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Abstract. Face de-occlusion is essential to improve the accuracy of
face-related tasks. However, most existing methods only focus on single
occlusion scenarios, rendering them sub-optimal for multiple occlusions.
To alleviate this problem, we propose a novel framework for face de-
occlusion called FRNet, which is based on feature reconstruction. The
proposed FRNet can automatically detect and remove single or multi-
ple occlusions through the predict-extract-inpaint approach, making it
a universal solution to deal with multiple occlusions. In this paper, we
propose a two-stage occlusion extractor and a two-stage face generator.
The former utilizes the predicted occlusion positions to get coarse occlu-
sion masks which are subsequently fine-tuned by the refinement module
to tackle complex occlusion scenarios in the real world. The latter uti-
lizes the predicted face structures to reconstruct global structures, and
then uses information from neighboring areas and corresponding features
to refine important areas, so as to address the issues of structural defi-
ciencies and feature disharmony in the generated face images. We also
introduce a gender-consistency loss and an identity loss to improve the
attribute recovery accuracy of images. Furthermore, to address the limi-
tations of existing datasets for face de-occlusion, we introduce a new syn-
thetic face dataset including both single and multiple occlusions, which
effectively facilitates the model training. Extensive experimental results
demonstrate the superiority of the proposed FRNet compared to state-
of-the-art methods.
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1 Introduction

Face de-occlusion technologies aim at automatically detecting and removing
occlusions, and inpainting the occluded area simultaneously, which generally
serve as a prepossessing step to assist other face-related tasks. The main idea
of traditional technologies [1,5] is to inpaint the images according to the exist-
ing information. As each part of the face image has its own characteristics,
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Fig. 1. The results of removing real-world face occlusions on different datasets.

their results are far from satisfactory. To overcome that, various early face de-
occlusion technologies based on deep learning [2,17] have been proposed, mak-
ing it possible to leverage deep learning techniques to tackle this task. Nev-
ertheless, most of them generate low-resolution images, which may not meet
the current demands. Considering the application under real scenes, methods
[4,16,20,24,26] designed for high-resolution face image de-occlusion have been
proposed. Specifically, Edgeconnect [16] improves detailed information by intro-
ducing prior knowledge. Additionally, CTSDG [4] enhances results by fusing
structural and texture features. Furthermore, some methods [20,24,26] increase
flexibility in handling various-shaped occluded areas through modified convo-
lution mechanisms. These methods have shown promising results in handling
face occlusions, however, most of them are not specifically designed for face de-
occlusion tasks and usually require manual marking of the occluded area, which
can be time-consuming and has certain constraints in practical applications sce-
narios. Furthermore, there are several face de-occlusion technologies [7] designed
for specific occlusions and achieved the expected results. However, they may
struggle when generalizing to other types of occlusions that commonly exist in
real-world scenarios.

Additionally, face attribute manipulation technologies [11,13] and image
translation technologies [21,25] can address face de-occlusion to some extent.
However, the presence of diverse types of occlusions poses labeling challenges
and disrupts the feature extraction process, usually leading to unsatisfactory
outcomes.

