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Abstract. Face forgery detection in compressed images is an active
area of research. However, previous frequency-based methods are sub-
ject to two limitations. One aspect to consider is that they apply the
same weight to different frequency bands. Moreover, they exhibit an
equal treatment of regions that contain distinct semantic information.
To address these limitations above, we propose the Central Attention
Network (CAN), a multi-modal architecture comprising two bright com-
ponents: Adaptive Frequency Embedding (AFE) and Central Atten-
tion (CA) block. The AFE module adaptively embeds practical fre-
quency information to enhance forged traces and minimize the impact of
redundant interference. Moreover, the CA block can achieve fine-grained
trace observation by concentrating on facial regions where indications of
forgery frequently manifest. CAN is efficient in extracting forgery traces
and robust to noise. It effectively reduces the unnecessary focus of our
model on irrelevant factors. Extensive experiments on multiple datasets
validate the advantages of CAN over existing state-of-the-art methods.

Keywords: Face Forgery Detection · Multi-level Frequency Fusion ·
Attention Mechanism

1 Introduction

Deep learning advancements and the widespread availability of online resources
make tools like deepfakes [1] and face2face [2] easily accessible, allowing indi-
viduals without professional training to easily manipulate facial expressions,
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Fig. 1. (a) Overview of our proposed CAN. Combining FDD with AFE allows for
extracting fine-grained frequency information and highlighting the components most
useful for forgery detection. The CA block enables the network to focus more on key
central areas. (b) Illustration of the differences between Real and Fake. The forgery
traces are clustered in the central region (in the red box), indicating that the center is
more important than the other areas. (Color figure online)

attributes, and identities within images. However, criminals misuse these tech-
nologies, resulting in a proliferation of high-quality fake photographs on social
media, making it difficult to distinguish between genuine and modified faces.

The above issues prompt the development of face forgery detection based
on deep neural networks [3–11]. However, they perform poorly in compressed
images. Recent works [12–15] highlight the effectiveness of capturing forgery
traces in the frequency domain under high compression. While decent detection
results are achieved by combining RGB and frequency information, their method
of information processing is coarse-grained, which causes two limitations.

For one thing, previous studies usually obtain frequency domain information
through Discrete Cosine Transform and then use hand-crafted filters to extract
it into high, middle, and low frequency bands. According to [15], the low and
middle frequency preserve rich semantic information, such as human faces and
backgrounds, which is highly consistent with RGB input. Meanwhile, the high
frequency reveals small-scale details, often related to forging sensitive edges and
textures. These show that the role and importance of these three frequency bands
are completely different. Previous works show excellent performance by combin-
ing frequency information. They apply the same weight for different frequency
bands, which may not be optimal for using frequency information and may lead
to magnifying irrelevant noise and ignoring the more valuable components.

For another thing, the equal treatment of regions with different semantic
information prevails in existing methods. However, as shown in Fig. 1(b), most
of the differences between real image and fake image are obviously clustered
in the central region (in the red box). This means that the central region can
provide rich traces of forgery compared to other regions (outside the red box).
Treating the regions equally not only results in superfluous noise but also neglects
significant evidence.
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To address these limitations, we propose a new approach to detect face
forgery, termed as Central Attention Network (CAN), as shown in Fig. 1(a).
The CAN consists of four main modules: Frequency Domain Decomposition
(FDD), Adaptive Frequency Embedding (AFE), Multi-modal Attention Fusion
(MAF), and Central Attention (CA) block. CAN initially uses FDD to extract
low, middle, and high frequency information from input images. Then our AFE
module concatenates the three frequency bands for richer frequency perception
cues. In terms of information extraction granularity and channel allocation, it
prioritizes high frequency information. Subsequently, the frequency is fused into
the RGB branch by the MAF module. Finally, we add the CA block, which is
similar to the Transformer block [16], to prevent the network from focusing on
irrelevant areas. The module uses different scale attention mechanisms for the
central and global regions, enabling the network to prioritize the central region
more efficiently.

