledge, especially in fine-grained visual classification (FGVC) task,
which aims at distinguishing subordinate categories of some general classes like
birds [23], cars [11,26] and aircrafts [16]. FGVC has attracted much research
attention due to plenty of applications, while it is challenging to collect datasets
with sufficient annotations in many practical FGVC problems.

Semi-supervised learning (SSL) is a compelling technique to reduce the
dependence on labeled data by utilizing limited number of labeled data and
large amounts of unlabeled data. Recent years have witnessed some progress in
dealing with the label scarcity issue of FGVC in SSL framework. Objects are
inherently organized into the hierarchical structure in which fine categories are
grouped into coarse categories. The coarse-grained labels are an effective alterna-
tive to reducing annotation cost, as they can be easily obtained from non-expert.
But only relatively few works [8,21] exploit coarse-grained labels in SSL. This
paper focuses on the recently proposed task setting [21] where the coarse-grained
labels are available for training while only small proportion of the fine-grained
labels can be used.

An intuitive way to leverage coarse-grained labels is to train two separate clas-
sifiers for fine level and coarse level. Although the supervision of coarse level does
work by helping distinguish similar fine-grained classes from different coarse-
grained classes (Fig. 1 (a)-top), it reduces the intra-class variance and squeezes
the feature space within the same coarse-grained class, eliminating the discrimi-
nation between fine-grained classes (Fig. 1 (a)-bottom). This contradiction issue
also happens in unsupervised learning with coarse-grained labels. ANCOR [3]
alleviates this issue by presenting an angular normalization to maximize the
synergy between contrastive InfoNCE loss and coarse-grained classification loss.
While it pushes the query away from its corresponding coarse-grained proxy
when imposing constraint on positive pair, which may diminish the effectiveness
of synergy. (In contrastive loss, a query and a key form a positive pair if they are
data-augmented versions of the same image and the key is positive key. It forms
a negative pair otherwise, and the key is negative key.) In this paper, we aim to
mitigate this contradiction issue in semi-supervised learning with coarse-grained
labels by introducing instance-proxy loss (IPL), which takes good points of both
instance-level and proxy-level losses and corrects the defect of angular normal-
ization. It not only keeps the compactness within coarse-grained classes (Fig. 1
(b)-top), but also facilitates the separability of fine-grained classes belonging to
the same coarse-grained class (Fig. 1 (b)-bottom).

Our proposed IPL incorporates instance-level loss and proxy-level loss to
impose constraints on both instance-to-instance and instance-to-proxy relations.
The instance-level loss introduces coarse-grained constraint into supervised con-
trastive loss [10]. (Supervised contrastive loss treats a representation of an image
as query. Positive keys are the representations which belong to the same class of
query, and negative keys are from different classes of query. Positive pair means
query and key from the same class, negative pair are opposite.) Instance-level
loss restricts positive keys and negative keys in the same coarse-grained category,
and increases the distance between negative pairs, providing distinction between
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Fig. 1. The tSNE visualization of learned representation. We train two classifiers
supervised by 15% fine-grained labels and 100% coarse-grained labels. Stars are proxies
for coarse-grained classes (weights of coarse-level classifier). For the top images, points
of different colors means features from different coarse-grained classes. For the bottom
images, points of different colors means features of different fine-grained classes. (a) CE:
it is training with cross-entropy (CE) losses for fine level and coarse level. (a)-top depicts
feature distribution of all categories. (a)-bottom shows feature distribution of coarse-
grained class 11. (b) CE+IPL (Ours): it is training with two CE loss and IPL. (b)-top
depicts feature distribution of all categories. (b)-bottom shows the feature distribution of
coarse-grained class 11. Our method can not only keeps the compactness within coarse-
grained classes (top), but also boosts the separability of fine-grained classes belonging
to the same coarse-grained class (bottom). (Color figure online)

fine-grained classes within the same coarse-grained class. Meanwhile, to retain
the compact feature space of coarse-grained class, it still pulls query close to its
coarse-grained proxy (coarse-level classifier weights), which improves ANCOR
by removing the angular normalization of positive pair, and further applies it to
semi-supervised scenario to obtain instance-level loss. For the proxy-level loss, it
is proposed to further explore the underultilized instance-to-proxy relations of
unlabeled data. It encourages query to be close to the proxy of its fine-grained
class (weights of fine-level classifier) and far away from those of different fine-
grained classes, which further ensures separation of fine-grained classes.

To summarize, our contributions are as follows: (1) we present IPL, to
improve performance of SSL with coarse labels, by facilitating separability of
fine-grained classes belonging to the same coarse-grained class, as well as main-
taining the compactness within coarse-grained class. Specifically, IPL is com-
prised of instance-level loss and proxy-level loss, leveraging both instance-to-
instance and instance-to-proxy relations to enable a more separable feature space
of fine-grained classes with coarse supervision loss. (2) our method achieves state
of the art (SOTA) performance on three benchmark datasets, CIFAR100 [12],
CUB-200-2011 [23], and Semi-iNat [20], showing significant improvement with
small proportion of labeled data.
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2 Related Work

Fine-Grained Feature Learning with Coarse-Grained Labels. Recently,
researchers delve into weakly supervised learning with coarse-grained labels. [28]
gives a theoretical guarantee for learning fine-grained representations with
instance loss when coarse-grained labels are available. However, [28] neglects the
contradiction between instance loss and coarse-grained classification objective.
ANCOR alleviates the problem by introducing an angular normalization mod-
ule into contrastive InfoNCE loss. Our instance-level loss is inspired by ANCOR,
but we improve ANCOR and apply it into the task of SSL with coarse-grained
labels and fine-grained labels of certain proportion. Besides, we also proposed
a proxy-level loss to exploit the relations between instance and proxy to fur-
ther facilitate the task, which is considered by relatively few works. Specifically,
HIERMATCH [8] proposes to combine SSL methods with label hierarchy explo-
ration method [4] which trains a set of independent classifiers for different class
hierarchies with disentangled features to fed, and each classifier uses its feature
as well as the features from finer classifiers to predict while gradient is stopped
from flowing to the finer level. Hierarchical supervised loss (HL) [21] utilizes the
unlabeled data with its coarse-level labels with CE loss, and obtains the pre-
diction of each coarse-grained class by summing probabilities of its subordinate
fine-grained classes. Both HL and HIERMATCH tackle the task by conquering
two separate problems, i.e. SSL and the utilization of coarse-grained labels. Dif-
ferently, we focus on how to combine SSL and coarse-grained labels, and propose
to embed coarse-grained constraint into SSL framework.

Semi-supervised Learning. Recent advances in self-supervised learning and
semi-supervised learning drive newly proposed methods to make a combination
of them [15,17,24,25,31]. Among them, Self-Tuning [25] is the most related
work. It presents a supervised constrastive loss named PGC to mitigate the
confirmation bias induced by model’s overfitting to false pseudo-labels. Our work
is different from Self-Tuning as following: (1) We target at a different task, SSL
with coarse-grained labels and fine-grained labels of certain proportion. (2) PGC
loss uses fixed number of negative keys from each different fine-grained category,
and it can only be applied to datasets with small class number as the size of its
negative keys increases with the class number, resulting in an out of memory
of GPU. However, our instance-level loss restricts the negative keys within the
same coarse-grained class, and always use constant quantity of negative keys,
which is applicable to large-scale datasets.

3 Method

The framework of SSL with the proposed IPL is illustrated in Fig. 2. It consists
of: (1) an encoder B : I → q ∈ R

d, which is attached by a global average pooling.
(2) a momentum encoder E : I → k ∈ R

d, which is similar to B, but updates with
exponential moving average of weights from B. (3) a coarse-grained class linear
classifier C : q → pc ∈ R

C with Wc denoting its weights. (4) a fine-grained class
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Fig. 2. An overview of our method. The image is augmented twice and fed into
model B and its momentum-updated model E to generate q and k, respectively. q is
input into coarse classifier C to compute the coarse-level CE loss, Lcoarse, and fine
classifier G to get Lfine for labeled data or generate fine pseudo label ŷ for unlabeled
data. k is stored in the queue for positive keys of fine-grained class y or ŷ, and the queue
for negative keys of one of other fine-grained classes with the same coarse-grained class
of k. IPL consists of Lin and Lpro: Lin uses q, k,Qy/ŷ

neg,Qy/ŷ
pos as well as weights of C,

Wc, and Lpro utilizes q and weights of G, Wf . The combination of them helps learn
a feature space where different subordinate fine-grained classes are separable, and the
interiors of coarse-grained classes are compact.

linear classifier G : q → pf ∈ R
F with weights Wf . (5) a set of queues for placing

the positive keys: {Qi
pos}F

i=1, where Qi
pos ∈ R

d×P with P positive keys for each
fine-grained class i. (6) a queue set: {Qi

neg}F
i=1 for negative keys. Qi

neg ∈ R
d×K

with K negative keys, which stores the keys from other fine-grained class within
the same coarse-grained class of i. (7) the supervised CE losses: Lcoarse and
Lfine. (8) our IPL, which is described below. Here, we will give a description of
the training process.

For clarification, the process focuses on an unlabeled image Iu with coarse-
grained label yu

c . Iu is augmented twice to generate Iu
q and Iu

k , then they are fed
into the corresponding encoders to extract qu = B(Iu

q ) and ku = E(Iu
k ). By input-

ing qu into fine-level classifier G, fine-grained pseudo-label ŷ = argmaxfG(qu) is
obtained. Our positive keys are comprised of ku and keys in Qŷ

pos, and negative
keys are from Qŷ

neg. For the losses, the supervised CE loss for coarse level: Lcoarse

are computed based on pu = C(qu) and yu
c , and IPL is applied to positive keys

{k+}, negative keys {k−}, qu, positive proxy W ŷ
f (the ŷ-th row of Wf ), and neg-

ative proxies {W−
f } (the other rows of Wf except ŷ-th). As for a labeled image

I with fine-grained label y and coarse-grained label yc, we can simply replace ŷ
with y to get losses Lcoarse, IPL. And we compute Lfine with pf = G(q) and y,
which is only for labeled data. Note that these queues are iteratively and pro-
gressively updated by replacing the oldest keys with the newly-generated ones.
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3.1 Instance-Level Loss

We first review the ANCOR method, then improve it, and introduce it into SSL
to attain our instance-level loss.

Revisit of ANCOR. ANCOR is presented to induce synergy between coarse-
level supervised CE loss and contrastive InfoNCE loss. The coarse-grained super-
vision loss forces feature embedding q (query) to shift towards the proxy of
coarse-grained class yc, presented by W yc

c . And all features of class yc will col-
lapse to W yc

c /||W yc
c ||, which conflicts with the contrastive loss attempting to

push features in yc away from each other. To mitigate this contradiction, ANCOR
defines an angular normalization, which is applied in InfoNCE loss. It can be
formulated as:

Lacon = −log
exp(Â(q, k+, yc)/τ)

exp(Â(q, k+, yc)/τ) +
∑

j exp(Â(q, k−
j , yc)/τ)

(1)

where Â(x, z, y) = A(x, y) · A(z, y), A(x, y) = x−Wy
c

||x−Wy
c || . And x and W y

c are
normalized, x = x/||x|| and W y

c = W y
c /||W y

c ||. (All features occur below are
normalized) A is the angular normalization module. q is a query representation,
k+ is a positive key, and k−

j is a negative key. τ is a temperature hyper-parameter.

Improvement of ANCOR. By expanding the formula of Â, we give some
insights into how ANCOR works and improve it. Â can be rewritten as:
Â(x, z, y) = x·z−x·Wy

c −Wy
c ·z+1

||x−Wy
c ||·||z−Wy

c || . Then, we find that Lacon minimizes Â(q, k−
j , yc),

meaning that q ·k−
j is minimized, and q ·W yc

c is maximized at the same time. The
core of ANCOR is to pull query to its coarse-grained proxy when pushing nega-
tive pairs away from each other. However, ANCOR still can be improved. Since it
also maximizes Â(q, k+, yc), the q ·k+ is maximized and q ·W yc

c minimized mean-
while. It suggests that the constraint imposed on positive pair can push query
away from its coarse-grained proxy, which hinders the maintaining of a compact
feature space within coarse-grained class. Therefore, we discard the angular nor-
malization of positive pair. And we also remove the ||q − W y

c || · ||k−
j − W y

c || in
angular normalization of negative pair to balance the scale of negative pairs and
positive pair. Then, the loss become:

Lincon = −log
exp(q · k+/τ)

exp(q · k+/τ) +
∑

j exp(IN (q, k−
j , yc)/τ)

(2)

where
IN (x, z, y) = x · z − x · W y

c − W y
c · z + 1 (3)

Instance-Level Loss. We apply the IN operation in Eq.(3) to SSL framework
to obtain our instance-level loss:

Lin = − 1
P + 1

P∑

p=0

log
exp(q · k+

p /τ)
Pos + Neg

(4)
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where Pos =
∑P

i=0 exp(q · k+
i /τ), Neg =

∑K
j=1 exp(IN (q, k−

j , yc)/τ). And k+
0

is the differently-augmented view of q. k+
1 , k+

2 , · · ·, k+
P are positive keys in fine-

grained class y. k−
j is negative keys belonging to other fine-grained classes in

coarse-grained class yc.
Our instance-level loss pull the query from the same fine-grained class to

be more close and push the query away from negative keys which are from the
same coarse-grained class. And it can boost the discrimination between different
fine-grained classes in the same coarse-grained class. In the meanwhile, IN can
keep the compactness within the same coarse-grained class by pulling query to
its coarse-grained proxy.

3.2 Proxy-Level Loss

We further present a proxy-level loss to leverage the relationship between
instance and proxies. CE loss is effective to encourage the similarity of data
and positive proxy (the fine-grained proxy the data belongs to), while in SSL
it is easily misled by false pseudo-labels, making the network overfit to these
incorrect predictions. For our work, if we simply use CE loss to delve into
the instance-to-proxy relations, the fine-grained proxies will suffer from these
false pseudo-labels badly, due to that they are only supervised by CE loss.
And the rest of the model can alleviate the reliance on CE loss by supervi-
sion of Lin. Therefore, our proxy-level loss stops the gradient of CE loss flow-
ing to these fine-grained proxies in implementation. And it can be written as:
Lpro = −log

exp(q·Wy
f /τ)

exp(q·Wy
f /τ)+

∑F−1
j=1 exp(q·W j

f /τ)
, where WF

f = W y
f . W y

f is the positive

proxy, and W j
f is the negative proxies (the proxies of fine-grained classes other

than y). Different from Lin, it pulls q towards its corresponding fine-grained
proxy, as well as pushes q away from other proxies.

3.3 Instance-Proxy Loss

Combining Lin and Lpro primarily (Lin + Lpro) will result in slow convergence
or sub-optimization when conflict between supervised contrastive and CE loss
occurs, according to [7]. Therefore, we incorporate our losses referring to Paco [7],
which adjusts the intensity of them and forbid conflict. And our IPL is:

Lipl =
P+1∑

p=0

−wp log
exp(q · zp/τ)
Pos2 + Neg2

(5)

Pos2 =
P+1∑

i=0

exp(q · zi/τ), Neg2 =
K+F−1∑

j=1

exp(T (q, zj , yc)/τ)

wp =
{

α, p∈ [0, P ]
1.0, p=P + 1 , zp =

{
k+

p , p∈ [0, P ]
W p

f , p=P + 1 ,

T (q, zj , yc)=
{IN (q, k−

j , yc), j ∈ [1,K]
q · W j

f j ∈ [K + 1,K + F − 1]
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Concretely, α is a hyper-parameter in (0, 1) to trade off the performance of
Lin and Lpro. k+

p and k−
j are positive keys and negative key. W p

f (or W y
f ) and W j

f

are positive fine-grained proxy and negative fine-grained proxy. And Lipl is scaled

by
1

∑P+1
p=0 wp

in implementation. Our final loss is: L = Lipl + Lcoarse + Lfine

(Lfine is only available with labeled data).

Table 1. Statistics of datasets. The number of train images includes that of labeled
and unlabeled train images.

Dataset CUB-200-2011 CIFAR100 Semi-iNat

# Coarse classes 37 20 8

# Fine classes 200 100 810

# Labeled train images 900/1.8K/3K 400/1K/2.5K 9.7K

# Train images 6K 50K 101K

# Test images 6K 10K 16.2K

Table 2. Error rates (%) ↓ on CIFAR100
with 400, 2500 and 10000 labeled data.

Type Method #Labels

400 2.5k 10k

Baselines Fine− 82.56 57.94 35.41

Fine−Coarse 44.49 33.48 25.16

Fine+ 19.30 19.30 19.30

SSL Π-model [13] – 57.25 37.88

Pseudo-Labeling [14] – 57.38 36.21

Mean Teacher [22] – 53.91 35.83

MixMatch [2] 67.61 39.94 28.31

UDA [27] 59.28 33.13 24.50

ReMixMatch [1] 44.28 27.43 23.03

FixMatch [18] 49.95 28.64 23.18

SimPLE [9] – – 21.89

BAM-UDA [15] 40.30 – 21.70

FlexMatch [30] 39.94 26.49 21.90

Ours 35.51 26.26 21.61

Table 3. Classification accuracy (%) ↑ on
CUB-200-2011 (ResNet-50 pre-trained).

Type Method Label Proportion

15% 30% 50%

Baselines Fine− 45.25 59.68 70.12

Fine-Coarse 63.00 71.28 77.16

Fine+ 82.02 82.02 82.02

SSL Π-model [13] 45.20 56.20 64.07

Pseudo-Labeling [14] 45.33 62.02 72.30

Mean Teacher [22] 53.26 66.66 74.37

UDA [27] 46.90 61.16 71.86

FixMatch [18] 44.06 63.54 75.96

SimCLRv2 [6] 45.74 62.70 71.01

Self-Tuning [25] 64.17 75.13 80.22

SSL+Coarse Resnet50+HL [21] 64.45 71.51 77.05

Pseudo-Labeling+HL [21] 63.76 72.23 77.55

Ours 74.31 77.09 81.12

4 Experiments

Datasets. We perform our experiments on three datasets: (1) CUB-200-
2011 [23]. Similar to self-tuning [25], we make the labeled proportion of training
data range from 15% to 50%. The coarse-grained labels are obtained from [5].
(2) CIFAR100 [12]. Since it is a benchmark SSL datasets, we conduct experi-
ments on it to compare with SSL methods. (3) Semi-iNat [20]. It is collected by
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the semi-supervised challenge at the FGVC8 workshop [20]. There are 7 levels
in Semi-iNat, we primarily conduct our experiments on Phylum level to com-
pare with SOTA methods. And extensive exploration of other levels is presented
in supplementary material. Our Table 1 illustrates some details of CUB-200-
2011, CIFAR100, and Semi-iNat. Besides, experiments on combination with self-
supervised method are also conducted in supplementary material.

Implementation Details. We use ResNet50 and Wide ResNet28-8 (WRN-28-
8) [29] (only for CIFAR100 to compare with SOTA methods) as our backbones,
and the dimension of the output of encoder B are d = 2048 and d = 512, respec-
tively. We use cosine-annealing with base learning rate of 0.001 and weight decay
of 0.0001 to train ResNet50. For WRN-28-8, the learning rate and weight decay
are 0.03 and 0.001. Empirically, the temperature τ is set as 0.2 for CIFAR100
and CUB-200-2011, and 0.6 for Semi-iNat. The positive queue size P is 32, and
the negative queue size K is 1000 for CIFAR100, and 250 for CUB-200-2011 and
Semi-iNat. The α is set 0.5 on CIFAR100, and 0.01 on the other.

Baselines. Here, we give some baselines used in all experiments. (1) Fine+.
The backbone network B along with a fine-level classifier(G) is trained with all
labeled data from fine level. It can be a upper-bound of our method. (2) Fine−.
It is similar to Fine+, except that it is only trained with a subset of labeled data
in fine level, which is a lower-bound of our method. (3) Fine-Coarse. It consists
of the backbone network B, a fine classifier(G) and a coarse classifier(C). The
labels of data is comprised of a subset of fine-grained labels, and all labels of
coarse-grained classes.

Table 4. Classification accuracy (%) ↑ on Semi-
iNat (ResNet-50 pre-trained on ImageNet).

Type Method Acc

Baselines Fine− 42.65

Fine-Coarse 44.52

Fine+ 86.00

SSL Pseudo-Labeling [14] 40.40

Self-Training [19] 42.40

MoCo [19] 41.70

MoCo + Self-Training [19] 42.60

FixMatch [18] 44.10

SSL+Coarse HL [21] 46.60

Pseudo-Labeling+HL [21] 44.90

FixMatch+HL [21] 47.90

Self-Training+HL [21] 44.80

MoCo + Self-Training+HL [21] 45.80

Ours 49.11

Table 5. Ablation studies on
CIFAR100 with 400 labels in fine-
level. (ResNet-50 pre-trained)

Type Method Acc

Baselines Fine− 36.50

Fine-Coarse 61.82

Fine+ 84.55

Instance-level Lin w/o IN+ 65.35

Lin w/o IN 64.92

Lin w/o IN w A 66.40

Lin 68.70

Proxy-level Lpro 66.14

Combination Lin + Lpro 63.84

Lipl 69.13

4.1 Comparison to SOTA Methods

CIFAR100. CIFAR100 is a popular dataset for SSL methods, and we con-
duct experiments on it to verify the superiority of our approach. The results of
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CIFAR100 is illustrated in Table 2. As can be seen from Table 2, our method out-
performs all the SSL methods across 15% and 30% label proportions, especially
in the results of 400 labels, where we surpass the best SSL method by 4.43%.
We also observe that our method will gain much more performance improvement
with fewer proportion of labeled data.

CUB-200-2011. CUB-200-2011 is a popular dataset in FGVC, and the results
of experiments is in Table 3. It also shows consistent advantages of our method
over Self-Tuning (best SSL methods) across various label proportions, with obvi-
ous boosting of 10.14% in label proportion of 15%. It is noteworthy that the size
of negative keys utilized by Self-Tuning is twenty-five times of ours, suggesting
that even much larger and more diverse negative keys are not sufficient to the
performance gap brought by our method by leveraging coarse-grained labels.
Comparing with the methods of SSL+Coarse, our approach performs much bet-
ter than them.

Semi-iNat. Semi-iNat is a newly proposed dataset for FGVC tasks with SSL
method. And we are capable of comparing to SOTA methods which also use
coarse labels to promote SSL (’SSL+Coarse’ in Table 4) on Semi-iNat. The
results are suggested in Table 4. Our method achieves about 4.59% excess accu-
racy over ’Fine-Coarse’, and provides better performance than any other SSL
and SSL+Coarse methods. It demonstrates that our method can be also applied
to large-scale datasets.

4.2 Ablation Study

We conduct ablation studies on the effect of our losses (in Table 5).

The Effectiveness of Instance-Level Loss. For the instance-level loss, we
compare some variants: (1) Lin w/o IN+. We remove IN operation of Lin in
Eq. (4), and use negative keys from all other fine-grained categories. The Neg
in Eq. (4), become Neg =

∑(F−1)K
j=1 exp(q · k−

j /τ). For a fair comparison, we
introduce 10 keys from each fine-grained category to obtain 990 negative keys.
(There are 1000 negative keys in Lin.) (2) Lin w/o IN . It is our Lin in Eq. (4)
without IN operation, and the Neg in Eq. (4) is Neg =

∑K
j=1 exp(q · k−

j /τ).
(3) Lin w/o IN w A. We include it here to demonstrate the improvement of
our IN based loss over angular normalization A based loss. The loss is below:

Lain = − 1
P+1

∑P
p=0 log exp(Â(q,k+

p ,yc)/τ)

Pos3+Neg3 , Pos3 =
∑P

i=0 exp(Â(q, k+
i , yc)/τ),

Neg3 =
∑K

j=1 exp(Â(q, k−
j , yc)/τ).

We draw following conclusion on CIFAR100 for the instance-level: (1) without
IN , the performance of Lin w/o IN+ is better than Lin w/o IN . It may result
from that comparing with using negative keys within the same coarse class (Lin

w/o IN ), using negative keys from all other fine-grained classes (Lin w/o IN+)
can diminish the constraint the loss imposes to disperse same coarse-grained class
elements in feature space. (2) Lin w/o IN w A and Lin can bring performance
improvement over Lin w/o IN , proving that IN and A can mitigate the strong
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intensity of negative keys belonging to the same coarse-grained class, and pull
query towards its coarse proxy to hold the compact feature space of coarse-
grained classes. (3)Lin surpasses Lin w/o IN w A by 2.3%, showing our IN is
more effective in pulling query close to its coarse-grained proxy.

The Effectiveness of IPL. There are some findings on the rest: (1) Lpro and
Lin can boost the accuracy over the ’Fine-Coarse’ method, by exploiting the
instance-to-proxy and instance-to-instance relations, respectively. (2) IPL can
further facilitate the results by providing an synergy between Lpro and Lin, which
is demonstrated by that IPL achieves a much higher accuracy than Lin + Lpro.
(3) Lipl boosts the performance of ’Fine-Coarse’ method by a large margin,
which verifies our method can leverage the coarse-grained labels effectively by
making the fine-grained classes in the same coarse-grained class separable and
maintaining the intra-class feature space in coarse level compact.

Hyper-Parameter Analysis of α. We search α in [0.005, 0.9]. And α is 0.5 on
CIFAR100, 0.01 on CUB-200-2011 and Semi-iNat. We use pretrained Resnet50
as backbone. When α is (0.005, 0.01, 0.05, 0.1, 0.5, 0.9), the accuracy(%) is:
CIFAR100 with 400 labels (68.15, 67.64, 68.78, 69.02, 69.13, 68.29), CUB-200-
2011 with 15% label rate (73.73, 74.31, 73.43, 72.80, 70.95, 70.81), Semi-iNat
(48.77, 49.11, 48.14, 48.48, 47.48, 47.69). The results suggest the accuracy is
fluctuating within a relatively small range as α changes, and it is always above
the baseline ’Fine-Coarse’ in Table 2, Table 3 and Table 4.

5 Conclusion

Coarse-grained labels can mitigate the reliance on labeled fine-grained labels
which is expensive to obtain. However, introducing the coarse-level supervision
will result in the suppression of intra-class diversity and inseparability of subor-
dinate fine-grained classes. To diminish this challenge, this paper proposes IPL
to discriminate the different fine-grained classes from the same coarse-grained
class, and retain the compactness within coarse-grained classes. IPL consists of
instance-level loss and proxy-level loss to exploit the rich relationship between
distance and instance, as well as instance and proxy. Experiments on CIFAR100,
CUB-200-2011 and Semi-iNat demonstrate our superiority over both SSL and
’SSL+Coarse’ methods.
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Abstract. In a complex traffic environment, the detection and associa-
tion of moving objects can easily lead to tracking errors. This work pro-
poses a novel attention mechanism called MCSA, which integrates multi-
spectral attention and spatial attention. Additionally, a fast and anchor-
free real-time vehicle tracking and counting model named FAFVTC is
constructed. MCSA is used for extracting the features of moving objects,
while FAFVTC is able to better detect and associate these objects. The
effectiveness of the FAFVTC method is verified on the UA-DETRAC
dataset. FAFVTC outperforms existing techniques with a 1.3 improve-
ment in the PR-MOTA metric and a 2.16 improvement in the MOTA
metric. The average tracking speed achieved is 27.9 FPS. The experi-
mental results demonstrate that the proposed approach enables fast and
accurate vehicle tracking and counting.

Keywords: Vehicle tracking · Attention mechanism · Vehicle counting

1 Introduction

In recent years, the development of advanced computer vision technology has
made it possible to track and count vehicles efficiently and accurately. MOT is a
fundamental task in computer vision. As one of the key technologies within ITS,
vehicle tracking provides essential information for various applications such as
traffic flow estimation, vehicle monitoring, and road condition analysis. However,
in practical applications, vehicle tracking and analysis based on traffic surveil-
lance videos is not a simple task due to factors such as occlusions, lighting
variations, weather changes, and low video resolutions.

Traditional MOT algorithms include KCF [1], MDP, JPDA, and Particle Fil-
ter. However, these methods suffer from significant prediction errors and poor
robustness against occlusions and similar motion interferences. Recent research
in this field has primarily focused on Joint Detection and Tracking (JDT). Promi-
nent examples of such approaches are FairMOT [2] and FAFMOTS [3], which
aim to reduce processing time and achieve real-time tracking capabilities.

This work proposes a single-stage multi-object detection, tracking, and
counting method called FAFVTC. It combines MCSA attention for object
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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https://doi.org/10.1007/978-981-99-8555-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8555-5_20&domain=pdf
http://orcid.org/0000-0002-7701-8909
http://orcid.org/0000-0001-7682-8478
http://orcid.org/0000-0002-4678-1936
https://doi.org/10.1007/978-981-99-8555-5_20


252 Z. Wang et al.

identification, localization, and feature extraction, while also replacing the data
association method. FAFVTC demonstrates excellent performance on datasets
including congested scenes, achieving high accuracy and real-time capabilities.
As a result, its deployment in ITS holds great potential. In summary, the con-
tributions of this work are as follows:

(1) The vehicle tracking and counting framework FAFVTC was proposed, which
combines multi-object detection, data association, and vehicle counting mod-
ules within a unified framework.

(2) The MCSA attention mechanism was proposed, which integrates multi-
spectral channel attention and spatial attention. It addresses the deficiency
of feature information in existing attention methods and fully utilizes low-
frequency component information.

(3) A vehicle counting method was proposed which was validated on the
UA-DETRAC dataset and real-world surveillance videos. The experiments
demonstrate that the proposed FAFVTC enables the rapid and accurate
completion of vehicle tracking and counting tasks.

2 Related Work

Vehicle Detection And Tracking: Existing MOT methods can be categorized
into different research directions, such as Tracking-by-Detection (TBD) and Joint
Detection and Tracking (JDT).

The TBD method separates object detection and tracking, which prevents
the attainment of globally optimal results. SORT [4], DeepSORT [5], ByteTrack
[6], and TADAM [7] are examples. Li et al. [8] represent data association as a
graph optimization problem. STURE [9] utilizes a motion prediction network
that incorporates temporal features for dynamic position prediction.

The JDT method integrates motion object detection and tracking into a uni-
fied framework. FairMOT [2], CenterTrack [10], and TraDeS [11]are all based on
the CenterNet architecture and utilize anchor-free detection methods for object
detection. FAFMOTS [3] based on FairMOT, integrates the idea of instance seg-
mentation. FAMNet [12] enhances feature representation, affinity models, and
multi-dimensional assignment, optimizing these three components jointly. LGM-
Tracker [13] solves the vehicle tracking problem solely from a motion perspective.

Attention Mechanism: The attention mechanism enhances the model’s abil-
ity to focus on relevant information, and selectively attend to specific parts of
the input data. It can be categorized into channel-wise, spatial-wise, and hybrid
attention mechanisms. SENet [14] enhances the model’s representation capabil-
ity by dynamically adjusting the weights of each channel. CBAM [15], based
on SENet, combines channel attention and spatial attention along two inde-
pendent dimensions. LCT [16] discovers a negative correlation between global
context and attention values and models it using linear transformations. GCT
[17] captures global background information from input images to improve the
accuracy of model predictions. FCANet [18] dynamically focuses on different
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frequency channels to enhance the representation of important frequency infor-
mation. CFCANet [19] improves the distribution of DCT frequency components
in FCANet. EANet [20] implicitly considers the correlation between different
samples.
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Fig. 1. The architecture of MCSA-DLA-34.

Vehicle Counting: Vehicle counting based on surveillance videos typically
involves three components: vehicle detection, tracking, and trajectory process-
ing. The challenges in it lie in the presence of motion blur, vehicle occlusion, and
target scale variations. Amato et al. [21] proposed a real-time method for assess-
ing vehicle numbers on highways or in parking lots. Zhang et al. [22] designed a
traffic surveillance system based on Mask R-CNN, including modules for vehi-
cle counting, vehicle type detection, and vehicle speed estimation. Gomaa et al.
[23] introduced a method based on YOLOv2 and feature point motion analysis.
Ciampi et al. [24] presented an approach for handling overlapping regions in
multi-camera setups to estimate vehicle numbers in parking lots. Xu et al. [25]
proposed a CityCam-to-Edge collaborative learning framework.

3 Method

3.1 Backbone Network

The DLA-34 is obtained by incorporating DLA [26] into ResNet-34 and replac-
ing the regular convolutions in the DLA upsampling modules with Deformable
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Convolution (DCN). The DCN can better adapt to the shape and position
changes of moving objects, thereby improving the accuracy of motion object
recognition and localization. Incorporating the MCSA attention into DLA-34,
we propose MCSA-DLA-34. MCSA-DLA-34 is employed as the backbone net-
work to enhance the feature extraction capability of the network. The structure
of MCSA-DLA-34 is illustrated in Fig. 1.

Fig. 2. The structure of the MCSA mechanism.

If the input image has a size of Wimg ×Himg ×3, the MCSA-DLA-34 outputs
a feature map of shape C × W × H, where W = Wimg/S and H = Himg/S.
Here, C and S are hyperparameters, where C represents the number of feature
channels, and S represents the stride.

3.2 Multi-spectral Channel and Spatial Attention (MCSA)

The FAFVTC incorporates the MCSA-DLA-34 as its backbone network, which
integrates the MCSA attention. The predict heads of FAFVTC also utilize the
MCSA attention. MCSA integrates the multi-spectral channel attention and spa-
tial attention. It dynamically focuses on different frequency channels and spatial
information based on their importance, effectively enhancing the representation
of important information. The structure of MCSA is illustrated in Fig. 2.

In FCANet, the MCA divides the input image X along the channel dimen-
sion into n channel blocks and assigns a 2D DCT frequency component index to
each channel block. Although the approach of allocating frequency components
by groups, as in MCA, introduces information from different frequency compo-
nent indices, each channel block only utilizes one frequency component index,
neglecting the other frequency component indices within the block and utilizing
only a partial portion of the low-frequency information.

Considering that low-frequency components contain vital information, such
as basic object structure, it is necessary to fully exploit the complete informa-
tion of low-frequency components to enhance features. Inspired by CFCANet,
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we can assign the corresponding 2D DCT frequency component indices to the
entire feature map. To fully leverage the complete information of low-frequency
components, in MCSA, the input image X ∈ R

C×H×W is not divided into chan-
nel blocks. Instead, it is directly multiplied by n 2D DCT frequency component
indices, where C represents the number of channels, and H and W represent
the height and width of the feature map, respectively. Freqi denotes the result
of element-wise multiplication between the i-th 2D DCT frequency component
index and the input X. Freqi can be calculated using Eq. (1).

Freqi =
H−1∑

h=0

W−1∑

w=0

X:,h,w cos
(

πh

H

(
ui +

1
2

))
cos

(
πw

W

(
vi +

1
2

))
(1)

where [ui, vi] corresponds to the i-th 2D DCT frequency component index of X.
i ∈ {0, 1, . . . , n − 1}, h ∈ {0, 1, . . . ,H − 1}, w ∈ {0, 1, . . . ,W − 1}.

By using Eq. (2), we vertically concatenate all Freqi values to obtain a C ×n
matrix. Taking the maximum value of each column in the matrix yields the most
prominent feature value for each channel, resulting in a multi-spectral vector
Freq.

Freq = MFmax

(
cat

([
Freq0, F req1, . . . , F reqn−1

]))
(2)

where MFmax denotes the maximum value taken for each column of the matrix.
After obtaining the multi-spectral vector Freq, a fully connected layer learn-

ing process is performed to obtain the channel attention mechanism. The entire
channel attention mechanism can be represented by Eq. (3).

MC att = sigmoid(FC(Freq)) (3)

To capture the spatial relationships of features, spatial attention was incor-
porated after channel attention. This spatial attention complements channel
attention. The entire MCSA mechanism can be represented by Eq. (4).

MCSA att = sigmoid
(
f7×7([AvgPool(MCattF );MaxPool(MCattF )]

)
) (4)

where f7×7 represents the convolution operation with a filter size of 7 × 7.
MCattF represents the output features of the multi-spectral channel attention.

3.3 Data Association

FAFVTC achieves satisfactory detection results and the Kalman filter exhibits
high prediction accuracy, which can replace Re-ID for long-term association
between moving objects, thereby achieving improved tracking speed. Inspired
by ByteTrack, FAFVTC adopts a layered online data association approach.

Figure 3 illustrates the data association process. By detecting video frames,
detection boxes D and their confidence scores ScoreD are obtained. Based on the
given high-score box threshold τhigh and low-score box threshold τlow, the boxes
are classified into high-score boxes and low-score boxes. If ScoreD is higher than
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τhigh, it is classified as a high-score box. If ScoreD is higher than τlow but lower
than τhigh, it is classified as a low-score box.

All high-score bounding boxes detected in the first frame are initialized as
tracks. The Kalman filter is used to predict the new positions of the tracks in
the next frame. Starting from the second frame, a matching process is conducted
between high-score bounding boxes and existing tracks based on the IoU distance
threshold ScoreIoU. If the IoU distance is less than ScoreIoU, the high-score
bounding box is considered unmatched and is initialized as a new track. After
matching the high-score bounding boxes, a similar matching process is performed
between low-score bounding boxes and unmatched tracks based on the ScoreIoU
value. Unmatched tracks are retained for 30 frames.
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Fig. 3. The schematic diagram of data association.

3.4 Vehicle Counting

To meet the requirements of high counting accuracy and real-time performance,
this work adopts a method that combines virtual detection lines with object
tracking. As shown in Fig. 4, a single virtual detection line L is placed on the lane.
The tracking algorithm extracts the motion trajectories T of the vehicle centers.
When a vehicle’s motion trajectory T intersects with the detection line L, the
total count of vehicles is incremented by 1. The motion trajectory T starts when
the motion object enters the detection area and ends when the motion object
leaves the detection area. If the detection line is set at a distant location, the
counting accuracy may be compromised due to poor detection of small targets.
Therefore, when setting the detection line, it is crucial to choose a position that
maximizes the detection of vehicle features to enhance the reliability of vehicle
counting. To evaluate the counting accuracy, the Matching Accuracy (MA) is
used as a metric, which is defined in Eq. (5).

MA = right/(right + error) (5)
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where right represents the number of correctly detected vehicles, while error
represents the number of vehicles that were either incorrectly detected or missed.

To capture high-quality images of well-tracked moving objects within a tra-
jectory, this work introduces the concept of Image Quality Quantification Score
IQS. The vehicle image with the highest IQS score within a trajectory is pre-
served. The IQS score for the vehicle image c0 is calculated using Eqs. (6)–(8).

Q1 =

√
1

w0×h0

∑w0
a=1

∑h0
b=2(Ga,b − Ga,b−1)2 + 1

w0×h0

∑w0
a=2

∑h0
b=1(Ga,b − Ga−1,b)2√

1
w0×h0

∑w0
a=1

∑h0
b=2(255)2 + 1

w0×h0

∑w0
a=2

∑h0
b=1(255)2

(6)

Q2 = (w0 × h0)/(w1 × h1 + w0 × h0) (7)

IQS = (Q1 + Q2 + Q3 ∗ 2) /4 (8)
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Fig. 4. The schematic diagram of vehicle counting.

where Ga,b denotes the grayscale value of the pixel at the b-th row and a-th
column of c0. Q1 represents the normalized spatial frequency of c0, Q1 ∈ [0, 1].
Q2 represents the proportional relationship in terms of pixel size between c0 and
the first vehicle image c1 in the trajectory T , Q2 ∈ (0, 1). wi and hi respectively
represent the width and height of the bounding box of the vehicle image ci. Q3

represents the confidence score of the vehicle detection box, Q3 ∈ [0, 1].

4 Experiments

4.1 Datasets and Metrics

The UA-DETRAC dataset [27] consists of video sequences captured from various
urban scenes and different traffic surveillance cameras, comprising a total of
100 video sequences. During the experimental process, 60 sequences were used
for training, while 40 sequences were used for testing. In order to adapt to the
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original data input format of FairMOT, the data from the UA-DETRAC dataset
was converted to the annotation format of the MOTChallenge dataset.

The performance evaluation on the dataset utilized metrics integrated with
the precision-recall (PR) curve. The evaluation was conducted using the official
tool, DETRAC-toolkit-test-trk. Standard tracking metrics including PR-MOTA
and PR-MOTP were reported. PR-MOTA combines precision, recall, and MOTA
to provide a comprehensive assessment of tracking performance.

4.2 Implementation Details

The training phase was conducted on two NVIDIA GeForce RTX 3090 GPUs.
The input image size was adjusted to 1088×608 pixels. The model was initialized
using pre-trained parameters from the COCO dataset. The FAFVTC model was
trained for 35 epochs using the Lamb optimizer. With an initial learning rate of
1e−4, a batch size of 32 was set, and the learning rate was reduced to 1e-5 after 20
epochs. Data augmentation techniques such as random rotation, color jittering,
and random scaling were employed during training to reduce overfitting. In the
MCSA-DLA-34 backbone network, the parameter C was set to 256, parameter
S was set to 4, and the output feature map size was 256 × 272 × 152. For the
data association method, the τhigh was set to 0.6, the τlow was set to 0.1, and
the ScoreIoU was set to 0.2.

Table 1. The PR-MOTA metric results on the UA-DETRAC test set.

Method PR-MOTA ↑ PR-MOTP ↑ PR-MT ↑ PR-ML ↓ PR-IDs ↓
CEM 5.1 35.2 3.0% 35.3% 267

H2T 12.4 35.7 14.8% 19.4% 852

CMOT 12.6 36.1 16.1% 18.6% 285

GOG 14.2 37.0 3.0% 35.3% 3335

IOUT 16.1 37.0 13.9% 19.9% 2308

V-IOU 17.7 36.4 17.4% 18.8% 364

FAMNet [12] 19.8 36.7 17.1% 18.2% 617

FairMOT [2] 20.5 30.3 14.1% 17.2% 226

FAFVTC(ours) 21.8 24.9 19.5% 23.3% 118

4.3 Comparison Experiments

In the comparison experiments, separate experiments were conducted to evaluate
the performance of vehicle detection and tracking as well as vehicle counting for
FAFVTC. The performance of different models on the UA-DETRAC dataset was
compared. For the experiments, FairMOT [2] and FAFVTC utilized their respec-
tive detection outputs. From Table 1, it can be seen that the FAFVTC method
achieved higher PR-MOTA metric compared to FAMNet [12] and FairMOT,
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indicating superior tracking accuracy of FAFVTC over FAMNet and FairMOT.
The reason behind this lies in the fact that FAMNet and FairMOT exhibit lower
feature extraction and data association capabilities compared to FAFVTC.

FAFVTC outperforms FairMOT with a 1.3 improvement in the PR-MOTA
metric, demonstrating superior multi-object detection and tracking performance.
The runtime speed of FAFVTC is 27.9 FPS, making it suitable for real-time
applications. Figure 5 visualizes the detection and tracking results of FAFVTC.
The experiments demonstrate the accurate tracking of vehicles achieved by
FAFVTC.

We achieved the best results in the PR-MOTA metric but slightly lagged
in the PR-MOTP metric. This is due to performance trade-offs. Our tracking
method prioritizes tracking consistency and maintaining accurate track identities
to effectively handle occluded and congested scenes. This might come at the
cost of precise object spatial localization. Experiments show that our tracking
method minimizes identity switches and ensures consistent trajectories, avoiding
unstable and fragmented tracking paths, which is beneficial for tracking and
counting tasks.

Fig. 5. Visualization of partial results on the UA-DETRAC test set. Frame1, Frame2,
and Frame3 refer to video frames with a 10-frame interval. Ignored Region refers to
the ignored areas annotated by the official guidelines.
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Table 2. The experimental results of vehicle counting on the UA-DETRAC test set.
Right indicates correct counting, while Error represents incorrect counting.

Video Right Error MA Video Right Error MA Video Right Error MA

39031 41 0 100.00% 40742 25 2 92.59% 40852 24 0 100.00%

39051 29 1 96.67% 40743 50 1 98.04% 40853 11 1 91.67%

39211 17 0 100.00% 40761 23 0 100.00% 40854 40 0 100.00%

39271 45 0 100.00% 40762 35 1 94.59% 40855 23 0 100.00%

39311 33 4 89.19% 40763 9 0 100.00% 40863 18 0 100.00%

39361 53 1 98.15% 40771 34 0 100.00% 40864 47 1 97.92%

39371 30 1 96.77% 40772 23 2 92.00% 40891 25 0 100.00%

39401 79 5 94.05% 40773 16 0 100.00% 40892 22 0 100.00%

39501 19 0 100.00% 40774 6 0 100.00% 40901 14 0 100.00%

39511 13 0 100.00% 40775 23 1 95.83% 40902 73 2 97.33%

40701 38 0 100.00% 40792 8 0 100.00% 40903 36 0 100.00%

40711 20 0 100.00% 40793 45 3 93.75% 40904 11 0 100.00%

40712 53 0 100.00% 40851 16 0 100.00% 40905 23 1 95.83%

40714 27 0 100.00%

Average 1177 28 97.68%

Table 3. The results of the vehicle counting experiments in real-world scenarios.

Video Right Error MA Video Right Error MA Video Right Error MA

1001 39 0 100.00% 2002 51 3 94.44% 3002 36 1 97.30%

1002 29 1 96.67% 2003 45 1 97.83% 4001 37 2 94.87%

2001 27 0 100.00% 3001 54 1 98.18% 4002 26 1 96.30%

Average 344 10 97.18%

Table 4. The results of the ablation experiments, where AM indicates the type of
attention mechanism used.

Method AM Re-ID BYTE MOTA ↑ IDF1 ↑ MT ↓ ML ↓ FP ↓ FN ↓ IDs ↓
Baseline × � × 78.66 83.41 1680 108 18764 124313 1163

Method1 MCSA � × 80.17 83.80 1742 90 18960 113500 1528

Method2 MCA × � 80.35 84.96 1740 95 20555 111861 359

Method3 MCSA × � 80.82 85.66 1797 88 23508 105689 396

Method4 MCSA � � 81.01 84.89 1795 86 22060 105412 885

Furthermore, this work conducted experiments to evaluate the vehicle count-
ing performance of FAFVTC. From Table 2, it can be observed that FAFVTC
achieved an average counting accuracy of 97.68% on the UA-DETRAC test set
across various scenarios. Following the difficulty categorization by Wen et al.
[27], in some simple scenarios such as MVI 39361 and MVI 40712, where vehi-
cles are minimally occluded, the counting accuracy is relatively high. However, in
challenging scenarios like MVI 39311 and MVI 40762, where vehicles are nearby,
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Fig. 6. The visualizations of experimental results in real-world scenarios. Frame1,
Frame2, and Frame3 refer to video frames with a temporal interval of 10 frames.

occlusion between vehicles occurs, and low brightness in nighttime videos, result-
ing in a decrease in counting accuracy.

In this work, experiments were conducted to evaluate the vehicle counting
performance of FAFVTC in real-world scenarios. The videos were captured in
cities such as Lishui, Wenzhou, Wuxi, and Shenzhen, encompassing both day-
time and nighttime scenes. From Table 3, it can be observed that the FAFVTC
method achieves an average counting accuracy of 97.18% in real-world scenar-
ios. Figure 6 visualizes the counting results of FAFVTC in real-world scenarios.
The experiments demonstrate the accurate vehicle counting capability of the
proposed FAFVTC in real-world scenarios.

Table 5. Comparison of inference speeds.

Method Re-ID FPS↑
Baseline + MCSA + BYTE � 26.55

Baseline + MCSA + BYTE × 27.86

4.4 Ablation Study

This work conducted an ablation study on the vehicle detection and tracking per-
formance of FAFVTC under different constraints. In the ablation experiments,
FairMOT was used as the baseline model, DLA-34 served as the backbone net-
work, and the Adam optimizer was used for training.
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Table 4 and Table 5 present the impact of different components on the overall
performance, with the MOT metrics used to evaluate the detection and tracking
performance. The experiments demonstrate the effectiveness of the proposed
improvements. Compared to the baseline (FairMOT), Method 3 (FAFVTC)
achieved a 2.16 increase in the MOTA metric. The MCSA-DLA-34 backbone
network had a significant impact on model accuracy, as Method 1 showed a 1.51
improvement in MOTA compared to the baseline. MCSA outperformed MCA,
as Method 3 achieved a 0.47 increase in MOTA compared to Method 2. The Re-
ID branch had a minimal impact on model performance, as Method 4 showed
only a marginal improvement in MOTA compared to Method 3. The BYTE
data association method played a crucial role in improving model accuracy, as
Method 4 achieved a 0.84 increase in MOTA compared to Method 1. Removing
the Re-ID branch and replacing the original DeepSORT-like data association
algorithm with BYTE improved the model’s inference speed without compro-
mising inference accuracy.

5 Conclusion

n complex traffic environments, the misdetection and occlusion of moving objects
can easily lead to tracking errors. In this work, we investigate the problem of
efficient vehicle object tracking and counting and propose the MCSA attention
mechanism along with the MCSA-DLA-34 backbone network, which effectively
utilizes frequency and spatial domain information. Building upon MCSA-DLA-
34, we introduce the FAFVTC framework for vehicle tracking and counting.
By replacing the data association method and removing the Re-ID branch, we
improve the model’s inference speed without compromising accuracy. Experi-
mental results on the UA-DETRAC dataset and surveillance videos captured in
real-world scenarios demonstrate the effectiveness of our approach. The proposed
FAFVTC method offers a solution for fast and accurate online vehicle tracking
and counting, with potential applications. In the future, we will design a lighter
and faster model to further enhance the accuracy and efficiency of online vehicle
tracking and counting.
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10. Zhou, X., Koltun, V., Krähenbühl, P.: Tracking objects as points. In: Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp.
474–490. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8 28

11. Wu, J., et al.: Track to detect and segment: an online multi-object tracker. In:
CVPR, pp. 12352–12361 (2021)

12. Chu, P., et al.: Famnet: joint learning of feature, affinity and multi-dimensional
assignment for online multiple object tracking. In: ICCV, pp. 6172–6181 (2019)

13. Wang, G., et al.: Track without appearance: Learn box and tracklet embedding
with local and global motion patterns for vehicle tracking. In: ICCV, pp. 9876–
9886 (2021)

14. Hu, J., et al.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)
15. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention

module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-01234-2 1

16. Ruan, D., et al.: Linear context transform block. In: AAAI, vol. 34, no. 4, pp.
5553–5560 (2020)

17. Ruan, D., et al.: Gaussian context transformer. In: CVPR, pp. 15129–15138 (2021)
18. Qin, Z., et al.: Fcanet: frequency channel attention networks. In: ICCV, pp. 783–

792 (2021)
19. Su, B., et al.: CFCAnet: a complete frequency channel attention network for SAR

image scene classification. In: IEEE J-STARS, vol. 14, pp. 11750–11763 (2021)
20. Guo, M.H., et al.: Beyond self-attention: external attention using two linear layers

for visual tasks. TPAMI 45(5), 5436–5447 (2022)
21. Amato, G., et al.: Counting vehicles with deep learning in onboard UAV imagery.

In: ISCC, pp. 1–6 (2019)
22. Zhang, B., et al.: A traffic surveillance system for obtaining comprehensive infor-

mation of the passing vehicles based on instance segmentation. TITS 22(11), 7040–
7055 (2021)

23. Gomaa, A., et al.: Faster CNN-based vehicle detection and counting strategy for
fixed camera scenes. MTA 81(18), 25443–25471 (2022)

https://doi.org/10.1007/978-3-031-20047-2_1
https://doi.org/10.1007/978-3-031-20047-2_1
https://doi.org/10.1007/978-3-030-58548-8_28
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1


264 Z. Wang et al.

24. Ciampi, L., et al.: Multi-camera vehicle counting using edge-AI. ESWA 207,
117929, 1–9 (2022)

25. Xu, H., et al.: Efficient CityCam-to-edge cooperative learning for vehicle counting
in ITS. TITS 23(9), 16600–16611 (2022)

26. Yu, F., et al.: Deep layer aggregation. In: CVPR, pp. 2403–2412 (2018)
27. Wen, L., et al.: UA-DETRAC: a new benchmark and protocol for multi-object

detection and tracking. CVIU 193, 102907, 1–9 (2020)



Ped-Mix: Mix Pedestrians for Occluded
Person Re-identification

Shang Gao1,2 , Chenyang Yu1 , Pingping Zhang1 , and Huchuan Lu1,2(B)

1 Dalian University of Technology, Dalian, China
yuchenyang@mail.dlut.edu.cn, {zhpp,lhchuan}@dlut.edu.cn

2 NingBo Institute of Dalian University of Technology, Ningbo, China

Abstract. Occluded person re-identification is a very challenging task
due to the interference of occluding objects. Most existing approaches
concentrate on modifying the network architecture to facilitate the
extraction of more distinctive local features or render the network less
sensitive to occlusions. However, it is easy to fail when encountering
previously unseen occlusions or when other humans act as occluders,
due to the limited occlusion variance in the training set. In this paper,
we propose a data augmentation method that blends the target pedes-
trian with other pedestrians to simulate non-target pedestrian occlusion.
Furthermore, we propose a non-target suppression (NTS) loss to reduce
the information flow from the occluded region to the final embedding,
where the occluded region can be easily obtained from the augmentation.
Experimental results demonstrate that this simple augmentation tech-
nique yields significant performance improvements in the task of occluded
person re-identification.

Keywords: Occluded person re-identification · Data Augmentation ·
Non-Target Suppression Loss

1 Introduction

Person re-identification (ReID) is the task of finding and matching the same
person across multiple non-overlapping cameras. This task has received a lot
of attention in recent years because of its wide applications in surveillance sys-
tems. The performance of ReID has been significantly improved thanks to the
abundant training data provided by large-scale benchmarks [18,25,30] and the
powerful representation capabilities of deep learning techniques [6,10,22]. How-
ever, the occlusion problem caused by various obstacles such as vehicles, road
signs, or other pedestrians is still a challenging issue and widely occurs in real
application scenarios.

Many network structures that incorporate attention mechanisms are pro-
posed [16,17,33]. While, some methods use human parsing and keypoint
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estimation to align different human parts [7,19,21,23]. However, such methods
are limited by the fact that the current datasets for ReID usually exhibit lim-
ited variance in occlusion, which reduces the robustness when encountering new
occlusion types. Occlusion can be divided into two types [24]: non-pedestrian
occlusion and non-target pedestrian occlusion. As shown in Fig. 1, it can be seen
that the situation of occlusion is very complex and varied.

Fig. 1. Illustration of various occlusion scenarios and different data augmentation
methods: (a) Non-pedestrian occlusion, (b) Non-target pedestrian occlusion, (c) Ran-
dom erasing [32], (d) Cutout [5], (e) NPO [24], (f) The proposed Ped-Mix.

Data augmentation is an effective method to enlarge the training data and
enhance the model’s robustness, which can complement the above methods. Most
of the data augmentation methods used in occluded person ReID can be regarded
as CutMix [28] family methods, which randomly select a region from the input
image and then replace the selected region with another image patch. As shown
in Fig. 1, random erasing [32] substitutes the original region with random val-
ues; Cutout [5] sets the replacement area to zero; while NPO [24] occludes the
selected region with a random pre-cropped background patch. Among these aug-
mentation methods, most of them only account for the case of non-pedestrian
occlusion, and only the method proposed in [24] considers the case of non-target
pedestrian occlusion. It simulates multi-pedestrian images by diffusing charac-
teristics of non-target pedestrians to the original features. This method cannot
guarantee the rationality of the diffusion, resulting in a very limited performance
improvement, and it requires extra computational overhead.

In this paper, to address the occlusion problem caused by non-target pedes-
trians, we propose a novel data augmentation approach, Ped-Mix. It can be
easily implemented to various network structures. In occluded person ReID, it
is generally assumed that the pedestrian closest to the center of the bounding
box is the target pedestrian, while any other pedestrians in the same image are
considered as occlusion or interference. Based on this assumption, we design our
data augmentation method. In the training phase, an image undergoes the fol-
lowing three operations: 1) randomly select another sample within the batch;
2) randomly shift the selected image and crop out the overlapping part with its
original area; 3) randomly mask the cropped patch and replace the overlapping
regions of the target image with the cropped patch. This method enables the
simulation of realistic occlusion between pedestrians during the training pro-
cess, while the mask operation preserves the model from only extracting the
most obvious visible parts. The experiments show that using this simple data
augmentation method can significantly boost performance.
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Furthermore, the features of the target person should not obtain any informa-
tion from the occluded area. Therefore, we attempt to use attention rollout [1] to
track down the information propagated from the input layer to the embeddings
in the higher layers, and propose a non-target suppression loss to constrain the
attention to be as small as possible in the artificially occluded region.

The main contributions of the paper are summarized as follows:

– A straightforward yet highly effective data augmentation technique, Ped-Mix,
is proposed to tackle the problem of insufficient diversity of occlusion samples
for occluded person ReID.

– A non-target suppression loss is proposed to reduce the information flow from
the occluded region.

– Extensive experiments on two publicly occluded benchmarks demonstrate the
superiority of our method.

2 Related Works

2.1 Occluded Person Re-identification

The occlusion problem has two main difficulties. Firstly, the features of the
occluded region will interfere with the target pedestrian features and destroy
the complete pedestrian features. Secondly, occlusion will cause the deficiency
of local features of the target pedestrian, which will lead to misalignment in
matching. To address the aforementioned problems, part-to-part matching strat-
egy [7,18,19,21,33] tackle occluded scenarios by exploiting alignment relations
among body parts according to the similarity of local spatial features across
query and gallery images. These methods can be roughly summarized into two
streams: 1) external cues like human parsing [2,19] or pose estimation [7,18,21]
are leveraged to align parts of bodies and determine whether the local part are
visible. Somers et al. [19] propose to learn multiple features for particular body
parts with a global-identity local-triplet loss. Wang et al. [21] combine patch
and key-point information to enhance local patch features. 2) identity prior is
leveraged to generate the part region and to be used as pseudo-label to train the
ReID network [33]. Other approaches [14,27] are based on feature reconstruc-
tion, which generate the feature of the occluded region from the other parts or
from neighboring samples. Hou et al. [14] locate occluded human parts by key-
points and propose Region Feature Completion (RFC) to recover the semantics
of occluded regions in feature space. The above methods are limited by the fact
that the current datasets for person re-identification usually exhibit limited vari-
ance in occlusion, which reduces the robustness of the trained networks when
encountering new occlusion types.

2.2 Data Augmentation and Training Loss

Many methods [24,26,29] adopt data augmentation strategies to expand the
diversity of occlusion, as well as to guide the attention network to focus more
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on the pure target person than the occlusion. Zhuo et al. [34] design an occlu-
sion simulator to use the random patch from the background as the artificial
occlusion to cover the full-body person image. Zhao et al. [29] add occlusion on
the input image with an easy-to-hard strategy together with an adversarial sup-
pression loss, making the network more robust to occlusion by gradually learning
harder occlusion instead of hardest occlusion or random occlusion directly. Xia et
al. [26] swaps the original region with background regions together with a learn-
able attention disturbance mask to divert attention away from actual occlusions
during testing. Wang et al. [24] simulates multi-pedestrian images by diffusing
characteristics of non-target pedestrian to the original features.

3 Proposed Method

In this section, we introduce the proposed data augmentation method Ped-Mix
and non-target suppression loss in detail. The architecture is depicted in Fig. 2.
We build our feature extractor based on the transformer-based image classifica-
tion model ViT [6]. We first describe the detailed procedure of Ped-Mix. Follow-
ing this, we introduce non-target suppression loss based on the augmentation
region. Finally, the implementation of our training procedure is introduced.

Fig. 2. Overview of the training procedure.

