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Abstract. Knowledge distillation (KD) improves a student network by
transferring knowledge from a teacher network. Although KD has been
extensively studied in single-labeled image classification, it is not well
explored under the scope of multi-attribute and multi-label classifica-
tion. We observe that the logit-based KD method for the single-label
scene utilizes information from multiple classes in a single sample, but we
find such logits are less informative in the multi-label scene. To address
this challenge in the multi-label scene, we design a Transpose method to
extract information from multiple samples in a batch instead of a single
sample. We further note that certain classes may lack positive samples
in a batch, which can negatively impact the training process. To address
this issue, we design another strategy, the Mask, to prevent the influ-
ence of negative samples. To conclude, we propose Transpose and Mask
Knowledge Distillation (TM-KD), a simple and effective logit-based KD
framework for multi-attribute and multi-label classification. The effec-
tiveness of TM-KD is confirmed by experiments on multiple tasks and
datasets, including pedestrian attribute recognition (PETA, PETA-zs,
PA100k), clothing attribute recognition (Clothing Attributes Dataset),
and multi-label classification (MS COCO), showing impressive and con-
sistent performance gains.

Keywords: Knowledge distillation · multi-attribute classification ·
multi-label classification

1 Introduction

Recent deep learning research has revealed that increasing the model capac-
ity properly often leads to improved performance [6,7,10]. Nevertheless, the
larger model usually comes with potential drawbacks, such as long training time,
increased inference latency, and high GPU memory consumption.

To address this issue, knowledge distillation (KD) [11,21] is often employed,
which utilizes a strong teacher network to transfer knowledge to a relatively
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Fig. 1. The different training objectives in the single-label scene and the multi-label
scene. Due to the property of the softmax function, logits in the single-label scene sum
up to 1, while logits in the multi-label scene don’t have such property.

weaker student network. KD has already been extensively studied in the single-
labeled image classification task, where each sample has only one label. However,
it has not been well investigated in the multi-attribute and multi-label classifi-
cation (we use the multi-label scene to refer to them in this paper), where each
sample may have multiple labels.

In this paper, we focus on exploring logit-based Knowledge Distillation (KD)
in the context of the multi-label scene. The logit-based KD method stands out
due to its simplicity in both idea and implementation, its independence from the
backbone model structure, as well as its relatively low computational overhead
compared to other KD methods [9]. In this method, the term logits refers to the
outputs of the neural network’s final layer, which will then be fed into a softmax
function.

However, for the following reasons, we do not directly employ the logit-based
KD method [11] (which we call vanilla KD below) commonly used in single-label
image classification.

As shown in Fig. 1, in the single-label scene, a softmax function is applied to the
logits to generate predictions in terms of probabilities. As the sum of prediction for
all classes equal 1, the logits of different classes in a single sample become highly
correlated, and therefore, contain interdependent information. This entanglement
of logits has also been noted by Decoupled KD [28]. However, in the context of the
multi-label scene, the logits of different classes are used to calculate loss with their
own labels and do not explicitly interact with the logits of other classes. Such lack
of interaction between logits of different classes weaken the information contained
in the relation of logits of different classes. Since the vanilla KD distills exactly the
relation of logits of different classes within a sample, directly employing the vanilla
KD in the multi-label scene leads to a reduced amount of information.
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Fig. 2. In the single-label scene, the logit of a same dog can be affected by the presence
of the person, as shown in (a) and (b). Instead, in the multi-label scene, the logit of
a same dog tends to be more stable and less influenced by the other classes, as shown
in (c) and (d).

On the contrary, when evaluating logits from multiple samples, logits of the
same class across multiple samples in the multi-label scene are more comparable
than those in the single-label scene. To demonstrate this idea, we present an
example in Fig. 2, where two input images contain the exactly same dog, with
the only difference being a person in the second image. In a single-label scene,
the softmax function results in ΣC

i=1pi = 1, which makes the rise in person lead
to the decrease in the dog. However, in the multi-label scene, such a decrease
is not as significant because the logit of the person does not explicitly influence
the logit of the dog. To conclude, if we look into the logits of the same class in
different samples, their values are not comparable in the single-label scene but
are comparable in the multi-label scene.

