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Abstract. Images captured in a dark environment may cause low visi-
bility and lose significant details leading to poor performance of vision-
based recognition systems. Recently, deep learning-based methods have
been proposed for low-light image enhancement (LIE) with different pri-
ors or training schemes. However, even those LIE methods may intro-
duce visual artifacts into the enhanced images. This paper proposes an
adaptive LIE optimization framework that allows to re-optimize different
deep learning-based LIE methods based on an adaptive quality evalua-
tion (QE). Specifically, we design an interpretable and learnable LIE-QE
module for LIE. To find the optimal structure of the LIE-QE module, we
propose an algorithm unrolling method to design the LIE-QE module,
where the each layer of the decomposition component of the LIE-QE
module can be interpreted as WLS edge-aware smoothing. Both quali-
tative and quantitative experiments were conducted, and the evaluation
verified the effectiveness of the proposed learnable deep unrolled LIE-
QE module for LIE. The results shows that the proposed LIE framework
can effectively improve different deep learning-based LIE methods indi-
cating the potential of the optimization framework with LIE-QE module
to re-optimize existing DNN-based LIE methods.
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1 Introduction

In our daily life, low-light images are fairly common due to insufficient illumina-
tion or limited exposure time. Low-light images not only have poor visibility, but
also degrade the performance of vision-based recognition systems that designed
for high-quality images.

Low-light image enhancement (LIE) has been an active research topic for
decades, and many classic methods are based on intensity transform [18], filtering
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Fig. 1. Visual artifacts introduced using some recent low-light enhancement methods,
where (a) is the ground-truth image, (b) is the low-light image, and (c)–(f) are the
results of RetinexNet [22], KinD [26], DALE [9] and Zero-DCE++ [12], respectively.

operations or Retinex theory that utilize intrinsic properties of scene or objects
to obtain better LIE [4,7,10,11,14].

Recently, many learning-based methods have been proposed for LIE with
deep neural network (DNN). One line of works modify existing DNN with
different priors or training schemes for LIE, such as Zero-Reference [6], Zero-
DCE++ [12], DALE [9], EnlightenGAN [8], LLFlow [20] and SNR-Aware trans-
former [24]. Another line of works takes intrinsic image decomposition or Retinex
theory [10,11] as a main illumination constraints to design DNN structure for
LIE, and integrates additional schemes to further optimize the networks, such as
RetinexNet [22], LightenNet [13], KinD [26], KinD++ [25], URetinex-Net [23]
and LIE with semantic segmentation [2].

However, experiments indicate that even though the state-of-the-art LIE
methods may inevitably introduce some visual artifacts into the enhanced out-
put, like underexposure, color shift or loss of details, as shown in Fig. 1. It indi-
cates that LIE is still an unsolved problem. It would be significant to develop a
framework to further improve the performance of existing DNN-based methods
without completely re-designing the trained DNN structure.

Therefore, this paper proposes an adaptive LIE optimization framework that
enables to re-optimize different deep learning-based LIE methods based on an
adaptive quality evaluation (QE) of the enhanced low-light images. Specifically,
we design the LIE optimization framework with an interpretable and learnable
LIE-QE module. We employ the algorithm unrolling [5,15,17] method to deter-
mine the optimal structure of the LIE-QE module, where the each layer of the
decomposition component of the LIE-QE module can be interpreted as WLS
edge-aware filtering [3].

Both qualitative and quantitative experiments were conducted to evaluate
the effectiveness of the proposed learnable deep unrolling LIE-QE module for
LIE. The experimental results demonstrate that the proposed LIE framework
can significantly further improve the performance of different deep learning-
based LIE methods, such as RetinexNet [22], KinD [26], DALE [9] and Zero-
DCE++ [12]. Furthermore, the results also indicate the potential of the opti-
mization framework with LIE-QE module to re-optimize a variety of existing
DNN-based LIE methods.

The main contributions are summarized as follows:

1. An adaptive LIE optimization framework is constructed that can re-optimize
different deep learning-based LIE methods.
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Fig. 2. The overall structure of our unrolling adaptive LIE optimization framework.