In this paper, we take inspiration from two research studies. One of these
studies [2] focuses on the utilization of an occlusion-aware stage to enhance the
effectiveness of face de-occlusion. The other one [16] highlights the advantages
of incorporating image structure as a prior to improve image inpainting out-
comes. Building upon these findings, we propose a novel framework for face de-
occlusion called FRNet, which is based on feature reconstruction. The proposed
de-occlusion model consists of a two-stage occlusion extractor, a two-stage face
generator, and a face discriminator. To better reconstruct the global structure of
the occluded face images, we introduce an Occlusion Robust Face Segmentation
Module based on the PP-LiteSeg [18] network, which is utilized to obtain both
occlusion location details and face structure information.
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Firstly, to effectively tackle complex occlusion scenarios in the real world,
the two-stage occlusion extractor utilizes the input images and the occlusion
location details to obtain coarse occlusion masks and then refines the masks to
acquire the final occlusion masks. Secondly, to address the issues of structural
deficiencies and feature disharmony in the generated face images, the two-stage
face generator is designed with the idea of “first reconstructing the structural
features globally, and then refining important area features locally”. In the coarse
stage, we adopt the U-Net structure with a large receptive field to reconstruct
the global structures of the faces with the guidance of face segmentation maps.
As for the refinement stage, we split it into two distinct modules: the Local
Areas Refinement Module (LRM) and the Important Areas Refinement Module
(IRM). The LRM extracts information from the neighboring areas by a residual
network with a small receptive field, thus enhancing the local textures. While
the IRM utilizes intra-feature pixel similarity to identify pixels related to the
missing pixels from valid pixels of the corresponding feature, then uses them
to fill in the occluded area, thereby ensuring feature harmony. We employ an
adaptive merging approach to fuse the outputs from the two branches, gener-
ating the final refined face images. Meanwhile, to ensure attribute consistency
before and after face de-occlusion, assisting face-related tasks, we introduce a
gender-consistent loss in the coarse stage and an identity loss in the refinement
stage. Both of them encourage the model to pay more attention to attribute
features. Lastly, to enhance the model’s ability to handle multiple occlusions
in a single face image during training, we propose a new synthetic face dataset
based on the CelebA-HQ. This dataset includes face images with various types
and quantities of occlusions in random states, providing a realistic simulation
of common occlusion scenarios in real-life situations, which effectively facilitates
the training and supervision of the model. Exemplar results are shown in Fig. 1,
our method can effectively remove various types of face occlusions in the wild.

Our contributions can be summarized as follows: (1) We propose a novel face
de-occlusion framework, which can automatically detect and remove single or
multiple occlusions from the face images, achieving visually realistic results. (2)
We propose the idea of “first reconstructing the structural features globally, and
then refining important area features locally”, and following this idea, propose a
two-stage face generator that can efficiently restore face details and preserve face

Fig. 2. The process of dataset synthesis. Based on head pose angles and face landmark
points, we add occlusions to face images.
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attributes. (3) We propose a new dataset dedicated to the face de-occlusion task,
containing various types and quantities of occlusions. It plays a crucial role in
improving the training of our model. (4) The experimental results demonstrate
the good efficacy of our FRNet in eliminating various face occlusions present in
the wild while preserving the essential attribute information of the face images.

2 Synthesis of Face Images with Occlusions

The key to face de-occlusion is to remove occlusions accurately while maintaining
the attributes such as gender, skin color, and expression consistent with the input
image. Therefore, in this research, we require a contrast dataset that includes
both occluded and de-occluded face images to supervise the model’s training.
However, collecting such a dataset in real life can be challenging, and a more
practical solution is to create a dataset with similar characteristics of occluded
face images found in the wild. By training on such a dataset, the model can more
effectively perceive and remove different types of occlusions and better inpaint
the de-occluded face images.

Dataset Preparation. We take the CelebA-HQ as our face image dataset. In
addition, we collect 362 glasses images, 324 mask images, and 1,000 hand images
as the occlusion data.

Dataset Synthesis. As shown in Fig. 2, we first use the attributes annotations
of CelebA-HQ to screen out the occlusion-free face images. Then, we use dlib and
OpenCV to get the face pose angles of the face images. According to the pose
angles, the face images are divided into eight groups: front looking up, front

Fig. 3. The overall architecture of FRNet. It has three stages: structure prediction,
occlusion extraction, and face inpainting.
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looking down, the left deflection angles ranging from 10◦ to 40◦, 40◦ to 60◦,
above 60◦, and the right deflection angles ranging from 10◦ to 40◦, 40◦ to 60◦,
and above 60◦. We also classify glasses images and mask images based on the
same angle ranges. Subsequently, we use face alignment to extract face features
and get 68 face landmark points. Lastly, we combine the occlusion-free face
images with glasses and masks based on the head poses and face landmarks. To
enhance the realism of the synthetic images, we randomly vary the transparency
of the glasses. To simulate real-life scenarios with various types and quantities
of occlusions, we randomly add hand occlusions to some face images and both
glasses and masks to others, reflecting the complexity of occlusions that may
occur in real life. Following the original division of the CelebA, we collect 88,932
images as the training dataset, 11,120 images as the validation dataset, and
10,244 images as the testing dataset. Each set of data includes an original face
image, an occluded face image, an occlusion image, and a binary occlusion mask
image.