Inspired by the aforementioned two observations, we propose to distill knowl-
edge in logits from the same class and different samples, rather than from the
same sample and different classes. We refer to this strategy as the Transpose.

We also note that the multi-label scene typically exhibits a class imbalance,
where most classes or attributes contain fewer (or significantly fewer) positive
samples compared to negative samples. Therefore, under our transpose strategy,
there are more negative samples than vanilla KD [11]. We assume that the
relative relation in negative samples is less informative, since from two positive
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Fig. 3. Illustration of our proposed Transpose and Mask Knowledge Distillation (TM-
KD), where logits are first transposed and are then masked with 0 according to negative
samples predicted by the teacher.

samples the network can learn from salient information (for example, the cat in
the i-th image is more salient than the j-th image) but such information does
not exist in two negative samples (since they simply contain no cat). We thus
propose another strategy to fill all position whose logits in the teacher network is
negative (negative samples predicted by the teacher) with zero before distillation,
which we refer to the Mask strategy.

As illustrated in Fig. 3, based on the above analysis, we propose Transpose
and Mask Knowledge Distillation (TM-KD), which is a simple but effective
logit-based knowledge distillation method. We further validate the effectiveness
of our method on three tasks and five datasets, which shows TM-KD is better
than both the vanilla student network and the student network with vanilla
logit-based KD.

2 Related Work

Knowledge Distillation. Knowledge distillation (KD), proposed by Hinton
et al. [11], aims to utilize a strong teacher network for a better student network.
KD methods can be roughly divided into logit-based [11,13,15,26] and feature-
based [2,21]. KD is originally proposed for single-label image classification but
recent studies also show the effectiveness of KD in other tasks like object detec-
tion [4,29], semantic segmentation [19,24], graph neural network [8,25], anomaly
detection [3] and some low-level tasks [23].

Multi-attribute and Multi-label Learning. Due to the limited space, it is
hard to provide a detailed overview of each task. Here we provide some represen-
tative methods for these tasks. Label2Label [14] proposes a language modeling
framework for clothing attribute recognition and pedestrian attribute recogni-
tion. JLAC [22] exploits graph neural network on top of convolution neural
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network for better results for pedestrian attribute recognition. Query2Label [17]
proposes a simple transformer for better modelling multi-label classification.
Note that our work doesn’t focus on the state-of-the-art performance of each
dataset and thus is orthogonal to these works.

KD for the Multi-label Scene. So far, KD for the multi-label scene is not well
explored. Liu et al. [20] leverages the extra information from weakly-supervised
detection for KD in the multi-label scene. Zhang et al. [27] proposes a feature-
based method for KD in the multi-label scene exploiting class activation maps.
On the contrary, our work focuses on better logit-based KD and uses no auxiliary
model like the object detector.

3 Method

3.1 Preliminaries

A training batch with B samples and C classes for the multi-label scene can be
described as D = {(xi, yi), i = 1, 2, ..., B}, where xi is the i-th image in a batch
and yi ∈ {0, 1}C is a binary vector with length C, the lables for i-th sample. We
used yij to represent the j-th attribute label for i-th sample and yij = 1 for a
positive sample, yij = 0 for a negative sample.

Then, a classification network f is trained to predict a vector zi ∈ R
C for

the i-th sample and z ∈ R
B×C is called logits. In the multi-label scene, each

separate logit is then fed into sigmoid function, and then calculate the binary
cross-entropy (BCE) loss. The above process can be formally defined as:

zi = f(xi) (1)

pij =
1

(1 + e−zij )
(2)

LBCE = − 1
BC

B∑

i=1

C∑

j=1

yij log(pij) + (1 − yij)log(1 − pij) (3)

And if KD is applied during the training, the final loss can be represented as:

L = LBCE + λLKD (4)

where λ is a hyperparameter to balance BCE loss and KD loss.
Below we will show the different designs of LKD in vanilla KD and our TM-KD.