Extensive experiments have demonstrated that our proposed Central Atten-
tion Network effectively captures forgery traces and significantly improves upon
the shortcomings of existing detection methods. Our work makes the following
primary contributions:

– We propose the AFE module aiming at mining the more valuable fine-grained
frequency components to uncover subtle nuances and hidden artifacts.

– We propose the Central Attention mechanism that provides a refined per-
spective of forged regions and reduces the attention to irrelevant areas.

– Numerous experiments demonstrate that our proposed Central Attention
block is highly versatile and can be seamlessly integrated into various existing
networks, resulting in a significant enhancement of their detection capabili-
ties.

2 Related Work

Face Forgery Detection. With the rise of deep learning, the adverse effects
of image forgery techniques on political credibility, social stability, and personal
reputation have increasingly received attention from society.

Therefore, various image forgery detection technologies have developed
rapidly in recent years. Previous works [7–11] use deep CNN models to pre-
dict whether a face region is real or fake. Unfortunately, they are only partially
effective in high compression scenarios.

Inspired by [13], recent studies try to improve detection performance in high
compression scenes by incorporating frequency domain information into existing
detection techniques. Qian et al. [15] proposes a dual-stream network named F3-
Net, where one branch utilizes three filters to perform frequency decomposition
on RGB information. Chen et al. [17] uses the Spatial Rich Model to extract
residual noise to guide the RGB features. Li et al. [18] and Gu et al. [14] further
decompose fine-grained frequency domain information from the perspective of
image compression. While previous methods demonstrate significant effects, they
either underutilize frequency information or treat all levels of frequency equally.
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In contrast, our method involves decomposing frequency domain information
and adaptive embedding to leverage the available frequency fully.

Vision Transformers. Transformers are known for their powerful remote con-
textual information modeling capabilities and high performance in natural lan-
guage processing tasks. While various backbones are proposed to handle com-
puter vision tasks, conventional transformers treat each patch at a single scale.
Recent works [19–21] introduce multiple scales to focus on objects of different
sizes, [22] proposes a multi-modal framework that integrates multi-scale trans-
former. Nevertheless, these approaches are generic and not tailored to the specific
characteristics of forgery image detection. In this paper, we propose a Central
Attention block that addresses the fact that fake regions tend to be concentrated
in the central area of an image while other areas contain interference information.

3 Proposed Method

3.1 FDD: Frequency Domain Decomposition

For the input rgb ∈ R
3×H×W , where H and W are the height and width of

the image. First, we apply DCT as Discrete Cosine Transform to transform the
RGB domain to the frequency domain. Based on [15], we devise N = 3 filters
that are capable of effectively decomposing the frequency into three distinct
frequency bands: high, middle, and low:

dctn = DCT (rgb) � fn, n = 1, ..., N. (1)

We utilize ID as Inverse Discrete Cosine Transform to transform the frequency
domain into RGB domain to obtain the ˜freq ∈ R

3N×H×W which is concatenated
by freqn along the channel dimension. This manipulation helps to preserve the
shift invariance and local consistency of natural images.

freqn = ID(dctn), n = 1, ..., N. (2)

To achieve a more refined analysis of the frequency information, we apply M as
the median filter to extract noise information from the input features ˜freq:

˜freqnoise = ˜freq − M( ˜freq). (3)

To magnify subtle forgery clues, we utilize the following formula:

freq = ˜freq + Conv1×1(Sigmoid( ˜freqnoise)). (4)

Specifically, a 1 × 1 convolution layer followed by a Sigmoid activation function
is used to generate a noise mask, which is then added back to the original feature
maps to enhance the frequency input.
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Fig. 2. The illustration of the proposed AFE allocates weight based on the value of
frequency levels.