In the occluded person re-identification task, the pedestrian closest to the
center of the bounding box is usually considered as the target pedestrian, while
other pedestrians appearing in the same image can be considered as interference.
Therefore, Ped-Mix is designed. The overall process is shown in Fig. 3.

3.1 Ped-Mix

Let x ∈ R
W×H×C and y denote a training image and its label, respectively.

The goal of Ped-Mix is to generate a new training sample x̃ by combining two
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Fig. 3. Flowchart of the proposed Ped-Mix.

training samples xA and xB, where xB need to shift away from the center of the
bounding box. Firstly, we need to determine the amount and direction of the
shift, where the amount of the offset corresponds to the size of the occlusion area
Oc, and the direction determines the position of the occlusion. We initialize ro
which is the ratio of the occlusion size to the original image size. rw = w

W can be
sampled from the distribution U(ro, 1.0), where w is the width of the occlusion
region. Then, we have rh = ro

rw
and we can get h = H × rh and w = W × rw,

where h is the height of the selected region. In situations where there is occlusion
between pedestrians, the individual located at the upper portion of the image
is identified as the target pedestrian. Thus, we have two options for the shift
directions, which are the bottom left and bottom right of xA. After randomly
choosing a direction, we can get the exact position of the overlapping region
on xA and xB , respectively. The augmented sample x̃ is obtained by cropping
the overlapping patch of xB and pasting it to the corresponding region of xA.
Through experiments we found that using this full patch occlusion method may
lead the model to only extract the most obvious visible parts, thus reducing its
generalization ability. We would show it in Sect. 4.6. To address this issue, we
randomly occlude certain patches as in [9]. Finally, the model can be trained
with its original loss function using the generated training sample (x̃, y).

3.2 Non-target Suppression Loss

The attention of each Transformer block reflects how information interaction
between each feature. It can be formulated as:

A = softmax(
QKT

√
c/Nh

), (1)

where Q and K are the queries and keys of the tokens, Nh is the number of
heads in multi-head attention. The mixing of information gets increasing across
layers. Attention rollout [1] is proposed to approximatively track the flow of
information. The attention rollout from the lj-th layer to the li-th layer can be
obtained by recursively multiply the attention weights as:
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Ã(li) =

{
Ā(li)Ã(li−1), if i > j;
Ā(li), if i = j.

(2)

where j = 0 for the input attention and ¯A(li) is the normalized raw attention
with residual:

Ā(li) = norm(I + A(li)), (3)

where A(li) is the attention of the li-th layer defined in Eq. 1.
We wish the attention rollout corresponding to the occlusion mask as small

as possible. To this end, a non-target suppression loss is designed, which can be
formulated as:

Lnts = ‖Ãcls(L) · M‖2, (4)

where M is the binary mask of the exchanged region of the augmented input,
and Ãcls(L) indicates the attention rollout from each location to the class token.

3.3 Training Procedure

In this section, we utilize the double batch setting as in [29], and train the
holistic batch and occluded batch separately as [26]. The architecture is depicted
in Fig. 2. Given a batch of images X ∈ R

B×C×H×W , where B is the batch size
and C is the number of the input channels, we first augment each sample within
the batch by Ped-Mix and sent them into ViT backbone. Finally, the class token
feature Fh = [fh

1 , f
h
2 , ..., f

h
B ] and F o = [fo

1 , f
o
2 , ..., f

o
B ] of the last layer is chosen

as the embedding for each sample, Fh and F o are the feature of holistic samples
and occluded samples, respectively. Besides, the attention matrices of each layer
are also output from ViT. We optimize the network by adopting cross-entropy
loss as identity loss Lid and soft margin triplet loss [13] Ltri as the metric loss:

Lid = − 1
B

B∑

i=1

log
e(W

yi )T fi

∑C
j=1 e

(W j)T fi
, (5)

Ltri =
1
B

B∑

i=1

ln(1 + e(‖fi−fp
i ‖2−‖fi−fn

i ‖2)), (6)

where W represents the weight of the classifier, C is the number of classes, and
yi is the identity label for the i−th sample. The fp and fn in triplet loss refer
to the hardest positive and negative features within the batch. As only the class
token is used as the embedding, we only focus on the information flow towards
the class token. The final loss is formulated as:

Lreid = Lid + Ltri, L = Lreid + Lnts. (7)
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4 Experiment

4.1 Datasets and Evaluation Measures

To evaluate the effectiveness of the proposed Ped-Mix, we conduct experi-
ments on four benchmarks including Market-1501 [30], DukeMTMC-reID [31],
Occluded-Duke [18], and Occluded-REID [34].

Market-1501 [30] contains 32,668 labeled images of 1,501 identities observed
from 6 cameras. The dataset is split into training set with 12,936 images of 751
identities. Few images in this dataset are occluded.

DukeMTMC-reID [31] consists of 16,522 training images of 702 persons, 2,228
queries of 702 persons, and 17,661 gallery images of 702 persons from 8 cameras.

Occluded-Duke [18] is a large-scale dataset collected from the DukeMTMC-
reID [31] for occluded person re-identification, which is by far the largest
occluded ReID datasets. The training set consists of 15,618 images of 702 per-
sons. The testing set contains 2,210 images of 519 persons as the query and
17,661 images of 1,110 persons as the gallery.

Occluded-REID [34] are captured by mobile cameras equipped on campus,
including 2,000 annotated images belonging to 200 identities. Among the dataset,
each person consists of 5 full-body person images and 5 occluded person images
with various occlusions. Due to the absence of the same prescribed split of train-
ing and test set, the model is trained on Market-1501 [30], and all the images
are adopted for testing.

Evaluation Protocols. We report the Cumulated Matching Characteristics
(CMC) [8] and mean Average Precision (mAP) [30] for the proposed approach.
All experiments are conducted in the single query mode.

4.2 Implementation Details

Unless otherwise specified, all images are resized to 256×128. The batch size is set
to 64 with 4 images per ID. We adopt the ViT-B [6] pre-trained on ImageNet [3]
as our backbone. SGD optimizer is employed with a momentum of 0.9 and the
weight decay of 1e−4. The learning rate is initialized as 0.004 with cosine learning
rate decay. The training images are augmented with random horizontal flipping,
padding and random cropping for all experiments. Random erasing [32] is used
for baseline, and is removed when using Ped-Mix. ro is set to 0.5. The patch size
and mask ratio of the random masking are set to 12 and 0.5, respectively. See
the material for the analysis of the relevant parameters (Table 1).

4.3 Ablation Studies

In this section, we implement the ablation studies based on the Occluded-Duke
dataset to analyze the influence of each module of the proposed method. In our
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Table 1. Ablation study of each proposed module on Occluded-Duke dataset.

Methods Occluded-Duke

Rank-1 Rank-5 Rank-10 mAP

baseline 59.7 75.3 80.7 49.8

RE [32] 61.3 77.7 81.8 53.5

NPO [24] 63.9 79.4 84.7 54.2

APD [26] 66.2 81.6 86.3 57.7

Ped-Mix 65.3 80.9 85.3 56.4

Ped-Mix + Lnts 66.3 81.7 86.4 57.2

Ped-Mix + NPO [24] 67.0 82.4 86.2 57.3

Ped-Mix + NPO [24] + Lnts 68.8 83.1 87.1 58.1

study, the baseline method adopts ViT as the backbone, which is trained based
on the original softmax loss and triplet loss without any artificial occlusion. From
the result, we can observe that training with images occluded by the Ped-Mix can
significantly improve the model performance, the performance can be increased
by +5.6% in Rank-1 and 6.6% in mAP, respectively, over the baseline. Besides,
with the assistance of Lnts, the performance of the model can further increase
from 65.3% to 66.3% in Rank-1 and 56.4% to 57.2% in mAP. Furthermore,
as Ped-Mix aims to simulate non-target pedestrian occlusion, we combine it
with NPO [24] and further improve Rank-1 and mAP from 65.3% to 67.0% and
from 56.4% to 57.3%, respectively. Finally, by combining all the components,
our model achieves 68.8% in Rank-1 and 58.1% in mAP. It is noteworthy that
APD [26] is the latest augmentation method for occluded person ReID. We
compare our method with it under the same setting and find that our method
achieves comparable results with it.

4.4 Comparison with State-of-the-Art Methods

We compare Ped-Mix with existing state-of-the-art (SOTA) methods on two
occluded datasets, and the results are shown in Table 2. Here we replace identity
loss with Arcface loss [4] as in [20,26]. The compared methods can be divided
into CNN-based and Transformer-based methods. As can be seen from Table 2,
transformer-based methods outperform the CNN-based methods by a large mar-
gin. It can be seen, in the most challenging Occluded-Duke dataset, our proposed
method Ped-Mix can achieve 70.8% in Rank-1 and 59.2% in mAP, respectively,
significantly improving the Rank-1 accuracy by 4.0% and mAP by 6.6% over the
CNN-based SOTA method BPBreID [19], which is a part-based method, with
high-dimensional features when testing. Compared with the transformer-based
SOTA method FED [24] which also considers the non-target pedestrian occlusion
but with complex structures, our method achieves +2.7% in Rank-1 and +2.8%
in mAP. PFD [23] achieves best result on mAP, which mainly benefit from the
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Table 2. Comparison with state-of-the-art methods on Occluded-Duke and Occluded-
REID. ∗ indicates that the backbone has a sliding-window setting and a smaller stride.
† indicates that the backbone is HrNet [22].

Methods Occluded-Duke Occluded-REID

Rank-1 mAP Rank-1 mAP

DSR [11] 40.8 30.4 72.8 62.8

Ad-Occluded [15] 44.5 32.2 – –

PVPM [7] 47.0 37.7 66.8 59.5

HOReID [21] 55.1 43.8 80.3 70.2

ISP [33]† 62.8 52.3 – –

BPBreID [19] 66.8 52.6 76.9 68.6

PAT [17] 64.5 53.6 81.6 72.1

TransReID [12] 64.2 55.7 – –

PFD [23] 67.7 60.1 79.8 81.3

FED [24] 68.1 56.4 86.3 79.3

Ours 70.8 59.2 87.1 81.4

TransReID∗ [12] 66.4 59.2 – –

PFD∗ [23] 69.5 61.8 81.5 83.0

DPM∗ [20] 71.4 61.8 85.5 79.7

Ours∗ 73.1 61.9 88.5 83.5

part based model and matching with the visibility score. In contrast, our method
achieves comparable results with single global feature. Furthermore, with a small
step sliding-window setting, the proposed method can further achieve a higher
performance of 73.1% in Rank-1 and 61.9% in mAP, respectively.

On the Occluded-REID dataset, our method also consistently outperform
current SOTAs. Specifically, it achieves 87.1% in Rank-1 and 81.4% in mAP.
Note that, in the transfer setting, the methods using data augmentation sig-
nificantly outperform the other methods when facing unseen occlusions, which
proves our point.

4.5 Visualization

We demonstrate how our method overcomes the occlusion constraint by provid-
ing several samples of person image ranking, Fig. 4 shows experimental results.
We can observe that our method can overcome the non-pedestrian occlusions
as well as the non-target pedestrian occlusion and identify images of the same
pedestrian correctly (highlighted by green-color boxes). As a comparison, the
baseline network is very sensitive to occlusions obviously.
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Fig. 4. Ranking list for baseline and our proposed method. The green and red boxes
highlight positive and negative matching. The image without a bound box is the query.
(Color figure online)

4.6 Why Random Masking

Full patch occlusion method may lead the model to only extract the most obvi-
ous visible parts, thus reducing its generalization ability. We demonstrated this
by comparing our method with the Cut-Mix method on the Occluded-REID
dataset, where Cut-Mix means conducting Ped-Mix without random masking.
The results are shown in Table 3. It can be seen that our method outperformed
Cut-Mix in this transfer setting, demonstrating that our method has better gen-
eralization performance.

Table 3. Comparison with Cut-Mix

Method Occluded-REID

Rank-1 mAP

Ours 88.5 83.5

Cut-Mix 87.5 81.3

Table 4. Results on holistic datasets.

Method Market1501 DukeReID

Rank-1 mAP Rank-1 mAP

Baseline 94.7 87.4 89.2 79.7

Ours 94.8 87.5 89.7 79.7

4.7 Results on Holistic Datasets

Though our method is specifically designed for occlusion situations, to verify
its robustness, we also conducted experiments on holistic ReID datasets. The
results are shown in Table 4, our method did not weaken the performance on the
holistic dataset, demonstrating its robustness to various data.

5 Conclusion

In this paper, a straightforward yet highly effective data augmentation technique,
Ped-Mix, is introduced to tackle the problem of insufficient diversity of occlu-
sion samples for occluded person re-identification task, especially for non-target
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pedestrian occlusion. In addition, an non-target suppression loss is proposed
to reduce the activation of the occluded region. Extensive experiments on two
publicly occluded benchmarks demonstrate the superiority.
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Abstract. Deep neural networks have been demonstrated to be vul-
nerable to adversarial noise from attacks. Compared with white-box
attacks, black-box attacks fool deep neural networks to yield erroneous
predictions without knowing the model parameters. Black-box attacks
include query-based attacks and transfer-based attacks; the former rely
on querying the model while the latter just rely on the transferability
of adversarial examples, thus challenging. Existing transfer-based black-
box adversarial attack methods focus on the image classification task.
Especially, we empirically verify that those methods struggle to balance
the attack on objects with different classes and sizes, and thus they
perform poorly in the attack on object detectors. In this work, we pro-
pose an Object-Aware mechanism to address this issue. It includes
Object-Wise Gradient (OWG) calculation to balance the attack on mul-
tiple objects and a Domain-Division Map (DDM) to weigh the attack
in size. Incorporating our method with seminal baselines (e.g., I-FGSM,
MI-FGSM), we achieve superior attack performance on multiple object
detectors (e.g., Faster R-CNN, DETR, SSD), which justifies the effec-
tiveness and generality of our method.

Keywords: Black-box attack · Adversarial Attack · Object Detection

1 Introduction

Deep neural networks (DNN) are challenged by their vulnerability to adversarial
examples [8,21]. By adding small and human-imperceptible noises to legitimate
examples, the adversarial examples can make a model output attacker desire
inaccurate predictions. Numerous attack methods have been proposed in recent
years [6,8,11,14].

The adversarial examples have an intriguing property of transferability, where
adversarial examples crafted by the current model can also fool other unknown
models [23]. This character makes the adversarial samples feasible to perform
transfer-based black-box attacks without any knowledge of the targeted model.
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Fig. 1. Motivation and Contribution of our work. The vertical axis represents
mAP drop rate (%), which represents the performance of the attack. (a) shows the
imbalanced attack of the baseline (dash lines). Our improvements make the attack
more balanced on different classes (solid lines). (b) shows that, with our improvements,
attack performances are relatively more balanced on objects of different sizes. Both (a)
and (b) show that we achieve a higher mAP drop rate than the baseline.

Recently, various methods have been proposed to enhance the transferability for
black-box attacks [6,7,10,14,20,22,30]. However, existing methods are mostly
designed for the image classification task, neglecting another significant task:
object detection. Thus, we raise a question: can we build a Transfer-based Black-
box attack for the object detection task?

We empirically find that existing image-classification attackers perform
unsatisfactorily when directly applied to object detectors because they cannot
balance the attacks on multiple objects of different classes and sizes. Shown
in Fig. 1(a), objects with different analogies vary in vulnerability to the same
attack: some categories are more vulnerable, e.g., bed, couch; the others are
more robust, e.g., bird, toaster. Figure 1(b) shows that, in the black-box setting,
smaller objects are more likely to be attacked.

To address the aforementioned problems, we propose an Object-Aware attack
mechanism that can balance the attack on multiple targets. Specifically, we uti-
lize an Object-Wise Gradient (OWG) calculation to balance the attack on mul-
tiple objects and a Domain-Division Map (DDM) to weigh the attack in size.
Moreover, we improve the design of the loss function and assigner to accommo-
date the different requirements between training the network and conducting
the attack. It’s worth noting that our method does not require any knowledge
of the model parameters, depending on querying [1,5,18], or producing notice-
able adversarial patches [10,28] on the image. Our work has achieved significant
improvements in both black-box and white-box attacks. Our main contributions
can be summarized as follows:

– We have proposed an Object-Aware adversarial attack method for detectors
to balance the attack on multiple objects with different categories and sizes.
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– We have taken into account the different challenges between training the
network and attacking the network, and have enhanced the design of the loss
function and the assigner to achieve better attack performance.

– Experimental results have demonstrated that our method is effective on mul-
tiple attack strategies and significantly improves their performance against
various object detectors.

2 Related Work

2.1 Object Detection

Object Detection is a fundamental computer vision task that localizes and clas-
sifies objects in images, and it’s widely used in many fields, e.g., automatic driv-
ing, and security systems. In the past decade, seminal deep learning-based object
detection models have been proposed, e.g., single-stage methods like SSD [19],
RetinaNet [15], two-stage methods like Faster-RCNN [24], and Transformer [26]
based models, e.g., DETR [2]. These methods greatly improve the performance of
detectors. Recently, many multi-modal models[12,13,17] are proposed to handle
various vision-language problems, including open-set or open-vocabulary object
detection, e.g., GLIP [13], Grounding DINO [17]. In this work, we perform the
attacks only on pure vision models.

2.2 Adverserial Attack

Adversarial Attack was first introduced in the image classification task at [8]. For
a classifier f , let x be the original input tensor of the image, y and f(x; θ) be the
ground truth label and the predicted label with the parameter θ, and y = f(x; θ)
as the image is correctly predicted. Let J(x, y; θ) denote the loss function and
xadv be the adversarial image that the attacker should find. It should satisfy
that f(x; θ) �= f(xadv; θ) with the constrain of p-norm distance within ε, that is,
‖ (x − xadv) ‖p< ε, and here we focus on p = ∞ like the previous works did.

Fast Gradient Sign Method (FGSM) is the most basic method to generate
adversarial examples by adding perturbation to the image in one step towards
the gradient direction:

xadv = x + ε · sign(∇xJ(x, y; θ)). (1)

The perturbation would not surpass the L∞ norm distance as the sign(·) func-
tion can constrain it within ε.

Iterative Fast Gradient Sign Method (I-FGSM) breaks the one-step of
FGSM into multiple smaller ones to better maximize the loss function and it
achieves better performance in white-box attack. Let α be the step size of each



Object-Aware Transfer-Based Black-Box Adversarial Attack 281

iteration, and I-FGSM runs T iterations of FGSM with a Clamp(·) function to
constrain the perturbation in the ε-spherical space:

xadv
t+1 = Clampx+ε

x−ε{xadv
t + α · sign(∇xJ(xadv

t , y; θ))}. (2)

Similar to I-FGSM, PGD also performs iterative FGSM, but starts with random
points in a uniform distribution.

Momentum Iterative Fast Gradient Sign Method (MI-FGSM) inte-
grates the momentum into I-FGSM and it achieves higher attack performance
both in white-box and black-box settings. Initialize x0 by x, and g0 by 0, let μ
be the decay factor of gt, and the gt+1 is calculated with a momentum:

gt+1 = μ · gt +
∇xJ(xadv

t , y; θ)
‖ ∇xJ(xadv

t , y; θ) ‖1
. (3)

Neterov Iterative Fast Gradient Sign Method (NI-FGSM) adopts Nes-
terov accelerated gradient method into MI-FGSM. It accumulates the gradient
after adding momentum to the current data point for faster convergence and
higher transferability. Its only difference with MI-FGSM is that NI-FGSM sub-
stitutes xnes for xadv to calculate the gradient:

xnes
t = xadv

t + α · μ · gt. (4)

Other Methods . Related studies can be divided into three categories: (a)
more advanced optimization techniques for gradient-based methods [6,14], (b)
ensemble-model attack [6,10,20], (c) input transformations [7,14,22,30] etc. We
focus on the first one and have introduced the most important works above.
The other gradient-based methods like VT [27] are mainly improved based on
these methods. In addition, model ensemble methods and input transformation
such as DIM [30], TIM [7], SIM [14], etc. can also improve the transferability of
black-box attacks. In this work, we focus on an optimization-based method.

3 Method

In this section, we will describe our approach in detail. In Sect. 3.1, we’ll intro-
duce our Object-Aware mechanism for adversarial attacks and explain our valid-
ity. In Subsects. 3.2 and 3.3, we’ll discuss the designs of assigner and loss functions
of detectors when generating adversarial examples and explain their differences
with the designs of training the networks.

3.1 Object-Aware Mechanism

Our Object-Aware mechanism focused on solving the problem of multi-target
attacks. We emphasize that the biggest challenge is balancing the attacks of
different objects with various categories and sizes. Correspondingly, our method
consists of two components; one is the Object-Wise Gradient (OWG) calculation,
and the next is the Domain-Division Map (DDM) for specific perturbations.
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Fig. 2. The mechanism of Domain-Division Map. White pixels indicate 1 and
are to be optimized to attack the special object. Black pixels are masked.

Object-Wise Gradient (OWG) Calculation. We calculate the gradient
for each object in the image using object-wise loss. And then, unlike [4,29],
we do not sum the total loss weighted by the number of the corresponding
classes, but directly obtain the gradient by the backward propagation for each
object. In detail, given an image x with N objects{e1, e2, ..., eN}, the goal is to
obtain the adversarial image xadv within a ε-spherical space. For each object ei,
the assigner will arrange mi (one or more) proposals to predict it, denoted as
{pi,1, pi,2, ..., pi,mi

}, and the loss for ei can be formalized as:

Li =
1

mi
·

mi∑

j=0

L(ei, pi,j), (5)

where L(·) is the loss function of the detector including classification loss and
regression loss. For each object ei, we obtain the corresponding Li with the
above equation. And then, instead of calculating the sum of losses, we perform a
backward propagation algorithm for Li to calculate the Object-Wise Gradient of
the image ∇ei

. The gradients are not necessarily normalized by 1-norm distance
since the sign(·) function, which will be executed in the optimization step, can
project it to a 1−spherical space.

Domain-Division Map (DDM). We further propose a Domain-Division Map
to solve the imbalanced attack on different sizes and achieve better performance.
DDM segments the image into parts only using the ground truth bounding box
of each object. To attack each object, we update the pixels with the Domain-
Division Map. Shown in Fig. 2, the boxes divide the pixels into three kinds:
background (no object covering), independent area (one specific object covering),
and intersection area (at least two objects covering). For each object, we don’t
update the pixels of independent areas of other objects. DDM increases the
weight of attacks on large objects, but interestingly, this does not exacerbate
the imbalance of white-box attacks on objects of different sizes. The DDM is
denoted as M ∈ {0, 1}N×H×W , where N denotes the number of objects in the
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Algorithm 1: Object-Aware Attack on Detectors with I-FGSM
Input: Image x, N objects {e1, e2, ..., eN}. Corresponding predictions of each

object ei ({pi,1, pi,2, ..., pi,mi}). Domain-Division Map M . The iteration
number is T , the step size is α, and the constrain factor of I-FGSM is ε.

Output: Image after adversarial attack xadv

Initialize xadv = x
while iter = 0; iter! = T ; iter + + do

perturb = 0;
for ei in {e1, e2, ..., eN} do

Calculate loss in Eq. 5;
Clean the existing gradient;
Backward the gradient of Li;
Compute the gradient of each object ∇ei ;
// Update perturb as I-FGSM:
perturb = perturb + Mi · α · sign(∇ei);

end

xadv = Clampx+ε
x−ε{xadv + perturb}

end

image, H denotes the height of the image, W denotes the width of the image.
First, we annotate the background pixels that are not covered by any object
bounding box. Then, for each object, we set Mi,j,k = 1 if pixels at location (j, k)
is in the box area of object ei or background area which is marked in the last
step. Otherwise, Mi,j,k = 0 is set. The process can be formalized as follows:

Mi,x,y =

{
1, (j, k) ∈ bg | (j, k) ∈ ei,

0, otherwise,
(6)

where “bg” denotes the background area. With the Object-Wise Gradient and
Domain-Division Map, we can use any gradient-based attack method includ-
ing I-FGSM and MI-FGSM to generate adversarial examples. We propose the
Complete Object-Aware Attack using I-FGSM in Algorithm 1.

3.2 Assigners and Samplers of Detectors for Attack

In this work, we assign more positive boxes with a low threshold of IoU and
meanwhile, we use a sampler with a higher ratio of positive boxes to get more
positive examples. This may be counter-intuitive, because it will assign many
background regions as positive predictions, thus leading to low precision. How-
ever, since the purpose of the attack is to maximize the loss, the false positive
samples will not lead to much degradation of the attack performance. Figure 3
visually shows the motivation.
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Fig. 3. Although some prediction boxes have a small IoU with ground truth, they
should be regarded as positive samples to benefit the attack, just like the partially
framed child in the picture who retains the strong feature of “person”.

3.3 Loss Functions of Detectors for Attack

Different from the training process, attackers should pay more attention to easier-
predicted objects, as the easier it is to be predicted, the harder to be attacked.
In this work, we replace the focal loss function of RetianNet [15] with cross-
entropy loss. We confirmed that, when attacking the whole image without our
proposed Object-Aware mechanism, the cross-entropy loss is much better than
focal loss, as we can show in Table 4(c). We attribute this to the fact that focal
loss decreases the loss-weight of easily predicted samples and increases the loss-
weight of difficultly predicted samples. It works when training the network for
better convergence, but is the exact opposite of what is needed when attacking
the network. But the difference is much smaller when equipped with our Object-
Aware mechanism, which is also presented in Table 4(c).

4 Experiments

4.1 Implementation Details

For detectors, we implement our approach based on mmdetection [3]. We chose
5 models for our experiments: SSD300, SSD512, RetinaNet, Faster-RCNN, and
DETR. SSD300 and SSD512 share the same architecture and the backbone of
vgg16 [25], but they have the different size of neck and head, and input sizes of the
image (The height and width of the SSD300 input image are 300, and the latter
is 512). We choose RetinaNet [9] because it uses focal loss to train the detector,
and it’s also a single-stage detector, just like SSD. We choose Faster-RCNN and
DETR as they are the most classic two-stage detectors and transformer-based
detectors. The RetinaNet, Fatser-RCNN, and DETR share the same backbone,
Resnet50, and to align with SSD512, we resize the input image to 512 pixels both
in height and width for the three models. All models are trained on COCO [16]
in 12 epochs except DETR, trained for 150 epochs.

For attackers, we select five optimization-based methods: FGSM, I-FGSM,
PGD, MI-FGSM, and NI-FGSM, which have been formulated in Sect. 2.2. We set
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ε = 20 to constrain the pertubation. For iterative methods, we set the iteration
number T = 20 and the step size α = 5, and we reset α = 1 after 15 iterations.
For MI-FGSM and NI-FGSM, we set the decay factor at μ = 1.

Table 1. mAP drop rate compares with the baseline of models and attackers. “RCNN”
denotes “Faster R-CNN”.

Source Attackers DETR RCNN RetinaNet SSD300 SSD512

– (clean) 32.4 30.5 28.9 25.5 29.5

– (noisy) 31.6 29.7 28.2 25.0 28.4

DETR I-FGSM 17.0 25.4 23.4 23.7 26.4

I-FGSM+ours 16.3 ↓ 2.2% 25.3 ↓ 0.3% 23.4 ↑ 0.0% 23.7 ↑ 0.0% 26.4 ↑ 0.0%

RCNN I-FGSM 24.3 14.9 19.3 23.2 25.6

I-FGSM+ours 21.0 ↓ 10.2% 9.1 ↓ 19.0% 14.5 ↓ 16.6% 22.2 ↓ 3.9% 24.4 ↓ 4.1%

RetinaNet I-FGSM 23.3 20.0 13.7 23.2 25.6

I-FGSM+ours 23.1 ↓ 0.6% 20.1 ↑ 0.3% 12.9 ↓ 2.8% 22.8 ↓ 1.6% 25.3 ↓ 1.0%

SSD300 I-FGSM 27.5 26.1 25.0 9.0 21.9

I-FGSM+ours 24.9 ↓ 8.0% 23.4 ↓ 8.9% 22.3 ↓ 9.3% 2.9 ↓ 23.9% 16.9 ↓ 16.9%

SSD512 I-FGSM 27.7 26.2 25.2 20.9 7.7

I-FGSM+ours 26.0 ↓ 5.2% 24.4 ↓ 5.9% 23.0 ↓ 7.6% 18.8 ↓ 8.2% 2.9 ↓ 16.3%

DETR MI-FGSM 5.9 15.8 14.2 18.2 18.6

MI-FGSM+ours 4.1 ↓ 5.6% 14.4 ↓ 4.6% 13.0 ↓ 4.2% 17.6 ↓ 2.4% 17.6 ↓ 3.4%

RCNN MI-FGSM 14.7 8.0 11.4 18.1 18.6

MI-FGSM+ours 8.2 ↓ 20.1% 3.4 ↓ 15.1% 5.5 ↓ 20.4% 15.0 ↓ 12.2% 14.8 ↓ 12.9%

RetinaNet MI-FGSM 15.3 13.4 8.7 18.4 19.0

MI-FGSM+ours 9.8 ↓ 17.0% 8.0 ↓ 17.7% 3.3 ↓ 18.7% 15.9 ↓ 9.8% 15.9 ↓ 10.5%

SSD300 MI-FGSM 21.7 21.2 20.5 7.4 17.2

MI-FGSM+ours 17.2 ↓ 13.9% 17.1 ↓ 13.4% 16.3 ↓ 14.5% 2.1 ↓ 20.8% 11.1 ↓ 20.7%

SSD512 MI-FGSM 21.8 20.9 20.2 16.4 4.9

MI-FGSM+ours 18.5 ↓ 10.2% 17.8 ↓ 10.2% 16.9 ↓ 11.4% 12.3 ↓ 16.1% 1.2 ↓ 12.5%

For evaluation, mean Average Precision (mAP) is commonly used to measure
the performance of detectors, so we use mAP drop rate (%) to assess the attack
performance. We generate 25 sets of adversarial examples across the combination
of the five models and five attackers on the COCO val2017 set and conduct the
evaluation of each set of adversaries with each model. The mAP drop rate is a
statistic, and it can be formalized as:

mAPdrop rate(%) = (1 − mAPxadv

mAPclean
) · 100% (7)

where mAPxadv is the mean Average Precision on adversarial images, and
mAPclean is the mean Average Precision on clean images.

4.2 Main Results

Part of the main results of attack performance are shown in Table 1. The logits
indicate mAP on adversarials, and the percentages aside represent the differ-
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Table 2. mAP drop rate (%) of different attackers averaged on the five source mod-
els (DETR, Faster R-CNN, RetinaNet, SSD300, SSD512).

Settings Attackers FGSM I-FGSM I-PGD MI-FGSM NI-FGSM

White-box baseline 44.08 57.98 53.61 75.97 76.01

White-box baseline+ours 53.88 70.80 66.49 90.50 90.56

Black-box baseline 37.00 17.34 19.39 39.12 39.03

Black-box baseline+ours 41.78 22.75 24.02 51.39 51.38

Table 3. mAP drop rate (%) of different source models averaged on the five attack-
ers (FGSM, I-FGSM, PGD, MI-FGSM, NI-FGSM). “RCNN” denotes Faster R-CNN.

Settings Source DETR RCNN Retina Net SSD300 SSD512

White-box baseline 60.06 56.30 55.60 60.72 69.86

White-box baseline+ours 64.18 72.59 66.74 81.76 83.59

Black-box baseline 28.27 31.91 31.85 26.55 23.87

Black-box baseline+ours 30.28 43.57 39.29 37.84 31.98

ence of mAP drop rate between our method and the baseline. As we can see,
our approach is effective in the vast majority of cases, both in the white-box
and black-box settings. Further, we analyze the effect of different optimization
methods on black-box and white-box attacks and our improvement to them. The
average results are calculated in Table 2. As is shown in the table, our method
can reach a higher average mAP drop rate by 9–15% in white-box attack and
5–12% in black-box attack than the baseline, regardless of the method of the
attacker. Our method has great improvements for MI-FGSM and NI-FGSM,
and achieves state-of-the-art attack performance when using them as attackers
both in white-box and black-box settings. Similarly, we analyzed the improve-
ment of our attack on different source models. The average results are calculated
in Table 3. Again, except DETR, our method benefits most source models greatly
with 10–21% additional mAP drop rate in the white-box setting and 8 ∼ 17%
in the black-box setting compared with the baseline.

4.3 Ablation Study

Object-Wise Gradient and Domain-Division Map. We have analyzed the
results per class and justified that our improvements could balance the attack
on different categories. As Fig. 1(a) shows, attackers equipped with our Object-
Aware mechanism exhibit more balanced damage in different classes. Figure 1(b)
shows that we further improve the balanced attack performance in sizes, with a
higher increase of mAP drop rate on larger objects. And Table 4(a) shows the
ablation results on OWG and DDM to justify the respective validity.
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Assigner for More Positive Example. The result in Table 4(b) shows the
ablation study of assigners. As we can see, appropriately decreasing the IoU
threshold and increasing the proportion of positive samples are beneficial. There
is a possible explanation given in Fig. 3.

Focal Loss vs CE Loss. We have studied the impact of focal loss and cross-
entropy (CE) loss on attack. The experiments are carried out on RetinaNet. And
we find that CE loss performs much better, as the results in Table 4(c) can show.
We have proposed our assumption in Sect. 3.3.

Table 4. Ablation Studies of our design choices. The mAP drop rates (%) of (a), (b)
are calculated by averaging attack performance of five detectors, i.e., DETR, Faster
R-CNN, RetinaNet, SSD300, SSD512.

(a) Ablations of OWG and DDM.

Attacker OWG DDM White-box Black-box

MI-FGSM 75.97 39.12

✓ 80.47 44.89

✓ ✓ 90.50 51.39

NI-FGSM 76.01 39.03

✓ 80.44 45.02

✓ ✓ 90.56 52.38

(b) Ablations of the assigner and sampler.

Attacker IoU thre Positive ratio White-box Black-box

MI-FGSM 0.5 0.25 83.46 44.23

0.2 0.25 89.05 48.33

0.2 0.5 90.50 51.39

(c) Ablations of CE-loss and focal loss on RetinaNet.

Detector Attacker Loss White-box Black-box

RetinaNet MI-FGSM Focal loss 69.90 43.07

MI-FGSM CE loss 82.33 48.79

MI-FGSM+ours Focal loss 85.67 54.31

MI-FGSM+ours CE loss 88.58 56.82

5 Conclusion

In this paper, we propose an Object-Aware mechanism to balance the adversarial
attack on multiple objects of different categories and sizes and perform transfer-
based black-box attack on detectors. Our method decouples the attack of each
target in the image by Object-Wise Gradient and weighs the attack for objects
of different sizes with a Domain-Division Map. We also improve the design of
assigners and losses to perform attack better. Plenty of experiments on different
models and attack strategies show, our method achieves a huge improvement
both in white-box attack and black-box attack settings.
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Abstract. The swift development of convolutional neural network
(CNN) has enabled significant headway in crowd counting research. How-
ever, the fixed-size convolutional kernels of traditional methods make
it difficult to handle problems such as drastic scale change and com-
plex background interference. In this regard, we propose a hybrid crowd
counting model to tackle existing challenges. Firstly, we leverage a global
self-attention module (GAM) after CNN backbone to capture wider con-
textual information. Secondly, due to the gradual recovery of the feature
map size in the decoding stage, the local self-attention module (LAM)
is employed to reduce computational complexity. With this design, the
model can fuse features from global and local perspectives to better cope
with scale change. Additionally, to establish the interdependence between
spatial and channel dimensions, we further design a novel channel self-
attention module (CAM) and combine it with LAM. Finally, we con-
struct a simple yet useful double head module that outputs a foreground
segmentation map in addition to the intermediate density map, which
are then multiplied together in a pixel-wise style to suppress background
interference. The experimental results on several benchmark datasets
demonstrate that our method achieves remarkable improvement.

Keywords: Crowd Counting · Deep Learning · Self-Attention ·
Hybrid Model

1 Introduction

Crowd counting is a typical computer vision task with numerous real-world appli-
cations across various domains, including public safety, event management, and
regional planning. Along with its prevalence, some related domains, such as cell
counting, traffic flow analysis, and wildlife monitoring, can also gain valuable
reference and inspiration from it.
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Recently, a mainstream process for crowd counting involves developing a net-
work architecture that regresses a density map from an input image and obtains
the corresponding number of people by integrating the entire density map. As a
classic neural network architecture, CNN has been widely applied in computer
vision tasks due to its simplicity and effectiveness. Consequently, most previous
works on crowd counting chose CNN to build models [1–4]. However, CNN is
designed based on fixed-size convolutional kernels, which lead to challenges for
such counting models in dealing with two scenarios: 1) Difficulty in adapting
to drastic variations in crowd scale caused by perspective distortion; 2) Con-
fusion between dense crowds and complex backgrounds with similar textures.
Especially for the latter, it is hard for even human experts to accurately distin-
guish foreground from background if only local image information is concerned.
Therefore, the key to solving the above problems lies in breaking through the
limitations of the local receptive field and enabling the network to understand
the input image from a global perspective.

The self-attention mechanism [5] is capable of modeling long-range dependen-
cies and has been used to handle a variety of tasks, such as image classification
[6,7], object detection [8], and semantic segmentation [9]. Currently, some crowd
counting methods also employ self-attention mechanism to construct network
modules.

Building upon these cutting-edge works, we further explore the specific appli-
cation of the self-attention mechanism to address the problems mentioned before.
Considering that CNN excels at capturing local details and that injecting con-
volutional inductive bias into the early stage of ViT can improve convergence
speed and training stability [10], we propose a hybrid architecture that com-
bines the strengths of CNN and self-attention mechanisms, which enables the
model to comprehensively understand both the local and global information
in crowd images. To capture the interdependence between spatial and channel
dimensions, we specifically introduce a novel module based on the channel self-
attention mechanism and integrate it with the spatial part. Additionally, we
devise a simple but reliable double head module that outputs an intermediate
density map and a head segmentation map, where the latter serves as a guide
for the former to focus on the regions of interest.

In short, the main contributions of this paper are summarized as follows:

1. We propose a hybrid crowd counting model boosted by global, local, and
channel self-attention mechanisms, employed to acquire wider context and
establish dependencies between spatial and channel dimensions, respectively.

2. Extensive experiments on four crowd datasets are conducted to validate the
solid advancements achieved by our method, including ShanghaiTech A, UCF-
QNRF, JHU-Crowd++, and NWPU-Crowd.

2 Related Work

The primary objective of crowd counting is to estimate the number of people
in a given input image, while the density estimation task further provides addi-
tional information about the spatial distribution of the crowd, which is currently
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gaining prominence in crowd counting research. The total number of people can
be obtained by summing up all the density values in the map.

2.1 CNN in Crowd Counting

Thanks to the rapid development of CNN, diverse network architectures have
been proposed to address various problems in the field of crowd counting. MCNN
[1] and Switch-CNN [11] employ branches with different kernel sizes to handle
crowds at varying scales. CSRNet [2] and SPN [12]utilize dilated convolutions
to enlarge the receptive field, capturing contextual information over a broader
range. MBTTBF [3] and SASNet [4] leverage the hierarchical structure of back-
bone network to acquire and fuse multi-scale information. To suppress back-
ground noise, ASNet [13] and CFANet [14] introduce auxiliary segmentation
tasks through attention mechanisms. In addition, PGCNet [15] and PFDNet
[16] integrate perspective analysis into methods, expanding the research scope
of crowd counting.

2.2 Self Attention in Crowd Counting

Despite the notable achievements of CNN in processing vision tasks, their perfor-
mance is intrinsically limited due to the difficulty in capturing long-range depen-
dencies. In contrast, Transformers, based on self-attention mechanisms, excel in
modeling global context information. As a result, researchers have migrated the
self-attention mechanism to the domain of computer vision. For instance, DETR
[8] uses a Transformer-based encoder-decoder structure for object detection. ViT
[6] divides an image into a sequence of patches and feeds them as tokens into a
standard Transformer encoder for image classification tasks. Swin Transformer
[7] improves upon ViT [6] by introducing a shifted windowing scheme, which
performs self-attention computation within local window regions and allows
cross-window connection. SETR [9] replaces the CNN encoder with a Trans-
former in semantic segmentation task to carry out sequence-to-sequence pre-
diction task. Analogously, researchers start to incorporate self-attention mecha-
nisms into counting networks. CrowdFormer [17] develops an Overlap Patching
Transformer Block to explore global dependencies. MAN [18] proposes a Learn-
able Region Attention to dynamically assign exclusive attention region for each
feature position. CUT [19] adopts Twins-PCPVT [20] as the backbone and con-
structs a Segmentation As Attention Module to obtain fine-grained features with
rich semantic information.

Inspired by these seminal works, this paper further extends the application of
self-attention mechanisms in the field of crowd counting. Briefly, we design triple
self-attention modules from global, local, and channel perspectives to boost the
accuracy of our counting network.

3 Proposed Method

In this section, we first introduce a hybrid model based on triple self-attention
mechanisms, which consist of global, local and channel attention modules. Then
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we present a simple double head module and corresponding loss function. The
architecture of HTNet is shown in Fig. 1.
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Fig. 1. The architecture of HTNet that is made up of CNN backbone, triple self-
attention, and a simple but effective double head module.

To begin with, we utilize the first 13 layers in VGG-16BN [21] as backbone
to extract multi-levels local features from the input image. Then a global self-
attention module (GAM) follows the features to gain a larger range of context.
During the decoding stage, as the feature map resolution is gradually recovered,
a local self-attention module (LAM) is adopted to reduce the computational cost.
Meanwhile, we also integrate a channel self-attention module (CAM) into the
LAM to capture the interaction between spatial and channel dimensions. Finally,
a double head module feature map simultaneously outputs the intermediate
density estimation and the foreground segmentation map, which are multiplied
together to obtain the final crowd density map.

3.1 CNN-Based Backbone

According to [10], the introduction of convolutional inductive biases in the early
stages can improve optimization stability and converge faster. Thus we utilize
the first 13 layers in VGG-16BN [21] as stem to extract local detail features.
Two feature maps with sizes of 1

8 and 1
16 are used to construct the FPN [22]

structure, which allows better utilization of multi-scale information.
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Fig. 2. The detail of global, local and channel self-attention modules.

3.2 Global Self-attention Module

Analyzing input images from a global perspective is highly beneficial for the
network to accommodate variations in people head size, while a limited field of
view may even make it challenging for human experts to accurately distinguish
dense crowds and complex backgrounds. Hence, after extracting local features
from the convolutional stem, we place a global self-attention module (GAM),
which expands the receptive field from local to global, as depicted in Fig. 2(a).

The GAM is composed of a standard multi-head self-attention (MSA) and
a multi-layer perceptron (MLP). A conditional positional encoding scheme [23]
is implemented using depth-wise separable convolutions with zero-padding. To
reduce computational complexity, we adopt an average pooling layer with a stride
of 2 to perform the patch embedding projection. Then the patches are flattened
into a 2D sequence x and fed into GAM, in which the calculation process can be
formulated as follows:

ẑ = MSA (LN (x)) + x,

z = MLP (LN (ẑ)) + ẑ
(1)

where ẑ and z denote the output features of the MSA and MLP, respectively;
LN stands for Layer Norm.

3.3 Local and Channel Self-attention Module

As HTNet is based on the FPN architecture, we upsample the deep-level fea-
ture maps to restore resolution and add them to the shallow feature maps. The
upsampling operation is accomplished through the Warp function introduced
from FAM [24]. Then self-attention computation is performed on the fused fea-
ture maps. To establish dependencies between spatial and channel dimensions,
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we construct spatial and channel self-attention modules separately, which are
combined in series.

Local Self-attention Module. With the gradual restoration of the feature
map resolution, we consider a local self-attention module (LAM) to lower the
computation cost, as shown in Fig. 2(b). Firstly, we utilize a Window Parti-
tion operation to divide the feature maps into several windows. Subsequently, a
Masked MSA is applied to restrict the self-attention computation within each
window. After that, we use convolutional layers and Sigmoid function to build
an attention gate, which can selectively emphasize informative features while
suppress less useful ones. Lastly, the sequence is reshaped back into a feature
map through the Shape Reverse. In addition, we also follow Swin Transformer [7]
and apply Cyclic Shift to the feature maps before feeding into the next Masked
MSA layer, facilitating interactions between adjacent windows. It is noteworthy
that the succeeding MLP excludes LN, as it performs point-wise normalization
and weakens the enhancement or suppression effect of LAM on features.

Channel Self-attention Module. The structure of the channel self-attention
module (CAM) is depicted in Fig. 2(c). CAM first normalizes the feature maps at
channel dimension and then projects them into queries and keys independently.
Before mapping the feature map into keys, we conduct dimension reduction to
make representations of the keys more compact and reduce computational com-
plexity. Then, for a given query and all N keys, we can obtain N dot product
similarities, which will serve as input to a fully connected layer to generate an
attention score. Finally, the original channel feature corresponding to the query
is multiplied by this score, which plays a dynamic emphasis or suppression role.
Notably, since CAM operates on channel-wise feature maps, Instance Normal-
ization (IN) is employed instead of the regular LN, and the mapping process is
implemented using depth-wise separable convolutions.

3.4 Double Head Module

We construct a concise double head module (DHM) to mitigate background
interference, which generates an intermediate feature map and a foreground seg-
mentation map. Then an element-wise product is applied on these two maps
to output the final density estimation map. We show this module structure in
Fig. 1. Each branch in DHM independently comprises two consecutive 3× 3 and
a subsequent 1 × 1 convolutional layers. The last layer of the density regression
branch employs ReLU as activation function, whereas the segmentation task
incorporates a Sigmoid. The remaining activation functions within DHM are
GELU.
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3.5 Loss Function

Corresponding to the regression and segmentation task in DHM, we implement
a loss function comprising two components, each of which serves to supervise
the above-mentioned maps individually.

As for the density regression head, we utilize Euclidean loss to measure pixel-
wise prediction error. Let Xi be the i-th image in the training batch, D (Xi) stand
for the ground truth density map corresponding to Xi, and D̂ (Xi;Θ) indicate
the crowd density map estimated by the model with parameters represented as
Θ. Then the density map estimation loss function Lden is given by:

Lden =
1
B

B∑

i=1

∥∥∥D̂ (Xi;Θ) − D (Xi)
∥∥∥
2

2
(2)

where B is the size of the training batch.
With regard to the segmentation task, we employ Focal Loss [25], named FL.

Let M (Xi) denote the ground truth foreground-background mask for the input
image Xi, and M̂ (Xi;Θ) represent the classification probability map output by
the network. The expression for FL can be written as:

FL(ŷ, y) = −y(1 − ŷ)γ log ŷ − (1 − y)ŷγ log(1 − ŷ) (3)

Lseg =
1
B

B∑

i=1

FL
(
M̂ (Xi;Θ) ,M (Xi)

)
(4)

where y stands for the actual label (with a value of 1 for the foreground and 0
for the background), while ŷ is the predicted probability of the corresponding
pixel belonging to the foreground. γ is a hyperparameter that is set to 2 in the
experiments.

The final loss function is a weighted combination of the above two terms, as
shown below:

Lfinal = Lden + λLseg (5)
where λ is a hyperparameter to balance the contributions of Lden and Lseg.

4 Experiments

In the experimental section, we first introduce the ground truth generation pro-
cedures and implementation details. Subsequently, we report the experimental
results of HTNet on ShanghaiTech A [1], UCF-QNRF [26], JHU-Crowd++ [27],
and NWPU-Crowd [28]. Finally, we conduct complete ablation studies to analyze
the contributions of each proposed module.

4.1 Ground Truth Generation

The ground truth density map D (x) is generated by convolving head annotation
map with a normalized Gaussian kernel with a fixed standard deviation of 4.
As for the segmentation task, given its auxiliary role in our method, we simply
regard the non-zero regions in the D (x) as foreground, otherwise as background,
thus generating the ground truth foreground-background mask.
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4.2 Implementation Details

Our HTNet employs VGG-16BN [21] that has been pretrained on ImageNet [29]
as the backbone, and the remaining convolutional and attention layers are ini-
tialized using a Gaussian distribution with a mean of 0 and a standard deviation
of 0.01. During training, the crop size is 256 × 256 for all datasets. The model
is optimized by AdamW [30] with a learning rate of 1e−5. Horizontal Flipping,
Gaussian noise, and Color jitter are adopted for data augmentation.

4.3 Evaluations and Comparisons

To quantitatively evaluate HTNet, we conduct extensive experiments on four
benchmark datasets and compare the performance with state-of-the-art meth-
ods. Mean Absolute Error (MAE) and Mean Square Error (MSE) are uesd as
evaluation metrics. The experimental results are summarized in Table 1 and 2,
where the optimal performances are indicated by bold numbers.

Table 1. Comparison with mainstream methods on ShanghaiTech A and UCF-QNRF.

Method Venue ShanghaiTech A UCF-QNRF

MAE MSE MAE MSE

MCNN [1] CVPR 16 110.2 173.2 277.0 426.0

CSRNet [2] CVPR 18 68.2 115.0 – –

BL [31] ICCV 19 62.8 101.8 88.7 154.8

DM-Count [32] NIPS 20 59.7 95.7 85.6 148.3

ASNet [13] CVPR 20 57.8 90.1 91.6 159.7

BM-Count [33] IJCAI 21 57.3 90.7 81.2 138.6

S3 [34] IJCAI 21 57.0 96.0 80.6 139.8

CLTR [35] ECCV 22 56.9 95.2 85.8 141.3

ChfL [36] CVPR 22 57.5 94.3 80.3 137.6

GauNet [37] CVPR 22 54.8 89.1 81.6 153.7

MAN [18] CVPR 22 56.8 90.3 77.3 131.5

HTNet – 52.5 87.9 77.1 137.4

ShanghaiTech Part A [1] is comprised of 482 images sourced from the inter-
net, which are divided into 300 training images and 182 testing images. The
dataset contains a total of 241,677 annotated points, with the number of anno-
tations per image varying between 33 and 3139. We report the best performance
achieved by HTNet on ShanghaiTech A in Table 1, which reduces the MAE and
MSE of the second-ranked GauNet [37] from 54.8 to 52.5 and from 89.1 to 87.9.
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UCF-QNRF [26] contains 1,535 high-resolution images with approximately
1.25 million annotated points. The dataset features an exceptional variety of
crowd densities, with the lowest and highest counts being 49 and 12,865, respec-
tively. The training set is composed of 1,201 images, while the remaining 334
images are reserved for testing. As shown in Table 1, we achieve the best MAE
and the second best MSE performance on UCF-QNRF.

Table 2. Comparison with mainstream methods on JHU-Crowd++ and NWPU-
Crowd.

Method Venue JHU-Crowd++ NWPU-Crowd

MAE MSE MAE MSE

MCNN [1] CVPR 16 188.9 483.4 232.5 714.6

CSRNet [2] CVPR 18 85.9 309.2 121.3 387.8

BL [31] ICCV 19 75.0 299.9 105.4 454.2

DM-Count [32] NIPS 20 – – 88.6 388.6

BM-Count [33] IJCAI 21 61.5 263 83.4 358.4

P2PNet [38] ICCV 21 – – 77.44 362

S3 [34] IJCAI 21 59.4 244.0 83.5 346.9

CLTR [35] ECCV 22 59.5 240.6 74.3 333.8

GauNet [37] CVPR 22 58.2 245.1 – –

ChfL [36] CVPR 22 57.0 235.7 76.8 343.0

HTNet – 61.6 261.5 69.3 295.0

JHU-Crowd++ [27] is a massive dataset with 4,372 images encompassing var-
ied weather conditions and density levels. The head annotations for each image
range from 0 to 25,791. Among the images, 2,772 are designated for training,
500 are in the validation set, and the remaining 1,600 are for testing. According
to Table 2, the performance of HTNet on JHU is slightly worse than that of
state-of-the-art methods, but still acceptable.

NWPU-Crowd [28] consists of 5,109 high-resolution images with over 2.13
million annotated points, of which 3,109 are assigned to the training set, 500 are
used for validation, and the remaining 1,500 are divided into testing set. From
Table 2, it is evident that HTNet performs the best in terms of MAE and MSE,
with performance gains of 6.7% and 11.6% respectively.

4.4 Ablation Studies

We perform comprehensive ablation experiments on ShanghaiTech A to vali-
date the effectiveness of each proposed module, including GAM, LAM, CAM,
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and DHM. The quantitative results are provided in Table 3. Row 2 represents a
baseline model, which eliminates all the aforementioned modules. Rows 3 to 9
show the performance when different combinations of modules are included.

Table 3. Ablation studies for each module in HTNet on ShanghaiTech A

GAM LAM CAM DHM MAE MSE

63.32 104.05√
57.51 91.40√ √
56.93 90.89√ √
55.34 91.90√ √
55.39 93.06√ √ √
55.17 95.78√ √ √
55.56 93.38√ √ √
53.42 92.17√ √ √
53.94 93.36√ √ √ √
52.47 87.90

Ablation for GAM. The removal of GAM leads to severe decrease in MSE,
highlighting the critical role of global priors in guiding the model to comprehend
the input image.

Ablation for LAM. Eliminating LAM refers to replacing the W-MSA in
Fig. 2(b) with an identity connection. In this case, both MAE and MSE show a
certain degree of deterioration, suggesting that the local information also con-
tributes to boosting the model.

Ablation for CAM. When we ablate CAM, the remaining modules lose the
ability to capture the spatial-channel dependency. Hence, the model exhibits
suboptimal performance.

Ablation for DHM. In the scenario where we discard the segmentation task of
DHM, resulting in a plain density regression module, we observe the worst MAE.
This indicates that relying solely on a density regression task is insufficient to
leverage the extracted rich features.

5 Conclusion

In this paper, we propose a crowd counting model, HTNet, which consists of a
CNN stem for capturing detailed information and three modules based on global,
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local, and channel self-attention mechanisms respectively. With this design, the
model can overcome the restriction of a limited receptive field, analyze the input
image from a global perspective, and capture the interaction between spatial and
channel dimensions. Additionally, we introduce a double head module to further
alleviate confusion caused by complex backgrounds with textures similar to those
of dense crowds. Experimental results on benchmark datasets demonstrate that
our proposed approach achieves superior performance.
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Abstract. Contrastive learning methods based on the memory bank
have shown promising results for unsupervised person re-identification.
However, most methods maintain a uni-proxy for each cluster in the
memory that only describes the average information but can not rep-
resent the intra-class variation. As a result, contrastive learning based
on the uni-proxy cannot effectively guide the model to reduce the vari-
ation. To address this issue, we maintain a proxy pair for each cluster
updated by the least similar boundary sample pair since they concretely
reveal the intra-class variation of the cluster. Through contrastive loss,
the proxy updated based on one boundary sample generates strong pulls
to another one and its surrounding samples due to the low similarity,
and two proxies collaboratively form bidirectional strong pulls to effec-
tively reduce intra-class variance. To mitigate the impact of boundary
samples being noisy, we further propose local-global consistency guided
label refinement, which utilizes local fine-grained cues to select reliable
samples with high overlap in the local and global feature neighborhoods.
Comprehensive experiments on Market-1501 and MSMT17 demonstrate
that the proposed method surpasses state-of-the-art approaches.

Keywords: Person re-identification · Contrastive learning · Proxy
pairs

1 Introduction

Unsupervised person re-identification (Re-ID) searches for images of a target per-
son across non-overlapping cameras without annotations [23]. Currently, most
state-of-the-art methods [1,6,16,17] utilize a memory bank to maintain cluster
proxies according to the pseudo labels generated by clustering algorithms, then
employ contrastive learning [12] based on the proxies to train the model. The
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contrastive loss is designed to pull a sample closer to the proxy of its cluster
while pushing it away from proxies of other clusters. The effectiveness of the
loss heavily relies on the quality of the proxies. Therefore, several works have
been conducted to study this issue. SpCL [8] maintains instance features in the
memory and uses the cluster centroids as proxies. CCL [6] directly stores cluster-
level proxies to keep the updating consistency. HCM [16] integrates both cluster
features and instance features as proxies. The commonality of these methods is
using a uni-proxy as the cluster-level representation for each cluster. However,
due to various factors such as pose, viewpoint, illumination, occlusion, etc., large
intra-class variation usually exists. The conventional uni-proxy only describes the
average information and fails to capture the intra-class variation. Consequently,
as shown in Fig. 1a, a uni-proxy can only generate a unidirectional pull to the
samples in the cluster through contrastive loss, but not a targeted pull that brings
samples with large distances closer to each other and therefore cannot effectively
reduce intra-class variation. There are also some methods [1,5,17] maintaining
multiple camera-aware proxies at the cluster level to reduce intra-class variation
caused by changing viewpoints, but they rely on camera labels and cannot mit-
igate the variation caused by other factors. To solve the problem, we propose a

Fig. 1. An illustration showing that a uni-proxy only generates weak unidirectional
pulls to samples, while discrepant proxy pairs based on boundary samples generate
strong bidirectional pulls to make the samples close to each other.

contrastive learning method that maintains a proxy pair for each cluster based
on reliable boundary samples. The boundary sample pair with the lowest sim-
ilarity reveals the current largest intra-class variation, thus a proxy pair based
on them can accurately represent the existing variance. Moreover, each proxy
can produce a strong pull on samples around the other boundary sample due
to their low similarity, thus strong bidirectional pulls are collaboratively formed
to decrease intra-class variation like Fig. 1b. Nevertheless, considering that the
generated pseudo labels are not all correct while boundary samples are most
likely to be noisy and to significantly degrade performance [5], we propose to
select reliable samples in clusters based on the neighborhood consistency of local
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and global features. Our key idea is that the label noise caused by the global
appearance similarity can be corrected by the fine-grained visual cues included
in the local features. We calculate the consistency of a sample by the overlap
between the k -nearest neighbors of its local feature and the samples sharing its
global label. Based on the consistency of each sample, we introduce a dynamic
changing threshold to filter reliable samples with high consistency, which effec-
tively mitigates the impact of label noise. The main contributions of our work
are as follows:

- We propose boundary samples-based proxy pairs that can explicitly repre-
sent the intra-class variation and effectively reduce the variation through the
generated strong bidirectional pulls in a cluster.
- We propose a local-global consistency guided pseudo label refinement
method, which utilizes the finer-grained information of local features to filter
reliable samples with high-confidence global pseudo labels.

2 Related Work

Unsupervised Person Re-identification. Current unsupervised approaches
can be generally categorized into unsupervised domain adaptive (UDA) meth-
ods [7,19] and purely unsupervised learning (USL) methods [1,5,6]. UDA meth-
ods transfer knowledge from labeled source datasets to unlabeled target datasets.
USL methods directly learn features on unlabeled target datasets. Our method
belongs to the more challenging USL setting. Recently, significant progress has
been made in clustering-based USL methods. SpCL [8] gradually selects reliable
clusters and proposes a unified contrastive loss based on the cluster centroids and
outliers. CCL [6] introduces a novel cluster contrastive learning framework that
stores and updates a cluster-level proxy. HCPDP [4] proposes a hybrid dynamic
local-global clustering contrast and probability distillation framework. However,
these methods maintain only a uni-proxy at the cluster level and fail to represent
intra-class variation. Therefore, CAP [17] forms multiple camera-aware proxies
within a cluster to alleviate the camera domain gaps. MRCN [19] utilizes mul-
tiple instance proxies to mitigate the influence of noisy samples. Unlike these
methods, we propose to maintain a discrepant proxy pair that explicitly repre-
sents the intra-class variation based on reliable boundary samples and reduce
the variation by strong bidirectional pulls.