3.2 Vanilla KD

Apart from the student network fs, KD uses a stronger teacher network f t

trained beforehand to help the student network. The logits of them can be rep-
resented as zs ∈ R

B×C and zt ∈ R
B×C .
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Directly using vanilla KD from the single-label classification, Kullback-
Leibler (KL) divergence loss is used to minimize the discrepancy of probabilities
from different classes in the same sample, which is:

pti = softmax(zti/τ), psi = softmax(zsi /τ), i = 1, 2, ..., B (5)

LKD =
1
B

B∑

i=1

KL(pti, p
s
i ) (6)

where τ is a hyperparameter to adjust the smoothness of two probabilistic dis-
tributions.

Algorithm 1: PyTorch-style pseudocode for vanilla KD and TM-KD.

T = 1

KLdiv = nn.KLDivLoss(reduction="batchmean")

def KD from logit(logit stu, logit tea):

log prob = F.log softmax(logits stu/T, dim=1)

prob = F.softmax(logits tea/T, dim=1)

loss = KLdiv(log prob, prob)

return loss

def vanillaKD(logit stu, logit tea):

# logit stu.shape : [B, C]

return KD from logit(logit stu, logit tea)

def TM KD(logit stu, logit tea):

# logit stu.shape : [B, C]

mask = (logit tea[0]<0).int()

logits stu = logits stu.masked fill(mask, 0)

logits tea = logits tea.masked fill(mask, 0)

logits stu = logits stu.permute(1,0)

logits tea = logits tea.permute(1,0)

# logit stu.shape : [C, B]

return KD from logit(logit stu, logit tea)

3.3 TM-KD

As illustrated in Fig. 3, our TM-KD consist of two strategies, i.e. the Transpose
and the Mask respectively.

For the Mask, to alleviate the influence of useless information in negative
samples for a class, we set the position to zero if the corresponding logits in the
teacher network are negative. By doing so, the teacher network only distills the
knowledge in positive samples from its perspective. Formally:
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ẑ∗
ij =

{
z∗
ij , ztij ≥ 0

0, ztij ≤ 0
(7)

where ∗ ∈ {s, t}. Note the student network and teacher network share the same
mask from the teacher network.

For the Transpose, we no longer distill from the different classes in the same
sample, but from the different samples in the same class, which is done by:

ptj = softmax(ẑt∗j/τ), psj = softmax(ẑs∗j/τ), j = 1, 2, ..., C (8)

∗ can be any i where 1 ≤ i ≤ B, and ẑt∗j , ẑ
s
∗j ∈ R

B can be viewed as logits
of the same class in different samples. We have analyzed why they contain more
information in the multi-label scene in the introduction.

We also provide a pseudocode of vanilla KD and TM-KD in Algo. 1.

4 Experiments

In this section, we validate the performance of our TM-KD on three tasks and
five datasets. Our TM-KD consistently demonstrates impressive performance
across all the datasets. In addition, we conduct ablation studies to demonstrate
the effectiveness of our Transpose and Mask strategy.

4.1 Experimental Setting

We conduct our experiment under two KD settings with ResNet [10], where
ResNet-101 serves as the teacher model for teaching ResNet-50, and ResNet-50
serves as the teacher model for teaching ResNet-18. We train a teacher first and
then utilize it to help train a student. The only exception is that we used ResNet-
101 as the teacher and ResNet-34 as the student for the MS COCO dataset. Our
code is on top of the codebase by Jia et al. [12] and the teacher network is retrained
instead of loaded. Below, we’ll present more experimental details.

