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Preface

Welcome to the proceedings of the Sixth Chinese Conference on Pattern Recognition
and Computer Vision (PRCV 2023), held in Xiamen, China.

PRCV is formed from the combination of two distinguished conferences: CCPR
(Chinese Conference on Pattern Recognition) and CCCV (Chinese Conference on Com-
puter Vision). Both have consistently been the top-tier conference in the fields of pat-
tern recognition and computer vision within China’s academic field. Recognizing the
intertwined nature of these disciplines and their overlapping communities, the union
into PRCV aims to reinforce the prominence of the Chinese academic sector in these
foundational areas of artificial intelligence and enhance academic exchanges. Accord-
ingly, PRCV is jointly sponsored by China’s leading academic institutions: the Chinese
Association for Artificial Intelligence (CAAI), the China Computer Federation (CCF),
the Chinese Association of Automation (CAA), and the China Society of Image and
Graphics (CSIG).

PRCV’s mission is to serve as a comprehensive platform for dialogues among
researchers fromboth academia and industry.While its primary focus is to encourage aca-
demic exchange, it also places emphasis on fostering ties between academia and industry.
With the objective of keeping abreast of leading academic innovations and showcasing
the most recent research breakthroughs, pioneering thoughts, and advanced techniques
in pattern recognition and computer vision, esteemed international and domestic experts
have been invited to present keynote speeches, introducing themost recent developments
in these fields.

PRCV 2023 was hosted by Xiamen University. From our call for papers, we received
1420 full submissions. Each paper underwent rigorous reviews by at least three experts,
either from our dedicated Program Committee or from other qualified researchers in the
field. After thorough evaluations, 522 papers were selected for the conference, compris-
ing 32 oral presentations and 490 posters, giving an acceptance rate of 37.46%. The
proceedings of PRCV 2023 are proudly published by Springer.

Our heartfelt gratitude goes out to our keynote speakers: Zongben Xu from Xi’an
Jiaotong University, Yanning Zhang of Northwestern Polytechnical University, Shutao
Li of Hunan University, Shi-Min Hu of Tsinghua University, and Tiejun Huang from
Peking University.

We give sincere appreciation to all the authors of submitted papers, the members of
the Program Committee, the reviewers, and the Organizing Committee. Their combined
efforts have been instrumental in the success of this conference. A special acknowledg-
ment goes to our sponsors and the organizers of various special forums; their support
made the conference a success. We also express our thanks to Springer for taking on the
publication and to the staff of Springer Asia for their meticulous coordination efforts.



vi Preface

We hope these proceedings will be both enlightening and enjoyable for all readers.

October 2023 Qingshan Liu
Hanzi Wang
Zhanyu Ma

Weishi Zheng
Hongbin Zha
Xilin Chen
Liang Wang
Rongrong Ji
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Spoof-Guided Image Decomposition
for Face Anti-spoofing
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Abstract. Face spoofing attacks have become an increasingly critical
concern when face recognition is widely applied. However, attacking
materials have been made visually similar to real human faces, mak-
ing spoof clues hard to be reliably detected. Previous methods have
shown that auxiliary information extracted from the raw RGB data,
including depth map, rPPG signal, HSV color space, etc., are promising
ways to highlight the hidden spoofing details. In this paper, we con-
sider extracting novel auxiliary information to expose hidden spoofing
clues and remove scenarios specific, so as to help the neural network
improve the generalization and interpretability of the model’s decision.
Considering that presenting faces from spoof mediums will introduce
3D geometry and texture differences, we propose a spoof-guided face
decomposition network to disentangle a face image into the components
of normal, albedo, light, and shading, respectively. Besides, we design
a multi-stream fusion network, which effectively extracts features from
the inherent imaging components and captures the complementarity and
discrepancy between them. We evaluate the proposed method on various
databases, i.e. CASIA-MFSD, Replay-Attack, MSU-MFSD, and OULU-
NPU. The results show that our proposed method achieves competitive
performance in both intra-dataset and inter-dataset evaluation protocols.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-981-99-8469-5 1.
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Keywords: Face Anti-spoofing · Face Presentation Attack Detection ·
Imaging Components · Face Decomposition

1 Introduction

With the development of mobile devices and embedded devices, face authen-
tication technology has infiltrated all aspects of our lives. Face authentication
systems widely adopt RGB cameras as acquisition devices, but they are easily
deceived by identity attacks. Face spoofing [1–3] is one of the most easily imple-
mented identity attacks. Attackers fool face authentication systems by presenting
the target faces from spoof mediums, such as printed photos and video replay.
To secure face authentication systems, both the industry and academia have
been paying great attention to the problem of face anti-spoofing, which aims to
discriminate spoofing attacks from bonafide attempts of genuine users.

In this paper, we aim to find the spoofing clues from a single RGB image by
analyzing the imaging process of presentation attack instruments. Advances in
making spoofing materials have been able to reduce the spoofing signals to a low
magnitude, making anti-spoofing an extremely challenging task. For example,
the appearance of the high-resolution recorded sensors, high-precision color laser
printers, and retina screens have made it difficult for traditional anti-spoofing
methods [1,2] to achieve satisfactory results. Despite the success of recent deep
learning techniques in face anti-spoofing, training a vanilla CNN with binary
supervision to predict the spoofness of an RGB input will easily overfit the
training data leading to poor performance on unseen data [4]. To solve the
problem, works show that the combination of auxiliary information extracted
from raw RGB images effectively improves the generalization of the face anti-
spoofing methods, including complementary color space [5,6], rPPG [7], noise
pattern [8], reflectance [9,10], depth map [11–13], etc. This auxiliary information
proves that although the subtle spoofing clues in the original image are difficult
to detect, they can be highlighted in some auxiliary information extracted by
specially designed preprocessing methods.

Considering that the spoofing images are obtained through secondary imag-
ing, it will inevitably introduce imaging components differences from the genuine
face. Compared with the genuine faces, the printed photos or digital displays
adopted by presentation attack have different 3D geometry, which is more like a
flat surface. Therefore, we use the surface normal to better represent the intra-
structure and depth variation of the scene. In addition, the material textures of
the printed photos and display devices are different from the human skin, and
this material difference can be reflected in the inherent imaging components of
the face, like albedo. We compare the albedo difference between genuine face
and spoofing mediums in Appendix Fig. 1. Besides, the meaning and advantages
of normal and albedo are detailed in Appendix B.

To capture and magnify this difference, we proposed a learnable decompo-
sition network called Spoof-guided Decomposition Network (SgDN), which can
disentangle an RGB face image into the imaging components normal, albedo,
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light, and shading maps. This is a challenging objective due to the lack of the
ground-truth components of real-world data and spoofing data during the model
learning. To enable the network to disentangle both genuine and spoof faces, we
first train SgDN with a mixture of labeled synthetic and unlabeled real-world
images to simulate the physical model of Lambertian image generation. Then,
we set the normal channel of spoofing samples to 0, and push the albedo to
encode the artifacts that Lambertian imaging model cannot resolve. To further
utilize the above auxiliary features effectively, we design a multi-stream network
to fuse the information from different components at different scales.

In summary, our contributions are:

1) we propose a Spoof-guided Decomposition Network to disentangle an image
into normal, albedo, light, and shading maps, either on real or spoof data.

2) A multi-stream fusion network is developed to capture the complementarity
and discrepancy of imaging components for face anti-spoofing.

3) Our method not only outperforms the state-of-the-art methods on the intra-
testing of OULU-NPU dataset, but also demonstrates better performance on
MICO (with initial letters from the four datasets) and a variant of the MICO
benchmark without using domain knowledge.

2 Related Work

2.1 Deep Learning-Based Face Anti-spoofing

As deep learning has proven to be more effective than the traditional methods
in many computer vision problems, there are many recent attempts at CNN-
based methods in face anti-spoofing. At first, most of the works regard face
anti-spoofing as a simple binary classification problem by applying softmax loss.
For example, Yang et al. [3] use CNN as a feature extractor, and train an SVM
classifier with deep features to discriminate genuine and spoofing faces. Then,
some methods [11,14] propose to use pixel-wise labels for the supervision of net-
work training, proving that pixel-wise supervision can improve the performance
of spoofing detection. Among them, the depth map is widely used in various
face anti-spoofing methods, which is more informative than binary labels since it
indicates one of the fundamental differences between genuine and spoofing faces.
Yu et al. [13] propose a central difference operator to extract inherent spoofing
patterns, and combine it with depth supervision to significantly improve the
performance of face anti-spoofing.

2.2 Auxiliary Information-Based Face Anti-spoofing

Since spoofing images are obtained by secondary imaging, the inherent imaging
components of faces are changed when they are compared with genuine faces. To
explore the distortion of spoofing faces, Boulkenafet et al. [5] propose to extract
color distortion from the YCrCb or HSV color spaces. Chen et al. [6] propose
a two-stream CNN that works on two complementary spaces: RGB space and



6 B. Zhang et al.

Fig. 1. The overall architecture of Spoof-guided Decomposition Network. RGB image
is fed into the decomposition network for disentangling the imaging components into
normal, albedo, and shading maps.

an illumination-invariant space called MSR. Bian et al. [15] propose a frame-
work to learn multiple generalizable cues from the boundary of spoof medium,
moiré pattern, reflection artifacts, and facial depth. Recent literature [5,10] have
shown that exploring the texture and 3D geometry information can improve the
detection performance. Many methods draw on the idea of 3D geometry by sens-
ing depth changes [7,11,13]. The reflectance of the face image is another widely
used cue for face anti-spoofing [9,10] as the material differences between genuine
and spoofing faces. Mishra et al. [16] also identify the contribution of albedo
in enhancing presentation attack detection, but their method does not leverage
the potential of the normal map. Moreover, their model trained exclusively on
genuine data tend to excessively focus on the semantic information of genuine
faces, which consequently compromises its robustness in decomposing spoofing
samples. See more related work in Appendix A.

3 Approach

3.1 Spoof-Guided Decomposition Network (SgDN)

Estimating normal and albedo for genuine and spoofing faces from single images
is the key to our method. An intuitive solution is fitting an imaging model defined
in computer graphics, like the 3D morphable model (3DMM) [17] and Phong
reflection model [18], to the image. However, the fitted results are unsatisfac-
tory because the highly simplified imaging model cannot cover the complicated
appearance variations of human faces, especially in our task where faces are
possibly unreal.
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To model the structural and textured difference, SgDN is designed to reflect
the Lambertian reflectance model [19], where the formation process of face image
I can be represented as:

I = f (N,L) � A, (1)

where N ∈ R
n×n×3, L ∈ R

3×9, A ∈ R
n×n×3 are normal, lighting and albedo, �

represents the element-wise product and f is the Lambertian shading function.
To approximate the local behavior of light on the face, we adopt the spherical

harmonics as a decomposition basis. Specifically, the lighting L is defined as nine-
dimensional second order spherical harmonics coefficients γ = [γ1, γ2, ..., γ9] for
each RGB channels, and the normal map N is utilized to construct spherical
harmonic basis [19]:

B = [B00, B10, B
e
11, B

o
11, B20, B

e
21, B

o
21, B

e
22, B

o
22]. (2)

Then the shading map can be calculated as:

S = B(N) � γ. (3)

To reconstruct the face, the model is further required to estimate the albedo
map. According to the constraint of Lambertian assumption, the albedo is
obtained as:

A =
I
S

. (4)

Finally, with the estimated Normal and Albedo maps, the reconstructed face
R ∈ R

n×n×3 becomes:
R = S � A. (5)

As the image reconstruction is an end-to-end process in our SgDN, the face
image formation process defined in Eq. 1 is a differentiable function. We propose
a deep learning-based network to regress texture and shape parameters directly
from a single image, which is shown in the diagram of Fig. 1. The detailed con-
struction of different components and training settings of SgDN are deferred to
sections C.1 and C.2 in Appendix.

The SgDN can be trained by synthetic data [20] and CelebA [21] with pseudo-
supervision to produce a precise reconstruction. However, the SgDN trained in
this stage cannot be directly applied to spoofing data as the Lambertian imag-
ing model cannot cover the complicated appearance variations of human faces,
especially the unreal faces in our task. We show the decomposition results of
SgDN without discriminative supervision in Appendix Fig. 2. As the presenta-
tion attack instruments are like a flat surface, we refine the pseudo-supervision
of spoofing samples by setting the normal channel to zero, which can enforce the
SgDN to not only reconstruct the spoofing images but also capture the spoofing
artifacts that the Lambertian model cannot resolve, simultaneously. In Sect. 4,
we will prove the effectiveness of the pseudo-supervised training method.
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Fig. 2. Imaging components of RGB, normal, and albedo maps are transmitted into the
three-stream fusion network to extract features from different components and capture
the complementarity and discrepancy between them.

3.2 Fusion Framework

To capture the complementarity and discrepancy of imaging components, we
propose a three-stream fusion network as shown in Fig. 2. The three-stream
fusion network consists of three identical sub-networks with different inputs and
extracts the learned features derived from RGB, albedo, and normal images fol-
lowing different convolution modules of the three subnetworks. Instead of aggre-
gating different levels of information separately, an aggregation block is utilized
to aggregate the extracted features and the output from previous layers, which
is explained in detail in Appendix D.

4 Experiments

4.1 Settings

Datasets including MSU-MFSD [22], Replay-Attack [23], CASIA-MFSD [24],
and OULU-NPU [25] are used to evaluate our proposed method with print and
replay attacks. We strictly follow the evaluation benchmarks for data partitioning
and the implementation details of SgDN and the three-stream fusion network
are given in Appendix C, D and E.

4.2 Ablation Study

1) Pseudo-supervised training: In Sect. 3.1, we propose to achieve a more dif-
ferentiated decomposition by refining the pseudo-supervision process. Different
from traditional Shape from Shading algorithm [26,27], our face decomposition
network is a data-driven model and relies on preprocessing to achieve a better
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Table 1. The ablation study results (%) of the pseudo-supervised training and other
decomposition algorithm on the Protocol-2 of OULU-NPU.

Methods APCER ↓ BPCER ↓ ACER ↓
SgDN w/o zero 5.6 5.8 5.7

SgDN w/ zero (Our) 1.9 0.5 1.2

ADMM [26] 4.7 4.7 4.7

3DMM [17] 2.8 3.1 2.9

decomposition performance. As shown in Table 1, we can see that our pseudo-
supervised training achieves lower HTER than the method without setting the
normal channel to zero.

2) Comparison with Traditional Decomposition Method: This section compares
our method with other traditional Shape from Shading methods. We employ
a PDEs-based method ADMM [26] and a 3DMM-based method to estimate
albedo and normal maps as a comparison. All experiments are carried out under
the same fusion model, and the 3DMM-based method is realized by fitting a
classical face reconstruction model 3DMM [17]. As shown in Table 1, our pro-
posed method achieves significant improvement over the traditional Shape from
Shading methods.

3) Efficacy of Each Components: As discussed in Appendix B, we argue that
RGB, normal, and albedo contain complementary information for spoofing detec-
tion. To further understand the characteristics of these components, we list all
possible combinations of the imaging components in Appendix Table 1, including
albedo, normal, and shading, proving that RGB fused with albedo and Normal
can achieve the best performance.

4) Multi Levels: In our multi-stream fusion framework, features from different
levels play an important part in spoofing detection, so we concatenate these
features to fully explore the spoofing clues. We present the results of fusion at
different levels in Appendix Table 2.

4.3 Intra Testing

The intra-testings are carried out on the OULU-NPU, a large-scale face
anti-spoofing dataset with four testing protocols. Table 2 shows the result of
our method on these protocols and our method surpasses all state-of-the-art
approaches on three or more protocols. When compared with the convMLP [30]
model, our method is slightly weaker on protocol 2. Moreover, compared to the
IDCL [16] method, we are not only able to perform differential decomposition but
also further utilize normal information, and exceed their method’s performance,
especially under challenging scenarios such as protocols 3 and 4.
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Table 2. The results of intra-testing on four protocols of OULU-NPU.

Prot Method APCER↓ BPCER↓ ACER↓
1 STASN [28] 1.2 2.5 1.9

Auxiliary [7] 1.6 1.6 1.6

FAS-TD [12] 2.5 0 1.3

CDCN [13] 0.4 1.7 1

PGSTD [29] 0 0.8 0.4

Conv-MLP [30] 2.5 3.2 2.8

IDCL [16] 0.7 0.6 0.6

Ours 0.6 0.8 0.7

2 Auxiliary [7] 2.7 2.7 2.7

STASN [28] 4.2 0.3 2.2

FAS-TD [12] 1.7 2.0 1.9

CDCN [13] 1.5 1.4 1.5

PGSTD [29] 1.2 1.3 1.3

Conv-MLP [30] 0 1.6 0.8

IDCL [16] 1.3 1.1 1.2

Ours 1.9 0.5 1.2

3 FAS-TD [12] 5.9 ± 1.9 5.9 ± 3.0 5.9 ± 1.0

Auxiliary [7] 2.7 ± 1.3 3.1 ± 1.7 2.9 ± 1.5

STASN [28] 4.7 ± 3.9 0.9±1.2 2.8 ± 1.6

CDCN [13] 2.4 ± 1.3 2.2 ± 2.0 2.3 ± 1.4

PGSTD [29] 1.7 ± 1.4 2.2 ± 3.5 1.9 ± 2.3

Conv-MLP [30] 2.5 ± 1.0 2.0 ± 0.8 2.2 ± 0.6

IDCL [16] 1.7 ± 1.4 1.8 ± 1.1 1.7 ± 0.7

Ours 1.4±0.6 1.7 ± 1.5 1.5±1.0

4 Auxiliary [7] 9.3 ± 5.6 10.4 ± 6.0 9.5 ± 6.0

FAS-TD [12] 14.2 ± 8.7 4.2 ± 3.8 9.2 ± 3.4

STASN [28] 6.7 ± 10.6 8.3 ± 8.4 7.5 ± 4.7

CDCN [13] 4.6 ± 4.6 9.2 ± 8.0 6.9 ± 2.9

PGSTD [29] 2.3±3.6 4.2 ± 5.4 3.6 ± 4.2

Conv-MLP [30] 6.4 ± 4.5 3.4 ± 5.1 4.9 ± 4.8

IDCL [16] 3.4 ± 1.5 5.5 ± 4.4 4.5 ± 2.7

Ours 2.5 ± 2.7 3.3±2.6 2.9±1.0

4.4 Inter Testing

1) Result on MICO: MICO benchmark is a widely used evaluation about domain
generalization, which follows the ’Leave-one-out’ protocol with four face anti-
spoofing datasets. Table 3 compares our method with the state-of-the-art meth-
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Table 3. The results of inter-testing on MICO benchmark. The proposed method is
compared with the methods without utilizing domain knowledge.

Method O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER ↓ AUC ↑ HTER ↓ AUC ↑ HTER ↓ AUC ↑ HTER ↓ AUC ↑
Binary CNN [3] 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54

IDA [22] 66.67 27.86 55.17 39.05 28.35 78.25 54.20 44.69

Color Texture [31] 28.09 78.47 30.58 76.89 40.40 62.78 63.59 32.71

Auxiliary [32] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61

NAS-FAS [33] 19.53 88.63 16.54 90.18 14.51 93.84 13.80 93.43

DTN [34] 19.40 86.87 22.03 87.71 21.43 88.81 18.26 89.40

Ours 10.46 94.43 10.95 94.73 9.95 95.57 17.78 88.93

Table 4. The results of inter-testing with limited source domains. The proposed
method is compared with other methods in terms of HTER(%) and AUC(%).

Method M&I to C M&I to O

HTER↓ AUC↑ HTER↓ AUC↑
IDA [22] 45.16 58.80 54.52 42.17

LBP-TOP [36] 45.27 54.88 47.26 50.21

MADDG [37] 41.02 64.33 39.35 65.10

SSDG-M [35] 31.89 71.29 36.01 66.88

DR-MD-Net [38] 31.67 75.23 34.02 72.65

ANRL [39] 31.06 72.12 30.73 74.10

SSAN-M [40] 30 76.20 29.44 76.62

Ours 26.67 81.34 22.50 83.64

ods trained without domain information, and we achieve the best results in three
testing tasks. Meanwhile, our method outperforms most of the domain general-
ization methods as shown in Appendix Table 3.

2) Result on limited source domains: When the number of source data domains
is limited, the performance of specially designed domain generalization methods
may degrade. To further evaluate the proposed methods, a variant of the MICO
benchmark [35] is proposed to conduct domain generalization experiments. We
also evaluate our method on this benchmark, and the comparison results are
shown in Table 4. It can be seen that our method’s HTER and AUC performance
is comparable with that of the state-of-the-art methods, which has a significant
improvement over other domain generalization methods.

3) Result on CASIA-MFSD and Replay-Attack: In this experiment, there are
two cross-dataset testing protocols. The first protocol ‘CR’ is trained on CASIA-
MFSD and tested on Replay-Attack. The second one ’RC’ is trained on Replay-
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Attack and tested on CASIA-MFSD. It can be seen from Appendix Table 4 that
the HTER of our proposed method is 11.7% on C2R and 28.4% on R2C. Our
method outperforms the prior state-of-the art method CDCN [13] over 24.5%
on C2R protocol.

4.5 Performance Analysis

1) The Effectiveness of SgDN: To further illustrate the effectiveness of the
pseudo-supervised training method for the SgDN, we show the decomposition
results of different spoofing samples in Appendix Fig. 3. Because of the spoof-
guided supervision, SgDN is able to decompose the genuine face into reasonable
normal and albedo, and the normal obtained from the spoofing face is inclined
to a plane. Under careful comparison, we can observe that the albedo maps of
spoofing faces have a blurred visual appearance compared with genuine faces.

2) The interpretability of our Fusion Network: We convert the final-layer fea-
tures into heatmaps to produce a visual explanation for our three-stream fusion
network, which is illustrated and discussed in Appendix Fig. 4 and section G.4.
Through the multi-stream fusion network, the subtle artifacts can be harvested
from RGB, normal, and albedo map.

5 Conclusion and Future Work

This work proposes a novel method for face anti-spoofing by designing a spoof-
guided face decomposition network and harvesting spoofing clues from the imag-
ing components of RGB, albedo, and normal. With the spoofing guidance, our
decomposition network can push the imaging components of spoofing samples to
encode the artifacts that the Lambertian imaging model cannot resolve. Besides,
we devise a multi-stream network to fuse the information from different compo-
nents and capture the complementarity and discrepancy between them. More-
over, extensive experiments are performed to demonstrate that our method can
achieve state-of-the-art performances in the intra-testing protocol of OULU-NPU
and three domain generalization benchmarks. We note that the study of spoof-
guided image decomposition is still at an early stage. Future directions include:
1) designing a more generalized decomposition method for spoofing samples. 2)
exploring other auxiliary information for presentation attack detection.
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Abstract. Since pores are widely used to represent high-resolution fin-
gerprint images, the detection and representation of pores are essen-
tial for high-resolution fingerprint recognition. The latest method uses
only one fully convolutional network to represent high-resolution fin-
gerprint images for subsequent recognition by combining pore detec-
tion and pore representation into one stage, showing good generalization
and pore detection ability. Nevertheless, it still has limitations in fea-
ture learning and pore detection due to its network architecture and the
loss used. To tackle the limitations, in this paper, we propose a novel
network architecture, namely TransFCN, for one-stage high-resolution
fingerprint representation. We introduce the transformer and attention
module into our network architecture and combine them with the fully
convolutional network to effectively learn both global and local infor-
mation. In addition, we employ the adaptive wing loss and weighted
loss map to further improve the pore detection capability. Experimental
results on the PolyU HRF dataset demonstrate the effectiveness of our
proposed method in pore detection and feature learning. Furthermore,
the experimental results on an in-house dataset demonstrate the excel-
lent generalization capability of our proposed method when compared to
the state-of-the-art two-stage method.

Keywords: High-Resolution Fingerprint Recognition · Transformer ·
Fingerprint Representation · Pore Detection

1 Introduction

Fingerprint is the most widely deployed biometrics characteristic because of its
well-known distinctiveness and permanence [1]. With the development of finger-
print sensors, high-resolution fingerprint images become available, accompanied
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by the emergency of level-3 features. The addition of level-3 features has driven
researchers toward the use of new features for more accurate and more secure
fingerprint recognition, namely high-resolution fingerprint recognition. Among
various level-3 features, sweat pores have many excellent properties, including
high distinctiveness, natural anti-spoof ability, and large quantities, which have
attracted the most attention of researchers [2–14]. Current high-resolution fin-
gerprints are almost entirely represented by sweat pores.

High-resolution fingerprint representation based on sweat pores involves two
important parts: pore detection and pore representation. These two parts are
usually two separate stages. For pore detection, traditional methods based on
image processing technique [2,3] and learning-based methods [4–8] have been
investigated. Learning-based methods demonstrate improved adaptability and
robustness to various image qualities and have become the mainstream method.
For pore representation, hand-crafted feature based [9–11], and deep feature
based [12,13] have been proposed. In [9], the pore representation is directly
built from the pixel values in the local neighborhood to the pore. In [10,11],
sparse representation methods are proposed to represent pore. As deep learning
has evolved, Zhao et al. [12,13] propose the DeepPoreID method, which involves
training a classification network to classify between different pores. Subsequently,
the deep features obtained from the classification network are utilized as pore
representations. After the two-stage fingerprint representation, the commonly
used hierarchical coarse-to-fine DP framework [9] is used for recognition. In the
coarse matching step, coarse pore correspondences are established by pore rep-
resentation. In the fine matching step, RANdom SAmple Consensus (RANSAC)
is used for refinement to obtain the final result.

To avoid information loss and improve robustness, Liu et al. [14] propose a
novel high-resolution fingerprint representation method that uses only one fully
convolutional network (FCN) to provide both pore and deep matching features
simultaneously to represent high-resolution fingerprint images. By combining
pore detection and pore representation into one stage, the method can achieve
the best pore detection capability and have better generalization ability than
the state-of-the-art two-stage method [12] when using the DP framework for
recognition. However, it still has some limitations: (1) the deep features learned
from a single fully convolutional network may struggle to cope with pore changes
and thus many true correspondences may be missed. (2) the mean square error
(MSE) loss used for pore detection treats foreground and background pixels
equally, which makes it easy for training to be dominated by a large number of
meaningless background pixels, resulting in poor regression accuracy.

To tackle the above limitations, in this paper, we propose a novel one-stage
high-resolution fingerprint representation method, namely TransFCN. Firstly,
we utilize the transformer-based encoder to learn the preliminary patch repre-
sentation of the high-resolution fingerprint image, leveraging the self-attention
module to incorporate global information for a more robust pore representation.
Subsequently, the fully convolutional network is employed to detect pores and
further learn fingerprint representation for one-stage high-resolution fingerprint
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representation. An attention module is utilized to optimize the learning of fin-
gerprint representation, while the adaptive wing loss and weighted loss map are
applied to prioritize the regression of foreground pixels, specifically the pore loca-
tions, to improve pore detection accuracy. To sum up, our main contributions
can be summarized as follows:

– We propose a novel network architecture for one-stage high-resolution fin-
gerprint representation, which combines the transformer and the fully con-
volutional network to learn global and local information. To the best of our
knowledge, the transformer is the first time to be used for pore detection and
pore representation.

– We propose to utilize the attention module and apply adaptive wing loss for
facial landmark localization to fingerprint pore detection with the weighted
loss map to improve the pore detection and feature learning ability.

– Extensive experimental results on the public PolyU HRF dataset and an in-
house dataset have demonstrated the effectiveness of the proposed method.

2 Methodology

2.1 Overall Framework

The overall framework is illustrated in Fig. 1, consisting of three parts: input, pro-
posed network, and DP framework. Among them, the proposed network adopts
an encoder-decoder structure. Firstly, the input fingerprint image is fed into the
proposed network and outputs the corresponding pore map and reconstructed
fingerprint image. Similar to DeepPore [4], the output pore map is also a Gaus-
sian heat map for pore detection. After obtaining the pore map, the sliding
window algorithm is used to obtain the pore locations. The sliding window algo-
rithm scans the entire pore map using a window of k × k and a threshold of Pt.
When the center of the window is the maximum value of the entire window and
is greater than the threshold Pt, the location is then judged to be a pore. In
addition, we fill the boundary of the pore map with a value of 0 to deal with the
pores at the boundary. By guiding the network to learn the reconstruction of
the fingerprint image and the prediction of pore positions, discriminative pore
features can be learned.

Subsequently, the DP framework is employed for fingerprint recognition.
Specifically, the detected pore locations, the original image, and the intermediate
feature map (Feat) of the proposed network are input into the DP framework.
Given N and M detected pores in the query image and the template image,
we utilize these pore locations to extract pore representations from the original
image or Feat, resulting in N × Dp and M × Dp pore representations, respec-
tively. We start by using each detected pore location to slice the corresponding
patch from the original image or Feat. For the multi-channel Feat patch, we
perform the channel-wise sum to obtain the single-channel patch.

Finally, the resulting patch is flattened into the Dp dimension vector to rep-
resent the pore. The size of dimension Dp is 961, consistent with [9,14]. These
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pore representations are used for subsequent coarse-to-fine pore matching. In
the coarse matching step, a M × N similarity matrix can be obtained by cal-
culating pair-wise pore distances in the query and template images using Eq. 1.
In the similarity matrix, a lower value means more similarity. Coarse one-to-
one pore correspondences are then established by this similarity matrix. The
rule for matching pore A and pore B is that both pore A and pore B are the
most matched pores with each other. In the fine matching step, the RANSAC
algorithm is used to refine the coarse matched results. The number of the final
matched pore pairs is considered as the match score for recognition.

Si,j = 1 −

961∑

k=1

Pi,kP
′
j,k

√
961∑

k=1

P 2
i,k

√
961∑

i=1

P
′2
j,k

, i ∈ [1, N ], j ∈ [1,M ] (1)

where Si,j represents the similarity of the ith pore in the query image to the jth
pore in the template image. Pi,k and P

′
j,k represent the kth dimension of the ith

pore representation in the query image and the jth pore representation in the
template image, respectively.

Fig. 1. The overall framework for fingerprint recognition.

2.2 Transformer-Based Encoder

As shown in Fig. 2, given a 2D high-resolution fingerprint image x ∈ R
3×H×W ,

the fingerprint image is first divided into a grid of H
p × W

p patches and then
these patches are flattened into a HW

p2 × (p2 · 3) sequence, where (H,W ) is
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Fig. 2. The detailed architecture of the proposed network. It consists of a Transformer-
based encoder and an FCN-based decoder to regress the pore map and reconstruct the
original image with different losses. The CBAM module is incorporated to enhance the
feature learning ability.

the resolution of the fingerprint image and p is the patch size. Afterward, each
vectorized patch vp is projected into a latent De dimension embedding e by
using a linear projection function fe: e = fe(vp). To retain the patch positional
information, we learn a specific position embedding posi for each patch position
i and is added to the corresponding ei to constitute the final patch embedding
input sequences E. The whole process is as follows:

E = {ei + posi, i ∈ [1,
HW

p2
]} (2)

The 1D sequence E is then input into the transformer-based encoder to
learn patch representations. As illustrated in Fig. 2, the transformer encoder
consists of N transformer blocks where each block contains two main compo-
nents, the Multi-head Self-Attention (MSA) and MultiLayer Perceptron (MLP).
Layer norm (LN) is employed before each component and residual connections
after each component. The output Zn of the nth transformer block is input into
the next transformer block (Eq. 3, 4, 5). With the Self-Attention (SA) module,
each transformer block has a global receptive field, which tackles the limitations
of the pure CNN’s receptive field and enables global information to be learned.

Z0 = E, E ∈ R
HW
p2

×De (3)

Z
′
n = MSA(LN(Zn−1)) + Zn−1, n ∈ [1, N ] (4)



A Novel One-Stage High-Resolution Fingerprint Representation Method 21

Zn = MLP (LN(Z
′
n)) + Z

′
n, n ∈ [1, N ] (5)

2.3 FCN-Based Decoder

To generate the pore map and reconstruct the original image, the transformer
encoder output ZN is first projected to a higher dimension Dd and the corre-
sponding learnable position embedding is added. The resulting sequence is then
reshaped into a 2D feature map, as shown in Fig. 2. However, due to the patch
operation in the encoder, the resolution of the reshaped feature map is only
1
p of the original image. To restore the feature map to its original resolution,
we design an upsampling module that utilizes p

2 double upsampling operations.
Specifically, we employ the deconvolution (DeConv) operation, which is a com-
monly used technique for upsampling in deep learning, to increase the resolution
of the feature map. After restoring the feature map to its original resolution, we
further use the convolution (Conv) operation to learn feature representation. In
addition, we use the convolutional block attention module (CBAM) [15] at the
end of the convolution operation to enhance feature learning. Finally, two predic-
tors utilize convolution operations to generate the pore map and reconstructed
image. The feature with both low correlation [16] and high discrimination [17]
is useful for differentiating between different pores. To this end, we select the
output feature map of the CBAM module to represent the pore.

2.4 Loss Function

The overall loss consists of two parts. The first part Lreconstructed is derived from
the fingerprint reconstruction branch. We employ the MSE as the loss function
for this branch, which is widely used in most image reconstruction tasks. The
formula is as follows:

Lreconstructed =
1

HW

H∑

i=1

W∑

j=1

(Iij − Îij)2 (6)

where Iij and Îij represent the pixel values at coordinates (i, j) of the original
image and the reconstructed image, respectively. The second part Lporemap is
derived from the pore detection branch. To further improve the pore detection
ability, we propose to use adaptive wing (AW) [18] loss for pore detection instead
of MSE loss because of its better adaptability. Furthermore, we use the weighted
loss map (WLM) to increase the penalty on the regression of sweat pore locations,
enabling the network to focus more on the regression of the pixels corresponding
to the pore locations. The WLM is generated by a mask matrix Mask with a
value of 0 or 1 for each position. The positions with a value of 1 are those with
a value greater than a certain threshold in the ground truth pore map. The
formula is as follows:
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AW (y, ŷ) =

{
ω ln(1 +

∣
∣
∣y−ŷ

ε

∣
∣
∣
α−y

), if |(y − ŷ)| < θ

A |y − ŷ| − C, otherwise
(7)

WLM = (w · Mask + 1) � AW (P, P̂ ) (8)

Lporemap =
1

HW

H∑

i=1

W∑

j=1

WLMij (9)

where ω, α, θ and ε are positive hyperparameters. A = ω(1 + ( θ
ε )α−y))−1(α −

y)(1ε )( θ
ε

α−y−1
) and C = (θA − ω ln(1 + ( θ

ε )α−y) are utilized to ensure the loss
function remains continuous and smooth at |y − ŷ| = θ. � represents element-
wise production. P and P̂ are ground truth pore map and prediction pore map.
w is a scaling factor to control the degree of weighting. Finally, the overall loss
is formulated as follows:

Lall = λLreconstructed + βLporemap (10)

where λ and β are used to balance two loss.

3 Experiments

3.1 Datasets and Evaluation Protocols

Two high-resolution fingerprint datasets are used to evaluate the performance of
our proposed method. The first dataset is the most used PolyU HRF dataset. The
second dataset is an in-house HRF dataset to further evaluate the generalization
of the proposed method, which is the same as [14].

PolyU HRF dataset contains two sub-datasets, denoted as DBI and DBII.
Both the DBI and DBII datasets contain 1480 high-resolution fingerprints
(∼1200 dpi) from 148 fingers. Each finger is collected in two sessions, with five
fingerprint images collected in each session. The difference between DBI and
DBII is the size of the fingerprint image, which is 240× 320 pixels in DBI and
640× 480 pixels in DBII. In addition, the PolyU HRF dataset contains 30 man-
ually annotated pore images from the DBI dataset which are used to evaluate
the effectiveness of pore detection.

In-house HRF dataset is collected using the same equipment as the PolyU
HRF dataset, which contains 1000 high-resolution fingerprints from 250 fingers.
Each finger is collected in two sessions, with two fingerprint images collected in
each session. The image size of the in-house dataset is 640 × 480 pixels.

Evaluation protocols. For pore detection evaluation, the true detection
rate (RT ) and the false detection rate (RF ) are employed to evaluate the effec-
tiveness of pore detection. RT is the ratio of the number of truly detected pores
to the number of all ground truth pores. RF is the ratio of the number of falsely
detected pores to the number of all detected pores. The equal error rate (EER)
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is employed to evaluate the recognition performance. The recognition proto-
col on DBI and DBII is the same as the previous method [6,9,14,19], which
includes 3,700 genuine matches and 21,456 imposter matches. Genuine matches
consist of pairwise matching fingerprints of the same finger from different ses-
sions. Imposter matches consist of matching the first images of different fingers
between the first session and the second session. In the in-house dataset, we use
the same recognition protocol as [14]. The four images of the same finger are
matched pairwise, leading to 1500 genuine matches. The first image of the first
session of one finger is matched with the first image of the second session of the
other fingers, leading to 62,250 imposter matches.

3.2 Implementation Details

Our network is implemented using the PyTorch framework and trained on a
single NVIDIA Tesla V100 GPU with a batch size of 32 for 50 epochs. We use
the VIT-Base [20] as our encoder, initialing it with pre-trained model parameters.
During training, the input image size is 240 × 320. We use the same fingerprint
image as [14] and apply data augmentation to construct the training data. During
inference, when the input image size is 480 × 640, we obtain the corresponding
position embedding through interpolation. The Dd is 1024. The hyperparameters
are determined based on experimental results. Specifically, ω, α, θ and ε in the
AW loss are set to 14, 2.1, 0.5, and 1. The threshold used to generate Mask is
set to 0.3 and the scaling factor w is set to 10. The λ and β are set to 0.8 and 1.
We apply linear warmup to adjust the learning rate, with a maximum value of
1e-4 and a warmup step size equal to one-tenth of the total number of iterations.
The network is optimized using AdamW [21].

3.3 Ablation Study

To analyze the impact of AW loss plus WLM and CBAM used in the pro-
posed network, we conducted pore detection ablation experiments on 30 man-
ually annotated fingerprint images from the PolyU DBI dataset with different
slide window parameters, as well as pore matching ablation experiments on both
the PolyU DBI and DBII datasets using the original image and Feat to represent
pores, as shown in Table 1 and Table 2. Baseline refers to using the traditional
MSE loss and without attention module. Observing Table 1, we can see that
smaller sliding windows achieve higher RT but also result in higher RF under
the same conditions. For the same threshold, we believe that larger sliding win-
dows have a larger field of view, rendering more reliable results and thus have
lower RF . However, smaller sliding windows offer a more complete detection of
pores in areas with a dense distribution of pores, leading to higher RT . More-
over, it’s clear that the complete network structure achieves the highest RT .
Additionally, the results show that the combination of AW loss and WLM can
significantly enhance the RT . For all subsequent experiments, we adopt a sliding
window size of 5× 5 and a threshold of 0.35 for pore detection. The recognition
results, as presented in Table 2, indicate that the ability to detect and represent
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Table 1. Effects of two components on pore detection with different sliding window
parameters (window size and threshold) on PolyU DBI dataset.

Baseline CBAM AW+WLM 5× 5 7× 7

0.25 0.3 0.35 0.25 0.3 0.35

RT RF RT RF RT RF RT RF RT RF RT RF

� × × 91.74 6.90 90.54 5.64 88.87 4.77 90.89 6.70 89.81 5.55 88.29 4.69

� � × 93.13 8.11 91.64 6.65 89.78 5.32 92.30 7.79 90.97 6.50 89.34 5.22

� × � 97.26 24.13 97.08 21.34 96.68 17.88 96.04 21.34 95.96 19.20 95.70 16.49

� � � 98.15 23.59 97.93 20.06 97.61 16.33 97.13 20.19 97.00 17.94 96.77 15.16

Table 2. Effects of two components on pore matching on PolyU DBI and DBII dataset.

Baseline CBAM AW+WLM DBI DBII

Feat original image Feat original image

� × × 16.18 6.47 10.63 1.45

� � × 11.49 6.46 6.22 1.50

� × � 11.89 5.29 8.22 1.64

� � � 4.85 5.22 0.89 1.35

pores is key to recognition performance. By incorporating both components, we
observe significant improvements in these aspects, leading to the best recogni-
tion performance. These findings provide strong evidence for the effectiveness of
these components within our proposed network.

3.4 Comparison with Other Pore Detection Methods

Accurate pore detection is vital for high-resolution fingerprint representation and
recognition. Therefore, we evaluated the performance of pore detection compared
with other existing pore detection methods on the same dataset used in the
pore ablation experiment, as shown in Table 3. As seen in the table, a state-of-
the-art RT can be achieved by our proposed method. Although the proposed
method also have a higher RF than some of the other methods, we believe
that even a slight increase in RF can improve recognition performance as long
as RT is high enough. This is because accurately detecting more sweat pores
provides greater opportunities to establish correct pore correspondences. Thus,
we believe that achieving a high RT is crucial for subsequent pore matching and
the proposed method effectively achieves this goal. We will further demonstrate
this in subsequent experiments.

3.5 Comparison with Other Pore Matching Methods

To further evaluate the effectiveness of the proposed method, several compar-
ative recognition experiments have been carried out. Firstly, we compared the
recognition performance with some classical methods on the PolyU HRF dataset
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Table 3. Pore detection results of RT (%) and RF (%) compared with other methods.

RT RF

Gabor Filter [2] 75.90 23.00

Adapt. DoG [3] 80.80 22.20

DAPM [3] 84.80 17.60

Labati et al. [5] 84.69 15.31

Xu et al. [22] 85.70 11.90

DeepPore [4] 93.09 8.64

Zhao et al. [7] 93.14 4.39

Gabriel et al. [6] 92.00 16.90

Shen et al. [8] 93.20 8.10

Liu et al. [14] 94.88 24.25

Ours 97.61 16.33

using a simple pore representation, namely the original image. Table 4 shows the
recognition results. Observing Table 4, it can be seen that our method achieves
the best recognition performance compared with other methods. The results also
demonstrate the effectiveness of our method in pore detection. Then, we com-
pared the recognition performance with the latest one-stage method [14] on the
same dataset using both the original image and deep features to represent pores,
as shown in Table 5. The results reveal a significant improvement in recognition
performance, particularly when utilizing deep features. Notably, the recognition
performance of our method’s deep features outperforms the original image. Fur-
thermore, the fusion results show that the fusion of the original image and deep
features can further improve recognition performance and the deep features play
an important role. Finally, we compared the recognition performance with the
state-of-the-art two-stage high-resolution representation method, DeepPoreID
[12], and the latest one-stage method [14] on an in-house dataset to evaluate the
generalization ability of the proposed one-stage method, as shown in Table 6. The
results show that the one-stage method can achieve better generalization and our
proposed one-stage method outperforms the latest one-stage method. Figure 3
shows the recognition results of genuine and imposter matching examples using
our proposed method and the latest one-stage method on three datasets, with
deep features being used to represent pores. The results show that our proposed
method can match more pore pairs for challenging genuine matching pairs, while
yielding close or fewer pore pairs for imposter matching pairs, further demon-
strating the effectiveness of our proposed method.
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Table 4. The EERs (%) of original image on PolyU DBI and DBII dataset.

DP [9] DAPM [3] Gabriel et al. [6] Shen et al. [8] Ours

DBI 15.42 9.6 9.2 7.7 5.22

DBII 7.05 4.4 4.5 4.4 1.35

Table 5. The EERs (%) of the original image, deep feature, and their fusion on PolyU
DBI and DBII dataset.

original image Feat fusion

Liu et al. [14] Ours Liu et al. [14] Ours Liu et al. [14] Ours

DBI 5.73 5.22 7.93 4.85 5.55 4.24

DBII 1.64 1.35 1.84 0.89 1.27 0.65

Table 6. The EERs (%) compared with a typical two-stage and the latest one-stage
representation method on three datasets.

DeepPoreID [12] Liu et al. [14] Ours

DBI 1.42 5.55 4.24

DBII 0.51 1.27 0.65

In-house Dataset 1.02 0.50 0.37

Fig. 3. Visualization of genuine (top) and imposter (bottom) matching pairs using
deep features on three datasets: (a) Our method (b) The latest one-stage method.
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4 Conclusion

The latest one-stage high-resolution fingerprint representation method outper-
forms the current two-stage method in robustness and generalization. However,
the pore detection and feature learning ability are still limited by the network
architecture and the loss used. To further improve the one-stage high-resolution
fingerprint representation method, in this paper, we propose to combine the
transformer-based encoder and the fully convolutional network to learn both
local and global information, providing a more robust pore representation. More-
over, we incorporate the attention module and apply adaptive wing loss with
a weighted loss map to further improve pore detection and feature learning
capability. The experimental results on two high-resolution fingerprint datasets
demonstrate the effectiveness of our proposed method. In our future work, we
will continue to focus on better integrating various information related to pores
and designing more lightweight models.
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Abstract. Video face recognition (VFR) has gained significant atten-
tion as a promising field combining computer vision and artificial intel-
ligence, revolutionizing identity authentication and verification. Unlike
traditional image-based methods, VFR leverages the temporal dimen-
sion of video footage to extract comprehensive and accurate facial infor-
mation. However, VFR heavily relies on robust computing power and
advanced noise processing capabilities to ensure optimal recognition per-
formance. This paper introduces a novel length-adaptive VFR frame-
work based on a recurrent-mechanism-driven Vision Transformer, termed
TempoViT. TempoViT efficiently captures spatial and temporal infor-
mation from face videos, enabling accurate and reliable face recognition
while mitigating the high GPU memory requirements associated with
video processing. By leveraging the reuse of hidden states from previ-
ous frames, the framework establishes recurring links between frames,
allowing the modeling of long-term dependencies. Experimental results
validate the effectiveness of TempoViT, demonstrating its state-of-the-
art performance in video face recognition tasks on benchmark datasets
including iQIYI-ViD, YTF, IJB-C, and Honda/UCSD.

Keywords: Video face recognition · Vision Transformer · Temporal
information

1 Introduction

Video face recognition (VFR) has emerged as a dynamic and promising field
at the intersection of computer vision and artificial intelligence, revolutioniz-
ing the way individuals are identified and authenticated [7]. Unlike traditional
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image-based approaches, video face recognition utilizes the temporal dimension
inherent in video footage to extract more comprehensive and accurate facial
information. As surveillance systems, social media platforms, and video commu-
nication technologies continue to proliferate, the demand for robust and efficient
VFR systems has grown significantly. However, VFR receives far less attention
than image-based face recognition [7,10].

To date, two prevalent approaches have emerged for VFR. The first approach
treats the frames of a video sequence as a collection of individual images, dis-
regarding the temporal order of the frames, e.g., [23]. However, such methods
lack computational efficiency as they necessitate comparing similarities across all
feature vectors between two face videos. Another approach involves aggregating
feature vectors from each frame in a sequential manner, preserving the tempo-
ral order. This method allows for the comprehensive capture of facial dynamics
over time, leading to a more accurate representation of the evolving face, e.g.,
[11,17]. In practice, the sequential aggregation approach may be preferred as it
can accurately capture temporal dynamics and ultimately boost the recognition
performance even under an uncontrolled environment.

However, using videos for face recognition has two sides of the same coin. On
the one hand, face videos offer the potential for enhanced performance due to
their enriched information content, encompassing valuable temporal dynamics
and multi-view perspectives. On the other hand, processing hundreds or thou-
sands of frames typically takes a lot of computing power, and noise frames may
also impair performance. Therefore, a good VFR system should make full use of
video data, avoid noisy distortion, and be efficient and accurate.

To achieve the mentioned objective, one can employ state-of-the-art sequen-
tial data modeling tools like ConvLSTM [29], ConvGRU [2], 3DCNN [16], and
Vision Transformer (ViT) [3,6]. Among these options, ViT stands out as a
promising candidate for capturing temporal information in videos. ViT has
proven its effectiveness in modeling long-distance relationships [26] and has
shown success in various video understanding tasks [3] when compared to models
based on LSTM and ConvNets.

Yet, it is crucial to acknowledge that face videos in real-world scenarios
can have varying lengths. This presents a formidable obstacle for ViT-based
approaches, as transformers are inherently limited in their ability to capture
dependencies within input sequences due to the fixed input size employed dur-
ing training [31]. For instance, if the maximum sentence size is set to 256 words,
the transformer model will be unable to capture dependencies between words
that occur beyond this limit.

Inspired by the above discussion, we propose a new video face recognition
framework, termed TempoViT, based on the sequential temporal information
aggregation concept. Specifically, the proposed framework centers around a care-
fully crafted recurrent Vision Transformer for temporal information extraction.
The TempoViT consists of a stack of units that operate by taking the current
input frame, denoted as x(t), and the hidden state h(t−1) from the previous frame
as inputs. From this current TempoViT unit, an output O(t) and an updated
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hidden state h(t) are generated. Then, a joint attention mechanism is proposed
for the TempoViT unit, which is used to draw global dependencies between
image patches and temporal dependencies between neighboring frames through
a hidden state. Length-adaptive spatial-temporal feature extraction can be done
by recursively running the TempoViT unit on individual frames.

An important aspect to highlight is that we leverage the reuse of hidden
states from previous frames instead of computing them from scratch for each new
frame. The reused hidden states act as a memory for the current frame, forming
a recurring link between them. As a result, modeling very long-term dependen-
cies becomes possible because information can be propagated through recurrent
connections. Additionally, the frame-wise recursive mechanism can help mitigate
the high GPU memory requirements associated with video processing.

The contributions of our work can be summarized as follows: 1) We introduce
an end-to-end ViT-based length-adaptive VFR framework, termed TempoViT.
By directly inputting face videos, our system can output the corresponding face
embeddings. The TempoViT framework efficiently captures spatial and temporal
information from videos, allowing for accurate and reliable face recognition. Fur-
thermore, we address the high GPU memory requirements typically associated
with video processing, ensuring that our framework is suitable for applications
requiring both accuracy and efficiency in face video identification; 2) We evalu-
ate the performance of our face recognition framework on benchmark datasets
such as iQIYI-ViD, YTF, IJB-C, and Honda/UCSD. Our results demonstrate
the effectiveness of TempoViT in achieving state-of-the-art performance in face
recognition tasks.

2 Related Works

Video Face Recognition. In comparison to image-based face recognition,
videos offer a richer source of information as they inherently capture faces of
the same individual in diverse poses and lighting conditions. This abundance
of data enhances the robustness and accuracy of face recognition algorithms,
enabling them to better handle variations in facial appearance and improve
overall performance.

The primary difficulty in video face recognition lies in constructing a suitable
representation for the video face, which can successfully combine information
from multiple frames while filtering out noisy or irrelevant data.

Convolutional neural networks (CNNs) have emerged as one of the most
widely used and successful tools for video face recognition. In 2017, a Neural
Aggregation Network (NAN) was proposed in [30] for video face recognition,
which consists of two modules that can be trained sequentially or individually.
The first is a deep CNN feature embedding module that extracts frame-level
features. The other is the aggregation module, which performs the adaptive
fusion of feature vectors from all video frames.

For dealing with bad frames, [25] proposed a method for discarding unde-
sirable frames using a Markov decision process and trained an attention model
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through a deep reinforcement learning framework. In [5], a trunk-branch ensem-
ble CNN model was proposed to solve the illumination and low-resolution prob-
lems. It has been shown to have competitive performance compared to conven-
tional CNN networks.

A recurrent regression neural network (RRNN) framework was introduced in
[19] for cross-pose face recognition tasks, specifically targeting still images and
videos. RRNN explicitly builds the potential dependencies of sequential images
and adaptively memorizes and forgets information that benefits final classifica-
tion by performing progressive transforms on adjacent images sequentially.

In [9], a novel approach called the component-wise feature aggregation net-
work (C-FAN) was introduced. C-FAN is designed to handle a set of face images
belonging to a particular individual as input and generates a single feature vec-
tor as the representation for face recognition. The key aspect of C-FAN is its
ability to automatically learn the significance of different face features by assign-
ing quality scores, which enhances the overall face representation for improved
performance in recognition tasks.

Vision Transformer. Recently, transformer-based networks have gained sig-
nificant attention and have been increasingly applied to computer vision tasks.

Dosovitskiy et al. [6] introduced the Visual Transformer (ViT) model and
made a groundbreaking observation that the transformer framework, even with-
out convolutional layers, can achieve impressive performance on image processing
tasks [6].

Zhong et al. [33] conducted the first study to investigate the performance of
Transformer models in face recognition. They trained and evaluated a ViT model
on several mainstream benchmarks. The results showed that Face Transformer
models trained on a large-scale database can perform similarly to CNN models.
However, it is important to note that the proposed ViT model was only tested
on still images [33].

Transformer-based models have also been increasingly utilized for video-
related tasks [1,3,8,24]. The ViViT model [1] employs two transformer encoders,
one for processing spatial information and the other for temporal information.
This approach effectively captures both spatial and temporal features in videos.

The TimeSformer [3] introduces a convolution-free methodology that extends
self-attention to incorporate joint spatial-temporal attention. It allows the model
to capture both spatial and temporal dependencies in videos. The VTN model
[24] combines a 2D spatial feature extraction model with a temporal-attention-
based encoder. This combination results in an efficient architecture specifically
designed for video understanding tasks.

The MViT model [8] introduces multi-head pooling attention with a focus
on specific spatial-temporal resolutions, which leads to promising performance.
Unlike traditional RNN and LSTM methods, transformer-based approaches are
designed to process batches of frames in parallel for video tasks. However, these
approaches often require significant GPU memory due to their parallel process-
ing nature. Additionally, the extraction of temporal features is typically per-
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formed within the batch, which can limit the amount of information captured
in the temporal domain. These considerations highlight the trade-offs and chal-
lenges involved in designing efficient and informative transformer-based models
for video analysis tasks.

To address these challenges, recursive methods, such as ConvLSTM [29],
have been successfully employed in video tasks. These recursive models have
demonstrated effectiveness in capturing temporal dependencies and modeling
video sequences. However, recent studies suggest that transformer-based meth-
ods, with their self-attention mechanisms designed specifically for video tasks,
can establish interactions between the spatial and temporal domains [1,3,8,24].

In summary, current face recognition approaches for videos primarily rely on
convolutional neural networks (CNNs), while limited efforts have been made to
extend the usage of Vision Transformer (ViT) models to video face recognition.
However, incorporating recursive mechanisms and Transformer self-attention
mechanisms hold promise in improving performance.

3 Methods

3.1 Overview

The proposed TempoViT is a video face recognition framework that utilizes a
carefully designed recurrent Vision Transformer. In the following subsections we
introduce the specific details of preprocessing, recurrent unit and joint attention
gate respectively, as shown in Fig. 1. The main idea is to capture both spatial and
temporal information from face videos while addressing the challenges associated
with varying video lengths and high computational requirements.

The TempoViT consists of a stack of units that operate on individual frames
of a video sequence in a sequential manner. Specifically, given the current
input frame x(t) and the hidden state h(t−1) obtained from the previous frame,
the TempoViT unit processes this information and produces an output O(t)

along with a new hidden state h(t) for the current frame. To enhance perfor-
mance, a custom-designed multi-head temporal-spatial joint attention module is
employed, which facilitates interaction between the current frame input and the
previous hidden state.

3.2 Preprocessing

The input frame X(t) ∈ R
H×W×C , with dimensions of height (H), width (W ),

and channel number (C), will undergo a decomposition process, where it is
divided into non-overlapping patches of size P × P . These patches are subse-
quently flattened into vectors x

(t)
p ∈ R

P 2×D and D = H
P · W

P ·C. In order to gen-
erate the input vector for the TempoViT unit, the patched vector x

(t)
p undergoes

a convolutional embedding layer. This layer applies a convolution operation to
extract relevant features from the patch vector. Additionally, a position encoding
vector is added to the embedded representation:

x(t) = �(x(t)
p ) + Posp (1)
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Fig. 1. TempoViT. (a) provides an overview of the TempoViT framework, showcasing
a two-layer TempoViT architecture as an example. In (b), a recurrent unit is depicted,
representing the core component of our framework. (c) illustrates the joint attention
gate, which operates on both the current input x(t) and the hidden state h(t−1).

where � denotes the convolution embedding function and Posp ∈ R
P 2×D is a

learnable positional encoding vector. The positional encoding vector is the same
for all frames.

In a manner similar to the conventional ViT approach, Fig. 1a demonstrates
the usage of learnable tokens Ts ∈ R

D and Tt ∈ R
D to represent spatial and

temporal directions, respectively. Thereby, Ts tokens are added at the begin-
ning of each input frame x(t) to aggregate spatial features, while Tt tokens are
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appended to the initial hidden state in each layer to aggregate temporal features.
The aggregated Tt tokens and the Ts tokens from the last frame’s output are
concatenated. This concatenated representation is then fed into a linear classifi-
cation layer Wclass, enabling the model to generate a prediction result. Hence a
prediction result can be given as:

P = Wclass(Concat(Tt
(t)
0 , ..., T t(t)n , T s(t)n )). (2)

3.3 TempoViT Recurrent Unit

Figure 1b provides an overview diagram of a single TempoViT unit, illustrating
its key components and their interactions. The input frame x(t) and hidden state
h(t − 1) collaborate to compute the current hidden state h(t) and output O(t)
in a TempoViT unit. The attention unit in the TempoViT framework takes as
input the current frame x(t) and the previous hidden state h(t − 1), both of
which are first passed through a Layer Normalization layer. Following that, the
attention preserves previous attention while appending new information from
the current frame. Finally, the hidden state h(t) of the current frame, belonging
to RP 2×D, is generated in a residual manner.

h(t) = h(t−1) + A(t), (3)

The output O(t) ∈ R
P 2×D of the current unit is generated by a Feed-Forward

Network (FFN) with a residual connection. This can be defined as follows:

O(t) = f(o(t)) + o(t), (4)

where o(t) is the intermediate output defined as o(t) = x(t) + A(t) and f(·)
represents the FFN.

Unlike existing approaches that often process a batch of frames, our method
takes a different approach by utilizing a recurrent unit to process face videos
frame by frame. This sequential processing allows us to effectively reduce redun-
dant computation, especially when dealing with long video sequences. In contrast
to methods such as 3D-ResNet and TimeSformer which require the entire video
sequence for inference and training, our approach focuses on individual frames,
resulting in more efficient and streamlined processing.

3.4 Temporal-Spatial Joint Attention

As shown in Fig. 1c, a joint attention gate based on [31] is specifically designed
to establish an interaction between the current frame x(t) and the hidden state
h(t−1) ∈ R

P 2×D from the previous frame. It takes these inputs and generates
an attended vector a(t) ∈ R

P 2×D, which represents a fused representation that
captures the relevant information from both the current frame and the previous
hidden state. By utilizing the joint attention gate, the TempoViT framework
enhances the integration of temporal and spatial information, enabling more
effective and accurate analysis of the video frames.
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Table 1. Datasets of face videos

Datasets #Identity # Video Remarks

iQIYI-VID [21] 10034 200k length of the video clip ranges from 1 s to 30 s

YTF [28] 1,595 3,425 length of the video clip ranges from 48 to 6,070 frames

IJB-C [22] 3,531 11779 video with a length <6 frame will be excluded

Honda/UCSD [18] 37 1480 captured indoors with natural light, fixed distance

a(t) = (σ(Q(t)K(t)))V (t) (5)

The activation function σ(·), in this case, represents the ELU (Exponential
Linear Unit) function elu(·). Q(t), K(t), V (t) are matrices denoting the Query,
Key, and Value, respectively. These matrices are defined as follows:

Q(t) = x(t)WQ
x + h(t−1)WQ

h

K(t) = x(t)WK
x + h(t−1)WK

h

V (t) = x(t)WV
x + h(t−1)WV

h

(6)

Note that the attention vector a(t) captures a joint attention mechanism
between the current frame input x(t) and the previous hidden state h(t − 1).
This joint attention is achieved because the matrices Q(t), K(t), and V (t) are
computed from both the current frame input and the previous hidden state. Fur-
thermore, to achieve multi-head attention, q attention heads are concatenated
together, resulting in a combined representation that incorporates the contribu-
tions from multiple attention heads.

A(t) = Concat(a(t)
1 , · · · , a(t)

q )Wproj (7)

where a
(t)
q = (σ(Q(t)

q K
(t)
q ))V (t)

q and a
(t)
q ∈ R

P 2×D
q . A linear layer Wproj ∈ R

D×D

is applied to project the attended vector to a desired output dimension.

4 Experiments and Results

4.1 Experiment Setting

Datasets. As given in Table 1, four public video face benchmark datasets
are used in our experiments to verify the effectiveness of the proposed Tem-
poViT, including iQIYI-VID-FACE [21], YouTube Face (YTF) [28], IJBC [22]
and Honda/UCSD [18].

The iQIYI-VID dataset is the largest open-source video celebrity recognition
dataset composed of more than 200k video clips of 10, 034 celebrities. The train-
ing set is 90% samples of each user in the iQIYI-VID dataset and the remaining
samples are composed of a testing set. YFT is a comprehensive database of
labeled videos of faces in challenging, uncontrolled conditions, which contains
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3425 videos of 1595 subjects. IJBC is composed of 3531 subjects with 117. 5k
images from 11779 videos. Still images and frames with insufficient length (<6
frames) are not used in our experiments. YTF and IJB-C are used in the training
of the multilayer perceptron head (MLP), and follow the training protocol from
[4]. The Honda/UCSD video database contains 1480 videos of 37 subjects and
all are recorded indoors with natural light. The training set consists of one video
of each of 20 subjects, while the 39 videos of 17 subjects are used in the testing
set. Some examples are shown in Fig. 2.

Implementation Details. We first verify the performance of the proposed
TempoViT on the iQIYI-VID dataset. Then we use the pretained model
on the iQIYI-VID dataset to evaluate the performance of YTF, IJB-C, and
Honda/UCSD datasets which is in line with practical application scenarios.

We apply a random initialization to train our proposed TempoViT on the
iQIYI-VID dataset with Adam optimizer and Cross-entropy loss. The initial
learning rate and weight decay are set to 3e−4 and 5e−4, respectively. Both the
training and testing phases randomly sample 8 frames from each video with a
sampling rate of 1/1 to 1/8. The frames from the sample are first resized to
112 × 112. Additionally, a random horizontal flipping is applied to each frame.

Fig. 2. Dataset examples.

Table 2. Performance on iQIYI-ViD dataset

Method mAP@1(%) mAP@100(%) Params(M) Flops(G)

ArcFace,Res100 [4] N/A 79.80 59.27 2.04

MobileNetV3+LSTM [14] 78.19 80.42 15.82 0.50

ResNet3D-50 [12] 82.65 86.13 48.71 5.29

Ours(TempoViT) 85.07 87.11 1.49 1.76
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After these transformations, we set P to 8. Each frame is divided into 8× 8
non-overlapping patches and flattened for further processing.

4.2 Quantitative Evaluation

In this section, we adopt mAP@1 and mAP@100 as the retrieval perfor-
mance indicator to evaluate the proposed TempoViT on iQIYI-VID. We com-
pare the recognition performance of different methods, including ArcFace [4],
MobileNetV3+LSTM [14], ResNet3D-50 [12] and ours, the result is shown in
Table 2.

As can be seen from Table 2, ArcFace achieves an mAP@100 accuracy of
79.80%. MobileNetV3+LSTM achieves an mAP@1 accuracy of 78.19% and an
mAP@100 accuracy of 80.42%. ResNet3D-50 achieves an mAP@1 accuracy of
82.65% and an mAP@100 accuracy of 86.13%. Our proposed approach achieves
an mAP@1 accuracy of 85.07% and an mAP@100 accuracy of 87.11%.

The number of parameters (Params) in a model refers to the number of
learnable weights that the model contains. Floating-point operations (Flops)
represent the number of mathematical computations during its forward pass.
Flops are indicative of the computational complexity or workload required by
the model.

The proposed TempoViT model has the lowest number of parameters (1.49
million), indicating a relatively lower complexity compared to the other mod-
els. The TempoViT model requires 1.76 billion Flops, which is in between
the MobileNetV3+LSTM and ResNet3D-50 models. Compared to Arcface,
MobileNetV3+LSTM and ResNet3D-50, our TempoViT can be considered
extremely lightweight and achieve the best performance.

Table 3. Performance(%) on YTF, IJB-C and Honda/UCSD datasets

Method YTF accuracy IJB-C TPR@FPR=1e-4 Honda Top-1 accuracy

DSR-Full len. [11], 2017 92.55 - 100.0

TBE-CNN [5], 2017 94.96 - -

NAN [30], 2017 95.72 - -

ADRL [25], 2017 96.52 - -

CosFace [27], 2018 97.60 - -

SeqFace [15], ResNet-64, 2018 98.10 - -

C-FAN [9], 2019 96.50 - -

Hörmann et al. [13], 2021 96.62 - -

R100, ArcFace [4], 2019 98.02 95.60 -

Lin et al. [20] (50 frames), 2020 - - 97.44

DDL [32], 2020 98.18 96.41 -

Ours(TempoViT) 86.19 84.47 100.0

Ours(TempoViT)+MLP 99.40 99.58 100.0

We then evaluate the cross-dataset recognition performance on YTF, IJB-C,
and Honda /UCSD, which is consistent with data deployment in real systems.
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Specifically, the TempoViT model is pre-trained on the large-scale iQIYI-ViD
dataset and then used to infer the YTF and IJB-C datasets. As shown in
Table 3, we calculate the accuracy of the normalized feature embeddings. For
the Honda/UCSD dataset, a multi-layer perceptron (MLP) head is added to the
backbone architecture and fine-tuned using the training set of the Honda/UCSD
dataset to improve the model’s performance. As observed from the table, the
pre-trained TempoViT achieves an acceptable accuracy of 86.19% on YTF
and 84.47% TPR@FPR1e−4 on IJB-C, while achieving 100% accuracy on the
Honda/UCSD dataset.

Clearly, in the cross-dataset scenario, the accuracy on the YTF and IJB-C
datasets is lower than that of most existing works. Therefore, inspired by [4],
we attach an MLP layer to the pre-trained TempoViT model and fine-tune it
on each testing dataset. As a result, the accuracy of TempoViT improves to
99.27% on YTF and 98.75% on IJB-C. The performance of TempoViT is greatly
improved, and a series of results demonstrate its strong feature extraction ability.

4.3 Ablation Study

Since the video length of the TempoViT input is not fixed, we conduct an abla-
tion study to assess accuracy and time cost for different video lengths in this
stage.

First of all, the Honda/UCSD dataset is chosen for this experiment due to
its videos being primarily captured under similar situations, resulting in fewer
variations. This selection ensures a more controlled and consistent environment
for conducting the study. During training, TempoViT is trained using input
sequences of 8, 50, and 70 frames for each corresponding setting. However, for
input sequences with 100 frames and full frames, we directly use TempoViT
trained with 70 frames for inference due to the limitation of memory resources.

Table 4 shows the classification accuracy of different methods for video
lengths ranging from 8 to full frames. We can clearly see that as the video
clip length increases, the performance of face recognition increases. Moreover,
compared with existing methods, our proposed TempoViT achieves better per-
formance on the Honda/UCSD dataset. Specifically, proposed TempoViT with-
out pre-training achieves 100% accuracy at 50 frame lengths, while TempoViT
with pre-training achieves an accuracy of 100% even at 8 frame lengths. This
shows that our TempoViT has the ability to extract the spatial and temporal
information of the faces in the video, which is conducive to the construction of
a high accuracy video-based face recognition system.

To demonstrate the efficiency of the TempoViT, Fig. 3 records the inference
time cost of TempoViT for processing face videos of different lengths. The infer-
ence time takes only 48 ms when the video length is extended to all frames. The
observations confirm that the proposed method can be used for real-time video
face recognition.

In addition, we use attention visualization of the transformer to ascertain
the relationship of the attention maps among frames at the inference stage. As
we can observe in Fig. 4, face areas such as eyes, hair, and nose are activated in
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Table 4. Classification accuracy(%) vs. video length on the Honda/UCSD

Method Video clip Length (Frame)

8 50 70 100 Full

LBP+AdaBoost [11] - 82. 75 88. 52 92. 63 96. 10

Pose [20] - 97. 44 - 100.0 -

DSR [11] - 98. 74 100.0 100.0 100.0

TempoViT w/o Pretrained 98. 69 100.0 100.0 100.0 100.0

TempoViT Pretrained 100.0 100.0 100.0 100.0 100.0

Fig. 3. Inference time cost for different video lengths.

Fig. 4. Attention visualisation for TempoViT.
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proposed TempoViT model, which suggests that the model can focuses on face
areas for identity recognition under typical situations.

5 Conclusions

While image-based face recognition has received more attention, the demand
for robust and efficient VFR systems has grown significantly with the prolifer-
ation of surveillance systems, social media platforms, and video communication
technologies. Two prevalent approaches have emerged for VFR: treating video
frames as individual images and aggregating feature vectors sequentially. The lat-
ter approach, which preserves temporal dynamics, has been shown to be more
accurate in capturing the evolving face. However, processing video frames can
be computationally demanding, and noisy frames can impair performance.

To address these challenges, we proposed a video face recognition frame-
work based on the sequential aggregation approach. The framework leverages
the power of Vision Transformer (TempoViT) and carefully crafted recurrent
connections to capture both spatial and temporal information from face videos.
By reusing hidden states and recursively running the TempoViT unit on individ-
ual frames, our framework achieves efficient processing and mitigates high GPU
memory requirements.

Our evaluation on benchmark datasets demonstrates the effectiveness of Tem-
poViT, showcasing its state-of-the-art performance in face recognition tasks.
Overall, TempoViT offers a robust, accurate, and efficient solution for video face
recognition, meeting the increasing demands of real-world applications in various
domains.
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Abstract. Face forgery detection in compressed images is an active
area of research. However, previous frequency-based methods are sub-
ject to two limitations. One aspect to consider is that they apply the
same weight to different frequency bands. Moreover, they exhibit an
equal treatment of regions that contain distinct semantic information.
To address these limitations above, we propose the Central Attention
Network (CAN), a multi-modal architecture comprising two bright com-
ponents: Adaptive Frequency Embedding (AFE) and Central Atten-
tion (CA) block. The AFE module adaptively embeds practical fre-
quency information to enhance forged traces and minimize the impact of
redundant interference. Moreover, the CA block can achieve fine-grained
trace observation by concentrating on facial regions where indications of
forgery frequently manifest. CAN is efficient in extracting forgery traces
and robust to noise. It effectively reduces the unnecessary focus of our
model on irrelevant factors. Extensive experiments on multiple datasets
validate the advantages of CAN over existing state-of-the-art methods.

Keywords: Face Forgery Detection · Multi-level Frequency Fusion ·
Attention Mechanism

1 Introduction

Deep learning advancements and the widespread availability of online resources
make tools like deepfakes [1] and face2face [2] easily accessible, allowing indi-
viduals without professional training to easily manipulate facial expressions,
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Fig. 1. (a) Overview of our proposed CAN. Combining FDD with AFE allows for
extracting fine-grained frequency information and highlighting the components most
useful for forgery detection. The CA block enables the network to focus more on key
central areas. (b) Illustration of the differences between Real and Fake. The forgery
traces are clustered in the central region (in the red box), indicating that the center is
more important than the other areas. (Color figure online)

attributes, and identities within images. However, criminals misuse these tech-
nologies, resulting in a proliferation of high-quality fake photographs on social
media, making it difficult to distinguish between genuine and modified faces.

The above issues prompt the development of face forgery detection based
on deep neural networks [3–11]. However, they perform poorly in compressed
images. Recent works [12–15] highlight the effectiveness of capturing forgery
traces in the frequency domain under high compression. While decent detection
results are achieved by combining RGB and frequency information, their method
of information processing is coarse-grained, which causes two limitations.

For one thing, previous studies usually obtain frequency domain information
through Discrete Cosine Transform and then use hand-crafted filters to extract
it into high, middle, and low frequency bands. According to [15], the low and
middle frequency preserve rich semantic information, such as human faces and
backgrounds, which is highly consistent with RGB input. Meanwhile, the high
frequency reveals small-scale details, often related to forging sensitive edges and
textures. These show that the role and importance of these three frequency bands
are completely different. Previous works show excellent performance by combin-
ing frequency information. They apply the same weight for different frequency
bands, which may not be optimal for using frequency information and may lead
to magnifying irrelevant noise and ignoring the more valuable components.

For another thing, the equal treatment of regions with different semantic
information prevails in existing methods. However, as shown in Fig. 1(b), most
of the differences between real image and fake image are obviously clustered
in the central region (in the red box). This means that the central region can
provide rich traces of forgery compared to other regions (outside the red box).
Treating the regions equally not only results in superfluous noise but also neglects
significant evidence.
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To address these limitations, we propose a new approach to detect face
forgery, termed as Central Attention Network (CAN), as shown in Fig. 1(a).
The CAN consists of four main modules: Frequency Domain Decomposition
(FDD), Adaptive Frequency Embedding (AFE), Multi-modal Attention Fusion
(MAF), and Central Attention (CA) block. CAN initially uses FDD to extract
low, middle, and high frequency information from input images. Then our AFE
module concatenates the three frequency bands for richer frequency perception
cues. In terms of information extraction granularity and channel allocation, it
prioritizes high frequency information. Subsequently, the frequency is fused into
the RGB branch by the MAF module. Finally, we add the CA block, which is
similar to the Transformer block [16], to prevent the network from focusing on
irrelevant areas. The module uses different scale attention mechanisms for the
central and global regions, enabling the network to prioritize the central region
more efficiently.

Extensive experiments have demonstrated that our proposed Central Atten-
tion Network effectively captures forgery traces and significantly improves upon
the shortcomings of existing detection methods. Our work makes the following
primary contributions:

– We propose the AFE module aiming at mining the more valuable fine-grained
frequency components to uncover subtle nuances and hidden artifacts.

– We propose the Central Attention mechanism that provides a refined per-
spective of forged regions and reduces the attention to irrelevant areas.

– Numerous experiments demonstrate that our proposed Central Attention
block is highly versatile and can be seamlessly integrated into various existing
networks, resulting in a significant enhancement of their detection capabili-
ties.

2 Related Work

Face Forgery Detection. With the rise of deep learning, the adverse effects
of image forgery techniques on political credibility, social stability, and personal
reputation have increasingly received attention from society.

Therefore, various image forgery detection technologies have developed
rapidly in recent years. Previous works [7–11] use deep CNN models to pre-
dict whether a face region is real or fake. Unfortunately, they are only partially
effective in high compression scenarios.

Inspired by [13], recent studies try to improve detection performance in high
compression scenes by incorporating frequency domain information into existing
detection techniques. Qian et al. [15] proposes a dual-stream network named F3-
Net, where one branch utilizes three filters to perform frequency decomposition
on RGB information. Chen et al. [17] uses the Spatial Rich Model to extract
residual noise to guide the RGB features. Li et al. [18] and Gu et al. [14] further
decompose fine-grained frequency domain information from the perspective of
image compression. While previous methods demonstrate significant effects, they
either underutilize frequency information or treat all levels of frequency equally.
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In contrast, our method involves decomposing frequency domain information
and adaptive embedding to leverage the available frequency fully.

Vision Transformers. Transformers are known for their powerful remote con-
textual information modeling capabilities and high performance in natural lan-
guage processing tasks. While various backbones are proposed to handle com-
puter vision tasks, conventional transformers treat each patch at a single scale.
Recent works [19–21] introduce multiple scales to focus on objects of different
sizes, [22] proposes a multi-modal framework that integrates multi-scale trans-
former. Nevertheless, these approaches are generic and not tailored to the specific
characteristics of forgery image detection. In this paper, we propose a Central
Attention block that addresses the fact that fake regions tend to be concentrated
in the central area of an image while other areas contain interference information.

3 Proposed Method

3.1 FDD: Frequency Domain Decomposition

For the input rgb ∈ R
3×H×W , where H and W are the height and width of

the image. First, we apply DCT as Discrete Cosine Transform to transform the
RGB domain to the frequency domain. Based on [15], we devise N = 3 filters
that are capable of effectively decomposing the frequency into three distinct
frequency bands: high, middle, and low:

dctn = DCT (rgb) � fn, n = 1, ..., N. (1)

We utilize ID as Inverse Discrete Cosine Transform to transform the frequency
domain into RGB domain to obtain the ˜freq ∈ R

3N×H×W which is concatenated
by freqn along the channel dimension. This manipulation helps to preserve the
shift invariance and local consistency of natural images.

freqn = ID(dctn), n = 1, ..., N. (2)

To achieve a more refined analysis of the frequency information, we apply M as
the median filter to extract noise information from the input features ˜freq:

˜freqnoise = ˜freq − M( ˜freq). (3)

To magnify subtle forgery clues, we utilize the following formula:

freq = ˜freq + Conv1×1(Sigmoid( ˜freqnoise)). (4)

Specifically, a 1 × 1 convolution layer followed by a Sigmoid activation function
is used to generate a noise mask, which is then added back to the original feature
maps to enhance the frequency input.
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Fig. 2. The illustration of the proposed AFE allocates weight based on the value of
frequency levels.

3.2 AFE: Adaptive Frequency Embedding

Previous works show excellent performance by combining frequency informa-
tion. Applying the same weight to different frequency bands might be the gen-
eral method in their works. It may not be optimal for using frequency domain
information because it may magnify irrelevant noise or misuse the valuable com-
ponents. To address this point, we propose the AFE module that fully exploits
the role of different frequency components, as shown in Fig. 2. The AFE module
extracts information from different frequency bands via different convolution ker-
nels. Tampering artifacts reside mainly in the high-frequency spectrum. There-
fore, we use a 2×2 convolution kernel to extract fine-grained texture information
from it. For middle and low frequency that still contain basic information, which
provides a solid foundation for fusing Frequency and RGB, we adopt 4 × 4 and
8× 8 convolution kernels to extract semantic features, respectively. The channel
outputs generated by these convolutions are also treated differently based on
their importance in different frequency bands. Specifically, d

2 channels are allo-
cated for high frequency channels while middle and low frequency each occupy
d
4 channels. The d represents the number of output feature channels. Ultimately,
the three branches are concatenated along the channel to obtain the ˆfreq.

3.3 MAF: Multi-modal Attention Fusion

The complementary relationship between RGB and Freq is acknowledged. The
MAF module integrates them by means of an attention mechanism. The RGB
feature map is denoted as ˆrgb ∈ R

d×h×w, while the frequency feature map is
represented as ˆfreq ∈ R

d×h×w. We obtain the query vector Q from ˆrgb using a
1 × 1 convolution layer. Similarly, we obtain the key vector K and value vector
V from ˆfreq using 1 × 1 convolution layers. Then, we flatten them along the
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spatial dimension to get 2D embeddings Qe, Ke, Ve. Using the self-attention
mechanism, we generate an attention map that represents relevance between the
input features ˆrgb and ˆfreq:

Ŵ = softmax(
QeKe√

D
)Ve, (5)

where D is the dimensionality of the key vectors. After obtaining attention
weights, we compute weighted values via a 3 × 3 convolution. Additionally, we
adopt residual connections to add them to the original input, alleviating the
potential gradient vanishing issue during the training process.

f = ˆrgb + Conv3×3(Ŵ ). (6)

3.4 CA Block: Central Attention Block

Fig. 3. The proposed Central Attention mechanism when α is 0.5.

The conventional transformer models treat all patches of an image equally with-
out taking into account the relative significance of distinct areas. Recent stud-
ies [20,22] show that incorporating multi-scale information can improve detection
accuracy. Yet these models are not optimized for detecting forged face images.
Our observation is that forged regions tend to cluster around the centre of input
images. Based on this insight, we propose Central Attention, which aids the
network in concentrating on key regions.

For the input global feature fg ∈ R
c×h×w, we commence by initializing a

Mask of size h × w. Subsequently, we selectively filled the central region, char-
acterized by dimensions of αh × αw, with the value 1. The surrounding area
is then filled with the value 0 to complete the mask initialization process. α is
the proportion that determines the size of the central region. We then apply
this Mask to the input fg, resulting in a central feature map fc = fg � mask.
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Figure 3 illustrates the framework of the Central Attention mechanism, with a
value of 0.5 for parameter α.

For the global feature fg, we downsample it into h
2 × w

2 by convolution to
obtain fd. We obtain the embedding Qg from fg, the embeddings Kg and Vg

from fd. Inspired by [21], we define the operation of dividing the input into
G × G patches through sliding windows and grouping as SWG(·).

Qg = SW g(Qg), Kg, Vg = SW
g
2 (Kg, Vg), (7)

fg = MHSA(Qg, Kg, Vg). (8)

Similarly, for the central feature fc, we embed fc into Qc, Kc, Vc.

Qc, Kc, Vc = SW c(Qc, Kc, Vc), (9)
fc = MHSA(Qc, Kc, Vc), (10)

where MHSA represents Multi-Head Self-Attention.
This allows the network to focus more on the central region while still consid-

ering the surrounding areas. In order to maintain spatial coherence, the grouping
features are rearranged and subsequently substituted with fc to replace the cor-
responding position features. [·] denotes the above operations.

f = [fg, fc]. (11)

The CA block can be described mathematically:

f = fg + CA(Norm(fg)), (12)
f = f + FFN(Norm(f)), (13)

where Norm and FFN mean BatchNorm, Feed Forward Network separately.

3.5 Overall Loss

After passing through several CA blocks, the feature is sent into the remaining
backbone network to extract richer features f . Then a fully connected layer and
a sigmoid function are used to obtain the final prediction probability y. So the
Binary cross-entropy loss is defined as:

LBce(y) = y log ŷ + (1 − y) log(1 − ŷ), (14)

where y is set to 1 if the face image has been manipulated, otherwise it is set to 0.
To ensure feature consistency, we use the Consistency loss function LCos in [23]
to constrain the feature distribution. f1 and f2 are the final features obtained
from the same input image after through distinct data augmentation and being
passed through the network. Mathematically:

LCos (f1, f2) =
(
1 − f̃1 · f̃2

)2

, (15)
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where f̃ = f
‖f‖2

denotes the normalized vector of the representation vector f .
So we combine the Binary cross-entropy loss and the Consistency loss func-

tion linearly with β = 2.

Lall = LBce(y1) + LBce(y2) + βLCos (f1, f2) . (16)

Table 1. Quantitative results on Celeb-DF dataset and FF++ dataset.

Methods FF++(HQ) FF++(LQ) Celeb-DF

Acc AUC Acc AUC Acc AUC

MesoNet [6] 83.10 - 70.47 - - -

Xception [24] 95.73 96.30 86.86 89.30 97.90 99.73

Face X-ray [7] - 87.40 - 61.60 - -

Two-branch [25] 96.43 98.70 86.34 86.59 - -

RFM [11] 95.69 98.79 87.06 89.83 97.96 99.94

Add-Net [9] 96.78 97.74 87.5 91.01 96.93 99.55

F3-Net [15] 97.52 98.10 90.43 93.30 95.95 98.93

FDFL [18] 96.69 99.30 89.00 92.40 - -

Multi-Att [8] 97.60 99.29 88.69 90.40 97.92 99.94

SIA [26] 97.64 99.35 90.23 93.45 - -

PEL [14] 97.63 99.32 90.52 94.28 - -

Ours 97.65 99.44 90.40 95.09 99.36 99.98

4 Experiments

4.1 Experimental Setup

Datasets. We adopt two widely-used public datasets in our experiments, i.e.,
FaceForensics++ [27], Celeb-DF [28].

1) FaceForensics++ (FF++) [27] is a large forensics dataset containing 1000
original video sequences and 4000 manipulated video sequences produced by
four automated face manipulation methods: i.e., Deepfakes [1], Face2Face [2],
FaceSwap [29], NeuralTextures [30]. Raw videos are compressed, resulting in two
versions: high quality (HQ) and low quality (LQ). Following the official splits,
we utilized 720 videos for training, 140 for validation, and 140 for testing.

2) Celeb-DF [28] dataset comprises 590 authentic videos sourced from
YouTube, featuring individuals of varying ages, ethnicities, and genders. Addi-
tionally, the dataset includes 5639 corresponding DeepFake videos.

Implementation Detail. The EfficientNet-B4 [31] pre-trained on ImageNet is
adopted as the backbone of our network. We insert several CA blocks respectively
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after the second and third convolutional blocks with α = 0.5. The input images
are resized to 320 × 320. The whole network is trained with Adam optimizer
with the learning rate of 2 × 10−4, β1 = 0.9, β2 = 0.999. The batch size is 48
split on 4 × RTX 3090 GPUs.

Evaluation Metrics. Following the convention [10,14,15,22,27], we apply
Accuracy score (Acc), Area Under the Receiver Operating Characteristic Curve
(AUC) as our evaluation metrics.

Comparing Methods. We compare our methods with several advanced meth-
ods: MesoNet [6], Xception [24], Face X-ray [7], Two-branch [25], RFM [11],
Add-Net [9], F3-Net [15], FDFL [18], Multi-Att [8], SIA [26], PEL [14].

Table 2. The effect of each component.
The CAB represents CA blocks.

RGB Freq AFE CAB Acc AUC

� 88.70 92.87

� 88.49 92.63

� � 88.89 92.89

� � � 89.94 93.57

� � � 90.36 94.15

� � � � 90.40 95.09

Table 3. Ablation study of other back-
bones with our CA blocks.

Model Acc AUC

PF +None 66.79 69.28

+CAB 78.79 80.31

CNX +None 76.45 77.92

+CAB 80.43 80.64

PF* +None 86.93 90.09

+CAB 87.22 90.34

CNX* +None 87.57 90.77

+CAB 87.93 91.07

4.2 Comparison to the State-of-the-Arts

Following [15,27], we compare our method with various advanced techniques on
the FF++ dataset with different quality settings (i.e., HQ and LQ), and further
evaluate the performance of our approach on the Celeb-DF dataset. In Table 1
the best, second, third results are shown in Red, Blue, Green. The performance
of our proposed method, especially under high compression, is comparable or
superior to existing methods, as evidenced by the Acc and AUC metrics. It is
worth noting that the method PEL [14] is a two-stream network with twice
as many parameters as ours. We achieve competitive results using only half the
parameters. These gains mainly come from the CAN’s ability to utilize frequency
information and fully reduce interference from irrelevant information.

4.3 Ablation Study and Architecture Analysis

Components. As shown in Table 2, we develop several variants and conduct a
series of experiments on the FF++ (LQ) dataset to explore the impact of differ-
ent components in our proposed method. Using only RGB or frequency as input
in the single-stream setting leads to similar results. Combining both original
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streams can slightly improve performance, which demonstrates that frequency
and RGB are unique and complementary. Adding an AEF module or CA blocks
can significantly improve performance, achieving optimal results using the over-
all CAN framework. It shows that each module is effective: the AFE module
fully mines frequency domain information and filters noise, and the CA blocks
strengthen the network to focus on forged regions.

Validity of the CA Block. We insert the CA block into Transformer and
CNN to further examine its validity and universality. PoolFormer-S (PF) [32] and
ConvNeXt-S (CNX) [33] are chosen as the backbone. The results on FF++ (LQ)
are displayed in Table 3, where * means loading pre-trained weight. Embedding
CA blocks significantly improves the performance of both baseline networks due
to their critical attention to central regions.

Convolution Kernel Size. In the AFE module, we conduct experiments with
several convolution kernel combinations under the same settings. The specific
results are shown in Table 4. The combination of [2, 4, 8] performs best.

Table 4. Quantitative results of different
convolution kernel sizes in AFE.

Kernel Acc AUC

[2, 4, 8] 90.40 95.09

[2, 8, 16] 90.09 94.04

[4, 8, 16] 89.79 94.10

Table 5. The results on FF++ (LQ) with
different α.

α Acc AUC

0.5 90.40 95.09

0.6 90.11 94.59

0.7 90.13 94.26

Hyperparameter α. The hyperparameter α has a significant impact on the
CA block’s performance by restricting the size of the central area. In Table 5,
we conduct experiments with different value of α and find that the optimal
performance is achieved when the α is 0.5. It means that the inclusion of too
much irrelevant information would weaken the performance, and the center area
can supply adequate forgery traces.

4.4 Visualizations

To further understand how our method makes decisions, we use Grad-CAM [34]
to show the attention maps of input samples for both the baseline and CAN.
Figure 4 demonstrates that all four forgery methods have their faked areas
centered in the center. The baseline network is significantly disturbed due to
increased noise information after compression. However, with the AFE module
filtering out noise information and Central Attention emphasis focused on central
areas, the CAN can more reliably capture forgery traces.
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Fig. 4. The attention maps for different kinds of faces

4.5 Limitations

When applying improper masks, the performance drops significantly, suggesting
that a more meticulous attention mechanism is required. Focusing on specific
facial components may lead to better results, which we will explore in the future.

5 Conclusion

The paper proposes a Central Attention Network (CAN) framework for detecting
forged images. We conduct a comprehensive analysis of the frequency amplifica-
tion forgery traces, which has laid a strong foundation for the network’s optimal
performance. The Central Attention block effectively filters out irrelevant back-
ground noise, ensuring the network concentrates primarily on capturing forgery
traces. Visualizing class activation mapping explains the internal mechanism and
demonstrates the effectiveness of our methodology.
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Abstract. Facial Recognition (FR), despite its remarkable precision
and advancements achieved through deep learning, exhibits vulnerability
to security threats, specifically originating from deep generative models
proficient in synthesizing deceptive face images. Generative Adversarial
Networks (GANs) present substantial risks by showcasing the capacity to
exploit potential vulnerabilities within FR systems. While the existing
research primarily focuses on the scenario of a compromised database
facilitating facial reconstruction attacks, it often overlooks more realistic
threats where adversaries attack with a limited number of queries with-
out breaching the database. This work introduces Minimum Assumption
Reconstruction Attacks (MARA), offering a realistic attack framework
against FR systems. MARA treats an attacker as a regular user inter-
acting with the FR system’s user interface and observing the matching
scores. We formulate the MARA attack as an optimization problem,
aiming to find a latent vector in the W+ latent space of StyleGAN for
generating adversarial face images that can bypass the targeted FR sys-
tem. A latent space mining strategy is also proposed to enhance attack
performance by obtaining ‘good’ initial guesses in the latent space. Our
experiments show that MARA achieves performance comparable to false
accept attacks while adhering to query limits and mimicking user-like
interaction behavior. This study highlights the importance of considering
attack models requiring minimal effort from the adversary, an essential
perspective for adversarial research that seeks to guard against powerful
and less resource-intensive attacks.
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1 Introduction

Human Facial recognition (FR) has gained significant popularity as a biometric
trait, comparable to fingerprint and iris recognition, owing to its non-intrusive
nature, convenience, user-friendliness, contactless operation, and high accuracy.
Following the recent advancement of deep learning, face recognition systems
using deep neural network encoders are being rapidly deployed in practice. Dur-
ing registration, these systems convert a facial image into a feature vector (a
template). The template is subsequently stored in a database as a reference for
future matching purposes.

On the Vulnerable Points of FR: However, several points in the FR
system can be vulnerable to attacks. Follows Fig. 1: 1) attackers may exploit the
image acquisition stage in facial recognition systems by using fake or manipulated
facial features, such as printed photos, masks, or 3D models; 2) attackers may
target the face recognition system’s database, aiming to gain unauthorized access
and manipulate identity information, compromising the system’s integrity; 3)
attackers may exploit the system’s interface by analyzing output elements like
matching decisions or scores to reverse-engineer the user’s facial image.

Fig. 1. Components of a typical face recognition system.

Table 1. Comparison of attack assumptions and aims of different image-level attacks.

Attack Access to sth. Know sth. Goal Related reference

User interface DB in backend Victim’s photo Face distribution

FAA � � Deceive/impersonate Palmprint FAA [3]

PA � � � Deceive/impersonate See survey [2,9,10]

TI � � Template inversion NBNet [1], Mapping [7]

MARA � � Reconstruct face -

On Various Attacks over FR System: Threat actors are developing
sophisticated attack strategies over attack above points, including template
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inversion attacks (TI) [1], presentation attacks (PA) [2] and false acceptance
attack (FAA) [3], to exploit potential vulnerabilities (see Table 1).

Presentation attacks involve the creation of fake biometric images on spoof-
ing carriers like paper, monitors, masks, or gloves to deceive biometric systems
(see survey [2]). The false acceptance attack leverages image generation tech-
niques such as GANs [4] and VAEs [5] to create a vast collection of fraudulent
biometric images or utilize existing real datasets. In FAA, attackers search for an
image within this set that closely matches the target feature template, ensuring
similarity in the feature domain without requiring genuine user images.

Template inversion attacks aim to create fake biometric images that resem-
ble genuine ones from the stored biometric template. In recent studies, multiple
efforts have focused on reconstructing facial images using deep features extracted
from the face. These endeavors have predominantly employed convolutional net-
works [6] or de-convolutional neural networks [1]. More recent work [7] trained
a fully connected neural network that projects a feature vector into the latent
space of a pre-trained StyleGAN [8] such that a closely matching face is gener-
ated. Notably, the work presented in [1] is dedicated explicitly to reconstructing
facial images based on their deep features. The resultant face images generated
by the method proposed in [1] have demonstrated a remarkable attack success
rate, setting a new benchmark in this domain. In this work, we focus on especially
attacks of reconstruction face images.

Adopting a More Realistic Attack Environment: While the attacks
above have demonstrated promising results, they often predicate strong assump-
tions about the attacker’s capabilities. These include the attacker having exces-
sive access to the target victims’ facial photos or the ability to breach the
database unauthorizedly. For example, approaches like [1,7] require millions of
queries and access to the template in the database, making them impractical for
real-world scenarios.

On the other hand, although these assumptions represent worst-case scenar-
ios and underscore the need for secure data storage methodologies, they lack
comprehensive insight into evaluating face recognition systems’ security and
privacy preservation. Indeed, the objective of evaluating face recognition sys-
tems should be to contemplate a broader spectrum of realistic scenarios, where
attackers may not necessarily possess the victims’ facial photos or even require
breaching the system storage.

By adopting a less assumption-driven approach, researchers can gain more
realistic insights into the robustness and effectiveness of face recognition systems
against a broader array of potential threats. This evaluation methodology could
guide the development of more reliable and secure systems, focusing on privacy
preservation and risk mitigation associated with face recognition technology.

In this work, we propose Minimum Assumption Reconstruction attacks
(MARA), which adopt a more realistic approach. MARA assumes that the
attacker, with limited resources, can only interact with the user interface and
observe the similarity scores provided by the FR system (see Table 1). We
simulate a challenging scenario where the attacker has a limited number of
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query attempts. This scenario is feasible since an adversary could mimic typical
user behavior, interact with the system through queries, and glean potentially
exploitable information from the returned matching scores.

The implications of the above exploration are significant. Not only does it
shed light on the minimum requirements for an attacker to exploit the system,
but it also has immediate relevance in combating database attacks, which can
be viewed as a ‘stronger version’ of our case (since, in our case, we do not
necessarily require the attacker to compromise a template or database). We can
develop prompt and effective solutions to mitigate attacks on face recognition
systems by uncovering the minimum query threshold necessary for an adversary
to gather exploitable information.

The highlighted contributions in this paper are as follows:

1. We propose the Minimum-assumption-based Reconstruction Attack, which
offers significant less number of query attempts (from 4k to 2.6k) while gaining
comparative attack performance, which prevents the attacker from interacting
with the FR system unlimited.

2. We formulate the attack problem as an optimization task to determine the
optimal latent in W+ latent space of StyleGAN. To prioritize query efficiency,
we adopt a gradient estimation technique [11,12] to estimate gradients from
the black-box face feature encoder. More importantly, we introduce a latent
space mining strategy to obtain optimal initial guesses in W+ latent space,
thus gaining the attack performance.

3. Through systematic experiments, we demonstrate that our proposed recon-
struction attack achieves comparable performance to the false accept attack,
using the same number of queries. This implies that the attacker’s behavior
resembles a regular user, who adheres to query limits and interacts with the
FR interface accordingly.

2 Related Works

Over the past five years, advancements in computing hardware, big data,
and innovative algorithms have fueled the growth of startups leveraging deep
learning-based facial recognition (FR) techniques. These startups have devel-
oped practical applications that have gained significant attention due to the
widespread deployment of FR systems using deep learning models such as
FaceNet [13], ArcFace [14], and CosFace [15]. However, this increased usage has
also raised concerns about privacy and security, particularly regarding the poten-
tial for reconstructing face images from features extracted from deep learning
models (deep features) [16,17].

In a study by Zhmoginov and Sandler [18], a method was introduced to invert
the face embedding generated by FaceNet [13] back into face images. The inver-
sion process was formulated as a minimization problem, aiming to reduce the
template difference between the original and reconstructed images. To accom-
plish this, a regularization function was employed, utilizing the intermediate
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layer of the feature extractor. However, in real-world scenarios, obtaining the
detailed parameters of the feature extractor may not be feasible.

Another approach proposed by Cole et al. [6] focused on generating face
images using FaceNet features. Although the motivation behind this method
differed from reconstructing faces from features, it relied on differentiable image
warping by combining landmark and texture information. However, this app-
roach required both landmark and texture information, and it also utilized the
last convolutional layer of the feature extractor, which could be impractical for
face image reconstruction in reality.

In the paper by Mai et al. [1], a de-convolutional neural network (DCNN)
called the Neighborly de-convolutional Neural Network (NBNet) is utilized for
face image reconstruction. The choice of DCNN is motivated by its effective
up-sampling capability. Notably, the authors assume that the feature extractor
used in their approach is a black box, meaning that the adversary may not have
access to its specific parameters.

The NBNet consists of multiple stacked de-convolution blocks and a convolu-
tion block. This network architecture is specifically designed to generate output
face images. To train the NBNet, face image datasets are employed along with
a Generative Adversarial Network (GAN) to synthesize face images. The per-
formance of the generated face images is evaluated using two benchmark face
datasets. The experimental results show that 95.20% of the generated face images
can successfully bypass a face recognition system that has enrolled the same face
image, with a False Acceptance Rate (FAR) of 0.1% (type-I attack in [1]).

In a subsequent work by Keller et al. [19], the NBNet is further utilized for
face image reconstruction from a binary template produced by a given binariza-
tion method. This approach leverages the capabilities of the NBNet to recon-
struct the original face image from a simplified binary representation. In [20],
a Bijective Generative Adversarial Network in a Distillation framework (DiBi-
GAN) is proposed to tackle the challenging task of generating face images from
high-level representations obtained from a black box Face Recognition encoder.
The method incorporates a bijective metric learning process for image recon-
struction, utilizes a distillation process to maximize information from the black
box encoder, and introduces a Feature-Conditional Generator Structure with
Exponential Weighting Strategy for robust face synthesis while preserving the
person’s identity.

The paper by Razzhigaev et al. [21] introduces a method for reconstructing
face images from features using a zero-order iterative optimization technique
in the linear space of 2D Gaussian functions. The proposed approach involves
iteratively updating the current state image. Each iteration generates a batch
of random Gaussian blobs and adds to the current state image. The feature
extractor, treated as a black box, is then used to calculate the embeddings of this
augmented image batch. The loss function is computed based on the embeddings,
and the image from the batch with the lowest loss value is selected as the updated
current image. This process continues until the loss function converges, indicating
the reconstruction of the face image from the given features.
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The paper by Dong et al. [7] presents a framework to reconstruct high-quality
face images from deep features. The approach involves establishing a neural net-
work that learns a mapping between the latent vector space of StyleGAN2 [24]
and the feature vector space of a face feature extraction model. Given a fea-
ture vector as input, the model predicts the corresponding latent vector, which
can then be used to generate face images. However, using a vanilla fully con-
nected neural network in the proposed method has limitations for this task. The
stochastic gradient descent algorithm can get trapped in local minima, hinder-
ing reconstruction. Consequently, the method achieves a relatively low successful
attack rate of only 10% on the Labeled Faces in the Wild (LFW) dataset under
a type-I attack at a 1% False Acceptance Rate (FAR). This implies that most
reconstructed face images exhibit poor visual similarity compared to genuine
face images.

Later, Dong et al. propose using the genetic algorithm [22] to search for
the latent vector that generates a synthetic face close to the target feature in
the feature space of the target encoder. This modification yields state-of-the-art
performance in face image reconstruction, improving upon the limitations of the
initial vanilla fully connected neural network approach.

Significant advancements have been made in the field of face reconstruction
attacks. However, several issues persist, including strong assumptions made by
the attacker and the high number of queries required. Approaches like [1,19,20]
utilize de-convolutional neural networks that operate directly on the feature
template. However, this assumes that the attacker has access to the database

Fig. 2. Overview of the proposed minimum assumption reconstruction attack. We opti-
mize the latent vector w of a pre-trained StyleGAN G to reconstruct the target face
x, such that the distance between its feature v and the reconstructed feature v∗ is
minimized. An latent space mining is utilized to find the best initial guess for the
optimization algorithm. We treat the attacker as a regular user interacting with the
system’s user interface and observing the matching scores.
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in the system’s backend, which inadvertently neglects the potential for ’weaker’
attackers who may compromise the system without the necessity of breaching
the database.

Furthermore, most of these methods require a substantial number of queries
in the system to generate the training dataset. This training process, whether it
involves de-convolutional neural network training or mapping network training,
as shown in [7], can be challenging for attackers due to the high query require-
ment. While [23] offers an alternative that does not involve training, their opti-
mization process is inefficient in terms of query usage as it updates multiple
latent vectors simultaneously.

Motivations: Given the preceding discussion, it becomes evident that con-
ventional scenarios may not accurately represent the most plausible threat mod-
els. In reality, an adversary may not have the capability or intent to launch a
large number of queries or to compromise a database. They may instead favor
more covert and efficient tactics that exploit systemic vulnerabilities. Therefore,
while we recognize the efficacy of current techniques, it is vital to continually
explore sophisticated attack strategies that encapsulate a broader range of feasi-
ble real-world adversarial scenarios. This understanding underscores the need for
an encompassing threat model that acknowledges not only ‘strong’ adversaries
capable of database compromise but also ‘weaker’ adversaries who could exploit
the system via less conspicuous avenues.

3 Methods

3.1 Overview of MARA

We consider a scenario where the attacker’s objective is to reconstruct a target
face image, represented as x, using the corresponding similarity score observable
from the user interface. In the system’s back-end, a feature vector v = E(x)
is derived by encoding the face image x via a target encoder E, denoted as
E : X → V. It’s important to note that the attacker does not have access to
v stored in the back-end database. Instead, the attacker’s actions are constrained
to querying the user interface for the similarity score between an input face image
and the stored template, a computationally expensive process.

Based on the above scenario, the attacker must exploit the restricted access
to reconstruct a face image x that closely resembles the original face ones x∗.
The reconstructed face image x will then be utilized to launch an attack against
another face recognition system that employs a different encoder E′. It is worth
mentioning that the encoder E′ may not necessarily be the same as the target
encoder E. For the attack to be deemed successful, the distance between x and
x∗ in the feature space of E′ must be smaller than a predefined threshold denoted
as τ . Please refer to Fig. 2 for a visual representation of the attack pipeline.

3.2 Latent Vector Optimization by Gradient Estimation

Based on the approach described in [23] by Dong et al., we adopt a similar
method that utilizes a pre-trained StyleGAN as the generator for face image



64 D. Li et al.

reconstruction. This approach avoids the need to train a generator from scratch,
which typically requires many queries, as shown in prior works such as [1,20].
By leveraging a pre-trained generator, an attacker can iteratively search for the
optimal latent vector that produces a face image close to the original face in the
feature space of the target encoder. We can rewrite the optimization problem as
follows:

z∗ = arg min
z∈Z

d(E(G(z)), v) (1)

where E(·) represents the target encoder that maps a face image to its cor-
responding features, G(z) generates a face image based on the latent vector z
using the pre-trained StyleGAN, dist(·) is a distance metric that quantifies the
dissimilarity between two features.

To tackle this optimization problem, [23] employed the genetic algorithm
(GA) [22], which is an evolutionary algorithm. GA starts by initializing a set of
random samples and then updates them through selection and mutation based
on their fitness values (distance). However, using GA for optimization cannot
make precise adjustments due to its reliance on the random evolution of latent
vectors. This randomness can hinder the attack’s success, as face recognition
encoders rely on capturing fine details to differentiate between different faces.
Additionally, this approach requires numerous queries to update multiple latent
vectors simultaneously in each iteration.

Instead, we propose to optimize the latent vector using gradient descent
directly:

zt+1 ← zt − η
∂L
∂zt

, L(z) := d(E(G(z)), v), (2)

where t refers to the current iteration and α is a fixed learning rate. To address
the gradient computation challenge in the black-box setting, where the parame-
ters of E are unknown, a detour is taken by employing zeroth-order optimization
based on our previous preliminary study [12]. This approach allows us to esti-
mate the gradient ∂L

∂z , denoted as g for simplicity. The zeroth-order optimization
technique (ZOGE) [11,12] provides a formalized way to perform this estimation:

ĝ =
n

m

m∑

i=1

L(z + εui) − L(z)
ε

ui , ui ∼ U(Sn−1), (3)

here the dimension of the latent vector is denoted as n, and ui represents a
random direction sampled from a n-dimensional unit sphere, denoted as Sn−1.
Additionally, ε is a small positive constant known as the smoothing parameter.
When estimating the gradient ĝ using Eq. (3), there is inherent variance due
to the randomness in the sampling process. This variance can be reduced by
increasing the sampling parameter m, corresponding to the number of random
directions sampled. However, increasing m also leads to extra querying in each
iteration of the optimization process. To compute the gradient estimate ĝ using
Eq. (3), m + 1 queries are required. To this end, our optimization method works
by combining (2) and (3) can be applied in a black-box setting, allowing us to
optimize the feature v̂.
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3.3 Optimize in W Latent Space

StyleGAN differs from conventional GANs in mapping the latent input vector
z ∈ Z to the output space. Instead of a direct mapping based on the training
distribution, StyleGAN introduces a non-linear mapping function f : Z → W
that transforms z into an intermediate latent vector w ∈ W.

Recent studies [8,24] have demonstrated that the W space in StyleGAN
learns a more disentangled representation compared to the Z space. In other
words, the W space is less influenced by biases from the training distribution.
This characteristic is advantageous for reconstruction tasks, mainly when the
target face lies far from the training distribution. Therefore, we propose a latent
vector optimization approach that operates in the W latent space of StyleGAN:

w∗ = arg min
w∈W

dist(E(GW(w)), v) , GW(f(·)) = G(·). (4)

3.4 Latent Space Mining and Cascade Filtering

The convergence, efficiency, and solution quality of an optimization algorithm
are heavily dependent on the initial guess [25]. A good initial guess leads to
faster convergence and better solutions, while a poor guess can cause the algo-
rithm to get stuck or take longer. Overall, a well-informed initial guess enhances
performance and increases the likelihood of finding optimal solutions.

However, it is usually challenging to find a good initial guess. In [26], the
“master faces” notion in the context of facial recognition systems provides good
inspiration for optimizing black-box attacks on initial guess generation. The term
“master faces” is used in analogy to “master keys”, which refers to specific face
images with the unique characteristic of successfully authenticating a significant
number of identities in a given dataset. Inspired by the concept of “master
faces,” we propose the idea of discovering “master latents” that can generate
face images resembling multiple input face images. These master latents can
serve as an initial guess for optimization, thereby minimizing the number of
queries required in subsequent tasks.

Specifically, our methodology consists of three main steps. Firstly, we gener-
ate l initial latent vectors using a random generation process. Then, we apply
the k-means clustering algorithm [27,28] to partition the l latent vectors into k
clusters in a mining manner. The detailed algorithm is as below:

1. Initialization: Choose the number of clusters, k. Randomly initialize k cen-
troids, denoted by μ1, μ2, . . . , μk. Assign each data point zi to the near-
est centroid based on the Euclidean distance, which can be denoted as
ci = arg minj ||zi − μj ||2

2. Assignment Step: For each data point zi, find the nearest centroid and update
its assignment: ci = arg minj ||zi − μj ||2

3. Update Step: Update the centroids by computing the mean of all the data
points assigned to each cluster: μj = 1

nj

∑n
i=1[zi] where nj is the number of

data points assigned to cluster j.



66 D. Li et al.

4. Repeat Steps 2 and 3 until convergence. Return the final assignments of data
points to clusters and the centroids.

Finally, a cascade filtering is applied to the obtained k clusters. Specifically,
k centroid latent vectors are utilized to generate corresponding face images and
face features in a sequential manner. The top r centroids with the lowest distance,
as obtained by the user interface, are selected. Next, all latents belonging to
those r clusters are filtered out and used to find the top-5 latent vectors with
the lowest distance. These vectors are then averaged to create a single latent
vector. This averaged latent vector is utilized for subsequent latent optimization
through gradient estimation. In this latent mining and cascade filtering process,
the query count is determined by k + r ∗ l

k .

4 Experiments and Results

4.1 Datasets, Encoders, and Configurations

We evaluated our method using two widely recognized face recognition bench-
marking datasets: Labeled Faces in the Wild (LFW) [29] and Celebrities in
Frontal-Profile (CFP-FP) [30]. We reconstruct the initial image from each posi-
tive pair listed officially to evaluate our method. This process yields 2,551 recon-
structed images for LFW and 2,772 for CFP-FP.

Four different encoders were used, with VGGNet19 trained using CosFace loss
(VGG19-Cos), ResNet50 trained using AdaFace (Res50-Ada), SwinTransformer
trained using AM-Softmax loss (Swin-Softmax) and InceptionResnet trained
using FaceNet triplet loss (InRes-Facenet). Using different encoders to simu-
late encoders in a realistic database, an attacker can use these four encoders
to reconstruct face images corresponding to different feature vector spaces. We
compared our approach with three baselines:NBNet [1], GA [23], and ZOGE
[11]. For NBNet, we utilized the pre-training weights from its FaceNet coun-
terpart and employed the face generator DCGAN [31]. For GA and ZOGE, we
also utilized 4k queries for face reconstruction. In contrast, our proposed method
achieved superior results, with face reconstruction completed in approximately
2.6k queries. Identical to GA, we employed StyleGAN2, trained on the FFHQ
dataset, as the face generator for our approach.

In this paper, k = 1024, l = 8000, r = 80 are used as the default parameter
in the latent mining process empirically; we utilized ZOGE with parameters
ε = 0.1 and m = 9 to perform face reconstruction. We employed the Adam
optimizer [32] with a fixed learning rate of 0.1. As Fig. 3 illustrates, an optimal
ZOGE performance is achieved when the iteration number reaches 100, thus,
100 iterations are adopted in our subsequent experiments. Therefore, the query
count for ZOGE optimization process is determined as (m + 1) ∗ 100 = 1000,
and the total query count can be computed as:

Q = k + r ∗ l

k
+ 1000. (5)
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Figure 4 shows the final feature cosine distance between the reconstructed face
images and target images obtained from 30, 100, 230, and 630 iterations (equiv-
alent to 2k, 2.6k, 4k, and 8k queries, respectively). Our method demonstrates
a lower distance to ZOGE, thereby validating that our approach outperforms
ZOGE and GA with an equal number of queries.

Fig. 3. Optimal performance is achieved with an iteration number of 100. Cosine sim-
ilarity computation for the test set LFW-200 using different encoders on the left and
the same encoder on the right.

Fig. 4. Our method can lead to lower cosine distance.

4.2 Qualitative Evaluation

In this subsection, we showcase the robustness of our method in handling
high-resolution images without introducing artifacts. To demonstrate this, we
provide a visual comparison with two existing works: NBNet [1], GA [23] and
ZOGE [11], specifically on the LFW subset. However, it is essential to note that
other existing works were evaluated on different datasets or settings, making a
fair comparison difficult. As a result, we have excluded a direct visual comparison
with those works in this section.



68 D. Li et al.

Fig. 5. Visualization of reconstructed face images from different reconstruction attacks.

The image shown in Fig. 5 highlights certain imperfections in the recon-
structed face produced by NBNet. These flaws primarily stem from the utiliza-
tion of DCNN, which decreases image quality from features to a generated face
image during the mapping process. On the other hand, GA and ZOGE demon-
strate good visual quality by leveraging StyleGAN. However, artifacts may still
be present due to sub-optimal latent codes generated by GA. Although ZOGE
achieves comparable visual quality, it requires a higher query count than our
method.