2. An interpretable and learnable LIE-QE module is proposed to evaluate the
quality of LIE methods, and the DNN structure of the LIE-QE module can
be interpreted as WLS edge-aware filtering from an algorithm unrolling per-
spective.

3. Qualitative and quantitative experiments indicates that our LIE optimization
framework with the LIE-QE module can effectively improve deep learning-
based LIE methods, including RetinexNet [22], KinD [26], DALE [9] and
Zero-DCE++ [12].

2 LIE Optimization Framework with Algorithm Unrolling

We design an adaptive LIE optimization framework to optimize the LIE methods
and guide them generate higher quality results that are more visually pleasing
to humans. The framework consists of the low-light image enhancement method
and unrolling LIE-QE module, as shown in Fig. 2. The quality evaluation serves
as the quality constraint to optimize and improve the LIE module, leading to
higher quality and better performance which is more preferable to the human
visual system. The LIE optimization framework can be applied to a variety of
deep-learning LIE methods, such as KinD [26], ZeroDce [6] and the detailed
evaluations were shown in Sec. 3.

2.1 Unrolling LIE-QE Module

As shown in Fig. 2, our Unrolling LIE-QE model mainly contains the Unrolling
Decomposition Module (UDM) that is the key component of Unrolling LIE-QE
and the Feature Extraction Module.

Unrolling Decomposition Module. Our Unrolling Decomposition Module
(UDM) is a novel decomposition module which unrolls the decomposition itera-
tions into a neural network by algorithm unrolling. UDM contains n Unrolling
blocks, with each block representing an iterative step of the solution, as shown
in Fig. 3. UDM can be interpreted as WLS edge-aware smoothing [3], combin-
ing the prior knowledge of WLS [3] with the advantages of a data-driven neural
network. This leads to better performance and interpretability of the module.

We designed an objective function as the WLS filtering [3] and unroll the
structure of iterative WLS, whose the constraint term is a related term of the
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Fig. 3. The overall structure of Unrolling Decomposition Module(UDM).

outputU : {
min.{(U − I)2 + λw(Z)},

s.t. U = Z.
(1)

where, I is the input image, U is the output, w(Z) is a constraint term of the
output U , λ is the weight of w(Z) and Z is an auxiliary variable to repalce U
for making the problem easy to solve.

Alternating direction method of multipliers (ADMM) [1] is used to solve
Eq. (1). Then, we obtain the following equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Uk+1 =
2I + μkZk − αk

2 + μk
, (2a)

Zk+1 = h(Uk+1 + αk;WZ), (2b)
μk+1 = 2μk, (2c)
αk+1 = αk + μk+1(Uk+1 − Zk+1). (2d)

Here, Zk, μk and αk denote the auxiliary variable Z and the constraint
coefficients μ and α in the k th iteration, respectively. Uk+1, Zk+1, μk+1 and
αk+1 denote U , Z, and α in the k + 1 th iteration. h() is a nonlinear shrink
function designed as fully convolutional neural network.

UDM unrolls the iterative update solution of Eq. (2a), (2b), (2c) and (2d) into
a neural network using the algorithm unrolling, as shown in Fig. 3. The iteration
is converted into a data-driven training process using neural network training
techniques. Uk, Zk, μk and αk obtained in the kth iteration, are inputted for
uk+1, Zk+1, μk+1 and αk+1 respectively. That iterations are repeated until the
final decomposition result u is got. The U module, Z module, μ module, and α
module of the Unrolling block in Fig. 3 correspond to Eq. (2a), (2b), (2c) and
(2d), respectively.

Algorithm unrolling allows each hidden layer in the network to have a cer-
tain meaning, which can be interpreted as a certain step in the iteration. Each
Unrolling block in UDM acts as a WLS filter [3], showing a similar effect in
decomposition as the WLS filter [3].