Datasets. We evaluate on pedestrian attribute recognition using PETA [5],
PETA-zs [5,12], and PA100k [18], clothing attribute recognition using the Cloth-
ing Attributes Dataset [1], and multi-label classification using MS COCO [16]. We
list the statistics of used datasets in Table 1. We utilize default dataset split and
more details can be found in their original paper and codebase by Jia et al. [12].
Note that for the clothing attributes attribute dataset, we use only 22 out of 26
attributes, where we exclude attributes of sleeve length, neckline, category and
gender.

Implementation Details. For KD hyperparameters, we set λ = 20 in Eq. 4
and set τ = 1 in Eq. 8 for all experiments. It turns out that the order of magni-
tude of λ and τ (in the power of 10) does affect the results, but when λ and τ are
in the same order of magnitude, the exact values of them don’t affect the result.
Since we implemented our method on top of the codebase by Jia et al. [12], we
used most of the default settings from it. It’s guaranteed that hyperparameters
for different methods on the same dataset are also the same.
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Table 1. Statistics of 5 used datasets from 3 different tasks. PAR: pedestrian attribute
recognition. CAR: clothing attribute recognition. MLC: multi-label classification.
Ntrain: number of samples in train set. Ntest: number of samples in test set. Nattr:
number of attributes used in this dataset.

Task Dataset Ntrain Ntest Nattr

PAR PETA 11400 7600 35

PETA-zs 15067 3933 35

PA100k 90000 10000 26

CAR Clothing Attributes 1500 356 22

MLC MS COCO 82081 40137 80

Metrics. Following the routine in previous works, We report mean accuracy
(mA) and micro−F1 for pedestrian attribute recognition and clothing attribute
recognition datasets and report mA for the multi-label classification dataset.
Since ReduceLROnPlateau learning rate scheduler is used following the codebase
by Jia et al. [12], we report the metrics after the first epoch of learning rate
reducing to 10−5 for pedestrian attribute recognition datasets, and we report
those of clothing attribute recognition dataset for first reduction to 10−6. For
the multi-label classification dataset, we report the metrics at the last (30) epoch.

Table 2. The results for pedestrian attribute recognition, Δ∗ represent the performance
gains from our TM-KD compared with the baseline w/o KD and the baseline with
vanilla KD. The rightmost column reports the average of 3 datasets.

KD Setting KD Method PETA PETA-zs PA100k Avg.

mA F1 mA F1 mA F1 mA F1

ResNet50

↓
ResNe18

Teacher 84.21 86.21 71.07 72.12 80.27 87.32 78.51 81.88

w/o KD[12] 81.76 84.85 70.70 71.54 77.97 85.92 76.81 80.77

Vanilla KD[11] 81.95 85.18 69.29 71.70 78.54 86.33 76.59 81.07

TM-KD(Ours) 84.75 85.02 73.54 71.77 81.66 85.96 79.98 80.91

Δw/o +2.99 +0.17 +2.84 +0.23 +3.69 +0.04 +3.17 +0.14

Δvanilla +2.80 -0.16 +4.25 +0.07 +3.12 -0.37 +3.39 -0.16

ResNet101

↓
ResNet50

Teacher 85.13 87.11 71.84 72.25 80.66 87.59 79.21 82.31

w/o KD[12] 84.21 86.21 71.07 72.12 80.27 87.32 78.51 81.88

Vanilla KD[11] 84.04 86.35 71.07 72.76 80.22 87.34 78.44 82.15

TM-KD(Ours) 86.72 85.83 73.40 72.62 82.74 87.29 80.95 81.91

Δw/o +2.51 -0.38 +2.33 +0.50 +2.47 -0.03 +2.44 +0.03

Δvanilla +2.68 -0.52 +2.33 -0.14 +2.52 -0.05 +2.51 -0.24
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4.2 Main Results

Pedestrian Attribute Recognition. We report our result in Table 2. It can
be seen that vanilla KD has negligible influence on baseline. And we compared
TM-KD with the baseline w/o KD and with vanilla KD in Δ∗ rows. Our TM-KD
has impressive and consistent gains on all datasets w.r.t mA.