Noise Reduction of Pseudo Labels. Recently, reducing label noise has be-
come a research focus in unsupervised person Re-ID. MMT [7] utilizes mutual
learning by leveraging predictions from a mean teacher network to refine pseudo
labels. RLCC [21] estimates pseudo-label similarity over consecutive train-
ing generations and proposes temporal propagation and ensemble. DCCT [6]
proposes parameter-differentiated dual clustering to select consistent samples.
PPLR [5] considers the complementary relationship between global and local
features to generate soft pseudo-labels. SECRET [10] utilizes the consistency
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between local and global label spaces for reliable sample selection. In contrast
to these methods, we utilize fine-grained clues from local features to exclude
unreliable samples in the global label space based on the consistency between
local and global feature neighborhoods.

Fig. 2. The illustration of our framework. In the clustering step, we calculate local-
global consistency to select reliable samples. In the training step, we update the proxy
pair of the identity based on the two least similar boundary samples.

3 Method

3.1 Overview

Let D = {xi}ND
i=1 denote the unlabeled dataset, where xi is the i -th image and

ND is the number of images. Fm = {Fi}ND
i=1 denotes the feature maps extracted

by encoder fθ. Fv = {fi}ND
i=1 denotes the features after the pooling on feature

maps. fq denotes the feature vector of a query instance.
Currently, most USL methods [1,6,8] adopt a two-step alternating strategy

of clustering and training. They fist obtain a labeled dataset D′ = {(xi, yi)}N ′
D

i=1

through DBSCAN clustering [15], where yi ∈ {1, 2, . . . , c} denotes the pseudo
label of the i -th image, c denotes the number of clusters and N ′

D is the number
of images after discarding outliers. Then the memory mechanism and contrastive
learning are applied to D′. Most methods [3,6] initialize the memory bank M
with the average feature of samples in each cluster as its cluster-level uni-proxy,
which plays the role of a non-parametric classifier in the InfoNCE loss func-
tion [12]. The formulation of the InfoNCE loss can be summarized as follows:

L = − log
exp (fq · p+/τ)

∑c
i=1 exp (fq · pi/τ)

, (1)
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where fq is the query instance feature. pi is the proxy of the i -th cluster in the
memory bank M. p+ is the proxy of the cluster to which the query belongs. τ
is a temperature factor. c is the number of clusters. Since both fq and pi are
L2-normalized, the cosine similarity fq · pi is specified as their similarity score.
During the back-propagation, the memory bank is updated as follows:

p+ ← μ · p+ + (1 − μ) · qmean, (2)

where μ denotes a momentum factor. qmean is the average feature of the instances
in the mini-batch sharing the same pseudo label with p+.

We set the above cluster uni-proxy-based contrast learning framework as
our baseline. As shown in Fig. 2, this paper proposes a novel contrast learning
framework based on the proxy pairs obtained by reliable boundary samples,
which overcomes the limitation of the uni-proxy failing to represent intra-class
variation. To ensure the reliability of boundary samples, we propose local-global
consistency guided label refinement that utilizes local fine-grained information
to filter samples with reliable global pseudo labels.

3.2 Local-Global Consistency Guided Label Refinement (LGCLR)

The global features of different persons often show high similarity due to under
the same camera view or wearing similar clothes. In this case, local visual
cues such as bags, patterns on clothes, shoes, etc. are the key factors to dis-
tinguish similar persons. Therefore, we propose local-global consistency guided
label refinement which defines the overlap between the k -nearest neighbors of a
local feature and the samples sharing its global label as local-global consistency
and selects samples with high consistency.

We extract the feature map Fi ∈ R
C×H×W of an image xi with the encoder

fθ, where C, H, W denote the sizes of the channel, height, and width. Then
the global feature fg

i is obtained by Generalized-Mean (GEM) pooling [14] over
Fi, while two local features

(
fup

i , fdw
i

)
are obtained by dividing the feature map

horizontally into two uniform regions R
C× H

2 ×W . We calculate the k -reciprocal
Jaccard Distance [24] matrices Dg, Dup and Ddw of the train set based on the
global and local feature sets fg, fup and fdw respectively, where k is set to 30
and the re-ranking technique is applied. Then the pseudo labels are generated by
applying DBSCAN on the global distance matrix Dg only. For a global feature
fg

i of the sample xi, we get the cluster it belongs to and its global label yi. We
denote the sample set of the cluster as I (fg

i ) and the number of samples as
ni. The top-ni nearest neighbors of xi according to distance matrices Dup and
Ddw can be denoted as I (fup

i ) and I (
fdw

i

)
. We propose the following metrics

to measure the consistency of the global and two local feature neighborhoods,

Cup (fg
i ) =

|I (fg
i ) ∩ I (fup

i )|
|I (fg

i )| ∈ [0, 1],

Cdw (fg
i ) =

∣
∣I (fg

i ) ∩ I (
fdw

i

)∣
∣

|I (fg
i )| ∈ [0, 1],

(3)
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where | · | denotes the number of samples in the set. Larger Cup (fg
i ) and Cdw (fg

i )
indicates a higher consistency and reliability for fg

i , i.e., even from a local per-
spective that contains more detailed information, samples with the same global
pseudo label are still most likely to be clustered into the same category. We
calculate the final consistency C (fg

i ) as the mean value of Cup (fg
i ) and Cdw (fg

i ).
After obtaining the local-global consistency of each sample, we introduce a

threshold α ∈ [0, 1] to select reliable samples. Specifically, we retain samples with
consistency C > α, while the remaining samples are regarded as outliers. The
consistency of samples will increase with training, and more and more samples
will be considered reliable ones to enhance feature learning.

3.3 Reliable Boundary Samples Based Proxy Pairs (RBSPP)

Considering that the uni-proxy merely represents the average information within
a cluster, failing to capture the intra-class variations whereas the least similar
boundary samples accurately reflect the largest intra-class variance, we form
discrepant proxy pairs based on reliable boundary samples after LGCLR to
effectively represent and reduce the intra-class variance.

Memory Initialization. Assume that there remain c′ clusters after LGCLR,
we initialize the proxy pair

(
p1j , p

2
j

)
of the j -th cluster with the cluster centroid

cj at the beginning of each epoch as follows,

cj =
1

|Hj |
∑

fg
i ∈Hj

fg
i , (4)

where Hj denote the set of global features in the j -th cluster. Note that part
features are only used for label refinement. Hence, the memory bank M has a
size of R2c′×d, with d representing the feature dimension.

Memory Update. Following previous works, we randomly sample K instances
for each of P person identities to form a mini-batch. For the i -th identity, we
select the boundary sample pair

(
fg

b1
, fg

b2

)
with the lowest cosine similarity among

the K instances. Considering that utilizing only the boundary sample pairs to
update the proxies ignores the information of other samples in the clusters, which
may lead to biased training, we weighted fuse the boundary sample pairs with
the average features of the remaining K − 2 samples before updating,

fw
bt = βfg

bt
+ (1 − β)

1
K − 2

K−2∑

j=1

fg
j , (5)

where t = {1, 2} and β is the fusion weight. Then
(
fw

b1
, fw

b2

)
are used to update

the proxy pair
(
p1i , p

2
i

)
of the i -th identity. To avoid the drastic changes in

optimization direction caused by significant updates of proxies, we update each
proxy as Eq. 2 by replacing qmean with corresponding fw

bt
with higher similarity

to the proxy.
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Contrastive Loss. With the proxy pair of each cluster, we form the contrastive
loss for any query instance as follows:

LRBSPP = −1
2

2∑

j=1

log
exp

(
fg

q · p+j /τ
)

∑c′
i=1 exp

(
fg

q · pj
i/τ

) , (6)

where pj
i is the j -th proxy of the i -th cluster. p+j shares the same label with the

global query feature fg
q and is the j -th proxy for that cluster. Updating a proxy

based on a boundary sample brings a decrease in the similarity between a proxy
and the samples around another boundary sample. Therefore, the contrastive
loss can produce larger gradients, resulting in a stronger bidirectional pull to
effectively reduce intra-class variation.

4 Experiments

4.1 Datasets and Evaluation Protocols

The evaluations are conducted on the Market-1501 [22] dataset and the
MSMT17 [18] dataset. Market-1501 is gathered from the Tsinghua University
campus using 6 cameras and has 32,668 images belonging to 1,501 unique person
identities. A training set of 12,936 images from 751 identities and a test set of
19,732 images from 750 identities make up the dataset. MSMT17 is a larger,
more difficult dataset with 126,441 images and 4,101 person identities captured
by 15 cameras. The MSMT17 training set comprises 32,621 images from 1,041
identities, while the test set comprises 93,820 images from 3,060 identities. In
our experiments, we assessed performance using the top-1, top-5, and top-10
accuracies of the Cumulative Matching Characteristics (CMC), as well as the
mean Average Precision (mAP).

4.2 Implementation Details

We adopt ResNet50 [9] as the backbone. All layers after layer-4 are removed
and the GEM pooling [14] layer is added. The input image size is 320×128.
The maximum distance in DBSCAN is set to 0.45 for Market-1501 and 0.7 for
MSMT17. The consistency threshold α is set to the value that ranks the 1%
position. Considering that label noise is most severe during the early training
stage, we only perform label refinement in the first 20 epochs to ensure an
adequate number of training samples. The weight β in Eq. 5 is set to 0.7 and
0.6 for Market-1501 and MSMT17, respectively. A mini-batch has 256 samples
comprising 16 IDs and 16 images for each ID. The temperature hyper-parameter
τ in the contrastive loss (Eq. 6) is set to 0.05. We use an Adam optimizer with
weight decay of 5 ×10−4. The initial learning rate is set to 3.5 ×10−5 and divided
by 10 every 20 epochs. We train the model for 60 epochs on both datasets.
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4.3 Comparison with State-of-the-Arts

We initially compare RBSPP to state-of-the-art methods on Market-1501 and
MSMT17. From Table 1, We can see that our approach performs substantially
better than the prior approaches without any labels. We achieve mAP/top-1
of 85.4%/94.0% and 38.6%/67.3% on Market-1501 and MSMT17. The mAP
of our method substantially surpasses the state-of-the-art method CCL [6] by
1.3% and 5.0% on Market-1501 and MSMT17. In comparison to the methods
using camera labels, our method without any camera information outperforms
the mAP of IICS [20], CAP [17], ICE [1], and PPLR [5] on Market1501, and
surpasses the mAP of IICS [20] and CAP [17] on MSMT17. Moreover, under
the supervised condition, our method greatly exceeds the mAP/top-1 of ICE [1]
by 11.1%/6.8% on MSMT17, which shows our potential on large datasets. It is
also worth noting that our method demonstrates comparable performance to the
widely recognized supervised method ADBNet [2].

Table 1. Comparison with state-of-the-art methods on Market-1501 and MSMT17.
Bold is used to mark the best results of unsupervised methods without any labels.

Method Market-1501 MSMT17

mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

Unsupervised methods with camera labels

IICS [20] CVPR’21 72.9 89.5 95.2 97.0 26.9 56.4 68.8 73.4

AP [17] AAAI’21 79.2 91.4 96.3 97.7 36.9 67.4 78.0 81.4

ICE [1] ICCV’21 82.3 93.8 97.6 98.4 38.9 70.2 80.5 84.4

PPLR [5] CVPR’22 84.4 94.3 97.8 98.6 42.2 73.3 83.5 86.5

Unsupervised methods without any labels

SpCL [8] NeurIPS’20 73.1 88.1 95.1 97.0 19.1 42.3 55.6 61.2

ICE [1] ICCV’21 79.5 92.0 97.0 98.1 29.8 59.0 71.7 77.0

MCRN [19] AAAI’22 80.8 92.5 - - 31.2 63.6 - -

SECRET [10] AAAI’22 81.0 92.6 - - 31.3 60.4 - -

PPLR [5] CVPR’22 81.5 92.8 97.1 98.1 31.4 61.1 73.4 77.8

HDCPD [4] TIP’22 81.7 92.4 97.4 98.1 24.6 50.2 61.4 65.7

CCL [6] ACCV’22 84.2 93.4 97.6 98.3 33.6 63.3 73.3 78.0

MPC [11] CVIU’23 79.9 91.1 96.1 97.4 - - - -

RMCL [13] KBS’23 81.7 93.0 97.6 98.4 32.5 62.3 73.6 78.0

RBSPP This paper 85.4 94.0 97.6 98.3 38.6 67.3 77.2 81.2

Supervised methods

ABD-Net [2] ICCV’19 88.3 95.6 - - 60.8 82.3 90.6 -

ICE (w/ ground truth) [1] ICCV’21 86.6 95.1 98.3 98.9 50.4 76.4 86.6 90.0

RBSPP (w/ ground truth) This paper 88.9 95.5 98.4 99.0 61.5 83.2 91.5 93.7

4.4 Ablation Study

To evaluate the effectiveness of each proposed component, we undertake exten-
sive experiments on Market-1501 and MSMT17 in this subsection. We define the
framework introduced in Sect. 3.1 that uses the uni-proxy as our baseline.
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Table 2. Ablation studies on proposed components of our method.

Method Market-1501 MSMT17

mAP top-1 mAP top-1

Baseline 81.1 92.5 35.4 65.6

Baseline+LGCLR 83.1 93.0 35.9 66.4

Baseline+BSPP 84.7 93.5 36.9 65.8

RBSPP 85.4 94.0 38.6 67.3

Table 3. Comparison with different strategies for LGCLR and RBSPP.

Method
Market-1501 MSMT17
mAP top-1 mAP top-1

RBSPP 85.4 94.0 38.6 67.3
RBSPP-up 84.7 93.4 37.0 66.1
RBSPP-down 84.2 93.0 35.6 63.8
RBSPP-sep 82.5 92.0 37.7 66.2

(a) Alternative definitions of consistency

Method
Market-1501 MSMT17
mAP top-1 mAP top-1

RBSPP 85.4 94.0 38.6 67.3
Baseline 81.1 92.5 35.4 65.6
RBSPP-BF 85.0 93.8 27.4 52.7
RBSPP-RF 82.5 92.6 35.9 66.6

(b) Different features for proxy updating

Effectiveness of LGCLR. We add local-global consistency guided label refine-
ment (LGCLR) to the baseline and BSPP (i.e. RBSPP without label refine-
ment), respectively. As shown in Table 2, LGCLR boosts the mAP/top-1 of
baseline by 2.0%/0.5% and 0.5%/0.8% on Market-1501 and MSMT17. In addi-
tion, compared to BSPP, RBSPP (BSPP + LGCLR) improves mAP/top-1 by
0.7%/0.5% and 1.7%/1.5% on the two datasets, respectively. This demonstrates
that the proposed LGCLR can effectively mitigate the impact of label noise in the
early training stage by utilizing local detail cues as complementation for global
information to select reliable samples. We also explore alternative consistency
definitions to validate our assumption on it. In Table 3(a), RBSPP-up/RBSPP-
down regards the consistency of the up/down part as the consistency of a sample.
RBSPP-sep denotes that two thresholds are set for up-global and down-global
consistency separately. According to the experimental results, RBSPP aggregat-
ing the two local-global consistency achieves the optimum, presumably because
an individual part loses information contained in the other part and instead
easily confuses two samples that are not similar from the global view.

Effectiveness of BSPP. As shown in Table 2, the proposed boundary samples-
based proxy pairs (BSPP) improve mAP/top-1 by 3.6%/1.0% and 1.5%/0.2%
on Market-1501 and MSMT17 compared to the uni-proxy-based baseline. More-
over, the RBSPP including LGCLR significantly outperforms the baseline by
4.3%/1.5% and 3.2%/1.7% on the two datasets, which shows the effectiveness
of BSPP. We also study different strategies to get the proxy pair in Table 3(b).
RBSPP-BF directly updates the proxy pair by the boundary sample pair with-
out fusing the remaining features. RBSPP-RF updates the proxy with a ran-
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domly selected sample pair. We can see that RBSPP outperforms RBSPP-BF
on both datasets by 0.4% and 9.2% in mAP, which demonstrates that ignoring
the remaining samples does result in biased training, especially on MSMT17.
Compared to RBSPP-RF, RBSPP improved mAP/top-1 by 3.1%/1.4% and
2.7%/0.7% on the two datasets, which proves the boundary samples and remain-
ing samples are both important for cluster representation.

Fig. 3. Analysis of threshold propor-
tion.

Fig. 4. Analysis of fusion weight β.

The Consistency Threshold Proportion for LGCLR. Considering that
the consistency of samples increases as training and a fixed threshold is not
appropriate, we first calculate the consistency of each sample and average it
within each cluster. Then the mean values are ranked and we identify the value
at a certain proportion position as the threshold. We analyze the effect of dif-
ferent proportions on LGCLR. As shown in Fig. 3, our method is sensitive to
proportion. A smaller proportion causes the filtered samples still contain a large
number of noisy samples and leads to performance degradation, while a larger
one causes many correctly labeled samples to be also regarded as outliers, result-
ing in fewer data available for training. Therefore, we set the scale value to 1.0%.

The Fusion Weight of Boundary Samples for BSPP. Fig. 4 shows the
effect of the fusion weight β on BSPP. We can see that β = 0.6 and β = 0.7
achieve optimal accuracy for Market-1501 and MSMT17. We speculate that
larger β may lead to noisy samples dominating the updating of the proxies and
missing the information contained in other reliable samples, which further causes
the wrong training direction. In contrast, smaller β allows the mean feature of
internal similar samples to play a leading role and decrease the discrepancy of
the proxy pair. Consequently, the proxy pair cannot accurately represent the
intra-class variation and cannot generate strong bidirectional pulls to reduce the
variation.
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4.5 Clustering Quality

As shown in Fig. 5, the intra-variation of all classes is significantly reduced in
our method compared to the baseline. For several classes difficult to distinguish
or already mixed in the baseline, our method succeeds in separating them, which
demonstrates that our method learns more discriminative features.

Fig. 5. The t-SNE visualization of 20 random classes in Market-1501 between baseline
and our method. Different colors represent different IDs.

5 Conclusion

In this paper, we propose a contrastive learning framework maintaining dis-
crepant proxy pairs for each cluster based on reliable boundary samples, which
accurately represent the intra-class variation and generate strong bidirectional
pulls to effectively reduce intra-class variance. To ensure the reliability of bound-
ary samples, we also propose local-global consistency guided label refinement
that utilizes local visual cues to exclude unreliable noisy samples caused by
global similarity. Comprehensive experiments have shown that our framework
outperforms prior state-of-art methods on Market-1501 and MSMT17 datasets.
In further work, we will investigate using inter-class relationships to further
improve cluster representation.
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Abstract. Infrared small-dim object detection is a challenging task due
to the small size, weak features, lack of prominent structural information,
and vulnerability to background interference. During the process of deep
learning-based feature extraction, as the number of layers increases, the
size of the feature map decreases, resulting in a reduction in resolution
for small object features. This reduction negatively affects the network’s
ability to capture fine-grained details and compromises the detection effi-
ciency. Besides, the infrared objects can be easily overwhelmed by strong
background interference, which further diminishes the original faint rep-
resentations. To solve these issues, we proposes a high-resolution feature
representation driven network for infrared small-dim object detection
(HRFRD-Net). This network comprises three key components: High-
Resolution Feature Representation Branch (HRFR), Infrared Small-Dim
Object Detection Branch (ISDOD), and Spatial-Frequency Interaction
Feature Enhancement Module (SFIFE). The HRFR branch employs
implicit neural representation to super-resolve the infrared small objects
in a self-supervised learning scheme. To effectively detect the small-scale
objects, ISDOD leverages the shared encoder from HRFR to construct
high-resolution and high-quality representation of infrared small objects
in a resolution-free manner. To address the issue of dim objects, SFIFE
incorporates a global-local mixed receptive field via the features inter-
action in spatial-frequency dual domains, which significantly improves
the accuracy of infrared dim object detection. Experiments conducted
on the MSISTD and MDvsFA datasets demonstrate the effectiveness
of our approach, especially in complex scenarios where the objects are
heavily obscured by the background and background interference closely
resembles the objects.

Y. Dong and Y. Wang—Contribute equally to this work.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-981-99-8555-5 25.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14436, pp. 315–327, 2024.
https://doi.org/10.1007/978-981-99-8555-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8555-5_25&domain=pdf
https://doi.org/10.1007/978-981-99-8555-5_25
https://doi.org/10.1007/978-981-99-8555-5_25


316 Y. Dong et al.

Keywords: Infrared small-dim object detection · High-Resolution
Feature Representation · Implicit neural representation ·
Spatial-frequency interaction feature enhancement

1 Introduction

Infrared sensors are widely utilized in military applications such as missile track-
ing [7], maritime surveillance, and early-warning systems, benefiting from their
notable features of strong cloud penetration, anti-interference, and blind spot
detection. However, due to the long imaging distance, the infrared objects gen-
erally appear to be very small, sometimes even as a single pixel in infrared
images. Moreover, the infrared radiation energy diminishes significantly over
distance, leading to extremely dim objects that are frequently overwhelmed by
heavy noise and cluttered backgrounds. In addition, the lack of shape, color, and
texture information further exacerbates the difficulty in detection of infrared
objects [16], leading to a higher risk of false alarms or missed detections. High
quality infrared small-dim object detection, also known as infrared small-dim
object segmentation, plays a crucial role in various scenarios.

Traditional methods for infrared small-dim object detection can be broadly
classified into three categories: filter-based methods, human vision system-based
methods, and low-rank-based methods. Filter-based methods are suitable only
for single and uniform scenes [1], while human vision system-based methods work
well for objects with relatively high brightness and distinct differences from the
surrounding background [17]. The low-rank-based methods are applicable to
complex and rapidly changing backgrounds, but suffer from slower computa-
tional speed in practice [21]. Although traditional model-driven methods have
already achieved relatively good results, they still face challenges such as com-
plex parameters setting, low accuracy, low robustness, and heavy reliance on
prior knowledge of specific scenarios and manual hyperparameters tuning.

With the rapid development of deep learning techniques, deep learning-based
methods have received considerable attention in recent years. In contrast to tra-
ditional methods, deep learning approaches are able to automatically extract
object features, leading to superior representation of the infrared small-dim
objects and enabling more accurate detection with less false alarms. Dai et al. [5]
introduced a novel approach that combines discriminative networks with conven-
tional model-driven methods and utilizes the local contrast prior to improve the
detection of infrared small objects. MDvsFA-cGan was introduced to combine
the generative adversarial network with a generator divided into miss detection
and false alarm subtasks [15], successfully balancing miss detection (MD) and
false alarm (FA) in infrared small object detection. DNA-Net was put forward
to achieve the progressive interaction between high-level and low-level features
[9], avoiding feature loss in small infrared objects to a certain extent. Addi-
tionally, attention-guided pyramid context networks (AGPC) was introduced by
Zhang et al. [20] to establish global associations between semantics and enhance
the feature representation of the infrared objects. Although existing deep learn-
ing methods perform well in some cases, they still share a limitation. During



HRFRD-Net 317

the feature extraction process, as the network depth increases, the feature map
size decreases, resulting in a loss of resolution. The loss of resolution adversely
affects the capture of fine-grained details. This issue is particularly noticeable
in infrared small-dim object detection tasks, where the structure of the object
is poorly represented and easily overwhelmed by the background, resulting in
challenging detection of the infrared objects.

To address the above issues, we propose a high-resolution feature representa-
tion driven network for infrared small-dim object detection (HRFRD-Net). This
network comprises three key components: (a) High-Resolution Feature Repre-
sentation Branch (HRFR), (b) Infrared Small-Dim Object Detection Branch
(ISDOD), and (c) Spatial-Frequency Interaction Feature Enhancement Mod-
ule (SFIFE). In recent years, Implicit Neural Representation (INR) has demon-
strated its efficacy in representing signals in the continuous domain, deliver-
ing favorable outcomes in various tasks such as image super-resolution [2] and
3D reconstruction [8,11]. To effectively tackle small-scale objects, we integrate
INR into our HRFR branch and super-resolve the infrared small objects in a
self-supervised learning strategy. By leveraging the super-resolution guidance
from HRFR to ISDOD branch through a shared encoder, the ISDOD branch
can extract high-resolution and high-quality representations of infrared small
objects, thereby achieving more accurate object detection. To address the issues
of object dimness and vulnerability to background interference, we utilize the
SFIFE module. This module improves the detection of infrared small-dim objects
by facilitating a global-local mixed receptive field approach through the inter-
action of spatial-frequency dual domains [12]. The interaction facilitates feature
enhancement for the dim objects while simultaneously enhancing the contrast
information between the objects and their corresponding backgrounds.

In summary, our contributions in this paper are as follows:

• We propose a high-resolution feature representation driven network for
infrared small-dim object detection (HRFRD-Net), which enables to con-
struct high-resolution and high-quality representation of infrared small
objects via implicit neural representation in a self-supervised learning scheme.

• To address the issues of object dimness and vulnerability to background inter-
ference, we introduce a feature enhancement module for infrared small-dim
object detection. This module integrates global and local mixed receptive
fields through spatial-frequency dual domain interaction, leading to signifi-
cant improvements in detection accuracy.

• Extensive experiments conducted on two infrared datasets demonstrate the
superiority of our proposed method over state-of-the-art detection methods.

2 Methods

The overall framework of our proposed network HRFRD-Net is presented in
Fig. 1, which comprises three key components: High-Resolution Feature Rep-
resentation Branch (HRFR), Infrared Small-Dim Object Detection Branch
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(ISDOD), and Spatial-Frequency Interaction Feature Enhancement Module
(SFIFE). Our training strategy involves two phases. In the first phase, we train
the HRFR branch via self-supervised learning to acquire high-resolution fea-
ture representations for infrared small-dim objects. In the second phase, we
freeze the HRFR encoder and share it with the ISDOD branch. By leveraging
the high-resolution feature representation and incorporating the SFIFE feature
enhancement module, the accuracy of infrared object detection can be signifi-
cantly improved.

Fig. 1. The overall framework of our proposed network.

2.1 High-Resolution Feature Representation (HRFR)

Infrared objects are generally small in size and lack prominent structural infor-
mation, posing challenges in objects detection. To overcome this limitation, we
introduce implicit neural representations into the HRFR branch during the ini-
tial training phase to achieve high-resolution feature representation of infrared
small objects. We generate pairs of infrared samples by applying four times
downsampling on the original infrared image using bicubic interpolation, result-
ing in the creation of low-resolution and high-resolution pairs. Then, we train
the HRFR branch in a self-supervised learning approach. The super-resolution
encoder Esr is utilized to extract the deep features of the low-resolution infrared
image Ilow and obtain the latent codes z∗. With the arbitrary query coordinates
(x, y)q in the continuous domain, the nearest latent codes z∗ from (x, y)q, and
the distance between (x, y)q and coordinates v∗ of the latent codes z∗ are fed
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into the implicit neural representation MLP decoder Dθ together to generate the
high-resolution result Ihigh. This approach enables the representation of small
objects in a high-resolution and high-quality manner without being restricted
by grid resolution [13]. The formulas are expressed as below

z∗ = Esr(Ilow),

Ihigh = Dθ

(
z∗, (x, y)q − v∗

)
.

(1)

The high-resolution result Ihigh is represented on a 2D continuous feature map
M ∈ RH×W×C . To enrich the information on feature map M , we employ feature
unfolding to expand it

Munfold = Concat
(
{Ml,m}l,m∈{−1,0,1}

)
, (2)

where each latent code in Mfold is obtained by the concatenation of the 3 × 3
neighboring latent codes Ml,m.

2.2 Infrared Small-Dim Object Detection (ISDOD)

In the second training phase, we freeze the super-resolution encoder Esr in HRFR
branch and share it with the ISDOD branch, which enables the ISDOD branch to
extract high-resolution and high-quality representations of infrared small objects

M∗ = Esr(I), (3)

where I denotes the input infrared image, Esr represents the super-resolution
encoder in the HRFR branch, which is shared with the ISDOD branch. This
sharing allows for the generation of high-resolution feature representation M∗. To
further improve the accuracy of objects detection, we introduce SFIFE module
into the ISDOD branch. The details will be illustrated as follows.

2.3 Spatial-Frequency Interaction Feature Enhancement (SFIFE)

While the high-resolution feature representation can mitigate small objects issue
and improve the detection accuracy, the inherent weaknesses and susceptibility
to background interference still hinder the performance of object detection. To
solve these issues, we introduce SFIFE module to enhance the infrared dim object
representation. As well known, the spectral convolution theorem in Fourier the-
ory demonstrates that modifying a point in the spectral domain exerts a global
influence on all the input features [3]. Inspired by this, we employ a SFIFE
module based on fast Fourier convolution which incorporates an image-wide
receptive field and integrates global and local mixed receptive fields through
spatial-frequency dual domain interaction [12]. This interaction can not only
facilitate the feature enhancement for the dim objects but also simultaneously
enhance the contrast information between the objects and their corresponding
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Fig. 2. Spatial-Frequency Interaction Feature Enhancement Module.

background. We first split the high-resolution feature representation M∗ into the
global Mg and local Ml parts along the feature channel dimension

Mg,Ml = split(M∗). (4)

As shown in Fig. 2, the feature enhancement module consists of four branches:
local-to-local, local-to-global, global-to-local and global-to-global to achieve the
mixed receptive fields through the interaction on spatial-frequency dual domain.
Both local-to-local (f l→l) and global-to-local branches (fg→l) capture the local
features via a 3 × 3 convolution, the local-to-global branch (f l→g) leverages a
non-local attention mechanism to explore the global dependency for each query
pixel with its surrounding parts, and the global-to-global branch (fg→g) utilizes
Fourier transform to widen the receptive field and capture long-range context.
The procedures can be described as follows

fg→g (Mg) = ST (Mg) ,

fg→l (Mg) = Convg→l
3×3 (Mg) ,

f l→g (Ml) = NL
(
Convl→g

1×1 (Ml)
)

,

f l→l (Ml) = Convl→l
3×3 (Ml) ,

(5)

where NL denotes non-local attention mechanism, ST is the spectral transfor-
mation which utilize Fourier transform to enlarge the receptive field to the full
resolution of input feature map in an efficient way. We first adopt 2D Fast Fourier
Transform (FFT) to transform the spatial features into frequency domain with
both real and imaginary parts of the signal. Subsequently, a 3 × 3 convolution
and leakyrelu [19] activation operation O is applied before converting it back to
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the spatial domain via the inverse Fourier transform

R (Mg) , I (Mg) = F (Mg) ,

R (Mg) = O (R (Mg)) ,

I (Mg) = O (I (Mg)) ,

Mst = F−1(R(Mg), I(Mg)),

(6)

where F and F−1 denotes the Fourier transformation and inverse Fourier trans-
formation respectively. R and I means the real and imaginary components of
the signal. By summing up the global-to-global and local-to-global branches, we
obtain the global feature, and in the same way we obtain the local features from
the other two branches

Fg = fg→g (Mg) + f l→g (Ml) = Mst + f l→g (Ml) ,

Fl = fg→l (Mg) + f l→l (Ml) ,
(7)

where Fg and Fl denote global and local features respectively. Afterwards, they
are concatenated to generate the enhanced feature F

F = Cat (Fg, Fl) . (8)

After that, the enhanced feature F is passed through the detection head DH
to generate the final detection result R

R = DH(F ). (9)

2.4 Loss Function

There are three loss functions in the proposed approach.

Phase 1. During the first phase, we train the HRFR branch to super-resolve
the infrared small objects via self-supervised learning.

Super-Resolution Loss. We adopt L1 loss, which measures the average
absolute difference between the object y and predicted values f(x), where n
denotes the total pixels. The loss is computed as below

Lsr =
∑n

i=1 |f(x) − y|
n

. (10)

Phase 2. During the second phase, we share HRFR branch fixed encoder to
the ISDOD branch to obtain the high-resolution feature representation. Another
two loss functions are utilized in this phase to ensure the accurate detection.

BCE Loss. The detection loss is calculated using Binary CrossEntropy
(BCE) due to its sharper performance and faster convergence compared to the
blurry results obtained from Mean Squared Error. The loss is defined as follows

Lbce = −(ylog(p(x)) + (1 − y)log(1 − p(x))). (11)
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Dice Loss. Since the BCE Loss does not take into account the similarity
between the predicted image and the ground truth, we introduce a similarity
loss using the Dice coefficient. A higher Dice coefficient indicates a higher level
of similarity. The loss is defined as follows

Ldice = 1 − 2 ·
∑N

i=1 yiŷi∑N
i=1 yi +

∑N
i=1 ŷi

. (12)

Total Loss. The overall loss in phase 2 is computed by

Ldetect = λbceLbce + λdiceLdice, (13)

where λbce and λdice are set as 0.2 and 0.8 respectively.

3 Experiments

3.1 Baseline Methods

To evaluate the effectiveness of our method, we compare it with three traditional
methods: ADMD [10], MPCM [6], RLCM [6], and seven deep learning-based
methods, including MDvsFA-cGAN [15], YOLOv5 [22], DNANet [9], ACM [4],
ALCNet [5], AGPCNet [20] and UIUNet [18].

3.2 Datasets and Implementation Details

Datasets. We choose MSISTD [14] (multiscene infrared small object dataset)
and MDvsFA [15] (miss detection vs. false alarm) as our experimental datasets.
MSISTD consists of 1077 images with 1343 instances, while MDvsFA contains
10000 training images and 100 test images.

Implementation Details. We implement our network on a PC equipped with
a single NVIDIA TITAN GPU using the PyTorch framework. Our training strat-
egy can be divided into two phases. In the first phase, the HRFR branch is trained
to obtain the high-resolution feature representation of infrared small objects,
which utilizes the Lsr as loss function. In the second phase, the encoder Esr in
HRFR branch encoder is frozen and shared to the ISDOD branch. The ISDOD
branch is responsible for accurate detection of infrared small-dim objects, which
adopts Lbce and Ldice as the loss functions. We try several experimental combi-
nations and finally set the Lbce=0.2 and Ldice=0.8 empirically. During training,
we optimize the model parameters using the Adam optimizer for 300 epochs.
The initial learning rate is set to 1 × 10−4, and the batch size is set to 10. We
apply a learning rate decay by multiplying 0.5 when reaching 50 epochs.
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Metrics. To evaluate the performance, we adopt the following evaluation met-
rics: IOU, nIOU [4], F1-score and AUC. IOU serves as a crucial indicator for
object detection, while the normalized Intersection over Union (nIOU) play an
complementary role. F1-score provides a comprehensive measurement by com-
bining precision and recall. Moreover, AUC serves as a quantitative metric for
evaluating the ROC curve by measuring the area under the ROC curve.

3.3 Comparison with State-of-the-art Methods

Quantitative Comparison. Table 1 compares the performance of our method
with several methods on MSISTD and MDvsFA datasets. The optimal results
for each respective column are highlighted in red. Our method achieves the best
results across almost all metrics on both datastes, with the exception of the F1-
score which is only 0.01 lower than the ACM [4] method on the MSISTD dataset.
Moreover, our approach demonstrates significant improvements in IOU and
nIOU, indicating its outstanding advantages in predicting object shape integrity
and edge details. Furthermore, our method outperforms other approaches in
AUC, suggesting its general validity across various cases. The HRFR branch
(phase 1) comprises 1.6M parameters, while the ISDOD branch (phase 2) con-
tains 0.5M parameters. The inference speed is 0.31 s per image.

Visual Comparison. We provide detection visualization results in Fig. 3,
Fig. 4 and Fig. 5. These results depict three typical scenarios: small objects with
ambiguous features in the presence of significant background interference, the

Table 1. Quantitative comparison of reference metrics on MSISTD and MDvsFA
datasets. Best results are highlighted by red. ↑ indicates that the larger the value,
the better the performance, and ↓ indicates that the smaller the value, the better the
performance.

Method MSISTD MDvsFA

IOU↑ nIOU↑ F1-score↑ AUC↑ IOU↑ nIOU↑ F1-score↑ AUC↑
ADMD 0.133 0.133 0.108 0.681 0.116 0.116 0.238 0.740

MPCM 0.174 0.174 0.141 0.725 0.219 0.219 0.303 0.780

RLCM 0.262 0.262 0.216 0.757 0.214 0.214 0.160 0.808

MDvsFA-cGAN 0.397 0.490 0.551 0.993 0.353 0.373 0.523 0.921

YOLOv5 0.424 0.424 0.698 0.901 0.377 0.377 0.470 0.924

AGPCNet 0.642 0.646 0.819 0.956 0.423 0.434 0.578 0.876

ALCNet 0.646 0.646 0.801 0.920 0.362 0.363 0.545 0.903

ACM 0.637 0.638 0.828 0.988 0.426 0.427 0.582 0.890

DNANet 0.619 0.624 0.799 0.923 0.393 0.390 0.576 0.756

UIUNet 0.636 0.635 0.733 0.928 0.314 0.322 0.415 0.919

HRFRD-Net(Ours) 0.668 0.693 0.812 0.995 0.427 0.440 0.593 0.941
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scenario where numerous objects in the background possess similar characteris-
tics to the small objects, and the scenario which requires not only simple object
detection but also precise segmentation of the small object’s edges. The results
show that our method outperforms others in scenes with blurred features and
heavy background interference. For instance, as shown in Fig. 3, the object is
completely hidden under the cloud layer, which poses a great challenge for fea-
ture extraction. Only our method can successfully detect all the objects, which
proves the effectiveness of our approach with strong anti-interference capability
for small-dim objects detection.

3.4 Ablation Study

To evaluate the effectiveness of each component, we conduct ablation studies on
both MSISTD and MDvsFA dataset. Initially, we remove the SFIFE module to
assess its impact. Subsequently, we eliminate both the HRFR branch and the
shared encoder from it in the ISDOD branch. The performance comparison is
presented in Table 2.

Fig. 3. Small objects with ambiguous features in the presence of significant background
interference on MSISTD dataset, red boxes indicate correct detection. (Color figure
online)

Table 2. Ablation study about two key components on MSISTD and MDvsFA dataset.

Config HRFR SFTFE MSISTD MDvsFA

IOU↑ nIOU↑ F1-score↑ AUC↑ IOU↑ nIOU↑ F1-score↑ AUC↑
(I) � 0.627 0.651 0.745 0.949 0.397 0.414 0.579 0.939

(II) � 0.625 0.653 0.792 0.989 0.374 0.403 0.539 0.900

Ours � � 0.668 0.693 0.812 0.995 0.427 0.440 0.593 0.941
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Fig. 4. Numerous objects in the background possess similar characteristics to the small
objects on MSISTD dataset, red boxes indicate correct detection, green boxes indicate
incorrect detection. (Color figure online)

Fig. 5. The scenario which requires not only simple object detection but also precise
segmentation of the infrared small-dim object’s edges on MSISTD dataset, red boxes
(Color figure online) indicate correct detection.

4 Conclusion

In this paper, we propose a novel high-resolution feature representation driven
network for infrared small-dim object detection (HRFRD-Net). Our framework is
able to preserve high-resolution and high-quality representations of the infrared
small objects in a resolution-free manner, thereby achieving accurate objects
detection. Additionally, the SFIFE module integrates global and local mixed
receptive fields, enhancing the representation of dim objects and improving
the contrast between objects and their background. Extensive experiments con-
ducted on the MSISTD and MDvsFA datasets demonstrate the effectiveness
of our approach, especially in challenging scenarios where objects are heavily
obscured by the background, numerous background objects share similar char-
acteristics with small objects, and the need for both accurate object detection
and precise segmentation.
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Abstract. Deep learning methods have advanced the accuracy and
speed of object detection. However, acquiring labeled data is especially
challenging in real-world scenarios. As a result, the general-purpose
object detection algorithms based on deep learning experience signifi-
cant performance degradation with limited samples. To tackle the issue
of declining detection accuracy in the presence of few-shot data, this
paper introduces a few-shot object detection algorithm based on adaptive
relation distillation, which improves upon existing algorithms by enhanc-
ing the fusion of query and support features. In the proposed method,
the adaptive relational distillation module discards the hand-designed
and inefficient query information utilization strategy employed in previ-
ous algorithms and adaptively fuses the features of support and query
images using convolutional networks. To augment the learning capability
of the adaptive relational distillation module, we utilize a hybrid atten-
tion module in the support branch to emphasize the regions crucial for
detecting specific classes of objects. The experimental results demon-
strate our proposed algorithm achieves an average accuracy of 47.6% on
three data divisions and five sample size settings for the PASCAL VOC
dataset, which marks an improvement of 8.3% over DCNet.

Keywords: Object detection · Few-shot learning · Meta learning ·
Attention mechanism

1 Introduction

Object detection is one of the most challenging fundamental tasks in the field of
computer vision. It consists of two subtasks, i.e., classification and localization.

This work is supported by National Key R&D Program of China under Grant No.
2022YFF0902401, the National Natural Science Foundation of China under Grant
62271455 and the Fundamental Research Funds for the Central Universities under
Grant Nos. CUC210C013 and CUC18LG024.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14436, pp. 328–339, 2024.
https://doi.org/10.1007/978-981-99-8555-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8555-5_26&domain=pdf
https://doi.org/10.1007/978-981-99-8555-5_26


Few-Shot Object Detection ARDNet 329

Specifically, classification refers to the identification of target categories in an
image, while localization is the accurate search of the location of the target
category. Currently, object detection has become a research hotspot in security,
military, transportation and medical areas [1–3].

In recent years, artificial intelligence technology has developed rapidly, but
it is undeniable that today’s artificial intelligence is far from the true human
intelligence. Indeed, the success of artificial intelligence relies on the creation of
large-scale data sets. However, humans need to see an object only once or very
few times to complete the perception of an object, even for a child. Therefore, the
few-shot learning problem is likewise an important bottleneck limiting the devel-
opment of artificial intelligence. Most of the current few-shot learning methods
target few-shot image classification tasks. In the few-shot image classification
task, a network model is trained on the base class samples containing enough
training data for good generalization ability and thus perform well on a new class
with only few samples. To train such a network model, the meta-learning meth-
ods are widely used [4–6]. The meta-learning based few-shot objective detection
network has two inputs, the query image and the support set. The support set
needs to be referenced when detecting objects in the query image. Since meta-
learning was proposed relatively late, there is a great potential for improvement
of few-shot object detection methods based on meta-learning. In the existing
work, there are relatively few studies on the relationship between support fea-
tures and query features. Researchers usually directly perform global pooling
operations on the support features to adjust the query branches. For example,
Meta YOLO [7] uses a reweighting module to transform support images into
weighted vectors that perform channel weighting operations on meta-features
of query images. Meta R-CNN [8] transforms support images into attention-like
vectors in a prediction head reshaping network that performs channel soft atten-
tion operations on RoI features. However, the global pooling operation used in
the above work tends to lose the local detail information in the support set.

As a matter of fact, the local detail information is extremely important for
solving the occlusion problem of object detection. The variations in the appear-
ance of objects lead to misclassification between similar categories, while the
object occlusion brings incomplete feature representation, leading to misclassifi-
cation and missing detection. Without sufficient discriminative information, the
model will not be able to learn the key features for classification and bounding
box prediction. This problem is even more prominent in few-shot object detec-
tion where training examples are extremely sparse. At this point, using the local
detail information in the support set becomes the key to detection accuracy
improvement.

To make better use of the detailed information from the support set, Fan
et al. [9] used a variety of relationship headers to model different relationships
between the query image and the support image. Among them, the global rela-
tion head uses a global representation to match images, the local relation head
captures pixel-level matching relations, and the block relation head models one-
to-many pixel relations. In contrast, a dense relational distillation module is
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used in DCNet [10] to match query and support features at the pixel level,
which effectively improves the accuracy of few-shot detection.

To this end, we introduce the adaptive relation distillation module (ARDM)
to make full use of the support set, not only limited to the global information or
local detail information of the support set. We implement the ARDM by mixed
attention and apply it to few-shot object detection, and propose the adaptive
relation distillation based detection network (ARDNet). In the ARDNet, given
a query image and a few new classes of support images, the query features and
support features are first extracted with a shared feature learner, and then fed
into the ARDM for fusion of the two sets of features. Finally, the fused features
are fed into the subsequent region proposal generation and detection process.

2 Related Work

Meta-learning addresses the shortcomings of traditional neural network models
with insufficient generalization performance and poor adaptability to new kinds
of tasks. Since the concept of meta-learning was introduced by Schmidhuber
[11] and Hinton [12] in 1987, the meta-learning has become a common learning
strategy in few-shot learning. The algorithms of meta-learning have also achieved
great success in the field of few-shot object detection because of their powerful
generalization ability. Since most current meta-learning methods for detection
are conditioned on a set of supported examples, they can also be considered as
example-based visual search.

Recently, Fu et al. [13] proposed Meta SSD, which attaches a meta-learner
to the SSD and uses the meta-learner to optimize the initial values of network
parameters and the learning rate, while the detector updates its weights under
the guidance of the meta-learner. Kang et al. [7] proposed Meta YOLO, which
uses a meta-learning approach to learn the meta-features of the base class and
introduces a channel attention approach to reweight the importance of features
to fit the new class target. Wang et al. [14] proposed MetaDet, which uses meta-
level knowledge generated about the model parameters of a new class-specific
component. Karlinsky et al. [15] proposed RepMet, which uses a classifier head
based on distance metric learning to replace the RoI classifier head in a two-
stage detection algorithm to extract representative embedding vectors by clus-
tering and calculate the distance between the query and the supported instances
for classification. Yan et al. [8] proposed Meta R-CNN, which reweighted RoI
features based on the Faster R-CNN approach. Yang et al. [16] proposed NP-
RepMet, which divides the class representation in RepMet into two modules to
learn negative and positive representations, and replaces the embedding vector
given a suggestion with a new positive and negative embedding. Fan et al. [9]
proposed FSOD, which uses support information in attention RPN to filter out
most background boxes and mismatched categories in background boxes. Hu et
al. [10] proposed DCNet, containing a dense relation extraction module, which
matches queries and support features at the pixel level, and a context-aware
aggregation module, which uses three different pooling resolutions to capture
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richer contextual features. Li et al. [17] proposed CME to transform the small-
sample detection problem into a small-sample classification problem using a fully
connected layer, while introducing class margin loss to interfere with the features
of new class instances in an adversarial min-max manner, thus achieving margin
equalization.

In the meta-learning approach, how to use the support set to adjust the fea-
tures of the query image is the key to improve the detection accuracy. Although
the above works improves the accuracy of few-shot object detection, the rela-
tionship between support sets and query images has not been fully investigated.
Neither the global features nor the detailed features of the support set can be
used to fully exploit the query set. Therefore, in this paper, the query set is uti-
lized adaptively with the help of deep networks to eliminate the hand-designed
way of utilizing query features, and satisfactory accuracy is achieved.

3 Our Approach

To extract enough information from the support features, we propose the ARDM
using a hybrid attention mechanism, whose structure is shown in Fig. 1. In the
query branch of ARDM, a query encoder is used to halve its channel count. At
the same time, in the support branch of ARDM, we first perform the averaging
operation on the class dimension to change the support features of N×C×H×W
into 1 × C × H × W , where N is the number of classes. The support features
are then fed into a hybrid attention module that contains both channel and
spatial attention. Later, the support encoder is used for dimensionality reduc-
tion. The support features are bilinearly interpolated and deflated so that their
width and height are the same as the query features. Finally, the channel halved
query features and adjusted support features are stitched together in the chan-
nel dimension. In this case, both the query encoder and the support encoder are
implemented by a single 3 × 3 convolutional layer. The operation of the adaptive
relational distillation module ensures that its output size is consistent with the
size of the query features.

In order to enhance the learning ability of the ARDM, the convolutional block
attention module (CBAM) [18] is used in the supporting branch. The CBAM
is a simple and effective attention module for feedforward convolutional neural
networks, whose structure is shown in Fig. 2. Given an intermediate feature map,
the CBAM module sequentially infers the attention map along two independent
dimensions (channel and space), and then multiplies the attention map with
the input feature map for adaptive feature optimization. Since CBAM is an
attention mechanism module that combines space and channel, it can achieve
better results than attention mechanisms that focus only on channel or space.

We apply the ARDM to the few-shot object detection network DCNet to
obtain the ARDNet proposed in this paper, whose structure is shown in Fig. 3.
In the ARDNet network, the inputs are query images and support images, and
the query features and support features are obtained separately using a shared
feature extractor and fed into the adaptive relational distillation module. The
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Fig. 1. Adaptive relation distillation module.

Fig. 2. The convolutional block attention module.

fused features containing both query information and rich support information
are obtained by the adaptive relational distillation module. After that, the fused
features are fed into the RPN network to generate candidate region proposals.
RoI Align uses the region proposals, fused features, and three pooling resolutions
to obtain RoI features, which are fed into the final classification and localization
module.

4 Experiment

4.1 Dataset

We evaluate our model on the PASCAL VOC dataset [19], which is a common
dataset for few-shot object detection. The VOC dataset provides the annota-
tion information required for tasks such as image classification, object detection,
and semantic segmentation. The dataset contains 20 class targets and 1 back-
ground class. Specifically, the training set contains 10582 images, the validation
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Fig. 3. The overall framework of our proposed ARDNet.

set contains 1449 images, and the test set contains 1456 images. For researchers,
the VOC 2012 and VOC 2007 are the two most popular datasets, which have
a total of 4 major classes (vehicle, household, animal and person) and 20 sub-
classes (aeroplane (aero), bicycle, bird, boat, bottle, bus, car, cat, chair, cow,
diningtable, dog, horse, motorbike (mbike), person, pottedplant, sheep, sofa,
train, tvmonitor) and 1 background class.

For the few-shot object detection task, the 20 classes of the VOC dataset are
randomly divided into 15 base classes and 5 new classes. The number of instances
of each new class is K = 1, 2, 3, 5, 10. Samples are taken from a combination of
the training validation sets of VOC 2007 and VOC 2012, and the VOC 2007 test
set is used for evaluation. The AP50 of the new class is used for the evaluation
metrics (the IoU matching threshold is set to 0.5). Three random groupings need
to be considered for the evaluation algorithm, and the three novel sets in the
standard configuration are (bird, bus, cow, motorbike, sofa), (aeroplane, bottle,
cow, horse, sofa), (boat, cat, motorbike, sheep, sofa).

4.2 Implementation Details

In the meta-learning based K-sample learning task, each training event consists
of sampling: 1) a support set S = {xi, yi}Ni=1 containing image mask pairs of
different classes, where xi ∈ Rh×w×3 is the RGB image, yi ∈ Rh×w is the binary
mask of the object of class i in the support image generated by the bounding box
annotation, N is the number of object classes in the training set; 2) the query
image q and the annotations of the training classes used in the query image
m. The inputs to the model are the support set and the query image, and the
outputs are the detection predictions of the query image.

Both training and testing are performed on the fixed-scale images. The
shorter edges of the query images are scaled to 800 pixels and the longer edges are
scaled to less than 1333 pixels while maintaining the aspect ratio. The support
images are adjusted to the square images of 256 × 256 pixels. We use ResNet-101
as the feature extractor and RoI Align as the RoI feature extractor. The weights
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Table 1. Few-shot object detection performance on PASCAL VOC dataset.

Models/Shots Novel Set 1 Novel Set 2 Novel Set 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

LSTD 8.2 1.0 12.4 29.1 38.5 11.4 3.8 5.0 15.7 31.0 12.6 8.5 15.0 27.3 36.3

Meta YOLO 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 42.8 45.9

FRCN 15.2 20.3 44.7 40.1 45.5 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1

Meta RCNN 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1

FsDetView 24.2 35.3 42.2 49.1 57.4 21.6 24.6 31.9 37.0 45.7 21.2 30.0 37.2 43.8 49.6

DCNet 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7

DCNet* 22.6 42.3 45.9 48.3 55.7 15.4 24.5 37.6 37.8 42.4 22.3 35.2 36.7 43.4 49.1

ARDNet(ours) 33.4 50.5 57.2 59.0 65.4 28.0 47.6 53.9 56.4 59.4 27.9 39.6 41.7 43.7 49.8

of the backbone are pre-trained on ImageNet. After the model is trained on the
base class, only the last fully connected layer used for classification is removed
and replaced with a new layer initialized randomly. All parts of the model are
involved in the learning process of the second meta-refinement phase without
any freezing operation. The batch size during training is 8, using a Tesla M40
24GB GPU. We use an SGD optimizer with a momentum of 0.9 and a weight
decay of 0.0001. For meta-training of PASCAL VOC, the model is trained for
12k, 4k and 2k iterations with learning rates of 0.01, 0.001 and 0.0001, respec-
tively. For meta fine tuning of PASCAL VOC, the batch size is 4, and the model
is trained for 1300, 400 and 300 iterations with learning rates of 0.005, 0.0005
and 0.00005.

4.3 Comparisons with State-of-the-Art Methods

In Table 1, we compare the method proposed in this paper with previous state-of-
the-art methods, where the red bold represents the best results and the blue bold
italic represents the suboptimal results. ARDNet represents the small-sample
target detection algorithm based on adaptive relational distillation proposed in
this paper. DCNet* is the result obtained by running the baseline model code
directly, and DCNet represents the result given in the original paper. It can
be seen from Table 1 that ARDNet achieves state-of-the-art results on 11 of
the 15 data divisions and sample size settings, achieves suboptimal results on 4
data, and largely outperforms the baseline model and other previous methods.
Specifically, the detection accuracy of the proposed method is 13.1% higher than
DCNet in the 2-sample setting of the novel set 1. This provides a convincing
evidence that our ARDNet is able to capture the local details of the support set
to overcome the challenges posed by the large differences between the test and
training samples.



Few-Shot Object Detection ARDNet 335

Table 2. New class detection accuracy comparison.

Shots Models
Novel Set 1 Novel Set 2 Novel Set 3

bird bus cow mbike sofa aero bottle cow horse sofa boat cat mbike sheep sofa

1
DCNet* 12.6 43.1 10.3 44.7 2.3 40.0 3.0 13.7 5.3 15.2 5.5 42.0 42.6 7.1 14.2

ARDNet 17.4 69.7 26.1 45.4 8.4 46.1 25.3 23.6 27.6 17.0 10.5 50.3 50.1 16.7 11.8

2
DCNet* 26.9 60.7 20.0 54.5 49.3 47.7 9.1 11.8 20.6 33.2 14.8 40.2 59.7 27.5 33.6

ARDNet 36.0 78.4 43.9 57.3 36.9 53.2 25.6 45.4 70.8 43.1 15.4 48.5 54.7 42.7 38.8

3
DCNet* 35.0 61.1 34.8 51.1 47.0 52.2 9.1 34.4 49.9 42.6 18.6 48.7 49.9 28.5 37.9

ARDNet 51.0 77.9 55.0 57.3 44.9 59.7 43.2 40.7 77.2 48.9 19.1 55.3 48.2 37.1 48.6

5
DCNet* 35.2 56.7 37.4 57.3 54.8 48.1 10.5 48.6 30.4 51.5 22.6 56.1 55.1 35.6 47.7

ARDNet 50.5 77.6 62.1 57.1 48.0 59.0 43.7 53.7 76.0 49.5 21.7 59.0 51.2 35.3 51.2

10
DCNet* 43.5 67.9 50.7 60.9 55.3 51.0 9.9 48.5 48.8 53.7 31.0 55.9 66.1 43.0 49.6

ARDNet 63.4 83.9 66.3 62.4 51.0 62.5 47.9 58.0 75.5 53.0 27.9 39.6 41.7 43.7 49.8

Table 3. Comparison of base class detection accuracy in the basic training phase.

Models Novel Set 1 Novel Set 2 Novel Set 3

DCNet* 82.3 81.8 82.7

ARDNet 81.0 81.1 81.6

4.4 Comparisons with DCNet

In Table 2, we compare the detection accuracy of DCNet and ARDNet on each
novel set for the three PASCAL VOC data divisions, with the best results for
each data division and sample size setting shown in red bold. ARDNet achieves
the highest accuracy increment of 22.3% for the bottle category with novel set
2, and is only less effective than DCNet for the couch with novel set 3, which is
2.4% lower.

A comparison of the average base class detection accuracies for the basic
training phase (meta-training phase) is shown in Table 3, and the best results
are shown in red bold. The base training phase uses large-scale base class training
data, and the base class detection accuracy of ARDNet is slightly lower than that
of DCNet* at this time. This phenomenon also shows the difference between few-
shot object detection and general target detection, where high detection accuracy
on the base class data does not mean high detection accuracy on the new class
data.

In Table 4, the average detection accuracies of the two models are compared
for the new class fine-tuning phase (meta-testing phase) on all classes contain-
ing both new and base classes, with the best results shown in red bold. Our
method not only achieves excellent detection accuracy on new classes, but also
achieves the best results when detecting both new classes and base classes, which
demonstrates the effectiveness of our method.

A comparison of the inference speed of the proposed model and DCNet is
shown in Table 5. The experimental data are derived on the test set and are
averaged over three times. It can be seen from Table 5 that the inferring time
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Table 4. Average detection accuracy of the fine-tuning model over all classes.

Models Novel Set 1 Novel Set 2 Novel Set 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

DCNet* 50.3 62.1 63.1 64.8 68.5 48.1 54.1 60.4 61.5 64.6 49.1 58.4 60.2 64.0 66.0

ARDNet 53.5 63.9 66.2 67.9 70.7 52.5 63.4 65.2 67.2 69.4 55.0 60.5 61.7 63.9 66.3

Table 5. Comparison of reasoning speed of DCNet and ARDNet.

Models DCNet ARDNet

Inferring Time 0.208 0.212

FPS 4.81 4.72

of ARDNet is comparable with that of DCNet (0.208 versus 0.212), so does the
performance on the frame rate (4.81 versus 4.72).

4.5 Ablation Study

To demonstrate that the deep network has the ability to automatically uti-
lize support information, we also design another simple version of the ARDM
as shown in Fig. 4. Specifically, after obtaining the support features and query
features, we first halve the number of channels of the query features directly
using the query encoder. For the support features, after halving their number of
channels using the support encoder, an averaging operation on the class dimen-
sion is performed to change the support features of N × C/2 × H × W into
1 × C/2 × H × W , where N is the number of classes. After that, the support
features are bilinearly interpolated to make their width and height consistent
with the query features. Finally, the query features of channel halving and the
adjusted support features are stitched together in the channel dimension.

The average detection accuracies of the baseline model and the model using
two adaptive relational distillation modules are compared on the three new class
divisions of PASCAL VOC in Table 6. The best performance in each accuracy
column are marked in red bold. ARDNet- denotes the small-sample target detec-
tion network using the simple adaptive relational distillation module. It can be
seen from Table 6 that, the average accuracy of DCNet* is slightly lower than
that of DCNet by 2% on AP metrics. In contrast, the accuracy of ARDNet-
is approximately the same as DCNet, with only a 0.1% decrease in accuracy.
This shows that the detection network can achieve good accuracy without using
elaborate support feature utilization strategies. It should be noticed that, the
proposed ARDNet obtains the best results on all three data divisions, with an
average accuracy improvement of 8.3%. This indicates that the adaptive rela-
tional distillation module with the addition of mixed attention further reduces
the learning difficulty of the support set information.
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Fig. 4. Simple adaptive relation distillation module.

Table 6. The average accuracy AP and accuracy increment Δ for different models on
three data divisions of PASCAL VOC.

Models Novel Set 1 Novel Set 2 Novel Set 3 Average

AP Δ AP Δ AP Δ AP Δ

DCNet 45.1 - 32.4 - 40.4 - 39.3 -

DCNet* 43.0 −2.1 31.5 −0.9 37.3 −3.1 37.3 −2.0

ARDNet- 46.6 +1.5 33.0 +0.6 38.0 −2.4 39.2 −0.1

ARDNet 53.1 +8.0 49.1 +16.7 40.5 +0.1 47.6 +8.3

The Fig. 5 shows the feature map visualization of the test images after going
through two different relationship extraction modules in DCNet and ARDNet.
It can be seen from Fig. 5 that the ARDM generates feature maps with less
noise and greater activation values in the object region than the dense relational
extraction module in DCNet. This indicates that our proposed ARDM is able
to focus on the important object detail information in the query image guided
by the support set images and is more effective in modeling the relationship
between the query image and the support set.
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Fig. 5. The visualizations of the feature map.