3 FRNet

In this section, we will introduce the overall architecture of FRNet, which is
shown in Fig. 3. It has three stages: structure prediction, occlusion extraction,
and face inpainting. The structure prediction stage aims to obtain prior informa-
tion through the segmentation network. The occlusion extraction stage obtains
the occlusion mask from the occluded face image with the guidance of occlusion
position information. And face inpainting stage reconstructs the global struc-
ture with the guidance of face segment image, and refines the features by local
information and feature information, to obtain an occlusion-free face image.

3.1 Occlusion Robust Face Segmentation Module

To better remove the occlusions and restore face structure, we propose the Occlu-
sion Robust Face Segmentation Module, which aims to predict the occlusion seg-
mentation map Sm and the face segmentation map Sf from the occluded face
image If−occ. In this paper, we leverage the PP-LiteSeg [18] to realize this mod-
ule (Fig. 3). To train the module, we fuse the CelebAMask-HQ with occlusion
mask images. During the face de-occlusion process, this module provides prior
information about the position of occlusion and face structure, which guides
occlusion extraction and face reconstruction. This approach enables our model
to focus on the deep structural feature of the face.

3.2 Occlusion Extractor

The occlusion extractor consists of a coarse stage and a refinement stage, in
which input occluded face image If−occ and the prior information of occlusion
position Sm, output coarse occlusion mask Mc and refinement occlusion mask
Mr.
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In the coarse stage, we build it based on the U-Net structure and refer to the
details of the architecture from [6]. The architectural detail is shown in Fig. 3.
Specifically, the encoder firstly increases the number of channels of the feature
map to twice by 3 × 3 Conv-BN-ReLU module. This is followed by using three
residual blocks to increase the receptive field of the module and further extract
features. Finally, the spatial size of the feature map is reduced by down-sampling
through the max pooling layer. The decoder performs the reverse operation.
Firstly, the feature map is up-sampled by bilinear interpolation to expand its
spatial size. Then the number of channels is reduced by half through the 3 × 3
Conv-BN-ReLU module, and the result is connected with the output feature
map of the corresponding encoder using the skip connection to obtain the con-
catenated feature map. The concatenated feature map is passed through another
3× 3 Conv-BN-ReLU module to reduce the number of channels by half. Finally,
the latest feature map passes through three residual blocks to get the new fea-
ture map. The output of the last decoder is passed through 1 × 1 convolution
and the sigmoid activation function to obtain the coarse occlusion mask Mc. We
optimize it using binary cross-entropy loss:

LC
BCE = −

∑

i,j

(
Mgti,j logMci,j +

(
1 − Mgti,j

)
log

(
1 − Mci,j

))
, (1)

where Mgti,j (resp., Mci,j) is the (i, j)-th entry in Mgt (resp., Mc).
In the refinement stage, we refer to the Self-calibrated Mask Refinement

proposed in [12]. As shown in Fig. 3, we conduct similarity matching between
the main feature of the coarse occlusion mask Mc and features at other posi-
tions, thereby fine-tuning the occlusion mask according to its characteristics and
enhancing the performance of the occlusion extractor. Through this stage, we
obtain the refined occlusion mask Mr. Similarly, we use binary cross-entropy
loss LR

BCE , which is the same as Eq. (1) except for replacing Mci,j with Mri,j in
Eq. (1). Additionally, we employ Intersection over Union (IoU) loss. It is defined
as:

LR
IoU =

∑
i,j

(
Mgti,j · Mri,j

)

∑
i,j

(
Mgti,j + Mri,j − Mgti,j · Mri,j

) , (2)

where Mgti,j (resp., Mri,j) is the (i, j)-th entry in Mgt (resp., Mr).
Finally, the total loss of the occlusion extractor is

Lmask = λ1 · LC
BCE + λ2 · LR

BCE + λ3 · LR
IoU . (3)

We set λ1 = 0.01, λ2 = 1, λ3 = 0.25 in the experiment.

3.3 Face Generator

Coarse Face Generator
We use the occluded face image If−occ and the predicted occlusion mask Mr

as the input. Moreover, the predicted face segmentation map Sf is introduced
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to facilitate the face generation process. Then, the model returns a face image
where the occluded area is reconstructed.