4.3 Quantitative Evaluation on Impersonation Attack

In our experiments, two simulation systems for construction impersonation
attack from [23,33] are adopted:

Compromised System (Sys C): This is a biometric system compromised
by the adversary. In this subsystem, we assume that the adversary can only query
the user interface to observe the similarity score given a face image in Sys C.
The query count is limited, and the adversary can reconstruct a face image in
Sys C.

Targeted System (Sys T): This is a biometric system vulnerable to imper-
sonation attacks. An adversary exploits the reconstructed image from Sys C to
compromise Sys T in this system. The feature extractor E(·) utilized in Sys T
may differ from that of Sys C, and the user’s enrolled image might also be dis-
tinct from that used in Sys C. We consider both scenarios in our subsequent
experiments.

In our experiment, we evaluate impersonation attacks using the Success-
ful Attack Rate (SAR). SAR is calculated as the proportion of mated-attack
attempts that are falsely declared to match the template of the same user at the
given similarity threshold under different FAR, i.e., the ratio of mated-attack
scores above the similarity threshold. The threshold is determined based on nor-
mal genuine and imposter scores. A higher SAR indicates better reconstruction
attack performance, while a lower SAR suggests the opposite. We categorize
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attacks into type-I (same compromised face image in Sys C) and type-II (differ-
ent face images of the same person), following prior research [1,23].

We quantitatively evaluate the performance of the proposed reconstruction
scheme based on type-I and type-II attacks with the same/different feature
extractors. We compute the true accept rate (TAR) at FAR under the normal
situation in Sys T. The SARs of type I and II attacks are evaluated subsequently.

NBNet [1]. When both Sys T and Sys C use the same face feature extractor,
such as InRes-Facenet as presented in Table 2, the NBNet method achieves a
performance on the LFW dataset with an SAR of 80.83% and 46.9% for type-I
and type-II attacks, respectively. Similarly, for the CFP-FP dataset, when InRes-
Facenet is used as the feature extractor for both Sys T and Sys C, the NBNet
method achieves an SAR of 89.97% and 28.8% for type-I and type-II attacks,
respectively. When Sys C and Sys T use different face feature extractors, such
as in Table 1 where Sys C uses InRes-Facenet and Sys T uses Res50-Ada, the
NBNet method achieves a type-I SAR of 73.2% and a type-II SAR of 49.03%.
Similarly, on the CFP-FP dataset, targeting the Res50-Ada method, NBNet
achieves a type-I SAR of 83.89% and a type-II SAR of 32.77%. It is important
to note that these success rates are obtained by utilizing 25600 attack queries.

GA [23] and ZOGE [12]. Both GA and ZOGE have shown higher efficiency
than NBNet. They both achieve remarkable performance with 4k queries, as
demonstrated in Table 2. In the case where both Sys T and Sys C use the same
face feature extractor, InRes-Facenet, the GA attack achieves a success rate
(SAR) of 90.47% and 49.57% for type-I and type-II attacks on LFW, respectively.
On the other hand, the ZOGE method achieves a SAR of 100% and 92.1% for
type-I and type-II attacks under the same setting.

When Sys C and Sys T use different face feature extractors, such as InRes-
Facenet for Sys C and Res50-Ada for Sys T, the GA attack achieves a SAR
of 54.53% and 33.13% for type-I and type-II attacks on LFW. In comparison,
the ZOGE method achieves a SAR of 95.1% and 77.8% for type-I and type-II
attacks under the same setting. Based on the findings presented in Table 2, it
can be concluded that ZOGE outperforms GA in terms of performance when
the same number of queries is used.

Ours Latent Mining Method. By using different values for the parame-
ters k and r in the latent mining process, we can achieve varying results. In our
default setting, we use k = 1024 and r = 80, which results in a query of Q = 2649
(approximately 2.6k). However, to ensure a fair comparison, we also adopt the
values k = 1024 and r = 256, which leads to a query of Q = 4024 (approxi-
mately 4k). The performance of our proposed method using these parameters is
presented in Table 2. Based on Table 2, we can observe that:

1. When comparing GA, ZOGE, and our method using 4k queries, our method
consistently outperforms the others in most settings. Table 2 demonstrates
that our method excels when System T and System C use different face
feature extractors. For instance, when InRes-Facenet is used for System C
and VGG19-Cos is used for System T on the LFW dataset, our method
achieves 1.2% and 41.77% higher SAR (Success Attack Rate) compared to
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Table 2. Successful attack rate (%) at 0.1% FAR of each reconstruction attack on LFW
and CFP-FP dataset. The columns colored in blue show the SAR when attacking the
target encoder. Other columns show the SAR when attacking different encoders. The
true accept rate (TAR) is measured instead of SAR for the genuine face. The number
of queries is displayed in units of 1,000 (K).

Dataset Sys C Method Attack Queries Sys T

InRes-Facenet VGG19-Cos Swin-Softmax Res50-Ada Average

type-I type-II type-I type-II type-I type-II type-I type-II type-I type-II

LFW Genuine Face 96.7 96.93 99.73 99.73 98.27

InRes-Facenet NBNet 25600k 80.83 46.9 66.3 36 3.83 1.43 73.2 49.03 56.04 33.34

GA 4k 90.47 49.57 54.53 33.13 22 14.2 24.87 15.5 47.97 28.1

ZOGE 4k 100 92.1 95.1 77.8 69.87 51.13 82.4 60.8 86.84 70.46

Ours 4k 100 91.57 96.3 78.77 70.8 52.7 82.77 60 87.47 70.76

Ours 2.6k 100 92 95.57 77.67 71.33 51.5 81.27 59.4 87.04 70.14

VGG19-Cos GA 4k 34.63 19.87 94.93 54.27 20.97 15 23.13 14.8 43.42 25.99

ZOGE 4k 90.77 69.13 100 91.63 78.2 59.17 84.73 64.2 88.43 71.03

Ours 4k 91.77 70.93 99.93 91 80.2 60.6 85.87 66.17 89.44 72.18

Ours 2.6k 89.27 68.6 99.9 88.87 76.5 58.4 83.6 62.7 87.32 69.64

Swin-Softmax GA 4k 12.1 9.03 18.93 12.37 92.73 52.07 38.77 20.37 40.63 23.46

ZOGE 4k 58.8 39.57 72.87 54.47 100 96.43 94.2 80.63 81.47 67.78

Ours 4k 62.23 43.13 75.37 58 100 96.23 95.83 82.1 83.36 69.87

Ours 2.6k 60.47 40.23 72.97 53.5 99.9 94.17 93.73 79.63 81.77 66.88

Res50-Ada GA 4k 7.63 4.4 11.47 7 15.07 7.83 49.37 20.6 20.89 9.96

ZOGE 4k 38.03 23.93 46.83 30.6 57.53 40.1 91.37 74 58.44 42.16

Ours 4k 41.5 24.23 48.5 31.77 57.3 41.37 89.93 72.13 59.31 42.38

Ours 2.6k 37.5 22.63 43.7 29.3 54.03 37.33 89.9 68.5 56.28 39.44

CFP-FP Genuine Face 74.46 78.46 85.34 88.91 81.79

InRes-Facenet NBNet 25600k 89.97 28.8 85.34 27.6 6.71 2.09 83.89 32.77 66.48 22.82

GA 4k 95.66 29.83 51.97 17.03 22.31 8.86 23.46 9.2 48.35 16.23

ZOGE 4k 100 66.8 95.69 50.29 70.11 28.54 82.4 33.69 87.05 44.83

Ours 4k 100 64.37 95.29 49.06 70.86 27.34 80.34 34.09 86.62 43.72

Ours 2.6k 100 63.94 94.46 48.54 69.8 27.51 78.94 33.2 85.8 43.3

VGG19-Cos GA 4k 42.29 14.54 95.51 31.26 20.69 8.37 23.74 10.06 45.56 16.06

ZOGE 4k 88 42.6 99.97 65.23 73.74 32.03 80.66 38.34 85.59 44.55

Ours 4k 87.86 42.66 99.97 64.2 73.83 32.77 81.09 37.4 85.69 44.26

Ours 2.6k 84.43 40.23 100 62.14 70.74 31.06 77.74 37.03 83.23 42.62

Swin-Softmax GA 4k 14.09 5.69 18.94 6.89 93.26 24.8 41 10.71 41.82 12.02

ZOGE 4k 62.77 22.49 72.54 31.03 100 69.37 92.97 49.03 82.07 42.98

Ours 4k 64.57 23.69 74.17 31.57 99.91 67.69 93.4 50.57 83.01 43.38

Ours 2.6k 62.06 21.09 70.94 30.2 99.94 65.6 91.91 48.06 81.21 41.24

Res50-Ada GA 4k 18.8 4.66 6.23 1.83 21.77 6.51 26.31 7.63 18.28 5.16

ZOGE 4k 18.2 6.46 21.54 8.94 24.83 9.66 34.94 17.69 24.88 10.69

Ours 4k 19.4 6.06 22.31 8.37 25 9.14 35.06 16.94 25.44 10.13

Ours 2.6k 17.03 5.14 20.34 7.29 23.09 8.37 34.71 15.66 23.79 9.12

ZOGE and GA, respectively. However, we have observed that our method
only achieves comparable performance to ZOGE when System T and System
C use the same face feature extractor. This is due to the fact that ZOGE
performs 400 iterations, which can lead to overfitting the final reconstructed
face images and consequently result in poor attack performance in settings
involving different face feature extractors.

2. When using 2.6k queries, our method achieved comparable performance with
only a slight degradation. For example, when both System T and System C
use the same face feature extractor, InRes-Facenet, our method achieves a
Success Attack Rate (SAR) of 100% and 92% for type-I and type-II attacks,
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respectively, on the LFW dataset. On the CFP-FP dataset, our method
achieves a SAR of 100% and 63.94% for type-I and type-II attacks, respec-
tively. These results indicate that our method successfully attacked a system
with a reconstructed face image from another system using identical encoders.
When System C and System T use different face feature extractors, such
as InRes-Facenet for System C and VGG19-Cos for System T, our method
achieves a SAR of 95.57% for type-I attacks and 77.67% for type-II attacks
on the LFW dataset. Furthermore, when we consider Swin-S for System C
and Res50-Ada for System T, a SAR of 93.73% for type-I attacks and 79.63%
for type-II attacks on LFW can be achieved. Similar competitive SARs are
also observed across all encoders on the CFP-FP datasets. These outcomes
demonstrate the efficacy of our method in attacking a system by employing
a reconstructed face image from another system that uses different encoders
with only 2.6k queries.

5 Conclusion

We proposed Minimum Assumption Reconstruction Attacks (MARA) that
assume that the attacker, with limited resources, can only interact with the user
interface and observe similarity scores provided by the face recognition system.
We aimed to mimic typical user behavior and evaluate the system’s robustness
against potential threats by simulating a challenging scenario with limited query
attempts.

Our proposed attack methodology uncovered the minimum query threshold
necessary for an attacker to gather exploitable information. This information
can be used to develop effective solutions to mitigate attacks on face recogni-
tion systems, even without compromising the system’s template or database.
Our experiments demonstrated that MARA achieves comparable performance
to false accept attacks, highlighting the resemblance between attacker behavior
and a regular user.
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Abstract. Human gait is a manner of individual’s walking that
observers are able to learn useful information through daily walk-
ing activities. Recently, gait skeletons-based emotion recognition has
attracted much attention, while many methods have been proposed grad-
ually. Skeleton-based representations offer several advantages for recogni-
tion tasks. In particular, such representation is extremely lightweight and
could be directly extracted from video data using off-the-shelf algorithms.
Moreover, skeleton data is not tied to any specific cultural or ethnic
context, it hence become increasingly popular in recent years for cross-
cultural studies and other related applications. To effectively process this
type of data, many researchers have turned to Graph Convolutional Net-
works (GCNs) to leverage the topological structure of the data, which
improves performance by modeling the relationships between different
joints and body parts as a graph. This allows GCNs to capture com-
plex spatial and temporal patterns. In this work, we have constructed an
efficient multi-stream GCN framework for emotion recognition task. We
have identified the complementary effect among streams using a multi-
thread attention method (MTA), which is able to improve the emotion
recognition performance. In addition, the proposed MTA graph convo-
lution layer is able to extract effective features from the topology of the
graph to further improve recognition performance. The proposed method
outperforms state-of-art methods on challenging benchmark dataset.

Keywords: Emotion Recognition · 3D Skeleton · Action Recognition ·
Gait Analysis · GCN

1 Introduction

Human emotion recognition aims to understand the physiological and psycho-
logical reactions produced by people’s cognition and perception of the outside
world. Emotion recognition has attracted lots of attention, especially in mental
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state monitoring and human computer interaction (HCI) [24], which is heavily
involved in psycho-physiological computing and Internet of Things (IoT).

Existing emotion recognition approaches usually utilize visual signals from
facial cues or aural signals from speech to capture emotion features [15,32,34].
However, perceiving emotions from facial expression and speech could be unreli-
able since these signals are difficult to detect from remote locations. In addition,
further difficulties could occur in complex situations [1], such as imitation expres-
sions and concealed expressions. On other hand, emotion expression is embedded
in the body languages, including gait and postural features. Compare with facial
expression data which usually need to be recorded in short distance, the subjects
for monitoring gait patterns could be relatively far from the cameras, e.g. several
meters in practice, where most other bio-metrics are no longer observable or can
only provide low resolution. Therefore, gait of human walking has received much
attentions since it’s able to utilize non-verbal cues and reduce the interference
of subjective factors.

Gait data is a complex sequence with both spatial and temporal features
that are critical for accurate recognition and classification of different gait pat-
terns. These features are important for capturing the dynamic nature of gait
and can provide valuable information about an individual’s walking pattern.
Several existing approaches for gait-based analysis leverage these spatial and
temporal features to improve performance [7,8,12]. The graph convolutional net-
work (GCN) that appeared in recent years can make full use of the connection
relationship between nodes to model data, which have been used in gait-based
emotion recognition. The physical structure of the human skeleton is used as a
spatial graph named as natural link in STEP proposed by [1]. After that, many
researchers have tried to construct skeleton graph according to physical struc-
ture of the human body, and uses GCNs o extract the features between emotion
and gait [2,4,28]. Recently, GCN-based methods become an essential role and
improve the capabilities of emotion recognition using skeleton-based gait.

Although existing methods for skelton-gait based emotion recognition achieve
promising results, there are still some major drawbacks. The aggregation of
joints and effective features might be rigid, resulting in insufficient exploitation
of complementary information. This can limit the ability of these models to
capture complex emotional states and may lead to sub-optimal performance on
certain tasks.

In order to tackle above issues, a multi-stream GCN approach is proposed
in this work, where a multi-thread attention graph layer is designed to alleviate
the receptive field imbalance problem. Meanwhile, the self-attention mechanism
used by transformers allows them to selectively attend to different parts of the
input sequence, enabling them to capture complex relationships between distant
elements [19,20,23]. The probabilities of human emotions are predicted at the
end of the module. Generally, the main contribution are as follows:

– We have proposed an efficient method for gait-based human emotion recogni-
tion, learning the deep features with a fused multi-stream architecture. The
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experimental results have demonstrated that fused streams offer more dis-
tinctive and complementary information for recognition.

– We have designed an adaptive multi-thread attention graph convolution layer.
This approach alleviates the receptive field imbalance problem while also
capturing the non-local dependencies among different joints.

– We have conducted comprehensive evaluations on Emotion-Gait benchmark
dataset and outperforms SOTA approaches. Notably, the proposed mecha-
nism is generic and robust to seamlessly work with existing GCN framework,
where reasonable performance could be achieved in a simple way.

2 Related Work

2.1 Gait Based Human Emotion Recognition

Great effort has been made by many researchers to enable computers to observe,
understand, and even express various emotions like humans. Hand-crafted
skeleton-based gait features are commonly utilized in early emotion recogni-
tion research. For example, Cren et al. have employed features such as speed,
arm swinging and angle among body joints for body expression recognition [7].
Li et al. have used frequency-domain features and principal component analysis
(PCA) to analyze gait sequences for distinguishing different emotions [12,14].
Daoudi et al. have leveraged a covariance descriptor to obtain the dynamics
of the body and analyzed geometric means and geodesic distances for emotion
recognition [8]. However, these hand-crafted features often require careful design
based on the data characteristics, which may need to be redesigned when the
data source changes.

Deep learning has recently achieved significant success in computer vision,
while many methods now use deep learning techniques for gait emotion per-
ception [18,21,22]. For instance, Randhavane et al. adopted a time sequence-
based approach that utilized an Long Short-term Memory (LSTM) to extract
temporal features [27]. They then combined these features with hand-extracted
emotional features and used a random forest classifier for classification. Gated
recursive units (GRUs) have been employed to extract features from joint coor-
dinates at a single time step then temporal analysis has been taken to identify
emotions [3]. The paradigm of these sequence-based methods is to construct a
sequence deep model based on skeleton sequences to predict the emotion. An
image-based method named ProxEmo that encoded skeleton sequences by con-
verting 3D joint point data into images has been proposed, where convolutional
neural networks (CNN) were then used to extract features related to emotions
and identify them [25]. Another image-based method proposed a two-stream
network with transformer-based complementarity (TNTC) to extract effective
features from joint skeletons and classify emotions [11].

The relationship of joints were represented through a spatio-temporal graph
convolutional network (ST-GCN) to extract features from the spatio-temporal
graph and identified emotions [33]. A graph-based method that exploited the
characteristic that skeletons are naturally graphs in non-Euclidean space has
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been proposed in [2]. An attention-enhanced temporal convolutional network
(AT-GCN) has been adopted to capture discriminate features in spatial depen-
dencies and temporal dynamics for sentiment classification [28]. Chai et al.
designed a multi-head pseudo nodes technique that using a series of extra pseudo
nodes with GCN models to effectively obtain the global information for emotion
gait recognition [4]. Lu et al. have utilized more synthesised data and recon-
struction strategy to improve the performance of emotion recognition [17]. These
approaches demonstrate the effectiveness of graph-based methods in gait emo-
tion perception tasks.

2.2 Graph-Based Methods for 3D Skeleton-Based Action
Recognition

Graph-based methods have achieved great success in skeleton-based action recog-
nition studies recently. In ST-GCN, the skeleton is treated as a graph, with joints
as nodes and bones as edges [33]. Following ST-GCN, several approaches have
explored the relationship between distant joints [29,35]. In addition, multi-scale
structural feature representation methods have been developed using higher-
order polynomials of the skeleton adjacency matrix [13]. Inspired by [16], Chen
et al. introduced a sub-graph convolution cascaded by residual connection with
enriched temporal receptive field [6]. Song et al. designed a combination app-
roach named Efficient GCN and proposed a compound scaling strategy to expand
the model’s width and depth synchronously [31]. Chen et al. designed a multi-
granular GCN-based method on the temporal domain to capture both short-term
and long-term temporal dependencies [5]. Qin et al. fused angle information
extracted from manually specified joint groups to a GCN model, improving its
ability to capture fine-grained motion information [26].

In addition, many existing studies employ multi-stream pipelines to enhance
the model’s ability to learn more expressive features for skeleton-based action
recognition. For example, Shi et al. utilized joints and bones input in their two-
channel framework called 2s-AGCN [30]. Song et al. considered joints, bone,
and velocity to increase the capacity of their model named EfficientGCN [31].
Hou et al. studied the effectiveness of using multiple streams [10]. A prospective
shifting approach has been designed which transforms an action into many views
and is based on the angle representation in skeletons data [9]. These studies
demonstrate that incorporating multiple streams of information can improve
the ability of graph-based models to capture both spatial and temporal features,
leading to better performance on skeleton-based action recognition tasks.

3 Methodology

We aim to exploit complementary information of the multi streams. Meanwhile,
existing works have shown that bone information generated from joint infor-
mation promote the model to extract discriminative features in space and time
dimensions. However, the impact between the local frame stream and the global
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Fig. 1. Multi-Stream Input for the Proposed Graph Model

sequence stream has not been comprehensively investigated in Emotion Recog-
nition. Thus, in the following paragraph, we will illustrate the pre-processing
methods of the global streams and local stream and the generation mechanism
of bone information. Then, we will introduce the designed multi-thread attention
graph layer and model architecture to combine the multi-stream input.

3.1 Multi-stream Input

For the data pre-processing, we apply the local frame stream and global sequence
stream of the joint information and bone information.

Local Frame Stream of Joint. For the local frame stream, the coordinates
of joints in each frame refer to the fixed joint within its own frame. The fixed
joint is often the centre of the spine. The orientation of the body in the different
frames are same by setting the spine and the shoulder as Y-axis and X-axis
respectively. Such input could help the model reduce the direction bias and
focus more on changes in local patterns of postures between different frames.
We denote the local frame channel as JF , which can be obtained as Eq. (1).

JF
i,t = (Ji,t − Jroot,t) × Rt (1)

In this equation, Jroot,t is the center joint in the t-th frame, Rt is the rotation
matrix that defined as

Rt = Rx
t,αRz

t,γ

Rx
t,α =

⎡
⎣

1 0 0
0 cos (αt) sin (αt)
0 − sin (αt) cos (αt)

⎤
⎦

Rz
t,γ =

⎡
⎣

cos (γt) 0 − sin (γt)
0 1 0

sin (γt) 0 cos (γt)

⎤
⎦

(2)

where Rx
t,α, Rz

t,γ,, denote rotating the camera coordinate system around the X-
axis by αt radians, and the Z-axis by γt radians anticlockwise. αt is the angle
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Fig. 2. Multi-thread Attention Graph Convolution layer. B, C, T, V denotes the num-
ber of samples, the dimension of each node, the number of time steps, the number of
nodes respectively.

between the X-axis of the camera coordinate and shoulder, γt is for the Z-axis
and spine.

Global Sequence Stream of Joint. During data preprocessing of the
global sequence stream, all joints in the action sequence are referenced to the
same global coordinate system. This approach enables the model to capture
global information, such as movement trajectory between different frames. We
denote the joint action sequence as J . Ji,t represents the i-th joint in the t-th
frame of the joint action sequence. JC represents the sequence under the camera
coordinate system, the global sequence stream of Joint JS can be obtained as
Eq. (3) and BS can also be obtained like this.

JS
i,t = Ji,t − Jroot,t=0 (3)

The positions where different actions start could be identical after such opera-
tion.

Local and Global Stream of Bone. The bone stream provides information
on bone length and direction, focusing on the original topology structure of the
body to help the model extract kinetic features. This stream is generated from
joint information. The direction of the bone is defined as from the center to the
outside, with the black node representing the center of the body. Since there is
one less edge than nodes in the body graph, we set the center joint of the body
as zero. The bone stream is denoted as B, with Bi,t similar to Ji,t. The function
for calculating the bone channel is defined by Eq. (4).

Bi,t = Ji,t − Jnear,t (4)

In this equation, Bi,t is the i-th bone in the t-th frame, Ji,t is the i-th joint in
the t-th frame, and Jnear,t is the joint adjacent with the i-th joint in the t-th
frame. Since the bone stream could be extracted with either frame-level joints
or sequence-level joints, we further denote these two as local stream of bone BF

and global stream of bone BS .
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In our work, We combine four streams (JF , JS , BF , BS) as the input to the
model, which is illustrated in Fig. 1.

Fig. 3. An illustration of graph network for a single stream. B, C, T, V denotes the
number of samples, the dimension of each node, the number of time steps, the number
of nodes respectively.

3.2 Multi-thread Attention Graph Layer

In order to improve the spatio-temporal graph convolution for the skeleton data,
we have proposed a multi-thread attention graph convolution layer (MTA-GCN).
The attention block is defined as following Eq. 5.

fatten =
Nthread∑

i

Nkernel=3∑
k

wi,kfin(Ak + Bi,k + Ci,k)

Ci,k = G(θi,k(fin)φi,k(fin))

(5)

where Nthread denotes the number of the thread in the MTA-GCN. Nkernel

denotes the kernel size of the spatial dimension. With the partition strategy
designed in the early work, Nkernel is set to 3. Ak is the original normalized
V ×V adjacency matrix. It represents the physical structure of the human body
and it keep same in each head. Bi,k is an V ×V adjacency matrix in the i th head.
In contrast to Ak, the elements of Bi,k are parameterized and optimized together
with the other parameters in the training process. There are no constraints on
the value of Bi,k, which means that the graph is completely learned according to
the training data. Ci,k is a data-dependent graph which learn a unique graph for
each sample. To determine whether there is a connection between two vertexes
and how strong the connection is, we apply the normalized embedded Gaussian
function to calculate the similarity of the two vertexes. Since Gaussian function is
equivalent to a softmax operation in practice. Therefore, Ci,k could be rewritten
as

Ci,k = softmax(fT
inWT

θi,k
Wφi,k

fin) (6)

In detail, given the input feature map fin whose size is C×T ×V , we first embed
it into Ce × T × V with two embedding functions, i.e., θ and φ. Here, through
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extensive experiments, we choose one 1×1 convolutional layer as the embedding
function. The two embedded feature maps are rearranged and reshaped to an
V × CeT matrix and a CeT × V matrix. They are then multiplied to obtain an
V × V similarity matrix Ci,k. wi,k is the is the Cout ×Cin × 1× 1 weight vector
of the 1 × 1 convolution operation. Finally, fatten gets from the summation of
the convolution results of all kernels of all heads.

After that, a batch norm operation is applied to fatten with a residual branch,
which is defined as

fg = BN(fatten) + BN(Winfin) (7)

Then a temporal averaging process is taken via a series of Relu-BN -Relu-Conv-
Dropout operation. The whole process of proposed multi-thread attention graph
convolution is illustrated in Fig. 2.

3.3 Network Architecture

The overview of proposed method is illustrated in Fig. 3. It consists of MTA-
GCN, a residual ST-GCN block, a normal ST-GCN block, Average Pool, Conv2D
and fully connected(FC) layers respectively. The input is the human gaits pro-
cessed from walking videos. Then the channel of the feature keep same after the
first layer. Through the last two levels, the number of channels is halved. Then
the predicted label is taken via a series of Relu-Pool-Conv-fc and a softmax
operation.

Table 1. Comparison of our method with the state-of-the-art on Emotion-Gait. The
best result of accuracy is highlighted in bold.

Methods Publisher Top-1 Acc

STEP [2] Graph-based AAAI 2020 0.7824

ST-TR∗ Graph-based CVIU 2021 0.7882

DGNN∗ [29] Graph-based CVPR 2019 0.7919

MS-G3D∗ [16] Graph-based CVPR 2020 0.8130

TEW [3] GRU-based ECCV 2020 0.8189

G-GCSN [36] Graph-based ACCV 2020 0.8150

ProxEmo [25] Image-based IROS 2020 0.8240

2s-AGCN∗ Graph-based CVPR 2019 0.8140

MS-AAGCN∗ Graph-based TIP 2020 0.8190

PN(CTR−GCN) [4] Graph-based Neurocomputing 2022 0.8319

TNTC [11] Image-based ICASSP 2022 0.8597

Our method Graph-based - 0.8685

* The values are reproduced results on Emotion-Gait dataset reported in [4].
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4 Experimental Results and Discussions

4.1 Experimental Settings

Dataset. The proposed method is evaluated on Emotion-Gait dataset, which
consists of 2177 real gait sequences separately annotated into one of four emotion
categories including happy, sad, angry, or neutral. The gait is defined as the 16-
joint-skeleton. Each gait sample in the consolidated dataset was labeled as one of
the four emotional categories by domain experts. The steps of gait sequences are
maintained via duplication to 240 which is the maximum length of gait sequence
in the dataset.

Evaluation Metrics. Top-1 accuracy has been adopted to measure the quality
of proposed classification model, which is defined as

Accuracy =
T

S
(8)

where T denotes the number of successfully classified gait sequences, and S
denotes the number of test samples. Following [11], we employ 5-fold cross-
validation. The average accuracy of 5-fold cross validation is recorded along its
standard deviation.

Implementation Details. The experiments are conducted on an NVIDIA RTX
3090 GPU. We apply Adam optimizer with momentum of 0.9 and a weight decay
of 1 × 10−4. We train our model for 200 epochs with the initial learning rate of
0.01 then divided by 10 after 100, 150 epochs and a batch size of 8.

4.2 Comparison with SOTA Methods

We compare our method with several state-of-the-art methods lately reported on
Emotion-Gait. Table 1 presents the experiment results on Emotion-gait dataset
and the comparison with SOTA skeleton-based methods. According to the
results, we observe 0.88% improvement in accuracy (85.97% to 86.85%) and
our method outperform competitors.

4.3 Ablation Study

An ablation study has been conducted on EmotionGait dataset with a 3 ST-GCN
block network as the backbone to illustrate the effectiveness of multi-stream com-
binations. The result is shown in Table 2. For settings of 1 stream and 4 streams,
each input type is listed individually. For other settings, only combinations with
top performance are listed. From Table 2, local stream of joint JS achieve top
accuracy for single stream input. The performance could be benefited with addi-
tional kinematic information with local stream Bone BF . The combination of the
local and global channels is able to improve performance and provide improve-
ment in multi-stream input settings. Generally, combining different streams can
further improve recognition accuracy, while the complementary effect between
local frame information and global sequence information is obvious. Additionally,
the proposed MTA-GCN outperform normal GCN block significantly.
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Table 2. Ablation study on the effect of multi-stream input mechanism and proposed
MTA-GCN

Methods Top-1 Acc

1s (JF ) 0.8264

2s (JF + BF ) 0.8329

3s (JF + BF + BS) 0.8352

4s (JF + JS + BF + BS) 0.8361

Our method (4s MTA-GCN) 0.8685

5 Conclusion

To sum up, we address the skeleton-gait based emotion recognition task with
a multi-stream input strategy using multi-thread attention graph convolution.
We have presented a simple but impressive method to construct effective base-
lines for such task. Extensive experimental results reveal that using the global
sequence channel and local frame channel could boost performance. We have
conducted comprehensive evaluations on Emotion-Gait benchmark dataset and
outperforms SOTA approaches. Notably, the proposed mechanism is generic and
robust to seamlessly work with existing GCN framework.
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Abstract. The prior studies in finger vein recognition have mainly
focused on personal identification based on images with same area.
However, the upgrade of finger vein acquisition devices is inevitable,
and therefore the scale variation of acquisition windows among various
devices may cause the cross-area finger vein recognition problem. To
address this problem, a hierarchical sparse representation-based cross-
area finger vein recognition method is proposed in this paper. In the pro-
posed method, the first layer locates the potential corresponding regions
in each full training image for the small-area testing image based on
coding coefficients on the image-specific dictionary, and the small-area
testing image is classified in the second layer by its reconstruction error
on the compact dictionary. In addition, the method is performed on the
original and down-sampled images, and the weighted sum of the recon-
struction errors on two kinds of images are used in recognition. The
experiments are performed on two widely used finger vein databases, and
the experimental results show that the proposed method achieves 91.35%
and 78.94% recognition rates on cross-area finger vein recognition.

Keywords: Biometrics · Finger vein recognition · Cross-area
recognition · Hierarchical sparse representation

1 Introduction

Finger vein recognition performs personal identification based on the internal
vessels of human finger [1]. It has attracted lots of research interests from
researchers owing to its living body identification and high security. Many kinds
of methods, e.g., compact multi-representation feature descriptor [2], locality
constrained consistent dictionary learning method [3], and explicit and implicit
feature fusion network [4], have been developed for finger vein recognition, and
promising recognition performance has been reported.

In recent years, finger vein recognition has been used in various applications
like intelligent door locks and attendance machines. In practical applications, the
upgrade of finger vein imaging devices is inevitable, and the scale of acquisition
windows among various devices may vary largely. For one finger, images with
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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varied areas are captured by different devices. For example, one full finger vein
image was enrolled by an imaging device, and one partial finger vein image may
be captured by another updated imaging device. The area of enrolled finger vein
image may be different with the area of testing finger vein image, causing the
cross-area finger vein recognition problem.

The prior studies mainly focused on finger vein recognition based on images
with same area, and the recognition methods may not be well performed on cross-
area finger vein images. For example, a convolutional neural network, trained on
images who have 50 × 50 pixels, may not deal well with images with 60 × 60
pixels. Another example is about the overlapped point computation between the
enrolled and testing vein patterns, in which an incorrect matching score between
unaligned full and partial vein patterns may be generated. So, a prompt solution
to deal with cross-area finger vein recognition is needed.

This paper proposes a cross-area finger vein recognition method, in which a
hierarchical sparse representation method is used for matching of the full train-
ing finger vein image and partial testing finger vein image. In first-layer sparse
representation, image-specific dictionaries are built by partitioning each train-
ing image into multiple blocks, and a testing image is sparsely presented by each
image-specific dictionary in sequence. The atoms in each image-specific dictio-
nary with top T coding coefficients constitute a compact dictionary. This com-
pact dictionary is used for sparsely representing the testing image in the second-
layer sparse representation. The hierarchical sparse representation method is
performed on the original images and their down-sampled images, the weighted
sum of the reconstruction errors on two kinds of images are used in recognition.
The experiments are performed on finger vein databases from the Hong Kong
Polytechnic University and the Shandong University. The experimental results
show that the proposed method achieves 91.35% and 78.94% recognition rates,
which exhibits a good performance on cross-area finger vein recognition.

The rest of this paper is organized as follows. Firstly, we review the state-of-
the-art finger vein recognition literatures in Sect. 2. Secondly, we present the
details of the hierarchical sparse representation based cross-area finger vein
recognition method in Sect. 3. Thirdly, Sect. 4 reports the experimental results.
Finally, we conclude our work in Sect. 5.

2 Related Work

In this section, sparse representation based finger vein recognition methods are
firstly reviewed, and then non-sparse representation based recognition methods
are presented.

Sparse Representation Based Recognition Method. Shazeeda et al. intro-
duced a nearest centroid neighbor based sparse representation method for finger
vein recognition [5]. In this method, the k nearest training images were selected
for a testing image by the nearest centroid neighbor classification, and the test-
ing image was classified by sparse representation on the selected k nearest train-
ing images. The experimental results showed that the nearest centroid neighbor
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based sparse representation method achieved better finger vein recognition per-
formance over the traditional sparse representation method. Shazeeda et al. also
introduced a mutual sparse representation method for finger vein recognition [6].
This method classified a testing image based on the coding coefficients of this
testing image and its nearest training images. An adaptive sparse representa-
tion method with distance-based dictionary learning was proposed for finger
vein image denoising [7]. The dictionary atoms were classified into the high-
information group and the low-information group, and different weights were
assigned to atoms. Mei et al. presented a weighted sparse representation method
for finger vein recognition [8]. The Euclidean distance between a training image
and a testing image was used as the weight for the coding coefficient on this
training image in classification. Recently, Zhao et al. [9] proposed a progres-
sive sparse representation method for single-sample finger vein recognition, in
which a progressive strategy was used for representation refinement of sparse
representation classification.

Non-sparse Representation Based Recognition Method. There are some
typical local descriptor based methods and vein pattern based methods in finger
vein recognition. Typical local descriptor based methods include local binary
pattern [10], Weber local descriptors [11], cross-section asymmetrical coding [12],
and physiological characteristic based local descriptor [13]. For further improving
feature discrimination, some methods were proposed to learn binary code from
local descriptor, for example, anchor-based manifold binary pattern [14], joint
discriminative feature learning [15]. Typical vein pattern based methods are the
weighted spatial curve filter [16] and the anatomy structure analysis-based vein
extraction [17]. Deep neural networks, like convolutional neural network [18] and
generative adversarial network [19], were also used in vein pattern segmentation.
Moreover, in finger vein recognition, some researchers employed deep neural
networks for deep feature extraction and classification [20–23].

Above finger vein recognition methods achieved promising recognition per-
formance on full finger vein images. However, there is still a lack of effective
method for cross-area finger vein recognition.

3 Hierarchical Sparse Representation-Based Cross-Area
Finger Vein Recognition

Here, we present our hierarchical sparse representation-based cross-area finger
vein recognition method. There are two-layer sparse representations, i.e., image-
specific dictionary based sparse representation and compact dictionary based
sparse representation. In first layer, each full training image is partitioned into
multiple blocks to establish image-specific dictionary and represent the small-
area testing image, and the blocks with top T largest coding coefficients are seen
as the candidate matching regions for the testing image. The candidate matching
regions from all training images are then used as the compact dictionary for
sparse representation in the second layer. The reconstruction error of the testing
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Fig. 1. The framework of the proposed method.

image on the compact dictionary will be used for classification. The framework
of the proposed method is illustrated in Fig. 1.

In the following, we will give three keyparts of our method, i.e., image-specific
dictionary based sparse representation, compact dictionary based sparse repre-
sentation and two-scale hierarchical sparse representation.

3.1 Image-Specific Dictionary Based Sparse Representation

For correctly measuring the similarity between the full training image and the
small-area testing image, locating the candidate matching regions in the training
image is crucial for the small-area testing image. Hence, we propose an image-
specific dictionary based sparse representation to deal with this problem.

In detail, each training image is partitioned into multiple blocks with a fixed
step, and each block has a same size with the small-area testing image. The step
size is 3 pixles in our experiments. The blocks from a training image are used
to establish an image-specific dictionary and represent the small-area testing
image. The blocks with top T largest coding coefficients are seen as the candidate
matching regions for the testing image. This process is given in Fig. 2.

Assuming one training image and one testing image are denoted by G and
P , and the image-specific dictionary of this training image is denoted by DG =
[g1, g2, ..., gn], in which gi, i = 1, 2, ..., n is the blocks from the image G. The
testing image P can be linearly represented by DG:

P = s1g1 + s2g2 + ... + sngn (1)

The sparse coding coefficients of the above representation can be calculated by
solving the following L1 − norm minimization problem as:

min
S

||P − DGS||2F + α||S||1 (2)
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Fig. 2. Image-specific dictionary based sparse representation. T = 2 in this figure.

where S = [s1, s2, ..., sn] is a n-dimensional coding vector. The atoms with large
coding coefficients are more similar to the small-area testing image than other
atoms. So, atoms with top T largest coding coefficients are seen as the candidate
matching regions for the testing image.

3.2 Compact Dictionary Based Sparse Representation

By the image-specific dictionary based sparse representation, we can locate the
candidate matching regions from each full training images for the small-area
testing image, and the candidate matching regions from all training images are
then used as the compact dictionary for sparse representation in the second layer.

In detail, we use the atoms with top T coding coefficients from each
image-specific dictionary to build the compact dictionary. T = 7 is used
in our experiments. Assuming that there are N fingers, and each finger
has M finger vein images. We can denote the compact dictionary by D =
[D1,1,D1,2, ...,Di,j , ...,DN,M ], in which Di,j = [di,j,1, di,j,2, ..., di,j,t, ..., di,j,T ].
The coding vector of the testing image P can be obtained by:

min
W

||P − DW ||2F + λ||W ||1 (3)

And then, we can compute the reconstruction error of the testing image on each
training image:

ri,j = ||P −
T∑

t=1

di,j,tWi,j,t||22 (4)

The class label of the testing image is predicted by:

i = arg max(ri,j) (5)

3.3 Two-Scale Hierarchical Sparse Representation

To explore more discriminative information from small-area images, we further
propose two-scale hierarchical sparse representation. In detail, a Gaussian filter,
whose size is 5 × 5, is defined, and the convolution between the filter and each
finger vein image is performed for denoising. The convolution result are further



Cross-Area Finger Vein Recognition via Hierarchical Sparse Representation 91

Fig. 3. Cropping for obtaining small-area finger vein image.

down-sampled by removing the even rows and even columns to obtain the small
scale image. The full and partial finger vein images are down-sampled to 122×54
pixels and 61 × 54 pixels respectively.

The hierarchical sparse representation is used firstly on the original images
and then on their down-sampled images, and two reconstruction error vectors
of a testing image can be computed. We denote the reconstruction error vec-
tors on the original images and the down-sampled images by rij and rdij . Two
reconstruction error vectors are fused by:

rfij = c1rij + c2r
d
ij (6)

in which c1 and c2 are weights, and c1 + c2 = 1. The class label of the testing
image is predicted by:

i = arg max(rfi,j) (7)

4 Experiment

4.1 Experimental Setting

Two finger vein databases from the Hong Kong Polytechnic University
(HKPU) [24] and the Shandong University (SDU) [25] are used in experiments.
The 1,872 finger vein images from 312 fingers captured in the first session on
HKPU database and 3,816 finger vein images from 636 fingers on SDU database
are used. The images from the first and second databases are normalized into
243× 108 pixels and 160× 120 pixels respectively. On each database, first three
images from each finger are used as full training finger vein images, and each
of last three images is cropped based on a random reference row to be used as
small-area testing finger vein image. An example is given in Fig. 3. All images
are compacted by principal component analysis for dimensionality reduction.

All involved methods are tested in MATLAB R2016a on a PC with an
Intel(R) Core(TM) i5-10500 CPU at 3.10 GHz and 16G RAM. The recogni-
tion rates and cumulative match curves (CMCs) of the recognition methods are
reported.
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Fig. 4. Recognition rates with different values of (a) α, (b) λ and (c) c1.

4.2 Parameter Analysis

This experiment is performed on HKPU database for best parameter values.
There are two parameters in our hierarchical sparse representation, i.e., α and
λ. We firstly fix λ = 0.1 and vary α. The recognition rates are given in Fig. 4(a).
We can see that the best recognition rate is achieved when α = 0.05, and there
is no big variation on recognition rate when α varies from 0.05 to 0.2. And then,
we fix α = 0.05 and vary λ. The curve of the recognition rates is illustrated
in Fig. 4(b). The figure shows that λ has a larger impact on the recognition
rate than α. When λ = 0.01, our hierarchical sparse representation achieves the
best recognition rate. There is also an important parameter in our two-scale
hierarchical sparse representation, i.e., weight in fusion of reconstruction errors.
We adjust the weights of different scales when α and λ are fixed. We give the
recognition rate curve with different values of c1 in Fig. 4(c). The figure shows
that c1 = 0.5 is best for the recognition rate.

4.3 Effectiveness of Two-Scale Hierarchical Sparse Representation

This experiment aims to evaluate our two-scale hierarchical sparse representa-
tion method on HKPU database and SDU database. To achieve this, a compar-
ison of hierarchical sparse representation on original images, hierarchical sparse
representation on down-sampled images and two-scale hierarchical sparse repre-
sentation is tested. The recognition rates are given in Table 1. The results in the
table show that two-scale hierarchical sparse representation performs better than
hierarchical sparse representation on single scale images. It proves that two-scale
hierarchical sparse representation can enhance the recognition performance.

4.4 Recognition Performance Testing

The recognition performance of our proposed method is tested on HKPU
database and SDU database. Firstly, we illustrate the candidate matching regions
located by the image-specific dictionary based sparse representation. One full
training finger vein image, one small-area testing finger vein image and the
located candidate matching regions are listed in Fig. 5. From the figure we can
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Table 1. Comparison of recognition rates (%) from the original images and the down-
sampled images.

Method HKPU database SDU database

Hierarchical sparse representation on
original images

85.36 76.52

Hierarchical sparse representation on
down-sampled images

90.81 77.88

Two-scale hierarchical sparse
representation

91.35 78.94

Fig. 5. Candidate matching regions located by the image-specific dictionary based
sparse representation. (a) Training image, (b) Testing image, and (c) Candidate match-
ing regions with top T largest coding coefficients.

see that, the image regions with larger coding coefficients are more similar to the
testing image than the other regions. For example, the image region with top
1 coding coefficient is more similar to the testing image than the image regions
with top 4 to 7 coding coefficients. The figure indicates that our image-specific
dictionary based sparse representation can search candidate matching regions
from full training finger vein image for the partial testing image.

Secondly, we report the recognition rates of our method and three sparse
representation based finger vein recognition methods. The state-of-the-art liter-
atures paid attention to finger vein recognition based on images with same area,
and most methods are inappropriate for cross-area finger vein recognition. For
the compared sparse representation methods, the training image is also parti-
tioned into multiple blocks to represent the small-area testing image. Table 2
lists the recognition rates of all involved methods on two databases, and the
corresponding CMC curves are presented in Fig. 6.

The experimental results from two databases consistently show that, our
two-scale hierarchical sparse representation achieves a superior recognition per-
formance over the compared methods. The superior performance of our method
may be attributed to the alignment of the small area testing image to the full
training image by the image-specific dictionary based sparse representation and
the discriminative information explored by two-scale hierarchical sparse repre-
sentation method.
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Table 2. Comparison of recognition rates (%) from sparse representation methods.

Method HKPU database SDU database

Sparse representation (SR) 86.20 66.70

Nearest centroid neighbor based sparse
representation (NCN-SR) [5]

81.20 69.60

Mutual sparse representation (Mutual SR) [6] 61.02 65.20

Our method 91.35 78.94

Fig. 6. CMC curves of sparse representation methods on (a) HKPU database and (b)
SDU database.

5 Conclusion

This paper pays attention to cross-area finger vein recognition problem caused
by the upgrade of finger vein acquisition devices, and proposes a hierarchical
sparse representation method for matching of full training finger vein image and
small-area testing finger vein image. By the image-specific dictionary based first
layer sparse representation, the candidate matching regions can be located from
full training images for small-area testing image. The located regions are then
used to build the compact dictionary for the second layer sparse representa-
tion classification of small-area testing image. In addition, the cross-area finger
vein recognition performance is further enhanced by two-scale hierarchical sparse
representation, which explores the discriminative information from the original
images and their down-sampled images. In experiments, last three images per fin-
ger on two public finger vein databases are cropped as small-area testing images.
The experimental results on two databases show that the superior performance
of the proposed method over the compared methods on cross-area finger vein
recognition.
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Abstract. Gait, a unique biometric identifier for recognizing individual
identity at a distance, plays an important role in practical applications.
Existing gait recognition methods utilize either a gait set or a sequence.
However, these methods ignore the periodic characteristic of gait, where
actions at one moment are related to actions at another moment. As a
result, their recognition accuracy in real scenes can significantly decrease
due to noise and frame loss. To deal with this issue, we design a NLGait
network to explore the temporal relation among gait frames, which adap-
tively leverages both local and non-local relations to achieve practical
gait recognition. Specifically, we design multi-scale temporal information
extractor (MTIE) to capture these relations. Furthermore, we design an
attention based adaptive frame fuser (AFF) to aggregate the features
of frames in a gait sequence. Extensive experiments have verified the
competitive accuracy and robustness of our method. The accuracy of
the counterpart methods is degraded by 8.9% and 19.3%, respectively,
due to noise and temporal loss, while ours is degraded by only 3.6% and
2.7%.

Keywords: Gait Recogniton · Non-local Temporal Relations · Key
Frames

1 Introduction

Gait is a sort of dynamic biometric traits which represents the walking patterns
of people. Unlike other static biometric traits such as face, iris and fingerprint,
gait is a unique biometric feature that can be captured in long-distance con-
ditions without the cooperation of subjects. Moreover, it’s difficult to imitate
a person’s walking style and body shape. Therefore, gait recognition plays an
important role in various applications, e.g., crime investigation, social security
and intelligent transportation. However, in practical applications, the perfor-
mance of gait recognition is vulnerable to the loss of temporal information and
noise caused by uncontrollable factors such as occlusion, carrying, view variation
and speed changing. So, it’s of great significance for gait recognition methods to
obtain robust and distinctive spatial-temporal representations.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. Compared with temporal modeling based on CNN and LSTM, non-local tem-
poral modeling is more robust for practical applications since it can skip local noise
and temporal loss while extracting non-local temporal information.

With the proposal of robust pose estimation methods, a lot of skeleton-
based methods [10,11,20,21,26] have been developed to alleviate those issues.
PTSN [10] uses a combination of LSTM and CNN models to extract temporal
and spatial features, respectively. PoseGait [11] employs handcrafted features,
including angles, limbs, and motion, in combination with pose to extract fea-
tures using a CNN model. Teepe et al. [20,21] and AGCN [26] utilize graph
convolution blocks to obtain spatial temporal features.

As a periodic motion, there are certain connections between frames in a gait
cycle. Therefore, non-local and local temporal relation should be both captured.
Existing gait recognition methods obtained the temporal information via either
convolutional [6,9] or recurrent [13,14] operations both of which are defined in a
local neighborhood; thus, the long-range dependencies in gait can be captured by
repeatedly applying these operations. These methods are easily affected by local
noise and temporal loss since errors will accumulate during forward propagation.
Fortunately, non-local [25] operations could be another way to capture long-range
dependencies directly. The comparison is illustrated in Fig. 1.

Motivated by above observations, we propose a novel network called Non-
Local Gait (NLGait) to explore the temporal relation among gait frames. The
input of NLGait is a sequence of gait skeletons where nodes represent human
parts. Specifically, we build a new component called multi-scale temporal infor-
mation extractor (MTIE) to attain local and non-local relations simultane-
ously. MTIE is composed of nodes interaction module (NIM) and temporal self-
attention [22] module. In MTIE, temporal relations are extracted within each
node. NIM is designed to achieve the interaction among all nodes. Temporal
pooling in gait recognition often applies max pooling or average pooling which
ignore the importance of different frames for the final gait representation. To
address this issue, we design an attention based adaptive frame fuser (AFF) to
aggregate the features of frames in gait sequences. The major contributions of
this paper can be summarized as follows:
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• We propose a new component which explores local and non-local temporal
relations simultaneously, in comparison to set, convolutional, and recurrent
networks.

• We design an attention-based temporal pooling that emphasizes the impor-
tance of key frames, as opposed to traditional temporal pooling.

• We apply our method to the widely used CASIA-B dataset [28] and the
effectiveness of our method is verified. Visualizations and extensive studies
are conducted to further prove the validity of our idea and robustness of
proposed method.

2 Related Work

Most current methods have taken spatial feature extraction and temporal mod-
eling as the focus [1–4,12,23,27]. For the spatial feature extraction, there are two
categories: appearance-based and skeleton-based approaches. Appearance-based
approaches take binary silhouettes as input extracted from the original RGB gait
video [24]. While most early works [4,17,27] implement the spatial information
extraction on entire feature map, recent methods focus on specific body parts.
GaitPart [5] developed frame-level part feature extractor (FPFE) to obtain sev-
eral fine-grained part-level spatial features. Lin et al. [12] applied 3D-CNN to
achieve the extraction of global and local features. Huang et al. [7] proposed a
novel 3D local operations to obtain accurate body parts with adaptive spatial and
temporal scales, locations and lengths. Skeleton-based approaches apply human
skeleton extracted from the raw input images via pose estimation network. Liao
et al. [10] extracted spatial feature from joints data via CNN. PoseGait [11] took
pose, angle, limb and motion as a combination input to obtain spatial feature.
Teepe et al. [20,21] applied ResGCN [18] to simulate the spatial structure among
joints of human body.

For temporal modeling, the approaches of modeling temporal changes of gait
can be generally divided into: template-based [15], CNN-based [5,7,12], LSTM-
based [10,29] and set-based [4]. Template based methods are unable to obtain
accurate temporal information since they compress the silhouettes of a sequence
into one image. Set-based methods believe that the appearance of a silhouette
frame contains its position information. Accordingly, they are easily affected
by the noise in gait silhouette. Also, they are likely to ignore the fine-grained
short-term temporal information. CNN-based and LSTM-based methods extract
temporal information starting from the interaction between adjacent frames.
Therefore, long-term temporal information is captured when these operations are
applied repeatedly. Moreover, the LSTM-based methods have to retain unnec-
essary sequential constraints for periodic gait.

3 Method

As shown in Fig. 2, our method consists of three components, i.e., spatial feature
extractor, multi-scale temporal information extractor, and adaptive frame fuser.
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Fig. 2. The pipeline of NLGait. The gait pose sequence is extracted by HRNet [19].
Then, the spatial and temporal features are sequentially extracted by spatial feature
extractor and multi-scale temporal information extractor. After that, the final feature
aggregated by adaptive frame fuser is obtained.

We use HRNet [19] as a human pose estimator to extract 2D poses from the
raw gait video, which is further sent to spatial feature extractor to inference
spatial features. After that, the multi-scale temporal information extractor takes
spatial features as input to exploit the temporal feature. Finally, adaptive frame
fuser (AFF) is used to aggregate the frame-wise features within each node for
final representation.

3.1 Preliminaries

Notation. The human skeleton can be illustrated as a graph G = (V, ξ). The
set V = {vi|i = 0, 1, ..., N − 1} contains N nodes representing human joints in a
single image. ξ is the set of edges representing bones constructed by an adjacency
matrix A ∈ {0, 1}N×N which denotes the connection between nodes. If there is
a connection between nodes vi and vj , then Ai,j = 1, and vice versa. Every
node consists of three channels vi = (xi, yi, ci) where xi, yi is the estimated joint
coordinate and ci is the keypoint confidence.

Gait is a sequence of these graphs which is defined as X = {vt,n|t =
0, 1, ..., T − 1, i = 0, 1, ..., N − 1} with temporal dimension T . The input of
our network is composed of A structurally and X feature-wise with Xt ∈ R

N×C

being a pose at time t. C is a tuple of 2D coordinate and its confidence and N
is the number of joints, which is set at 17 of our work.

Graph Convolutions. Based on the feature Xt and adjacent matrix A, the
frame-wise graph convolution operation can be described as:

Xl+1 = σ
(
Ď− 1

2 ÃĎ− 1
2Xlθl

)
(1)
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where Ã = A + I, I is the identity matrix. Ď is the diagonal degree matrix of Ã
and θl is a learnable weight matrix at layer l. Equation 1 indicates the process
of extracting spatial feature by information exchange between adjacent nodes.

3.2 Spatial Feature Extractor

We extract spatial features of gait by performing graph convolution to the nodes
and their connection relationships included in the graphs. Specifically, we applied
the spatial block of ResGCN [18] to obtain frame-wise spatial feature. The spa-
tial block consists of graph convolution with an optional bottleneck structure.
Moreover, we utilize a bottleneck convolution block achieved by two 1 × 1 con-
volutional layers to reduce the redundant information. At first, we use basic
spatial block to extract gait feature from input 2D pose. With the expansion of
channel dimension, we utilize spatial block with bottleneck structure to simplify
the model parameters (see Table 1 for detailed configuration).

Table 1. Overview of spatial feature extractor architecture for a pose with 17 nodes
and sequence length of 60.

Block Module Output Dimensions

Block0 BatchNorm 60 × 117 × 3

Block1 Spatial-Basic 60 × 117 × 64

Spatial-Bottleneck 60 × 117 × 64

Spatial-Bottleneck 60 × 117 × 32

Block2 Spatial-Bottleneck 60 × 117 × 128

Spatial-Bottleneck 60 × 117 × 128

Spatial-Bottleneck 60 × 117 × 256

Spatial-Bottleneck 60 × 117 × 256

3.3 Multi-scale Temporal Information Extractor

We propose MTIE to capture local and non-local temporal information concur-
rently. To be more specific, MTIE is composed of multiple temporal self-attention
modules and nodes interaction module (NIM) alternately.

Temporal Self-attention Module. Transformer [22] can perform attention
operations between two tokens at any distance in a sequence. By treating gait
frames as a sequence of tokens, we utilize the self-attention module in transformer
to capture temporal relations within each node.

Given an input gait feature xi
t ∈ R

c, which represents the i-th node of t-th
frame, we first compute a query vector qih,t, a key vector ki

h,t and a value vector
vi
h,t for each head h of the total H heads:

(
qih,t, k

i
h,t, v

i
h,t

)
= xi

t

(
W q

h ,W k
h ,W v

h

)
(2)
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where W q
h ∈ R

c×dq , W k
h ∈ R

c×dk , W v
h ∈ R

c×dv . Then we calculate attention
score of each frame by applying scaled dot-product attention function to each
query and key. By this way, the correlation between each frame in a gait sequence
is captured. To gather local and non-local temporal information, attention score
standardized by the softmax function is utilized to weight value vectors. This
process can be formulated as:

headih = Attention
(
qih, ki

h, vi
h

)
=

∑
s

softmaxs

(
qh,tk

T
h,s√

dk

)
vh,s (3)

Eventually, node xi ∈ R
do is updated by concatenating the value vectors

from H heads and multiplying them with a learnable matrix:

xi = Concat
(

headi1, headi2, . . . , headiH
)
W o (4)

where W o ∈ R
H∗dv×do .

However, since each frame is not aware of its position in the gait sequence,
the order of adjacent frames is ambiguous. Thus, local temporal relation is not
precisely captured. To tackle this issue, we use positional encoding [22] generated
with sinusoidal functions of different frequencies.

Fig. 3. The detailed structure of NIM and AFF

Nodes Interaction Module. NIM is proposed to capture the certain correla-
tion between different nodes during walking.

It should be noted that the interactions between nodes can not break the
unique motion pattern of each node. Considering of this, interactions are con-
ducted in a node-specific manner but not on frame-level or channel-level. Thus,
NIM is designed to learn the correlation between the representations of each
node obtained by statistic function.

The detailed structure of NIM is illustrated in Fig. 3a. Average pooling oper-
ation is used to compress the feature on temporal and channel dimension. Thus,
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we get a vector h ∈ R
N where every single element represents the motion infor-

mation of each node respectively. Then, NIM achieved the interaction between
each node by two fully connected layers:

hc = σ (W2δ (W1h)) (5)

where W1 ∈ R
k×N and W2 ∈ R

N×k are the learnable matrices of the two fully
connected layers, k is set to reduce redundant information, σ(·) and δ(·) are
Sigmoid activation function and ReLU activation function. By now, NIM has
obtained the importance of the role played by each node during walking. Finally,
NIM weights the input feature node by node via multiplying hc with the input
feature.

3.4 Adaptive Frame Fuser

Temporal pooling is applied to gather the features of a whole sequence in gait
recognition. Existing methods utilize either max pooling or average pooling for
the final gait representation. However, this will lead to the situation that the
contribution of key frame will be weakened and some poor informative frame
will be highlighted. To tackle this issue, AFF is designed to learn the importance
of each frame during walking and properly weight them.

As shown in Fig. 3b, given the input feature F ∈ R
T×C , AFF first applies a

fully connected layer as attention pooling on each f j to get a frame-wise weight
wj . Then the final representation fout is calculated by

∑T−1
j=0 w̃j f j , where w̃j is

the softmax-normalized frame-wise weight.

4 Experiments

4.1 Dataset and Training Details

Dataset. The CASIA-B [28] dataset encompasses 124 subjects, each demon-
strated under 11 distinct viewing angles (ranging from 0◦ to 180◦) and three
different walking conditions. These conditions include normal walking (NM, rep-
resented by 6 sequences), walking while carrying a bag (BG, represented by 2
sequences), and walking while wearing a coat (CL, represented by 2 sequences).
Consequently, each subject is represented by 110 sequences, calculated as 11
multiplied by the total number of sequences from each walking condition (6 for
NM, 2 for BG, and 2 for CL).

This paper follows the popular protocol [27] and uses the widely called large-
sample training (LT) partition. In this scheme, the first 74 subjects (labelled
001-074) constitute the training set, while the remaining 50 (labelled 075-
124) subjects constitute the test set. The test set is further divided into gallery
set and probe set. The gallery set comprises the first four sequences of the
Normal walking (NM) condition. The remaining six sequences are subdivided
into three probe subsets: the NM subset (consisting of sequences NM#5-6),
the Bag-carrying (BG) subset (comprising sequences BG#1-2), and the Coat-
wearing (CL) subset (including sequences CL#1-2).
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Trainging Details. For NLGait, we set the input sequence length T = 60
frames. We set the reduction rate of the bottleneck in spatial feature extractor
to 8. The number of MTIE is 3. In NIM, we set k = 5. Adam optimizer is used
with a 1-cycle learning rate schedule [16] with a maximum learning rate of 1e-4
and a weight decay penalty of 1e-5. We use a combination of two loss functions:
cross-entropy loss and supervised contrastive loss [8]. The batchsize is 64.

4.2 Results

Performance Comparison. Table 2 presents a comparative analysis of
proposed NLGait with several existing methods, including PoseGait [11],
AGCN [26], GaitGraph [21] and GaitGraph2 [20]. Except for NLGait, other
results were directly taken from their original papers. All the results were aver-
aged on the 11 gallery views and the identical views were excluded. For instance,
the accuracy of probe view 54◦ was averaged on 10 gallery views, excluding
gallery view 54◦.

Table 2. Average Rank-1 accuracy on CASIA-B on three test subsets, excluding
identical-view cases.

Gallery NM#1-4 0◦–180◦ mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5-6 PoseGait [11] 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7

AGCN [26] 72.4 81.2 85.6 80.4 79.4 85.0 81.0 77.6 82.5 79.1 80.2 80.4

GaitGraph [21] 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7

GaitGraph2 [20] 78.5 82.9 85.8 85.6 83.1 81.5 84.3 83.2 84.2 81.6 71.8 82.0

Ours 83.8 85.4 88.4 90.3 89.6 91.6 90.1 91.8 88.5 86.2 80.7 87.9

BG#1-2 PoseGait [11] 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5

AGCN [26] 62.5 68.7 69.4 64.8 62.8 67.2 68.3 65.7 60.7 64.1 60.3 65.0

GaitGraph [21] 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8

GaitGraph2 [20] 69.9 75.9 78.1 79.3 71.4 71.7 74.3 76.2 73.2 73.4 61.7 73.2

Ours 78.7 79.8 81.3 81.2 81.3 76.6 75.3 73.9 76.9 80.4 72.1 78.0

CL#1-2 PoseGait [11] 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0

AGCN [26] 57.8 63.2 68.3 64.1 66.0 64.8 67.7 60.2 66.0 68.3 60.3 64.2

GaitGraph [21] 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3

GaitGraph2 [20] 57.1 61.1 68.9 66.0 67.8 65.4 68.1 67.2 63.7 63.6 50.4 63.6

Ours 70.7 70.0 70.2 68.0 69.9 69.0 73.0 68.7 70.2 63.2 64.6 68.9

As shown in Table 2, NLGait brings about significant improvements through-
out all walking conditions.

In NM condition, people walk normally without any carrying or occlusion.
The moving patterns of the human body and legs are explicitly illustrated. Our
network achieves satisfactory performance on the NM subset with an accuracy
of 87.9. The improvements on BG and CL suggest that our network can obtain
more discriminative and robust representations, and prove the importance of
non-local temporal information in gait recognition.
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(a) 15th frame of 6th node (b) 15th frame of 13th node

Fig. 4. The visulization of attention scores

Visualization. To verify that NLGait can capture local and non-local tempo-
ral relations, we visualized the attention scores of three subjects standardized by
softmax function in the first temporal self-attention module. As shown in Fig. 4a,
the 15th frame of S2 appears to be strongly associated with local frames, whereas
the 15th frame of S3 is highly related to non-local frames. Figures 4a and 4b indi-
cates that different nodes of the same subject behave variously during walking.
The diversity in attention scores indicates that, thanks to the multi-scale tempo-
ral information extractor, our proposed method is capable of effectively learning
the unique gait patterns of each individual.

Robustness Study. In practical applications, due to the influence of some
uncontrollable factors, the obtained gait sequences usually suffer from noise or
temporal loss. A series of experiments were conducted to testify the robustness of
NLGait against these situations. GaitGraph [21] and GaitGraph2 [20] represent
a small subset of recent advancements in skeleton-based gait recognition, notable
for their open-sourced code. Importantly, they utilize the same pose estimation
methodology that we have implemented in our approach. As such, they serve as
valuable points of comparison for our robustness experiments. The outcomes
of these experiments are presented in Table 3, where the figures enclosed in
parentheses denote the rates of accuracy degradation.
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Table 3. Average Rank-1 accuracy on CASIA-B with noise or temporal loss.

Probe Condition

Noise Temporal Loss

NM GaitGraph [21] 82.1(↓ 6.4%) 74.6(↓ 14.9%)

GaitGraph2 [20] 80.3(↓ 2.1%) 68.1(↓ 17.0%)

Ours 85.9(↓ 2.3%) 86.1(↓ 2.0%)

BG GaitGraph [21] 69.5(↓ 7.1%) 64.2(↓ 14.2%)

GaitGraph2 [20] 68.3(↓ 6.7%) 54.8(↓ 25.1%)

Ours 75.6(↓ 3.1%) 76.2(↓ 2.3%)

CL GaitGraph [21] 57.6(↓ 13.1%) 47.2(↓ 28.8%)

GaitGraph2 [20] 55.9(↓ 12.1%) 45.8(↓ 28.0%)

Ours 65.1(↓ 5.5%) 66.2(↓ 3.9%)

Noise. To simulate the disturbances in the expression of some human motion
information, we add three kinds of uniform noises to the estimated 2D coordi-
nates of keypoints along with their confidence in test set. Compared with Gait-
Graph [21] and GaitGraph2 [20], NLGait is more robust because of the captured
non-local relation and the reduction of redundant information by bottleneck
convolution block and NIM.

Temporal Loss. We also randomly drop the frames of the input sequence in
test set to simulate the loss of temporal information. Specifically, given a input
sequence with 80 frames, we randomly drop 20 of them. Since MTIE directly
obtains non-local temporal information, NLGait demonstrates a considerable
level of robustness to the loss of temporal information which is of great signifi-
cance for the practical application of gait recognition.

4.3 Ablation Study

To validate the contribution of proposed components in NLGait, correspond-
ing ablation experiments were conducted on CASIA-B. Results of the ablation
experiments are presented in Table 4.
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Table 4. Ablation study results on the CASIA-B dataset.

SFE MTIE Concurrency NIM Temporal Pooling Accuracy

Mean Max AFF NM BG CL
√ √

64.5 52.4 40.0
√ √

71.7 58.1 44.7
√ √ √ √

83.9 74.0 59.6
√ √ √ √

85.6 75.6 64.7
√ √ √ √ √

87.4 76.5 66.0
√ √ √ √ √

82.8 71.0 58.3
√ √ √ √ √

87.9 78.0 68.9

The Impact of MTIE. The results from the second to last rows clearly
demonstrate that the frame-wise feature becomes considerably challenging in
the absence of both local and non-local temporal information for identifying a
person’s identity. With MTIE, The performance increased by 16.2% under NM,
19.9% under BG and 24.2% under CL.

The Impact of Concurrency. In NLGait, we simultaneously capture local and
non-local temporal information. To highlight the importance of the concurrency,
we refer to the manner that convolutional operation expands the receptive field
to extract the non-local temporal information. Specifically, we initially perform
self attention operation on each local part of the sequence, and as we repeat
this operation, the length of the local part gradually extends until the entire
sequence is covered. Thus, local and non-local temporal information are not
captured concurrently by this way.

The third row and the last row show that the accuracy is decreased under
three walking conditions. The result indicates that the non-local temporal infor-
mation which is not captured directly is vulnerable and redundant.

The Impact of NIM. The fourth row and the last row show that NIM
improves all test subsets. This result is consistent with our experience men-
tioned in Sect. 3.3, i.e., that the certain correlation among different nodes of
human body during walking can not be ignored.

The Impact of AFF. To verify the effectiveness of the AFF, we compare
the performance of using this module with other two most applied temporal
pooling. As shown in the last three rows, though global average pooling behaves
better than global max pooling, it is still defective. By weighting each frame in
a sequence, AFF improves the performance under all walking conditions.
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5 Conclusion

In this paper, we introduce an innovative perspective on gait sequences, high-
lighting the significance of exploring non-local temporal relation. As a solution,
we propose NLGait, which combines the adaptive frame fuser and the multi-scale
temporal information extractor, comprising the temporal self-attention module
and nodes interaction module. These two parts work together to obtain dis-
criminative and robust gait representations enriched with non-local temporal
information. The effectiveness and robustness of NLGait are validated through
extensive experimental studies.
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Abstract. The distinct ridge features of palmvein and palmprint
images, among other palm-related images, make them vulnerable to
reversible attacks that can reconstruct the original structure, leading
to permanent leakage of biometric features. Additionally, existing multi-
modal template protection schemes treat the feature data of each modal-
ity as independent, failing to fully capture the inter-modality correlation.
Therefore, this paper proposes a multi-modal shared biometric key gen-
eration network called PalmKeyNet. By designing keys unrelated to the
original palm images as biometric templates, the irreversibility of features
is achieved. Additionally, by constructing a multi-modal biometric key
generation network, we transform the palm images of different modalities
into a unified feature-key space, enhancing the inter-modal correlation.
Furthermore, LDPC coding is introduced for multi-modal key error cor-
rection to reduce noise interference and improve key discriminability. The
proposed approach simultaneously enhances the discriminability, corre-
lation, and security of multi-modal features. The trained PalmKeyNet
can be deployed in four modes: single-modal matching (palmprint vs.
palmprint and palmvein vs. palmvein), multi-modal matching, and cross-
matching. Experimental results on four publicly available palm databases
consistently demonstrate the superiority of the proposed method over
state-of-the-art approaches.

Keywords: Key generation · Deep learning · Palm print and palm
vein

1 Introduction

Biometric recognition has been widely applied due to its convenience. It’s pretty
remarkable that biometric features are permanent and unchangeable, and once
leaked, they can cause irreversible damage to the user. Therefore, researches
on protecting biometric template have emerged, known as biometric template
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protection (BTP), which includes cancellable biometrics (CB) and biometric
cryptosystem (BCS).

Biometric cryptosystem [1,2] is initially developed to protect encryption keys
using biometric features or directly generate encryption keys from biometric
features. However, they can also be used as template protection mechanisms.
In [3], a framework was designed that uses a fuzzy extractor to generate keys
and employs hash functions for protection, ensuring that no information can be
retrieved from the hash key output by attackers. In [4], a new approach to a fuzzy
vault biometric cryptosystem utilizing palmprint features was proposed, creating
a fuzzy vault by combining reference points with randomly generated impostor
points or chaff points. However, current traditional key-binding schemes [5,10]
require carefully designed auxiliary data based on specific biometric features
and the nature of related user internal variations. Additionally, key generation
schemes are difficult to achieve both high stability and high entropy.

Recently, deep learning has gained significant attention, and the field
of biometric cryptosystems has also been influenced by deep learning-based
approaches. Ma et al. [6] proposed a deep learning-based BCS method that uti-
lizes different layers of a convolutional neural network (CNN) to extract features
and obtain an optimal feature set as input for BCS. Kumar et al. [7] introduced
a facial template protection method using deep CNN, which learns a robust
mapping from a user’s facial image to a unique binary code assigned during the
enrollment phase through single and multiple registrations. Roh et al. [8] pro-
posed an approach combining CNN and necurrent neural network (RNN), where
CNN extracts feature vectors from facial images and RNN generates keys based
on these feature vectors. Roy et al. [9] propose to design and implement a reti-
nal biometric key generation framework with deep neural network in order to to
replace the semi-automated or automated retinal vascular feature identification
methods.

Currently, most deep learning-based BCS methods are not end-to-end and
require feature extraction followed by key generation based on the feature set.
To address this issue, an end-to-end key generation network is proposed that can
directly generate keys from biometric images. The key mentioned in this paper
is the encrypted biometric feature, which is used for identification. Additionally,
considering the improved recognition performance of multi-modal biometric fea-
tures, we propose a template protection scheme that combines palmprint and
palmvein modalities. Furthermore, the existing methods do not fully utilize the
key space and overlook the impact of noise during the feature transformation pro-
cess, therefore the proposed method introduces the utilization of pre-allocated
keys to fully exploit the key space, along with LDPC(Low-Density Parity-Check)
encoding for error correction to enhance recognition performance.

The PalmKeyNet in this paper is a palm-based multi-modal shared key gener-
ation network, which consists of two sub-networks: one for palmprint and another
for palmvein. The trained PalmKeyNet can generate keys based on input palm-
print and/or palmvein images. Given a query palmprint and/or palmvein image,
PalmKeyNet generates LDPC-encoded keys. The effectiveness of PalmKeyNet
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using backbone structures such as ResNet18 [11], MobileNetV2 [12], and
EfficientNet-B5 [13] is demonstrated. The contributions of this work are as fol-
lows:

1. A feature learning-based key generation methods is proposed. By construct-
ing a multi-modal shared key generation network, PalmKeyNet transform
multi-modal palm features into a unified feature space. This approach enables
end-to-end protection of biometric templates and enhances the correlation
between different modalities.

2. This paper have studied the encoding and error correction methods for multi-
modal shared key. The proposed method introduces encryption algorithms to
protect the keys and further introduces LDPC coding to correct errors and
reduces noise interference, thereby enhancing the distinctiveness of the keys.

3. The proposed key generation scheme, PalmKeyNet, can be applied to cross-
modality, multi-modality, and single-modality scenarios, providing flexible
deployment options that are suitable for various application scenarios.

2 Methodology

Existing handcrafted key generation methods do not simultaneously consider
the inter-modality correlations within the same class and the intra-modality dis-
tinctiveness between different classes. However, multi-modal palm images such
as palmveins and palmprints exhibit evident correlated features, and the recog-
nition performance is limited by the quality of the original biometric features.
Therefore, we propose an innovative approach to design a multi-modal shared
biometric key and constructs a deep learning network for key generation. This
network encrypts and transforms the multi-modal biometric templates into the
same key space, simultaneously enhancing the inter-modality feature correlation
and template security. As an encrypted biometric feature, the keys generated by
PalmKeyNet are ultimately used for identity recognition.

The proposed approach in this paper mainly consists of key encoding, key
binding, and key generation, as illustrated in Fig. 1. Firstly, a set of randomly
generated keys that are orthogonal to each other and have sufficient distance are
pre-generated. These keys are encrypted using SHA-256 and stored as biometric
templates in the database. Secondly, the random keys are LDPC encoded and
assigned to users, and the encoded shared keys are simultaneously bound to the
users’ palmprints and palm veins. Finally, a network is trained to take palmprint
and/or palm vein images as input and generate LDPC encoded keys. During
the verification phase, before matching with the templates in the database, the
network’s output undergoes decoding for error correction, resulting in improved
recognition performance.

2.1 Key Encoding

During the process of feature data transformation, noise interference is inevitably
introduced, which can affect recognition performance. Inspired by traditional key
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Fig. 1. Overall structure of the scheme in this paper

generation schemes, error correction code is incorporated into the key to mitigate
the impact of noise and LDPC was chosen after consideration. LDPC are a type
of error correction coding technique widely used in communication and storage
systems, known for their excellent error correction performance and relatively
low decoding complexity.

First, pre-generate m (where m is the number of registered users) orthogonal
keys ki ∈ Rn, i = 1, 2, · · · ,m with sufficient mutual distances. Then, LDPC
is used to encode the key ki for error correction, resulting in encoded key k

′′
i .

The error correction information is only used during the verification stage to
effectively mitigate the impact of noise on recognition performance and is imme-
diately discarded after that, without occupying additional storage space.

An important indicator for evaluating the security of biometric recognition
is the irreversibility of the features, meaning that an attacker cannot reverse-
engineer the original features from the biometric template. The pre-generated
keys are independent of the features, making it infeasible to derive the original
biometric features from the keys. To further enhance the security of the keys,
SHA-256 is introduced to provide additional security assurance. SHA-256 is a
secure and reliable hash algorithm known for its uniqueness and irreversibility.
The pre-generated keys are encrypted using SHA-256, and the encrypted keys k

′
i

are stored in the database. This process is also irreversible, thereby enhancing
the system’s resistance against attacks.

In summary, the key encoding process consists of two branches: LDPC cod-
ing and SHA-256 encryption, as shown in Fig. 2. LDPC coding is utilized to
reduce the impact of noise during the data transformation process, while SHA-
256 encryption provides additional security measures to ensure both the recog-
nition performance and security of the system.
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Fig. 2. key encoding

2.2 Key Binding

Existing researches have demonstrated that multi-modal approaches offer better
recognition and security performance compared to uni-modal methods. Addi-
tionally, there are evident correlated features between multi-modal palm images,
such as palm veins and palm prints. Therefore, this paper aims to bind palm
prints and palm veins into the same key space.

Specifically, an LDPC-encoded key k
′′
i is assigned to each registered identity,

which is independent of the biometric modality but correlated with the identity.
In other words, each identity has only one key associated with multiple biometric
modalities simultaneously. During training, the encoded key k

′′
i is bound with the

palmprint image xp ∈ RC×H×W and palmvein image xv ∈ RC×H×W , meaning
that the palm print and palm vein images of the same identity are bound to the
same key. We use xi,j

p ∈ RC×H×W to represent the j-th palm print image of the i-
th identity, where i = 1, 2, · · · ,m and j = 1, 2, · · · , d (d is the number of feature
images for a particular modality of the same identity), and xi,j

v ∈ RC×H×W

represents the j-th palm vein image of the i-th identity. Then, k
′′
i is bound with

xi
p and xi

v. From another perspective, k
′′

can be regarded as the label shared by
the palm print and palm vein images during training.

Feature fusion is implemented by obligatorily binding palmveins and palm-
prints into the same key space, which not only increases the intra-class corre-
lation between the two modalities but also enables the introduction of feature-
independent keys to enhance inter-class discrimination.

2.3 Key Generating

The goal of PalmKeyNet is to map the input space to the key space such that
S(xi, xj) = S(ki, kj), where S is a similarity function. To learn a robust mapping
from user’s palm images to specified binary codes, the deep CNN is introduced,
which maximizes inter-user variations while minimizing intra-user variations and
thereby providing high matching performance.

To handle palmprint and palmvein images, PalmKeyNet consists of two sub-
networks of deep CNNs that map palmprint and palmvein images to the same
key space. After training, these networks generate keys with LDPC encoding.
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The design and structure of the deep CNN networks depend on the applica-
tion requirements and computational resource constraints. ResNet18 is suitable
for scenarios with larger computational resources and higher accuracy require-
ments. EfficientNet is suitable for scenarios that balance performance and com-
putational resources. MobileNet, on the other hand, focuses on lightweight and
computationally constrained devices.

The two sub-networks of PalmKeyNet independently process palmprint
image xp and palmvein image xv, generating their respective keys κ. These keys
are then binarized as bp = sign(κprint) ∈ {0, 1}n and bv = sign(κvein) ∈ {0, 1}n,
where κprint = fp(xp) and κvein = fv(xv), and fp and fv represent the feature
extraction backbones. During training, the keys κ generated from PalmKeyNet
should be consistent with the keys k

′′
i bound to the same identity.

For query, PalmKeyNet takes input palmvein and/or palmprint images and
generates LDPC-encoded key. The key is then subjected to LDPC decoding
for error correcting. The decoded key is encrypted using SHA-256 and used for
matching against the key in the database for verification.

2.4 Deployment

The trained PalmKeyNet can be flexibly deployed in the following operational
modes:

Multi-modality mode: This is the most secure mode. During enrollment, the
key is assigned to each identity, which is encoded with SHA-256 and stored in
the database along with the parameters of PalmKeyNet. For query, both palm
print and palm vein images need to be provided, which can be obtained from
a single image. They are transformed into their respective LDPC-encoded keys
and binarized as bprint = sign(fp(Xp)) and bvein = sign(fv(Xv)). The keys
bprint and bvein are decoded by LDPC to obtain b

′
print and b

′
vein. Then, b

′
print

and b
′
vein are transformed into b

′′
print and b

′′
vein using SHA-256 encoding. The

decision is reached if DH(b
′′
print, k

′
i) and DH(b

′′
vein, k

′
i) are both equal to 0, where

DH represents the Hamming distance.
Single-modality mode: This is the simplest mode. Similar to the multi-

modality mode, a key is assigned to each identity during enrollment, which
is encoded with SHA-256 and stored in the database. Whether a palm print
or palm vein image is provided, for query, the transformed key b

′′
is directly

matched with the stored key using DH(b
′′
, k

′
i) for decision-making. A result of 0

indicates a successful match.
Cross-modality mode: This is the most flexible mode. This mode simulates

cross-modal matching between palm print and palm vein. By calculating the dis-
tance between the transformed keys, i.e., DH(b

′′
print, b

′′
vein), cross-modal matching

between palm print and palm vein can be performed. If the Hamming distance is
below a predefined threshold, a decision to grant the corresponding permission
can be made.
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Table 1. Datasets summarization

Dataset Acquisition Palm vein Palm print Samples Classes

PolyU-M Contact NIR RGB 12 500

IITD Contactless - Gray 5 460

CasiaM Contactless RGB NIR 6 200

Tongji-P Contactless Gray Gray 20 600

Tongji-PV Contactless Gray Gray 20 600

Table 2. Performance of PalmKeyNet on four public benchmark datasets

Dataset Backbone Cross far Print IR Print far Vein IR Vein far Fusion IR Fusion far

PolyU-M EffNetb5 0.100 99.967 0.000 99.967 0.000 99.933 0.000

ResNet18 0.433 99.433 0.167 99.867 0.067 99.433 0.006

MobileNetV2 0.367 99.600 0.267 99.867 0.067 99.567 0.001

Tongji EffNetb5 0.067 99.950 0.050 99.883 0.067 99.917 0.001

ResNet18 0.333 99.733 0.117 99.700 0.283 99.700 0.030

MobileNetV2 0.333 99.800 0.067 99.667 0.300 99.800 0.045

CasiaM EffNetb5 2.667 96.000 1.333 98.000 0.500 95.000 0.312

ResNet18 12.833 71.333 11.167 88.667 3.167 69.667 6.612

MobileNetV2 5.500 84.500 5.333 95.333 1.167 84.000 1.802

IIT-D EffNetb5 - 99.020 0.652 - - - -

ResNet18 - 96.630 2.500 - - - -

MobileNetV2 - 96.196 3.261 - - - -

3 Experiments and Conclusions

3.1 Database

To evaluate the performance of the proposed method, four publicly available
datasets were used in the experiments, as shown in Table 1: 1) PolyU-multi-
spectral (PolyU-M) [14]; 2) IITD [15]; 3) CASIA-multi-spectral-palmprintV1
(CASIA-M) [16]; and 4) Tongji palmprint/palmvein(Tongji) [17], [18]. Please
note that the left and right hands of the same individual do not belong to the
same identity.

If the original dataset does not provide palmprint regions of interest (ROIs),
the palmseg tool [22], [23] is used to extract the ROIs. For training, the image
inputs are normalized. Additionally, for data augmentation, we apply random
brightness, rotation, and affine transformations to the images.

3.2 Experiment Settings

The basic architecture of ResNet18 is ResNet, which has a depth of 18 layers and
powerful representation capability. EfficientNet, compared to other networks,
has fewer parameters and higher accuracy, making a qualitative breakthrough.
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MobileNet network has smaller size, fewer computations, and higher accuracy,
making it highly advantageous in lightweight neural networks. Based on these
advantages, we select ResNet18, EfficientNet, and MobileNet as backbone net-
works.

For the allocation of training and testing data, we choose a 1:1 ratio. For
example, in CASIA-M, three randomly selected samples per identity are used for
training, while the remaining three samples are used for testing. In IITD, three
samples are randomly selected for training, and the remaining two samples are
used for testing.

Table 3. Performance (%) comparison of coding with and without(Y/N) LDPC

Dataset Backbone LDPC Print IR Vein IR Fusion IR

PolyU-M EffNetb5 Y 99.967 99.967 99.933

N 99.800 99.900 99.800

ResNet18
Y 99.433 99.867 99.433

N 81.133 69.333 81.133

MobileNetV2
Y 99.600 99.867 99.567

N 85.967 88.867 85.967

Tongji EffNetb5 Y 99.950 99.883 99.917

N 99.850 99.767 99.850

ResNet18 Y 99.733 99.700 99.700

N 87.567 88.000 87.567

MobileNetV2 Y 99.800 99.667 99.800

N 90.450 92.650 90.450

CasiaM EffNetb5 Y 96.000 98.000 95.000

N 89.333 94.500 89.333

ResNet18 Y 71.333 88.667 69.667

N 47.333 71.167 47.333

MobileNetV2 Y 84.500 95.333 84.000

N 57.667 75.500 57.667

3.3 Quantitative Evaluation

To evaluate the recognition and authentication performance of the proposed
method in four application modes, experiments is conducted on four datasets.
We use the identification rate (IR) to evaluate the recognition performance and
the false acceptance rate (FAR) to evaluate the authentication performance.
The proposed method includes four modes: two single-modality matching, multi-
modality matching, and cross-modality matching. For cross-modality one vs. one
matching, we only report the verification identification rate.
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Table 2 summarizes the performance of PalmKeyNet on four databases using
three backbone networks, with a key length of 128 bits. As shown in the table,
the proposed PalmKeyNet performs well on different models and datasets. It is
worth noting that PalmKeyNet based on EfficientNet achieves excellent results
in single-modal and multi-modal matching on the PolyU-M, with both single-
modal recognition rates reaching 99.967% and a false acceptance rate of 0%. This
demonstrates that the design of pre-allocated keys artificially increases the inter-
class distance and improves key distinctiveness. Additionally, the PolyU-M also
achieves good recognition performance with PalmKeyNet based on ResNet18 and
MobileNetV2. Furthermore, the Tongji dataset also exhibits good performance
with PalmKeyNet.

In single-modal matching, PalmKeyNet based on EfficientNet demonstrates
good performance on all three databases. The recognition rates for both PolyU-
M and Tongji are almost above 99.5%, with false acceptance rates below 0.3%.
Even if multi-modal recognition cannot be implemented due to limited device
capabilities, deploying single-modal matching can still achieve the desired func-
tionality.

Compared to single-modal matching, multi-modal matching does not show a
significant improvement in recognition rate but exhibits a significant reduction in
false acceptance rate. This indicates the effectiveness of the shared key scheme,
where multi-modal matching not only achieves high recognition performance but
also significantly enhances security compared to single-modal matching.

For cross-modal matching, only the false acceptance rate is reported. Both
the PolyU-M and Tongji achieve excellent recognition and authentication per-
formance regardless of the backbone network used, demonstrating the feasibility
of cross-modal matching.

Table 3 summarizes the performance of PalmKeyNet based on different back-
bone networks with and without LDPC encoding on different databases. It is
evident that the recognition rate of PalmKeyNet significantly improves when
LDPC encoding is applied, indicating that LDPC error correction can reduce
the impact of noise and enhance recognition performance.

3.4 Comparison with State-of-the-Art

We have investigated advanced deep learning-based methods, including [19],
[20], [21], and presented the experimental results in Table 4, comparing them
with the proposed PalmKeyNet in terms of equal error rate (EER) on the
same databases. A lower EER indicates a higher recognition rate for the bio-
metric system. We compared the EER for palmprint, palm vein, multimodal,
and cross-modal scenarios on the same databases. Among them, Palmnet [19]
applies Gabor filters to CNN, DHN [20] uses score-level fusion and the experi-
ments on the IIT-D database are only for palmprints, and LDBC [21] is based
on near-infrared fusion.

It can be observed that PalmKeyNet based on EffNetb5 achieves a sig-
nificant reduction in EER compared to other approaches, especially on the
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Table 4. Comparison with state-of-the-art

Feature

length

prints veins multi

modality

cross

modality

Para.#

Palmnet [19] Tongji 12M 0.19 - - - 12K

IITD 0.71 - - -

CASIA[35] 0.72 - - -

DHN [20] PolyU 64 - - 0.0253 - 113M

G+R+N+B 128 - - 0.0013 -

Tongji
64 - - 0.0013 -

128 0.3991 0.7265 0.1484 -

IIT-D 128 3.1183 - - -

LDBC [21] PolyU-M 69,62 - - 0.470 0.96 -

CasiaM 69,62 - - 4.280 -

PalmKeyNet-EffNetb5 PolyU-M 64 0.000 0.000 0.000 0.000 57M

128 0.033 0.017 0.000 0.017

Tongji 64 0.033 0.100 5.565 0.083

IIT-D 64 0.007 - - -

CasiaM 128 1.250 0.917 0.939 2.750

PalmKeyNet-ResNet18 PolyU-M 64 0.200 0.033 0.000 0.150 22M

128 0.333 0.067 0.000 0.067

Tongji 64 0.042 0.233 0.003 0.175

IIT-D 64 0.034 - - -

CasiaM 128 10.833 5.000 5.710 14.833

PalmKeyNet-MobileNetV2 PolyU-M 64 0.217 0.033 0.000 0.183 4.7M

128 0.300 0.083 5.567 0.117

Tongji 64 0.083 0.217 0.035 0.267

IIT-D 64 2.935 - - -

CasiaM 128 5.333 1.750 1.713 6.750

PolyU-M. Compared to PalmKeyNet based on the other two backbone net-
works, PalmKeyNet based on EffNetb5 achieves better accuracy. This is because
PalmKeyNet introduces LDPC, which effectively corrects some inevitable noise
interference and improves the stability of the generated keys. Additionally,
PalmKeyNet based on MobileNetV2 is a lightweight network, offering higher
efficiency.

3.5 Security Analysis

Irreversibility is an important criterion for evaluating the protection of biometric
templates, referring to the inability to restore the original biometric from the
extracted and encoded feature templates. Irreversibility helps ensure the security
and privacy of biometric templates.

The keys in this paper are feature-independent, meaning that even if an
attacker obtains the keys, they cannot reverse-engineer the original features
based on the keys. The system administrator can regenerate new keys and assign
them to users, thereby rendering the leaked keys obsolete. Additionally, the keys
in the database are encrypted using SHA-256, making them irreversible. For dif-
ferent input data, SHA-256 generates nearly unique hash values, such that even
a slight change in the input data will result in different hash values. As a result,
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it is not possible to reconstruct the original data from the database, ensuring
the confidentiality of the data.

4 Conclusion and Future Work

The proposed PalmKeyNet binds biometric images with pre-allocated keys to
generate highly discriminative keys. The application of LDPC encoding further
reduces noise interference during data transmission. The use of lightweight net-
works allows PalmKeyNet to be conveniently deployed in IoT, and the stability
of the keys ensures high reliability in data transmission. Our experimental results
demonstrate that the proposed network achieves excellent performance in single-
modality, multi-modality, and cross-modality scenarios.

For future work, in addition to using keys for matching as done in this paper,
we hope that PalmKeyNet can also serve as an intermediate step for biometric
recognition and verification, combined with other biometric template protection
methods, such as cancelable biometric techniques. Furthermore, PalmKeyNet
can be further applied to facial biometrics, where facial features can be matched
with iris features in a multi-modal manner, which presents significant challenges
in feature extraction.
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Abstract. To acquire a more discriminative feature of facial expression, we pro-
pose a multi-scale principal component analysis network based on full quaternion
matrix representation. Firstly, the structure feature and color components of facial
image constitute a full quaternion matrix. Subsequently, two-staged quaternion
principal component analysis is employed to learn convolutional filters. Among
them, the feature maps of both stages are activated via nonlinear function. With
binarization and coding, the local histograms are stacked together and fed to the
classifier for expression matching. Experiments conducted on the RafD, MMI,
NVIE, and KDEF datasets have demonstrated that the proposed method achieves
higher recognition accuracy than several existing algorithms.

Keywords: Facial expression recognition · Full quaternion matrix · Quaternion
principal component analysis · Multiscale

1 Introduction

Facial expression is an indispensable part of non-verbal behavior, which can assist peo-
ple’s verbal communication in the real-world. Over the past few years, facial expression
recognition (FER) has become one of the most concerned topics in the field of computer
vision and pattern recognition [1–3]. Furthermore, it has been successfully applied to
safe driving, intelligent monitoring, and medical rehabilitation [4].

FER typically involves three steps: (1) image preprocessing, (2) feature extraction
and selection, and (3) classification. Feature extraction methods based on convolutional
neural networks (CNN) [5] have been widely used in recent years, which can effectively
extract high-level features to represent the concise semantics of data. More and deeper
neural networks [6–8] have been proposed since Krizhevsky et al. [9] proposed AlexNet.
Yu et al. proposed a semi-supervised learning framework for facial expression recogni-
tion task, where a dynamic threshold module was designed for generating more accurate
pseudo-labels [10]. To address the ambiguity of emotion and noisy labels, Wang et al.
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developed emotion ambiguity-sensitive cooperative networks [11]. However, the param-
eter training time of these network models is too long and special tuning techniques are
required for optimal performance.

In contrast, lightweight convolutional neural networks present an appealing alterna-
tive. The main objective of this paper is to develop a multiscale principal component
analysis network based on full quaternion matrix for facial expression recognition. The
contributions of this paper are summarized as: (1) We propose a full quaternion prin-
cipal component analysis network that outperforms several existing methods for facial
expression recognition. (2) We use an activation function to enhance the nonlinearity
of feature maps and improve the generalization ability of the model. (3) The outputs of
different stages are complementary, which are favourable to recognition.

The rest of this paper is arranged as follows. Section 2 briefly reviews some
related work. Section 3 describes the proposed method in detail. Section 4 presents
the experimental results and Sect. 5 concludes the paper.

2 Related Work

To simplify the training process, Chan et al. [12] proposed principal component analy-
sis network (PCANet), and experimental results have shown that PCANet can acquire
satisfactory performance for most image classification tasks. Qaraei et al. [13] pro-
posed a nonlinear PCA network dubbed RNPCANet, which used explicit kernel PCA
to learn convolutional filters. Zhou and Feng [14] proposed multi-scale spatial pyramid
second-order pooling principal component analysis network (M3SPCANet) for face
recognition.

Quaternions, as a generalization of complex numbers, can encode different color
components into a whole when representing one color image. It has been gradually
applied to the analysis and recognition of color images [15]. To name a few, Zeng
et al. [16] proposed a quaternion principal component analysis network (QPCANet),
which extended PCANet from the real domain to the quaternion domain. Zou et al. [17]
proposed a data classifier based on quaternion block sparse representation for color face
recognition. Shi et al. [18] proposed a quaternion-based Grassmann average network to
learn effective features containing color information for histopathological images. Liu
et al. [19] applied quaternion scalar and vector norm decomposition to QPCA for color
face recognition, which can address the phenomenon of under-fitting of vector part norm
approximation. However, when using quaternion matrices to represent color images, the
real part is not fully considered.

3 The Proposed Scheme

In this section, we detail the proposed recognition scheme as shown in Fig. 1, which
mainly consists of full quaternion matrix representation, features extraction using
multiscale QPCANet (MQPCANet).
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Fig. 1. The flowchart of proposed scheme

3.1 Full Quaternion Matrix Representation

When representing a color facial expression image, we use the way described in [20]
to increase the consistency with human perception. In this method, three color compo-
nents are considered as the imaginary parts of a quaternion matrix, while the structural
information of the image is taken as the real part.

Let I(x, y)be a color image represented as a pure quaternionmatrix, the local variance
is computed in a n1 × m1 neighborhood as,

Iv(x, y) = 1

n1 × m1

n1×m1∑

p=1

∣∣ηp − η
∣∣2 (1)

where |·| denotes themagnitude of a quaternion, ηp and η respectively denote the internal
pixels and their average values in the form of pure quaternions.

Afterwards, the red component IR(x, y), the green component IG(x, y), the blue
component IB(x, y) and the extracted local variance Iv(x, y) are integrated into a full
quaternion matrix as,

Q(x, y) = Iv(x, y) + IR(x, y)i + IG(x, y)j + IB(x, y)k (2)

3.2 Feature Extraction

Building upon the QPCANet, the MQPCANet we proposed introduces an activation
function following each QPCA layer to amplify the nonlinearity of feature maps.
Additionally, it combines the output from each stage to produce the ultimate feature
representation.

(1) Suppose that we have N full quaternion images
{
Qi ∈ Qm×n

}N
i=1 for training. Let

k1 × k2 be the patch size. Around each pixel, we gather all overlapping quaternion
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patches from the ith full quaternion matrix Qi, and reshape them to column vec-
tors. Then we subtract the mean of each quaternion patch to get zero-mean quater-
nion patches Xi=

[
xi,1, xi,2, . . . , xi,(m−k1+1)(n−k2+1)

] ∈ Qk1k2×(m−k1+1)(n−k2+1). By
repeating the above process for all N training images and combining all quaternion
patches together, we obtain

X1=[X1,X2, . . . ,XN ] ∈ Qk1k2×(m−k1+1)(n−k2+1)N (3)

The covariance matrix of X1 is calculated as,

C = X1X1H

N (m − k1 + 1)(n − k2 + 1)
(4)

where the superscript H is the conjugate transposition operator.
Next, the QPCA of the training images is given by quaternion eigenvalue

decomposition,

C = W1�W1H (5)

where W1 ∈ Qk1k2×k1k2 is a unitary matrix that contains eigenvectors of the
covariance matrix C, and � ∈ Rk1k2×k1k2 is a real diagonal matrix with eigenvalues.

Assuming that the number of QPCA filters in the ith layer is Li. We choose
the L1 principal eigenvectors of W1 ∈ Qk1k2×k1k2 corresponding to the L1 largest
eigenvalues of �. Therefore, the QPCA filter bank is expressed as,

W1
l1 ∈ Qk1×k2 , l1 = 1, 2, . . . ,L1 (6)

Then, we perform a convolution operation using the QPCA filter bank to obtain
quaternion feature maps as follows,

Y1
i,l1 = Qi ∗ W1

l1, i = 1, 2, . . . ,N , l1 = 1, 2, . . . ,L1 (7)

where Y1
i,l1

∈ Qm×n is the l1 th feature map of Qi in the first stage. It should be
mentioned that zero-padding operation is applied to make sure that the quaternion
feature maps have the same size as the input quaternion matrix.

To enhance the nonlinearity of quaternion feature maps, they are activated by
employing nonlinear function Tanh [21]. Thus, we have the nonlinear quaternion
feature maps as,

G1
i,l1 = Tanh

(
Y1
i,l1

)
, i = 1, 2, . . . ,N , l1 = 1, 2, . . . ,L1 (8)

Then the outputs are treated as the input of the second stage.
(2) The way of obtaining the QPCA filter bank and other operations are the same as

those in the first stage. Firstly,With the input
{
G1
i,l1

}N ,L1

i,l1=1,1
, we collect all quaternion

patches of the same size as the first stage and get zero-mean quaternion patches
X2 ∈ Qk1k2×(m−k1+1)(n−k2+1)NL1 . Then, the QPCA is employed to obtain the QPCA
filter bank W2

l2
∈ Qk1×k2 , l2 = 1, 2, . . . ,L2. Next, the quaternion feature maps
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Y2
i,l1,l2

= G1
i,l1

∗ W2
l2
, i = 1, 2, . . . ,N , l1 = 1, 2, . . . ,L1,l2 = 1, 2, . . . ,L2 are

computed. Finally, by using the nonlinear function, we get the output of the second
stage,

G2
i,l1,l2 = Tanh

(
Y2
i,l1,l2

)
, i = 1, 2, . . . ,N , l1 = 1, 2, . . . ,L1,l2 = 1, 2, . . . ,L2

(9)

(3) To reduce the complexity of quaternion feature maps, we perform a binarization
and weighted summation for all quaternion features of the first and second nonlin-
ear layers. Firstly, each nonlinear quaternion feature map is binarized by using the
Heaviside step function H (·) to its four parts, which is defined as follows,

H (x) =
{
0, x < 0
1, x ≥ 0

(10)

For the outputs of the first stage
{
G1
i,l1

}N ,L1

i,l1=1,1
, the weighted sum of the L1

binarized quaternion feature maps in each group is given as,

T1
i =

L1∑

l1=1

2l1−1H
(
G1
i,l1

)
=S

(
T1
i

)
+ I

(
T1
i

)
i + J

(
T1
i

)
j + K

(
T1
i

)
k (11)

where the pixel values of S
(
T1
i

)
, I

(
T1
i

)
, J

(
T1
i

)
,K

(
T1
i

)
are integers in the range

[
0, 2L1−1

]
. Similarly, for the outputs of the second stage

{
G2
i,l1,l2

}N ,L1,L2

i,l1,l2=1,1,1
, the

weighted sum of the L2 binarized quaternion feature maps is given as,

T2
i,l1 =

L2∑

l2=1

2l2−1H
(
G2
i,l1,l2

)
=S

(
T2
i,l1

)
+ I

(
T2
i,l1

)
i + J

(
T2
i,l1

)
j + K

(
T2
i,l1

)
k (12)

Afterwards, we need to code each part of T1
i and T2

i,l1
separately. Tak-

ing S
(
T1
i

)
as an example, S

(
T1
i

)
is partitioned into B blocks and the his-

togram (with 2L1 bins) of the decimal values is computed in each block. Then
we concatenate all B histograms into one vector and denote this vector as
Bhist

(
S
(
T1
i

))
. Similarly, by repeating the same method on remaining seven parts

I
(
T1
i

)
, J

(
T1
i

)
,K

(
T1
i

)
,S

(
T2
i,l1

)
, I

(
T2
i,l1

)
, J

(
T2
i,l1

)
,K

(
T2
i,l1

)
, we obtain eight vectors.

Therefore, for the input full quaternion imageQi, the final feature vector is expressed
as,

f i = [
f i,1; f i,2

] ∈ R4
(
2L1+L12L2

)
B (13)

where
f i,1 = [

Bhist
(
S
(
T1
i

))
,Bhist

(
I
(
T1
i

))
,Bhist

(
J
(
T1
i

))
,Bhist

(
K

(
T1
i

))]T ∈ R4
(
2L1

)
B,

f i,2 =
[
Bhist

(
S
(
T2
i,l1

))
,Bhist

(
I
(
T2
i,l1

))
,Bhist

(
J
(
T2
i,l1

))
,Bhist

(
K

(
T2
i,l1

))]T ∈
R4L1

(
2L2

)
B.

Finally, these extracted features are used to train the SVM [22] for expression
recognition.
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4 Experimental Results

In this section, a series of experiments are performed on several facial expression datasets
to demonstrate the performance of the proposed method.

4.1 Datasets

In experiments, the Radbound Faces Database (RafD) [23] is composed of 1407 images
from 67 individuals with seven expressions (anger, disgust, fear, happiness, neutral,
sadness, surprise) in three different gaze directions. Also containing abovementioned
seven expressions, the Karolinska Directed Emotional Faces (KDEF) dataset has 490
images with frontal shooting angle of 70 individuals [24]. The MMI database includes
six expressions (anger, disgust, fear, happiness, sadness, surprise) of 17 individuals, with
a total of 306 images [25]. TheNatural Visible and Infrared ExpressionDatabase (NVIE)
contains 1374 images of six expressions [26].

Fig. 2. Sample images from (a) RafD, (b) KDEF, (c) MMI and (d) NVIE

All images are resized to 64 × 64 and Fig. 2 shows some facial images of these
datasets. For the RafD, MMI and NVIE, each dataset is divided into three groups as
each individual has three images for each facial expression. One group is used as the
tested set, and the remaining two groups are used as the training set. Three experiments
are conducted separately, and the average value is regarded as the experimental result for
each dataset. For KDEF, we randomly select two-thirds of the images in each expression
as the training set, and the remaining images are served as the tested set.

4.2 Parameters Selection

For the proposed algorithm, the recognition accuracy is mainly affected by the neighbor-
hood size of local variance, the size and number of filters and block size of histograms.
In this subsection, the impact of a single variable on accuracy is quantitatively analyzed
by varying one parameter while fixing the others to determine the optimal value, where
the overlapping ratio is set at 0.5.
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Firstly, the effect of different neighborhood sizes on recognition accuracy is tested,
where the filter size is set at 7 × 7, the number of filters is set at L1=L2= 8 and the
block size of histogram is equal to 8× 8. The average recognition accuracy of different
methods on four datasets is shown in Fig. 3(a), and it can be observed that, besides
the NVIE dataset, the recognition accuracy is related to the neighborhood size. For the
RafD dataset, the accuracy achieves the highest when the neighborhood size is set at
5 × 5. The MMI dataset has the highest accuracy when the neighborhood size is set at
7 × 7. And the optimal neighborhood size of the KDEF dataset is 3 × 3. This variation
in optimal neighborhood size is primarily attributed to the differences in facial samples
across datasets, including changes in pose and illumination.

Secondly, experiments are performed to test the impact of filter size on recognition
accuracy, where the neighborhood sizes of local variance are fixed to the best fitting for
each dataset, the number of filters is set at L1=L2= 8 and the block size of histogram is
equal to 8 × 8. Figure 3(b) shows the results, the highest recognition accuracy can be
obtained on the RafD, MMI, and NVIE datasets when the size of filters is equal to 9×9.
The optimal filter size for the KDEF dataset is 7 × 7.

Fig. 3. Recognition accuracy under different (a) neighborhood sizes, (b) filter sizes, (c) number
of filters and (d) block sizes
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Then, experiments are conducted to determine the number of filters that obtain the
optimal recognition rate. The neighborhood sizes of local variance and the filter size
are fixed to the best fitting. The block size of histogram is equal to 8 × 8. Figure 3(c)
shows the experimental results. We can see that when L1=L2= 8, the best accuracy can
be achieved on the four datasets. Besides, Fig. 4 shows examples of QPCA filters in two
stages. The first four rows are the real part and three imaginary parts of the first stage
QPCA filters and the remaining correspond to the four parts of the second stage QPCA
filters.

Furthermore, the impact of the block size on recognition accuracy is tested. The
neighborhood sizes of local variance and the filter size are fixed to the best fitting. The
number of filters is set at L1=L2= 8. Figure 3(d) demonstrates the recognition accuracy,
it can be observed that the highest recognition accuracy can be obtained on the RafD,
MMI, and NVIE datasets when the block size is equal to 12×12 while the optimal block
size for the KDEF dataset is 8 × 8.

Fig. 4. Examples of QPCA filters in the first stage (rows 1–4) and the second stage (rows 5–8):
(a) RafD, (b) KDEF, (c) MMI and (d) NVIE

4.3 Comparison with Other Methods

To further validate the recognition performance of the proposed method, the recognition
accuracy of the proposed method is compared with those by using the QPCANet [16]
method, the RNPCANet [13] method and the M3SPCANet [14] method. The parameter
values for our proposed method are set according to the highest recognition accuracy
obtained on each dataset in subsection 4.2.

Tables 1, 2, 3, and 4 show the recognition results for each expression using different
methods on the four datasets. From these tables, we see that the average recognition
rates of our MQPCANet are higher than the other methods in most cases. Our proposed
method achieves overall recognition rates of 99.72% for the RafD dataset, 80.75% for
the KDEF dataset, 98.04% for the MMI dataset and 99.85% for the NVIE dataset. Thus,
the performance of our MQPCANet is better than the other methods on the four datasets
for facial expression recognition.

Figure 5(a)–(d) show the confusionmatrices of ourMQPCANet for facial expression
recognition on four datasets. As shown in Fig. 5(a), our method can precisely recognize
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most of the facial expressions in the RafD dataset. The recognition rates of fear and neu-
tral are the lowest, at 98.51% and 99.50% respectively, while the others reach 100.00%.
As shown in Fig. 5(b), compared to other expressions in the KDEF dataset, happiness
and surprise are better recognized, with recognition accuracies of 100.00% and 95.65%
respectively. As shown in Fig. 5(c), the recognition rates of anger and surprise reach
100.00%. However, the recognition accuracy for fear is the lowest at 94.12%, which is
lower than MMI’s overall accuracy of 98.04%. As shown in Fig. 5(d), anger and sad-
ness in the NVIE dataset have the lowest recognition accuracy. Our method achieves
recognition accuracies of 99.54% and 99.60%, respectively, for these two categories.

Table 1. Recognition rates (%) of different methods based on the RafD dataset

Methods Anger Disgust Fear Happiness Neutral Sadness Surprise Overall

QPCANet 100.00 100.00 94.53 100.00 99.01 99.50 100.00 99.01

RNPCANet 100.00 100.00 94.53 100.00 97.51 99.00 99.50 98.65

M3SPCANet 90.05 93.03 78.11 93.53 84.08 86.56 78.11 86.21

Proposed 100.00 100.00 98.51 100.00 99.50 100.00 100.00 99.72

Table 2. Recognition rates (%) of different methods based on the KDEF dataset

Methods Anger Disgust Fear Happiness Neutral Sadness Surprise Overall

QPCANet 69.57 69.57 43.48 100.00 95.65 47.83 91.30 73.91

RNPCANet 73.91 78.26 34.78 100.00 82.61 60.87 95.65 75.00

M3SPCANet 4.35 4.35 4.35 34.78 0.00 0.00 26.09 10.56

Proposed 78.26 86.96 52.17 100.00 86.96 65.22 95.65 80.75

Table 3. Recognition rates (%) of different methods based on the MMI dataset

Methods Anger Disgust Fear Happiness Sadness Surprise Overall

QPCANet 92.16 92.16 90.20 94.12 94.12 96.08 93.14

RNPCANet 94.12 96.08 84.31 94.12 94.12 96.08 93.14

M3SPCANet 94.12 94.12 88.24 92.16 94.12 92.16 92.48

Proposed 100.00 98.04 94.12 98.04 98.04 100.00 98.04



Full Quaternion Matrix-Based Multiscale Principal Component Analysis Network 131

Table 4. Recognition rates (%) of different methods based on the NVIE dataset

Methods Anger Disgust Fear Happiness Sadness Surprise Overall

QPCANet 99.54 100.00 98.73 100.00 99.21 100.00 99.56

RNPCANet 99.54 98.57 99.16 100.00 99.21 99.49 99.34

M3SPCANet 99.09 99.52 99.58 100.00 99.21 100.00 99.56

Proposed 99.54 100.00 100.00 100.00 99.60 100.00 99.85

(c) (d)

(a) (b)

Fig. 5. Confusion matrix of our MQPCANet on (a) RafD, (b) KDEF, (c) MMI and (d) NVIE

5 Conclusion

In this paper, we investigated a new quaternion principal component analysis network for
facial expression recognition, which is named as MQPCANet. It takes advantage of full
quaternion representation. The activation function can further enhance the nonlinearity of
feature maps and generalization ability of the algorithm. Moreover, the stacked features
from multiple stages effectively combine global with local semantic information from
the original data, resulting in improvement of recognition accuracy. The experimental
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results performed on several datasets show that the proposed MQPCANet outperforms
the QPCANet, the RNPCANet, and the M3SPCANet in facial expression recognition
task. Future work will concentrate on new lightweight quaternion convolutional neutral
network for large-scale emotion recognition.
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Abstract. Due to the diversity of human emotions, it is often difficult
to collect all the expression categories at once in many practical applica-
tions. In this paper, we investigate facial expression recognition (FER)
under the class-incremental learning (CIL) paradigm, where we define
easily-accessible basic expressions as an initial task and learn new com-
pound expressions continuously. To this end, we propose a novel joint
relation modeling and feature learning (JRF) method, which mainly
consists of a local nets module (LNets), a dynamic relation modeling
module (DRM), and an adaptive feature learning module (AFL) by
taking advantage of the relationship between old and new expressions,
effectively alleviating the stability-plasticity dilemma. Specifically, we
develop LNets to capture subtle distinctions across expressions, where a
novel diversity loss is designed to locate informative facial regions in each
local net. Then, we introduce DRM to enhance feature representations
based on two types of graph convolutional networks (GCNs) (including
an image-shared GCN and two image-specific GCNs) from the perspec-
tives of global-local graphs and old-new classes. Finally, we design AFL
to explicitly fuse old and new class features via a weight selection mech-
anism. Extensive experiments on both in-the-lab and in-the-wild facial
expression databases demonstrate the superiority of our method in com-
parison with several state-of-the-art methods for class-incremental FER.

Keywords: Facial expression recognition · Class-incremental
learning · Relation modeling · Feature learning

1 Introduction

With the recent development of deep learning, a great number of facial expres-
sions recognition (FER) methods [8,21] have been developed and made remark-
able progress. These methods mainly focus on the classification of basic expres-
sions according to Ekman and Friesen’s study [6]. However, the limited categories
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Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 134–146, 2024.
https://doi.org/10.1007/978-981-99-8469-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8469-5_11&domain=pdf
https://doi.org/10.1007/978-981-99-8469-5_11


JRF for Class-Incremental FER 135

of basic expressions fail to describe the complexity of human emotions in real
scenarios. To comprehensively describe human emotions, Du et al. [5] define
compound expressions, which are meaningful combinations of basic expressions.
Compared with basic expressions, compound expressions are more fine-grained
and involve more subtle distinctions for classification.