5 Conclusion

In this paper, we improve the meta-learning based few-shot object detection
algorithm. We first analyze the problems of current meta-learning algorithms
that cannot fully utilize the detailed information from the support set and the
need to manually design the support set utilization strategy. To address these
problems, we propose ARDM, and apply it to few-shot object detection networks
by proposing ARDNet. ARDM eliminates the manually designed and inefficient
support feature utilization strategies of previous work, and effectively incorpo-
rates the rich information from the support set into the query features. Through
extensive experiments, we demonstrate that ARDM has the ability to automat-
ically mine effective information from support images, and the few-shot object
detection network ARDNet based on adaptive relational distillation shows a
significant improvement in detection accuracy compared to the baseline DCNet.
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Abstract. The application of object detection in intelligent logistics
has received considerable attention. However, existing detector models
face challenges such as high computational costs, slow detection speed,
and difficulty in deployment on edge devices with limited computa-
tional resources. This paper proposes a novel real-time safety detector
model (RMFFDet) based on YOLOv8s for forklift driving. A hardware-
friendly FasterNeXt module is designed to optimize feature extraction
and reduce the computational costs in the Backbone. Inspired by the
work on RepGhost, a re-parameterization multiscale feature fusion Neck
(RMFFNeck) is proposed in this paper. Reconstructing the Neck based
on RMFFNeck improves the capture of contextual logistics background
feature information while reducing the model parameters. Finally, the
Wise-IoU (WIoU) is introduced as a bounding box regression loss com-
bined with a dynamic non-monotonic focusing mechanism to improve the
model’s overall performance. Experiments show that RMFFDet achieves
a mean Average Precision (mAP) of 95.2% on the KITTI dataset and
92.8% on the self-built Forklift-3k dataset. Compared to YOLOv8s, the
model parameters are reduced by 34.5%. On the Jetson Nano edge plat-
form and 640×640 input size, RMFFDet requires only 100.2ms inference
time. RMFFDet offers an excellent trade-off between inference speed
and detection accuracy. It meets the industrial requirements of logistics
scenarios.

Keywords: Object detection · Intelligent logistics · Feature fusion

1 Introduction

The logistics industry is experiencing rapid growth, and forklifts have become
indispensable in various logistics scenarios. While forklifts offer convenience in
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industrial manufacturing, they pose significant safety risks. Excessive stacking of
cargo obstructs the visibility of forklift operators, limiting their ability to observe
pedestrians in front of them. Moreover, the elevated body of the forklift creates
a blind spot in the rearview, further compromising safety. Additionally, forklift
operators suffer from fatigue, inattention, and potential hazards and irregulari-
ties. To address these issues, machine vision-based safety warning systems have
emerged as effective solutions. In such systems, the detector model assumes a
critical role. Equipping forklifts with RGB-D depth cameras and integrating
advanced detector models can enable accurate detection of target locations and
distances, thereby effectively preventing accidents.

Deep learning-based object detector models, as an essential branch in the
field of machine learning [5,22,26], have demonstrated superior performance
compared to traditional methods. Object detector models can be classified into
two main categories. Firstly, there are region proposal-based two-stage detec-
tor models, with Faster R-CNN [17] being the most typical representative. This
approach generates candidate bounding boxes and performs classification and
regression on these boxes. While two-stage detectors achieve impressive accu-
racy, their detection speed is often inadequate for real-time applications. In con-
trast, single-stage detector models, such as the YOLO series [1,14–16], take
a regression-based approach to object detection, allowing direct prediction of
object categories and precise localization. These detectors have faster detection
speed and can meet the requirements of real-time detection.

Despite the remarkable performance of one-stage detector models on devices
with abundant computational resources, they suffer from slow inference speed
and compromised detection accuracy when deployed on edge devices with limited
computing power. This issue is particularly critical in complex logistics scenarios
where forklift drivers encounter problems such as narrow aisles and random cargo
stacking. Thus, the trade-off between detection accuracy and speed has been a
significant challenge [13,23,24]. Another challenge arises from the lack of suit-
able datasets capturing logistics scenes, posing difficulties for research endeav-
ours. The logistics scenarios is characterized by its complexity and variability,
including different cargo types, stacking methods, and lighting conditions, mak-
ing data collection challenging. To meet the requirements of real-time detection
and high detection accuracy in complex logistics scenarios, this study addresses
the challenges of high computational costs and inferior detection accuracy on
edge devices by utilizing the proposed RMFFDet model. The main contribu-
tions of this paper are as follows:

• A hardware-friendly FasterNeXt module is designed to optimize the Backbone
in RMFFDet and reduce the computational costs.

• Reconstructing the Neck based on the proposed RMFFNeck makes the model
better for obtaining complex logistics background feature information while
reducing the model parameters.
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• The WIoU is introduced as a bounding box regression loss to improve the
computational procedure of the loss function in RMFFDet.

2 Related Works

Real-time detection and high detection accuracy are crucial in practical deploy-
ments. The YOLO series has an excellent balance between speed and accu-
racy, especially the current latest YOLOv8 [19]. Although YOLOv8 has excel-
lent performance on the GPUs side, it cannot achieve real-time detection on
edge devices due to excessive hardware requirements. Lightweight models have
gained wide attention and applications [7,9,21]. GhostNet [8] is a lightweight
convolutional neural network. It effectively reduces the computational costs by
using cheap operations to generate more feature maps. Similarly, ShuffleNetV2
[12] improves efficiency by processing half of the feature channels and reserv-
ing the other half for concat operations. Although their concat operations are
parametric-free, their computational costs on hardware devices is not negligible.
To address this issue, structural re-parameterization techniques [4] to achieve
feature reuse provide a new perspective. Inspired by lightweight models and
structural re-parameterization techniques, this paper proposes the RMFFDet
model. It reaches more efficient model design on mobile devices with limited
computational resources by reducing the computational costs of the model while
maintaining the detection performance.

3 Proposed Methods

3.1 FasterNeXt

FasterNet [3] is a novel neural network that achieves fast-running speeds and is
well-suited for hardware implementations. It is built upon the FasterNet Block
and utilizes 1×1 Conv as its basic module. The FasterNeXt module is designed
based on the FasterNet Block to optimize the Backbone in RMFFDet. Figure 1
illustrates the FasterNeXt module, which efficiently uses inverted residual blocks
and cross-layer connections to reuse input features. The FasterNet Block con-
sists of a PConv layer and two 1×1 Conv layers. The PConv layer employs a
straightforward structure to minimize computational redundancy and optimize
memory access. It selectively applies regular Conv operations to a subset of the
input channels while preserving the unchanged channels.

3.2 RepGhost

The RepGhost module [2] is an innovative lightweight network that utilizes struc-
tural re-parameterization techniques. This module allows efficient feature reuse
by providing an alternative to the inefficient concatenation operators used in the
Ghost module. Figure 2 visually illustrates the differences between the RepGhost
bottleneck and the Ghost bottleneck. In particular, the middle channel of the
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Fig. 1. FasterNeXt module. 1x1cv: 1x1 conv.

RepGhost Bottleneck is narrower, while the last channel is coarser compared to
its Ghost counterpart. Furthermore, RepGhost Bottleneck replaces Ghost Bot-
tleneck’s Concat operation with the more efficient Add operation. During the
inference process, RepGhost Bottleneck performs calculations using an equiva-
lent simple convolution operation, improving performance.

Fig. 2. Ghost Bottleneck and RepGhost Bottleneck. SBlock: shortcut block, DS: down-
sample layer, SE: SE block, 1x1cv: 1x1 conv.

3.3 WIoU

Compared to the CIoU [25] loss function in YOLOv8, this paper applies the
Wise-IoU (WIoU) [20] in the bounding box regression loss. The WIoU incorpo-
rates a dynamic non-monotonic focusing mechanism to cope with the low quality
of the training data labelling. It avoids over-penalizing the model by geometric
factors such as distance and aspect ratio. When the prediction frame is highly
matched with the target frame, the WIoU improves the model’s generalization
ability by mitigating the penalty effect of geometric factors so that the model
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suffers less interference during training. The RMFFDet model improves per-
formance under low-quality labelled data by introducing the Wise-IoU v3 loss
function to better adapt to real-world logistics scenarios. LW IoU is as follows:

LWIoU =
(

1 − WiHi

Su

)
exp

(
(xp − xgt)

2 + (yp − ygt)
2(

W 2
g + H2

g

)∗

)
γ (1)

γ = β/δαβ−δ (2)

where ß denotes the anomaly degree of the prediction frame, a more minor
anomaly degree means a higher quality of the anchor frame. α and δ are hyper-
parameters. H and W denote the width and height of the two frames, respec-
tively. xp and yp represent the coordinate values of the prediction frame, and
xgt and ygt indicate the coordinate values of the ground truth value.

3.4 RMFFDet

Figure 3 details the overall architecture of the RMFFDet model. The RMFFDet
model comprises five essential components: Input, Backbone, RMFFNeck, Head,
and Output. Each part plays a key role in the overall functioning of the model.

Fig. 3. The architecture of the RMFFDet model. a) The Backbone is optimized by the
FasterNeXt module. b) The prediction heads use the feature maps from the RepGhost
module.

Input. This paper combines Mosaic, MixUp, and traditional methods for online
data augmentation to make the model more robust for images in complex logis-
tics scenarios. These enhanced images are averaged to improve the prediction
results of the model.
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Backbone. The Backbone in RMFFDet is mainly responsible for extracting
features from the input image. It’s also accountable for gradually improving the
semantic representation through the hierarchical structure. In this paper, the
Backbone is optimized by the designed FasterNeXt module, which makes the
Backbone reduce a large amount of computational costs.

RMFFNeck. RMFFNeck is proposed to make better use of the features
extracted from the Backbone. The feature maps extracted by the Backbone are
reprocessed and used rationally at different stages. Typical Necks include FPN
[10], PANet [11], and BiFPN [18]. The similarity of these Necks is through the
iterative use of various upsampling and stitching to design. Through structural
re-parameterization techniques, RMFFNeck can learn complex convolutional
operations during training and compute with equivalent simple convolutional
operations during inference, resulting in a lightweight and high-performance
model. Then, RMFFNeck enhances the feature extraction of small targets by a
Four-scale fusion structure. This design allows RMFFNeck to have good poten-
tial for application in resource-constrained environments.

Head. In the Head, the feature information of each prediction head is taken from
the RepGhost module. And the object classification prediction and bounding box
regression prediction are decoupled and performed separately.

Output. During the training process of RMFFDet, Non-Maximum Suppres-
sion (NMS) is used to select the best detection results among the overlapping
bounding boxes. The primary purpose of NMS is to eliminate redundant detec-
tion results to retain the most accurate and representative bounding boxes and
obtain the output image.

4 Experiments

4.1 Datasets

Forklift-3k Dataset. We have collected and produced the Forklift-3k dataset of
complex logistics scenarios for forklift safety driving. Figure 4 shows the various
types of forklifts. The dataset contains two main categories of targets, Forklift
(4,572 numbers) and Person (4,190 numbers), with a total of 3,342 images.

KITTI Dataset. KITTI [6] is one of the enormous datasets available for driver-
less applications. It encompasses various challenging scenarios, including small
distant targets and abundant occlusions, closely resembling the complexities
encountered in complex logistics scenarios. This paper uses KITTI to verify
the generalization of the RMFFDet model. To fit the engineering scenario, this
paper merges Car, Van, Truck and Tram in the source data into Car, Pedestrian
and Person sitting into Person, and removes Misc and DontCare. A total of
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Fig. 4. The image samples in the Forklift-3k dataset.

7,481 images and three categories are obtained, including Car (33,261 numbers),
Person (4,709 numbers) and Cyclist (1,627 numbers).

4.2 Experimental Results

The experiments are conducted on a computational environment comprising a
Windows 11 operating system, an i9-12900k CPU, and an NVIDIA GEFORCE
RTX 4090 processor with 24GB of video memory. Several experimental hyperpa-
rameters are as follows: training epochs are set to 200 and 300 for the Forklift-3k
and KITTI datasets, respectively; batchsize is set to 32; optimizer uses SGD,
momentum is set to 0.937. The datasets are divided into a 6:2:2 ratio for training,
validation, and testing purposes. All data augmentation techniques are turned off
during the last ten training epochs. Figure 5 illustrates the training progress of
the YOLOv8s and the proposed RMFFDet on the Forklift-3k dataset. Notably,
RMFFDet exhibits a remarkable improvement over YOLOv8s. This is attributed
to the effect of the WIoU and the RMFFNeck.

To gain insight into the contributions of FasterNeXt and RepGhost, this
paper performs a comprehensive analysis using representative samples from the
Forklift-3k dataset. By visualizing the feature maps during the detection process,
we aim to elucidate the specific roles played by FasterNeXt and RepGhost in the
model’s feature extraction capabilities. As shown in Fig. 6, FasterNeXt primarily
focuses on extracting low-level feature information, capturing fine-grained details
and spatial features from the input data. Conversely, RepGhost is designed to
specialize in extracting high-level feature information, allowing the model to
capture more abstract and semantic representations of the target objects.

Figure 7 illustrates the commendable ability of RMFFDet to capture signif-
icant feature information of objects within complex logistics scenes. The uti-
lization of GradCAM further facilitates a comprehensive understanding of the
model’s attention and decision-making process about various targets.

4.3 Comparison of Detection Performance

Table 1 presents a comprehensive analysis of the performance of various
lightweight models on the Forklift-3K and KITTI datasets. As a lightweight
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Fig. 5. Training process for YOLOv8 (baseline) and RMFFDet (our).

Fig. 6. Visualization of the feature map of the FasterNeXt and RepGhost modules.

Fig. 7. The Grad-CAM graph of the proposed RMFFDet model.
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Table 1. Performance results of lightweight models on the Forklift-3k and KITTI
datasets.

Dataset Model Backbone mAP@0.5(%) Parameters(M) FLOPs(G)

Forklift-3k YOLOv3 DarkNet 83.7 9.31 23.4

YOLOv3-spp DarkNet 85.1 9.57 23.6

YOLOv3-tiny DarkNet 81.3 8.67 13.0

YOLOv4 CSPDarkNet 84.5 9.12 20.8

YOLOv5s CSPDarkNet 90.7 7.02 16.0

YOLOv5-Lite ShuffleNet 87.0 4.38 8.8

YOLOv7-tiny ELAN 89.8 6.02 13.2

YOLOv8s CSPDarkNet 91.0 11.16 28.8

RMFFDet(ours) FasterNeXt 92.8 7.31 29.7

KITTI YOLOv3 DarkNet 91.8 9.31 23.4

YOLOv3-spp DarkNet 92.3 9.57 23.6

YOLOv3-tiny DarkNet 84.3 8.67 13.0

YOLOv4 CSPDarkNet 92.6 9.12 20.8

YOLOv5s CSPDarkNet 93.1 7.02 16.0

YOLOv5-Lite ShuffleNet 89.9 4.38 8.8

YOLOv7-tiny ELAN 90.0 6.02 13.2

YOLOv8s CSPDarkNet 93.7 11.16 28.8

RMFFDet(ours) FasterNeXt 95.2 7.31 29.7

model, RMFFDet exhibits a notable advantage over the compared models. In
comparison to baseline YOLOv8s, the RMFFDet model showcases an enhance-
ment of 1.8% and 1.5% in mean Average Precision (mAP) on the Forklift-3K and
KITTI datasets, respectively, while reducing the model parameters by 34.5%.

Figure 8 presents the visualized detection results of different models in logis-
tics scenes, shedding light on the challenges encountered, including uneven light-
ing conditions, many occlusions, and small distant targets. The experimental
results confirm the robust detection performance and practical applicability of
the RMFFDet model in real-world logistics scenarios.

4.4 Ablation Experiment

To demonstrate the effectiveness of each module, ablation experiments are con-
ducted on the KITTI dataset in a consistent experimental setting. As shown in
Table 2, the proposed improvement strategies have proven to effectively enhance
the detection performance of RMFFDet. Specifically, FasterNeXt plays a crucial
role in significantly reducing the computational costs in the Backbone. RMFF-
Neck provides approximately 2% improvement in mAP through structural re-
parameterization techniques and efficient multiscale fusion. Moreover, the WIoU
enhances detection performance without increasing computational costs.
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Fig. 8. Comparison of detection results: (a) YOLOv7-tiny; (b) YOLOv8s; (c)
RMFFDet.

Table 2. Ablation experiments on the KITTI dataset.

Baseline FasterNeXt RMFFNeck WIoU mAP@0.5(%) Parameters(M) FLOPs(G)
√

93.7 11.16 28.4√ √
93.3 9.48 24.7√ √
95.6 9.24 35.4√ √
94.3 11.16 28.4√ √ √
94.7 7.31 29.7√ √ √
93.9 9.48 24.7√ √ √ √
95.2 7.31 29.7

4.5 Edge Platform Deployments

In this paper, YOLOv8s and RMFFDet are selected for inference acceleration
experiments using TensorRT on the Jetson Nano edge platform. Figure 9 shows
the experimental results for four different input sizes on 300 images. The appli-
cation of TensorRT acceleration greatly accelerates the inference speed of the
model. The RMFFDet model achieves an inference time of only 100.2ms per
image when the image size is 640×640.
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Fig. 9. Comparison of inference speed of YOLOv8s and RMFFDet before and after
TensorRT acceleration at different input sizes.

5 Conclusion

This paper proposes the RMFFDet model, a novel detector model specifically
designed for forklift driving. The FasterNeXt module is designed to improve
the computational efficiency in the Backbone, while the proposed RMFFNeck
module enhances the feature representation. RMFFDet’s inference speed and
detection accuracy are better than YOLOv8 to meet the industrial requirements
of logistics scenarios. On the Jetson Nano edge platform, RMFFDet uses Ten-
sorRT acceleration to reduce inference time significantly. Furthermore, future
research will explore advanced model compression techniques for RMFFDet to
facilitate its deployment in practical applications.
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Abstract. Object detection in remote sensing images is challenging due to the
absence of visible features and variations in object orientation. Efficient detection
of objects in such images can be achieved using rotated object detectors that utilize
oriented bounding boxes. However, existing rotated object detectors often struggle
tomaintain high accuracywhile processing high-resolution remote sensing images
in real time. In this paper, we present RTMDet-R2, an improved real-time rotated
object detector. RTMDet-R2 incorporates an enhanced path PAFPN to effectively
fuse multi-level features and employs a task interaction decouple head to alleviate
the imbalance between regression and classification tasks. To further enhance
performance, we propose the ProbIoU-aware dynamic label assignment strategy,
which enables efficient and accurate label assignment during the training. As
a result, RTMDet-R2-m and RTMDet-R2-l achieve 79.10% and 79.46% mAP,
respectively, on the DOTA 1.0 dataset using single-scale training and testing,
outperforming the majority of other rotated object detectors. Moreover, RTMDet-
R2-s and RTMDet-R2-t achieve 78.43% and 77.27% mAP, respectively, while
achieving inference frame rates of 175 and 181 FPS at a resolution of 1024 ×
1024 on an RTX 3090 GPU with TensorRT and FP16-precision. Furthermore,
RTMDet-R2-t achieves 90.63/97.44% mAP on the HRSC2016 dataset. The code
and models are available at https://github.com/Zeba-Xie/RTMDet-R2.

Keywords: Remote Sensing Images Object Detection · Rotated Object
Detection · Feature Fusion · Label Assignment

1 Introduction

Target detection tasks commonly use horizontal bounding boxes (HBB) to locate and
classify objects [7]. However, existing HBB algorithms like the R-CNN series [24,
25] and YOLO series [13, 26, 27] are not directly applicable to object detection in
remote sensing images. Challenges arise due to the similarity in shapes and limited
visible features of objects in remote sensing images, as well as complex backgrounds
and variations, particularly for small and densely-packed objects. The remote sensing
perspective further complicates the representation of angle diversity [5].
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Fig. 1. Comparison of RTMDet-R2 and other state-of-the-art real-time rotated object detectors
with single-scale training and testing on the DOTA 1.0 dataset. (a) Comparison of parameters and
accuracy. (b) Comparison of FLOPs and accuracy. (c) Comparison of FPS and accuracy.

To achieve real-time object detection with high detection accuracy in remote sens-
ing images, HBB is transformed into OBB (oriented bounding boxes) by incorpo-
rating rotation angles. Several models, including FCOSR [7], PP-YOLOE-R [8], and
RTMDet-R [9], have been proposed for this purpose. These models enhance the balance
between speed and accuracy by improving the model architecture, training strategies,
and parameter scaling.

However, these models still have the following several issues. To begin with, both
PP-YOLOE-R and RTMDet-R utilize the path aggregation feature pyramid network
(PAFPN) [11] for multi-level features fusion, but PAFPN faces challenges in effectively
integrating precise localization information from lower levels and semantic information
from higher levels in the top-down path. Furthermore, there still exist issues of task
misalignment and imbalance. Moreover, the sample label assignment strategies used
in these models during training are primarily adapted from HBB algorithms, lacking
optimization for OBB. To address these issues, we propose RTMDet-R2: an improved
real-time rotated object detector. Our main contributions can be summarized as follows:

1. We introduce the enhanced path PAFPN (EP-PAFPN), which efficiently fuses posi-
tional and semantic information from multiple-level features by introducing the
enhanced path (EP).

2. We propose the task interaction decuple head (TID-Head), which incorporates a
task interaction module (TIM) to enable interaction between the classification and
regression tasks, alleviating the imbalance of tasks.

3. We introduce the ProbIoU-aware dynamic label assignment strategy (PA-DLA),
which replaces RIoU with ProbIoU and utilizes an IoU truncation strategy to achieve
efficient and accurate label assignment.

As a result, RTMDet-R2 has achieved state-of-the-art performance in terms of the
speed and accuracy trade-off on two datasets, DOTA 1.0 and HRSC2016. Specifically,
as shown in Fig. 1., during single-scale training and testing on DOTA 1.0, RTMDet-R2-l
and RTMDet-R2-m achieve 79.46% and 79.10%mAP1, respectively. RTMDet-R2-s and
RTMDet-R2-t achieve 78.43% and 77.27%mAPwhile achieving frame rates of 175 FPS
and 181 FPS, respectively, at a resolution of 1024 × 1024. Compared to RTMDet-R,
RTMDet-R2-l/m/s/t improves the accuracy by 0.61/0.86/1.50/1.91% mAP.

1 We follow the latest metrics from the DOTA evaluation server, original voc format mAP is now
mAP50.
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Furthermore, RTMDet-R2-t achieves 90.63/97.44%mAP on theHRSC2016 dataset.
Compared to RTMDet-R, RTMDet-R2-t improves the accuracy by 0.03/0.34% mAP.

2 Related Work

2.1 Rotated Object Detector

Rotated Object Detectors (ROD) can be divided into two types: Anchor-based and
Anchor-free.

Anchor-based RODs can be further categorized as one-stage and two-stage meth-
ods. As a two-stage ROD, Oriented R-CNN [1] designs a lightweight and simpler ori-
ented RPN on top of RROI to generate high-quality oriented proposals. ReDet [2]
introduces rotation-invariant convolutions in the model and utilizes rotation-invariant
RoI alignment to extract features. R3Det [3] is a one-stage ROD that utilizes a fea-
ture refinement module for feature reconstruction and alignment. S2ANet [4] generates
high-quality OBB anchors using a feature alignment module, encodes the orientation
information through the oriented detection module, and produces orientation-sensitive
and orientation-invariant features to alleviate the inconsistency between classification
scores and localization accuracy.

Anchor-free RODs are predominantly based on one-stage methods, often using prior
points or key points. FCOSR [7] improves the label assignment strategy based on FCOS
to enhance network performance. PP-YOLOE-R [8] introduces rotated task alignment
learning (RTAL) and decoupled angle prediction head on top of PP-YOLOE. RTMDet-R
[9] employs large-kernel CSP convolutional blocks to capture global context effectively.
It also proposes a dynamic soft label assignment strategy to reduce the bias towards
high-quality samples in the cost matrix.

2.2 Multi-level Features

SSD [28] and MS-CNN [29] utilize multi-level feature maps for prediction but do not
aggregate them across different feature levels [12]. To improve the utilization efficiency
of high-level low-resolution featuremapswith strong semantic information and low-level
high-resolution feature maps with weak semantic information, FPN [10] introduces a
multi-level features fusion structure with lateral connections and top-down pathways,
significantly enhancing model accuracy. PAFPN [11] builds upon the FPN architecture
by introducing bottom-up pathways to shorten the information path between lower-level
and top-level features. FPG [12], on the other hand, presents Feature Pyramid Grids,
which is a deep multi-pathway feature pyramid. It represents the feature scale space as
a regular grid of parallel bottom-up pathways and fuses them through multi-directional
lateral connections.
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2.3 Label Assignment

The purpose of label assignment is to differentiate between positive and negative samples
[8]. There are two forms of label assignment: based on priors and based on predictions.
Based on priors, label assignment distinguishes positive and negative samples using
IoU, L2 distance, or predefined rules, such as ATSS [15]. ATSS adaptively calculates
the threshold for positive and negative samples based on information like L2 distance and
IoU. Based on predictions, label assignment differentiates positive and negative samples
based on the model’s predicted outputs, as seen in TAL [14] and SimOTA [13], among
others. SimOTA dynamically assigns labels during the training process by computing
the cost matrix between the model’s outputs and the ground truth boxes. TAL calculates
an alignment metric based on the network’s output scores and the IoU between predicted
and ground truth boxes, selecting the topM predictionswith the highest alignmentmetric
as positive samples and the rest as negative samples.

Fig. 2. The overall architecture of RTMDet-R2 consists of three main components: the Back-
bone, EP-PAFPN, and TID-Head. The Backbone is CSPNeXt. EP-PAFPN is composed of the
CSPNeXtPAFPN and the enhanced path. TID-Head is composed of the R-SepBNHead from
RTMDet-R and the task interaction module. The Reduce Layer is a 1 × 1 convolutional layer, the
Output Layer andDownsampling are 3× 3 convolutional layers, the Top-downBlock andBottom-
up Block represent the CSP-blocks in RTMDet-R, Concat denotes channel-wise concatenation,
andUpsampling refers to upsampling the featuremap using the nearest neighbor interpolationwith
a scale factor of 2. In the TID-Head, the orange and green blocks represent stacked convolutional
layers for the classification and regression branches, respectively.

3 Methodology

The overall structure of our proposed RTMDet-R2 is illustrated in Fig. 2. In this section,
we will provide a detailed description of the introduced modules and strategy.
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3.1 Enhanced Path PAFPN

FPN and PAFPN were proposed to efficiently utilize multi-scale features. However,
PAFPN struggles to effectively integrate precise localization information from lower
levels and semantic information from higher levels in the top-down path. To address
this issue, we propose the enhanced path to strengthen the feature fusion in the top-
down path, as shown in Fig. 2. The structure of the enhanced path is straightforward.
It takes the feature map from a lower level of the backbone and processes it through a
3 × 3 downsampling convolution and a CSP block. The resulting feature map is then
added to the feature map from the current level of the backbone, serving as the actual
input to the top-down pathway of PAFPN. By incorporating the lower-level features with
an acceptable computational cost, the enhanced path enables PAFPN to generate more
comprehensive fused multi-level feature maps.

3.2 Task Interaction Decuple Head

In object detection, the conflict between classification and regression tasks is a well-
knownproblem [16].Many detectorswidely use decoupled heads to handle classification
and localization [7, 13]. The shared detection head proposed in RTMDet-R also adopts a
decoupled form,where the shareddetectionhead shares parameters of heads across scales
but incorporates different batch normalization (BN) layers to reduce the parameter count
while maintaining accuracy. Inspired by TSCODE [17],We introduce the proposed TIM
on top of the shared decoupled head in RTMDet-R, forming the TID-Head, as shown in
Fig. 2. The TIM takes the three-layer feature maps (P3, P4, and P5) of the EP-PAFPN as
inputs. The regression branch feature mapGloc4 is computed using the detail-preserving
encoding module [17], described by the following formula:

Gloc4 = P4 + u(P5) + DConv(u(P4) + P3) (1)

where u(.) represents a 2x upsampling and DConv(.) represents a downsampling
convolution.

Unlike TSCODE,Gcls4 is obtained by downsamplingGloc4 through a 3× 3 convolu-
tional layer, concatenating it withP5, and then performing upsampling. The computation
can be written as:

Gcls4 = u(Concat(DConv(Gloc4),P5)) (2)

Finally, Gloc4 and Gcls4 are individually fed into stacked convolutional layers for
regression and classification. To fully utilize the multi-level feature maps, P3 and P5
continue to participate in classification and regression tasks as in RTMDet-R. Through
TIM, interactions betweenmulti-level features and between classification and regression
tasks are achieved, mitigating the imbalance between tasks and improving network
performance with relatively low computational cost.
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3.3 ProbIoU-aware Dynamic Label Assignment

Label Assignment is one of themost crucial components in the training strategy of object
detection networks, and it has a significant impact on the final prediction accuracy of
the network. The Dynamic Label Assignment (RTM-DLA) strategy of RTMDet-R is an
excellent approach; however, it lacks optimization for OBB tasks. Therefore, we propose
two improvements to address this issue. Firstly, we innovatively introduce ProbIoU [18]
to replace RIoU. Secondly, we introduce an IoU truncation strategy.

Traditionally, most object detection methods represent the shape and position of
objects using bounding boxes. Recent research has explored the use of Gaussian dis-
tributions to represent objects in a more flexible and fuzzy manner. This approach has
been adopted by variousmethods such asGWD[19] andKFIoU [20]. Similarly, ProbIoU
introduces Gaussian bounding boxes to represent rotated bounding boxes and utilizes the
Bhattacharyya coefficient between two Gaussian distributions to measure the similarity
between them. In PA-DLA, ProbIoU is incorporated into the calculation of cost function
and threshold truncation.

The cost function of PA-DLA can be represented as follows:

C =
{

λ1Ccls + λ2Creg + λ3Ccenter, ProbIoU > T
Inf , Others

(3)

Ccls, Ccenter , andCreg denote the classification cost, region prior cost, and regression
cost, respectively. The default weights assigned to these costs are λ1 = 1, λ2 = 3, and λ3
= 1. T represents the threshold for ProbIoU truncation, which is set to a default value
of 0.075. The calculation for the three costs is described below.

Ccls and Ccenter are consistent with RTM-DLA and are defined as follows:

Ccls = CE(P,Ysoft) × (Ysoft − P)2 (4)

Ccenter = α|xpred−xgt|−β (5)

where α and β control the soft center region, with default values set to α = 10 and β = 3.
Ysoft represents the product of the one-hot label and ProbIoU. The soft classification cost
in assignment not only reweights the matching costs with different regression qualities
but also avoids the noisy and unstable matching caused by binary labels [9].

The regression cost Creg is calculated by

Creg = − log(ProbIoU ) (6)

4 Experiments

4.1 Datasets

We evaluated our method on the DOTA 1.0 and HRSC 2016 datasets.
DOTA1.0 [21] is a large-scale remote sensing dataset for oriented object detection,

consisting of 2806 aerial images with diverse scales, orientations, and shapes, encom-
passing 15 categories including plane, ship, and bridge. For single-scale training and
testing, all images are cropped into 1024 × 1024 patches with a gap of 200.

HRSC2016 [22] is a challenging ship detection dataset with OBB annotations, which
contains 1061 aerial images with size ranges from 300 × 300 to 1500 × 900.
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Table 1. The settings for training the RTMDet-R2 series models on the DOTA dataset and
HRSC2016 dataset. O, L, W, B, E, S, and A denote Optimizer, Base Learning Rate, Weight
Decay, Batch Size, Training Epochs, Input Size, and Augmentation, respectively.

Model Dataset O L W B E S A

large DOTA1.0 AdamW 2.5e−4 0.05 ×
2.375

8 36 1024
×
1024

random flip
and rotate

medium 2.5e−4 0.05 ×
2.200

8

small 2.5e−4 ×
1.25

0.05 ×
3.000

8 × 1.25

tiny 2.5e−4 ×
1.75

0.05 ×
2.325

8 × 1.75

tiny HRSC2016 2.0e−3 ×
0.99

0.05 8 108 800
×
800

4.2 Implement Details

The RTMDet-R2 models are implemented based on MMRotate [23]. The hyperparame-
ters of the models are shown in Table 1. Except for the medium and large models, which
are trained on two RTX 3090 GPUs, all other models are trained on a single RTX 3090
GPU. The latency of all models is tested using the half-precision floating-point format
(FP16) on an RTX 3090 GPU with TensorRT 8.4.3.1 and cuDNN 8.3.2. The inference
batch size is set to 1.

4.3 Ablation Studies

We conducted a series of experiments on the DOTA 1.0 dataset using the RTMDet-R-t
model to evaluate the effectiveness of the proposed method, which were trained and
tested in a single-scale manner.

Table 2. Design of the detector neck. *indicates that EP will be connected to the highest-level
feature map C5 from the backbone. The best results are in bold.

Neck mAP50(%)↑ mAP75(%)↑ mmAP(%)↑ Params(M)↓ FLOPs(G)↓ Latency(ms)↓
PAFPN 75.36 50.64 47.37 4.88 20.45 4.97

EP-PAFPN* 75.66 50.74 47.30 8.57 29.15 5.61

EP-PAFPN 75.91 51.34 47.97 5.77 26.29 5.20

As shown in Table 2, EP-PAFPN effectively improves the network performance
through stronger feature fusion capability and acceptable computational cost. Compared
to the PAFPN in RTMDet-R, EP-PAFPN shows an improvement of 0.55% in mAP50.
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When the EP is connected to the highest-level feature map C5 from the backbone, there
is no significant improvement in network accuracy, but there is a noticeable increase in
latency.

Table 3. Design of the detector head. †indicates the use of semantic context encoding (SCE) in
the head. The best results are in bold.

Head mAP50(%)↑ mAP75(%)↑ mmAP(%)↑
Baseline 75.36 50.64 47.37

TID-Head† 75.24 50.62 47.59

TID-Head 75.98 50.90 47.73

As shown in Table 3, TID-Head improves the network performance effectively by
enhancing the interaction between the classification and regression tasks. Initially, we
introduced the semantic context encoding (SCE) from TSCODE [17] into the Head, but
experimental results showed that its impact was not significant. However, our proposed
TID-Head improves mAP50 by 0.62%, while reducing the latency to 4.92 ms.

Table 4. Comparison of label assign strategies and ProbIoU loss. The best results are in bold.

Method mAP50(%)↑ mAP75(%)↑ mmAP(%)↑
RTM-DLA 75.36 50.64 47.37

ProbIoU loss 76.60 49.33 46.44

PA-DLA 76.75 50.06 47.07

As shown in Table 4, PA-DLA achieves efficient and accurate label assignment by
introducing a more suitable object similarity measurement method. Compared to the
original DLA, PA-DLA improves mAP50 by 1.39%. We also compared PA-DLA with
ProbIoU loss and found that althoughProbIoU loss can improvemAP50 to some extent, it
results in significant decreases in mAP75 andmmAP, possibly due to the fuzzy Gaussian
representation [30]. While PA-DLA also leads to slight decreases in mAP75 and mmAP,
the magnitude of the decrease is much smaller than that caused by ProbIoU loss. As
shown in Table 5, we further investigated the impact of the threshold T in PA-DLA on
network performance and found that T = 0.075 achieves a good overall performance.
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Table 5. Selection of ProbIoU threshold T in PA-DLA. The best results are in bold.

T mAP50(%)↑ mAP75(%)↑ mmAP(%)↑
0.001 76.86 49.10 46.72

0.010 76.58 49.85 47.14

0.025 75.48 50.43 46.71

0.075 76.75 50.06 47.07

0.100 76.81 49.80 47.06

Our step-by-step improvements are shown in Table 6. The joint optimization
of network architecture and training strategy in RTMDet-R2 results in a significant
improvement of 1.91% in mAP50 compared to the baseline.

Table 6. Step-by-step improvements from RTMDet-R-t to RTMDet-R2-t on the DOTA1.0
dataset.

Model mAP50(%)↑ mAP75(%)↑ mmAP(%)↑ Params(M)↓ FLOPs(G)↓ Latency(ms)↓
Baseline 75.36 50.64 47.37 4.88 20.45 4.97

+ EP-PAFPN 75.91 (+0.55) 51.34 (+0.70) 47.97 (+0.60) 5.77 (+0.89) 26.29 (+5.84) 5.20 (+0.23)

+ TID-Head 76.15 (+0.24) 51.03 (–0.31) 47.68 (–0.29) 6.19 (+0.42) 27.74 (+1.45) 5.53 (+0.33)

+ PA-DLA 77.27 (+1.12) 51.00 (–0.03) 47.71 (+0.03) 6.19 27.74 5.53

4.4 Comparison with State-of-the-Arts

We compared RTMDet-R2 with previous state-of-the-art methods on the DOTA 1.0
dataset, as shown in Table 7. Under single-scale training and testing, RTMDet-R2-m
and RTMDet-R2-l achieve 79.10% and 79.46% mAP50, respectively, outperforming
almost all previous anchor-free and anchor-based methods. Moreover, RTMDet-R2-
m and RTMDet-R2-l achieve 55.03% and 56.18% mAP75, surpassing RTMDet-R-m
and RTMDet-R-l by 0.56% and 0.97% respectively, indicating that the predicted boxes
generated by RTMDet-R2 exhibit higher quality. RTMDet-R2-s and RTMDet-R2-t also
achieve a relative improvement of 1.50% and 1.91% in mAP50 compared to RTMDet-
R-s and RTMDet-R-t, reaching 78.43% and 77.27% respectively. We visualize a portion
of the DOTA 1.0 test set results in Fig. 3 (a).
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Table 7. Comparison of RTMDet-R2 with previous rotated object detection methods on DOTA
1.0. R50 andX50 denote ResNet-50 and ResNeXt-50 (likewise for R101 andX101). Re50 denotes
ReResNet-50, MV2 denotes MobileNet v2 and CRN denotes CSPRepResNet. The bold fonts
indicate the best performance.

Method Backbone mAP50(%)↑ mAP75(%)↑ mmAP(%)↑
Anchor-based

ReDet [2] ReR50 76.25 – –

Mask OBB [31] R50 74.86 – –

Oriented R-CNN [1] R101 76.28 – –

S2ANet [4] R50 74.12 – –

R3Det [3] R101 73.80 – –

Anchor-free

CFA [33] R101 75.05 – –

ProbIoU [18] R50 70.04 – –

Oriented RepPoints [32] Swin-tiny 77.63 – –

FCOSR-s [7] MV2 74.05 – –

FCOSR-m [7] X50 77.15 – –

FCOSR-l [7] X101 77.39 – –

PPYOLOE-R-s [8] CRN-s 73.82 – –

PPYOLOE-R-m [8] CRN-m 77.64 – –

PPYOLOE-R-l [8] CRN-l 78.14 – –

PPYOLOE-R-x [8] CRN-x 78.28 – –

RTMDet-R-t [9] CSPNeXt-t 75.36 50.64 47.37

RTMDet-R-s [9] CSPNeXt-s 76.93 50.59 48.16

RTMDet-R-m [9] CSPNeXt-m 78.24 54.47 50.56

RTMDet-R-l [9] CSPNeXt-l 78.85 55.21 51.01

RTMDet-R2-t CSPNeXt-t 77.27 51.00 47.71

RTMDet-R2-s CSPNeXt-s 78.43 51.66 48.81

RTMDet-R2-m CSPNeXt-m 79.10 55.03 51.08

RTMDet-R2-l CSPNeXt-l 79.46 56.18 51.13

As shown in Fig. 1., we compareRTMDet-R2with previous state-of-the-art real-time
RODs on the DOTA 1.0 dataset in terms of parameters, FLOPs, and FPS. RTMDet-
R2 t/s/m achieves comprehensive improvements in mAP50 compared to RTMDet-
R s/m/l. Additionally, the parameters and FLOPs of RTMDet-R2 t/s/m are reduced
by 30.14/54.72/42.91% and 26.26/49.38/37.05% respectively compared to RTMDet-R
s/m/l. The mAP50 of RTMDet-R2-s even surpasses that of PP-YOLOE-R-x, which has
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10x theFLOPs.RTMDet-R2 avoids the use of special operations likeDeformableConvo-
lution or Rotated RoI Align, making it deployable on various hardware platforms. After
FP16 TensorRT deployment on a 3090 GPU, RTMDet-R2 t/s/m/l achieves inference
frame rates of 181/175/111/88 FPS at a resolution of 1024 × 1024.

Table 8. Comparison with state-of-the-art methods on the HRSC2016 dataset. mAP07 and
mAP12 indicate that the results were evaluated under VOC2007 and VOC2012 metrics (%),
respectively. We report both results for a fair comparison. The best results are in bold.

Method Input shape mAP07 mAP12

R3Det [3] 800 × 800 89.26 96.01

GWD [19] 800 × 800 89.85 97.37

CSL [34] 800 × 800 89.62 96.10

S2ANet [4] 512–800 90.17 95.01

ReDet [2] 512–800 90.46 97.63

Oriented RCNN [1] 800–1333 90.50 97.60

RTMDet-R-tiny [9] 800 × 800 90.60 97.10

RTMDet-R2-tiny 800 × 800 90.63 97.44

As shown in Table 8, we compared RTMDet-R2with previous SOTAmethods on the
HRSC2016 dataset. Among the models, RTMDet-R2-tiny achieves the highest mAP07,
reaching 90.63%. Additionally, RTMDet-R2-tiny achieves 97.44% mAP12, which is
0.34% higher than RTMDet-R-tiny. The visualization of the detection results is shown
in Fig. 3 (b).

Fig. 3. The RTMDet-R2-m detection result on DOTA1.0 (a) and HRSC2016 (b). The confidence
threshold is set to 0.3 when visualizing these results.
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5 Conclusion

In this paper, we present RTMDet-R2, an improved real-time rotated object detector.
RTMDet-R2 incorporates the enhanced path PAFPN for effective featuremap fusion and
utilizes the task interaction decouple head to address the imbalance between regression
and classification tasks. Additionally, we introduce the ProbIoU-aware dynamic label
assignment strategy, which improves training efficiency. The simplicity of the RTMDet-
R2 structure enables easy and fast deployment. Extensive experiments on the DOTA
and HRSC2016 datasets validate the effectiveness of our approach. Future work will
focus on exploring stronger and lighter network architectures and optimizing training
strategies to further enhance performance and efficiency.
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Abstract. Most existing object detection methods in real-world hazy
scenarios fail to handle the heterogeneous haze and treat clear images
and hazy images as adversarial while ignoring the latent information
beneficial in clear images for detection, resulting in sub-optimal perfor-
mance. To alleviate the above problems, we propose a new dark channel
map-guided detection paradigm (DG-Net) in an end-to-end manner and
provide an interpretable idea for object detection in hazy scenes from an
entirely new perspective. Specifically, we design a unique dark channel
map-guided feature fusion (DGFF) module to handle the adverse impact
of the heterogeneous haze, which enables the model to focus on poten-
tial regions that may contain detection objects adaptively, assign higher
weights to these regions, and thus improve the network’s ability to learn
and represent the features of hazy images. To more effectively utilize the
latent features of clear images, we propose a new simple but effective
union training strategy (UTS) that considers the clear images as a com-
plement to the hazy images, which enables the DGFF module to work
better. In addition, we introduce Focal loss and Self-calibrated convolu-
tions to enhance the performance of the DG-Net. Extensive experiments
show that DG-Net outperforms the state-of-the-art detection methods
quantitatively and qualitatively, especially in real-world hazy datasets.

Keywords: Object detection · Foggy scenarios · Dark channel map ·
Feature fusion · Training strategy

1 Introduction

Deep learning models based on data-driven have achieved promising performance
in various computer vision tasks. However, these models can often perform well
only in no-degraded conditions. The captured images in adverse weather will
be impaired at different levels [2], causing detection networks designed for ideal
conditions to generalize poorly in real-world adverse scenarios, severely limiting
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the further application and development of detection models. Therefore, how to
improve the performance of detectors in real-world adverse scenes has attracted
more and more attention from academia to industry. In this paper, we take a
typical hazy scene as an example and attempt to improve the detection accuracy
of the detectors under foggy conditions.

Existing methods of object detection in hazy conditions can be roughly
divided into two branches: the former is a one-stage detection network [8,9,
15,17,25,26] in an end-to-end manner. The latter is the two-stage detection net-
work [7,10,12,19], which first performs image dehazing as a prerequisite step on
the hazy images and then feeds the dehazed images into a pre-trained detection
model based on clear images to perform the detection task. Although the two-
stage methods achieve exciting visual perception, images that satisfy the human
visual experience are not definitely beneficial to the detection networks. The
defogging models introduce noise and defects that are difficult to visible by the
human visual system, further degrading the detection performance of detectors.
Recently, some works [8,9,26] have focused on one-stage detection networks.
Huang et al. [9] optimizes the model by introducing the joint loss of repair and
detection. Although this strategy is logical to the human mind, the dehazing task
and the object detection task have different purposes, and there is a potential
conflict between them, often leading to unsatisfactory detection results. Some
studies [8,26] use generative adversarial networks to generate domain invariant
features by domain adaptation strategy, often causing inefficient feature utiliza-
tion and sub-optimal detection performance. Therefore, how to design a simple
and friendly detection model under hazy conditions with high performance and
fast inference speed is a challenging task.

To this end, we present a one-stage detection framework in haze scenes DG-
Net based on dark channel map guidance and union training strategy. After the
guidance (see Fig. 1), our method focuses more on potential regions (red boxes)
that may contain detection objects, achieving better detection performances. We
elaborate a dark channel map-guided feature fusion (DGFF) module to improve
the feature extraction capability of the network from hazy images. In addition, we
propose a simple but effective union training strategy (UTS), which can leverage
those features from clear and hazy images. In a nutshell, the main highlights of
this work can be summarized as follows:

– We design a novel feature fusion guidance module based on a dark channel
map called DGFF for detection in hazy conditions, which enables the model
to focus more on potential regions that may contain detection objects. To
the best of our knowledge, we are the first to directly use the haze density
information for detection tasks in hazy conditions.

– We introduce a simple but effective union training strategy that achieves
friendly detection in hazy scenarios, improving object detection performance.

– Extensive experiments on detection benchmarks demonstrate the outstanding
performance of our method against state-of-the-art methods.
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Fig. 1. Example guided results of the DG-Net on foggy scenarios. (Zoom in to see the
details. (Color figure online))

2 Related Work

2.1 Object Detection

Object detection models based on data-driven algorithms can be classified into
anchor-based and anchor-free. Anchor-based object detection models [20,21]
need to set anchors covering as many detection objects as possible. The addition
of anchors has improved the detectability of object detectors while introducing
redundant parameters. Therefore, some works [3,5,23] have proposed anchor-free
methods to solve this obstacle. YOLOX [5] series intelligently introduces the size
information from the downsampling process of the previous backbone into the
detection heads, thus enabling the localization of the object and significantly
reducing the number of parameters in the detector.

2.2 Object Detection in Adverse Scenarios

Currently, object detection algorithms in adverse scenarios can be divided into
one-stage and two-stage methods. In one-stage detection algorithms [8,9,15,17,
25,26], due to the lack of large-scale object detection datasets in hazy weather,
early work [2] directly uses synthetic degraded datasets to train the detectors,
which makes the models perform weakly on real-world degraded images, see
Fig. 2(b). Several efforts [8,26] introduce generative adversarial networks to align
features between domains, but such methods inevitably discard some beneficial
features that improve detection accuracy, as shown in Fig. 2(c). Yang et al. [26]
propose a domain adaptation framework that preserves depth information and
background details during the feature alignment. A few recent works [9,17,25]
combine image restoration and object detection to optimize the network and
achieve remarkable performance simultaneously. Wang et al. [25] design a prac-
tical and joint detection framework that bridges dehazing and detection tasks
via a unified learning architecture.

For two-stage detection algorithms [7,10,12,18,19], these methods achieve
a significant visual enhancement, which improves the detection performance of
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detectors to a certain extent. Still, images that satisfy human visual percep-
tion are not definitely friendly to the detectors. Because the evaluation metrics
of dehazing do not positively correlate with the final detection performance,
the dehazing operation introduces noise that is invisible to the human eye but
weakens the performance of the detectors, as shown in Fig. 2(a). Pei et al. [18]
indicates that most dehazing methods may reduce detection performance.

Fig. 2. The difference between image dehazing and foggy object detection tasks. (a)
Dehazing task. (b), (c) and (d) Object detection task in foggy weather.

2.3 Attention Mechanism and Dark Channel Prior

Attention mechanisms [1] have been introduced to computer vision tasks inspired
by the phenomenon that the human visual system can naturally and efficiently
discover critical information in complex environments.

He et al. [7] found by counting the channel pixel values of haze-free images
that in most non-sky areas, most local patches in haze-free outdoor images have
very low-intensity values of at least a color channel in the RGB images. For
hazy images, the intensity of these dark pixels in this channel is mainly caused
by scattered light in the air. Therefore, the dark channel map can directly provide
an accurate haze estimate of the hazy images.

3 Methodology

3.1 Overview of DG-Net

Figure 3 shows the overview structure of the DG-Net. DG-Net consists of four
essential parts: a feature extraction module (Backbone), a dark channel map-
guided feature fusion module (DGFF), a feature fusion network (PAFPN), and
the detection heads module (Heads). Note that the DGFF module is well-
designed for the detection task under hazy conditions. PAFPN and Heads are
reasonable improvements on the advanced object detector YOLOXs [5].

Specifically, given a hazy image Ih, we first introduce the DGFF module to
generate a weighted map Fatt. Then, we multiply the feature maps Fb extracted
by the Backbone and the weighted map Fatt element by element to obtain the
weighted feature maps Fw. Finally, we feed the weighted feature map into the
PAFPN and Heads to produce the final prediction.
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Fig. 3. Overview structure of the DG-Net. DGFF refers to Dark channel map-Guided
Feature Fusion module. SC Conv refers to self-calibrated convolutions.

3.2 Dark Channel Map-Guided Feature Fusion Module

Under the hazy weather, the haze density information in images is essential for
the detection task. Previous works have yet to consider it, and a few works [6,26]
have only acted on haze density information as a constraint on the enhancement
or reconstruction of the subtasks.

To this end, we propose a well-designed dark channel map-guided feature
fusion module (DGFF) that guides the fusion of multi-scale feature maps, which
embeds the prior information related to haze density into the network. Such
an approach not only suggests differences in haze density at different spatial
locations but also provides clues for the network to find those patches where
potential detection objects may exist, significantly improving the feature model-
ing capability of the detector. Figure 4 shows the pipeline of our DGFF module.

Fig. 4. The pipeline of our DGFF module.

In detail, the hazy image is subjected to global average pooling and dark
channel prior pooling operation to obtain two pooled features. The dark channel
prior pooling are denoted as Eq. (1).

DCP (Ih) = min
y∈Ω(x)

(( min
c∈{r,g,b}

Ih
c(y)) (1)
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where Ω(x) is a local block centered on x; The pooled features are concatenated
to get a 2×H×W feature. The concatenate feature enters a 7*7 convolution layer.
Finally, a Sigmoid activation function layer to generate a weighted map Fatt.
The weighted map Fatt is downsampled to the same resolution as the backbone
extracted feature maps Fb to generate the final weighted feature map Fw. These
operations are denoted as Eq. (2) and Eq. (3).

Fatt = δ(fConv(fCon(GAP (Ih),DCP (Ih)))) (2)

Fw = Fatt↓ ⊗ Fb (3)

where Fatt denotes the generated weighted map; DCP denotes the dark channel
prior process; GAP denotes global average pooling; fCon denotes the Concat
function; fConv denotes 7*7 convolution layer; δ denotes the Sigmoid activation
function layer; Fb denotes the backbone extracted original feature maps; Fw

denotes the weighted feature maps; ⊗ denotes the element-wise multiplication;
↓ denotes the downsampled operation.

3.3 Focal Loss and Self-calibrated Convolutions

Focal Loss. Due to the specificity of the hazy scenes, the class imbalance is
even more prominent for detection tasks in hazy conditions, as confirmed by the
statistical information of the datasets in Table 1. Inspired by RetinaNet [13], the
focal loss is introduced in our network to attenuate the impact of class imbalance.
The DG-Net loss function can be defined as:

Ltotal = LIoU + LCls + LFL (4)

Here, LIoU , LCls, and LFL denote the regression loss, classification loss, and
focal loss, respectively.

Table 1. Detailed statistical information on training and testing datasets.

Dataset Images Bicycle Bus Car Motorcycle Person Total

VOC-FOG-train [25] 9,578 836 684 2,453 801 13,519 18,293

VOC-FOG-test [25] 2,129 155 156 857 131 3,527 4,826

FDD [22] 101 17 17 425 9 269 737

RTTS [11] 4,332 534 1,838 18,413 862 7,950 29,597

Self-calibrated Convolutions. Most hazy images have a non-uniform distri-
bution of haze, with significant differences in haze density between the fore-
ground and background, and different areas of the same object are affected by
the haze at different levels. We mitigate the negative impact of local haze over-
load on the objects by expanding the receptive fields of the convolution layers.
For this purpose, we introduce an improved CNNs structure in the proposed
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DG-Net network called the self-calibrated convolutions [16]. It can sense long-
distance dependencies between spaces and channels around each spatial patch,
thus vastly enlarging the receptive fields of the convolutional layer and improving
the network’s representation capabilities.

3.4 Union Training Strategy

There are differences between object detection in hazy conditions and dehazing
tasks. The goal of image dehazing is to push the dehazing image as far away
from the original hazy image as possible to pull as close as possible to the hazy-
free image. This difference between the hazy and clear images in detecting under
hazy conditions is not necessarily a confrontation but can even as a complement.
The object features in the real-world hazy images are not guaranteed to be closer
to the hazy or hazy-free features.

Existing approaches use the features from a single dataset or the intersection
of clear and hazy datasets to train the detection networks. None of the above
strategies can fully utilize clear and hazy features. Inspired by [24], we propose
a union training strategy (UTS) for the detection task in hazy conditions to
address these issues, as shown in Fig. 2(d). In detail, we use a mixed dataset
Xh of hazy synthetic images with 10% clear images as the training dataset.
It substantially increases the diversity and richness of features in the training
dataset on the one hand and makes our model more robust on the other. More
details about the union training strategy(UTS) can be found in Algorithm 1 and
supplementary material.

Algorithm 1: Union Training Strategy
input : Hybrid datasets Xh with 10% clear images, total epoch N=200.
output: Best detection model in hazy conditions P best.

1 Initialize model P 0, in addition, the backbone of the detection framework
with pretrained weights on the COCO[14] dataset ;

2 for i ← 0 to N do
3 if i < 100 then
4 Freeze pretrained backbone parameters;
5 Optimize non-freezing parameters of the current model Pnow by

minimizing detection loss;
6 Compare and update with the previous best model P best;

7 else
8 Unfreeze pretrained backbone parameters;
9 Optimize all parameters of the current model Pnow by minimizing

detection loss;
10 Compare and update with the previous best model P best.
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4 Experiments

4.1 Datasets

We choose RTTS [11] and Foggy Driving Dataset(FDD) [22] as real-world test
datasets. In addition, to facilitate the training and validation of our model, we
also introduce a synthetic hazy dataset VOC-FOG [25] based on the VOC [4]
dataset. Table 1 shows the statistical details of these datasets.

4.2 Implementation Details

We used the Adam optimizer with an initial rate of 10−3. The learning rate was
adjusted using a cosine annealing and the minimum rate of 10−5. The batch is
set to 16. We empirically set the total number of epochs as 200, with the first
100 epochs frozen for training and the last 100 epochs unfrozen for fine-tuning.
See the supplementary material for more experimental details and parameter
settings.

4.3 Comparison with the SOTAs

For a fair comparison, we retrained these compared algorithms on the VOC-FOG
[25] synthetic dataset for the one-stage methods according to the setting in the
original paper. For the two-stage methods, we first defogged using the different
dehazing methods. Then we fed the dehazed images into a baseline YOLOXs*
[5] detection model, trained on haze-free images of the VOC-FOG [25] dataset.

The fifth column of Table 2 shows the mAP metrics of our DG-Net and the
current advanced object detection algorithms in hazy on the VOC-FOG [25] test
dataset. The comparison reveals that our DG-Net achieves better performance
on the synthetic dataset, reaching the upper-middle level of current advanced
object detection methods in hazy conditions. We analyze that this may be related
to our experimental methods, where we slightly sacrifice the performance of the
model on the synthetic dataset to improve the generalization ability in real-world
hazy scenarios.

Columns 6 and 7 of Table 2 show the results for all compared methods on
two real-world datasets. Our method achieves the highest mAP on FDD [22] and
RTTS [11] datasets compared to the current SOTA methods, and our DG-Net
obtains the best detection performance in real-world scenes, especially on the
RTTS [11] dataset, where our method achieves a 4.25% accuracy improvement,
significantly ahead of the SOTA methods.

For qualitative comparison, our method is visually compared to the existing
three best-performing methods YOLOXs [5], DCP-YOLOXs* [7], TogetherNet
[25]. Figure 5 shows the detection results of the different methods on the real-
world hazy images. As observed, our method DG-Net can detect more object
instances compared to the SOTA methods. More detection examples can be seen
in the supplementary material.



Boosting Object Detection in Foggy Scenes 373

4.4 Ablation Study

To evaluate the validity of our method, we conducted adequate ablation studies
to analyze the impact of different module combinations. Table 3 shows the results
of our ablation experiments, and as observed, each module of our approach
contributes to improving detection performance. Note that we are surprised the
DGFF can work better with a union training strategy.

Table 2. Quantitative comparison with state-of-the-art methods on test datasets. The
best result in each column is in red, and the second is in blue. Paired denotes whether
paired images are required for training network. * indicates that the detection model
is trained with clean images of the VOC-FOG dataset.

Method Publication Paired VOG-FOG-test FDD RTTS

YOLOXs [5] arXiv’21 NO 80.07 31.54 51.23

YOLOXs* [5] arXiv’21 NO 72.88 30.07 50.44

DCP-YOLOXs* [7] TPAMI’11 NO 80.86 29.43 50.81

AOD-YOLOXs* [10] ICCV’17 YES 77.21 31.18 47.51

Semi-YOLOXs* [12] TIP’20 YES 78.56 31.26 50.01

FFA-YOLOXs* [19] AAAI’20 YES 73.62 26.65 50.48

MS-DAYOLO [8] ICIP’21 YES 83.42 33.7 52.41

DS-Net [9] TPAMI’21 YES 65.89 29.74 32.71

IA-YOLO [17] AAAI’22 NO 64.77 18.34 35.66

TogetherNet [25] PG’22 YES 85.90 34.93 61.55

DG-Net(Ours) / NO 79.84 35.52 65.80

Fig. 5. Detection results by different methods on real-world foggy datasets. Zoom in
for best view. (Color figure online)
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Figure 6 shows that the noticeable improvements in the detection results
and heatmaps after adding the DGFF module. We can find that the DG-Net
can detect more objects with higher confidence scores after adding the DGFF
module. More example results can be shown in Fig. 1 and the supplementary
material.

Table 3. Ablation experiment results with different module combinations on RTTS
dataset.

Baseline UTS Focal loss SC-Conv DGFF mAP

� 51.23

� � 61.20

� � � � 62.65

� � � 63.64

� � � � 64.01

� � � � � 65.80

Fig. 6. Ablation studies on our DGFF module.

4.5 Efficiency Analysis

Table 4 shows the results of efficiency analysis for different models. We use a
single NVIDIA A100 GPU to test the images with 640 × 640 × 3 resolution.
As a result, while the real-time performance of our DG-Net is excellent, the
detection performance of our method has also been improved by a wide margin.
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Table 4. Efficiency comparison with different models on images of 640 × 640 pixels.