Following the [19], the coarse face generator (Fig. 3) uses a U-Net architec-
ture with skip connections and has a large receptive field, which can better pay
attention to the global feature of the image. Specifically, the coarse face gener-
ator consists of eight encoder-decoder blocks. Each encoder down-samples the
feature map through the convolution layer, increasing its number of channels
to twice while decreasing its size. The decoder up-samples the feature map to
the original size through the transposed convolution layer to obtain coarse face
image Icout. According to the mask image Mr, the input image If−occ and the
generated face image Icout are combined to obtain a merged face image Icmer,

Icmer = If−occ � (1 − Mr) + Icout � Mr, (4)

where � is the element-wise product operation.
At this stage, we use the weighted L1 loss [19] as the pixel-wise reconstruction

loss which is defined as:

LC
valid =

1
sum(1 − Mr)

‖(Icout − Igt) � (1 − Mr)‖1 , (5)

LC
occluded =

1
sum(Mr)

‖(Icout − Igt) � (Mr)‖1 , (6)

LC
1 = LC

valid + λo · LC
occluded, (7)

where sum(Mr) (resp., sum(1−Mr)) represents the number of non-zero elements
in Mr (resp., 1 − Mr). And we set λo = 6.

Meanwhile, we add a patch-based discriminator with spectral normalization
[14] and use the least square loss as the adversarial loss. It is defined as:

LC
G = EImer∼pImer (Imer)

[
(D (Icmer) − 1)2

]
, (8)

LD =
1
2
EI∼pdata(I)

[
(D (Igt) − 1)2

]
+

1
2
EImer∼pImer (Imer)

[
(D (Icmer))

2
]
. (9)

The main challenge of face de-occlusion is to maintain the face attributes
before and after de-occlusion, which is crucial for supporting other face-related
tasks. To address this, we introduce the gender-consistency loss. We obtain a gen-
der classification model with an accuracy rate of 99.096%, by using the CelebA-
HQ to perform transfer learning on the VGG-16. In the training process, the
gender Pgt

gen of the ground-truth Igt is used as the target, and the generated face
image Icmer is classified by using the classification model to obtain the classifica-
tion result Pc

gen. Finally, we calculate the cross entropy between the classification
result and the target. So the gender-consistency loss is defined as:

LC
gen = − (

Pgt
gen logPc

gen +
(
1 − Pgt

gen

)
log

(
1 − Pc

gen

))
, (10)
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Fig. 4. The architectures of the Important Areas Refinement Module (IRM) and the
Fusion Module.

where Pgt
gen (resp., Pc

gen ) represents the probability that the image Igt (resp.,
Icmer ) belongs to male. Finally, the total loss for the coarse face generator is

LC
face = LC

1 + λG · LC
G + λgen · LC

gen, (11)

and we set λG = 0.1, λgen = 1.

Refinement Face Generator

Local Areas Refinement Module (LRM). As shown in Fig. 3, the main structure
of the LRM is similar to the model proposed in [19]. Specifically, it consists of
two down-sampled encoders, four residual blocks, and two up-sampled decoders.
Besides, the feature map is padded using the reflection of its boundary before
down-sampling and after up-sampling, which makes the edge information better
preserved during the convolution processes. We use a shallow neural network to
obtain information on surrounding pixels to locally refine the missing areas. In
practice, we feed the coarse face image Icmer and the predicted occlusion mask
Mr into this module to get the local refinement feature map Fl.

Important Areas Refinement Module (IRM). By exploring the similarity of pixels
in the same face feature, we propose the IRM, which uses similarity to find
valid pixels related to missing areas. This module maintains harmony within
the feature and achieves the goal of feature reconstruction. For example, when
only one eye is occluded, we can use the features in the occlusion-free eye to
inpaint the occluded one, ensuring consistency in features such as the eyeball
color. As shown in Fig. 4, we feed the feature map Fl into the IRM and get the
segmentation map of the rough face image Icmer by using the face segmentation
network, then use the segmentation map to get five important areas (brow, eye,
nose, lip, mouth) of the feature map. If the current important area contains both
a valid area and an occluded area, we calculate cosine similarity between feature
points in the valid area and those in the occluded area. Then using the most
similar features to fill each feature point in the occluded area. If the current
important area is all occluded area, we use the prediction information of LRM
to fill them. If the current important area is all valid area, their feature points
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will not be changed. Through this module, we can acquire the feature map Ff

of feature refinement.