Existing FER methods usually train the models based on all the available
expression data. On the one hand, in many practical applications, it is difficult to
collect all the expression categories simultaneously due to the diversity of human
emotions. Notably, we often cannot access all the old data because of the privacy
issue of facial data. Therefore, these methods cannot directly apply to these
applications. On the other hand, it is expensive to retrain a new model when new
data arrive. Therefore, learning incrementally is essential in real-world. Recently,
class-incremental learning (CIL) [11,17,20,28], which effectively avoids the heavy
burden of retraining models as new classes emerge and the costly storage of old
data, has become a hot learning paradigm. Due to storage restrictions, the model
easily suffers from catastrophic forgetting (i.e., the model tends to remember
new classes while forgetting old classes). Such a problem can be ascribed to the
stability-plasticity dilemma (i.e., the conflict between retaining old knowledge
and adapting to new concepts) [10].

In this paper, we study FER under the CIL paradigm, where we define easily-
accessible basic expressions as initial classes and learn new compound expres-
sions incrementally. For convenience, we call such a task class-incremental FER.
Different from natural objects, facial expressions show close connections, which
can be well exploited during incremental learning. As a result, we can leverage
the intrinsic relationship between old and new expressions to perform class-
incremental FER. To this end, we propose a novel joint relation modeling and
feature learning (JRF) method for class-incremental FER. JRF mainly consists
of a local nets module (LNets), a dynamic relation modeling module (DRM),
and an adaptive feature learning module (AFL).

To be specific, LNets aggregate the spatial information across channels and
locate informative regions to capture discriminative features. In each local net,
an effective diversity loss is introduced to enable the model to discover potential
discriminative regions for identifying subtle distinctions across expressions. To
exploit the intrinsic relationship between expressions, DRM performs relation
modeling to enhance feature representations from the perspectives of global-
local graphs and old-new classes. Finally, AFL explicitly inserts the features
from the old model into the new one to achieve the adaption of old and new
class knowledge via a weight selection mechanism.

The main contributions of this paper are as follows:

– We propose a novel JRF method for class-incremental FER, where rela-
tion modeling and feature learning are jointly performed across old and new
expressions, effectively alleviating the stability-plasticity dilemma.

– We present an image-shared GCN and two image-specific GCNs to describe
the dependency of features in DRM. Such a way benefits maintaining the
previously-learned knowledge and adapting to new classes. Moreover, we
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incorporate the features from the old model into the learning of the new
model in AFL, greatly preventing catastrophic forgetting.

– We conduct extensive experiments on both in-the-lab and in-the-wild facial
expression databases to show the effectiveness of our method against several
state-of-the-art methods.

2 Related Work

Facial Expression Recognition (FER). A large number of FER methods
[8,21], which focus on the classification of basic expressions and train on all the
predefined classes, have been proposed in unconstrained environments.

Recent studies have revealed that human beings can express more complex
feelings that fall outside of these basic expressions [16]. Notably, Du et al. [5]
introduce and define compound expressions to comprehensively describe human
emotions and fit into practical applications in real scenarios. Due to the subtle
differences across compound expressions, extracting fine-grained expression fea-
tures is vitally important for identifying compound expressions. Zhang et al.
[25] propose a two-stage recognition method to enhance the classification ability
of compound expressions, while Li et al. [15] propose a multi-task meta-learning
method with a novel alignment loss to learn refined expression representations.

The above methods train the model on all the available predefined classes.
Unfortunately, collecting all expression categories at once is often difficult, where
samples of new classes often arrive sequentially in many applications. In this
paper, we introduce the CIL paradigm for compound FER, achieving a more
practical FER learning paradigm.

Class-Incremental Learning (CIL). Existing CIL methods can be broadly
classified into three groups: data-centric methods, model-centric methods, and
algorithm-centric methods [27]. Data-centric methods [1] preserve samples of old
classes for data replay based on different sampling modes or control optimization
directions with old data. Model-centric methods [20,28] expand an additional
network structure to dynamically adapt to task-specific features from different
incremental tasks or estimate the importance of parameters. For instance, FOS-
TER [20] dynamically expands and compresses the model from the perspective of
gradient boosting. MEMO [28] quantitatively measures the influence of different
layers on the model and expands the specialized block incrementally. Algorithm-
centric methods [11,17] design effective strategies (i.e., knowledge distillation or
correction bias) to resist catastrophic forgetting. iCaRL [17] extends a distilla-
tion loss with an exemplar set while AFC [11] restricts the update of important
features via the distillation loss. Different from natural objects in general CIL
tasks, facial expressions show strong connections (i.e., the intrinsic relationship
between basic and compound expressions). Thus, we can leverage such a cross-
expression relationship to improve the FER performance with the CIL paradigm.

Recently, Zhu et al. [30] first introduce FER in the CIL paradigm. However,
this method extracts features via a novel center-expression-distilled loss, and it
only works on basic expressions. Unlike this method, we investigate compound
FER under the CIL paradigm, which is a more challenging and practical task.
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3 Proposed Method

3.1 Problem Formulation

We introduce the CIL paradigm for compound FER, where we define the clas-
sification of easily-accessible basic expressions as an initial task and that of
compound expressions continuously as incremental tasks.

Assume that there is a sequence of N+1 incremental tasks {D0,D1, · · · ,DN},
where D0 and Dn denote the initial task and the n-th incremental task, respec-
tively. Following the commonly used rehearsal-based methods [17], we store
a tiny number of exemplars from old classes as memory and fix them in the
incremental process. At the n-th incremental task, a set of expression samples
Bn = {(xn

i , yn
i )}Bi=1 are constructed with the exemplars from old classes ever

seen and all the samples from new classes at the n-th incremental task. Here, B
is the number of samples; xn

i ∈ {En ∪ Dn} and yn
i ∈ Yn denote the i-th input

image and its ground-truth label, respectively (note that the classes from differ-
ent tasks are disjoint, that is, Yt ∩Yt′

= ∅ for t �= t
′
); En denotes the exemplars

of old classes at the n-th incremental task. We evaluate the performance of the
classes ever seen so far.

3.2 Overview

An overview of the proposed JRF is shown in Fig. 1. JRF is composed of a back-
bone, LNets, DRM, and AFL. Specifically, given an input image, the feature map
is first extracted from the backbone. Then, LNets aggregate spatial information
across channels and capture information from local regions. In each LNet, a
novel diversity loss is designed to effectively encourage the model to focus on
different discriminative regions, exploiting the subtle distinctions across expres-
sions. Next, DRM performs relation modeling to enhance feature representations
from the perspectives of global-local graphs and old-new classes. In particular,
we leverage an image-shared GCN (a static GCN) to capture the dependency
of features from a global view (the whole training data), and two image-specific
GCNs (dynamic GCNs) to exploit the information from a local view (a specific
image). Such a way can greatly alleviate the overfitting caused by data imbal-
ance in the CIL paradigm. Finally, AFL selectively fuses information from old
and new features to achieve the adaption of old and new class knowledge via a
weight selection mechanism.

3.3 Local Nets Module (LNets)

Inspired by LANet [22], we design LNets (consisting of M LNets) to extract
discriminative local features. Technically, each LNet is composed of two 1 × 1
convolutional layers to locate important local facial regions automatically. The
first convolutional layer outputs C/r channels with a ReLU operation while the
other outputs one channel followed by a Sigmoid operation and generates an
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Fig. 1. Overview of our proposed JRF method. It consists of a backbone, a local nets
module (LNets), a dynamic relation modeling module (DRM), and an adaptive feature
learning module (AFL). We use ResNet-18 as the backbone.

attention map F ∈ R
C×W×H for the i-th image, where r denotes the reduction

ratio. C, W , and H are the channel number, width, and height, respectively.
From each LNet, a number of T -grouped attention maps are used to com-

pute the maximum responses via the cross-channel max pooling (CCMP) oper-
ation [9], which can perverse the peaks of feature channels for fine-grained
classification. To be specific, we can obtain the i-th group of attention maps
Pi ∈ R

K×H×W (K = C/T ), and then we reshape Pi to obtain grouped fea-
ture channels Gi ∈ R

K×HW . To encourage the model to locate different parts,
inspired by [2], an effective diversity loss for Gi of each LNet is defined as

Ldiv j =
1
T

T∑

i=1

h(Gi), j = 1, · · · ,M (1)

where h(Gi) can be computed as

h(Gi) =
WH∑

k=1

max
j=1,2,··· ,K

[
eGi,j,k

∑WH
k′=1 eGi,j,k′

]
. (2)

The upper-bound of Ldiv j is equal to K when K feature maps focus on
different local parts, while the lower bound is 1 when they all locate at the same
part. Therefore, we expect to maximize the value of Ldiv j to its upper bound
by utilizing a minus sign to Ldiv j through subtraction with the upper bound.

3.4 Dynamic Relation Modeling Module (DRM)

Due to the subtle distinctions between expressions, it is vital to capture and
model the intrinsic relationship among expressions. Based on the attention fea-
tures from LNet, we propose DRM for relation modeling from the perspectives of
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global-local graphs and old-new classes, enhancing feature representations. Our
DRM is based on graph convolutional network (GCN) [12], which can effectively
describe the dependency of nodes [3,19,24].

Definition. GCN is an efficient type of convolutional neural network (CNN)
on graphs and learns feature representations of nodes over L layers. In LNet,
we apply average pooling to Pi and reshape it into fi ∈ R

1×K . Then, a set
of attentive features F′ = [f1; f2; · · · ; fM ] ∈ R

M×K (K denotes the dimensions
of each feature) are obtained from LNets for the i-th facial image. Thus, GCN
leverages their correlation to compute the adjacency matrix A ∈ R

M×M . Then,
the values of vertices are updated via the adjacency matrix A and the learnable
weight matrix W. The updated nodes F′(l+1) of a single-layer are formulated as

F′(l+1) = σ1(AF′(l)W(l)), (3)

where σ1(·) is the Leaky ReLU function; F′(l) and W(l) denote the hidden rep-
resentations and the learnable weight matrix, respectively, at the l-th layer;

We utilize a single-layer GCN to construct the global view and the output of
this GCN is defined as H = σ1(AF′W), where H = [h1,h2, · · · ,hM ] ∈ R

M×K .

Global-Local Dynamic Graph. We introduce two types of GCN (including
an image-shared GCN and two image-specific GCNs) to describe the relation-
ship between feature nodes from a global-local perspective. On one side, when
the relationship among all the feature nodes is shared by all images of a dataset,
the adjacency matrix (denoted as Ag) in the image-shared GCN offers a global
perspective to describe the dependency. On the other side, for each image, dif-
ferent local parts may show different contributions to expression recognition.
Such a dynamic contribution change exhibits different dependency among these
features. Therefore, we introduce an image-specific GCN to adaptively estimate
the relationship for each image, whose adjacency matrix (denoted as Al) takes
the image-specific information into consideration and offers a local perspective
as a complementary part to the global one.

Old-New Dynamic Graph. Based on the above image-specific GCN, we also
adopt another image-specific GCN (i.e., an old-new dynamic graph) to reflect
how the model reacts when an image is given and insert this reaction to guide
the learning of the new images. Such a way keeps the learned knowledge and
navigates the learning of new knowledge based on the old one. Specifically, we
compute the adjacency matrix Aon for old-new classes. Then, we leverage Aon

and Al on the global-local dynamic graph to update the features and fuse them
to obtain the relationship-based features.

Dynamic Graph Combination. Inspired by [24], DRM is designed to generate
attentive features by considering the relationship between local regions and the
global one at the initial task. Based on this, DRM also models the relationship
between old features from the old model and the new ones from the current model
to resist forgetting in the subsequent incremental tasks. The output Z ∈ R

M×K

of the dynamic graph is defined as

Z = σ2(A′HW′), (4)
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where A′ = σ2(WaH′), which σ2 is the Sigmoid activation function and H′ =
[(h1 : hg), (h2 : hg), · · · , (hM : hg)]∈ R

2K×M , which is concatenated by H and
the image-specific global representation hg ∈ R

K . hg is obtained via a global
average pooling and followed by a convolution layer of H. When it comes from the
old model, the adjacency matrix Aon is constructed while the adjacency matrix
Al is computed when hg is from the current model; W′ ∈ R

K×K and Wa ∈
R

M×2K denote the weights of dynamic GCN and the weights of a convolution
layer to construct the dynamic correlation matrix A, respectively; The symbol
A′ is Al (Aon) in global-local perspective (old-new perspective) and hg that is
from the old model (or the current model) is denoted as hg o (or hg n) in H′.

After obtaining the features updated by two types of relationships, we aggre-
gate their information via a coefficient to generate enhanced features.

3.5 Adaptive Feature Learning Module (AFL)

To further improve the performance of incremental learning, AFL explicitly
inserts the old features into the incremental learning process. Note that the
old feature used in DRM is hg, which represents the global representation of the
attentive features for relation modeling rather than the features for classification.
Therefore, AFL integrates the final expression features via a weight selection
mechanism to adaptively weight the information from multiple branches.

Inspired by [14], we obtain the fused feature ẑ ∈ R
Q (i.e.,Q = MK) by the

concatenation of the attentive features Z obtained by the DRM (i.e., Zo from the
old dynamic graph and Zn from the new dynamic graph in the subsequent incre-
mental task and add them to obtain ẑ). Given the new feature ẑn and the old
feature ẑo for the i-th image learned from the current model and the old model,
we first combine the features from two branches via an element-wise summation,
where ẑa = ẑo + ẑn, and then we leverage a fully-connected (FC) layer to reduce
the dimension for the compact representation s = FC(ẑa) = σ3(W′

f (ẑa)), where
σ3, W′

f ∈ R
Q/r′×Q and r′ are the ReLU operation, learnable weight and reduc-

tion ratio, respectively.
Next, we leverage soft attention across channels to selectively fuse infor-

mation to obtain the final feature ẑ′ = [ẑ′
1, · · · , ẑ′

Q] for classification, where
ẑ′
q = αoq ẑoq + αnq

ẑnq
. Note that we use a softmax operator on channel-wise

digits αoq = e
Aoq s

e
Aoq s

+e
Anq s , αnq

= e
Anq s

e
Aoq s

+e
Anq s , where αo and αn respectively

denote the weights of old and new features while Aoq and αoq are the q-th row
of Ao ∈ R

Q×Q/r′
and the q-th element of αo, respectively, likewise An and αn.

3.6 Joint Loss and Inference

Classification Loss. We adopt a cosine classifier for classification in the training
process, and the classification loss can be formulated as

Lc = −
∑

j∈Yn

1[j=yc]log(θ(ẑ′)), (5)
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where θ is the cosine classifier. When j = yc, the function 1[j=yc] is equal to 1;
otherwise, its value is 0.

Based on the above formulations, the joint loss is given as

L = Ld + λ1Lc + λ2

M∑

j=1

(K − Ldiv j), (6)

where Ld is a simple distillation loss [17]; λ1 and λ2 are the balancing parameters.

Inference. We adopt a nearest-mean-of-exemplars classification strategy as [17],
which computes a prototype vector for each class. This strategy can be formu-
lated as μyc = 1

|yc|
∑

j∈yc
ẑ′
j and then classifies the label with the most similar

prototype as y∗ = argminj∈Yn
||ẑ′ − μj ||.

4 Experiments

4.1 Facial Expression Databases

In this paper, we evaluate our method on an in-the-lab database (i.e., CFEE [5])
and two in-the-wild databases (i.e., RAF-DB [13] and EmotioNet [7]). CFEE
is collected from 230 human subjects, which contains 7 basic expressions (with
1,610 images) and 15 compound expressions (with 3,450 images). RAF-DB con-
tains 7 basic expressions, including 15,339 images (with 12,271 training images
and 3,068 test images), and 11 compound expressions, including 3,954 images
(with 3,162 training images and 792 test images). For EmotioNet, we use the
second track of the EmotioNet Challenge, which contains 2,478 images with 6
basic expressions and 10 compound expressions.

4.2 Implementation Details

Each facial image is first aligned and then resized to the size of 224× 224. All
the results are reported based on PyCIL [26] (a Python toolbox for CIL). For
each incremental task, we store 20 old exemplars as [17] and train the model
for 40 epochs with a batch size of 32 via stochastic gradient descent [18] (with
the initial learning rate 0.01 and 0.001 at the incremental tasks). We first train
our method on basic expressions as the initial task and learn new compound
expressions as incremental tasks. The number of incremental classes is C = 3
or C = 5 in incremental tasks. The parameters λ1 and λ2 are empirically set
to 1.000 and 0.0001, respectively. We evaluate our method on the test data of
the classes ever seen so far and report the results (average accuracy±standard
deviation), as done in [23]. We empirically set T = 4 and M = 4 in LNets.

4.3 Ablation Studies

The ablation study results on RAF-DB are shown in Table 1, where iCaRL is
used as our baseline.
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Influence of LNets. We evaluate the effectiveness of LNet (denoted as Base-
line+LNets (w.o. div), which applies LNets into Baseline without the diversity
loss. We can see that Baseline+LNets (w.o. div) performs better than Baseline
since it can encourage the model to focus on the local subtle distinctions and
achieves 4.04% improvements in C = 3. Meanwhile, Baseline+LNets outperforms
Baseline+LNets (w.o. div), which indicates the effectiveness of the diversity loss.

Table 1. Ablation studies for several variants of our method with the different numbers
of incremental classes C = 3 and C = 5 on RAF-DB. ‘Avg±std’ denotes the average
accuracy (%) and the standard deviation over the incremental tasks. The best results
are marked in bold.

Methods Avg± std

C = 3 C = 5

Baseline 63.33±0.79 63.96±0.22

Baseline+LNets (w.o. div) 67.37±0.56 67.74±0.12

Baseline+LNets 67.64±0.52 67.86±0.13

Baseline+LNets+DRM (l) 67.99±0.68 69.12±0.44

Baseline+LNets+DRM (l-g) 69.88±0.82 70.64±0.18

Baseline+LNets+DRM 69.97±0.85 71.18±0.07

Baseline+LNets+AFL 68.15±0.87 68.91±0.41

Baseline+LNets+DRM+AFL 71.06±0.97 71.23±0.35

Influence of DRM. Baseline+LNets+DRM (l), Baseline+LNets+DRM (l-g),
and Baseline+LNets+DRM represent the methods that DRM only models the
relationship in a global view via an image-specific GCN, DRM only leverages
the global-local dynamic graph, and DRM only utilizes the combination of the
global-local dynamic graph and the old-new dynamic graph, respectively. Base-
line+LNets+DRM (l) performs worse than Baseline+LNets+DRM (l-g). This
indicates that not all the images can adapt to the same patterns of dependency
shared across images. Moreover, the recognition accuracy is improved when the
relationships of the global-local graph and old-new classes are integrated into the
model, which validates the importance and effectiveness of relation modeling via
GCN. Compared with the method using only one type of relationship, the com-
bination of these two types of relationship performs the best, achieving 2.33%
and 3.32% improvements in C = 3 and C = 5 between Baseline+LNets+DRM
and Baseline+LNets. Since the global-local relationship mainly focuses on sub-
tle identification and the old-new relationship focuses on old and new knowledge
adaption, both of them can supplement each other to boost the performance.

Influence of AFL. The performance of JRF is further boosted when AFL is
used by exploiting the learned feature information from old classes. In such a
case, different information from multiple branches can selectively adapt to the
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old and new class knowledge via a weight selection mechanism, with 0.51% and
1.05% improvements with the comparison between Baseline+LNets and Base-
line+LNets+AFL. Meanwhile, a similar performance can be seen in the com-
parison of Baseline+LNets+DRM and Baseline+LNets+DRM+AFL. The above
results show the effectiveness of AFL via a weight selection mechanism.

4.4 Comparison with State-of-the-Art Methods

Table 2 shows the results obtained by our proposed method and several out-
standing CIL methods, and the performance curves are also shown in Fig. 2.

Table 2. Performance comparisons (the average accuracy (%) and the standard devi-
ation over the incremental tasks) between our proposed method and several state-of-
the-art methods with the different numbers of incremental classes C = 3 and C = 5 on
CFEE, RAF-DB, and EmotioNet. The best results are marked in bold.

Methods CFEE RAF-DB EmotioNet

C = 3 C = 5 C = 3 C = 5 C = 3 C = 5

Finetune 57.31±1.84 59.68±1.75 44.12±1.15 45.13±0.69 52.75±1.39 55.91±3.03

PODNet [4] 63.82±1.85 66.31±1.55 58.36±1.20 61.02±0.92 56.11±0.57 59.73±1.32

COIL [29] 56.35±1.26 58.25±0.47 47.73±2.65 48.34±1.13 52.85±2.21 56.38±1.62

AFC [11] 65.54±1.75 66.81±1.49 68.59±1.11 66.96±0.47 59.79±1.50 61.75±0.91

MEMO [28] 66.01±2.28 67.95±1.97 63.22±1.47 62.49±0.72 57.87±1.85 58.73±0.93

SCN [21] 46.62±0.23 57.67±1.08 51.31±1.37 40.34±1.45 50.21±1.84 55.40±1.43

DACL [8] 55.90±1.30 53.73±1.29 43.34±2.53 53.14±1.99 53.99±1.48 55.67±1.50

Baseline 67.39±1.25 68.27±1.64 63.33±0.79 63.96±0.22 59.48±0.44 61.40±0.77

JRF (Ours) 67.63±1.86 69.31±1.37 71.06±0.97 71.23±0.35 61.39±1.56 62.80±0.35

Fig. 2. Test accuracy vs. the number of classes obtained by nine different methods for
(a) C = 3 and (b) C = 5 on RAF-DB.
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The Finetune method, which learns from the new classes without the restric-
tion of learned knowledge, is prone to fit new classes and forgets former knowl-
edge severely. PODNet and AFC explore different ways for distillation to resist
forgetting while MEMO investigates the dynamic network structures to adjust
old and new knowledge. Different from these methods, our JRF method investi-
gates the relationship between expressions, not only capturing subtle distinc-
tions across expressions but also adapting to old and new class knowledge.
JRF achieves the best average accuracy among all computing methods on all
databases (67.63% (69.31%), 71.06% (71.23%), and 61.39% (62.80%) on CFEE,
RAF-DB, and EmotioNet, respectively, in C = 3 (C = 5), with comparable stan-
dard deviations). Meanwhile, we also represent two FER methods (SCN and
DACL). SCN may relabel the old class samples to new classes while DACL per-
forms better but still forgets the old classes. On the contrary, our JRF method
considers the global-local relationship to identify the subtle distinctions and
explores the old-new relationship to alleviate the stability-plasticity dilemma.

5 Conclusion

In this paper, we develop a novel JRF method for class-incremental FER. In
JRF, we design LNets for subtle distinctions discovery and leverage DRM for
performing relation modeling to enhance feature representations from the per-
spectives of global-local graphs and old-new classes. Moreover, we also integrate
learned knowledge via AFL to adapt to the old and new class knowledge dur-
ing incremental learning. Based on the above designs, we effectively alleviate
the stability-plasticity dilemma in class-incremental FER. Extensive experiments
show the effectiveness of our proposed method.
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Abstract. Currently, two challenges exist in the field of gait recognition: (1)
there is a lack of gait datasets that include common accompanying behaviors
during walking, and (2) it’s necessary to improve feature representation in skele-
ton sequence data for model-based approaches. To address these concerns, we
focused on the study of accompanying behavior-based walking conditions and
multiple views, and utilizes depth cameras to collect gait data. We presented the
CDUT Gait dataset to investigate the impact of various accompanying behaviors
on gait recognition performance. And we proposed a RepGCN, a novel graph con-
volution networks model with innovative residual strategy in the spatial module,
as well as new spatio-temporal feature extraction modules. Experiments demon-
strate that RepGCN achieves state-of-the-art performance on CDUT Gait with
minimal model parameters compared to existing model-based approaches. The
combination of depth cameras and RepGCN has potential applications in access
control, smart home, and anti-terrorism areas.

Keywords: Gait recognition · depth cameras · CDUT Gait · graph convolution
networks

1 Introduction

Gait recognition is a promising research direction in biometrics, because of its advan-
tages and distinctive characteristics, including long-distance recognition capability, non-
interactivity, non-invasiveness, and resistance to deception. With the advancements in
depth sensing technology, the use of depth cameras has gained traction in the field
of gait recognition [1]. The body tracking capabilities of depth cameras allow for the
direct acquisition of skeleton sequence data during human walking, making them highly
suitable for the development of model-based gait recognition methods. However, the uti-
lization of depth skeleton sequence data for gait recognition currently encounters several
challenges that need to be addressed. Firstly, the existing studies often lack comprehen-
sive consideration of accompanying behaviors during walking, as they predominantly
focus on cross-view analysis. Secondly, there is a limited application of graph convolu-
tion in model-based approaches for extracting feature, highlighting the need for further
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advancements in characterizing skeleton sequence data using graph convolution-based
methods.

Previous studies in gait recognition using depth cameras have focused on specific
walking conditions, e.g. multi-view [2, 3], speed [4], carrying objects [5], and view
occlusion [6]. Hofmann et al. created the TUM GAID dataset by collecting multimodal
data using depth cameras [5]. This dataset includes RGB video, RGB-D, and audio
modalities, making it one of the largest datasets available with 305 individuals across
three variations i.e., normalwalking, backpack,wearing coating shoes.The incorporation
of multiple modalities enhances the dataset’s potential for various research applications.
Li et al. utilizedAzure Kinect DK to collect multi-modal gait data and builtOGRGB+D
Dataset [6].OGRGB+D is to study the impact ofwalking conditions on the performance
of gait recognition under various visual occlusions. These walking conditions include 7
types: backpack, side small object, side large object, low-occlusion clothing, medium-
occlusion clothing, high-occlusion clothing and three people walk together. Then, they
proposed Siamese Spatio-Temporal Graph Convolutional Network (Siamese STGCN)
to solve the case of severe view occlusion.

However, these studies did not fully consider the impact of multiple accompanying
behaviors that occur during daily walking. In our study, we aim to explore the impact of
different accompanying behaviors during walking (ABW ) on the performance of a gait
recognition model. By considering ABW of daily life, we can gain practical insights into
the robustness and effectiveness of gait recognition methods in real-world scenarios.
Thus, we constructed CDUT Gait dataset. The findings of this study have significant
practical implications for applications such as access control, smart home, and anti-
terrorism, where accurate and reliable gait recognition is crucial.

Gait recognition approach using depth cameras can be classified into two main cat-
egories: appearance-based and model-based methods. The appearance-based methods,
such as RGB-D based approaches, typically achieve higher recognition rates [1, 7].
However, these methods often necessitate an increased number of learnable parameters,
resulting in higher storage and computing requirements. On the other hand, model-
based methods rely on human skeleton information for gait modeling [3, 6, 8]. These
approaches require less storage space and have smaller parameter sizes, making them
more resource-efficient. In our research, we adopted model-based methods to model the
skeleton sequence data, providing an alternative with reduced resource demands.

Currently, deep learning-based methods have emerged as the mainstream approach
in the field of gait recognition, encompassing both model-based and appearance-based
methods. Deep learning approaches have proven to be robust in handling various covari-
ate factors within the field of gait recognition [9]. However, popular methods like CNNs
or LSTMs may not be optimal for processing non-Euclidean distance data, such as
temporal skeletons [10]. To address this, Graph Convolutional Networks (GCNs) [11]
have been introduced for gait recognition, effectively handling non-Euclidean distance
data and addressing challenges like visual occlusion and cross-view recognition [6, 12].
Teepe et al. proposed GaitGraph that combines skeleton poses with GCN to obtain a
model-based approach for gait recognition. The experimental results demonstrate that
GaitGraph performs well cross-view compared to existing model-based methods and
remains competitive with some appearance-based methods.
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While existingGCN-basedmethods have demonstrated their effectiveness, they often
lack specific enhancements for spatio-temporal feature extraction in gait recognition. In
our work, we propose a novel model-based approach called RepGCN. It improves the
spatio-temporal feature extraction by incorporating a well-designed residual strategy
inspired by RepVgg [13]. Our experiments validate the effectiveness of incorporating
novel residual connections into the graph convolution module. Overall, the designed
residual connection strategy in RepGCN plays a crucial role in extracting discriminative
spatio-temporal features and enhancing the model’s ability to capture relevant patterns
in gait sequence data. This could improve performance in gait recognition tasks.

The contributions of our works are as follows:

1. We constructed a new gait dataset with Azure Kinect DK: CDUT Gait. This dataset
is distinct in that it includes more accompanying behaviors during walking and
incorporates multiple views.

2. We proposed RepGCN, an innovative model-based gait recognition approach that
achieves state-of-the-art performance onCDUTGait. By incorporating a novel resid-
ual strategy in the spatial and spatio-temporal feature extraction modules, RepGCN
surpasses existing model-based methods.

Fig. 1. The experimental scene was set up with three depth cameras positioned at angles of 0°,
315°, and 45°, arranged in a daisy-chain configuration for device synchronization. The subject’s
walking path is indicated by a light blue dotted line.
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2 CDUT Gait Datasets

In our experimental design, we aim to investigate the impact of various accompanying
behaviors during walking as well as different views on the performance of gait recogni-
tion. Figure 1 illustrates our experimental setup where the camera placement is designed
to capture a broad range of skeletal motion in the sagittal, coronal, and horizontal planes.
This configuration allows us to effectively capture and analyze the dynamics of human
movement from multiple views.

For this data collection, 44 graduate students with independent walking abil-
ity were invited from Chengdu University of Technology. All participants were pro-
vided with detailed information regarding the experimental procedure, and they pro-
vided informed consent prior to participating in the experiment. The subjects were
asked to walk in five different conditions: walking normally (WN), walking with
a backpack (WBP), walking while lifting objects (WLO), walking while using a
mobile phone (WMP) and walking while carrying objects with both hands (WBH).
They walked on an 8-m-long walkway. Each subject has 150 skeletal gait sequences(= [

5(accompanyingbehaviorsduringwalking) × 10(sessions) × 3(views)
])
. The col-

lected sequence data has a dimension of T × V × C, T represents the length of the
temporal, V represents the number of human joint points and C represents dimension
of the coordinate axis.

Table 1. The details information regarding each data subset of CDUT Gait.

CDUT
Gait 1

CDUT
Gait 2

CDUT
Gait 3

CDUT
Gait 4

CDUT
Gait 5

Subjects 44 44 44 44 44

Sequences 6,612 6,612 6,612 6,612 6,612

ABW in
Training
Set

WBP, WLO, WMP,
WBH

WN, WLO,
WMP, WBH

WN, WBP,
WMP, WBH

WN, WBP,
WMP, WBH

WN, WBP,
WLO, WMP

ABW in
Test Set

WN WBP WLO WMP WBH

Sequences
in Training
Set

5,314 5,313 5,292 5,292 5,292

Sequences
in Test Set

1,298 1,299 1,320 1,320 1,320

The above abbreviations as follow:
ABW: accompanying behaviors during walking. WN: walking normally; WBP: walking with a
backpack;WLO: walking while lifting objects;WMP: walking while using a mobile phone;WBH:
walking while carrying objects with both hands.

In order to investigate the impact of accompanying behaviors while walking (ABW )
on gait recognition, we adopt a similar protocol to the Subject-Independent Protocol
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(SIP) [14] commonly used in gait recognition datasets i.e., ABW-Independent Protocol.
(ABWIP). ABWIP requires that the accompanying behaviors appearing in the train data
do not intersect with the ones in the test data. We utilized Azure Kinect DK to collect
skeletal gait data and created the CDUT Gait dataset, which comprises five subsets.
Each subset is composed of separate training and test sets. For example, in CDUT Gait
1, the test set is constructed using data fromWN, while the rest of the data is utilized for
training purposes. Similar approaches were used to construct the other subsets. Further
details about each subset are given in Table 1. The dataset splitting method employed
in CDUT Gait facilitates thorough and dependable evaluations of model performance
in recognizing gait patterns influenced by various accompanying behaviors. In addition,
CDUT Gait encompasses the cross-view covariate factor commonly found in numerous
gait recognition datasets. As a result, CDUT Gait is a gait recognition dataset that
integrates various intricate covariates, thereby facilitating a more effective evaluation
of the robustness and generalization capabilities of gait recognition algorithms. This
advancement plays a crucial role in the progression towards more accurate and reliable
gait recognition algorithms, especially in real-world applications.

3 Gait Recognition with RepGCN

3.1 Preliminary of GCN

The Graph Convolution Network (GCN), initially introduced by Kipf et al. [11],
pioneered a groundbreaking method that enabled convolution operations on graph-
structured data. GCN can efficiently extract information between nodes while main-
taining low computational cost, even for graph-structured data with arbitrary topology.
CNN can handle typical computer vision tasks, which is mainly due to properties of the
CNN, such as rotate invariance and transitional invariance. However, it’s difficult for
traditional CNN to deal with graph-structured data with random topology [15].

Generally, a gait skeleton graph in spatial domain can be defined as:

(1)

where V = {υ1, υ2, . . . , υN } is the set of vertices, E is the set of edges denotes the
connection between vertices.E usually is represented by an adjacencymatrixA ∈ R

N×N ,
and A can be represented as:

A =
{
1, if (i, j) ∈ L
0, else

, (2)

where L is the set of node pairs connected in graph. The layer-wise propagation rule of
GCN as follows:

X (l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2X lW l

)
, (3)

where X is feature representation of gait skeleton data. Ã = In + A corresponds to the
skeleton graph, where In is an identity matrix. D̃ is the diagonal degree matrix of Ã. l
represents the number of propagation layers in the network. Wl represents a learnable
weightmatrix that is utilized throughout the entire propagation process. σ(·) is activation
function, e.g., ReLU, Sigmoid.
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3.2 RepGCN

In our work, we present RepGCN, a novel GCN-based network inspired by the RepVgg
architecture [13]. GaitGraph adopts a similar approach to ResGCN [16] in constructing
graph convolution blocks, specifically by introducing residual connections into the graph
convolution. However, the main difference between RepGCN and GaitGraph lies in
their distinct strategies for implementing residual connections. The residual strategy of
GaitGraph can be expressed as:

F(x) = H (x) + g(x) (4)

The residual strategy of RepGCN can be expressed as:

F(x) = H (x) + g(x) + x (5)

H (x) represents an underlying mapping that is to be fit by applying a few stacked
layers, g(x) indicates the residual connection of non-linear transformation, and x rep-
resents identity mapping. In RepGCN, the dual-residue connection structure is estab-
lished by combining the output of g(x) and x. Then, the overall spatio-temporal feature
representation in RepGCN can be expressed as:

Y = δ
(
Yspatial + Ytemp

)
(6)

and the counterpart of GaitGraph can be expressed as:

Y = δ
(
l(x)+δ(Y spatial + Ytemp)

)
(7)

where Yspatial and Ytemp denote the feature representations of the spatial module and
temporal module, respectively. l(x) denotes the long residual connection that spans the
feature extraction process within each spatio-temporal module in GaitGraph. Notably,
we didn’t incorporate this kind of long residual connection in RepGCN.

Fig. 2. The overview of pipeline
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Figure 2 provides an overview of the pipeline used in our work, which consists of
three main parts: dataset construction, model construction, and model evaluation. In
the dataset construction part, we have described the process in Sect. 2. For the model
construction part, we introduce a Window-Warping layer for data augmentation and to
address overfitting or underfitting issues. Our model architecture, shown in Fig. 3f, com-
prises three components: backbone, neck, and head. The backbone includes 5 RepGCN
blocks, each containing a temporal and spatial feature extraction module as depicted in
Fig. 3e. The details of the spatial module and temporal module are shown in Fig. 3c
and Fig. 3d, respectively. The temporal module primarily utilizes the Temporal Con-
volution Network (TCN) and used to extract temporal feature, which is implemented
using a 1D CNN. Spatial module is used to extract spatial feature. The up sampling
and down sampling, which are included in both the spatial module and the temporal
module, are shown in detail in Fig. 3a and Fig. 3b, respectively. The up-sampling and
down-sampling blocks in our model adjust the number of channels in the feature map to
facilitate efficient feature extraction and representation. The neck component enhances
feature robustness through global average pooling. The head component consists of a
linear layer and a softmax layer, working together to generate the final output used for
identity recognition. The details of the network architecture are shown in Table 2.

In the spatial module, we employ GCN as the main feature extractor instead of
CNN. This choice is motivated by the nature of skeleton-based gait data, where each
joint is represented as one node in a graph without a fixed topology. Traditional CNN
are not well-suited for extracting feature from undirected graph data. In contrast, GCN

Fig. 3. The network architecture of RepGCN



154 Z. Mei et al.

are specifically designed to handle graph-structured data, making them more suitable
for extracting feature from gait skeleton data.

4 Experiments

Evaluation Schemes. To comprehensively assess the model’s robustness in handling
changes in accompanying behaviors, we employ the ABWIP for model evaluation. This
means that accompanying behaviors present in the training set are intentionally excluded
from the test set. This evaluation method was applied to each subset of the CDUT Gait,
which was specifically constructed in Sect. 2.

Table 2. An overview of the RepGCN network architecture.

layer name spatial module temporal module output size

RepGCN Block 1 [1 × 1, 16]
[3 × 3, 16]
[1 × 1, 64]

[1 × 1, 16]
[1 × 9, 16]
[1 × 1, 64]

45 × 32

RepGCN Block 2 [1 × 1, 16]
[3 × 3, 16]
[1 × 1, 64]

[1 × 1, 16]
[1 × 9, 16]
[1 × 1, 64]

23 × 32

RepGCN Block 3 [1 × 1, 8]
[3 × 3, 8]
[1 × 1, 32]

[1 × 1, 8]
[1 × 9, 8]
[1 × 1, 32]

23 × 32

RepGCN Block 4 [1 × 1, 32]
[3 × 3, 32]
[1 × 1, 128]

[1 × 1, 32]
[1 × 9, 32]
[1 × 1, 128]

12 × 32

RepGCN Block 5 [1 × 1, 32]
[3 × 3, 32]
[1 × 1, 128]

[1 × 1, 32]
[1 × 9, 32]
[1 × 1, 128]

12 × 32

average pool, 44-d fc, softmax 1 × 1

Implementation Details. In the training procedure, before inputting the pose sequence
data into the backbone, we apply the Window-Warping layer to overlap the time steps
in order to expand the data samples and prevent underfitting or overfitting. The overlap
rate between adjacent time steps is set to 30%, and the length of each sequence is set
as 45. We use Cross Entropy as the loss function, the batch size is set to 128, and use
AdamW as the optimizer with a weight decay of 0.05. The initial learning rate is set to
5e-4 times the batch size divided by 64, and the cosine annealing algorithm is used to
update the learning rate. We set the number of training epochs to 1000 on CDUT Gait 4
and 500 on the other datasets, aiming to allow the model to converge completely on each
dataset. And all the experiments are conducted on a NVIDIA 2080ti GPU with PyTorch
3.8.
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Comparison with Other Model-based Approach. To ensure a fair comparison of
the performance of existing model-based approaches, we implemented the backbone
and neck of three model-based approaches, namely PoseGait[17], GaitGraph[12] and
GaitMixer[18]. Then, the headpart of allmodels is implementedwith the same settings as
RepGCN. Additionally,weutilized the original hyper parameter for these three compared
models.

Ablation Study. We performed ablation experiments specifically targeting the dual-
residue connection structure employed in RepGCN. Our experiments were primarily
designedbasedon the utilizationofLongResidualConnections (LRC) andDualResidual
Connections (DRC). The results of the ablation experiment are shown in Table 3. Our
findings demonstrate that the absence of the identity mapping in the model leads to a
decline in overall performance compared to RepGCN. Furthermore, when excluding the
employment of LRC, there is a significant improvement in accuracy, with an average
accuracy enhancement of approximately 1.1%.

Table 3. The ablation experiments of the different residual connection strategy.

LRC DRC CDUT Gait

1 2 3 4 5 mean
√ × 92.55% 97.72% 96.36% 82.97% 83.64% 90.65%

× × 92.49% 96.78% 96.07% 84.61% 88.87% 91.76%

× √
93.02% 97.58% 96.80% 85.75% 89.81% 92.59%

The above abbreviations as follow:
LRC: long residual connection. DRC: dual residual connection.

5 Results and Discussion

Weconducted a comprehensive performance comparison betweenRepGCN and existing
model-based approaches that utilize human skeleton data. Table 4 provides a comparison
of the average performance and the number of parameters between existingmodel-based
methods and RepGCN on all subsets of CDUT Gait. RepGCN achieves the highest
recognition performance onCDUTGait,with an accuracyof 92.57%, surpassing existing
state-of-the-art methods. Furthermore, RepGCN demonstrates efficiency and scalability
by having a relatively small number of model parameters compared to other methods.

In summary, graph convolution models, including RepGCN andGaitGraph, demon-
strate the highest effectiveness in gait recognition tasks. GaitMixer, which incorporates
self-attention mechanisms, also performs well in capturing important feature in gait
skeleton sequences. The performance of PoseGait is significantly weaker compared to
all other models, primarily due to its use of a traditional CNN for feature extraction.
Traditional CNNs, which lack permutation invariance, are not well-suited for handling
graph data like gait skeleton sequences. AlthoughGaitMixer, a hybrid model combining
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Table 4. The comparison of Top-1 average accuracies and the number of backbone parameters
with other model-based approaches.

Top-1 average accuracy Parameters

PoseGait [17] 16.67% 3,965,344

GaitGraph [12] 90.66% 475,952

GaitMixer [18] 84.84% 165,788

RepGCN (ours) 92.57% 163,224

CNN and self-attention, exhibits improved performance compared to PoseGait, it still
does not surpass the performance of the GCN-based model on CDUT Gait.

Table 5 displays the performance of different gait recognition models, including
RepGCN, on the CDUT Gait dataset. The evaluation is conducted across three different
angles: 0°, 45°, and 315°. We observed that the accuracy of these models on the CDUT
Gait 4&5 dataset was lower than remaining datasets. This difference in performance can
be attributed to the fact that the gait patterns of the accompanying behaviors in the test set
(CDUT Gait 4&5) exhibited considerable modification compared to the accompanying
behaviors in the training set.

Table 5. The comparison of Top-1 accuracies on CDUT Gait under three view angles with other
model-based approaches.

CDUT
Gait 1

CDUT
Gait 2

CDUT
Gait 3

CDUT
Gait 4

CDUT
Gait 5

0° PoseGait [17] 16.93% 21.58% 19.98% 11.93% 12.77%

GaitGraph [12] 91.53% 96.08% 96.53% 82.90% 82.14%

GaitMixer [18] 86.75% 91.66% 92.02% 67.47% 73.18%

RepGCN (ours) 93.71% 96.16% 97.17% 83.73% 88.24%

45° PoseGait [17] 12.35% 15.30% 15.20% 9.49% 12.60%

GaitGraph [12] 92.07% 97.60% 96.70% 83.37% 84.68%

GaitMixer [18] 88.48% 91.97% 90.82% 75.32% 80.03%

RepGCN (ours) 92.82% 97.10% 96.13% 85.42% 91.45%

315° PoseGait [17] 20.55% 26.56% 24.71% 17.17% 13.08%

GaitGraph [12] 94.04% 99.48% 95.86% 82.65% 84.11%

GaitMixer [18] 89.68% 96.74% 94.97% 73.08% 80.37%

RepGCN (ours) 92.70% 99.49% 96.75% 88.03% 89.71%
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6 Conclusion

In this paper, we verify the impact of accompanying behaviors during walking on gait
recognition using the CDUT Gait dataset obtained from Azure Kinect DK. Our findings
show that these accompanying behaviors have a substantial influence on gait recognition
performance. These effects are mainly due to the accompanying behaviors of daily life
that change the gait patterns. And we propose a model-based gait recognition approach,
RepGCN. It effectively enhances the capability to extract discriminative feature through
the innovative design of residual strategy, and achieves state-of-the-art performance on
CDUT Gait with minimal parameters size compared to some currently existing model-
based gait recognition methods.
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Abstract. With the commercial application of face recognition systems,
face anti-spoofing has been studied extensively to enhance security in
recent years. In this work, a lightweight network via knowledge distilla-
tion for face anti-spoofing is proposed. The main innovations of our app-
roach are threefold: (1) In convolutional neural network based knowledge
distillation, the local receptive field of teacher network may be inconsis-
tent with that of student network, which results in misguiding. In our
method, vision transformer architecture is leveraged because of its global
modeling capabilities. (2) Beyond conventional decision-level knowledge
transfer in the classification step via kullback-leibler loss, we present
multi-stage feature-level knowledge distillation strategy to guide the fea-
ture learning of student network which can transfer richer knowledge
from teacher to student network. (3) In contrast to traditional projection
head learning, we construct a covariance matrix to solve the embedding
dimensionality mismatching problem between teacher and student net-
work in middle layers. Compared to teacher model of 1.28 GB, the mem-
ory of student model is only 330.8 MB, which effectively achieves a trade-
off between memory and accuracy. Extensive experiments on three stan-
dard benchmarks demonstrate the superiority of our proposed method,
which evidently corroborates the significance of multi-stage knowledge
distillation for face anti-spoofing.

Keywords: Face Anti-Spoofing · Vision Transformer · Knowledge
Distillation

1 Introduction

As a famous and convenient personal identity verification technique, face recog-
nition has become increasingly prevailing in recent years and applied in various
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scenarios. However, as indicated in [26], there are eight points that can be
attacked in biometrics authentication system. It is easy for attackers to cheat a
biometric identification system by impersonating genuine users through their
face image or video [10]. Therefore, face anti-spoofing (FAS) research has
attracted a lot of attention and has been studied extensively in the past decades,
which aims to determine whether the captured face data is derived from live face
or spoofing face, such as print face, video replay, 3D mask and wax figures. FAS
will greatly enhance the security and reliability of identity authentication tech-
nology [32].

How to learn distinguishable features that can separate genuine faces from
attack faces is recognized as a challenging task because they share very similar
appearance. Till now, considerable FAS features have been proposed succes-
sively in the literature, ranging from the early handcrafted features to latest
deep learning features. Handcrafted features rely on experienced domain knowl-
edge, typical ones are local binary pattern (LBP) [5], scale invariant feature
transform [23] and histogram of gradient [16]. However, their performance may
be dramatically degraded on complex datasets constructed in an unconstrained
environment. Over the past decades, advancements in convolutional neural net-
works (CNNs) have achieved excellent performance. Some works introduced con-
volutional networks to extract deeper features for FAS, such as 3D-CNN [18] and
central difference convolutional network (CDCN) [33]. Although these methods
can extract the deeper discriminative features, the parameters and memory of
model will grow exponentially as the network layer deepens.

Recently, Vision Transformer (ViT) [9] has achieved great success on many
computer vision tasks. Due to the special attention mechanism in ViT, it is able
to capture long-range temporal features, which is important for tackling the
video replay attack. Many researchers have introduced ViT structures to learn
discriminative facial features, such as two-stream vision transformer (TSViT)
[24] and vision transformer with depth auxiliary (DE-ViT) [20]. Obviously, ViT
obtained better performance compared to traditional convolutional networks due
to its global modeling capability. However, they often rely on large-scale labeled
data and require more parameters and memory, which prevents them from being
deployed on memory-bounded devices such as cell phones. To facilitate the chal-
lenges, a series of methods have been proposed to investigate compact deep
neural networks, such as network pruning [36] and knowledge distillation (KD)
[12].

Latest studies [7,8] indicated that smaller models usually lead to performance
degradation. KD is a promising approach for inheriting knowledge from the high-
performance teacher to compact student and maintaining strong performance.
Some works [19,21] utilized face data from richer and related domains to train
powerful teacher network for FAS and obtained the lightweight student network
by distillation, but these methods are CNN-based and data-specific. The current
common paradigm of KD methods based on ViT [14,28] is to train a student
transformer to match soft labels predicted by the pre-trained teacher, but it is
not enough to use decision-level knowledge to guide the learning of student. So,
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it is meaningful to design richer knowledge from other layers to minimize the
performance gap between teacher and student.

To this end, we proposed a multi-stage KD based on ViT for FAS (KDFAS).
Our proposed method KDFAS is illustrated in Fig. 1, which consists of two parts:
pre-trained teacher and student. Considering the local receptive field inconsis-
tency of CNN-based KD, we designed the teacher and student backbone both
based on ViT structure. To reduce parameters and memory, we introduced the
lightweight ViT with fewer attention heads as student network following DeiT
[28]. In addition to traditional decision-level knowledge, we also designed a multi-
stage feature-level knowledge to bridge the performance gap between teacher and
student. During the transfer of feature-level knowledge, we solved the embed-
ding dimensionality mismatching from middle layers by constructing a covariance
matrix. In summary, our work makes the following contributions:

• We proposed a multi-stage knowledge distillation framework for FAS based
on ViT structure with powerful global modeling capabilities, which avoids the
local receptive field inconsistency of convolutional networks.

• We designed the decision-level and multi-stage feature-level knowledge to
guide the learning of student, which could transfer richer knowledge from
teacher to student and effectively minimize the performance gap.

• We solved the embedding dimensionality mismatching issue by constructing
a covariance matrix, which not only reduces parameters and complexity of
network but also avoids the transfer loss of feature-level knowledge.

• We conducted extensive experiments to verify the effectiveness of our pro-
posed method. The results demonstrated that our method achieves a trade-off
between memory and accuracy.

2 Related Work

2.1 Face Anti-spoofing

FAS is an active research topic in computer vision and has received an increas-
ing number of publications in recent years. Early methods are designed based
on handcrafted features, such as LBP [5] and color texture [1], which need rich
task-aware prior knowledge. Recently, CNN-based methods have become main-
stream for FAS due to their robust feature extraction and discriminative capa-
bilities. Li et al. [18] designed a deep convolutional network (3D-CNN) to extract
high-level features. Chen et al. [4] proposed an attention-based two-stream con-
volutional network (ATCNN) on RGB and MSR space. However, these methods
have large parameters and only focus on the local information of face images.
Due to the superiority of attention mechanism for global information extrac-
tion, many researchers have attempted to introduce ViT to FAS. Peng et al. [24]
proposed two-stream vision transformers (TSViT) for transfer learning in two
complementary spaces. Li et al. [20] explored the effectiveness of a vision trans-
former with depth auxiliary information (DE-ViT). Compared with CNN-based
models, the ViT-based methods can achieve better performance but generally
need more parameters, making them harder to deploy.
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2.2 Knowledge Distillation

KD was first proposed by Hinton et al. [12], which trains a lightweight student
model to match soft labels given by a large pre-trained teacher model. Recently,
there are a growing number of works that extend KD by novel network architec-
tures or objective functions. Geras et al. [11] proposed to transfer the knowledge
from a long short-term memory network to convolutional networks by distilla-
tion. Howard et al. [13] and Polino et al. [25] combined knowledge distillation and
some specific regularization to compress CNN models. To obtain a lightweight
ViT model, Yang et al. [31] proposed a nontrivial way for feature-based ViT
distillation, named ViTKD. Huang et al. [14] designed a multi-teacher single-
student ViT distillation method (MAMD) with a multi-level attention fusion.
However, the backbone of improved KD methods is rarely based on ViT struc-
ture and most distillation approaches only use decision-level knowledge. Thus,
it is interesting to explore the effectiveness of richer feature-level knowledge for
ViT-based distillation methods.

Fig. 1. The architecture of our proposed KDFAS method.

3 Methodology

3.1 Motivation

The motivations for this paper are fourfold: (1) ViT model has achieved excel-
lent performance in FAS due to its powerful global modeling capability, but
the training is timeconsuming and it needs large parameters and memory, so
devising lightweight ViT is highly desirable. (2) KD as an effective model com-
pression approach is applied in FAS, but most methods are based on convo-
lutional networks and only transfer decision-level knowledge from teacher. (3)
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Previous studies [15,22,27] indicated that feature-level knowledge from middle
layers is essential to reduce the performance gap between teacher and student,
but the shape of corresponding feature maps are different, which will lead to
dimensionality mismatching. (4) Most works solve the embedding dimensional-
ity mismatching problem by learning a projection head [3], such strategy may
cause loss of feature information when the feature map is projected from high-
dimension to low-dimension.

3.2 Feature Encoding

In our work, the backbones of teacher and student network are based on ViT [9].
To encoder facial features, we first split the face image into patches, then project
these patches into a D-dimension embedding space and add position embeddings
to them. Then, these patch embeddings are fed to encoder blocks, which consist
of a multi-head self-attention (MSA) block and a multi-layer perceptron (MLP)
block, as shown in Fig. 1. Each encoder block works as follows:

X ′
l = MSA(LN(Xl)) + Xl,

Xl+1 = MLP(LN(X ′
l)) + X ′

l

(1)

where Xl denotes patch embeddings from the l-th encoder block and LN denotes
the layer normalization.

3.3 Decision-Level and Multi-stage Feature-Level Knowledge

Decision-Level Knowledge. For our proposed method, we first pre-trained
a teacher network with abundant face data. Then, we follow the conventional
distillation paradigm [12] to use the predictions from teacher to supervise the
training of student, as shown in Fig. 1. In particular, given a face image x cor-
responding to the label y, fs(x) and ft(x) represent the prediction of student
and teacher, respectively. The loss of decision-level knowledge distillation can be
formulated as follows:

LKD = (1 − α)LCE(fs(x), y) + ατ2LKL(fs(x)/τ, ft(x)/τ) (2)

where LCE is the cross-entropy loss, LKL is the Kullback-Leibler divergence
loss, τ is a smoothing hyperparameter termed temperature, and α is a balancing
hyperparameter.

Multi-stage Feature-Level Knowledge. In this paper, we proposed a multi-
stage knowledge distillation strategy for FAS, as shown in Fig. 1. For each pair
of manually selected encoder layer, we aim to teach the class token from student
to be as close as possible to the one from teacher, since the class token contains
rich feature-level knowledge about face.

In particular, given face images of batch size B, we denote the class token
from student and teacher encoder layer as FS ∈ RB×DS and FT ∈ RB×DT , where
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DS and DT are embedding dimensions. To solve the embedding dimensionality
mismatching issue between teacher and student, we first normalize the class
token, and construct a covariance matrix as follows:

Ψ(F ) =
(

F

‖F‖
)(

F

‖F‖
)T

(3)

Then, we train student to minimize the gap between Ψ(FT ) and Ψ(FS) as
follows:

LMS =
∑
l

‖Ψ(FS) − Ψ(FT )‖2F (4)

where the summation over l means that feature-level knowledge transfer is per-
formed on multi-pair selected encoder layers.

Finally, the total loss function of our proposed multi-stage distillation method
KDFAS can be formulated as follows:

Ltotal = LKD + βLMS = (1 − α)LCE + ατ2LKL + βLMS (5)

where LKD is the decision-level distillation loss, LMS is the multi-stage feature-
level distillation loss, and β is a balancing hyperparameter.

4 Experiments and Analysis

4.1 Experimental Settings

Datasets and Evaluation Metrics. Extensive experiments are performed on
three public face databases: CASIA-FASD [35], Replay-Attack [5], and OULU-
NPU [2]. Then, we select four evaluation metrics to comprehensively assess the
designed model performance following [6], including False Accept Rate (FAR),
False Reject Rate(FAR), Half Total Error Rate (HTER), and Equal Error Rate
(EER).

Implementation. We implement all networks and training procedures in
PyTorch and conduct all experiments on NVIDIA Tesla V100 GPU. Follow-
ing [34], each frame of videos is aligned into the 224×224-pixel facial image as
input. In the pre-training and distillation stage, we select video frames based on
the ratio of true and attack videos in each dataset to achieve the data balance.
In the testing stage, we select the 21th to 25th frame of each video to evaluate
model performance. Before the distillation stage, we first pre-trained a teacher
network with the same structure and parameter settings as ViT-B [9]. Then, we
need to manually set some parameters based on the results of parameter anal-
ysis, such as the scale of student network, temperature factor τ , middle layer
selection scheme l, and trade-off weight α, β of the total loss. Other training
parameters follow DeiT [28], but we don’t use stochastic depth regularization,
which will introduce some uncertainty during the training in our experiment.
Remarkably, our teacher and student network have the same number of encoder
layers. Finally, the teacher network is pre-trained for 500 epochs with batch size
64, and student network is distilled for 300 epochs with the same batch size.
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4.2 Parameter Analysis

Some experiments are constructed to evaluate the effect of various parameters
on student performance based on protocol 2 of OULU-NPU dataset [2].

Scale of Student Network. To reduce parameters and memory of student,
small and tiny ViT models are introduced following DeiT [28], respectively
named ViT-S and ViT-Ti, which change the number of attention heads.

The pre-trained teacher is distilled to three different scales of student model,
and comparison results are shown in Table 1. It is obvious that the HTER of stu-
dent model gradually increases as the scale of student decrease, which is related
to fewer attention heads. Therefore, considering the trade-off between memory
and accuracy, we selected the student network to have the same structure as
ViT-S in subsequent experiments.

Table 1. Performance comparison of student networks of different scales by distillation.

Teacher Student Params FAR (%) FRR (%) HTER (%) Memory

ViT-B ViT-B 86 M 4.19 0.39 2.290 1.28 G

ViT-S 22 M 4.33 1.00 2.665 330.8 M

ViT-Ti 5 M 4.94 1.11 3.025 89.49 M

Temperature Factor τ . As stated in [12], temperature factor τ is introduced
to control the importance of each soft target. In our experiment, the temperature
factor is fine-tuned from 1 to 7 with a stride of 2, and the corresponding HTER
are 2.79, 2.67, 2.29, 2.39. When the temperature is small, it is clear that the
HTER of student network decreases as τ increases. However, the HTER reaches
the lowest value when the temperature is 5. Thus, the temperature factor τ = 5
is applied for distillation.

Middle Layers Selection l. To evaluate the effect of middle layer selection
strategy, there are six layer selection strategies being designed and comparison
results are shown in Table 2. It can be seen that when fewer layers are used,
the model performance is unsatisfying because feature information is insuffi-
cient. When adjacent layers are selected, such as 6, 7, 8, the performance is not
impressive, a possible reason is that plenty of redundancy features exist in the
adjacent layers. Finally, the scheme l = 3, 5, 7, 9 is used to extract multi-stage
feature-level knowledge in middle layers.

Weight of the Total Loss Function. Since the total loss is composed of three
components, we simply fine-tune the weight α of decision-level distillation loss
and weight β of feature-level distillation loss, and comparison results are shown
in Table 3. It is clear that increasing the weight α of decision-level distillation loss
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Table 2. Effect of different middle layers
selection on student performance.

Layers l FAR (%) FRR (%) HTER (%)

4,8 4.33 1.00 2.665

2,3,4 5.33 1.33 3.330

6,7,8 5.78 0.50 3.140

2,4,6,8 4.31 1.11 2.710

3,5,7,9 3.72 0.33 2.025

2,3,4,6,7,8 4.03 0.33 2.180

Table 3. Effect of the weight from total
loss function.

α β FAR (%) FRR (%) HTER (%)

0.3 1 4.28 1.17 2.725

0.5 1 4.33 1.00 2.665

0.7 1 2.86 0.39 1.625

0.9 1 5.06 0.67 2.865

0.7 0.9 4.97 0.28 2.625

0.7 1.1 3.92 0.89 2.405

0.7 0 3.86 0.28 2.070

helps to improve the model performance. Finally, the weights of total loss are set
to α = 0.7 and β = 1. Then, we designed ablation experiment to demonstrate
the importance of feature-level knowledge, which will be described carefully in
ablation study.

4.3 Comparisons with Related Methods

Comparison on CASIA and Replay Database. To compare with early
research methods, experiments are performed on CASIA-FASD and Replay-
Attack databases and comparison results are shown in Table 4. Specifically, the
LBP [5] and Color Texture [1] are based on expert knowledge methods, and
another three methods are based on CNN methods. It is obvious that our pro-
posed method acquires the lowest EER and HTER, which proves the effectiveness
of multi-stage knowledge distillation method in FAS task.

Table 4. Comparison results on CASIA-FASD and Replay-Attack database. The bold
values are the best results for each metric.

Methods CASIA-FASD Replay-Attack Notes

EER (%) EER (%) HTER (%)

LBP [5] 18.20 13.90 13.80 12 BIOSIG

Color Texture [1] 6.20 0.40 2.90 15 ICIP

CNN [29] 4.64 0.72 1.86 14 arXiv

3D-CNN [18] 1.40 0.30 1.20 18 TIFS

ATCNN [4] 3.14 0.13 0.25 19 TIFS

KDFAS (Ours) 0.25 0 0.075 –

Comparison on OULU-NPU Database. To compare with recent works, we
evaluate the model performance on the challenging OULU-NPU database and
tabulate comparison results in Table 5. For example, STASN [30] and CDCN
[33] are based on CNN methods, TSViT [24] and DE-ViT [20] are based on
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ViT methods, and MAMD [14] is knowledge distillation method based on ViT.
It is apparent that our proposed method KDFAS got lower HTER when eval-
uated on protocol 1 and 3. However, the results of our method are worse on
another two protocols, especially on protocol 4. To be specific, TSViT [24] is
based on two-stream vision transformers with self-attention fusion, and DE-ViT
[20] is based on the vision transformer with depth auxiliary information. How-
ever, these methods rely on abundant face data and need large parameters and
memory. To address the above problems, MAMD [14] based on the multi-teacher
distillation method is proposed. Compared with our method KDFAS, MAMD
[14] requires pre-training multiple teacher networks on different databases. In
conclusion, although our proposed method obtained unencouraging results on
difficult protocols, our method can offer a good trade-off between memory and
accuracy.

Table 5. Comparison results on OULU-NPU database. The bold values are the best
results for each metric.

Prot. Methods FAR (%) FRR (%) HTER (%) Notes

1 STASN [30] 1.2 2.5 1.9 19 CVPR

CDCN [33] 0.4 1.7 1.0 20 CVPR

TSViT [24] 1.7 0.0 0.9 22 JVCIR

DE-ViT [20] 0.9 0.1 0.5 22 ICONIP

MAMD [14] 2.0 1.0 1.5 21 BMVC

KDFAS (Ours) 0.04 1.17 0.61 –

2 STASN [30] 4.2 0.3 2.2 19 CVPR

CDCN [33] 1.5 1.4 1.45 20 CVPR

TSViT [24] 0.8 1.3 1.1 22 JVCIR

DE-ViT [20] 3.0 0.3 1.7 22 ICONIP

MAMD [14] 1.4 0.3 0.85 21 BMVC

KDFAS (Ours) 2.53 0.83 1.68 –

3 STASN [30] 4.7± 3.9 0.9± 1.2 2.8± 1.6 19 CVPR

CDCN [33] 2.4± 1.3 2.2± 2.0 2.3± 1.4 20 CVPR

TSViT [24] 2.4± 2.6 1.4± 2.2 1.9± 1.3 22 JVCIR

DE-ViT [20] 1.4± 1.0 1.9± 3.5 1.7± 1.5 22 ICONIP

MAMD [14] 2.1± 1.3 0.5±0.4 1.3± 0.8 21 BMVC

KDFAS (Ours) 0.36±0.45 2.22± 3.97 1.29±1.89 –

4 STASN [30] 6.7± 10.6 8.3± 8.4 7.5± 4.7 19 CVPR

CDCN [33] 4.6± 4.6 9.2± 8.0 6.9± 2.9 20 CVPR

TSViT [24] 7.4± 5.0 1.2± 2.2 4.3± 1.9 22 JVCIR

DE-ViT [20] 5.7± 4.8 1.5± 3.2 3.5±3.4 22 ICONIP

MAMD [14] 6.6± 3.3 2.4± 2.8 4.5± 2.2 21 BMVC

KDFAS (Ours) 13.33± 10.47 6.33± 8.34 9.83± 3.98 –
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4.4 Ablation Study

Is Knowledge Distillation Necessary? To explore the necessity of distilling
smaller ViT models by the large pre-trained ViT, we train a small ViT model
from scratch as comparison. Evaluate experiment is performed on protocol 2 of
OULU-NPU database, and comparison results are shown in Table 6. It is clear
that the small ViT model obtained by distillation gets lower HTER, which can
be attributed to the richer knowledge learned by the pre-trained teacher and
transferred to student via distillation.

Table 6. Ablation study results of knowledge distillation.

Model FAR (%) FRR (%) HTER (%)

ViT-S(w/ distill) 4.33 1.00 2.665

ViT-S(w/o distill) 8.28 0.28 4.280

Do We Need to Distill the Feature-Level Knowledge? To study the
importance of multi-stage feature-level knowledge, we design an ablation exper-
iment and tabulate the comparison results in Table 3. In distillation stage, it is
remarkable that combining feature-level with decision-level knowledge (α = 0.7,
β = 1) yields a lower HTER than traditional decision-level knowledge (α = 0.7,
β = 0), which may be due to feature-level knowledge being a good complement
of decision-level knowledge, especially for the training of thinner and deeper
networks.

Fig. 2. Feature distribution visualization result via t-SNE.
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4.5 Visualization

To visualize the feature distribution learned by our student model, 600 real
images and 1200 spoof images from the testing set on protocol 2 of OULU-NPU
are randomly chosen, and feature embeddings for the last encode layer are fed
into t-SNE [17]. As shown in Fig. 2, it can be observed that the genuine images
and spoofing images are very distinguishable, which obviously implies that the
features learned by distilling have excellent discriminability.

5 Conclusion

In this paper, we proposed a multi-stage knowledge distillation vision trans-
former method for face anti-spoofing, which used decision-level knowledge and
multi-stage feature-level knowledge from teacher to guide the training of student.
Extensive experiments on three face databases demonstrated that our proposed
method effectively achieves a trade-off between memory and accuracy. Based
on ablation experiments, we got two important observations: (1) Under ViT
architecture, knowledge distillation can boost the model performance of student
by using a larger pre-trained teacher model. (2) Combining decision-level and
feature-level knowledge contributes to minimizing the performance gap between
teacher and student. In the future, we will study how to improve the model
performance on difficult data by designing richer knowledge or mining difficult
samples.
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Abstract. Dynamic facial expression recognition (DFER) presents a
difficult challenge, and antecedent methodologies leveraging convolu-
tional neural networks (CNNs), recurrent neural networks (RNNs), or
Transformers focus on extracting either long-term temporal information
or short-term temporal information from facial videos. Unlike prevailing
approaches, we design a novel framework named long short-term per-
ception network (LSTPNet). It can easily perceive aforementioned dual
temporal cues and bestow notable advantages upon the DFER task. To
be specific, a temporal channel excitation (TCE) module is proposed,
building upon the previous outstanding efficient channel attention (ECA)
module. This extension serves to imbue the backbone network with tem-
poral attention capabilities, thereby facilitating the acquisition of more
enriched temporal features. Furthermore, we design a long short-term
temporal Transformer (LSTformer) which can capture both short-term
and long-term temporal information with efficacy. The empirical findings,
as showcased across three benchmark datasets, unequivocally demon-
strate the state-of-the-art performance of LSTPNet.

Keywords: Dynamic Facial Expression Recognition · Long
Short-Term Perception · Temporal Attention · Transformer

1 Introduction

Diverging from general static facial expression recognition (SFER) [17,18,21,34],
dynamic facial expression recognition (DFER) [19,20,24,35] presents a signifi-
cant challenge within the fields of computer vision and affective computing. Its
primary objective lies in the recognition of facial video clips, as opposed to
stationary images, necessitating the classification of such clips into distinct fun-
damental emotional categories such as neutral, happiness, sadness, surprise, fear,
anger or disgust. It has all kinds of practical applications, e.g., mental health
analyses [8], human-computer interaction [1], and support systems for mentally
retarded children [28].
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Fig. 1. Feature extraction strategies of existing DFER models ((a) [2,4,14,22], (b)
[7,15,29,33] and (c) [19,20,24,35]) as well as our proposed (d).

Recent strides in DFER have been propelled by the evolution of neu-
ral network-based methodologies. Noteworthy contributions include models
founded on 3D convolutional neural networks-based models [2,4,14,22], recur-
rent neural networks-based models [7,15,29,33], and Transformer-based mod-
els [19,20,24,35], as we sum up in Fig. 1. Despite the progress made by these
methods, they are weak in capturing both long-term and short-term temporal
features simultaneously. As illustrated in Fig. 1 (a), the 3D CNN is employed
to concurrently extract spatial and temporal features. Nonetheless, its principal
emphasis lies in the extraction of short-term temporal information due to the
inherent constraint of the kernel size. Consequently, the establishment of direct
long-range relationships between frames distant in temporal dimension remains
challenging. In Fig. 1 (b), initially, the 2D CNN is employed to extract spatial fea-
tures. After that, the RNN is employed to extract long-term temporal features.
Nevertheless, the optimization of RNNs is beset by some challenges, including
the emergence of vanishing/exploding gradients which renders them inefficient
to train. As depicted in Fig. 1 (c), the 2D CNN is used for the extraction of
spatial features. Following that, the Transformer is harnessed to extract global
and long-term temporal features, facilitated by its multi-head self-attention
mechanism.

In this paper, we think that the strategies delineated above are characterized
by a distinct focus on the extraction of either long-term or short-term tem-
poral features, thereby neglecting the importance of jointly emphasizing both
facets. Therefore, we propose a novel framework named long short-term percep-
tion network (LSTPNet) which is meticulously crafted to realize the concurrent
perception of the aforementioned dual temporal features, thereby affording sig-
nificant advantages to DFER. Concretely, we put forth a unique temporal chan-
nel excitation (TCE) module. This module is meticulously devised to under-
take attention modeling encompassing both temporal and channel dimensions
in order to engender more enriched temporal representations stemming from the
backbone network. Besides, an innovative long short-term temporal Transformer
(LSTformer) is proposed. It not only perceives long-term temporal dependencies
between facial frames through its powerful multi-head self-attention mechanism
but also engages in modeling short-term temporal dependencies through the
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Fig. 2. Block diagram of the proposed LSTPNet, which consists of a per-frame feature
extraction stage, a holistic feature extraction stage, and a final classification stage.

integration of one-dimensional (1-D) convolutions which facilitates the acquisi-
tion of local temporal induction biases. The overarching framework is shown in
Fig. 1 (d), and our principal contributions are succinctly encapsulated as follows:

– We propose an innovative framework for DFER, termed the long short-term
perception network (LSTPNet). Remarkably, LSTPNet is the first model
within the field of DFER to accentuate both short-term and long-term feature
extraction concurrently for improved performance.

– We present a novel temporal channel excitation (TCE) module, designed to
imbue intermediate features within the backbone with temporal attention,
generating more temporally representative features.

– We also propose the long short-term temporal Transformer, denoted as LST-
former, so as to perceive both short-term and long-term temporal information
efficaciously.

2 Proposed Method

2.1 Overview

Our LSTPNet is a hybrid structure, amalgamating elements from both CNN and
Transformer. As illustrated in Fig. 2, LSTPNet consists of two handling stages,
encompassing the per-frame feature extraction stage and the holistic feature
extraction stage. Firstly, a dynamic sampling procedure is employed to extract
a set of frames of fixed length from the original facial video, which subsequently
serves as the input to the network. Next, to extract fundamental per-frame fea-
tures from these distinct facial images, a sequence of residual blocks infused
with TCE modules is engaged. Then, the generated per-frame features are prop-
agated to a subsequent LSTformer which serves the purpose of perceiving long
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and short-term temporal dependencies between frames. At last, a global fea-
ture embedding from the facial sequence is derived via temporal average pooling
(TAP), and it is subsequently subjected to classification, with its categoriza-
tion into one of seven fundamental expressions being accomplished via a fully
connected (FC) layer.

2.2 Temporal Channel Excitation (TCE) Module

In a prior study [30], the efficient channel attention (ECA) module was devised
with the intent of capturing interdependencies between feature channels. Dis-
tinguished from the conventional squeeze-and-excitation (SE) channel attention
module [12], the ECA module offers an advantage by preventing information loss
due to the excitation operation within the SE channel attention. Moreover, the
ECA module incorporates a local cross-channel interaction mechanism to sup-
plant the global cross-channel interaction mechanism inherent to the SE module.
This mechanism yields a marked enhancement in efficiency while upholding the
module’s effectiveness.

However, while the ECA module exhibits dual traits of efficiency and effec-
tiveness, it regrettably overlooks the temporal associations inherent to the orig-
inal features. Thus we introduce the 1-D convolution dedicated to temporal
modeling. Consequently, we present the TCE module, visually represented in
Fig. 3. Given intermediate features denoted as F ∈ R

T×C×H×W as input, taking
inspiration from the work by Woo et al. [32], our approach gathers spatial infor-
mation from F through the utilization of both global max pooling and global
average pooling, yielding two distinct spatial context descriptors, namely Fmax

and F avg as
Fmax = GMP (F ) , F avg = GAP (F ) , (1)

where Fmax and F avg ∈ R
T×C×1×1, and GMP and GAP are global max pooling

and global average pooling operations, respectively. Fmax and F avg are then
permuted into Fmax

1 and F avg
1 ∈ R

T×1×1×C . Subsequently, both Fmax and
F avg are conveyed to a shared network which primarily comprises three 1-D
convolutional layers, namely K1, K2 and K3, respectively, to produce a channel
attention vector, which can be represented as

Fmax
2 = K3 ∗ P (K2 ∗ P (K1 ∗ Fmax

1 )), F avg
2 = K3 ∗ P (K2 ∗ P (K1 ∗ F avg

1 )) (2)

where Fmax
2 and F avg

2 ∈ R
T×1×1×C are obtained, P is permutation operation,

and the size of feature maps before and after P can be observed from Fig. 3. K1

with kernel size kc (calculated according to work [30]) outputs channel C
r , K2

with kernel size ktemp outputs channel C, and K3 with kernel size kc outputs
channel 1. We then permute Fmax

2 and F avg
2 into Fmax

3 and F avg
3 ∈ R

T×C×1×1.
Afterwards, Fmax and F avg are gathered through element-wise summation. The
resultant feature is then subjected to a sigmoid activation function σ, producing
the channel attention mask denoted as M c, which can be formulated as

M c = σ (Fmax
3 + F avg

3 ) , (3)
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Fig. 3. Detailed structure of the proposed TCE (temporal channel excitation) module.

Ultimately, the output of the TCE module, denoted as Fo, is calculated as

Fo = M c ⊗ F, (4)

where Fo ∈ R
T×C×H×W , M c ∈ R

T×C×1×1, and ⊗ is broadcast element-wise
multiplication.

2.3 Long Short-Term Temporal Transformer

As alluded to previously, the DFER task requests not only the extraction of typ-
ical spatial-temporal features from facial videos but also the complete perception
of both short-term and long-term dependencies inherent within the facial video
data. Hence, a significant majority of recent methodologies [19,20,24,35] lean
towards employing pure Transformer architectures to extract temporal features
from facial videos due to their inherent capacities for global and long-term mod-
eling. Even so, pure Transformers tend to overlook the significance of locality
in visual perception, which has long been proven as helpful for encoding closely
correlated visual signals [23]. In light of this, we consider the integration of a 1-D
temporal convolutional layer into the pure Transformer. This measure serves the
purpose of focusing on the short-term dependencies between neighboring tokens.

Drawing inspiration from [9], we present the LSTformer model, which encom-
passes both long and short-term temporal modeling abilities. A schematic depic-
tion of the LSTformer is presented in Fig. 4. Specifically, regarding the last out-
put features from the backbone denoted as Z0 ∈ R

T×C×H×W , where T repre-
sents the amount of frames, the spatial information can be gathered through the
utilization of global average pooling as

Z ′
0 = GAP (Z0) , (5)

where Z ′
0 ∈ R

T×C×1×1 is obtained. Afterwards, Z ′
0 is reshaped into a flattened

sequence denoted as Zin ∈ R
T×C , resulting in the acquisition of T tokens. Each

token corresponds to a facial frame and possesses a length of C. We then feed Zin
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to the LSTformer which is made up of N transformer-based temporal encoders.
During the lth temporal encoder iteration, we first reshape and permute the
feature Zl−1 ∈ R

T×C which is generated by the previous (l − 1)th temporal
encoder into Zl−1

∗ ∈ R
1×C×1×T . Thereafter, a 1-D convolutional layer denoted

as Ktemp
1 with a kernel size of ktemp, is employed to process the representation

Zl−1
∗ as

Zl
∗ = Zl−1

∗ ∗ Ktemp
1 + Zl−1

∗ , (6)

where the output Zl
∗ ∈ R

1×C×1×T . Subsequently, Zl
∗ is reshaped and permuted

back into Z̃l ∈ R
T×C . The representation Z̃l is then input into a typical multi-

head self-attention (MHSA) block for further processing as

Z̃l
0 = MHSA

(
LN

(
Z̃l

))
+ Z̃l, (7)

Fig. 4. Detailed structure of the proposed LSTformer (long short-term temporal trans-
former).

where the output Z̃l
0 ∈ R

T×C , and LN(·) is layer normalization. After that,
Z̃l
0 is input to an improved FFN block which is composed of a temporal 1-D

convolutional layer and two linear layers. The feature dimension of Z̃l
0 is initially

increased from C to C ′ via the application of the first linear layer, which can be
expressed as

Z̃l
1 = LN

(
Z̃l
0

)
W ffn

1 + bffn1 , (8)

where Z̃l
1 ∈ R

T×C′
represents the output, W ffn

1 ∈ R
C×C′

denotes the linear
layer’s weights, and bffn1 ∈ R

C′
is the bias term. We then reshape and permute

Z̃l
1 into Z̃l∗

1 ∈ R
1×C′×1×T . Next, we adopt another 1-D convolutional layer Ktemp

2

with kernel size ktemp to deal with Z̃l∗
1 as

Z̃l
2 = Z̃l∗

1 ∗ Ktemp
2 + Z̃l∗

1 , (9)

where Z̃l
2 ∈ R

1×C′×1×T is obtained. Thereafter, we reshape and permute Z̃l
2

back into Z̃l∗
2 ∈ R

T×C′
and then Z̃l∗

2 is input to the second linear layer which
decreases its feature dimension from C ′ back to C as

Zl = Z̃l∗
2 W ffn

2 + bffn2 + Z̃l
0, (10)
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where Zl ∈ R
T×C , W ffn

2 ∈ R
C′×C and bffn2 ∈ R

C . The residual connection
achieved through the addition of Z̃l

0 is depicted in Fig. 4. Afterwards, Zl will be
fed to the next temporal encoder if l < N . Note that we have Z0 = Zin when
l = 1.

In the end, the output ZN ∈ R
T×C which is from the last temporal encoder

is processed by a temporal average pooling operation (TAP ) and then a fully
connected (FC) layer is used for calculating prediction probability p as following

p = FC
(
TAP

(
ZN

))
, (11)

where FC ∈ R
C×G is the FC layer, and G represents the number of facial

expression categories.

3 Experiments

To demonstrate the effectiveness of our method, we conduct experiments on three
widely acknowledged DFER benchmark datasets, including DFEW [13], AFEW
[6], and FERV39k [31]. The weighted average recall (WAR) and the unweighted
average recall (UAR) serve as the evaluation metrics. In our experiments, Adam
is employed to optimize our LSTPNet. ResNet18 [11] embedded with TCE mod-
ules is employed as the backbone for the extraction of per-frame features, while
LSTformer serves as the extractor for holistic features. On the FERV39k and
DFEW datasets, the training of our LSTPNet entails the utilization of the batch
size of 8, coupled with the initial learning rate at 2.56× 10−5. As for the AFEW
dataset, the training for our LSTPNet involves the batch size of 2, along with
the initialization of the learning rate at 6.4×10−6. Each facial clip is divided into
U = 8 segments and consecutive V = 2 frames are stochastically selected from
per segment. This process yields T = 16 facial frames for training. In the testing
phase, a similar procedure is employed, involving the division of each facial clip
into U = 8 segments. However, the process entails the extraction of successive
sets of V = 2 frames from the central of each segment, and then a total of T = 16
facial frames is generated as well. With regard to the parametric specifics within
LSTPNet, N = 2, r = 8, C ′ = 4096, and ktemp = 3 are empirically set. The
standard cross-entropy loss is adopted to train LSTPNet.

3.1 Ablation Study

Ablation experiments are conducted on both the DFEW and FERV39k datasets,
verifying the usefulness of each component integrated within the LSTPNet.

Basic Evaluations of Key Components: In order to demonstrate the effec-
tiveness of our proposed modules, a series of experiments are undertaken wherein
the modules are omitted or substituted within the full model. A0 indicates the
baseline which consists of the vanilla ResNet18 and pure temporal Transformer.
A variant denoted as A1 is established by excluding the TCE modules. Another
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variant, denoted as A2, is defined by retaining the TCE modules while substitut-
ing the LSTformer with the pure temporal Transformer. Results are presented
in Table 1. Evidently, these aforementioned variants manifest diminished perfor-
mance in comparison to the full model, thereby demonstrating the usefulness of
the separate components.

Comparison with Other Channel-Attention Modules: In order to demon-
strate the usefulness of our proposed TCE modules, We substitute the TCE
module with some classical channel attention (CA) modules, namely squeeze-
and-excitation (SE) [12], convolutional block attention module (CBAM) [32],
efficient channel attention (ECA) [30], along with the recently proposed global
convolution-attention block (GCA) [19]. B1, B2, B3, and B4 substitute the TCE
module with the SE module, the channel-attention module of the CBAM block,
the ECA module, and the GCA block, respectively. As illustrated in Table 2,
it is evident that on the two benchmark datasets, our proposed TCE module
consistently outperforms the various alternative channel-attention modules.

Table 1. Basic evaluations of the key com-
ponents in LSTPNet. The best results are
highlighted in bold.

Setting Methods FERV39k (%) DFEW (%)

TCE LSTformer WAR UAR WAR UAR

A0 47.34 36.50 67.30 56.97

A1 � 49.50 39.82 70.75 59.69

A2 � 49.92 39.61 70.46 59.35

Full � � 50.07 40.63 71.16 60.18

Table 2. Comparison with differ-
ent channel-attention modules.

Setting FERV39k (%) DFEW (%)

WAR UAR WAR UAR

B1 49.13 39.14 70.29 58.19

B2 49.05 39.62 70.05 58.66

B3 49.43 39.56 70.23 58.71

B4 49.10 40.26 69.87 59.40

Effectiveness of the 1-D Convolutions Inside TCE and LSTformer :
Furthermore, the usefulness of the 1-D convolutions inside TCE and LSTformer
is also demonstrated. Regarding the TCE module, we eliminate the second tem-
poral 1-D convolution in B5, while in B6, we retain it but apply it to the channel
dimension instead of the temporal dimension. In B7, the second temporal 1-D
convolution is retained while the other two 1-D convolutions that operate along
the channel dimension are discarded. Besides, in B8, the orientation of these 1-D
convolutions is set to the temporal dimension instead of the channel dimension.

Regarding the LSTformer, two 1-D convolutions are integrated into it, as
illustrated in Fig. 4. Initially, the first and second 1-D convolutions are omitted,
respectively, leading to B9 and B10. Then we alter the orientation of the first and
second 1-D convolutions to act on the channel dimension instead of the temporal
dimension, respectively, producing B11 and B12. It can be observed, as presented
in Table 3 and Table 4, that any form of discarding or altering the original design
leads to a deterioration in performance. In other words, the outcomes prove the
significance of executing temporal modeling on intermediary features within the
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backbone network. Furthermore, they emphasize the necessity of enhancing the
pure Transformer framework to encompass not only long-term modeling but also
the incorporation of short-term temporal dependencies between local tokens.

Impact of Hyper-Parameters: Two hyper-parameters inherent in our
method are subjected to experimentation to assess their impact on performance.
These include the ratio factor denoted as r within the TCE module, as well as the
temporal 1-D convolution’s kernel size denoted as ktemp in both the TCE mod-
ule and the LSTformer. As shown in Table 5, a noteworthy observation emerges:
a temporal 1-D convolution with a smaller kernel size appears to yield supe-
rior performance results. This phenomenon can be attributed to the fact that
the larger kernel size in the 1-D convolution tends to emphasize more long-
term temporal information, a trait that is already encompassed by the inherent
capabilities of the pure temporal Transformer. Additionally, referring to Table 6,
it becomes evident that better performance on the two benchmark datasets is
attained when the ratio factor r within the TCE module is set to 8. So r = 8 is
used as the default setting for LSTPNet.

Table 3. Ablation study on the effect of
1-D convolutions in TCE modules.

Setting FERV39k (%) DFEW (%)

WAR UAR WAR UAR

B5 49.30 40.40 70.07 59.59

B6 48.04 40.17 70.36 57.93

B7 48.89 40.58 70.69 59.71

B8 49.12 40.19 70.10 58.76

Table 4. Ablation study on the
effect of 1-D convolutions in LST-
former.

Setting FERV39k (%) DFEW (%)

WAR UAR WAR UAR

B9 48.87 40.38 70.50 60.02

B10 49.11 40.28 70.92 59.89

B11 49.60 40.30 70.57 58.63

B12 49.50 40.20 70.40 59.32

Table 5. Evaluation results for different 1-
D kernel ktemp, where the best results are
highlighted in bold.

Setting FERV39k (%) DFEW (%)

WAR UAR WAR UAR

ktemp = 5 48.76 40.64 70.36 60.13

ktemp = 7 49.91 40.33 69.96 59.65

Ours (ktemp = 3) 50.07 40.63 71.16 60.18

Table 6. Results from using differ-
ent ratio factor r, where the best
are highlighted in bold.

Setting FERV39k (%) DFEW (%)

WAR UAR WAR UAR

r = 2 49.24 39.94 70.61 59.16

r = 4 48.82 40.55 70.28 59.67

r = 16 48.84 40.87 70.58 59.93

Ours (r = 8) 50.07 40.63 71.16 60.18
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Table 7. Comparison with state-of-the-art methods on DFEW, FERV39k and AFEW.
The best results are highlighted in bold.

Methods DFEW (%) FERV39k (%) AFEW (%)

WAR UAR WAR UAR WAR UAR

C3D [26] 53.54 42.74 31.69 22.68 46.72 43.75

P3D [25] 54.47 43.97 33.39 23.20 – –

3D Resnet18 [10] 54.98 44.73 37.57 26.67 45.67 42.14

R(2+1)D [27] 53.22 42.79 41.28 31.55 46.19 42.89

VGG13+LSTM [31] – – 43.37 32.41 – –

I3D-RGB [3] 54.27 43.40 38.78 30.17 45.41 41.86

VGG11+LSTM [13] 53.70 42.39 – – – –

Two ResNet18+LSTM [31] – – 43.20 31.28 – –

ResNet18+LSTM [13] 53.08 42.86 42.59 30.92 48.82 43.96

VGG16+LSTM [31] – – 41.70 30.93 – –

Resnet18+GRU [35] 64.02 51.68 – – 49.34 45.12

Two VGG13+LSTM [31] – – 44.54 32.79 – –

EC-STFL [13] 56.51 45.35 – – 50.66 47.33

Former-DFER [35] 65.70 53.69 46.85 37.20 50.92 47.42

STT [24] 66.45 54.58 – – 54.23 49.11

NR-DFERNet [20] 68.19 54.21 45.97 33.99 53.54 48.37

GCA+IAL [19] 69.24 55.71 48.54 35.82 – –

LSTPNet (Ours) 71.16 60.18 50.07 40.63 53.54 49.92

3.2 Comparisons with State-of-the-Art Methods and Visualization

We compare our full LSTPNet with state-of-the-art methods on DFEW,
FERV39k and AFEW datasets. As shown in Table 7, our method obtains very
competitive performance. Specifically, GCA+IAL [19] currently is the best state-
of-the-art model with overall 69.24% WAR and 55.71% UAR on DFEW, while
our LSTPNet outperforms GCA+IAL by 1.92% WAR and 4.47% UAR. On
FERV39k, our method outperforms Former-DFER [35] by 3.43% UAR and
GCA+IAL by 1.53% WAR. For AFEW, our method achieves superior perfor-
mance against all models on UAR and a comparable result with STT [24] on
WAR. It is worth noting that STT employs a facial alignment method called
Dlib [16] which distinguishes it from other approaches that adopt another one
called RetinaFace [5]. Processed facial frames using this method may achieve
better alignments and potentially may be conducive to STT.

In Fig. 5, we visualize attention weights of LSTformer’s last encoder. Our
LSTPNet emphasizes representative frames (green boxes), improving prediction
accuracy compared to the baseline (A0) which pays attention to both represen-
tative frames and insignificant frames (blue boxes).
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Fig. 5. Visualization of attention weights generated by our model, where each facial
video sequence is shown by two rows. The first row shows the weights generated by the
baseline (A0) and the second row shows the weights generated by our LSTPNet model.
Frames in the green boxes indicate those representative expression frames, while frames
in the blue boxes indicate frames with insignificant expressions. (Color figure online)

4 Conclusion

In this paper, we propose a novel long short-term perception network (LSTP-
Net) for DFER, considering the joint perception of the long-term and short-
term temporal features to benefit the DFER task. Two new modules, namely
temporal channel excitation (TCE) and long short-term temporal Transformer
(LSTformer), are proposed for more temporally representative features and more
complete temporal modeling ability. Comprehensive experiments on three bench-
mark datasets demonstrate the superior performance of LSTPNet over state-of-
the-art models, and various ablation experiments validate its key components as
well as core inner designs. We hope that more researchers can note the impor-
tance of overall temporal modeling for addressing the DFER problem and pro-
vide more interesting solutions in the future.
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Abstract. Gait emotion recognition (GER) plays a crucial role in iden-
tifying human emotions. Most previous methods apply Spatial-Temporal
Graph Convolutional Networks (ST-GCN) to recognize emotions. How-
ever, these methods suffer from two serious problems: (1) they ignore
the fact that the similarity between emotions with the similar emotional
intensity. Consequently, fine-grained information from the low-layer net-
work, which is essential for accurate emotion recognition, is lost. (2) They
ignore that the expression of emotion is a continuous process, that is, fail-
ing to model the temporal dimension effectively. To address these issues,
a novel Pyramid Hybrid Graph Convolutional Network (Pyr-HGCN)
is proposed for GER. Specifically, we first introduce and enhance the
pyramid structure in GER to compensate for the missing fine-grained
information of the ST-GCN structure. Additionally, we design a novel
Spatial-Temporal Hybrid Convolution (STHC) block, which can indi-
rectly and simultaneously capture complex spatio-temporal correlations
in long-term regions. Extensive experiments and visualizations were per-
formed on several benchmarks, with an accuracy improvement of 0.01
to 0.02 demonstrating the effectiveness of our approach against state-of-
the-art competitors.

Keywords: emotion recognition · graph convolutional network · gait

1 Introduction

Emotion refers to a person’s attitude towards things and the corresponding
behavioral response. Emotion recognition plays an important role in the field
of artificial intelligence, with applications including human-computer interac-
tion [18], video surveillance [1]. Emotion recognition can be achieved using dif-
ferent cues, including text [27], facial expression [22], gait [19], etc. Since gait
does not require the cooperation of the subject, can be recognized remotely, and
emotions are more reliable, GER plays an important role in the field of emotion
recognition. GER has various applications, such as emotion-sensing robots [7] or
disaster management during evacuation [8], and even mental illness diagnosis.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 187–198, 2024.
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Current GER methods have mainly used GCN-based methods with 3D skele-
ton data as input (data obtained from key points of human skeleton are extracted
from images through human pose estimation technology [11,17]). These meth-
ods typically adopt the stacked network structure of ST-GCN and select feature
maps from the top layer network for emotion recognition. However, certain emo-
tions share abstract high-level information, leading to insufficient differentiation.
Additionally, these methods tend to emphasize spatial information, inadvertently
sidelining the temporal and spatio-temporal dimensions integral to capturing
dynamic emotional expressions.

Fig. 1. (a) Visualization of feature maps on 12 channels for low- (Layer 1), high-layer
(Layer 4), and Pyr-GCN. (b) Representation of the most pronounced emotions on a
frame. The frame that best expresses the emotion is selected to represent this emotion
sample. (Image from Ewalk dataset sample [19]).

To illustrate the above problems more clearly, Fig. 1 (a) displays feature maps
of different emotions on 12 channels. Interestingly, emotions of varying intensity,
encompassing heightened states like happiness and anger, as well as subtler ones
like sadness and neutrality, exhibit similarities within high-level feature maps of
specific channels. Counterintuitively, these emotions manifest clearer distinctions
within low-level feature maps of their respective channels. Furthermore, as shown
in Fig. 1 (b), the gait representation of various emotions in a single frame can
be ambiguous. Even when the frame that best expresses the emotion is selected
to represent the sample, recognizing the emotion accurately can be challenging
without incorporating temporal information.

To address these issues, we propose a novel Pyramid Hybrid Graph Convolu-
tional Network (Pyr-HGCN), inspired by the object detection paradigm’s Fea-
ture Pyramid Network (FPN) [15]. Firstly, we introduce and refine the pyramid
structure into the domain of GER. By aggregating low- and high-layer infor-
mation, our framework aptly modeling distinct gait emotion features. Secondly,
we design a novel Spatial-Temporal Hybrid Convolution (STHC). Leveraging
the virtues of both GCN and CNN, this convolutional architecture incorporates
physical connection priors while enabling direct spatio-temporal feature model-
ing, effectively curtailing redundancy. Importantly, this approach eliminates the
need for prolonged iterations to establish relations between non-adjacent nodes
within the graph structure.
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In summary, our main contributions are as follows:

• We first introduce and improve a novel pyramid GCN framework for GER.
This framework can extract discriminative gait emotion features by aggregat-
ing rich detailed and abstract information.

• We propose a novel Spatial-Temporal Hybrid Convolution, which facilitat-
ing direct spatio-temporal modeling enriched by physical connection insights,
while minimizing redundancy.

• Extensive experiments and visualizations demonstrate the effectiveness of our
method against the state-of-the-art competitors.

2 Related Work

2.1 GCN-Based Action Recognition

ST-GCN [28] introduced the graph convolutional network into action recogni-
tion (AR), which has since been widely studied. Some scholars have optimized
the graph’s topology structure together with the network, such as [21] using
the two-flow model. MS-G3D [16] improved spatio-temporal topology model-
ing by constructing a spatio-temporal adjacency matrix. CTR-GCN [5] believed
that different channels expressed different information and built a non-shared
channel topology. [13] proposed single-oriented pyramid convolutions to capture
temporal dynamics at different levels. Like [13], our approach also adopts a pyra-
mid structure, but differs in that we propose a bidirectional interactive pyramid
structure in the spatio-temporal domain.

2.2 Skeleton-Based Gait Recognition

Skeleton-based gait recognition (GR) is to recognize a person’s identity through
the analysis of their skeleton-based gait. [24] adopted the ST-GCN framework
of graph convolution to integrate temporal and spatial features. [23] proposed a
new GR architecture combining high-order input and residual network. Although
skeleton-based GR and gait emotion recognition share the same input data for-
mat, the two tasks are fundamentally different. GR focuses on capturing the
unique characteristics of each individual’s gait, while GER focuses on detecting
different emotions expressed in gait.

2.3 Gait Emotion Recognition

In the early stage of GER, [12] applied Fourier transform and principal compo-
nent analysis to extract gait emotion features. [6] represented human joint motion
as a symmetric positive definite matrix and then adopted the nearest neighbor
method for sentiment classification. Recently, [4] used a Gated Recurrent Unit
to extract features from joint coordinates of a single time step. [3] adopted the
graph-based method, uses ST-GCN to extract spatio-temporal features for classi-
fication. [20] adopted the attention module and proposed the Attention-enhanced
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Time-domain Convolution network (AT-GCN) to capture the distinguishing fea-
tures in spatially dependent and temporal dynamics for emotion classification.
[2] proposed a neural network based on LSTM and multi-layer perceptron to
learn features in layers.

Similar to graph-based methods, our method is also ST-GCN based. But the
difference is that we take into account the importance of detail information to
GER, and make big improvements to the internal block and external framework
based on the graph method. Enables the model to extract full of indirect and
direct spatial and temporal information.

3 Proposed Method

3.1 Overall Architecture

The overall model architecture of Pyr-HGCN is illustrated in Fig. 2 (a). It con-
sists of three parts: abstraction, concretization and merge. First, the skeleton
sequence is gradually sampled by down-sampling to obtain abstract features,
and then by up-sampling, where the corresponding features from the down-
sampling process are fused to obtain richer information. Then, through the merge
stage, the information on the fused features in the up-sampling process is further
extracted to promote the fusion. Finally, four emotions are obtained by the fully
connected layer classification.

Fig. 2. (a) Architecture Overview. The basic blocks that make up the framework are
the Spatial-Temporal Hybrid Convolution (STHC). (b) STHC Block. This diagram
shows a simplified structure of this block, which consists of the Direct Spatial-Temporal
Feature Extractor (DSTFE) and CTR-GCN [5].

The network is mainly constructed through STHC blocks as shown in Fig. 2
(b). Each STHC block uses two pathways simultaneously to capture complex
regional spatial-temporal joint correlations and long-range spatial and tempo-
ral dependencies. (1) The CTR-GCN path of the space-time serial structure of
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the conventional GCN method. (2) The DSTFE path for direct spatial-temporal
modeling consisting of Temporal Difference Module (TDM) and Multi-Scale 2D
Convolution (MS-C2D). This path avoids information loss caused by the adja-
cency matrix by directly modeling the space-time information.

The correlation modeling of joints in different frames is limited in ST-
GCN [28], as depicted in Fig. 3 (a). Due to architectural constraints, ST-GCN can
only capture the relationships between associated nodes on the adjacency matrix,
and multiple ST-GCN blocks are required to obtain the adjacency matrix with
different node relationships on different frames. However, as the network depth
increases, information tends to become consistent in the graph convolutional
network [14], resulting in insufficient information obtained through ST-GCN.

3.2 STHC Block

To address these limitations, we propose the STHC inspired by the time-sequence
convolution in ST-GCN [28], as depicted in Fig. 3 (b). We extract features
through the continuous movement of the convolution kernel, avoiding restric-
tions imposed by the physical skeleton construction of the adjacency matrix.

Fig. 3. (a) Variation of node correlations in the three frames. The colored dots represent
the nodes that are correlated. The solid lines indicate the association of a node with
itself, while the dashed indicate its association with another node within a certain
period. (b) Node correlation of V×T plane. Dark blue indicates the correlation between
this node and another node. The small red box represents the partial feature map of
the information obtained by dilated convolution. (Color figure online)

We also design MS-C2D, which directly models spatial-temporal correlation
by discarding the strong constraint brought by the adjacency matrix, as shown
in Fig. 4 (a). This method makes up for the deficiency of ST-GCN, which can-
not model the correlation of unconnected nodes in different frames. We employ
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Fig. 4. (a) The structure of STHC. On the left is the CTR-GCN path, and on the right
is the DSTFE path combined with TDM (top) and MS-C2D (bottom). The blue Mosaic
squares in the upper left corner represent the adjacency matrix. (b) The structure of
TDM. � represents the multiplication of elements. (Color figure online)

dilated convolution to obtain long-term spatio-temporal joint correlations and
reduce redundant information.

To obtain better quality spatial-temporal information in MS-C2D, we design
the Time Difference Module (TDM) inspired by the three-frame difference
method in traditional image processing [9], as shown in Fig. 4 (b). By differenti-
ating the feature graphs between multiple frames, the TDM combines them to
obtain dynamic information. Polling and sigmoid operations are used to obtain
the weight information of each frame, which is then combined with the frame to
obtain abstract features with redundant information removed. This construction
enhances the modeling power of time, and the output of TDM can be expressed
by Eqs. 1–3.

Xd = (Xt
s − Xt−1

s ) ⊕ (Xt+1
s − Xt

s), (1)

Xm = Sigmoid(P (Conv(Xd))) � Xt
s, (2)

TDM(x) =
T=t∑

T=1

(Xm + xt
s). (3)

where Xt
s represents the output of frame t through CTR-GC, ⊕ represents

concatenate, � representing elements multiplied,
∑T=t

T=1 X represents the triple
frame difference method for frames 1 through t. TDM(x) represents the output
of TDM.
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4 Experiments

4.1 Experimental Settings

Datasets. Two public benchmarks are adopted: Emotion-Gait-16 [3] and
Emotion-Gait-21 [4]. These two datasets are the only publicly available datasets
and have been used in several papers. The first dataset has 16 joints and 240
frames, which consists of 2177 ground-truth gait sequences annotated as happy,
sad, angry, and neutral. The gait of the second dataset is comprised of a skeleton
with 21 joints, and the step of the gait sequence is 48. This dataset contains a
total of 1,835 ground-truth gait sequences, each of which has been labeled by 10
annotators.

Implementation Details. All experiments are implemented on a RTX 2080
Ti with the Pytorch framework. 8:1:1 split is used for the training set, validation
set, and test set, and the widely-used cross-entropy is applied. For training, we
use a batch size of 128 and the Adam optimizer for 70 epochs with an initial
learning rate of 0.001. We also use a momentum of 0.9 and a weight decay of
5 × 10−4.

Table 1. Comparison with state-of-the-art AR, GR and GER on Emotion-Gait-16
dataset. The white lines are AR methods. The light gray lines are the GR method, and
the gray lines are the GER method.

Method Happy Sad Angry Neutral Accuracy Precision Recall F1

ST-GCN [28] 0.9327 0.8894 0.8942 0.9375 0.9135 0.7520 0.7030 0.7267

MS-G3D [16] 0.9375 0.8942 0.8798 0.9615 0.9183 0.7780 0.7973 0.7875

CTR-GCN [5] 0.9423 0.8798 0.9087 0.9615 0.9231 0.8008 0.7823 0.7914

GaitGraph [24] 0.9219 0.9219 0.8906 0.9375 0.9180 0.7743 0.7668 0.7705

GaitGraph2 [23] 0.9355 0.9274 0.9113 0.9032 0.9194 0.7767 0.7093 0.7415

TEW [4] 0.9327 0.8507 0.9187 0.9402 0.9106 0.7310 0.6893 0.7095

LSTM-MLP [2] 0.9388 0.8798 0.9218 0.9615 0.9255 0.8008 0.8141 0.8074

ProxEmo [18] 0.8173 0.8077 0.8462 0.8990 0.8426 0.5749 0.5683 0.5716

STEP [3] 0.9375 0.8798 0.8990 0.9183 0.9087 0.7257 0.7234 0.7246

G-GCSN [30] 0.9183 0.9135 0.9038 0.9087 0.9111 0.7110 0.6789 0.6946

MSA-GCN [29] 0.9567 0.9038 0.9231 0.9567 0.9351 0.8048 0.8201 0.8124

Pyr-HGCN(ours) 0.9766 0.9141 0.9297 0.9766 0.9493 0.8811 0.8358 0.8579

4.2 State-of-the-Art Comparisons

Compared to GR and AR, GR has the same action (gait) with us, and AR has the
same data form (3D skeleton data) and the same task (classification task) with
us. So we perform comparisons with state-of-the-art methods for GER, GR and
AR on the above tow datasets. Emotion recognition is a multi-class task, and the
commonly used indicators of multi-class tasks, accuracy, precision, recall, and
F1-measure, are used as evaluation criteria. The state-of-art methods of GER
include the sequential method [2,4], image-based method [18], and graph-based
method [3,29,30].
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Results on Emotion-Gait-16. Table 1 illustrates the comprehensive exper-
iments on Emotion-Gait-16 dataset using multiple classification metrics. Our
proposed method consistently outperforms the SOTAs, particularly in terms of
precision and F1 scores.

Results on Emotion-Gait 21. Table 2 illustrates the comprehensive exper-
iments on Emotion-Gait-21 dataset under multiple classification metrics. Our
method consistently outperforms the SOTAs, especially on precision, recall, and
F1. Notably, CTR-GCN achieves higher accuracy than our method for the angry
single category, but lower precision, recall, and F1 scores than ours. This suggests
that CTR-GCN simply has a stronger preference for angry samples, resulting in
a higher accuracy for this emotion category.

Table 2. Comparison with state-of-the-art AR, GR and GER on Emotion-Gait-21
dataset.

Method Happy Sad Angry Neutral Accuracy Precision Recall F1

ST-GCN [28] 0.9511 0.8587 0.9076 0.9348 0.9131 0.7265 0.6943 0.7100

MS-G3D [16] 0.9565 0.9022 0.9348 0.9457 0.9348 0.7859 0.7786 0.7822

CTR-GCN [5] 0.9688 0.9063 0.9531 0.9218 0.9375 0.7238 0.6854 0.7041

GaitGraph [24] 0.9545 0.8920 0.9375 0.9432 0.9318 0.7658 0.7871 0.7763

GaitGraph2 [23] 0.9531 0.9063 0.9219 0.9531 0.9336 0.7423 0.6999 0.7205

TEW [4] 0.9622 0.8785 0.9235 0.9505 0.9286 0.7257 0.7110 0.7183

LSTM-MLP [2] 0.9622 0.9297 0.9348 0.9565 0.9458 0.8060 0.7786 0.7921

ProxEmo [18] 0.9545 0.8750 0.8977 0.9205 0.9119 0.6458 0.6302 0.6379

STEP [3] 0.9620 0.8696 0.9185 0.9348 0.9212 0.6108 0.6234 0.6170

G-GCSN [30] 0.9565 0.8641 0.9185 0.9022 0.9103 0.7109 0.7058 0.7083

MSA-GCN [29] 0.9565 0.9185 0.9348 0.9511 0.9402 0.8074 0.7726 0.7896

Pyr-HGCN(ours) 0.9922 0.9375 0.9453 0.9688 0.9610 0.8459 0.8300 0.8379

4.3 Ablation Study

Effects of the Proposed Module. The ablation results of the three key com-
ponents we proposed, namely the Pyramid GCN framework (Pyramid GCN),
Spatio-Temporal Hybrid Convolution (STHC), and Time Difference Module
(TDM), are shown in Table 3. Each component provides an improvement over
the baseline. Among them, Pyramid GCN can bring an improvement of approx-
imately 1.8%. This also demonstrates that while rich abstract information is
available, detailed information is also essential.

Study on TDM Module. Table 4 demonstrates that partial channel-
containing attention does not perform well. We believe that CTR-GCN itself
is innovative and already improved at the channel level, making it difficult for
partial channel-inclusive attention to achieve desirable outcomes. However, TDM
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Table 3. Ablation experiment of the
proposed module.

Model Accuracy %

CTR-GCN [5] 0.9231

+ STHC 0.9258

+ STHC + TDM 0.9297

+ Pyramid GCN 0.9414

+ Pyramid GCN + STHC 0.9453

+ Pyramid GCN + STHC + TDM 0.9493

Table 4. Comparison experiments of
the TDM module.

Model Accuracy %

CTR-GCN [5] 0.9231

+ STHC(with SE [10]) 0.9180

+ STHC(with CBAM [26]) 0.8789

+ STHC(with ECA [25]) 0.9258

+ STHC(with TDM) 0.9297

Table 5. Ablation experiment of channel fusion. The first “32” is obtained by down-
sampling. The second “32” is obtained by up-sampling.

Method Accuracy %

CTR-GCN [5] (baseline) 0.9231

Channel 32 32 64 128 256

With Pyramid GCN
merging to 32

� � � � 0.9414

� � � � � 0.9219

� � � � 0.9336

� � � 0.9297

Channel 32 32 64 128 256

With Pyramid GCN
merging to 256

� � � � 0.9010

� � � � � 0.9089

� � � � 0.9167

� � � 0.9115

performs attention from the temporal dimension. The results suggest that elim-
inating redundant information and obtaining efficient attention results is effec-
tive.

Study on the Pyramid GCN Framework. Table 5 demonstrates the effec-
tiveness of the proposed pyramid GCN framework and the impact of channel
dimension fusion. Aggregating all feature channels into 256 channels is less effec-
tive than not using the pyramid structure. This may be because in the process
of downsampling several distinguishable features are lost and some redundant
information is retained. Perhaps, information from the 32 channel overlaps with
256, and the 32 channel has more discriminative information during downsam-
pling. Therefore, including channel 32 in the aggregation produces better results
than including channel 256 in the aggregation.
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4.4 Visualization and Analysis

To visualize extreme classification difficulty, we selected a few samples and ran-
domly chose five frames from each to represent emotions in Fig. 5. Due to the
small number of nodes, the expression forms of different emotions are quite simi-
lar. The samples with classification difficulty for anger and neutral, and for hap-
piness and anger, showed similar characteristics. This demands that the model
have excellent modeling power in time series and the ability to eliminate redun-
dancy. Our proposed Pyr-HGCN successfully classified such difficult samples,
demonstrating the model’s effectiveness.

Fig. 5. Visualization of samples that are difficult to classify. Different colors represent
different emotional gaits. (Color figure online)

5 Conclusion

In this paper, a novel gait-based Pyr-HGCN network is proposed for human
emotion recognition. Considering the similarity of gait-based emotion expres-
sion, our method obtains effective emotion feature classification from a fine-
grained perspective by proposing a novel pyramid GCN framework and a novel
Spatio-Temporal Hybrid Convolution. The proposed framework presents supe-
rior performance on two popular benchmarks. There are gait samples collected
from different angles in the dataset, and the recognition rate of the side is usu-
ally lower than that of the front, because there are more occlusions on the side.
In future work, we plan to explore the emotion recognition of the occluded side
samples.
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Abstract. Gaze following plays a crucial role in scene comprehension
tasks, as it captures users’ visual information from their facial and eye
movements, thereby predicting their gaze positions. This technique finds
its application in various domains such as human-computer interaction
and medical diagnosis. In the domain of multi-party meeting scenes,
some studies have utilized fisheye cameras to capture the entire meet-
ing scene. In this work, we focus on gaze following methods that utilize
fisheye images for meeting scenes and collect the GazeMeeting dataset
that contains 31,915 fisheye samples. We also propose a dual-path fea-
ture fusing model for gaze following, which fuses the learned features in
the planar and spherical domains by introducing spherical convolutions.
The dual-pathway model can learn the distortion information of different
positions from scene images, achieving a normalized L2 distance of 0.0657
on our self-built GazeMeeting dataset. This result represents a 22.80%
improvement over the current state-of-the-art methods. Additionally, our
proposed model achieves a normalized L2 distance of 0.1326 on Gaze-
Follow dataset, outperforming the current state-of-the-art methods by
3.35%.

Keywords: Gaze following · Fisheye image · Spherical CNN

1 Introduction

Gaze following is a task that follows the gaze direction of individuals in a scene
and infers where they are looking [15]. This technology is widely used in vari-
ous fields, including human-computer interaction, medical diagnosis, intelligent
transportation, and virtual reality, due to its ease of use and good performance
[8,18]. Gaze following technology captures visual information of people’s facial
and eye movements and measures their attention to any object, which helps
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understand their needs. By understanding human gaze behavior, this technol-
ogy has the potential to enable more intelligent computer systems and improve
their interaction and collaboration with humans.

In the field of education, gaze following technology can be used to evalu-
ate students’ attention levels to teaching, as well as determining their under-
standing and interest in particular content, which helps to evaluate the learning
outcomes of education. This technology can help teachers adjust their teaching
strategies based on students’ feedback to increase their engagement and learning
outcomes. Additionally, gaze following technology can also be used to detect and
correct users’ attentional deviations to ensure active participation and effective
communication of students. Therefore, gaze following algorithms have significant
application value in various fields, especially in the fields of education, and imple-
menting a high-performance gaze following algorithm is of great importance.

However, in multi-party meeting scenes, using gaze following technology to
capture participants’ attention requires recording their head information and the
current scene [11]. A possible approach for detecting the gaze points of multiple
users is to equip each user with eye-tracking devices with perspective cameras
and then integrate the information obtained from these devices. However, wear-
able eye trackers are not commonly used and are insufficient to support large-
scale participant gaze data collection in environments such as meeting interac-
tions. Wearable eye trackers are also a burden for participants and bring up
issues such as calibration, cost, and battery life [9,21]. Another method is to use
a fisheye camera [11]. Since people sit around a table, a single fisheye camera can
be placed at the focus of attention to record the visual information of the entire
meeting scene, including gestures, facial expressions, gaze, and conversation.