Model Params(M) FPS/Time GFLOPS(G) mAP

YOLOXs [5] 8.94 68.13/14ms 26.77 51.23

TogetherNet [25] 15.78 32.36/31ms 61.93 61.55

DG-Net(Ours) 10.02 58.68/17ms 29.64 65.80

5 Conclusion

In this paper, we present a novel dark channel map-guided detection network
DG-Net for foggy scenarios. DG-Net exploits the latent information in the dark
channel map to enhance the network’s feature extraction and perception capa-
bilities through a well-designed dark channel map-guided feature fusion (DGFF)
module. Besides, we solve the detection problem of hazy images from a new per-
spective by a union training strategy, which effectively improves the richness
of the object features and vastly improves the performance of detectors. Fur-
thermore, we enhance DG-Net performance with Focal loss and Self-calibrated
convolutions in the network. Note that the DG-Net does not need a correspond-
ing haze-free image as ground truth so that it can be friendly applied to real-
world hazy scenarios. In summary, the DG-Net can perform well by only adding
a few parameters and has a faster detection speed. Experimental results prove
that DG-Net achieves superior detection performance on both real and synthetic
datasets.

In the future, we intend to design a more effective prior information-guided
feature fusion module. Besides, it is also a valuable research direction to ascertain
the most suitable ratio of hybrid datasets for object detection tasks in hazy
conditions.
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Abstract. The current transformer-based human object interaction
(HOI) detection methods have achieved great progress, however, these
methods adopt the same structre of decoder to detect human and object,
which limits the accuracy of object feature extraction, thereby limiting
the accuracy of HOI detection. And due to the distribution differences
of multi-granularity features between human and object, the key of HOI
detection is object centric interaction with the correlative human body
parts. To address this issue, we propose an Object Centric Body Part
Attention Network for Human-Object Interaction. First, we introduce a
dual-branch decoder for human and object detection named Object Cen-
tric Decoder (OCD), where one focuses on quering objects and another
pay attention to catch human who interacts with them. Secondly, in order
to exploit more fine-grained human body information centered around
object, we propose a Body Part Attention (BPA) module to obtain the
interactive human body part features for HOI detection. We evaluated
our proposed OBPA on the HICO-DET and V-COCO datasets, which
significantly outperforms existing counterpart (1.7 mAP on V-COCO,
and 0.9 mAP on HICO-DET compared to GEN-VLKT). Code will be
available on https://github.com/zhuang1iu/OBPA-NET.

Keywords: Human-Object Interaction · Decoupling Human-Object
Decoder · BodyPart Attention

1 Introduction

Human-Object Interaction (HOI) detection is a task of recognizing “a set of
interactions” in an image. As a downstream task of object detection [1], HOI
detection has received increasing attention in recent years due to its significant
application potential. The HOI detection task involves locating the interacting
subjects (i.e., humans) and interaction targets (i.e., objects), classifying the inter-
action labels, and outputting the triplets of humans, objects, and interactions.
HOI detection requires a deeper understanding of the semantic information in
images to accurately distinguish human activities.

Intuitively, human object interaction (HOI) detection first needs to deter-
mine the position of human and objects, as well as the class of objects. Then,
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14436, pp. 378–391, 2024.
https://doi.org/10.1007/978-981-99-8555-5_30
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Fig. 1. Architecture comparison of different transformers-based HOI method. Single-
decoder method adopts a single decoder to directly detect HOI triplets. Dual-decoder
method utilizes separate decoders detect individual objects and interactions. Ours fur-
ther decouples the instance detection branch and utilizes OCD to learn implicit con-
nections between human and object pairs, then Body Part Attention (BPA) is used to
select fine-grained features of human key body parts for interaction detection.

the interaction class is determined by the class information of objects, the overall
features of human, and key body parts features. There are two traditional CNN
based methods: the two-stage method first using a pre trained object detector to
detect human and objects, and then inputting the generated person object pairs
into the interactive classifier. One-stage methods propose predicting both the
human-object offset vectors and action classes simultaneously by utilizing inter-
action points between humans and objects. With the recent success of Trans-
formers in object detection, Transformer-based HOI detection methods have
been actively developed and have become the main architectural foundation for
this task. However, Existing transformer-based methods rely on a single decoder
to handle human and object detection tasks, which limits their ability to adapt
to different subtasks in multi task learning, resulting in poor object detection
performance.

Based on this, we propose an object centric dual branch decoder (OCD),
where one branch focuses on querying objects while others focus on human in
contact with the objects. As shown in Fig. 1, our method divides human and
object detection into two related branches, improving detection performance
while also implicitly learning the interactive relationships between humans and
objects. In addition, in the process of human object interaction (HOI) detection,
the features of objects not only affect the determination of interaction categories,
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but also play an important role in the selection of human key body parts. So we
propose an Body Part Attention (BPA) module that utilizes a cross attention
network to obtain more interactive human body part information with objects for
Part-based Interaction Decoder. In addition, we also use a progressive strategy
from global to part, first focusing on the information in the background context
through the Global- based Interaction Decoder, and then using the Part-based
Interaction Decoder to focus on the relationship between key parts of the human
body and objects.

We evaluated our approach on two widely used benchmarks, V-COCO [21]
and HICO-DET [12], and achieved state-of-the-art performance on both of them.
Ablation experiments were conducted to validate the effectiveness of the OCD
and BPA. Our contributions can be summarized as follows:

– We propose the Object Centric Decoder (OCD), which utilizes object features
to detect subjects involved in interactions. This approach enables high detec-
tion performance while implicitly learning the interaction between objects
and humans.

– We introduce the Body Part Attention (BPA) module, which flexibly selects
key body parts of humans. By leveraging the relationship between object
features and human features, this module determines the interactive body
parts of humans and models the relationship between fine-grained human
body part features and object features.

– Our approach has achieved a 1.7mAP gain on V-COCO and a 0.9mAP pro-
motion on HICO-Det compared with the previous state-of-the-art method
GEN-VLKT [15].

2 Related Work

2.1 Human-Object Interaction.

Two-Stage Methods. Early methods for HOI detection stylishly employed
two-stage approaches [9]. In the first stage, object detection methods were used
to locate humans and objects. In the second stage, features of humans and
objects were extracted and fed into classifiers to predict their interactions. Some
early methods emphasized the second stage by introducing models that captured
contextual information [26] or structural messages to model the relationship
between humans and objects [14]. However, the main challenges of two-stage
methods lie in effectively integrating human-object pairs and complex semantic
information. Additionally, the efficiency of two-stage methods is constrained by
the sequential architecture.

One-Stage Methods. A new trend in HOI detection is the adoption of one-
stage methods, which leverage strong feature representations to perform human-
object pair detection and interaction prediction in parallel. Liao et al. [17] pro-
posed a proposal-free method, PPDM, which utilizes keypoints as the key. These
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keypoints represent the center points of minimum enclosing bounding boxes that
encapsulate the human-object pairs involved in the predicted interaction. Cur-
rently, several Conv Transformer based HOI methods deploy the detection trans-
former [18–20,25] architecture and directly predict HOIs as quintuplets (human,
interaction class, object class, human box, object box). These methods share
similarities to a large extent but differ in backbone networks or detection heads,
such as HOTR [3], HOI Trans [7], and QPIC [10]. Zhang et al. proposed CDN [6],
which utilizes an additional transformer decoder to predict interactions based
on instance feature tokens.

2.2 Part Based Interaction Detection

Different parts of humans provide more detailed information for HOI detection.
Fang et al. [27] utilized pairwise body part attention models to learn the attention
on key parts and their correlations. Wan et al. [14] proposed a multi-level relation
detection strategy that utilizes human pose cues to capture the global spatial
configuration of relationships and serves as an attention mechanism to learn
the attention on key part features. Tin++ [28] combines human body pose and
body part features to extract deeper visual clues of interactions for learning
interactions. These methods indicate that fine-grained features of human body
parts are important for HOI detection.

3 Method

3.1 Overview

As shown in Fig. 2, our pipeline consists of three main modules: an image feature
extraction, an object centric decoder, and an interaction decoder. Following the
previous work [6,10,30], for a given input image x ∈ R3×H0×W0 , we initially
used ResNet-50 to extract image features, and then input them into the trans-
former encoder along with position encoding. The feature map output by the
transformer encoder is fenc ∈ RC×H×W , where C is the number of channels and
H,W are the size of the feature map.

Subsequently, the feature map fenc is fed into the OCD, which comprises
two branches: the first branch produces outobj , responsible for predicting the
bounding box and class of the object, while the second branch produces outhum,
responsible for predicting the bounding box of the humans. Then we use feed
forward networks (FFNs) to obtain human bbox, obj bbox, and obj class. Next,
we utilize the feature map fenc alongside the outputs of the OCD as inputs for the
Interaction Decoder. By traversing through the global-based interaction decoder
(GBID) and the part-based interaction decoder(PBID), we obtain outint. This
output is further processed by a feed-forward network to predict the specific
interaction class.
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Fig. 2. The overall framework of our proposed method. BPA refer to the Body Part
Attention module

3.2 Object Centric Decoder

Previous methods have employed a single Transformer Decoder to simultane-
ously detect humans and objects, implicitly capturing the interaction between
them. However, the object detection performance of this approach is inferior to
that of a standalone object detection branch. The category and spatial informa-
tion of objects play a vital role in determining the interaction categories. Based
on this idea, we designed three different branch architectures for human and
object detection, as shown in Fig. 3.

Fig. 3. DHOD, HCD and OCD denotes the decoupling human and object decoder
module, human centric decoder module and object centric decoder module. DHOD
is to directly decouple the human decoder and object decoder modules. HCD is the
human centric decoder, where the output of the human decoder is used as the query
embedding input for the object decoder. Finally, OCD utilize the object decoder output
as query embedding for human decoder, implicit learning of the interactive relationship
between the two.

After different experiments, we ultimately adopted the object centric decoder
which is a dual-branch architecture. Each branch, denoted as B, consists of L
layers and takes learnable embeddings Q =

{
qBi

}N

i=1
and image features fenc as
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input, where B ∈ {O,H} represents objects and humans, the learnable embed-
dings is inherited from DETR and interacts with image features through cross
attention. In each layer of the object detection branch, QO is refined through
a transformer decoder layer. The output of object detection branch serves as
the input for the query of the subsequent layer QO

i+1 and also acts as the query
embedding QH

i for the corresponding layer in the human detection branch. The
result of two branches (outobj , outhum) can be represented as follows:

outobj(l) = DecO(l)(Q
O
(l−1), fenc) (1)

outhum(l) = DecH(l)(Q
O
(l) +QH

(l−1), fenc) (2)

where Dec(q, kv) denotes a transformer decoder layer and l denotes the num of
decoder layers. Finally, we used FFN networks to predict object classification,
object bounding boxes, and human bounding boxes.

3.3 Interaction Decoder

Interaction Detector from Global to Part. The determination of many
interaction categories requires not only the consideration of the global features
of entire image but also the fine-grained features of key body parts. Therefore, we
design an interaction decoder, Dec(q, kv), that operates from global to local. We
set different learnable query embeddings QI

g,Q
I
p for the two decoder processes

to focus on both the global features of the image and the important features of
the key body parts.

First, we use QI
g, along with the output fenc from the encoder, as the input for

the global-based interaction decoder. After passing through L decoder layers for
updating, the final output outIg serves as the query embedding input for the part-
based interaction decoder. Subsequently, in the part-based interaction decoder,
we utilize the attention mask matrix functionality of the transformer. Only image
features containing key body parts are retained for attention computation, while
features from other regions are masked out. The attention mask is pre-computed
based on the results of body part bounding box detection.

Body Part Attention. In a human object interaction relationship, the inter-
action between various human body parts and objects is different, and it is more
important to focus on the interaction between more fine-grained key parts of the
human body and objects. Based on this, we utilized the Cross Attention struc-
ture to predict key parts with stronger interaction with objects, and designed a
Body Part Attention (BPA) module as shown in Fig. 4.

We employ a cross-attention layer network to compute the regions of the body
that exhibit higher interaction with objects and utilize a feed-forward network
to output the importance scores, denoted as Pscore, for the six body parts. Any
body part with a Pn

score(n < 6) greater than k is retained, resulting in the
generation of the key body part mask Mpart for all individuals in the image.
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Fig. 4. The process of BPA. Where hum bbox, obj bbox,outobj and outhumare the
outputs of the OCD, and mparts is the masks of various parts of the human body.
fenc is the output of the encoder. Pscore is the interaction score of various parts of the
human body, and k is the threshold of key body part.

Pscore = MLP (CrossAttn(outobj , outhum)) (3)

where CrossAttn(q, kv) is a cross-attention operation, MLP is a multi-layer
perceptron composed of multilayer Linear layers.

Part-Based Interaction Decoder. After obtaining key body parts using
BPA, we propose a Part-Based Interaction Decoder that only focuses on key
body parts and objects using the Transformer’s mask mechanism. To obtain the
key body part masks for each person, we first utilize pose estimation methods
[22,23] to obtain the positions of the human body poses. Then, following the
approach in HAKE [31], we divide the human body into six body parts: feet,
legs, hip, hands, arms, and head. Set the n-th body part box of each person in
the picture to Pn

box = [wn
1 , hn

1 , wn
2 , hn

2 ], then the overall body part mask matrix
mn

partis calculated as follows:

m
n(xy)
part =

{
1 hn

1 ≤ x ∗ (H0/H) ≤ hn
2 , wn

1 ≤ y ∗ (W0/W ) ≤ wn
2

0 otherwise
(4)

where x, y is the index of the matrix. The scaling factor H0/H and W0/W are
used here because the size of the feature map fenc is scaled down from the
original image.

As shown in Fig. 4, with the output of the object centric decoder, we generate
human mask Mhum and object mask Mobj using the Mask Generator, which have
the same size as the feature map fenc. Subsequently, we match Mhum with Mpart,
preserving the overlapping regions between them. Additionally, in cases of pose
estimation failure, we employ the Mask matcher to filter out instances where the
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shared region’s area is zero. In such instances, we directly utilize Mhum as the
subsequent Attention mask for further computations. The key body parts mask
matrix Mpart is calculated as:

Mpart =

{
m

n(xy)
part ∨ Mhum min(mn(xy)

part ∨ Mhum) = 0, Pn
score > k

Mhum min(mn(xy)
part ∨ Mhum) = 1, Pn

score > k
(5)

where min() is a function for finding the minimum value of a matrix. Finally,
we will perform logical AND operations on Mpart and Mobj to obtain the mask
for the Part based Interaction Decoder operation.

3.4 Training and Inference

To train our proposed method, we followed the transformer-based approaches
[6,10] that were previously introduced. Firstly, we employed bipartite matching
to assign predicted and ground truth HOI instances, followed by the calculation
of matching pair loss. Our multitask loss consists of four components:

L = λ1Lbox + λ2Liou + λ3Lobj + λ4Lint (6)

where Lbox and Liou are l1 and GIoU loss applied to both human and object
bounding boxes,Lobj is a cross entropy loss for object class prediction, and Lint is
a focal loss for interaction class prediction.λ1,λ2,λ3, and λ4 are hyperparameters
used to weigh each loss. Additionally, we incorporated intermediate supervision
to enhance the representation learning. Specifically, the same feed-forward net-
work (FFN) was attached to each decoder layer to compute intermediate losses.
The computation of these auxiliary losses follows the same approach as L.

4 Experiments

4.1 Experimental Settings

Datasets. We adopt two datasets HICO-DET [12] and V-COCO [21]. V-COCO
[21] provides 10,346 images (2,533 for training, 2,867 for validating, and 4,946
for testing) and 16,199 person instances. Each person has labels for 29 action
categories (five of them have no paired object). HICODET [12] is a much larger
dataset than V-COCO [21]. It includes 47,776 images (38,118 in train set and
9658 in test set), 600 HOI categories on 80 object categories (same with [16])
and 117 verbs, and provides more than 150k annotated human-object pairs.

Evaluation Metrics. We follow the standard settings in [8], reporting mean
Average Precision (mAP) for evaluation. Prediction of a HOI triplet is considered
as a true positive when both predicted human and object bounding boxes have
IoUs larger than 0.5 compared to the ground truth boxes, and HOI category
prediction is accurate. For V-COCO, we report mAP for two scenarios. For
HICO-DET, we report mAP over two evaluation settings (Default and Known
Object), with three HOI category subsets: all 600 HOI triplets (Full), 138 HOI
triplets with fewer than 10 training samples (Rare), and 462 HOI triplets with
10 or more training samples (Non-Rare).
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4.2 Implementation Details

In our deployment, we utilize ResNet-50 as the initial component of our visual
feature extractor, followed by a six-layer transformer encoder. Both the object
and human detection decoder layers consist of six layers, while the global-based
interaction decoder and part-based interaction decoder consist of three layers
each. The network parameters are initialized using the weights from DETR [18],
which was pre-trained on the COCO dataset. During the training process, we
set the number of queries to 100 for V-COCO and 64 for HICO-DET, following
the methodology in [6]. We employ AdamW optimizer with a weight decay of
2e−5. The loss weight coefficients (λ1, λ2, λ3, and λ4) are set as 1, 2.5, 1, and
1 respectively. The model is trained for 90 epochs with a learning rate of 2e−5,
which is decreased by a factor of 10 at the 60th epoch.

5 Results

5.1 Comparison to State-of-the-Art

We conducted experiments on the V-COCO and HICO-Det benchmarks to val-
idate the effectiveness of our proposed method.

Table 1. Performance comparison on the V-COCO test set. AP role(S1), AP role(S2)
denotes the performance under Scenario1 and Scenario2 in V-COCO, respectively.

Method Backbone AP role(S1) AP role(S2)

CNN-based Methods
PMFNet [14] ResNet50 52.0 -
PD-Net [4] ResNet50 53.3 -
AS-Net [2] ResNet50 53.9 -
GG-Net [5] ResNet50 54.7 -
Single-decoder Methods
HOTR [3] ResNet50 55.2 64.4
QPIC [10] ResNet50 58.8 61.0
Dual-decoder Methods
FGAHOI [13] Swin-T 60.5 61.2
CDN [6] ResNet50 61.7 63.8
GEN-VLKT [15] ResNet50 62.4 64.5
MSTR [24] ResNet50 62.0 65.2
BPI [29] ResNet50 63.0 65.1
GEN-VLKT [15] ResNet101 63.5 65.9
CDN [6] ResNet101 63.9 65.8
OBPA-Net(ours) ResNet50 64.1 65.9
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As shown in Table 1, OBPA-Net outperforms all state-of-the-art methods on
V-COCO. The table indicates that OBPA-Net not only surpasses CNN-based
methods but also outperforms Transformer-based methods with both single-
decoder and dual-decoder architectures. This demonstrates the importance of
decoupling object detection and human detection and explicitly defining subtask
objectives. Additionally, under the same backbone model, OBPA-Net achieves
a 1.1% higher mAP compared to one of the latest transformer-based methods,
Body Part Interactiveness [29]. It uses a fixed number of key body parts to
predict the interactivity of human object pairs. This highlights the significance
of adaptively selecting body part features and accurately extracting fine-grained
human body part features in a more flexible manner (Table 2).

Table 2. Performance comparison on the HICO-DET. “Default” means that the aver-
age precision (AP) is calculated across all testing images for each HOI class. “Known
Object” means that the AP is calculated for an HOI class over the images that specif-
ically contain the object involved in that HOI class.

Default Known
Object

Method Backbone Full Rare Non-Rare Full Rare Non-Rare

PD-Net [4] Res152 22.37 17.61 23.79 26.86 21.70 28.44
AS-Net [2] Res50 28.87 24.25 30.25 31.74 27.07 33.14
GG-Net [5] Res50 29.17 22.13 30.84 33.50 26.67 34.89
HOTR [3] Res50 25.10 17.34 27.42 - - -
QPIC [10] Res101 29.90 23.92 31.69 32.38 26.06 34.27
MSTR [24] Res50 31.17 25.31 32.92 34.02 28.83 35.57
CDN [6] Res101 32.07 27.19 33.53 34.79 29.48 36.38
RLIP-ParSe [31] Res50 32.84 26.85 34.63 - - -
GEN-VLKT [15] Res50 33.75 29.25 35.10 36.78 32.75 37.99
BPI [29] Res50 35.15 33.71 35.58 37.56 35.87 38.06

OBPA-Net(ours) Res50 34.63 32.83 35.16 36.78 35.38 38.04

On HICO-DET dataset, compared with state-of-the-art one-stage methods,
our method is 2.28% mAP higher than DEFR [11] and 1.79% mAP higher than
RLIP-ParSe [31] under default full settings. Both single decoder and dual decoder
methods use a single decoder to detect human and objects, and our method
outperforms these methods to demonstrate the effectiveness of the decoupling
strategy.

5.2 Ablation Study

To assess the effectiveness of OBPA-Net, we perform a series of ablation studies
using the V-COCO dataset.
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Impact of Object Centric Decoder. We first validate the effectiveness of the
object centric decoder. The detection tasks of humans and objects are completed
by the same decoder, which limits their ability to adapt to different subtasks of
multi-task learning simultaneously. We propose three approaches to decouple the
human decoder and object decoder. The first approach is to directly decouple the
human decoder and object decoder modules. This results in many mismatched
human-object pairs and a decrease in performance. The second approach is the
human centric decoder, where the output of the human decoder is used as the
query embedding input for the object decoder. In Table 3, it can be seen that
the detection results of this method on AP role(S1) are very poor. The perfor-
mance degradation is mainly due to the inclusion of some objects with a label of
nothing, we speculate that this is because using human features to detect objects
conflicts with detecting nothing, which means not detecting objects. Finally, we
utilize the object centric decoder to achieve the decoupling of the human decoder
and object decoder, and Table 3 demonstrates its effectiveness.

Table 3. Impact of object centric decoder. DSO Decoder, HC Decoder and OC Decoder
denotes the decoupling human and object decoder, human centric decoder and object
centric decoder.

Single Decoder DHO Decoder HC Decoder OC Decoder AP role(S1) AP role(S2)

� - - - 63.2 64.5

- � - - 63.5 64.7

- - � - 62.7 64.6

- - - � 64.1 65.9

Impact of BPA. In Table 4, we validated the effectiveness of the BPA and
different body part selection strategies. The results indicate that using BPA can
help predict interaction categories, and flexibly selecting different numbers of
human key parts is also very important compared to selecting a fixed number of
human key parts.

Impact of Interaction Decoder from Global to Part. In Table 5, we val-
idated the effectiveness of the impact of interactive decoder layers from global
to local. Through experiments with different levels of GBID and PBID, we ulti-
mately validated the method with the highest performance.
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Table 4. Impact of BPA and interaction decoder from global to part. BPA refer to
the Body Part Attention module. Adaptive represents the flexible selection of different
numbers of key human body parts

BPA Num of parts AP role(S1) AP role(S2)

- - 63.4 64.9
� 3 63.9 65.6
� 6 63.9 65.5
� Adaptive 64.1 65.9

Table 5. Impact of interaction decoder from global to part. GBID and PBID refer to
the global based interaction decoder and part based interaction decoder.

GBID layers PBID layers AP role(S1) AP role(S2)

1 5 63.3 64.9
3 3 64.1 65.9
5 1 63.4 64.7

6 Conclusion

In this article, we explored the importance of object detection in HOI and pro-
posed a new framework called OBPA-Net. From the perspective of improving
object detection performance, OBPA-Net utilized the Object Centric Decoder
(OCD) to implicitly learn the interactivity between human object pairs, and
then utilized the Body Part Attention (BPA) module to extract fine-grained
features of key body parts to improve HOI detection. We conducted extensive
evaluations on two benchmark datasets: V-COCO and HICO-DET, indicating
that our model outperformed current state-of-the-art methods in terms of per-
formance. In the future, we will explore more flexible feature selection modules
for human body parts to utilize more accurate fine-grained features for HOI
detection.
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Abstract. Most existing transformer-based Multi-object tracking
(MOT) methods use Convolutional Neural Network (CNN) to extract
features and then use a transformer to detect and track objects. How-
ever, feature extract networks in existing MOT methods cannot pay more
attention to the salient regional features and capture their consecutive
contextual information, resulting in the neglect of potential object areas
during detection. And self-attention in the transformer generates exten-
sive redundant attention areas, resulting in a weak correlation between
detected and tracking objects during the tracking. In this paper, we pro-
pose a salient regional feature enhancement module (SFEM) to focus
more on salient regional features and enhance the continuity of contex-
tual features, it effectively avoids the neglect of some potential object
areas due to occlusion and background interference. We further propose
soft-sparse attention (SSA) in the transformer to strengthen the cor-
relation between detected and tracking objects, it establishes an exact
association between objects to reduce the object’s ID switch. Experimen-
tal results on the datasets of MOT17 and MOT20 show that our model
significantly outperforms the state-of-the-art metrics of MOTA, IDF1,
and IDSw.

Keywords: Multi-Object Tracking · Salient Regional Feature
Enhancement · Soft-Sparse Attention · Vision Transformer

1 Introduction

Multiple-object tracking (MOT) aims to distinguish each object from the others
by assigning an ID to each object and recording their trajectories in continuous
image sequences [1,6]. It is widely used in various aspects of vision, such as visual
surveillance [4], autonomous driving [2], and virtual reality [3].
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Compared to traditional separate tracking-by-detection (TBD) paradigm [6],
existing methods are inclined to integrate the detector and embedding model into
a unified Joint-Detection-Embedding (JDE) paradigms [5]. Benefiting from the
long-range dependency modeling and interpretability of the transformer [10], it
is widely used in MOT tasks, following the JDE paradigm. Most of the existing
transformer-based MOT methods [7,9] implemented by a CNN backbone to
extract features and an encoder-decoder transformer to detect and track objects.

However, feature extract networks in existing MOT methods cannot pay
more attention to the salient regional features and capture their consecutive
contextual information, resulting in the neglect of some detailed information
in the feature map during detection. Besides, self-attention in the transformer
calculates each pixel attention with all pixel values of the input features, which
generates extensive redundant attention areas, resulting in a weak correlation
between detected and tracking queries during tracking.

To solve the problems aforementioned, we propose a salient regional feature
enhancement module (SFEM), it utilizes spatial attention [11] and an adaptive
scaling dilated convolution (ASC) on the feature maps extracted from the back-
bone, the spatial attention used to focus more on salient regional features, and
the ASC is guided by spatial attention feature weights to enhance the continuity
of contextual information. Besides, we propose the soft-sparse attention (SSA)
in the transformer, it effectively avoids the problems of lacking the ability to
focus on the most relevant information between queries in a self-attention and
exactly builds an association between queries.

To summarize, our contributions are listed as follows:

– We propose a salient regional feature enhancement module (SFEM) to pay
more attention to salient regional features and capture their consecutive con-
textual information, which can accurately detect the objects occluded and
interfered by background as well as improve the accuracy in MOT.

– We first propose the soft-sparse attention in the transformer, it could accu-
rately catch the correlation between detected and tracking objects to reduce
ID switch during tracking.

– Extensive experimental results on MOT17 and MOT20 indicate that our
model outperforms the state-of-the-art methods on several metrics.

2 Related Works

2.1 Feature Enhancement in Tracking

Feature enhancement is designed to further refine the important contextual infor-
mation in the feature maps, it enables to accurately detect the objects in a com-
plex scenes. Several research studies have focused on feature enhancement in
tracking, Zhao et al. [15] proposed an algorithm which incorporates the spatial
and temporal attention to take full advantage of the hierarchical convolution
features for tracking. Huang et al. [16] proposed a self-attention-based feature
fusion and a classification enhancement structure, which highlight the target
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information and assist the anchor-free strategy respectively. Hu et al. [17] intro-
duce a new multi-frequency feature representation method to improves feature
expression ability of highly dynamic targets. The above mentioned works mainly
consider fusing different scales and patterns feature or enhancing multi-frequency
features, but most of them are scale-uniform enhancements for all regions and
cannot adaptively select enhancement strategies.

2.2 Transformers in Tracking

Transformer [10] was first applied in natural language processing, which is a deep
neural network based on self-attention mechanisms. Thanks to its powerful repre-
sentation capabilities, researchers have applied it to a variety of computer vision
tasks, including target detection, target tracking, image segmentation, etc. There
are also many works in the MOT field with transformer, TrackFormer [9] and
MOTR [7] realize the object detection and tracking simultaneously by concate-
nating the object and autoregressive track queries as inputs to the Transformer
decoder in the next frame. Besides, TransCenter [12] and TransTrack [8] only use
Transformers as feature extractors and iteratively pass track features to learn
aggregated embedding of each object. TransMOT [14] still uses CNNs as object
detectors and then learns an affinity matrix with Transformers for tracking. The
above works explore the existing dominant MOT methods with Transformer.
However, they lack the ability to focus on salient regional features and establish
an exact correlation between detecting and tracking queries.

2.3 Attentions Applied in Transformer

The core of the attention mechanism is to selectively choose the important infor-
mation from a large amount of information and capture the important informa-
tion that is useful for the task at hand. Transformer [10] uses multi-head self-
attention to capture richer features information by focusing on information from
different representation subspaces at different locations. SparseTT [13] utilizes
traditional sparse attention [20] in the transformer to highlight potential targets
in the search area. However, self-attention in mostly transformer-based MOT
methods lacks the ability to focus on the most relevant information between
pixel values. In the original sparse attention [20], each pixel value of attention
features is only determined by k pixel values that are most similar to it, which
results in neglecting some potential important correlations.

3 Method

3.1 Overall Architecture

The overall architecture of our model is shown in Fig. 1. Multi-frame images
are fed into the convolutional neural network (CNN) (e.g. ResNet-50 [18]) to
extract features, then features are fed into salient regional feature enhancement
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Fig. 1. The overall architecture of our model. At frame t = 1, the decoder transforms
N learnable object queries (white) to output embeddings either initializing new
autoregressive track queries. On subsequent frames, the decoder processes the joint
set of Nobject + Ntrack queries to follow or remove (cyan) existing tracks as well as
initialize new tracks (purple).

module to obtain enhanced salient features, and the features are embedded with
position information and flattened before being fed into the encoder. For the first
frame, there is no track query, so we feed the fixed-length learnable detect queries
into the decoder to get object prediction, and go through the post-processing
to activate high confidence detection as track queries for the next frame. For
successive frames, we feed the concatenation of track queries from the previous
frame and the learnable detect queries into the decoder, which also feeds the
track queries generated by the current frame for the next frame.

3.2 Salient Feature Enhancement Module

In this section, the salient regional feature enhancement module (SFEM) is
described in detail, as shown in Fig. 2, which mainly includes an adaptive scaling
dilated convolution (ASC) and spatial attention.
Spatial Attention. Feature maps F extracted from the backbone are the input
of our feature enhancement network. We first make the max and average pooling
on the F, and then a 3 × 3 convolution is used after concatenation of pooling
to obtain the attention weights W. W has two functions, on the one hand it
multiplies with the F to obtain the output of spatial attention F1, on the other
hand it is used to guide the ASC.
Adaptive Scaling Dilated Convolution. Adaptive scaling dilated convolu-
tion (ASC) take the W from spatial attention to guide dilated convolution.
Specifically, we divide the W and F into N small patches, each wi and fi have a
one-to-one correspondence since they have the same scale. Next, we perform an
average pooling and a gating activation function on wi to obtain the dilated rate
ri. Since the salient regions have a greater attention weights they get a greater
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dilated rate, the mathematical description of ri is shown in Eq. (1),

ri = round(wi · tanh(ln(1 + eAvg(wi)))), i = 1, 2, 3, ..., N, (1)

where wi is the attention weight patch, Avg means the one-dimensional average
pooling, tanh is the activate function,round represents rounding the ri.

Fig. 2. The illustration of SFEM. F is the input feature map tensor, W means the
attention weights in spatial attention [11], w and f mean the patches divided by weights
and input feature tensor, r indicates dilated rates of convolution. σ means the gating
activation function, ⊗ stands for matrix multiplication, ⊕ represents the matrix sum-
mation.

Finally, we do the dilated rate equal to r convolution for each f and then
reconstruct all the f as the output of ASC F2. The main function of this branch
is to enhance the continuity context features in salient regions . After that, we
merge the F1 and F2 as the output F

′
of our feature enhancement module, the

mathematical description of F
′
is shown in Eq. (2),

F
′
= RC(DC3×3(wi, ri)) + F1), i = 1, 2, 3, ..., N, (2)

where F1 denotes the output of spatial attention, DC means the dilated convo-
lution operation, and the RC means reconstruct patches operation.

3.3 Encoder

Encoder is an important but not essential component in the proposed method,
which is responsible for encoding the frame features. AS shown in Fig. 3, it is
composed of N encoder layers where each encoder layer takes the outputs of
its previous encoder layer as input. Note that, in order to enable the network
to have the perception of spatial position information, we add a spatial position
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embedding to each feature point. Thus, the first encoder layer takes the flattened
features extracted from SFEM with spatial position embedding as input. In
short, it can be formally denoted as Eq. (3),

encoder(Z) =
{

f i
enc(Z + Penc), i = 1

f i
enc(Y

i−1
enc ), 2 ≤ i ≤ N,

(3)

where Z ∈ R
HW×C represents the flattened frame feature. Penc ∈ R

HW×C

represents the spatial position encoding, f i
enc represents the i -th encoder layer.

Fig. 3. left): The architecture of Transformer. We indicate the tensor dimensions in
squared brackets, ⊕ represents the matrix summation, and C represents the concate-
nation of queries. right): The illustration of soft-sparse attention. L and C represent
the length and dimension of tokens respectively, ⊗ stands for matrix multiplication, �
represents the matrix subtraction.

3.4 Decoder with Soft-Sparse Attention

Decoder is an essential component in our proposed model, it is responsible for
decoding the features of queries to generate the detection and tracking. Similar
to the encoder, the decoder is also composed of M layers as shown in Fig. 3. How-
ever, different from the encoder layer, the input of decoder contain the encoded
features with spatial position embedding and concatenation of detect queries
and track queries. Specifically speaking, we first use soft-sparse attention (SSA)
on the concatenation of detect queries and track queries to catch the correlation
between queries. Track queries are fed autoregressively from the previous frame
output embedding of the last decoding layer (before the post-process). Next,
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we make a cross-attention between the output of SSA and encoded features to
build spatial associations between feature maps and queries. In a word, it can
be formally denoted as Eq. (4),

decoder(Q,Y N
enc) =

{
f i

dec(Q,Y N
enc + Penc), i = 1

f i
dec(Y

i−1
dec ,Y N

enc + Penc), 2 ≤ i ≤ M,
(4)

where Q ∈ R
len(qd + qt ) × C represents the concatenation of track queries and

detect queries, Y N
enc ∈ R

HW×C represents the output of the encoder, Penc

∈ R
HW×C represents the spatial position encoding, f i

dec represents the i -th
encoder layer, qd and qt are the fixed length detect queries and track queries
from previous frame, respectively.
Soft-Sparse Attention is proposed to strengthen the correlation between
detect and track queries, it detailly illustrated in Fig. 3 right.

We first fed Q, K, V to a linear unit and calculate the similarity matrix as
attention map a through Q and K, then we use soft-sparse method on attention
map. Specifically, We pick the top k -th value in each row of the attention map,
where k can be represented by Eq. (5), and each element of the row is subtracted
from that value, followed by an exponential operation and tanh activation func-
tion on each element to obtain the final attention map a. Finally, using softmax
on the a and multiple with V to get the output of attention. The mathematical
description of sparse-attention can be formally denoted as Eq. (6),

k = Ntrack + 10 × log10 Nqueries, (5)

where Ntrack and nqueries mean the number of track queries and number of all
queries.

output = Softmax(tanh(ea−Topk(a,k))), (6)

where a means the attention map, k is got from the Eq. (5), and topk represents
the top k -th value in each row of the attention map a.

3.5 Loss Function

We follow [9] set final MOT prediction loss computed over all N = Nobject +
Ntrack output predictions as Eq. (7),

LMOT (y, ŷ, π) =
N∑

i=1

Lquery (y, ŷi, π) , (7)

where the y and ŷ represent the ground truth and predictions respectively, π is
the mapping from Hungarian algorithm. Lquery is defined as Eq. (8),

Lquery =

{
− log p̂i (cπ=i) + Lbox

(
bπ=i, b̂i

)
, if i ∈ π

− log p̂i(0), if i /∈ π,
(8)
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where the output embeddings which were not matched via track ID or assignment
are not part of the mapping π and will be assigned to the background class ci

= 0. Lbox uses to compute the bounding box loss, which composed by a linear
combination of a �1 distance and a generalized intersection over union (IoU) loss,
it can be denoted as Eq. (9),

Lbox = λ�1

∥∥∥bi − b̂σ(i)

∥∥∥
1

+ λiou Liou

(
bi, b̂

)
. (9)

4 Experiments

4.1 MOT Benchmarks and Metrics

Datasets. The tracking result of our model is presented on two MOTChallenge
benchmarks, MOT17 [21] and MOT20 [22] respectively. MOT17 contains 7 train-
ing sequences and 7 test sequences, each set has 5316 frames and 5919 frames
with pedestrians annotated with bounding boxes respectively. To evaluate the
tracking robustness independently, three sets of public detections are provided,
namely, DPM, Faster R-CNN, and SDP. MOT20 [22] is set for highly crowded
challenging scenes, with 8931 frames for training and 4479 frames for testing.
Metrics. We follow the standard evaluation protocols to evaluate our
method. The common essential metrics include Multi-Object Tracking Accu-
racy (MOTA), Identity F1 Scores (IDF1), Mostly Tracked (MT), Mostly Lost
(ML), False Positive (FP), False Negative (FN), and Identity Switches (IDSw).

4.2 Implementation Details

We follow up ResNet50 [18] CNN feature extraction and Transformer encoder-
decoder architecture presented in Deformable DETR [19]. For the data process-
ing, we follow the Trackformer [9], adopting several data augmentation methods
that are random flip and crop. Besides, we restricted the maximum size of the
input to 1380 and 800 for the shorter and longer side respectively. We follow
Trackformer [9] use the joint of the MOT dataset and CrowdHuman [23] person
detection dataset for training, we generate the adjacent training frames t-1 and
t by applying random spatial augmentation to a signal image.

For the training procedure, we follow the trackformer [9], the backbone and
encoder-decoder are trained with individual learning rates of 0.00001 and 0.0001,
respectively. All the experiments are conducted on PyTorch with a Tesla V100
GPU. For MOT17 public detections model training, we train it upon [19] pre-
trained 50 epochs on COCO [26] for a total of 40 epochs with a learning rate
drop by a factor of 10 after the first 10 epochs, which takes about 60 h. For
the private detections model training, we first train the model for 80 epochs on
the CrowdHuman dataset, and then fine-tuned it on MOT17 and MOT20 with
reduced learning rates for additional 30 epochs, and the whole training process
takes about 6 d on each datasets.
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4.3 Benchmark Results

MOT17. The MOT17 [21] benchmark is evaluated on a private and public detec-
tion setting. The latter allows for a comparison of tracking methods independent
of the underlying object detection performance. MOT17 provides three sets of
public detections with varying quality. We report the results of the evaluation
on public and private detections in Table 1.
MOT20. The MOT20 [22] benchmark is evaluated in a private detection setting.
MOT20 includes more crowded scenes, severe object occlusion and small objects
than MOT17, which brings more challenges for object detecting and tracking.
Thus, all methods show lower performance on MOT20 than MOT17. We report
the results of the evaluation on private detections in Table 2.

Table 1. Comparison of existing multi-object tracking methods evaluated on the
MOT17 test set. We report private as well as public detections results and separate
between online and offline approaches. We compare the private result with Transformer-
Based architecture methods. (Best results are shown in bold)

methods MOTA↑ IDF1 ↑ MT ↑ ML↓ FN ↓ FP ↓ IDSw ↓
private

Online Centertrack [25] 67.8 64.7 816 579 160332 18498 3039

TransTrack [8] 74.5 63.9 s / 112137 28323 3663

TransCenter [12] 73.2 62.2 / / 123738 23112 4614

Trackformer [9] 74.1 68.0 1113 246 108777 34602 2829

Ours 74.8 68.7 1047 265 101247 33564 2541

public

Offline JCC [27] 51.2 54.5 493 872 247822 25937 1082

FWT [28] 51.3 47.6 505 830 247921 24101 2648

TT [29] 54.9 63.1 575 897 233295 20235 1088

MPNTrack [30] 58.8 61.7 679 788 213594 17413 1185

Lif T [24] 60.5 65.6 637 791 206617 14966 1189

Online FAMNet [31] 52.0 48.7 450 787 253616 14138 3072

Tracktor++ [1] 56.3 55.1 498 831 235449 8866 1987

GSM [32] 56.4 57.8 523 813 230174 14379 1485

CenterTrack [25] 60.5 55.7 580 777 208577 11599 2540

TrackFormer [9] 62.5 60.7 702 632 174921 32828 3917

Ours 63.2 60.9 698 640 169511 21254 3001

4.4 Ablation Study

Model Components. Table 3 shows the impact of integrating different compo-
nents, we implement an ablation study on the MOT17 public detections. We did
separate experiments on our model using SFEM and SSA individually, as well as
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Table 2. Comparison of multi-object tracking methods evaluated on the MOT20.

methods MOTA↑ IDF1 ↑ MT ↑ ML↓ FN ↓ FP ↓ IDSw ↓
GSDT [33] 67.1 67.5 / / 135395 31507 3230

TransCenter [12] 58.3 46.8 / / 174893 35959 4947

TransTrack [8] 64.5 59.2 / / 151377 28566 3565

TrackFormer [9] 68.6 65.7 666 181 140375 20384 1532

Ours 69.3 66.8 651 189 130375 20684 1386

combining the two components to verify the effectiveness of the modules. Exper-
imental results show that paying more attention to features in salient regions
and associating contextual information with continuity can greatly improve the
performance, and also show that enhancing the correlation between tracking and
detected objects can handle the challenge of ID switch effectively in MOT.

Table 3. Ablation study on our proposed components of model

Baseline SFEM SSA MOTA↑ IDF1 ↑ IDSw ↓
� 62.3 58.6 4018

� � 62.8 59.4 3308

� � 62.9 59.8 3128

� � � 63.2 60.9 3001

Table 4. Ablation study on our proposed Salient regional Feature Enhancement Mod-
ule (SFEM) and Soft-Sparse Attention (SSA) in the decoder of transformer.

(a) Comparing Merging
Multiple dilated rates
Convolution(MMC) and
Adaptive Scaling dilated
Convolution(ASC) in SFEM

method MOTA↑ IDF1 ↑ IDSw ↓
× 62.3 58.6 4018

MMC 62.8 59.4 3308

ASC 62.9 59.8 3128

(b) Comparing different attentions
in the decoder of
transformer,including self-attention
in the baseline, traditional sparse
attention and soft-sparse attention.

method MOTA↑ IDF1 ↑ IDSw ↓
Self 62.3 58.6 4018

Sparse 62.9 59.7 3262

Soft-sparse 63.0 60.3 3102

Different Combinations of Dilated Convolution. Table 4a reports the abla-
tion study on the SFEM without soft-sparse attention, we compare using atten-
tion weights guided adaptive scaling dilated convolution(ASC) and merging mul-
tiple dilated rates convolution to the feature enhancement. We implement it on
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the MOT17 public detections, and the result shows that broadening the recep-
tive field of salient regions to enhance contextual feature continuity is better
than fusing multiple dilated convolution feature maps.
Different Attentions in Transformer. Table 4b reports the ablation study
on the attention in transformer without SFEM, we compare using self-attention,
traditional sparse-attention, and soft-sparse attention in the decoder. We imple-
ment it on the MOT17 public detections, and the result shows that our method
is able to reduce ID switches by strengthening the correlation between queries
and focusing on potentially important areas.

4.5 Case Study

To illustrate the algorithm performance in real-world scenarios visually, a case
study of a complex scene in the dataset is shown in Fig. 4. The left side of
the figure shows the undetected target and ID switches due to occlusion in the
baseline model. The left side of the figure shows that our method accurately
detects the occluded object and assigns identities after occlusion.

Fig. 4. Case study of baseline and our model. The same box color represents the same
identity. (baseline) expresses fail to detect object and ID switch (light blue and yellow
turn to blue and green) due to occlusion (b) express success to identify object occluded
and ID keeping (Color figure online)

5 Conclusion

In this paper, we propose a salient feature enhanced transformer-based MOT
method, it utilizes a feature enhancement module during feature extraction and
soft-sparse attention in the transformer during detection and tracking, which
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makes the metrics of MOTA, IDF1, and IDSw on datasets MOT17 and MOT20
significantly improvement than our baseline model. Extensive experiments show
that our methods can cope well with objects occluded, interfered by background
and some complex scenes. However there are some shortcomings in our model,
the query passing in our model is performed frame-by-frame, limiting the effi-
ciency of model learning during training, which is what we are aiming to improve.
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Abstract. The currently available multi-target tracking algorithms were devel-
oped based on ideal tracking settings, which are unsuitable for actual combat situ-
ations. To handle the challenge of unknown measurement noise and low detection
probability, this paper presents a novel adaptive gain estimation (AGE) approach
with a survival likelihood estimation method. The former utilizes the bidirectional
gate recurrent unit (BiGRU) to assign weights to bothmeasurement and prediction
in the absence of priori information. The latter leverages a binary classification
network to determine the likelihood of target survival. Furthermore, the AGE can
be seamlessly integrated with prediction and data association modules to form
an end-to-end model known as MTT-AGE (Multi-target Tracking with Adaptive
Gain Estimation). The results of MIT trajectory dataset, simulated scenarios and
real-world data confirm the efficiency and stability of theMTT-AGE. Furthermore,
the ablation experiments are conducted to verify the effectiveness of AGE based
on MIT trajectory dataset and simulated scenarios where there is only a single
objective.

Keywords: multi-target tracking · BiGRU · unknown target · survival likelihood
estimation · AGE

1 Introduction

In recent years, it has achieved better estimation effect and has developed a large num-
ber of novel methods in radar multi-target tracking (MTT) applications. The traditional
tracking algorithms are commonly based on data association, such as the global nearest
neighbor data association (GNN), the joint probabilistic data association (JPDA) [1],
and multiple hypothesis tracking (MHT) [2]. GNN based on Hungarian algorithm can
select a measurement using distance. However, it might not work when the cluster is the
closest measurement. The JPDA computes the association probability between targets
and measurements. The MHT has been established to evaluate the likelihood for the
radar tracking systems but it is heavily reliant on the priori information. Meanwhile,
these above methods are time consuming, especially when there are quite a bit of clutter
and a bunch of measurements. Mahler [3] presented some recast works in the Bayesian
filtering paradigm using random finite set (RFS), such as probability hypothesis den-
sity (PHD), cardinalized PHD (CPHD) [4], multi-target multi-Bernoulli (MeMBer). Vo

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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demonstrated Gaussian mixture PHD (GM-PHD) [5], which is based on Gaussian dis-
tributions. Then sequential Monte Carlo PHD (SMC-PHD) was proposed to process the
non-Gaussian distributions while it has high computational complexity. The labelled
multi-Bernoulli filter (LMB) and generalized LMB (GLMB) [6] can perform track to
track association without high signal to noise ratio (SNR). However, those introduced
methods are difficult to implement without a priori motion model. Since the measure-
ment is usually cluttered and time-varying, the complex movement will make them
inaccurate.

To handle the above problems, some algorithms based on deep learning were pro-
posed. Li [7] presented a multi-step track prediction based on long and short-term mem-
ory (LSTM), which uses the encoder and decoder architecture to implement a motion
model for trendless tracks. It only has the predicting process and lacks measurement
updating process. Mehryart used convolution and LSTM (CONVLSTM) [8] to establish
motion models, which defines probability density difference (PDD) maps. But it has
high computational complexity and does not implement an end-to-end network struc-
ture. Steffen Jung proposed memory Kalman filter (MKF) [9], which is mainly free
from the Markov model and overcomes the linearity limitation to predict state. It only
addresses the problems of motion models based on Kalman filter (KF). An end-to-end
network structure was presented in [10] that uses recurrent neural network and LSTM
(RNN-LSTM) to solve the problem of data association. However, it will fail when tar-
gets are undetected. After that, KalmanNet [11] utilizes the power of deep learning for
state estimation which focus only on gain estimation for single targets. All the above
algorithms mainly focus on implementing motion models and use KF in the update step.
Furthermore, they pay less attention to unknown targets or poor detection probability.

To model an end-to-end framework, this paper uses the LSTM [12] to obtain pre-
diction and deep Hungarian algorithm (DHN) [13] to realize data association process.
The MTT-AGE is introduced to deal with the problems of unknown measurement noise
and low detection probability. AGE analyzes the relationship between prediction and
measurement. Through it, the Kalman gain can be calculated without covariance and
measurement noise for unknown targets. The survival likelihood estimation uses the
characteristic of the whole track to determine whether a track exists or not. This method
can handle the problem of low detection probability and miss-detection. Tracks will be
remained when its measurements disappear temporarily.

This paper is organized as follows. Section 2 gives themotivation and the structure of
the MTT-AGE, respectively. The experimental results are presented in Sect. 3. Finally,
we draw some conclusions in Sect. 4.

2 The MTT-AGE Framework

TheMTT-AGE consists of four parts and its structure is shown in Fig. 1. It is undoubtedly
that the LSTM network predicts the state x̂ik of the i

th target at time step k, which is based
on the previous state xi0:k−1. At the following step, the state x̂

i
k will be amalgamated with

measurements zk . The data association module can assign the measurements zik to the x̂
i
k

at time step k, and the likelihoodmodule of survival estimation then comes next. Survival
likelihoods are attached to both the associated and unassociated tracks. If the likelihood
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is 1, the unassociated tracks will set prediction x̂ik as estimation and the associated
tracks may access the estimation xik from the AGE module. If this probability is 0, it
demonstrates that the tracks vanish. The unassociated measurements are considered as
new tracks. Details of the MTT-AGE are clarified as follow.

Fig. 1. The MTT-AGE framework.

2.1 Prediction Process

This module takes its main inspiration from by non-Markovian Chapman-Kolmogorov
[9] which employs the previous state xi0:k−1 from time step 0 to time step k − 1. To
leverage the information in the long-term tracking, it uses the state xi0:k−1 from time step

0 to time step k − 1 and obtains the current state x̂ik .

pik|k−1

(
x̂ik z̃

)
= ∫ fk|k−1

(
x̂ikx

i
k−1, x̃

)
pik−1|k−1

(
x̂ik z̃

)
dxik (1)

z̃ = zi0:k−1, x̃ = xi0:k−1 (2)

Here, z̃ denotes previous measurements from time step 0 to time step k − 1, and pik|k−1
denotes the posterior probability density. fk|k−1 is the non-linear transition function at
time k − 1 which depends on the encoding and decoding of the LSTM.

The module is established via mean square error (MSE) loss function,

MSEi =
∑n

k=1
(xik − x̂ik)

2/n (3)

2.2 Data Association

The task of this module is to categorize the corresponding measurement for each target.
The data association denotes optimal match and its classical algorithms are shown in
Sect. 1. In recent years, deep Hungarian algorithm (DHN) [13] is proposed to adds
appearance feature to matrix Dk and employs the evaluation indicators (MOTA and
MOTP). However, since the radar measurements only provide location information, the
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origin DHN network cannot be utilized directly. Thus, its distance matrix is replaced
with Mahalanobis distance.

Dk = d(x, z) =
√

(x − z)T�−1(x − z) (4)

Here, Dk denotes distance matrix. DHN uses BiRNN that can learn not only its forward
features but also learn its reverse features. Based on this principle, this module uses
BiLSTM to improve the performance of DHN in Fig. 2.

Fig. 2. Improved DHN algorithm. The flatten vectors ofDk in the row-wise and the column-wise
are inputted to two BiLSTM networks. FC layers reshape the outputs which can obtain assignment
matrix Ak .

2.3 Survival Likelihood Estimation

The purpose of this module is to ascertain whether targets disappear or not. Our method
draws inspiration from RNN-LSTM [10] which employs the RNN to estimate the initi-
ation and termination likelihood of targets. The RNN-LSTM needs a survival likelihood
threshold because the RNN makes poor judgements when the targets are absent. Hence,
this module is presented to enhance the performance of survival probability estimation
to deal with the problem of miss-detection issue depicted in Fig. 3. To train a binary
classification network, unassociated tracks and existence time are taken into account.
Additionally taken into consideration are the track’s features. The network employs the
binary cross-entropy (BCE) loss function shown below.

loss = −
n∑

i=1

εi log ε̂i +
(
1 − ε̂i

)
log(1 − εi) (5)

Here, εi and ε̂i denote the survival probability and true value, respectively.
As shown in Fig. 3, theweights,ωs,ωd ,ωh, are utilized to calculate the corresponding

probabilities. When the network output is 1, it means that the track still exists. When the
network output is 0, it means that the track disappears.

This module can reduce the impact of miss-detection because this module employs
the three factors to make estimation accurate. Meanwhile, it can also deal with the
situations that the target will be obscured or disrupted.
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Fig. 3. Survival likelihood estimation network.

2.4 AGE Estimation

This module is to correct the state distribution [14]. The related measurement can be
updated according to (6) and it can be represented below.

xk|k = x̂k|k−1 + Kk
(
zk − Hk x̂k|k−1

)
(6)

xk|k = (I − KkHk)x̂k|k−1 + Kkzk (7)

xik = I − Hi
kP

i
k|k−1(H

i
k)

T

Hi
kP

i
k|k−1(H

i
k)

T + Ri
k

)x̂ik + Hi
kP

i
k|k−1(H

i
k)

T

Hi
kP

i
k|k−1(H

i
k)

T + Ri
k

zik (8)

xik = ωi
xx̂

i
k + ωi

zz
i
k (9)

Here,Rk andKk denote noise covariance andKalman gain at time k, respectively.Pk|k−1
is the current covariance and Hk is the observation matrix.

The likelihood function can enhance the interpretability of the network which imple-
ments the calculation without priori information. This network combines x̂ik with corre-
sponding measurement to form xik= [x̂ik, zik ]T . Then the application of the BiGRU can
obtain the value ωi

x and ωi
z. As shown in Fig. 4, x

i
k is send to the BiGRU with the hidden

state hk−1 at time step k − 1.

xik = σ
(
W ′ · hk

)
(10)

Fig. 4. AGE network.

Here, σ(·) denotes the sigmoid function, W ′ is a matrix of parameters of the full
connected layer. Then, the current estimation xik can be obtained by (10).
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This module utilizes the loss function given in (11), which is derived in [11].

MSEi =
n∑

k=1

(xik − x̃ik)
2/n (11)

BiGRU’s bidirectional architecture enables it to generalize well to unseen or out-of-
domain data. By learning from both past and future information, the model can grasp
the underlying relationships that transcend specific datasets, allowing it to make reliable
predictions even on unfamiliar tracking.

3 Experiment

In this section, we conduct experiments on MIT Trajectory data1, simulated dataset
and Unmanned Aerial Vehicle (UAV) data. MIT Trajectory dataset consists of 40,453
tracks of vehicles and pedestrians from a parking lot scene. According to radar tracking
algorithm effect detection method, we also design a multi-target tracking simulation
experiment to verity the effectiveness of our algorithm. Additionally, we gathered UAV
data while utilizing our lab’s current configuration. For ablation studies, we utilize the
MIT Trajectory data and simulated experiments to exemplify the effectiveness of AGE.

We use the metrics optimal subpattern assignment (OSPA) [15], containing tracking
performancemetric, localication error cmponent and cardinality error component, where
c = 100 and p = 2. To prove the reliability of our innovative research, we compare
with KF-DHN, LSTM-KF-DHN, GLMB, GMPHD, RNN-LSTM and KalmanNET for
multi-target tracking. Meanwhile, we design different noise in our dataset and different
orignial frame in order to proof its robustness. Moreover, the ablation studies that we
utilize the mean squared error (MSE) in order to better validate the gap between the
estimated state and turth. The LSTM, GRU, BiLSTM and KF are employed to update a
single-target tracking to reveal the potency of our algorithm.

We implement our algorithm in python using TensorFlow toolbox, and test it on
computer with 12th Gen Intel(R) Core(TM) i5-12490F CPU @ 3.00 GHz and a single
NVIDIA GTX 2080Ti with 16G RAM. The implementation details are shown below.

3.1 Training

Since it is in a parking lot, the tracks has overlapping parts and certain route regulations.
However, the direction and speed of targets are irregular. To establish a predictor, this
module randomly selected 60% of those tracks as the training set. In this process, the
tracks were connected with each other and inputted to the LSTM network whose loss
function is (3). Due to the miss-detection, tracks were supplemented via [16], which
shows how to implement curve interpolation.

The training process of data association module is explained in [13] and hence omit-
ted here. The survival probability estimation module is a binary classification network
which inputs the whole tracks and the duration of measurement disappearcance. This
training process is implemented by (3).

1 Http://www.ee.cuhk.edu.hk/~xgwang/mittrajsinglemulti.html

http://www.ee.cuhk.edu.hk/~xgwang/mittrajsinglemulti.html
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Figure 8(a) shows the training set for the update module, where the blue points are
corresponding measurements zik with different noise standard deviations and the red

points are x̂ik obtained by the prediction module. The green points are the truth state x̂ik
of the tracks. Furthermore, the zik and x̂ik can obtain the current state xik by (11).

3.2 Tracking on MIT Trajectory Data

The tracking benefit of theMTT-AGE is demonstrated in this section. It displays a frame
of the tracking findings in Fig. 5(b). The blue dots correspond to measurements.

(a) (b)

Fig. 5. (a) training process, (b) frame 11732 tracking outcomes.

Additionally, we contrasted the experiments with standard deviations of measure-
ment distortion of 0.5 and 1, respectively. In the comparison algorithm, the association
algorithm implemented by the LSTM-KF and classic Kalman filters is the same as ours.
They must also establish a priori information based on the statistical traits in the tracking
situation, and the RFS based methods must do similarly. Thus, their measurement noise
is set in view of the aforementioned scenario, and the motion-related parameter of KF is

xk = Fkxk−1 + wk (12)

zk = Hkxk + vk (13)

Fk =

⎡
⎢⎢⎣

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ (14)

wk ∼ N
(
0,

[
σ 2
w 0
0 σ 2

w

])
(15)

Hk =
[
1 0 0 0
0 0 1 0

]
(16)

vk ∼ N
((

δv
)2

,
(
δv

)2) (17)
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Here, theσw and δv, whichσw = 0.5 and δv = 0.5, are standard deviation of process noise
wk and observation noise vk , correspondingly. For GMPHD and GLMB, target detection
and likelihood of survival are both 90%, while the state extraction weight threshold is
set at 0.5. On the basis of this guideline, the outcomes of OSPA_dist (OSPA distance),
OSPA_loc (OSPA localization), and OSPA_card (OSPA cardinality) are available from
frame 0 to 2000 and shown in Figs. 6 and 7.

Fig. 6. The results of OSPA with δv = 0.5.

Fig. 7. The results of OSPA with δv = 1.

The above illustration demonstrates how, for different levels of measurement noise,
our performance is on par with that of competing methods. Since OSPA_dist is created
by merging OSPA_loc and OSPA_card, the data alterations of these two are explored
separately hereunder. For OSPA_loc, our method almost resembles the RFS based meth-
ods and LSTM-KF due to a very modest estimation error from frame 0 to 250 where
there is a single target. The fact that it doesn’t require initialization means that the initial
fluctuations are very tiny. However, our cumulative error rapidly rises as the number of
targets rises and the target motion becomes progressively more complex, resulting in
fluctuations after frame 250. The positive aspect is that our tracking results are still supe-
rior to RNN-LSTM’s because of the added features of our tracking system. We restrict
the estimation between measurements and predictions in order to lessen the impact of
network accuracy. Additionally, our errors are within allowable bounds. For OSPA_card,
our algorithm andRNN-LSTMaremuch smoother than theRFS basedmethods, because
their assessments of survival likelihood alleviate impact of lost information due to miss-
ing frames. It also shows that the accuracy of the cardinality estimation is higher than
that of other methods, which is a clear indication that the survival estimation model is
good.
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To illustrate the robustness of our algorithm, we randomly select one moment as the
starting moments with δv = 0.5. The results are shown in Fig. 8.