Fusion Module. The LRM inpaints the occluded area using surrounding pixels
through the shallow neural network, which enhances the local details. However,
the features of face images have particularities, with specific correlations existing
between different local areas. For example, the local features of the two eyes
should exhibit similarity. However, it is difficult to obtain information from the
valid area related to the occluded area in this module, leading to the output
result may be discordant within the features. The IRM inpaints the occluded
area using valid pixels within the features by calculating the cosine similarity,
ensuring harmony within the features. But it cannot inpaint areas without valid
information and has difficulty handling images with the large occluded area.
Therefore, we adaptively fuse the local refined feature map Fl with the feature
refined feature map Ff , and then up-sample them to the size of the input image
to get a refined face image Irout and a merged face image Irmer,

Irmer = If−occ � (1 − Mr) + Irout � Mr. (12)

Like the coarse stage, we use the weighted L1 loss as the pixel-wise recon-
struction loss LR

1 , which is the same as Eq. (7) except for replacing Icout with
Irout in Eq. (5) and Eq. (6). Meanwhile, following [19], we apply perceptual loss
and style loss to the model using the VGG-16 which is pre-trained based on
ImageNet. The perceptual loss is defined as:

LR
per =

∑

i

‖φi (Irout) − φi (Igt)‖1 + ‖φi (Irmer) − φi (Igt)‖1 , (13)

where φi means the feature map of i-th layer in pre-trained VGG-16 network
(i ∈ {5, 10, 17}).

The style loss is defined as:

LR
sty =

∑

i

‖Gi (Irout) − Gi (Igt)‖1 + ‖Gi (Irmer) − Gi (Igt)‖1 , (14)

where Gi (·) = φi (·) φi (·)T is the Gram matrix.
Adding total variation (TV) loss as the smoothing penalty, defined as:

LR
tv = ‖Irmer(i, j + 1) − Irmer(i, j)‖1 + ‖Irmer(i + 1, j) − Irmer(i, j)‖1 . (15)

Like previous work [8], an identity loss is defined on the face recognition
network. It is defined as:

LR
id = 1 − Fgt

id · Fr
id

max
(∥∥Fgt

id

∥∥
2

· ‖Fr
id‖2 , ε

) , (16)

where Fgt
id and Fr

id are the output vectors of the face recognition network for Igt
and Irmer. Respectively, ε sets to very small values 1e-8.

Finally, the total loss for the refinement face generator is

LR
face = LR

1 + λper · LR
per + λsty · LR

sty + λtv · LR
tv + λid · LR

id, (17)

and we set λper = 0.05, λsty = 120, λtv = 0.1, λid = 1.
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Fig. 5. Qualitative results on our synthetic dataset (top) and Gender Occlusion Data
(bottom).

Fig. 6. Qualitative results on CelebA-HQ (top), FFHQ (middle), and MeGlass (bot-
tom).

4 Experiments

4.1 Experimental Settings

Datasets. We train the FRNet using the synthetic dataset proposed in Sect. 2.
Furthermore, we also use real-world portrait datasets including CelebA-HQ,
FFHQ [9], MeGlass [3], RMFD [22], and the masked face synthesis dataset Gen-
der Occlusion Data [15] to test the model.

Implementation Details. Our method is implemented with PyTorch 1.7.0
using a 24G NVIDIA GTX3090 GPU. And we train the model by the Adam
optimizer with β1 = 0.5 and β2 = 0.999. In practice, we first train the occlusion
extractor for 10 epochs, then fix the parameters of the occlusion extractor and
train the face generator for 40 epochs. We set the learning rate to 0.0002 when
training the occlusion extractor. As for the training of the face generator, we set
the learning rate to 0.0002 for the first 20 epochs and linearly decay it to zero
for the next 20 epochs.

4.2 Comparisons with State-of-the-Art Methods

We compare our method with state-of-the-art image inpainting methods includ-
ing CTSDG [4], MADF [26], DSNet [20], WaveFill [23], AOT-GAN [24],
MISF [10], LGNet [19], image translation methods including CycleGAN [25],
pix2pixHD [21], and glasses removal methods including ERGAN [7], HiSD [11].
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Qualitative Comparison. As shown in Fig. 5, Fig. 6 and Fig. 8, our method can
restore the global structures and details of the faces more effectively, while main-
taining consistency within the features. Furthermore, our model can be directly
extended to other datasets, enabling the identification and removal of multiple
occlusions while producing visually realistic results without retraining. (More
experimental results can be found in https://github.com/dss9964/FRNet.)