In light of these facts, we propose a new task: gaze following in fisheye images.
Compared with the application of gaze following in other images, there are two
main challenges: (1) Existing deep learning-based gaze following methods are
data-driven, but now there is a shortage of sufficiently large dataset based on
fisheye images. As shown in Fig. 1, the images in currently available dataset are
quite different from the fisheye image. (2) Fisheye images have the characteristic
of spherical distortion, which is more pronounced when human objects look
into the distance. The mainstream algorithms cannot learn the features of the
spherical domain in fisheye images, which poses a challenge for gaze following in
fisheye images.

To deal with the first challenge, we used a fisheye camera to collect a large-
scale fisheye images dataset in multi-party roundtable meeting scenes, which
contains 31,915 samples in total. In addition, to address the second challenge,
we proposed a dual-path feature fusion model to learn the distortion feature of
different regions. Our model learns the distortion features of different regions in
fisheye scene images by constructing two pathways of planar convolution and
spherical convolution. The main contributions of this paper are summarized as
follows:

– To the best of our knowledge, we are the first to apply gaze following tech-
nology to fisheye images.
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– We created a dataset using a fisheye camera to collect data, called the Gaze-
Meeting dataset, to address the lack of publicly available datasets for gaze
following in fisheye scenes. The dataset contains 31,915 samples in total.

– We proposed a dual-path model for gaze following based on the GazeMeeting
dataset. By constructing two pathways of planar convolution and spherical
convolution, the model learns the distortion features of different regions in
fisheye scene images and achieves significant improvement over the current
state-of-the-art models, with a 22.8% improvement over the best public model
on the GazeMeeting dataset.

Fig. 1. (a) Dataset GazeFollow consists of 2D images. The gaze target of the human
subject is out-of-frame or in-frame. (b) Dataset GazeFollow360 consists of 360-degree
images, and its distortion characteristics are very different from fisheye image. (c) In
the fisheye image, our participants ring sit around the fisheye camera with spherical
distortion.

2 Related Works

2.1 Gaze Following

While most of the existing gaze following research has primarily concentrated on
real-life scenarios such as socializing [8,15] and shopping [18], our work specifi-
cally targets multi-party roundtable meetings. Recasens et al. [15] was the first
to define the gaze following problem and constructed the 2D image dataset Gaze-
Follow, which marked a new stage of gaze following research. Cheng et al. [2] pre-
dicted gaze direction by combining coarse-grained face features with fine-grained
features of the eyes. Lian [13] and Chong [3] introduced the concept of gaze field.
Lian [13] used a planar multi-scale gaze direction field to enhance the saliency
model’s gaze supervision. Chong et al. [3,4] extended gaze target detection to
situations where people may look out of the image. Chong et al. [4] attempted
to combine head and scene features and employed the generated heatmap of
the head features to facilitate the model in learning the most important scene
features, ultimately enhancing the model’s predictions by identifying whether
the gaze direction lies within the frame. Zhuang [22] and Cohen [5] both con-
structed models to identify the common gaze point of multiple humans in their
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own work. Li et al. [12] released the GazeFollow360 panoramic image gaze follow-
ing dataset and combined 2D gaze following technology with 3D gaze estimation
[19] to apply gaze following technology to 360-degree panoramic images.

2.2 The Processing of Fisheye Image

In meeting scene, we use fisheye cameras to capture images. Compared with
ordinary lenses, fisheye cameras can capture more information but also intro-
duce geometric distortion to the image. One method for handling fisheye image
distortion is to improve the adaptability of the algorithm. Su et al. [17] pro-
posed Kernel Transformer Network (KTN). They converted the fisheye images
into equidistant rectangular projection images and fed them into KTN, which
generates convolution kernels modified by adaptive branches based on the posi-
tional information of the equidistant rectangular projection image. However,
for different network structures, these parameters need to be adjusted, which
means that the original network cannot be applied to other omnidirectional
images with fisheye images, and has poor portability and universality. Su et al.
[16] designed convolution kernels with different shapes based on different pixel
dimensions, while other works [7,20] adjusted convolution kernels on the sphere
and resampled features or projected features onto the tangent plane. However,
all these methods did not learn features of fisheye images by combining pla-
nar convolution and spherical convolution. Cohen et al. [6] extracted rotation-
invariant features using spherical convolution and extended convolution to the
spectral domain. This provides an idea of combining planar-domain features
and spherical-domain features. Therefore, Miao et al. [14] used fisheye images as
input for face detection, combined planar-domain features and spherical-domain
features by introducing spherical convolution and attention mechanisms, and
improved the model’s ability to detect faces in fisheye scenes.

3 Method

3.1 Framework

Our architecture comprises of two main stages. A head feature extraction
module and a dual-path feature fusion module. An illustration of the archi-
tecture is shown in Fig. 2.

The primary objective of the first stage is to extract corresponding features
from the cropped image of the human head and the position of the eye, and
then merge them with the scene features in the next stage. The second stage
extracts features using both planar convolution and spherical convolution, and
then fuses the head features from the first stage. The dual-path module learns
distorted features of different regions from the scene image and better learn the
mapping relationship of fisheye scenes, thereby improving the performance of
the entire gaze following model.
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Fig. 2. The overview of our framework. It consists of a head feature extraction module
and a dual-path feature fusion module. The head feature extraction module takes eye
position and head images as input and outputs a multi-scale gaze field and weighted
information. The dual-path feature fusion module takes the meeting scene image as
input, and goes through planar pathway and spherical pathway to obtain predict
heatmap Ĥ.

3.2 Head Feature Extraction Module

The module first inputs the head image Ih ∈ R
3×224×224 and the eye center

coordinate point (ex, ey) of the human object. The head image is sent to the
backbone network HeadConv to obtain the feature f1 ∈ R

1×256, which is con-
catenated with the feature f2 ∈ R

1×512 output by fully connected layer from the
2D eye center position to obtain the final feature fhead ∈ R

1×768. The feature
fhead is then passed through two branches to obtain the initial gaze direction ĝ
and weighted information w.

In fisheye images, the distortion in the sphere domain will greatly degrade the
performance of the gaze following methods constructed in the planar domain,
because these methods cannot adapt to the distortion caused by the projection
from the sphere domain to the plane domain. Based on the characteristic, we set
a threshold to distinguish whether the human is looking at the planar domain
or the spherical domain, and view w as the weight information for the planar
and spherical domains in the second stage.

By combining the predicted gaze direction ĝ with the eye center position
(ex, ey), we further generate the field of view (FOV). The FOV can be viewed as
a cone that extends infinitely from the center of the eyes. Its conical sections of
different depths are elliptic slices of different sizes, and the projection of these
slices onto the camera plane will form sector regions. Based on Lian’s work [13],
given the eye center point and the predicted gaze direction, we generate three
different angles of FOV(γ = 5, 2, 1), for feature extraction in the next stage.
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3.3 Dual-Path Feature Fusion Module

Due to the significant distortion present in fisheye scene images, the current
mainstream methods rely on planar convolution to process planar domain images
captured by standard web cameras. However, there are relatively few gaze fol-
lowing methods designed specifically for fisheye image scenes. Inspired by the
recent work on face detection in fisheye images [14], we employed both planar
and spherical pathways to address the challenges posed by the fisheye image
scenes.

This module first concatenates the input scene image with FOV of different
angles Is ∈ R

6×224×224, and then feeds them into the SceneConv to obtain shal-
low scene features. The shallow scene features are respectively sent to the planar
pathway and the spherical pathway. As shown in Fig. 2, the planar pathway uses
normal CNN as an encoder to extract planar features, and weights the planar
feature fp and fhead before inputting them into the decode module consisting of
normal CNN and deconvolution. Here, fp ∈ R

1024×7×7 is the planar feature that
perceives the region near the head. The spherical pathway uses S2CNN [6] to
map the shallow scene features from the planar coordinate system to the spher-
ical coordinate system while reducing the number of channels of the features.
Then, they are fed into SO3CNN [6] to obtain spherical feature fs ∈ R

512×28×28.
SO3CNN has the characteristic of rotation invariance, which can learn better
semantic features in the spherical domain. After weighting the spherical fea-
ture fs and the head feature fhead, it goes through the spherical decode module
consisting of SO3CNN and deconvolution. Both the planar pathway and the
spherical pathway produce heatmaps of the same size, and the output weights
of the first stage extraction module are used to weigh the heatmaps generated
by the two branchs to obtain the final prediction result Ĥ ∈ R

64×64.

4 Experiments

4.1 Our Dataset—GazeMeeting

Most of the currently available public datasets are formed by selecting images
from pre-existing videos or datasets. The image data present in popular datasets
like GazeFollow [15] primarily comprises of 2D images. On the other hand, Gaze-
Follow360 [12] is obtained from 360-degree videos sourced from YouTube, which
differ significantly from videos captured by fisheye cameras. Given that current
deep learning-based gaze following methods are heavily data-driven, there exists
a scarcity of publicly available large-scale datasets for gaze following in fisheye
images. To address this issue, we developed the GazeMeeting dataset using a
fisheye camera to bridge the gap in publicly available datasets for gaze following
in fisheye scenes.

The GazeMeeting dataset was created using ezviz fisheye camera to record
content from Problem-Based Learning classes and meetings [1] at a medical
college in China. A total of 3,573 frames and 31,915 samples were selected from
a large number of videos to form the dataset. Eight trained volunteers annotated
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the human eye center point and gaze point for each human object. A testing set
was constructed by holding out approximately 20% of the annotations, ensuring
no source-overlap between the train and test splits.

4.2 Experimental Setup

Implementation Details. In the first stage, the output of head feature extrac-
tion module is used to predict gaze direction and weight the second stage branch
feature. During training, we used a threshold of 300 pixels to distinguish between
the planar and spherical regions in the GazeMeeting dataset.

In the second stage, the backbone of SceneConv is ResNet50 [10]. We fused
planar and spherical features with the head feature fhead and passed them
through the planar and spherical decode branches to generate a 64 × 64 size
heatmap. Each pixel in the ground truth heatmap was generated using the fol-
lowing Eq. 1:

H(i, j) =
1√
2πσ

e
(i−gx)2+(j−gy)2

2σ2 , (1)

where g = g(gx, gy) is the coordinates of point of gaze, and i and j are the
horizontal and vertical coordinates of a certain point in the heatmap respectively.
σ is the standard deviation of Gaussian kernel, which we set as a rule of thumb
to be 3.

During training, we used the Adam optimizer. We first trained head feature
extraction module with a batch size of 128 for 30 epochs, with an initial learning
rate of 5e-4. The learning rate was decreased by a factor of 0.1 every 15 epochs.
We then trained the second stage with a batch size of 96 for 100 epochs, with a
learning rate that decreased by a factor of 0.1 at the 70th epoch.

Metric. To evaluate the validity of our method, we adopt these evaluation
metrics. L2 distance : we evaluate the Eucludean distance between predict point
and the ground truth (lower is better). AUC refers to the area under the ROC
curve (higher is better) [15]. We use the AUC criterion to assess a predicted gaze
target heatmap. For fair comparison, all the predicted heatmap are downsample
to a 64 × 64 heatmap and are compared a heatmap of the same size with kernel
size 3 to calculate the AUC score.

Loss Function. We train our model in two steps. Firstly, we train the first
stage head feature extraction module. Equation 2 represents the loss function of
gaze direction in the first stage.

Lg = 1 − 〈g, ĝ〉
‖g‖ ‖ĝ‖ . (2)

Later, We use binary cross entropy loss as the loss function to train the weight
branch of this stage. Finally, the two losses are added with the same weight to
joint train the whole module. The loss function of the second stage dual-path
feature fusion module is mean squared error loss.
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Table 1. Quantitative evaluation on GazeMeeting dataset.

Method Norm Dist Pixel Dist AUC

Recasens [15] 0.1347 180.99 0.8603

Lian [13] 0.0867 116.57 0.8803

Chong [4] 0.0851 114.48 0.8828

Our Method 0.0657 88.36 0.8980

4.3 Comparison with Other Methods

Quantitative Analysis. We compared our proposed method with representa-
tive and mainstream gaze following methods, including Recasens [15], Lian [13],
Chong [4], and Li [12]. It should be noted that we choose Li’s method as a com-
parison method because they proposed a gaze following method for 360-degree
images, which share similarities with fisheye images. However, since the method
proposed by Li was not publicly available, we implemented it by ourselves. Li’s
method was designed for 360-degree images, which may not be suitable for planar
and fisheye coordinate systems. Therefore, we only compared Li’s method with
other methods on the GazeFollow360 dataset. For the GazeFollow dataset, which
uses a planar coordinate system, we replaced the spherical CNN in our proposed
dual-path feature fusion module with planar CNN during training and testing,
while keeping the other structures unchanged. The original model structure was
maintained for GazeFollow360 and GazeMeeting dataset.

As shown in Table 1, on our GazeMeeting dataset, the gaze following method
proposed by Recasens, which extracts features through parallel gaze estimation
and saliency prediction and then fuses them, has the worst performance with
a normalized L2 distance of 0.1347. Both Lian and Chong methods use head
features to fuse scene features and generate gaze heatmaps using a structure
similar to FPN. Therefore, their results are similar, with normalized L2 dis-
tance of 0.0867 and 0.0851 respectively. Our proposed method outperforms the
other three methods in terms of L2 distance and AUC. Compared to the best-
performing method by Chong, our method achieved a 22.80% improvement in
normalized L2 distance. These results demonstrate that the dual-path network
that combines learning features from the spherical and planar domains can learn
distortion features at different regions in the scene image, which better addresses
the distortion problem caused by fisheye images.

Table 2. Quantitative evaluation on GazeFollow dataset.

Method Norm Dist Pixel Dist AUC

Recasens [15] 0.1900 108.58 0.8780

Lian [13] 0.1509 76.91 0.9160

Chong [4] 0.1372 70.19 0.9210

Our Method 0.1326 68.29 0.9284
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Table 3. Quantitative evaluation on GazeFollow360 dataset.

Method Norm Dist Pixel Dist AUC

Recasens [15] 0.2771 843.48 0.6353

Lian [13] 0.1909 619.72 0.7821

Chong [4] 0.1864 564.30 0.8339

Li [12] 0.1584 443.53 0.7803

Our Method 0.1240 372.20 0.8916

As shown in Table 2, on the GazeFollow dataset, the results show that
Recasens has the worst performance, while Chong outperforms Lian. We believe
this is because Chong’s method fuses head and scene images at the intermedi-
ate features, which is better than Lian’s approach of concatenating the FOV
and scene images along the channel dimension only. Our proposed method also
outperforms the other three methods in terms of L2 distance and AUC. Com-
pared to the best-performing method by Chong, our method achieved a 3.35%
improvement in normalized pixel distance error. These results demonstrate that
our dual-path module with normal CNN can further improve the prediction
performance.

Table 3 shows the results of various methods on the GazeFollow360 dataset.
For methods using planar CNN, such as Recasens, Lian, and Chong, their perfor-
mance on GazeFollow360 is not good. Planar CNN are not suitable for 360-degree
images, as they cannot learn the spatial mapping relationship of the unfolded
panoramic image. Our proposed dual-path network achieved normalized L2 dis-
tance of 0.1240 on the GazeFollow360 dataset. Compared to the best-performing
comparison method by Li [12], our method achieved a 16.08% improvement in
normalized L2 distance. The results in the Table 3 demonstrate that even in
360-degree images, our proposed head feature extraction module can explicitly
choose between local region and distant region.

Qualitative Results. To intuitively demonstrate the prediction results and
accuracy of mainstream gaze following methods and our proposed method on
different datasets. Some qualitative examples of our model is shown in Fig. 3.
The first row is the result of GazeMeeting and the second row comes from Gaze-
Follow. In addition, the last row is the result of GazeFollow360. The gaze direc-
tion heatmap predicted by our approach is more concentrated and closer to the
ground truth than other methods. It is obvious that our method works better
than other methods in different dataset.

4.4 Ablation Study

To investigate the role of our proposed model on the gaze following network,
we designed ablation experiments on the GazeMeeting dataset. As shown in
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Fig. 3. Qualitative results on GazeMeeting, GazeFollow and GazeFollow360 dataset.
The yellow circle indicates the human object, and the arrow and circle indicate the
ground truth gaze point.

Table 4, the part of dual-path module has the significant improvement in the
prediction performance. Compared to the baseline model, the normalized L2
distance improved by 12.07% on GazeMeeting Dataset. This indicates that the
dual-path feature fusion module has big impact on the whole method. Further-
more, we observe that the combination of the dual-path feature fusion module
and multi-scale FOV has the most significant improvement in performance, with
a 33.94% improvement in normalized L2 distance error compared to the baseline
model.

Table 4. Ablation study on the GazeMeeting dataset

Dual-Path FOV Norm Dist Pixel Dist AUC

0.099 133.75 0.8668

� 0.0875 117.61 0.8874

� 0.0826 111.06 0.8897

� � 0.0657 88.36 0.8980
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5 Conclusion

In this paper, we are the first to apply gaze following technology to fisheye images
and collect a large-scale fisheye dataset for multi-party meeting scenes. In addi-
tion, this paper proposes a dual-path feature learning gaze following model. By
combining visual features from the planar and spherical domains, the entire
dual-path network structure can learn the distortion features of different posi-
tions in the fisheye image from the scene image to improve the prediction results
of gaze following. The experimental results demonstrate that the dual-path net-
work in our model can complement each other to improve the prediction results
of entire gaze following model. We believe that our method can effectively assess
the attention level of participants or students in educational meeting scenes.
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Abstract. Human pose estimation has made great progress in per-
formance due to the development of deep learning. Current methods,
including some lightweight networks, usually generate high-resolution
heatmaps with rich position information to ensure high accuracy, how-
ever, the computational cost is heavy and sometimes unacceptable to
mobile devices. In this paper, we construct a network backbone based
on the modified MobileNetV2 to only generate low-resolution represen-
tations. Then, to enhance the capability of keypoints localization for our
model, we also make crucial improvements consisting of bottleneck atrous
spatial pyramid, local-space attention, coordinate attention and position
embedding. In addition, we design two different network heads for 2D
and 3D pose estimation to explore the extensibility of the backbone.
Our model achieves superior performance to state-of-the-art lightweight
2D pose estimation models on both COCO and MPII datasets, which
achieves 25+ FPS on HUWEI Kirin 9000 and outperforms MoveNet in
the same device. Our 3D model also makes nearly 50% and 90% reduc-
tion on parameters and FLOPs compared to lightweight alternatives.
Code is available at: https://github.com/NanXinyu/Mobile LRPose.git.

Keywords: Human Pose Estimation · Lightweight · Mobile
Application

1 Introduction

Human pose estimation has been widely applied in many fields, such as sports,
human-computer interaction, autonomous driving, Virtual Reality (VR) and
robotics. It aims to predict the locations of keypoints on every person from single
image, which is one of the most important ways for computers to understand
human behaviors. Existing human pose estimation methods typically construct
network architectures, such as multi-resolution parallel architectures [7,15,26,32]
and encoder-decoder architectures [23,31], to generate high-resolution repre-
sentations that contain explicit position information. Recent researches [14,16]
have demonstrated that high-resolution representations may be redundant for
lightweight models, however, existing lightweight human pose estimation models
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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[8,15,29,29] pay little attention to constructing effective network architectures
with low-resolution representations while keeping high accuracy.

To address this problem, we propose a novel efficient network architecture
based on modified MobileNetV2 [25] to only generate low-resolution representa-
tions, which is called Mobile-LRPose. Our Mobile-LRPose can be used for com-
putation resource-restricted devices, like smartphones, laptops and embedded
devices. Furthermore, we find that the efficient modules designed for semantic
segmentation can be introduced to our network since both of semantic segmen-
tation and human pose estimation are position-sensitive tasks. Based on this,
we propose a Bottleneck Atrous Spatial Pyramid (BASP) module inspired by
Atrous Spatial Pyramid Pooling (ASPP) [6] to efficiently integrate multi-scale
features at the end of the network. In Mobile-LRPose, we also propose a novel
attention module called local-space attention, cooperating with coordinate atten-
tion [11], which not only improves the position prediction accuracy, but is also
beneficial to solve challenges like occlusion and multi-person overlap. We also
use absolute-position embedding at the beginning of the network to make our
model more position-aware. Our networks can be fitted to different tasks for 2D
and 3D human pose estimation respectively.

Our contributions are summarized as follows:

1. We propose an efficient network backbone (See Fig. 1(a)) for human pose
estimation consisting of an efficient network architecture with a bottleneck
atrous spatial pyramid module, position-aware attention modules and posi-
tion embedding.

2. We design two different network heads (See Fig. 1(b) and (c)) for 2D and 3D
human pose estimation respectively. Both of the final 2D and 3D keypoints
representations are efficient low-resolution representations and our models are
more efficient than similar alternatives [8,15,32].

Fig. 1. An illustration of our network. IRB represents Inverted Residual Block.
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3. We develop a real-time human pose estimation mobile application based on
our 2D model. The inference speed of our model is superior to state-of-the-art
real-time human pose estimation model [1] in the same device.

2 Related Work

Human Pose Estimation. Both 2D and 3D human pose estimation meth-
ods can be categorized into down-top and top-down approaches. The down-top
methods [4,7,10] predict all the candidate keypoints from different bodies in the
image and group corresponding ones to each person. In contrast, the top-down
methods [23,26] firstly crop the input to several images that only contain one
person via a person detector, then the model just predicts keypoints from every
single person. The top-down methods usually achieve higher performance.

In this paper, we use the top-down method, which can better balance accu-
racy and real-time performance for lightweight human pose estimation models.

Keypoints Representation. Regression-based [14,28] and heatmap-based [2,
7,26] methods are the two main streams for 2D human keypoints representation.
Heatmap-based methods generate the high-resolution heatmap to represent the
Gaussian distribution of every keypoint, which is widespread-used for current
human pose estimation models.

3D human pose estimation methods can be categorized into two-stage [5,20]
and one-stage [21,24,27] methods. Two-stage methods decompose the contents
of 3D human pose estimation into 2D human pose estimation and 2D-to-3D
lifting, where the keypoints representation is the same as 2D keypoints. One-
stage methods predict the 3D keypoints directly from single 2D image. Sun
et al. [27] introduced a one-stage regression method based a volumetric heatmap,
which represents the weights of probabilities for 3D keypoints.

In this paper, we propose two different models by using the mobile-friendly
methods, coordinate classification method [16] and one-stage regression method
[27] for 2D and 3D human pose estimation, respectively.

Lightweight Human Pose Estimation Model. There have been various
tricks for designing lightweight network architectures, such as replacing stan-
dard convolution blocks with efficient convolution blocks [19,25], compressing
the existing large models [15,32] and Neural Architecture Search (NAS) [9,12].
Among them, introducing efficient blocks to classical large networks are com-
monly used for human pose estimation [8,15,29]. Although parameters and
FLOPs of the models are dramatically reduced in this way, their structures
with heavy computational cost, like high-resolution branches, are redundant for
lightweight models.

To handle this problem, we propose a novel network architecture based on
MobileNetV2 [25] and some designed modules for human pose estimation.
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3 Mobile-LRPose

3.1 The Backbone of Mobile-LRPose

MobileNetV2. MobileNetV2 [25] is one of the most efficient network architec-
tures designed for image classification. In Mobile-LRPose, we remove the last
down-sampling and following layers of the original MobileNetV2 where crucial
position information for human pose estimation is seriously destroyed. By exper-
iments, we find that 1/16 of the input is the minimum representation resolution
to predict accurate keypoints, and our Mobile-LRPose mainly compute on the
feature maps with this low-resolution. In addition, we expand the channels of
the previous layers to extract sufficient semantic features in the removed deep
layers, and replace ReLU6 in MobileNetV2 with more mobile-friendly activation
function hard-swish [12].

Bottleneck Atrous Spatial Pyramid. The modified MobileNetV2 gener-
ates low-resolution representations containing essential information of keypoints
localization. To integrate the information efficiently, we propose bottleneck
Atrous Spatial Pyramid (BASP) inspired by the success of Atrous Spatial Pyra-
mid Pooling (ASPP) [6] in semantic segmentation, which showed that stacking
atrous convolutions with different rates is beneficial for integrating multi-scale
information, as illustrated in Fig. 2(a). In our Mobile-LRPose, down-sampling
atrous convolutions and bilinear up-sampling are used to construct a bottleneck
structure, which can be seen as an encoder-decoder module that is more efficient
than original ASPP, as illustrated in Fig. 2(b).

Fig. 2. Two pyramid architectures based on atrous convolution.

Given an input signal x [m,n], the output x̃ [m,n] of the atrous convolution
with stride 2, k × k filter can be defined as:

x̃ [m,n] =
k∑

i=1

k∑

j=1

x [m + 2 + r · i, n + r · j] ω[i, j] (1)

where r is the number of filling-zeros between valid values of the kernel. x̃ [m,n]
is up-sampled through bilinear-interpolation to the output y [m,n] of BASP,
which can be defined as:

y [m,n] = 0.5(x̃ [m1, n1] + x̃ [m1, n2] + x̃ [m2, n1] + x̃ [m2, n2]) (2)
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where [m1, n1], [m1, n2], [m2, n1], [m2, n2] are four nearest points to the up-
sampling target position[m,n] on x̃.

Position Embedding. Position information is crucial to improving the accu-
racy of human pose estimation and can be expressed explicitly via high-resolution
heatmaps. Without generating high-resolution representations, Mobile-LRPose
use an absolute-position encoding as the follows:

PEh (x, y) = y, PEw (x, y) = x (3)

where (x, y) represents the coordinate of per pixel on the image. The size of each
position encoding equals to the input image.

The position encoding is embedded with the RGB image to propagate for-
ward through the network together. Therefore, our model can capture not only
image but also position features via position embedding.

3.2 The Attention Modules of Mobile-LRPose

Two different position-aware attention modules are introduced between the
depthwise and pointwise convolution layers in inverted residual block, shown as
Fig. 1(a), namely the Coordinate Attention (CA) [11], and the designed Local-
Space Attention (LSA).

Fig. 3. The schematic conclusion of the attention modules used in our model.

Coordinate Attention. In CA [11], one-dimensional global pooling along the
horizontal and vertical directions of an image respectively is performed to gen-
erate attention representations, which extracts not only channel-wise but also
direction-aware information to accurately locate the positions of the image that
are interested. Then two attention representations are encoded and decoded via
1 × 1 convolutions independently, and re-weight the input residual finally. This
process is shown as Fig. 3(a).
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Local-Space Attention. By experiments, we find that CA [11] is effective only
in deep layers of the network and the 2D relation between horizontal and vertical
directions is ignored completely, so we propose novel local-space attention (LSA)
to realize resource-redistribution while maintaining the 2D space. In our LSA, an
overlapping local large-scale 2D pooling operation is used to integrate continuous
local space information, and an attention weights generation operation is used to
re-weight every location of the feature map. This process is shown as Fig. 3(b).

Given the input feature map U ∈ R
H×W , we use a k × k (default k ≥ 5)

pooling kernel with the stride s (default 4), to encode the local spatial position
information into the attention map Z ∈ R

H/s×W/s. This operation is written as:

zc (x, y) = s
1

k × k

k∑

i=0

k∑

j=0

uc (s × h + i, s × w + j) (4)

where uc and zc represents per channel of U and Z, respectively, (h,w) represents
the corresponding coordinates of U and Z.

For the feature maps z ∈ R
C generated by the overlapping local pooling, the

attention weights generation can be defined as follows:

s = σ(b(f2(δ(f1(Z))))) (5)

where f1 ∈ R
C×C

r and f2 ∈ R
C
r ×C represent the 1 × 1 convolution layers respec-

tively, r is the squeeze ratio for encoding, b is the bilinear up-sampling operation,
δ is ReLU activation function and σ is Sigmoid activation function.

The attention modules are used in the entire backbone, while specifically
LSA is for high-resolution layers and CA is for low-resolution layers.

3.3 The Heads of Mobile-LRPose

2D Human Pose Estimation. For 2D human pose estimation, we use
the simple disentangled coordinate representation [16]. Two disentangled one-
dimensional vectors are generated as the network output, which represent the
position of each keypoint along the horizontal and vertical directions respec-
tively, so we design the network head of 2D model consisting of flattening and
cascading full-connected layers to generate two 1D vectors, shown as Fig. 1(b).
The lengths of 1D vectors equal to H and W respectively. The loss function for
model training is defined as follows:

l = lx + ly =
k∑

i=0

ωi ln
(exp(xGT,i)∑W
j=0 xpred,i(j)

+
k∑

i=0

ωi ln
(exp(yGT,i)∑H
j=0 ypred,i(j)

(6)

where lx and ly represent the horizontal and vertical cross entropy loss of the one-
dimensional coordinate classification, respectively, k is the number of keypoints
and ωi, i ∈ [0, 1, . . . , k] are weights for different keypoints.



Mobile-LRPose 217

3D Human Pose Estimation. For 3D human pose estimation, we use a 3D
volumetric heatmap, which can represent the probabilities for keypoints regres-
sion through normalization [27]. The loss function for 3D human pose estimation
is L1 loss, defined as below:

l =
1
k

k∑

i=0

‖Xpred − XGT ‖ (7)

where Xpred and XGT represent the prediction and ground-truth coordinates,
respectively. We generate a low-resolution 3D heatmap (with resolution reduc-
tion ratio 1/16) simply via a sequence of 1 × 1 convolution layers, shown as
Fig. 1(c).

4 Experiments

4.1 Implementation Details

Datasets and Evaluation Metrcis. COCO [18] contains over 200K images
and 250K 2D person instances, where each person is labeled with 17 keypoints.
The evaluation metrics for COCO dataset are the Average Precision (AP) and
Average Recall (AR) scores based on Object Keypoint Similarity (OKS). MPII
[3] contains about 250K images and 40K 2D person instances, where each person
is labeled with 16 keypoints. The evaluation metric for MPII dataset is the
head-normalized Probability of Correct Keypoint (PCKh) score. Human3.6M
[13] contains 3.6 millions of video frames. There are 15 types of 3D human pose
activities constructing by 11 subjects, which are split into two protocols. The
Mean per joint position error (MPJPE) and MPJPE calculated after further
alignment (PA-MPJPE) are used as the evaluation metrics.

Experiment Setting. Mobile-LPPose is trained on one GeForce RTX 3090
GPU with 32 samples and the base learning rate is 1e-3 with the Adam optimizer.

For 2D human pose estimation, the size of training epochs is set as 210 and
the learning rate is dropped to 1e-4 and 1e-5 at the 170th and 200th epoch,
respectively. The person detector boxes are expanded to be a fixed aspect ratio
4:3, then the original images are cropped to 256 × 192 for the COCO dataset
and 256 × 256 for the MPII dataset. For 3D human pose estimation, the size of
training epochs is set as 25 and the learning rate is dropped to 1e-4 and 1e-5 at
the 17th and 21th epoch, respectively. The original images in Human3.6M and
MPII dataset are cropped to 256 × 256.

We use the ground-truth person detector boxes for top-down human pose
estimation and perform common data augmentation operations like rotations,
random scales and horizontal flipping both on 2D and 3D human pose datasets.
The horizontal flipping is also used during the testing procedure.



218 X. Nan and C. Wang

4.2 Results

COCO Val. Table 1 gives the results of Mobile-LRPose and other state-of-
the-art models tested on COCO validation set for 2D human pose estimation.
Our Mobile-LRPose achieves 68.4 AP score and outperforms other lightweight
2D human pose estimation models with less model parameters and GFLOPs.
Compared with MobileNetV2 [25], our Mobile-LRPose increases with 3.8%
on AP, and reduces nearly 85% and 81% parameters and GFLOPs, respec-
tively. Compared with widespread-used Lite-HRNet-30 [32] and newly-proposed
Dite-HRNet-30 [15], our Mobile-LRPose reduces nearly 17% parameters, and
increases with 1.2% and 0.1% on AP respectively. Compared with large models
[26,30], our Mobile-LRPose has comparable performance on AP 50 with state-
of-the-art large models.

MPII Val. Table 2 gives the results of Mobile-LRPose and other state-of-the-art
lightweight models tested on MPII validation set for 2D human pose estimation.
Our Mobile-LRPose increases with 2.1% on AP and reduces about 79% GFLOPs
compared with MobileNetV2. With less parameters and GFLOPs, our Mobile-
LRPose increases with 0.5% on AP compared with Lite-HRNet-30 [32], and
achieves comparable AP score with Dite-HRNet-30 [15].

Table 1. Comparison with state-of-the-art models on COCO val. Params. = model
parameters. Pretrain = Y means that pretrain the backbone on the ImageNet classifi-
cation task. GFLOPs and parameters are calculated without person-detectors.

Model backbone Pretrain Params GFLOPs AP AP 50 AP 75 AR

large models

SimBa [30] ResNet-50 Y 34.0M 8.9 70.4 88.6 78.3 76.3

HRNetV1-W32 Y 28.5M 7.1 74.4 90.5 81.9 79.8

HRNetV1 [26] HRNetV1-W48 Y 63.6M 14.6 75.1 90.6 82.2 71.5

HRNetV1-W48 N 66.3M 14.6 75.9 - - 81.2

SimCC [16] SimBa-50 [30] N 25.7M 3.8 70.8 - - 76.8

TokenPose-S [17] N 5.5M 2.2 73.6 - - 78.9

small models

MobileNetV2 1 [25] MobileNetV2 Y 9.6M 1.5 64.6 87.4 72.3 70.7

Lite-HRNet [32] Lite-HRNet-18 N 1.1M 0.20 64.8 86.7 73.0 71.2

Lite-HRNet-30 N 1.8M 0.31 67.2 88.0 75.0 73.3

Dite-HRNet [15] Dite-HRNet-18 N 1.1M 0.2 65.9 87.3 74.0 72.1

Dite-HRNet-30 N 1.8M 0.3 68.3 88.2 76.2 74.2

Ours Mobile-LRPose N 1.5M 0.29 68.4 90.5 76.0 71.8
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Table 2. Comparison with state-of-the-art models on MPII val. Params. = model
parameters. GFLOPs and parameters are calculated without person-detectors.

Model backbone Params. GFLOPs PCKh

MobileNetV2 [25] MobileNetV2 1 9.6M 1.9 85.4

Lite-HRNet [32] Lite-HRNet-18 1.1M 0.27 86.1

Lite-HRNet-30 1.8M 0.43 87.0

Dite-HRNet [15] Dite-HRNet-18 1.1M 0.2 87.0

Dite-HRNet-30 1.8M 0.4 87.6

Ours Mobile-LRPose 1.5M 0.39 87.5

Human3.6M. Table 3 and Table 4 give the results of our Mobile-LRPose and
other state-of-the-art models tested on Human3.6M protocol1 and protocol2
set. Compared with the classical two-stage [20] and one-stage [24] methods, our
Mobile-LRPose achieves higher accuracy both on protocol1 and protocol2. The
lightweight model proposed by Choi et al. [8] has two types of models, small and
large models. They both achieve high accuracy and relatively light computational
cost. Compared with the small model, our Mobile-LRPose can further achieves
about 88.5% reduction on GFLOPs and 17.0% reduction on parameters with
a little precision sacrifice, about 5.1 mm PA-MPJPE and 3.5 mm MPJPE on
protocol1 and protocol2, respectively, which is acceptable in some applications.

Table 3. Comparison with state-of-the-art models on Human3.6M protocol1.

Models Dir Dis Eat Gre Phon Pose Pur Sit SitD Smo Phot Wait Walk WalkD WalkP Avg Params GFLOPs

Martinez et al. [20] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7 - -

Pavlakos et al. [24] - - - - - - - - - - - - - - - 51.9 - -

Moon et al. [22] 31.0 30.6 39.9 35.5 34.8 30.2 32.1 35.0 43.8 35.7 37.6 30.1 24.6 35.7 29.3 34.0 34.3M -

Choi et al.(S) [8] 30.3 32.9 38.4 35.4 34.9 32.1 32.3 37.6 49.6 38.2 42.2 31.3 26.9 37.8 31.6 35.7 2.24M 3.92

Choi et al.(L) [8] 31.0 32.7 37.5 34.3 35.1 31.4 32.1 37.3 47.9 38.7 40.6 30.6 26.2 37.5 30.6 35.2 4.07M 5.49

Ours 37.1 37.5 46.6 41.7 40.0 37.6 36.0 41.1 53.3 43.4 48.5 36.7 30.0 42.5 36.2 40.8 1.86M 0.45

Table 4. Comparison with state-of-the-art models on Human3.6M protocol2.

Models Dir Dis Eat Gre Phon Pose Pur Sit SitD Smo Phot Wait Walk WalkD WalkP Avg Params GFLOPs

Martinez et al. [20] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0 94.6 62.3 78.4 59.1 49.5 65.1 52.4 62.9 - -

Pavlakos et al. [24] 67.4 71.9 66.7 69.1 72.0 65.0 68.3 83.7 96.5 71.7 77.0 65.8 59.1 74.9 63.2 71.9 - -

Moon et al. [22] 50.5 55.7 50.1 51.7 53.9 46.8 50.0 61.9 68.0 52.5 55.9 49.9 41.8 56.1 46.9 53.3 34.3M -

Choi et al.(S) [8] 51.5 58.7 49.9 53.0 58.3 48.9 53.0 70.9 77.5 58.2 61.0 51.9 42.9 58.6 50.0 56.9 2.24M 3.92

Choi et al.(L) [8] 45.5 51.8 45.9 48.4 52.1 43.7 48.2 63.6 70.2 52.4 56.2 46.2 40.2 54.9 45.4 51.4 4.07M 5.49

Ours 51.5 60.5 57.5 55.8 62.0 52.6 53.9 73.9 87.1 60.9 65.2 54.5 46.0 60.9 53.8 60.42 1.86M 0.45

4.3 Ablation Study and Analysis

Impact of Bottleneck Atrous Spatial Pyramid. Table 5 shows that using
the proposed BASP (Y) can achieve higher performance with less GFLOPs than
the routine(N) to use single convolution to generate the network output feature
map with the same size.
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Table 5. Comparison between using BASP (Y) and 1 × 1 convolution (N).

bottleneck atrous spatial pyramid COCO MPII Human3.6M

GFLOPs AP AR GFLOPs PCKh GFLOPs MPJPE PA-MPJPE

Y 0.296 68.4 71.8 0.392 87.5 0.396 65.04 44.16

N 0.303 68.3 71.6 0.404 87.3 0.403 66.70 45.23

Impact of Position Embedding. It is shown in Table 6 that introducing the
position embedding into the network can improve the prediction accuracy of
both 2D and 3D human pose estimation model with little computational cost.

Table 6. Comparison between using position embedding (Y) or not (N).

position embedding COCO MPII Human3.6M

AP AR PCKh MPJPE PA-MPJPE

Y 68.4 71.8 87.5 65.16 44.16

N 67.7 71.0 87.2 67.77 46.94

Impact of Attention Modules. As shown in Table 7, our attention mod-
ules is not only effective for improving the performance but also for solving the
challenges like occlusion and multi-person overlap, as demonstrated in Fig. 4.

Table 7. Comparison between using attention modules (Y) or not (N).

attention modules COCO MPII Human3.6M

AP AR PCKh MPJPE PA-MPJPE

Y 68.4 71.7 87.4 66.84 45.13

N 67.0 70.3 86.8 70.08 50.12

Fig. 4. Comparisons of introducing local-space attention (right) or not (left) under
challenging circumstances like occlusion and overlapping multi-person.



Mobile-LRPose 221

Fig. 5. The visual illustration of Mobile-LRPose on the instances of COCO, MPII and
Human3.6M datasets and the application interface on HUWEI Mate 40 device.

4.4 Applications

We also applied our method in real applications. The training and testing of
Mobile-LRPose is based on PyTorch and the mobile deployment of the real-
time 2D human pose estimation model is based on mobile-oriented framework,
NCNN. The model framework transformation needs to be implemented through
ONNX. We develop the application for mobile vision devices with the Android
system on HUWEI Mate 40 Pro with HUAWEI Kirin 9000 CPU. The frames
per second (fps) of our model can reach 25+ on the smartphone which outper-
forms MoveNet [1] (fps20+). The visual results of our Mobile-LRPose and the
application interface are demonstrated as Fig. 5.

5 Conclusion

In this paper, we proposed an efficient network architecture designed for human
pose estimation in mobile devices. We studied that there is a lack of lightweight
network architectures without generating high-resolution representations that
expert in human pose estimation. To handle this problem, we constructed a
network backbone based on the modified MobileNetV2 as well as the proposed
bottleneck atrous spatial pyramid as the end of the backbone to integrate multi-
scale features efficiently. Furthermore, we combine the position-aware attention
modules, the coordinate attention and novel local-space attention we designed,
and position embedding into the network to enhance the capability of the model
to position prediction. Finally, two different heads of the network are designed
for 2D and 3D human pose estimation respectively, and the experiments on
COCO, MPII and Human3.6M datasets have demonstrated the effectiveness of
our network for both 2D and 3D human pose estimation tasks.
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Abstract. In real-world scenarios, facial images obtained by many
devices often exhibit low resolution. However, the performance signifi-
cantly degrades when we apply the existing methods in low-resolution
facial expression recognition. Therefore, addressing the problem of low-
resolution images in facial expression recognition becomes an important
undertaking. Previous attempts to tackle this problem have been limited.
For this, we propose a novel Attention and Relative Distance Alignment
(ARDA) method by integrating knowledge distillation in low-resolution
facial expression recognition. Specifically, the Attention Alignment mod-
ule guides the student model to focus on the most crucial region of
the facial image by enabling the low-resolution student model to learn
the attention map of the high-resolution teacher model. The Relative
Distance Alignment module utilizes the relative distance between facial
image features to transfer differences between different low-resolution
facial images from the teacher model to the student model, helping the
student model better grasp the differences between expressions. Exten-
sive experiments have shown that the ARDA method effectively transfers
knowledge from high-resolution teacher model to low-resolution student
model, achieving state-of-the-art performance in synthetic low-resolution
facial expression recognition datasets.

Keywords: Low Resolution · Facial Expression Recognition ·
Attention and Relative Distance Alignment

1 Introduction

Facial Expression Recognition (FER) is one of the current popular research
directions in affective computing, computer vision, and pattern recognition. Its
primary objective is to enable computers to comprehend human emotional states
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 225–237, 2024.
https://doi.org/10.1007/978-981-99-8469-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8469-5_18&domain=pdf
http://orcid.org/0009-0008-6729-3545
http://orcid.org/0000-0001-9750-7032
http://orcid.org/0009-0009-7160-5772
http://orcid.org/0000-0002-3094-7735
https://doi.org/10.1007/978-981-99-8469-5_18


226 L. An et al.

and even respond accordingly. Therefore, FER has extensive applications in real-
world scenarios, such as intelligent surveillance, deception detection, and human-
computer interaction.

Fig. 1. A video frame image obtained in the MOT16, and some facial images in it.

In recent years, remarkable progress has been made in facial expression recog-
nition with the emergence of large-scale datasets such as RAF-DB [7] and FER-
Plus [1]. These datasets contain high-resolution facial images, such as those in
RAF-DB, which are all 100 × 100 pixels in size. However, in real-world scenarios,
facial images obtained from surveillance camera, smartphone, and other devices
are often of low resolution. For example, Fig. 1 shows a video frame extracted
from the MOT16 [10] dataset used for multi-object tracking, and it can be evi-
dent that even for the two largest faces in the image, it is challenging for humans
to discern their facial expressions, let alone the smaller facial images in the scene.
Although deep learning has made outstanding achievements in facial expression
recognition recently, existing methods have obvious performance degradation in
low-resolution facial expression recognition.

To address this problem, we propose a method called Attention and Relative
Distance Alignment (ARDA) that leverages knowledge distillation to transfer
the capabilities of the high-resolution teacher model to the low-resolution stu-
dent model. We observe that humans can utilize prior knowledge learned from
high-resolution images to approximate the location and regions of interest in
low-resolution images. Inspired by this, we introduce Attention Alignment (AA)
module that mimics the human visual system. It utilizes attention maps obtained
from the high-resolution teacher model to guide the student model to focus on
the facial regions relevant to the expression. Furthermore, on the one hand,
we recognize that due to substantial disparities between the features of high
and low-resolution facial images, direct transference of facial features from the
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high-resolution teacher model to the low-resolution student model is unfeasi-
ble. On the other hand, facial expression features have certain differences, both
intra-class and inter-class. Hence, we introduce the Relative Distance Alignment
(RDA) module, which quantifies the differences in facial expression features as
relative distances between facial features. By transferring the relative distances,
the module assists the student model in more effectively discriminating dispar-
ities among low-resolution facial images. AA and RDA modules are removed
during deployment and incur no extra inference cost. In summary, our contribu-
tions are as follows:

1. We propose a novel Attention and Relative Distance Alignment (ARDA)
method based on knowledge distillation by utilizing the pre-trained high-
resolution teacher model to guide the low-resolution student model, thereby
improving the performance of the model in low-resolution facial expression
recognition.

2. The Attention Alignment module guides the student model to focus on key
regions in facial images that are relevant to facial expression. The Relative
Distance Alignment module drives the student model to capture differences
between facial expressions. The two work together, enabling the model to
distinguish expression even on low-resolution facial images of poor quality.

3. The experimental results show that our proposed ARDA method signifi-
cantly advances state-of-the-art results on several challenging synthetic low-
resolution facial expression recognition datasets.

2 Related Work

2.1 Facial Expression Recognition

In recent years, with the advent of large-scale datasets, deep learning has emerged
as the dominant approach for facial expression recognition. Zeng et al. [17] intro-
duced the IPA2LT framework, which trains models to estimate the latent truth
by assigning multiple pseudo labels to each sample. Wang et al. [15] proposed
the Self-Cure Network (SCN), which suppresses the influence of noisy labels by
utilizing a self-attention importance weighting module and a relabeling module.
She et al. [14] presented the DMUE, which leverages multiple branches to explore
latent distributions and estimates uncertainties based on pairwise relationships
within mini-batch. Zhang et al. [19] approached the problem from the relative
perspective and proposed the RUL, which uses two branches to compare different
facial images and learn relative uncertainties, achieving promising performance.
Zhang et al. [20] utilized the flip semantic consistency of facial images and intro-
duced the Erase Attention Consistency (EAC) to suppress noise samples in the
datasets.

These methods above are trained on prevalent large-scale datasets with rela-
tively good image quality, while the quality of facial images obtained in real-world
scenarios is often worse. Despite this, there are few solutions in facial expres-
sion recognition specifically addressing this issue. Nan et al. [11] proposed a
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feature-level super-resolution approach that transforms facial expression features
from low-resolution images into their corresponding high-resolution counter-
parts. However, super-resolution model significantly increases the computational
costs of both training and inference. Moreover, as the image resolution decreases,
the loss of spatial information introduces substantial disparities between the fea-
tures of high-resolution and low-resolution image, making it arduous to restore
the genuine details of the image. Our method is based on knowledge distillation,
where the teacher model guides the student model to capture important infor-
mation in low-resolution images. Importantly, this does not incur any additional
inference costs.

2.2 Knowledge Distillation

Knowledge distillation is a model compression technique that utilizes a teacher-
student network framework for training, aiming to distill knowledge from a
complex teacher model into a more compact student model. Hinton et al. [5]
pioneered the concept of knowledge distillation, where they achieved knowl-
edge transfer by reducing the difference between the logits distributions of the
teacher and student models. Romero et al. [12] introduced a feature-level app-
roach to knowledge distillation, extracting knowledge from intermediate layers
of the teacher model to guide the training of the student model. Zagoruyko et
al. [16] proposed an attention-level method for knowledge distillation, leverag-
ing channel pooling on feature maps to compute attention maps. However, this
method has limitations regarding the precision of the resulting attention maps.
Our model employs the Grad-CAM [13] method, which leverages the model’s
gradient information to generate attention maps with high precision.

3 Method

3.1 Overview

In this section, we provide an overview of the implementation details of our pro-
posed Attention and Relative Distance Alignment (ARDA) method. ResNet [4]
is a classic model in the field of deep learning. To facilitate introducing the
method proposed in this paper, we adopt ResNet18 as the backbone and inte-
grate it with our proposed ARDA. The pipeline of ARDA is shown in Fig. 2.
Unlike traditional knowledge distillation, ARDA employs networks of the same
size for teacher and student models. The Attention Alignment module intro-
duces attention alignment loss, which reduces the distance between the attention
maps of the teacher and student models. The Relative Distance Alignment mod-
ule represents the differences among facial images using the relative distances
between their feature vectors and utilizes the relative distances obtained from
the teacher model to guide the training of the student model. We first train the
network on prevalent large-scale datasets to get the well-trained teacher model.
Then, we utilize low-resolution images to train the student model. In addition to
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the commonly used classification loss in facial expression recognition, we intro-
duce attention alignment loss and relative distance alignment loss to guide the
training of the student model.

Fig. 2. The overall framework of the Attention and Relative Distance Alignment.

3.2 Attention Alignment

The attention map can clearly show the regions of concern for the model. Vari-
ous methods have been proposed for generating attention map, and in our app-
roach, we employ the Grad-CAM [13]. This technique leverages the gradient
maps obtained through backpropagation during model training to compute a
weighted sum of feature maps over the channels, resulting in attention maps
with high precision. We define the gradient map of the feature map obtained
through backpropagation as follows:

G =
∂

∂F

N∑

i=1

E∑

j=1

ŷij , (1)

where ŷij is the probability that the i-th image belongs to the j-th category.
F, G ∈ N × C × H × W denote the feature map and its gradient map obtained
after backpropagation, respectively. N , C, H, and W denote the number of
images, channels, the height and width of the feature map, respectively. E
denotes the number of expression categories. Next, we compute the attention
map by performing the weighted sum of the feature map F and gradient map G
over the channels:
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Mi(h,w) =
C∑

c=1

Gi(c, h, w)Fi(c, h, w), (2)

where Mi(h,w) denotes the attention value of the i-th image at position (h,w).
To guide the training of the student model using the teacher model, we can
minimize the distance between their attention maps:

lAA(MT ,MS) =
1

NHW

N∑

i=1

∥∥MT
i − MS

i

∥∥
2
, (3)

where MT , MS denote the attention map of the teacher model and the student
model, respectively. By minimizing the attention alignment loss, we enable the
student model to learn from the attention maps of the teacher model, allowing it
to focus on the crucial regions in facial images. Although the Grad-CAM method
can provide an attention map for any layer in the model, not all are effective.
Our approach only utilizes the attention map corresponding to the feature map
before the classification layer. The performance of using attention maps from
different layers is shown in Sect. 4.4.

3.3 Relative Distance Alignment

To quantify the relative differences, we design binary relative distance and
ternary relative distance. The binary relative distance represents the relative
difference between two facial expression features, and the ternary relative dis-
tance represents the relative difference among three facial expression features.

Binary Relative Distance Alignment. Given a pair of facial expression
features, their relative distance can be represented by the Euclidean distance:

di1i2 = ‖fi1 − fi2‖2 , (4)

where fi ∈ N ×C denotes the feature vector obtained from the feature layer and
di1i2 denotes the relative distance between the i1-th expression feature and the
i2-th expression feature. The binary relative distance alignment loss is defined
as

l2−RDA(dT , dS) =
1

N2

∑

i1,i2∈[1,N ]

∥∥dTi1i2 − dSi1i2
∥∥
2
, (5)

where dT and dS denote the binary relative distance of the teacher model and the
student model, respectively. The binary relative distance alignment loss improves
the ability of the student model to capture differences between facial images by
penalizing the difference between the binary relative distance of the teacher
model and the student model.



Attention and Relative Distance Alignment 231

Ternary Relative Distance Alignment. Given a triplet of expression fea-
tures, we use the angle they form in the representation space as their relative
distance:

Di1i2i3 = cos 〈fi1 − fi2 , fi3 − fi2〉 =
(fi1 − fi2) · (fi3 − fi2)

‖fi1 − fi2‖2 ‖fi3 − fi2‖2
. (6)

The ternary relative distance alignment loss is defined as

l3−RDA(DT ,DS) =
1

N3

∑

i1,i2,i3∈[1,N ]

ls(DT
i1i2i3 ,D

S
i1i2i3), (7)

ls(a, b) =
{

0.5(a − b)2 , if |a − b| < 1,
|a − b| − 0.5 , otherwise. (8)

where DT and DS denote the ternary relative distance of the teacher model
and student model, respectively, and ls is the Huber loss. The ternary relative
distance alignment loss can further improve the ability of the student model
to capture differences between facial images. Although higher-order relative dis-
tance alignment may further enhance the ability of the student model to capture
differences, this significantly increases the computational cost.

3.4 Overall Loss Function

In addition to the attention alignment loss and relative distance alignment loss
mentioned above, we also employ the commonly used cross-entropy loss in the
classification task. It is defined as

lcls = −
N∑

i=1

(log
eWyi

fi

∑L
j eWjfi

), (9)

where Wyi
is the yi-th weight from the fully connected (FC) layer with yi as

the given label of the i-th image. The total loss function can be summarized as
follows

ltotal = lcls + λlAA + αl2−RDA + βl3−RDA, (10)

where λ, α and β are hyperparameters.

4 Experiment

4.1 Datasets

RAF-DB [7] is a real-world Facial Expression Recognition (FER) dataset. It
contains 29,672 real-world facial images annotated by 40 well-trained annotators
using basic or compound expressions. For our experiments, we select seven basic
expressions, namely neutral, happiness, surprise, sadness, angry, disgust, and
fear, including 12,271 images for training and 3,068 images for testing.
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FERPlus [1] is an extended version of FER2013 [2] that provides a finer label
created by 10 crowd-sourced annotators. It was collected using the Google search
engine and contains 28,709 training images, 3,589 validation images, and 3,589
testing images. All the images are grayscale images. Each image is annotated into
one of eight classes. The validation set is also used during the training process,
and the overall accuracy is reported on the testing set.

Fig. 3. The samples of high resolution and low resolution images from the datasets.

4.2 Implementation Details

We selected those mentioned above two popular large-scale facial expression
recognition datasets to evaluate our method. Facial images are detected and
aligned using MT-CNN [18]. Following the common practice in most super-
resolution studies [9], we apply bicubic interpolation on the high-resolution
images to generate corresponding low-resolution images at downscaling factors
of 2, 4, and 8. For RAF-DB, with the original image size of 100× 100 pixels,
the resulting low-resolution images have sizes of 50 × 50, 25 × 25, and 12× 12,
respectively. For FERPlus, with the original image size of 48× 48 pixels, the
downsampled low-resolution images have sizes of 24 × 24, 12 × 12, and 6× 6,
respectively. Fig. 3 shows several sample low-resolution images obtained after
downsampling. It is evident that the facial images at a downscaling factor of 8
are difficult to discern with the naked eye, revealing only the facial topology.

All experiments are implemented using PyTorch. We utilize a pre-trained
ResNet-18 [4] model, trained on MS-Celeb-1M [3], as our baseline model. The
input image size is resized to 224 × 224 pixels, with a batch size of 64 and the
epoch size of 80. For the baseline model, we use an ADAM [6] optimizer with
the initial learning rate of 0.0001, the weight decay rate of 0.0001, an Exponen-
tialLR [8] learning rate scheduler with the gamma value of 0.9 to decrease the
learning rate after each epoch and on RAF-DB, the hyperparameter λ, α, β are
set to 10, 0.02, 25. We train our model on NVIDIA 3090 GPU with 24 GB RAM.
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4.3 Low-Resolution Facial Expression Recognition Results

Due to the lack of solutions for low-resolution facial expression recognition, we
apply our method to state-of-the-art facial expression recognition methods (e.g.,
SCN, RUL, EAC) and compare their performance. To ensure a fair compari-
son, we use the official training codes provided by the author, and all experi-
mental settings are kept consistent with the original paper. We use a baseline
method, ResNet18, trained with only the classification loss as supervision. As
shown in Table 1, the performance of the state-of-the-art facial expression recog-
nition methods significantly drops on low-resolution facial images obtained after
downsampling as the downsampling factor increases. This is because these meth-
ods don’t consider low-resolution facial images, whereas, in real-world scenar-
ios, facial images are often low-resolution. When we apply our proposed ARDA
method to these facial expression recognition models, it is evident that all mod-
els experience a significant performance improvement on low-resolution images.
For the baseline model trained on RAF-DB, the application of ARDA result in
an accuracy improvement of 0.13%, 0.59%, and 1.57% for downsampling factors

Table 1. Accuracy (%) comparison with state-of-the-art FER methods.

Resolution Method Loss Function RAF-DB FERPlus

1× Baseline CE 84.29 87.57

RUL Add-up 89.37 88.21

EAC CE + EAC 89.96 89.23

2× Baseline CE 84.16 83.61

Baseline+ARDA CE + ARDA 84.29 83.93

RUL Add-up 88.43 84.51

RUL+ARDA Add-up + ARDA 88.59 85.08

EAC CE + EAC 89.05 85.69

EAC+ARDA CE + EAC + ARDA 89.34 86.04

4× Baseline CE 79.07 70.55

Baseline+ARDA CE + ARDA 79.66 71.02

RUL Add-up 83.21 71.57

RUL+ARDA Add-up + ARDA 83.70 72.30

EAC CE + EAC 84.16 72.81

EAC+ARDA CE + EAC + ARDA 84.62 73.22

8× Baseline CE 67.76 51.35

Baseline+ARDA CE + ARDA 69.33 52.28

RUL Add-up 71.38 52.53

RUL+ARDA Add-up + ARDA 73.01 53.52

EAC CE + EAC 72.56 54.26

EAC+ARDA CE + EAC + ARDA 73.63 55.44
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of 2, 4, and 8, respectively. Even on facial images at a downscaling factor of 8,
where it is difficult for the human eye to discern facial expressions, our proposed
method could still utilize the remaining facial topology information to recognize
the correct facial expression. The experimental results demonstrate that the
attention maps and the relative feature differences between images extracted
from the teacher and student model can be effectively aligned using the ARDA
method, thereby enhancing the model’s performance on low-resolution images.

4.4 Ablation Study

Influence of Different Components. To evaluate the impact of each compo-
nent in ARDA, we conduct an ablation study on the baseline model using RAF-
DB with downsampling factor of 8. The study aims to investigate the effects of
the AA and RDA module, where the RDA module is further divided into 2-RDA
and 3-RDA to represent binary relative distance alignment and ternary relative
distance alignment, respectively. The results are in Table 2. Some observations
can be summarized. First, all three modules gain different degrees of perfor-
mance improvement when used alone. Second, when two modules are used, the
AA and 2-RDA modules jointly perform the best, which indicates that these
two modules have the most collaborative ability. Third, the model performance
improve from 67.76% to 69.33% when all three modules are used.

Table 2. Ablation study for each component.

AA 2-RDA 3-RDA Accuracy(%)

× × × 67.76

� × × 67.86

× � × 68.29

× × � 68.32

� � × 68.81

� × � 68.55

× � � 68.77

� � � 69.33

Table 3. Ablation study for selection of attention maps.

conv2 x conv3 x conv4 x conv5 x Accuracy(%)

× × × � 69.33

× × � � 68.45

× � � � 68.06

� � � � 67.57
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Fig. 4. Attention maps for different layers obtained from the teacher model.

Selection of Attention Maps. We conduct an ablation study on the baseline
model to investigate how to select the attention map to align in our proposed
Attention Alignment module. The baseline model is based on the ResNet18
architecture, which consists of six parts: conv1, conv2 x, ..., conv5 x, and the
classification layer. The outputs of conv2 x, ..., conv5 x are feature maps, and the
size of the feature maps decreases gradually. In the ablation study, we analyze the
attention maps corresponding to these four feature maps. The results are shown
in Table 3. The experimental results indicate that as we increase the shallow-
layer attention maps in the attention alignment module, the performance of
the model significantly decreases. Figure 4 displays these four attention maps
obtained from the teacher model, and it is evident that the shallower layers pay
less attention to useful information. This is because shallower layers have smaller
receptive fields and can only focus on local information, while deeper layers can
better capture spatial and higher-level semantic information. Therefore, adding
shallow-layer attention maps in the attention alignment module would degrade
performance.

5 Conclusion

In this paper, we propose using knowledge distillation to address the problem
of low-resolution facial expression recognition. We introduce a novel and effec-
tive method called Attention and Relative Distance Alignment (ARDA) for low-
resolution facial expression recognition. The Attention Alignment module guides
the student model to focus on the most crucial regions in facial images by lever-
aging the attention maps of the teacher model. The Relative Distance Align-
ment module is designed to capture differences between different facial images.
Extensive experiments conducted on synthetic low-resolution facial expression
recognition datasets show the effectiveness of our proposed ARDA method.
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Abstract. Face forgery detection has become a critical security con-
cern due to advances in manipulation techniques. Most methods look for
forged clues from the spatial or vanilla frequency domain, leading to seri-
ous over-fitting. In this paper, we propose a Frequency Attention Module
(FAM) that enhances model generalizability in face forgery detection. We
theoretically demonstrate the feasibility of frequency attention learning,
which allows the network to automatically refine subtle but discrimina-
tive forged features and suppress irrelevant components in the frequency
domain without complex manual partitions. Besides, considering that
commonly-used cross-entropy loss neglects the intra-class compactness,
we design the DeepFake Contrastive Loss (DFCL) to decrease intra-class
variances for real faces and enlarge inter-class differences in the feature
space. Extensive experiments show that our method significantly outper-
forms SoTA methods on widely-used benchmarks.

Keywords: Face Forgery Detection · Frequency Attention Learning ·
Contrastive Learning

1 Introduction

The rapid development of generative techniques, such as Variational Auto-
encoders (VAE) [27] and Generative Adversarial Networks (GANs) [11], has led
to significant progress in face manipulation technologies. With the emergence
of deep learning-based forgery methods, e.g ., Deepfakes [6] and Face2Face [35],
generating highly realistic faces that can deceive human eyes, there is a growing
concern over the potential misuse of such manipulated images. The malicious
use of these images can result in severe security issues, eroding trust in society.
Hence, it is imperative to develop effective techniques for face forgery detection.

Reviewing the literature [5,17,25,41], forgery detection is predominantly
approached as a binary supervised classification problem. Early works relied
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Fig. 1. Grad-CAM [42] visualization: The left shows comparison of traditional
methods with manual partitions of the frequency domain and our approach. The right
illustrates our FACL on different manipulated techniques.

on hand-crafted features. With the advance of convolutional neural networks
(CNNs), learning-based forgery detection methods [5,17,25,41] have achieved
significant progress. Recently, several works [2,10,22,28] have explored the fre-
quency domain as a promising avenue for detecting face manipulation. However,
these methods may introduce bias due to the manual partitions and limit the
quality of frequency clues. In this paper, we propose a novel frequency attention
module (FAM) for automatic refinement of frequency features in general face
forgery detection. Left figure of Fig. 1 compares our FAM to existing methods
that utilize manual partitions of the frequency domain and demonstrates its abil-
ity to uncover suspicious artifact traces across various manipulation techniques.

Besides extracting discriminative features, we consider representation learn-
ing to further improve the generalizability. Inspired by the contrastive learning
[12,15], we propose a DeepFake Contrastive Loss (DFCL) to decrease intra-class
variances for real faces by pulling real samples closer. For forged images, we only
consider real-fake pairs and push them away to enhance inter-class differences.

The main contributions of this paper are:

1. We design a Frequency Attention Module (FAM) to extract discriminative
frequency features for face forgery detection. FAM utilizes attention mecha-
nism in the frequency domain to refine subtle but important forgery features
and restrain irrelevant coefficients without manual partitions.

2. We propose the DeepFake Contrastive Loss (DFCL) which takes into account
the unique characteristics of face forgery detection. DFCL decreases intra-
class variance for real faces while increasing inter-class diversities in the fea-
ture space, which avoids interference between different manipulation methods.

3. Experiments and visualizations reveal the generalizability and robustness of
our method, shows the effectiveness of our method over existing SoTAs.
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2 Related Work

Spatial-Based Face Forgery Detection: With the development of deep learn-
ing, a wide variety of methods [1,17,31,32] have been proposed for face forgery
detection. Face X-ray [17] focuses on the forged boundary existing in most face
forgery methods, and achieves remarkable performance in high quality videos.
FD2Net [44] decomposes faces into computer graphics views to detect subtle
forgery patterns. Dual [32] introduces contrastive learning to learn generalized
representations in the spatial domain. DCI [21] proposes to decouple the content
information and the artifact information in faces. Despite their success, existing
methods only exploit artifacts in the spatial domain, which is susceptible to the
data quality and distribution.

Fig. 2. The architecture of Frequency Attention Learning and Contrastive Learning
(FACL). We present a two-branch architecture with multi-tasks to process the image in
both the RGB and the frequency domain. We apply our FAM after each down-sampling
blocks (red rows) of the origin CNNs, as shown by the blue arrows. In addition to the
primary classification task, we introduce auxiliary tasks (i.e., artifact reconstruction
and representation learning) to help the model distinguish real/fake faces. (Color figure
online)

Frequency-Aware Face Forgery Detection: Recently, several works [2,10,
16,23,25,28] have investigated the frequency domain for face forgery detection.
Leveraging [10] shows that artifacts in the frequency domain could help distin-
guish forged faces. GFF [23] argues that high-frequency noises can remove color
textures and reveal forgery traces, improving the generalization ability. Two-
branch [25] combines information from both the spatial domain and frequency
domain using a multi-scale Laplacian of Gaussian operator. F3Net [28] leverages
frequency-aware decomposed image components and local frequency statistics to
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discover the robust forged patterns. Local [2] considers the correlation between
local regions to learn generalized features. While these works attempt to mine
the implicit forgery artifacts in the frequency domain, they manually slice the
whole frequency domain into several bands without discrimination, which is
biased due to the manual partitions. In contrast, our proposed FAM allows the
network to automatically mine the manipulated clues in the whole frequency
domain without manual partitions, leading to better generalizability.

Attention Mechanisms in Face Forgery Detection: Attention mechanisms
play an important role in human perception [14,30], and have been widely used
in various computer vision tasks. Existing attention mechanisms can be divided
into spatial-wise [38], channel-wise [13], or the combination of both [39]. While
some recent works have explored attention mechanisms for face forgery detec-
tion, they have mostly focused on the spatial domain but neglected the frequency
domain. For instance, MAT [41] and RFM [37] use spatial attention to high-
light manipulated regions and explore previously overlooked areas in the spatial
domain, respectively. FcaNet [29] proposes a multi-spectral channel attention
that incorporates more frequency components into the attention mechanism.
However, none of these methods directly address the challenge of refining forged
features in the frequency domain. To fill this gap, we propose a novel FAM that
refines features in the frequency domain by filtering out irrelevant information
while highlighting critical forged features.

3 Frequency Attention Learning and Contrastive
Learning (FACL)

3.1 A Multi-task Two-Branch Architecture

Figure 2 illustrates the two-branch architecture of our FACL. Considering the
complementary property of the spatial and the frequency domain, one branch
captures local discriminative features in the spatial domain while the other dis-
covers general forgery patterns in the frequency domain with our FAM. In addi-
tion to the intrinsic classification task, we introduce extra tasks to help the
model distinguish real/fake faces. Specifically, We use artifact reconstruction to
refine the feature space and propose the DeepFake Contrastive Loss (DFCL) to
encourage feature discrimination. This multi-task design enables the model to
learn more robust and discriminative features for face forgery detection. We will
elaborate on each component in turn, followed by the overall loss functions used
in FACL.

3.2 Frequency Attention Module

Can Attention Mechanism be Applied to the Frequency Domain?
Attention mechanisms give the opportunity to obtain relevant information by
re-weighting or refining the knowledge within models, thus enhancing the learn-
ing ability. While existing works [4,14,30] mainly focus on attention modules in
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the spatial domain, face forgery detection requires identifying accurate forgery
clues which may not easily discoverable in the spatial domain alone. To address
this issue, we explore the feasibility of introducing attention mechanisms in the
frequency domain directly to learn more discriminative forgery patterns. We first
demonstrate the feasibility of introducing attention mechanisms in the frequency
domain. On the basis of the theory of digital image processing, we derive the
expression for the Inverse Discrete Cosine Transform (IDCT):

x(i, j) = K

H−1∑

h=0

W−1∑

w=0

xf (h,w) cos
(2i + 1)hπ

2H
cos

(2j + 1)wπ

2W

�
H−1∑

h=0

W−1∑

w=0

ξ(i, j, h, w)xf (h,w)

(1)

Here, x ∈ R
H×W×C denotes the spatial image, where H,W,C represent the

height, width, and channel of the image. Similarly, xf ∈ R
H×W×C represents

the frequency feature obtained via the Discrete Cosine Transform (DCT). The
coordinates of x and xf are denoted by (i, j) and (h,w), respectively, while K
is a constant coefficient. ξ(i, j, h, w) denotes the correlation coefficients between
the spatial and frequency domain. Equation 1 shows that each pixel of the image
in the spatial domain is linearly correlated with the coefficient in the frequency
domain. This suggests that the refinement of the frequency feature (i.e., fre-
quency attention learning) could further enhance the feature discrimination in
the spatial domain from a global perspective, enabling more precise manipulation
detection.

Perform Attention Learning in the Frequency Domain. Owing to the lin-
ear correlation between the spatial and frequency domains, we can learn atten-
tion weights in the frequency domain to extract more discriminative forgery
patterns automatically. Specifically, we first obtain the frequency feature of x
through DCT:

xf (h,w) = K ′
H−1∑

i=0

W−1∑

j=0

x(i, j) cos
(2i + 1)hπ

2H
cos

(2j + 1)wπ

2W
(2)

Here, K ′ is the constant coefficient. In FAM, we introduce a learning-based atten-
tion map generator, denoted as G(·, θ), to automatically discover the importance
of each frequency component. Specifically, we obtain two frequency views, xf

avg

and xf
max, by applying average-pooling and max-pooling to the origin frequency

feature xf . These views are concatenated along the channel dimension and fed
through a 1×1 convolution layer followed by a Sigmoid non-linearity to generate
the attention map in the frequency domain, denoted as MaskF :

MaskF = σ
(
Conv1×1

(
Concat

(
xf
avg , xf

max

)))
(3)

Here, σ represents the Sigmoid function and Conv1×1 denotes the 1 × 1 con-
volution operation. The learnable attention map, MaskF , could automatically
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re-weight and refine the knowledge in the frequency domain, which encourages
the network to focus on the artifacts in the frequency domain generated by the
up-sampling procedures. The refined frequency feature is as follows:

xf
ref = xf · MaskF

= D(x) · G(D(x), θ)
(4)

As the frequency domain lacks the shift invariance and local consistency present
in natural images, vanilla CNNs are unable to effectively process frequency fea-
tures. Therefore, we invert the refined frequency feature xf

ref back into the spatial
domain through IDCT, allowing the refined information to be preserved in the
frequency domain and can be applied to subsequent convolution modules:

xout = D−1(xf
ref) + x (5)

To preserve the original info of the input, we introduce a residual shortcut at
the end of the FAM. Our FAM is specifically designed to capture frequency
artifacts that are difficult to detect with spatial-wise and channel-wise attention
mechanisms. It is worth noting that FAM can be easily integrated into existing
CNN architectures, making it a plug-and-play module that enhances the learning
ability of frequency-based clues for detecting face forgery. Detailed experiments
are available in supp.

3.3 DeepFake Contrastive Learning

In addition to identifying discriminative forgery patterns, we also focus on opti-
mizing the feature space to help the network distinguish real/fake faces. Most
existing face forgery detection methods tackle the the problem as a binary clas-
sification task and typically utilize cross-entropy loss to supervise training pro-
cedure. However, the representation supervised by the cross-entropy loss is not
essentially discriminative enough. The main reason lies in the cross-entropy loss
assumes all instances in the same category should have similar distribution, dis-
regarding their discrepancies and only focuses on finding a decision boundary to
separate different classes. Consequently, inter-class separability and intra-class
compactness are not explicitly considered. While some methods have introduced
metric learning to optimize the feature space, they have not considered the
unique challenges of face forgery detection, where manipulated images can be
generated by various techniques with widely varying distribution of represen-
tations. Inspired by contrastive learning, we propose a DeepFake Contrastive
Learning (DFCL) loss function, which simultaneously pushes away the real-fake
pairs and merely pulls close the natural faces:

LDFCL =
∑

i∈P

− 1
|P |

∑

p∈P

log
eδ(xi,xp)/τ

∑
j∈P

eδ(xi,xj)/τ +
∑

n∈N

eδ(xi,xn)/τ
(6)

Here, P and N denote real faces and manipulated faces within a batch, respec-
tively; δ means a similarity function; τ is a scalar temperature parameter. Unlike
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existing supervised contrastive learning methods [15] that maximize the invari-
ance among views of the same category, our LDFCL only maximizes invariance
between real faces and ignores manipulated pairs, which reduces the adverse
effect of irrelevant forgery patterns. Further explanation is in supp.

3.4 Reconstruction of Manipulated Areas

In recognition of the fact that real faces can be subjected to partial or complete
modified, we incorporate a reconstruction task to elucidate the spatial regions on
which the model bases its decisions. As depicted in Fig. 2, we utilize a decoder
to reconstruct manipulated areas. To create the forgery mask, we pair each
forged sample with its corresponding source and calculate the absolute pixel-wise
difference in the RGB domain. Then we convert this difference into grayscale and
divide it by 255, producing a shadow that captures the degree of alteration. We
empirically utilize the threshold of 0.2 to generate the binary ground-truth mask
M ∈ R

H×W , where the value of the real region is 0 and forged region is 1:

M(i, j) =

{
1 if x(i, j) is manipulated
0 if x(i, j) is real

(7)

Accordingly, we utilize the cross-entropy loss to supervise the predicted mask:

Lrec =
∑

i,j

−
[
M(i, j) log M̂(i, j) + (1 − M(i, j)) log

(
1 − M̂(i, j)

)]
(8)

Here M̂ denotes the output of the decoder, which reflects the probability of a
given pixel having been modified.

Table 1. Ablations of the impact of our proposed components. RGB: the RGB stream
input, FAM: Frequency Attention Module, DFCL: DeepFake Contrastive Loss, REC:
the decoder with the reconstruction task. Red numbers indicate the best performance.

Method RGB FAM DFCL REC AUC

Base � 91.97%

Base w/ FAM � � 93.76%

Base w/ DFCL � � 93.44%

Base w/ REC � � 92.67%

FACL � � � � 94.33%

3.5 Training and Inference

Training: Following the existing approaches, we employ the classical binary
cross-entropy loss (BCE) to minimize the divergence between the predictions
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and their corresponding ground truth (y′, y):

LBCE = −[y log y′ + (1 − y) log (1 − y′)] (9)

During training, FACL incorporates auxiliary tasks (i.e., representation learning
and artifact reconstruction) to help the model distinguish between real and fake
faces, the overall loss can be obtained as:

LFACL = λ1LBCE + λ2LDFCL + λ3Lrec (10)

where λ1, λ2, λ3 are the hyper-parameters used to balance these loss functions.

Inference: During inference, we rely solely on the classification head to produce
the final prediction, where the outputs from other heads can be visualized to
demonstrate the effectiveness of our FACL, as illustrated in supp.

4 Experiments

4.1 Settings

Datasets: We adopt the challenging FaceForensics++ (FF++) [31] dataset
to train our network. FF++ contains 1,000 real videos, with 720 videos used for
training, 140 for validation, and 140 for test. Each video undergoes four manip-
ulation methods [6,9,34,35] to generate four fake videos with different quality
levels, i.e., raw (C0), high quality (C23) and low quality (C40). To evaluate
the robustness of our method, we also conduct experiments on Celeb-DF [20],
which is a challenging database to current detection methods. Celeb-DF contains
590 real videos and 5639 fake videos generated through face swapping for each
pair of the 59 subjects.

Implementation Details: We apply the advanced RetinaFace [8] to extract
and align faces for all datasets, and then randomly select 50 frames from each
video for training and testing. We implement our FACL via the open-source
PyTorch. Following the convention, we utilized the Xception [3] pretrained on
the ImageNet [7] as the backbone to extract image features. To optimize our
FACL, we used the Adam optimizer with an initial learning rate 2e-4 with a
cosine decay schedule. The input face is resized to 299 × 299, and the batch
size is set to 96. We train our FACL for approximately 120k iterations on four
GeForce RTX3090s. The τ in Eq. 6 is empirically set to 0.07, and we set the
values of λ1, λ2, λ3 in Eq. 10 to 1, 10 and 1, respectively.

4.2 Ablation Study

To prove the effectiveness of our approach, we conducted extensive ablations on
the FF++ dataset under the low quality setting (C40).

Frequency Attention Module: We observe that Base w/ FAM improves
the performance by 1.9% (91.97→ 93.76). FAM utilizes the attention mechanism
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Fig. 3. Comparisons of different attention mechanisms. We visualize the Grad-CAM
[42] of existing spatial-aware attention methods and our frequency attention module.
We also evaluate the AUC metric on the FF++ dataset. Our FAM could focus on both
local attributes (fourth row) and global manipulation areas (second row).

across the entire frequency domain to extract discriminative frequency features
naturally, thereby enhancing the generalizability of manipulated image detection.
As shown in Fig. 3, our approach achieves 0.6% gains over SE and 1.0% over
CBAM. It is worth noting that forged images may replace the whole face, where
the petite local features like nose in second row considered by existing spatial
attention methods lead to misjudgment. Our FAM overcome this limitation by
considering the manipulated clues in the frequency domain, which enables it to
pay more attention to the complete manipulated regions, leading to stronger
performance and mining specific artifact of different manipulations. Deepfake
Contrastive Loss: We compare Base (with the cross-entropy loss) and Base
w/ DFCL (our Deepfake Contrastive loss). As shown in Table 1, Base w/
DFCL achieves 1.6% (91.97→ 93.44) gains in AUC. To further illustrate the
effectiveness of our DFCL, we exploit t-SNE [24] to visualize the feature space.
As depicted in Fig. 4, we observe that real samples (blue points) and forgery
samples (points in other colors) are pushed out, while real samples are pulled
closer. Moreover, samples generated by different forgery techniques still retain
their original distributions, which is similar to real-world scenarios.

Benefiting from our novel FAM module, DFCL and the reconstruction
decoder, we obtain our full FACL. As shown in Table 1, our FACL outperforms
Base by 1.47%. In conclusion, our FACL consistently improves the performance
by incorporating our novel modules and the multi-task two-stream architecture.
Further explanation and visualizations about the reconstruction task are in supp.
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Table 2. Quantitative results in terms of AUC on FF++ dataset with all quality
settings, i.e., raw videos without compression (C0), high quality (C23), and low quality
(C40). For a fair comparison, the results of other methods are obtained from their
papers. Red and blue numbers indicate the best and second best performance.

Method FF++ (AUC)

C0 C23 C40

Xception [3] – 94.86% 81.76%

Face Xray [17] 98.80% 87.40% 61.60%

SPSL [22] – 95.32% 82.82%

Two-Branch [25] – 88.87% 86.59%

MAT [41] – 98.97% 87.26%

FDFL [16] 99.70% 99.30% 92.40%

F3Net [28] 99.80% 98.10% 93.30%

Dual [32] – 99.30% –

Local [2] 99.92% 99.46% 95.21%

FACL (Ours) 99.96% 99.50% 94.33%

4.3 Comparisons

Comparisons with Alternatives Under the Cross-dataset Evaluation:
To assess the generalizationablity of our FACL across different data distributions,
we follow the evaluation protocol of [41]. Specifically, we train our FACL on the
Deepfakes subset of the FF++ dataset under the high quality setting (C23) and
evaluate it on the Celeb-DF [20] dataset. We sample 50 frames from each video
to compute the AUC scores. As shown in Table 3, our FACL achieves new SoTA
performance on the cross-dataset evaluation. Notably, our FACL outperforms
DCI [21] by a largin margin (76.91→ 80.69, 4.9%). This significant improvement
is mainly attributed to our novel FAM and DFCL, which refine the frequency
components of artifact patterns and enhance the differences between real and

Fig. 4. The t-SNE visualization of (a) Base and (b) FACL on the FF++ dataset. (Color
figure online)
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Table 3. Cross-dataset evaluation (AUC) on the Celeb-DF dataset. We train our model
on the FF++ (DF) under the high quality setting (C23). Red/blue numbers are the
best/second best.

Method FF++ (DF) Celeb-DF

Two-stream [43] 70.10% 53.80%

Meso4 [1] 84.70% 54.80%

MesoInception4 [1] 83.00% 53.60%

HeadPose [40] 47.30% 54.60%

FWA [19] 80.10% 56.90%

VA-MLP [36] 66.40% 55.00%

Xception-c40 [3] 95.50% 65.50%

Multi-task [26] 76.30% 54.30%

DSP-FWA [19] 93.00% 64.60%

SMIL [18] 96.80% 56.30%

Two-branch [25] 93.20% 73.40%

F3Net [28] 97.97% 65.17%

EfficientNet-B4 [33] 99.70% 64.29%

MAT [41] 99.80% 67.44%

SPSL [22] 96.91% 76.88%

RFM [37] 95.42% 67.21%

DCI (Xception) [21] 96.50% 76.91%

FACL (Ours) 99.96% 80.69%

forged samples. In summary, our FACL demonstrates remarkable transferability
compared to other forgery detection techniques.

Comparisons with Alternatives on the Widely-Used Benchmark: Fol-
lowing most existing SoTA alternatives, we compare the performance of our
FACL on the FF++ dataset. Our evaluation considers different video quality
settings, i.e., C0, C23, and C40. The comparison results are presented in Table 2.
We observe that our FACL consistently outperforms all opponents by a consider-
able increase at C0 and C23. It is worth noting that high quality and raw videos
possess abundant frequency components, which our FACL utilizes to efficiently
describe the manipulated patterns. However, in low-quality videos, the original
frequency components are weakened due to compression. Nevertheless, with the
help of our frequency attention mechanism (FAM), our FACL is on par with
SoTA method Local [2]. In conclusion, our FACL achieves comparable results
with SoTA methods on all video quality settings in the FF++ dataset.
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5 Conclusion

This paper presents frequency attention learning and contrastive learning for face
forgery detection. Specifically, we propose a Frequency-aware Attention Module
(FAM), which can automatically refine subtle but discriminative forged features
and suppress irrelevant frequency components without complex manual partition
in face forgery detection. Besides, we notice that conventional cross-entropy loss
ignores the intra-class compactness and restrains the effectiveness of the model.
We design the DeepFake Contrastive Loss (DFCL) to diminish intra-class vari-
ances for pristine faces and boost inter-class discrepancies in the feature space.
Extensive experiments and visualizations demonstrate the superiority and gen-
eralizability of our FACL over widely-used state-of-the-art methods, especially
in the challenging cross-manipulated and cross-dataset evaluation scenarios. The
future work is to address the limitations mentioned above. Codes and supp are
available at https://github.com/Jacky-F/FACL.git.

Acknowledgments. Research reported in this paper was supported by the Natural
Science Foundation of China under grants 62076031.
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Abstract. Audio-visual based multimodal depression detection has
gained significant attention due to its high efficiency and convenience as
a computer-aided detection tool, resulting in promising performance. In
this paper, we propose a cross-modal fusion network based on multi-head
attention and residual structures (CMAFN) for depression recognition.
CMAFN consists of three core modules: the Local Temporal Feature
Extract Block (LTF), the Cross-Model Fusion Block (CFB), and the
Multi-Head Temporal Attention Block (MTB). The LTF module per-
forms feature extraction and encodes temporal information for audio
and video modalities separately, while the CFB module facilitates com-
plementary learning between the modalities. The MTB module accounts
for the temporal influence of all modalities on each unimodal branch.
With the incorporation of the three well-designed modules, CMAFN
can refine the inter-modality complementarity and intra-modality tempo-
ral dependencies, achieving the interaction between unimodal branches
and adaptive balance between modalities. Evaluation results on widely
used depression datasets, AVEC2013 and AVEC2014, demonstrate that
the proposed CMAFN method outperforms state-of-the-art approaches
for depression recognition tasks. The results highlight the potential of
CMAFN as an effective tool for the early detection and diagnosis of
depression.

Keywords: Depression · Automatic detection · Multi-modal fusion ·
Multimodal depression detection

1 Introduction

Major depressive disorder (MDD) is one of the major drivers that cause phys-
ical and mental disability, leading to severe consequences such as heart attacks
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and suicide [1]. At present, the traditional clinical diagnosis of depression is per-
formed by an experienced professional. Therefore, it is necessary to find objective
parameter indicators to help improve the accuracy of depression diagnosis.

Machine learning enables automatic depression diagnosis using facial and
vocal cues, offering low-cost, non-invasive, adaptable, and non-contact solutions.
For instance, [2,3] have demonstrated the effectiveness of acoustic features for
depression recognition. At the same time, [4,5] confirm that non-verbal facial
behaviours are reliable markers of depression. Consequently, this paper uses
facial activities and speech as the biomarkers to analyze the individual depres-
sion level, which can be measured through the Beck Depression Inventory-II
(BDI-II) score [6].

Currently, there are many methods for the automatic detection of depression
based on audio and video features. Most of them consist mainly of hand-crafted
methods [7,8] and deep-learning methods [9–11]. However, the above methods
only use single modality features, ignoring the information interaction between
the two modalities. Moreover, some frameworks [12–15] use fusion methods based
on speech and video to estimate depression scores. Feature concatenation and
decision weighting are two standard methods. Nonetheless, existing methods
have not sufficiently explored the complementarity, redundancy, and interaction
between different modalities.

To mitigate the problems mentioned above, we propose a cross-modal fusion
network based on multi-head attention and residual structure (CMAFN) for
depression recognition. More specifically, as shown in Fig. 1, the CMAFN con-
sists of three components: 1) Local Temporal Feature extract block (LTF), 2)
Cross-modal Fusion Block (CFB), and 3) Multi-head Temporal Attention Block
(MTB). Concretely, the LTF is designed to encode the local temporal order dur-
ing the learning process. Next, the CFB obtains the complementary intra- and
inter-modal interaction information between the two modalities. At the same
time, the MTB further captures the temporal dependency and high-level rep-
resentations from each modality. Finally, the CMAFN outputs the depression
severity.

In summary, the main contributions of this paper can be summarized as
follows:

– We propose a cross-modal fusion framework CMAFN, which effectively cap-
tures the dynamics features from facial and verbal cues as non-verbal behavior
measures for estimating the severity of the depression scale.

– Based on the one-dimensional temporal convolutional and multi-head atten-
tion mechanism, we design the LTF and MTB block, which deal with the
dynamic feature streams of multi-modal to obtain more comprehensive tem-
poral information.

– To mine more efficient fusion feature representation, we introduce the CFB
block to consider the dynamic interactions of different modalities and fully
use their complementary information.
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– We conducted extensive experiments on AVEC2013 and AVEC2014. The
results demonstrate our method’s effectiveness and generalization for depres-
sion recognition.

Fig. 1. The framework of CMAFN. Abbreviation: LTF for local temporal feature
extract block. CFB for cross-model fusion block. MTB for multi-head temporal atten-
tion block.

2 Methodology

2.1 Framework Overview

The multi-modal depression recognition framework CMAFN is depicted in Fig. 1.
To effectively learn fusion depression features from facial and vocal expressions,
we first encode the local temporal dependency during the learning process using
the LTF module. Second, the CFB module models intra- and inter-modality
dependencies. Finally, the MTB module obtains each modality’s long-range tem-
poral context dependencies and high-level representations. In the following sec-
tions, we will describe each component of the CMAFN in detail.

2.2 Local Temporal Feature Extract Block

Multi-modal depression automatic recognition model detects the individual
depression level in a video segment by using multi-modal signals. In this paper,
our multi-modal framework uses facial expressions and vocal cues as input. Sup-
pose a video segment Xs =

{
x1
s, x

2
s, · · · , xLs

s

}
, s ∈ {a, v}, where xi

a and xi
v

denote audio and visual frames, respectively. Ls is the sequence length of each
modality. For the visual sequences Xv, we use Resnet-50 [16] pre-trained on the
FER+ dataset [17] to extract deep appearance spatial features. For the audio
sequence Xa, we employ the open source audio processing tool openSmile [18] to
extract a set of 25 low-level acoustic descriptors from each clip, including loud-
ness, Mel-frequency cepstral coefficients (MFCCs), spectral flux, and others.

We denote the unimodal feature by X̂s ∈ RLs×Ds , where s ∈ {a, v}, Ls and
Ds are the sequence length and feature dimension respectively. Next, we use the
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1-D temporal convolution networks [19] to obtain the local temporal information
of each modality feature. Considering the time order of the feature vectors, the
positional encoding is added to the output of the 1-D temporal convolutional
network. Finally, the embedded feature sequence output by the LTF module is
defined as:

Fs = Conv1D
(
ReLu

(
Linear

(
X̂s

)))
+ pei (1)

Fig. 2. The detailed illustration of the Cross-model Fusion Block

2.3 Cross-Model Fusion Block

We exploit CFB to compute intra- and inter-modal interaction to obtain com-
plementary information from different modalities. As shown in Fig. 2. Firstly,
we use the self-attention mechanism for each modality feature selection. This
design enables CFB to focus more on features that significantly impact the
result. We then input the learned weight information into the fully connected
layer to achieve adaptive learning features. The above process can be described
as follows:

Attention (Q,K, V ) = σ

(
QK�
√

dk

)
V (2)

F̂s (Q,K, V ) = LN (Attention (Q,K, V )) (3)

where LN (·) is the layer normalization, σ stands for the softmax operation.
Q, K, and V denote the query matrix, the key matrix and the value matrix
respectively. dk is the key dimensionality.

Secondly, we adopt linear projection L to derive mapping representations
from F̂a and F̂v. Then, we apply the add and tanh activation functions to pro-
cess these two representations. Finally, the softmax is used to obtain the fused
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features F̂f and ensure that the information is not lost by employing a residual
structure. The F̂f can be defined as follows:

F̂q = tanh
(
L

(
F̂a

)
+ L

(
F̂v

))
(4)

F̂f = σ
(
F̂q

)
⊕ F̂v ∈ RLs×df (5)

where df and Ls stand for dimension and sequence length, respectively. In sum-
mary, the CFB module effectively capitalizes on the complementary information
of the two modalities.

Fig. 3. The detailed illustration of the Multi-head Temporal Attention Block

2.4 Multi-head Temporal Attention Block

In order to account for the temporal impact of all modalities on a single modal
branch and achieve adaptive cross-modal balancing, as shown in Fig. 3, we
perform MTB on F̂f and F̂s to capture the long-range temporal dependency.
Specifically, the MTB project the representation of all modalities F̂f to Q̂f ,
K̂f ∈ RLs×df in each unimodal branch and the unimodal representation F̂s

to V̂s ∈ RLs×df , where df and Ls stand for dimension and sequence length,
respectively. The above process can be described as follows:

MultiHead
(
Q̂f , K̂f , V̂s

)
= Concat

(
head1, . . . , headh

)
(6)

where headj = Attention
(
Q̂j

f , K̂j
f , V̂ j

s

)
(7)

Q̂f = Concat
(
Q̂1

f . . . Q̂t
f . . . Q̂Ls

f

)
W Q̂

f (8)
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K̂f = Concat
(
K̂1

f . . . K̂t
f . . . K̂Ls

f

)
W K̂

f (9)

V̂s = Concat
(
V̂ 1
s . . . V̂ t

s . . . V̂ Ls
s

)
W V̂

s (10)

where j ∈ {1, h} indicates the jth head of the total number of h heads and time
step t ∈ {1, Ls}. Finally, the final BDI-II scores is output after a fully connected
layer.

3 Experiments

3.1 Experiment Datasets

For the AVEC 2013 depression dataset, there are 150 videos from 82 subjects
participating in different human-computer interaction (HCI) tasks. The length
of the videos are about 20 to 50 min long (mean = 25 min). The age range for all
participants in the dataset is 18 to 63 years old, with an average age is 31.5 years
old and a standard deviation of 12.3 years. This depression dataset has been
divided into three partitions by the publisher, i.e., training, development, and
test set. Each partition has 50 videos, and each video has a label corresponding
to its BDI-II score.

The AVEC 2014 depression dataset is a subset of the AVEC 2013 dataset.
Only two different HCI tasks are involved, i.e., “FreeForm” and “Northwind”,
both of each have 150 videos. Specifically, in the “FreeForm” task, the subjects
responded to a question about a sad childhood memory. In the “Northwind”
task, the subjects were required to read an excerpt audibly from a fable. The
same as AVEC 2013, it also has three partitions, i.e., training, development, and
test sets. We perform experiments employing training and development sets from
both tasks as training data, and the test sets are used to measure the model’s
performance.

3.2 Experiment Details and Evaluation Metrics

Pre-processing. In the AVEC 2013 and AVEC 2014 datasets, for the video
modality, we use the machine learning toolkit DliB [20] to detect faces in all
video samples, align by facial landmarks and resize the images to 224 × 224
RGB color channels. As mentioned before, we use Resnet-50 [16] pre-trained
on the FER+ dataset [17] to extract frame-level features at a frame rate of 30
frames/second, then average feature of every 3 frames as the input of the model.
For the audio modality, we segment each audio clip by the second, then we set
the frame size and frame step to 1 s and 0.1 s, respectively. We extract the set of
25 low-level acoustic descriptors for each cropped audio clip and subseqsuently
obtained their mean values.
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Experiment Setup. The overall framework of CMAFN is shown in Fig. 1.
To implement CMAFN, we leveraged the PyTorch framework [21] and trained
the model on a local GPU server equipped with a TESLA-A100 GPU featuring
40GB of global memory. The optimizer is Adam with batch size 64 and learning
rate is 3e− 4. The weight decay and eps of the Adam optimizer are set to 5e− 4
and 1e−8, respectively. We use the Mean Absolute Error with the loss function.
In addition, for the 1-D CNN used in the LTF module, we stack two layers with
a kernel size of 3.

Evaluation Metrics. We offer several evaluation metrics to compare with prior
approaches. For the AVEC 2013 and AVEC 2014 datasets, we utilize Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE) as the evaluation met-
rics during testing to ensure fair comparisons, which details are defined as:

MAE =
1
M

M∑

j=1

|ŷj − pj | (11)

RMSE =

√√
√
√ 1

M

M∑

j=1

(ŷj − pj)
2 (12)

where M is the total number of test samples, pj and ŷj are the ground truth
and the predicted BDI-II score of the jth subject, respectively.

4 Results and Analysis

4.1 Ablation Study

To verify the effectiveness of each component in CMAFN, we conduct ablation
experiments on the AVEC2013 and AVEC2014 datasets. The results in Table 1
indicates that A performs the worst, which is attributed to the fact that A only
employs the LTF module and a fusion strategy similar to feature concatenation.
The experimental results of B and C indicate that the inclusion of the CFB
module slightly improves the performance compared to using only the MTB
module, as the CFB module captures complementary information within and
across modalities. The combination of all modules achieves the best performance,
as it builds on the effective feature representation obtained by the CFB module
and considers the temporal influence of all modalities on a single modality branch
using the MTB module, thus significantly enhancing the depression assessment
capability of CMAFN.

In addition, we investigate the effectiveness of the self-attention mechanism
and residual structure. The results from Table 1 shows that their performance
is improved compared to the control group. Indicates that the self-attention
structure can adaptively select depression-related features and perform multi-
modal interaction more efficiently. In the meantime, the residual structure can
minimize the loss of video features during the interaction process.
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Table 1. Ablation study of the individual components on the test set of AVEC2013
and AVEC2014

Combination AVEC 2013 AVEC2014

MAE RMSE MAE RMSE

A :LTF(Conv1D) 9.68 10.79 8.96 9.73

B :LTF+CFB 6.17 7.29 6.05 7.16

C :LTF+MTB 6.85 7.93 6.62 7.33

D :LTF+CFB+MTB (Ours) 5.26 6.60 5.16 6.04

w/o self-attention 5.42 6.63 5.37 6.09

w/o residual 5.34 6.57 5.20 6.17

4.2 Comparing Video-Audio and Audio-Video Fusion

In the model design, we fuse the audio modality with the video modality, denoted
as A->V. On the contrary, integrating video modality into audio modality is
denoted as V->A. The experimental results are shown in Table 2. We find that
the performance of V->A is the best, achieving the smallest error in both the
AVEC 2013 and AVEC 2014 datasets. We attribute this to the well-designed
CFB module, which reduces the redundancy of audio features and produces
results more effectively. Additionally, due to the rich spatio-temporal structure of
the video modality, the multimodal representation can better capture depression-
related information, which also impacts the final output results.

Table 2. Comparative Analysis of Audio-Video and Video-Audio Fusion Methods in
a CMAFN

Method AVEC 2013 AVEC2014

MAE RMSE MAE RMSE

A->V 5.38 6.71 5.29 6.17

V->A 5.26 6.60 5.16 6.04

4.3 Compared with the State-of-the-Art Models

To prove the effectiveness of our CMAFN, we present the quantitative perfor-
mance comparison results on AVEC 2013 and AVEC 2014 datasets in Table 3.
We can get the MAE scores of 5.21 and 5.16, and the RMSE scores of 6.60 and
6.04.

Specifically, our approach achieves the best performance compared to single-
modality-based methods, indicating that fusion feature representations from dif-
ferent modalities can effectively enhance the model’s performance in depression
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recognition. Our proposed method also stands out among multi-modal fusion
methods. On the AVEC 2013 dataset, CMAFN obtains the best precision, which
reduces the MAE and RMSE of the best-performing method [22] by 0.12 and
0.41. On the AVEC 2014 dataset, the proposed CMAFN framework still achieves
very promising results, with 6.04 for RMSE and 5.16 for MAE. The effectiveness
of the proposed method can be seen from the performance of the comparison
experiments. This is because CMAFN can fully leverage the complementarity
between the two modalities, reduce redundancy in feature information to some
extent through attention mechanisms, and thus enhance the model’s overall per-
formance.

Table 3. Comparison of our method and state-of-the-art approaches on the test set
of the two datasets. “A” and “V ” represented audio and video modalities. “A + V ” is
the fusion of audio and video modalities.

Modalities Methods AVEC2013 AVEC2014

RMSE MAE RMSE MAE

A Cummins et al. [23] 8.16 / / /

He et al. [2] 10.00 8.20 9.99 8.19

Niu et al. [24] 9.50 7.14 9.66 8.02

Niu et. al. [25] 9.79 7.48 9.25 7.86

Zhao et al. [26] 9.65 7.38 9.57 7.94

V Zhu et al. [4] 9.82 7.58 9.55 7.74

Al Jazaery et al. [5] 9.28 7.37 9.20 7.22

Melo et al. [27] 8.25 6.30 8.23 6.13

Zhou et al. [28] 8.28 6.20 8.39 6.21

He et al. [29] 8.39 6.59 8.30 6.51

Uddin et al. [30] 8.93 7.04 8.78 6.86

He et al. [31] 9.37 7.02 9.24 6.95

Liu et al. [32] 7.59 6.08 7.98 6.04

Li et al. [33] 7.38 6.05 7.60 6.01

A + V Cummins et al. [15] 10.62 / / /

Jan et al. [12] / / 7.43 6.14

Meng et al. [14] 10.96 8.72 10.82 8.99

Kaya et al. [34] 9.44 7.68 9.61 7.69

Niu et al. [25] 8.16 6.14 7.03 5.21

Uddin et al. [22] 6.83 5.38 6.16 5.03

Ours 6.60 5.26 6.04 5.16
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4.4 Effectiveness of Different Head Numbers

We further explore the best performance of the CMAFN model by using dif-
ferent numbers of attention heads h. Figure 1 shows the experimental results of
CMAFN-h (h = 1, 2, 4, 6) on the AVEC2013 and AVEC2014 datasets, where
Fig. 4 (a) and (b) represent the experimental results on the AVEC2013 and
AVEC2014 datasets, respectively. The results indicate that CMAFN-4 achieved
the best performance on both datasets. Specifically, compared with CMAFN-
1 with a single attention head, CMAFN-4 reduced the RMSE and MAE by
8.46% and 13.63%, respectively, on the AVEC2013 dataset. Similarly, on the
AVEC2014 dataset, CMAFN-4 reduced the RMSE and MAE by 8.07% and
13.71%, respectively, compared with CMAFN-1. Furthermore, we observed that
the error increases as h increases, which may be due to overfitting caused by the
small dataset.

Fig. 4. Recognition results of different head numbers of the CMAFN model on the
AVEC 2013 (a) and AVEC 2014 (b) datasets

5 Conclusion

Physiological studies have revealed that depressive and healthy individuals can
simultaneously observe changes in temporal affective state from audio and visual
cues. Based on the facts, we propose a visual-audio cross-modal fusion network
for automatic depression scale prediction. Firstly, we employ the LTF module
to perform feature preprocessing on each modality separately and extract their
temporal features. Secondly, our designed CFB module is employed for com-
plementary learning across different modalities. CFB ensures the efficiency and
integrity of inter-modal information interaction through self-attention mecha-
nism and residual connection. Finally, we utilize the MTB module to consider
the temporal influence of all modalities on each unimodal branch and gradually
refine the interplay between modalities. We conduct extensive experiments on
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two publicly available depression datasets, AVEC 2013 and AVEC 2014, and the
results demonstrate the superiority of our method.

In future work, we will focus on introducing more modalities, such as text
and body postures, to improve the detection accuracy of depression assessment.
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Abstract. Facial Expression Recognition (FER) has received exten-
sive attention in recent years. Due to the strong similarity between
expressions, it is urgent to distinguish them meticulously in a finer-
grained manner. In this paper, we propose a method, named AU-oriented
Expression Decomposition Learning (AEDL), which aims to decouple
expressions into Action Units (AUs) and focuses on subtle facial differ-
ences. In particular, AEDL comprises two branches: the AU Auxiliary
(AUA) branch and the FER branch. For the former, the generic knowl-
edge of dependencies among AUs is leveraged to supervise AU predic-
tions which are then transformed into new expression predictions with a
learnable matrix modeled by the relationship between AUs and expres-
sions. For the latter, fusion features are employed to compensate for the
minority classes to ensure adequate feature learning. FER predictions are
guided by the AUA branch, mining detailed distinctions between expres-
sions. Importantly, the proposed method is independent of the backbone
network and brings no extra burden on inference. We conduct experi-
ments on popular in-the-wild datasets and achieve leading performance,
proving the effectiveness of the proposed AEDL.

Keywords: Facial expression recognition · Action units · Expression
decomposition

1 Introduction

Facial expression is a crucial nonverbal signal in human communication that
reflects underlying emotions. Facial Expression Recognition (FER) has emerged
as an important research area, with applications ranging from health treatment
to criminal investigation, owing to the authenticity and particularity of facial
expressions. In recent years, deep learning representations have replaced tradi-
tional handcrafted features as the mainstream choice for FER, and have achieved
remarkable results on lab-controlled datasets such as CK+ [12], MMI [17] and
Oulu-CASIA [24]. However, there is still room for improvement on in-the-wild
datasets (e.g., RAF-DB [10], FERPlus [1] and AffectNet [13]), which pose sig-
nificant challenges, including occlusion and pose variations.
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Fig. 1. Common and exclusive AUs for Fear and Surprise. In different cases, they can
be accurately distinguished by the different AUs they possess.

Currently, FER encounters a challenge with regard to the strong similarity
between expressions. Simply using one-hot labels is insufficient to distinguish
similar expressions. Therefore, it is vital to distinguish them in a finer-grained
form, and action units (AUs) can act this crucial role. In the Facial Action Coding
System (FACS) [4], each expression can be decomposed into a combination of
multiple AUs, with each AU representing the muscle movement of a specific
part of the face. Based on this, as shown in Fig. 1, in order to distinguish the
similar expression pair of fear and surprise, we observe that fear has certain
AUs that surprise does not have, such as Brow Lowerer, Lid Tightener and Lip
Stretcher. These AUs can be utilized to distinguish the two expressions easily.
For instance, we can tell Fear by the Brow Lowerer when the mouth stretches
in the expression. Besides, we can distinguish Fear by the Lip Stretcher when
the eyebrows raises in the expression.

To address this issue, several work [3,14] have considered action units as an
auxiliary and leverage general knowledge about faces. For instance, in [3], generic
knowledge was integrated into the Bayesian network to model the relationship
between AUs and expressions. AUE-CRL [14] converted expression labels into
AU pseudo labels with the help of prior knowledge for FER. The biggest differ-
ence in our work is that we benefit from knowledge distillation [7] and transform
AU predictions into FER predictions directly via learned prior knowledge as new
supervised information, which is intuitive and effective.

In this paper, we propose a method, named AU-oriented Expression Decom-
position Learning (AEDL), consisting of two branches: the FER branch and
the AU auxiliary (AUA) branch. Specifically, in the AUA branch, the prior
knowledge of AU positive and negative pairs is utilized to boost the performance
of AU detection while the relationship between AUs and expression is modeled
as a learnable matrix for the conversion between AU and expression prediction
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for the further guidance to the FER branch. In the FER branch, in order to
compensate for the features of the minority classes, we utilize fusion feature to
alleviate the imbalance in the FER datasets. Note that AUA branch is removed
during inference as the guidance information has already been fully learned by
the FER branch after training, so the proposed method does not bring additional
cost on inference. To sum up, the contributions of the proposed method are as
follows:

1. We introduce a method named AEDL that can decouple expressions into AUs
and convert AU predictions into expression predictions as new supervisory
information with a learnable matrix, which looks at the problem of high
similarity between expressions from a finer-grained perspective.

2. Our AUA branch can model the generic knowledge between AUs and the
relationship between expressions and AUs, while our FER branch can utilize
fusion features to compensate for the minority classes.

3. The proposed method achieves leading performance on RAF-DB and Affect-
Net without bringing extra burden on inference.

2 Related Work

State-of-the-art deep learning-based FER method related to our method can be
mainly divided into two branches: expression decoupling [15,19] and face-related
task assistance [2,3,14].

Expression Decoupling. Because of the strong similarity between expressions,
how to extract fine-grained features to distinguish the small differences between
expressions is crucial. FDRL [15] decoupled expression images into a series of
action-aware features and assigned weights for intra-feature and inter-feature
relation. Then reconstructed them into expression features to predict the label.
Besides, TransFER [19] first applied transformer for FER because transformer
decoupled the expression images into patches and explored the relationship by
self-attention. Different from the aforementioned work, our proposed method
decouples expressions into fine-grained AUs to further learn the local features.
Then we convert them into expression predictions as supervised information with
the learnable transformation matrix with no burden on inference.

Face-Related Task Assistance. Due to the high consistency of face-related
tasks, landmark detection [14] and action units detection [3,14] often assist FER.
Cui et al. [3] encoded the prior knowledge between AUs and expressions into the
Bayesian network. AUE-CRL [14] utilized prior knowledge to craft AU pseudo
labels and select more useful AU information. JMPL [25] utilized correlation
between AUs to increase the sample size and improve the performance with
multi-label learning. For the proposed method, we exploit the prior knowledge
between AU and expression to transform AU prediction into expression predic-
tion, guiding the training of FER branch. Not only that, the postive and negative
pair information is utilized in the AUA branch, while the shared compensation
information is inserted in the FER branch.
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Fig. 2. The overview of AEDL. Firstly, AUA CNN and FER CNN are pre-trained on
MS-Celeb1M. Secondly, AUA CNN is fine-tuned on BP4D [22] under the supervision
of LCO. Finally, the model is trained with the overall loss function.

3 Methods

3.1 Overview

As shown in Fig. 1, similar expression pairs can be decoupled into corresponding
AUs from a finer-grained perspective and then classified more accurately with
specific AUs. In order to realize this idea, we proposed a method named AEDL
which has two branches: the AUA branch and the FER branch (see in Fig. 2).
For the former, AU features are firstly extracted by AUA Convolutional Neural
Networks (CNN) and then AU predictions pa are obtained under the supervi-
sion of LCO. Finally, AU predictions are transformed into FER predictions pe

with the learnable matrix WAE , so as to provide more professional guidance
for FER branch. For the latter, a batch of expression images is fed into the
FER CNN and FER features Fe are obtained. In order to reduce the impact
of insufficient feature learning of minority classes, a batch of FER features is
averaged as common features Fc, and added them to each FER feature element-
wisely to obtain fusion features Ff for classification. Finally, expression images
are classified under the joint supervision of LAU and LCE .

3.2 The AUA Branch

Since facial expressions represent human emotions, previous psychological
research is well instructive. As [4,23] argues, there is a strong correlation among
AUs, so the relationship between AUs is defined as postive pairs and negative
pairs. For example, as show in Fig. 1, Inner Brow Rasier and Outer Brow Rasier
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Table 1. The relationship between expressions and AUs in FACS [4]. A and B represent
the primary and secondary AU, respectively.

AU 1 2 4 5 6 7 9 10 12 15 16 17 20 23 24 25 26

anger A A B B A A

disgust A A B B

fear A A A A A A B B

happiness A B A B

sadness A B B A A B

surprise A A A B A A

both indicate the orientation of the eyebrows. They often appear in the expres-
sion at the same time, so they are regarded as postive pairs. However, Lip Corner
Puller and Lip Corner Depressor are considered as negative pair owing to the
completely opposite direction of lip. To sum up, the probability of positive pairs
occurring at the same time is high, while the probability of negative pairs occur-
ring at the same time is extremely small.

For AU i, if pai
of AU predictions pa is greater than 0.5, it means that AU

i exists, which can be formulated by pai=1 . On the contrary, if AU i dose not
exist, it can be expressed by pai=0 . For AU i and j, the relationship of positive
pair can be written as:

pai=1|j=1 > pai=0|j=1 (1)

pai=1|j=1 > pai=1|j=0 (2)

The equivalent formulations are:

pai=1,j=1 > pai=0,j=1 (3)

pai=1,j=1 > pai=1paj=1 (4)

Inspired by [14], the above relationship can be modeled as a regularization term:

LP =
∑

i,j∈SP

max(pai=1paj=1 − pai=1,j=1 , 0)

+
∑

i,j∈SP

max(pai=1,j=0 − pai=1,j=1 , 0)

+
∑

i,j∈SP

max(pai=0,j=1 − pai=1,j=1 , 0)

(5)

where SP is the set of positive AU pairs. Similarly, the relationship for AU
negative pairs can be formulated as:

LN =
∑

i,j∈SN

max(pai=1,j=1 − pai=1paj=1 , 0)

+
∑

i,j∈SN

max(pai=1,j=1 − pai=1,j=0 , 0)

+
∑

i,j∈SN

max(pai=1,j=1 − pai=0,j=1 , 0)

(6)
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Table 2. Accuracy(%) on RAF-DB with different backbone architectures.

ResNet-18 ResNet-50IBN ShuffleNetV1(group = 3,2.0×) MobileNetV2

Baseline 86.33 86.57 86.20 86.01

AEDL 89.15 89.78 88.32 88.23

where SN is the set of negative AU pairs. The loss function of AUA branch is:

LCO = LP + LN (7)

Besides, in order to look at the expressions from a more fine-grained perspective,
we followed the idea in [4] and decoupled the expressions into the combination of
AUs. The relationship between expressions and AUs is shown in the Table 1. Each
expression has its corresponding primary AU and secondary AU. The primary
AU represents the most likely AU to appear when annotated with a specific
expression, while the secondary AU is the second most likely to appear. Based on
this general knowledge, we initialize a matrix W̃AE representing the relationship
between AUs and expressions. To get more accurate FER predictions, we define
a loss function LAU to guide the learning of the matrix WAE .

LAU =
∥
∥
∥WAE − W̃AE

∥
∥
∥

2

2
(8)

The AU predictions are transformed into the new instructive FER predictions
pe for FER branch by the learned matrix.

pe = paWAE (9)

3.3 The FER Branch

The phenomenon of class imbalance in FER has been shown in [11]. Inspired
by [20], we let the majority classes compensate the features of the minority
classes, allowing more sufficient feature learning. Specifically, given a batch of
expression images, we fed them into pre-trained FER CNN and obtain FER
feature Fe. In order to compensate the minority classes, common feature Fc is
the average of FER feature Fe and then adds Fe element-wisely to form fusion
feature Ff for classification.