As shown in Fig. 4, UDM is capable of decomposing the illumination-
independent structure map and the illumination detail map from the low-light
image. The illumination detail map contains the illumination information of the
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Fig. 4. Outputs of Unrolling Decomposition Module. (a) is the low-light image, (b) is
the structure map and (c) is the illumination-detail map from UDM.

image, showing the regions impaired by the low-light environment. This illu-
mination detail map can be used to evaluate the quality of low-light enhanced
images and optimize LIE methods more effectively.

Moreover, the processing time of UDM in decomposition is 0.00789 s per
image, which overcomes the disadvantage of the high-time-complexity iterations.

The input image I is converted from RGB color space to CIELAB color
space to obtain the L-channel IL containing illumination information. UDM
decomposes the L channels of the input image to obtain the illumination detail
map uid and the structure map us:

Us = UDM(IL), (3)

where IL is the L-channel image of input image I, Us is the structure map of I.
After obtaining structure map Us using UDM, it can be subtracted from the

original low-light image IL to obtain the illumination-detail map uid containing
information about the illumination in the image:

Uid = IL − Us, (4)

where Uid is the illumination-detail map of I.

Feature Extract. The input enhanced image Ien and the reference Iref , as
well as their respective structure map Us en, Us ref and illumination detail map
Uid en, Uid ref are fed into the Feature Extraction Module. The module extracts
perceptual features, structure features and illumination features of Ien and Iref
using pretrained VGGNet [19]. It benefits the quality evaluation for low-light
image enhancement. We choose the outputs of the five latent layers of the
VGGNet [19] as our features.

Quality Evaluation. The final image quality evaluation is calculated by taking
the weighted sum of the feature similarities, which are obtained by L2 distance
between the perceptual features, structure features and illumination features
of Ien and Iref . This evaluation can be used to optimize LIE methods more
effectively.
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2.2 Loss of the LIE Optimization Framework

The loss of our framework is given by:

L = Len(Idark, Ien) + β ∗ Lq(Ien, Iref ), (5)

where Len is the enhancement loss of the framework from LIE module, Lq is the
quality constraint. β weights the influence of Lq which is set as 0.2 in our exper-
iments. Idark is low-light image inputted to the LIE method, Ien is enhancement
image of the LIE method and Iref is the reference image.

Len depends on the LIE methods used in our framework, calculated by the
low-light image Idark and enhanced image Ien. It is typically as same as the
loss function of the selected LIE method in general. To ensure the versatility of
our framework and preserve the original characteristics and advantages of the
selected LIE method, it is recommended to keep Len consistent with the original
loss function of the chosen method.

Lq is the result of Unrolling LIE-QE calculated by enhanced image Ien which
is the output of the LIE method and reference image Iref . Lq is the quality
constraint, which is used to optimize the LIE method for better and higher
quality enhanced results. It guides the LIE method to produce results that are
more visually pleasing to humans.

3 Experiment

We evaluated our method using LOL dataset [22] which is a real-world dataset
comprising low-light and normal-light image pairs, as well as Large Scale Low-
light Synthetic(LSLS) dataset [16]. We selected low/normal-light image pairs in
LOL dataset [22] and synthesized dark images and their high-contrast images
from LSLS [16] for our experiments.

3.1 Evaluation of the Proposed Framework

To evaluate the effectiveness of our framework, we implemented LIE-QE of the
framework using WLS [3] instead of UDM. The framework implemented with
WLS [3] is tested to optimize KinD [26] and Zero-DCE++ [12] in comparison
with the original KinD [26] and Zero-DCE++ [12].

The experiments were conducted on LOL dataset [22] and LSLS dataset [16].
We used PSNR and SSIM [21] as the image quality metrics in the experiment.
The results are presented in Table 1, where “WLS-Optimized” indicates that
the method is optimized using the framework with the LIE-QE module imple-
mented using WLS [3]. PSNR and SSIM [21] of the WLS-Optimized images are
higher than the original ones, indicating that our framework can lead to better
enhancement and higher quality. It demonstrates that our framework has the
ability to optimize LIE methods.
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Table 1. Experiment results of the framework implemented with WLS [3].