Fig. 8. The result of OSPA from frame 10240 to 10640.

Overall, MTT-AGE can achieve robust multi-target tracking in the case of unknown
targets. Although our method fluctuates significantly at times, the LSTM-KF fluctuates
as well, and preliminary analysis of these data leads to the conclusion that the general
fluctuation is caused by the prediction error. The future work will concentrate on refining
the prediction component.

3.3 Tracking on Simulated Scenarios

In order to ensure the reliability of MTT-AGE, this section examines that by simu-
lated single-target and multi-target tracking experiments. For comparison, Monte Carlo
was performed 100 times for each group of experiments. For the single-target experi-
ments, the initial state of this target is [50, 50, 0, 0]T , shown in Fig. 9(a). For the multi-
target experiments, the initial states of three targets are [50, 50, 0, 0]T [50, 50, 0, 0]T ,
[10,−10, 5,−5]T and [−20,−50, 0, 0]T , shown in Fig. 10(b). Their model is all shown
in (12) and their parameters are shown in (14) and (15). Observation of a sensor is (13)
and its parameters are shown from (16) to (17). The probability of targets detection is
98%.

(a) (b)

Fig. 9. (a) Simulated single-target trajectory, and (b) multi-target trajectories with δv = 0.5.
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(a) (b)

Fig. 10. (a) the results of OSPA of single-target dataset, and (b) multi-target dataset.

In Fig. 13, it reveals that the our method is reliable to multi-target tracking and can
obtain accurate state estimates in the presence of known measurement noise.

3.4 Tracking on Real Dataset

With the already-developed radar terminal software in our laboratory, radarmeasurement
data is gathered by following the detection of a UAV. The operator selects the options for
controlling the radar in the terminal software, and sets the radar’s working mode, hori-
zontal pitch angle, rotation rate, data processing, and other relevant parameters to output
target positioning. The terminal software interface shows real-time status feedback data
for the radar’s servo, signal processing, received channels, electronic compass, and GPS
during the radar detection process, shown in Fig. 11.

(a) (b)

Fig. 11. (a) the radar terminal software, and (b) the trajectory of a UAV.

The terminal software will receive the point cloud data from the radar. Then, it
will go through pre-processing, point cloud coalescence, track association, and filter
processing. Furthermore, it will display the target’s distance, speed, bearing, and other
information in real time on the software interface. Our intention is to more efficiently
handle track association and filtering. The following provides an illustration of how well
our algorithm performs in real-world settings while tracking UAVs.
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In Fig. 11, it displays the UAV’s flight route over specific area in Xi’an along with
the outcomes of our radar detection in the polar coordinates. Based on the radar’s rated
error, it is determined that the±0.5 m basis of the path’s radius and of the servo azimuth
and elevation angles are comparable on an ±0.3◦ basis.

The flight altitude of the UAV is about 100 m. The results are shown below.

Fig. 12. The result of OSPA of UAVs.

In Fig. 12, it demonstrates the applicability of our technique to UAV tracking,
particularly with uncertain radar detection noise.

In conclusion, it can be concluded that that our method is better suited to the case
of unknown targets than other algorithms. Especially, KF and the RFS based methods
need the priori information to establish the motion model and need covariance to obtain
the Kalman gain which the LSTM-KF and KalmanNET also require.

3.5 The Verity of AGE Module

To ensure the reliability of gain estimation, this section examines AGE module sepa-
rately with MIT Trajectory data from frame 0 to 100 and simulated experiments whose
parameters are the same as the trajectory in Fig. 9(a) except for track time. In this section,
we only consider the single-target tracking with the KF prediction module.

From the MSE results in Fig. 13(a), it can be seen that the AGE and KF have similar
errors. Additionly, the LSTM, GRU and BiLSTM are pronounced variations due to
an incorrect decision they made on the allocation of gains at the beginning. To lessen
this impact, we intentionally raise the weight ωi

z of measurement when training AGE.
However, this causes an enormous error in AGE at certain moments, such as frame 10.

To proof the importance of known noisemeasurment, we design the following exper-
iments. For simulated experiments, we adjust the priori measurement noise’s standard
deviation of KF to figure out its significance.

As seen in Fig. 13(b) and (c), KF will have a significant inaccuracy at beginning and
require convergence time. Additionally, the convergence rate slows down as the δv gets
greater. Therefore, KF must firstly estimate the measurement noise with α − β filtering
[17] while tracking an unknown target. Although AGE also fluctuates with KF, it is
mainly caused by the KF prediction, which indicates that AGE is a novelty method to
solve this type of problem.
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(a) (b) (c)

Fig. 13. (a) MSE of simulated trajectory with δv = 0.5, (b) The KF with δv = 10, (c) The KF
with δv = 20.

4 Conclusion

This paper presents an adaptive gain estimation method. It is an attempt to replace the
computation of Kalman gain with a deep network structure and will find out the new
relationship between prediction and measurement. Furthermore, this paper designs the
survival likelihood estimation for the problem of low detection probability. The AGE
also employs LSTM to obtain the trendless motion states by previous state information
and it establishes an end-to-end tracking method for radar multi-target tracking.

The work in this paper centers on the application of AGE, but the accuracy of
target tracking is also affected by prediction and association. The future work will focus
on using spatio-temporal features [18] and attention mechanisms [19] to improve the
accuracy of prediction. And we will enhance the association module by constructing
a more sophisticated structure in order to adapt it to the high-clutter environment. In
addition, the accuracy of estimating the state and survival likelihood of AGE can also
be improved by adding attention mechanisms.
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Abstract. In the real world, training data for person re-identification
(ReID) comes in streams and the domain distribution may be incon-
sistent, which requires the model to incrementally learn new knowledge
without forgetting the old knowledge. The problem is known as lifelong
person re-identification (LReID). Previous work has focused more on
the acquisition of task-irrelevant knowledge and neglected the auxiliary
role of task-relevant information in alleviating catastrophic forgetting. To
alleviating forgetting and improving the generalization ability, we intro-
duced the prompt to learn task-relevant information, which can guide
the model to perform task conditionally. We also proposed a special dis-
tillation module for the specific vision transformer structure, which fur-
ther mitigated catastrophic forgetting. Extensive experiments on twelve
person re-identification datasets outperforms other state-of-the-art com-
petitors by a margin of 4.7% average mAP in anti-forgetting evaluation
and 7.1% average mAP in generalising evaluation.

Keywords: Person re-identification · Lifelong learning · Knowledge
distillation · Prompt

1 Introduction

The purpose of Person Re-Identification (Re-ID) is to retrieve the same pedes-
trian across disjoint camera views. With the development of deep learning in
recent years, it has made great progress on multiple large-scale datasets. How-
ever, most methods assume that the training data can be accessed all at once
or distributed uniformly, which is inconsistent with the realistic scenario. Its
training process is mostly limited by fixed datasets, so it has poor generalization
performance in real-world streaming data. Lifelong Person Re-ID is proposed to
solve the problem of continuous input data stream, which requires the model to
learn new knowledge while avoiding catastrophic forgetting of old knowledge.

Catastrophic forgetting is the biggest challenge of lifelong learning, and life-
long Person Re-ID is no exception. Since the deep learning model is highly
dependent on parameters, the update of the model on the new datasets will lead

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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to performance degradation on the old ones. Due to storage limitations and pri-
vacy protection, maintaining all data for retraining is not feasible. Most current
methods use knowledge distillation and sample playback to mitigate catastrophic
forgetting, which can effectively promote the learning of task-irrelevant knowl-
edge, but ignore the guiding role of task-relevant information.

Extracting robust features is a crucial component of ReID, which has been
dominated by CNN-based methods for a long time. These methods suffer from
some conspicuous disadvantages, most importantly, CNN-based methods mainly
focus on small discriminative regions due to a Gaussian distribution of effective
receptive fields [5]. Recently, Vision Transformer (ViT) [6] and Data-efficient
image Transformers (DeiT) [7] have shown that pure transformers can be as
effective as CNN-based methods on feature extraction for image recognition.
With the introduction of multi-head attention modules and the removal of con-
volution and downsampling operators, transformer-based models are suitable to
solve the aforementioned problems in CNN-based ReID for the following reasons.
Firstly, compared with CNN models, The multi-head self-attention captures long
range dependencies and drives the model to attend diverse human-body parts.
Secondly, without downsampling operators, transformer can keep more detailed
information.

To this end, we propose a new lifelong person ReID method called PLReID.
The main contributions of our work are summarized as follows:

1. We propose PLReID, a novel continual learning framework based on prompts
for lifelong person Re-ID, providing a new method to tackle lifelong person Re-
ID challenges through learning a prompt pool memory space, which provide
specific guidance for different tasks.

2. We find that vision transformer has a natural advantage over CNN in the
continual learning setting. We designed a distillation module for its unique
structure, and subsequent experiments proved that it can effectively alleviate
catastrophic forgetting.

3. Extensive experiments validate the proposed framework significantly outper-
formed the state-of-the-art methods, and it has quite good anti-forgetting
ability and generalization ability.

2 Related Work

2.1 Person ReID

Person ReID has made remarkable progress in a variety of Settings. The fully
supervised approach aims to learn robust feature representations from labelled
data [1,12]. This method is suitable for data with stable distribution and requires
multiple observations of the entire dataset. Later approaches study unsupervised
domain adaptive [35,36] and sought unlabeled images to guide the learning pro-
cess. Domain generalization (DG) is an open-set problem. Lately, DG ReID task
is explored by [16]. However, these approaches assume that the data will be
acquired at once and thus fail to address the challenge of lifelong learning.
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Lifelong Person ReID has been proposed by AKA [15] to tackle the chal-
lenge of long-term visual search. This paradigm continuously consolidates knowl-
edge from distribution-changing data in an incremental manner, which matches
the real-world application. AKA constructs learnable knowledge graphs which
adaptively accumulate knowledge. GwFReID [14] considers multiple consis-
tency losses to constrain the training process. PKD [33] uses adaptively-chosen
patches to pilot the forgetting-resistant distillation. However, The current meth-
ods ignore the guiding role of domain information in learning different tasks. We
introduce prompt learning to learn domain knowledge, so as to provide guidance
for learning different tasks, which is helpful to further alleviate catastrophic
forgetting and improve generalization ability.

2.2 Lifelong Learning

Lifelong learning aims to adapt models to new tasks using knowledge learned in
the past while maintaining stable performance in the old tasks. Current methods
can be divided into three categories: rehearsal-based methods [5,6], architecture-
based methods [4] and regularization-based methods [2,3].

Rehearsal-based methods alleviate catastrophic forgetting by recalling on
stored data of previous tasks [17,18]. However, this approach is costly and has
a large demand on storage space. Architecture-based methods aim at having
separate components for each task. They usually attend to task-specific sub-
networks. However, most of these methods require task identity to condition
the network at test-time, are not applicable to more realistic class-incremental
and task-agnostic settings when task identity is unknown. Regularization-based
methods add regularization terms to limit large changes of model parameters,
which has been shown to be one of the most effective ways to mitigate catas-
trophic forgetting. In our method, we designed a special distillation module for
the specific vision transformer structure to alleviate forgetting.

2.3 Knowledge Distillation

The goal of Knowledge distillation is to transfer knowledge from a large teacher
model to a small student model. It has been widely used to compress large-scale
pre-training deep learning models. Knowledge distillation can be summarized
into three categories: logit distillation [21,22], feature distillation [13] and rela-
tion distillation [10,19] which matches the final predictions, intermediate repre-
sentations and inter-sample relations, respectively.

Compared with traditional image-level distillation, Kim et al. [20] proposed
patch-level distillation, which is beneficial to learning fine-grained information.
Sun et al. [33] use a differentiable patch sampler to select patches, which achieve
more efficient patch-based knowledge distillation. Aiming at the special structure
of vision transformer, we designed a distillation module combining logit and
feature, which is helpful for learning more robust feature representation.
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2.4 Prompt Learning

Prompt learning was originally developed for NLP to add additional text to the
input to make better use of the knowledge of the pre-trained model. The general
idea of prompting is to learn a function to modify or assist the input texts or
images, such that the language or image model obtains additional information
about the task.

A number of prompt methods have been proposed recently [8,9], including
image-end prompts, language-end prompts and joint language-image prompts.
Wang et al. [7] proposed a paradigm to learn prompts independently across
domains with pre-trained, which can be applied to typical continual learning
scenarios. L2P [11] exploits dependent prompting methods for continual learn-
ing, which learns to dynamically prompt a pre-trained model to learn tasks
sequentially under different task transitions. However, in the training process of
these methods, only prompt is learned and the parameters of the pre-training
model are frozen, so it is extremely dependent on the generalization ability of the
pre-training model and can not be well adapted to various downstream tasks.
In our method, prompt was trained to learn task-relevant information and to
instruct the model to perform task conditionally. This can effectively improve
the representation of the model and significantly alleviate forgetting.

3 Method

3.1 Problem Definition and Formulation

In terms of LReID, we need to learn S domains in an incremental fashion.
Suppose we have a stream of datasets D = {D1, . . . , DS}. Each dataset Ds

consists of training images Ds
tr and test images Ds

te, where Ds
tr = {(xi, yi)}Ns

i=1

and Ns represents the number of images in dataset Ds
tr. According to the setting

of person ReID, the classes of training and testing data are disjoint, namely
Y s
tr ∩ Y s

te = ∅.
At the s-th training step, only Ds

tr is available, which means the data from
previous domains can not be available any more. In the test phase, the model
is evaluated for anti-forgetting ability on the test split of all seen datasets and
generalization ability on unseen datasets.

3.2 Baseline Approach

We use the graph-based model proposed by AKA [15] as our baseline solution
and its backbone has been replaced with vision transformer (ViT). The base-
line model consists of three parts, namely, a ViT feature extractor h(·; θ) with
parameters θ, a classifier f(·;φ) with parameters φ, and a graph-based constraint
module g(·;ϕ) with parameters ϕ. Given an input x, it will be fed into feature
extractors h and classifiers f to get confidence scores f(h(x; θ);φ). And the
parameters θ and φ is optimized by a cross-entropy loss,

Lc = −
∑

(x,y)∈D

ylog (σ(f (h(x; θ);φ))) (1)
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The graph-based constraint module g(·;ϕ) uses a stability loss Ls and a plasticity
loss Lp to constrain the feature extractor h to generate more robust features. A
detailed description can be found in AKA [15]. The total loss function of baseline
method is:

Lbase = Lc + λsLs + λpLp (2)

where λs and λp is a trade-off factor.

3.3 Distillation for Vision Transformer

We use ViT as a feature extractor. Considering its special structure, we design
a module combining logit distillation and feature distillation to mitigate catas-
trophic forgetting. The overall architecture of distillation module can be seen in
Fig. 1.

Fig. 1. Overall architecture of our proposed distillation module. The dotted line shows
the calculation of the loss function. fe donates embedding layers. T

(t−1)
cls and T

(t−1)
pos

donate class token and position embedding generated by model trained in (t − 1)-th
step.

Logit Distillation. We use logit distillation to prevent large changes in the
output logit of the current model and the previous model, which will mitigate
catastrophic forgetting. The loss function can be described as:

Ldl = −
∑

x∈D

n∑

j=1

σ
(
f

(
h

(
x; θ(t−1)

)
;φ(t−1)

))

j
log

(
σ

(
f

(
h

(
x; θ(t)

)
;φ(t)

))

j

)

(3)
where θ(t−1) and φ(t−1) are parameters of the previous step and are frozen in
the current step, n is the number of old classes.
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Feature Distillation. In vision transformer, class token aggregates the global
features, and the position embedding encodes the location information of each
token. We found that distilling the class tokens Tcls and position embedding Tpos

generated by the old and new models further mitigated forgetting. We use mean
square error loss to achieve optimization:

Ldf =
1
D

D∑

i

((
T

(t)
cls − T

(t−1)
cls

)2

+
(
T (t)
pos − T (t−1)

pos

)2
)

(4)

where T
(t−1)
cls and T

(t−1)
pos are embedding generated by the previous model, D is

the flattened dimension of class token and position embedding.
The total distillation loss function is:

Ld = Ldl + λdLdf (5)

where λd is a trade-off factor. And the overall loss function is:

Ltol = Lbase + λLd (6)

3.4 Prompt Learning

Why Prompt. In setting of LReID, the data is continuously increasing from dif-
ferent domains, and the task identity is unknown at the test time. Previous work
has focused more on the acquisition of task-irrelevant knowledge and neglected
the auxiliary role of task-relevant information in alleviating catastrophic forget-
ting. L2P [11] demonstrated the effectiveness of prompt in continual learning
tasks, and inspired by which, we introduce prompt into LReID.

During the training phase, we hope prompt learn task-relevant knowledge,
and during the testing phase, the task-relevant prompt guides the model to
perform the corresponding task. This will promote the enhancement of both
anti-forgetting ability and generalization ability.

Structure Design. We represent the vision transformer (ViT) f = fr ◦ fe,
where fe is the input embedding layers and fr represents a stack of self-attention
layers [11,38]. Given an input of 2D image x ∈ RH×W×C , we reshape it to a
sequence of flattened 2D patches xp ∈ RL×D, where L and D is the token length
and embedding dimension. The embedding layer fe projects the patched images
to embedding features xe = fe(x) ∈ RL×D. Prompt is essentially learnable
parameters Pe, which we prepend to the embedding feature xp = [Pe;xe]. The
extended sequences were fed to the self-attention layers for performing down-
stream tasks. The structure is shown in Fig. 1.

Prompt Pool and Selection Strategy. Given that task ids are unknowable
during the testing phase, we maintain a prompt pool to share knowledge between
similar tasks. The prompt pool is defined as P = {P1, . . . , PN}, where Pi ∈ RD
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is a single prompt with the same embedding size D as xe and N is the total
number of prompts. During the training phase, a fixed number (set T ) of prompt
groups are learned for each task and added to the prompt pool.

During the testing phase, we need to select the prompts that best matches
the current task to provide task information. Details are shown in Fig. 2. We
assume that class token will carry task-relevant information, so we determine
which prompts will be selected based on their similarity to the class token.
Denoting {si}Ti as a subset of T indices from [1, N ], the input embedding can
be described as xp = [Ps1 ; . . . ;PsT ;xe], where ; represents concatenation along
the token length dimension.

An end-to-end approach is used to train the prompt, which is optimized with
the same total loss function constraints as the embedding features.

Fig. 2. Illustration of prompt module. We refer to the practice of L2P [10], selecting
a group of prompts according to the selection strategy in Sect. 3.4 and prepend them
to the input tokens. In the training phase, we use randomly initialized prompts for
training, which are indirectly constrained by the total loss.

4 Experiments

4.1 Datasets and Evaluation Metrics

Dataset. We conduct extensive experiments on the LReID benchmark [15]. It
consists of five seen datasets (Market-1501 [39], CUHK-SYSU [40], DukeMTMC-
reID [41], MSMT17 V2 [42] and CUHK03 [37]) for anti-forgetting evaluation and
seven unseen datasets (VIPeR [23], PRID [24], GRID [25], iLIDS [26], CUHK01
[27], CUHK02 [28] and SenseReID [29]) for generalization evaluation. In order to
compare performance under equal conditions, we followed AKA [15] in dataset
processing and experimental setting. To tackle the problem of unbalanced class
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Table 1. Dataset statistics of the LReID benchmark [15]. ‘–’ denotes that the dataset
is only used for test.

Type Dataset Scale #train IDs #test IDs

Seen Market-1501 [39] large 500/751 750

CUHK-SYSU [40] mid 500/942 2900

DukeMTMC-reID [41] large 500/702 1110

MSMT17 V2 [42] large 500/1041 3060

CUHK03 [37] mid 500/700 700

Unseen VIPeR [23] small – 316

PRID [24] small – 649

GRID [25] small – 126

i-LIDS [26] small – 60

CUHK01 [27] small – 486

CUHK02 [28] mid – 239

SenseReID [29] mid – 1718

number among datasets, 500 identities were randomly sample from each seen
dataset for training. In the test phase, 3,594 different identities from seven unseen
datasets were merged as a unified test set to evaluate the generalization ability
on unseen domain. More detailed statistics for these datasets are provided in
Table 1.

In order to simulate the real scenario and easily compare the experimen-
tal performance with previous work, we used the experimental setup of PKD
[33]. There are two training orders, the training order-1 represents Market-1501
→ CUHK-SYSU → DukeMTMC-reID → MSMT17 V2 → CUHK03, and the
training order-2 represents DukeMTMC-reID → MSMT17 V2 → Market-1501
→ CUHK-SYSU → CUHK03.

Evaluation Metrics. We use mean Average Precision (mAP) and Rank-1
accuracy (R1) to evaluate the performance on each ReID dataset. Moreover,
we calculate the average of several experiments to evaluate the corresponding
performance.

4.2 Implementation Details

We utilize ViT pretrained on ImageNet [34] as the feature extractor. In each
training batch, we follow [15] to select 32 identities and sample 4 images for
each identity randomly. All images are resized to 256 × 128. Adam optimizer
with learning rate 3.5 × 10−4 is used. The model is trained for 50 epochs, and
decrease the learning rate by ×0.1 at the 25th and 35th epoch. The retrieval
of testing data is based on Euclidean distance of feature embeddings. For all
experiments, we repeat three times and report mean performance. The whole
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architecture is implemented with PyTorch and trained on single NVIDIA A100
GPU.

Table 2. Comparison with the state-of-the-art methods on the LReID benchmark [15].
‘*’ represents the results reported in [33].

(a) Training order-1.

Method Market SYSU Duke MSMT17 CUHK03 Seen-Avg Unseen-Avg

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

Finetune 32.7 58.3 58.0 60.6 25.2 43.8 4.5 13.1 41.3 43.4 32.3 43.9 38.4 34.4

SPD [30] 35.6 61.2 61.7 64.0 27.5 47.1 5.2 15.5 42.2 44.3 34.4 46.4 40.4 36.6

LwF [31] 56.3 77.1 72.9 75.1 29.6 46.5 6.0 16.6 36.1 37.5 40.2 50.6 47.2 42.6

CRL [32] 58.0 78.2 72.5 75.1 28.3 45.2 6.0 15.8 37.4 39.8 40.5 50.8 47.8 43.5

AKA [15] 51.2 72.0 47.5 45.1 18.7 33.1 16.4 37.6 27.7 27.6 32.3 43.1 44.3 40.4

AKA [15]* 58.1 77.4 72.5 74.8 28.7 45.2 6.1 16.2 38.7 40.4 40.8 50.8 47.6 42.6

PKD [33] 68.5 85.7 75.6 78.6 33.8 50.4 6.5 17.0 34.1 36.8 43.7 53.7 49.1 45.4

Baseline 66.9 85.4 81.5 82.1 41.7 60.8 15.3 38.2 24.4 23.9 46.0 58.1 54.8 45.7

Ours 69.1 87.1 82.3 83.9 44.0 63.6 17.5 40.6 29.1 29.6 48.4 61.0 56.2 48.4

SingleTrain 76.5 90.4 82.3 84.3 69.2 83.5 37.8 62.6 50.5 52.9 63.3 74.7 – –

(b) Training order-2.

Method Duke MSMT17 Market SYSU CUHK03 Seen-Avg Unseen-Avg

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

Finetune 26.1 45.7 3.3 10.3 29.1 54.1 57.2 60.0 40.3 40.9 31.2 42.2 36.1 32.0

SPD [30] 28.5 48.5 3.7 11.5 32.3 57.4 62.1 65.0 43.0 45.2 33.9 45.5 39.8 36.3

LwF [31] 42.7 61.7 5.1 14.3 34.4 58.6 69.9 73.0 34.1 34.1 37.2 48.4 44.0 40.1

CRL [32] 43.5 63.1 4.8 13.7 35.0 59.8 70.0 72.8 34.5 36.8 37.6 49.2 45.3 41.4

AKA [15]* 42.2 60.1 5.4 15.1 37.2 59.8 71.2 73.9 36.9 37.9 38.6 49.4 46.0 41.7

PKD [33] 58.3 74.1 6.4 17.4 43.2 67.4 74.5 76.9 33.7 34.8 43.2 54.1 48.6 44.1

Baseline 58.7 76.3 16.4 38.2 43.8 67.5 78.7 81.4 22.1 22.9 43.9 57.3 53.2 44.8

Ours 61.4 78.2 17.1 39.5 45.7 69.7 80.7 82.9 26.7 27.1 46.3 59.5 56.1 48.6

SingleTrain 69.2 83.5 37.8 63.6 76.5 90.4 82.3 84.3 50.5 52.9 63.3 74.7 – –

4.3 Performance Evaluation

we compare our method to six lifelong learning methods that do not rely on
exemplar memory: Finetune, SPD [30], LwF [31], CRL [32], AKA [15] and PKD
[33]. Finetune donates fine-tuning model on new datasets without knowledge
distillation. SPD is an advanced feature distillation method while LwF, CRL
and AKA uses logit distillation. PKD proposed a novel patch-level distillation
method. For convenience, we used off-the-shelf results of Finetune, SPD, LwF,
and CRL, which were reported by PKD. The final result of each method on the
LReID benchmark is shown in Table 2. We also report the upper-bound for each
setting estimated by SingleTrain, where we trained each dataset individually
with our method. Figure 4 is a visualization of prompt embedding during the
training phase and selected prompts during the testing phase, indicating that
the prompts did learn task-relevant information and instructed the model to
perform task conditionally during the testing phase.
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Anti-forgetting Performance on Seen Datasets. As shown in Table 2, we
improve the average mAP of sort-of-the-art method PKD by 4.7% and 5.4%
under training order-1 and order-2 on seen datasets, respectively. And the per-
formance improvement on average R1 is also significant. We achieved optimal
performance on all seen datasets except CUHK03. Unlike other related methods,
we use SingleTrain methods to get upper-bound performance, which better mea-
sures the performance degradation caused by incremental learning. Table 2 shows
that most datasets have small performance gaps, suggesting that our approach
effectively mitigated catastrophic forgetting. Figure 3(a) illustrates the mAP and
R1 curves on the first seen dataset after each training step. We can observe that
our method is more stable and achieves the overall best performance.

Generalization Ability on Unseen Datasets. We improve the average mAP
of sort-of-the-art method PKD by 7.1% and 7.5% under training order-1 and
order-2 on unseen datasets, respectively. Figure 3(b) depicts the trend of average
mAP and R1 on all unseen datasets during training process. It can be seen that
performance is significantly better than that of alternative methods. This shows
that our method has more outstanding generalization ability.

(a) Evolution of anti-forgetting performance on the first seen dataset during training process.

(b) Evolution of generalization ability on unseen datasets during training process.

Fig. 3. Evaluation of performance during training process. The training order of the
two figures on the left is order-1, and that of the two figures on the right is order-2.
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Fig. 4. Visualization for prompt. (a) shows t-SNE for prompt embedding, which comes
from the final prompt pool after the training phase. The red, blue, yellow, green and
black dots represent the trained prompts obtained from the corresponding datasets in
training order-1, respectively. (b) shows the selected prompts for seen dataset Market
during the testing phase. (c) shows the selected prompts for unseen dataset CUHK01
during the testing phase. (Color figure online)

4.4 Ablation Studies

In this section, we conducted experiments under training order-1 to verify the
effectiveness distillation module and prompt strategy. In Table 3, “Baseline”
setting is our baseline in Sect. 3.2. “Baseline + Ldl” denotes logit distillation
is added to baseline model, and the “Baseline + Ldl + Ldf” setting indicates
we use entire distillation module. The “Baseline + Ld + prompt” setting is our
full method. As shown in Table 3, both logit distillation and feature distillation
contribute to performance. Prompt has a significant boost effect on seen datasets,
but may be counterproductive on unseen datasets. This is because due to the
limitation of the number of tasks during the training phase, the accumulated
prompts in prompt pool cannot cover the entire task space.

We also studied influence of hyperparameters. For distillation module, we set
the loss weights λd to 2.5 and λd to 1, the settings of λp and λs are the same
as those of AKA. We compared the effect of the number of prompts selected for
each task T on the performance, and found that T = 5 is a relatively good value.

Table 3. Effectiveness of each module.

Setting Seen-Avg Unseen-Avg

mAP R1 mAP R1

Baseline 46.0 58.1 54.8 45.7

Baseline+Ldl 46.8 58.7 55.6 46.9

Baseline+Ldl+Ldf 47.2 59.3 56.4 48.1

Baseline+Ld+prompt(Full) 48.4 61.0 56.2 48.4
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4.5 Discussion

Compared to recent works, our advantage is obvious, that is, we take into account
the prompt role of task-relevant information, which has a significant effect on
performance. However, the limitation is that distillation alone does not guarantee
that the old knowledge can be updated effectively. Constructing pseudo feature
maps by mapping is a good option, which will be considered in future work.

5 Conclusion

In this paper, we study lifelong person ReID problem, which is significant for
real-world application but remains under-explored. Catastrophic forgetting is
one of the most difficult challenges in LReID. We proposed prompt based method
(PLReID) to solve this problem, which consists of a prompt module and a
ViT based distillation module. Specifically, the prompt is trained to learn task-
irrelevant information during the training phase, while during the testing phase,
it was used to instruct the model to perform task conditionally. The distilla-
tion module is designed according to the special structure of the ViT, which has
been shown to further alleviate forgetting. Extensive experiments on the LReID
benchmark demonstrate that our method outperforms state-of-the-art methods
in both anti-forgetting and generalization evaluations.
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Abstract. Small object detection has been a persistently practical and
challenging task in the field of computer vision. Advanced detectors often
utilize a feature pyramid network (FPN) to fuse the features generated
from various receptive fields, which improve the detection ability of multi-
scale objects, especially for small objects. However, existing FPNs typi-
cally employ a naive addition-based fusion strategy, which neglects cru-
cial details that may exist only at specific levels. These details are vital
for accurately detecting small objects. In this paper, we propose a novel
Hierarchical Focused Feature Pyramid Network (HFFPN) to enhance
these details while ensuring the detection performance for objects of
other scales. HFFPN consists of two key components: Hierarchical Fea-
ture Subtraction Module (HFSM) and Feature Fusion Guidance Atten-
tion (FFGA). HFSM is first designed to selectively amplify the infor-
mation important to small object detection. FFGA is devised to focus
on effective features by utilizing global information and mining small
objects’ information from high-level features. Combining these two mod-
ules contributes greatly to the original FPN. In particular, the proposed
HFFPN can be incorporated into most mainstream detectors, such as
Faster RCNN, Retinanet, FCOS, etc. Extensive experiments on small
object datasets demonstrate that HFFPN achieves consistent and sig-
nificant improvements over the baseline algorithm while surpassing the
state-of-the-art methods.

Keywords: Small object detection · Feature pyramid network ·
Self-attention

1 Introduction

Object detection is a widely studied task that aims to locate and classify the
objects of interest. In recent years, object detection has achieved remarkable
progress due to the powerful ability of Convolutional Neural Networks (CNNs)
and the availability of an enormous amount of data [4]. However, as an important
branch of object detection, small object detection has always been a bottleneck
for detector performance. Small objects, typically refer to objects with a pixel
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size of less than 1024 (32× 32) [18], have very important research significance in
practical scenarios such as remote sensing detection [1,14], disaster rescue [22,
38], and intelligent transportation system [20,31]. Unfortunately, the features
of small objects are extremely limited, making them susceptible to background
and noise interference. Moreover, these weak features are likely to be lost during
the feature extraction and downsampling process, leading to a noticeable drop
in detection performance when dealing with small objects. For example, Faster
R-CNN [24] achieves an mAP of 41.0% and 48.1% for medium and large objects
on the COCO dataset [18], respectively, but the result for small objects drops
significantly to only 21.2%. Therefore, as a task with both theoretical significance
and practical demand, how to effectively enhance the detection performance on
small objects is an urgent and important problem to be solved.

Feature fusion
Comprehensive fusion
Feature subtraction
Hierarchical strategy
Attention mechanism

Feature fusion
Comprehensive fusion
Feature subtraction
Hierarchical strategy
Attention mechanism

Feature fusion
Comprehensive fusion
Feature subtraction
Hierarchical strategy
Attention mechanism

(a) FPN (b) Expanded FPNs (c) HFFPN (Ours)

Down-sample

Up-sample

1 1 conv

3 3 conv

Concat

Attention weighting

Element-wise addition

Element-wise substraction

Image ImageImage

Attention

Attention

Attention

Fig. 1. Pictorial demonstrations of existing feature pyramid networks.

In order to detect objects of various sizes, advanced detectors often adopt
a divide-and-conquer approach that utilizes larger receptive fields to detect
large objects and smaller ones to detect small objects. This principle is usually
reflected in the Feature Pyramid Network (FPN) [16]. As shown in Fig. 1, many
studies have noticed the importance of FPN and attempted to fuse low-level and
high-level features in a more effective manner to obtain better detection results.
Consequently, many FPN variants have been devised to achieve more comprehen-
sive feature fusion [7,19,27]. We collectively refer to them as the Expanded FPNs.
However, the fusion strategies of expanded FPNs are generally accomplished by
the element-wise addition operation, and the only difference between them is
the level of the fused features. In contrast, to extract detailed features that are
conducive to small object detection, the element-wise subtraction between the
corresponding levels may better obtain edge information [28]. It should be noted
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that in the high-level feature layers, the information of small objects is almost
submerged in the frequent downsampling process, and subtracting such features
cannot extract small object features. Instead, it may lead to the loss of main
body features. Therefore, a hierarchical feature fusion strategy is necessary. On
the other hand, we notice that the fused features have information of different
scales. Using global information can help to guide the refinement of each level
of features, thus improving detection performance [15].

Based on the above observations, we propose a novel approach called Hierar-
chical Focused Feature Pyramid Network (HFFPN). HFFPN mainly consists of
two parts: Hierarchical Feature Subtraction Module (HFSM) and Feature Fusion
Guidance Attention (FFGA). HFSM leverages the feature subtraction operation
to obtain the edge information of objects. To avoid erasure effects on main body
information caused by subtraction operations at higher semantic levels, HFSM
adopts a hierarchical subtraction strategy. Besides, the proposed FFGA intro-
duces a novel attention mechanism for small object detection by incorporating
both self-features and higher-level features in the generation of attention weights.
It deviates from the common self-attention methods [12,30], which solely relies
on the self-features. The adjacent feature levels often contain richer interaction
information, particularly with low-level features assisting high-level features in
exploring potential information on small objects.

To sum up, our contributions are summarized as follows:

– We design a brand-new Hierarchical Feature Subtraction Module (HFSM). It
fully utilizes the difference of information between feature layers and helps to
improve the performance of small object detection. The hierarchical strategy
employed in HFSM further enhances the robustness of the model.

– We introduce a Feature Fusion Guidance Attention (FFGA) to utilize the
global fused information. The self-attention mechanism used highlights useful
information and suppresses noise information by weighting the features of
itself, helping to explore potential information of small objects.

– Extensive experiments on the DOTA and COCO datasets demonstrate that
the proposed HFFPN significantly improves the performance of the baseline
algorithm and surpasses the current state-of-the-art detectors.

2 Related Work

2.1 Small Object Detection

With the development of deep learning, extensive research has been carried out
on small object detection. There have been numerous attempts to enhance the
performance of small object detection from different perspectives, all with the
common goal of increasing the exploitable features of small objects. SCRDet [37]
achieves a more refined feature fusion network by introducing flexible down-
sampling strides, allowing for the detection of a broader spectrum of smaller
objects with greater precision. R3Det [36] designs a feature refinement module
to enhance the detection performance of small objects. Oriented RepPoints [13]
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captures features from adjacent objects and background noise for adaptive point
learning, which utilizes contextual information to discover small objects.

2.2 Feature Pyramid Network

It is a consensus that the shallow layers are usually rich in detailed information
but lack abstract semantic information, while the deeper layers are on the con-
trary due to the downsampling. Smaller objects predominantly rely on shallow
features and can be more effectively detected by detectors with smaller receptive
fields. Feature Pyramid Network [16] combines the deep layer and shallow layer
features by building a top-down pathway to form a feature pyramid. PAFPN [19]
enriches the feature hierarchy by adding a bottom-up path, enhancing deeper
features without losing information from the shallow layers. HRFPN [27] utilizes
multiple cross-branch convolution to enhance feature expression. NAS-FPN [7]
searches for the optimal combination method for feature fusion in each layer.

2.3 Self-Attention

The attention mechanism exhibits an impressive capability to quickly concen-
trate on and distinguish objects within a scene, while effectively ignoring irrel-
evant aspects. And self-attention is also a powerful technique in deep learning
that allows a model to selectively focus on different parts of input, effectively
capturing dependencies and relationships within it. Spatial self-attention and
channel self-attention are two common kinds of self-attention. SENET [12] is the
first proposed channel attention. It uses a SE block to gather global informa-
tion through channel-wise relationships and enhance the representation capacity.
CBAM [30] can sequentially generate attention feature maps in both channel and
spatial dimensions for adaptive feature refinement, resulting in the final feature
map. Self-attention mechanism has shown outstanding performance in handling
small objects to some extent. SCRDet [37] utilizes pixel attention and channel
attention to highlight small object regions while mitigating the impact of noise
interference. CrossNet [14] develops a cross-layer attention module to enhance
the detection of small objects by generating more pronounced responses.

3 Methodology

3.1 Overview

In order to fully utilize the information of small objects, we propose a novel fea-
ture pyramid network, named HFFPN, as shown in Fig. 2. The detector receives
the input image I and sends it to the backbone network for feature extrac-
tion. The image feature Ci gradually becomes richer in semantic information
during the subsampling process while losing detailed information. Ci is then
passed through the proposed Hierarchical Feature Subtraction Module (HFSM)
to obtain intermediate feature Mi in a top-down manner. Next, Mi is further
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fused through convolution with a kernel size of 3 to obtain fused feature Pi.
Finally, Pi is sent to the proposed Feature Fusion Guidance Attention (FFGA)
to obtain focused feature Oi, which are particularly focused on effective informa-
tion, especially small objects. The focused feature Oi will be used by the model
to predict the category and location of objects.

3 3 convolution Attention mechanism

HFSM FFGA

Feature subtraction

Fig. 2. Overview of the proposed HFFPN, which consists of HFSM and FFGA.

3.2 Hierarchical Feature Subtraction Module

The Hierarchical Feature Subtraction Module (HFSM) is designed to enhance the
specific details of low-level features in the feature pyramid. Generally, features at
the bottom of pyramid have higher resolution and smaller receptive fields, and
contain local information such as edges, textures, and colors, which are crucial for
detecting small objects. However, the widely used fusion strategy, i.e., element-
wise addition, fails to enhance the local information due to its uniqueness at each
level. To cope with it, we propose HFSM that adopts the subtraction operation
with hierarchy to highlight the local information, thereby alleviating the above-
mentioned problem. The specific process of HFSM is as follows.

Firstly, the input image I passes through the backbone network to obtain
the image feature Ci:

Ci =

{
I, i = 0,

F(Ci−1), i = 1, . . . , t
, (1)

where F(·) denotes the convolution block in backbone and t is the number of
feature layers.

Secondly, Ci is then processed by HFSM to obtain the intermediate feature
Mi. The proposed HFSM aims to better extract detailed information from differ-
ent feature levels. The subtraction operation can capture the differential infor-
mation between two feature levels, which often includes fine-grained or edge
information, crucial for detecting small objects. Afterwards, the intermediate
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features are further fused through a 3 × 3 convolutional layer. These processes
can be represented by the following equations:

Mi =

⎧⎪⎨
⎪⎩

σ(Ci), i = t,

σ(Ci) ⊕ UP(Mi+1), i = l + 1, . . . , t − 1
1
2 (σ(Ci) ⊕ UP(Mi+1)) ⊕ |σ(Ci) � UP(Mi+1)| , i = 2, . . . , l,

, (2)

Pi = conv3×3(Mi). (3)

where σ(·) denotes a 1 × 1 convolution, and UP(·) represents upsampling with
ratio of 2. ⊕ and � denote element-wise addition and element-wise subtraction,
respectively. |·| indicates the operation of taking absolute values. l is a hyperpa-
rameter for hierarchical strategy.

3.3 Feature Fusion Guidance Attention

Feature Fusion Guidance Attention (FFGA) is a generalized self-attention mech-
anism that can effectively focus on useful information, especially small object
information. In the feature pyramid, the fused features contain multi-scale infor-
mation from different levels, and adjacent levels have stronger complementary
abilities in feature distribution due to their similar receptive fields. Based on the
features between adjacent levels, self-attention is designed to guide the current
level of features to focus on useful parts, which can effectively improve the qual-
ity of each feature layer and thus improve detection performance. Specifically,
the process of FFGA guiding feature focusing can be expressed as Fig. 3.

C H W, C H
2

W
2

avgpool

conv-relu, conv-sigmoid

expand_dim

avgpool

conv-relu, conv-sigmoid

expand_dim
conv

2C 1 1 2C 1 1

2C H W

2C H W

1 H W1 H W

1 H W

2C H W

C H W

Channel Attention

Spatial Attention

upsample-concat

Fig. 3. Diagram of the FFGA.

Firstly, the input of FFGA are the current layer feature Pi ∈ R
C×H×W and

the up one Pi+1 ∈ R
C× H

2 ×W
2 . These two features are concatenated along the
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channel dimension to obtain the guided feature Fg ∈ R
2C×H×W . Fg is then

sequentially fed into the channel attention (CA) and spatial attention (SA)
modules, and we obtain the attention feature Fa ∈ R

2C×H×W . Afterwards, Fa is
passed through a 1×1 convolution to generate the attention map Wa ∈ R

1×H×W .
This map is multiplied as attention weight with the current layer feature Pi to
obtain the focused feature Oi ∈ R

C×H×W after attention guidance. This process
can be represented by the following formulas:

Fg = concat(Pi, UP(Pi+1)), (4)
Fa = SA(CA(Fg)), (5)
Wa = conv1×1(Fa), (6)

Oi =

{
Pi ⊗ Wa, i = 2, . . . , t − 1,

Pi, i = t,
, (7)

where the composition of channel attention and spatial attention has been
detailed in Fig. 3. They have a similar structure that mainly consists of an aver-
age pooling layer, a 1 × 1 convolution layer followed by a ReLU activation, and
a 1 × 1 convolution layer followed by a sigmoid activation. The input feature
generates attention focusing on channel and spatial dimensions in the two mod-
ules respectively. After dimension expansion, they are element-wise added to
the original feature, allowing the original feature to obtain a different degree of
attentional gain in the channel and spatial dimensions.

4 Experiments

4.1 Datasets

DOTA [32] is a rotation-based small object dataset in the remote sensing field.
It contains 2, 806 images with a total of 188, 282 instances. The detection targets
in DOTA include 15 common categories in remote sensing images, namely Bridge
(BR), Harbor (HA), Ship (SH), Plane (PL), Helicopter (HC), Small vehicle (SV),
Large vehicle (LV), Baseball diamond (BD), Ground track field (GTF), Tennis
court (TC), Basketball court (BC), Soccer-ball field (SBF), Roundabout (RA),
Swimming pool (SP), and Storage tank (ST). COCO [18] is the most popular
dataset for object detection. Due to its definition of small object and special-
ized evaluation metric mAPs, COCO is commonly used as a well recognized
benchmark for small object detection.

4.2 Experiment Settings

We employed Resnet50 and Resnet101 [11] pre-trained on ImageNet [25] as back-
bone networks. We utilized the SGD algorithm with a momentum of 0.9 and a
weight decay of 0.0001 for network optimization. The initial learning rate warms
up at a rate of 0.001 per iteration for the first 500 iterations. The training sched-
ule for all experiments was consistent. We trained 12 epochs on the two datasets,
and the learning rate decays at the epoch 8 and 11 with ratio of 0.1. The code
for all experiments was built on the MMdetection [2] platform.
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4.3 Comparison Results

Results on DOTA. We selected the RoI Transformer [5], a general method
for aerial object detection, as the baseline algorithm. Table 1 reports the com-
parison result on DOTA test set. With Resnet50 as the backbone, our method
obtains 76.64% mAP50, improving the performance of baseline by approximately
1%, thereby surpassing the performance of the state-of-the-art algorithms. With
Resnet101 as the backbone, HFFPN also increases the baseline’s performance
by 0.87% mAP50, achieving the best result on the DOTA dataset. These results
fully demonstrate HFFPN’s advantages on small object detection and reflect its
potential applications. Figure 4 provides a more intuitive visual comparison.

Table 1. Comparison with state-of-the-art methods on DOTA test set. The reported
results come from AerialDetection [6] and OBBDetection [33]. ‡ indicates that it is the
result of our re-implement. Note that we only list some classes for better display.

Methods Backbone GTF SV SH SBF HA SP mAP50

Single-stage Methods

RSDet [23] R152-FPN 68.50 70.20 73.60 64.30 66.10 69.30 74.10

R3Det [36] R152-FPN 66.10 70.92 78.21 61.81 68.16 69.83 73.74

S2A-Net [9] R50-FPN 71.11 78.11 87.25 60.36 65.26 69.13 74.12

R3Det-DCL [35] R152-FPN 69.70 76.84 87.30 63.50 68.96 68.79 75.54

Two-stage Methods

SCRDet [37] R101-FPN 68.36 68.36 72.41 65.02 66.25 68.24 72.61

Gliding Vertex [34] R101-FPN 77.34 73.01 86.82 59.55 72.94 70.86 75.02

ReDet [10] ReR50-ReFPN 74.00 78.13 88.04 61.76 72.10 68.07 76.25

Oriented R-CNN [33] R101-FPN 76.92 74.27 87.52 65.51 74.36 70.15 76.28

Anchor-free Methods

PIoU‡ [3] R50-FPN 68.90 77.58 81.57 60.47 57.68 65.12 69.68

O2-DNet [29] H-104 61.21 71.32 78.62 60.93 58.21 66.98 71.04

DRN [21] H-104 64.10 76.22 85.84 57.65 69.30 69.63 73.23

CFA [8] R101-FPN 67.17 79.99 84.46 54.86 73.04 70.24 75.05

Oriented RepPoints [13] R101-FPN 71.76 79.95 87.33 59.15 75.23 73.75 76.52

RoI-Trans.‡ [5] R50-FPN 76.65 78.40 87.55 60.12 74.89 69.70 75.70

RoI-Trans.‡ R101-FPN 75.75 78.11 87.46 63.80 76.05 71.35 76.02

RoI-Trans. (Ours) R50-HFFPN 78.11 78.33 87.71 65.24 75.39 72.99 76.64

RoI-Trans. (Ours) R101-HFFPN 79.84 77.97 87.68 65.00 76.36 71.67 76.89

Results on COCO. On the COCO dataset, we applied HFFPN to two-
stage [24], one-stage [17], and anchor-free [26] detectors, respectively. Table 2
shows the performance gain brought by HFFPN. Although the overall mAP
improvement is not significant due to the small proportion of small objects in
the COCO dataset, the consistent and significant increase in the mAPs metric
indicates that HFFPN makes detectors more capable of detecting small objects
while maintaining their detection capabilities of other scales of objects.
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Table 2. Comparison experiment on COCO. The baseline results come from [2].

Methods Backbone mAP mAP50 mAP75 mAPs mAPm mAPl

Faster RCNN [24] R50-FPN 37.4 58.1 40.4 21.2 41.0 48.1

Faster RCNN R50-HFFPN 37.6 58.4 40.7 21.9 (+0.7) 40.9 48.3

RetinaNet [17] R50-FPN 36.5 55.4 39.1 20.4 40.3 48.1

RetinaNet R50-HFFPN 36.6 55.7 39.1 21.2 (+0.8) 40.3 48.0

FCOS [26] R50-FPN 36.6 56.0 38.8 21.0 40.6 47.0

FCOS R50-HFFPN 36.6 55.9 38.7 21.7 (+0.7) 40.2 47.2

4.4 Ablation Study

To further verify the advantages and effectiveness of the proposed method, we
conduct a series of experiments on the DOTA dataset. The baseline algorithm
is RoI Transformer with Resnet50.
Evaluation for Component Effectiveness. To evaluate the effects of HFSM
and FFGA, we carry out several ablation experiments, and the experimental
results are shown in the Table 3. Without any improvement schemes, the mAP50

detected by the baseline is 75.70%. The introduction of HFSM and FFGA gradu-
ally improves the detection accuracy to 76.24% and 76.64%. The results indicate
that each combination in HFFPN brings improvement to the detector.
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Fig. 4. Visualization on DOTA test set. The yellow circles highlight the difference of
detection result. We can easily find that HFFPN (second row) can help detect more
small objects and achieve higher accuracy in classification and regression. (Color figure
online)
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Evaluation on Different Settings of l in HFSM. Hierarchical level l, as
a hyperparameter in HFSM, determines in which feature layers the operation
of feature subtraction is performed. Specifically, the feature subtraction module
will be introduced when the level lower than l. Table 4 shows the results under
different values of l. When l is 2, the performance of baseline with HFFPN
reaches the highest. Assuming we do not employ the hierarchical strategy by
setting l equals to 5, where feature subtraction is performed between each level of
features, we would observe a significant drop in results. The hierarchical strategy
ensures that the subtraction is performed only on detailed features, making it
applicable to a wide range of input images and thus enhancing the model’s
robustness.
Comparison with Other FPNs. Table 5 presents performance of the baseline
algorithm with different FPNs. It can be observed that some expanded FPNs do
enhance the detector’s performance to some extent, but the improvements are
not as significant as those of the proposed HFFPN.
Evaluation on Different Detectors. To verify that the proposed HFFPN is
a common method for most detectors, experiments were conducted on several
different detectors. Table 6 shows the comparison results of these detectors with
or without using HFFPN. The experimental results show that the use of HFFPN
has led to performance improvements for all detectors, strongly indicating the
universality and effectiveness of the proposed method.

Table 3. Evaluation on the effectiveness of each
component. FS, HS, CA and SA denote feature
subtraction, hierarchical strategy, channel atten-
tion, and spatial attention, respectively.

Baseline FS HS CA SA mAP50

� 75.70

� � 76.13

� � � 76.24

� � � � 76.38

� � � � 76.41

� � � � � 76.64

Table 4. Results of differnent l.

l 2 3 4 5

mAP50 76.64 76.33 76.07 75.59

Table 5. Comparison with other
FPNs.

Backbone mAP50 mAP

R50-FPN [16] 75.70 46.27

R50-PAFPN [19] 76.26 46.56

R50-HRFPN [27] 76.33 46.85

R50-NASFPN [7] 73.71 45.03

R50-HFFPN 76.64 47.07
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Table 6. Improvements on DOTA by applying HFFPN to different detectors.

Methods Backbone mAP50 mAP

PIoU [3] R-50-FPN 69.68 40.05

PIoU R-50-HFFPN 70.26 (+0.58) 40.55 (+0.50)

Gliding Vertex [34] R-50-FPN 72.65 40.93

Gliding Vertex R-50-HFFPN 73.24 (+0.59) 41.42 (+0.49)

Oriented RCNN [33] R-50-FPN 75.72 46.78

Oriented RCNN R-50-HFFPN 76.14 (+0.42) 46.85 (+0.07)

RoI-Trans. [5] R-50-FPN 75.70 46.27

RoI-Trans. R-50-HFFPN 76.64 (+0.94) 47.07 (+0.80)

5 Conclusion

To better utilize the detailed information for small object detection, this paper
proposes a hierarchical focused feature pyramid network. It mainly contains a
hierarchical feature subtraction module and feature fusion guidance attention.
This design overcomes the problem of neglecting edge information that exists
in common FPN methods, thus improving the detection ability of small objects
without affecting the detection performance of objects at other scales. Compar-
ison and ablation experiments on multiple datasets demonstrate the excellent
performance of the proposed method, fully verifying the effectiveness of HFFPN.
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Abstract. Lots of methods have been proposed to improve instance
segmentation performance. However, the mask produced by state-of-
the-art segmentation networks is still coarse and does not completely
align with the whole object instance. Moreover, we find that better
object boundary information can help instance segmentation network
produce more distinct and clear object masks. Therefore, we present a
simple yet effective instance segmentation framework, termed JLInst
(Boundary-Mask Joint Learning for Instance Segmentation). Our meth-
ods can jointly exploit object boundary and mask semantic information
in the instance segmentation network, and generate more precise mask
prediction. Besides, we propose the Adaptive Gaussian Weighted Binary
Cross-Entropy Loss (GW loss), to focus more on uncertain exam-
ples in pixel-level classification. Experiments show that JLInst achieves
improved performance (+3.0% AP) than Mask R-CNN on COCO test-
dev2017 dataset, and outperforms most recent methods in the fair com-
parison.

Keywords: Instance Segmentation · Boundary Information
Enhancement

1 Introduction

Instance segmentation is a fundamental but challenging task in computer vision,
which aims to generate a per-pixel mask with a category label for each instance
in an image. With the rapid development of deep convolutional networks, many
excellent approaches [7,9] have been proposed for instance segmentation. Pre-
vious methods are mainly based on object detection network, which provides
box-level localization information.
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(a) Mask R-CNN. (b) JLInst.

Fig. 1. Comparison between Mask R-CNN and JLInst.

Mask R-CNN [7] is a successful two-stage instance segmentation framework,
which first employs a Faster R-CNN [17] detector to detect objects in an image
and further predicts binary mask within each detected bounding box. Other
methods built upon Mask R-CNN also achieve good performance. Recently,
inspired by the rapid development of one-stage detectors, a number of one-stage
instance segmentation frameworks [1,18] have been proposed.

However, the quality of the predicted instance mask is still not satisfac-
tory. One of the most important problems is the imprecise segmentation around
instance boundaries. Mask R-CNN generates instance masks by performing
pixel-level classification via fully convolutional networks (FCN). FCN treats all
pixels in the proposal equally and ignores the object shape and boundary infor-
mation. So the predicted instance masks of Mask R-CNN are coarse and not
well-aligned with the real object boundaries. As shown in Fig. 1, Mask R-CNN
easily predicts coarse and indistinct masks, while the boundary predicted by our
JLInst matches better with ground truths.

To address this issue, we attempt to exploit instance boundary information to
enhance the mask prediction in the instance segmentation network. We notice
that boundary semantic information can guide the network to generate more
distinct masks that are well aligned with their ground truths. Based on this
motivation, we propose JLInst instance segmentation network. Based on Mask
R-CNN, we replace the original mask branch with the proposed boundary-mask
joint learning branch, which contains two sub-networks for jointly of learning
object mask and boundary semantic information. We design a feature enhance-
ment module to strengthen the connection between mask branch and boundary
branch. At last, the final mask prediction combining the outputs from mask and
boundary branch contains more abundant shape and localization information.
Moreover, we design the Adaptive Gaussian Weighted Binary Cross-Entropy
Loss (GW loss), to focus more on uncertain examples in the pixel-level classifi-
cation and deeply exploit the semantic information while training the network.

We summarize our main contributions as follow.

– We propose JLInst instance segmentation framework, to jointly learn object
boundaries and masks in the instance segmentation network, and generate
more precise mask prediction by combining mask and boundary information.
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– In order to focus more on uncertain examples, we propose the Adaptive Gaus-
sian Weighted Binary Cross-Entropy Loss to reweight the pixel-wise classifi-
cation loss.

– JLInst achieves improved performance (+3.0% AP) than Mask R-CNN on
COCO test-dev 2017. Furthermore, our JLInst achieves state-of-the-art per-
formance of 39.1% AP, which surpasses most of instance segmentation frame-
works.

2 Related Work

Instance Segmentation. Recent studies on instance segmentation can be
divided into two categories: two-stage and one-stage methods.

Two-stage methods usually adopt the classical detect-then-segment strategy.
The dominant instance segmentation framework is still Mask R-CNN [7], which
uses two-stage detector Faster R-CNN [17] to detect objects in an image and then
generates binary segmentation mask within each detected bounding box. PANet
[13] strengthens feature representation through bottom-up path augmentation
based on Mask R-CNN. Mask Scoring R-CNN [9] adds an additional mask-
IoU head to deal with the misalignment between mask quality and mask score.
One-stage methods have been proposed due to the rapid development of one-
stage detectors [11,19]. Some instance segmentation networks [1,18] still follow
the detect-then-segment pipeline by replacing the detection networks with the
one-stage detectors. YOLACT [1] produces instance masks by linearly combin-
ing a set of prototype masks and per-instance mask coefficients. BlendMask [2]
extends this idea by assembling with attention maps. CondInst [18] also achieves
remarkable performance with great efficiency.
Boundary Refinement in Segmentation. Some studies focus more on the
post-processing scheme to refine the boundaries in the predicted masks from
the segmentation network. Chen et al. [3] propose fully connected contditional
random field (CRF) to capture spatial details and refine boundaries of predicted
masks. Some recent works attempt to deeply exploit boundary information while
training the network to enhance the predicted mask. BMask R-CNN [4] introduce
an extra branch to strengthen the boundary awareness of mask features. It can
generate more clear object masks than previous methods.

3 Methods

3.1 Overview

As shown in Fig. 2, JLInst still adopts the same two-stage procedure as Mask
R-CNN [7]. We develop a boundary-mask joint learning branch, which contains
the mask branch and boundary branch to jointly learn the mask and boundary
information. Besides, we design a feature enhancement module to strengthen
the semantic information between these two branches. The final mask output
is generated by combining the predictions from two branches. In addition, we
design GW loss to help optimize the pixel-wise classification while training the
network.
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Fig. 2. The Overall architecture of Boundary-Mask Joint Learning for Instance
Segmentation Network (JLInst). In the boundary-mask joint learning branch, the
dotted arrow denotes 3×3 convolution and the solid arrow denotes identity connection
unless specified. “×n” denotes a stack of n consecutive convolutional kernels.

3.2 Boundary-Mask Joint Learning Branch

RoI Feature Extraction. We define Rm and Rb as the Region of Interest
(RoI) features for mask branch and boundary branch respectively. The ouputs
Fm is generated by passing Rm into four consecutive convolutions. However,
to preserve better spatial information for boundary prediction, we upsample
all the features from P3-P5 to the size of P2 and add them as the input when
performing RoIAlign. Then, the features Rb after RoIAlign is downsampled by
the final strided 3 × 3 convolution and the output feature is denoted as Fb. Fb

has the same resolution as Fm and is used for feature fusion.

Mask-Guided Boundary Refinement Module. To further exploit the
semantic information and strengthen the connection between the mask branch
and boundary branch, we propose the Mask-guided Boundary Refinement Mod-
ule (MBR). As shown in Fig. 3, MBR consists of Fusion Block, Attention Block
and Residual Block. We aim to use the mask information from the mask branch
to help boundary branch produce more precise boundary prediction.
Fusion Block. The main feature Fb is from the boundary branch and the guide
feature Fm is from the mask branch. Then we concat these two feature maps and
put them into the 1 × 1 and 3 × 3 convolutional layers. The ouput feature Gb is
created by adding the main feature Fb and the feature maps from convolutional
layers, according to Eq. 1.