Fc =
1
B

B∑

i=0

Fei (10)

Ff = Fe ⊕ Fc (11)

where B denotes the number of a batch, ⊕ denotes the element-wise addition.
In this way, although it is an expression image of minority class, it also con-
tains some features of the majority class, which can alleviate the impact of class
imbalance to a certain extent.
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Fig. 3. Text at the bottom of the image is dataset annotation. (a) Attentiton visual-
ization of Baseline and AEDL . (b) The AU and FER predictions of AEDL.

Now that we have obtained the instructive new FER prediction pe of AUA
branch, inspired by knowledge distillation, we define a loss function LF as a
bridge to connect the two branches:

LF = KL(p1/T
e ,p1/T

f ) (12)

where pf denotes the prediction of FER branch, KL denotes Kullback-Leibler
divergence. T is the temperature factor following with [7].

3.4 Training Strategy

We adopt a three-step training strategy. In the first step, we pre-train FER
CNN and AUA CNN on MS-Celeb1M face recognition dataset. In the second
step, AUA CNN is fine-tuned on BP4D [22] under the supervision of LCO and
binary cross entropy loss function for more detailed AU features extraction. The
last step is to train model with the overall loss function of the proposed method:

L = LCE + λ1LF + λ2LAU (13)

where LCE denotes cross entropy loss function between expression labels and
FER prediction pf , λ1 and λ2 both denote the hyper parameters.

Note that the AUA branch is removed during inference cause the FER branch
is fully guided by the AUA branch after training, so the proposed AEDL brings
no extra burden on inference.

4 Experiments

4.1 Datasets

RAF-DB [10] consists of 30,000 facial images with basic or compound annota-
tions. For our experiment, we selected the images with seven basic expressions
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Table 3. Accuracy (%) comparison of the different components.

Fusion feature LAU LF RAF-DB AffectNet

- - - 86.33 62.34

� - - 87.09 62.76

- - � 88.07 63.52

� - � 88.43 64.57

- � � 88.72 64.68

� � � 89.15 65.23

(i.e., neutral, happiness, surprise, sadness, anger, disgust, and fear), with 12,271
images used for training and the remaining 3,068 images for testing. Affect-
Net [13] is currently the largest FER dataset, containing 440,000 images col-
lected from the internet using 1,250 emotion-related keywords to query major
search engines. As with previous studies, we chose around 280,000 images for
training and 3,500 images for testing. These images all depict one of seven basic
expressions. BP4D [22] comprises 328 videos of 41 participants (23 females and
18 males) who engaged in eight spontaneous expression sessions. The videos
contain a total of 140,000 frames, all of which are annotated with 12 AUs.

4.2 Implementation Details

The default configuration for FER CNN and AUA CNN is to use ResNet18 as
the backbone network and we pre-train them on the MS-Celeb-1M face recogni-
tion dataset. Besides, AUA CNN is then fine-tuned on BP4D for more detailed
AU features extraction following with [14]. Prior to training, facial images are
cropped and aligned, and then resized to 256× 256 pixels. Random cropping and
horizontal flipping are applied to images that are resized to 224× 224 pixels. We
use a single Nvidia Tesla P40 GPU to train our model, with a batch size of 72.
Adam optimization algorithm [9] is deployed with a weight decay of 10−4 as the
optimizer. Initially, the learning rate is set to 10−3, and then it is divided by
10 after 10 and 20 epochs. The training process lasts for 40 epochs. W̃AE is
initialized according to Table 1 where A represents 0.9, B represents 0.5 and 0.1
otherwise.

4.3 Performance Evaluation

Evaluation on different backbone networks. In order to verify the fea-
sibility of the proposed AEDL, we apply it in different backbone networks.
For ResNet-18, ResNet-50IBN, ShuffleNetV2 and MobileNetV1, our method
improves the accuracy by 2.82%, 3.21%, 2.12% and 2.22% respectively compared
with the baseline in Table 2. The lightweight MobileNet achieves an impressive
accuracy of 88.23%, highlighting the potential of AEDL for practical deployment.
Notably, the performance enhancement achieved by AEDL incurs no additional
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costs on inference and is independent of the backbone network. Our AUA branch
can potentially be further embedded into existing methods, providing perfor-
mance improvements without extra burdens on inference.

Table 4. Accuracy (%) comparison to SOTA methods. † denotes our reproduce results.
MAcc. is the abbreviation for mean accuracy.

Method Backbone RAF-DB AffectNet

Acc. MAcc. Acc.

Meta-Face2Exp [21] ResNet-18 88.54 – 64.23

SCN [18] ResNet-18 87.03 78.09† 63.40†

DACL [5] ResNet-18 87.78 80.44 65.20

MA-Net [26] ResNet-18 88.40 79.73 64.53

DMUE [16] ResNet-18 88.76 – –

AUE-CRL [14] ResNet-101 – 81.00 –

RUL [14] ResNet-18 88.98 – - -

FENN [6] ResNet-18 88.91 – - -

IPD-FER [8] ResNet-18 88.89 79.28 62.23

FDRL [15] ResNet-18 89.47 – –

Ours (AEDL) ResNet-18 89.15 81.67 65.23

Attention Visualization of Baseline and AEDL. As shown in Fig. 3a, in
comparison to the baseline, AEDL prioritizes local features of critical facial com-
ponents. For the image labeled as disgust, our method emphasizes AU10 (Upper
Lip Raiser). Besides, for images labeled as angry, the AEDL primarily focuses
on AU4 (Brow Lowerer) and AU22 (Lip Funneler) while for images labeled as
surprise, AU27 (Mouth Stretch) receives more attention. These local features
correspond to the most likely AUs associated with the respective expressions.

Important AU and FER Predictions of AEDL. We selected several images
on RAF-DB, and provided predictions of important AUs and expressions. As
shown in Fig. 3b, for the image in the first row, it is challenging to differentiate
between surprise and fear. However, by leveraging the distinct AU4 and AU7
predictions, which are different to surprise and fear, the proposed approach suc-
cessfully predicts the surprise. Similarly, we observe the results of the image in
the second row that the AU10 prediction specific to disgust is high. Thus, lever-
aging the guidance provided by the AUA branch, the FER branch accurately
predicts the disgust expression. For the image in the third row, the corresponding
AU prediction values are also relatively high so fear is predicted by AEDL.

4.4 Comparison with State-of-the-Arts

In this work, we propose a method that decouples facial expressions into AUs
and leverages face-related prior knowledge to enhance the accuracy of expression
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predictions. To comprehensively demonstrate the superior performance of our
AEDL, we use two metrics. Weighted accuracy is most commonly used metric,
which is the ratio of correctly classified samples to the total number of samples
in the test set while mean accuracy calculates the average accuracy for each
category owing to class imbalance in FER datasets.

Table 5. The classification accuracy (%) with different hyper parameters of λ1, λ2 and
T on RAF-DB.

(a) Influence of λ1.

λ1 RAF-DB

0 88.09

0.5 88.73

1.0 89.15

1.5 88.62

2.0 88.17

(b) Influence of λ2.

λ2 RAF-DB

0 88.36

0.2 89.15

0.4 88.85

0.6 88.67

0.8 88.44

(c) Influence of T .

T RAF-DB

1.0 88.47

1.2 88.65

1.4 88.93

1.6 89.15

1.8 88.87

As shown in Table 4, it is worth mentioning that AEDL achieved leading
results of 89.15% on RAF-DB and 65.23% on AffectNet. For methods that
focus on local changes in face, our method exceeds the result of MA-Net [26]
by 0.75% and 0.7% on RAF-DB and AffectNet, respectively. For mean accuracy,
our method improves the accuracy by 0.67% over AUE-CRL [14] even though
its backbone is ResNet-101 while ours is ResNet-18. For FDRL [15], which also
decouples expressions, each module involves the complex process of decomposing
the main branch into multiple sub-branches, training them separately, and then
merging them back into the main branch. Moreover, these complex operations
cannot be eliminated during the inference. In contrast, our method achieves
competitive performance results but introduces no additional inference burden,
making it possible to achieve lightweight deployment.

4.5 Ablation Studies

Component Analysis. Note that the presence of LF is necessary in the com-
ponent analysis. As shown in Table 3, we observed and concluded the following
points: (1) When LF exists in the method as a single component, it can bring
1.74% and 1.18% improvement to RAF-DB and AffectNet, respectively, com-
pared to the baseline. It can prove that LF is the key to the proposed method
and is the bridge connecting AUA branch and FER branch. Besides, decoupling
expressions into finer-grained AUs and regarding them as the basis for classifi-
cation guidance is effective. (2) Although LAU only acts on AUA branch, with
the cooperation of LAU and LF , more accurate AU decoupling results can be
obtained, thus bringing more detailed guidance to FER branch. The joint of
LAU achieves the improvement by 0.65% and 1.16% on RAF-DB and AffectNet,
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respectively. (3) The fusion feature is the main trick of the FER branch. It pro-
vides more sufficient feature learning for the minority classes which can bring
about 0.5% improvement in accuracy.

Trade-off Weight. λ1 controls the degree to which the AUA branch directs
FER branch. Table 5a shows that when λ1 gradually increases, FER branch can
learn finer-grained features. But when it is too large, the effect of AUA branch
is too strong and FER branch loses its dominance.

Trade-off Weight. λ2 is the relevant hyper parameter of learnable matrix
WAE , which obtains more accurate expression predictions with fine-grained AU
features. Table 5b shows the performance with different λ2.

Sharpen Temperature. T allows AUA branch to provide smoother guidance
to FER branch, which can suppress the sensitivity of the model to incorrect
predictions. But when T is too large, the guiding of AUA branch is weakened.

5 Conclusion

To distinguish expressions from finer-grained perspective, we proposed AEDL, a
method that decouples expressions into AUs and pays more attention on subtle
facial changes. The AEDL approach includes two branches, the AUA branch
and the FER branch, that leverage generic knowledge of AUs and expressions
to supervise AU predictions and transform them into new expression predic-
tions. Additionally, we use fusion features to compensate for minority classes
and ensure adequate feature learning. Our experiments on in-the-wild datasets
show the effectiveness of AEDL without adding extra burden to inference.
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Abstract. Facial landmark detection is an essential prerequisite for
many face applications, which has attracted much attention and made
remarkable progress in recent years. However, some problems still need
to be solved urgently, including improving the accuracy of facial land-
mark detectors in complex scenes, encoding long-range relationships
between keypoints and facial components, and optimizing the robust-
ness of methods in unconstrained environments. To address these prob-
lems, we propose a novel facial landmark detector via multi-scale trans-
former (MTLD), which contains three modules: Multi-scale Transformer,
Joint Regression, and Structure Loss. The proposed Multi-scale Trans-
former focuses on capturing long-range information and cross-scale rep-
resentations from multi-scale feature maps. The Joint Regression takes
advantage of both coordinate and heatmap regression, which could boost
the inference speed without sacrificing model accuracy. Furthermore, in
order to explore the structural dependency between facial landmarks,
we design the Structure Loss to fully utilize the geometric information in
face images. We evaluate the proposed method through extensive exper-
iments on four benchmark datasets. The results demonstrate that our
method outperforms state-of-the-art approaches both in accuracy and
efficiency.

Keywords: Facial landmark detection · Vision transformer ·
Multi-scale feature · Global information

1 Introduction

Facial landmark detection aims to find some pre-defined locations on human face
images, which usually have specific semantic meanings, such as the eyebrow or
pupil. It has become one of the most fundamental tasks in computer vision and is
used for many real-world applications. Thanks to the development of deep learn-
ing and computer vision techniques, facial landmark detection algorithms have
achieved significant progress in accuracy and efficiency over the past decades.

Since 2012, methods based on deep neural networks have been the dominant
solution for many fields in computer vision. Similarly, facial landmark detectors
based on deep learning show significant advantages over traditional methods in

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 278–290, 2024.
https://doi.org/10.1007/978-981-99-8469-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8469-5_22&domain=pdf
https://doi.org/10.1007/978-981-99-8469-5_22


Accurate Facial Landmark Detector via Multi-scale Transformer 279

terms of accuracy, generalization, and robustness. Recently, several facial land-
mark detection algorithms [1–3] with excellent performance have been proposed.
For instance, Feng et al. [2] proposed the Wing-Loss to increase the contribu-
tion of the samples with small and medium size errors to the training of the
regression framework. The designed Wing-Loss enables coordinate-based meth-
ods to achieve promising performance under wild environments. Xia et al. [3]
leveraged coordinate regression and Transformer to explore the inherent rela-
tionships between facial keypoints and achieve impressive results.

In order to achieve excellent performance, existing mainstream methods
attempt to utilize a more complex backbone for learning discriminative repre-
sentations, such as ResNet [4], HRNet [5], etc. Other approaches involve complex
data augmentation technologies [6], while some methods [1,3] focus on optimizing
the regression schemes with the carefully designed detection head or vision trans-
former. Although these approaches perform well on public benchmark datasets,
they are still hard to apply in unconstrained environments and complex scenes.
One issue is that most works take deep convolution networks (CNN) as the
backbone to extract features for input samples, which may pay more atten-
tion to local information but ignore some meaningful global representations and
long-range relationships. Additionally, these frameworks often overlook essential
prior knowledge of human face images, such as structural information and geo-
metric relationships of different facial components. That may limit the model’s
performance, especially on occluded and blurred face samples. Moreover, the
commonly used approaches struggle to balance accuracy and inference speed.

To address the above issues, we present a novel facial landmark detector via
Multi-scale Transformer named MTLD. The proposed method mainly consists
of three modules: Multi-scale Transformer, Joint Regression, and Structure Loss.
In order to optimize the disadvantages of the facial landmark detector based on
CNN, we proposed the Multi-scale Transformer for face alignment by making
full use of multi-scale feature maps to capture the global representations and
explore long-range relationships between different facial keypoints. The Joint
Regression can be regarded as coordination regression, which would generate a
group of heatmaps with the output multi-scale feature maps of backbone during
the training stage, then apply them as an auxiliary heatmap loss to accelerate
convergence. Notable, the heatmap loss is only used in the training stage, so it
would not affect the model inference speed. The proposed Joint Regression takes
full advantage of both heatmap and coordinate regression, which can improve
the accuracy of facial landmark detectors without scarifying the inference speed.
Prior knowledge of the human face’s structural information can improve the
accuracy of facial landmark detection models. However, current methods do not
make full use of this information. Therefore, we designed a loss function called
Structure Loss to constrain the specific information between facial keypoints.
This loss function aims to improve the continuity and consistency of predicted
localization, especially in occluded and blurred environments. In summary, the
primary contributions of this paper are as follows:
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– We propose a Multi-scale Transformer for facial landmark detection to
enhance model performance by processing multi-scale feature maps, which
can capture global information and long-range relationships between differ-
ent facial keypoints.

– We introduce the Joint Regression, which applies the auxiliary heatmap loss
to accelerate convergence and forces the model to learn more discriminate
representations. Additionally, we design the Structure Loss to constrain the
structural correlations between keypoints, thus significantly improving the
model performance under occlusion, blur, large pose, etc.

– We conduct extensive experiments to verify the model effectiveness in four
benchmark datasets, including 300W, WFLW, COFW, and AFLW. The
results demonstrate that our method obtains competitive results and fast
inference speed compared to state-of-the-art methods.

2 Related Work

2.1 Facial Landmark Detection

Facial landmark detection is a crucial technique in numerous applications involv-
ing face recognition and emotion estimation. Therefore, optimizing the perfor-
mance of facial landmark detectors can make excellent benefits for these related
tasks. Currently, CNN-based facial landmark detectors in this field primarily
fall into coordinate and heatmap regression. Coordinate-based methods directly
map the input face samples into 2D coordinates, which usually enjoy a faster
inference speed. However, the accuracy of coordinate-based methods still needs
to be improved. Therefore, Feng et al. [2] introduced a new loss function, termed
Wing-Loss, which improved the accuracy of the coordinate regression method,
especially for face samples under the occlusion and blur situations. Heatmap-
based methods utilize CNNs to encode face images into a group of heatmap
representations, each indicating the probability of a landmark localization. Now,
most high-performance facial landmark detectors are based on heatmap regres-
sion. For instance, HRNet [5] maintained multi-resolution representations in par-
allel and exchanged information between these streams to obtain high-accuracy
prediction results.

2.2 Vision Transformer

Transformer is a deep-learning model originally designed for machine transla-
tion. Now, transformer-based models have been shown to significantly enhance
the performance of many natural language processing tasks. Inspired by the suc-
cess of sequence-to-sequence tasks, there is growing interest in exploring the use
of Transformer models for various computer vision tasks. For example, DETR [7]
proposed a novel object detection system by combining CNN and Transformer,
which predicts bounding boxes via bipartite matching. ViT [8] directly extracted
representations from flatted image patches with a pure transformer encoder for
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image classification. In this study, we utilize the transformer to take full advan-
tage of multi-scale feature maps, which can help the model to establish the global
information and long-range relationships between different facial keypoints, thus
improving the model performance.

Fig. 1. Overview of the proposed MTLD. Firstly, given a human face image, our frame-
work extracts multi-scale feature maps with the CNN-based backbone. Then, these
multi-scale feature maps are processed by two parts simultaneously: one generates
heatmaps from the multi-scale feature maps, while the other maps these representa-
tions into 2D coordinates. The generated heatmap serves as the auxiliary loss for model
training. The proposed multi-scale transformer can fully use cross-level feature maps
to extract global information and long-range relationships. Specifically, the heatmap
loss is employed in model training and discarded in inference.

3 Method

3.1 Overview

As shown in Fig. 1, we propose a facial landmark detector based on the deep
learning module named MTLD. Our method consists of three parts: Multi-scale
Transformer, Joint Regression, and Structure Loss. The Multi-scale Transformer
can enhance model performance by processing multi-scale feature maps gen-
erated from a CNN-based backbone. Joint Regression provides a new scheme
for facial landmark detection, which takes advantage of heatmap and coordi-
nate regression. Meanwhile, Structural Loss can constrain the correlation among
different facial keypoints, making the model pay more attention to geometric
information.
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Fig. 2. (a) Detailed structure of the Feature Pyramid Attention. (b) Detailed structure
of the Landmark Decoder.

3.2 Multi-scale Transformer

The architecture of our MTLD builds upon the CNN and vision trans-
former, which is used for exploiting more discriminative representations for
facial landmark detection. The introduced network architecture consists of four
parts: CNN-based backbone, Feature Pyramid Attention (FPA), Feature Fusion
Encoder, and Landmark Decoder. The CNN-based backbone encodes the multi-
scale feature maps from input samples, while the FPA obtains cross-scale rep-
resentations from them. The Feature Fusion Encoder tries to merge and encode
the output features from Feature Pyramid Attention to get feature tokens. Then,
the Landmark Decoder utilizes landmark queries and feature tokens to predict
the coordinates of each facial landmark.

CNN-Based Backbone. In the proposed method, we select the output of the
last three stages in the CNN model as multi-scale feature maps. Generally, these
feature map contains a large amount of multi-scale semantic and spatial infor-
mation. Classical CNN models can be directly used in the proposed framework
without modification, such as VGG, ResNet, and MobileNet. For instance, we
use ResNet-18 as the backbone to illustrate some details. Specifically, given an
RGB image I ∈ R

H×W×3 as input, we can get three feature maps s3, s4, and
s5, with the stride of 8, 16, and 32, respectively. Then, these multi-scale feature
maps are fed into FPA to get refinement cross-scale representations.

Feature Pyramid Attention (FPA). Encoding multi-scale feature maps can
efficiently improve model performance in complex computer vision tasks, such as
object detection, instance segmentation, and image generation. Inspired by [9],
we introduce a Feature Pyramid Attention formed by the vision transformer to
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enhance the power of model to utilize multi-level features and capture the long-
range relationships between keypoints and facial components. The proposed FPA
is shown in Fig. 2-(a). FPA uses the multi-scale feature maps si ∈ {s3, s4, s5}
generated by CNN-based backbone to output multi-scale feature memory M . In
order to make full use of these multi-scale representations, the ith FPA would
use the (i-1)th FPA’s output as input.

The input of FPA includes three parties: queries q, keys k, and values v.
The q should maintain the relative position by positional embedding p, which is
defined as qi = si + pi. We can get the v by Hadamard product with the prior
FPA’s output mi−1, which can be expressed as vi = si ◦ mi−1. The k still needs
the positional embedding to align semantic meaning as ki = vi + pi. Finally, the
output of ith FPA can be calculated as:

mi = LN(ti + FFN(ti)), (1)

where, the LN denotes the layer normalization, and FFN is a feed forward net-
work. The ti is represented by: ti = LN(si + MHA(qi , ki , vi)), the MHA infers
the multi-head attention.

Feature Fusion Encoder. In our method, we employ FPA to encode the global
information and long-range relationships from multi-scale feature maps. How-
ever, the FPA might pay much attention to high-level representations but ignore
some details information contained in these multi-scale feature maps. Therefore,
we introduce the Feature Fusion Encoder consisting of multiple transformer
encoders to combine and improve these representations from the CNN-based
backbone and FPA. The Feature Fusion Encoder can map the input representa-
tions into cross-region feature tokens involving rich local and global information.

Landmark Decoder. The proposed MTLD can directly output the coordinates
of facial keypoints with Landmark Decoder. The detailed structure is shown
in Fig. 2-(b). First, the Landmark Decoder would process the input landmark
queries with a self-attention module to make them interact with each other.
Then, each landmark query extracts discriminate representations from the input
multi-scale feature tokens. Finally, we employ a group of MLPs as the detection
head to predict the coordinate results for each facial landmark. In our setting,
all the detection heads should output prediction results. Therefore, the first
detection head output rough positions, then the subsequent ones can gradually
refine the previous results in a coarse-to-fine manner.

3.3 Joint Regression

We propose a novel face alignment scheme named Joint Regression to address
the challenging problem of balancing the model accuracy and inference speed.
The proposed Joint Regression can be viewed as a combination of heatmap and
coordinate regression, which takes full advantage of them. Our framework first
employs the CNN-based backbone to encode the input face samples into a group
of mulita-scale feature maps. Then, these feature maps would be processed in
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two parts simultaneously: one generates heatmaps from the multi-scale feature
maps, while the other maps the representations into 2D coordinates.

We employ several convolutional layers at the top of the CNN-based backbone
for converting the input multi-scale feature maps into a set of heatmap repre-
sentations FH ∈ R

Hh×Wh×Nh , where Hh and Wh represent the height and the
width. The Nh denotes the number of facial keypoints. The extracted heatmap
representation can be seen as the probability of landmark location. Inspired by
heatmap regression, we employ the L2 loss function to compare the ground-truth
heatmap LH and predict ones FH. The Lheat is defined as:

Lheat = ‖LH − FH‖22. (2)

Notable, the heatmap loss can only be used for auxiliary supervision during the
training stage and removed when the model testing and deployment. Therefore,
it would not affect the inference speed and model efficiency.

At the same time, the selected multi-scale feature maps generated by the
CNN-based backbone are also fed to the designed Multi-scale Transformer, which
can map them into 2D coordinates of facial landmarks. We adopt L1 loss to
minimize the error Lcoord between the predicted results and 2D ground truths:

Lcoord = ‖LC − JC‖1, (3)

where, the LC and JC denote the 2D annotations and predicted results, respec-
tively.

3.4 Structure Loss

The human face contains large amounts of geometric information, which are
beneficial to improve model performance, especially face under occlusion, blur,
lighting, and extreme pose. In order to make full use of these dependencies,
we propose Structure Loss to exploit the structural information among facial
landmarks effectively. Specifically, the location of facial landmarks is relatively
fixed, such as the pupil locates in the center of the iris. Therefore, the structural
information can be used to infer the location of adjacent facial keypoints and
prevent some abnormal prediction results. The proposed Structure Loss aims
to ensure that the distances between predicted keypoints are the same as those
calculated from the ground truth. We formulate the Structure Loss as follows:

Lstruc =
∑

i∈N

∑

j∈C

‖‖Ji − Jj‖22 − ‖Li − Lj‖22‖1, (4)

where J and L denote the prediction result and ground-truth labels, respectively.
The N indicates the total number of facial landmarks, and i represents the ith

landmark. C is a collection, which contains M closet landmarks to the ith one,
and j denotes the jth landmarks in C. In our setting, the number of adjacent
landmarks Num. is 5. Structure Loss is beneficial to enhance the stability and
robustness of facial landmark detection approaches.
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3.5 Training Objective

We formulate the goals of MTLD and get the overall training objective, which
is computed by:

Ltotal = λhLheat + λcLcoord + λsLstruc, (5)

where λh, λc, and λs denote the balancing parameters used to reweight these
above loss functions.

Table 1. Facial landmark detection results about NME (%) on 300W, AFLW, and
COFW. Lower is better. Red denotes the best, and blue indicates the second best.

Method Backbone 300W AFLW COFW

Full Comm. Chal. Full Fron.

LAB [6] ResNet-18 3.49 2.98 5.19 1.85 1.62 3.92

Wing [2] ResNet-50 4.04 3.27 7.18 1.47 - 5.07

ODN [10] ResNet-18 4.17 3.56 6.67 1.63 1.38 -

HRNet [5] HRNet-W18 3.32 2.87 5.15 1.56 1.46 3.45

AWing [11] Hourglass 3.07 2.72 4.52 - - -

PIPNet [1] ResNet-101 3.19 2.78 4.89 1.42 - 3.08

SDFL [12] ResNet-18 3.28 2.88 4.93 - - 3.63

SLPT [3] ResNet-34 3.20 2.78 4.93 - - 4.11

MTLD ResNet-18 3.28 2.81 4.96 1.42 1.31 3.25

MTLD ResNet-50 3.20 2.75 4.94 1.40 1.30 3.06

MTLD ResNet-101 3.15 2.74 4.85 1.39 1.28 3.04

4 Experiments

4.1 Implementation Details and Datasets

In the training phase, all input images need to be cropped by bounding boxes,
then resized to the size of 256 × 256. The data augmentations are applied for
model training, including random rotation, occlusion, scaling, horizontal flip-
ping, and blurring. We adopt pre-trained ResNet-18 as the default CNN-based
backbone. In order to get more accurate results, we also conduct experiments
based on ResNet-50 and ResNet-101. The total epochs are 150, and the mini-
batch size is 64. We choose Adam as the optimizer with an initial learning rate
is 3.0 × 10−4, and then decay by 10 at 70th and 120th separately. The imple-
mentation of our method is based on PyTorch with one NVIDIA Tesla A100
GPU.
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Table 2. Facial landmark detection results about NME (%) on WFLW test and 6
subsets: pose, expression (expr.), illumination (illu.), make-up (mu.), occlusion (occu.)
and blur. For the NME and FR, lower is better.

Method backbone Test Pose Expr. Illu. Mu. Occl. Blur

LAB [6] ResNet-18 5.27 10.24 5.51 5.23 5.15 6.79 6.32

Wing [2] ResNet-50 5.11 8.75 5.36 4.93 5.41 6.37 5.81

HRNet [5] HRNet-W18 4.60 7.94 4.85 4.55 4.29 7.33 6.88

Awing [11] Hourglass 4.36 7.38 4.58 4.32 4.27 5.19 4.96

PIPNet [1] ResNet-101 4.31 7.51 4.44 4.19 4.02 5.36 5.02

SDFL [12] ResNet-18 4.35 7.42 4.63 4.29 4.22 5.19 5.08

SLPT [3] ResNet-34 4.20 7.18 4.52 4.07 4.17 5.01 4.85

MTLD ResNet-18 4.47 7.80 4.54 4.40 4.31 5.52 5.23

MTLD ResNet-50 4.39 7.70 4.41 4.22 4.15 5.43 5.12

MTLD ResNet-101 4.25 7.29 4.37 4.10 4.03 5.31 4.91

In order to evaluate the performance of our proposed method, we conduct
extensive experiments on four benchmark datasets: 300W [13], COFW [14],
AFLW [15], and WFLW [6]. Most of the experiment setting about datasets
follow [5]. We adopt the normalized mean error (NME) to evaluate the perfor-
mance of our approach on the benchmark dataset. Specifically, the inter-ocular
distance is used as the normalization distance for 300W, COFW, and WFLW,
while using the face bounding box as the normalization distance in AFLW.

4.2 Main Results

We compare our proposed method with several state-of-the-art approaches on
four benchmark datasets in terms of NME. To further explore the effectiveness
of the backbone, we conduct experiments with different CNN modules, includ-
ing ResNet-18, ResNet-50, and ResNet-101. Some visualization results of our
proposed MTLD on 300W and WFLW are shown in Fig. 3.

300W. We compare the proposed MTLD with other state-of-the-art methods
on 300W and its subsets. Table 1 shows that MTLD with ResNet-18 obtains
comparable results with existing approaches. We can find that our method with
ResNet-101 achieves the second best detection accuracy on 300W-Full, Common,
and Challenging sets, which is only slightly behind AWing [11].

AFLW. The AFLW dataset is a challenging benchmark for evaluating facial
landmark detectors. We compare the proposed MTLD with the existing methods,
and the results are shown in Table 1. Obviously, our framework with ResNet-
18 gets 1.42% NME, which is comparable with SOTA methods. Furthermore,
MTLD with ResNet-50 or ResNet-101 outperforms all the existing methods on
AFLW-Full and AFLW-Frontal datasets.
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Fig. 3. Visualization results of our method. (a) Results on 300W. (b) Results on
WFLW.

COFW. In Table 1, we report the comparison results with existing SOTA meth-
ods on the COFW dataset. The results indicate that MTLD with ResNet-18
obtains 3.25% NME, which is slightly higher than Wing-Loss [2] and HRNet [5].
Furthermore, the MTLD with ResNet-101 gets 3.04% NME and outperforms the
previous methods by a significant margin.

WFLW. The WFLW dataset is more challenging than 300W and COFW, which
provides many face images with various senses. We conduct experiments on
WFLW and six subsets. Table 2 demonstrates NME results about the SOTA
methods and MTLD with different backbones. We observe that MTLD with
ResNet-18 achieves comparable performance to the SOTA methods equipped
with more complex models, such as Hourglass and HRNet. Furthermore, MTLD
with ResNet-101 achieves SOTA performance on one subset and second best
results on four subsets.

4.3 Ablation Study

In this section, we conduct several experiments to verify the effectiveness of the
proposed module. Then, we evaluate the model size, computational cost, and
inference speed of MTLD. Besides, we also design experiments to explore the
appropriate number of adjacent landmarks in Structure Loss.

Effectiveness of Proposed Modules. In this section, we investigate the effec-
tiveness of these modules and conduct experiments on the 300W-Full dataset
with NME. For easy comparison, we make the coordinate regression framework
with ResNet-18 as the baseline model. Then, add different modules proposed
in this paper and analyze their impact on the results. The results are shown in
Table 3. We observe that each proposed module is beneficial to improve model
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Table 3. The NME (%) of different modules on 300W-Full dataset, including: Base-
line (Base.), Multi-scale Transformer (MST.), Heatmap Loss (Heat.), Structure Loss
(Sturc.). Lower is better.

Base. MST. Heat. Struc. NME

� 4.02

� � 3.39

� � � 3.34

� � � 3.30

� � � � 3.25

accuracy. The designed MTLD equipped with Multi-scale Transformer, Heatmap
Loss, and Structure Loss can achieve 3.25% NME in the 300W-Full dataset.
Specifically, the Multi-scale Transformer can significantly boost the model per-
formance.

Table 4. The comparison of different approaches in backbone, model size (Param)
computational cost (GFLOPs), and inference speed (fps) on CPU and GPU.

Method Backbone Param GFLOPs CPU GPU

LAB [6] ResNet-18 24.1M 26.7G 2.1 16.7

Wing [2] ResNet-50 91.0M 5.5G 8.0 30.0

HRNet [5] HRNet-W18 9.7M 4.8G 4.4 11.7

PIPNet [1] ResNet-18 12.0M 2.4G 35.7 200

MTLD ResNet-18 12.6M 2.7G 45.8 213.5

MTLD ResNet-50 27.3M 5.8G 13.5 112.2

MTLD ResNet-101 46.0M 10.7G 7.6 66.5

Model Size and Speed Analysis. To further evaluate the model’s effective-
ness, we compare the model size (Params), computational cost (FLOPs), and
inference speed (FPS) of our MTLD with SOTA methods. Specifically, the input
samples are resized to 256×256, and models are implemented with PyTorch. To
compare the inference speed, we evaluate these frameworks on CPU (Intel i7-
9700@3.00GHz) and GPU (Nvidia Tesla A100), respectively. Results are shown
in Table 4, which indicates that our proposed method with ResNet-18 gets 45.8
FPS and 213.5 FPS on CPU and GPU, respectively. Compared with existing
methods, MTLD obtains comparable performance while maintaining a fast infer-
ence speed.

Number of Adjacent Points. To explore the appropriate collection number
of adjacent points in Structure Loss, we conduct experiments on the 300W-Full
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dataset in terms of NME. The results are shown in Table 5. It can be observed
that when the Num. is set to 5, our method can deliver the best performance.

Table 5. The NME (%) results of our method with different number of adjacent points
on 300W-Full dataset. Lower is better.

Num 0 1 3 5 8 10 15 20 30

NME 3.29 3.28 3.26 3.25 3.27 3.27 3.30 3.36 3.45

5 Conclusion

In this paper, we propose a facial landmark detector named MTLD, which
includes three modules: Multi-scale Transformer, Joint Regression, and Struc-
ture Loss. Specifically, the carefully designed Multi-scale Transformer enables
the model to capture the global dependencies between keypoints and facial com-
ponents from multi-scale feature maps. The Joint Regression takes advantage of
heatmap and coordinate regression, which can achieve superior accuracy results
and faster inference speed compared with existing methods. In order to make full
use of geometric information contained in the human face, the proposed Struc-
ture Loss can force the model to pay more attention to the correlation between
landmarks. Additionally, we validate the efficiency and effectiveness of different
modules in this paper. Extensive experiments on several benchmark datasets
show that MTLD can outperform previous works and offer a better trade-off
between accuracy and efficiency.
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Abstract. Given the similarity between facial expression categories, the
presence of compound facial expressions, and the subjectivity of anno-
tators, facial expression recognition (FER) datasets often suffer from
ambiguity and noisy labels. Ambiguous expressions are challenging to dif-
ferentiate from expressions with noisy labels, which hurt the robustness
of FER models. Furthermore, the difficulty of recognition varies across
different expression categories, rendering a uniform approach unfair for
all expressions. In this paper, we introduce a novel approach called
Adaptive Sample Mining (ASM) to dynamically address ambiguity and
noise within each expression category. First, the Adaptive Threshold
Learning module generates two thresholds, namely the clean and noisy
thresholds, for each category. These thresholds are based on the mean
class probabilities at each training epoch. Next, the Sample Mining mod-
ule partitions the dataset into three subsets: clean, ambiguity, and noise,
by comparing the sample confidence with the clean and noisy thresh-
olds. Finally, the Tri-Regularization module employs a mutual learning
strategy for the ambiguity subset to enhance discrimination ability, and
an unsupervised learning strategy for the noise subset to mitigate the
impact of noisy labels. Extensive experiments prove that our method
can effectively mine both ambiguity and noise, and outperform SOTA
methods on both synthetic noisy and original datasets. The supplement
material is available at https://github.com/zzzzzzyang/ASM.

Keywords: Facial Expression Recognition · Noisy Label Learning ·
Adaptive Threshold Mining

1 Introduction

Facial expressions have important social functions and can convey emotions, cog-
nition, and attitudes in an intangible way. Facial expression recognition (FER)
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has been widely applied in various fields, such as media analysis, academic
research, etc. It can be used to evaluate and guide psychological counseling,
assist decision-makers in making decisions, or analyze the trajectory of emotions,
etc. In recent years, with the emergence of large-scale in-the-wild datasets, such
as RAF-DB [12], FERPlus [2], and AffectNet [15], deep learning-based FER
researches [18,19,28] have made remarkable progress.

Fig. 1. t-SNE [13] visualizations of facial expression features obtained by ResNet-18
[10] on RAF-DB test set. Clean samples have similar features that cluster together,
while the features of ambiguous samples are distributed near the decision boundary.
As for noisy label samples, the information provided by the given label is irrelevant
with their features. Best viewed in color. Zoom in for better view.

However, due to the ambiguity of facial expressions, the subjectivity of anno-
tators, there are a large number of noisy labels in large-scale in-the-wild FER
datasets, which can lead to overfitting of models in the supervised learning
paradigm and seriously affect the robustness of FER models. Many existing
methods use noisy label learning [9,11] to address this issue, treating large-
loss samples as noisy label samples. Although these methods achieve significant
progress, they still have two problems: (1) They cannot distinguish between
ambiguous expressions and noisy expressions. As shown in Fig. 1, ambiguous
expressions usually have complexity, and their features are usually distributed
near the decision boundary, and they will have large losses regardless of whether
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their labels are correct or incorrect. Confusing ambiguous expressions with noisy
expressions may bias the model towards learning easy samples, making it difficult
to learn hard samples and limiting the generalization ability. (2) The presence
of intra-class differences and inter-class similarities in facial expressions, cou-
pled with the varying distribution of sample numbers across different expression
categories in diverse datasets, introduces variations in the difficulty of recogniz-
ing each category. In addition, as the training process progresses, the model’s
recognition ability also dynamically improves, so using a fixed loss to select
noisy samples is not accurate enough. To address the first question, we propose
dividing the dataset into three subsets: clean, ambiguity, and noisy. In the field
of noisy label learning, co-training has proven to be an exceptionally effective
approach. It leverages the utilization of two networks, each providing a unique
perspective, to better combat noise. This method is also beneficial for mining
both noisy and ambiguous samples. Regarding the second question, we believe
that setting different thresholds dynamically for each category based on the
recognition difficulty is crucial.

In this paper, we propose a novel method called Adaptive Sample Mining
(ASM). ASM consists of three key modules: adaptive threshold learning, sample
mining, and tri-regularization. For a FER dataset, the adaptive threshold learn-
ing module first dynamically updates the clean threshold tc and the noisy thresh-
old tn for each category based on their learning difficulties. Then, the sample min-
ing module divides all samples into three subsets according to their confidence
scores and the category-specific thresholds: (1) clean samples whose confidence
scores are higher than Tc; (2) noisy samples whose confidence scores are lower
than Tn; and (3) ambiguous samples whose confidence scores are between Tn and
Tc. Finally, the tri-regularization module employs different learning strategies for
these three subsets. For clean samples, which are typically simple and easy to
learn, we use supervised learning. For ambiguous samples, whose features are
usually located around the decision boundary and difficult to distinguish. We
design a sophisticated mutual learning strategy. Specifically, mutual learning
is guided by the mutuality loss, which comprises a supervised loss and a con-
trastive loss. The former fits clean expressions in the early stage, and the latter
maximizes the consistency between the two networks in the later stage to avoid
memorizing the samples with noisy labels. For noisy label samples, we adopt an
unsupervised consistency learning strategy to enhance the discriminative ability
of the models without using noisy labels. In summary, our contributions are as
follows:

1. We innovatively investigate the difference between ambiguous and noisy label
expressions in the FER datasets and proposed a novel end-to-end approach
for adaptive sample mining.

2. We elaborately design a category-related dynamic threshold learning module
and adopt it as a reference to mine noisy and ambiguous samples.

3. Extensive experiments on synthetic and real-world datasets demonstrate that
ASM can effectively distinguish between ambiguous and noisy label expres-
sions and achieves state-of-the-art performance.
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2 Related Work

2.1 Facial Expression Recognition

In recent years, many researchers have focused on the problem of noisy labels
and uncertainty in the FER datasets. SCN [21] adopts a self-attention impor-
tance weighting module to learn an import weight for each image. Low weight
samples are treated as noisy and relabeled if the maximum prediction proba-
bility is higher than the given label with a margin threshold. DMUE [19] uses
several branches to mine latent distribution and estimates the uncertainty by
the pairwise relationship of semantic features between samples in a mini-batch.
RUL [28] adopt two branch to learn facial features and uncertainty values simul-
taneously, and then the mix-up strategy [26] is used to mix features according to
their uncertainty values. EAC [29] utilize the flip and earse semantic consistency
strategy to prevent the model from focusing on a part of the features.

2.2 Co-training

Co-training [3,9,16] is a popular approach in noisy label learning that lever-
ages the idea of training multiple classifiers simultaneously on the same dataset.
It aims to reduce the impact of noisy labels and improve the overall model
performance. The key idea behind co-training is that the two classifiers learn
complementary information from different views of the data, and by exchang-
ing and updating their predictions, they can correct each other’s mistakes and
improve the overall performance. Due to the nonconvex nature of DNNs, even if
the network and optimization method are same, different initializations can lead
to different local optimum. Thus, following Co-teaching [9], Decoupling [14] and
JoCoR [24], we also take two networks with the same architecture but different
initializations as two classifiers which can provide different views. The detailed
theoretical proof can be found in Decoupling.

3 Method

3.1 The Overall Framework

To distinguish between ambiguous and noisy facial expressions in FER, as well
as dynamically set thresholds for each class, we propose an Adaptive Thresh-
old Sample Mining (ASM) method. As shown in Fig. 2, ASM consists of three
modules: i) Adaptive Threshold Learning, ii) Sample Mining, and iii) Tri-
Regularization.

At the beginning of each epoch, we first make predictions on facial images
using two networks and obtain the average probabilities. The adaptive thresh-
old learning module selects samples that are predicted correctly (matching the
labels) and calculates the average probabilities per class to obtain the clean
threshold Tc. Based on [6,7,23], Tc can reflect the models’ recognition ability for
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Fig. 2. The pipeline of our ASM. p1 and p2 are the predicted probabilities from net-
work’s softmax layer. Tc and Tn denote the clean threshold and noisy threshold, respec-
tively.

each class, and conversely, 1 − Tc reflects the models’ tolerance for noisy sam-
ples. Therefore, we consider 1 − Tc as the noisy threshold Tn. As for ambiguous
expressions, they often share certain features with two or more classes, and they
distribute very close to the decision boundaries. Their probability distribution
is more chaotic (higher entropy). Based on our observation, the confidence score
(average probabilities) of ambiguous expression is between Tc and Tn. Therefore,
the sample mining module compares the confidence score of samples with their
corresponding labels to Tc and Tn, and divide the dataset into three subsets:
clean, ambiguous, and noisy. Finally, the tri-regularization module applies dif-
ferent optimization strategies to each subset. Clean samples are simple and easy
to learn, undergo supervised learning. Ambiguous samples, which are more hard
to learn, are subjected to mutual learning. Noisy samples, with erroneous labels,
we adopt unsupervised consistency learning to improve the models’ robustness
without using labels.

3.2 Adaptive Threshold Learning

We introduce the adaptive threshold learning module to explore the clean and
noisy threshold for different facial expressions. Specifically, given a dataset S =
{(xi, yi), i = 1, 2, ..., N} in which each image x belongs to one of K classes, and
y denotes the corresponding label, we first obtain the predictions of all samples
and determine predicted labels. Compared to the ground truth yi ∈ {1, 2, ...,K},
we select the correctly-predicted samples S′ = {(S′

1, S
′
2, ..., S

′
k), k = 1, 2, ...K},

and S′
k = {(x′

i, y
′
i, si), i = 1, 2, ..., Nsk} where si denote the maximum value

in the average probability distribution and Nsk denote the number of sam-
ples that labeled with the k-th class in S′. We obtain the clean threshold
Tc =

{
(T 1

c , T 2
c , ..., T k

c ), k = 1, 2, ...K
}

as follows

T k
c =

1
Nsk

Nsk∑

i=1

si (1)
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where 1(·) is the indicator function.
As for 1 − Tc can reflect the models’ tolerance for noisy samples, we obtain

the noisy threshold Tn =
{
(T 1

n , T 2
n , ..., T k

n ), k = 1, 2, ...K
}

as follows:

T k
n = 1 − T k

c (2)

3.3 Sample Mining

With the clean threshold Tc and noisy threshold Tn, and the confidence levels
of clean, ambiguous, and noisy samples, the sample mining module divides the
entire dataset into three subsets. Specially, based on two probability distributions
p1 and p2, we first obtain each sample’s confidence score:

s = max(
1
2
(p1 + p2)) (3)

Then we compare the confidence score with two threshold values associated with
the class of samples to dynamically divide them.

Clean samples are easy to fit and their confidence score is the highest. There-
fore, we classify samples with confidence score greater than Tc as clean samples.

Sclean = {(xi, yi, si) | si > T yi
c } (4)

Ambiguous samples have feature distributions near the decision boundary
and are related to two or more classes. Based on our observations, their confi-
dence should be between clean samples and noisy samples. Therefore, we classify
samples with confidence between Tn and Tc as ambiguous samples.

Sambiguous = {(xi, yi, si) | T yi
n <= si <= T yi

c } (5)

Noisy samples have features that are unrelated to their labels, so their confi-
dence is the lowest. Therefore, we classify samples with confidence less than Tn

as noisy samples.
Snoisy = {(xi, yi, si) | si < T yi

n } (6)

3.4 Tri-regularization

Based on the different characteristics of clean samples, ambiguous samples and
noisy samples, tri-regularization module employs different training strategies
respectively.

Supervised Learning. Clean samples are highly correlated with their labels
and features. Networks can easily fit these samples in the early stages of training,
our ASM adopts supervised learning strategy to clean samples, which would
consider the classification losses from both two networks.

Lsup = LCE(p1, y) + LCE(p2, y) (7)

where LCE denotes the standard cross-entropy loss and y denotes the ground
truth.
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Mutual Learning. Ambiguous samples contains both samples with clean and
noisy labels. As mentioned by [1], DNNs tend to prioritize learning simple pat-
terns first while memorizing noisy samples as training progresses, which will
eventually deteriorate the generalization ability. Inspired by this and the view
of agreement maximization principles [20], we design a mutual learning strategy
which consists two components:

Lmut = (1 − λ) · LCE + λ · LCon (8)

The former LCE is used to guide networks to fit ambiguous with clean labels
in the early stage. The latter is the regularization from peer networks helps
maximize the agreement between them, which is expected to provide better
generalization performance. In ASM, we adopt the contrastive loss to make the
networks guide each other.

Lcon = DKL(p1 ‖ p2) + DKL(p2 ‖ p1) (9)

where

DKL(p1 ‖ p2) =
K∑

k=1

pk
1 log

pk
1

pk
2

The symmetric KL divergence has two advantages: on the one hand, it allows
two networks to guide each other to reduce confirmation bias, and on the other
hand, it can compensate for the lack of semantic information caused by one-
hot labels. In addition, inspired by [17], we adopt a dynamic balancing scheme
which gradually increases the weight of the contrastive loss while decreasing the
weight of the supervision loss. The dynamic shift is based on a sigmoid ramp-up
function, which can be formulated as:

λ = λmax ∗ e−β ∗(1− e
er

)2 (10)

where λmax is the maximum lambda value, e is the current epoch, er is the epoch
threshold at which λ gets the maximum value and β controls the shape of the
function.

Unsupervised Consistency Learning. The noisy samples have erroneous
labels which are irrelevant with the features. To fully leverage noisy samples,
the distributions of weak-augmented and strongly-augmented images are aligned
using MSE loss, which can be formulated as:

Lusc = MSE (pw
1 , ps

1) + MSE (pw
2 , ps

2) (11)

where pw
1 and pw

2 denote the probability distribution of weak-augmented images,
and ps

1 and ps
2 denote the probability distribution of strongly-augmented images.

Overall Objective Function.

Ltotal = Lsup + ωLmut + γLusc (12)

where ω and γ are the hyper-parameters, and the corresponding ablation study
is provided in the supplementary material.
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4 Experiments

4.1 Datasets

RAF-DB [12] comprises over 29,670 facial images annotated with basic or com-
pound expressions by 40 trained annotators. For our experiments, we focus on
the seven basic expressions: neutral, happiness, surprise, sadness, anger, disgust,
and fear. The dataset is divided into a training set of 12,271 images and a testing
set of 3,068 images.

FERPlus [2] is an extension of FER2013 [5] and consists of 28,709 training
images, 3,589 validation images, and 3,589 testing images. The dataset was col-
lected using the Google search engine. Each image is resized to 48 × 48 pixels
and annotated with one of eight classes. The validation set is also utilized during
the training process.

AffectNet [15] is currently the largest FER dataset, containing over one mil-
lion images collected from the Internet using 1,250 expression-related keywords.
Approximately half of the images are manually annotated with eight expression
classes. The dataset consists of around 280,000 training images and 4,000 testing
images.

4.2 Implementation Details

In our ASM, facial images are detected and aligned using MT-CNN [27]. Sub-
sequently, the images are resized to 224 × 224 pixels and subjected to data
augmentation techniques such as random horizontal flipping and random eras-
ing. As a default configuration, we employ ResNet-18 as the backbone network,
pre-trained on the MS-Celeb-1M dataset [8]. All experiments are conducted using
Pytorch on a single RTX 3090 GPU. The training process spans 100 epochs with
a batch size of 128. A warm-up epoch of 10 is implemented. We utilize an Adam
optimizer with a weight decay of 1e−4. The initial learning rate is set to 0.001
and exponentially decayed by a gamma value of 0.9 after each epoch. The initial
Tc and Tn is set to {0.8}K and {0.2}K based on the ablation study. Following
the guidelines of NCT [17], we set the hyper-parameters λmax, β and er to 0.9,
0.65 and 90, respectively.

4.3 Evaluation on Synthetic Noise

Follow [21,28,29], we evaluate our proposed ASM with three level of noisy label
including the ratio of 10%, 20% and 30% on RAF-DB, FERPlus and AffectNet.
As shown in Table 1, our method outperforms the baseline and all previous state-
of-the-art methods under all circumstances by a large margin. For example, ASM
outperforms SCN under 30% label noise by 8.21%, 4.49%, 5.15% on RAF-DB,
FERPlus, AffectNet respectively. This can be attributed to ASM’s ability to
dynamically differentiate between ambiguous and noisy samples, and mitigate
the harmful effects of synthetic noise through mutual learning and unsupervised
consistency learning.
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Table 1. Evaluation of ASM on noisy FER datasets. Results are computed as the
mean of the accuracy of the last 5 epochs.

Method Noisy(%) RAF-DB(%) FERPlus(%) AffectNet(%)

Baseline 10 81.01 83.29 57.24

SCN (CVPR20) 10 82.15 84.99 58.60

RUL (NeurIPS21) 10 86.17 86.93 60.54

EAC (ECCV22) 10 88.02 87.03 61.11

ASM (Ours) 10 88.75 88.51 61.21

Baseline 20 77.98 82.34 55.89

SCN (CVPR20) 20 79.79 83.35 57.51

RUL (NeurIPS21) 20 84.32 85.05 59.01

EAC (ECCV22) 20 86.05 86.07 60.29

ASM (Ours) 20 87.75 87.41 60.52

Baseline 30 75.50 79.77 52.16

SCN (CVPR20) 30 77.45 82.20 54.60

RUL (NeurIPS21) 30 82.06 83.90 56.93

EAC (ECCV22) 30 84.42 85.44 58.91

ASM (Ours) 30 85.66 86.69 59.75

4.4 Ablation Study

Please note that due to page limitation, we place the ablation experiments with
hyper-parameters, ablation experiments with fixed and adaptive thresholds, and
feature visualization in the supplementary material.

Effectiveness of Each Component in ASM. We evaluate the three key mod-
ules of the proposed ASM to find why ASM works well under label noise. The
experiment results are shown in Table 2. Several observations can be concluded
in the following. First, excluding Lmut and Lusc and only adding an adaptive
threshold (2nd row) is equivalent to adding a co-training strategy on top of the
baseline (1st row), resulting in a significant improvement, which highlights the
advantage of model ensembling. Second, when adding Lmut (3rd row) or Lusc

(4th row), we achieve higher accuracy, which can be attributed to these two
carefully designed loss functions. The former addresses the information insuffi-
ciency issue caused by one-hot labels and promotes consensus learning to better
resist the influence of noise. The latter enhances the model’s discriminative abil-
ity through contrastive learning, unaffected by noise. Finally, by integrating all
modules, we achieve the highest accuracy on RAF-DB, raising the baseline from
87.25% to 90.58%.
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Table 2. Evaluation of the three modules in ASM. Note that the exclusion of Lmut

and Lusc implies the replacement with the Cross-Entropy (CE) loss.

AT Lmut Lusc RAF-DB(%)

x x x 87.25

� x x 88.63

� � x 89.47

� x � 89.72

� � � 90.58

Table 3. Comparison with other state-of-the-art results on different FER datasets.
† denotes training with both AffectNet and RAF-DB datasets. ∗ denotes test with 7
classes on AffectNet. We report the results for both AffectNet8 and AffectNet7.

RAF-DB FERPlus AffectNet

Methods Acc. (%) Methods Acc. (%) Methods Acc. (%)

IPA2LT† [25] 86.77 IPA2LT† [25] – IPA2LT† [25] 57.31

RAN [22] 86.90 RAN [22] 88.55 RAN [22] 59.50

SCN [21] 87.03 SCN [21] 88.01 SCN [21] 60.23

DACL [4] 87.78 DACL [4] – DACL∗ [4] 65.20

RUL [28] 88.98 RUL [28] 88.75 RUL [28] 61.43

EAC [29] 89.99 EAC [29] 89.64 EAC∗ [29] 65.32

ASM (Ours) 90.58 ASM (Ours) 90.21 ASM (Ours) 62.36 | 65.68

4.5 Comparison with the State-of-the-art

We compare our ASM with several state-of-the-art methods on three popular
benchmarks. The results are shown in Table 3. RAN [22] is designed to address
the occlusion and head pose problem. DACL [4] proposes a Deep Attentive Cen-
ter Loss method to adaptively select a subset of significant feature elements for
enhanced discrimination. SCN [21], RUL [28] and EAC [29] are noise-tolerant
methods. The first two have an uncertainty estimation module to reflect the
uncertainty of each sample, and the third adpots erasing attention consistency
method to prevent the model from remembering noisy labels. Our ASM outper-
forms these state-of-the-art methods with 90.58%, 90.21%, 62.36% and 65.68%
on RAF-DB, FERPlus, AffectNet8 and AffectNet7, respectively.

5 Conclusion

In this paper, we highlight the significance of distinguishing between ambiguous
and noisy expressions in FER datasets and dynamically handling each expression
category. We propose an adaptive threshold learning module that dynamically
generates distinct clean and noisy thresholds tailored to each expression class.
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These thresholds serve as references for effectively identifying clean, noisy and
ambiguous samples. To enhance generalizability, we employ distinct optimiza-
tion strategies for the three subsets. Extensive experiments verify that ASM
outperforms other state-of-the-art noisy label FER methods on both real-world
and noisy datasets.
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Abstract. To improve the accuracy of face recognition when there are wrong-
labeled samples, a new deep face recognition model with cosine boundary loss
is proposed in this paper. First, the proposed model uses the cosine similarity to
determine the boundary that divides training samples into easy samples, semi-
hard samples and harder samples, which play different roles during the train-
ing process. Then, an adaptive weighted piecewise loss function is developed
to emphasize semi-hard samples and suppress wrong-labeled samples in harder
samples by assigning different weights to related types of samples during differ-
ent training stages. Compared with the state-of-the-art face recognition methods,
i.e., CosFace, CurricularFace, and EnhanceFace, experimental results on CFP_FF,
CFP_FP, AgeDB, LFW, CALFW, CPLFW, VGG2_FP datasets demonstrate that
the proposed method can effectively reduce the impact of the wrong-labeled
samples and provide a better accuracy.

Keywords: Face Recognition · Deep Learning · Loss Function · Cosine
Similarity

1 Introduction

Face recognition (FR) is a prominent research area in artificial intelligence. In recent
years, the advancements in deep learning technology have significantly improved the
accuracy of FR and facilitated its large-scale application in real-world scenarios [1, 2].
A deep FR model consists of three essential modules: training data, network structure
and loss function. Among these modules, the loss function plays an important role as it
determines the optimization direction of model training [3]. Therefore, the design and
optimization of the loss function are crucial for achieving superior FR performance.

Loss functions in FR can be divided into two categories: loss functions based on
Euclidean distance and softmax loss and its variants. The former aims to find an appro-
priate distance measurement function to reduce the intra-class variance and increase the
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inter-class variance by projecting the face sample into Euclidean space, such as triplet
loss [4], center loss [5] and so on. The latter is widely used in deep learning, especially in
FR, where it effectively enhances the discriminative ability of network features by incor-
porating the angle interval within the loss function. It has gained significant research
attention in recent years. In SphereFace, Liu et al. [6] introduced the Softmax loss based
on the angle interval as an extension of the classic Softmax loss function. This formula-
tion utilizes vector inner product and introduces the parameter ‘m’ to control the decision
boundary of the loss function, effectively reducing intra-class variance and improving
inter-class distance. In CosFace [7], the multiplicative parameter ‘m’ in SphereFace for
the angle θ is adjusted to an additive parameter in the cosine space. This adjustment aims
to improve face recognition ability when the decision boundary is inconsistent due to
variations in the angle θ between faces. To further enhance the separability between dif-
ferent faces, the ArcFace [8] proposed an additive angular margin loss utilizing inverse
trigonometric functions.

In FR, the collected face data varies in lighting, scene, age, partial occlusion, or
pose angles. These samples are vital for accurate decision boundaries in face distinction
but can impede initial model training. Consequently, Optimizing FR requires assign-
ing appropriate weights to samples based on difficulty during different training stages.
However, the softmax loss function based on the angle interval is deterministically
invariant during training. To address this issue, CurricularFace [9] proposed an adaptive
curriculum learning loss function based on measuring the difficulty of training data. It
emphasizes easy samples, such as fronts, with adaptive weights in initial stages, focus-
ing on harder samples, such as sides, in later stages, effectively improves accuracy. FR
databases contain not only hard samples like side shots and lighting variations but also
noise samples with mislabel, as shown in Fig. 1. Some databases have noise samples
comprising nearly 30% [10]. Therefore, during training process, it is crucial to consider
both the variation in sample importance and the impact of noise samples on the model.
EnhanceFace [11] proposed a partial noise sample suppression method by leveraging
cosine being negative and using a 90° angle interval as the boundary. However, there
are numerous noise samples in practice that exhibit features close to correctly labeled
samples, with angle intervals less than 90° and cosine values greater than zero.

This paper proposes a deep FR model based on the cosine boundary loss function to
address this issue. The main contributions of this model are as follows:

1. A decision boundary based on the cosine values within angle intervals is introduced to
classify samples into three types: easy, semi-hard, and harder. This classification helps
to effectively differentiate between samples captured from frontal views, sampleswith
side angles or lighting variations, and noise samples.

2. A novel adaptive segmented loss function is proposed to assign adaptive weights to
samples based on difficulty during different training stages. This adaptive weighting
scheme highlights the varying impact of different types of samples throughout the
training process.
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Fig. 1. Illustrations of wrong-labeled face data within the face dataset

2 Method

The deep FR model based on the cosine boundary loss function proposed in this paper
aims to use the cosine decision boundary to distinguish the difficulty of different types of
training samples, and accordingly design a new adaptive loss function to suppress noise
samples, such as annotation errors, and improve recognition accuracy. This section first
briefly reviews the existing angle interval softmax loss function, then discusses the loss
function based on the cosine boundary, and finally gives the corresponding deep FR
model and algorithm flow.

2.1 The Softmax Loss Function Based on Angle Intervals

In FR, the formulation of the classic softmax loss function is:

L = 1

N

N∑

i=1

− ln
eW

T
yi
xi+byi

∑n
j=1 e

WT
j xj+bj

(1)

where xi ∈ Rd represents the feature of ith sample belonging to ythi class. In this paper,
Wyi represents y

th
i column of the weight matrixW ∈ Rd×n, byi is the corresponding bias

term, d = 512. N is the number of training sample for each batch, n is the number of
total classes. In practical, all bias items are usually set to 0, i.e. byi , bj = 0. According to
the properties of vector inner product,WT

j xi in Eq. 1 is equal to
∥∥Wj

∥∥ ·‖xi‖·cos θj, where
θj is the angle between the weight vector Wj and the sample features xi. The softmax
function can be represented as:

L = 1

N

N∑

i=1

− ln
e
∥∥Wyi

∥∥·‖xi‖·cos θyi

∑n
j=1 e

‖Wj‖·‖xi‖·cos θj
(2)

Under the loss function based on the angle interval, the recognition of the sample
mainly depends on the size of the angle θj between the vectors and is less affected by the
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sample norm
∥∥Wj

∥∥ and ‖xi‖, as illustrated in Fig. 2(a), thus it is usually set to
∥∥Wj

∥∥ = 1
and ‖xi‖ = s by L2 normalization, where s is rescaled scale parameter [2]. The decision
boundary for discriminating sample classes is the angle bisector between the weight
vectors of different classes, as shown in Fig. 2(b). However, some samples taken from
side angles or with background variations often appear near or even cross the decision
boundary, leading to recognition errors. To reduce the intra-class variance and increase
the inter-class variance in FR, SphereFace [6] introduces a parameter m (≥2) in the loss
function, i.e.

L = 1

N

N∑

i=1

− ln
es·cos(m·θyi )

es·cos(m·θyi ) + ∑
j �=yi e

s·cos θj
(3)

Here, cos(m · θyi ) = cos(θj) is the decision boundary. This puts forward higher require-
ments for correctly identifying the sample class, that is, not only needs to be satisfied
cos(θyi ) > cos(θj), but also needs to be satisfied cos(m · θyi ) > cos(θj). The aforemen-
tioned conditions compress the range of angle values for each facial class, transforming
the decision boundaries between classes into decision margins, as shown in Fig. 2(c).
This achieves a reduction in intra-class variance and an increase in inter-class variance.
In Eq. (3), different cosine functions are used to distinguish the true class and other
classes, denoted respectively as positive cosine similarity and negative cosine similar-
ity, i.e., T (cos(θyi )) = cos(m · θyi ) and N (cos(θj)) = cos(θj) [9]. The positive cosine
similarity, T (cos(θyi )) = cos(θyi ) − m and T (cos(θyi )) = cos(θyi + m), was proposed
successively in CosFace [7] and ArcFace [8].

Fig. 2. Demonstration of different types of loss functions

To deal with hard samples such as side-face shots, environmental variations, and
lighting changes, CurricularFace [9] further introduces a novel segmented negative
cosine similarity function

N (t, cos(θj)) =
{

cos(θj) T (cos(θyi )) ≥ cos(θj)
cos(θj)(t + cos(θj)) T (cos(θyi )) < cos(θj)

(4)

where t > 0 is a hyper-parameter that characterizes the different training stages of the
model. In practical, the hard samples consist not only correctly labeled samples but also
mislabeled samples. Among them, correctly labeled hard samples hold significant value
in determining the decision boundary for face recognition and need to be emphasized.
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On the other hand, mislabeled hard samples will lead to boundary confusion, making the
iterative convergence of the model training process difficult and slow, thereby affecting
the final accuracy. Therefore, EnhanceFace [11] is further divided into semi-hard samples
T (cos(θyi )) < cos(θj) and harder samples 0 ≤ T (cos(θyi )) < cos(θj) in Eq. (4), and
assigns different weights.

2.2 Cosine Function Based Decision Boundary

Despite existing research distinguishing different hard samples based on whether the
cosine similarity is greater than 0, its decision boundary does not apply to all noise
samples, as illustrated by the red circles in Fig. 3, which represent mislabeled noise
samples with cosine similarity greater than 0. In other words, the angle between the
feature vector of a noise sample and the weight vector of its labeled class is not always
greater than 90°. To address this issue and better differentiate noise samples within hard
samples, this paper proposes a new decision boundary based on the cosine function
to assess the difficulty level of samples. Specifically, the decision boundaries for easy
samples, semi-hard samples, and harder samples are defined as follows:

⎧
⎨

⎩

easy samples, T (cos(θyi )) ≥ cos(θj)
semi - hard samples, cos(θyi ) > cos(θj) > T (cos(θyi ))

hard samples, cos(θj) > cos(θyi ) > T (cos(θyi ))
(5)

where T (cos(θyi )) = cos(θyi + m),m > 0. In Eq. (5), the positive cosine similarity
T (cos(θyi )) is used to reduce the intra-class variance, so that the simple samples with
correct labels are more concentrated near the weight vector Wyi of class yi. Simulta-
neously, the decision boundary between semi-hard and harder samples is defined as
cos(θyi ) = cos(θj), as illustrated in Fig. 4. Compared to existing loss functions, the
proposed decision boundary in this paper achieves adaptive partitioning of semi-hard
and harder samples by comparing the values of positive and negative cosine functions.
The example samples in Fig. 4 also demonstrate that the mislabeled samples with cosine
values greater than 0 are correctly classified as harder samples under the new decision
boundary.

Fig. 3. Different samples for the same person and their cosine likelihood values
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Fig. 4. Illustration of cosine decision boundary

2.3 The Loss Function Based on Cosine Decision Boundary

Based on the different types of training samples divided in the previous section, this
paper proposes a deep FR model based on cosine boundary loss. In this model, the loss
function is defined as follows:

L = 1

N

N∑

i=1

− ln
es·T (cos(θyi ))

es·T (cos(θyi )) + ∑
j �=yi e

s·N (cos θj)
(6)

and

T (cos(θyi )) = cos(θyi + m),m > 0

N (cos(θj)) =
⎧
⎨

⎩

cos(θj), T (cos(θyi )) ≥ cos(θj)
(t + ∣∣cos(θj)

∣∣) · cos(θj), cos(θyi ) > cos(θj) > T (cos(θyi ))
(t − ∣∣cos(θj)

∣∣) · cos(θj), cos(θj) > cos(θyi ) > T (cos(θyi ))

In the proposed loss function, themodel incorporates an adaptive segmented negative
cosine similarity N (cos(θj)), which takes into account three different types of samples.
In N (cos(θj)), the hyper-parameter t takes a small value close to 0 at the early stage.
During this stage, the adjustment weights t + ∣∣cos(θj)

∣∣ and t − ∣∣cos(θj)
∣∣ for the semi-

hard and harder samples are both less than 1, thereby the model will emphasize easy
samples.With the increase of iterations, the hyper-parameter t gradually increases, along
with the adjustment weights of t + ∣∣cos(θj)

∣∣ and t − ∣∣cos(θj)
∣∣ for the semi-hard and

harder samples. Consequently, the model will gradually emphasize the learning of semi-
hard samples and harder samples. Furthermore, when cos(θj) > 0 in the condition
(t + ∣∣cos(θj)

∣∣) > (t − ∣∣cos(θj)
∣∣), the model emphasizes the semi-hard samples and

suppresses the weights of harder samples, thereby reducing the impact of noisy samples.
Conversely, when cos(θj) < 0, indicating the presence of outliers, N (cos(θj)) assigns
smaller weights to semi-hard samples compared to harder samples, reducing the impact
of outliers.
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2.4 Algorithm

The optimization of the loss function based on cosine decision boundary can be realized
by the stochastic gradient descent (SGD). The exponential part of the cosine similarity
of jth class in the loss function is fj, i.e.,

fj =

⎧
⎪⎪⎨

⎪⎪⎩

sT (cos(θyi )) j = yi
s cos(θj) easy, j �= yi

s(t + ∣∣cos(θj)
∣∣) · cos(θj) semi - hard, j �= yi

s(t − ∣∣cos(θj)
∣∣) · cos(θj) harder, j �= yi

(7)

Hence, xi and Wj needs to discuss and calculate in four different situations during
the backward propagation process, when cos(θj) > 0 cos(θj) > 0

∂L

∂xi
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂L
∂fyi

(s
sin(θyi+m)

sin(θyi )
)Wyi , j = yi

∂L
∂fj
sWj, easy, j �= yi

∂L
∂fj
s(t + 2 cos(θj))Wj, semi - hard, j �= yi

∂L
∂fj
s(t − 2 cos(θj))Wj, harder, j �= yi

(8)

∂L

∂Wj
=

⎧
⎪⎪⎪⎪⎨
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∂L
∂fyi

(s
sin(θyi+m)

sin(θyi )
)xyi , j = yi

∂L
∂fj
sxj, easy, j �= yi

∂L
∂fj
s(t + 2 cos(θj))xj, semi - hard, j �= yi

∂L
∂fj
s(t − 2 cos(θj))xj, harder, j �= yi

(9)

When cos(θj) < 0 cos(θj) < 0

∂L

∂xi
=

⎧
⎪⎪⎪⎪⎨
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∂L
∂fyi

(s
sin(θyi+m)

sin(θyi )
)Wyi , j = yi

∂L
∂fj
sWj, easy, j �= yi

∂L
∂fj
s(t − 2 cos(θj))Wj, semi - hard, j �= yi

∂L
∂fj
s(t + 2 cos(θj))Wj, harder, j �= yi

(10)

∂L

∂Wj
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂L
∂fyi

(s
sin(θyi+m)

sin(θyi )
)xyi , j = yi

∂L
∂fj
sxj, easy, j �= yi

∂L
∂fj
s(t − 2 cos(θj))xj, semi - hard, j �= yi

∂L
∂fj
s(t + 2 cos(θj))xj, harder, j �= yi

(11)

During the above model optimization process, two parameters are involved, i.e., s
and t. In this paper, the scale parameter s is set to 64, and hype-parameter t is set to an
adaptive value related to the number of iterations

t(k) = αγ (k) + (1 − α)t(k−1) (12)

where k is the iteration number, α = 0.99, γ (k) = ∑
i cos(θyi ), and the initial t

(0) set to
0. The algorithm of this method is given in Algorithm 1.
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3 Experimental Results

3.1 Implementation Details

• Datasets: In our experiments, nine datasets are employed with two datasets used
for training and seven datasets used for testing. Specifically, to validate the robust-
ness of the proposed method, the training datasets consisted of the WebFace [12] and
UMDFace [13] datasets.WebFace contains 494,414 images from10,575 distinct indi-
viduals, while UMDFace contains 367,920 images from 8,501 distinct individuals.
To evaluate the generalization ability of the method, seven different face databases,
namely LFW [14], CFP_FF [15], CFP_FP [15], AgeDB [16], CALFW [17], CPLFW
[18], and VGG2_FP [19], were used for testing.
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• Experimental Setting: The experiments are implemented with PyTorch framework,
with the SGD algorithm used for optimizing the model. The IR_SE_50 network [20]
is used as the base network to train the model. The size of samples is set to 112 ×
112. The experiments are performed on an RTX5000 GPU environment, the number
of epoch is 50. The initial learning rate is set to 0.1 and is divided by 10 at the 28th,
38th, and 46th epoch. The batch size is set to 256, the momentum is set to 0.9, and
the weight decay is set to 5e-4.

3.2 Evaluation Results

• Experimental results based on Webface
The trained model on the Webface dataset is tested on five different face datasets:

CFP_FF,CFP_FP,AgeDB,CALFW, andCPLFW.CFPdataset comprises 7,000 facial
images from500 individuals, with 10 frontal face images and 4 profile face images per
person, which CFP_FF contains only frontal face images and CFP_FP includes both
frontal and profile face images. AgeDB consists of 16,488 labeled images from 568
individuals, with information on person identity, age, and gender. The age range in this
database is 1 to 101 years, and the images have real-world backgrounds. CALFW and
CPLFW are extensions of the LFW database, incorporating age and pose variations.
These datasets encompass various types of challenging samples for face recognition,
including profile shots, background variations, age variations, and noise samples.

Meanwhile, the proposed method is compared to three state-of-the-art
angular/cosine-margin-based methods: CosFace, CurricularFace, and EnhanceFace.
Experimental accuracies of these methods are shown in Table 1. It can be seen that in
CFP_FF dataset consisting of simple samples, the proposed method achieves compa-
rable accuracy to existingmethods.However, on the remaining four datasets that focus
on semi-hard and harder samples, particularly the CFP_FP, CALFW, and CPLFW
with significant amount of noise samples, the proposedmethod outperforms the exist-
ing methods. This highlights the effectiveness of the proposed method, especially
when dealing with mislabeled training data. Moreover, the experiment demonstrates
the good transferability and generalization of the proposed method by training and
testing on different datasets.

Table 1. Verification results (%) of different loss function on five various verification datasets by
training on Webface. The highest accuracies are in bold.

Dataset CFP_FF CFP_FP AgeDB CALFW CPLFW

method

CosFace 99. 51 97. 16 94. 55 93. 75 90. 72

CurricularFace 99. 51 96. 81 94. 83 93. 43 90. 47

EnhanceFace 99. 44 97. 36 94. 60 93. 67 90. 00

the proposed method 99. 51 97. 41 94. 83 93. 83 90. 82
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• Experimental results based on UMDFace
To validate the robustness of the proposedmethod, the proposedmethod is trained

onUMDFace dataset, and tested on CFP_FF, CFP_FP, CALFW, LFWandVGG2_FP
datasets. CFP_FF, CFP_FP, and CALFW are used to test the recognition stability of
the model on the same datasets, while LFW and VGG2_FP are used to test the
generalization ability of the model. LFW consists of 13,233 face images from 5,749
different individuals, and VGG2_FP contains 3.31 million face images from 9,131
different individuals. To further verify the effectiveness of the method, the proposed
method is also compared with ArcFace, and the experimental accuracy is shown in
Table 2.

The experimental results in Table 2 show that the proposed method robustly
achieves better recognition accuracy across different datasets. The LFW further val-
idate the good generalization ability of this method. And the accuracy results in
VGG2_FP indicate that the proposedmethodoutperforms even on large-scale datasets
with millions of samples. Above experiments indicate that classifying the difficulty
level of sample types and using segmented adaptive weighting can effectively empha-
size semi-hard samples while mitigating the impact of mislabeled and other noise
samples on accuracy.

Table 2. Verification results (%) of different loss function on five various verification datasets by
training on UMDFace. The highest accuracies are in bold.

Dataset CFP_FF CFP_FP CALFW LFW VGG2_FP

method

CosFace 99. 46 96.20 94. 37 99.45 93.80

ArcFace 99. 41 95.86 94. 23 99.40 93.60

CurricularFace 99. 41 95.60 94. 20 99.47 93.46

EnhanceFace 99.39 95.64 94.25 99.45 93.64

the proposed method 99. 51 96.26 94. 57 99.53 94.01

4 Conclusion

This paper proposes a deep face recognition model based on the cosine boundary loss
function, which has two main characteristics. Firstly, a novel cosine decision boundary
is proposed to address mislabeled and noise samples in FR datasets. It categorizes into
easy, semi-hard, and harder samples based on angular intervals. Secondly, an adaptive
segmented loss function is introduced, considering the roles of samples during train-
ing. It emphasizes easy samples in early stages, focuses on semi-hard samples while
suppressing harder samples, effectively controlling the impact of noise samples. Exper-
imental results on different FR datasets demonstrate the robustness and generalization
of the proposed method, even in scenarios involving millions of samples.
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Abstract. Facial expression is a powerful, natural and universal signal for human
beings to convey their emotional states and intentions. In this paper, we propose
a new spatial-temporal facial expression recognition network which outperforms
many state-of-the-art methods. Our model is composed by two networks, a tem-
poral feature extraction network based on facial landmarks and a spatial feature
extraction network based on densely connected network. Image preprocessing
method is optimized according to the features of the expression image to reduce
network’s overfitting on small datasets. In addition, we propose a mix fusion strat-
egy to better combine spatial and temporal features. Finally, experiments on public
datasets are conducted to verify the effectiveness of each module and the improve-
ment of expression recognition accuracy of the spatial-temporal fusion network.
The accuracies on OULU-CASIA and CK + datasets reach 90.21% and 99.82%
respectively.

Keywords: Facial Expression Recognition · Facial Landmarks · Model Fusion ·
Spatial-Temporal Network

1 Introduction

Facial expression is one or more motions or positions of the muscles beneath the skin of
the face. These movements can convey the emotional state of an individual to observers.
With the development of technologies like human-computer interaction and image pro-
cessing, facial expression recognition (FER) has become a hot research field. Research
results of FER have been widely used in driver fatigue surveillance, online teaching,
medical treatment and other fields [1].

FER can be divided into two categories: still frame based and image sequence based.
Still frame based methods extract spatial features from a single image. Traditional meth-
ods depend on handcrafted features like local binary patterns (LBP) and histogram of
oriented gradients (HOG). With relatively sufficient data collected by various compe-
titions like FER2013 [2] and emergence of more deliberately designed Convolutional
Neural Networks (CNN), many deep learning methods were brought into this field.
Image sequence based methods focus more on extracting temporal features from con-
secutive frames and try to capture dynamic information. LBP-TOP [4] uses time as the
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third orthogonal plane, STSGN [5] uses graph network, PHRNN [6] uses bidirectional
recurrent neural network (BRNN).

While neural networks significantly improve FER performance, small datasets have
become a big impediment to apply more powerful networks. There are mainly two
ways to overcome this problem. Firstly, data augmentation can be applied. There are
many common augmentation technics in the field of computer vision such as rotation,
translation, random cropping and adding noises. The second way is to apply networks
with small amount of layers and parameters to alleviate overfitting caused by small
datasets [6, 7].

In this paper, we are interested in improving recognition accuracy for image
sequences on small datasets. We construct two networks to extract different features
and combine them as a spatial-temporal network. One network takes facial landmarks
gained from image sequences as input and tries to capture dynamic information form
consecutive frames. The other network is trained on static frames with densely con-
nected network. To make full use of spatial and temporal features, we design a mix
fusion strategy to combine information gained by two networks.

Three main contributions of this paper can be summarized as follows:

1. Targeted augmentation method for landmarks is designed according to the character-
istics of FER.

2. Feature reusing strategy is applied to alleviate overfitting problem on deep networks.
3. A mix fusion strategy is presented to compose information extracted from two dif-

ferent networks. Compared with traditional fusion strategies like middle fusion and
late fusion, better expression recognition accuracy is achieved by our strategy.

2 Related Work

2.1 Facial Expression Recognition

The development of facial expression recognition (FER) methods can be divided into
four stages. The first stage is to classify images with handcrafted features extracted by
methods like Gabor texture [8], LBP and HOG. Although handcrafted features suffered
the problem of hard to design, it is a compromise of lacking proper dataset.

With relatively sufficient data collected by various competitions like FER2013 [2]
and rapidly increasing computational ability, CNNs were brought into this field of study.
Tang [3], winner of FER2013 uses a simple CNN with support vector machine(SVM)
as classifier and outperforms other methods by 2%.

The third stage is to combine spatial and temporal information. Image sequence based
methods using temporal features generally achieve better results than still image based
methods [12]. Thus, models composed by a temporal network extracting features from
image sequences and a spatial network extracting appearance features are put forward.
And various classifiers are used, DTGN [7] uses fully connect network, PHRNN [6]
uses bidirectional recurrent neural network (BRNN).

The fourth stage is to optimize neural networks. Common datasets like CK + [9]
and OULU-CASIA [10] only have hundreds of samples and that impedes using larger
and more powerful networks. For example, DTAN [7] only has two convolutional layers
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and MSCNN [6] only has four. To get better performance, many deliberately designed
networks are proposed. Compact-CNN [11] uses PReLU and larger convolution filters to
improve the DTAN model. STSGN [5] uses sematic facial graph to encode both spatial
and temporal information and constructs a novel graph neural network. Zhu [12] uses
cascade attention blocks to improve feature aggregation results.

2.2 Model Fusion

Multimodal data fusion has long been investigated in medical imaging since images
with multimodalities are wildly used in computed tomography (CT) and magnetic res-
onance imaging (MRI) [13]. The underlying motivation for model fusion is to extract
complementary features from different modalities and thus improve decision making.
There are three main fusion strategies: early fusion, joint fusion and late fusion. Early
fusion is also known as feature level fusion. Features extracted from different modalities
are concatenated or added as a new vector before feeding into classifier. Joint fusion is
similar to early fusion but loss can be back propagated from classifier to feature extrac-
tion models. Therefore, better features can be extracted through the training process.
Late fusion also known as decision level fusion, makes final decision by aggregation
function to combine decisions from eachmodel. Common aggregation functions include
averaging, weighted sum and majority voting.

3 Our Model

Fig. 1. Spatial-temporal network for FER

Figure 1 demonstrates our proposed FER model which contains two networks: a
landmark based network to extract temporal features from image sequences and a densely
connected convolutional network to extract spatial features from static images. Then we
design amix fusion strategy to combine twokinds of features and improve the recognition
accuracy. We will describe details of our method in the following section.
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3.1 Temporal Network

In temporal network, we follow steps in Fig. 2 to extract basic temporal features.

Fig. 2. Image preprocessing for temporal network

Frame Selection. Neural networks generally need inputs with the same dimension.
To solve the problem that each image sequence in the dataset has different length, for
each sequence we select a subsequence which contains five frames with equal intervals.
Each subsequence contains the first frame with neutral expression and the last frame
with the peak expression. Frame selection can retain dynamic temporal information
while reducing data needs to be processed. Therefore, it can also accelerate the whole
network.

Facial Landmarks. To get facial landmarks, we useHaar Cascade [14] to detect bound-
ing boxes for faces. Then coordinates of landmarks are localized by Deep Alignment
Network (DAN) [15]. DAN can extract 68 points for each image and shows the contour
of eyes, nose, mouth, eyebrows and check.

Normalization. We reform the landmarks coordinates of each frame into a vector as:

v(t) =
[
x(t)
1 , x(t)

2 , · · · , x(t)
68 , y(t)

1 , y(t)
2 , · · · , y(t)

68

]T
(1)

t denotes the t-th frame. Numbers are indexes for landmarks. Since every face is different
in shape and position, data normalization is applied to regularize data distribution. Our
method is similar to calculate a Z-score. Instead of subtracting the average, we choose
to subtract the point at nose apex and normalize landmarks as follows:

x(t)
i−norm = x(t)

i − x(t)
31

σ
(t)
x

(2)

σ
(t)
x denotes the standard deviation of all x-coordinates at the t-th frame. And the same

operation is applied to y-coordinates.

Finally, vectors from frames in each subsequence are concatenated chronologically.

v =
[
x(1)
1−norm, · · · , x(1)

68−norm, y(1)
1−norm, · · · , y(1)

68−norm, · · · , y(5)
1−norm, · · · , y(5)

68−norm

]T

(3)

And v is the input feature for this sample.
DataAugmentation.Weutilize data augmentation technics to expandvectors gained

from former step by 22 times. We use three technics to augment the data: rotation,
flipping and stretching. They can be achieved by Eqs. 4, 5 and 6. Rotation and flipping
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can alleviate the influence of position and asymmetry of faces. Stretching is to mitigate
different aspect ratio of faces.

Firstly, we horizontally flip landmarks. Secondly, we rotate original and flipped

landmarks by degrees in {−15
◦
,−10

◦
,−5

◦
, 5

◦
, 10

◦
, 15

◦}. Rotation can be achieved by
multiplying a 2x2 rotation matrix.

(
x(t)
i , y(t)

i

)T
rotated

=
[
cos θ sin θ

sin θ cos θ

](
x(t)
i−norm, y(t)

i−norm

)T
(4)

(
x(t)
i , y(t)

i

)T
stretched

=
(
β1x

(t)
i−norm, β2y

(t)
i−norm

)T
(5)

(
x(t)
i , y(t)

i

)T
flipped

=
(
−x(t)

i , y(t)
i

)T
(6)

Finally, we rescale x-coordinates and y-coordinates by ratio of {0.5, 0.8, 1.5, 2}
respectively. Thus, we get original(1) and flipped(1) landmarks, their rotated ver-
sions(2x6) and stretched versions(2x4).

Network Architecture

Fig. 3. Temporal network structure

We use a similar two-layer multilayer perceptron in [7]. It has two fully connected
layers and a Softmax layer. To avoid overfitting, dropout is adopted after every hidden
layer andL2 regularization is introduced. L2 regularization can be described as following
function (Fig. 3):

Loss = − 1

N

∑
i

M∑
c=1

yicln(pic) + α||w||22 (7)

M is the number of total classes, yic is a sign function, it is 1 when sample i belongs
to class c, p means probability, w denotes weights in the second fully connected layer.

ReLU is chosen to be activation function. For training, we use Stochastic gradient
descend with momentum and decay, and use cross-entropy as loss function.
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3.2 Spatial Network

While landmark-based network is a light weight network with high efficiency, it does
not use spatial information in every frame sufficiently. For example, landmarks of both
sadness and disgust have downward corners of lips and similar contours of faces. The
main difference between them is the amount of wrinkles. To detect such difference we
use a densely connected CNN.

Preprocessing. We choose the last frame from each sequence and use Haar Cascade
[14] to detect faces. Then all images are reshaped to 190x190. Data augmentation is
also applied with slight difference from landmark-based network. We use online data
augmentation method provided by TensorFlow. It takes original dataset as input and
generates a random batch of images in real-time. Parameters controlling rotation, shift-
ing, flipping and etc. can be easily set up. We set specs as follows: rotation range from
[−20

◦
, 20

◦ ], horizontal and vertical shifting and zoom are set to 0.2, random horizontal
flipping is also used.

Network Architecture

Fig. 4. Spatial network structure

Generally, CNNs used in FERare shallownetworks because they are easier to prevent
overfitting problems on small datasets. Although deeper networks can extract more com-
plex representations and benefit classification accuracy, they are hard to train on small
datasets. Densely connected network (DenseNet) [16] reduces network’s parameters by
bottleneck layers and increases feature reuse ability by dense connections. Therefore,
we use DenseNet-121 with 4 dense blocks and 2 fully connected layers shown in Fig. 4
as our model.
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3.3 Mix Fusion Strategy

In general, combination of different networks can improve classification performance.
And the reason is obvious, different network focus on different features and the com-
bination can provide more useful information. Many model fusion strategies have been
used in FER. We evaluate their performance and design a mix-fusion strategy which
achieves better result.

Early Fusion, Joint Fusion and Late Fusion. Early fusion is a very challenging task
because it usually requires both inputs have the same dimension and type. Therefore,
early fusion turns to use simple networks to extract low level features and combine
them at feature level. On this basis, joint fusion can fine tune the whole model by back
propagation. Late fusion is to combine outputs of different networks by aggregation
functions. The choice of aggregation function varies with specific problem, but usually
relies on subjective experience.

Fig. 5. Mix fusion strategy

MixFusion. Early fusionmakes use of extracted features but ignores logic of prediction
while late fusion is exactly contrary. Tomake full use of information got by two networks,
we proposed a mix-fusion strategy in Fig. 5. It is similar to late fusion, but adds early
fusion network as the third network. The third network is aimed to combine feature-wise
information.

In the third network, preprocessed data are sent into temporal network and spatial
network respectively. After independent feature extraction, two networks are combined
before fully connected layers to form a fusion model. We concatenate features from the
last fully connected layers before Softmaxof twonetworks. To balance their contribution,
two fully connected layers are designed to have same number of neurons. Parameters in
two feature extraction models are frozen during training. Only layers after concatenation
are trained.
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Then we use the following aggregation function to get final classification result from
three networks.

vj =
2∑

i=1

αi

[
Rj
i + βiP

j
i

]
(8)

α and β are tuning parameters. α is used to balance trust on two networks. β is to adjust
trust on rank and probability. j denotes j-th class, i denotes i − th network. vj is the
pseudo Softmax output for j-th class. Pj

i is the probability or original Softmax output
generates by network i for j-th class. R is rank points given by function 9:

Rj
i = numclass − ranki(j) (9)

Rank points are generated by subtracting probability rank from number of expres-
sion classes. For example, if there are 6 classes and happy expression has the highest
probability, then the rank of it is 1, and rank point for it is 6. The function of rank points
is to assign higher weights for classes with higher probability. Final prediction is made
by getting the index of max v:

prediction = argmax
(
v1, · · · , vnumclass

)
(10)

The intuition of this aggregation function is to weigh more on the rank of probability
since two networks are pretty different and the value of probability predicted by them are
not comparable. Therefore, common aggregation functions like averaging and weighted
sum are not appropriate. Although we let the rank play a dominating role in the function,
it is worth to trust the predicted probability when it is really close to 100%. So we use
β to make P has the ability to influence final result when it is highly confident.

4 Experiments

In our experiments, we evaluate our model on OULU-CASIA dataset [10]. It contains
image sequences captured by near-infrared and visible light under different illumination
condition. In each sequence, the first frame is neutral and the last frame has peak expres-
sion. There are six expressions in the dataset: anger, disgust, fear, happiness, sadness
and surprise. We use 480 image sequences captured by visible light under normal illu-
mination condition. To better evaluate robustness of our model, 10-fold cross validation
strategy is adopted in all experiments. This strategy is to equally divide the whole dataset
into ten parts. And nine parts are used as training set, the rest one as validation set. Each
part will be used as validation set once and final result is the average of ten validation
accuracy.

4.1 Frame Selection

Asmentioned earlier in this paper, select fixed length of frames can align input dimension
and reduce workload of data processing. Therefore, we evaluate some frame selection
strategies (Table 1).
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Table 1. Influence of frame selection strategy on temporal network

Selection strategy Accuracy

8 frames, equal interval 77.71

5 frames, from the last, stride 2 74.58

5 frames, first and last 4 76.25

5 frames, equal interval 79.79

An intuitive strategy is to pick more frames similar to peak expressions. But with-
out neutral frames, dynamic information is hard to extract. And more inconspicuous
expressions will be chosen when we select more frames. Therefore, a common strat-
egy in many researches is to pick last 3 frames and the first neutral frame [1]. We pick
last 4 frames to make subsequences have the same length. To further improve dynamic
information extraction ability, we spread selected frames with equal intervals and get a
gain in accuracy of 3%. Theoretically, selecting more frames brings more information
to the network. However, degradation is found when we increase frames to 8. This may
be caused by facial landmark localization algorithm. There are different perturbations
between localized landmarks and ground truth among frames in each subsequence. And
such perturbations bring negative impact to the final results.

4.2 Augmentation Method

Table 2. Influence of augmentation method on temporal network

Method Accuracy

flipping*1, rotation*6 79.79

flipping*1, rotation*12, 80.41

flipping*1, rotation*12, stretching*8 82.29

Neural networks have huge amount of parameters to be determined, and big amount
of data is needed. Different augmentation method has quite diverse performance. We
evaluate some of themand design a better augmentationmethod. Traditionalmethods use
flipping and rotation to alleviate influence of different face positions. However, aspect
ratios of faces are ignored. Different face aspect ratios also lead to different distances
between eyes andbetweenmouth andnose.To reduce impact of such irrelevant aspect,we
stretch landmarks horizontally and vertically.With ourmethod, over 2% of improvement
is achieved (Table 2).

4.3 Regularization

Regularization is a common technic to generate better results by adding extra terms to
the loss function. L1-norm is used to generate sparse results, but some features will be
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deprecated. Therefore, it is not appropriate for small datasets in our task. We use L2-
norm to alleviate overfitting problem and that brings promotion in recognition accuracy
(Table 3).

Table 3. Influence of regularization on temporal network

Method Accuracy

none 82.29

l1α = 0.1 80.41

l2α = 0.01 81.04

l2α = 0.05 82.08

l2α = 0.1 83.33

l2α = 0.2 81.04

4.4 Fusion Strategy

We evaluate common model fusion strategies and compare them with our mix fusion.

Table 4. Accuracy of our method compared with other FER models

Model OULU-CASIA CK +
DTGN [7] 74.17 92.35

DTAGN [7] 81.46 97.25

PHRNN [6] 78.96 96.36

PHRNN-MSCNN [6] 86.25 98.50

STSGN [5] 87.23 98.63

Cascade Attention [12] 89.29 99.23

Our temporal network 83.33 95.11

Our spatial network 89.17 99.39

Early fusion 89.17 99.08

Late fusion 87.08 97.55

Joint fusion 89.17 98.47

Our method 90.21 99.82

Result in Table 4 shows that all three common fusion strategies cannot improve
recognition accuracy in this circumstance. Moreover, the performance of late fusion is
even worse than a single DenseNet. We think the difference of accuracy in two networks
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impede fusion models to achieve better performance. In early fusion and joint fusion,
fusion model tends to use more information from the network with higher accuracy and
gives low weight to the landmark network. This may explain why they generate similar
results with DenseNet. In late fusion, final decision is made by aggregating outputs of
two networks and may be degraded by the lower accuracy network.

But joint fusion is a little bit different. Although final result does not change, weights
are different. This means joint fusion model recognizes expressions from a new perspec-
tive and may complement our two networks. We evaluate our model on OULU-CASIA
andCK+ datasets, experiment result in Table 4 proves ourmethod andmix fusionmodel
achieves the best performance. Figure 6 shows confusion matrices on both datasets.

Fig. 6. Confusion matrix of our model, (a) is on OULU-CASIA dataset, (b) is on CK + dataset.

5 Conclusion

In this paper, we proposed a new spatial-temporal FER model and a mix fusion strategy.
We demonstrate that specific image preprocessing method, regularization and feature
reusing can improve model’s performance on small datasets. We also show our mix
fusion strategy outperforms common fusion strategies in experiment. With the help of
mix fusion strategy, ourmodel provides the state-of-the-art accuracies onOULU-CASIA
and CK + datasets.
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Abstract. Recently, CNN-Transformer hybrid network has been pro-
posed to resolve either the heavy computational burden of CNN or
the difficulty encountered during training the Transformer-based net-
works. In this work, we design an efficient and effective CNN-Transformer
hybrid network for human pose estimation, namely CTHPose. Specif-
ically, Polarized CNN Module is employed to extract the feature with
plentiful visual semantic clues, which is beneficial for the convergence of
the subsequent Transformer encoders. Pyramid Transformer Module is
utilized to build the long-term relationship between human body parts
with lightweight structure and less computational complexity. To estab-
lish long-term relationship, large field of view is necessary in Transformer,
which leads to a large computational workload. Hence, instead of the
entire feature map, we introduced a reorganized small sliding window to
provide the required large field of view. Finally, Heatmap Generator is
designed to reconstruct the 2D heatmaps from the 1D keypoint repre-
sentation, which balances parameters and FLOPs while obtaining accu-
rate prediction. According to quantitative comparison experiments with
CNN estimators, CTHPose significantly reduces the number of network
parameters and GFLOPs, while also providing better detection accuracy.
Compared with mainstream pure Transformer networks and state-of-the-
art CNN-Transformer hybrid networks, this network also has competitive
performance, and is more robust to the clothing pattern interference and
overlapping limbs from the visual perspective.

Keywords: Human pose estimation · Transformer · Long-range
dependency

1 Introduction

Based on the locations of human body keypoints, the human pose that contains
rich features of skeletons and limbs, can be predicted. It plays an important
role in several visual applications and researches, such as behavior analysis [5],
human-machine interaction [17], etc.

This work was supported by the National Natural Science Foundation of China (Grant
Nos. 51508105 and 61601127), and the Fujian Provincial Department of Science and
Technology of China (Grant Nos. 2019H0006, 2021J01580 and 2022H0008).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 327–339, 2024.
https://doi.org/10.1007/978-981-99-8469-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8469-5_26&domain=pdf
https://doi.org/10.1007/978-981-99-8469-5_26


328 D. Chen et al.

Fig. 1. Schematic illustration of CTHPose

The convolutional networks have been widely used in human pose estimators
[2,18,20,26] by virtue of the powerful semantic extraction ability. As known,
accurate extraction of keypoints usually requires a large receptive field to provide
better visual clues. For this reason, the CNN network is constantly expanded to
improve the detection accuracy [18,20,26], which brings a heavy computational
burden to the network.

In the past few years, Transformer has achieved great success in computer
vision tasks with its powerful global dependency modeling capability [1,4,24,25].
In Transformer, the input image is divided into patches and global features can
be well extracted through self-attention and feed-forward layers. However, com-
pared to convolution models, the pure Transformer architecture usually needs
more training resources to converge. For example, each self-attention layer will
occupy large memory space and more computational complexity that is propor-
tional to the square of the input feature size [11,16].

Recently, the CNN-Transformer hybrid estimators are proposed [10,12,27,
28], which usually extract low-level features through CNN first, and then build
the lone-range relationship by Transformer. They utilizes both local and global
dependencies to obtain accurate results. However, the existing methods usually
pays more attention to study the Transformer part, and seldom explore the
contribution of CNN. The improper strategies of heatmap generation also brings
more computing burden [12,27].

In this work, we design an efficient and effective CNN-Transformer hybrid
human pose estimator (CTHPose), which fully utilizes the powerful visual
semantics extraction ability of CNN and the long-range dependencies model-
ing capability of Transformer to accurately locate the keypoints. As depicted
in Fig. 1, CTHPose is composed of three submodules: Polarized CNN Module
(PCM), Pyramid Transformer Module (PTM) and Heatmap Generator (HG).

In PCM, parallel branches together with polarized blocks [15] that is inspired
by the Polaroid filter in camera, is utilized to better extract the semantic fea-
tures. Better semantic features will be beneficial to the convergence of the sub-
sequent Transformer encoders. To reduce the computing complexity, a shallow
PTM is then employed to model the long-range dependencies of feature maps.
Moreover, a shifted window is introduced to reduce the input feature size of the
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self-attention module, which can effectively reduce the computation burden. At
last, HG is proposed to recover the 1D representation into 2D heatmaps with
target resolution. Compared with the other hybrid networks [12,27], the adop-
tion of HG can balance the required resource and the accuracy. After the above
efforts, CTHPose provides a comparable performance while it can be trained in
only one GPU with about 1

4 batch size of the general setting. In summary, our
main contributions are as follows:

– We design PCM to better extract the semantic features, and prove that it is
beneficial to the convergence of the subsequent Transformer.

– To reduce the computation cost, we design PTM to build long-range depen-
dencies and propose HG to reconstruct heatmaps. The combined use of them
maintains high accuracy with small model scale.

– Extensive experiments show that CTHPose achieves competitive performance
with less computational burden, fewer parameters and less training resources
compared with mainstream CNN, pure Transformer and hybrid estimators.

2 Related Work

Human pose estimators based on CNN [2,18,20,26] have been widely proposed
due to its powerful feature extraction ability. Chen et al. [2] design a two-stage
pyramid network that can detect keypoints from coarse to fine. Newell et al. [18]
stack hourglass blocks to gain multi-scale heatmaps. Bin et al. [26] use deep resid-
ual network to build a simple baseline for 2D human pose estimation (HPE). Ke
et al. [20] propose a strong backbone which maintains high resolution representa-
tion throughout the whole network. In order to achieve a better prediction effect,
these estimators usually expand receptive field by increasing the depth [26], the
width [20] or the number of stacked blocks [18]. Although this method compen-
sates the weakness of CNN in modeling global dependencies to some extend, it
leads to the increased parameters and computational burden.

Since Dosovitskiy et al. [4] introduced Transformer into computer visual
field, the deep neural networks based on Transformer have gained success in
many tasks [1,24,25]. Recently, researchers begin to introduce Transformer into
HPE as well. TokenPose [12] apparently represents keypoints as token embed-
dings to get keypoint constraints directly. TransPose [27] utilizes self-attention
mechanism to predict the position of keypoints by the principle of activation
maximization. PRTR [10] uses cascade Transformer structure to do HPE end to
end. HRFormer [28] utilizes Transformer to learn high-resolution representations
for dense prediction tasks. Although these estimators can build the long-range
interaction between features, they usually need more training resources, such as
more GPUs and extra pretraining.

In this work, our hybrid estimator maximizes the advantages of CNN and
Transformer, and make up for their shortcomings mentioned above. It is an
efficient and effective network with less training resources.
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Fig. 2. The architecture of Polarized CNN Module (PCM) (a) The main body of PCM
(b) The structure of polarized block

Fig. 3. The structure of polarized self-attention module (PSA)

3 CTHPose

3.1 Polarized CNN Module

The convolutional network is good at extracting low-level visual semantics [9,19].
Compared with raw images, these feature maps extracted are beneficial to the
training and convergence of Transformer [12]. Thus, we utilize CNN as the first
stage of CTHPose. In order to extract high quality feature maps, we mainly refer
to [15,20] to design Polarized CNN Module (PCM), which can adjust weights
dynamically while keeping high resolution of features.

As shown in Fig. 2, PCM consists of bridged polarized blocks with multi-
scale feature fusion. It totally consists of three parallel branches which keeps
1×, 0.5× and 0.25× resolution respectively. Because high resolution is helpful
to improve detection accuracy in dense prediction, the first branch is used to
generate target feature maps, while the others mainly make feature fusion after
up- or down-sampling to obtain multi-scale reception fields.

The polarized block is a residual structure with two 3 × 3 convolution layers
and a polarized self-attention module (PSA) [15] which is a two-stage two-branch
residual block shown in Fig. 3. To meet the demand for high resolution of dense
prediction, PSA keeps the spatial resolution in the lower branch and halves the
channels to balance computational complexity. Moreover, similar to the idea that
Polaroid filters light to improve the contrast of photos, the upper branch col-
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lapses the spatial or channel dimension in two stages respectively, then keeps and
acts on the corresponding orthogonal dimension to adjust weights dynamically.
Finally, the outputs of the two branches are fused by matrix multiplication, and
the original feature maps are weighted after channel expansion and reshaping.

Fig. 4. The architecture and principle of the Transformer stage (a) The structure of
the Transformer stage (b) The principle of window self-attention (c) The principle of
shifted window mechanism

3.2 Pyramid Transformer Module

For further achieving the target of effectiveness and efficiency, we design Pyra-
mid Transformer Module (PTM) to build the relationship between human body
parts. Due to the long-range receptive field of Transformer, PTM can obtain
accurate detection with only a few stacked layers. Therefore, the model param-
eters are obviously decreased.

The whole PTM consists of four Transformer stages, as Fig. 4(a) shows, each
stage is composed of a patch embedding layer and Ni (i = 1,2,3,4) Transformer
encoders. The main body of the encoder is two residual blocks with self-attention
layer and feed-forward layer. In every stage, the feature representations are
halved the size and doubled the channels after processed by the patch embedding
layer. They form a pyramid structure which is proved to be beneficial to dense
prediction tasks [13].

The natural advantage of Transformer in modeling long-range dependencies
is mainly comes from the self-attention mechanism (SA) [21]. Its principle can
be described as Eq. (1):
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Attention (Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

The self-attention layer linearly maps the input features into query (Q), key (K)
and value (V ) and then matching Q with K and reacting with V to obtain the
attention maps. In this process, SA matches every patch with all others to form
the receptive field covering the action scope.

Ω (SA) = 4hwC2 + 2 (hw)2 C (2)

Ω (window SA) = 4hwC2 + 2W 2hwC (3)

As Eq. (2) illustrated, there is a quadratic relationship between computational
complexity (Ω) and the size of features (h×w×C) [16]. Thus, we take use of
the window SA [16] which restricts self-attention operation to each window. As
Fig. 4(b) shows, we firstly divide the feature maps into W×W windows. Owing
to the all-MLP structure of Transformer, we need to use the patch embedding
layer to divide feature maps into patches firstly and then flatten them into
1D representations. In order to keep the original spatial structure, the position
embedding is added. According to Eq. (3), the computing relationship is linear
in window SA. For making sure the interaction between the adjacent windows,
we also take use of the shifted window mechanism [16]. Figure 4(c) is an example
of 4 adjacent windows (blue) in a feature map, after processing by self-attention
operation, we move each window W

2 to the down and right and then move the
A, B and C areas of the feature map to A′, B′ and C ′. Finally, we do the
self-attention again in the new windows (red).

3.3 Heatmap Generator

The output of Transformer encoder is a 1D representation, so we need to recover
2D keypoint heatmaps from it. According to the existing hybrid estimators [12,
27], there are two main methods. For TransPose-H [27], features keep the target
resolution in Transformer, which leads to high computational complexity due
to the quadratic relationship between FLOPs and feature size. TokenPose [12]
upsamples keypoint tokens with the MLP head which brings more parameters.
To overcome the above shortcomings, we design a heatmap recovery module,
namely Heatmap Generator (HG), which balances parameters and FLOPs while
obtaining accurate prediction.

Fig. 5. The design of Heatmap Generator (HG) (a) The linear HG (b) The spatial HG
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In order to explore the appropriate architecture, we have 2 designs as Fig. 5
shows. The linear HG is mainly composed of MLP layers. It firstly does feature
merging operation designed by hand to make the most use of each feature point
of the keypoint representation. Then, it uses the MLP reconstructor to get every
pixel making up the heatmaps and recovers the 2D spatial structure. The main
body of the spatial HG is deconvolution. In contrast to the linear design, it firstly
transforms the keypoint representation to 2D structure and then achieves the
reconstruction goal directly in spatial dimension via the deconvolution recon-
structor. Finally, the heatmaps are obtained by using the heatmap regressor.
Experiments show that, compared with the MLP structure, the spatial one per-
forms better which mainly thanks to the spatial recovery ability of deconvolution.

4 Experiments

4.1 Model Setting

For PCM, we set the dimension of the first branch as 32 and the number of
Transformer blocks as Ni = {2,2,6,2} (i = 1, 2, 3, 4). In addition, the window size
of the window SA is set as W=8. For spatial HG, there are three deconvolution
layers utilized. Specially, only PCM loads the weights pretrained in ImageNet
partially, PTM and HG are just trained from scratch.

4.2 Implementation Details

Dataset and Evaluation Metric. COCO [14] is one of the standard bench-
marks of HPE. It includes more than 20K images and 25K human instances.
COCO is divided into three parts: train, val and test-dev set which include 57K,
5K and 20K images respectively. For each human instance, there are at most 17
keypoints labeled.

The standard evaluation metric of COCO is calculated according to Object
Keypoint Similarity (OKS):

OKS =
∑

i exp
(−d2i /2 s2k2

i

)
δ (vi > 0)∑

i δ (vi > 0)
(4)

where vi stands for the visibility of the i-th keypoint, di is used to measure
the distance between the prediction and corresponding GT, s means the scale
of current human body and ki is a constant factor that controls falloff. We
mainly report average precision (AP ) and recall (AR) score to evaluate the
model performance. Specifically, AP and AR present the mean scores at OKS =
0.5, 0.55, ..., 0.95; AP 50 and AP 75 stand for the scores at OKS = 0.5 and 0.75;
APM and APL are used to evaluate the medium and large human instances.
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Technical Setting. We train and evaluate CTHPose in an NVIDIA Geforce
2080Ti and the experiments follow the top-down paradigm of HPE. For fair com-
parison, we use the person detection result comes from [26]. Before inputting the
human samples detected, we resize them to 256 × 192 and make data augmen-
tation the same as [20]. We totally train 300 epochs with AdamW optimizer and
the heatmap decoding strategy [29]. The initial learning rate is set as 1e−3, and
changed to 1e−4 and 1e−5 at 200-th and 260-th epoch respectively. We evaluate
the performance of our work on COCO2017 validation set and test-dev set.

5 Results

The performance of CTHPose on COCO validation set and test-dev set are as
shown in Table 1 and Table 2, respectively.

Table 1. Comparisons on COCO2017 validation set. Pretrain means the correspond-
ing part has been initialized by the weights pretrained in ImageNet. Trans. denotes
Transformer.

Method Pretrain Input size #Params GFLOPs gtbbox AP AP 50 AP 75 APM APL AR

CNN Trans. AP

Hourglass [18] N – 256×192 25.1M 14.3 – 66.9 – – – – –

SimpleBaseline-R50 [26] Y – 256×192 34.0M 8.9 72.4 70.4 88.6 78.3 67.1 77.2 76.3

SimpleBaseline-R101 [26] Y – 256×192 53.0M 12.4 – 71.4 89.3 79.3 68.1 78.1 77.1

SimpleBaseline-R152 [26] Y – 256×192 68.6M 15.7 74.3 72.0 89.3 79.8 68.7 78.9 77.8

TransPose-R-A4 [27] Y N 256×192 6.0M 8.9 75.1 72.6 89.1 79.9 68.8 79.8 78.0

TransPose-H-S [27] Y N 256×192 8.0M 10.2 76.1 74.2 89.6 80.8 70.6 81.0 78.0

HRNet-W32 [20] Y – 256×192 28.5M 7.1 76.5 74.4 90.5 81.9 70.8 81.0 79.8

CTHPose Y N 256×192 11.0M 6.4 77.3 74.7 89.8 81.3 71.1 81.7 79.9

On the validation set, CTHPose outperforms the convolution-based mod-
els with lightweight structure and without extra pretraining. Compared to the
counterpart CNN method HRNet-W32, the AP of CTHPose improves by 0.3
with only 38.6% parameters and 9.9% fewer GFLOPs. Moreover, compared to
hybrid networks, TransPose-R-A4 and TransPose-H-S, the prediction accuracy
improves 2.1 and 0.5 with the reduction of computing complexity of 2.5 × 109

and 3.8 × 109 FLOPs respectively.
On test-dev set, compared with various state-of-the-art methods, our CTH-

Pose further demonstrates its efficiency and effectiveness. Specifically, compared
to the larger scale CNN model HRNet-W48, CTHPose achieves higher predic-
tion accuracy 74.4 AP with significant improvement in both model parameters
(↓82.7%) and GFLOPs (↓56.2%). Meanwhile, CTHPose has advantage in detect-
ing large scale human instances, its APL is 80.2 which improves 0.5. It is also
competitive compared with hybrid networks [12,27]. For TokenPose-S-v2 and
TransPose-H-S, it outperforms 1.3 and 1.0 AP with only almost 50% of GFLOPs.
And for TokenPose-B, it improves by 0.4 AP with 2.5×109 fewer parameters.
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Table 2. Comparisons on COCO2017 test-dev set with sate-of-the-art methods

Method Input size #Params GFLOPs AP AP 50 AP 75 APM APL AR

HigherHRNet [3] 640 × 640 63.8M 154.3 70.5 89.3 77.2 66.6 75.8 74.9

DEKR [7] 640 × 640 65.7 141.5 71.0 89.2 78.0 67.1 76.9 76.7

PRTR [10] 512 × 384 57.2M 37.8 72.1 90.4 79.6 68.1 79.0 79.4

CPN [2] 384 × 288 – – 72.1 91.4 80.0 68.7 77.2 78.5

RMPE [6] 320 × 256 28.1M 26.7 72.3 89.2 79.1 68.0 78.6 –

TokenPose-S-v2 [12] 256 × 192 6.2M 11.6 73.1 91.4 80.7 69.7 79.0 78.3

TransPose-H-S [27] 256 × 192 8.0M 10.2 73.4 91.6 81.1 70.1 79.3 –

SimpleBaseline-R152 [26] 384 × 288 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0

TokenPose-B [12] 256 × 192 13.5M 5.7 74.0 91.9 81.5 70.6 79.8 79.1

HRNet-W48 [20] 256 × 192 63.6M 14.6 74.2 92.4 82.4 70.9 79.7 79.5

CTHPose 256 × 192 11.0M 6.4 74.4 92.0 81.9 71.1 80.2 79.5

Fig. 6. Qualitative comparison of TransPose(left) and CTHPose(right) (a) The influ-
ence of clothing pattern (b)The influence of neighbouring limbs (c) The influence of
self-symmetrical limbs

In the above comparisons, CTHPose shows its efficiency which mainly thanks
to Transformer part. The parameters of PTM is only 1.73M in our estimator.
Because of the high quality feature maps output by PCM and SA’s strong ability
of modeling long-range relationship, PTM can ensure the effectiveness with small
scale. And its FLOPs is only 0.3G which mainly benefits from window self-
attention mechanism. What’s more, our design of Heatmap Generator makes
balance between parameters and FLOPs compared with other hybrid networks.

In addition, we also show the comparison of qualitative results of CTHPose
and TransPose on COCO2017 dataset in Fig. 6. Our hybrid estimator is more
robust to the influences of clothing color, neighbors’ and self-symmetrical limbs.
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6 Ablation Studies and Analyses

6.1 The Pure Transformer and Hybrid Architecture

The pure Transformer architecture [1,16,24,25] achieves good performance in
CV tasks, however, it also faces huge challenges of more training cost and inflex-
ibility to resolution changes which usually requires re-pretraining. [16,22] have
tried overcoming it by interpolation, yet have not achieved satisfactory results.