3.2 AFE: Adaptive Frequency Embedding

Previous works show excellent performance by combining frequency informa-
tion. Applying the same weight to different frequency bands might be the gen-
eral method in their works. It may not be optimal for using frequency domain
information because it may magnify irrelevant noise or misuse the valuable com-
ponents. To address this point, we propose the AFE module that fully exploits
the role of different frequency components, as shown in Fig. 2. The AFE module
extracts information from different frequency bands via different convolution ker-
nels. Tampering artifacts reside mainly in the high-frequency spectrum. There-
fore, we use a 2×2 convolution kernel to extract fine-grained texture information
from it. For middle and low frequency that still contain basic information, which
provides a solid foundation for fusing Frequency and RGB, we adopt 4 × 4 and
8× 8 convolution kernels to extract semantic features, respectively. The channel
outputs generated by these convolutions are also treated differently based on
their importance in different frequency bands. Specifically, d

2 channels are allo-
cated for high frequency channels while middle and low frequency each occupy
d
4 channels. The d represents the number of output feature channels. Ultimately,
the three branches are concatenated along the channel to obtain the ˆfreq.

3.3 MAF: Multi-modal Attention Fusion

The complementary relationship between RGB and Freq is acknowledged. The
MAF module integrates them by means of an attention mechanism. The RGB
feature map is denoted as ˆrgb ∈ R

d×h×w, while the frequency feature map is
represented as ˆfreq ∈ R

d×h×w. We obtain the query vector Q from ˆrgb using a
1 × 1 convolution layer. Similarly, we obtain the key vector K and value vector
V from ˆfreq using 1 × 1 convolution layers. Then, we flatten them along the
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spatial dimension to get 2D embeddings Qe, Ke, Ve. Using the self-attention
mechanism, we generate an attention map that represents relevance between the
input features ˆrgb and ˆfreq:

Ŵ = softmax(
QeKe√

D
)Ve, (5)

where D is the dimensionality of the key vectors. After obtaining attention
weights, we compute weighted values via a 3 × 3 convolution. Additionally, we
adopt residual connections to add them to the original input, alleviating the
potential gradient vanishing issue during the training process.

f = ˆrgb + Conv3×3(Ŵ ). (6)

3.4 CA Block: Central Attention Block

Fig. 3. The proposed Central Attention mechanism when α is 0.5.

The conventional transformer models treat all patches of an image equally with-
out taking into account the relative significance of distinct areas. Recent stud-
ies [20,22] show that incorporating multi-scale information can improve detection
accuracy. Yet these models are not optimized for detecting forged face images.
Our observation is that forged regions tend to cluster around the centre of input
images. Based on this insight, we propose Central Attention, which aids the
network in concentrating on key regions.

For the input global feature fg ∈ R
c×h×w, we commence by initializing a

Mask of size h × w. Subsequently, we selectively filled the central region, char-
acterized by dimensions of αh × αw, with the value 1. The surrounding area
is then filled with the value 0 to complete the mask initialization process. α is
the proportion that determines the size of the central region. We then apply
this Mask to the input fg, resulting in a central feature map fc = fg � mask.
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Figure 3 illustrates the framework of the Central Attention mechanism, with a
value of 0.5 for parameter α.

For the global feature fg, we downsample it into h
2 × w

2 by convolution to
obtain fd. We obtain the embedding Qg from fg, the embeddings Kg and Vg

from fd. Inspired by [21], we define the operation of dividing the input into
G × G patches through sliding windows and grouping as SWG(·).

Qg = SW g(Qg), Kg, Vg = SW
g
2 (Kg, Vg), (7)

fg = MHSA(Qg, Kg, Vg). (8)

Similarly, for the central feature fc, we embed fc into Qc, Kc, Vc.

Qc, Kc, Vc = SW c(Qc, Kc, Vc), (9)
fc = MHSA(Qc, Kc, Vc), (10)

where MHSA represents Multi-Head Self-Attention.
This allows the network to focus more on the central region while still consid-

ering the surrounding areas. In order to maintain spatial coherence, the grouping
features are rearranged and subsequently substituted with fc to replace the cor-
responding position features. [·] denotes the above operations.

f = [fg, fc]. (11)

The CA block can be described mathematically:

f = fg + CA(Norm(fg)), (12)
f = f + FFN(Norm(f)), (13)

where Norm and FFN mean BatchNorm, Feed Forward Network separately.