Gb = f3×3(f1×1(fconcat(Fb, Fm))) + Fb (1)

where fn×n denotes a n × n convolutional layer, fconcat means the concat oper-
ation.
Attention Block. We apply the attention mechanism, i.e. spatial attention and
channel attention, to further capture the spatial and channel information in the
fused feature Gb.
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Fig. 3. The architecture of Mask-guided Boundary Refinement Module (MBR)

In the spatial attention block, we first adjust the weight ws by following
Eq. 2.

ws = σ(f1×1(δ(f1×1(Gb)))) (2)

where δ is the ReLU function and σ is the sigmoid function.
Then we rescale Gb according to Eq. 3.

Gs
b = ws ⊗ Gb (3)

where ⊗ denotes element-wise multiplication.
As for the channel attention block, we first obtain the global information w′

c

by using a global average pooling (GAP) layer.

w′
c = GAP (Gb) (4)

Then the new weight wc of each channel is adjusted by using two 1 × 1
convolutional layers followed by the sigmoid function, according to Eq. 5.

wc = σ(f1×1(δ(f1×1(w′
c)))) (5)

After that, we rescale the features of each channel by channel-wise multipli-
cation of the weights wc and Gb. The output after rescaling is denoted as Gc

b

and calculated by Eq. 6.
Gc

b = wc ⊗ Gb (6)

At last, we generate the rescaled output Gattn
b by element-wise addition of

the channel and spatial excitation.

Gattn
b = Gs

b ⊕ Gc
b (7)

where ⊕ denotes element-wise summation.
Residual Block. We finally generate the output features Hb by passing Gattn

b

to a residual block (ResBlock) as follow.

Hb = ResBlock(Gattn
b ) (8)

The block consists of a 3× 3 convolutional layer, a 1× 1 convolutional layer and
3 × 3 convolutional layer in order. Each convolutional layer is followed by group
normalization and ReLU activation.
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Fig. 4. Visualization results for analyz-
ing the impact of BCE loss and GW
loss in JLInst. (a) The coarse activa-
tion map from JLInst with BCE loss
at the beginning of training. (b) with
BCE loss after training. (c) with GW
loss at the beginning of training. (d)
with GW loss after training.

Fig. 5. Histogram of activation maps.
(a) the histogram calculated from
Fig. 4(a). (b) the histogram calculated
from Fig. 4(b). (c) the histogram calcu-
lated from Fig. 4(c). (d) the histogram
calculated from Fig. 4(d).

Boundary-Guided Mask Refinement Module. We integrate the bound-
ary features with mask features so that boundary information can be used to
enrich mask features and guide more precise mask prediction. The structure of
Boundary-guided Mask Refinement Module (BMR) is the same as MBR. The
only difference is that the main feature of BMR is Fm and the guide feature
becomes Hb after being processed by MBR of boundary branch.

Final Output. To further exploit the semantic information from the mask
branch and boundary branch, we generate the final mask prediction of the
instance segmentation network by combining the outputs from these two
branches. We define Pm and Wm as the mask feature and mask weight from
mask branch respectively, while define Pb and Wb as the boundary feature and
boundary weight from boundary branch respectively. The final mask prediction
P f
m is calculated by Eq. 9.

P f
m = (Wm ⊗ Pm) ⊕ (Wb ⊗ Pb) (9)

3.3 Learning and Optimization

Adaptive Gaussian Weighted Binary Cross-Entropy Loss. The segmen-
tation task in Mask R-CNN can be regarded as a binary classification task. Gen-
erally, BCE loss is used to train a pixel-level classification, which treats each pixel
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equally. However, for the segmentation task, the feature map we finally generate
needs to be processed by image thresholding, that is, pixels with the value larger
than the threshold are classified into the foreground, and those smaller than
the threshold are classified into the background (We set the threshold as 0.5 by
default). Hence, we believe that pixels near the threshold have great uncertainty.
As shown in Fig. 4(a) and Fig. 4(b), we can notice that JLInst with the BCE loss
can easily focus on discriminative regions during training. So the output mask is
incomplete and there still exists lots of uncertain pixels in the output activation
map. Therefore, we design Adaptive Gaussian Weighted Binary Cross-Entropy
Loss (GW loss) to increase the network’s attention to pixels around the thresh-
old and reduce the penalty for pixels approaching 0 or 1. With the supervision of
the GW loss, the JLInst tends to excite the uncertain pixels and generate exact
and well-separated activation maps (Fig. 4(d)). Figure 5 shows the histograms of
activation map learned with the BCE loss or GW loss. We can observe that the
number of uncertain pixels (0.5) has been substantially reduced by the GW loss.

The BCE loss is defined as follows.

Lbce(p, y) = − 1
N

N∑

i=1

[yi log (pi) + (1 − yi) log (1 − pi)] (10)

where Lbce indicates the pixel-wise binary cross-entropy loss between predicted
foreground-likelihood pi in [0,1] and ground-truth label yi for each pixel i. N is
the number of pixels in the predicted feature map.

Then, we use the gaussian distribution function to calculate the correspond-
ing loss weight according to the pixel value. We aim to place the maximum
weight for pixels with 0.5, and reduce the weight for pixels around 0 and 1.

Wg(p) =
1√

2πσ2
e− (p−μ)2

2σ2 (11)

where μ denotes the mean value and σ denotes standard deviation. We set μ =
0.5 and σ = 0.5 by default.

Then we design our GW loss by reweighting the BCE loss, which can super-
vise JLInst to produce more distinct mask outputs and better optimise the net-
work during training.

Lgw(p, y) = Wg(p) · Lbce(p, y) (12)

Mask Loss. We consider the optimization of the mask branch as a binary
classification problem and use our GW loss as the mask loss to optimize the
mask learning. Ym means the corresponding groundtruth mask.

Lmask = Lgw(Pm, Ym) (13)

Boundary Loss. According to [6], we use dice loss [15] and GW loss to help
the boundary branch produce crisp boundary effectively. Dice loss is insensitive
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to the number of pixels and can well measure the overlap between boundary
predictions and ground truths, which is calculated by Eq. 14.

Ldice (p, y) = 1 −
2
HW∑
i

piyi + ε

HW∑
i

(pi)
2 +

HW∑
i

(yi)
2 + ε

(14)

where p denotes the prediction and y denotes corresponding ground truth. H
and W are height and width of the predicted feature map respectively. ε is a
smooth term to avoid zero division (we set ε = 1 by default).

Our boundary loss Lboundary is formulated as follows. Boundary ground truth
Yb is generated by using Laplacian operator from mask ground truth Ym.

Lboundary(Pb, Yb) = Lgw(Pb, Yb) + Ldice(Pb, Yb) (15)

Final Mask Loss. We generate the final mask prediction of JLInst by combin-
ing the outputs from the mask and boundary branches. Similar to Sect. 3.3, we
use our GW loss as the final mask loss to optimize the final mask learning.

Lfinal = Lgw(P f
m, Ym) (16)

Multi-task Learning. Multi-task learning has been proved effective in many
works. In our JLInst, we define the multi-task loss as follows.

L = Lcls + Lbox + Lmask + Lboundary + Lfinal (17)

where the classification loss Lcls, regression loss Lbox are inherited from Mask
R-CNN, and other loss functions are mentioned in previous sections.

4 Experiments

4.1 Dataset and Evaluation Metrics

Our experiments are conducted on COCO [12] dataset. We train our models
with the data in train-2017 split containing around 115k images, and evaluate
the performance of ablation studies on val-2017 split with about 5k images. Main
results are reported on the test-dev split (20k images without available public
annotations). We report all the results in the standard COCO-style average
precision (AP).
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Table 1. Comparison with state-of-the-art methods for instance segmentation on
COCO test-dev2017

Method Backbone AP AP50 AP75 APS APM APL

BMask R-CNN [4] ResNet-101-FPN 37.7 59.3 40.6 16.8 39.9 54.6

MMask R-CNN [14] ResNet-101-FPN 38.0 59.3 41.3 21.2 40.2 49.3

BoundaryFormer [10] ResNet-101-FPN 37.7 58.8 40.5 20.4 40.2 49.0

CondInst [18] ResNet-50-FPN 35.4 56.4 37.6 18.4 37.9 46.9

BlendMask [2] ResNet-50-FPN 34.3 55.4 36.6 14.9 36.4 48.9

BMask R-CNN [4] ResNet-50-FPN 35.9 57.0 38.6 15.8 37.6 52.2

MMask R-CNN [14] ResNet-50-FPN 36.3 57.3 38.3 19.3 38.3 47.3

BoundaryFormer [10] ResNet-50-FPN 36.4 57.2 39.0 19.6 38.6 47.9

Mask R-CNN [7] ResNet-50-FPN 34.6 56.5 36.6 15.4 36.3 49.7

JLInst(Ours) ResNet-50-FPN 37.6 58.0 40.7 20.2 39.8 48.9

Mask R-CNN [7] ResNet-101-FPN 36.2 58.6 38.4 16.4 38.4 52.1

JLInst(Ours) ResNet-101-FPN 39.1 60.0 42.5 20.7 41.6 51.5

4.2 Experimental Settings

For fair comparisons, we conduct our experiments on Detectron2 [20] platform in
PyTorch [16] framework. If not specified, all the settings are the default settings
in Detectron2. Unless specified, ResNet-50 [8] is used as our default backbone
network. The backbone networks are initialized with the weight of the models
pretrained on ImageNet [5]. Specifically, our network is trained with stochastic
gradient descent (SGD) optimizer for 90K iterations with an initial learning rate
of 0.02 and a mini-batch of 16 images. The learning rate is reduced by a factor
of 10 at iteration 60K and 80K, respectively. The input images are resized such
that the shorter side is 800 pixels and the longer is less than 1333 pixels. As
for ablation experiments, we adopt 500 pixels for shorter side (the longer is less
than 700 pixels). Due to memory limitation, the batch size (16 by default) is
adjusted with a linearly scaled learning rate. Momentum and weight decay are
set to 0.9 and 1e−4, respectively.

4.3 Comparisons with State-of-the-Art Method

We compare JLInst with some state-of-the-art instance segmentation methods.
All models are trained with 1× schedule on COCO train2017 and evaluated
on COCO test-dev2017. As shown in Table 1, JLInst with ResNet-50-FPN can
surpass these methods with the same backbone. The combination of our JLInst
and ResNet-101-FPN backbone achieves as high as 39.1% AP, which surpasses
the AP of all other competitors.
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Table 2. Experimental results on COCO
val2017 for the impacts of MBR and
BMR.

MBR BMR AP AP50 AP75

✗ ✗ 34.0 53.8 35.9

� 7 34.3 53.8 36.5

✗ � 34.5 54.1 36.8

� � 34.7 53.9 37.0

Table 3. Experimental results on COCO
val2017 for the impacts of each compo-
nent in MBR/BMR.

FB AB RB AP AP50 AP75

✗ ✗ ✗ 34.0 53.8 35.9

� ✗ ✗ 34.2 53.8 36.4

� � ✗ 34.4 53.8 36.8

� � � 34.7 53.9 37.4

Table 4. Experimental results on COCO
val2017 for the impacts of different losses.

AP AP50 AP75

BCE loss 34.4 53.3 36.9

GW loss 34.7 53.9 37.0

Table 5. Experiment results on COCO
val2017 for the impacts of standard devi-
ation σ in GW loss.

σ AP AP50 AP75

0.01 33.6 53.2 36.0

0.1 34.3 53.4 36.8

0.3 34.4 53.7 36.6

0.5 34.7 53.9 37.0

0.7 34.6 54.0 36.9

0.9 34.5 53.8 36.9

4.4 Ablation Studies

The Effectiveness of MBR and BMR. We now analyze whether each fea-
ture fusion module of our model is effective for improvement of segmentation
performance. The results are listed in Table 2. We make different combinations
of MBR and BMR on ResNet-50 FPN JLInst baseline. As shown in Table 2,
MBR improves the AP from 34.0% to 34.3%. When combined with BMR, the
AP is improved from 34.0% to 34.5%. When all the modules are used, the AP
is further improved to 34.7%.

The Impacts of Each Component in MBR/BMR. In this section, we
analyze whether each component of MBR/BMR is effective for performance
improvement. As shown in Table 3, we gradually add Fusion Block (FB), Atten-
tion Block (AB) and Residual Block (RB) on ResNet-50 FPN JLInst baseline.
FB improves the AP from 34.0% to 34.2%. When combined FB with AB, the
AP is further increased from 34.0% to 34.4%. When FB, AB and RB are all
used, the AP is further improved to 34.7%. In general, our ablation studies show
that FB, AB and RB can effectively improve segmentation performance.
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The Effectiveness of GW Loss. In JLInst, we propose GW loss to supervise
the prediction. Compared with BCE loss, our GW loss can help JLInst focus
more on those uncertain examples. So in this session, we design this experiment
to compare the impact of BCE loss and our GW loss for final mask prediction.
As shown in Table 4, using BCE loss brings the 34.4% AP. When we replaced
BCE loss with GW loss, the performance of JLInst increases from 34.4% to
34.7%. Therefore, our GW loss is more suitable for JLInst and can bring better
performance for instance segmentation.

The Impacts of Parameters in GW Loss. In this section, we analyse the
impacts of different standard deviations σ in GW loss. As shown in Table 5, the
performance gradually increases with the growth of σ. But when σ exceeds 0.5,
the AP begins to decline. Therefore, we set σ = 0.5 based on the experiments.

Table 6. Experiment results on COCO val2017 for the impacts of proposed losses in
JLInst.

Lfinal Lmask Lboundary AP AP50 AP75 APS APM APL

� ✗ ✗ 34.0 53.9 36.1 12.8 35.7 53.9

� � ✗ 34.3 53.9 36.5 13.4 36.2 53.4

� ✗ � 34.4 53.8 36.6 13.3 36.2 54.3

� � � 34.7 53.9 37.4 13.8 36.6 54.0

The Impacts of Proposed Losses in JLInst. In JLInst, we propose Mask
Loss Lmask, Boundary Loss Lboundary and Final mask Loss Lfinal, to jointly
learn the mask and boundary information and ensure that network produce
more distinct mask prediction. So we design this experiment to analyze whether
each loss function is effective to improve the performance of JLInst. The results
are shown in Table 6. When only Lfinal is used, the AP of JLInst is 34.0%. When
supervised by Lfinal and Lmask, the AP is increased from 34.0% to 34.3%. When
supervised by Lfinal and Lboundary, the AP is improved from 34.0% to 34.4%.
When all the losses are used, the performance of JLInst is further improved to
34.7%.

5 Conclusion

In this paper, we propose a simple but effective instance segmentation frame-
work, named JLInst, to jointly learn object boundary and mask semantic infor-
mation and generate more precise mask prediction by combining mask and
boundary information. Moreover, we design GW loss to help JLInst focus more
on examples with high uncertainty in the pixel-level classification. Experiments
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show that our JLInst achieves remarkable improvements on COCO dataset, and
outperforms most recent methods in the fair comparison.
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Abstract. One-stage multi-object tracking methods have achieved
promising results by showing their great balance between accuracy and
speed. However, the internal differences and relationships between detec-
tion and re-identification (re-ID) lead to worse performance. In this work,
we propose a one-stage multi-object tracking method with attention
boosting, namely AeMOT, which can effectively improve the collabo-
ration and performance in detection and re-ID. Specifically, a discrim-
inability enhancement module is designed to enhance the discriminative
feature representations for detection and tracking, and an identity pre-
serving module is properly designed to preserve the semantic alignment
of id-embedding and improve the adaptiveness of object matching with
scale variation for re-ID association. Experimental results on challeng-
ing benchmarks including MOT17 and MOT20 demonstrate that our
proposed method achieves leading performance and outperforms state-
of-the-art trackers.

Keywords: AeMOT · multi-object tracking · one-stage · attention
mechanism

1 Introduction

Multi-object tracking (MOT) is one of the most foundational and challenging
tasks in computer vision, with wide applications in many practical fields such
as autonomous driving, human-computer interaction and intelligent surveillance
video, etc. MOT aims to track the multiple objects of interest in videos through
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estimating their trajectories from the temporal and spatial information. Different
from single-object tracking (SOT) [1–3], multiple object tracking suffers from
inter-target occlusions, interactions and ambiguities, which bring big challenge
to the task. Accurate and real-time multi-object tracking is still the goal that
researchers are constantly pursuing.

Fig. 1. Example tracking results of our AeMOT on MOT17 and MOT20 test sets.
Different identity is shown in different colored bounding box and trajectory in the
past 100 frames. Tracking under challenges such as crowded scenes can be robustly
performed by our method.

Existing methods mainly adopt two major paradigms: the tracking-by-
detection (TBD) paradigm [4–6], and the joint detection and tracking (JDT)
paradigm [7–15]. In the past decades, the traditional methods mainly follow the
tracking-by-detection strategy, which divides MOT into two models: a detector
and an embedding (re-ID) model. They first utilize a detector to obtain bounding
boxes of objects in each frame, and then associate the obtained bounding boxes
with existing tracklets by matching the predicted location and extracted iden-
tification (ID) embedding of each bounding box across frames. Although they
can benefit from the significant advances in recent object detection [16–18] and
re-identification (reID) [19] development, these methods still suffer from massive
computation costs. In recent years, the one-stage joint detection and tracking
(JDT) methods that learn detection and association within a single network have
demonstrated their ability to achieve good balance between the inference speed
and tracking accuracy [7,20,21]. JDT has become a popular trend in multi-object
tracking. Nevertheless, an inevitable problem of JDT methods is that sharing the
same backbone feature between the detection task and re-ID task may lead to
conflict about information requirement from the feature representations. Despite
FairMOT [20] try to tackle the problem by balance the loss optimization of the
two tasks, the negative transfer from learning two different tasks are still not
well solved.

Encouraged by the advantage of attention mechanism in deep neural networks
and Transformer frameworks [22,23], in this paper, we investigate to leverage
attention mechanism to improve the feature representation for whole tracking
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and perceive the instance-specific information for re-identification. Specifically,
a discriminative feature enhancement module is designed via spatial attention
and channel attention that leverage the self-attention mechanism to capture
the contextual information for better feature representations. Then, an iden-
tity preserving module is designed via channel re-calibration to preserve the
semantic alignment of id-embedding and improve the adaptiveness of object
matching with scale variation. Based on the two designed modules, we propose a
new attention enhanced one-stage algorithm for multi-object tracking, termed as
AeMOT that follows the joint-dectection-and-tracking approach. Although the
introduced techniques are not mostly novel, we have show the proper adoption
is important and valuable to MOT task. Extensive experimental results have
demonstrated that our AeMOT achieve leading performance and outperforms
existing state-of-the-art methods on challenging benchmarks such as MOT17 [24]
and MOT20 [25], as shown by visual examples in Fig. 1.

The main contributions of our work are as follow:

• We propose AeMOT, a one-stage JDT method for multi-object tracking,
which deals with the conflict between the detection and re-ID task.

• We introduce a discriminative feature enhancement module (DEM) to capture
the contextual information for better feature representations and an identity
preserving module (IPM) for improving the representation for re-ID task.

• Experiments on MOT-17 and MOT-20 demonstrate the superiority of our
method compared with other one-stage MOT algorithms.

2 Related Work

Tracking-by-Detection. In the past decade, researchers usually leverage
the advance of object detection and follow the tracking-by-detection (TBD)
paradigm to solve the task [4–6]. Traditional methods mainly exploit two sep-
arate models that first utilize an object detection model to localize objects
and obtain bounding-boxes, and then adopt an association model to link one
detected object to a specific trajectory according to re-identification features of
the objects. SORT [26] uses a Kalman filter to track bounding boxes and asso-
ciates each bounding box with Hungarian Algorithm. STRN [5] proposes a sim-
ilarity learning framework to encode various spatial-temporal relations between
tracks and objects. DeepSORT [6] incorporates the usage of appearance features
to SORT [26]. POI [27] leverages high score detection and deep learning-based
appearance feature to tracking. ByteTrack [4] tracks objects by associating each
detection box instead of only the high score detection box. Though these methods
achieve good tracking results by using long-term trajectory to recover missed or
occluded detection, they still follow the tracking-by-detection paradigm, which
limits the tracking efficiency in practical application, and the two separate mod-
els make them suffer from a serious time-consuming problem that prevents them
from real-time tracking.
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Joint Detection and Tracking. In recent years, Joint detection and tracking
(JDT) algorithms that learn detection and association within a single network
have achieved good balance between the inference speed and tracking accuracy
[7–15]. TransTrack [7] leverages the query-key mechanism of Transformer [22] to
establish a new joint detection and tracking framework. It sequentially tracks the
objects in the current frame through the association of feature queries from the
previous frame. QDTrack [10] uses a dense similarity learning method for track-
ing. GSDT [12] proposes a joint tracking method using graph neural networks.
MeMOT [21] further proposes a long-range spatio-temporal memory algorithm
to enhance the ability of linking objects with a long time span. CenterTrack [13]
proposes a point-based framework based on CenterNet [28] to perform joint
detection and tracking. It treats the tracking in a local perspective that only
associate objects in adjacent frames to simplify the association task and achieve
To achieve high levels of both detection and tracking accuracy, FairMOT [20]
proposes to equally treat the detection and association tasks. It constructs two
parallel branches to respectively detecting objects and extracting re-ID features.
However, since the JDT methods share the same backbone feature between
the detection task and re-ID task, they may lead to conflict about informa-
tion requirement from the feature representations. In this paper, to tackle the
problem, we extend the attention mechanism in the framework of multi-object
tracking, and carefully design two types of attention modules to capture rich
contextual relationships for the two joint sub-tasks.

3 Methodology

In this section, we present the detailed description for the proposed AeMOT
framework. Two newly designed modules, a discriminability enhancement mod-
ule (DEM) and an identity preserving module (IPM) is incorporated with the
backbone DLA-34 and Header network of the baseline FairMOT [20] to boost
the tracking performance. An overview of the framework is illustrated in Fig. 2.

3.1 Discriminability Enhancement Module

Effective feature representation with sufficient spatial information is crucial
for multi-object detection with only one single frame as input. Though recent
Transformer based methods [14,15] that perform better feature extraction and
spatio-temporal memory based methods [21] that store history states have made
progress to solve the problem, they suffer from computation cost and memory
cost cause by the strong architecture. In this work, we refer the essential philos-
ophy of Transformer to solve the issue, leveraging the self-attention and Chanel
attention to boost feature representations of normal backbone that trades off
a balance between accuracy and efficiency. Encouraged by its success in scene
segmentation, We introduce the self-attention mechanism based dual attention
network [23] to perform the discriminability enhancement with spatial and con-
textual information.
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Fig. 2. Illustration of the proposed AeMOT, with two newly designed modules, the
discriminability enhancement module (DEM) and identity preserving module (IPM).

Spatial Attention Enhancement. In order to enable the network to focus
on foreground information and suppress background noise, spatial attention is
implemented via self-attention to encode the long-range spatial and contextual
information with local features. The common process of self-attention mechanism
is written as:

SelfAttention(Q,K, V ) = softmax(K ⊗ QT ) ⊗ V (1)

Let F ∈ R
C×H×W denotes the feature obtained by the backbone, it then obtains

Q,K, V ∈ R
C×H×W through three learnable weight matrices, a spatial attention

map Fsji ∈ R
N×N is calculated with the K and Q, where N = H×W . It denotes

the feature impact of the i-th position on the j-th position. The correlation of the
two position correlation is positive to the value of Fsji .Then, a matrix multipli-
cation is performed between the transpose of Fsji and F to obtain a new feature
map, which is then reshaped to R

C×H×W , The final output FSA ∈ R
C×H×W

can be obtained by multiplying it with a scale parameter α and applying an
element-wise sum operation with F :

FSA = α

N∑

i=1

(FsjiV ) + Fj , Fsji = K ⊗ QT (2)

In each position of the FSA, the final feature is a weighted sum at all positions
with the original features. Therefore, the final feature obtains a global contextual
view and aggregation from the spatial attention map selectively, which improves
the compactness within the object class.
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Channel Attention Enhancement. Since each channel of the features can be
regarded as an object-specific response map, channel attention can be leveraged
to enhance the feature representation of object-specific information. As shown
in Fig. 2, the feature F ∈ R

C×H×W obtained by backbone is first reshaped
to R

C×N , where N = H × W . Then the input matrices Q,K, V ∈ R
C×H×W

are obtained by three learnable weight matrices, then a matrix multiplication
between K and the transpose of Q is performed, followed by a softmax layer
to obtain the channel attention map Fxji

∈ R
C×C , which measures the feature

impact of the ith channel upon the jth channel. Next, a matrix multiplication
between the transpose of Fxji

and F is performed and the result is reshaped
to R

C×H×W . It is then multiplied by a scale parameter β and summed with
the feature map F in an element-wise manner to obtain the final output FCA ∈
R

C×H×W :

FCA = β
C∑

i=1

(Fxji
V ) + Fj , Fxji

= K ⊗ QT (3)

For each channel of FCA, it is a weighted sum of features at all channel and
original features, which can boost the feature discriminability with long-range
contextual information.

Finally, the features obtained from the two spatial and channel enhancements
are add together to achieve the output FDEM for detection and tracking.

3.2 Identity Preserving Module

The contextual spatial information boosted by the proposed DEM can mostly
promote the detection. However, it is investigated that low-level features contain
more object-specific information for re-ID learning. Thus, as a complementary,
we propose the identity preserving module to re-calibrate channels to achieve the
object-specific information and preserve the semantic alignment of id-embedding
for re-ID.

We leverage the channel attention mechanism [29] to conduct the module. As
illustrated by the right part of Fig. 2, it is mainly implemented with three steps.
Firstly, the features FDEM ∈ R

C×H×W output by DEM are split into multi-
scale with different kernel sizes on each channel. With such operation, we can
obtain richer information about the position of the input tensor and process it on
multiple scales in a parallel manner. Next, we utilize the SEWeight module [30]
further extract the channel attention of the input feature maps in multiple scales
and generate the channel-wise attention weight vector, which can be represented
as:

Zi = SEweight(FDEMi
), i = 0, 1, 2 · · · S − 1. (4)

Zi ∈ R
C′×1×1 is the attention weight, and each feature map with different scales,

FDEMi
have the common channel dimension C ′ = C

S . Through the operation, the
shallow features which are suitable for the re-ID tasks could be more concerned.
By multiplying the weight with the feature in the corresponding scale FDEMi

,



464 Y. Cui et al.

we can obtain the enhanced feature with better information interaction between
both local and global channels:

Yi = FDEMi
� Softmax(Zi) i = 1, 2, 3, · · ·S − 1. (5)

Finally they are concatenated to generate the refined feature map for re-ID head:

FIPM = Cat([Y0, Y1, · · ·, Y(S−1)].) (6)

The identity preserving module preserves the semantic alignment of id-
embedding and improves the elasticity of objects of different scales during the
association process, thus improves the adaptiveness of object matching with
scale variation. Ablation study demonstrates that it complements to DEM for
improving the re-ID performance.

4 Experiments

4.1 Implementation Details

Following the baseline FairMOT, DLA-34 is adopted as our backbone. The input
image size is 1080 ×608× 3, and the output feature map resolution is 272× 152.
The Adam optimizer is utilized for training our model for 20 epochs on NVIDIA
GeForce RTX 3090 GPU. The learning rate is set as 10−4, using a factor 0.1
decay at 10-th epoch. The batch size is set to 12.

We use the following official metrics for MOT evaluation: the multi-object-
tracking-accuracy (MOTA) which reflects the average tracking performance, the
ratio of correctly identified detections over the average number of ground-truth
and computed detections (IDF1) which emphasizes the association accuracy, the
higher order tracking accuracy (HOTA) which is described as the geometric mean
of detection accuracy (DetA) and association accuracy (AssA), the number of
identity switches (IDs), the average precision (AP), and the true positive rate
(TPR) at a false accept rate of 0.1 for evaluating re-ID features.

For fair comparison, the training datasets are the same with FairMOT,
including ETH [31] and CityPerson [32], CalTech [33], CUHK-SYSU [34],
PRW [35], MOT17 and CrowdHuman [36]. We evaluate our tracker on two track-
ing benchmarks: MOT17 [24] and MOT20 [25].

4.2 Ablation Study

Evaluation of Proposed Modules. To evaluate the proposed modules of our
framework, we conduct ablation studies on the validation set of MOT17 [24],
and the results are shown in Table 1. Benefiting from the spatial and chan-
nel attention aggregation via self-attention, the proposed DEM has a significant
improvement in detection. As shown in the second row of Table 1, By incorporat-
ing DEM, the tracker outperforms the baseline FairMOT [20] by MOTA(+1.1),
IDF1(+1.6) and AP(+0.9). However, the identity switch is rising. It is because
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Table 1. Evaluation of the proposed modules on the validation set of MOT17. The
best results are shown in bold.

No Baseline DEM IPM MOTA↑ IDF1 ↑ IDs↓ AP↑
1 � 67.5 69.9 408 79.6

2 � � 68.6 71.5 432 80.5

3 � � 68.6 70.4 402 79.8

4 � � � 69.2 73.9 380 80.9

Table 2. Evaluation of training on the validation set of MOT17. The best results are
shown in bold.

Training Data Method MOTA↑ IDF1↑ IDs↓ AP↑ TPR↑
MOT17 FairMOT 67.5 69.9 408 79.6 93.4

AeMOT (ours) 69.2 73.9 380 80.9 94.9

MOT17+MIX FairMOT 69.1 72.8 299 81.2 94.4

AeMOT (ours) 70.0 74.4 282 82.8 96.0

the enhanced features reduce intra-class differentiation, which can be solved by
IPM. As can be seen in the third row of Table 1, compared with the baseline,
IPM achieves performance gains of MOTA(+1.1) and IDF1(+0.5) and reduce
the identity switch, which indicates that the representation of the object in the
re-ID head can be enhanced by IPM.

By combining the two modules, the framework shows the highest performance
gains and surpasses the baseline by MOTA(+1.7), IDF1(+4.0), IDs(−6.9%), and
AP(+1.3), which demonstrates that the two modules can complement to each
other, and achieve a good balancing in detection and re-ID feature learning.
The gains of IDs(−6.9%) prove that DEM also contributes to re-ID task with
adjustment of IPM.
Evaluation of Training Data. In comparison with the baseline, we follow the
training data from multiple datasets. Table 2 shows the results of models with
different training data, where”MIX” stands for the composed five datasets illus-
trated in the subsection of Implementation Details. Compared with the baseline,
our method outperforms it on both training strategies. Also, our framework can
benefit from larger training data.

4.3 Comparing with SOTA MOT Methods

We compare our method with the state-of-the-art trackers on the test set
of MOT17 [24] and MOT20 [25], and the results are shown in Table 3.
Our proposed AeMOT ranks first and outperforms the state-of-the-art track-
ers on the most important metrics. Compared with the baseline FairMOT,
our method surpasses it by MOTA(+7.0), IDF1(+2.7), HOTA(+1.1), and
IDs(−17.9%) on the MOT20 dataset, and surpasses it by MOTA(+0.2),
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Table 3. Evaluation on the test set of MOT challenge. Comparisons with the state-
of-the-art trackers are shown under the “private detector” method. The best results of
each dataset are shown in bold.

Benchmark Tracker Device MOTA↑ IDF1↑ HOTA↑ DetA↑ AssA↑ IDs↓ FPS↑
GSDT [12] – 66.2 68.7 55.2 60.0 51.1 3318 4.9

CTrackerv1 [9] – 66.6 57.4 49.0 53.6 45.2 5529 6.8

CenterTrack [13] Titanxp 67.8 64.7 52.2 53.8 51.0 3039 17.5

MOT17 [24] QDTrack [10] – 68.7 66.3 53.9 55.6 52.7 3378 20.3

TraDeS [11] 2080Ti 69.1 63.9 52.7 55.2 50.8 3555 11.9

MeMOT [21] A100 72.5 69.0 56.9 – 55.2 2724 –

MOTR [14] V100 73.4 68.6 57.8 60.3 55.7 2439 –

FairMOT [20] 2080Ti 73.7 72.3 59.3 60.9 58.0 3303 25.9

AeMOT (Ours) 3090 73.9 73.9 60.8 61.1 60.8 2955 20.9

FairMOT [20] 2080Ti 61.8 67.3 54.6 54.7 54.7 5243 13.2

MeMOT [21] A100 63.7 66.1 54.1 – 55.0 1938 –

MOT20 [25] TransTrack [7] V100 65.0 59.4 48.9 53.3 45.2 3608 7.2

GSDT [12] – 67.1 67.5 53.6 54.2 54.0 3131 0.9

Trackformer [15] – 68.6 65.7 54.7 56.7 53.0 1532 –

AeMOT (Ours) 3090 68.8 70.0 55.8 57.1 54.7 4307 10.1

IDF1(+1.6), HOTA(+1.5), and IDs(−10.5%) on the MOT17 dataset. Compared
with the newest Transformer-based and memory-based method MeMOT [21],
our AeMOT achieve a substantial performance gains of MOTA(+1.4/+5.1),
IDF1(+4.9/+3.9) and HOTA(+3.9/+1.7) on the MOT17/MOT20, respectively.
It should be noticed that MOT20 is a much more challenging benchmark
with serious occlusions and crowded scenarios. The larger performance gains
on MOT20 further demonstrate that our AeMOT can achieve robust perfor-
mance in intensive and more challenging scenes, which owing to the substantial
discriminability enhancement and identity information preservation of our pro-
posed framework. Compared with existing methods, our tracker also achieve a
comparable real-time speed of 20.9 FPS.

To further demonstrate the performance, we show some visualization results
on MOT17 testing set and MOT20 testing set in Fig. 3. It can be found that
tracking under challenges such as crowded scenes can be robustly performed by
our method, which can effectively handle large-scale change and maintain the
right identity.
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Fig. 3. Visual tracking results of our tracker on MOT17 and MOT20 test set. Different
identity is shown in different colored bounding box and trajectory. The illustration
shows the change every 100 frames.

5 Conclusion

In this paper, we present a new framework, namely AeMOT, for multiple object
tracking. It is designed with a discriminability enhancement module to enhance
discriminative feature representations for detection and tracking, and an identity
preserving module to further preserve identification features for the re-ID asso-
ciation. Our design significantly boosts the capacity of detection and tracking,
alleviating the problem of large target size variation and the overlap of the tar-
get in MOT. More importantly, it improves the elasticity of objects of different
scales during the association process. The two modules complement each other.
Experimental results demonstrate the effectiveness of our method.
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Abstract. Polyp detection plays a crucial role in the early prevention of
colorectal cancer. The availability of large-scale polyp video datasets and
video-level annotations has spurred research efforts to formulate polyp
detection as a weakly-supervised anomaly detection task, which lever-
ages video-level labeled training data for detecting frame-level polyps.
However, few studies have investigated the impact of specific proper-
ties within polyp videos, including temporal dynamics, ambiguity, and
complex noise. In this work, we propose TPNet, a novel framework that
addresses several challenges posed by colonoscopy videos, for weakly-
supervised polyp frame detection. Specifically, we design a Temporal
Encoder that effectively capturing the temporal dynamics and intricate
patterns within polyp video segments to foster accuracy. Additionally, we
introduce a Prototype-based Memory Bank that facilitates the storage
and retrieval of significant discriminative information, which enhance
the sensitivity and robustness in ambiguous and complicated condi-
tions. Experiments conducted on one of the largest and most challeng-
ing colonoscopy datasets demonstrate that our proposed TPNet achieves
state-of-the-art performance, surpassing the latest cutting-edge method
with 6.19% in average precision (AP).

Keywords: Polyp Detection · Weakly Surpervised · Temporal
Encoder · Prototype-based Memory Bank

1 Introduction

Colorectal cancer (CRC) is one of the most prevalent and lethal forms of cancer
globally [11,15,16]. Gastrointestinal endoscopy, a widely employed procedure,
plays a pivotal role in the early identification of gastric and colorectal cancers [2].
This procedure involves inserting a flexible tube with a miniature camera into the
digestive tract, enabling the identification of precancerous lesions [7]. However,
the miss rate of polyp detection remains alarmingly high [1,12,25]. Therefore,
there is an urgent need for advanced techniques that can effectively address the
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Fig. 1. The illustration of polyp frame detection task that aims to detect polpys within
colonoscopy videos. Frames are selected from a continuous colonoscopy video segment,
showcasing a series of typically ones in sequential order.

high miss rate and assist healthcare professionals in accurately detecting and
diagnosing polyps within the gastrointestinal endoscopy process.

With the increasing availability of data sharing and the low cost of video-
level annotations, Tian et al. [22] formulates polyp frame within colonoscopy
video detection as a weakly-supervised video anomaly detection task. As shown
in Fig. 1, given a series of colonoscopy videos, the objective is to learn a model
that accurately localizes polyp frames within a video using only video-level anno-
tations. However, the direct usage of weakly-supervised video anomaly detection
methods [5,20,21,23,26,28] to this task has yielded sub-optimal results due to
the significant differences between colonoscopy and real-world video. Therefore,
there is a pressing need of developing more robust methods for improving the
performance of weakly-supervised polyp frame detection. In the latest research,
Tian et al. [22] combines a convolutional transformer-based multiple instance
learning method with contrastive learning and results in 84.55% AP. Neverthe-
less, it does not fully consider the unique characteristics of colonoscopy videos.

Note that polyp videos focuses exclusively on the internal conditions of the
colon during endoscopic examinations so that they exhibit unique characteristics
that set them apart from real-world videos: (1) Temporal Dynamics (as shown in
Fig. 1a): Polyps present morphological and positional changes during the exami-
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nation process and intestinal peristalsis. These temporal variations contain valu-
able information, including dynamic patterns associated with both normal and
abnormal conditions; (2) Ambiguity (as shown in Fig. 1b): In certain segments,
polyps closely resemble surrounding normal tissues, lacking discernible features
that facilitate clear differentiation; (3) Complex Noise (as shown in Fig. 1c):
Polyp videos are often accompanied by complex noise, which stems from limited
recording conditions, artifacts such as water stains and glare, and residual food
particles, etc.

In this work, to consider the specific attributes inherent in polyp videos,
we propose TPNet, a novel weakly-supervised polyp frame detection model
that integrates Temporal Encoder and Prototype-based Memory Bank. Specif-
ically, the Temporal Encoder is designed based on Bi-directional LSTM (Long
Short-Term Memory) and self-attention mechanism, capturing and encoding the
dynamic temporal information present in polyp video segments. Besides, the
Prototype-based Memory Bank facilitates the accumulation and utilization of
discriminative information, mitigating the challenges posed by ambiguity and
complex noise in polyp video segments. Finally, we conduct experiments on a
recent, comprehensive, and challenging colonoscopy datasets to demonstrate the
superior performance of our TPNet.

To summarize, the main contributions of this study are as follows:

– We propose a novel weakly-supervised polyp frame detection model, TPNet,
that combines Temporal Encoder and Protorype-based Memory Bank to
effectively addressing the challenges associated with colonoscopy videos,
including temporal dynamics, ambiguity, and complex noise.

– We introduce a Temporal Encoder based on Bi-directional LSTM and self-
attention mechanism to capture the temporal variations and patterns within
polyp video segments, enables a comprehensive understanding of the dynamic
changes in polyp appearance and position over time.

– We design a Prototype-based Memory Bank that stores and updates infor-
mation from polyp video segments, which facilitates better discrimination
between normal and abnormal snippets and enhances sensitivity and robust-
ness to intricate features.

– Extensive experiments demonstrate the remarkable capability of our model,
outperforming state-of-the-art models with a significant improvement of
6.19% in Average Precision on one of the largest and most challenging
colonoscopy video datasets.

2 Method

2.1 Overall Architecture

As illustrated in Fig. 2, given the input video segment v ∈ RT×H×W , where
T is the temporal length that means the number of segments, and W and H
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Fig. 2. The pipeline of our proposed TPNet.

denotes the spatial resolution of each segments. Similar to numerous weakly-
supervised video anomaly detection methods [5,20–23,26,28], we extract video
features using a pre-trained I3D model [4]:

XI3D = I3D(v), (1)

where XI3D ∈ RT×DI3D , where DI3D is the dimensional length. Then, the Tem-
poral Encoder module is employed to model the dynamic relationships and inter-
actions among XI3D:

XTE = Temporal Encoder(XI3D), (2)

where XTE ∈ RT×D represents the temporal enhanced features that capture the
temporal dynamics and dependencies within the video segments.

Next, XTE is passed through the Prototype-based Memory Bank, which
enables the temporal-enhanced features to interact with each memory block and
obtain the memory-enhanced features:

XMem = Memory(XTE), (3)

where Memory denotes the Prototype-based Memory Bank and XMem ∈ RT×D

represents the prototype-augmented features. Furthermore, we concat XTE with
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XMem along the feature dimension, and pass them through a linear layer to
obtain the final temporal score:

yT = Linear(Concat(XTE,XMem)), (4)

where yT ∈ RT is the anomaly score for each temporal and Linear refers to a
linear layer. Due to we only have video-level annotations in the training set, i.e.,
y ∈ {0, 1}, we utilize the average of yT as the final video score ŷ ∈ [0, 1] for
supervising:

ŷ = Mean(yT). (5)

2.2 Temporal Encoder

The polyp video sequences provide continuous observations of the colon, allow-
ing for the dynamic temporal changes of polyps over time [8,9,18,22,24,25,27].
For instance, polyps may undergo a left-to-right movement, where their appear-
ance and position gradually shift horizontally across the video frames. To fully
leverage the valuable temporal information, we propose a Temporal Encoder
that captures the dynamic variations and patterns within polyps video snippets.
Specifically, we utilize Bi-directional LSTM allows model to leverage the pre-
ceding segments to understand the temporal dependencies and patterns leading
up to the current segment, and also incorporate information from succeeding
segments to anticipate future temporal dynamics. In addition, we use the self-
attention mechanism to dynamically attend to the segments that carry more
informative and discriminative temporal patterns.

Given XI3D ∈ RT×DI3D indicated features extracted from pre-trained I3D
model, firstly, we employ a Bi-directional LSTM network to facilitate temporal
dynamic modeling, the process is defined as:

XLSTM = Bi-LSTM(Conv1D(XI3D)), (6)

where Conv1D indicates a 1D convolutional layer to extract local features and
capture spatial patterns within each video segments, and Bi-LSTM represents
a Bi-directional LSTM layer. Furthermore, we apply linear transformations to
XLSTM to derive query (Q), key (K), and value (V ) matrices, followed by per-
forming global modeling using self-attention:

Xatt = Softmax
(
QKT

√
d

)
V + XLSTM, (7)

where d represents the dimension of the query and key vectors, + denotes residual
operation. The attention weights capture the importance of each element in the
sequence with respect to other elements. Finally, we employ a feed-forward neural
network (FFN) to further process the attended output Xatt:

XTE = FFN(Xatt) + Xatt, (8)
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where XTE ∈ RT×D and FFN represents a linear layer followed by the GELU
activation function.

By incorporating the Temporal Encoder into our model, we enable the con-
sideration of information from both past and future segments in polyp video
sequences. This allows for a more comprehensive understanding of the temporal
dynamics and patterns present in polyp videos.

2.3 Prototype-Based Memory Bank

Memory banks [6,10,13,17,19] have gained extensive usage in the domain of un-
supervised video anomaly detection, owing to their ability to store and retrieve
crucial information, enabling the learning of latent patterns and regularities from
unlabeled data. However, the complex data distribution in weakly-supervised
scenarios poses challenges for memory banks to effectively learn and store key
information, resulting in limited adoption in weakly-supervised video anomaly
detection fields. Nevertheless, in the case of polyp videos with reduced data
diversity compared to real-world data, we can efficiently leverage memory banks
to store and retrieve these discriminatory features so that enhances the perfor-
mance.

Prototype-based Memory Bank consists of multiple memory blocks, with each
memory block storing a prototype that represents features of video segments.
Formally, we define Prototype-based Memory Bank as a matrix M ∈ RN×D,
where N represents the number of memory blocks and D denotes the dimension
of each prototype. We use a uniform distribution to randomly generate initial
values for each prototype. Given XTE ∈ RT×D, we first calculate the correlation
of XTE to M :

W = Sigmoid(XTE · MT ), (9)

where · denotes matrix multiplication and Sigmoid refers to the Sigmoid func-
tion. W ∈ RT×N is used to measure the correlation between input features and
the memory bank. According to this relevance weight W , we retrieve the rele-
vant prototypes from the memory bank to obtain the augmented features that
incorporate previously stored information:

XMem = W · M, (10)

where XMem ∈ RT×D represents the memory-augmented features. This opera-
tion allows the model to selectively retrieve and integrate relevant information
from the memory bank into the input features.

The Prototype-based Memory Bank enables the storage and retrieval of pro-
totypes that capture various video segment features. By preserving these proto-
types, the model not only learns additional fine-grained features but also captures
long-term dependency patterns within polyp video segments, thereby improving
sensitivity, accuracy, and robustness in polyp detection.
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2.4 Loss Function

Given the final video score ŷ ∈ [0, 1], we employ a binary cross-entropy loss
function to supervise the training:

Loss = −
B∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)), (11)

where y ∈ {0, 1} represents label and B is the batch size.

3 Experiment

3.1 Experiment Settings

Training and Testing Settings: We use the dataset that combines Hyper-
Kvasir [3] dataset and LDPolypVideo [14] dataset, which totally contains over
one million frames and has diverse polyps with various sizes and shapes. Fur-
thermore, similar with [22], the training set comprises 61 normal videos without
polyps and 102 abnormal videos with polyps, while the testing set consists of 30
normal videos and 60 abnormal videos. Notably, the training set is annotated at
the video-level, whereas the testing set is annotated at the frame-level.
Evaluation Metrics: Following [22], we adopt the frame-level area under the
ROC curve (AUC) and average precision (AP) as the evaluation metrics, and
higher AUC and AP values indicate better performance.
Implement Details: We adopted the methodology presented in [22], which
divided each video into 32 video snippets and employed the pre-trained I3D
model [4] to extract 2048D snippet features from the mixed5c layer. The imple-
mentation was conducted on the PyTorch platform and trained using a NVIDIA
3090 GPU. For the training process, we utilized a batch size of 16 and trained
the model for 200 epochs. The optimization algorithm employed was Adam,
with a learning rate of 1e-4. Furthermore, we performed end-to-end training
without applying any data augmentation techniques. The number of memory
blocks within Prototype-based Memory Bank is set to 80 and the dimension D
in XTE and XMem is set to 1024.

3.2 Comparison with Other Methods

Quantitive Evaluation: We selected the cutting-edge weakly-supervised video
anomaly detection models [5,20,21,23,26,28] from recent years and the latest
CTMIL [22] that specifically designed for polyp frame detection. The results are
all reproduced from their respective open-source codes at the same setting and
used the same feature extracted from pre-trained I3D model for a fair compari-
son.

As depicted in Table 1, the recent cutting-edge weakly-supervised video
anomaly detection methods have showcased a wide range of outcomes when
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Table 1. Comparison with other methods. Results recomputed from released source
codes using the same features from I3D in the same setting. Results of CTMIL and
ours are the average over 30 runs.

Method Year Feature AUC(%) AP(%)

DeepMIL [20] 2018 I3D(RGB) 89.41 68.53

GCN-Ano [28] 2019 I3D(RGB) 92.13 75.39

CLAWS [26] 2020 I3D(RGB) 95.62 80.42

AR-Net [23] 2020 I3D(RGB) 88.59 71.58

MIST [5] 2021 I3D(RGB) 94.53 72.85

RTFM [21] 2021 I3D(RGB) 96.30 77.96

CTMIL [22] 2022 I3D(RGB) 97.18 84.55

Ours 2023 I3D(RGB) 98.97 90.74

applied to polyp frame detection, owing to their tailored design for various real-
world data distributions. Furthermore, beyond these methods, CTMIL stands
out by achieving an impressive AP of 84.55%. This remarkable performance
underscores the potential of integrating contrastive learning to enhance the dis-
crimination between polyp and normal tissues. However, our proposed TPNet
outperforms CTMIL with a significant advancement, achieving an outstanding
AP of 90.74%. The substantial improvement serves as a testament to the height-
ened accuracy and robustness of our model. Moreover, this significant margin
further reinforces the superiority of our methodology, which incorporates the
guidance of temporal dynamics and leverages discriminative information for opti-
mal polyp frame detection.
Qualitative Evaluation: To provide an intuitive demonstration of the effective-
ness of our proposed TPNet, we conducted a series of qualitative experiments.
In Fig. 3, we have selected several specific segments that exhibit characteristics
commonly observed in polyp videos.

In Fig. 3a, we demonstrate the temporal changes of a polyp over several seg-
ments, highlighting the progressive movement that occur. The result showcases
our proposed TPNet is capable of effectively tracking the temporal dynamics of
polyps within videos and utilizing this contextual information about the tem-
poral sequences to accurately identify polyps. In addition, we present snippets
where the polyp appears visually similar to the surrounding normal tissues in
Fig. 3b, which demonstrates the effectiveness of our approach in distinguish-
ing subtle differences. Moreover, as illustrated in Fig. 3c and Fig. 3d, TPNet
demostrates the capability to identify polyps in the presence of various sources
of noise, which further confirms that our proposed method can effectively utilize
the stored prototypes for a robust polyp detection.

Through these qualitative experiments, we highlighted the strengths of our
proposed TPNet and demonstrated its efficacy in addressing various challenging
scenarios encountered in polyp videos. The results showcase the model’s ability to
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(a) The polyp evolution with carmera
processing.

(b) Polyps that are hardly distinguish-
able from surrounding skin.

(c) Interference with water and light. (d) Interference with water and light.

Fig. 3. Qualitative evaluation involves several complex scenarios.

accurately track the temporal pattern of polyps, effectively differentiate polyps
from normal tissues, and handle noise interference. These promising findings
could provide valuable insights for future research and development in this field.

3.3 Effectiveness of Each Component

To analyze the role of the Temporal Encoder (TE) and Prototype-based Memory
Bank (PMB) within our proposed TPNet, we conduct a comprehensive ablation
study. As indicated in Table 2, we can observe that: (1) The TE-only model

Fig. 4. Parametric experiments of
the number of memory blocks.

Table 2. Ablation studies in our proposed
TPNet. Results are the average over 30 runs.

TE PMB AUC(%) AP(%)

– – 94.41 75.53

� – 98.13 88.56

– � 95.42 77.74

� � 98.97 90.74
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(Row 2 ) achieves impressive performance, with an AUC of 98.13% and an AP
of 88.56%, surpassing the state-of-the-art methods significantly. This result con-
firms the temporal dynamic guidance is essential for polyp frame detection; (2)
When combined with the PMB, the performance of the vanilla model (Row 1 ) or
the TE-only model (Row 3 ) both improves. This finding underscores the impor-
tance of the prototypes stored and retrieved by the PMB. In this manner, our
model captures the distinctive characteristics of polyps, enhancing its ability to
discriminate between polyp features and normal features, which further boosts
the precision and overall performance; (3) The best results are achieved by the
model (Row 4 ) that combines TE and PMB, which highlights the complementary
nature and synergistic effects of these two components in TPNet. By leveraging
both temporal dynamic guidance and prototype information, the model is able
to better capture the temporal patterns and utilize typically features for more
accurate and robust polyp frame detection.

3.4 Influence of the Number of Memory Blocks

We varied the number of memory blocks from 10 to 150 and measured the average
precision (AP) as the performance metric. The results are summarized in Fig. 4,
we can summarize these conclusions: (1) The more memory blocks there are,
the greater the improvement in the model’s performance, which highlights the
effectiveness of utilizing a enough number of memory blocks in capturing and
storing features; (2) The model achieves its peak performance, i.e., 90.74% AP,
when the number of memory blocks is set to 80, which provides robust guidance
for our parameter settings; (3) As the number of memory blocks continues to
increase, the performance starts to decline and eventually reaches a stable state.
This observation suggests that setting an excessive number of memory blocks
can introduce redundancy to the model, resulting in diminishing returns and
potential computational inefficiency.

4 Conclusion

In this work, we present TPNet, a novel weakly-supervised polyp frame detec-
tion model that effectively addresses the challenges associated with colonoscopy
videos. Specifically, we design a Temporal Encoder module that captures global
relationships and interactions within polyp videos, which significantly captures
the dynamic temporal changes and patterns within polyp video segments. In
addition, we propose a Prototype-based Memory Bank, which enables the stor-
age and retrieval of significant discriminative information, enhancing the model’s
sensitivity and robutsness to intricate polyps. Extensive experiments demon-
strates that our proposed TPNet achieved the state-of-the-art performance in
weakly-supervised polyp frame detection.
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Abstract. Domain Generalization (DG) in Person Re-identification
(ReID) tackles the task of testing in unseen domains without using target
domain data during training. Existing DG ReID methods achieve impres-
sive performance with unified ensemble models or multi-expert hybrid
networks. However, as the number of source domains increases, complex
relationships between training samples result in domain-invariant charac-
teristics with spurious correlations, impacting further generalization. To
address this, we propose a Bilateral Frequency-Aware Network(BFAN)
that leverages spectral feature correlation learning for discriminative
hybrid features. BFAN includes a Bilateral Frequency Component-guided
Attention (BFCA) module to capture semantic information from diverse
frequency features and fuse it with spatial features. Additionally, a
Fourier Noise Masquerade Filtering (FNMF) module is introduced to
suppress non-generalization-supporting components in the frequency
domain. Extensive experiments on various datasets demonstrate our
method’s notably competitive performance.

Keywords: Domain Generalization · Person Re-identification ·
Frequency Domain Learning

1 Introduction

Person re-identification (ReID) [23,25] aims to match individuals across different
camera views or frames, due to the maturation of clustering method [9,17,18],
Unsupervised Person ReID [15] has achieved remarkable development but apply-
ing trained models to unseen domains often leads to performance degradation
due to domain gaps [20]. With a substantial amount of unlabeled pedestrian data
available, it is crucial to explore ReID models with robust generalization capa-
bilities. Recent research has focused on domain adaptive [25] (DA) and domain
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generalization [23,26] (DG) ReID. While DA ReID adapts the model using target
domain samples, DG ReID tackles the more challenging scenario of unseen tar-
get domains without fine-tuning. This paper specifically addresses the practical
DG person ReID problem, which is important for real-world applications.

Fig. 1. Re-construction of frequency components of person samples: (a) original image;
(b) normlized image; (c-d) reconstruction of high and low frequency components of the
image after separation; (e-f) reconstructed image with amplitude and phase component
information only by setting another component to a constant.

Existing DG ReID methods can be divided into two categories. One cat-
egory [4,26] focuses on ensemble models that learn a shared feature space
across different domains, while the other category [5,23] emphasizes correla-
tions between domains and uses multi-expert networks to enhance generaliza-
tion. Nonetheless, both of these approaches may encounter two potential issues:
(1) The distribution of source domain data in the spatial domain follows the
assumption of being independent and identically distributed (i.i.d.), but the
spurious correlations caused by the similarity of instance-level features detri-
mentally impact model generalization. (2) When the training and test samples
come from different distributions, the generalization behavior of CNNs is easily
disturbed by frequency domain noise [2], which is also reflected in DG ReID
models.

Recent theoretical study [24] has shown that the sample spectrum influences
the model’s generalization behavior. Models exhibit preferences for component
information at different frequencies during training. Feature learning in the fre-
quency domain can effectively address these issues. As shown in Fig. 1, low-
frequency components capture texture structure and image-specific energy dis-
tributions, while high-frequency information describes pixel variations between
object edges and the background, showing consistency across domains. The
implicit high-level semantics of the image amplitude and phase further aid the
model in avoiding local optima [2].

Therefore, inspired by previous studies, this paper proposes the BFAN net-
work for multi-source DG ReID in the image frequency domain. It aims to
enable the model to learn domain-invariant features without spatial domain
bias and leverage complementary information from different frequency com-
ponents, improving generalization to unseen domains. The BFAN applies fast
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Fourier transform to obtain frequency representations, separates them into high
and low-frequency components using Bilateral Frequency Component-guided
Attention (BFCA), captures long-range dependencies with non-local attention,
and employs Fourier Noise Masquerade Filtering (FNMF) to filter out non-
generalization-supporting frequency information. Our contributions are summa-
rized as follows:

– A Bilateral Frequency-Aware Network (BFAN) is proposed to learn domain-
invariant features based on image frequency spectrum in the embedding space.

– Bilateral Frequency Component-guided Attention (BFCA) module is con-
structed to perceive the semantic information in the high-frequency compo-
nents and the texture information in the low-frequency components.

– A novel Fourier Noise Masquerade Filtering (FNMF) module is designed to
suppresses the influence of frequency noise on generalization through filtering
operations in the spatial dimension.

2 Methods

2.1 Overview

In this study, the DG ReID problem is addressed by incorporating complemen-
tary information from the spatial and frequency domains. The structured train-
ing framework, depicted in Fig. 2, aims to improve the model’s generalization
in unseen domains. Frequency domain information is used as a supplement to
spatial domain information for extracting robust domain-invariant representa-
tions. The backbone network receives input from multi-source domains with
non-overlapping person identity tags. The BFCA module is introduced at the
middle layer to acquire complementary frequency domain information, separat-
ing features into high-frequency and low-frequency components. To capture orig-
inal image semantics and texture information, the FNMF module is positioned
before the GAP at the end of the trunk. It effectively filters out frequency domain
noise, enhancing the model’s generalizability and overall performance.

In typical DG ReID methods [4,26], Ns source domains Ds = D1
s ,D2

s , ...,DNs
s

are provided during training. Each Dk
s consists of Nk samples xk

i with corre-
sponding labels yk

i in the k-th domain. The objective is to train models on Ds

that perform well on unseen domain DT without further updates using DT data.
In DG ReID, the source domains are assumed to follow independent identical dis-
tributions, with disjoint label spaces. The aim is to train a generalizable model
using the source data. During testing, the model is directly evaluated on the
unseen domain DT .

The BFCA module applies Fourier transform to the embedding space fea-
tures, separating them into different frequency components using a controllable-
sized Euclidean distance mask. Non-local convolutional operations are then
applied to the high/low frequency components in the frequency domain. This
injects original semantic and texture information into the spatial domain fea-
tures, aiding convergence to the local optimum. On the other hand, the FNMF
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Fig. 2. The overall architecture of Bilateral Frequency-aware Network (BFAN) which
unites multiple source domains for federated training and does not require the target
domain to participate in the training process.

module performs frequency domain filtering deeper in the network using pooling
operations and learns non-shared instance-level masks. It demonstrates the fea-
sibility of frequency domain noise filtering without modifying the original data
sources. Detailed descriptions of these modules will be provided in the following
subsections.

2.2 Bilateral Frequency Component-Guided Attention

Most DG person ReID methods focus on capturing the semantic information
embedded in spatial domain features while ignoring the potential complemen-
tary information in the frequency domain, which helps the auxiliary model to
improve feature recognition. Specifically, since the ultimate goal of the domain
generalized person ReID task is to train a model that performs well even in the
face of unknown domains, the ability of the model to learn domain-invariant fea-
tures becomes particularly important, as previous methods inevitably retain bias
to the source domain after training is completed, and it becomes particularly
important to learn the debiased complementary information in the frequency
domain components to bridge the domain bias. Inspired by the semantic preser-
vation and non-intuitive generalization of the Fourier frequency components [16],
the Bilateral Frequency Component-guided Attention (BFCA) is designed con-
taining the Euclidean distance mask.