The comparison of pure Transformer networks and CTHPose is shown in
Table 3. CTHPose outperforms pretrained PVT, PVTv2 and Swin Transformer,
which proves that the low-level features extracted by CNN are helpful to the
convergence and performance of Transformer encoders with less training cost.
What’s more, because PTM is trained from scratch, it can flexibly cope with
different resolutions without extra re-pretraining or processing.

Table 3. Results of the mainstream pure Transformer networks and CTHPose

Method Pretrain AP AP 50 AP 75 APM APL AR

CNN Trans.

PVT-s [22] – Y 71.4 89.6 79.4 67.7 78.4 77.3

PVTv2-b2 [23] – Y 73.7 90.5 81.2 70.0 80.6 79.1

SwinTransformer tiny [16] – Y 72.4 90.1 80.6 69.0 79.1 78.2

SwinTransformer base [16] – Y 73.7 90.4 82.0 70.2 80.4 79.4

SwinTransformer large [16] – Y 74.3 90.6 82.1 70.6 81.2 79.8

CTHPose Y N 74.7 89.8 81.3 71.1 81.7 79.9

6.2 The Quality of Low-Level Visual Feature Maps

In order to better construct long-range relationship between human body parts,
it is beneficial to get the high quality feature maps as the input of PTM. To
evaluate it, we compare the performance of PCM with basic blocks [8] and
polarized blocks respectively. The results are shown in Table 4.

Since the feature maps keep high resolution and make multi-scale fea-
ture fusion in PCM, we can obtain abundant low-level semantics with human
instances of different sizes. Moreover, with the help of PSA [15], CTHPose may
determine the initial regions of interest for keypoints in the orthogonal dimen-
sions. Due to both of which, Transformer can be trained from scratch directly
and achieves fine performance in CTHPose rather than pretraining in ImageNet
as general setting.
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Table 4. The comparison of PCM composed of basic blocks and polarized blocks

Block AP AP 50 AP 75 APM APL AR

Basic block 73.8 89.4 80.4 70.4 80.5 79.0

Polarized block 74.8 89.7 81.4 71.1 81.7 79.9

Fig. 7. The convergence of PCM with basic blocks and polarized blocks

In short, the high quality feature maps enable the shifted window self-
attention to locate the keypoints’ scope and then converge more easily as shows
in Fig. 7.

6.3 The Design of Heatmap Generator

According to the evaluation results in Table 5, the spatial HG generally performs
better considering the balance of parameters, FLOPs and prediction accuracy.
The main reason is deconvolution does well in recovering spatial information
which is heatmap prediction needs.

In other words, the spatial positioning bias of the refined HG is smaller than
the linear one, though MLP structure is used more widely in Transformer-related
networks.

Table 5. The comparison of Heatmap Generators

Heatmap Generator #Prams GFLOPs AP AP 50 AP 75 APM APL AR

Linear HG 11.9M 5.3 74.1 91.7 81.4 70.7 80.0 79.2

Spatial HG 11.0M 6.4 74.4 92.0 81.9 71.1 80.2 79.5

7 Conclusion

We design an efficient and effective CNN-Transformer hybrid network, CTH-
Pose, for 2D human pose estimation. This estimator utilizes both visual clues
and long-range spatial dependencies to locate keypoints. It achieves good per-
formance with lightweight architecture and less training cost. On one hand, our
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work has proved that the high quality feature maps CNN extracted are beneficial
to the convergence of subsequent Transformer. On the other, Pyramid Trans-
former Module and Heatmap Generator designed significantly reduce the model
parameters and computing burden while ensuring accuracy.
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Abstract. Transformer-based models have been widely demonstrated
to be successful in computer vision tasks by modeling long-range depen-
dencies and capturing global representations. However, they are often
dominated by features of large patterns leading to the loss of local
details (e.g., boundaries and small objects), which are critical in medi-
cal image segmentation. To alleviate this problem, we propose a Dual-
Aggregation Transformer Network called DuAT, which is character-
ized by two innovative designs, namely, the Global-to-Local Spatial
Aggregation (GLSA) and Selective Boundary Aggregation (SBA)
modules. The GLSA has the ability to aggregate and represent both
global and local spatial features, which are beneficial for locating large
and small objects, respectively. The SBA module aggregates the bound-
ary characteristic from low-level features and semantic information from
high-level features for better-preserving boundary details and locat-
ing the re-calibration objects. Extensive experiments in six benchmark
datasets demonstrate that our proposed model outperforms state-of-the-
art methods in the segmentation of skin lesion images and polyps in
colonoscopy images. In addition, our approach is more robust than exist-
ing methods in various challenging situations, such as small object seg-
mentation and ambiguous object boundaries. The project is available at
https://github.com/Barrett-python/DuAT.

Keywords: Polyp segmentation · Dual decoder · Vision Transformers

1 Introduction

Medical image segmentation is a computer-aided automatic procedure for
extracting the region of interest, e.g., tissues, lesions, and body organs. It can
assist clinicians in improving diagnostic and treatment processes more efficient
and precise. For instance, colonoscopy is the gold standard for detecting col-
orectal lesions, and accurately locating early polyps is crucial for the clinical
prevention of rectal cancer [1]. Likewise, melanoma skin cancer is one of the
most rapidly increasing cancers worldwide. The segmentation of skin lesions
from dermoscopic images is a critical step in skin cancer diagnosis and treatment
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 343–356, 2024.
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planning [2]. However, manually annotating these structures in clinical practice
is impractical due to the tedious, time-consuming, and error-prone nature of the
process.

The advance in deep learning has led to the emergence of numerous deep
convolutional neural networks (DCNNs) [3–5] for medical image segmentation.
However, the limited receptive field of DCNNs poses challenges in effectively cap-
turing global representation. To address this issue, attention models [6–8] have
been developed to enhance the capture of long-range context information. These
alternatives achieve promising results in semantic segmentation. More recently,
Transformer-based methods [9,10] have been proposed and achieved comparable
performance to state-of-the-art results. For instance, Vision Transformer (ViT)
[11] divides images into patches and applies a multi-head self-attention (MHSA)
and the multi-layer perceptron (MLP) structure. However, this approach may
overlook local features, resulting in overly smoothed predictions for small objects
and blurred boundaries between objects.

The challenge lies in developing a model that effectively combines both local
and global features. Researchers have explored solutions such as incorporating
local context in aggregated long-range relationships [12] and hybrid architec-
tures that combine the strengths of transformers and CNNs [13–15]. However,
directly feeding local information into the transformer may not handle local con-
text relationships, resulting in the local information being overwhelmed by the
dominant global context. Ultimately it leads to inferior results in the medical
image segmentation of small objects.

In this paper, we propose a novel approach called Dual-Aggregation Trans-
former Network (DuAT) for medical image segmentation. DuAT incorporates
the Global-to-Local Spatial Aggregation (GLSA) module to combine local and
global features, as well as the Selective Boundary Aggregation (SBA) mod-
ule to enhance the boundary information and improve object localization. Our
approach recognizes the importance of both global and local spatial features,
with the aim of accurately identifying objects of different sizes. By aggregat-
ing boundary information, our model refines object boundaries and recalibrates
coarse predictions. Specifically, the GLSA module is responsible for extracting
and fusing both local and global spatial features from the backbone. We sep-
arate the channels, one for global representation extracted by Global context
(GC) block [16], and the other for local information extracted by multiple depth-
wise convolutions. This separation allows for a comprehensive understanding of
the image at both global and local scales. The SBA module aims to simulate
the biological visual perception process, distinguishing objects from the back-
ground. Specifically, it incorporates shallow- and deep-level features to establish
the relationship between body areas and boundaries, thereby enhancing bound-
ary characteristics.

In summary, the main contributions of this paper are three-fold.

• We propose a novel framework named Dual-Aggregation Transformer Net-
work (DuAT) that leverages the pyramid vision transformer as an encoder.
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This choice enables DuAT to extract more robust features than the existing
CNN-based methods for medical images.

• We propose dual aggregation modules, Global-to-Local Spatial Aggregation
(GLSA) module and Selective Boundary Aggregation (SBA) module. The
GLSA module addresses the challenge of integrating both local spatial detail
information and global spatial semantic information, which reduces incorrect
information in the high-level features. The SBA module focuses on fine-tuning
object boundaries, effectively tackling the issue of the “ambiguous” problem
of boundaries.

• Extensive experiments on five polyp datasets (ETIS [17], CVC-ClinicDB [18],
CVC-ColonDB [19], EndoScene-CVC300 [20], Kvasir [21]), skin lesion dataset
(ISIC-2018 [22]) and 2018 Data Science Bowl [23] demonstrate that the pro-
posed DuAT methods advances the state-of-the-art (SOTA) performance.

2 Related Work

2.1 Vision Transformer

Transformer has dominated the field of NLP with its MHSA layer to capture
the pure attention structure of long-range dependencies. Different from the con-
volutional layer, the MHSA layer has dynamic weight and a global receptive
field, which makes it more flexible and effective. Dosovitskiy et al. propose a
vision transformer (ViT) [11], which is an end-to-end model using the Trans-
former structure for image recognition tasks. In addition, previous work has
proved that the pyramid structure in convolutional networks is also suitable for
Transformer and various downstream tasks, such as PVT [10], TransUNet [13],
Segformer [24], etc. PVT requires less computation than ViT and adopts the
classical Semantic-FPN to deploy the task of semantic segmentation. In medical
image segmentation, TransUNet [13] demonstrates that the Transformer can be
used as powerful encoders for medical image segmentation. TransFuse [25] is pro-
posed to improve efficiency for global context modeling by fusing transformers
and CNNs. Furthermore, to train the model effectively on medical images, Polyp-
PVT [26] introduces Similarity Aggregation Module based on graph convolution
domain. Inspired by these approaches, we propose a new transformer-based med-
ical segmentation framework that can accurately locate small objects.

2.2 Image Boundary Segmentation

Recently, learning additional boundary information has shown superior perfor-
mance in many image segmentation tasks. In the early research on FCN-based
semantic segmentation, Chen et al. [27] uses boundaries for post-starting to
refine the result at the end of the network. Recently, several approaches explicitly
model boundary detection as an independent sub-task in parallel with semantic
segmentation for sharper results. Ma et al. [28] explicitly exploits the boundary
information for context aggregation to further enhance the semantic represen-
tation of the model. Ji et al. [29] fuse the low-level edge-aware features and
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constraint it with explicit edge supervision. Unlike the above works, we propose
a novel aggregation method to achieve more accurate localization and boundary
delineation of objects.

3 Methodology

3.1 Transformer Encoder

Fig. 1. The overall architecture of Dual-Aggregation Transformer Network (DuAT).
The entire model is divided into three parts: (a) pyramid vision transformer (PVT)
as backbone; (b) pyramid Global-to-Local Spatial Aggregation (GLSA) Module; (c)
Selective Boundary Aggregation (SBA) module and it shown on the red box. (Color
figure online)

Some recent studies [24,30] report that vision transformers [10,11] have stronger
performance and robustness to input disturbances (e.g., noise) than CNNs.
Inspired by this, we use the Transformer based on a pyramid structure as the
encoder. Specifically, the pyramid vision transformer (PVT) [10] is utilized as
the encoder module for multi-level feature maps {Fi|i ∈ (1, 2, 3, 4)} extraction.
Among these feature maps, F1 gives detailed boundary information of target,
and F2, F3 and F4 provide high-level features.

3.2 Selective Boundary Aggregation

As observed in [31], shallow- and deep-layer features complement each other.
The shallow layer has less semantics but is rich in details, with more distinct
boundaries and less distortion. Furthermore, the deep level contains rich seman-
tic information. Therefore, directly fusing low-level features with high-level ones
may result in redundancy and inconsistency. To address this, we propose the
SBA module, which selectively aggregates the boundary information and seman-
tic information to depict a more fine-grained contour of objects and the location
of re-calibrated objects.
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Fig. 2. Overview of the Global-to-Local Spatial Aggregation Module GLSA, it is com-
posed of global spatial attention (GSA) and local spatial attention (LSA).

Different from previous fusion methods, we design a novel Re-calibration
attention unit (RAU) block that adaptively picks up mutual representations
from two inputs (F s, F b) before fusion. As given in Fig. 1, the shallow- and deep-
level information is fed into the two RAU blocks in different ways to make up
for the missing spatial boundary information of the high-level semantic features
and the missing semantic information of low-level features. Finally, the outputs
of two RAU blocks are concatenated after a 3 × 3 convolution. This aggregation
strategy realizes the robust combination of different features and refines the
rough features. The RAU block function PAU(·, ·) process can be expressed as:

T ′
1 = Wθ(T1), T ′

2 = Wφ(T2) (1)
PAU(T1, T2) = T ′

1 � T1 + T ′
2 � T2 � (�(T ′

1)) + T1, (2)

where T1, T2 are the input features, two linear mapping and sigmoid functions
Wθ(·), Wφ(·) are applied to the input features to reduce the channel dimension
to 32 and obtain feature maps T ′

1 and T ′
2. � is Point-wise multiplication. �(·) is

the reverse operation by subtracting the feature T ′
1, refining the imprecise and

coarse estimation into an accurate and complete prediction map [3]. We take a
convolutional operation with a kernel size of 1 × 1 as the linear mapping process.
As a result, the process of SBA can be formulated as:

Z = C3×3(Concat(PAU(F s, F b), PAU(F b, F s))), (3)

where C3×3(·) is a 3 × 3 convolution with a batch normalization and a ReLU
activation layer. F s ∈ R

H
8 ×W

8 ×32 contains deep-level semantic information after
fusing the third and fourth layers from the encoder, F b ∈ R

H
4 ×W

4 ×32 is the first
layer with rich boundary details from the backbone. Concat(·) is the concatena-
tion operation along the channel dimension. Z ∈ R

H
4 ×W

4 ×32 is the output of the
SBA module.



348 F. Tang et al.

3.3 Global-to-Local Spatial Aggregation

The attention mechanism strengthens the information related to the optimiza-
tion goal and suppresses irrelevant information. In order to capture both global
and local spatial features, we propose the GLSA module, which fuses the results
of two separate local and global attention units. As demonstrated in Fig. 2,
this dual-stream design effectively preserves both local and non-local modeling
capabilities. Moreover, we use separating channels to balance the accuracy and
computational resources. Specifically, the feature map {Fi|i ∈ (2, 3, 4)} with 64
channels is split evenly into two feature map groups F1

i ,F2
i (i ∈ (2, 3, 4)) and

separately fed into the Global Spatial attention (GSA) module and Local Spa-
tial attention (LSA) module. The outputs of those two attention units are finally
concatenated, followed by a 1 × 1 convolution layer. We formulate such a process
as

F1
i ,F2

i = Split(Fi) (4)

F ′
i = C1×1(Concat(Gsa(F1

i ), Lsa(F2
i ))). (5)

where Gsa denotes the global spatial attention and Lsa denotes the local spatial
attention. F ′

i ∈ R
H
8 ×W

8 ×32 is the output features. We will introduce LSA and
GSA module in detail in the following.

(1) GSA module: The GSA emphasizes the long-range relationship of each
pixel in the spatial space and can be used as a supplement to local spatial atten-
tion. Many efforts [16,32] claim that the long-range interaction can make the
feature more powerful. Inspired by the manners of extracting long-range interac-
tion in [32], we simply generate global spatial attention map (Gsa ∈ R

H
8 ×W

8 ×32)
and F1

i as input as following:

AttG(F1
i ) = Softmax(Transpose(C1×1(F1

i ))), (6)

Gsa(F1
i ) = MLP (AttG(F1

i ) ⊗ F1
i ) + F1

i . (7)

where AttG(·) is the attention operation, C1×1 means 1 × 1 convolution. ⊗
denotes matrix multiplication. MLP (·) consists of two fully-connection layers
with a ReLU non-linearity and normalization layer. The first layer of MLP trans-
forms its input to a higher-dimensional space which the expansion ratio is two,
while the second layer restores the dimension to be the same as the input.

(2) LSA module: The LSA module extracts the local features of the region
of interest effectively in the spatial dimension of the given feature map, such
as small objects. In short, we compute local spatial attention response (Lsa ∈
R

H
8 ×W

8 ×32) and F2
i as input as follow:

AttL(F2
i ) = σ(C1×1(Fc(F2

i )) + F2
i )), (8)

Lsa = AttL(F2
i ) � F2

i + F2
i . (9)

where Fc(·) denotes cascading three 1 × 1 convolution layers and 3 × 3 depth-
wise convolution layers. The number of channels is adjusted to 32 in the Fc.
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AttL(·) is the local attention operation, σ(·) is the sigmoid function, � is point-
wise multiplication. This structural design can efficiently aggregate local spatial
information using fewer parameters.

3.4 Loss Function

[33] reports that combining multiple loss functions with adaptive weights at
different levels can improve the performance of the network with better con-
vergence speed. Therefore, we use binary cross-entropy loss (Lω

BCE(·)) and the
weighted IoU loss ( Lω

Iou(·)) for supervision. Our loss function is formulated in
Eq. 10, where S is the two side-outputs (i, e., S1, S2) and G is the ground truth,
respectively. λ1 and λ2 are the weighting coefficients.

L(S,G) = λ1Lω
IoU (S,G) + λ2Lω

BCE(S,G) (10)

Therefore, the total loss Ltotal for the proposed DuAT can be formulated as:

Ltotal = L(S1, G) + L(S2, G). (11)

4 Experiments

4.1 Datasets

In the experiment, we evaluate our proposed model on three different kinds of
medical image sets: colonoscopy images, dermoscopic images, and microscopy
images, so as to assess the learning ability and generalization capability of our
model.

Colonoscopy Polyp Images: Experiments are conducted on five polyp seg-
mentation datasets (ETIS [17], CVC-ClinicDB (ClinicDB) [18], CVC-ColonDB
(ColonDB) [19], EndoScene-CVC300 (EndoScene) [20], Kvasir-SEG (Kvasir)
[21]). We follow the same training/testing protocols in [3,26], i.e., the images
from the Kvasir and ClinicDB are randomly split into 80% for training, 10% for
validation, and 10% for testing (seen data). And test on the out-of-distribution
datasets, which are ColonDB, EndoScene, and ETIS (unseen data).

ISIC-2018 Dataset: The dataset comes from ISIC-2018 challenge [22] [34] and
is useful for skin lesion analysis. It includes 2596 images and the corresponding
annotations, which are resized to 512×384 resolution. The images are randomly
split into 80% for training, 10% for validation, and 10% for testing.

2018 Data Science Bowl (2018-DSB): The dataset comes from 2018 Data
Science Bowl challenge [23] and is used to find the nuclei in divergent images,
including 670 images and the corresponding annotations, which are resized to
256 × 256 resolution.
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4.2 Evaluation Metrics and Implementation Details

Evaluation Metrics. We employ three widely-used metrics i.e., mean Dice
(mDice), mean IoU (mIoU), and mean absolute error (MAE), to evaluate the
model performances. Mean Dice and IoU are the most commonly used met-
rics and mainly emphasize the internal consistency of segmentation results.
MAE evaluates the pixel-level accuracy representing the average absolute error
between the prediction and true values.

Implementation Details. We use rotation and horizontal flip for data aug-
mentation. Considering the differences in the sizes and color of each polyp image,
we adopt a multi-scale training [3,35] and the color exchange [36]. The network
is trained end-to-end by AdamW [37] optimizer. The learning rate is set to 1e-4
and the weight decay is adjusted to 1e-4 too. The batch size is set at 16. We use
the PyTorch framework for implementation with an NVIDIA RTX 3090 GPU.
We will provide the source code after the paper is published.

4.3 Results

Learning Ability. We first evaluate our proposed DuAT model for its segmen-
tation performance on seen datasets. As summarized in Table 1, our model is
compared to six recently published models: U-Net [4], UNet++ [38], PraNet [3],
CaraNet [39], TransUNet [13], TransFuse [25], UCTransNet [40] and Polyp-PVT
[26]. It can be observed that our DuAT model outperforms all other models,
and achieving 0.924 and 0.948 mean Dice scores on Kvasir and ClinicDB seg-
mentation respectively. For the ISIC dataset, our DuAT model achieves a 1.0%
improvement in terms of mDice and 1.5% of mIoU over SOTA method. For
2018-DSB, DuAT achieves a mIoU of 0.87, mDice of 0.926 and 0.027 of MAE,
which are 1.1%, 1.0%, 0.03% higher than the best performing Polyp-PVT. These
results demonstrate that our model can effectively segment polyps.

Generalization Capabilities. We further evaluate the generalization capabil-
ity of our model on unseen datasets (ETIS, ColonDB, EndoScene). These three
datasets have their own specific challenges and properties. For example, ColonDB
is a small-scale database that contains 380 images from 15 short colonoscopy
sequences. ETIS consists of 196 polyp images for early diagnosis of colorectal
cancer. EndoScene is a re-annotated branch with an associated polyp and back-
ground (mucosa and lumen). As seen in Table 2, our model outperforms the
existing medical segmentation baselines on all unseen datasets for all metrics.
Moreover, our DuAT is able to achieve an average dice of 82.2 % on the most
challenging ETIS dataset, 3.5% higher than Polyp-PVT.

Visual Results. We also demonstrate qualitatively the performance of our
model on five benchmarks, as given in Fig. 3. On ETIS (the first and second row),
DuAT is able to accurately capture the target object’s boundary and detect a
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Fig. 3. Qualitative results of different methods. (a) Inputs images, (b) GT, which
stands for the ground truths, (c) U-Net [4], (d) U-Net++ [5], (e) PraNet [3], (f) Tran-
sUnet [13], (g) Polyp-PVT [26], (h) Our method (DuAT).

Fig. 4. Performance vs. Size on the five polyp datasets. The x-axis is the proportion
size % of the polyp and the y-axis is the averaged mDice coefficient. Blue is for our
DuAT, orange is for the Polyp-PVT, and green is for the TransUnet. (Color figure
online)

small polyp while other methods fail to detect it. On ISIC-2018 (third row), all
methods are able to segment the lesion skin, but our method shows the most
similar results compared to the ground truth. On 2018-DSB (the fourth row),
we can observe that our DuAT can better capture the presence of nuclei and
obtain better segmentation predictions. More qualitative results can be found in
the supplementary material.

Small Object Segmentation Analysis. To demonstrate the detection ability
of our model for small objects, the ratio of the number of pixels in the object
to the number of pixels in the entire image is used to account for the size of the
object. We then evaluate the performance of the segmentation model based on
the size of the object. We set the area with a proportion less than 5%. For the
segmentation model, we first obtain the mean Dice coefficient of the five polyp
datasets. Similar to computing the histogram, we calculate the average mean
Dice of test data whose size values fall into each interval. For the small object
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Table 1. Quantitative comparison of different methods on Kvasir, ClinicDB, ISIC-
2018, and 2018-DSB datasets (seen datasets) to validate our model’s learning ability.
↑ denotes higher the better and ↓ denotes lower the better.

Methods Kvasir ClinicDB ISIC-2018 2018-DSB

mDice↑ mIou↑ MAE↓ mDice↑ mIou↑ MAE↓ mDice↑ mIou↑ MAE↓ mDice↑ mIou↑ MAE↓
U-Net [4] 0.818 0.746 0.055 0.823 0.755 0.019 0.855 0.785 0.045 0.908 0.831 0.040

UNet++ [38] 0.821 0.743 0.048 0.794 0.729 0.022 0.809 0.729 0.041 0.911 0.837 0.039

PraNet [3] 0.898 0.840 0.030 0.899 0.849 0.009 0.875 0.787 0.037 0.912 0.838 0.036

CaraNet [39] 0.918 0.865 0.023 0.936 0.887 0.007 0.870 0.782 0.038 0.910 0.835 0.037

TransUNet [13] 0.913 0.857 0.028 0.935 0.887 0.008 0.880 0.809 0.036 0.915 0.845 0.033

TransFuse [25] 0.920 0.870 0.023 0.942 0.897 0.007 0.901 0.840 0.035 0.916 0.855 0.033

UCTransNet [40] 0.918 0.860 0.023 0.933 0.860 0.008 0.905 0.83 0.035 0.911 0.835 0.035

Polyp-PVT [26] 0.917 0.864 0.023 0.937 0.889 0.006 0.913 0.852 0.032 0.917 0.859 0.030

DuAT (Ours) 0.924 0.876 0.023 0.948 0.906 0.006 0.923 0.867 0.029 0.926 0.870 0.027

Table 2. Quantitative comparison of different methods on ColonDB, ETIS, and
EndoScene datasets (unseen datasets) to validate the generalization capability of our
model.

Methods ColonDB ETIS EndoScene

mDice↑ mIou↑ MAE↓ mDice↑ mIou↑ MAE↓ mDice↑ mIou↑ MAE↓
U-Net [4] 0.512 0.444 0.061 0.398 0.335 0.036 0.710 0.627 0.022

UNet++ [38] 0.483 0.410 0.064 0.401 0.344 0.035 0.707 0.624 0.018

PraNet [3] 0.712 0.640 0.043 0.628 0.567 0.031 0.851 0.797 0.010

CaraNet [39] 0.773 0.689 0.042 0.747 0.672 0.017 0.903 0.838 0.007

TransUNet [13] 0.781 0.699 0.036 0.731 0.824 0.021 0.893 0.660 0.009

TransFuse [25] 0.781 0.706 0.035 0.737 0.826 0.020 0.894 0.654 0.009

SSformer [15] 0.772 0.697 0.036 0.767 0.698 0.016 0.887 0.821 0.007

Polyp-PVT [26] 0.808 0.727 0.031 0.787 0.706 0.013 0.900 0.833 0.007

DuAT (Ours) 0.819 0.737 0.026 0.822 0.746 0.013 0.901 0.840 0.005

segmentation analysis, we compare our DuAT with Polyp-PVT and TransUnet,
and the results are given in Fig. 4. The overall accuracy of DuAT is higher than
TransUnet [13] and Polyp-PVT [10] on samples with small size polyps.

4.4 Ablation Study

We further conduct ablation study to demonstrate the necessity and effectiveness
of each component of our proposed model on three datasets.

Effectiveness of SBA and GLSA. We conduct an experiment to evaluate
DuAT without SBA module “(w/o SBA)”. The performance without the SBA
drops sharply on all three datasets are shown in Table 3. In particular, the mDice
is reduced from 0.822 to 0.814 on ETIS. Moreover, we further investigate the
contribution of the Global-to-Local Spatial Aggregation by removing it from
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Table 3. Ablation study for DuAT on the Kvasir, ETIS, and ISIC-2018 datasets.

Methods Kvasir-SEG (seen) ETIS (unseen) ISIC-2018 (seen)

mDice↑ mIou↑ MAE↓ mDice↑ mIou↑ MAE↓ mDice↑ mIou↑ MAE↓
Baseline 0.910 0.856 0.030 0.759 0.668 0.035 0.877 0.783 0.040

+ GSA 0.912 0.860 0.029 0.772 0.675 0.030 0.887 0.803 0.038

+ LSA 0.916 0.863 0.028 0.785 0.690 0.027 0.900 0.839 0.035

+ GSA + LSA (Serial) 0.914 0.863 0.028 0.786 0.695 0.025 0.909 0.845 0.034

+ LSA + GSA (Serial) 0.910 0.860 0.029 0.799 0.713 0.021 0.910 0.852 0.033

+GLSA 0.917 0.864 0.025 0.814 0.723 0.016 0.916 0.816 0.031

w/o SBA 0.917 0.864 0.025 0.814 0.723 0.016 0.916 0.816 0.031

w/o GLSA 0.915 0.863 0.026 0.790 0.696 0.023 0.901 0.800 0.033

SBA + GLSA (Ours) 0.924 0.876 0.023 0.822 0.746 0.013 0.923 0.867 0.029

the overall DuAT and replacing it with a convolution operation with a kernel
size of 3, which is denoted as “(w/o GLSA)”. The performance of the complete
DuAT shows an improvement of 2.2 % and 6.7% in terms of mDice and mIoU,
respectively, on ISIC-2018. After using the two modules (SBA + GLSA), the
model’s performance is improved again. These results demonstrate that these
modules enable our model to distinguish polyp and lesion tissues effectively.

Arrangements of GSA and LSA. GSA and LSA represent the global spatial
attention module and local spatial attention module, respectively. We further
study the effectiveness and different arrangements of GSA and LSA. The results
tested on Kavsir, ETIS, and ISIC-2018 datasets are shown in Table 3 (the sec-
ond and sixth row), and all the methods are using the same backbone PVTv2
[10]. GSA + LSA(Serial) means first performing GSA then LSA, while LSA +
GSA(Serial) is the opposite. Overall, all improve the baseline, and our GLSA
group achieves more accurate and reliable results. The GLSA module outper-
forms the GSA, LSA, GSA + LSA (Serial), LSA + GSA (Serial) by 4.2%, 2.9%,
2.8%, 1.5% in term of mean Dice on the ETIS dataset.

5 Conclusions

In this work, we propose DuAT address the issues related to medical image seg-
mentation. Two components, the Global-to-Local Spatial Aggregation (GLSA)
and Selective Boundary Aggregation (SBA) modules are proposed. Specifically,
the GLSA module extracts the global and local spatial features from the encoder
and is beneficial for locating the large and small objects. The SBA module alle-
viates the unclear boundary of high-level features and further improves its per-
formance. As a result, DuAT can achieve strong learning, generalization ability,
and lightweight segmentation efficiency. Both qualitative and quantitative results
demonstrate the superiority of our DuAT over other competing methods.
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Abstract. Semantic segmentation of 3D medical images plays an impor-
tant role in assisting physicians in diagnosing and successively studying
the progression of the disease. In recent years, transformer-based models
have achieved state-of-the-art performances on several 3D medical image
segmentation tasks. However, these methods still suffer from huge model
sizes and high complexity. On the other hand, large-kernel depth-wise
convolution networks have shown great potential to encode contextual
information more efficiently and effectively than transformer-based net-
works in natural image segmentation tasks. Inspired by the success of
large-kernel depth-wise convolution networks and their variants, we pro-
pose a multi-scale lightweight depth-wise convolution network termed
MS UX-Net, a U-shaped network mainly composed of convolution oper-
ations with different kernel sizes. Specifically, we design a multi-scale
feature extraction module for feature encoding, which extracts features
into four different scales and learns special features of different scales
effectively. Furthermore, we adopt multi-scale depth-wise convolution
rather than single-scale standard convolution during the decoding stages,
which yields a notable reduction in both the number of model parameters
and the computational complexity. The competitive results on two pub-
lic FLARE2021 and Synapse datasets and a private Pancreatic tumor
dataset demonstrate the effectiveness of our method.

Keywords: Multi-scale · Depth-wise convolution · Medical image
segmentation

1 Introduction

Over the past few years, Vision Transformers (ViT)s [11] have achieved state-of-
the-art(SOTA) performance in various medical image analysis tasks [8,21,31],
especially for medical image segmentation benchmarks [3,5,13,14,18,37]. Differ-
ent from traditional Convolutional Neural Networks (CNN)s, the self-attention
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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mechanism in ViTs is able to compute pair-wise relations between patches over
the whole image by treating an image as a collection of spatial patches, thus
achieving a large receptive field and modeling long-range dependencies directly,
which is considered as the key to effectively extracting image features [29]. How-
ever, Computational complexity that grows quadratically with input size limits
the application of pure non-local self-attention models(e.g. ViT) in 3D data sce-
narios. Although some adoptations were proposed to reduce the operation scopes
of self-attention, these methods still suffer from large model capacity and high
complexity [13,14,37].

Recently, depth-wise convolution with large kernel (starting from 7 × 7) has
been proven to be more powerful than Swin transformer with lower computa-
tion complexity and smaller model capacity [10,25]. These studies provide a
new direction for designing 3D convolution on volumetric high-resolution tasks.
Lee et al. have made the first attempt to adopt volumetric depth-wise convolu-
tions with large kernel sizes to simulate the operation of large receptive fields
for generating self-attention in Swin transformer, called 3D UX-Net [23]. The
good performance of 3D UX-Net demonstrates the great potential of large ker-
nel volumetric depth-wise convolution on extracting features with lower parame-
ters. However, it still has the following darwbacks:1)Both depth-wise convolution
and point-wise depth convolution scaling extract channel-wise features indepen-
dently in 3D UX-Net encoder. The lack of cross-channel feature fusion limits
model performance.2)Despite having fewer parameters, the up-sampling stages
of 3D UX-Net produce a larger feature resolution (almost twice that of Swi-
nUNETR), which results in a notable increase in FLOPs and correspondingly
reduces efficiency during both training and inference.

To further explore the potential of large kernel volumetric depth-wise con-
volution and address the drawbacks of 3D UX-Net, we propose a Multi-scale
lightweight depth-wise convolution network MS UX-Net. In our MS UX-Net, we
introduce two types of blocks for encoder and decoder. First, the multi-scale
depth-wise convolution block(MS-DWC) in the encoder employs four convolu-
tion layers simultaneously, each with distinct kernel sizes, to extract input image
features at various scales. Subsequently, these features are combined through
two point-wise convolution layers to facilitate cross-channel interaction and
strengthen their collective representation. Second, the decoder block, which is
connected to the corresponding encoder at different resolutions via skip connec-
tions, is generally composed of an attention gate and a MS-DWC block. Adopting
the depth-wise convolution-based MS-DWC module for decoding, rather than a
standard convolution-based residual block, significantly reduces the number of
model parameters and computational complexity while preserving its high per-
formance standards. Furthermore, inspired by [30], we utilize a linear layer to
further assign suitable weights to the features from different levels, generating
the final feature for segmentation.

The main contributions of this work are 1) We revisit the design of con-
volution network with large kernel size in a volumetric setting and present a
multi-scale depth-wise convolutional architecture that effectively captures spatial
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information across diverse scales, which is of significance in image segmentation.
2) We design the MS-DWC block and adopt it in both encoder and decoder,
which reduces both model parameters and complexity, especially in the decoding
stages. To our best knowledge, this is the first multi-scale depth-wise convolu-
tion block design in decoder.3) we propose a linear weighting module to fuse
these features. The ablation experiment demonstrates that adding this mod-
ule incurs only minimal additional overhead, while significantly improving both
convergence speed and overall performance.

2 Related Work

2.1 Depth-Wise Convolution Based Methods

The depth-wise separable convolutions were initially introduced in [32]
and subsequently used in Inception models [19], Xception network [6] and
MobileNet [15]. Following these, a number of methods based on depth-wise
convolution were developed. For instance, 3D U2Net utilizes deep-wise convo-
lution to process datasets into multi-domain to extract common and specific
features [17]. Alalwan et al. replace the standard convolution by the depth-
wise convolution to decrease the memory consumption and computation cost [1].
Sharp U-Net introduces depthwise convolution to address the semantic gap issue
between the encoder and decoder features in a UNet-like architecture [38]. How-
ever, limited studies have performed large-kernel in depth-wise convolution until
ConvNeXt [26] was proposed. RepLKNet [9] and SLaK [25] further expand the
kernel size to 31×31 and 51×51. LKAU-Net [24] adopts dilated depth-wise con-
volution in decoder to capture long-range relationships.3D UX-Net [23] leverage
depth-wise convolution with 7×7×7 kernel size in a volumetric setting for robust
volumetric segmentation. Different from LKAU-Net [24] and UX-Net [23], our
method adopt depth-wise convolution not only in encoder but also in decoder,
these enable our model to achieve higher performance than the aforementioned
methods.

2.2 Multi-scale Networks

It is commonplace to develop multi-scale networks in the field of computer
vision and multi-scale interaction has been proven to be a key component for
improving segmentation models’ performance [12]. For medical image segmen-
tation, multi-scale block appears in encoder, skip-connection and decoder. Md-
Net [35] introduced multi-scale dilated convolution layer in encoder to facili-
tate CT image segmentation. DSM [36] proposed multi-scale connection block
in the skip-connection to provide more spatial information to the decoder lay-
ers. MC-Unet [16] replaced the second convolution in standard U-Net with a
multi-scale convolution block to process the image features at different scales.
However, limited studies have been proposed to efficiently leverage depth-wise
convolution with multi-scale in a volumetric setting, we believe that depth-wise



360 M. Zhang et al.

Fig. 1. Overall architecture of our MS UX-Net network. The input 3D scans are first
projected into patch-wise embeddings through a patch embedding layer and then pass
through four encoding stages. The encoded feature representations in each stage are fed
to a decoder block via skip-connection at multiple resolutions. The final segmentation
mask is obtained from the linear concatenation of features from different levels.

convolution has untapped potential that warrants further study. In this paper,
we summarize the characteristics of those successful models designed for medical
image segmentation and present a depth-wise convolution-based model, named
MS UX-Net, a lightweight network for robust volumetric segmentation.

3 Method

3.1 The Overall Architecture

Our proposed MS UX-Net model is illustrated in Fig. 1, which is a hierarchical
U-shaped architecture and mainly consists of two parts, i.e., the encoder and
decoder. Specifically, the encoder involves one embedding layer, four MS-UX
blocks (each block contains several successive layers) and three down-sampling
layers. Symmetrically, the decoder branch includes three decoder blocks, three
up-sampling layers, and the last segmentation head layer for making mask predic-
tions. Inspired by [30], we develop an attention gate to focus more on fine-grained
details from encoded features via skip-connections between corresponding fea-
ture pyramids of the encoder and decoder.

3.2 Patch Embedding

The input of MS UX-Net is a 3D patch z ∈ RH×W×D (usually randomly cropped
from the original image), where H, W and D denote the height, width and depth
of each input scan respectively. Similar to common medical image segmentation
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Fig. 2. The architecture of proposed MS-UX block and Decoder block. Here, DWC
means depth-wise convolution. ⊕ means element-wise addition, � means hadamard
product.

networks in computer vision, the input 3D scan is first processed by a patch
embedding layer. Different from 3D UX-Net [23] that leverages a large kernel
convolution layer to extract features and ViT [11] that flattens image patches as a
sequential input with linear layer, we adopt a 2×2×2 standard convolution layer
with 2 × 2 × 2 stride to compute partitioned feature map with size H

2 × W
2 × D

2
that is projected into C channel dimensions (denoted by zem). Note that the
embedding feature zem do not need to be reorganized into a sequence of size(
H
2 × W

2 × D
2

) × C. Here we do this for two reasons, i.e., 1) Convolution layer
encodes pixel-level spatial information more precisely than patch-wise positional
encoding used in transformers. 2) compared to large-sized kernel, small kernel
size helps reduce computational complexity.

3.3 MS-UX Block

After the embedding layer, zem is fed into a MS-UX block. The main purpose
behind is to fully capture long-term and short-term dependencies from features
yielded by the initial embedding layer and down-sampling layers via performing
convolution operations with various kernel sizes simultaneously. As shown in
Fig. 2(a), a MS-UX block is composed of a LayerNorm layer [2], a MS-DWC
block, another LayerNorm layer and a MLP layer with two residual connections
to prevent gradient vanishing [33]. In MS-DWC block, there are four branches
to capture multi-scale context, followed by two point-wise convolutions to model
relationships between different channels and different scales. Here, the kernel size
for each branch is set to 1, 3, 5 and 7, respectively. With these components, the
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computational procedure can be formally defined as:

ẑl = MS-DWC(
(
LN

(
zl−1

))
+ zl−1

zl = MLP
(
LN

(
ẑl

))
+ ẑl

ẑl+1 = MS-DWC
(
LN

(
zl−1

))
+ zl−1

zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1

(1)

where zldenotes the output of lth layer, ẑl denotes as the output of MS-DWC
block. LN and MLP denote the layer normalization and the multilayer percep-
tron, respectively.

Stacking a sequence of MS-UX blocks yields the primary component of the
encoder. Motivated by UX-Net [23] and SwinUNETR [13], the complete archi-
tecture of the encoder consists of 4 stages with decreasing spatial resolutions.
On FLARE2021, the resolutions are set to H

2 × W
2 × D

2 , H
4 × W

4 × D
4 , H

8 × W
8 × D

8 ,
H
16 × W

16 × D
16 respectively. Note that depending on different datasets, these may

accordingly vary in practice. In each stage, we adopt a patch merging operation
followed by a linear projection as a down-sample layer to downscale the feature
resolution by a factor of 2. We opt for patch merging rather than a convolutional
layer, as it is better suited for MLP and no need for feature rearrangement(see
Fig. 1)

3.4 Decoder

The architecture of three decoder blocks in the decoder is highly symmetrical to
those in the encoder. As shown in Fig. 2(b), in each decoder block, we adopt an
Attention Gate to reweigh the up-sampling features with output features from
the corresponding encoder, which helps to better capture both semantic and fine-
grained information. Subsequently, the reweigh features are fed into a 3 × 3 × 3
convolution layer followed by a MS-DWC block for further spatial information
integration. There are two advantages of using multi-scale depth convolution
block rather than residual block in decoder stage. First, It better captures both
semantic and fine-grained information. Second, It helps reduce the number of
model parameters by a large margin.

Between every two decoder blocks, a transpose convolution layer is adopted
to recover image resolution. Finally, the output features of each decoder block
are fed into a 1 × 1 × 1 convolution layer and then up-sampled to the original
resolution via the nearest neighbor interpolation layer. We also concatenate all
these features together and input the features into a linear weighting layer fol-
lowed by a 3 × 3 × 3 convolution layer to predict the segmentation mask.(See
Fig. 1). The reasons why we choose the nearest neighbor interpolation for up-
sampling are two-fold. First, Nearest neighbor interpolation is able to preserve
the information of a specific level more effectively. Second, compared to other
up-sampling methods, it requires almost no additional computational overhead.
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Table 1. Comparison of previous SOTA approaches on the FLARE 2021 dataset.

Methods Spleen Kidney Liver Pancreas Mean

3D U-Net [7] 0.911 0.962 0.905 0.789 0.892

nn-UNet [20] 0.971 0.966 0.976 0.792 0.926

TransBTS [34] 0.964 0.959 0.974 0.711 0.902

UNETR [14] 0.927 0.947 0.960 0.710 0.886

nnFormer [37] 0.973 0.960 0.975 0.717 0.906

SwinUNETR [13] 0.979 0.965 0.980 0.788 0.929

3D UX-Net [23] 0.981 0.969 0.982 0.801 0.934

Ours 0.980 0.964 0.979 0.821 0.936

4 Experiments

4.1 Datasets

FLARE2021 Dataset. This dataset includes 361 cases of abdominal CT scans.
Following the split used in [23], we perform five-fold cross-validations with 80%
(train)/ 10% (validation)/ 10% (test) split. The average dice similarity coefficient
(DSC) is used as the measure for evaluating the segmentation performances of
the four target organs, including Spleen, Kidney, Liver, and Pancreas.

Synapse Dataset. This dataset includes 30 axial contrast-enhanced abdomi-
nal CT scans. Following the training-test split in [5], 18 of the 30 scans are used
for training and the remaining ones are for testing. We report the model perfor-
mance evaluated with DSC score on 8 abdominal organs, which are aorta(Aor),
gallbladder(Gal), spleen(Spl), left kidney(LKid), right kidney(RKid), liver(Liv),
pancreas(Pan) and stomach(Sto).

PDAC Dataset. This dataset contains 150 CT cases with the pancreatic tumor
annotation. We use this dataset to test the ability of segment small size target of
our method. And we use the split of 70% (train)/ 10% (validation)/ 20% (test)
and report the DSC score on tumor segmentation for comparison.
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Table 2. Comparison of previous SOTA approaches on the Synapse dataset.

Methods Aor Gal LKid RKid Liv Pan Spl Sto Mean

ViTCUP [5] 0.702 0.451 0.747 0.674 0.913 0.420 0.818 0.704 0.679

TransUNet [5] 0.872 0.632 0.819 0.770 0.941 0.559 0.851 0.756 0.775

Swin-UNet [3] 0.855 0.665 0.833 0.796 0.943 0.566 0.907 0.766 0.791

UNETR [14] 0.900 0.606 0.857 0.848 0.945 0.593 0.878 0.740 0.796

MISSFormer [18] 0.870 0.687 0.852 0.820 0.944 0.657 0.919 0.808 0.820

SwinUNETR [13] 0.911 0.665 0.870 0.863 0.957 0.688 0.954 0.770 0.835

nnFormer [37] 0.920 0.702 0.866 0.863 0.968 0.834 0.905 0.868 0.866

Ours 0.922 0.718 0.873 0.897 0.965 0.811 0.929 0.854 0.871

Table 3. Comparison of previous SOTA approaches on the PDAC dataset.

Methods DSC

UNETR [14] 0.444

3D UX-Net [23] 0.598

SwinUNETR [13] 0.617

nnFormer [37] 0.629

Ours 0.679

4.2 Implementation Details

To perform fair comparison, we conduct our MS UX-Net in two different environ-
ments. For the FLARE 2021 dataset, we implement it on pytorch 1.13.0, using
the architecture of MONAI [4]. Following [23], we take AdamW [27] as the opti-
mizer with an initial learning rate 0.0001 and train our model for 40000 iterations
with batch size 2. For the Synapse dataset and PDAC dataset, we implement it
on pytorch 1.8.1, using the architecture of nnUNet [20]. Following [37], we set
the batch equal to 2 and train our model for 1000 epochs with 250 iterations
for each epoch. Basic data augmentation techniques such as intensity shifting,
rotation, and scaling are implemented in all experiments.

Table 4. Comparison of the numbers of parameters and FLOPs, the FLOPs are com-
puted with the input image size of 96 × 96 × 96.

Methods #Params FLOPs Methods #Params FLOPs

3D U-Net 4.81M 135.9G nnFormer 149.3M 240.2G

nn-UNet 31.2M 743.3G SwinUNETR 62.2M 328.4G

TransBTS 31.6M 110.4G 3D UX-Net 53.0M 639.4G

UNETR 92.8M 82.6G Ours 43.6M 153.0G
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Fig. 3. Qualitative representations of multi-organ segmentation on FLARE2021
dataset. Our method shows the best segmentation quality compared to the ground-
truth.

4.3 Quantitative Results

We compare our model with several previous convolution-based and transformer-
based SOTA methods, including 3D U-Net [7], 3D UX-Net [23], nnFormer [37],
SwinUNETR [13] and so on. As shown in Table 1 2 3, our method obtains excel-
lent performance on each task and outperforms all the previous work. These
results show that our method performs better in multi-scale segmentation. We
visualize some segmentation results of mentioned method in Fig. 3, demonstrat-
ing the quality improvement in segmentation with MS UX-Net. More detail and
visualizations of this dataset will be presented in the supplementary material.

In Table 4, we report the numbers of parameters and floating point operations
(FLOPs) of our proposed method and several previous methods. It’s clear that
compared with SwinUNETR [13] and 3D UX-Net [23], our method has a lower
computational cost(one-half of SwinUNETR and one-quarter of 3D UX-Net)
and fewer model parameters while gains better performance (See Table 1)

Table 5. Ablation study of proposed modules.

Base LinearWeight AttenGate Multi-scale DSC

� � � � 0.928

� � � � 0.930

� � � � 0.932

� � � � 0.936

Table 6. Ablation study of different sizes of our method. C denotes the embedding
dim and L denotes the network depth of each stage.

Methods Setting #Params FLOPs DSC

MS UX-Net-S C=48,L=[3,3,12,3] 33.1M 104.2G 0.931

MS UX-Net-B C=64,L=[3,3,5,3] 43.6M 153.0G 0.936

MS UX-Net-L C=72,L=[3,3,8,3] 62.2M 203.9G 0.942
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4.4 Ablation Studies

We conduct ablation studies on the FLARE2021 dataset to evaluate the effec-
tiveness of our model design.

Effect of Proposed Module. To better investigate the effectiveness of our
proposed module (e.g. linear weighting module, Attention Gate module, MS-
DWC module), we first build a basic model without using the module above.
Specifically, we remove the attention gate and linear weighting modules from the
original architecture and replace the MS-DWC by using only one branch with
kernel size t × 7 × 7. Then we add modules one by one to build the model for
comparison. As we can see from Table 5, each module contributes to the final
performance.

The Sizes of Different Architecture Variants. To further explore the per-
formance with different encoder sizes, we develop three encoder models with
different sizes named MS UX-Net-S, MS UX-Net-B and MS UX-Net-L. Detailed
network settings are displayed in Table 6. By examining the table, we can observe
that the performance improves as the network becomes deeper, but the number
of parameters and FLOPs also increase accordingly.

5 Conclusions

In this paper, we revisit the design of convolution network with large kernel size
in a volumetric setting and present the MS UX-Net for medical image segmenta-
tion. We propose a multi-scale features extraction block to model different scale
information and adopt it in the decoder to reduce both the number of parame-
ters and FLOPs. MS UX-Net outperforms previous SOTA methods with lower
complexity and fewer parameters.
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Abstract. Industrial anomaly detection involves the identification and
localization of abnormal regions in images, of which the core challenge is
modeling normal data in appropriate ways. Inspired by dictionary learn-
ing, we propose a convolutional sparse reconstructive noise-robust frame-
work, named AnoCSR. The proposed convolutional sparse encoding
block (CSE-Block) in AnoCSR treats the convolutional dictionary as
learnable parameters, where the convolutional kernels serve as the atoms.
By training on normal samples, we optimize the parameters of the CSE-
Block to extract optimal sparse codes. The CSE-Block stacks to form a
convolutional sparse reconstructive network (CSR-Net) to progressively
extract the sparse code and reconstruct the input image inversely. This
enables effective reconstruction of normal samples while inadequately
reconstructing abnormal regions, thereby facilitating anomaly detection
and localization. The CSR-Net is parallelly connected with the down-
stream Localizer, forming an end-to-end framework. Our experimental
results demonstrate that AnoCSR achieves performance comparable to
state-of-the-art image reconstruction-based methods on the MVTecAD
dataset. Moreover, considering that noise may affect the modeling of nor-
mal data and the discrimination of anomalies, we conduct the simulated
noise resistance experiment. The result demonstrates that AnoCSR sig-
nificantly outperforms other similar methods, indicating its strong noise
robustness in addition to its outstanding performance.

Keywords: Anomaly Detection · Sparse Code · Dictionary Learning

1 Introduction

Industrial anomaly detection involves the identification and localization of abnor-
mal regions in images, which poses a significant challenge as anomalous regions
often constitute only a small fraction of the total pixels in an image. Meanwhile,
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as the anomalies are rare events, it is hard to directly train a classifier or model
anomalous samples, as anomalous regions often exhibit unexpected textures or
structures. As a result, how to model the normal samples becomes crucial.

AutoEncoder (AE) is a commonly used model structure in image
reconstruction-based methods. Vanilla AE was initially used in brain MRI image
segmentation [1]. However, the traditional AE-based methods [6,21] have not
addressed a crucial problem: when the representation capability of AE becomes
too strong, a “short-cut” issue may arise. This occurs because the AE overly
generalizes and accurately reconstructs anomalous regions in the output image,
as illustrated in Fig. 1. Therefore, effectively learning the primary features of
normal samples remains the key to solving this problem. In addition to AE, dic-
tionary learning methods have also been effective in the field of image restora-
tion [24]. Recently, Xili Dai et al. [13] introduced differentiable optimization
layers (CSC-Layer) defined from convolutional sparse coding, where the dictio-
nary is treated as parameters of the neural network. This approach achieves
faster convergence and the ability to reconstruct images compared to previous
work [4]. However, their work has only been validated in image classification
tasks, demonstrating performance and robustness surpassing traditional CNNs,
without extension to other domains. Motivated by this and the goal of better
capturing the features of normal samples, we propose the CSE-Block and extend
it to the task of anomaly detection.

In recent years, most anomaly detection methods have used the MVTecAD
dataset [3] as a benchmark and achieved excellent performance. However, we
observed that the MVTecAD dataset has limited natural noise in both its train-
ing and test sets. In real industrial environments, noise is often present in cap-
tured images due to poor lighting conditions, suboptimal camera performance,
or limitations of the imaging devices themselves. Therefore, we explored and
compared the performance of recent state-of-the-art reconstruction-based meth-
ods under different simulated noise environments. The followings are the main
contributions of this paper:

– We utilize the CSC-Layer and propose the CSE-Block and the CSR-Net that
stacks CSE-Block to extract features from normal samples. It exhibits a sim-
ple architecture and fast inference speed.

– We propose the framework, AnoCSR, consisting of the upstream reconstruc-
tion network CSR-Net and the downstream anomaly localization network,
Localizer. It enables end-to-end detection and localization of anomalies while
being robust to noise and offering fast inference speed.

– We compared the impact of noise on the performance of recent state-of-the-
art image reconstruction-based methods and ours under different simulated
noise environments.

2 Related Works

Image reconstruction-based methods are the most fundamental approaches for
anomaly detection and localization. While Vanilla AE was successfully used
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Fig. 1. Illustration of the “short-cut” issue

in brain MRI image segmentation [1], subsequent works [6,21] improved the
reconstruction quality and representation power of AE. However, the “short-
cut” problem of Vanilla AE was not addressed. Therefore, [10] proposed using
memory banks to detect anomalies, where each element of the memory banks
module encodes the feature of defect-free samples. During training, a limited
number of elements are used for reconstruction, encouraging each element to
represent each row. Thus, normal samples are indexed to the most similar ele-
ment for good reconstruction, while the difference between anomalies and recon-
struction is amplified as anomaly score. This method significantly alleviates the
over-generalization problem of AE, i.e., the “short-cut” problem mentioned ear-
lier. Subsequent works [17] improved and iterated on this basis and achieved
promising performance. This opens up new possibilities for dictionary learning
in anomaly detection and localization, but these methods cannot reconstruct
complex textures and structures well. In subsequent work, some methods [22,23]
based on self-supervised learning have incorporated the idea of image inpainting
to enhance the representation capability of the models. In recent years, dictio-
nary learning, as a method for learning the main components of signals, has been
effectively applied in image restoration [24]. In the field of anomaly detection,
some works [4] have proposed using dictionary learning, but their performance
is inferior to deep neural network-based methods, and they do not reflect the
robustness of dictionary learning to noise. Recent works [13] proposed a differen-
tiable optimization layer defined from convolutional sparse coding layer, which
can be inserted into a neural network as a layer for backpropagation and has
similar performance to ResNet [11] in classification tasks with faster inference
speed.

3 Method

3.1 Convolutional Sparse Reconstructive Net(CSR-Net)

Our proposed CSE-Block (in Fig. 2a) maps an input signal to a feature encoding,
and can perform the inverse operation of reconstructing the input signal from
the obtained feature encoding, such that the reconstructed signal is as close as
possible to the original input signal. This process involves two steps: forward
encoding and dictionary parameters updating.
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Forward Encoding. Given an RGB input image x ∈ R
3×H×W , where H and

W are the height and width of the image, respectively, and 3 is the number of
channels. We assume that x can be reconstructed as the result of a convolution
operation between a sparse encoding z ∈ R

C×H×W and a multi-dimensional
kernel A ∈ R

3×C×k×k, where k is the size of the convolutional kernel and each
kernel is treated as an atom. Here, A is a multi-dimensional tensor consisting
of 3 × C atoms and is referred to as a convolutional dictionary. We define the
operation as follows:

A(z|A) .=
C∑

c=1

(α1c ∗ zc,α2c ∗ zc,α3c ∗ zc) ∈ R
3×H×W (1)

where αic ∈ R
k×k is the convolution kernel in the i-th layer and c-th channel of

A, zc ∈ R
H×W is the sparse encoding of the c-th channel in z, and “∗” denotes

the convolution operation. Thus, under this definition, the optimization problem
to be solved is given by:

z∗ = arg min
z

1
2
‖x − A(z|A)‖22 + λ‖z‖1 +

μ

2
||z||22 ∈ R

C×H×W (2)

Here, λ and μ are regularization parameters, where μ is added for more
stable convergence. Here, the input signal is assumed to have 3 chan-
nels for ease of definition and explanation. In general, for an input sig-
nal x[l−1] ∈ R

C[l−1]×H[l−1]×W [l−1]
, given a convolutional dictionary A[l] ∈

R
C[l−1]×C[l]×k[l]×k[l]

, the forward encoding process is given by:

z
[l]
∗ = arg min

z [l]

1
2
‖z[l−1]−A(z[l]|A[l])‖22+λ[l]‖z[l]‖1+μ[l]

2
||z[l]||22 ∈ R

C[l]×H[l]×W [l]

(3)
x[l] = ReLU(BN(z[l]

∗ )) ∈ R
C[l]×H[l]×W [l]

(4)

l denotes the l-th CSE-block, and z[l] is the sparse coding of z[l−1]. BN(·)
represents Batch Normalization operation, which is beneficial to accelerate the
training process of neural networks and improve the generalization ability of
the model. ReLU(·) represents the ReLU activation function, which introduces
non-linearity and enhances the expressiveness of the model. For solving the
optimization problem in Eq. 3, we use the fast iterative shrinkage-thresholding
algorithm (FISTA) proposed in [2], because it can converge quickly and handle
high-dimensional data. Its convergence speed is faster than other sparse rep-
resentation algorithms and it has good stability and convergence performance.
Additionally, its implementation is relatively simple, making it easy to apply to
practical problems. We denote the entire forward encoding process as G(·) and
the backward reconstruction process as G−1(·):

x[l] = G(x[l−1]) (5)

x̂[l−1] = G−1(x[l]) = A(BN−1(x[l])|A[l]) (6)
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(a) CSE-Block (b) CSR-Net

Fig. 2. Illustration of the network architecture.

where, BN−1(·) is the inverse operation of BN(·). It can be seen that the con-
volutional dictionary A[l] is also used in the backward reconstruction operation,
which indicates that once the parameters of the convolutional dictionary A[l] are
learned, it can be used in both the forward encoding and backward reconstruc-
tion processes. This makes the CSE-block have fewer parameters and relatively
fast inference speed, which also gives our CSR-Net advantage of a lightweight
model.

Dictionary Parameters Updating. During the backpropagation, the convo-
lutional dictionary, which is composed of several learnable convolutional kernels,
can be efficiently updated using automatic differentiation and GPU parallel com-
puting. This results in much faster updates to the dictionary parameters com-
pared to the traditional algorithm, making the CSE-Block an attractive option
for faster inference speed and practical industrial applications.

3.2 Network Architecture

The proposed CSR-Net consists of n + 1 modules, including the first n CSE-
Blocks (in our experiments, we set n = 3 or n = 4) and the final convolutional
block, as shown in Fig. 2b. The last block of CSR-Net is a convolutional block
(ConvBlock) with a single convolutional layer. It compresses the feature encod-
ings from the preceding n CSE-Blocks, facilitating faster convergence. Denoting
the input image as x[1], the forward encoding and reverse reconstruction process
of CSR-Net:

x[n] = G(G(G(· · · G(x[1]) · · · )))︸ ︷︷ ︸
n

(7)

x[n+1] = Conv(x[n]) (8)

x̂[n] = Conv−1(x[n+1]) (9)
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x̂[1] = G−1(G−1(G−1(· · · G−1(x̂[n]) · · · )))︸ ︷︷ ︸
n

(10)

where, Conv(·) denotes the operation of the ConvBlock, Conv−1(·) represents
the inverse operation of the ConvBlock, and x̂[1] denotes the reconstructed
image. Our proposed CSR-Net exhibits a simple structure, high inference accu-
racy, fast inference speed, and strong generalization capabilities, as demonstrated
by our experimental results.

3.3 End-To-End Self-supervised Noise-Robust Training Framework

The pretext task is important in our framework. Concretely, the original image
is denoted as x ∈ R

3×H×W , random sampling of Perlin noise [15] is represented
as P ∈ R

3×H×W , and by thresholding the noise, it can be binarized into an
anomaly map Ma ∈ R

3×H×W , thus enabling the simulation of various shapes
of anomalies. Therefore, the pretext task is to corrupt x

xa = (1 − Ma) � x + (1 − β) (Ma � x) + β (Ma � A) (11)

where, � denotes element-wise multiplication, β ∈ [0, 1] controls the trans-
parency of the generated anomaly region, and A ∈ R

3×H×W is a randomly
sampled image from a dataset of object textures [7]. Then, xa is fed into the
reconstruction network to obtain the reconstructed image x̂, and a suitable loss
function is defined to minimize the distance between x̂ and x, enabling the learn-
ing of the feature encoding of x.

Noise Perturbation. To simulate natural noise in industrial environments,
such as low-light conditions or sensor limitations, we randomly select a propor-
tion r of samples from the training set and add Gaussian noise ε to them.

x̃ = x + ε (12)

The perturbed images, denoted as x̃, undergo data augmentation and the pre-
text task to obtain the corrupted images, which serve as input to CSR-Net.

Loss Functions. For CSR-Net, the objective is to minimize the distance
between the original image x and the reconstructed image x̂. In this study,
we employ the L2 loss function L2(x, x̂) and the Structural Similarity Index
(SSIM) [18] loss function LSSIM (x, x̂). The combination of these two loss func-
tions allows us to leverage the desirable convexity of L2 loss and overcome the
potential issue of excessive smoothness caused by L2 loss alone. Inspired by R-
Drop [19], to enhance the robustness of the CSE-Block in CSR-Net, we define a
loss function LCSE(x, x̂)

LCSE(x1,x2) =
1
n

n∑

l=1

L2(z
[l]
1∗,z

[l]
2∗) (13)
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where, x1 and x2 represent the images obtained by applying data augmentation
twice to x. n denotes the number of CSE-Blocks in CSR-Net, and l corresponds
to the l-th CSE-Block. z

[l]
∗ represents the sparse encoding obtained by the l-th

CSE-Block. This approach aims to emphasize the features of normal samples
in the training set and encourage more compact feature encoding by the CSE-
Blocks. Therefore, the loss function of CSR-Net is defined as follows:

LCSR(x, x̂) = L2(x, x̂) + LSSIM (x, x̂) + γLCSE(x, x̂) (14)

where, γ ∈ [0, 1] is a weight coefficient, and in our experiments, we set γ = 0.8.
In the downstream segmentation task, the presence of noise ε in the input

image and its impact on the quality of the reconstructed image make traditional
threshold-based methods ineffective. Therefore, we employ the U-Net structure
[16] as the Localizer f , reducing the number of convolutional kernels in the
downsampling and upsampling structures to mitigate overfitting and enhance
robustness to noise. The anomaly score map M̂ and the anomaly score S of x
are computed as follows:

M̂ = Softmax(f(Concat(x̂,x))) (15)

S = max(M̂) (16)

In segmentation tasks, the presence of a significant background class can result
in the model focusing more on foreground classes and neglecting the background,
leading to decreased accuracy and recall. To mitigate this issue, we utilize the
FocalLoss [14] the loss function for the downstream segmentation task. There-
fore, the loss function is defined as follows:

Lseg(M ,M̂) = FocalLoss(M̂ ,M) (17)

where, M is the ground truth mask. Therefore, the total loss is defined as:

L(x, x̂,M ,M̂) = LCSR(x, x̂) + Lseg(M ,M̂) (18)

The incorporation of backpropagation allows for the joint optimization of the
parameters in CSR-Net and Localizer through the addition of the loss func-
tions from the pretext task and downstream segmentation tasks. This end-to-
end training procedure enables a seamless integration of anomaly detection and
segmentation, leveraging the automatic differentiation capability. Furthermore,
the dynamic update of the convolutional dictionary in CSR-Net during train-
ing facilitates the learning of more discriminative sparse encodings that better
capture the characteristics of the training data. The introduction of noise per-
turbation during training enhances the model’s ability to handle noisy inputs,
thereby improving its noise robustness.
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4 Experiments

Experimental Setup. All experiments of AnoCSR were conducted on an RTX
2080ti. In CSR-Net, the initial values of λ and μ in the CSE-Block were set to 0.1
and 0.05, respectively, and the number of CSE-Blocks was set to n = 4. During
training, a random selection of 20% of the images was corrupted with additive
Gaussian noise (AGN) of variance σ2 = 25. In the Noise Resistance experiment,
AGN with variances σ2

T = 20 and σ2
T = 40 were used for evaluation.

4.1 Comparison with Other Methods

AnoCSR was compared with recent image reconstruction-based methods
DRAEM [22], RIAD [23], and the unsupervised method PaDiM [8] on the
MVTecAD test set. The comparison was based on image AUROC and pixel
AUROC, and the results are presented in Table 1, where, σ2

T = 0, 20, 40 repre-
sents the different AGN we add to the test set, and σ2

T = 0 means the noise
perturbations is not performed. We denote this experiment as Noise Resis-
tance experiment. In the following mentioned tables, we display the results in
“image AUROC/pixel AUROC” format.

AnoCSR is more robust to noise compared to DRAEM, RIAD, and PaDiM,
which are also image reconstruction and unsupervised methods. In the Noise
Resistance experiment, DRAEM suffers the most significant performance decline,
while it performs best on the original test set. This is because DRAEM’s training
focuses on learning embeddings of normal images, leading to a performance drop
when the test set contains noise. At σ2

T = 20, DRAEM’s reconstruction network
mistakes noisy regions as normal, causing a substantial decrease in performance.
At σ2

T = 40, almost the entire image is classified as an anomaly, as shown
in Fig. 3. The experiments on CSR-Net demonstrate that each CSE-Block can
learn convolutional dictionaries that capture features of normal images, and the
Localizer can learn decision boundaries between normal and abnormal images.
However, its performance is inferior to DRAEM. DRAEM has a larger param-
eter count (97.42M) compared to AnoCSR (20.84M), suggesting that CSR-Net
may have lower expressive power than DRAEM. However, DRAEM is prone to
overfitting on the training set and performs poorly on noisy test sets. AnoCSR
introduces noise perturbations to increase the discrepancy between reconstructed
and abnormal images, and utilizes ground truth masks to adjust decision bound-
aries, thereby improving its generalization to noise.

Based on the above, AnoCSR achieves comparable performance to state-of-
the-art reconstruction-based methods on the MVTecAD test set. In the Noise
Resistance experiment, AnoCSR significantly outperforms similar methods and
exhibits superior noise robustness compared to the unsupervised method PaDiM,
which incorporates a pre-trained backbone with resistance to noise. These exper-
iments demonstrate that AnoCSR maintains high image AUROC and pixel
AUROC while exhibiting strong noise robustness. In addition, AnoCSR exhibits
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Table 1. Results on σ2
T = 0, 20, 40 for the task of detection and segmentation on

MVTecAD(image AUROC/pixel AUROC)

(a) σ2
T = 0

class DRAEM RIAD PaDiM Ours

capsule 97.6/93.62 91.77/85.18 91.5/98.56 100.0/98.67

bottle 99.35/98.82 98.71/92.09 99.84/98.15 98.71/96.54

carpet 97.61/96.64 45.07/83.49 99.92/99.0 98.3/97.83

leather 100.0/99.24 99.57/95.07 100.0/98.92 100.0/99.68

pill 96.61/97.69 52.38/88.71 94.35/96.14 98.64/97.81

transistor 96.67/93.86 82.5/72.78 97.75/97.48 96.33/89.45

tile 100.0/99.69 79.88/72.95 97.37/93.85 100.0/99.64

cable 89.5/96.0 51.03/65.73 92.19/96.76 90.73/92.83

zipper 99.89/98.77 84.05/87.78 90.86/98.42 99.46/97.89

toothbrush 100.0/97.72 96.67/95.55 97.22/98.74 100.0/97.25

metal nut 100.0/98.75 73.54/78.28 99.17/97.06 96.36/97.1

hazelnut 100.0/99.57 74.11/93.45 93.32/97.95 95.15/98.17

screw 99.74/99.72 86.38/94.84 84.38/98.32 94.83/94.88

grid 100.0/99.48 97.78/94.25 95.74/96.47 100.0/99.41

wood 100.0/97.49 95.78/75.62 98.77/94.09 100.0/98.22

mean 98.47/97.8 80.61/85.05 95.49/97.33 97.89/97.03

(b) σ2
T = 20

class DRAEM RIAD PaDiM Ours

capsule 60.38/89.92 91.94/75.73 69.52/69.13 99.31/97.35

bottle 87.74/85.22 99.03/85.58 63.19/69.41 99.35/96.31

carpet 84.17/89.03 52.38/83.57 68.61/89.19 98.81/98.04

leather 95.30/94.42 99.57/94.28 99.8/98.98 100.0/99.69

pill 76.58/83.75 50.11/63.54 95.32/96.35 95.25/93.57

transistor 82.0/81.43 78.83/66.82 95.43/97.86 98.5/86.21

tile 99.24/97.98 79.42/71.65 100.0/98.87 100.0/99.67

cable 61.46/67.71 60.54/65.7 51.71/94.47 82.76/92.4

zipper 88.03/72.94 81.47/83.5 94.78/95.67 98.92/98.22

toothbrush 76.67/71.0 88.89/76.55 84.63/98.31 100.0/98.27

metal nut 77.37/69.93 87.07/51.88 98.85/94.17 94.34/97.28

hazelnut 44.12/46.62 77.06/77.52 97.22/98.71 91.91/97.85

screw 0.0/39.87 84.74/77.63 87.12/97.00 90.34/95.09

grid 57.04/37.05 99.26/92.2 97.46/95.15 100.0/99.22

wood 70.5/74.03 92.34/74.17 81.07/79.66 100.0/96.85

mean 70.71/73.39 81.51/76.02 85.65/91.53 96.63/96.39

(c) σ2
T = 40

class DRAEM RIAD PaDiM Ours

capsule 68.78/88.94 87.82/70.23 53.77/59.54 95.88/96.85

bottle 94.84/82.87 99.03/79.14 65.79/68.77 98.71/96.05

carpet 81.46/75.99 48.98/83.27 98.64/98.92 99.32/98.1

leather 93.04/85.25 99.15/93.10 100.0/98.92 100.0/99.6

pill 74.55/80.30 51.81/53.04 78.59/94.01 92.86/91.25

transistor 77.83/76.35 86.17/63.2 88.12/96.74 93.0/84.39

tile 95.73/88.75 84.45/71.03 97.55/94.34 100.0/99.72

cable 61.15/66.96 52.41/66.77 62.61/65.27 81.38/91.96

zipper 82.97/70.78 80.39/78.06 80.99/80.8 98.17/97.88

toothbrush 67.78/65.91 84.44/58.85 81.39/98.63 96.67/98.63

metal nut 76.57/62.89 90.3/40.61 64.32/93.14 93.54/96.07

hazelnut 27.35/32.58 84.26/67.78 94.39/97.79 96.32/98.06

screw 0.0/35.70 89.48/63.71 95.74/87.82 87.5/96.52

grid 66.67/41.5 98.52/90.46 88.97/94.03 100.0/99.2

wood 77.01/66.71 96.93/71.44 86.49/92.2 100.0/96.16

mean 69.72/68.10 82.27/70.05 82.49/88.06 95.56/96.03

(d) Time and model complexity comparison

metric DRAEM RIAD PaDiM Ours

parameters (M ) 97.42 28.8 68.88 20.84

speed (s/image) 0.016 0.119 1.417 0.011

(a) σ2
T = 0 (b) σ2

T = 20 (c) σ2
T = 40

Fig. 3. The sample results of σ2
T = 0, 20, 40 in (a), (b), (c) respectively. In each subplot,

from left to right, we have the original image, reconstructed image, ground truth mask,
and anomaly localization map. And, the first row is the result of DRAEM, the second
row is RIAD and the last row is AnoCSR. The brighter pixel means higher anomaly
score.

a smaller number of model parameters and faster inference speed with 256×256
RGB images (Table 1d) on a single RTX 2080ti. Note that inference speed is not
only related to the number of parameters but also to the method itself.
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4.2 Experimental Result on Other Datasets

AnoCSR conducted Noise Resistance experiments on NanoTWICE [5], FSSD-
12 [9], and VisA datasets [25], and the results are shown in Table 2a, AnoCSR
demonstrates strong noise robustness on both FSSD-12 and VisA datasets, and
it exhibits high consistency in performance. AnoCSR also outperforms other
unsupervised methods on VisA, the noise perturbation is not used in this com-
parison. In NanoTWICE experiment, we crop the raw 768 × 1024 image into 16
patches(192×256), and fed into AnoCSR, the total inferencing time is 0.163 s in
average running on a single RTX 2080ti, which means AnoCSR has fast inference
speed.

Table 2. Result of AnoCSR on other industrial anomaly detection datasets

(a) Noise Resistance results

Dataset σ2
T =0 σ2

T=20 σ2
T=40

FSSD-12 99.72/92.16 99.45/92.75 99.35/91.36

NanoTWICE 99.55/98.19 87.64/96.37 53.42/93.17

VisA 91.60/96.32 89.64/95.69 88.1/95.12

(b) Comparison with other methods on VisA

method image AUROC pixel AUPRO

PaDiM 89.1 85.9

DRAEM 88.7 73.1

AnoDDPM [20] 78.2 60.5

CutPaste [12] 81.9 74.2

Ours 91.6 87.1

4.3 Ablation Study

We conducted ablation experiments on AnoCSR by varying the sample ratio r
and the additive Gaussian noise σ2. Firstly, we applied different random sam-
pling ratios r to the training set images and added AGN with σ2 = 25. The
experimental results are shown in Table 3a. When r = 0, indicating no Noise
Perturbation is applied, the results show a significant decrease in the network’s
robustness to noise. This is mainly due to overfitting of the Localizer. On the
other hand, when r = 100%, where all images in the training set are augmented
with AGN, the network’s performance decreases but stable metrics still demon-
strate strong robustness. Moreover, we applied AGN with different σ2

T values to
randomly selected r = 20% of the images. The results are shown in Table 3b,
when σ2

T = 0, indicating no Noise Perturbation, the analysis results are simi-
lar to when r = 0. As σ2

T increases, the performance of the network decreases.
This may be because excessively high noise intensity leads to significant differ-
ences between the reconstructed images and the original images, resulting in less
accurate anomaly score maps.

Table 3. Results of ablation study

(a) Comparion on r

σ2
T r=0% r=20% r=100%

0 96.18/95.12 97.89/97.03 87.85/81.07

20 88.23/90.89 96.63/96.39 84.01/85.40

40 74.80/84.36 95.56/96.03 92.34/82.95

(b) Comparison on σ2

σ2
T σ2=0 σ2=25 σ2=50

0 96.18/95.12 97.89/97.03 96.45/96.79

20 88.23/90.89 96.63/96.39 94.66/95.31

40 74.80/84.36 95.56/96.03 93.56/92.02
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5 Conclusion and Discussion

In this paper, we revisit the bottleneck of AE-based methods and address it
from the perspective of convolutional dictionary learning. We propose AnoCSR
and demonstrate through experiments that our method not only alleviates the
“short-cut” issue but also exhibits strong noise robustness and fast inference
speed. However, our experiments revealed that AnoCSR does not perform well
on certain few-shot categories, such as the “transistor” category in MVTecAD.
This issue could potentially be addressed by generating pseudo-normal samples
using a diffusion model in future work.
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Abstract. Accurate segmentation of brain tumor medical images is
important for confirming brain tumor diagnosis and formulating post-
treatment plans. A brain tumor image segmentation method based on
global-local dual-branch feature fusion is proposed to improve brain
tumor segmentation accuracy. In target segmentation, multi-scale fea-
tures play an important role in accurate target segmentation. Therefore,
the global-local dual-branch structure is designed. The global branch
and local branch are deep and shallow networks, respectively, to obtain
the semantic information of brain tumor in the deep network and the
detailed information in the shallow network. In order to fully utilize the
obtained global and local feature information, an adaptive feature fusion
module is designed to adaptively fuse the global and local feature maps
to further improve the segmentation accuracy. Based on various exper-
iments on the Brats2020 dataset, the effectiveness of the composition
structure of the proposed method and the advancedness of the method
are demonstrated.

Keywords: Brain tumor image segmentation · Transformer · Gated
axial attention · Feature fusion

1 Introduction

Gliomas are the most common malignant tumors originating in the central ner-
vous system, spanning all ages from children to the elderly, and they have the
third highest mortality rate among systemic tumors within five years [1,2]. Cur-
rently, treatment of gliomas is based on surgical resection, but it is difficult for
physicians to clearly identify glioma boundaries, leading to residual tumor and
early recurrence [3]. With the use of Magnetic Resonance Imaging (MRI) tech-
nology in the medical field, MRI can show the internal structure of brain tumors
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more clearly and reflect the nature of brain tumors more effectively [4], but MRI
images are multimodal and complex, making expert physicians inefficient in man-
ual labeling and may have large errors that affect subsequent medical diagnosis.
Therefore, it is of great importance to design high-precision MRI brain tumor
image segmentation algorithms.

Current brain tumor segmentation methods can be broadly classified into
two categories: traditional brain tumor segmentation methods and segmentation
methods based on deep learning. The brain tumor image segmentation methods
based on traditional methods include region segmentation [5], threshold segmen-
tation [6], and clustering-based segmentation etc [7]. Although great progress
has been made, the traditional methods have high labor costs, are susceptible
to noise and other factors, and have poor robustness, making it difficult to meet
the standards for practical applications.

Segmentation methods based on deep learning have risen rapidly and been
widely used in brain tumor segmentation in recent years. Sun et al. [8] proposed
a multi-pathway feature extraction FCN, which together with cavity convolution
extracted information under different receptive fields to obtain fine segmenta-
tion in brain MRI images. Liu et al. [9] designed Spatial Channel Fusion Block
(SCFB) to aggregate brain tumor multimodal features and proposed a spatial
loss to constrain the relationship between different tumor sub-regions. Bukhari
et al. [10] coupled an encoder with three decoders, each of which accepts fea-
ture mappings directly from a generic encoder and segments different tumor
subregions. Ding et al. [11] proposed a region-aware fusion network to effectively
aggregate various available modalities for multimodal brain tumor segmentation.

The UNet [12] network employs a coding-decoding architecture with excellent
performance and is widely used in medical image segmentation. However, the
U-shaped architecture of convolutional neural networks follows the properties
of visual information, which makes the network more inclined to focus on the
connections between local features rather than the global context. In addition,
existing feature fusion methods are commonly feature map channel stacking or
feature map summing, which cannot refine the features. Therefore, a brain tumor
image segmentation network model based on global-local dual-branch feature
fusion is proposed.

In summary, our contributions can be summarized as follows:
1. Global-local branching structure is designed. The designed global branch

acquires rich semantic information in the deep network. Local branches are
designed to obtain fine-grained feature information in shallow networks.

2. Adaptive feature fusion module is proposed to refine the features and
perform adaptive feature fusion to further improve the segmentation accuracy

3. Ablation experiments and comparison experiments are conducted in
Brats2020 to demonstrate the effectiveness of the proposed method’s compo-
sition structure and the advancement of the method.
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2 Method

2.1 Overall Framework

The overall framework of the brain tumor segmentation network proposed in this
paper is shown in Fig. 1. The model consists of global branches, local branches
and adaptive feature fusion modules, in which the global branch structure is
designed as a deep network with a larger sensory field to obtain more feature
information of medium and large targets. The local branch structure is designed
as a shallow network with a smaller perceptual field to obtain more texture and
edge information in the feature map. The adaptive feature fusion module fuses
the acquired global and local feature maps of brain tumors to obtain the target
segmentation results.

Local Branch

Global Branch

gated axis 

attention 

module

resnet 

module

transformer

module conv

adaptive 

feature fusion 

module

Fig. 1. Overall framework of brain tumor segmentation network

2.2 Global Branch

The global branching is based on UNet as the base framework, the contraction
path part consists of deep residual network structure and Transformer mod-
ule, and the extension path part consists of traditional convolutional layer and
jump connection module. The deep network of the global branch can obtain rich
semantic feature information, and the Transformer module is added to enhance
the model to extract deep and shallow semantic features and obtain high-quality
contextual semantic information, and the structure of the global feature extrac-
tion path network model is shown in Fig. 2.

Deep Residual Network. The jump connection of the deep residual network
(ResNet) allows the network to preserve some shallow feature information in
transmission, alleviating the problem of detailed feature loss due to deeper net-
work layers. The global branching shrinkage path uses the ResNet50 network
structure to increase the network depth, obtain rich global features, and capture
more information of medium and large targets. As shown in Fig. 2. The contrac-
tion path is divided into 4 stages (ResNet-i,i ∈ {1, 2, 3, 4}). The bottom output
dimension of the network is 1024.
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ResNet-1

ResNet-2

ResNet-3

ResNet-4 Transformer

Global 

Feature Map
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conv3*3 ReLU

data transformation

data transmission

Fig. 2. Global branch structure network model structure

Transformer Feature Extraction Module. Convolutional neural networks
have significant advantages over other neural networks in obtaining the under-
lying features and structures, but they generally show limitations in modeling
remote dependencies due to convolutional operations. To overcome this limita-
tion, the Transformer [13] module was introduced, and the Transformer model
was placed at the end of the contraction path to replace the original convolu-
tional module for modeling the global features of brain tumors.

The output of the deep residual network is a 3D matrix with 1024 channels
and 10 widths and heights. First, the 3D feature information needs to be linearly
transformed into a vector sequence that meets the input of the Transformer
module to obtain linear features with a sequence length of 100 and a word vector
length of 768, and the linear features are input into the Transformer feature
extraction module for global attention calculation. The structure of Transformer
module is shown in Fig. 3.
The Transformer module consists of Multi head Self Attention (MHSA), Multi
layer perceptron (MLP) and Layer Normalization (LN) units through a residual
structure. The data input Transformer module can be represented as:

M̂ = MHSA (LN (M)) + M (1)

N = MLP
(
LN

(
M̂

))
+ M̂ (2)

M is the Transformer module input, N denotes the Transformer module output,
and the structure of the multi-headed attention mechanism is shown in Fig. 3,
whose specific process can be expressed as follows:

MHSA (Q,K, V ) = softmax
(

QKT

√
d

+ B

)
V (3)

The multi-head attention mechanism is to match Q with K. The similarity
between Q and K is obtained by the multi-head attention mechanism module,
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Fig. 3. Structural diagram of transformer module.

and then the attention weight matrix is obtained after the Softmax layer, and
the output result is obtained by matrix multiplication of V with the weight
matrix. Finally, the output feature sequence is reshaped to match the extended
path, and the feature sequence is transformed into a feature map with a channel
number of 512 and a width and height of 10.

2.3 Local Branch

The local branch is designed as a shallow U-shaped network, with the systolic
path part consisting of a gated axial attention module and the extended path
part consisting of a conventional convolutional layer and a jump connection
module. The shallow network of local branches has rich information of detailed
texture features, which can better capture the local detailed features of brain
tumors. The introduction of gated axial attention module enhances the focus
on the target region and further improves the ability to capture the detailed
features. The structure of the local branching structure network model is shown
in Fig. 4.

Gated Axial Attention Module. The Gated Axial-Attention [14] resolves the
original two-dimensional self-attention into two one-dimensional self-attention
along the height and width axes of the feature map, which improves the compu-
tational efficiency. When calculating the degree of association between elements,
a position bias term is added to solve the problem that the self-attention is
insensitive to the position information. The role of the gating unit in the gated
axial attention is to regulate the weight of the position information according
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Fig. 4. Local branch structure network model structure.

to the accuracy of the position information r. A larger weight is given when the
position information is accurate, and a smaller weight is given when it is inac-
curate, so that the model learns the relative position encoding information on
small-scale medical image datasets more accurately. The structure of the gated
axial attention module is shown in Fig. 5.
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Fig. 5. Gated axial attention module structure.

The input features X generate qTp , qTn , and vn after three transformation matrices
of WQ, WK , and WV . The relative position codes rQ,rK , and rV can be updated
during the model training process, and GQ,GK , GV ∈ R are gating units that
control the impact of the learned relative position codes on the non-local context.
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For the input feature map X, the multi-headed attention width axis module can
be represented as follows:

ym =
∑

n∈w1×C(p)

softmax
(
qTp kn + GQqTp rqn + GKkT

n rkn
)
(GV 1vn + GV 2r

v
n) (4)

w1×C (p) is the multi-headed attention width axis region where position p = (i, j)
is located, vectors rqn, rkn,rvn are relative position encodings, inner products qTp rqn,
kT
n rkn are bias terms of Key and Query, and similarly the multi-headed attention

height axis formula is similar.

2.4 Adaptive Feature Fusion Module

In order to make full use of the global feature information obtained in the global
branch and the local detailed features obtained in the local branch, this paper,
inspired by the literature [15], proposes an adaptive feature fusion module to
refine the features and perform feature map fusion, the structure of which is
shown in Fig. 6.
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Fig. 6. Adaptive feature fusion module structure.

Firstly, the input global and local feature information is convolved separately
to obtain its corresponding feature map, which is noted as T1 and T2, The
two features are summed to obtain the feature map T . Then, the global average
pooling (GAP) operation is performed on the feature map T to obtain the vector
s indicating the importance of global and local features, which is calculated as
follows:

sc = φGAP (T ) =
1

H × W

H∑
i=1

W∑
j=1

Tc (i, j) (5)

sc is for the c-th component of s. The dimensional vector z obtained by fusing
the features of different layers of s using a fully connected layer with a scale
compression of the pixel dimension to d dimensions is subsequently calculated
as follows:

z = σ (B (Ws)) (6)
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B () and σ () denote batch normalization and ReLU operations, respectively,
where W ∈ Rd×C is fully connected, the value of d is taken as follows:

d = max
(

C

r
,L

)
(7)

r is a reduced ratio, L is the minimum dimension of z, and r and L are used
to control the output dimension. Then the vector z is re-varied back to length
C by two fully connected layers to get {p1,p2}, and the components of the two
vectors of the same latitude are subjected to Softmax operation to get the weight
vectors of global and local information {v1,v2}. The extracted feature weights
are dotted with T1 and T2 to obtain the optimized feature map and summed to
obtain the global and local feature fused feature map V , which is calculated as
follows:

V =
2∑

i=1

viTi (8)

3 Experimental Procedure

3.1 Experimental Environment

The experimental hardware environment is 32 GB RAM, the graphics card is
NVIDIA Titan X, the code runs on CentOS 7.3 operating system and uses
Pytorch 1.7.0 as the core framework. The total number of rounds of model
training is 300 and the batch size is 12. The initial learning rate is set to 1e-3
using the Adam optimizer.

3.2 Dataset

The dataset of the 2020 MICCAI Multimodal Brain Tumor Segmentation Chal-
lenge BraTs [16–18] is used in this paper. and the BraTs2020 dataset has a
total of 369 cases. Only the training set of the dataset has real segmentation
labels (Ground Truth, GT) manually labeled by experts, including background,
Non-Enhancing Tumor(NET), Peritumoral Edema(ED), and Enhanced Tumor
region (ET), respectively. In this experiment, 70% of the BraTs2020 training set
was used for model training, and the remaining 30% was used for the test set.

3.3 Data Pre-processing

The brain tumor MRI images are 3D images, and the design network in this
paper is a 2D network, so the 3D brain tumor MRI images need to be sliced and
processed into 2D images, which are consistent with the input of the proposed
2D network model. The proportion of black background in the MRI images is
large, resulting in small brain tumor marker regions, and the black background
region is not the target marker region, so the area is cropped to remove the
invalid region, and the image is 4×160×160 after cropped slices, the number of
channels is 4, and the length and width are 160.
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3.4 Evaluation Metrics

In order to analyze the segmentation effect of the model on brain tumors, two
metrics, Dice coefficient and Hausdorff distance, are used as the evaluation met-
rics in this paper. The Dice coefficient is used to calculate the similarity between
the predicted results and the real segmentation labels of brain tumors. Its cal-
culation formula is as follows:

Dice =
2TP

FP + 2TP + FN
(9)

TP is true positive, FP is true negative, and FN is false negative. The Hausdorff
Distance is used to measure the distance between two point sets. Its calculation
formula is as follows:

h (A,B) = max
a∈A

min
b∈B

‖a− b‖ (10)

h (A,B) denotes the maximum mismatch distance between two point sets A and
B. a and b are the points of sets A and B, respectively.

4 Analysis of Results

4.1 Results of Ablation Experiments

To verify the validity of each component structure of the model, ablation exper-
iments were performed on the UNet network, global branch, global-local double
branch (without adding the adaptive feature fusion module) and the complete
model under the same experimental conditions, and the results were obtained as
shown in Table 1, where WT, TC and ET are the tumor as a whole (composed
of NET, ED, and ET), core tumor (composed of NET and ET), and enhancing
tumor (composed of ET). By comparing the experimental results in the Table
1, the complete method is significantly better than the other compared meth-
ods, especially in the segmentation of the TC core tumor region is more obvious
(Dice is improved by 1.3% ∼ 4.92%, Hausdorff distance is decreased by 0.1681 ∼
0.2204) which fully demonstrates that the global-local dual-branching junction
and adaptive feature fusion module have good comprehensive performance and
help to improve the segmentation accuracy.

Table 1. Results of ablation experiment.

Model Dice WT Dice TC Dice ET HD WT HD TC HD ET

UNet 0.8440 0.8288 0.7775 2.6250 1.7279 2.7960

Global Branch 0.8450 0.8323 0.7804 2.6600 1.6917 2.7950

Global-Local branch 0.8540 0.8650 0.7964 2.5312 1.5598 2.6771

Complete method 0.8589 0.8780 0.8055 2.5020 1.5075 2.6153
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4.2 Comparison Method Experimental Results

In order to show the effectiveness and advancement of the proposed method in
this paper, the proposed algorithm is compared with other six algorithms on
the Brats2020 dataset, including UNet [12], UNet++ [19], UNet3+ [20], Swi-
nUNet [21], TA-Net [22], and TransUNet [23], and all experiments are derived
under the same experimental environment for a fair comparison, and the code is
the publicly released code of the paper. The data of segmentation result indexes
are shown in Table 2, and the algorithm of this paper achieves the best results
in all aspects, with Dice coefficients of 0.8589, 0.878, and 8055, and Hausdorff
distances of 2.502, 1.5075, and 2.6153, respectively.

Table 2. Segmentation result indicator data of each model in the Brats 2020 dataset.

Model Dice WT Dice TC Dice ET HD WT HD TC HD ET

UNet [12] 0.8440 0.8288 0.7775 2.6250 1.7279 2.7960

UNet++ [19] 0.8370 0.8386 0.7813 2.5656 1.6550 2.7246

UNet3+ [20] 0.8407 0.8633 0.7888 2.5506 1.5579 2.6765

SwinUNet [21] 0.8317 0.8452 0.7698 2.6280 1.7022 2.7907

TA-Net [22] 0.8273 0.8468 0.7663 2.6335 1.6326 2.7885

TranUNet [23] 0.8577 0.8632 0.7985 2.5249 1.5823 2.6926

Ours 0.8589 0.8780 0.8055 2.5020 1.5075 2.6153

Dice coefficient and Hausdorff Distance comparison histograms of various
algorithms on the Brats2020 dataset are shown in Fig. 7, and it can be visual-
ized that the segmentation performance of this paper’s method in the WT, TC,
and ET regions is improved compared to other methods. In Dice coefficient, the
segmentation performance of ET region is weakly improved, while the segmen-
tation performance of WT and TC regions is relatively improved significantly.
In Hausdorff Distance, this paper’s algorithm achieves the lowest value, which
is significantly better than other algorithms.

0
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2.5

3

UNet UNet++ UNet3+ SwinUNet TA-Net TranUNet Ours

Hausdorff distance
HD_WT

HD_TC

HD_ET

Fig. 7. Histogram of Dice and HD comparisons on the dataset BraTS2020.

The comparison graph of this paper’s method with each model for brain
tumor segmentation is shown in Fig. 8., where the ED region (green), NET region
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(red) and ET region (yellow), compared with other methods, this paper’s method
achieves better results in all aspects by, especially in the small and medium-sized
target segmentation such as NET and ET, which achieves a greater improvement,
predicts better shapes and edge details, and is more close to the real segmentation
labels.

GT Unet Unet++ UNet3+ SwinUNet OursTA-Net TransUNet

Fig. 8. Comparison of segmentation effects of various network models. (Color figure
online)

5 Conclusion

A brain tumor image segmentation method based on global-local dual-branch
feature fusion is proposed in this paper, which obtains deep semantic features
and local detail information through dual branches respectively, and designs an
adaptive feature fusion module for feature fusion of global-local features to obtain
higher brain tumor MRI segmentation accuracy. To prove the effectiveness of the
method, experiments are carried out on BraTs2020, a publicly available dataset
for brain glioma segmentation, which shows that this method is significantly
better than other segmentation methods in the segmentation task, and signif-
icantly improves the segmentation accuracy on the tumor as a whole, on the
tumor core, and on the enhanced tumor region. In this paper, the network is
a 2D network, which will lose the spatial information between the layers in the
segmentation of 3D image data, and has some limitations, in the future work, we
will continue to develop this method and apply this method to the 3D network,
to further improve the network’s segmentation ability for each lesion region of
brain tumors.



392 Z. Jia et al.

References

1. Wen, J., Chen, W., Zhu, Y.: Clinical features associated with the efficacy of
chemotherapy in patients with glioblastoma (GBM): a surveillance, epidemiology,
and end results (SEER) analysis. BMC Cancer 21(1), 81 (2021)

2. Ostrom, Q.T., Cioffi, G., Gittleman, H.: CBTRUS statistical report: primary brain
and other central nervous system tumors diagnosed in the United States in 2012–
2016. Neuro Oncol. 21(5), 1–100 (2019)

3. Shen, B., Zhang, Z., Shi, X.: Real-time intraoperative glioma diagnosis using fluo-
rescence imaging and deep convolutional neural networks. Eur. J. Nucl. Med. Mol.
Imaging 48(11), 3482–3492 (2021)

4. Sajjad, M., Khan, S., Muhammad, K.: Multi-grade brain tumor classification using
deep CNN with extensive data augmentation. J. Comput. Sci. 30, 174–182 (2019)

5. He, C.E., Xu, H.J., Wang, Z.: Automatic segmentation algorithm for multimodal
magnetic resonance-based brain tumor images. Acta Optica Sinica. 40(6), 0610001
(2020)

6. Mo, S., Deng, X., Wang, S.: Moving object detection algorithm based on improved
visual background extractor. Acta Optica Sinica. 36(6), 615001 (2016)

7. Saxena, S., Kumari, N., Pattnaik, S.: Brain tumour segmentation in DFLAIR
MRI using sliding window texture feature extraction followed by fuzzy C-means
clustering. Int. J. Healthc. Inf. Syst. Inf. (IJHISI) 16(03), 1–20 (2021)

8. Sun, J., Peng, Y., Guo, Y.: Segmentation of the multimodal brain tumor image
used the multi-pathway architecture method based on 3D FCN. Neurocomputing
423, 34–45 (2021)

9. Liu, C., et al.: Brain tumor segmentation network using attention-based fusion
and spatial relationship constraint. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020.
LNCS, vol. 12658, pp. 219–229. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72084-1 20

10. Bukhari, S.T., Mohy-ud-Din, H.: E1D3 U-Net for brain tumor segmentation: sub-
mission to the RSNA-ASNR-MICCAI BraTS 2021 challenge. In: Crimi, A., Bakas,
S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries. BrainLes 2021. LNCS, vol. 12963. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-09002-8 25

11. Ding Y., Yu X., Yang Y.: RFNet: region-aware fusion network for incomplete multi-
modal brain tumor segmentation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3975–3984 (2021)

12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

13. Vaswani A., Shazeer N., Parmar N., et al.: Attention is all you need. In: Advances
in Neural Information Processing Systems, pp. 30 (2017)

14. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer:
gated axial-attention for medical image segmentation. In: de Bruijne, M., et al.
(eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-87193-2 4

15. Li, X., Wang, W.H., Hu, X.I., et al.: Selective kernel network. In: 2019 IEEE
CVF Conference on Computer Vision and Pattern Recognition, pp. 510–519. IEEE
(2020)

https://doi.org/10.1007/978-3-030-72084-1_20
https://doi.org/10.1007/978-3-030-72084-1_20
https://doi.org/10.1007/978-3-031-09002-8_25
https://doi.org/10.1007/978-3-031-09002-8_25
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-87193-2_4
https://doi.org/10.1007/978-3-030-87193-2_4


Global-Local Dual-Branch Feature Fusion Network 393

16. Menze, B.H., Jakab, A., Bauer, S.: The multimodal brain tumor image segmenta-
tion benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

17. Bakas, S., Akbari, H., Sotiras, A.: Advancing the cancer genome atlas glioma MRI
collections with expert segmentation labels and radiomic features. Sci. Data 4(1),
1–13 (2017)

18. Bakas, S., Reyes, M., Jakab, A.: Identifying the best machine learning algorithms
for brain tumor segmentation, progression assessment, and overall survival predic-
tion in the BRATS challenge. Radiomics and Radiogenomics: Technical Basis and
Clinical Application. New York: Chapman and Hall/ CRC, pp. 99–114. (2019)

19. Zhou, Z., Siddiquee, M., Tajbakhsh, N.: UNet++: a nested U-Net architecture for
medical image segmentation. In: 4th Deep Learning in Medical Image Analysis
(DLMIA) Workshop, pp. 3–11 (2018)

20. Huang H., Lin L., Tong R.: Unet 3+: A full-scale connected UNet for medical
image segmentation. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1055–1059. IEEE (2020)

21. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmen-
tation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) Computer Vision – ECCV
2022 Workshops. ECCV 2022. LNCS, vol. 13803. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-25066-8 9

22. Pang S., Du A., Orgun M. A.: Tumor attention networks: better feature selection,
better tumor segmentation. Neural Netw. 140(1), 203–222 (2021)

23. Chen J., Lu Y., Yu Q.: Transunet: Transformers make strong encoders for medical
image segmentation. In: Computer Vision and Pattern Recognition, pp. 34–47
(2021)

https://doi.org/10.1007/978-3-031-25066-8_9
https://doi.org/10.1007/978-3-031-25066-8_9


PRFNet: Progressive Region Focusing
Network for Polyp Segmentation

Jilong Chen1, Junlong Cheng1, Lei Jiang1, Pengyu Yin1, Guoan Wang2,
and Min Zhu1(B)

1 College of Computer Science, Sichuan University, Chendu, China
zhumin@scu.edu.cn

2 College of Computer Science, East China Normal University, Shanghai, China

Abstract. In clinical practice, colonoscopy serves as an efficacious app-
roach to detect colonic polyps and aids in the early diagnosis of colon
cancer. However, the precise segmentation of polyps poses a challenge
due to variability in size and shape, indistinct boundaries, and similar
feature representations with healthy tissue. To address these issues, we
propose a concise yet very effective progressive region focusing network
(PRFNet) that leverages progressive training to iteratively refine seg-
mentation results. Specifically, PRFNet shares encoder parameters and
partitions the feature learning process of decoder into various stages,
enabling the aggregation of features at different granularities through
cross-stage skip connections and progressively mining the detailed fea-
tures of lesion regions at different granularities. In addition, we introduce
a lightweight adaptive region focusing (ARF) module, empowering the
network to mask the non-lesion region and focus on mining lesion region
features. Extensive experiments have been conducted on several public
polyp segmentation datasets, where PRFNet demonstrated competitive
segmentation results compared to state-of-the-art polyp segmentation
methods. Furthermore, we set up multiple cross-dataset training and
testing experiments, substantiating the superior generalization perfor-
mance of PRFNet.

Keywords: Polyp segmentation · Progressive feature refinement ·
Adaptive region focusing

1 Introduction

Colonoscopy allows for the investigation of polyps or pathological changes, par-
ticularly the detection of tumorous intestinal polyps, which bears significant
impact on the early diagnosis of colorectal cancer (CRC) [14]. Once the location
of tumorous polyps has been determined via colonoscopy, timely surgical removal
can effectively avert the onset of colorectal cancer. Hence, accurate segmentation
of polyp tissue in clinical scenarios is of paramount importance, with numerous

J. Chen and J. Cheng—Contributed equally and should be considered co-first authors.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 394–406, 2024.
https://doi.org/10.1007/978-981-99-8469-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8469-5_31&domain=pdf
https://doi.org/10.1007/978-981-99-8469-5_31


PRFNet: Progressive Region Focusing Network for Polyp Segmentation 395

studies emerging to automate this process. However, due to issues such as indis-
tinct polyp boundaries, variability in size and shape, and the similarity of feature
representations between polyp tissue and healthy tissue [6,10], achieving precise
segmentation of polyp still poses a challenge.

Numerous studies have utilized deep learning for medical image segmen-
tation. Earlier works such as UNet [13], UNet++ [22], TransUNet [4], lever-
aged encoder-decoder network structures for relatively precise segmentation of
medical images. For the more specialized field of polyp segmentation, PraNet
[8] designed a parallel partial decoder (PD) for feature fusion and proposed a
reverse attention (RA) module to introduce boundary constraints for perfor-
mance enhancement. SSFormer [19] introduced modules such as local emphasis
(LE), stepwise feature aggregation (SFA), and feature fusion units to smooth and
emphasize local features. LDNet [21] proposed kernel generation (KG) and ker-
nel update (KU) strategies, along with efficient self-attention (ESA) and lesion-
aware cross-attention (LCA) modules to enhance polyp feature representations.
Polyp-PVT [2] incorporated cascaded fusion module (CFM), camouflage identi-
fication module (CIM), and similarity aggregation module (SAM) into the trans-
former encoder to learn more robust representations from polyps. CaraNet [11]
designed axial reverse attention (A-RA) and channel-wise feature pyramid (CFP)
modules on top of the partial decoder to enhance the model’s segmentation per-
formance for smaller targets. To augment their model’s learning capability, these
studies have introduced numerous, complex functional modules based on the
encoder-decoder structure, resulting in inferior generalization performance and
a propensity towards overfitting, thereby leading to inaccuracies or even errors in
segmentation. Therefore, proposing a method that can concisely and accurately
automate the segmentation of polyp in the early stages of the disease, without
the introduction of overly complex modules, carries significant importance.

In response to the above challenges, we propose a concise and effective pro-
gressive region focusing network (PRFNet). By leveraging a multiscale encoder-
decoder structure coupled with a carefully designed training strategy, we mask
background feature representations in the progressive training process, and based
on learning different granularities of lesion features, we further extract fine-
grained lesion features. Specifically, we first locate the lesion region in a pro-
gressive manner, integrating different levels of lesion features learned by the
multiscale network, and refine the feature representations of the lesion stage-by-
stage. To further enhance the model’s learning of fine-grained features during
the progressive training process, we propose an adaptive region focusing module.
This module can adaptively mask the expression of background feature repre-
sentations in feature maps during progressive training, enabling the network to
focus more on the learning of local lesion region feature representations, thereby
enhancing the model’s generalization ability for more precise segmentation.

In summary, our contributions include the following aspects: (1) We propose
a progressive learning method that accomplishes precise segmentation of polyp
by mining and fusing feature representations at different levels. (2) We introduce
a learnable adaptive region focusing module that, by adaptively masking a large
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number of non-lesion pixels during the progressive training process, enables the
model to focus on the lesion region, thereby enhancing the model’s generalization
ability. (3) We perform comparative and ablation experiments on multiple pub-
lic polyp segmentation datasets, demonstrating the learning and generalization
abilities of our proposed PRFNet.

2 Method

In this chapter, we will introduce the concise and effective progressive region
focusing network that we propose, which is primarily composed of progressive
feature refinement and adaptive region focusing modules.

Fig. 1. Overview of the PRFNet. Left: progressive feature refinement which includes
adaptive region focusing module. Right: implementation details of adaptive region
focusing module.

2.1 Progressive Feature Refinement

There is a large number of work that has designed numerous functional modules
to achieve medical image segmentation, not limited to polyps [5–7,20]. However,
given the indistinct boundaries of polyps and its exceedingly similar feature
representations to healthy tissue, it is necessary for the model to learn more
discriminative features of polyp. Most semantic segmentation methods assume
that the entire segmentation process can be performed through a single feed-
forward process of the input image. The feature representations extracted in
this manner is homogenous [12], and ineffective at extracting fine-grained feature
representations.

Addressing these issues, as shown in Fig. 1, we propose a progressive fea-
ture refinement method that, under shared encoder-decoder parameters, trains
multi-stage decoder networks in a progressive manner to mine and fuse features
of different granularities. Specifically, we divide the progressive training process
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into N stages. The network of the latter stage will include the network of the
previous stage after parameters updating. Therefore, each stage includes one or
more encoder-decoder networks of different levels, with the maximum number
of encoder or decoder layers in each stage being L − N + 1, L − N + 2, ..., L.
All stage networks share a single lightweight encoder branch and use different
decoder branches, with a skip connection between decoder branches of two adja-
cent stages for progressive information transfer. The progressive training strategy
we propose is represented as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1 =
(∏L−N+1

l=1 d1l

)(∏L−N+1
l=1 el

)
(x) ,

f2 =
(∏L−N+2

l=1 d2l

)(
eL−N+2

(∏L−N+1
l=1 ẽl

))
(x) ,

. . . ,

fN =
(∏L

l=1 dNl

)(
eL

(∏L−1
l=1 ẽl

))
(x)

(1)

where x ∈ R
H×W×C is the input image, and f1, f2, fN are the prediction results

of the 1st, 2nd, and Nth stage networks respectively. el represents the lth layer
of the encoder, and d1l , d2l , dNl are the lth layer decoders of the 1st, 2nd, and Nth
stage networks respectively (the sequence numbers l for the encoder and decoder
are respectively numbered according to the direction of the arrows of the encoder
and decoder in Fig. 1). The el, d1l of the 1st stage network are obtained as ẽl and
d̃1l , respectively, after calculating the loss via f1 and updating parameters, where
l ∈ (1, L − N + 1). Due to the shared encoder parameters and skip connections
between decoders, the 2nd stage network inherits ẽl and d̃1l from the 1st stage. x
is encoded by ẽl and the newly added eL−N+2 in the 2nd stage, and then enters
both d̃1l and d2l for decoding. There is a skip connection between the feature
maps output by the two decoder branches, and the output of the d2l branch is
the 2nd stage prediction result, f2. The subsequent stages are similar.

Through the above-mentioned progressive training strategy, we can obtain
different granularity feature representations through the multi-scale network,
and get the most discriminative fine-grained features of the lesion region. By
sharing encoder parameters and skip connections between decoder branches, the
network can initially locate the lesion region in the early stages, refine the fine-
grained features inside the lesion region in the middle stages, and finally obtain
accurate segmentation results in the last stage, thereby enhancing the learning
and generalization ability of the entire network.

2.2 Adaptive Region Focusing

The progressive training method can gradually refine the feature representation
of the lesion, but the features learned by the multi-scale network may focus
on the non-lesion region. And for some polyp datasets, due to the collection
reasons, some images may contain no-information areas. Therefore, we propose
an adaptive region focusing module, which can adaptively generate masks for
feature maps, masking the feature representation of non-lesion region, forcing the
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network to pay more attention to the lesion region during the training process.
As shown in Fig. 1, ARF consists of L ViT blocks, in which we introduce a
focusing self-attention (FSA) and adjust the module settings of the traditional
ViT block to meet the needs of ARF.

Weight Mapping. For ViT block l, the feature map f ∈ R
H×W×C first goes

through patch partition (not using patch embedding with a linear layer to pre-
serve spatial information of feature maps) to divide the feature map into patches
of a certain size, resulting in f ∈ R

S×D, where S is the number of patches and D
is the product of patch size and number of channels. Then, f is passed through
a normalization layer and rearranged into f ∈ R

H×W×C , and then goes through
1× 1 convolution layers and rearrange operations to generate Ql,Kl, V l ∈ R

S×D.
And Ql is unfolded along the dimension D to obtain Q̃l ∈ R

S×P×C , where P is
the patch size and C is the number of channels. Finally, based on Q̃l, the weight
mapping M l ∈ R

S×1 is determined. M l is defined as follows:

M l = Softmax
(
Linear

(
AvgPool

(
Q̃l

)))
(2)

AvgPool refers to adaptive average pooling, which is used to aggregate the spa-
tial information of each patch. The Linear layer is used to aggregate the channel
information of each patch. By passing this through Softmax, the weights of the
S patches M l, can be obtained. The values in this mapping are all between 0
and 1, where the weights corresponding to the patches in the lesion region are
higher, and vice versa.

Adaptive Mask Generation. Then we determine the adaptive mask based
on M l. We set different thresholds for the networks at each stage to control
the number of non-lesion patches that are masked. The specific definition of the
threshold is as follows:

threshold = Max
(
topkList

(
M l

))
(3)

first, we sort M l in ascending order and select the top-k list, which represents
the smallest k patch weights, and the maximum value within this list is adopted
as the threshold. The threshold size is controlled by adjusting the number of
elements in the list with k. After determining the mask threshold used by the
current stage network, we generate the adaptive mask M̂ l ∈ R

S×1 for the current
stage according to the following definition:

M̂ l
(i,j) =

{
1, if M l

(i,j) > threshold

M l
(i,j), otherwise

(4)

where (i, j) represents the row and column indices of an element in M l, if the
value at position (i, j) in M l is greater than the threshold, then the value at the
corresponding position in M̂ l is set to 1. Otherwise, the value at that position
remains the same as M l. Furthermore, k will increase as the network stage
progresses, which means that in later stages of the network with stronger learning
ability, more very small patch weights will be preserved, gradually focusing on
the lesion region during the progressive training process.
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Masked Self-attention. Next, we apply the generated mask M̂ l to Kl and V l

respectively, obtaining Kl
mask, V

l
mask ∈ R

S×D. We then calculate the attention
map Al ∈ R

S×S . The final output of the FSA is Ol ∈ R
S×D, defined as follows:

Kl
mask = M̂ l ◦ Kl, V l

mask = M̂ l ◦ V l (5)

Al = Softmax

(
QlklT

mask√
D

)

, Ol = AlV l
mask (6)

where ‘◦’ represents element-wise multiplication with broadcasting mechanism.

2.3 Optimization and Inference

During the optimization process, we progressively update the parameters of the
multi-stage network. For a network that includes N stages, we calculate the
weighted IoU loss and binary cross entropy (BCE) loss at each stage to ensure
fair comparison. Specifically, for networks in stages n from 1 to N − 1, we adopt
the following loss function:

Ln = Lw
IoU (fn, G) + Lw

BCE (fn, G) (7)

where fn is the prediction result generated by the nth stage network, G is the
corresponding ground truth for the input sample, and Lw

IoU and Lw
BCE represent

the weighted IoU loss and BCE loss, respectively. In addition, the loss for the
Nth stage network is defined as:

LN = αLN
Stage + βLN

Sum (8)

α and β are weight coefficients. For LN
Stage, since the Nth stage inherits the

encoder-decoder of all preceding stages, we supervise the outputs of the decoders
corresponding to all 1 to N stage networks included in the Nth stage:

LN
Stage =

N∑

n̂=1

ωn̂
(Lw

IoU

(
f n̂, G

)
+ Lw

BCE

(
f n̂, G

))
(9)

where f n̂ represents the prediction result of the n̂th stage network included in
the Nth stage network, and ωn̂ is the weight coefficient. For LN

Sum, we sum the
outputs of each stage network included in the Nth stage to obtain fSum, and
supervise fSum:

LN
Sum = Lw

IoU

(
fSum, G

)
+ Lw

BCE

(
fSum, G

)
(10)

During the inference process, we use the prediction result of the Nth stage
network within the multi-stage network as the final output.
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3 Experiments

3.1 Datasets and Evaluation Metrics

We conduct experiments on 4 polyp segmentation datasets, including Kvasir-
SEG [9], CVC-ClinicDB [1] CVC-ColonDB [16], and EndoScene [18]. Kvasir-SEG
and CVC-ColonDB contain 1000 and 380 polyp images respectively, while CVC-
ClinicDB contains 612 polyp images extracted from 31 colonoscopy examination
videos. The EndoScene is a combination of CVC-ClinicDB and CVC300. All
datasets are split into training, validation, and test sets in a ratio of 80:10:10. To
evaluate the learning ability of the model, we train and test it on the Kvasir-SEG
and CVC-ClinicDB respectively to assess its performance.