Method LOL Dataset [22] LSLS Dataset [16]

PSNR(↑) SSIM [21](↑) PSNR(↑) SSIM [21](↑)

KinD [26] 19.650 0.821 17.385 0.765

WLS-Optimized KinD 19.734 0.821 17.389 0.765

Zero-DCE++ [12] 14.861 0.559 15.132 0.648

WLS-Optimized Zero-DCE++ 16.051 0.569 17.032 0.683

3.2 Evaluation of Unrolling Decomposition Module

Decomposition Results. We tested the effectiveness in decomposition of
UDM compaired with WLS [3]. As shown in Fig. 5, our UDM is effective in
decomposing the illumination-independent structure map and the illumination-
detail map from the low-light image. The illumination map from UDM contains
the illumination information of the image, showing the regions of image affected
by the low-light environment. It can guide the quality evaluation of low-light
enhanced images and optimization for low-light enhancement algorithms more
effectively. Moreover, the decomposition results indicate that UDM is similar to
WLS [3]. This suggests that UDM can be interpreted as WLS [3], increasing the
interpretability of the model.

Fig. 5. Decomposition results of UDM. (a) is the low-light image, (b) is the reference
image, (c) is the structure map from UDM, (d) is the illumination-detail map from
UDM and (e) is the illumination-detail map from WLS [3].

Ablation Studies. We conducted ablation studies to evaluate the important
role of UDM playing in our unrolling LIE optimization framework. We compared
the performance of UDM and WLS in our framework by implementing them in
the LIE-QE module to optimize the LIE methods.

The results in Fig. 6, Fig. 7 and Table 2, demonstrate that our framework
with UDM outperforms the framework with WLS [3] in terms of optimization
for LIE methods. “UDM-optimized” means that the method is optimized by
Unrolling LIE optimization framework whose LIE-QE implemented with UDM
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Fig. 6. Experiment results of ablation studies in LOL dataset [22]. (a) are the ref-
erence images, (b) are the low-light images, (c) are the results of WLS-Optimized
RetinexNet, (d) are the results of UDM-Optimized RetinexNet, (e) are the results of
WLS-Optimized SNR and (f) are the results of UDM-Optimized SNR.

Fig. 7. Experiment results of ablation studies in LSLS dataset [16]. (a) are the ref-
erence images, (b) are the low-light images, (c) are the results of WLS-Optimized
ZeroDCE++, (d) are the results of UDM-Optimized ZeroDCE++, (e) are the results
of WLS-Optimized SNR and (f) are the results of UDM-Optimized SNR.

Table 2. Ablation studies results of UDM and WLS [3].

Method LOL Dataset [22] LSLS Dataset [16]

PSNR(↑) SSIM [21](↑) PSNR(↑) SSIM [21](↑)

WLS-Optimized RetinexNet 16.747 0.682 8.059 0.626

UDM-Optimized RetinexNet 17.111 0.694 8.673 0.632

WLS-Optimized KinD 19.734 0.821 17.389 0.765

UDM-Optimized KinD 19.756 0.822 17.394 0.766

WLS-Optimized Zero-DCE++ 16.051 0.569 17.032 0.683

UDM-Optimized Zero-DCE++ 16.854 0.571 17.510 0.693

WLS-Optimized SNR 23.285 0.825 16.683 0.637

UDM-Optimized SNR 25.485 0.857 17.061 0.667

and “WLS-optimized” means the method is optimized by the framework with
LIE-QE implemented with WLS [3]. The experiment results indicate that UDM
can extract illumination information from image better and more effectively
than WLS [3]. UDM was found to be more effective at extracting illumination
information from the image, resulting in better image quality and more natural
light and details in the enhanced images, which are more preferable for the
human visual system. The ablation studies confirmed that UDM is beneficial
to LIE and plays an important role in the effectiveness of our framework in
improving the performance of LIE methods.
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3.3 Comparison with Related Methods

Since UDM has better decomposition and optimization performance than WLS
[3], we selected Unrolling LIE Optimization Framework with UDM as the LIE
optimization framework. We applied our framework to optimize four deep-
learning LIE methods, namely RetinexNet [22], KinD [26], Zero-DCE++ [12],
and SNR [24], on both the LOL [22] and LSLS [16] datasets. We used PSNR and
SSIM [21] as the image quality metrics. In the results, “UDM-optimized” means
that the method is optimized by the framework whose LIE-QE is implemented
with UDM.