When it comes to F1, our model isn’t as outstanding as its performance w.r.t
mA but still gets an overall positive delta on the average performance compared
to the baseline w/o KD. We argue that mA is the main metric for pedestrian
attribute recognition since it calculates the mean accuracy over classes, while
micro − F1 treats all samples equally and thus can’t well reflect the model’s
performance in class imbalance scene. Jia et al. [12] also note that the trade-off
exists between mA and F1, and they show that by changing the weight function
we can control the trade-off lean to mA or F1 to some extents.

Table 3. Our results on the Clothing Attributes Dataset. Note that our TM-KD has
even helped student’s performance surpass their corresponding teacher.

KD Setting Teacher w/o KD Vanilla KD TM-KD(Ours)

(mA/F1) (mA/F1) (mA/F1) (mA/F1)

R50→R18 65.2/48.7 62.3/41.0 61.1/39.5 68.7/50.2

R101→R50 66.4/50.0 65.2/48.7 64.5/47.4 71.3/55.2

Clothing Attribute Recognition. Our results on clothing attribute recogni-
tion are presented in Table 3, wherein our TM-KD demonstrates more remark-
able performance. Surprisingly, our ResNet-18 student, trained by ResNet-50,
outperforms even the ResNet-101 teacher. Additionally, the ResNet-50 teached
by ResNet-101 with our TM-KD also achieves significantly better results com-
pared to all other methods. On the contrary, the vanilla KD approach leads to
performance degradation for both ResNet-18 and ResNet-50.

One possible reason for such remarkable performance may be the fact that the
Clothing Attributes Dataset contains a very limited number of samples (recall
Table 1). Intuitively, when the training data is extremely insufficient to train a
network, the network has even more potential to progress. Consider two college
students, and in their final exams one gets a D− grade while another gets an A
grade. If we teach them in the same way, apparently the former will progress more.

Table 4. Our results on the MS COCO dataset.

ResNet-101 ResNet-34

w/o KD [12] vanilla KD [11] TM-KD(ours)

83.04 78.81 77.11 80.83
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Multi-label Classification. As shown in Table 4, our results also boost the
performance of the student ResNet-34 (+2.02) on the MS COCO multi-label
dataset, contrary to the negative impact caused by vanilla KD. Although the
improvement may not be significant, considering the difficulty of this dataset and
performance degradation of the vanilla KD, the result is still quite impressive.

Fig. 4. Ablation of the proposed Transpose strategy and Mask strategy on the PETA-
zs dataset. The dark blue dashed line assumes the 1:1 trade-off between mA and F1.
(Color figure online)

4.3 Ablation Study

To evaluate the effectiveness of the two proposed strategies, we conduct an abla-
tion study by incorporating one of them into the vanilla KD method. The cor-
responding results are presented in Fig. 4. As discussed previously in Sect. 4.2,
there exists a trade-off between mA and F1 scores in pedestrian attribute recog-
nition. To provide a better visual representation, we assume an equal trade-off
ratio of 1:1 and plot a dark blue dashed line. Under this assumption, points on
the same line are considered equally effective. It can be seen that applying only
one of our strategies can also improve the performance compared with vanilla
KD, validating the effectiveness of the proposed two strategies. And when used
together in our TM-KD, the performance becomes even better.

5 Conclusion

In this paper, we analyze the logits in the single-label scene and the multi-label
scene and then propose TM-KD (Transpose and Mask Knowledge Distillation),
a simple and effective logit-base KD method for multi-attribute and multi-label



Transpose and Mask Knowledge Distillation 283

classification. The proposed method is evaluated on five datasets of three tasks.
While vanilla KD usually brings nearly no improvement and sometimes even
degradation, TM-KD gets impressive and consistent results on all datasets, val-
idating the effectiveness of TM-KD.
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