To further evaluate the model’s generalization ability, we first use the training
set split from the Kvasir-SEG to train the model, and then testing it on the test
set split from the CVC-ClinicDB. In addition, we follow the practices of PraNet
[8] and LDNet [21], selecting 80% of the images from the Kvasir-SEG and CVC-
ClinicDB to form our training set, and 10% of the images as the validation set.
We then test the model on two unseen datasets, specifically the CVC-ColonDB
and EndoScene. For CVC-ColonDB, we use all images as the test set. Notably,
since the training set includes images from the CVC-ClinicDB, we only select
images from the CVC300 portion of the EndoScene for testing to ensure that
the model is tested on unseen datasets. For evaluation metrics, we use mean IoU
(mIoU), mean Dice (mDice), precision (Prec), and recall.

3.2 Implementation Details

All models are trained using an NVIDIA GeForce RTX3090 GPU, with image
sizes uniformly resized to 224 × 224 (except for a few networks that require a
256 × 256 size due to input limitations). We utilize simple data augmentation
strategies, including random rotation, vertical flipping, and horizontal flipping.
All models are trained with the same hyperparameters: a learning rate of 1e−4,
decay rate of 1e−4, and a batch size of 16. We use the Adam optimizer for
optimization, and the training lasts for 100 epochs.

For our proposed PRFNet, we use a progressive training strategy with N = 3
stages, and the encoder employs the lightweight backbone MobileViT, which
has 5 layers, i.e., L = 5. The decoder is composed of Concatenation, Upsample,
Conv2d, BatchNorm and ReLU operations, while the final layer of the decoder,
termed the Predict Head layer, consists of Upsample and Conv2d operations.
The ARF module is added after the 2nd layer of the encoder, and the 56 × 56
feature map input into the module. The patch size is set as 4 × 4, the number
of blocks is 2, and this module masks 20% of patches when N = 3. α and β are
set to 1.5 and 1.0, respectively, to make the distribution of prediction results at
each stage consistent. Since the final output of the network is derived from the
last decoder branch in the 3rd stage, ω1̂, ω2̂, and ω3̂ are set to 1.0, 1.0, and 2.0
respectively, making the network focus more on the final output.
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3.3 Results

Following the evaluation methods described in Sect. 3.1, we compare our PRFNet
with 11 state-of-the-art methods used for polyp segmentation or general medical
image segmentation. These include UNet [13], UNet++ [22], PraNet [8], Tran-
sUNet [4], HarDNet-DFUS [3], SSFormer-L [19], LDNet [21], GMSRFNet [15],
TransResUNet [17], Polyp-PVT [2], and CaraNet [11].

Learning Ability. As shown in Table 1, our PRFNet achieves the best results
on most metrics on the Kvasir-SEG and CVC-ClinicDB. Specifically, on the
Kvasir-SEG, our PRFNet achieves the best results in mIoU, mDice, and Recall,
with mIoU and mDice improving by 1.83% and 1.51% respectively compared to
the second best model. For the CVC-ClinicDB, our PRFNet also achieves the
best results on most metrics. By comparing with state-of-the-art methods on
these datasets, we demonstrate the excellent learning ability of PRFNet in the
field of polyp segmentation.

Generalization Ability. As shown in Table 1, when using Kavsir-SEG as the
training set and CVC-ClinicDB as the test set for evaluation, PRFNet still
achieves the best results on most metrics compared to other methods. As shown
in Table 2, when mixing Kvasir-SEG and CVC-ClinicDB as the training set and
testing on unseen datasets, PRFNet significantly outperforms other methods on
the metrics of CVC-ColonDB and EndoScene, where the mIoU on the EndoScene
dataset improved by 2.31% compared to the second best model. These exper-
iments also demonstrate that our proposed ARF module combined with the
progressive training strategy not only ensures the model’s learning ability, but
also possesses excellent generalization ability to unseen data.

Table 1. Quantitative results on Kvasir-SEG and CVC-ClinicDB datasets.

Architectures Train: Kvasir-SEG Train: CVC-ClinicDB Train: Kvasir-SEG

Test: Kvasir-SEG Test:CVC-ClinicDB Test: CVC-ClinicDB

mIoU mDice Prec Recall mIoU mDice Prec Recall mIoU mDice Prec Recall

UNet 75.17 83.3 88.06 85.45 80.72 87.53 88.44 89.63 55.24 63.71 77.84 70.47

UNet++ 75.45 83.24 90.51 83.66 78.39 84.89 87.21 86.74 53.17 61.01 80.69 63.51

PraNet 81.28 87.95 89.99 90.45 84.81 89.82 88.74 91.88 69.16 77.02 82.82 82.33

TransUNet 81.39 88.00 91.24 91.24 84.18 89.72 87.12 96.05 71.23 78.59 84.43 80.32

HarDNet-DFUS 79.92 87.07 91.72 87.27 83.44 89.14 87.87 92.27 71.71 79.36 88.19 78.72

SSFormer-L 82.33 88.53 92.09 89.54 84.49 89.84 87.89 95.87 73.29 79.92 84.40 81.84

LDNet 82.44 88.98 89.53 92.15 84.12 89.42 87.98 92.18 71.93 79.79 84.88 82.18

GMSRFNet 78.50 86.12 87.74 89.30 84.21 90.42 85.80 97.40 63.18 71.21 83.54 75.26

TransResUNet 80.87 87.88 91.20 88.91 84.86 89.46 88.83 90.65 72.33 78.80 88.28 81.23

Polyp-PVT 82.23 88.84 91.80 89.68 85.01 90.49 88.78 95.05 73.39 80.01 86.96 81.55

CaraNet 80.78 87.81 90.50 89.44 83.48 89.11 88.39 90.94 71.40 78.50 89.10 79.05

PRFNet (Ours) 84.27 90.49 90.93 92.57 85.63 90.92 89.96 93.24 73.89 80.88 84.26 83.21
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Table 2. Quantitative results on two unseen datasets.

Architectures Train: Kvasir-SEG & CVC-ClinicDB

Test: CVC-ColonDB Test: EndoScene

mIoU mDice Prec Recall mIoU mDice Prec Recall

UNet 55.34 63.01 80.92 67.66 63.37 72.13 74.01 80.57

UNet++ 55.79 64.69 73.43 73.19 66.32 75.18 71.38 90.15

PraNet 67.48 75.91 75.00 84.86 79.06 86.79 81.07 97.27

TransUNet 67.35 75.31 75.34 83.09 76.19 83.66 79.17 96.04

HarDNet-DFUS 66.59 74.16 79.05 79.06 77.98 84.93 81.36 95.32

SSFormer-L 67.91 76.07 77.60 82.09 76.67 84.37 80.30 94.87

LDNet 64.67 72.62 76.37 80.24 78.36 84.78 82.01 95.48

GMSRFNet 57.10 66.03 73.15 75.33 62.44 73.64 63.28 96.30

TransResUnet 65.49 73.74 78.54 78.33 76.91 84.97 79.15 96.90

Polyp-PVT 67.99 76.53 75.26 85.52 77.34 84.17 80.69 94.20

CaraNet 67.42 75.28 79.53 81.19 79.81 87.22 82.46 96.40

PRFNet (Ours) 69.18 77.04 85.18 78.28 82.12 89.37 87.43 93.65

Our qualitative analysis results, as shown in Fig. 2(a), reveal that other state-
of-the-art methods only focus on the most prominent lesion parts in the polyp
images, completely ignoring the lesion parts that are very similar to the healthy
tissue. In contrast, our PRFNet pays attention to these regions, achieving out-
standing polyp segmentation results.

3.4 Ablation Study

Effective of Progressive Feature Refinement. We set up different training
strategies and adjust the structure of the network at each stage, as shown in
Table 3. When only a single stage of the network is used independently, network
performance gradually increases with the increase in layers, but it is inferior to
the progressive training strategy. We also further modify the network structure
at each stage. For instance, we remove the 1st stage’s decoder included in the 2nd
stage network (2 w/o 1). This lead to a loss of information of the corresponding
granularity due to the removal of part of the network structure, resulting in a
significant performance drop. Then, we adopt the progressive training strategy
and only sequentially update the 1st and 2nd stage networks (1 → 2), which
also results in a significant drop in mIoU. In addition, we analyze the mIoU of
the prediction results at each stage during the “1 → 2 → 3” training process, as
shown in Fig. 3(a). It is noteworthy that the mIoU of the 2nd and 3rd stages are
very similar in the later stage of training. However, from the results of “1 → 2”
and “1 → 2 → 3” in Table 3, it can be seen that the 3rd stage network should
not be discarded in progressive training, as there is a significant difference in the
generalization ability of the two processes.
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Table 3. Ablation studies on progressive
feature refinement.

Stage mIoU mDice Prec Recall

1 80.61 87.94 88.62 90.37

2 82.45 89.14 89.57 92.06

3 82.97 89.43 91.01 90.91

2 w/o 1 80.86 88.00 87.99 91.78

3 w/o 2 79.34 86.43 90.22 87.36

1 → 2 81.79 88.76 89.53 91.09

1 → 2 → 3 84.27 90.49 90.93 92.57

Table 4. Ablation studies on adaptive
region focusing module.

Mask Rate mIoU mDice Prec Recall

w/o ARF 83.24 89.48 91.84 89.6

0% 82.84 89.25 90.75 91.17

10% 83.87 90.30 90.60 92.05

20% 84.27 90.49 90.93 92.57

30% 82.70 89.10 90.22 90.68

50% 81.42 88.18 88.80 90.83

Fig. 2. (a) Qualitative results comparison on the Kvasir-SEG dataset. (b) Comparison
of feature maps in ARF module before and after being masked. (c) Qualitative results
of progressive feature refinement on Kvasir-SEG dataset.

Effective of Adaptive Region Focusing. We train and evaluate the network
after removing ARF module and adjusting the patch masking ratio. The experi-
mental results are shown in Table 4. After removing this module (w/o ARF), the
mIoU is still 0.91% higher than the second best method in Sect. 3.3 for evaluating
learning ability, indirectly proving the effectiveness of our proposed progressive
training strategy. When the masking ratio is increased to more than 30%, it
may mask some of the lesion regions, causing a significant drop in network per-
formance. The network performance is optimal when the masking ratio is 20%.
In addition, we also adjust the number of blocks. As shown in Fig. 3(b), it can
be found that when the number of blocks is set to more than 2, the network
performance significantly decreases. This might be because when the number of
blocks is too many, the feature representation degrades, and the FSA cannot
effectively mask the non-lesion patches.
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Fig. 3. (a) mIoU results at all stages. (b) Ablation studies on the number of blocks.

Visualization Analyse. To visually analyze the effectiveness of our proposed
method, we visualize the output results of FSA and the progressive training
strategy. As shown in Fig. 2(b), we reshape and visualize the Key before and
after patch masking in FSA, and it is evident that the masked patches primarily
focus on the non-lesion region, surrounding the lesion region, effectively fulfilling
our design expectations. The visualization results of the progressive training
strategy are shown in Fig. 2(c), where it can be seen that the network in the 1st
stage can achieve initial localization of the lesion tissue, the predicted results of
the 2nd stage further refine this based on the 1st stage, and finally the 3rd stage
achieves precise segmentation.

4 Conclusion

In this paper, we propose the concise yet very effective PRFNet, which incor-
porates a progressive training strategy to gradually yield accurate segmenta-
tion results. We also introduce an adaptive region focusing module that masks
patches corresponding to the non-lesion region, enabling the model to focus on
the lesion region during the training process, thereby enhancing the network’s
generalization ability. We prove the learning and generalization ability of our
proposed PRFNet on multiple polyp datasets and use systematic ablation stud-
ies to demonstrate the effectiveness of our proposed methods. For future work,
we consider using a more lightweight backbone, increasing the number of stages,
and further improving the network’s learning ability. We also aim to experiment
with and fine-tune PRFNet on other medical imaging tasks, with the intend to
construct a generalized framework for medical image segmentation.
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Abstract. The accurate segmentation of thyroid nodules in ultrasound
(US) images is critical for computer-aided diagnosis of thyroid cancer.
While the fully supervised methods achieve high accuracy, they require
a significant amount of annotated data for training, which is both costly
and time-consuming. Semi-supervised learning can address this challenge
by using a limited amount of labeled data in combination with a large
amount of unlabeled data. However, the existing semi-supervised seg-
mentation approaches often fail to account for both geometric shape
constraints and scale differences of objects. To address this issue, in this
paper we propose a novel Pyramid Shape-aware Semi-supervised Learn-
ing (PSSSL) framework for thyroid nodules segmentation in US images,
which employs a dual-task pyramid prediction network to jointly pre-
dict the Segmentation Maps (SEG) and Signed Distance Maps (SDM)
of objects at different scales. Pyramid feature prediction enables bet-
ter adaptation to differences in nodule size, while the SDM provides a
representation that encodes richer shape features of the target. PSSSL
learns from the labeled data by minimizing the discrepancy between the
prediction and the ground-truth and learns from unlabeled data by min-
imizing the discrepancy between the predictions at different scales and
the average prediction. To achieve reliable and robust segmentation, two
uncertainty estimation modules are designed to emphasize reliable pre-
dictions while ignoring unreliable predictions from unlabeled data. The
proposed PSSSL framework achieves superior performance in both quan-
titative and qualitative evaluations on the DDTI and TN3k datasets to
State-Of-The-Art semi-supervised approaches. The code is available at
https://github.com/wuliZN2020/Thyroid-Segmentation-PSSSL.
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segmentation · Dual-task pyramid prediction network · Shape-aware ·
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1 Introduction

Thyroid nodules are common disorders in the endocrine system and the incidence
of the nodules has increased in recent years [1]. Ultrasound (US) is the primary
imaging technique for diagnosing thyroid diseases [2]. Segmentation of thyroid
nodules in US images is the initial step in computer-aided diagnosis systems,
which helps physicians assess the nodules’ size, morphology, boundary, local
gland structure, and other characteristics, facilitating the diagnosis of benign
and malignant thyroid nodules.

Though supervised deep learning methods have achieved high performance in
thyroid nodules segmentation tasks, they require large amounts of high-quality
annotated data, which is time-consuming and labor-intensive for specialists.
Since the unlabeled data is easy and cheap to obtain, semi-supervised learn-
ing has emerged as a data-efficient strategy that utilizes limited labeled data
and large amounts of unlabeled data to alleviate the label scarcity problem [3].
Semi-supervised segmentation methods are typically categorized into two types:
pseudo labeling and consistency regularization. Pseudo labeling [4] generates
proxy labels on the unlabeled data using a prediction model and combines them
with the labeled data to provide additional information. Examples include meta
pseudo labels [5], NoisyStudent [6], and TSSDL [7]. Consistency regularization
enforces consistency constraints over unlabeled data, such as the Π-model and
temporal ensembling strategy [8], mean-teacher framework [9,10], dual-task con-
sistency network [11].

However, the scale of thyroid nodules in the images varies greatly, result-
ing that thyroid nodules exhibit significant variations in shape and size in the
US images. The semi-supervised learning methods often face difficulties in ade-
quately capturing these shape and size differences from the limited labeled
data. This circumstance can potentially lead to issues of either under- or over-
segmentation of nodules. Some methods, such as DAP [12], DPA-DenseBiasNet
[13], and URPC [14], have attempted to address these challenges by incorpo-
rating probabilistic shape priors, learning anatomical features, and encouraging
predictions at multiple scales to be consistent. However, they either only con-
sidered the geometric shape constraints or the scale differences. Besides, the
existing shape constraint methods usually assume the input images are properly
aligned, so that an anatomical prior can be incorporated on the object, which is
infeasible in practice for nodules with large variations in size or shape.

In this work, we propose a novel Pyramid Shape-aware Semi-supervised
Learning (PSSSL) framework for thyroid nodules segmentation. PSSSL utilizes
multi-scale feature prediction and a flexible shape representation in the network
architecture to enforce a shape constraint on the segmentation output and han-
dle nodules with large variations in size or shape. PSSSL employs a dual-task
pyramid prediction network to perform Segmentation Maps (SEG) and Signed
Distance Maps (SDM) prediction at different scales simultaneously. Pyramid
network prediction enables our model to capture multi-scale features of nod-
ules, adapting to the scale variations of nodules in US images. The SDM assigns
each pixel a value indicating its signed distance to the nearest object boundary,
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providing a shape-aware representation that encodes richer object shape fea-
tures. PSSSL minimizes the discrepancy between the predicted SEG and SDM
at different scales and the corresponding ground-truth SEG and SDM for labeled
data. Multi-scale feature prediction enables better adaptation to differences in
nodule size, while the SDM provides a representation that encodes richer shape
features of the target. The combination of these two strategies reduces over-
and under-segmentation issues caused by variations in nodule size and shape,
thereby improving the accuracy and robustness of the segmentation results. For
unlabeled data, PSSSL assumes consistent predictions across scales and mini-
mizes the discrepancy between the predictions at different scales and the aver-
age prediction. We further designed separate uncertainty estimation modules
for two tasks to emphasize reliable predictions from unlabeled data while ignor-
ing unreliable predictions and ensuring reliable and robust segmentation. We
evaluated our approach on two public thyroid nodules segmentation datasets.
The quantitative results demonstrate that our PSSSL outperforms the State-
Of-The-Art (SOTA) semi-supervised segmentation methods. The visualization
results demonstrate that our approach produces more accurate boundaries and
shapes, and effectively detects nodules of different sizes.

2 The Proposed Method

The PSSSL framework proposed for the semi-supervised segmentation of thy-
roid nodules in US images is shown in Fig. 1, which consists of a dual-task pyra-
mid prediction network and two uncertainty estimation modules. The dual-task
pyramid prediction network simultaneously performs SEG prediction and SDM
prediction at different scales. For labeled data, PSSSL learns by minimizing the
discrepancy between the predicted SEG and SDM at different scales and the
corresponding ground-truth SEG and SDM. For unlabeled data, we assume that
the predictions at different scales should be consistent. Therefore, PSSSL learns
by minimizing the discrepancy between the predictions at different scales and
the average prediction. Furthermore, we designed separate uncertainty estima-
tion modules for each task to evaluate the confidence of the predicted results
from unlabeled data at different scales.

2.1 Dual-Task Pyramid Prediction Network

Signed Distance Map (SDM). SDM can describe the distance of each pixel
to the boundary in an image. A positive value means the pixel is inside the
segmented region, a negative value means outside, and 0 means on the boundary
[15]. The calculation formula of SDM is as follows:

Z(x) =

⎧
⎨

⎩

0, x ∈ ΔS
+infy∈ΔS‖x − y‖2, x ∈ Sin

−infy∈ΔS‖x − y‖2, x ∈ Sout,
(1)

where ‖x − y‖2 is the Euclidean distance between pixel x and y. ΔS, Sin, Sout

denote the boundary, inside, and outside of the object, respectively.
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Fig. 1. Overview of the proposed PSSSL framework.

Network Architecture. Our network has two characteristics: a pyramid struc-
ture for multi-scale prediction outputs in the backbone network and two predic-
tion tasks for each scale, SEG and SDM. Concretely, we modified the U-Net
[16] backbone network by adding two prediction heads after each upsampling
block in the decoder: the SEG and SDM prediction heads. The SEG prediction
head consists of a convolutional block and a softmax activation function, while
the SDM prediction head consists of a convolutional block and a tanh activa-
tion function. Finally, both SEG and SDM multi-scale prediction outputs are
upsampled to the same size as the input image.

For our semi-supervised learning task, we have M labeled examples in
a set Dl =

{(
xl
i, y

l
i, z

l
i

)}M

i=1
and N unlabeled examples in a set Du =

{(xu
i )}N+M

i=N+1. zli is the SDM ground-truth derived from SEG ground-truth yl
i

by Eq. 1. Given an input image xi, PSSSL produces two sets of multi-scale pre-
dictions {seg0, seg1, ...segs, ..., segS−1} and {sdm0, sdm1, ...sdms, ..., sdmS−1}.
Where xi ∈ R

H∗W , yi ∈ {0, 1}H∗W , zi ∈ [−1, 1]H∗W , segs ∈ [0, 1]H∗W ,
sdms ∈ [−1, 1]H∗W , segs and sdms denote the SEG and SDM prediction at
scale s, respectively. S is the number of scales.

2.2 Supervised Pyramid Shape-Aware Loss

For the labeled data, we combine dice loss and cross-entropy loss for multi-scale
SEG outputs and a separate mean square loss for multi-scale SDM outputs.

Lsup
seg =

1

S

S−1∑

s=0

Ldice

(
segs, y

l
i

)
+ Lce

(
segs, y

l
i

)

2
, (2)
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Lsup
sdm =

1

S

S−1∑

s=0

Lmse

(
sdms, z

l
i

)
, (3)

Lsup = Lsup
seg + αLsup

sdm, (4)

where yl
i and zli denote the SEG and SDM ground-truth of input xl

i. Ldice,
Lce, and Lmse denote the dice loss, cross-entropy loss, and mean square loss,
respectively. Lsup

seg , Lsup
sdm, and Lsup denote the supervised SEG loss, supervised

SDM loss, and total supervised loss. α is a weighting coefficient balancing two
supervised loss terms. In our experiment, α is set to 0.3 [17].

2.3 Unsupervised Shape-Aware Pyramid Consistency Loss

Uncertainty Estimation Module. For the unlabeled data, due to the differ-
ent spatial resolutions of the prediction results at different scales in the PSSSL
framework, upsampling them to the same size as the input image may result in
varying degrees of loss of fine details. Enforcing consistency among prediction
results at different scales directly may introduce noise and unreliable guidance to
the model. Therefore, we have developed separate modules to evaluate the uncer-
tainty of the consistency predictions for both SEG and SDM. Specifically, we
estimate uncertainty for prediction at scale s by calculating the Jensen-Shannon
(JS) divergence [18] between the prediction at scale s and the average prediction.
JS divergence incorporates an average distribution in its calculation, making it
smoother and more robust to outliers and noise compared to other methods for
uncertainty estimation.

segm =
1

s

S−1∑

s=0

segs, U
seg
s =

1

2

C∑

i=1

(

segi
s log

segi
s

M(seg)i
s

+ segi
m log

segi
m

M(seg)i
s

)

; (5)

sdmm =
1

s

S−1∑

s=0

sdms, U
sdm
s =

1

2

C∑

i=1

(

sdmi
s log

sdmi
s

M(sdm)i
s

+ sdmi
m log

sdmi
m

M(sdm)i
s

)

;

(6)
where segm and sdmm are the average SEG and SDM predictions across these
scales, respectively. segis and sdmi

s denote the ith channel of segs and sdms,
respectively. C is the class (i.e., channel) number. Useg

s and Usdm
s are confi-

dence maps of SEG and SDM consistency predictions at scale s, respectively.
M(seg)is = 1

2

(
segis + segim

)
, and M(seg)s denote the average distribution of

segs and segm. Similarly, M(sdm)s denote the average distribution of sdms and
sdmm. A high value in Us indicates high uncertainty in pixel prediction at scale
s due to significant deviation from other scale predictions.

Unsupervised Shape-Aware Pyramid Consistency Loss. With the guid-
ance of the confidence map U, we emphasize the relatively reliable predictions
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and ignore unreliable predictions. Uncertainty-aware unsupervised SEG consis-
tency loss Lunsup

seg consists of two terms. The first term represents unsupervised
SEG consistency loss with uncertainty estimation. The second term represents
SEG uncertainty loss, which aims to minimize the prediction uncertainty of each
scale. Lunsup

sdm has a similar structure to Lunsup
seg .

Lunsup
seg =

1

S

∑S−1
s=0 (segs − segm)2 ∗ wseg

s
∑S−1

s=0 wseg
s

+
1

S

S−1∑

s=0

‖Useg
s ‖2 , (7)

Lunsup
sdm =

1

S

∑S−1
s=0 (sdms − sdmm)2 ∗ wsdm

s
∑S−1

s=0 wsdm
s

+
1

S

S−1∑

s=0

∥
∥
∥Usdm

s

∥
∥
∥
2
, (8)

Lunsup = Lunsup
seg + αLunsup

sdm , (9)

where Lunsup is unsupervised shape-aware pyramid consistency loss. α is the
same weighting coefficient as α in Lsup. wseg

s = 1/(1+Useg
s ) and wsdm

s = 1/(1+
Usdm
s ) denote the weight of SEG and SDM prediction at scale s, respectively.

For a given pixel at scale s, a higher uncertainty leads to a lower weight.

2.4 Overall Semi-Supervised Loss

The proposed PSSSL framework learns from both labeled and unlabeled data
by minimizing the following combined objective function:

L = Lsup + λLunsup. (10)

Following, we use the time-dependent Gaussian warming up function λ (t) =
0.1 ∗ e(−5(1−(t/tmax))

2) [17] to control the balance between the supervised loss
and unsupervised consistency loss, where t denotes the current training step and
tmax is the maximum training step.

3 Experiments and Results

3.1 Datasets and Implementations

We evaluated our approach on two public thyroid nodule segmentation datasets:
DDTI [19] and TN3k [20]. The DDTI dataset consists of 637 thyroid US images
with a resolution size of 256 * 256, while the TN3k dataset contains 3493 US
images with varying resolutions. We further performed online data augmenta-
tions, including random reshaping, flipping, and cropping, which resulted in a
resolution size of 256 * 256 for all of the US images that we finally used as input
to the model. The datasets are randomly split into training, validation, and test
sets in a 6:2:2 ratio.

Our PSSSL framework is implemented in Pytorch and trained on a computer
with 8 GeForce RTX 3090Ti GPUs. U-Net is adopted as the backbone network



PSSSL for Thyroid Nodules Segmentation in US Images 413

for easy implementation and fair comparison with other methods. All models are
trained using the SGD optimizer with a momentum of 0.9. The poly learning rate
strategy was used for learning rate decay lr = 0.01∗(1 − (t/tmax))0.9. The batch
size is set to 4, and the maximum training epoch is 1000. During testing, we take
the SEG output at scale 0 (i.e., seg0) for evaluation. We choose four evaluation
metrics: Dice Score (%), Jaccard Score (%), 95% Hausdorff Distance (95HD), and
Average Surface Distance (ASD). Given two object regions, Dice and Jaccard
mainly compute the percentage of overlap between them, 95HD measures the
closest point distance between them, and ASD computes the average distance
between their boundaries [21].

Table 1. Quantitative segmentation results on the DDTI and TN3k dataset.

Labeled Method DDTI TN3k

Dice↑ Jaccard↑ 95HD↓ ASD↓ Dice↑ Jaccard↑ 95HD↓ ASD↓
100% U-Net (FS) 78.32 67.06 31.21 11.88 80.03 70.26 17.73 4.61

20% U-Net (LS) 66.19 53.52 45.61 19.84 67.52 55.24 48.45 18.23

UA-MT 71.96 61.04 33.42 12.49 72.65 61.10 33.82 12.05

SASSNet 72.84 61.90 33.82 12.50 74.64 64.10 25.01 7.33

DTC 73.76 62.54 36.82 15.33 74.26 63.61 26.11 7.73

URPC 72.00 61.19 33.38 12.41 73.94 63.15 26.24 8.10

SS-Net 75.05 64.39 30.76 11.19 76.51 66.03 23.93 7.56

MC-Net 71.09 59.76 35.02 11.89 71.95 61.77 26.11 7.32

PSSSL(ours) 76.77 66.41 28.82 10.13 79.43 69.77 17.59 4.48

10% U-Net(LS) 56.01 45.28 48.53 18.46 64.64 53.80 30.81 8.95

UA-MT 66.98 55.92 44.44 17.50 70.47 59.49 29.39 9.05

SASSNet 69.01 57.36 40.71 15.61 71.56 61.28 26.05 7.19

DTC 69.34 57.48 40.88 15.45 71.87 60.45 41.65 15.76

URPC 67.65 56.39 45.69 17.21 70.94 59.36 32.95 11.98

SS-Net 71.36 58.86 45.68 17.50 72.59 61.85 28.14 9.44

MC-Net 66.77 55.29 39.25 14.81 69.27 58.47 31.09 10.01

PSSSL(ours) 72.36 60.85 32.81 12.60 75.60 65.37 25.18 7.76

3.2 Quantitative Evaluation and Comparison

Comparison with Supervised Methods. Firstly, we compared our method
with the limited supervised learning method that uses 20% and 10% of labeled
data, which is denoted as U-Net (LS). Similarly, U-Net (FS) is denoted as uti-
lizing all labeled data for fully supervised learning, which sets the performance
upper bound. Table 1 reports quantitative results on the DDTI dataset and TN3k
dataset, respectively, using only 20% and 10% labeled data for training. It can
be seen that compared to U-Net (LS), our proposed method effectively utilizes
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Fig. 2. Visual comparisons with other methods.

unlabeled data, resulting in a significant improvement in its performance for
segmenting thyroid nodules in US images (Dice: +16.35%, Jaccard: +15.57%,
95HD: −15.72, ASD: −5.86 on DDTI; Dice: +10.96%, Jaccard: +11.57%, 95HD:
−5.63, ASD: −1.19 on TN3k when using only 10% of labeled data).

Comparison with Other Semi-supervised Methods. Furthermore, we
compared our method with several SOTA approaches for semi-supervised seg-
mentation, including UA-MT [10], SASSNet [17], DTC [11], URPC [14], SS-Net
[22], MC-Net [23]. The quantitative results in Table 1 show that compared to
U-Net (LS), all semi-supervised segmentation methods achieved better segmen-
tation performance. In particular, our method achieved the best segmentation
performance on both datasets, which demonstrates that our method not only
efficiently utilizes unlabeled data but also has stronger robustness. In Fig. 2, we
visualized the thyroid nodules segmentation results of limited supervised and
semi-supervised methods using 20% labeled data on the two datasets. It can be
observed that our approach exhibits improved accuracy in delineating boundaries
and shapes, enabling effective detection of nodules across various sizes. This can
be attributed to the utilization of multi-scale prediction and shape constraints.

3.3 Ablation Study

Investigating the Impacts of SDM. To validate the effectiveness of SDM
in thyroid nodules segmentation, we compared the performance of U-Net and
U-Net with SDM heads (Row 1 vs. Row 2 in Table 2) in limited supervised
segmentation. The experimental results show that the SDM head improved
the model’s performance (Dice: +2.83%, Jaccard: +4.13%, 95HD: −4.84, ASD:
−3.6 on DDTI; Dice: +2.22%, Jaccard: +3.24%, 95HD: −17.69, ASD: −7.73 on
TN3k). It should be noted that because there is no multi-scale prediction, the
model with S = 1 (i.e., U-Net) can only learn from labeled data. Furthermore, we
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Table 2. Ablation study of the proposed PSSSL framework on the DDTI and TN3k
datasets when using 20% of labeled data. UE denotes the Uncertainty Estimation
module.

Row Method DDTI TN3k

S SDM UE Dice↑ Jaccard↑ 95HD↓ ASD↓ Dice↑ Jaccard↑ 95HD↓ ASD↓
1 S = 1 66.19 53.52 45.61 19.84 67.52 55.24 48.45 18.23

2 S = 1 � 69.02 57.65 40.77 16.24 69.74 58.48 30.76 10.50

3 S = 2 � � 72.18 60.31 34.34 12.55 73.08 62.68 25.77 7.87

4 S = 3 � � 75.41 64.47 30.97 10.58 75.91 65.46 23.56 7.07

5 S = 4 � � 76.77 66.41 28.82 10.13 79.43 69.77 17.59 4.48

6 S = 4 69.66 57.89 40.50 15.32 71.80 60.23 31.52 11.08

7 S = 4 � 73.40 61.45 37.57 14.54 76.82 66.47 23.97 7.75

8 S = 4 � 72.11 60.53 33.14 12.51 73.84 63.21 25.73 7.56

9 S = 4 � � 76.77 66.41 28.82 10.13 79.43 69.77 17.59 4.48

compared the performance of the model without and with the SDM head at S =
4 (Row 6 vs. Row 7; Row 8 vs. Row 9 in Table 2). The SDM head also improved
the performance of semi-supervised segmentation, where the model learns from
both labeled and unlabeled data at S = 4. This shows that introducing SDM
can impose shape constraints on the segmentation nodules, leading to better
segmentation performance.

Investigating the Impacts of Different Numbers of Scales. To investigate
the impact of the number of scales on the performance of the dual-task pyramid
prediction in PSSSL, we set S to 2, 3, and 4 (Row 3, 4, and 5 in Table 2),
respectively. As S increased from 2 to 4, the performance of PSSSL continued
to improve. This can be attributed to the fact that the predictions at different
scales allowed the model to better perceive the differences in nodule sizes in US
images, thereby enhancing the segmentation performance of the model.

Investigating the Impacts of Uncertainty Estimation. To investigate the
effectiveness of the uncertainty estimation module in PSSSL, we removed the
uncertainty estimation module from PSSSL with and without the SDM head
at S = 4. The experimental results demonstrate that the uncertainty module
boosts the semi-supervised segmentation performance of thyroid nodules (Row
6 vs. Row 8; Row 7 vs. Row 9 in Table 2). It indicates that the uncertainty
estimation module emphasizes reliable predictions from unlabeled data while
ignoring unreliable predictions.

Investigating the Robustness of PSSSL on Other Modalities. Consider-
ing that all the experiments were conducted on US modality datasets, to verify
the effectiveness of AmmH on datasets of other modalities, we conducted com-
parative experiments with limited supervised learning on the Left Atrium (LA)
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dataset [24]. The LA dataset contains 100 3D gadolinium-enhanced MR imag-
ing scans (GE-MRIs) and LA segmentation masks. The experimental results
are presented in Table 3. It should be noted that, due to the LA dataset being
a 3D dataset, we chose the V-Net model as our backbone in this experiment.
Compared to V-Net (LS), our method still achieved significant improvements in
the segmentation of MRI modality images, especially when using only 10% of
the labels (Dice: +12.9%, Jaccard: +15.8%, 95HD: −11.98, ASD: −3.23). This
fully demonstrates the robustness of the PSSSL model in the semi-supervised
segmentation of medical images.

Table 3. Quantitative segmentation result on the LA datasets.

Labeled Method Metrics

Dice↑ Jaccard↑ 95HD↓ ASD↓
100% V-Net (FS) 90.74 83.12 8.09 1.48

20% V-Net (LS) 86.81 77.21 10.59 2.59

PSSSL (ours) 89.69 81.38 12.31 1.69

10% V-Net (LS) 74.59 62.29 23.94 5.52

PSSSL (ours) 87.49 78.09 11.96 2.29

4 Conclusion

In this paper, we have proposed a novel efficient semi-supervised learning frame-
work, PSSSL, for thyroid nodules segmentation in US images. We have developed
a dual-task pyramid prediction network that jointly performs SEG and SDM
predictions of the object at multiple scales. Pyramid network prediction enables
to capture multi-scale features of nodules, adapting to the scale variations of
nodules in US images. The SDM prediction provides a flexible shape-aware rep-
resentation that encodes richer object shape features. Separate uncertainty esti-
mation modules for two tasks are designed to emphasize reliable predictions from
unlabeled data. The proposed framework achieves superior performance in both
quantitative and qualitative evaluations on the DDTI and TN3k datasets com-
pared to SOTA semi-supervised approaches. The visual results show that PSSSL
achieves superior performance with more accurate borders and shapes, indicat-
ing our method has alleviated the problems of over- and under-segmentation in
the semi-supervised segmentation of thyroid nodules in US images.
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1 Introduction

Motivated by the potential of highlighting important regions in medical image
analysis, semantic segmentation has garnered significant attention in recent
years [1]. Advances in medical image segmentation methods have demonstrated
their scalability in handling extensive training on high-resolution medical images
across divergent organs. However, the complexity and resource requirements of
these approaches present significant challenges [2]. Considering the limitations
imposed by the medical application environment, there is a pressing need to
prioritize the development of architectures that strike a balance between com-
putational efficiency and high performance. Thus, the improvement of an efficient
model for accurate segmentation tasks on resource-constrained medical devices
becomes both essential and imperative.

With the rapid advancement of medical imaging technology, the quest for
achieving accurate segmentation tasks using high-quality medical image data
has become paramount. In the realm of medical image segmentation, two
primary approaches have emerged: transformer-based and CNN-based meth-
ods. Transformer-based approaches have garnered significant attention from
researchers due to their capability to extract global information from long-range
sequences using self-attentive mechanisms, thereby enhancing feature extrac-
tion. Notably, UNETR [2] has pioneered the integration of a transformer as the
backbone of the encoder, leading to substantial improvements in segmentation
accuracy. However, the computational complexity associated with transformer-
based approaches poses challenges in terms of execution efficiency, making them
less suitable for resource-constrained scenarios.

On the other hand, CNN-based approaches have gained considerable traction
due to their lightweight nature, making them highly computationally efficient.
Frameworks such as [3,4] and [5] are notable examples in this category. These
models prioritize efficient computations and are specifically designed to handle
resource-limited scenarios encountered in medical imaging applications. How-
ever, a drawback of CNN-based approaches lies in their limited ability to capture
long-range dependencies compared to transformer-based methods [6]. Nonethe-
less, ongoing research in CNN architecture design aims to address this limitation
by exploring innovative techniques that enable improved learning of contextual
information and long-range dependencies, thus enhancing the segmentation per-
formance of CNN-based models [7]. The development of CNN-based approaches
is driven by the pursuit of striking a balance between computational efficiency
and the ability to capture essential information necessary for accurate segmen-
tation in the domain of medical imaging.

Our goal is to contribute to the advancement of efficient medical segmen-
tation frameworks suitable for resource-constrained medical units. We aim to
achieve this by harnessing the strengths of both transformer-based and CNN-
based approaches. We recognize that such frameworks need to meet two criti-
cal requirements: high accuracy and high inference efficiency, especially in the
context of resource-constrained medical tasks [8]. However, achieving high accu-
racy in segmentation models often comes at the cost of increased computational
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complexity, which poses a significant challenge when striving for both accuracy
and efficiency in applications with limited healthcare resources [9]. Therefore,
it is crucial to address this challenge and develop medical segmentation frame-
works that strike a balance between accuracy and efficiency, ensuring optimal
performance within the constraints of resource-limited environments [10,11].

This paper presents AgileNet, an efficient and rapid approach for breast
lesion segmentation. AgileNet leverages 3D convolution operations to effectively
analyze medical images by coordinating hierarchical representation. The key
component of AgileNet is the Agile block, which plays a crucial role in aggre-
gating representations from each layer in an economical and efficient manner
during global processing. The Agile block incorporates a contextual integration
process that enables efficient learning of representations through two key com-
ponents: the global sparse calculator (GSC) and the reversed diffuser (RD).
The GSC selectively identifies globally significant features of authorized mark-
ers, while the RD mechanism efficiently propagates the updated representations
from higher to lower layers. This well-designed framework enables AgileNet to
strike a better balance between high precision and high inference efficiency in
breast lesion segmentation tasks.

The main contributions in this paper are summarized as follows:

– AgileNet is a novel framework designed for efficient and rapid breast lesion
segmentation in 3D medical image analysis, aiming to achieve a balance
between segmentation precision and high inference speed.

– The key component of AgileNet is the AgileNet block, which incorporates a
contextual integration process. This process enables fast information exchange
by leveraging the global sparse calculator and the reversed diffuser.

– Experimental evaluations on two public datasets, BraTS 2021 and MSD,
showcase that AgileNet achieves state-of-the-art performance, demonstrating
its effectiveness in breast lesion segmentation.

2 Related Work

Semantic segmentation is employed in the analysis of medical images to examine
anatomical structures [12]. The U-Net architecture, comprising an encoder and
decoder, has demonstrated notable performance in segmentation tasks [13–16].
Expanding upon this foundation, nn-UNet further enhances segmentation pre-
cision by incorporating skip connections to capture features at different levels
of stages [1]. Nevertheless, CNN-based approaches face constraints in capturing
long-range dependencies due to their limited receptive fields [2,17]. To capture
global representations, UNETR integrates transformers as encoders, however,
this introduces quadratic complexity as a trade-off [17]. Thus, the development
of an efficient framework that effectively learns contextual information while
maintaining computational efficiency is necessary.
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Fig. 1. Our approach leverages a U-shaped encoder-decoder architecture, with the
incorporation of skip connections to establish hierarchical feature maps. As a funda-
mental element within each stage, an AgileNet block (illustrated in detail in Fig. 2)
undertakes the vital function of facilitating efficient information exchange.

3 Methods

3.1 Framework

The AgileNet framework is built upon a deep learning architecture that com-
prises an encoder network and a decoder network, as illustrated in Fig. 1. These
networks are connected through skip connections, facilitating the seamless flow
of information across different levels of the model hierarchy. A key component of
the framework is the Agile block, which plays a crucial role in efficiently extract-
ing and aggregating representations from multimodal feature maps. For more
detailed insights into the Agile block, please refer to Sect. 3.2. The loss function,
depicted in Sect. 3.3, employed in the framework aims to ensure the predicted
mask closely aligns with the ground truth, thus contributing to the achievement
of high accuracy in segmentation tasks.

3.2 AgileNet Block

In scenarios where device processing capabilities are constrained, there is a need
for lightweight segmentation models that can deliver satisfactory performance
while minimizing resource requirements. The proposed AgileNet block, designed
to address this need, depicted in Fig. 2, includes three basic components, Patch
Partition, global sparse calculator (GSC), and reversed diffuser (RD).

Patch Partition. The AgileNet Block is a specialized module designed for pro-
cessing 3-dimensional images denoted as X, with dimensions representing width
W , height H, depth D, and channel C. Through a patch partitioning layer, the
input image X is divided into smaller patches, resulting in N tokens. Unlike other
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Fig. 2. Structure of AgileNet block. This block consists of three basic components,
Patch Partition, global sparse calculator, and reversed diffuser.

transformer-based methods that convert these patches into a linear sequence of
embeddings, our approach utilizes GSC to explore and capture global features
from the entire X. By leveraging GSC, the AgileNet Block gains a comprehen-
sive understanding of the image and effectively utilizes global information. This
innovative methodology enhances the block’s ability to capture relevant features,
leading to improved performance and superior feature representation.

Global SparseCalculator. TheGlobal SparseCalculator (GSC) serves the pur-
pose of implementing attentional computations for input features through the uti-
lization of sparse computation techniques. By employing the GSC, global repre-
sentations are structured using windows, facilitating an efficient and effective app-
roach. This module comprises two key designs that contribute to the sparsifica-
tion of the computational transformer. The first design incorporates hierarchical
downsampling operations across multiple stages, resulting in the generation of a
sparse set of uniformly distributed delegate tokens. This is achieved through a 3D
pointwise convolution with a stride rate denoted as r = (1, 2, 2, 4). On the other
hand, the second design involves locally-grouped multi-head self-attention mech-
anisms (L-MSA) that manage token length and accommodate shared parameters.
In this approach, the delegate tokens play a crucial role in computing global sparse
attention among the central tokens. Figure 3(a) provides a visual illustration of this
process. Through the synergy of these designs, the GSC enables efficient attention
computations and facilitates the generation of structured global representations
for improvedperformance in various tasks.The computation of global sparse atten-
tion coefficients is performed in accordance with Eq. 1 [18].

Attention(q, k, v) = softmax(
qkT√
dk

)v (1)

Reversed Diffuser. Incorporating global contextual representations into the
central tokens of the GSC requires propagating this information to their neigh-
boring tokens. This task is accomplished by the reversed diffuser (RD) module.
The RD is responsible for distributing the updated feature knowledge from the
central tokens to the entire window embedding, as shown in Fig. 3(b).
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Fig. 3. Contextual integration process.

We achieve the sharing of global representations across windows by utilizing
3D transposed convolution and pointwise convolution. These operations employ
a different rate of r = (1, 2, 2, 4) across different stages. This ensures that each
local central token effectively shares global representations with its correspond-
ing window. The complete process of the RD module, including information
propagation and knowledge distribution, is illustrated in Fig. 2.

By utilizing this mechanism, the GSC comprehensively integrates global con-
textual information, thereby enhancing the overall understanding and represen-
tation of the input data.

3.3 Loss Function

Soft dice loss is a commonly used loss function in semantic segmentation [19]. It
compares the predicted segmentation mask with the ground truth by evaluating
the overlap between their pixel-wise binary masks. This loss encourages accu-
rate and precise segmentation results by penalizing the differences between the
predicted and ground truth masks. The calculation can be represented by the
Eq. 2.

Ldice(Y, Y ′) = 1 − 2
J

M∑

j=1

∑N
i=1 Yi,jY

′
i,j∑N

i=1 Yi,j +
∑N

i=1 Y
′
i,j

(2)

In the given context, I and J indicate the account of voxels and classes.

4 Experiments and Discussion

4.1 Datasets

BraTS 2021. The BraTS 2021 training dataset comprises 1251 data sam-
ples of 3D MRI scans, consisting of four modalities: native (T1), post-contrast
T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid-attenuated Inversion
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Recovery (T2-FLAIR). These modalities provide comprehensive imaging infor-
mation for analysis. The dataset includes three distinct tumor sub-regions: the
enhancing tumor, peritumoral edema, and the necrotic and non-enhancing tumor
core. Each sub-region is accompanied by explanatory notes that provide addi-
tional context and insights. The dataset follows a standardized image size of
240 × 240 × 155 pixels to ensure consistency across the samples. Furthermore,
the explanatory notes are organized into three hierarchical sub-regions: Whole
Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET), allowing for a
deeper understanding of the different aspects and characteristics of the tumors
within the dataset.

MSD. The Hepatic Vessel dataset, specifically the MSD No.8 task dataset,
was chosen to evaluate the generalizability of our approach. Unlike brain data
samples, these images exhibit noticeable differences in terms of anatomical struc-
ture and image features due to the focus on the liver region. The images were
reconstructed using standard convolution kernels, with slice thickness ranging
from 2.5–5 mm and a reconstruction diameter between 360–500 mm. To ensure
accurate annotations, contour adjustments were manually performed by radiol-
ogy experts specializing in abdominal imaging. This dataset serves as a robust
testbed for evaluating the efficacy and adaptability of our approach in the con-
text of hepatic vessel analysis.

4.2 Evaluation Metrics

Hardware Metrics. Three important metrics are commonly used to evaluate
the performance and efficiency of models: 1. FPS, measured in images/second,
provides insights into the practical processing efficiency of a model and is essen-
tial for assessing its lightweight efficacy; 2. FLOPs (floating point operations
per second) represent the model’s inference efficiency by measuring its ability to
perform a large number of floating point operations within a specific time frame;
3. Model parameters, typically measured in millions (MParams), quantify the
size of the model, which is a critical factor to consider when deploying models on
devices with limited resources. These metrics collectively contribute to assessing
the overall performance and resource requirements of models in various contexts.

Segmentations Dice. The Dice similarity coefficient (Dice) is a widely used
metric for evaluating the performance of segmentation tasks. It quantifies the
agreement or overlap between the predicted segmentation mask and the ground
truth mask. The Dice coefficient is calculated by taking twice the intersection of
the predicted and ground truth masks and dividing it by the sum of their sizes.
The metric can be formulated as shown in Eq. 3.

Dice =
∑I

i=1 YiY
′
i∑I

i=1 Yi +
∑I

i=1 Y
′
i

(3)

where Y and Y ′
i denote the ground truth and prediction of voxel values.
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4.3 Implementation Details

The training of AgileNet was conducted on parallel NVIDIA V100 GPUs, while
the testing phase utilized an Intel(R) Xeon(R) Gold 6240R CPU. Data augmen-
tation techniques were applied during training, with probabilities set as (0.5, 0.2,
and 0.2) for random flips at each axis, intensity scaling, and shifting. Addition-
ally, random flips, rotations, and intensity scaling were applied with probabili-
ties of 0.5, 0.25, and 0.5, respectively. For the BraTS dataset, 3D patches were
randomly cropped to sizes of 128 × 128 × 128, whereas for the Hepatic Vessel
dataset, the cropped patch sizes were 96 × 96 × 96. The initial learning rate was
set to 0.001, and training utilized a linear warmup, cosine annealing learning
rate scheduler, and AdamW optimizer with a weight decay of 0.4.

4.4 Results and Discussion

Segmentation Results on BraTS 2021. This section presents an evaluation
of AgileNet’s efficiency and effectiveness on the BraTS 2021 dataset in a com-
parable computing environment, as shown in Table 1. AgileNet demonstrates a
significant advantage over state-of-the-art algorithms in terms of hardware met-
rics. It achieves a processing speed of 4.663 images per second, outperforming
the fastest VitAutoEnc model by 0.179 images per second in segmentation tasks.
Furthermore, AgileNet exhibits the smallest MParams and FLOPs computations
compared to similar models. In terms of segmentation dice analysis, AgileNet
achieves a top dice accuracy of 91.02% on the BraTS 2021 dataset, surpassing the
accuracy of the second-best model, UNETR, by 0.71%. Overall, AgileNet effec-
tively balances high accuracy, and high inference efficiency, making it a notable
improvement over other methods.

Table 1. Quantitative performance comparison of different networks in BraTS 2021.
The performance metrics of AgileNet are highlighted in gray , while the best perfor-
mance in terms of hardware metrics and segmentation is recorded in blue and purple.

Hardware Metrics Brain tumor Segmentations Dice
Methods

FPS↑ FLOPs↓ MPara.↓ Avg.(%)↑ WT(%)↑ ET(%)↑ TC(%)↑
VNet [19] 0.828 78.0 4.56 89.09 91.38 86.90 89.01

AttUNet [20] 1.042 16.65 0.27 90.40 92.02 88.28 90.94

UNet 3D [13] 0.32 238.21 1.92 87.93 92.69 84.10 87.10

nn-UNet [1] 1.4198 44.6 1.38 90.84 92.71 88.34 91.39

TransVW [21] 0.359 238.13 1.91 88.21 92.32 82.09 90.21

SegResNet [22] 1.298 33.02 1.06 90.78 92.73 88.31 91.31

UNETR [2] 1.531 20.3 10.2 90.31 92.53 87.59 90.78

TransBTS [23] 0.891 26.38 3.06 89.18 91.05 86.75 98.76

TransUNet [24] 0.891 24.64 18.7 84.59 87.68 83.34 82.75

VitAutoEnc [25] 3.217 12.56 18.34 76.14 81.41 68.35 78.66

AgileNet 4.663 1.24 0.18 91.02 91.06 88.58 93.42
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Table 2. Quantitative performance comparison of different networks in MSD(Hepatic
Vessel). The indicator color design is the same as in Table 1.

Hardware Metrics Segmentations Dice
Methods

FPS↑ FLOPs↓ MPara.↓ Avg.(%)↑ Tumors(%)↑ Vessel(%)↑
VNet [19] 1.859 32.37 4.56 66.38 63.55 69.21

AttUNet [20] 2.253 6.98 0.27 61.81 56.94 66.68

UNet 3D [13] 0.675 100.47 1.92 60.62 57.29 63.95

nn-UNet [1] 4.505 18.58 1.38 69.12 66.46 71.78

TransVW [21] 0.74 100.23 1.91 68.62 65.80 71.44

SegResNet [22] 3.942 13.76 1.06 67.52 64.08 71.01

UNETR [2] 2.192 8.24 9.26 66.96 62.84 69.08

TransUNet [24] 2.092 10.07 17.76 65.89 60.95 70.83

VitAutoEnc [25] 3.723 5.01 17.39 52.28 48.26 56.30

AgileNet 6.609 0.82 0.14 69.14 65.43 72.85

Segmentation Results on MSD (Hepatic Vessel). This section presents
the evaluation of AgileNet on the MSD dataset, as shown in Table 2. Despite
the differences in modalities between CT images for MSD and MRI images for
BraTS, AgileNet demonstrates excellent performance. It achieves the best infer-
ence efficiency and model size, outperforming the second-best model in terms
of throughput with 2.104 images per second. Furthermore, AgileNet achieves

Axial
View

Segittal
View

Coronal
View

Ground Truth

AgileNet

Fig. 4. Qualitative visualizations of the proposed AgileNet and ground truth.
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SOTA performance in terms of accuracy, model size, and inference efficiency
on this dataset. This experiment highlights the versatility of AgileNet across
different datasets and modalities.

Ablation Study Results. Table 3 outlines the contributions of AgileNet blocks
to medical segmentation performance. Although the employment of AgileNet
Block incurs some level of throughput consumption, the apparent enhancement
in segmentation performance is noteworthy. Specifically, the segmentation per-
formance witnessed a substantial upsurge from 73.87% to 91.02%, marking a
remarkable surge of 17.18%.

Table 3. Quantitative performance comparison with/without AgileNet Block in the
BraTS 2021 dataset. In this table, we have indicated superiority in purple and disad-
vantage in blue.

Modules Thr.↑ Flops↓ Mparams↓ Dice↑
w/o 315.87+112.09 1.07-0.8 0.07-0.07 73.84-17.18

w 203.78 1.87 0.14 91.02

Qualitative Visualization with Ground Truth. The segmentation perfor-
mance of the AgileNet model in accurately identifying the primary tumor region
can be observed in Fig. 4. The model demonstrates its ability to effectively cap-
ture the boundaries of the tumor, resulting in a precise delineation of the tumor
region that closely aligns with the ground truth mask. What is particularly
remarkable is that AgileNet achieves this high level of segmentation accuracy
without compromising on its lightweight design. This means that the model is
capable of efficiently processing and analyzing medical images while maintaining
exceptional performance. These results highlight the effectiveness of AgileNet in
striking a balance between accuracy and computational efficiency, making it a
valuable tool for medical image analysis and tumor segmentation tasks.

5 Limitations and Future Work

Despite the impressive performance and lightweight model architecture of the
AgileNet model in segmentation tasks, the evaluation of this model has primar-
ily centered around dense segmentation tasks, specifically tumor segmentation.
Its performance in non-dense segmentation tasks, such as multi-organ segmen-
tation, remains a direction requiring further in-depth investigation. In future
research endeavors, we aim to explore the performance bounds of AgileNet across
a broader spectrum of medical segmentation tasks and further uncover the per-
formance potential of AgileNet Block.
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6 Conclusion

This study introduces AgileNet, an efficient and rapid breast lesion segmenta-
tion approach that combines the advantages of transformer-based and CNN-
based methods. The key component of AgileNet is the AgileNet block, which
facilitates contextual integration and streamlined information exchange. This
makes AgileNet a practical solution for medical imaging analysis, particularly on
devices with limited hardware resources. Experimental results demonstrate that
AgileNet achieves cutting-edge performance on both the BraTS 2021 and MSD
(Hepatic Vessel) datasets. These findings highlight the potential of AgileNet in
medical scenarios where computational complexity needs to be reduced and infer-
ence efficiency needs to be improved. The research opens up promising avenues
for further advancements in medical imaging analysis under resource constraints.
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1. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for
brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS,
vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-72087-2 11

2. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 574–584 (2022)

3. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

4. Pang, Y., et al.: Graph decipher: a transparent dual-attention graph neural network
to understand the message-passing mechanism for the node classification. Int. J.
Intell. Syst. 37(11), 8747–8769 (2022)

5. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolu-
tional neural network for mobile devices. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

6. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural net-
works. In: International Conference on Machine Learning, pp. 6105–6114. PMLR
(2019)

7. Koonce, B.: MobileNetV3. In: Convolutional Neural Networks with Swift for Ten-
sorflow, pp. 125–144. Apress, Berkeley, CA (2021). https://doi.org/10.1007/978-
1-4842-6168-2 11

8. Li, L., Zhou, T., Wang, W., Li, J., Yang, Y.: Deep hierarchical semantic segmen-
tation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1246–1257 (2022)

9. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for
efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C.,
Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9 8

10. Xu, L., Ouyang, W., Bennamoun, M., Boussaid, F., Xu, D.: Multi-class token
transformer for weakly supervised semantic segmentation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4310–
4319 (2022)

https://doi.org/10.1007/978-3-030-72087-2_11
https://doi.org/10.1007/978-3-030-72087-2_11
https://doi.org/10.1007/978-1-4842-6168-2_11
https://doi.org/10.1007/978-1-4842-6168-2_11
https://doi.org/10.1007/978-3-030-01264-9_8


430 J. Liang et al.

11. Ziegler, A., Asano, Y.M.: Self-supervised learning of object parts for semantic
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14 502–14 511 (2022)

12. Monteiro, M., et al.: Multiclass semantic segmentation and quantification of trau-
matic brain injury lesions on head CT using deep learning: an algorithm devel-
opment and multicentre validation study. Lancet Digit. Health 2(6), e314–e322
(2020)

13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

14. Yu, L., Yang, X., Chen, H., Qin, J., Heng, P.A.: Volumetric convnets with mixed
residual connections for automated prostate segmentation from 3D MR images. In:
Thirty-First AAAI Conference on Artificial Intelligence (2017)

15. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.-A.: H-DenseUNet: hybrid
densely connected UNet for liver and tumor segmentation from CT volumes. IEEE
Trans. Med. Imaging 37(12), 2663–2674 (2018)

16. Dou, Q., Chen, H., Jin, Y., Yu, L., Qin, J., Heng, P.-A.: 3D deeply supervised net-
work for automatic liver segmentation from CT volumes. In: Ourselin, S., Joskow-
icz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901,
pp. 149–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-
8 18

17. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR:
Swin transformers for semantic segmentation of brain tumors in MRI images. In:
Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and
Traumatic Brain Injuries, BrainLes 2021. LNCS, vol. 12962, pp 272-284. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-08999-2 22

18. Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers
in vision: a survey. ACM Comput. Surv. (CSUR) 54(10s), 1–41 (2022)

19. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks
for volumetric medical image segmentation. In: Fourth International Conference on
3D Vision (3DV), vol. 2016, pp. 565–571 . IEEE (2016)

20. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv
preprint arXiv:1804.03999 (2018)

21. Haghighi, F., Taher, M.R.H., Zhou, Z., Gotway, M.B., Liang, J.: Transferable visual
words: exploiting the semantics of anatomical patterns for self-supervised learning.
IEEE Trans. Med. Imaging 40(10), 2857–2868 (2021)

22. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regular-
ization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum,
T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11726-9 28

23. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain
tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI
2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-87193-2 11

24. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image
segmentation. arXiv preprint arXiv:2102.04306 (2021)

25. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in
healthcare. arXiv preprint arXiv:2211.02701 (2022)

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46723-8_18
https://doi.org/10.1007/978-3-319-46723-8_18
https://doi.org/10.1007/978-3-031-08999-2_22
http://arxiv.org/abs/1804.03999
https://doi.org/10.1007/978-3-030-11726-9_28
https://doi.org/10.1007/978-3-030-87193-2_11
https://doi.org/10.1007/978-3-030-87193-2_11
http://arxiv.org/abs/2102.04306
http://arxiv.org/abs/2211.02701


CFNet: A Coarse-to-Fine Framework
for Coronary Artery Segmentation

Shiting He1, Yuzhu Ji1(B), Yiqun Zhang1, An Zeng1, Dan Pan2, Jing Lin1,
and Xiaobo Zhang1

1 Guangdong University of Technology, Guangzhou, China
2112105092@mail2.gdut.edu.cn, andrewchiyz@gmail.com,

{yqzhang,zengan,lj,zxb leng}@gdut.edu.cn
2 Guangdong Polytechnic Normal University, Guangzhou, China

pandan@gpnu.edu.cn

Abstract. Coronary Artery (CA) segmentation has become an impor-
tant task to facilitate coronary artery disease diagnosis. However, existing
methods have not effectively addressed the challenges posed by the thin
and complex structure of CA, leading to unsatisfactory performance in
grouping local detailed vessel structures. Therefore, we proposed a novel
coarse-to-fine segmentation framework, namely CFNet, to refine the CA
segmentation results progressively. The global structure targeting mod-
ule aims to capture the spatial structure of the CA by introducing dilated
pseudo labels as supervision. In addition, a lightweight transformer-based
module is designed to refine the coarse results and produce more accu-
rate segmentation results by capturing the long-range dependencies. Our
model exploits both local and global contextual features by integrat-
ing a convolutional neural network and visual Transformer. These two
modules are cascaded using a center-line patching strategy, which filters
out unnecessary features and mitigates the sparsity of CA annotation.
Experimental results demonstrate that our model performs well in CA
segmentation, particularly in handling challenging cases for fine vessel
structures, and achieves competitive results on a large-scale dataset, i.e.,
ImageCAS, in comparison to state-of-the-art methods.

Keywords: coronary artery segmentation · coarse-to-fine framework ·
multi-stage training · medical image analysis

1 Introduction

Automated coronary artery (CA) segmentation plays a crucial role in facilitating
the diagnosis of coronary artery disease. It can accurately identify CA and clarify
the location and extent of vascular disease, which is useful to make treatment
plans for patients. In addition, automated CA segmentation reduces the need
for manual segmentation by doctors, thus improving disease diagnosis efficiency.
For example, coronary heart disease caused by CA stenosis can clearly show the
location and the severity of the narrowing through automated segmentation. It
helps physicians in the diagnosis and treatment. However, the CA predicted by
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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current models will rupture and miss some branches. Therefore, it has become
increasingly important to propose automated segmentation methods for CA.

In recent years, convolutional neural network (CNN) based models have
gained significant attention due to their excellent performance in medical image
segmentation, for example, Res-Unet [26] for Retina Vessel segmentation, Multi-
Unet [4] for CA segmentation. Generally, CNN-based models use kernels with
fixed sizes of receptive fields to learn discriminative features within local vol-
umes, thus its limitations in learning long-range dependencies. Moreover, Visual
Transformers (ViTs) have made remarkable progress in both high and low-level
computer vision tasks for natural scene images [6,14]. Transformer-based mod-
els break the limitation of the inductive bias of CNN, they are able to capture
long-range contextual dependency. Thanks to this ability, the transformer has
also been widely applied for medical image segmentation, such as TransUnet [3]
and SwinUnetr [7] for multi-organ segmentation. Albeit long-range contextual
relations can be learned for capturing the overall CA structure, it is difficult to
recover the complex and fine-detailed structure of the CA vessels. Overall, in
practice, for CA segmentation, 3D structures of CA are intricate, and tissues
surrounding the vessels are also cluttered and noisy. Therefore, it remains chal-
lenging and non-trivial to achieve accurate CA segmentation in CT volumes by
directly adopting a CNN or ViT-based model for CA segmentation.

In this paper, we propose a novel coarse-to-fine coronary artery segmenta-
tion framework with better targeting of the global structure and recovering local
structures of the CA. Our framework takes advantage of both CNN and ViTs for
capturing local and global contextual features. Specifically, our network consists
of two main modules: (1) a global structure targeting module with a U-shape
CNN-based encoder-decoder model tailored to produce the coarse structure of
the CA; (2) a local structure recovering module with a lightweight visual trans-
former for refining the first-stage coarse segmentation results. In practice, the
global structure targeting module is trained with dilated pseudo labels. These
two modules are cascaded and trained by using a center-line patch cropping
strategy, which filters out irrelevant and noisy voxels and achieves coarse-to-
fine vessel segmentation. Experimental results on a large-scale dataset, namely
ImageCAS [28], show that our proposed framework can get benefits from both
CNN and ViT models for coarse vessel targeting and fine-grained local structure
segmentation, respectively. Challenging cases, including interlaced local vessel
structures, crushed thin CA, etc., can also be accurately segmented in compari-
son with state-of-the-art methods. In summary, our contributions are three-fold:

– We propose a new coarse-to-fine coronary artery segmentation framework
by combining the CNN- and Transformer-based encoder-decoder models. It
progressively refines rough CA and achieves detailed vessel structure segmen-
tation for CA.

– We employ a multi-stage training strategy by incorporating the dilated pseudo
label generating strategy and center-line patch cropping strategy. It effectively
addresses the issues of fragmentation or broken branches in segmentation
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results caused by the complexity of anatomical structures and surrounding
irrelevant tissues.

– Experimental results demonstrate that our model can achieve competitive
performance and outperform state-of-the-art methods for 3D CA segmenta-
tion on the ImageCAS dataset [28].

2 Related Work

2.1 CNN-Based Models for Medical Image Segmentation

Recent advances in CNN-based encoder-decoder models have achieved significant
performance in medical image segmentation tasks [15,18]. To effectively capture
and fuse contextual information on different scales for better recovering the
details of the segmentation mask, Ronneberger et al. [18] proposed Unet. It
consists of a symmetric encoder-decoder architecture with skip connections. The
success of the U-Net in medical image segmentation has inspired the development
of its variants, including Res-UNet [26], Unet++ [30], and Unet 3+ [9].

The attention mechanism [16,22] was also introduced to automatically learn
and align the features that are relevant to the target in segmentation tasks.
It helps improve the performance and expressive power of the model. Specifi-
cally, Ozan et al. [17] proposed Attention U-Net, introduced an attention mod-
ule between the encoder and decoder, which dynamically adjusts the weights of
features. In order to encourage the network to learn discriminative features for
targets such as tumours [13], organs [12], etc. However, medical images often
have a 3D structure, and the additional dimension in 3D images contains rich
spatial information compared to 2D images. Therefore, 3D-Unet [5] was pro-
posed to better utilize spatial information and capture contextual information.
In addition, many researchers have proposed 3D medical image segmentation
methods, such as V-net [15], among others.

Influenced by the attention mechanism and 3D volume segmentation, Shen
et al. [20] proposed a 3D Fully Convolutional Network (FCN) integrating an
Attention Module to focus on the CA in the noisy volumes. Apart from that,
CA has a distinctive branching structure, and many methods have been designed
to address this characteristic. Bin et al. [10] designed a tree-structured ConvRNN
network introducing the center-line of CA for CA segmentation. For the special
structure of blood vessels, Zhao et al. [29] proposed a cascaded network composed
of a graph convolutional network (GCN) and a CNN. It can fuse the features
across the network to improve performance. However, these methods lack the
ability to capture the detailed structure of the CA.

2.2 Vision Transformers for Medical Image Segmentation

The emergence of ViT has garnered significant attention in the field of computer
vision and has proven to be an effective alternative, breaking the limitations of
traditional CNN-based models [1,2,6]. While ViT is good at capturing long-
range context dependencies, it may struggle with capturing local information
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due to its tokenization process. Therefore, Liu et al. [14] proposed a hierarchical
Transformer, namely Swin Transformer, to address the limitations of the stan-
dard ViT model in capturing fine-grained details and local context. Due to the
outstanding performance of ViTs [21,24,25,27], many researchers have started
to apply it to the field of medical image segmentation [1,3,7,8,11,23]. Specifi-
cally, Chen et al. [3] advanced Trans-UNet, a novel architecture that combines
the strengths of Transformer and U-Net for medical image segmentation. Trans-
BTS [23] is the first 3D ViTs segmentation network which divides the image
into a sequence of tokens by using 3D CNN and utilizes the Transformer to
capture long-range dependencies among 3D tokens. A novel architecture called
UNETR [8], proposed by Hatamizadeh et al., captures long-range dependen-
cies by pure Transformer encoders and obtains global multi-scale information
through residual connections.

Moreover, Cao et al. [1] proposed Swin-Unet which is the first U-Net-like seg-
mentation network based on pure Transformers. Swin Transformer with shifted
windows is able to capture local and global contextual features. In practice,
since the parameters of ViTs are in a quadratic relationship with the image
size. The medical images are generally 3D having a large resolution, so the cal-
culation cost of the ViTs-based model is very high. Lee et al. [11] introduced
a lightweight network designed for 3D medical image segmentation, called 3D
UX-Net. It improves the transformer block by using ConvNet modules, which
improves segmentation performance and reduces computational costs.

In summary, CNN-based models are good at obtaining the local information
and the Transformer-based model performs better in capturing the long-range
dependencies. However, since the structure of CA is long and interlaced, both
the local features and the long-range dependencies are important to achieve high
accuracy of segmentation. Therefore we designed a coarse to fine framework get-
ting benefits from both CNNs and ViTs. Considering the tissues surrounding the
vessels are cluttered and noisy, we introduced the dilated pseudo label generating
strategy and center-line patch cropping strategy to target the main structure of
CA and recover the local fine-grained structure progressively.

3 Method

3.1 Overview

Given an input 3D CT volume with resolution D × H × W , where D, H and
W are the spatial depth, height and width, respectively. Our model aims to use
the Global Structure Targeting Module (GSTM) to predict the coarse result
and refine it into the final prediction by the Local Structure Recovering Module
(LSRM). The overall architecture of our proposed CFNet is illustrated in Fig. 1.
Firstly, a dilated pseudo label generating strategy is applied to produce the
pseudo label by dilating the ground-truth (GT) label. Next, the pseudo label is
used as supervision to encourage the GSTM to predict the complete structure
of CA. Then, a center-line patch cropping strategy is utilized to crop the input
volume into patches by locating regions with high confidence according to the
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Fig. 1. Overview of our proposed CFNet.

center-line extracted from the coarse prediction. After that, these local patches
were fed into the LSRM to generate patch-wise predictions. The final prediction
of the CA was reconstructed by merging patch-wise predictions.

3.2 Global Structure Targeting Module

Global Structure Targeting Module (GSTM) aims to obtain the global structure
of the CA by capturing spatial feature information. This module is a CNN-based
encoder-decoder structure. Thanks to CNN’s ability to capture local informa-
tion, GSTM can get a complete structure including small branches in the whole
volumetric image by using the dilated pseudo label as supervision.

Concretely, the building block of the encoder part consists of two 3D con-
volutional layers followed by using ReLU as the activation function and a max-
pooling layer to downsample the feature maps. For each 3D convolutional layer,
we used 3 × 3 × 3 kernels to perform convolution. For the decoder part, the
building block is constructed by using an upsampling layer with a stride of 2
followed by a feature concatenation layer and two 3D convolutional layers with
3 × 3 × 3 kernels. The ReLU activation function is also applied after each 3D
convolutional layer. Similar to the 3D Unet, we stack five encoder building blocks
to extract multi-level features and symmetrically five decoder building blocks to
fuse multi-level features, respectively. Note that the pseudo labels are used as
supervision during the training of GSTM, which guides GSTM to roughly target
the whole structure and shape of the CA with more boundary information.
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3.3 Local Structure Recovering Module

The local structure recovering module (LSRM) aims to refine the coarse results
produced by the GSTM and recover the local detailed structures of the CA.
By both considering the powerful capabilities of long-range dependencies of
ViTs and the computational complexity, we introduce a light-weight ViT model,
namely P2T [25] and adapt the original 2D-P2T to 3D volumetric patches for
fine-grained segmentation.

Specifically, as mentioned before, we first applied a center-line patch cropping
strategy to obtain input patches I for local detailed structure refinement and
accurate final prediction. For each patch, I, a P2T-based transformer encoder is
applied to produce multi-scale features. Initially, I is tokenized by using stride
3D convolution and flatten operations. Learnable position embeddings are also
introduced for encoding location information. The above tokenization process
can be denoted by:

X = Flatten(Conv3D(I)) + Epos, (1)

where Conv3D is a 3D convolutional layer. In practice, the stride is set as the
kernel size s. Epos denotes positional embedding.

Inspired by P2T [25], we introduced a pyramid pooling transformer block
to obtain rich long-range contextual dependencies within the local patches for
fine-grained CA structure recovery. The core idea of the P2T block is to pro-
duce multi-scale contextual features by applying multiple average pooling w.r.t
different pooling ratios. The attention matrix is calculated by introducing the
pyramid pooling layer into the original self-attention block. Therefore, the orig-
inal multi-head self-attention (MHSA) block is converted to a pooling-based
MHSA (P-MHSA). The self-attention block in P2T can be denoted by:

Attention(Q,K, V ) = softmax(
QKT

√
dk

V ) = softmax(
XWq × PWk√

dk
PWv), (2)

where Wq, Wk and Wv are projection parameters for Q, K and V, respectively.
P represents the multi-sale feature maps by concatenating different scales of
pooling results. Concretely, P = Concat(P

′
1, P

′
2, ..., P

′
n), where P

′
i denotes the

i-th layer of pyramid feature maps. P
′
i is obtained by using depth-wise separable

convolution and a residual connection, i.e. P
′
i = ConvD(Pi) + Pi, where P i is

obtained from the i-th average pooling layer. Finally, the output of Attention(Q,
K, V) was fed into a feed-forward network to generate the feature map Z.

Similar to the Unet, we stack four stages of P2T encoding blocks to generate
multi-level features, i.e. [Z(1), Z(2), Z(3), Z(4)]. In the decoder part, we adopted
the same upsampling block from GSTM to recover the spatial resolution of the
feature map and predict the patch segmentation result.

3.4 Dilated Pseudo Label Generating Strategy

Considering the complex anatomical structure of CA and the surrounding tis-
sues, the boundaries of CA are often not enough detail. However, to encour-
age the GSTM to target the overall structure of the CA, we introduce the
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Fig. 2. Dilated Pseudo Label Generating Process.

Dilated Label Pseudo Generating Strategy (DLPGS) to generate pseudo labels
for GSTM. Specifically, the DLPGS applies a morphological dilation operator
to generate the dilated pseudo label based on the GT label. Figure 2 shows an
example of applying the dilation operation on a GT label for generating a dilated
pseudo label.

3.5 Center-Line Patch Cropping Strategy

Considering the vessels of the heart are crisscrossed, a simple split strategy will
lead the network to predict the other arteries as CA. The center-line of the CA, as
a strong prior knowledge, can be used to locate the CA. Therefore, we introduce
the Center-line Patch Cropping Strategy (CPCS) to filter out volumetric data
without CA. In our implementation, the coarse result produced by GSTM was
used to extract the center-line of CA by using an erosion operation. The CT
volume and GT Label were cropped into patches along with the center-line.
After that, only sub-volumes containing CA were extracted and utilized to train
the LSRM.

4 Experiments

4.1 Dataset and Evaluation Metrics

The ImageCAS dataset was collected from a hospital, and all the Computed
Tomography Angiography (CTA) images were captured by a Siemens 128-slice
dual-source scanner. The dataset collected a total of 1000 cases, including 414
female and 586 male patients. Among these cases, 800 cases are selected for train-
ing and the reset 200 cases are for testing. The input image size is 512 × 512×
(206–275), with a planar resolution ranging from 0.29 mm2 to 0.43 mm2, and a
spacing ranging from 0.25 mm to 0.45 mm. The left and right CA in each image
were independently annotated by two experienced radiologists, and their results
were cross-checked. If the annotations were inconsistent, a third radiologist got
involved and provided annotations until the final annotations reached a con-
sensus. In our experiment, we use the Dice coefficient (Dice) to evaluate the
accuracy of the segmentation and the Hausdorff Distance (HD) to measure the
accuracy of the CA boundaries.
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Table 1. Quantitative results in comparison of different methods on the ImageCAS.

Method Dimension Dice (%) ↑ HD (mm) ↓
TransBTS [23] 3D 75.24 129.61

UNETR [8] 3D 76.46 88.24

3D UXNet [11] 3D 77.12 179.78

TransUnet [3] 2D 77.18 17.98

SwinUnet [1] 2D 67.78 41.37

P2T [25] 2D 75.87 19.88

FCN [20] 3D 79.80 18.09

FCN AG [20] 3D 80.39 17.20

3D U-Net [5] 3D 77.00 16.80

U-Net [18] 2D 74.99 20.01

CFNet(Ours) 3D 82.67 18.83

4.2 Implementation Details and Hyper-parameter Settings

The proposed CFNet is implemented by using PyTorch. The Input and GT Label
were resized to 512 × 512 × 256 by linear interpolation. Specifically, the GSTM
is trained for 30 epochs with a batch size of 1. In addition, the local structure
recovering module is trained for another 30 epochs using a batch size of 8. During
the training phase, we adopted the Adam optimizer to update the parameters.
The learning rate is set to 1e−4 and 1e−5 for the coarse and fine training stage,
respectively. A mixture of the Dice loss and cross-entropy loss is employed to
train the network. Moreover, the training policy and hyper-parameter settings
of the models, including FCN [20], FCN AG [20], 3D U-Net [5] are consistent
with GSTM. For TransBTS [23], UNETR [8] and 3D UXNet [11], we follow the
same data augmentation strategy and hyper-parameter settings reported in their
papers. For U-Net [18], TransUnet [3], SwinUnet [1] and P2T [25], 2D slices were
extracted from 3D volumes and used as training data. Other hyper-parameter
settings, including optimizer, loss function, learning rate, etc., are the same as
our coarse stage model.

4.3 Comparison with State-of-the-Arts

We conduct experiments on the ImageCAS dataset by comparing our CFNet
with ten state-of-the-art models for medical image segmentation, including FCN
[19], FCN AG [20], 3D U-Net [5], TransBTS [23], UNETR [8], 3D UXNet [11],
U-Net [18], TransUnet [3], SwinUnet [1] and P2T [25]. Table 1 shows the quanti-
tative comparison results of the proposed CFNet and state-of-the-art methods.

Experimental results demonstrate that our CFNet achieves the best perfor-
mance with a Dice of 0.8267, but a slightly higher HD of 18.83. We believe it
is caused by the error in segmenting the dense vessels of the heart area. The
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Fig. 3. Qualitative results in comparison of state-of-the-art methods.

patch-wise segmentation strategy may fail to accurately segment regions with-
out considering the relative position of the target in volume. Albeit the HD is
not the lowest, our proposed model performs well in comparison with various
state-of-the-art methods. To better visualize the CA segmentation results, we
provide Fig. 3 to show some quantitative results in comparison to state-of-the-
art methods. It can be observed that our model can produce more accurate
segmentation results with fewer broken vessels.

4.4 Ablation Study

To further validate the effectiveness of our proposed modules, we ablated our
model by incrementally introducing the proposed global structure targeting
and local structure recovering modules into our framework. In addition, hyper-
parameter settings, including dilation rate for generating pseudo labels, and
cropping size for patch-wise prediction, are also analyzed.

Ablation on Dilated Pseudo Label Generation Strategy. To investi-
gate the effectiveness of the dilated label strategy, we conducted experiments by
directly using GT labels as the supervision to train GSTM. The patch cropping
size of all experiments is 32, and the dilation rate is 7. The experimental results
in Table 2 show that the proposed model with the first stage of dilated pseudo
label generation strategy can obtain better performance in terms of Dice and
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Table 2. Ablation study on the impact of dilated pseudo label strategy.

Dilated Pseudo Label Strategy Dice (%) ↑ HD (mm) ↓
w/o dilated pseudo label 81.06 25.74

w dilated pseudo label 82.67 18.83

Fig. 4. Comparison of results with and without the dilated pseudo label.

HD. Thanks to the capability of coarsely targeting the global structure using
the dilated pseudo label as supervision, Fig. 4 illustrates that local fine-grained
structures of cases with severely broken blood vessels can be better recovered
using our CFNet.

Ablation on Dilation Rate. To explore the impact of different dilation rates,
we ablate dilation rates w.r.t 5, 7, and 9 for generating pseudo labels. Figure 5(a)
shows that the HD increase following the dilation rate. The best performance in
terms of Dice can be obtained by setting the dilation rate to 7. The quantitative
results show that the performance can be improved by increasing the dilation
rate for generating pseudo labels. However, a larger dilation rate may corrupt
the final predictions. We believe the reason is that a larger dilation rate (i.e. 9)
may introduce more noisy samples in the 3D data.

Ablation on Patch Cropping Size. To investigate the impact of patch crop-
ping sizes on the segmentation performance, we performed ablation on patch
cropping sizes 24, 32, 40, 48, and 56. As shown in Fig. 5(b), similarly, the Dice
coefficient increases along with the cropping size, but drops when setting the
cropping size larger than 40. In practice, since the center-line cropping strategy
filters out parts of the volume without CA, a tradeoff should be made for accu-
rately including the local structures without introducing more irrelevant voxels.
Therefore, in our implementation, we set the cropping size to 32 to achieve the
best Dice performance.
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Fig. 5. Ablation study on (a) Dilation rate and (b) Patch cropping size.

5 Conclusion and Discussion

In this paper, we proposed a new coarse-to-fine framework for CA segmentation,
namely CFNet, which includes two main modules and two strategies. Specifically,
a global structure targeting module and a dilated pseudo label generating strat-
egy are proposed to roughly target the overall structure of the CA. Moreover, a
local structure recovering module and a center-line patch cropping strategy were
introduced to encourage the model to focus and recover the local detailed struc-
tures of the CA. The whole model can be trained using pseudo-dilated labels and
ground-truth labels in multiple training stages. It achieves accurate CA segmen-
tation by capturing the global and local 3D structure of CA for CT volumes in a
coarse-to-fine manner. Experimental results on large-scale dataset, ImageCAS,
show our framework can consistently outperform other state-of-the-art models.
However, the hyperparameter choices of the DPLGS and CLPCS are the bottle-
neck of the runtime efficiency in our method. In practice, it needs to trade off the
efficiency and accuracy. Moreover, to demonstrate the robustness and applicable
scenarios of our proposed model, the performance of different model variations
on different datasets should be further investigated in our future work.
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Abstract. Optic Cup and Optic Disc segmentation plays a vital role in
retinal image analysis, with significant implications for automated diag-
nosis. In fundus images, due to the difference between intra-class fea-
tures and the complexity of inter-class features, existing methods often
fail to explicitly consider the correlation and discrimination of target
edge features. To overcome this limitation, our method aims to cap-
ture interdependency and consistency by involving differences in pixels
on the edge. To accomplish this, we propose an Edge-Prior Contrastive
Transformer (EPCT) architecture to augment the focus on the indistinct
edge information. Our method incorporates pixel-to-pixel and pixel-to-
region contrastive learning to achieve higher-level semantic information
and global contextual feature representations. Furthermore, we incorpo-
rate prior information on edges with the Transformer model, which aims
to capture the prior knowledge of the location and structure of the target
edges. In addition, we propose an anchor sampling strategy tailored to
the edge regions to achieve efficient edge features. Experimental results
on three publicly available datasets demonstrate the effectiveness of our
proposed method, as it achieves excellent segmentation performance.

Keywords: Medical segmentation · Transformer · Contrastive learning

1 Introduction

Glaucoma, a chronic and progressive ocular disease, ranks among the foremost
causes of global blindness, substantially influencing patients’ visual function and
overall quality of life. In pursuing early glaucoma detection and treatment, seg-
menting the Optic Cup (OC) and Optic Disc (OD) from color fundus images is
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paramount as a pivotal diagnostic procedure [1]. However, fundus images often
exhibit low contrast and significant inter-individual variability, manifesting as
variations in the sizes and shapes of the OC and OD. A discernible level of visual
resemblance is observed in OC and OD, particularly at the object’s boundaries.
Presently, clinical practice predominantly relies on manual segmentation, neces-
sitating the involvement of ophthalmologists for subsequent analysis. However,
this laborious and time-consuming process impairs efficiency and accuracy, ren-
dering it impractical for large-scale screening initiatives. As a result, several seg-
mentation algorithms are under investigation, aiming to assist ophthalmologists
and artificial intelligence systems in the diagnostic process.

These methodologies can be categorized into traditional approaches and deep
learning approaches. Traditional approaches predominantly rely on color, tex-
ture, edge characteristics and other manually crafted features to segment the
OC and OD [2,15,19,23]. In recent years, with the development of deep learn-
ing, significant progress has been made in the task [8,10,14,16]. Deep learning
approaches can automatically learn intricate and comprehensive feature repre-
sentations from the original fundus images, leading to more precise OC and OD
segmentation. However, the complexity and variability of the OC and OD led to
insufficient segmentation or excessive segmentation of the target’s edge regions.
Specifically, the complex texture, size and shape of the OC and OD exhibit con-
siderable inter-individual variability (see Fig. 1(a–d)). The edge regions between
the OC and OD may exhibit blurriness or indistinctness (see Fig. 1(e–f)).

Fig. 1. (a)–(d) show the examples of fundus images, where the top row represents the
original images and the bottom row represents the corresponding ground truth images.
(e) Gray-scale fundus images. The blue circle indicates the edge of the OC. (f) Magnified
view of the boundary region showing the gray-scale values. (Color figure online)

In this paper, we propose a Transformer-based network for OC and OD
Segmentation. Motivated by the fact that the feature correlation and differenti-
ation related to pixels along the edge is helpful regarding the variations of the
sizes, shapes and indistinctness over individual variability. We observed over-
segmentation or under-segmentation in the initial segmentation result images.
Therefore, our model aims to exploit the semantic feature interdependencies
among edge pixels and the intra-class and inter-class feature relationships. To
achieve this, we carefully designed the Edge-Prior Contrastive Transformer
(EPCT), which consists of the Edge-Prior Transformer Module (EPTM) and
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the Edge-wise Supervised Contrastive Learning method. The Edge-wise Super-
vised Contrastive Learning method focuses on complex edge samples, learning
the consistency and differences among pixels belonging to different classes. The
Edge-Prior Transformer Module learns to model the relationships between key
positional features as the structural relationships of the target by incorporating
the positional information of the edge prior points. Experimental results demon-
strate the remarkable improvement of our EPCT on RIM-ONE v3 [9], REFUGE
[25] and DRISHTI-GS [28] datasets.

The main contributions are summarized as follows:

• We propose a supervised pixel-region-wise and pixel-wise contrastive learning
method for OC and OD segmentation, which explores the semantic embedding
space of pixels and regions in the indistinct edge regions. As a result, our
model explicitly leverages the global semantic similarity between labeled edge
pixels to learn a well-structured pixel semantic embedding space.

• We carefully develop an Edge-Prior Transformer Module, which implicitly
models the semantic structure relationships between areas and edge points,
thereby addressing the issue of varying target sizes and diverse shapes caused
by individual differences.

• We conducted comprehensive experiments on widely recognized benchmarks.
Extensive experiments on these datasets demonstrate that the proposed
EPCT advances state-of-the-art performance. Specifically, our quantitative
experimental analysis reveals that EPCT enhances the discriminability of
edge regions among different classes.

2 Related Works

2.1 OC and OD Segmentation

The purpose of the task is to separate the OC and OD in color fundus images
and assign labels to each pixel. Some work [8,10,14,20,22] have been carried
out based on Fully Convolutional Network (FCN) [18] and U-Net [27]. M-Net
[8] converting the fundus image into a polar coordinate system, fully using space
constraints and balancing the ratio of OC and OD. However, it does not explicitly
consider the correlation between the circular shape priors. To better use prior
information, BGA-Net [20] integrated boundary prior and adversarial learning,
reducing the disorder entropy along the boundary region. Nevertheless, it may
still face challenges in effectively capturing fine details and handling complex
boundary cases. To address this, our proposed method is designed to incorporate
prior information on the edge to capture the prior knowledge of the location and
structure of the target edges.

2.2 Transformer

The success of the Transformer in natural language processing has led to its
application in medical segmentation tasks [3,4,21,32]. Trans-UNet [4] was the
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first paper to study the application of Transformer in medical image segmenta-
tion. However, it faces challenges in effectively handling small-scale objects and
intricate boundaries in capturing fine details. To address this limitation, a new
architecture called Eformer [21] was proposed using the Sobel-Feldman operator
for edge enhancement. However, it is restricted to boosting edges horizontally
and vertically, possibly neglecting diagonal or other directions. Inspired by this,
we consider the edge point as the position of the OC and OD and model the
relationships between key positional features as the structural relationships of
the target by incorporating the positional information on the edge prior points.

2.3 Contrastive Learning

Contrastive learning has attracted wide attention in computer vision processing
in recent years [5,11,29–31]. Its core idea is to learn representations by com-
paring the similarity relationship between positive (similar) pairs and negative
(dissimilar) pairs. A pixel-by-pixel contrastive learning paradigm for semantic
segmentation is proposed to capture the global semantic relationship and guide
pixels embedded into the category discriminant representation across images
[29]. Inspired by the above works, due to the unique characteristics of fundus
images, we design pixel-to-pixel and pixel-to-region contrastive learning focusing
on complex edge samples, learning the consistency and differences among pixels
belonging to different classes.

3 Method

The proposed method consists of a CNN backbone, an Edge-Prior Transformer
Module (EPTM) and an Edge-wise Supervised Contrastive Learning method
with a Hard Example Selection (HES). As in Fig. 2, we employed a ResNet50
model pre-trained on ImageNet as a CNN backbone to obtain input features.
EPTM is a fusion of traditional Transformer-based with edge-prior in Trans-
former encoder. The Edge-wise Supervised Contrastive Learning method incor-
porates hard example selection, pixel-to-pixel and pixel-to-region.

3.1 Edge-Prior Transformer Module

We introduce the structural boundary of the target through the edge points,
allowing the Transformer to effectively capture edge-wise correlated features
in the image through the self-attention mechanism. Given an input image
I ∈ R

H×W×3, with width W and height H, output an image feature map
If ∈ R

H
16×W

16 ×C , the input of the Transformer layer expects a sequence. There-
fore, we converted the feature mapping plane into 1-dimensional tokens, which
is the feature map F , introduced a position embedding to encode the position
information. Then we fused it with the feature mapping If through direct addi-
tion to obtaining the following feature embedding:

Z0 = F + E = W × If + E, (1)
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Fig. 2. EPCT architecture. It first uses a CNN backbone to extract visual features,
combines them with positional encodings and flattens them into a sequence of local
feature vectors. In the EPTM, the local feature is contextualized by a few Edge-Prior
Transformer layers to derive global edge-point relations. Then, a Project Head fproj
maps each high-dimensional pixel embedding into a feature vector to compute the
contrastive loss LNCE. Segmentation Head fseg up-sampling feature map into a mask
map. In the HES, the negative/positive pixels will be projected and contrasted to
further differentiate the embedding in the edges of OC and OD.

where W is the linear projection matrix, E denotes the position embeddings
and Z0 ∈ R

L×C , L = HW
256 refers to the feature embeddings. We employ a stan-

dard Transformer encoder to capture the long-range context in fundus images.

Edge-Prior Module. We propose an Edge-Prior Module (EPM) that inte-
grates prior knowledge of edges into the Transformer encoder. The Transformer
encoder comprises L Transformer layers, each Transformer layer consists of a Self
Attention (MSA) and a Feed Forward Network (FFN). MSA operates in paral-
lel to capture the semantic and structural features within the input sequence.
It contains a query Q, a key K and a value V as input and outputs a refined
feature as follows:

SA(zi) = Softmax(
qik

T

√
dh

)v, (2)

where [q, k, v] = zW(qkv), W(qkv) ∈ R
D0×3Dh is the projection matrix and

vector zi ∈ R
1×D0 , qi ∈ R

1×Dh are the ith row of z and q, respectively.
Therefore, the contextual feature of the Transformer encoder output is

expressed as:

Xj−1 = MSA(Zj−1) ⊕ FFN(MSA(Zj−1)),

Zj = Xj−1 ⊕ (Xj−1 ⊗ P̂ j−1).
(3)

Our EPM is introduced after the FFN in the Transformer encoder. Specifi-
cally, the values of 0 and 1 are used to indicate the patches of the Transformer,
where a value of 1 represents that the corresponding patch is located in the fuzzy
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edge region. The Transformer generates an edge prior point map E by learning
edge information, where these prior points represent critical regions or features
in the image. To supervise prior points, we generate a set of edge points using
conventional edge detection algorithms based on ground-truth data. Taking each
point as the center and a radius (default value of 10), the proportion of the object
within this circle was calculated and select the top 20 points with the highest
values. Subsequently, we map the 2D coordinates to 1D for correspondence with
the Transformer encoder in our method.

3.2 Edg-Wise Supervised Contrastive Learning

Hard Example Selection. The process follows: First, the initial model deduces
the entire training set and obtains the initial segmentation result. Based on the
initial segmentation result, most pixels with segmentation errors are at the edge.
Therefore, we choose to sample the edge parts of the target for comparative
learning. Our anchor sampling strategy focuses on two specific categories of
pixels: those with incorrect predictions and those at the edge. By selecting pairs
of pixels within a certain distance (within 30 pixels of the ground truth point),
the selected positive sample pairs contain boundary information and can provide
useful feature contrast signals. We extract a mask map M and a feature map F ∈
R

H
8 ×W

8 ×C , from the last two layers in Transformer. We use trilinear interpolation
to upsample the feature map to the size of W × H and concatenate it with the
mask map M into a hybrid feature map. The feature vectors of representative
points in the hybrid feature map can be extracted according to their point index
as anchor embeddings.

Pixel-to-Pixel Contrastive Learning. According to the ground truth, pixels
are divided into four categories, including OC (represented by C), OD (repre-
sented by D), background pixel (represented by G) and edge pixel set (repre-
sented by E). The edge pixel set E is obtained from the pixels D near C and
the background pixels B near D. Specifically, the boundary of the OC and OD
is obtained according to ground truth and the edge pixel set is obtained by
expanding 30 pixels outward and inward. These three circles form two annular
regions for selecting anchors.

According to our anchor sampling strategy, pixel-to-pixel contrastive learning
is performed on hard examples and feature sets, making the edge region’s features
more cohesive and discriminative. For a given hard anchor embedding i with its
corresponding ground truth semantic label c, the positive samples consist of
other pixels that also pertain to the same class c, while the negative samples
comprise pixels from the remaining classes C. Our pixel-wise contrastive loss is
defined as:

Li
NCE =

1
|Pi|

∑

i+∈Pi

− log
exp (i · i+/τ)

exp (i · i+/τ) +
∑

Ni
exp (i · i−/τ)

, (4)

where Pi and Ni denote pixel embedding collections of the positive and negative
samples.
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Pixel-to-Region Contrastive Learning. In order to carry out regional con-
trast learning, it is necessary to extract regional features. Firstly, we divide the
image into different regions according to the ground truth of pixels and each
region contains pixels with the same category label. Then, we carry out aver-
age pooling operations for each region and average the features of all embedded
pixels in the region. In this way, we get a regional D-dimensional feature vector,
which represents the semantic information of the region. For that, when calcu-
lating the anchored pixels, we compare the category label of the pixel with the
regional features. If the anchored pixels belong to class c, the regional features
with the same class c are considered positive samples, while the regional features
with other class c are considered negative samples. It is computing in Eq. (4).

3.3 Training Objective

We optimize our framework by the standard Cross-Entropy loss LCE reducing
the predicted prior map from Transformer and its ground truth map; the Dice
loss LDICE minimizes the difference between the ground truth map and the
predicted mask map and contrastive loss LNCE . Formally, the segmentation loss
function LTotal is defined as:

LTotal = LNCE + LDICE + LPrior. (5)

Specifically, the LPrior is defined as:

LPrior = (1 − K) · LPriorD + K · LPriorC , (6)

LPriorD = φCE(MGT , M̂PredD),

LPriorC = φCE(MGT , M̂PredC),
(7)

where LPriorC denotes the prior point of OC, LPriorD denotes the prior point of
OD. M̂PredC denotes the predicted OC prior map, M̂PredD denotes the predicted
OD prior map, K denotes the category of the prior map. φCE denotes the Cross-
Entropy loss function.

4 Experiments

4.1 Datasets and Metrics

Datasets. To evaluate the effectiveness of the proposed method, we conducted
experiments on the following public datasets: REFUGE Challenge [25], Drishti-
GS [28] and RIM-ONE v3 [9].

REFUGE [25]: It consists of 1200 fundus images and corresponding expert
annotations. It is divided into a training set (400 images), a validation set (400
images) and a testing set (400 images). We added the original validation set for
the training.

Drishti-GS [28]: It contains 101 retinal fundus images of identities, each of
which includes manual labels by four ophthalmologists with different clinical
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experiences. In our experiments, fundus images were randomly selected as the
test dataset, leaving the other 50 images for training.

RIM-ONE v3 [9]: There are 159 images in the dataset, which are not divided
into the training set and test set. In this paper, 99 images are randomly selected
as the training set and 60 images as the testing set.

Evaluation Metrics. Our test sets were evaluated by the standard Dice coeffi-
cient as the evaluation metric. The overlap of the algorithm segmentation results
and the ground truth labels was measured using the Dice score. For each image,
we calculated the prediction result of the OD and OC Dice scores, respectively.

Dice =
2|X � Y |
|X| + |Y | , (8)

where X is the ground truth, Y is the prediction result.

Fig. 3. Visualization of OD and OC segmentation results on RIM-ONE v3 [9]. From
top to bottom: (a) RIM-ONE v3 images. (b) The ground truth. (c) The segmentation
results of U-Net. (d) The segmentation results of Deeplabv3+. (e) The segmentation
results of AttU-Net. (f) The segmentation results of nnU-Net. (g) The segmentation
results of our EPCT.
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4.2 Implementation Details

Each model was trained using PyTorch 1.10.0 on the NVIDIA GeForce RTX 3090
GPU. All images were resized to 512 × 512. Data augmentation included vertical
flip, horizontal flip and random scale change. For all networks, the batch size was
4. The encoder of each network was initially pre-trained on ImageNet and 500
epochs of parameter fine-tuning were performed. The number of Transformer
encoder layers was set to 4. In the comparative experiment, the learning rate
was set to 0. 0001. The iterations of all models were 200 epochs.

Table 1. Comparisons of our approach compared with different state-of-the-art meth-
ods on the DRISHTI-GS dataset, RIM-ONE v3 dataset and REFUGE dataset.

Method RIM-ONE v3 DRISHTI-GS REFUGE

Dicecup Dicedisc Dicecup Dicedisc Dicecup Dicedisc

U-Net [27] 0.837 0.948 0.830 0.945 0.835 0.951

U-Net3+ [12] 0.843 0.955 0.833 0.952 0.837 0.959

DeepLabV3+ [7] 0.857 0.961 0.842 0.951 0.855 0.943

AttU-Net [24] 0.852 0.965 0.845 0.950 0.857 0.964

M-Net [8] 0.862 0.952 0.859 0.948 0.864 0.952

PreNet [6] 0.856 0.961 0.841 0.953 0.857 0.966

nnU-Net [13] 0.865 0.966 0.862 0.960 0.876 0.965

SERT [32] 0.877 0.965 0.880 0.954 0.878 0.955

TransU-Net [4] 0.874 0.954 0.883 0.944 0.877 0.964

BGA-Net [20] 0.872 0.967 0.898 0.956 � �

NENet [26] � � 0.840 0.963 � �

Eff-S Net [17] � � 0.912 0.980 0.887 0.959

Ours 0.898 0.973 0.914 0.982 0.892 0.978

4.3 Comparison with State-of-the-Arts

We conducted a comparative analysis to compare several other methods, as
shown in Table 1. RIM-ONE v3 [9], REFUGE [25] and DRISHTI-GS [28]
datasets were used for comparison experiments. The proposed method achieves
state-of-the-art performance from the experiments and performs better in chal-
lenging cases compared with the considered methods. Figure 3 illustrates the
qualitative comparison of segmentation results between the baseline and our
method on the RIM-ONE v3 [9]. The black parts represent the OC and the gray
parts represent the OD. By comparing the ground truth and our visualization
results in the figures, the segmentation results show different models have differ-
ences, particularly in the edge of the OD and OC. It can be seen that the edge
part of the OC and OD partition is more complete.
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4.4 Ablation Study

We performed an ablation analysis to demonstrate the contribution of each mod-
ule (EPTM and Edge Supervised Contrastive Learning). Table 2 shows that each
module of the proposed contributes to increased performance, with the addition
of our Edge Supervised Contrastive Learning (WSCL), including the anchor
sampling strategy, pixel-to-pixel (PTP) and pixel-to-region (PTR). Figure 4 and
Fig. 5 show the visual examples of the segmentation results, where the first row
is the fundus images, the middle row is the ground truth and the last row is our
results. We visualized on REFUGE [25] and DRISHTI-GS [28] datasets.

Table 2. Ablation study of our proposed method on the DRISHTI-GS dataset [28]
and RIM-ONE v3 [9].

Method RIM-ONE v3 DRISHTI-GS

Dicecup Dicedisc Dicecup Dicedisc

Baseline 0.870 0.963 0.878 0.965

Baseline+EPTM 0.882 0.967 0.890 0.972

Baseline+PTP 0.878 0.965 0.888 0.968

Baseline+PTR 0.870 0.968 0.894 0.970

Baseline+WSCL (PTP+PTR) 0.888 0.971 0.903 0.976

Ours 0.898 0.974 0.914 0.982

Fig. 4. Visualization of OD and OC segmentation results on REFUGE [25].

Our method has accurately partitioned the OC and OD from the low-contrast
area and the processing of the edge part has been smoother and more accurate.
From the analysis of the results, the performance of PTR and PTP is the best
when they work together and PTR further explores the relations on edge and
complements PTP. Moreover, the introduction of the EPTM also enhances the
baseline performance with a better understanding of the semantic relationships
and contextual information between edges and surrounding areas.
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Fig. 5. Visualization of OD and OC segmentation results on DRISHTI-GS [28].

5 Conclusion

In this paper, we have proposed a new framework for OC and OD segmentation.
Our EPCT captures target structural relationships and improves image compre-
hension and perception of edge features, effectively addressing issues of excessive
or insufficient segmentation resulting from indistinct edges. The experimental
evidence from a publicly available dataset shows that the introduced method is
effective, working better than existing methods. In future works, we will focus
on self-supervised architecture by including fewer labels.
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Abstract. Medical images such as CT can provide important reference
value for doctors to diagnose diseases. Identifying and segmenting lesions
from medical images is crucial for its diagnosis and treatment. However,
unlike other segmentation tasks, medical image has the characteristics
of blurred boundaries and variable lesions sizes, which poses challenges
to medical image segmentation. In this paper, we propose a Boundary-
Guided Buffer Feedback Network(BGBF-Net), using the boundary guid-
ance module to combine the low-level feature map rich in boundary infor-
mation and the high-level semantic segmentation feature map generated
by the encoder module, and output the features that focus on the bound-
ary, which is used to enhance the attention of the decoder to boundary
features. The buffer feedback module is used to strengthen the network’s
supervision of the decoder while speeding up convergence of the model.
We apply the proposed BGBF-Net on the LiTS dataset. Comprehensive
results show that the BGBF-Net improves by 2.36% compared to other
methods in terms of Dice.

Keywords: Liver tumor segmentation · Boundary guidance · Cross
attention

1 Introduction

In recent years, the incidence of liver cancer has gradually increased. According
to the World Health Organization, liver cancer ranks second in cancer-related
deaths after lung cancer. Medical imaging technology is usually used to diag-
nose liver cancer. Among them, CT is used more commonly in medical imaging.
Correctly interpreting medical images and accurately segmenting the liver and
liver lesions are critical to the diagnosis of liver diseases. In the diagnosis of
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liver tumors, professional doctors usually need to manually mark the location of
organs and lesions in CT and other medical image to assist diagnosis. Manual
labeling not only relies on the professional level and experience of doctors, but
also wastes precious time and energy of doctors. Therefore, it is very necessary
to use computer technology to assist medical image segmentation, which will
effectively improve the efficiency and accuracy of image segmentation, and help
the treatment and diagnosis of diseases.

Medical image segmentation algorithms mainly include traditional machine
learning algorithms and deep learning algorithms. Traditional segmentation algo-
rithms [1,12] usually perform segmentation based on the characteristics of med-
ical image. Although these algorithms can achieve the segmentation of target
objects to a certain extent, they are all semi-automatic methods, which require
researchers to manually adjust parameters and have poor generalization. Because
the method based on deep learning has the advantages of full automation and
strong generalization, it is widely used in image segmentation tasks, such as fully
convolutional network FCN [14], U-Net [10,17,21], DeepLabv3+ [4], TransUNet
[3] etc. [5,7,8,11,13,18]

The above algorithms have achieved good results in the field of segmentation,
but medical images have their own particularity. First, the tumors are multiple
and their locations vary widely. Secondly, the medical image background is rel-
atively complex, and the border of the tumor is blurred, and its gray value is
similar to that of the surrounding tissue. Third, unlike organ segmentation with
a larger area, the tumor area is much smaller than the image size, which tends
to cause models to ignore the tumor. Therefore, liver tumor segmentation is
considered to be a more challenging task (Fig. 1).

Fig. 1. The figure above shows multiple, blurred, and small, irregular tumors.

In order to solve the problem of multiple tumors and large differences in
location, cascaded networks [6,20] are widely used. The cascaded network is a
multi-stage segmentation method from coarse to fine, which locates liver tumors
step by step and improves segmentation accuracy. However, such methods are
often complex. Although the location of the tumor varies widely, it is always
within the area of the liver. Therefore, we propose a Full Scale Feature Extrac-
tion Module(FSFEM). This module consists of a dilated convolution block and a
transformer block, which are used to extract multi-level features and global cor-
relation information of images respectively. By capturing the relative positional
relationship between the tumor and the liver, FSFEM can promote the model
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to better locate the tumor, thereby improving the segmentation accuracy. And
compared to the multi-stage method, our method is more streamlined.

Usually, deep learning-based segmentation methods [9,17] use downsampling
to extract deep semantic information. However, the downsampling operation
results in the loss of spatial and positional details of the image. Although skip
connections can pass the encoder feature map to the decoder network at the
same layer, enriching the spatial information of the segmented output map, the
edge details will be inevitably lost. To solve this problem, a large number of
methods have been proposed. Dense skip connections [21] and full scale skip
connections [10] pass high-level semantics and low-level semantics of different
scales to the decoder, but this will lead to excessive network parameters and
a reduction in computational efficiency. Some networks [15,19] only choose to
transfer the low-level feature map of the encoder to each scale of the decoder, and
the high-level semantic feature map generated by the encoder is not effectively
used. Therefore, we propose a Boundary Guidance Module(BGM), which fuses
the boundary features of the bottom layer into the feature map rich in high-level
semantic information at the top level through the cross attention mechanism, so
as to promote the model to pay better attention to the boundary feature and
improve the segmentation accuracy.

Furthermore, the size of tumors varies greatly from patient to patient. Since
small tumors account for a small proportion of the entire image, small tumors are
likely to be ignored by the model during upsampling. Some methods use different
local attention mechanisms [16] to solve this problem, and it will lead to an
increase in computational complexity. Therefore, we propose a Buffer Feedback
Module(BUF), by outputting image features at different scales and calculating
the loss, thereby shortening the loss feedback path length of each layer of decoder
and strengthening the model’s attention to small tumors in high-level semantics.
And then improves the model’s ability to segment small tumors (Fig. 2).

Our main contributions can be highlighted as follows:

1. We propose a Boundary Guidance Module(BGM) that uses cross attention to
effectively fuse high-level semantic feature maps and low-level spatial feature
maps to guide decoders at each layer to focus on tumor boundary while
focusing on central part of the tumor.

2. We propose a Full Scale Feature Extractor Module(FSFEM) that combines
global and local information of image. The former part of FSFEM uses the
4th ResNet-50 block to extract the local relationship features of the image.
The latter part uses a Dilated Block to increase the receptive field of the
network to obtain multi-scale information, and uses a Transformer Block to
obtain the global features of the image, so as to obtain the full-scale features
of the image efficiently.

3. We propose a Buffer Feedback Module(BUF), which shortens the loss feed-
back path length of each layer decoder, and provides it with an additional
gradual and gentle boundary information feedback path, which is used to
improve the segmentation accuracy of the network to the boundary and speed
up the convergence of the network.
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Fig. 2. The BGBF-Net model proposed in this paper adopts the encoder-decoder struc-
ture. FEFSM contains the 4th Resnet-50 block and Transformer Module(TM) and
Dilated Module(DM) to obtain full scale feature from the high-level semantic feature
map F4. BGM extracts boundary information from F1 and F4 and uses it to guide the
decoder to segment tumor boundary. BUF takes the output of the decoder and feeds
it back the direction to optimize the network.

2 Methodology

2.1 Overall Architecture

The encoder uses the first three feature extraction blocks of ResNet-50 [9] as the
backbone, and then uses FSFEM to further extract the full scale features of the
image. The decoder upsamples the high-level semantic feature maps extracted
by the encoder to high-resolution segmentation maps. BGM takes the low-level
feature map(F1) and the high-level feature map(F4) as input, and outputs three
boundary feature maps of different sizes(b1, b2, b3). Then c1, c2, c3 obtained by
multiplying b1, b2, b3 with the encoder feature maps F1, F2, F3 are passed to
the decoder through a skip connection using CBAM [18]. It is used to guide the
decoder to pay attention to the edge area of the tumor. BUF accepts the output
of the decoder and outputs prediction of the tumor. The feedback information
from the loss function will pass through a buffer layer for smooth correction and
optimization of the BGBF-Net.
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2.2 Full Scale Feature Extraction Module

The encoder obtains a lower-resolution segmentation semantically significant
feature map F3 from the high-resolution spatial feature map F1, F2 through
continuous downsampling. At the level of F3, FSFEM extracts multi-level fea-
tures and global features of the image respectively. DM uses three dilated con-
volution blocks of different scales (1, 3, 5) to enable the network to obtain
multi-layer receptive fields for images, thereby extracting multi-scale features.
TM uses a multi-head self-attention mechanism and a feed-forward network to
encode global context and extract global features. The features extracted by
TM and DM are concatenated together to obtain the full scale feature F4 of the
image, which will help capture the features of the relative positional relationship
between the liver and the tumor, and thus facilitate the segmentation network
to identify multiple tumors in the liver.

2.3 Boundary Guidance Module

In order to increase the model’s attention to the boundary, we propose a Bound-
ary Guidance Module(BGM), as shown in Fig. 3.

BGM first uses reverse attention to process the high-level semantic feature
map F4 to obtain background area information. It is then upsampled by a factor
of 8 to U5(64×64), which is the same size as the feature map F1 in the first
layer of the encoder. Then a cross attention is applied to U5 and F1 to obtain
boundary features. U5 with background high-level semantic information is used
as query, F1 with spatial information is used as key and value, and cross attention
is used through Formula 4 to increase the attention on the boundary features
in F1. Afterwards, the obtained features are passed to the decoders through
downsampling(12 , 1

4 ), and multiplied with the feature maps(F1,F2,F3), so that
the feature maps of this layer pay more attention to the boundary. In order
to reduce computing costs and speed up network training, BGM discards the
feature map of the middle layer(F2,F3) of the encoder that is similar to the high-
level and low-level features, and only the low-level feature map F1 containing
rich boundary information and the feature map F4 containing rich segmentation
information are adopted as the input of the boundary guidance module.

U5 = upsample8(Conv((1 − Convra(F4))) (1)

Q = Convq(Conv(U5)) (2)

K,V = Convk,v(Conv(F1)) (3)

b(i=1,2,3) = Conv(i=1,2,3)(V � Sigmoid(Q � K)) (4)

In Formula 1,2,3, Convra,q,k,v represents the convolution operation at differ-
ent module positions respectively. In Formula 4, i represents three stages of both
the decoder and BUF.
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Fig. 3. (a): The BGM first uses reverse attention to obtain attention to the boundary
from the high-level semantic feature F4, and then uses cross attention to extracted
boundary information from F1 and U5. (b): The BUF contains a buffer convolution
layer and a feedback block after upsampling.

2.4 Buffer Feedback Module

BUF contains a buffer layer and a feedback layer. The buffer layer consists of
a 1×1 convolutional layer to maintain the stability of the decoder parameters.
Compared with directly upsampling for multi-scale supervision, the buffer layer
smoothes the influence of the feedback layer on the decoder, which does not make
the network fluctuate, and at the same time facilitates the smooth convergence
of the network while increasing the number of feedback paths. The feedback layer
consists of an upsampling layer and a 1×1 convolutional layer used to adjust the
number of channels to output the final segmentation map, using tumor label for
supervision and obtaining loss feedback.

BUF provides a new loss feedback path for each layer of decoders, enriches
the learning path of the decoder, and reduces the influence of incomplete and
biased feedback information from the single supervision path of the last layer
of decoder. In addition, BUF also shortens the length of the loss feedback path
of the underlying decoder, which enables the decoders of each layer to directly
receive information about small tumors from the ground truth, thereby improv-
ing the network’s ability to segment small tumors.
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2.5 Multi-scale Loss Function

In medical image segmentation tasks, lesions often only occupy a small part of the
image, and this class imbalance problem is one of the most important challenges
in image segmentation tasks. Therefore, we propose a multi-scale hybrid loss
function as follows:

Losstotal = Loss0 + Loss1 + Loss2 + Loss3 (5)

Loss(ŷ, y) =

{
α(LDice(ŷ, y)) + LBCE(ŷ, y)), y = 1
LDice(ŷ, y)) + LBCE(ŷ, y), y = 0

(6)

In Formula 5, Loss0 represents the loss between tumor label and the final pre-
diction of the model. Loss1, Loss2, Loss3 respectively correspond to the outputs
of the three BUF modules.