Qualitative Evaluation. As demonstrated in Fig. 8 and Fig. 9, the UDM-
Optimized enhancement results have more natural light and more light details
compared with the original ones. They are more preferable for human visual
system than before.

Fig. 8. Optimization experiment for existing low-light image enhancement methods
in LOL dataset [22]. (a) are the low-light images, (b) are the results of RetinexNet
[22], (c) are the results of optimized RetinexNet, (d) are the results of KinD [26], (e)
are the results of optimized KinD, (f) are the reference images, (g) are the results of
Zero-DCE++ [12], (h) are the results of optimized Zere-DCE++, (i) are the results of
SNR [24] and (j) are the results of optimized SNR.

Quantitative Evaluation. In Table 3, PSNR and SSIM [21] of the UDM-
Optimized images optimized by Unrolling LIE Optimization Framework are
higher than the originals, indicating better quality. The enhanced image quality
of the four LIE methods is improved after optimization with our framework.
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Fig. 9. Optimization experiment for existing low-light image enhancement methods
in LSLS dataset [16]. (a) are the low-light images, (b) are the results of RetinexNet
[22], (c) are the results of optimized RetinexNet, (d) are the results of KinD [26], (e)
are the results of optimized KinD, (f) are the reference images, (g) are the results of
Zero-DCE++ [12], (h) are the results of optimized Zere-DCE++, (i) are the results of
SNR [24] and (j) are the results of optimized SNR.

The results show that LIE methods optimized by our framework have better
enhancement for the low-light images and higher quality results.

Moreover, both quantitative and qualitative experiments of the framework
demonstrated that our framework is applicable to a variety of deep-learning
LIE methods, which indicating the potential of our framework to improve the
performance of various LIE methods.
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Table 3. Optimization results of our Unrolling LIE Optimization Framework.

Method LOL Dataset [22] LSLS Dataset [16]

PSNR(↑) SSIM [21](↑) PSNR(↑) SSIM [21](↑)

RetinexNet [22] 16.774 0.559 8.447 0.611

UDM-Optimized RetinexNet 17.111 0.694 8.673 0.632

KinD [26] 19.650 0.821 17.385 0.765

UDM-Optimized KinD 19.756 0.822 17.394 0.766

Zero DCE++ [12] 14.861 0.559 15.132 0.648

UDM-Optimized Zero DCE++ 16.854 0.571 17.510 0.693

SNR [24] 24.610 0.842 17.006 0.664

UDM-Optimized SNR 25.485 0.857 17.061 0.667

4 Conclusion

We propose a novel Unrolling-based adaptive LIE optimization framework, to
address some visual artifacts like underexposure and color shift of state-of-the-
art LIE methods, which can result in higher quality enhanced images. Our
framework incorporates the output of the Unrolling LIE-QE model into the loss
function as a quality constraint during optimization. Our UDM implemented in
LIE-QE takes advantage of algorithm unrolling, which unrolls the iteration into
a neural network, to decompose structure map and the illumination-detail map
that contains the illumination information result in better enhancement from
the input image. The experimental results demonstrate that our method can
effectively improve and re-optimize the LIE methods to produce higher quality
and visually-pleasing results. The results indicate the potential of framework
with LIE-QE module to re-optimize various existing DNN-based LIE methods.

Acknowledgements. This research was supported by the Fundamental Research
Funds for the Central Universities, the Open Fund of Ministry of Education Key
Laboratory of Computer Network and Information Integration (Southeast University)
(K93-9-2021-01), and the Science and Technology Program of Pazhou Lab.