3.5 Overall Loss

After passing through several CA blocks, the feature is sent into the remaining
backbone network to extract richer features f . Then a fully connected layer and
a sigmoid function are used to obtain the final prediction probability y. So the
Binary cross-entropy loss is defined as:

LBce(y) = y log ŷ + (1 − y) log(1 − ŷ), (14)

where y is set to 1 if the face image has been manipulated, otherwise it is set to 0.
To ensure feature consistency, we use the Consistency loss function LCos in [23]
to constrain the feature distribution. f1 and f2 are the final features obtained
from the same input image after through distinct data augmentation and being
passed through the network. Mathematically:

LCos (f1, f2) =
(
1 − f̃1 · f̃2

)2

, (15)
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where f̃ = f
‖f‖2

denotes the normalized vector of the representation vector f .
So we combine the Binary cross-entropy loss and the Consistency loss func-

tion linearly with β = 2.

Lall = LBce(y1) + LBce(y2) + βLCos (f1, f2) . (16)

Table 1. Quantitative results on Celeb-DF dataset and FF++ dataset.

Methods FF++(HQ) FF++(LQ) Celeb-DF

Acc AUC Acc AUC Acc AUC

MesoNet [6] 83.10 - 70.47 - - -

Xception [24] 95.73 96.30 86.86 89.30 97.90 99.73

Face X-ray [7] - 87.40 - 61.60 - -

Two-branch [25] 96.43 98.70 86.34 86.59 - -

RFM [11] 95.69 98.79 87.06 89.83 97.96 99.94

Add-Net [9] 96.78 97.74 87.5 91.01 96.93 99.55

F3-Net [15] 97.52 98.10 90.43 93.30 95.95 98.93

FDFL [18] 96.69 99.30 89.00 92.40 - -

Multi-Att [8] 97.60 99.29 88.69 90.40 97.92 99.94

SIA [26] 97.64 99.35 90.23 93.45 - -

PEL [14] 97.63 99.32 90.52 94.28 - -

Ours 97.65 99.44 90.40 95.09 99.36 99.98

4 Experiments

4.1 Experimental Setup

Datasets. We adopt two widely-used public datasets in our experiments, i.e.,
FaceForensics++ [27], Celeb-DF [28].

1) FaceForensics++ (FF++) [27] is a large forensics dataset containing 1000
original video sequences and 4000 manipulated video sequences produced by
four automated face manipulation methods: i.e., Deepfakes [1], Face2Face [2],
FaceSwap [29], NeuralTextures [30]. Raw videos are compressed, resulting in two
versions: high quality (HQ) and low quality (LQ). Following the official splits,
we utilized 720 videos for training, 140 for validation, and 140 for testing.

2) Celeb-DF [28] dataset comprises 590 authentic videos sourced from
YouTube, featuring individuals of varying ages, ethnicities, and genders. Addi-
tionally, the dataset includes 5639 corresponding DeepFake videos.

Implementation Detail. The EfficientNet-B4 [31] pre-trained on ImageNet is
adopted as the backbone of our network. We insert several CA blocks respectively
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after the second and third convolutional blocks with α = 0.5. The input images
are resized to 320 × 320. The whole network is trained with Adam optimizer
with the learning rate of 2 × 10−4, β1 = 0.9, β2 = 0.999. The batch size is 48
split on 4 × RTX 3090 GPUs.

Evaluation Metrics. Following the convention [10,14,15,22,27], we apply
Accuracy score (Acc), Area Under the Receiver Operating Characteristic Curve
(AUC) as our evaluation metrics.

Comparing Methods. We compare our methods with several advanced meth-
ods: MesoNet [6], Xception [24], Face X-ray [7], Two-branch [25], RFM [11],
Add-Net [9], F3-Net [15], FDFL [18], Multi-Att [8], SIA [26], PEL [14].

Table 2. The effect of each component.
The CAB represents CA blocks.

RGB Freq AFE CAB Acc AUC

� 88.70 92.87

� 88.49 92.63

� � 88.89 92.89

� � � 89.94 93.57

� � � 90.36 94.15

� � � � 90.40 95.09

Table 3. Ablation study of other back-
bones with our CA blocks.