In Formula 6, ŷ represents the tumor prediction of the image, and y represents
the tumor label. y = 1 indicates that there is a tumor in the image, and y =
0 indicates that there is no tumor. LDice and LBCE represent Dice loss and
binary cross-entropy BCE loss respectively. α is an adjustable parameter, used
to strengthen the model’s attention to images with tumors, α is set to 1.1 in this
paper.

LBCE and LDice are as follows: N is the total number of pixels in the image,
y and ŷ represent the tumor label and the model’s prediction of the tumor
respectively. ε is a small constant that prevents the denominator from being 0.

LBCE = − 1
N

N∑
i=1

(yi · log(ŷi) + (1 − yi) · log(1 − ŷi)) (7)

LDice = 1 − 2 ∗ (
∑N

i=1 yi ∩ ∑N
i=1 ŷi)∑N

i=1 yi +
∑N

i=1 ŷi + ε
(8)

3 Experiments

3.1 Data Preprocess

The dataset used in this paper is the liver tumor segmentation challenge dataset
LiTS, which comes from the 2017 IEEE International Symposium on Biomedical
Imaging (ISBI) and the 2017 International Conference on Medical Image Com-
puting and Computer-Aided Intervention (MICCAI). The dataset comes from
multiple medical centers and contains a total of 201 clinical samples with various
liver diseases, 131 of which contain manual annotations of the liver and tumor
regions by radiologists. And the original CT data are saved as files in NIFTI
format. The 131 cases of data containing manual annotations were divided into
a training set of 111 cases and a test set of 20 cases. Each case has hundreds
of slices, but the slices containing the liver and tumor are relatively few, so the
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slices containing the liver in each case are saved in a two-dimensional image
format, and at the same time, for the cases with less than 48 liver slices, the
data were evenly collected before and after the liver slices to supplement the
number of 48 slices. In the end, a total of 16940 training sets and 2218 test sets
were collected. The LiTS dataset contains two types of labels, liver and tumor.
Because the goal of the task is to directly segment the tumor, the liver label is
set as the background, and the tumor is the only label.

3.2 Implementation Details

The experimental model building environment is Python3.9.12, Pytorch1.12.1
framework, using NVIDIA 3060 12G GPU. The initial learning rate is 0.0001,
the batch size is 16, and the image size is (128, 128).

Table 1. Results of different methods on LiTS

Methods Dice Jaccard Precision Recall

UNet++ 0.7428 0.7181 0.9123 0.7928

Attention U-Net 0.6958 0.6873 0.9879 0.6959

TransUNet 0.7495 0.7265 0.9580 0.7576

DeepLabv3+ 0.7248 0.7045 0.9451 0.7444

Swin-Unet 0.7145 0.6995 0.9688 0.7231

Proposed 0.7731 0.7489 0.9521 0.7876

3.3 Experiments and Results

Segmentation Experiments. In the experiment, we compared the proposed
BGBF-Net method with five different methods, including Attention U-Net [16],
TransUNet [3], DeepLabv3+ [4], UNet++ [21] and Swin-UNet [2]. We analyzed
and compared the 4 indicators on the LiTS dataset, For fair comparison, these
methods use the same parameters for training and testing. It can be seen from
Table 1 that the BGBF-Net proposed by us has achieved the best results in
Dice, Jaccard, and Precision. Among them, the accuracy of Dice and Jaccard
are 2.36% and 2.24% higher than that of TransUNet, which is the algorithm
with the highest accuracy among the comparison algorithms.

It can be seen from case 1 in Fig. 4 that our proposed method BGBF-Net can
segment most of the tumors more completely in the segmentation of multiple
tumors, false positives and false negatives have occurred in tumor segmentation
by other methods. In case 2, BGBF-Net correctly identified the blurred border
region of the tumor which shows the effectiveness of our boundary processing
modules BGM and BUF. For the small tumor slices in case 3, the Swin-Unet and
the Attention U-Net lost a large number of edge parts of small tumors, and our
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Fig. 4. The first row is the input CT image, the second row is the liver tumor label,
The rows from 3 to 8 represent for different methods. Each column is a slice sample.
respectively shows the multiple tumors, tumor with blurred borders, small tumors, and
tumors with irregular edges.
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BGBF-Net also made more accurate segmentation for small tumors, which shows
that BGBF-Net can better solve the problem that the gray level of the tumor and
the surrounding tissue are similar. BGBF-Net, Swin-Unet, and Attention U-Net
have similar segmentation accuracy for the tumor with irregular edges in case
4, but the latter two methods have obvious shortcomings in the segmentation
of the first three cases. Generally speaking, our method better solves the three
problems of multiple tumors, blurred boundary, and small size, and it can be
said to be a relatively powerful segmentation algorithm.

Ablation Experiments. Table 2 shows the results of the ablation experiments,
in which we compare the segmentation results of BGBF-Net and BGBF-Net
without the BGM, FSFEM, BUF, CBAM on LiTS, respectively. The experimen-
tal results show that BGBF-Net is 1.93%, 0.99%, 2%, and 0.14% higher than the
above four networks in Dice’s evaluation index. In the ablation experiment, BUF
and FSFEM were the two modules with the greatest improvement, which shows
that extracting full scale features and shortening the decoder feedback path help
the model to segment tumors. BGM has been improved by 1%, which is not as
much as BUF and FSFEM. This is because the boundary accounts for fewer
pixels in the overall tumor, and the evaluation indicators such as Dice are posi-
tively correlated with the number of pixels, so compared with the two modules
of BUF and FSFEM, BGM is a little lower in the evaluation index of quanti-
tative analysis. We can see from the ablation experiment without CBAM that
when with BGM, BUF, and FSFEM, the Dice value is very close to the method
we proposed, and the gap is only 0.14%, so it can be concluded that the above
three modules have a great contribution to the improvement of experimental
segmentation accuracy.

Table 2. Ablation study of the proposed BGBF-Net on LiTS

Methods Dice Jaccard Precision Recall

Proposed wo BUF 0.7538 0.7315 0.9623 0.7606

Proposed wo BGM 0.7632 0.7398 0.9611 0.7655

Proposed wo FSFEM 0.7531 0.7296 0.9325 0.7789

Proposed wo CBAM 0.7717 0.7480 0.9599 0.7772

Proposed 0.7731 0.7489 0.9521 0.7876

4 Conclusions

In this paper, a new liver tumor segmentation framework BGBF-Net is proposed
to solve the three challenges of blurred tumor borders, multiple tumors and small
tumors in the field of liver tumor segmentation. To address the above challenges,
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we propose a Full Scale Feature Extraction Module(FSFEM), a Boundary Guid-
ance Module(BGM), and a Buffer Feedback Module(BUF). FSFEM combines
the advantages of CNN and Transformer to extract local features, multi-level
features and global features in the image. Using the full scale features, the model
can effectively capture the relative positional relationship between the tumor and
the liver, thereby improving the ability of the model to localize the tumor. BGM
uses cross attention to enhance the decoder’s attention to the boundary contour
information, which helps to improve the accuracy of boundary segmentation.
BUF is a simple and effective way to improve the accuracy of tumor segmenta-
tion, by adding a path to smoothly adjust the decoder network, it can speed up
the network convergence while improving the segmentation accuracy. Ablation
experiments confirm the effectiveness of the above three modules. Experiments
on the LiTS dataset show that the accuracy of the model is 2.36% higher than
other methods. We can conclude that the BGBF-Net can accurately segment
liver tumors and is a relatively powerful liver tumor segmentation method. After-
wards, we can try 3D segmentation methods to capture the relationship features
between CT slices to guide clinical liver tumor segmentation.
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Abstract. Segmenting the urinary collecting system based on preopera-
tive contrast-enhanced computed tomography urography volumes is nec-
essary for assisting flexible ureterorenoscopy. The urinary collecting sys-
tem consists of complex elongated tubular structures and irregular tree-
like structures, making it challenging for precise segmentations using cur-
rent deep-learning-based methods. Existing deep learning-driven meth-
ods face challenges in accurately segmenting the urinary collecting sys-
tem from contrast-enhanced computed tomography urography volumes.
In this work, we propose a novel MixU-Net by embedding global fea-
ture mix blocks. Particularly, the global feature mix blocks allow wider
receptive fields based on fused multi-layer-perception and 3D convolu-
tions across different dimensions. The experimental validations on the
clinical computed tomography urography volumes demonstrate that our
method achieves state-of-the-art in terms of dice similarity coefficients,
intersection over union, and Hausdorff distance when compared with
other methods that use pure convolutional neural networks or hybrid
convolutional neural networks and Transformers. In addition, prelimi-
nary experiments conducted on the navigation system demonstrate the
improved accuracy of the virtual depth maps when adopting the seg-
mented urinary collecting system obtained by our MixU-Net.

Keywords: Urinary Collecting System Segmentation ·
Contrast-enhanced Computed Tomography Urography · Flexible
Ureteroscopic Navigation

1 Introduction

With the steady increase of worldwide incidence, renal calculi has become one of
the main causes of chronic kidney damage (CKD) [24]. Shock wave lithotripsy,
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ureteroscopy, and percutaneous nephrolithotomy are commonly adopted as the
basic treatment options for renal calculi [20]. Particularly, ureteroscopy is a
minimally-invasive treatment option with the advantages of less damage and
higher flexibility when compared with percutaneous nephrolithotomy. Clinically,
ureteroscopy-based retrograde intrarenal surgery (RIRS) is suitable for treating
non-multiple renal calculi and helps alleviate patients’ suffering [1,20].

Before RIRS, contrast-enhanced CT urography (CTU) is usually performed
to image the urinary collecting system includes the ureter, renal pelvis, and renal
calyces. During RIRS, a ureteroscope is inserted through the urinary collecting
system to locate the lesions. However, successful RIRS requires a high level of
proficiency for the physicians [5,6]. Particularly, the complex structure of the
urinary collecting system and poor visual conditions can interfere a physician’s
judgment of the ureteroscope’s pose. Therefore, precisely segmenting the renal
collecting system based on the preoperative CTU volumes can effectively assist
the physicians to perceive the operation scene and perform accurate ureteroscope
navigation and operations.

Currently, the automatic segmentation of kidneys, renal tumors, and blood
vessels based on CT or MRI volumes have shown promising results. Taha et al.
[25] proposed a 3D fully convolutional neural network (CNN), KidNet, for end-
to-end segmentation of the renal arteries, veins, and partial ureters on CTU
volumes. Xia et al. [29] designed a twin neural network based on ResNet [13] and
used dense SIFT [18] matching to automatically segment the kidney and kidney
lesions. Heller et al. [14] summarized the results of the 2019 MICCAI Kidney
and Kidney Tumor Segmentation Challenge, in which Fabian et al. [16] achieves
the first place using the pre-activation nnU-Net. To address the challenges of
insufficient annotating CT image datasets, Kim et al. [17] proposed a 3D U-Net
based incremental learning strategy to assist the annotation of CT datasets. El-
Melegy et al. [10] combined fuzzy C-means clustering and Markov random fields
to automatically segment the kidneys in DCE-MRI images.

According to our literature review, reports on the segmentation of the urinary
collecting system are substantially missing. In general, the urinary collecting
system presents a continuous tree-like structure with complex morphology and a
large spatial span. Moreover, the collecting system structure varies significantly
among patients. Therefore, precisely segmenting the urinary collecting system
requires methods with large receptive fields and the capabilities of generalization.

Recently, self-attention-based neural networks have become one of the hot
topics in the research fields. For example, Vision Transformer (ViT) [9] and
DETR [30] have demonstrated the capabilities of self-attention mechanisms.
As a result, researchers tried to incorporate the self-attention mechanisms into
the processing of medical images. TransUNet [4] combined self-attention mech-
anisms with CNNs for multiple segmentation using a U-shaped structure. Swin-
UNet [2] discarded CNNs and adopted an encoder-decoder structure with pure
self-attention mechanisms in multiple segmentation tasks.

Although self-attention mechanisms have proven their advantages over CNNs
in some specific tasks, they generally require a large amount of data in the
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training phase, resulting in heavier computational burden. Consequently, the
requirement of a large amount of annotative data limits the further application of
self-attention mechanisms in medical imaging tasks. More recently, Multi-layer
perceptron (MLP) models are regaining more attention in the research fields.
Particularly, Tolstikhin et al. [26] designed a channel-position mixer MLP model
MLP-Mixer and demonstrated its effectiveness in terms of a faster inference
speed and fewer parameters than the self-attention-based models. In this study,
we collected a dataset consisting of 40 CTU volumes and annotated them under
the guidance of radiologists and urologists. We propose a U-shaped network with
a hybrid CNN-MLP architecture, namely MixU-Net, for the precise segmentation
of the urinary collecting system. The MixU-Net leverages the wide receptive
fields of MLPs to compensate for the inductive bias of CNNs. To validate the
performance of our method on segmenting the structurally complex and spatially
extensive urinary collecting system, we collected an in-house dataset consisting
of 40 CTU volumes and annotated them under the guidance of experienced
radiologists and urologists.

The technical contributions of this paper are clarified as follows:

1. We propose a novel network MixU-Net. Specifically, we design a U-shaped
backbone composed of local feature extractor (LFE) modules and introduce
an MLP-based global feature mix block (GFMB) to assist the backbone in
mixing global information and expanding the receptive field.

2. We establish a well-annotated CTU dataset under the authoritative guid-
ances. All the experiments are conducted on this dataset. We will release the
dataset on our laboratory website soon.

3. We combine the proposed method with the RIRS navigation system to assist
in the generation of accurate virtual depth maps and the proposed method
improves the accuracy of navigation.
The rest of this paper is organized as follows. Section 2 introduces the pro-
posed method. Sections 3 and 4 present the experiment configurations and
the results, respectively. Finally, the results are discussed and concluded in
Sects. 5 and 6, respectively.

2 Method

2.1 Overview

Figure 1 shows the overview of our MixU-Net architecture. In this section, we
firstly introduce the proposed GFMB embedded in the U-shaped network. Next,
we introduce the U-shaped hybrid CNN-MLP networks containing CNN-based
LFE modules and the GFMBs.

2.2 GFMB

Since the urinary collecting system consists of complex continuous tree-like struc-
tures, to better capture the features during the segmentation of the urinary col-
lecting system, we design the GFMB. As illustrated in Fig. 2, the GFMB mainly
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Fig. 1. The architecture of MixU-Net.

Fig. 2. The architecture of GFML. It contains several GFMBs.

consists of two MLPs. Each MLP consists of an input layer, an output layer, and a
hidden layer with the size twice of the input and output layers. The GELU [15] is
used between the input layer and the hidden layer. The first MLP is the token-
mixing MLP, which operates on the column vectors of the input feature map
Y ∈ R

˜C×S and extracts the relevance in the spatial dimension of Y .

Ẏ = Y ⊕ MLPspatial(LayerNorm(Y )). (1)

The second MLP is the channel-mixing MLP which operates on the row vectors
of the input feature map Ÿ ∈ R

˜C×S . The role of this MLP is to calculate the
relevance in the channel dimension of Ẏ .

Ÿ = Ẏ ⊕ MLPchannel(LayerNorm(Ẏ )), (2)

where ⊕ represents the addition operation.
Several GFMBs are concatenated to form a global feature mix layer (GFML).

At the input of the GFML, the feature map ψ ∈ R
C×H×W×D needs to be divided

into patches of size P×P×P . Each feature map patch is flatten and concatenated
to Y ∈ R

˜C×S .

ψ ∈ R
C×H×W×D Patch,F latten,Concat−−−−−−−−−−−−−−→ Y ∈ R

˜C×S . (3)

Similarly, the size of output Ÿ ∈ R
˜C×S of GFML also needs to be rearranged to

the original input size ˜ψ ∈ R
C×H×W×D.

Ÿ ∈ R
˜C×S Rearrange−−−−−−−→ ˜ψ ∈ R

C×H×W×D, (4)

where S = P 3 and P is the size of the patches.
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2.3 MixU-Net Architecture

The MixU-Net is constructed by a U-shaped network as backbone, as illustrated
in Fig. 1. We design the LFE module based on stacked convolutional operations
to extract local features. The LFE module consists of a convolutional block and
a Group Normalization block [28], followed by a ReLU activation function:

LFE (X) = ReLU(GroupNorm(Conv3×3×3(X))), (5)

where X ∈ R
C×H×W×D is the input feature map.

The U-shaped structure contains 4 layers, each of which consists of two con-
secutive LFE modules. In the encoder, downsampling is used to concatenate the
LFE modules for better extracting the deep features:

EncoderBlocki =

{

DS(LFE(LFE(X))) if i = 1

DS (LFE (LFE (EncoderBlocki−1))) if i = 2, 3
(6)

where X ∈ R
C×H×W×D is the input to the model and DS indicates downsam-

pling.
In the decoder, upsampling is used to concatenate the LFE modules and

restores the sizes of feature maps. Each decoder block also receives global feature
from the GFMLs:

DecoderBlocki =

{
LFE (LFE (EncoderBlock3)) if j = 4

LFE (LFE (US (DecoderBlockj+1) ⊗ GFMLi)) if j = 1, 2, 3
(7)

where ⊗ represents concatenation along the channel dimension, and US repre-
sents upsampling.

2.4 Loss Function

We incorporate the mean structure similarity (MSSIM) index [27], cross-entropy,
and dice in the loss function to train the MixU-Net. While the cross-entropy and
dice are commonly used in segmentation tasks, the MSSIM is more sensitive to
differences in image brightness and contrast:

LMSSIM = 1 − 1
M

M
∑

i=1

(2μi
xμi

y + C1)(2σi
xy + C2)

(μi
x
2 + μi

y
2 + C1)(σi

x
2 + σi

y
2 + C2)

, (8)

μx =
N

∑

i=1

ωixi, (9a)

σx =

√

√

√

√

N
∑

i=1

ωi(xi − μx), (9b)
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σxy =
N

∑

i=1

ωi(xi − μx)(yi − μy), (9c)

where x, y are the network predictions and ground truths, respectively. ω rep-
resents the weights of a Gaussian kernel, N is the total number of voxels, and
M is the total number of windows, for which the window size is 11 × 11 × 11.
C1 = 0.0001, C2 = 0.0009.

Therefore, the loss function employed in the MixU-Net is forlumated as:

L = Ldice + LCE + LMSSIM , (10)

where LCE and Ldice represent the cross-entropy loss and the dice loss.

3 Experimental Configurations

3.1 Datasets and Evaluation Metrics

In this paper, we collected a dataset of clinical CTU volumes, and video images
during the RIRS. Under the guidance of experienced radiologists and urologists,
we selected 40 CTU volumes in the excretory phase and annotated the urinary
collecting systems. The annotated dataset underwent careful examination by
radiologists and urologists. The slice thickness of each volume is either 0.625mm
or 1.25mm, and the spatial dimensions of each slice are 512512 pixels. The total
number of slices in the 40 CTU volumes was 21,360.

We evaluated segmentation quality by dice similarity coefficient (DSC), Haus-
dorff distance (HD), surface distance (SD), and intersection over union (IoU).

3.2 Implementation Details

We implemented the MixU-Net on PyTorch v2.0.0, MONAI [3], and nnU-Net
libraries [16]. To ensure fairness of the comparisons, we standardized the data
pre-processing: First, we resampled the spacing of all volumes to the average
value of the dataset. Next, we normalized the intensity of the volumes. Specif-
ically, we designed an intensity window for each volume that ignored the top
0.5% of intensity in each volume and normalized the intensity to [0, 1]. Finally,
we performed region cropping on each volume to exclude regions without anno-
tations.

We adopted the default image augmentation methods from nnU-Net [16],
which includes random 3-D elastic deformation, random scaling, random mir-
roring, and random gamma adjustment. The augmented volumes were randomly
cropped into patches of size 128 × 128 × 128 as inputs to the network. Due to
the hardware limitations, the batch size was set to 1. We used SGD [23] as the
optimizer and trained the MixU-Net for 400 epochs. Each epoch consisted of 250
training iterations, with a validation performed every 50 iterations. The initial



474 Z. Liu et al.

learning rate was set to 0.00005, and the learning rate decay was specified as
follows:

Lr = Lr0 ×
(

1 − epoch

max epoch

)0.9

, (11)

where Lr0 represents the initial learning rate.
We trained our MixU-Net on an NVIDIA RTX 3090Ti GPU with 24GB

of memory. During inference, we utilized the sliding window approach with an
overlap ratio of 0.5. We saved the model that performed best on the validation
set and tested on the test set to obtain the final segmentations.

Fig. 3. Two examples for visual comparison of the proposed method with the other six
medical segmentation methods.

4 Results

4.1 Comparisons

Figure 3 shows the typical frames of segmentations obtained by U-Net [22],
UNetR [12], SwinUNetR [11], MNet [8], AttentionU-Net [21], and nnU-Net [16].
Figure 4 presents the corresponding 3D volume renderings of the segmented uri-
nary collecting system. In general, our method performs more accurate in seg-
mentations of the urinary collecting system. Compared to other methods, the
MixU-Net can extract small, textureless, and weak boundaries. For the boundary
between the kidneys and the urinary collecting systems, MixU-Net can effectively
distinguish and establish clear edges. Furthermore, our method also exhibits bet-
ter continuity in segmenting the elongated ureter structures.

Table 1 summarizes the quantitative results in accordance with the four met-
rics of the seven methods. Evidently, the MixU-Net outperforms the compared
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Fig. 4. Visual 3D segmentation results of the proposed method with other six medical
segmentation methods.

Table 1. Quantitative comparison of using the seven segmentation methods for uri-
nary collecting system segmentation. The bold results in the table indicate the best
performance, while the underlined results indicate the second-best performance.

Approaches Collecting System

DSC↑ IoU↑ HD↓ SD↓
U-Net 0.873 ± 0.099 0.783 ± 0.148 6.40 ± 6.17 0.36 ± 0.05

Attention U-Net 0.797 ± 0.170 0.683 ± 0.220 17.90 ± 23.56 0.53 ± 0.11

MNet 0.898 ± 0.075 0.820 ± 0.119 18.80 ± 27.52 0.29 ± 0.04

UNetR 0.850 ± 0.075 0.744 ± 0.111 4.31 ± 1.29 1.32 ± 0.67

SwinUNetR 0.838 ± 0.050 0.725 ± 0.084 4.59 ± 1.96 0.93 ± 0.44

nnU-Net 0.904 ± 0.070 0.831 ± 0.113 2.28 ± 1.30 0.69 ± 0.25

Ours 0.908 ± 0.059 0.835 ± 0.096 2.11 ± 1.34 0.77 ± 0.65

Table 2. Ablation experiments for MixU-Net. The bold results in the table indicate
the best performance.

Approaches DSC↑ IoU↑ HD↓ SD↓
Without GFMBs and MSSIM 0.8079 0.6848 4.6386 1.4997

Without GFMBs 0.8221 0.7040 59.400 7.5612

Without MSSIM 0.9063 0.8326 2.4140 0.5747

MixU-Net 0.9078 0.8345 2.1125 0.7733
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Fig. 5. Virtual depth map of the proposed method with other seven medical segmen-
tation methods.

methods in terms of DSC, IoU, and HD of (0.908, 0.835, 2.11). Except for nnU-
Net, the pure CNN models (U-Net, AttentionU-Net, MNet) outperform the net-
works (SwinUNetR, UNetR) that utilize self-attention mechanisms in terms of
DSC, IoU, and SD. However, in terms of the HD, the self-attention mechanism
performs better than the pure CNNs.

In addition, we combined our method with a home-made vision-based nav-
igation system used for RIRS. The navigation system consists several steps:
(1) ureteroscopic structure extraction, (2) virtual depth map generation, and
(3) structural point similarity and optimization. We replaced the primitive
threshold-based raw segmentations with segmentations from different networks
in (1) and compared the performance of the depth maps generating in (2).

Figure 5 shows the generation virtual depth maps from segmentations of dif-
ferent networks and threshold. Threshold, Attention U-Net, and UNetR get
depth maps with significant cumulative errors due to their low segmentation
accuracy. For the results of the remaining networks, it can be observed that our
method generates virtual depth maps that show most smooth in terms of depth
transitions and exhibit consistent matching with target cavities.

4.2 Ablation Study

To evaluate the respective effectiveness of the building blocks in the MixU-Net,
we conducted the following ablation study. Specifically, we compared the MixU-
Net without the GFMBs and MSSIM loss, the MixU-Net without the GFMBs,
the MixU-Net without the MSSIM loss, and the full version of MixU-Net. The
datasets and the training settings were the same as mentioned in Sect. 3.1.

Table 2 lists the results of the ablation study. It can be observed that after
removing the GFMBs and the MSSIM loss, the MixU-Net suffers from significant
performance reduction in terms of DSC, IoU, and HD. These experimental results
demonstrate the necessity of our proposed method in improving performance.
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5 Discussion

In this paper, we propose a GFMBs-embedded MixU-Net for the segmentation
of urinary collecting system based on CTU volumes. The experimental results
demonstrated the out performance of our method when compared with other
state-of-the-art networks. Particularly, the MixU-Net achieves the best DSC,
IoU, and HD in the comparisons. The ablation study validates the respective
effectiveness of the GFMB and the proposed term in the loss function. Since
we strictly unified the pre- and post-processing of the dataflow across differ-
ent methods, the major cause of the performance differences can be attributed
to the receptive fields of different methods. Since the self-attention mechanism
significantly increases the receptive field of a network, SwinUNetR and UNetR
achieve better HD at the expense of worse SD than the methods that use pure
CNNs (U-Net, Attention U-Net, and MNet). On the other hand, the MixU-Net
designs a soft attention mechanism for a better balance between the local and
global feature perceptions, which is particularly useful to segment the complex
urinary collecting system.

Fig. 6. Visual receptive field comparison of the U-Net with and without the GFMBs.

Figure 6 compares the visualizations of the receptive fields without or with
the GFMBs obtained by a visualization method reported in [7,19]. We can see
that the GFMBs effectively expands the receptive field of the convolution-based
U-shaped network.

6 Conclusion

In this paper, we propose a novel MixU-Net embedding GFMBs to perform
efficient local and global feature fusion for precise segmentation of the complex
urinary collecting system based on preoperative CTU volumes. Our method
is validated to outperform other methods that employ pure CNNs or hybrid
CNNs and Transformers, showing better DSC, IoU, and HD when segmenting the
urinary collecting system. The ablation study also demonstrates the respective
effectiveness of the GFMBs and the proposed MSSIM term in the loss function.
Integrating our method to the navigation system for high-efficient RIRS is one
of the directions of our future work.
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Abstract. Dense depth prediction for 3-D reconstruction of monocu-
lar endoscopic images is an essential way to expand the surgical field
and augment the perception of surgeons in robotic endoscopic surgery.
However, it is generally challenging to precisely estimate the monocu-
lar dense depth and reconstruct such a field due to complex surgical
fields with a limited field of view, illumination variations, and weak tex-
ture information. This work proposes a new framework of self-supervised
learning with a two-stage cascade training strategy for dense depth recov-
ery of monocular endoscopic images. While the first stage is to train an
initial deep-learning model through sparse depth consistency supervi-
sion, the second stage introduces photometric consistency supervision to
further train and refine the initial model for improving its capability.
Our framework was evaluated on patient data of monocular endoscopic
images acquired from colonoscopic procedures, with the experimental
results demonstrating that our self-supervised learning model with cas-
cade training provides a promising strategy outperforming other models.
On the one hand, both visual quality and quantitative assessment of
our method are better than current monocular dense depth estimation
approaches. On the other hand, our method relies less on sparse depth
data for supervision than other self-supervised methods.

Keywords: Monocular depth estimation · 3-D reconstruction ·
self-supervised learning · robotic-assisted endoscopy · structure from
motion · simultaneous localization and mapping

1 Introduction

Robotic-assisted endoscopic procedures are increasingly performed to diagnose
and treat intestinal diseases [17]. Unfortunately, the endoscope itself cannot pro-
vide surgeons with any depth information of the surgical scene or field, resulting
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in additional surgical risks such as accidental injuries and inaccurate manip-
ulation of surgical tools. To address these limitations, endoscopic field three-
dimensional (3-D) reconstruction is widely discussed as an effective way to
expand the endoscopic viewing and augment the perception of the surgeon [2,5].

Precise endoscopic 3-D reconstruction unavoidably requires accurate dense
depth estimation. Because of the limited space in the human body, monocular
depth estimation is appropriate using only one camera to acquire a sequence
of 2-D images to estimate the depth and camera pose. Conventional monocular
depth recovery methods, such as feature-based and direct methods, generally rely
on multi-view camera geometric principles. For example, direct sparse odome-
try [3] basically uses the photometric consistency loss to predict the camera pose
and sparse 3-D reconstruction of images, while they suffer from the photometric
inconsistency with poor effectiveness. Although feature-based approaches(e.g.,
structure from motion (SfM) [15,21] and simultaneous localization and map-
ping (SLAM) [9,13]) are less affected by illumination variations than the direct
methods, they limit themselves to insufficient and incorrect feature detection
and matching due to textureless endoscopic images.

More recently, deep learning methods are increasingly used for dense depth
estimation. Supervised methods usually require many annotated or ground-truth
data, which are particularly unrealistic for monocular surgical endoscopic videos.
To this end, unsupervised and self-supervised learning methods are commonly
introduced to predict depth maps from monocular cameras. In particular, the
distinction between self-supervised and unsupervised learning is whether or not
the sparse data generated by the conventional 3-D reconstruction method is used
to supervise the model training in the absence of ground truth. Unsupervised
learning methods usually employ the photometric loss for training to predict
dense depth and camera pose simultaneously [18–20]. These methods hardly
work on monocular endoscopic video images because of limited and nonuniform
illumination conditions. To address this limitation, Ozyoruk et al. [14] proposed
an Endo-SfMLearner method that uses global illumination affine transformation
and introduces structural similarity index (SSIM) to calculate the photometric
loss. Self-supervised learning methods for monocular depth estimation are a most
active research area in the literature [8,11,12]. These methods obtain sparse
depth data by feature-based detection and matching with epipolar geometry
constraints (e.g., SfM) and use them to supervise the network training [1,10].
Unfortunately, these self-supervised learning based depth recovery approaches
depend critically on the quality of sparse depth data.

Although most unsupervised and self-supervised learning methods work well
on monocular natural indoor or outdoor image depth estimation for various
computer vision tasks, they remain challenging for monocular surgical endo-
scopic images due to weak textures and illumination variations. The objective
of this work is to precisely expand and reconstruct 3-D surgical field or view-
ing, empowering surgeons to intuitively perceive the depth distribution in robotic
endoscopic procedures. We focus on self-supervised learning for monocular depth
estimation. The highlights of this work are clarified as follows.
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Fig. 1. Pipeline of our proposed self-supervised learning with cascade training based
monocular depth estimation method.

– This work proposes a self-supervised learning method with cascade training
for monocular endoscopic dense depth prediction. This framework implements
a two-stage training strategy to take advantages of both sparse depth consis-
tency supervision and photometric consistency supervision.

– Furthermore, we successfully address the problems of weak textures and
nonuniform illumination on endoscopic images. Compared to sole sparse
depth consistency supervision, our method can employ more information on
tissue structure on the basis of photometric consistency supervision to reduce
the quality requirements of sparse depth data for supervision to solve the
problem of weak texture. Moreover, our method uses sparse depth consistency
supervision to provide a good initialization for sole photometric consistency
supervision, which can deal with nonuniform illumination.

2 Approaches

This section details our self-supervised and cascade-trained network model for
monocular endoscopic dense depth prediction. The first training (Stage 1) uses
SfM-driven sparse depth data to train the network model through sparse depth
loss and depth consistency loss and obtain an initial pre-trained model, while
the second training (Stage 2) performs photometric consistency-loss and depth
consistency-loss supervisions to further refine the initial model. Figure 1 illus-
trates the pipeline of training and testing our proposed method.
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2.1 Sparse Depth Generation

Accurate generation of sparse depth data is important for dense depth recovery.
This step outputs sparse depth maps and camera poses to supervise the training
procedure. This work uses an SfM-based method to generate sparse depth data.
Such an SfM method consists of two main steps (1) image feature point detection
and matching and (2) epipolar geometric analysis.

The quality and quantity of detected and matched feature points are impor-
tant to camera pose estimation and sparse reconstruction. However, it is hard
to find accurate feature point correspondences between the continuous frames
because of poor texture or structural information on endoscopic images. This
work employs a local region expansion (LRE) based feature detection and match-
ing method [4] which can find more accurate feature correspondences.

After obtaining feature-matching pairs, epipolar geometric analysis is imple-
mented to calculate the fundamental and essential matrices, F and E [15]:

pT2 Fp1 = 0,E = (K ′)TFK, (1)

where p1 and p2 are a pair of feature matching points, K and K ′ are the camera
intrinsic matrices of the two images involved. After that, we implement singular
value decomposition on E to obtain the camera pose Tf

w at frame f .
Next, we can use the camera pose Tf

w (w represents the world coordinate
system) to reconstruct sparse point cloud Pw by triangulation. Eventually, we
project the sparse 3-D point cloud Pw onto image f to obtain sparse depth map
Ds

f = KTf
wPw. The sparse data is then used to train the model with sparse

depth consistency supervision.

2.2 Network Architecture

This work uses FC-DenseNet-57 [7] as the CNN architecture to predict the dense
depth map, which is the same as the previous work [10] for a fair comparison in
our experiments. FC-DenseNet-57 performs better than other network architec-
tures in feature extraction and parameter reduction.

2.3 Self-supervised Cascade Training

This section discusses the details of the two-stage training procedure with sparse
depth consistency and photometric consistency optimizations.

Sparse Depth Consistency Supervision. Stage 1 uses a sparse depth loss
(SDL) function and a depth consistency loss (DCL) function to train the network
model in a self-supervised manner to obtain an initial pre-trained model (Fig. 1).

The training requires two input images at frames or times f and g, respec-
tively. Since there exists inconsistency between the numerical distributions of
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the sparse depth map Ds
f and dense depth map Df predicted by DenseNet57,

we first normalize the dense depth map Df to obtain D̂f

D̂f = Fnormalization(Df ,Ds
f ). (2)

SDL is to compare the sparse depth map Ds
f to the normalized or scaled dense

depth map D̂f and can be calculated by

LSDL(Ds
f , D̂f ) =

∑
(Ds

f − D̂f )2
∑

(Ds
f )2 + (D̂f )2

. (3)

Note that SDL only takes the feature points or positions with depth information
on the sparse depth map Ds

f into the calculation, resulting in a fraction of point
pixels in practice. As a result, many pixels on the sparse depth map are not
properly guided. Therefore, DCL is introduced to maintain depth consistency.

DCL actually uses geometric constraints to optimize the depth consistency
between the two frames. We first normalize the two depth maps Df and Dg by
Eq. (2) and obtain the scaled depth maps D̂f and D̂g. Next, we warp D̂f and
D̂g from one to another using the geometry transformation matrices (or camera
poses) Tf

w and Tg
w and achieve the warped depth maps D̂f,g and D̂g,f . Then,

DCL can be computed by

LDCL(f, g) =
∑

(D̂f,g − D̂g)2
∑

(D̂2
f,g + D̂2

g)
+

∑
(D̂g,f − D̂f )2

∑
(D̂2

g,f + D̂2
f )

. (4)

Eventually, the total loss LS1(f, g) for input images f and g at the first
training (Stage 1) can be written as:

LS1(f, g) = α1(LSDL(f) + LSDL(g)) + α2LDCL(f, g), (5)

where constants α1 and α2 represent the weights to balance between SDL and
DCL, and α1 + α2 = 1.

The initial pre-trained model is simultaneously supervised by DCL and SDL
at Stage 1. While DCL can keep the depth consistency and structure smoothness,
SDL depends critically on the number and accuracy of the sparse depth points.
This implies that the performance of the initial model will be degraded if it was
supervised by incorrect sparse depth maps.

Photometric Consistency Supervision. Stage 2 combines DCL with PCL
to further train the initial model, refining it to be able to predict the depth at
the positions with incorrect depth supervision and without depth supervision.

We first use DenseNet57 and normalization to compute the scaled depth map
D̂f and D̂g for two endoscopic images If and Ig. Similar to DCL, we also employ
the geometry transformation (camera pose) T g

f or T f
g to warp If and Ig mutually

to obtain the warped images If,g and Ig,f .
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Table 1. Pre-trained models with different weights to combine various loss functions
of SDL, PCL, and DCL

Methods Epochs SDL PCL DCL

Model-1 20 – 0.7 0.3

Model-2 20 0.4 0.4 0.2

Model-3 1:10 at Stage 1 0.7 – 0.3

11:20 at Stage 2 – 0.7 0.3

Basically, PCL aims to measure the photometric inconsistency between the
endoscopic image Ig and warped image If,g. To address illumination variations,
we introduce a brightness transformation [14] to adjust the brightness of the
input images for better supervision during training:

Îf,g = (If,g − Ave(If,g))
V ar(If,g)
V ar(Ig)

) + Ave(Ig), (6)

where Ave(I) and V ar(I) represent the average and variance of image I, respec-
tively. Additionally, we also introduce the structural similarity index (SSIM)
to calculate the structural similarity between images Îf,g and Ig because the
brightness on the two images is still inconsistent even after the brightness trans-
formation. Finally, we can calculate PCL by

LPCL(f, g) = 1 − SSIM(Îf,g, Ig) + SSIM(Îg,f , If )
2

. (7)

We still combine PCL with DCL in the second training procedure because
only using photometric consistency loss leads to large depth bias at adjacent posi-
tions on endoscopic images where tissue deformation and occlusion are observed
during robotic surgery. Eventually, the total loss LS2(f, g) involved photometric
consistency supervision at the second training (Stage 2) can be defined as

LS2(f, g) = β1LPCL(f, g) + β2LDCL(f, g), (8)

where constants β1 and β2 is to balance PCL and DCL.
While only using LS1(f, g) for training suffers from incorrect sparse-depth

supervision or lack of sparse-depth supervision at many pixels on endoscopic
images, only using LS2(f, g) to supervise and train DenseNet57 for monocular
depth prediction easily get trapped into local optimum because the intensity
distribution of endoscopic images is strongly non-convex. This motivates our
new framework of self-supervised learning with a cascade training strategy for
monocular endoscopic depth recovery.

2.4 Pre-trained Models

This work will generate three pre-trained models to compare different loss func-
tions used in DenseNet57. Without loss of generality, Model-1 is a one-stage
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model trained by the self-supervised PCL and DCL function LM1(f, g), while
Mode-2 is also a one-stage trained by the self-supervised SDL, PCL, and DCL
function LM2(f, g) with respect to Eqs.(3), (4), and (7):

LM1(f, g) = γ1LPCL + γ2LDCL, (9)

LM2(f, g) = λ1LSDL + λ2LPCL + λ3LDCL, (10)

where constants γ1, γ2, λ1, λ2, and λ3 are the weights of loss functions.
Model-3 is generated by our proposed self-supervised learning methods with

a cascade training strategy. Note that Liu et al. [10] proposed method used SDL
with DCL for one-stage training. Table 1 summarizes all the pre-trained models
that employ different weights during training in this work.

Our experiments skip data augmentation for the generalization of these mod-
els. We downsampled all the images to a size of 320×256 and simply remove
highlight pixels on endoscopic images by an in-painting operation, avoiding the
degradation of the photometric consistency supervision. We set the learning rate
from 10−5 to 10−4 and use the stochastic gradient descent algorithm as an opti-
mizer with the momentum of 0.9 during training [16]. The batch size, epoch,
and iterations were set to 4, 20, and 1000, respectively.

3 Validation

We recorded monocular endoscopic video data from surgical procedures. All the
endoscopic video images in a size of 1920×1080. We manually selected a large
number of images that contain much structural information as our experimen-
tal data. For these selected images, we generated sparse depth maps using the
local region expansion based SfM algorithm [4,15]. Finally, we obtained 96 video
sequences with relatively good sparse results from inconsistent scenarios and
each sequence contains from 15 to 30 frames. Each sparse depth map usually
contains numerous projected feature key points ranging from 1000 to 3500.

Since we cannot generate ground truth for the patient data, we use two met-
rics for quantitative evaluation: SSIM and peak signal to noise ratio (PSNR) [6].
Specifically, we use the estimated camera pose and monocular dense depth map
to warp one frame into the perspective of another and calculate SSIM and
PSNR between the original and warped images. Additionally, we calculate back-
projection error (BPE) to measure the average distance between reconstructed
points and their corresponding matched points on endoscopic images.

To evaluate the robustness of the models in Table 1, we compare them to two
monocular dense depth recovery methods: (1) Liu et al. [10], a self-supervised
learning method with SDL and DCL training, and (2) Ozyoruk et al. [14], an
unsupervised learning method that simultaneously predicts camera pose and
dense depth on the basis of photometric consistency loss. Note that we used the
same sparse depth maps and camera poses to normalize dense depth maps and
calculate the metrics for a fair comparison.

We also implement ablation study to evaluate our cascade training strat-
egy using different sparse reconstruction results. For each video sequence, we
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Fig. 2. Image A’s estimated monocular dense depth maps and reconstructed 3-D sur-
faces using five models, respectively. Red boxes indicates inaccurate reconstructed
structures. The results of image B are compared in Fig. 3 (Color figure online)

Table 2. Quantitative results of SSIM, PSNR, and back-projection errors (BPE) of
using the five methods. Note that <1 represents the proportion of the feature points
whose back-projection errors are less than 1 pixel.

Methods SSIM PSNR <1 <2 <3 BPE

Liu et al. 0.601± 0.078 21.362 ± 2.773 0.655 0.835 0.898 1.292 ± 1.463

Ozyoruk et al. 0.522± 0.072 20.352 ± 2.581 0.438 0.665 0.784 2.036 ± 2.174

Model-1 0.605± 0.076 21.821 ± 2.797 0.639 0.819 0.877 1.357 ± 1.504

Model-2 0.616± 0.080 22.235 ± 2.879 0.699 0.851 0.923 1.185 ± 1.256

Model-3 0.629± 0.071 22.448 ± 2.761 0.713 0.887 0.946 1.032 ± 1.105

generate multiple feature groups with different matches at a certain increasing
number. Based on different numbers of feature matches, we perform the SfM
algorithm to obtain various sparse depth maps and camera poses for training.
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4 Results

Figure 2 visually compares their estimated dense depth maps and reconstructed
3-D image surfaces using the five deep learning methods. The previous self-
supervised learning based method proposed by Liu et al. [10] limits itself to
insufficient depth range and inaccurate reconstructed structure at textureless
regions, while the unsupervised learning based approach [14] obviously fails to
predict the depth information, especially at the boundary and middle regions on
the image. Model-1 still fails to predict the depth at some regions with illumina-
tion variations. Model-2 improves the accuracy of the depth range and structure
compared to Liu et al. [10] and Model-1, but still introduces much noise recon-
struction. Model-3 generally outperforms the other models, providing results
with more reasonable depth ranges, more accurate structures, and much less
noise.

Fig. 3. Compared SSIM and PSNR of the five methods tested on 29 pairs of monocular
endoscopic video sequences.

Figure 3 plots the SSIM and PSNR results of the five methods evaluated on 29
monocular endoscopic video sequences. Table 2 further summarizes quantitative
assessment results of using the five deep learning methods. SSIM, PSNR, and
average back-projection errors of Model-3 were slightly better than Model-2 and
much better than Liu et al. [10], Ozyoruk et al. [14], and Model-1.

Figure 4 displays the dense depth maps with different sparse reconstruction
results. The dense depth accuracy of using Liu et al. [10] and Model-2 clearly
depends on the quality of the sparse depth estimation. The more numerous
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feature points for spare depth supervision, the more accurate monocular depth
distribution prediction. More interestingly, our cascade training method (Model-
3) can effectively improve the dense depth estimation map only supervised by
the low-quality sparse depth supervision (20%).

5 Discussion

The objective of this work is to predict reasonable dense depth distribution and
reconstruct 3-D surfaces of monocular endoscopic video sequences. The effec-
tiveness and limitations of different models are discussed as follows.

Self-supervised learning methods generally work better than unsupervised
learning such as Ozyoruk et al. [14]. The unsupervised method [14] limits itself
to getting trapped into local minima or optimum because its used photometric
consistency training loss is sensitive to illumination variation. By using sparse
depth consistency loss for self-supervision, Liu et al. [10] still suffers from insuf-
ficient depth range and incomplete structure due to an insufficient number and
limited quality of sparse feature points. Model-1 remains challenging to illumi-
nation variations. Model-2 and Model-3 certainly outperform the other three
methods since they use both sparse depth and photometric consistency super-
vision for training. Unfortunately, Model-2 introduces much noise on predicted
depth maps, resulting from a profound depth difference among image pixel loca-
tions supervised only by sparse depth loss but their surrounding areas only
supervised by photometric consistency loss. Model-3 can achieve better results

Fig. 4. n% is the percentage and (m) represents the average number of projected
points of all training data on the sparse depth maps, while the third row shows the
sparse depth maps. Rows 4∼7 illustrate all the dense depth maps of Fig. 2 (Image
A) predicted by Liu et al. [10], Model-1, Model-2, and Model-3 under different sparse
depth supervisions from the results at Row 3, respectively.
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because it uses a cascade training strategy to build an initial-to-refine learning
model. Additionally, Model-3 can generally obtain precise depth structures even
if the quality of sparse data was inaccurate since the initial depth map of our
proposed model can be optimized by the photometric consistency supervision.

Our proposed methods still suffer from some limitations. Our methods still
cannot estimate the depth and reconstruct 3-D surfaces for monocular endo-
scopic video data with large blur and specular highlight regions. Additionally,
the computational speed of our method was about 10 frames per second, which
can be improved up to real-time processing for clinical applications.

In summary, this work presents a new self-supervised learning with a two-
stage cascade training strategy for dense depth prediction of monocular endo-
scopic images. The experimental results show our cascade-trained model outper-
forms other unsupervised and self-supervised methods.
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Abstract. Source-Free Domain Adaptation (SFDA) has gained atten-
tion as a promising solution to address the domain shift issue, elimi-
nating the requirement for labeled data from the source domain. How-
ever, current SFDA methods heavily rely on self-training, which are con-
fronted with two main challenges: inevitable occurrence of noisy pseudo-
labels and insufficient adaptation across a single scale or level. To over-
come these limitations, a novel SFDA method is developed for fun-
dus image segmentation across different datasets. Our method encom-
passes two essential phases: the generation phase and the adaptation
phase. In the generation phase, we introduce clustering to SFDA seg-
mentation and propose a feature-enhanced clustering method to gener-
ate robust pseudo-labels. This process improves adaptation quality par-
ticularly when the source model’s feature learning capability is limited
in the target domain. In the adaptation phase, we develop a dual-level
contrast learning method aimed at mitigating domain shift through self-
supervision. First, we present a full-scale feature-level contrast loss that
utilizes low-level and high-level features from both the target domain
data and its augmented version. This enables the model to acquire
discriminative characteristics while minimizing disparities between the
original and augmented data. Second, we design a clinical prior-guided
label-level contrast loss to filter out low-quality pseudo-labels, providing
favorable guidance for the segmentation model. Extensive experiments
on cross-domain datasets of fundus images demonstrate its superiority
over mainstream SFDA methods. In the challenging Drishti-GS target
domain, our method surpasses SOTA models by 3.14% and 2.18% in
optic disc and optic cup Dice scores, respectively. Codes are available at
https://github.com/M4cheal/PCDCL-SFDA.
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1 Introduction

In recent studies, deep learning models have shown impressive results in medical
image segmentation [10]. However, the deployment of deep learning models in
real-world scenarios does indeed come with challenges, and one prominent chal-
lenge is the domain shift issue [23]. The domain shift issue refers to the scenario
where a machine learning model, which has been trained on a specific source
domain such as data from a particular hospital, struggles to effectively apply
its learned knowledge to a different target domain, such as data from another
hospital. In this situation, the model’s effectiveness may degrade significantly
due to the differences in image properties and characteristics between the source
and target domains. To address this issue, researchers have extensively inves-
tigated methods of Unsupervised Domain Adaptation (UDA) [4,9,17,19,22].
These methods typically rely on accessing to labeled data from the source domain
and unlabeled data from the target domain. However, the availability of source
domain data is restricted due to concerns regarding privacy and security [1]. As
a solution with limited exploration, Source-Free Domain Adaptation (SFDA)
has emerged [12,15], focusing on adapting the target domain using pre-trained
source models and unlabeled target domain data.

Self-training is a popular technique employed in SFDA, where a source model
is utilized to produce pseudo-labels for the target domain. These pseudo-labels
are then utilized to train the target domain in a supervised manner. Achieving
accuracy and reliability in the generated pseudo-labels is vital for the effective-
ness of self-training in SFDA. To address this, several techniques have been devel-
oped to rectify the pseudo-labels generated by the source model in a denoising
manner. Adaptive thresholding and uncertainty correction techniques are widely
employed to enhance the quality of pseudo-labels [5,24]. Entropy minimization
is another commonly used method in self-training. It combines entropy loss and
prior knowledge predictors to transfer valuable knowledge between domains [1,2],
which helps reduce uncertainty and improves the reliability of pseudo-labels.
Recently, drawing inspiration from the successful application of contrast learn-
ing, researchers have incorporated this technique into the adaptation process for
target domains. In existing methods, contrast learning is commonly employed
to facilitate feature-level adaptation and label-level adaptation by utilizing tar-
get domain images alongside their enhanced counterparts. For instance, the
researchers employ Batch Normalisation (BN) statistics to regenerate source-like
images and compare the target domain image with the corresponding source-like
images for contrast learning [25]. Similar techniques are also proposed in [14].

Although these techniques are beneficial in enabling the model to adapt to
target domain, there remain certain challenges when dealing with substantial
domain shift in real-world applications. One of these limitations is the gener-
ation of overconfident probability maps by the source model, leading to noisy
pseudo-labels that can weaken the effectiveness of the adaptation phase. Addi-
tionally, medical imaging data can vary greatly in terms of acquisition proto-
cols, imaging modalities, patient populations, and disease manifestations. As
a result, relying solely on single-scale or single-level adaptation is insufficient
[13]. Moreover, it is crucial to acknowledge the significance of low-level fea-
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tures that capture fundamental visual information and local patterns in tackling
domain shift. Disregarding the influence of these features, extracted from shallow
networks, would overlook their substantial impact on the model’s ability to han-
dle domain shift effectively [3,6].

To tackle the aforementioned challenges, this study presents a novel SFDA
method, named Pseudo-label Clustering-driven Dual-level Contrast Learning, for
fundus image segmentation. Our method comprises a generation phase and an
adaptation phase. In the generation phase, a feature-enhanced clustering tech-
nique is proposed to generate reliable pseudo-labels by addressing the challenge
of overconfident predictions in target domains. Although clustering-based meth-
ods have been developed for SFDA in classification tasks [7,11,26], no SFDA
segmentation algorithm utilizing clustering currently exists. The introduction of
clustering into the SFDA segmentation task promotes similar predictions among
local nearest neighbors in the feature space, enhancing adaptability and robust-
ness. However, insufficient adaptation of the pre-trained source model to the
target domain can hinder its feature learning capability, leading to inaccurate
estimation of pseudo-labels. To tackle this limitation, entropy and prediction
probabilities are incorporated into the feature enhancement process to refine the
features, ensuring that the generated pseudo-labels are more accurate. Further-
more, feature-level clustering is performed to enhance the quality of the pseudo-
labels, thereby improving their reliability. In the adaptation phase, a dual-level
contrast learning method is developed to address the limitations of single-scale or
single-level adaptation. To ensure better feature alignment, a full-scale feature-
level contrast loss is designed to diminish the differences between the source
and target domains across all scales. Additionally, a clinical prior-guided label-
level contrast loss is introduced to filter out low-quality pseudo-labels and offer
dependable assistance for the segmentation model.

Notable contributions from our work include: (1) We introduce clustering into
the SFDA segmentation task for the first time, along with a feature enhance-
ment method, to generate robust pseudo-labels and greatly enhance the quality
of the subsequent adaptation process. (2) We devise a dual-level contrast learn-
ing method, consisting of a full-scale feature-level contrast loss and a clinical
prior-guided label-level contrast loss, enabling more effective adaptation in sit-
uations with significant domain shift. (3) Comprehensive experiments showcase
the remarkable adaptability of our method towards various target domains.

2 Method

2.1 Overview

This study introduces a novel SFDA method for fundus image segmentation,
comprising a generation phase and an adaptation phase, as illustrated in Fig. 1.
The source model Ms : xs → ys is assumed to be trained using labeled images
xs from the source domain along with their corresponding labels ys. The genera-
tion phase focuses on producing pseudo-labels using enhanced feature maps and
clustering. In the adaptation phase, we incorporate a dual-level contrast loss to
emphasize domain-invariant features and facilitate adaptation of the unfrozen
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Fig. 1. Overview of the proposed SFDA method.

source model Ms→t to unlabelled target domain images xt. Specifically, the dual-
level contrast loss consists of a full-scale feature-level contrast loss LFFC and a
clinical prior-guided label-level contrast loss LCPLC , contributing to improved
performance in cross-domain OD and OC segmentation tasks.

2.2 Generation Phase

In the generation phase, ensuring the reliability of pseudo-labels is crucial. This
paper designs a feature-enhanced clustering method to generate reliable pseudo-
labels. We introduce clustering into the SFDA segmentation task for the first
time, which encourages local nearest neighbors in the feature space to exhibit
similar predictions, enhancing the model’s adaptability and robustness in han-
dling domain shift. However, a potential issue arises when directly utilizing the
output feature map of the target domain for clustering. This is due to the limited
target domain feature learning capability of the unadapted pre-trained source
model, which may lead to inaccurate estimation of pseudo-labels for target data.
To overcome this limitation, we advocate to minimize the false-negative regions
(high entropy regions) and therefore propose a feature enhancement method.
Our method enhances the output feature map f by utilizing additional informa-
tion from the model’s predictions, including the output probability map p and
the entropy map e. The enhanced feature map f̃ is generated using the following
specific equation:

f̃ = f × Normalise(e) + f × p (1)

where Normalise(·) denotes the normalization process.
Based on the obtained enhanced features, we apply feature-level k-means

clustering to encourage dissimilar predictions for samples belonging to different
clusters, thereby generating more accurate and reliable pseudo-labels. During the
clustering process, the object class anchors zo are initialized by the convolutional
kernel weights of the output layer [7] and the background class anchors zb are
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initialized by the feature center of mass. These anchors serve as references for
the clustering algorithm, improving the generation of reliable pseudo-labels for
the target samples, denoted as Z = concat(zo, zb). The object class anchors zo

is obtained using the subsequent formula:

zo =
A∑

a=1

B∑

b=1

W conv
C×K×a×b (2)

where W conv ∈ IRC×K×A×B is the convolution kernel weights. Here, C, K, A,
and B represent the number of channels, the number of categories, the width,
and the height of the convolution kernel W conv, respectively.

The background class anchors zb is derived using the following formula:

zb =
∑H×W

i=1 f̃ × ŷb
i∑H×W

i=1 ŷb
i

(3)

where the background class prediction mask, denoted as ŷb, is generated by
performing a logical AND operation on the complement of the target class binary
mask and the binary high entropy map. The target class binary mask is generated
by applying a thresholding operation to the probability map p, while the binary
high entropy map is obtained by applying a threshold to the entropy map e.

Finally, an iterative k-means clustering procedure is performed on the
enhanced features f̃ and anchors Z to obtain the final pseudo-labels ỹ. Notably,
only the OC region is significantly affected by domain shift within the fundus
image segmentation task. Therefore, the clustering process is applied only to
the OC region for efficiency reasons, while the OD region utilizes the prediction
mask of the source model as the pseudo-label.

2.3 Adaptation Phase

To address the insufficient adaptation across a single scale or level in target
domains with significant domain shift, this study proposes a dual-level adapta-
tion method, which contains a full-scale feature-level contrast loss and a clinical
prior-guided label-level contrast loss. In contrast to the existing single-level or
single-scale adaptation methods, our full-scale feature-level contrast loss aids in
aligning features across multiple layers by measuring the L1 norm of the differ-
ence between target domain images and their enhanced versions. Notably, our
method considers the influence of both low-level and high-level features, ensuring
effective mitigation of domain shift. The formulation of the full-scale feature-level
contrast loss LFFC is defined as follows:

LFFC =
∑

i

λi ·
∣∣∣f t

i − f̃ t
i

∣∣∣
1

(4)

where f t
i refers to the target feature of the i-th layer of the network, and f̃ t

i is
the enhanced feature. The term λi signifies the weight assigned to each layer.
This weight adjustment enables effective feature alignment across multiple layers
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and enhances the overall adaptation process, contributing to improved perfor-
mance in handling domain shift. Empirically, the encoder, global, and decoder
features in the feature-level contrast loss are assigned weights of 0.4, 0.5, and 0.1,
respectively, based on their relative importance in capturing domain-invariant
features.

Despite the inherent stylistic differences between the target images xt and
their enhanced versions x̃t, it is crucial for them to produce consistent segmen-
tation results. Although existing methods commonly employ label-level contrast
learning to ensure consistency, the effectiveness of pseudo-labeling can be hin-
dered by domain shifts, thereby reducing the effectiveness of these approaches.
To mitigate this issue, we propose a clinical prior-guided label-level contrast
loss. This loss function leverages clinical knowledge and domain-specific infor-
mation to guide the model’s learning process and effectively filters out low-
quality pseudo-labels. Therefore, by incorporating the proposed clinical prior-
guided label-level contrast loss, the segmentation results can be enhanced. In
this study, we introduce the concept of compactness, represented as Cprior, to
impose a constraint on the pseudo-labels. Additionally, to account for the cir-
cular shape prior of the target region, we design a circular compactness metric
V prior as an additional constraint. The weight W prior is defined as the ratio of
the circular compactness metric Cprior to V prior:

W prior =
Cprior

V prior
=

4πa/p2√∑n
i=1

(
di − d̄

)
/n

(5)

where p represents the perimeter of the segmented target, while a denotes its
area. di signifies the distance from the boundary pixel point to the center, and
d̄ corresponds to the mean value of di. The variable n reflects the count of
boundary pixel points. Lower-quality pseudo-labels yield smaller values of Cprior,
resulting in reduced corresponding weights. Similarly, smaller values of V prior

are associated with lower weights. The clinical prior-guided label-level contrast
loss LCPLC is formulated as follows:

LCPLC = W prior
(
Ltseg + Lt̃seg

)
(6)

where Lt
seg and Lt̃

seg represent the discrepancies between the output labels and
pseudo-labels of the target domain image and its enhanced image, respectively.
Following [21], our Lseg involves a Dice loss and a smoothing loss. The Dice
loss measures the overlap between the predicted binary masks (y and ỹ), while
the smoothing loss encourages uniform predictions in the neighborhood by con-
sidering the interaction between predicted and true values. The weight W prior

dynamically adjusts the significance of the label-level contrast loss within the
overall optimization process.

Finally, in the adaptation phase, the total loss is computed as the sum of the
individual components described above, which is formulated as:

Ladapt = LFFC + γ × LCPLC (7)

where γ is a weighting factor and its value is specifically set to 0.001.
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3 Experiments

3.1 Datasets and Evaluation Metric

Experiments are carried out on the RIGA+ dataset [9], a multi-domain dataset
designed for OD and OC segmentation. The dataset comprises five domains:
BinRushed, Magrabia, BASE1, BASE2, and BASE3. To ensure fairness, we use
annotations from the first physician for training and evaluation. BinRushed and
Magrabia serve as the source domains, while BASE1, BASE2, and BASE3 are
designated as the target domains. Among the target domains, BASE1, BASE2,
and BASE3 consist of 173, 148, and 133 labeled samples, respectively, along with
227, 238, and 252 unlabeled samples. The unlabeled data is utilized for training
the model, while the labeled data is reserved for testing purposes. To enhance
realism, we introduce two additional fundus image datasets as target domains:
the Drishti-GS [18] and the REFUGE training [16] datasets. The Drishti-GS
dataset is split into 50 training images and 51 test images. The REFUGE training
dataset consists of 400 labeled images, which we further divide into training and
test subsets using 4-fold cross-validation due to the absence of official divisions.
We evaluate the segmentation performance using the Dice score (D,%). A higher
D value indicates better segmentation performance.

3.2 Implementation Setup

Our method is implemented using the PyTorch 1.8.1 framework and trained
on an NVIDIA TITAN RTX GPU. We resize the RIGA+ dataset from 800 ×
800 to 512 × 512. For the Drishti-GS and REFUGE datasets, we utilize a pre-
trained model to identify the centers of the OD regions. Subsequently, we crop the
images to a size of 512 × 512 for further processing. The segmentation network
employs a UNet framework with a ResNet34 backbone. The adaptation phase
utilizes the SGD optimizer with a momentum of 0.99 and an initial learning
rate of lr0 = 0.001. The learning rate follows a polynomial decay rule, defined
as lr = lr0 × (1 − t/T )0.9, where T = 100 denotes the maximum epoch and t
represents the current epoch. The batch size is set to 16.

3.3 Experimental Results

In our study, our SFDA method is compared with five SOTA Domain Adaptation
(DA) methods in various setups. These setups include the “Intra-Domain” setup,
where both training and testing utilize target domain markers, the “w/o DA”
setup, using the source model to test directly on the target domain, and the
“Baseline” setup, which relies solely on self-training for DA. We evaluate three
SFDA methods (AdaMI [1], DPL [5], and FSM [25]) and two UDA methods
(BEAL [20] and CLR [8]). To ensure a fair comparison, we report their best
performance and re-implement all SFDA methods using the same source model.
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Table 1. The performance of our SFDA method and other compared methods in
joint OD and OC segmentation. “SF” represents whether the method is in source-free
setting. The best results for SFDA methods are marked in bold.

Methods SF BASE1 BASE2 BASE3 Drishti-GS REFUGE

DOD DOC DOD DOC DOD DOC DOD DOC DOD DOC

w/o DA � 94.70 82.04 89.73 70.84 92.85 78.91 92.17 66.65 86.49 74.70

Intra-Domain × 95.65 86.00 95.65 87.61 95.35 88.59 96.09 84.20 95.47 86.60

Baseline � 95.33 84.22 92.18 76.58 94.76 83.10 94.89 74.13 88.71 78.27

BEAL [20] × 95.98 83.73 96.18 85.13 96.38 85.31 90.81 78.73 91.24 80.39

CLR [8] × 93.45 86.28 96.16 85.09 95.91 87.17 93.99 75.74 94.03 82.44

AdaMI [1] � 95.28 83.76 93.93 83.12 94.46 85.85 91.39 62.39 84.95 75.67

DPL [5] � 92.31 81.96 91.77 80.81 92.41 84.30 92.49 81.91 85.70 76.75

FSM [25] � 93.45 83.62 85.15 83.30 92.70 82.51 93.28 79.23 89.52 81.11

Ours � 95.42 85.19 94.07 84.34 95.07 86.30 95.63 84.09 90.35 82.61

w/o GP � 95.32 83.17 94.05 82.31 95.50 85.90 95.13 77.92 90.45 81.08

w/o AP* � 95.51 82.73 91.75 82.42 94.55 85.24 94.44 80.98 89.35 81.74

w/o AP � 95.44 84.24 91.09 82.93 94.22 86.12 94.52 79.68 88.45 81.69

Table 1 presents the achieved Dice similarity coefficients by our method and
comparative methods. By observing the performance gap between “w/o DA”
and “Intra-Domain”, we gain a comprehensive understanding of the domain
shift. Although AdaMI shows overall improvement, it performs worse on the
Drishti-GS target domain compared to the “w/o DA” approach, possibly due
to significant domain shift resulting in different category proportions. Despite
the significant domain shift, DPL achieves competitive results. However, crudely
discarding suspect noise can compromise the representativeness of the learned
features and alter the class distribution [24]. The performance of DPL on the
BASE1 and REFUGE target domains is lower than that of the “Baseline”. In
contrast, FSM obtains better overall performance. However, the FSM method
solely relies on single-scale contrast learning methods, limiting its adaptabil-
ity. Consequently, the performance of FSM is sub-optimal. Overall, our method
exhibits superior performance, particularly in scenarios with substantial domain
shift between the source and target domains, as evident from the results obtained
on the Drishti-GS dataset. Our method achieves outstanding results, with a Dice
score of 95.63% for OD (DOD) and 84.09% for OC (DOC). These results highlight
the effectiveness of our proposed method in mitigating domain shift, comparable
even to UDA methods.

Figure 2 visually presents segmentation maps produced by our method, as
well as other SFDA methods, in comparison to the Ground Truth (“GT”) and
“w/o DA” results. This visual comparison serves as compelling evidence, show-
casing the ability of our method to generate segmentation results that closely
match GT and provides further validation and support for the effectiveness of
our approach.
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Fig. 2. Visualization of segmentation results by our SFDA method and competing
methods, along with GT.

3.4 Ablation Experiments

Our method consists of two distinct phases designed to reduce domain shift: the
Generation Phase (GP) and the Adaptation Phase (AP). We perform ablation
experiments on three datasets (RIGA+, Drishti-GS, and REFUGE) to evaluate
the effectiveness of GP and AP in our method. Table 1 demonstrates the perfor-
mance of our SFDA method and its variants. The results show that the perfor-
mance of the “w/o GP” variant decreases when the GP-generated pseudo-label
is not used as supervision. Additionally, when the AP is completely removed
and only GP-generated pseudo-labels are used, the “w/o AP*” variant per-
forms better than the “Baseline” setup. These findings suggest that our GP pro-
duces effective pseudo-labels. Furthermore, when the AP is removed and replaced
with the Baseline setup, the performance of the “w/o AP” variant significantly
decreases. This observation suggests that incorporating full-scale feature align-
ment is advantageous for segmentation tasks, and the utilization of prior con-
straints proves effective in mitigating the inclusion of low-quality pseudo-labels.
The “Ours” (combined GP and AP) yields the best segmentation performance,
confirming their effectiveness. In summary, our ablation experiments demon-
strate the effectiveness of the GP and AP phases in reducing domain shift and
improving segmentation performance.

We also compare the variants “w/o Entropy” (without entropy) and “w/o
Output” (without output probability) within the feature-enhanced clustering
method. Figure 3(A) visually represents the results, highlighting the importance
of incorporating both entropy and output probability enhancement techniques
for reliable pseudo-label generation. Furthermore, we analyze the impact of dual-
level contrast learning in the adaptation phase by removing specific feature con-
trasts. The removal of any feature contrast (global “W/o G”, decoder output
“W/o D”, or encoder “W/o E”) results in performance degradation, as shown
in Fig. 3(B). Removing prior weighting in label-level contrasts “W/o W” leads
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Fig. 3. Visual analysis of ablation experiments. (A) Comparison of GP variants without
entropy and output probability. (B) Impact of feature contrast removal in the AP. (C)
AP performance for different values of gamma.

to a significant decrease in performance, emphasizing the crucial role of prior
weighting in achieving accurate segmentation results. Figure 3(C) displays the
performance of the adaptation phase for different choices of γ, indicating the
optimal choice of 0.001 for maximizing the score.

4 Conclusion

This study develops a novel SFDA method specifically designed for fundus image
segmentation. Our method tackles the domain shift problem in both the gen-
eration phase and adaptation phase. In the generation phase, robust pseudo-
labels are generated through the utilization of feature-enhanced clustering. These
pseudo-labels serve as valuable annotations for the subsequent adaptation phase.
In the adaptation phase, a dual-level contrast learning method is employed in a
self-supervised manner to enhance the segmentation model’s adaptability, result-
ing in improved performance. We conduct a comprehensive evaluation of the
effectiveness of our method on three publicly available fundus image datasets.
The experimental results indicate that our method outperforms SOTA SFDA
methods, particularly on datasets characterized by significant domain shift. This
highlights the superiority of our method in addressing the challenges posed by
domain shift in fundus image segmentation task.

In future research, it is recommended to conduct studies on larger and more
diverse datasets, including multi-center datasets, to validate the performance
and generalizability of our method in practical clinical scenarios.
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Abstract. Semi-supervised learning is a promising approach for medi-
cal image segmentation with limited labeled data. Though existing con-
sistency learning based SSL methods achieve convincing results, they
neglect the finer-grained information. In this work, we propose a novel
dual consistency learning (DCL) method based on characteristics of med-
ical images for semi-supervised lung tumor segmentation. For patch
shuffle consistency learning, image patches are shuffled as a strong-
augmented view to improve both the student and teacher models in
the mean teacher framework. For pixel contrast consistency learning, we
construct a memory bank by high-quality pixel features updated with
reservation and obtain anchors from wrongly classified tumor and high-
confident background features, making the pixel-level feature space more
discriminative. Experiments on three lung tumor datasets demonstrate
the effectiveness of our method for semi-supervised medical image seg-
mentation.
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1 Introduction

Medical image segmentation aims at localizing anatomical structures of interest,
such as organs, lesions and tumors, by predicting pixel-level labels, which assists
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Fig. 1. Motivation of this work. (a) The predictions output are similar. (b) By shuffling
patches, the student cannot predict as well as the teacher, resulting in more effective
consistency learning. (c) With the existing method, some tumor pixels are misclassified
(i), because the pixel-level feature space is not discriminative enough (ii). With the
proposed pixel contrast consistency learning, the feature representations of tumor and
background are better separated (iv), and thus improving the performance (iii).

disease analysis to improve the efficiency of diagnosis. Recently, many UNet-
based encoder-decoder architectures [9,16] have been proposed and achieved
encouraging results based on fully-supervised learning. However, they rely heav-
ily on a large amount of high-quality pixel-level labeled data for training, which
is expensive and time-consuming to collect. To lower the demand of the manual
annotations, semi-supervised learning (SSL) is proposed, which fully utilizes the
massive unlabeled data for medical image segmentation.

Among existing semi-supervised segmentation methods [4,7,17,21,27], the
mean teacher [21,29] is a promising approach with effectiveness and stability to
learn a teacher model by exponential moving average (EMA) of the student, and
has been extended for medical image segmentation [6,12] recently. In these meth-
ods, the outputs from different views of each unlabeled image are constrained
to be consistent with each other. It has been shown in existing works [10,27,29]
that strong data augmentations to generate heavily-distorted views of the input
images are beneficial for SSL. Nevertheless, strong augmentations like color dis-
tortion/jittering are not appropriate for medical images without color informa-
tion (e.g. CT and MRI). By using only weak augmentations like flip, rotation
and Gaussian noise, the outputs from student and teacher models are almost the
same as shown in Fig. 1a, which leads to ineffective consistency learning.

On the other hand, most existing works on semi-supervised segmentation
pay little attention to the discriminability and generalization ability of the pixel
representations. To address this issue, contrastive learning initially developed for
image classification [8], has been employed to solve the segmentation tasks for
natural images [1,23,26,32]. Despite the success, existing methods designed for
natural image segmentation do not take into account the specific characteristics
of medical images. For example, a severe class-imbalance problem in lung tumor
segmentation would occur compared to natural images.

To address the issues mentioned above, we propose a novel dual consistency
learning (DCL) method for semi-supervised lung tumor segmentation, which
consists of patch shuffle consistency and pixel contrast consistency. According
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to general medical knowledge, locations of the lung tumor are with uncertainty.
We propose to shuffle patches in an image as an effective data augmentation
way for consistency learning. As shown in Fig. 1b, by using patch shuffle, the
student prediction output differs from the teacher, such that the student model
can be improved by the teacher guidance. With the improved student, we obtain
a better teacher model by the EMA update.

For the proposed pixel contrast consistency learning, a memory bank and
anchor set are designed based on characteristics of medical images. High-quality
pixel features of labeled data extracted by the teacher model are selected to
construct the memory bank updated with reservation. The anchor set contains
wrongly classified tumor pixel features of labeled data and high-confident back-
ground pixel features of unlabeled data extracted by the student model. By
minimizing the distance between positive pairs and maximizing the distance
between negative pairs from the memory bank and anchor set, the feature space
become more discriminative as depicted in Fig. 1c.

Our main contributions are as follows: (1) We propose the patch shuffle con-
sistency learning for patch position invariant tumor prediction. By EMA update,
both the teacher and student models get better. (2) We propose the pixel contrast
consistency learning based on characteristics of medical images. The memory
bank with a update-with-reservation strategy is filled with high-quality pixel fea-
tures. The anchor set is composed of wrongly classified tumor and high-confident
background features, for discriminative feature learning. (3) Experiments on
three lung tumor segmentation datasets demonstrate that our proposed method
outperforms the state-of-the-art semi-supervised learning methods for medical
image segmentation.

2 Related Work

2.1 Semi-Supervised Learning

Semi-supervised learning (SSL) has achieved great success in the field of com-
puter vision. As stated in [1,4], there are two typical paradigms, i.e., self-training
and consistency regularization.

Self-training. The self-training strategy [27] generates pseudo labels for unla-
beled data, which is a form of entropy minimization. For semi-supervised image
segmentation [29], both labeled data with ground truth and unlabeled data with
pseudo labels are used to learn discriminative models.

Consistency Regularization. Consistency regularization aims to enforce con-
sistent predictions among different views of an input image, which can be gen-
erated by perturbations. The Cutout [5] randomly cuts out a patch and filling
it with random noise within an image. The CutMix [30] cuts and pastes patches
among different images to create perturbed data. Nevertheless, they are not suit-
able for lung tumor segmentation, because the tumor region may be removed
by using the Cutout, while the images produced by CutMix may contain pixels
with confusing information from different patients. To address these issues, we
propose the patch shuffle augmentation.



Dual Consistency Learning for Semi-supervised Lung Tumor Segmentation 507

2.2 Semi-supervised Medical Image Segmentation

Semi-supervised learning has received much more attention in the field of medical
image segmentation. One of the most important techniques is the Mean Teacher
(MT) [21], which performs consistency learning via an exponential moving aver-
age (EMA) operation. In [12], an uncertainty-aware mean teacher (UA-MT)
model is proposed. Mixup [2] encourages the consistency between the segmen-
tation results of the interpolated unlabeled data and segmentation maps of the
corresponding data.

Although these MT-based architectures achieve convincing results, they use
only weak augmentations such as flip and rotation, which mainly focus on image-
wise consistency. In contrast, our method is equipped with a stronger augmen-
tation of patch shuffle, motivated by finer-grained patch-wise consistency, which
helps utilize the uncertainty of tumor location for segmentation.

2.3 Contrastive Learning

Contrastive learning is firstly used in image classification [8] to discriminate
positive image pairs from negative image pairs. In the segmentation task, it is
applied on a set of pixel-wise features called anchors with their positive/negative
pairs. Previous works [26,32] simply adopt the InfoNCE loss [8], resulting in only
one positive sample selected for each pixel. For improvment, [1] define all the
pixels of the same category as positive samples, while neglecting the importance
of negative samples. To address the above issues, U2PL [23] pays attention to
false negative samples and obtain anchors with high confidence.

Despite the success, these methods lose sight of the characteristic of medical
images. In contrast, our work obtains positive and negative samples from a
memory bank by taking medical knowledge into account. Furthermore, we adopt
a new anchor sampling criterion that differs from directly selecting pixels of the
corresponding class according to the ground truth or pseudo labels.

3 Method

3.1 Overall Framework

Semi-supervised lung tumor segmentation is a pixel-wise binary classification
task in which a small amount of labeled data Dl = {(xl

i, y
l
i)}Nl

i=1 and a large
amount of unlabeled data Du = {xu

i }Nu
i=1 are available for training. Here, yl

i is
the corresponding pixel-level annotations of image xl

i, Nl and Nu are the numbers
of labeled and unlabeled samples, respectively. Note that each image is made up
of H × W pixels, where H denote the height and W is the width of the image.
Denote the j-th pixel in image xl

i as xl
i,j . The label of xl

i,j is a one-hot vector
yl
i,j ∈ R

2 with yl
i,j,1 = 1 for tumor or yl

i,j,0 = 1 for background pixel. Our goal
is to train a lung tumor segmentation model by leveraging both labeled data Dl

and unlabeled data Du.
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Fig. 2. Framework of our method.

Innovatively, we propose a Dual
Consistency Learning (DCL) method
for semi-supervised lung tumor seg-
mentation. The proposed DCL con-
sists of Patch Shuffle Consistency
Learning and Pixel Contrast Consis-
tency Learning. The overall frame-
work based on the teacher-student
scheme is as shown in Fig. 2. Both the
teacher and student models share the
same architecture, which consists of a
feature extractor f and a segmenta-
tion head g. For the student model, we
minimize the supervised loss between
the output prediction pl = g(f(xl; θ1); θ2) and the corresponding ground truth
yl of the input labeled data xl. Based on the proposed patch shuffle consistency
elaborated in Sect. 3.2, the pseudo labels ŷu of the input unlabeled data xu out-
put by the teacher model is used to supervise the student model with the shuffled
xu. For pixel contrast consistency learning detailed in Sect. 3.3, a memory bank
Q is constructed saving high-quality features. Then, the pixel contrast consis-
tency is constrained between the stored features in the memory bank and the
anchors sampled from the feature extractors of both the student and the teacher
models. In summary, the weights θ = (θ1, θ2) of the student model are optimized
by the following loss function,

L = Lsup + λpatchLpatch + λpixelLpixel (1)

where Lsup is the supervised loss, Lpatch and Lpixel are the proposed patch shuffle
and pixel contrast consistency losses with trade-off hyper-parameters λpatch and
λpixel respectively. We compute the supervised loss Lsup by combining the Dice
loss [15] and the Weighted Cross Entropy (WCE) loss to conquer the serious
class-imbalance problem, i.e., Lsup = Ll

WCE + Ll
Dice.

After updating the weights θ of the student model, the weights ξ of the
teacher model are computed by exponential moving average (EMA) of the stu-
dent with a decay rate ω ∈ [0, 1], i.e., ξ = ωξ + (1 − ω)θ.

3.2 Patch Shuffle Consistency Learning

In our method, we propose to shuffle the patches of each image for data aug-
mentation as the input to student model. The images without the patch shuffle
operation are fed to the teacher model to obtain pseudo-labels for guiding the
training of the student.

Patch Shuffle Operation. We divide an unlabeled image xu
i into n×n patches

of equal size, denoted by {xu
i,k}n×n

k=1 . These patches are randomly permuted
according to a shuffling order S to obtain an augmented image x̂u

i , which is
composed of the same n × n patches as xu

i but in a different order, i.e.,
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{x̂u
i,S(k)}n×n

k=1 � S({xu
i,k}n×n

k=1 ) (2)

The shuffled images are fed into the student model to obtain prediction out-
puts p̂ui = g(f(x̂u

i ; θ1); θ2). For consistency learning, the images xu
i without

shuffling are input to the teacher model to compute the prediction scores
pui = g(f(xu

i ; ξ1); ξ2). Since the student outputs p̂ui are obtained through patch
shuffle, the teacher predictions pui = g(f(xu

i ; ξ1); ξ2) need be shuffled by the same
patch shuffle order S, i.e., S({pui,k}n×n

k=1 ). As shown in Fig. 2, pseudo labels are
generated in every training iteration as follows:

{ŷu
i,k,1}n×n

k=1 = arg max S({pui,k}n×n
k=1 ) (3)

where ŷu
i,k is the pseudo-label of the k-th patch with ŷu

i,k,0 = 1 − ŷu
i,k,1.

Consistency Learning. We constrain the consistency between the teacher
pseudo-label ŷu

i and the student prediction outputs p̂ui for learning. Similar to
the supervised learning process, the loss function for patch shuffle consistency
learning is defined by combining the Weighted Cross Entropy loss and Dice loss
between p̂ui from the student and ŷu

i from the teacher model, i.e.,

Lpatch = Lu
WCE + Lu

Dice (4)

By minimizing the patch shuffle consistency loss Lpatch, it enhances the model
robustness for lung tumor segmentation. As shown in general medical knowledge,
lung tumor can grow in arbitrary locations. The shuffle operation simulates such
variability for model learning by detaching tumors from their original back-
ground and rearranging them in different orders. Unlike data augmentations like
flip, rotation and Gaussian noise, what we propose changes the relative position
of patches surrounding the tumors. Since tumors are no longer limited in their
inherent neighbourhood, the semantic relationships between patches vary from
the original ones. This forces the segmentation model to focus on the information
within the patch containing tumors and thus improves the performance.

3.3 Pixel Contrast Consistency Learning

The flow chart of the proposed Pixel Contrast Consistency Learning is shown
in Fig. 3. In our method, each pixel of the input image is projected to the high-
dimensional feature space by the feature extractor f . Without loss of generality,
the feature vector (or feature) of the j-th pixel in the i-th image is denoted as
zi,j . By using the teacher model, high-quality features are obtained by the feature
selection mechanism to construct the memory bank updated with reservation. By
using the student model, we propose an innovative anchor sampling strategy
to select wrongly classified tumor and high-confident background features as
anchors for contrastive learning. Finally, the pixel contrast loss function Lpixel

is defined by the positive and negative pairs from the memory bank Q and the
anchor set A for optimization. Consistency is maintained at the fine-grained pixel
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Fig. 3. Pixel contrast consistency learning. Labeled images xl are input to the teacher
model to construct the memory bank Q by feature selection and the update with
reservation strategy. Meanwhile, anchor features are obtained by sampling from both
the labeled and unlabeled data using the student model. By minimizing Lpixel, the
feature space becomes more discriminative.

level between the memory bank constructed by the teacher model and anchor
features extracted by the student model. Details are given as follows.

Feature Selection. To preserve high-quality features of both tumor and back-
ground pixels in the memory bank Q, we devise a feature selection (FS) mecha-
nism to filter out a large number of less representative feature vectors. Input the
labeled data xl

i to the teacher feature extractor, denote the softmax prediction
probability of the j-th pixel in xl

i as pli,j ∈ R
2. Two criteria are proposed to

determine whether a pixel-level feature vector is of high quality. The first one is
whether the prediction of the pixel is correct, while the second is whether the
prediction confidence is higher than a fixed threshold τ = 0.95 same as in [1].
The qualified feature vectors under feature selection mechanism are obtained as,

V = {zli,j , s.t., ŷl
i,j = yl

i,j ∧ max{pli,j} > τ} (5)

Memory Bank Update with Reservation. Since the supervised learning loss
fits the data labels, the two criteria can be easily satisfied and numerous pixel
features are selected in V, which is likely larger than the memory bank size m. If
we adopt a simple FIFO queue, all the previous feature vectors will be popped
out after each iteration. This means the memory bank degrades to storing only
the feature vectors in the current mini-batch without memorizing the history.
To prevent from this issue, we design an update with reservation (UR) strategy
for the memory bank Q. Specifically, we set a reserved space of size m′(m′ < m)
for the background Q0 and tumor memory Q1. In each iteration, m′ randomly
selected features are reserved and kept unchanged in the memory. The remaining
m − m′ feature vectors are replaced by randomly selecting features from V. This
strategy ensures that previous high-quality feature vectors are retained in the
memory bank for better contrastive learning.
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Anchor Sampling. When applying contrastive learning to segmentation tasks,
it will lead to unaffordable computational overhead by using all the pixel features.
As discussed in [23,24], it is necessary to set a criterion to select appropriate
anchor pixels for contrastive learning. In our method, the anchor sampling crite-
rion is designed to obtain the feature vectors of anchor pixels Al and Au from the
labeled and unlabeled data, respectively. Both the labeled data xl and the unla-
beled data xu are fed into the student model f(· ; θ1) to obtain feature vectors
of each pixel. Then, these features are input to the segmentation head g(· ; θ2)
to make predictions and convert them to pseudo labels for anchor sampling.

Due to the severe class-imbalance problem, pixels are inclined to be predicted
as background. A trivial solution is to predict all the pixels as background with
low misclassification cost on the limited number of tumor pixels. Thus, it is more
important to correct the misclassification error on the wrongly predicted tumor
pixels, compared to the background pixels.

As a result, for the labeled data xl, ground-truth tumor pixels are selected
as anchors if they are wrongly predicted as background, i.e.,

Al = {zli,j | yl
i,j,1 = 1 ∧ ŷl

i,j,1 = 0} (6)

On the other hand, the number of background pixels is much larger. With the
larger training data, the model has stronger discrimination ability to background
pixels. And the high confidence of models leads to accuracy. Consequently, for
the unlabeled data xu, pixels are selected as anchors if they are predicted as
background with a confidence above the threshold τ same as in Eq. 5, i.e.,

Au = {zi,j | ŷi,j,1 = 0 ∧ pi,j,0 > τ} (7)

The combined anchor set is the union of Al and Au : A = Al ∪ Au.

Optimization with Lpixel. Due to the relatively simple pattern of medical
images, i.e., the same organs have similar shape, outline and content, the features
stored in the memory bank are representative enough for contrastive learning.
As a result, only the tumor and background features in the memory bank Q
are used for optimization, without selecting specific pixels from the images as in
other methods [31,32].

For anchors in Al, their labels are tumor, so the positive pairs are constructed
by the features in the tumor memory bank, i.e., zl,+i,j ∈ Q1, and the negative
pairs are from the background memory, i.e., zl,−i,j ∈ Q0. Similarly, for anchors in
Au, since they are confidently predicted as background, the positive pairs and
negative pairs are zu,+i,j ∈ Q0 and zu,−i,j ∈ Q1 respectively.

The similarity between the anchor and its positive and negative samples is
measured by cosine similarity: C(zi,j , q) = < zi,j , q >/(‖zi,j‖2 · ‖q‖2). Then, the
cosine similarity is converted to cosine distance as: D(zi,j , q) = 1 − C(zi,j , q).
Finally, the pixel contrast consistency loss is formulated as follows:

Lpixel =
1

|A|
∑

zi,j∈A γ D(zi,j , z+i,j) − (1 − γ) D(zi,j , z−
i,j) (8)
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where γ is the weight to balance the loss functions for the positive and neg-
ative pairs. By minimizing the pixel contrast consistency loss Lpixel, features
of tumor and background pixels on the high-dimensional feature space become
more separable, leading to a clearer classification boundary between tumor and
background, and thus improving the segmentation performance.

4 Experiments

4.1 Datasets

We evaluate the proposed Dual Consistency Learning (DCL) method on three
datasets including the MLT, a private dataset collected by ourselves, and two
publicly available datasets MSD [19] and LIDC-IDRI [3]. More details are given
in supplemental material.

Table 1. Comparison with state-of-the-art methods on MLT and MSD dataset with
Dice (%), Jac. (%) and HD95.

Dataset MLT MSD

Setting 5% 10% 10% 20%

Method Publication MT based Dice↑ Jac.↑ HD95↓ Dice↑ Jac.↑ HD95↓ Dice↑ Jac.↑ HD95↓ Dice↑ Jac.↑ HD95↓
CCT [17] CVPR 2020 × 65.80 56.18 15.13 72.55 61.59 15.94 64.64 53.79 14.55 69.90 59.50 12.45

CPS [4] CVPR 2021 × 68.68 57.94 13.92 73.88 63.20 15.45 65.59 55.57 13.38 71.79 62.31 10.08

URPC [25] MICCAI 2021 × 69.18 58.78 14.13 74.15 63.79 15.75 65.76 55.63 12.19 69.63 59.85 9.61

MC-Net+ [28] MEDIA 2022 × 69.41 59.15 14.42 73.04 62.95 14.62 66.01 55.33 14.02 70.27 60.06 11.41

MT [21] ICLR 2017 � 67.30 57.11 17.93 71.89 61.87 14.75 64.47 54.34 13.76 70.80 61.63 9.67

UAMT [12] MICCAI 2019 � 67.85 57.62 16.21 71.62 61.31 14.92 65.89 55.71 14.42 70.93 61.71 10.78

CMB [1] ICCV 2021 � 66.98 56.29 18.53 71.95 61.93 16.73 64.54 54.38 15.87 71.07 61.11 14.08

ICT [22] NN 2022 � 69.23 58.94 14.98 74.06 63.87 14.68 66.60 57.07 13.70 71.35 61.82 11.14

DCL (ours) This paper � 71.61 61.37 14.54 76.39 66.23 13.82 67.45 57.90 11.18 71.87 62.34 10.56

4.2 Implementation Details

Architecture. We take the U-Net [16] as the backbone in our experiments.
When compared to other methods, results are reproduced with the same network
architecture (both f and g), except CCT [17] and MC-Net+ [28]. For these two
methods, multiple decoders are required, so two more decoders are copied to
construct a special U-Net.

Optimization. For all the experiments, we train for 300 epochs using the SGD
optimizer with a momentum of 0.9 and weight decay of 1 × 10−4 following [11].
The learning rate η0 of the feature extractor f is set to 1 × 10−2, and 5 × 10−2

for the segmentation head g, with a poly learning rate schedule as in [23,24],
η = η0×(1−iter/max iter)0.9. We set λpixel = 0.1 in Eq. 1 as [1]. The remaining
parameters are determined empirically as λpatch = 0.2 (Eq. 1), n = 8 (Eq. 2),
γ = 0.8 (Eq. 8). The size of memory bank is m = 512, with 25% reserved space.
All the hyper-parameters are fixed for all the datasets and experiment settings.
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Other Details. For all the datasets, we randomly apply rotate and flip aug-
mentations to all images as pre-processing. We use several well-known metrics
in medical image segmentation, i.e., Dice similarity coefficient, Jaccard (Jac.)
similarity coefficient and the 95% Hausdorff Distance (HD95). Only the teacher
model g(f(·; ξ1), ξ2) is used for inference following the common practice [10].
More details are given in supplemental material.

4.3 Comparison with Existing Works

This section reports experimental results of lung tumor segmentation comparing
the proposed DCL with recent semi-supervised image segmentation methods [1,
4,12–14,17,18,20–22,25,28].

Results on MLT Dataset. Table 1 shows the comparison results under two
partition protocols on the MLT dataset. The proposed DCL outperforms the
SOTA methods for all metrics in the setting of 10% labeled data. Specifically,
improvement of 4.50%, 4.36% and 2.93 are achieved compared with the mean
teacher [21] baseline. Moreover, in the challenging 5% setting, our method still
significantly outperforms the baseline on all three metrics by 4.31%, 4.26%, and
3.39, respectively. The proposed DCL surpasses the SOTA methods on Dice and
Jac., and also achieves comparable results in terms of HD95.

Fig. 4. Qualitative results on MLT and MSD. From
left to right: Input Image, Ground truth, DCL
(Ours), MT, CCT and CPS. The first and the sec-
ond rows are from the MLT, the third and fourth
are from the MSD. The yellow curves stand for the
edge of ground truth labels. (Color figure online)

Results on MSD Dataset.
Table 1 compares different meth-
ods on the MSD dataset.
Under the 20% labeled data
setting, our performance gains
over the mean teacher are
1.07% on Dice and 0.71% on
Jac. When it comes to the
harder setting with less anno-
tated data (10%), the perfor-
mance gains further increase
to 2.98%, 3.56%, and 2.58 on
Dice, Jac. and HD95. This
demonstrates the great poten-
tial of DCL for working under
a more challenging setting
with less labeled data. The visualization results in Fig. 4 comparing to the SOTA
on the MLT and MSD datasets also illustrate the advantages of our method.
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Table 2. Comparison with state-of-the-
art methods on LIDC-IDRI dataset with
Dice(%), Jac.(%) and HD95. The symbol
† refers to results cited from [18].

Method Publication MT based Dice↑ Jac.↑ HD95↓
VAT† [20] TPAMI 2019 × 47.27 39.72 17.29
CCT† [17] CVPR 2020 × 41.21 32.52 18.34
SASSnet† [13] MICCAI 2020 × 45.40 37.91 19.39
DTC† [14] AAAI 2021 × 46.95 39.98 15.48
UDiCT† [18] TMI 2023 × 50.10 42.52 14.67
MC-Net+ [28] MEDIA 2022 × 51.44 43.02 15.23
MT [21] ICLR 2017 � 46.81 39.05 22.70
UAMT† [12] MICCAI 2019 � 47.15 39.35 21.28
ICT [22] NN 2022 � 50.53 42.77 16.38
DCL (ours) This paper � 52.39 43.59 16.01

Table 3. Impact of different loss functions
in Eq. 1.

Lsup Lpatch Lpixel Dice (%) on MLT Dice (%) on MSD
� 71.70 64.27
� � 74.64 66.40
� � 71.92 65.62
� � � 76.39 67.45

Results on LIDC-IDRI Dataset.
Table 2 records the comparison results
on the LIDC-IDRI. Some of the
results are cited from [18]. Our DCL
outperforms the UDiCT [18] designed
for lung tumor segmentation by 2.29%
for Dice and 1.07% for Jac. Without
special design for edge segmentation,
the HD95 of our method is not the
best but comparable with others.

4.4 Ablation Studies

We investigate the effectiveness of the
loss functions in Eq. 1. All the exper-
iments are done on the MLT and
MSD datasets with the setting of 10%
labeled data. As shown in Table 3, on
the MLT dataset, when only Lsup is
used, Dice is 71.70%. By adding the
patch shuffle consistency loss, Dice gets a 2.94% improvement. When apply-
ing the pixel contrast consistency loss, it also gets a 0.22% gain. Similarly, on
the MSD, by using each of the proposed components independently, the per-
formance improves over the supervised baseline. The improvement by using the
Pixel Contrast Consistency Learning module alone is relatively slight, since it
only considers the characteristics of each pixel, which is too fine-grained, without
paying attention to the semantic information of the tumor as a whole. Neverthe-
less, the Pixel Contrast Consistency Learning module can consistently improve
the segmentation performance with or without the Patch Shuffle Consistency
Learning module. When using both Lpatch and Lpixel, our method significantly
outperforms the supervised baseline based on only Lsup by 4.69% on the MLT
and 3.18% on the MSD dataset. This not only illustrates the effectiveness of
our proposed patch shuffle consistency learning and pixel contrast consistency
learning, but also validates the rationality of the dual consistency learning from
the two granularities of patch and pixel. The dual consistency learning (DCL)
from the two granularities of patch and pixel is reasonable. The proposed two
modules complementing each other are indispensable.

5 Conclusion

In this paper, we present a novel Dual Consistency Learning (DCL) method for
semi-supervised lung tumor segmentation. In patch shuffle consistency learning,
patch shuffle is used to differ the student prediction output from teacher’s. With
pixel contrast consistency learning in the feature space, more discriminative
features are learned. Extensive experiments demonstrate the effectiveness of the
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proposed DCL compared with the state of the art. Ablation studies verify that
each component can help to boost the performance for lung tumor segmentation.
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Abstract. Depression is the most common psychiatric disorder. Tra-
ditional depression detection methods almost rely on structured scales
and clinical opinions, which carry the risk of subjective judgment. In
light of this, we investigate the potential of employing emotional images
as stimuli for depression detection. Our proposed method is the first
to utilize pupil dilation, blink patterns, and eye movements as features
for depression detection. Notably, we introduce a comprehensive set of
strategies for extracting visual cognitive features, validating the efficacy
of the pupil emotion response theory and blink emotion response theory.
Finally, we train a Support Vector Machine (SVM) classifier to differ-
entiate between depressed and normal subjects, achieving an impressive
accuracy of 89.5%, which is higher than other state-of-the-art methods
in automatic depression detection.

Keywords: Depression detection · Multi-source information fusion ·
Visual cognition · Eye movements · Pupil dilation · blinking patterns

1 Introduction

According to the Global Mental Health Report, the prevalence of common
mental disorders such as depression increased by 25% in the first year of the
COVID-19 pandemic, with 251 to 310 million people suffering from depression
worldwide [12]. Most of traditional depression detection approaches heavily rely
on subjective structured scales and clinical diagnoses, resulting in subjectivity,
time consumption, and substantial resource requirements. Therefore, traditional
methods are likely to cause many patients and even severe patients to fail to
diagnose and treat in time. According to the American Psychiatric Association,
more than 50% of patients do not obtain effective treatment [16].

In recent years, researchers in the fields of psychology and artificial intelli-
gence have attempted to develop more objective and efficient methods for depres-
sion detection. Physiological signals such as reaction time [8], electroencephalog-
raphy (EEG) [11], and functional magnetic resonance imaging (fMRI) [1] have
been shown to be useful in identifying depression. With the development of atten-
tional biases theory, eye-tracking becomes an important feature for the study of
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depression, with traditional methods including the Stroop task, spatial cueing
task, visual search task, and point detection task [4,6,14].

Many image-based methods for depression detection have emerged recently.
Eizenman et al. [2], Kellough et al. [7], and Lu et al. [9] found that depressed
subjects spent more time gazing at negative images than normal subjects. Zeng
et al. [18] used a free viewing paradigm to extract eye-movement features to
classify 36 subjects (18D (Depressed subjects) +18N(Normal subjects)) and
obtained a maximum of 76.04% of accuracy. Zhu et al. [19] also used a free
viewing paradigm with four emotional faces to classify 36 subjects (18D+18N),
and they obtained a maximum accuracy of 82.5% using a content-based integra-
tion method. Shen et al. [13] used a free viewing and task-driven paradigm to
extract eye-movement features to classify 56 subjects (29D+27N) and achieved
77.0% of accuracy.

However, the limited diversity of feature extraction methods employed in the
aforementioned approaches constrains their detection accuracy. Existing studies
have demonstrated that pupil dilation and constriction serve as outward indica-
tors of cognitive and emotional processing. Compared with normal individuals,
the pupil dilation of depressed patients gazing at negative emotional stimuli is
greater and longer lasting [15,17]. Meanwhile, depressed patients’ blink more fre-
quently than normal individuals [10]. Furthermore, people blink more frequently
in stressful situations compared to neutral or relaxed situations [3]. Therefore,
according to the above theories, we propose a depression detection method based
on pupil dilation, blink patterns, and eye movement features. The main contri-
butions of this paper are as follows:

1. Based on the theories of pupil emotion response, blink emotion response, and
attentional bias, this paper introduces a novel experimental paradigm. This
paradigm effectively elicits emotional responses from participants, facilitating
the extraction of various visual cognitive features. Additionally, we construct
a multidimensional semantic image dataset, utilizing the images from the
dataset as emotional stimuli for the subjects.

2. This paper presents a depression detection method based on multi-source
information features. Here, we first use pupil features and blink features to
detect depression, novel approaches for extracting pupil features and blink fea-
tures are proposed. The incorporation of these features increases the dimen-
sionality of the method, leading to improved accuracy and stability.

3. We trained a Support Vector Machine (SVM) classifier to detect depressed
and normal subjects for depression classification. Our method achieves a
detection accuracy of 89.5%, outperforming state-of-the-art comparative algo-
rithms. Furthermore, the effectiveness of the pupil emotion response the-
ory and blink emotion response theory for depression detection is validated
through significance testing.
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2 Method

2.1 Overview

In this section, Sect. 2.2 describes the experimental paradigm for depression
detection, Sect. 2.3 introduces the preprocessing method of the pupil data and
the pupil features extraction process, Sect. 2.4 introduces the preprocessing
method of the blink and eye-movement data and the blink and eye-movement
features extraction process, Sect. 2.5 introduces feature selection, and Sect. 2.6
introduces depression classification model selection. Figure 1 shows the funda-
mental framework of our method.

Fig. 1. Fundamental framework of the research.

2.2 Experimental Paradigm for Depression Detection

The emotional images used in the experiments come from the multi-dimensional
semantic image set we built. The image set is based on the MMPI scale [5], and
the semantics expressed by each group of images can find corresponding entries
in the MMPI scale. This experiment contains a total of 30 sets of tasks, each of
which presents one positive, one neutral, and one negative image at the same
time. In total, there are 90 selected affective images.

The experimental paradigm consists of an eye-movement modification phase,
a prompt phase, a pupil modification phase, and 30 groups of tasks. During
the eye-movement modification phase, the subjects need to follow the prompts
to gaze at the blue dots that appear on the screen in turn. The eye-tracking
device tracks the gaze point of the subject and determines that after the subject
fixates on the blue dot, the next blue dot will appear. The blue dots appear 5
times in sequence. If the eye tracking succeeds, it means that the eye-movement
modification is completed. Before the start of the task, there is a prompt stage,
in which the experimental process and the tasks that the subjects need to do
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are explained to the subjects in the form of pictures and text. During the pupil
modification phase, a white pattern appeared in the center of a black screen,
and the subjects were asked to fixate on the cross for 10 s. During this process,
the pupils are fully dilated. Baseline pupil diameters were therefore obtained to
eliminate individual differences. In the 30 groups of tasks, the subjects only need
to complete the fixation according to the prompts. Figure 2 shows the overall flow
of the experimental paradigm.

Fig. 2. Test procedure for a set of tasks in the experimental paradigm. (Color figure
online)

Pupil, blink, and eye-movement data are acquired by a Tobii eye-tracking
device throughout the experiment. We collected these data from a total of 82
participants from schools and hospitals. It included 39 depressed subjects (9
males and 30 females, age mean = 23, standard deviation = 1.34) and 43 normal
controls (17 males and 26 females, age mean = 27, standard deviation = 1.41).
All data were obtained after getting informed consent from the participants.

In order to eliminate the bias or variation inherent in the emotional images
used in the experiment may affect the responses of the participants and, in turn,
the generalization ability and reliability of the model. For the dataset, we have
fully done the validity verification for the emotional attributes of the image
(positive/neutral/negative). The verification method adopted is questionnaire
scoring. In the questionnaire, 30 groups of images were set as 30 questions, and
the three images in each question were scored by the respondents according to
the emotional attributes of the images. The results showed that almost all images
show their corresponding emotions.



Multi-source Information Fusion for Depression Detection 521

2.3 Pupil Data Processing and Features Extraction

Due to objective factors such as the accuracy of the eye-tracking device and the
individual differences of the subjects, there are some problems in the original
pupil data, so the original pupil data need to be preprocessed. Here, we proceed
as follows:

(1) Problem of uneven sampling points: Resampling of data.
(2) Missing data: Sect. 2.4 introduces the method of identifying the blinking

point from the pupil diameter, and sets the pupil diameter value at the
blinking point to 0. In order to study the cognitive and psychological char-
acteristics of the pupil, it is necessary to process the blinking point. Since
the subject blinked very little time, from the perspective of time, directly
deleting the pupil data during the blink will not have a significant impact
on the entire data. Secondly, we analyze the characteristics of eye blinking
separately. Therefore, based on the above considerations, the missing pupil
diameter data caused by the subject blinking was deleted. For the prob-
lem of missing data caused by non-blinking, we use the nearest neighbor
interpolation method for interpolation.

(3) Binocular data inconsistency: For the problem of inconsistent pupil aper-
ture values in the left and right eyes, the averaging process is performed to
average the binocular data into monocular data.

(4) Individual differences: Due to the influence of individual physiological fac-
tors, the pupil diameter values of different individuals in the same environ-
ment are different, so it is unreasonable to directly use pupil diameter values
to judge the emotional response of the subject when gazing at images. There-
fore, we obtain the pupil diameter values of the subjects during the pupil
modification phase to eliminate the factors of individual differences. Firstly,
calculate the average pupil diameter of the subject in the pupil modification
phase as the baseline, as Eq. 1. Di is the baseline of subject i in the pupil
modification phase, and n is the number of data collected in this phase. C
is the pupil modification phase, and dti is the pupil diameter of subject i at
time t. Then calculate the calibration value based on the baseline, as Eq. 2.
Dc is the calibrated diameter, d is the original diameter value, and Di is the
diameter baseline.

(5) Initial light response: The pupil diameter decreases significantly within the
first one to two seconds of gazing at an emotional image, a phenomenon that
has little to do with the emotional content of the image and is mainly caused
by the image’s brightness, called the initial light response. The features of
the initial light response are extracted below.

Di =
1
n

∑

t∈C

dti (1)

Dc =
d

Di
(2)
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As in Fig. 3, based on the pupil response properties, we extract the pro-
cessed pupil data into cognitive features. The pupillary base diameter indicates
the mean value of the pupil diameter during the pupil modification phase. The
pupillary constriction latency indicates the duration of the initial light response.
The pupillary constriction velocity indicates the average pupil contraction veloc-
ity during the initial light response. The rank of diameter is the characteristic
amount of pupil diameter after equalizing image brightness, arousal, and image
position. The pupillary relative value indicates the relative value of pupil diame-
ter for each type of image or each location. More features are extracted based on
the base features, including the standard deviation of 30 sets of base features for
all base features except the pupil reference value, for a total of 23 pupil features.

The pupil diameter of a person is affected by the brightness factor, and the
pupil diameter decreases as the brightness increases. The brightness of each
group of images viewed by the subjects was different, which led to the change
of pupil diameter not being affected by the single factor of emotional response.
Therefore, we define a “Rank of diameter for three types(ROD)” feature to elimi-
nate the influence of brightness on pupil diameter. We calculate the average pupil
diameter of subjects gazing at positive/negative/neutral images in each group
of experiments, sort them from low to high, and record ordinal values (rank =
1,2,3), and accumulate 30 sets of experiments, and finally perform normalization.
As Eq. 3.

ROD =

30∑
i=1

rank (i, type)

∑
type

30∑
i=1

rank (i, type)
type ∈ {positive, neutral, negative} (3)

2.4 Blink and Eye-Movement Data Processing and Features
Extraction

The eyelids partially or completely cover the pupil during blinking, so the pupil
diameter collected by the eye-tracking device decreases rapidly or even becomes
zero during blinking (when the eye-tracking device does not collect the pupil
diameter, the pupil diameter is recorded as 0 or −1). Therefore, a blink is defined
as an intermittent point that is continuously below the normal pupil diameter
threshold (calculated as three times the standard deviation from the mean diam-
eter) and lasts for 100 ms, and the number of consecutive groups of blink points
is recorded as the number of blinks. After identifying the blink data and calcu-
lating the number of blinks, the intermittent points are then treated according
to the treatment of the blink-induced data loss problem in Sect. 2.3.
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Fig. 3. Pupil features extraction structure diagram. Num indicates the total number
of base features and derivative features.

Based on the blink emotional response properties, we extract blink-related
features, which are divided into base features and derived features, as shown
in Fig. 4. The states mentioned in the basic features represent the three states
of the remove attentional paranoia phase, free viewing phase, and distraction
phase during the experimental paradigm. We calculate the mean and standard
deviation of the “Number of blinks by state” and “Blink frequency by state” in
30 sets of tasks; we also calculate the difference between the two blink frequencies
in each state, totaling 32 blink features.

In addition to pupil features and blink features, we also extract eye-movement
features based on attentional biases theory. Among them, 51 eye-movement fea-
tures are studied for attentional biases theory, and 16 eye-movement features
were studied for attentional orienting and attentional shifting characteristics,
totaling 67 eye-movement features.

2.5 Feature Selection

Feature selection is a way to reduce the dimension of the data. In the case
of high feature dimension, feature selection can improve classification efficiency
and classification accuracy. The candidate features at this point have a high
correlation, so we first use pearson correlation coefficient to calculate the features
with correlation coefficients exceeding 0.8 in absolute value are filtered out, and
only one of them is retained. Then, the embedding of random forest method are
used to filter out the top 80% of features with cumulative importance. Finally,
the features with p-value greater than 0.05 were filtered out using the correlation
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Fig. 4. Blink features extraction structure diagram. Num indicates the total number
of base features and derivative features.

test. P-value less than 0.05 means that there is a significant difference between
the depressed population and the normal population on the feature. There were
122 original candidate features, and after feature selection, 40 features were
finally retained.

2.6 Depression Classification Model Selection

SVM models are suitable for classification tasks, and it can deal with high-
dimensional data, has strong generalization ability, is suitable for small sample
data, can deal with nonlinear problems, and has good robustness and inter-
pretability. Logistic Regression (LR) is a linear model, and its advantages are
its simple form and good interpretability. Therefore, it is the most widely used
model in practical applications. Since the number of samples is limited, we train
SVM and LR on a dataset of size 82 (39D+43N), respectively, and use a five-fold
cross-validation method to obtain detection performance.

3 Experiment

3.1 Analysis of Feature Selection Results

Table 1 shows the results of the correlation test. S indicates that the p-value for
the feature is less than 0.05, and depressed subjects are significantly different
from normal subjects on this feature. Table 1 shows that there are significant
differences in pupil diameter features between depressed subjects and normal
subjects on both negative images and positive images. As shown in Fig. 5, when
gazing at negative images, the pupil diameters of depressed subjects were gen-
erally larger than those of normal subjects. This verifies the previous conclusion
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that the depressed subjects had a greater emotional response when gazing at
negative images, so they had greater pupil diameter dilation. Also, the blink
frequency is significantly different in the remove attentional paranoia phase,
free viewing phase, and distraction phase, verifying the previous conclusion that
depressed patients blink more frequently than normal individuals; and the p-
value for blink frequency is smaller in the free viewing phase and the distraction
phase than in the remove attentional paranoia phase, because the remove atten-
tional paranoia phase is not presented with emotional images, which also verify
the previous conclusion that depressed patients are more likely to have a tense
mental state than normal individuals when there is an emotional task, and so
blink frequency increases.

Table 1. The significant analysis of significant features based on p-values.

Feature P-value 5% level of significant

pupil rela negative 0.001 S

pupil rela positive 0.001 S

state 2 blink v 0.031 S

state 3 blink v 0.009 S

state 5 blink v <.001 S

Fig. 5. Pupil diameter characteristic distribution.

3.2 Model Training and Classification Performance

We perform feature ablation experiments. We use sensitivity, specificity, and
accuracy as the final evaluation indicators. As shown in Table 2, based on eye-
movement, pupil, and blink features, the sensitivity and accuracy obtained by
training the SVM classifier are the highest; the specificity obtained by training
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the LR classifier is the highest. However, since our goal is depression detection,
higher sensitivity is more in line with the purpose of our study, so SVM is
finally selected as the model we use, we obtain the best accuracy of 89.5%. Here,
the training parameters of the SVM classifier are determined by a grid search
method.

Table 2. The performance of different classifiers and features.

Classifier Features Sensitivity Specificity Accuracy

LR Eye-movement 0.757 0.794 0.775

LR Eye-movement&Pupil&Blink 0.818 0.853 0.837

SVM Eye-movement 0.878 0.765 0.819

SVM Eye-movement&Pupil&Blink 0.969 0.824 0.895

3.3 Comparison with Existing Work

Currently, most of the experiments to classify depressed and normal people based
on eye-movement use a free-viewing experimental paradigm and use emotional
face images. Compare with the work of Zeng et al. [18], Zhu et al. [19], and
Shen et al. [13], we propose a different experimental paradigm to study pupil-
lary and blink properties. Based on the extraction of eye-movement features, we
further extract pupil features and blink features. And we prove that the pupil fea-
tures and blink features produced better results in identifying depressed patients
through feature ablation experiments. With an increased data set (39D+43N),
an accuracy of 89.5% is achieved, which is higher than the accuracy of all the
above experiments (Table 3).

Table 3. Comparison of original depression classification performance.

Method Features Sensitivity Specificity Accuracy

Zeng et al. [18] Eye-movement * * 0.760

Zhu et al. [19] Eye-movement * * 0.825

Shen et al. [13] Eye-movement 0.690 0.851 0.770

Ours Eye-movement&Pupil&Blink 0.969 0.824 0.895
∗indicates that the value cannot be obtained

4 Conclusion

Our goal is to achieve an objective, efficient, and accurate method of Automated
detecting depression. In this paper, we propose an experimental paradigm to
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elicit emotions from subjects. Based on the study of eye-movement features, we
fuse pupil and blink features, and this multivariate feature fusion method for
depression detection achieves better result. Meanwhile, we process and select
the original features, and finally obtain 40 visual cognitive features. We per-
form a significant analysis of the features and validate the pupil response theory
and blink theory. We conduct feature ablation experiments to verify that multi-
feature fusion has a better effect on depression detection. Finally, we train the
SVM classifier to classify depressed and normal subjects. With an expanded
dataset we achieved 89.5% accuracy, which achieves a competitive level com-
pared with state-of-the-art algorithms.
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