References

1. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Found. Trends R© Mach. Learn. 3(1), 1–122 (2011)

2. Fan, M., Wang, W., Yang, W., Liu, J.: Integrating semantic segmentation and
retinex model for low-light image enhancement. In: Proceedings of the ACM MM,
pp. 2317–2325 (2020)



LIE Optimization Framework with Algorithm Unrolling 169

3. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decomposi-
tions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 1–10
(2008)

4. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model
for simultaneous reflectance and illumination estimation. In: Proceedings of CVPR,
pp. 2782–2790 (2016)

5. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: Pro-
ceedings of the ICML, pp. 399–406 (2010)

6. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhance-
ment. In: Proceedings of CVPR, pp. 1780–1789 (2020)

7. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map
estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

8. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervi-
sion. IEEE Trans. Image Process. 30, 2340–2349 (2021)

9. Kwon, D., Kim, G., Kwon, J.: Dale: dark region-aware low-light image enhance-
ment. arXiv preprint arXiv:2008.12493 (2020)

10. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)
11. Land, E.H., McCann, J.J.: Lightness and retinex theory. JOSA 61(1), 1–11 (1971)
12. Li, C., Guo, C., Chen, C.: Learning to enhance low-light image via zero-reference

deep curve estimation. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4225–4238
(2021)

13. Li, C., Guo, J., Porikli, F., Pang, Y.: Lightennet: a convolutional neural network for
weakly illuminated image enhancement. Pattern Recogn. Lett. 104, 15–22 (2018)

14. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image
enhancement via robust retinex model. IEEE Trans. Image Process. 27(6), 2828–
2841 (2018)

15. Liu, R., Ma, L., Zhang, J., Fan, X., Luo, Z.: Retinex-inspired unrolling with coop-
erative prior architecture search for low-light image enhancement. In: Proceedings
of CVPR, pp. 10561–10570 (2021)

16. Lv, F., Li, Y., Lu, F.: Attention guided low-light image enhancement with a large
scale low-light simulation dataset. IJCV 129(7), 2175–2193 (2021)

17. Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: interpretable, efficient deep
learning for signal and image processing. IEEE Signal Process. Mag. 38(2), 18–44
(2021)

18. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput.
Vis. Graphics Image Process. 39(3), 355–368 (1987)

19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

20. Wang, Y., Wan, R., Yang, W., Li, H., Chau, L.P., Kot, A.: Low-light image
enhancement with normalizing flow. In: Proceedings of AAAI on Artificial Intelli-
gence, vol. 36, pp. 2604–2612 (2022)

21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

22. Wei, C., Wang, W., Yang, W., Liu, J.: Deep retinex decomposition for low-light
enhancement. In: Proceedings of the BMVC, pp. 127–136 (2018)

23. Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: Uretinex-net: Retinex-
based deep unfolding network for low-light image enhancement. In: Proceedings of
CVPR, pp. 5901–5910 (2022)

http://arxiv.org/abs/2008.12493
http://arxiv.org/abs/1409.1556


170 Q. He et al.

24. Xu, X., Wang, R., Fu, C.W., Jia, J.: Snr-aware low-light image enhancement. In:
Proceedings of CVPR, pp. 17714–17724 (2022)

25. Zhang, Y., Guo, X., Ma, J., Liu, W., Zhang, J.: Beyond brightening low-light
images. IJCV 129, 1013–1037 (2021)

26. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image
enhancer. In: Proceedings of the ACM MM, pp. 1632–1640 (2019)


	Adaptive Low-Light Image Enhancement Optimization Framework with Algorithm Unrolling
	1 Introduction
	2 LIE Optimization Framework with Algorithm Unrolling
	2.1 Unrolling LIE-QE Module
	2.2 Loss of the LIE Optimization Framework

	3 Experiment
	3.1 Evaluation of the Proposed Framework
	3.2 Evaluation of Unrolling Decomposition Module
	3.3 Comparison with Related Methods

	4 Conclusion
	References