Table 1. Quantitative results on our synthetic dataset and Gender Occlusion Data.
The best two results are shown in red and blue respectively.

Model
Our Synthetic Dataset Gender Occlusion Data

FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑
pix2pixHD 5.31 0.112 0.843 11.95 0.157 0.803

CTSDG 2.06 0.046 0.938 12.20 0.139 0.853

MADF 3.26 0.049 0.936 14.87 0.137 0.850

DSNet 1.94 0.043 0.939 12.08 0.137 0.855

WaveFill 2.05 0.044 0.935 14.59 0.135 0.854

AOT-GAN 2.13 0.043 0.933 11.55 0.135 0.855

MISF 1.77 0.041 0.942 11.78 0.134 0.858

LGNet 1.87 0.042 0.942 15.49 0.137 0.856

Ours 1.85 0.039 0.945 10.50 0.132 0.858

Fig. 7. The results of identity preservation.

Quantitative Comparison

Realism. As shown in Table 1, our method is comparable to MISF and LGNet
on the proposed synthetic dataset and achieves the best results on the Gender
Occlusion Data. These results indicate that our model possesses better general-
ization performance and a stronger ability to handle large-scale occlusions.

Identity Preservation. To demonstrate the positive impact of de-occlusion on
face recognition, we collected 1,032 sets of face images from MeGlass. Each

https://github.com/dss9964/FRNet
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set consisted of two images without glasses and one image with glasses of the
same identity. Various occlusion removal methods were applied to the images
with glasses to generate corresponding images without glasses. The Euclidean
Distance between the first image without glasses and all other images was then
calculated. As shown in Fig. 7, the presence of occlusions significantly increased
the Average Euclidean Distance between the occluded face images and the target
images. However, our method effectively preserves the identity information of the
face images, minimizing the Euclidean Distance. It mitigated the detrimental
effects of occlusion to a certain extent, ultimately enhancing the accuracy of
face recognition.

4.3 Ablation Studies

In this subsection, we evaluate the performance of our key contributions in occlu-
sion extraction and face inpainting.

Occlusion Extraction. MS and MR represent occlusion location information
and the refinement stage of the occlusion extractor respectively. Table 2 shows
that they both have positive effects on occlusion extraction.

Face Inpainting. Lgen, Lid, and FS represent the gender loss, the id loss, and
the face structure information respectively. GFNet represents moving the IRM
to the coarse stage. As shown in Table 2, the network with all proposed mod-
ules achieves the best performance, indicating the effectiveness of our proposed
strategy and loss functions. Figure 9 demonstrates that the quality of images
generated by w/o FS is the worst, with noticeable blurriness. The images gen-
erated by w/o FR exhibit internal feature inconsistency, such as the eyes in the
2nd row. w/o Lgen&Lid and w/o GF can effectively inpainting the images, but
lack detail in some areas. These qualitative results also reflect the advantages of
the FRNet.

Fig. 8. Qualitative results on RMFD.

Fig. 9. Qualitative comparison of different
ablations in face inpainting on our synthetic
dataset.

Table 2. Quantitative comparison of dif-
ferent ablations in occlusion extraction
(top) and face inpainting (bottom) on our
synthetic dataset.

Model FID↓ LPIPS↓ SSIM↑
w/o MR 3.71 0.018 0.987

w/o MS 2.32 0.015 0.987

Ours 2.26 0.014 0.990

w/o IRM 1.94 0.041 0.942

w/o Lgen&Lid 1.89 0.041 0.943

w/o FS 2.17 0.042 0.944

GFNet 1.90 0.041 0.944

Ours 1.85 0.039 0.945
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5 Conclusion

In this paper, we propose a new face de-occlusion framework based on feature
reconstruction (FRNet), which consists of three stages: structure prediction,
occlusion extraction, and face inpainting. In the inpainting process, the global
structures are reconstructed with the guidance of the face segment images, and
the important areas are refined by local information and feature information.
Besides, we build a high-quality synthetic occluded face dataset, which provides
supervision for the training of models. Qualitative and quantitative experiment
results demonstrate that our model can effectively remove face occlusions and
retain attribute information to support face-related tasks.
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