As shown in Fig. 2, assuming the i-th sample xk
i ∈ R

C×H×W from the k-
th source domain mini batch, each channel of the latent layer feature xk

i is
transformed to the frequency domain space using the Fast Fourier transform,
and the fast Fourier transform equation is

F (
xk

i

)
(c, u, v) =

C−1∑

c=0

H−1∑

h=0

W−1∑

w=0

xk
i (c, h, w) e−j2π( h

H u+ w
W v) (1)

which C, H and W are the number of channels, width and height of the image,
respectively, F−1

(
xk

i

)
defines the inverse Fourier transformation and ⊗ indi-
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Fig. 3. The FNMF module constructs spectral features using Fourier transform and
applies filtering operations to extract transferable and easily generalizable feature infor-
mation within the spectrum.

cates the element-wise multiplication of two matrices. The transformed image
frequency domain features are denoted as Gfreq = F (

xk
i

)
. The high frequency

component and low frequency component can be obtained by decomposing the
frequency domain features through the Euclidean distance mask with the fol-
lowing equation,

Gh, Gl = F−1
(
Gfreq ⊗ M̂ (r)

)
(2)

Define M̂ (·) as the Euclidean distance mask construction threshold function, and
construct the frequency component mask through the hyperparameter radius r
to obtain the high frequency component Gh ∈ R

C×H×W and low frequency
component Gl ∈ R

C×H×W of the image, the specific formula and construction
process are as follows,

M̂ (i, j) =

{
1, d ((i, j) , (uc, vc)) ≤ r

0, otherwise
(3)

where d (·) refers to the Euclidean distance, use M̂ (i, j) to index the position
of (i, j) in the frequency component feature map, and use (uc, vc) to denote the
feature map center-of-mass location. Then, the weighted sum of all positions
in the frequency domain is obtained from Gh and Gl using powerful non-local
attention [19] to obtain a long-range representation GFusion covering the whole
globe, expressed by the equation,

GFusion = iFFT
(
ϕ

(
Gh

)
+ ϕ

(
Gl

))
+ Gs (4)

where as ϕ denotes Non Local operation, iFFT denotes the Fourier Inversion
(Fig. 3).

2.3 Fourier Noise Masquerade Filtering

Previous studies [16,24] have indicated that frequency characteristics affect a
significant role in balancing robustness and accuracy. Additionally, ReID models
exhibit varying preferences for specific frequency components during the acquisi-
tion of intermediate features. In this paper, an Fourier Noise Masquerade Filter-
ing (FNMF) module was developed to improve the transferability of frequency
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components for DG ReID which through a straightforward filtering operation.
Simultaneously, it suppresses the components that hinder cross-domain gener-
alization. In contrast to the previous frequency-based approach implemented in
the pixel feature space, the proposed filtering operation was applied in the latent
feature space. Given the representation of potential frequency domain features
as Xfreq ∈ R

H×(�W
2 �+1)×2C . The proposed frequency domain noise filtering

mechanism is expressed as shown in the following equation,

X ′
freq = Xfreq ⊗ Ms (Xfreq) (5)

where ⊗ denotes element-wise multiplication. Ms (·) refers to the attention mod-
ule to filter frequency noise and learn the spatial mask with a resolution of
H × (⌊

W
2

⌋
+ 1

)
. The mask is applied to filter out frequency domain compo-

nents along the channel dimension that do not contribute to generalization.
The resulting filtered frequency domain features are denoted as X ′

freq. For
Xfreq ∈ R

2C×H×(�W
2 +1�) which represents the amplitude and phase parts after

the FFT, first utilize a 1 × 1 convolutional layer, followed by Batch Normal-
ization (BN) and ReLU activation, to project Xfreq into an embedding space
for subsequent filtration. After embedding, aggregate the information of Xfreq

over channels using both average-pooling and max-pooling operations along the
channel axis, generating two frequency descriptors denoted by Xavg

freq and Xmax
freq

, respectively. These two descriptors can be viewed as two compact representa-
tions of Xfreq in which the information of each frequency component is com-
pressed separately by the pooling operations while the spatial discriminability
is still preserved. Then concatenate Xavg

freq with Xavg
freq and use a large-kernel 7

× 7 convolution layer followed by a sigmoid function to learn the spatial mask.
Mathematically, this instantiation can be formulated as,

X ′
freq = Xfreq ⊗ σ (Conv7×7 (AvgPool (Xfreq))) +

Xfreq ⊗ σ (Conv7×7 (MaxPool (Xfreq)))
(6)

where σ denotes the sigmoid function. AvgPool (·) and MaxPool (·) denote
the average and max pooling operations, respectively. Conv7×7 (·) is a convo-
lution layer with the kernel size of 7. Albeit using a large-size kernel, the feature
AvgPool (Xfreq), MaxPool (Xfreq) has only two channels through the informa-
tion squeeze by pooling operations such that this step is still very computation-
ally efficient in practice.

2.4 Loss Function

To generalize to the unseen target domain, this paper uses memory-based and
contrastive learning recognition loss, which is non-parametric and suitable for
DG ReID. In addition, similar to [5], triplet loss [7] Ltri and center loss [21]
Lcent are also used for parameter updates when training generalization models.

As shown in Fig. 2, a separate memory dictionary is maintained for each
source domain, and the identity loss is calculated using the learned features and
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Table 1. Summary of all the
datasets.

Datasets #IDs #Images #Cameras

Market1501 (MA) [27] 1,501 32,217 6

CUHK02 (C2) [11] 1,816 7,264 10

CUHK03 (C3) [12] 1,467 14,096 2

CUHK-SYSU (CS) [22] 11,934 34,574 1

MSMT17 (MS) [20] 4,101 126,441 15

VIPeR [6] 634 1264 2

iLIDs [28] 300 4515 2

GRID [14] 1025 1275 8

PRID [8] 749 949 2

Table 2. Evaluation protocols.

Training Sets Testing Sets

Protocol-1 Full-(MA+C2+C3+CS) PRID,GRID,
VIPeR,iLIDs

Protocol-2 MA+CS+MS C3

MA+CS+C3 MS

MS+C3+CS MA

Protocol-3 Full-(MA+CS+MS) C3

Full-(MA+C3+CS) MS

Full-(CS+C3+MS) MA

memory centroids based on the frequency domain, so that the model gradient
is updated in a way that is more in line with the potential hyper-distribution.
Specifically, for the source domain DS

i with n person identities, there are ni slots
in the memory dictionary Mi

c, and each slot is initialized to a feature centroids
corresponding to the person identities. Then, given the feature Freq(xi) extracted
by BFAN forward propagation, calculate the similarity between Freq(xi) and
each centroid in the memory. The contrast recognition loss aims to classify f as
the corresponding pedestrian identity. The calculation formula is as follows,

LM = − log
exp

(
MT

i · Freq (xi)/τ
)

ni∑

c=1
exp (MT

c · Freq (xi)/τ )
(7)

where τ is the temperature factor that controls the scale of distribution.In each
iteration training, the centroid of the corresponding person in the memory is
updated using the features extracted by BFAN in the current minibatch. A
centroid in the memory is updated through as follows,

Mc ← m · Mc +
(1 − m)

|Bc| ·
∑

xi∈Bc

Freq (xi) (8)

where m ∈ [0, 1) is the momentum coeffcient, which is set as 0.2, Bc denotes the
person samples belonging to the k-th identity and |Bc| denotes the number of
peroson samples for the k-th identity in current mini-batch.

Ltotal = LM + Ltri + Lcent (9)

3 Experiments

3.1 Datasets and Evaluation Protocals

Datasets. As shown in Table 1, to evaluate the effectiveness of our proposed
method, this paper conducts experiments on 9 standard person re-ID datasets
including Market1501 [27], MSMT17 [20], CUHK02 [11], CUHK03 [12], CUHK-
SYSU [22], PRID [8], GRID [14], VIPeR [6], iLIDs [28]. The evaluation metrics
employed in our work include Cumulative Matching Characteristics (CMC) and
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mean Average Precision (mAP). For the sake of simplicity, Market1501 is referred
to as MA, MSMT17 as MS, CUHK02 as C2, CUHK03 as C3, and CUHKSYSU
as CS.
Evaluation Protocols. Due to the removal of DukeMTMC-reID, new protocols
(Table 2) have been introduced for DG ReID. In protocol-1, all source domain
images are used for training and evaluation follows [23]. Protocol-2 selects one
domain for testing and the others for training. Protocol-3 uses all source domain
images for training. Since the CS person search dataset comprises only 1 camera,
it is excluded from the testing process.

3.2 Implementation Details

The person images are resized to 256 × 128. The backbone of BFAN is ResNet-
50, pretrained on ImageNet. The batch size is set to 64, including 16 identities
with 4 images per identity. Similar to [26], the data augmentation includes color
jitter and random erasing. The model is trained for 60 epochs with a warmup
strategy applied in the first 10 epochs. The learning rate is initialized and divided
by 10 at the 30th and 50th epochs, respectively. The optimizer used is Adam
with a momentum of 0.9 and weight decay of 0.0005. The initial learning rate is
3.5 × 10−4, and it is decayed using a cosine annealing schedule. All experiments
are conducted on hardware consisting of two Intel(R) Xeon(R) Silver 4214R
CPUs @2.40 GHz and two NVIDIA A4000 GPUs.
Baseline. To establish the baseline, the original Non-local attention method [19]
is utilized. It is important to note that the baseline does not take advantage
of complementary feature information from frequency domain components and
does not perform frequency domain filtering operations.

3.3 Comparison with State-of-the-art Methods

Genralizable Performances on Small-Scale Datasets. As presented in
Table 3, the proposed method is extensively compared to state-of-the-art meth-
ods following protocol-1. Results of other methods that utilize DukeMTMC-reID
in the source domains are reported for reference, but it is excluded from our
training sets during the experiments. Despite using fewer source domains, our
method achieves the highest performance.
Generalizable Performances Under Large-Scale Datasets. As shown
in Table 4, our proposed method compare with other state-of-the-arts under
protocol-2 and protocol-3,. ‘Source’ refers that only the training sets in the
source domains are used for training and ‘Full-’ denotes that all images in the
source domains (i.e. combining training and testing sets) are leveraged at train-
ing time. When generalizing to the unseen target domains, namely Market-1501,
CUHK03, and MSMT17, our proposed BFAN outperforms the second-best app-
roach by 5.3% in Market1501 and 6.7% in CUHK03 in terms of Rank-1 accu-
racy, and 9.7%, 4.5%, and 0.5% in terms of mAP (mean Average Precision),
respectively. Moreover, when incorporating the testing sets of all visible source
domains during model training, our BFAN surpasses the second-best approach,
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Table 3. Performance (%) comparison with the state-of-the-art methods on the small-
scale person ReID datasets under Protocol-1.

Method Source
→VIPeR(V) →PRID(P) →GRID(G) →iLIDS(I) Average

mAP R1 mAP R1 mAP R1 mAP R1 mAP R1

DDAN [3]

Full-(MA+C2

+C3+CS+D)

60.8 56.5 67.5 62.9 50.9 46.2 81.2 78.0 65.1 60.9

SNR [10] 58.0 49.2 60.4 47.3 49.0 39.4 84.0 77.3 62.9 53.3

CBN [29] 59.2 49.0 65.7 61.3 47.8 43.3 79.4 75.3 63.0 57.2

Person30K [1] 60.4 53.9 68.4 60.6 56.6 50.9 83.9 79.3 67.3 61.1

RaMoE [5] 64.6 56.6 67.3 57.7 54.2 46.8 90.2 85.0 69.1 61.5

MetaBIN [4] 66.0 56.2 79.8 72.5 58.1 49.7 85.5 79.7 72.4 64.5

QAConv50 [13]

Full-(MA+C2

+C3+CS)

66.3 57.0 62.2 52.3 57.4 48.6 81.9 75.0 67.0 58.2

M3L [26] 68.2 60.8 65.3 55.0 50.5 40.0 74.3 65.0 64.6 55.2

MetaBIN [4] 64.3 55.9 70.8 61.2 57.9 50.2 82.7 74.7 68.9 60.5

META [23] 68.4 61.5 71.1 61.9 60.1 52.4 83.5 79.2 70.9 63.8

Ours 68.7 60.9 71.3 63.2 59.8 56.1 84.6 81.0 71.1 65.3

Table 4. Performance (%) comparison with the state-of-the-art methods on the large-
scale person ReID datasets under Protocol-2 and Protocol-3. The model denoted as
M3L* indicates the usage of IBN-Net50 as the backbone architecture. In the absence
of this superscript, the ResNet-50 is employed as the backbone.

Method Source
Market-1501

Source
CUHK03

Source
MSMT17

mAP R1 mAP R1 mAP R1

SNR [10]

MS+CS+C3

34.6 62.7

MS+CS+MA

8.9 8.9

CS+MA+C3

6.8 19.9

MetaBIN [4] 57.9 80.0 28.8 28.1 17.8 40.2

M3L [26] 58.4 79.9 20.9 31.9 15.9 36.9

M3L* [26] 61.5 82.3 34.2 34.4 16.7 37.5

QAConv50 [13] 63.1 83.7 25.4 24.8 16.4 45.3

Ours 67.6 85.3 33.3 34.8 18.3 39.8

SNR [10]

Full-

(MS+CS+C3)

52.4 77.8

Full-

(MS+CS+MA)

17.5 17.1

Full-

(CS+MA+C3)

7.7 22.0

M3L [26] 61.2 81.2 32.3 33.8 16.2 36.9

M3L* [26] 62.4 82.7 35.7 36.5 17.4 38.6

QAConv50 [13] 66.5 85.0 32.9 33.3 17.6 46.6

MetaBIN [4] 67.2 84.5 43.0 43.1 18.8 41.2

Ours 72.5 87.9 45.5 44.2 20.6 43.3

by 3.4%, 1.1%, and 2.1% in terms of Rank-1 accuracy, and 5.3%, 2.5%, and 1.8%
in terms of mAP. These results demonstrate that our proposed method signif-
icantly improves the generalization capability of learned features, even when
learning complementary information and performing filtering operations in the
frequency domain.

3.4 Ablation Studies

The effectiveness of BFCA and FNMF. A comprehensive analysis was
conducted to evaluate the effectiveness of the proposed BFAN. Each module
was individually compared to the Baseline model (ResNet+Non-local Atten-
tion). The performance of each module can be seen in Fig. 4. Ablation experi-
ments in Protocol-2 specifically assessed the impact of BFCA and FNMF. “w/o
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FNMF” excluded the filtering operation, using only the BFCA module, while
“w/o BFCA” employed only the FNMF module. Results in Fig. 4 demonstrate
that both the BFCA and FNMF modules outperformed the Baseline, indicating
their superior generalization performance.
The effectiveness of High/Low Frequency Components. Additionally,
ablation experiments on different frequency branches of BFCA were conducted
to examine the impact on the DG ReID model’s generalization performance, as
shown in Fig. 5. “HFC” represents learning complementary information solely
on the high-frequency component, while “LFC” signifies learning solely on the
low-frequency component. Results in Fig. 5 indicate that both high-frequency
and low-frequency components contribute to improving the DG ReID model’s
performance. However, the enhancement from low-frequency components is more
significant compared to the relatively smaller enhancement from high-frequency
components. These results confirm that learning texture information in the
low-frequency range is easier than learning semantic information in the high-
frequency range.

Fig. 4. Following Protocol-2, ablation studies were conducted on the individual com-
ponents of BFAN to evaluate their impact and significance.

Fig. 5. Ablation studies on different frequency components of BFCA under the
Protocol-2.
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4 Conclusion

In this paper, a DG Person ReID method based on complementary learning
of spectral features is proposed. This method enables real-time transmission
of spectral feature information for domain invariant feature learning. The pro-
posed learning framework captures complementary information between high-
frequency and low-frequency components of images in the embedding space. It
enhances the transferable frequency domain components while suppressing fre-
quency domain noise that hinders generalization, resulting in more robust and
consistent extracted features. Extensive experiments have verified the effective-
ness of the various components within the proposed framework.
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Abstract. 3D Multi-Object Tracking (MOT) is a key component in
numerous applications, such as autonomous driving and intelligent
robotics, playing a crucial role in the perception and decision-making
processes of intelligent systems. In this paper, we propose a 3D MOT
system based on a cost-effective stereo camera pair, which includes
a 3D multimodal re-identification (ReID) model capable of multi-task
learning. The ReID model obtains the multimodal features of objects,
including RGB and point cloud information. We design data associa-
tion and trajectory management algorithms. The data association com-
putes an affinity matrix for the object feature embeddings and motion
information, while the trajectory management controls the lifecycle of
the trajectories. In addition, we create a ReID dataset based on the
KITTI Tracking dataset, used for training and validating ReID mod-
els. Results demonstrate that our method can achieve accurate object
tracking solely with a stereo camera pair, maintaining high reliability
even in cases of occlusion and missed detections. Experimental evalu-
ation shows that our approach outperforms competitive results on the
KITTI MOT leaderboard. Our code, dataset, and model are available at
https://github.com/maomao279/Stereo3DMOT.

Keywords: 3D MOT · ReID · Stereo Vision · Point Cloud

1 Introduction

3D MOT is a crucial task in autonomous driving and robotics, playing an irre-
placeable role in the continuous perception of the surrounding environment. It
can accurately obtain information such as the volume, angle, and 3D location
of the tracked objects. The goal is to identify the same object and continually
record its status in consecutive video frames. The tracked object always main-
tains the same ID during movement, and the robustness of tracking methods
needs to be maintained even in cases of occlusion and missed detections. Cur-
rently, most existing 3D MOT methods are based on the Tracking-by-Detection
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14436, pp. 495–507, 2024.
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(TBD) paradigm, in which a 3D detector [1–3] first identifies the objects in the
image, followed by tracking of these objects. Usually, the detection and tracking
methods are used simultaneously to accomplish the 3D MOT task.

Some lightweight 3D MOT methods [4–7], which achieve tracking solely
through the movement information of targets, demonstrate superior real-time
performance. They save a significant amount of computational resources as they
don’t require inference through neural networks. However, these methods strug-
gle to effectively address the challenges of object re-identification triggered by
occlusion. To further enhance the accuracy of 3D MOT, [8–11] employ a com-
bination of 2D and 3D detections, acquiring multimodal information from RGB
images and LiDAR. However, the need to integrate both 2D and 3D detectors
imposes a significant computational burden. Other methods [12,13] only utilize
a 3D detector and a single camera, improving object re-identification rates by
introducing a ReID model to leverage the neural network’s capability of extract-
ing appearance features. However, the information provided by a single RGB
image is limited. In scenarios where lighting conditions rapidly change, the fea-
tures extracted by these methods do not exhibit robustness.

Considering both the cost of equipment and computational complexity, we
propose a 3D MOT method based on the TBD paradigm: Stereo3DMOT. Our
method requires only a stereo camera pair as the sensing device and can inte-
grate any 3D object detector. For feature extraction of objects during tracking,
we design a 3D ReID neural network model: Stereo3D ReID. It integrates RGB
appearance features and 3D point cloud features, compensating for the signifi-
cant influence of lighting and color change on object appearance in RGB images.
This multimodal ReID model is realized without the use of LiDAR, effectively
ensuring the time-invariance of objects. We design multi-stage data association
and trajectory management methods that fully utilize ReID feature embeddings
and trajectory motion information. The results show that our method remains
robust in scenarios of occlusion and missed detections. Our contributions can be
summarized as follows:

• We propose a 3D multimodal ReID neural network model based on a stereo
camera pair, which can simultaneously carry out multi-task learning for ReID
and disparity matching. It integrates both RGB appearance and point cloud
3D features using only cameras.

• We design data association and trajectory management methods that can
better reconstruct the motion process of trajectories and remain robust in
situations of occlusion and missed detection.

• We create a 3D ReID dataset based on the KITTI Tracking dataset. We
submit our results to the KITTI MOT leaderboard and achieve competitive
results(see Fig. 1).
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Fig. 1. The proposed method is compared with multiple tracking methods on the
KITTI MOT leaderboard. Higher and further to the right is better. Our method
achieves superior accuracy and robustness.

2 Related Work

2.1 3D MOT

3D MOT tasks aim to track the trajectory of each detected object in real-world
3D space. AB3DMOT [4] proposes a simple real-time 3D MOT system with
noteworthy performance. Simpletrack [5] summarizes current 3D MOT meth-
ods into a unified framework by decomposing them into four constituent parts:
pre-processing of detection, association, motion model, and life cycle manage-
ment. The aforementioned methods provide a baseline, but they have a lower
tracking accuracy. GNN3DMOT [14] proposes a novel feature interaction mech-
anism by introducing the graph neural network (GNN) instead of obtaining
features for each object independently. EagerMOT [15] proposes a simple track-
ing formulation that integrates all available object observations from both sensor
modalities to obtain a well-informed interpretation of the scene dynamics. Deep-
FusionMOT [16] proposes a camera-LiDAR fusion-based 3D real-time tracking
framework and simultaneously proposes a novel deep association mechanism
that makes full use of the characteristics of cameras and LiDARs. These meth-
ods that combine 2D and 3D detections show an improvement in accuracy, but
they also introduce a substantial computational load. Fantrack [12] proposes
a data-driven approach to online MOT that uses a convolutional neural net-
work (CNN) for data association in a tracking-by-detection framework. Triplet-
Track [13] condenses triplet embeddings and motion descriptors through a Long
Short-Term Memory (LSTM). Thesemethods solely utilize a 3D detector, focus-
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ing on extracting features from RGB images. Building on this, we propose a 3D
MOT framework and design a more powerful ReID model which combines 2D
appearance and 3D point cloud features through stereo vision.

2.2 ReID Model

ReID tasks aim at recognizing the same object from different frames. ReID mod-
els can be integrated into MOT methods to improve tracking accuracy. [17] tack-
les the problem of vehicle re-identification in a network utilizing triplet embed-
dings. [18] proposes an end-to-end dual-stream hypersphere manifold embedding
network with both classification and identification constraints. [19] proposes a
novel generative adversarial network to address cross-resolution person ReID,
allowing query images with varying resolutions. [20] proposes an unsupervised
ReID deep learning approach and an unsupervised tracklet association learn-
ing framework. BOT [21] collects and evaluates these effective training tricks
in person ReID. AGW [22] designs a powerful baseline and introduces a new
evaluation metric (mINP) for person ReID. To meet the increasing application
demand for general instance re-identification, FastReID [23] presents a widely
used software system in JD AI Research. When people appear in extreme illu-
mination or change clothes, the RGB appearance-based ReID methods tend to
fail. To overcome this problem, [24,25] exploit depth information to provide a
more invariant body shape regardless of illumination and color change. Inspired
by this, our ReID model merges the RGB and point cloud features of objects,
which helps to maintain feature stability.

3 Method

Stereo3D MOT is a complete tracking system. In Sect. 3.1, we introduce our
proposed Stereo3D ReID network structure and its functions, the output fea-
tures provide data sources for object modeling. In Sect. 3.2, we detail the entire
framework and expound upon our improvement methods module by module.

3.1 3D ReID Network Model

To conduct the training and testing of the ReID model on tasks related to
autonomous driving, we create a ReID dataset based on the KITTI Tracking
dataset [26], which includes object images from stereo RGB cameras and dense
disparity maps. This ReID dataset only contains the object image region while
ignoring the background, which is more conducive to directly training the ReID
task.

The ReID network model is a crucial part of the tracking method introduced
in this paper. The output of the ReID network integrates the RGB appearance
features of the object in stereo images and the 3D features of the point cloud. The
network architecture is divided into three sections: Backbone Network, Multi-
task Head, and Losses. The network structure is illustrated in Fig. 2.
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Fig. 2. Stereo3D ReID Architecture. First, the input 3D boxes are perspective-
projected onto the 2D images, and the backbone network extracts RGB image fea-
tures. Then, the disparity estimation module computes the disparity map, converts
it to a point cloud, and the point cloud module extracts three-dimensional features.
Ultimately, the RGB features and point cloud features are integrated and outputted.

Backbone Network. Upon receiving the 3D bounding boxes outputted by the
3D object detector, we project the 3D bounding boxes onto the left and right
2D images and feed them into the backbone network. We adopt a lightweight
siamese MobileNetv3 [27] structure, where the left and right networks share
weights. Embracing the concept of multi-task learning, the backbone network
outputs features that are used in both object re-identification and stereo dis-
parity matching tasks, thereby enhancing the overall inference efficiency of the
network.

Multi-task Head. The features outputted from the backbone network are 2D
adaptive average pooled into a tensor of dimension (B,N1, 1). At the same time,
these features are fed into the disparity matching module to extract disparity
information. The disparity module draws inspiration from Fast-ACVNet++ [28],
and we restructure the feature extraction network to implement multi-task learn-
ing. As the foreground object region accounts for a small proportion, the dis-
parity module only needs to calculate the object ROI regions in the left and
right images, using dense disparity maps as supervision, which doesn’t introduce
excessive computation. Since the object region is cropped, the actual disparity
of the object should be the sum of the output disparity map and the horizontal
distance between the center points of the object in the left and right images.
The computation formula is as follows:

df = dout + (ul − ur) (1)

where df is the actual disparity of the object region, dout is the output of the
disparity module, and ul, ur are the horizontal coordinates of the center points
of the object in the left and right images, respectively. We transform the object’s
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disparity map into a 3D point cloud by formula 2.

Zc
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where fx and fy represent the camera’s focal length in the x and y direc-
tions respectively, (cx, cy) represents the coordinate of the principal point, and
(Xc, Yc, Zc) represents the 3D point under the camera coordinate system.

We incorporate the feature extraction portion of pointnet [29], randomly
selecting N2 points’ spatial location points (x, y, z) from the point cloud to form
a tensor of dimensions [N2, 3], which is then inputted into the point cloud feature
extraction module. The global features of the point cloud are aggregated into a
tensor of dimensions [B,N2, 1]. Finally, the features are concatenated into a ten-
sor of dimensions [B, 2N1 + N2, 1], and passed through a 1× 1 convolution layer
and fully connected layer for feature mapping and fusion. During the inference
process, this feature vector is directly outputted; during the training process,
a classification layer needs to be connected to the last layer, supervised by the
object IDs from the training set.

Losses. The Stereo3D ReID model uses three loss functions: cross entropy loss,
triplet loss, and disparity matching loss. Cross entropy loss is a classification
loss function that predicts the categories of images in the ReID task, helping
the network distinguish between targets and non-targets better. For each object
i, where the true ID label is y and the predicted category probability is pi, the
cross entropy loss is calculated as follows:

LossC =
N∑
i=1

−qilog(pi)

{
qi = ε/N y �= i

qi = 1 − N−1
N y = i

(3)

where N is the number of categories, and ε is a very small constant used to
encourage the model not to over-rely on the training set. The formula uses
label smoothing [30] optimization for the value of qi to prevent the model from
overfitting during training.

The triplet loss function is a type of distance loss, which is used in ReID
tasks to model the similarity between images, and measures their similarity by
comparing the distances between different image feature vectors, as follows:

LossT = max((d(a, p) − d(a, n) + margin), 0) (4)

where d (a, p) represents the distance between the feature vectors of the object
a and the positive instance p, and d (a, n) represents the distance between a
and the negative instance n, margin is set to enlarge the distance between the
positive and negative instance, ultimately clustering images of the same object
in the distance space.
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After the disparity dout is output by the disparity matching module, it needs
to be input into formula 2 to obtain the final estimated disparity. The difference
is then calculated with the real disparity [28], as the following formula:

LossD = SmoothL1(dout + (ul − ur) − dgt) (5)

where SmoothL1 is the smooth L1 loss, dgt is the ground-truth disparity map.

3.2 Stereo3DMOT Tracking Method

The Stereo3DMOT tracking method is divided into three parts: object modeling,
data association, and trajectory management. The architecture diagram of the
method is shown in Fig. 3.

Fig. 3. Overall structure of the proposed Stereo3DMOT framework.

Object Modeling. In addition to the features obtained from Stereo3D ReID,
we also employ motion information to model objects. We use 3D Kalman filter-
ing [4] as a constant velocity model to approximate the frame-to-frame displace-
ment of the object. The object’s state in the next frame is predicted based on the
coordinates of the object’s center point (x, y, z), 3D size (l, w, h), and heading
angle θ. For objects captured for the first time, we model them and create new
trajectories. The states of the trajectories are set as unconfirmed, and the ID
numbers are sequentially assigned from 0 to positive infinity.

Data Association. We propose a method for calculating the degree of corre-
lation between 3D bounding boxes: 3D-EIOU. We find that in 3D scenes, The
dimensions of the object’s 3D bounding box are almost unaffected by changes
in the object’s pose. 3D-EIOU is more suitable than the conventional IOU
method 6 for comparing the similarity of bounding boxes in a 3D scene. It con-
sists of three parts: the volume intersection over the union between 3D bounding
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boxes(S3D-IOU ), the L2 norm of center point coordinates, and the L1 norm of the
3D bounding box’s length, width, height, and angle. The computation formula
is as follows:

S3D-IOU =
3D-Boxd ∩ 3D-Boxt

3D-Boxd ∪ 3D-Boxt
(6)

S3D-EIOU = S3D-IOU − α(‖Cdx,y,z − Ctx,y,z‖2 + ‖Sdl,h,w,ry − Stl,h,w,ry‖1) (7)

where Cdx,y,z and Ctx,y,z are the center point coordinate vectors of the detection
bounding box and the predicted tracklet bounding box, respectively. Sdl,h,w,ry

and Stl,h,w,ry are the vectors composed of the length, width, height, and angle
of the detection and predicted tracklet bounding box, respectively.

For each detection in every frame, a two-stage data association with the
predicted tracklets is performed. The first stage of data association calculates
the cosine similarity of the ReID feature vectors and the weighted value of 3D-
EIOU between each detection and the confirmed predicted tracklet Tconfirm. All
confirmed predicted tracklets and detections in this frame constitute an affinity
matrix. The first stage of data association primarily relies on the powerful feature
extraction ability of Stereo3D ReID.

We utilize the Hungarian algorithm to resolve the highest similarity pairs in
the affinity matrix. We screen out the matched detection-tracklet pairs D-T 1

match

through thresholds. The unmatched detections D1
unmatch and predicted track-

lets T 1
unmatch, along with unconfirmed predicted tracklets Tunconfirm, enter the

second stage of data association. The second stage of data association primar-
ily addresses issues related to occlusion and missed detections, with the affin-
ity matrix calculated by 3D-EIOU. The final matched detection-tracklet pairs
D-T 1,2

match consist of the successfully matched pairs from the two stages of data
association, and we output the final unmatched tracklets T 1,2

unmatch and detec-
tions D1,2

unmatch.

Track Management. For unmatched detections (detections in the first frame
are all unmatched), we create new trajectories and model the objects, setting
their state as unconfirmed. Once a predicted tracklet successfully matches with
a detection, we update the ReID features of the trajectory as a weighted value
of the current trajectory features and the detection features and continue this
trajectory. If it’s unconfirmed and successfully match three times, it switches
to confirmed state. For unmatched tracklets, we propose a method to judge
whether the lifespans of trajectories Lt reach the maximum life threshold Lmax.
The formula for calculating lifespan is as follows:

Lt = Fmiss + γLdis ·
√

Fsurvival (8)

where Fmiss is the number of frames since the last successful match, Ldis is the
distance between the bounding box’s center point pixel and the image boundary,
Fsurvival is the existing frame number, and γ is a constant. We believe that the
longer the disappearance and existing time, and the closer to the image boundary
when disappeared, the more likely it is to have left the camera’s range. We tend
to give confirmed trajectories a larger life threshold.
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Table 1. KITTI MOT leaderboard. Comparison with 3D MOT methods from the
past three years by using the test set of the KITTI Car Tracking benchmark. The
best results are shown in bold. For fair comparison, we mark the methods which use
PointRCNN for detection with *.

Method Year and
Publication

Input
Detection

HOTA(%) ↑ IDSW ↓ AssA(%) ↑ AssPr(%) ↑ MOTA(%) ↑ MOTP(%) ↑

AB3DMOT∗ [4] 2020(IROS) 3D 69.99 113 69.33 89.02 83.61 85.23

JRMOT [31] 2020(IROS) 2D+3D 69.61 271 66.89 88.95 85.10 85.28

MOTSFusion [32] 2020(RA-L) 2D+3D 68.74 415 66.16 85.49 84.24 85.03

GNN3DMOT∗ [14] 2020(CVPR) 2D+3D —- 142 —- —- 82.40 84.05

JMODT [9] 2021(IROS) 2D+3D 70.73 350 68.76 88.02 85.35 85.37

PC3TMOT∗ [7] 2021(TITS) 3D 77.80 225 81.59 88.75 88.81 84.26

EagerMOT [15] 2021(ICRA) 2D+3D 74.39 239 74.16 91.05 87.82 85.69

DeepFusionMOT∗ [16] 2022(RA-L) 2D+3D 75.46 84 80.06 89.77 84.64 85.02

PolarMOT [33] 2022(ECCV) 3D 75.16 462 76.95 89.27 85.08 85.63

TripletTrack [13] 2022(CVPR) 3D 73.58 322 74.66 89.55 84.32 86.06

StrongFusionMOT∗ [10] 2022(IEEE
Sensors)

2D+3D 75.65 58 79.84 89.81 85.53 85.07

BcMODT∗ [11] 2023(Remote
Sensing)

2D+3D 71.00 381 69.14 88.70 85.48 85.31

Stereo3DMOT(Ours)∗ —- 3D 77.32 28 81.86 89.61 87.10 85.06

4 Experiments

4.1 Experimental Results

We conduct experiments using the KITTI Tracking dataset in this paper. KITTI
provides testing standards of performance and a leaderboard for tracking meth-
ods. We adhere to the evaluation algorithm used by the KITTI MOT leader-
board. The primary evaluation method, HOTA, associates the metrics for detec-
tion, association, and localization into a unified index. We also adopt metrics
such as ID Switches (IDSW), Multi-Object Tracking Accuracy (MOTA), and
Multi-Object Tracking Precision (MOTP). The results on the KITTI Tracking
test set are shown in Table 1. Compared with other methods, our method out-
performs most current methods on the HOTA metric, leading among 3D MOT
methods on the IDSW and ASSA metrics. It demonstrates that our method has
higher robustness and accuracy, and can maintain stability in cases of occlusion
or missed detection.

Figure 4 presents a visual example comparing our method with AB3DMOT.
Our method demonstrates strong robustness when handling complex scenes,
such as intersections with object occlusion and disappearance, without any ID
switches.
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Fig. 4. A visual comparison example of bird’s eye view trajectories between our method
and AB3DMOT. The red circle in the figure indicates that there is an ID switch in the
trajectory. (Color figure online)

4.2 Ablation Study

To explore the impact of different modules on the overall tracking performance,
we conduct ablation experiments using 21 training set sequences from the KITTI
Tracking dataset. We evaluate based on key indicators such as HOTA, MOTA,
and IDSW. We use PointRCNN as the detector, only use Kalman filtering as the
motion model and IOU data association (AB3DMOT [4]) as the baseline. We
gradually incorporate our approaches from this starting point. As can be seen
from Table 2, the methods we proposed significantly improve the accuracy and
robustness of tracking.

Stereo3D ReID Model. Based on the baseline, we incorporate the Stereo3D
ReID model to verify the impact of features extracted by the ReID neural net-
work on tracking performance. We train both the car and pedestrian datasets for
300 epochs. To integrate the ReID model with the trajectory motion model, it
is necessary to simultaneously incorporate the multi-stage data association algo-
rithm, using the number of missing frames Fmiss as the criterion for evaluating
the life threshold.

Data Association. We divide the trajectories into confirmed and unconfirmed
states, integrating them into the multi-stage data association. We replace IOU
with 3D-EIOU as the association metric, where the thresholds are -0.2 and -0.1
for cars and pedestrians categories respectively.

Track Management. The lifecycle of trajectories is calculated by formula 8,
and the trajectories are deleted once it reaches the threshold. We set different
maximum life thresholds for unconfirmed and confirmed states of the trajectories,
which are 3 and 22 respectively.0
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Table 2. Ablation study. We conduct experiments on the impact of each method
we proposed on the validation set of the KITTI Tracking dataset. ReID means the
Stereo3D ReID that we proposed, DAAS means data association and TRMA means
trajectory management. The best results are shown in bold.

Method Car Pedestrian

HOTA(%) ↑ MOTA(%) ↑ IDSW ↓ HOTA(%) ↑ MOTA(%) ↑ IDSW ↓
Motion(Baseline) 73.32 80.57 47 44.54 56.09 113

+ReID 76.05 83.25 35 46.10 59.58 98

+ReID+DAAS 76.11 83.53 32 47.71 59.52 78

+ReID+DAAS+TRMA 77.03 84.22 15 49.22 59.02 49

5 Conclusion

We propose Stereo3DMOT, a stereo vision based 3D MOT method. In this
system, Stereo3D ReID is a multi-task learning model that extracts appear-
ance information from stereo RGB images. It utilizes stereo disparity matching
to obtain disparity maps and converts them into point clouds. Ultimately, it
outputs multimodal features that combine 2D RGB appearance with 3D point
clouds. We associate the ReID feature embeddings and motion information of
the trajectories, and by designing trajectory management and data association
algorithms, we further improve the tracking performance. Experiments show
that our method maintains tracking stability even under conditions of occlu-
sion and missed detections. Additionally, we create a dataset for ReID tasks
in autonomous driving based on the KITTI dataset. Ultimately, our method
achieves competitive results on the KITTI MOT leaderboard.
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G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022.
ECCV 2022. LNCS, Part XXII, vol. 13682, pp. 41–58. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-20047-2 3

http://arxiv.org/abs/1705.09882
http://arxiv.org/abs/2209.12699
https://doi.org/10.1007/978-3-031-20047-2_3


Emphasizing Boundary-Positioning
and Leveraging Multi-scale Feature

Fusion for Camouflaged Object Detection

Songlin Li1 , Xiuhong Li1(B) , Zhe Li2 , Boyuan Li1 , Chenyu Zhou1 ,
Fan Chen1, Tianchi Qiu1, and Zeyu Li3

1 School of Information Science and Engineering, Xinjiang University, Xinjiang,
China

xjulxh@xju.edu.cn
2 Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic

University, Hong Kong SAR, China
3 School of Computer Science and Engineering, Dalian Minzu University, Dalian,

China

Abstract. Camouflaged object detection (COD) aims to identify
objects that blend in with their surroundings and have numerous practi-
cal applications. However, COD is a challenging task due to the high sim-
ilarity between camouflaged objects and their surroundings. To address
the problem of identifying camouflaged objects, we investigated how
humans observe such objects. We found that humans typically first scan
the entire image to obtain an approximate location of the target object.
They then observe the differences between the boundary of the target
object and its surrounding environment to refine their perception of the
object. This continuous refinement process helps humans eventually iden-
tify the camouflaged object. Based on this observation, we propose a
novel COD method that emphasizes boundary positioning and leverages
multi-scale feature fusion. Our model includes two important modules:
the Enhanced Feature Module (EFM) and the Boundary and Position-
ing joint-guided Feature Fusion Module (BPFM). The EFM provides
multi-scale information and obtains aggregated feature representations,
resulting in more robust feature representations for the initial position-
ing of the camouflaged object. In BPFM, we mimic human observation
of camouflaged objects by injecting boundary and positioning informa-
tion into each level of the backbone features, working together to refine
the target object in blurred regions progressively. We validated the effec-
tiveness of our model on three benchmark datasets (COD10K, CAMO,
CHAMELEON), and the results showed that our proposed method sig-
nificantly outperforms existing COD models.
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1 Introduction

Camouflage is a common protective mechanism that exists widely in the natural
world. Animals or objects blend into their surroundings by utilizing textures,
colors, or natural light, making it difficult for them to be detected and achiev-
ing the effect of invisibility, thereby evading predation from predators. Thanks
to its ability to segment target objects and their highly similar backgrounds,
COD is of great value in various fields such as medicine (e.g., polyp segmenta-
tion [9] and lung infection segmentation [10]), industry (e.g., equipment safety
hazard detection), agriculture (e.g., pest detection), military (e.g., latent target
detection), art (e.g., excavation of ancient wall paintings), and scientific research
(e.g., the discovery and protection of rare species) and many other fields are of
significant value. However, COD is a very challenging task due to the nature
of camouflage, that is, the high intrinsic similarities between candidate objects
and chaotic backgrounds, which make it difficult to spot camouflaged objects for
humans.

Researchers have developed various COD models to address this challenge
to improve detection performance. In the early years, several traditional COD
methods [1,19] were proposed to segment camouflaged objects by using manu-
ally designed features. With the rapid development of deep learning techniques,
applying deep learning to COD has become more widespread. Existing deep
learning-based COD models have achieved remarkable results. The SINet [8]
proposed by Fan et al. first uses a search module to locate the camouflaged tar-
get roughly and then uses a recognition module to finely segment it. The same
research group later developed SINet-v2 [6], which has a better decoder and
attention mechanism for detecting camouflaged targets. Although these models
have improved camouflaged target detection from a local perspective, they still
cannot obtain clear boundaries. In COD, the high similarity between camou-
flaged objects and their surroundings makes boundary information between the
target object and the background particularly important. Therefore, the extrac-
tion of boundary information is still a key factor. Zhou et al. [29] designed the
FAPNet, which adds boundary supervision to COD and uses boundary informa-
tion to supplement details. Sun et al. [22] designed the BGNet, which iteratively
aggregates features with boundary information for COD. Although these mod-
els have utilized boundary information in COD, they overlook the impact of
positioning information on blurry regions.

To this end, we propose a novel Emphasizing Boundary-Positioning and
Leveraging Multi-Scale Feature Fusion for COD. Our model imitates human
habits of observing imperceptible objects. Firstly, the model scans the global
environment to find the rough positioning of the camouflaged object. Then, it
observes the differences between the boundary of the target object and its sur-
roundings to refine the target. We propose an Enhanced Feature Module (EFM)
to obtain multi-scale features, which uses a series of dilated convolutions to
extract and aggregate multi-scale information. It not only enlarges the receptive
field but also reduces the number of channels. The features extracted from the
Res2Net-50 [11] are input into the EFM to produce stronger and more effective
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Fig. 1. This paper presents the overall architecture of our model, which utilizes
Res2Net-50 as the backbone network and incorporates five key modules: the EFM,
NCD [6], EAM [22], BPFM, and CAM [22]. The symbols represent the positioning
map, and the symbols represent the boundary map.

feature information. The Boundary and Positioning joint-guided Feature fusion
Module (BPFM) is designed to achieve joint-guided learning from the bound-
ary and positioning maps, cross-scale fusion of multi-level features, and detailed
boundary delineation between the target and background by combining global
contextual information.

The main contributions of this paper are the following:

– We propose a joint-guided COD method using positioning and boundary
maps. The method roughly locates the camouflaged target using the posi-
tioning map and then gradually refines the boundary using the boundary
map. We evaluate the proposed model’s performance on three benchmark
datasets. Compared with 18 typical deep learning-based models, our model
achieves state-of-the-art performance.

– We propose an Enhanced Feature Module (EFM) that utilizes convolution
kernels of different sizes and dilation rates, as well as mutual fusion between
upper and lower branches, to obtain multi-scale aggregated features.

– We propose a Boundary and Positioning joint-guided Feature fusion Module
(BPFM) that can inject semantic information from positioning maps and edge
information from boundary maps into the feature representation of the back-
bone network, fuse multi-level features across scales and refine camouflaged
objects by combining rich contextual information.
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Fig. 2. The detailed architecture of the proposed Enhanced Feature Module (EFM).

2 Our Method

Figure 1 shows the overall architecture of the proposed our model, which con-
sists of two key components: Enhanced Feature Module (EFM) and Bound-
ary and Positioning joint-guided Feature fusion Module (BPFM). Specifically,
Res2Net-50 is used as the backbone to extract multi-level features denoted as
Xi(i = 1, . . . , 5). According to [28], low-level features in shallower convolu-
tional layers contain spatial information that can be used to construct object
edges. In comparison, deeper convolutional layers preserve more semantic infor-
mation related to object positioning. Therefore, the backbone features X3, X4,
and X5 are input into the proposed EFM to obtain multi-scale features. The
lightweight and robust positioning map Msp is generated by the Neighbor Con-
nection Decoder (NCD) [6] to locate semantic positions. Since X1 contains
more noise and has a small receptive field that can affect the determination of
the target boundary, we discard the first-level features and use X2 and X5 with
the Edge-Aware Module (EAM) [22] to generate a boundary map Ef with edge
spatial information. BPFM integrates the positioning and boundary maps with
the backbone network features to guide feature learning and enhance positioning
and boundary representation. Finally, CAM progressively aggregates multi-level
fusion features and performs multi-level supervision training.

2.1 Enhanced Feature Module

The Enhanced Feature Module (EFM) is designed with inspiration from the
vacant space convolutional pooling pyramid (ASPP) [18]. As shown in Fig. 2,
the EFM has four branches (bk, i ∈ {1, 2, 3, 4}). In each branch, the number of
channels is set to 64 using a 1 × 1 convolutional layer implementation. The first
three branches use convolutional kernels with different step sizes and fill rates
(s = 2k + 1, s denotes the size of the convolutional kernel, and k denotes the
branch), after which an inflated convolution with an expansion rate of (2k + 1)
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is set. In addition, we introduce the idea of the residual network to add the
output results of the previous branch to the next branch to achieve mutual
fusion between the upper and lower branches to obtain multi-scale features.
Such a structure not only increases the perceptual field but also obtains rich
contextual information to achieve the effect of reducing noise and highlighting
the target positioning. Finally, the input of the third branch is added to the
fourth branch, and the ReLU function is applied to obtain the feature efk:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1 = BDConv3 (BConv3×3 (BConv1×1(Xi)))
b2 = BDConv5 (BConv5×5 (BConv1×1(Xi) ⊕ b1))
b3 = BDConv7 (BConv7×7 (BConv1×1(Xi) ⊕ b2))
b4 = BConv1×1(Xi)
efk = ReLU (b4 ⊕ b3)

(1)

where ⊕ denotes element-wise addition. BConvk×k denotes a convolutional kernel
of size k, stride of 1, padding of k−1

2 , and finally batch normalized. BDConvd

denotes a convolutional kernel of size 3, stride of 1, padding of d, dilation rate
of d, and finally batch normalized. ReLU(·) denotes the output of the Rectified
Linear Unit (ReLU) activation function.

2.2 Boundary and Positioning Joint-Guided Feature Fusion Module

To harness boundary information and positional information for detecting cam-
ouflaged objects, we propose a novel method that mimics the human visual
system, called the Boundary and Position Jointly Guided Feature Fusion Mod-
ule (BPFM). Specifically, the semantic information of the localization map is
infused into the backbone features to enhance the localization expression, emu-
lating human eye positioning. Subsequently, edge information from the bound-
ary map is injected into the backbone features to boost boundary expression,
imitating the human process of contrasting camouflaged objects against their
background to supplement edge details. Research has shown [28] that different
convolutional layers retain various levels of image information. Low-level fea-
tures are crucial for boundary detection, while high-level features are vital for
positional detection. Therefore, the diversity of information scales is essential for
detecting camouflaged targets. To ensure a robust feature representation, BPFM
implements a cross-scale fusion of multi-level features.

As shown in Fig. 3, the backbone network feature Xi(i = 2, . . . , 5) and the
boundary map (Ef ) are given as inputs. Xi and Ef are element-wise multiplied,
and the result of their multiplication is added to Xi element-wise. This is followed
by 3×3 convolution to obtain the initial fusion feature fm, which can be denoted
as:

fm = Conv3×3 (Xi ⊗ D (Ef ) ⊕ Xi) (2)

where D denotes down-sampling and Conv3×3 is 3×3 convolution. ⊗ is element-
wise multiplication. To enhance feature representation, inspired by [23], we intro-
duce local attention to explore critical feature channels. Specifically, we aggre-
gate the convolution features (fm) using a channel-wise global average pooling
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Fig. 3. The detailed architecture of the proposed Boundary and Positioning joint-
guided Feature fusion Module (BPFM).

(GAP). Then, we obtain the corresponding channel attention (weight) by the
1D convolutions followed by a Sigmoid function. After that, we multiply the
channel attention with the input feature fm and reduce the channels by 1 × 1
convolution layer to obtain the final output fei, i.e.,

fei = Conv1×1

(
Sig

(
Fk

1D (GAP (fm))
) ⊗ fm

)
(3)

where Fk
1D is 1D convolution with kernel size k and Sig(·) denotes Sigmoid

function. The kernel size k can be set adaptively as k = |(1 + log2(C)) /2|odd,
where |∗|odd denotes the nearest odd number and C is the channels of fei. The
kernel size is proportional to the channel dimension.

Next, the feature map fei is multiplied element-wise with the positioning map
Msp. The resulting product is then processed by a 1 × 1 convolution to fuse the
positioning-related information into the feature map of the current stage. This
fused output is referred to as Emi and is jointly guided by the boundary and posi-
tioning maps. To obtain multi-scale features, the feature map fei from the i-th
stage is concatenated with the output of the subsequent stage’s BPFM (denoted
as Ri+1). This achieves feature fusion between adjacent stages. The concate-
nated feature map is further processed by a 3 × 3 convolution, and the resulting
output is element-wise added to Emi. The feature map Efmi is then obtained by
normalizing Emi using batch normalization. Finally, this paper assigns weights α
and β to the foreground and background regions of Msp. This is done to enhance
the positioning of the camouflaged target and suppress the interference from the
background for detection. The resulting feature map is denoted as Ri, which can
be defined as:

⎧
⎨

⎩

Emi = Conv1×1 (D (Msp) ⊗ fei)
Efmi = BN (Concat (fei, U (Ri+1)) ⊕ Emi)
Ri = Efmi ⊗ (1 ⊕ α)Msp ⊕ βMsp

(4)

U denotes upsampling, Concate(·) denotes concatenation operation, BN denotes
batch normalization.
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2.3 Overall Loss Function

The model in this paper has five output results, namely the positioning map
(Msp), boundary map (Ef ), and three pseudo-target masks generated by aggre-
gating multi-level fusion features with the CAM (Pi, i ∈ {1, 2, 3}). Binary Cross-
Entropy (BCE) loss is commonly used for pixel binary classification tasks. How-
ever, due to the significant imbalance between the numbers of foreground and
background pixels in the positioning maps and the object mask of camouflaged
objects, this paper employs a weighted binary cross-entropy loss function [24].
To better constrain the global optimization, a weighted IOU loss function is also
utilized. Thus, the loss function for the positioning maps and the object mask
of camouflaged objects is defined as follows:

Lem = LwBCE + LwIOU (5)

Regarding the boundary maps, this paper utilizes the dice loss (Ldice) as
described in [25]. Thus, the overall loss function is defined as follows:

Ltotal =
3∑

i=1

Lem (Pi, G) + Lem (Msp, G) + λLdice (Ef , Ge) (6)

where G denotes the ground truth of the camouflaged object, Ge denotes the
ground truth of the camouflaged object boundary and set λ = 3.

3 Experiments and Results

3.1 Implementation Details

In this paper, the model is implemented using PyTorch, with Res2Net-50 [11]
pre-trained on ImageNet serving as the backbone. During the training phase, all
input images were resized to 416 × 416, and data augmentation was performed
by randomly flipping the images horizontally. The model was trained using a
batch size 26 and the Adam optimizer [12]. The initial learning rate was set to
1e−4, with a decay period of 40 epochs and a decay rate of 0.1. With the help
of an NVIDIA 3090 GPU, the model converged after 50 rounds of training and
took approximately 3 h to complete.

3.2 Datasets and Evaluation Metrics

We evaluate our method on three public benchmark datasets: COD10K [20],
CAMO [13] and CHAMELEON [8]. Here, the training and test sets are the same
as [8]. We utilize four widely used metrics to evaluate our method, i.e., mean
absolute error (MAE, M), weighted F-measure (Fω

β ) [15], structure measure
(Sα) [3] and mean E-measure (Eφ) [5].
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Table 1. Four evaluation metrics are employed in this study, namely Sα [4], Fω
β [15],Eφ

[7], and M [17]. The symbols “↑” and “↓” indicate that larger and smaller values are
better, respectively. The best results are highlighted in bold.

Method COD10K-Test CAMO-Test CHAMELEON-Test

Sα↑ Eφ↑ F ω
β ↑ M↓ Sα↑ Eφ↑ F ω

β ↑ M↓ Sα↑ Eφ↑ F ω
β ↑ M↓

C2FNet21 0.813 0.890 0.686 0.036 0.796 0.864 0.719 0.080 0.888 0.935 0.828 0.032

PFNet 0.800 0.877 0.660 0.040 0.782 0.842 0.695 0.085 0.882 0.931 0.810 0.033

R-MGL 0.814 0.852 0.666 0.035 0.775 0.847 0.673 0.088 0.893 0.923 0.813 0.030

LSR 0.804 0.880 0.673 0.037 0.787 0.854 0.696 0.080 0.893 0.938 0.839 0.033

SINet-v2 0.816 0.888 0.679 0.037 0.818 0.871 0.738 0.071 0.889 0.938 0.815 0.032

C2FNet22 0.808 0.882 0.683 0.037 0.764 0.825 0.677 0.090 0.893 0.950 0.841 0.027

FAPNet 0.820 0.887 0.693 0.036 0.805 0.857 0.724 0.080 0.889 0.938 0.821 0.030

BSANet 0.817 0.887 0.696 0.035 0.804 0.860 0.728 0.079 0.888 0.936 0.826 0.032

PreyNet 0.813 0.881 0.697 0.034 0.790 0.842 0.709 0.077 0.895 0.952 0.844 0.028

BGNet 0.831 0.901 0.722 0.033 0.816 0.871 0.751 0.069 0.901 0.944 0.852 0.026

Ours 0.838 0.901 0.733 0.030 0.822 0.872 0.760 0.068 0.909 0.958 0.861 0.024

3.3 Comparison with State-of-the-Art Methods

We compared our proposed method with 18 state-of-the-art models, including
C2FNet21 [21], PFNet [16], R-MGL [26], LSR [14], SINet-v2 [6], C2FNet22 [2],
FAPNet [29], BSANet [30], PreyNet [27], and BGNet [22]. For C2FNet21, SINet-
V2, C2FNet22, FAPNet, BSANet, and BGNet, we retrained these six models
using the authors’ released code. Previously published papers provided all other
results. Additionally, we evaluated all predicted images using the same code.

1. Quantitative Comparison: Table 1 presents the quantitative results of dif-
ferent camouflaged object detection methods on three benchmark datasets.
The proposed model in this paper outperforms the 18 compared models on
each dataset. Besides, BGNet, FAPNet, and BSANet utilize auxiliary edge
or boundary information and still fail to locate camouflaged objects, while
our model can effectively locate them and achieve the best performance. This
is because our model utilizes boundary and positioning information, which
jointly operate on ambiguous regions, significantly improving the performance
of COD. Specifically, compared with BGNet, on the COD10K dataset, the
proposed model in this paper improved Sα by 0.84%, Fω

β by 1.52%, and
decreased M by 9.09%.

2. Visual Comparison: From the visual results in Fig. 4, our model outper-
forms the comparative models in the visual comparison results of the nine
collected test samples. Specifically, in the first and second rows, it can be seen
that our model can effectively handle size variations. In the third and fourth
rows, our model can effectively handle changes in scene brightness. In the
fifth row, the camouflaged objects have similar textures to the background,
which poses a severe challenge for identifying them from similar backgrounds.
In this case, our model performs better, accurately locating the camouflaged
object. In the sixth row, the object has rich edge details, and our method still
detects the camouflaged object accurately. Overall, the results demonstrate
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(b) GT (c) Our (d) BGNet (f) BSANet(e) FAPNet(a) Image (g) C2FNet22 (h) SINet-V2

Fig. 4. This section provides a visual comparison between our proposed model and the
latest models. Specifically, we show (a) the input image, (b) the ground truth (GT),
(c) our method, and (d)–(h) the state-of-the-art models, including BGNet, FAPNet,
BSANet, C2FNet22, and SINet-V2 The results demonstrate that our model achieves
superior performance to the other compared methods in terms of visual quality.

that our model can perform well in detecting camouflaged objects under dif-
ferent challenging factors.

3.4 Ablation Study

This article conducted several ablation experiments to validate the effectiveness
of each module, and the specific results are presented in Table 2. For the baseline
model (B), all additional modules (such as EFM, BPFM) were removed, and only
the 1 × 1 convolution in BPFM was retained to reduce the number of channels
and along with the initial aggregation operation in the CAM [22] for feature
aggregation. FS denotes the positioning map guidance part in the BPFM, BS
denotes the boundary map guidance part in the BPFM, and R denotes the
cross-level fusion part in the BPFM.

Effectiveness of EFM. According to Table 2, adding the EFM on top of (d)
and (f) can improve the model’s performance to some extent. The EFM can
fuse multi-scale features to enhance the features extracted by the backbone net-
work, resulting in more accurate positioning maps. However, the performance
presented in experiment (f) was worse than that of other ablation experiments,
mainly due to the blurred positioning map affecting boundary guidance. The
negative correlation between the two factors in ambiguous regions further vali-
dates the effectiveness of the EFM designed in this article.
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Table 2. Four evaluation metrics are employed in this study, namely Sα [4], Fω
β [15],

Eφ [7], and M [17]. The symbols “↑” and “↓” indicate that larger and smaller values
are better, respectively. The best results are highlighted in bold.

Method COD10K-Test CAMO-Test CHAMELEON-Test

Sα↑ Eφ↑ Fω
β ↑ M↓ Sα↑ Eφ↑ Fω

β ↑ M↓ Sα↑ Eφ↑ Fω
β ↑ M↓

(a) B 0.819 0.887 0.681 0.037 0.814 0.863 0.732 0.075 0.880 0.929 0.802 0.035

(b) B+R 0.834 0.895 0.719 0.032 0.825 0.872 0.755 0.073 0.889 0.929 0.825 0.033

(c) B+R+BS 0.837 0.898 0.727 0.031 0.822 0.870 0.755 0.073 0.904 0.938 0.850 0.030

(d) B+R+FS 0.833 0.895 0.717 0.034 0.818 0.863 0.743 0.072 0.896 0.942 0.833 0.031

(e) B+R+FS+EF 0.838 0.900 0.725 0.032 0.821 0.871 0.750 0.072 0.900 0.939 0.842 0.026

(f) B+R+FS+BS 0.828 0.889 0.706 0.035 0.824 0.872 0.748 0.072 0.889 0.889 0.822 0.035

(g) Ours 0.838 0.901 0.733 0.030 0.822 0.872 0.760 0.068 0.909 0.958 0.861 0.024

Effectiveness of BPFM. Adding the cross-level fusion part of the BPFM
to (a), resulting in (b), leads to a certain degree of decline in the detection
capability for camouflaged targets. This is because the indiscriminate fusion
of features from different levels leads to noise accumulation, which hinders the
detection of camouflaged targets. This also demonstrates the importance of guid-
ing input features. Adding the boundary guidance part of the BPFM to (b),
resulting in (c), improves the detection capability. For example, on the COD10K
dataset, Sα improved by 0.48%, Eφ by 0.34%, Fω

β by 1.54%, and M decreased
by 6.06%. The effectiveness of the EFM has been demonstrated. To eliminate
the adverse effects of rough initial positioning maps on the positioning map guid-
ance part of the BPFM, finely enhanced initial positioning maps from the EFM
were directly introduced for experiments to demonstrate the effectiveness of the
positioning map guidance part of the BPFM, resulting in (e), which showed sig-
nificant improvements in all metrics. This demonstrates that the boundary map
guidance of the BPFM enhances the details of the detection results, the posi-
tioning map guidance enhances the local features of the detection results, and
the cross-level fusion part provides multi-scale feature information for boundary
and positioning map guidance, all of which prove the effectiveness of the BPFM.

4 Conclusion

We propose a novel approach for Camouflaged Object Detection called Empha-
sizing Boundary-Positioning and Leveraging Multi-Scale Feature Fusion. This
approach is developed based on human observation habits of disguised objects.
Our model utilizes the Enhanced Feature Module (EFM) and the Boundary and
Positioning joint-guided Feature fusion Module (BPFM) to explore the edge and
semantic information of the target and iteratively refines the object structure
and boundary to obtain a complete and precise representation. Extensive experi-
ments demonstrate that the proposed model outperforms state-of-the-art models
on three benchmark datasets.
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