Model Acc AUC

PF +None 66.79 69.28

+CAB 78.79 80.31

CNX +None 76.45 77.92

+CAB 80.43 80.64

PF* +None 86.93 90.09

+CAB 87.22 90.34

CNX* +None 87.57 90.77

+CAB 87.93 91.07

4.2 Comparison to the State-of-the-Arts

Following [15,27], we compare our method with various advanced techniques on
the FF++ dataset with different quality settings (i.e., HQ and LQ), and further
evaluate the performance of our approach on the Celeb-DF dataset. In Table 1
the best, second, third results are shown in Red, Blue, Green. The performance
of our proposed method, especially under high compression, is comparable or
superior to existing methods, as evidenced by the Acc and AUC metrics. It is
worth noting that the method PEL [14] is a two-stream network with twice
as many parameters as ours. We achieve competitive results using only half the
parameters. These gains mainly come from the CAN’s ability to utilize frequency
information and fully reduce interference from irrelevant information.

4.3 Ablation Study and Architecture Analysis

Components. As shown in Table 2, we develop several variants and conduct a
series of experiments on the FF++ (LQ) dataset to explore the impact of differ-
ent components in our proposed method. Using only RGB or frequency as input
in the single-stream setting leads to similar results. Combining both original
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streams can slightly improve performance, which demonstrates that frequency
and RGB are unique and complementary. Adding an AEF module or CA blocks
can significantly improve performance, achieving optimal results using the over-
all CAN framework. It shows that each module is effective: the AFE module
fully mines frequency domain information and filters noise, and the CA blocks
strengthen the network to focus on forged regions.

Validity of the CA Block. We insert the CA block into Transformer and
CNN to further examine its validity and universality. PoolFormer-S (PF) [32] and
ConvNeXt-S (CNX) [33] are chosen as the backbone. The results on FF++ (LQ)
are displayed in Table 3, where * means loading pre-trained weight. Embedding
CA blocks significantly improves the performance of both baseline networks due
to their critical attention to central regions.

Convolution Kernel Size. In the AFE module, we conduct experiments with
several convolution kernel combinations under the same settings. The specific
results are shown in Table 4. The combination of [2, 4, 8] performs best.

Table 4. Quantitative results of different
convolution kernel sizes in AFE.

Kernel Acc AUC

[2, 4, 8] 90.40 95.09

[2, 8, 16] 90.09 94.04

[4, 8, 16] 89.79 94.10

Table 5. The results on FF++ (LQ) with
different α.

α Acc AUC

0.5 90.40 95.09

0.6 90.11 94.59

0.7 90.13 94.26

Hyperparameter α. The hyperparameter α has a significant impact on the
CA block’s performance by restricting the size of the central area. In Table 5,
we conduct experiments with different value of α and find that the optimal
performance is achieved when the α is 0.5. It means that the inclusion of too
much irrelevant information would weaken the performance, and the center area
can supply adequate forgery traces.

4.4 Visualizations

To further understand how our method makes decisions, we use Grad-CAM [34]
to show the attention maps of input samples for both the baseline and CAN.
Figure 4 demonstrates that all four forgery methods have their faked areas
centered in the center. The baseline network is significantly disturbed due to
increased noise information after compression. However, with the AFE module
filtering out noise information and Central Attention emphasis focused on central
areas, the CAN can more reliably capture forgery traces.
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Fig. 4. The attention maps for different kinds of faces

4.5 Limitations

When applying improper masks, the performance drops significantly, suggesting
that a more meticulous attention mechanism is required. Focusing on specific
facial components may lead to better results, which we will explore in the future.

5 Conclusion

The paper proposes a Central Attention Network (CAN) framework for detecting
forged images. We conduct a comprehensive analysis of the frequency amplifica-
tion forgery traces, which has laid a strong foundation for the network’s optimal
performance. The Central Attention block effectively filters out irrelevant back-
ground noise, ensuring the network concentrates primarily on capturing forgery
traces. Visualizing class activation mapping explains the internal mechanism and
demonstrates the effectiveness of our methodology.
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