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Preface

Welcome to the proceedings of the Sixth Chinese Conference on Pattern Recognition
and Computer Vision (PRCV 2023), held in Xiamen, China.

PRCV is formed from the combination of two distinguished conferences: CCPR
(Chinese Conference on Pattern Recognition) and CCCV (Chinese Conference on Com-
puter Vision). Both have consistently been the top-tier conference in the fields of pat-
tern recognition and computer vision within China’s academic field. Recognizing the
intertwined nature of these disciplines and their overlapping communities, the union
into PRCV aims to reinforce the prominence of the Chinese academic sector in these
foundational areas of artificial intelligence and enhance academic exchanges. Accord-
ingly, PRCV is jointly sponsored by China’s leading academic institutions: the Chinese
Association for Artificial Intelligence (CAAI), the China Computer Federation (CCF),
the Chinese Association of Automation (CAA), and the China Society of Image and
Graphics (CSIG).

PRCV’s mission is to serve as a comprehensive platform for dialogues among
researchers from both academia and industry. While its primary focus is to encourage aca-
demic exchange, it also places emphasis on fostering ties between academia and industry.
With the objective of keeping abreast of leading academic innovations and showcasing
the most recent research breakthroughs, pioneering thoughts, and advanced techniques
in pattern recognition and computer vision, esteemed international and domestic experts
have been invited to present keynote speeches, introducing the most recent developments
in these fields.

PRCYV 2023 was hosted by Xiamen University. From our call for papers, we received
1420 full submissions. Each paper underwent rigorous reviews by at least three experts,
either from our dedicated Program Committee or from other qualified researchers in the
field. After thorough evaluations, 522 papers were selected for the conference, compris-
ing 32 oral presentations and 490 posters, giving an acceptance rate of 37.46%. The
proceedings of PRCV 2023 are proudly published by Springer.

Our heartfelt gratitude goes out to our keynote speakers: Zongben Xu from Xi’an
Jiaotong University, Yanning Zhang of Northwestern Polytechnical University, Shutao
Li of Hunan University, Shi-Min Hu of Tsinghua University, and Tiejun Huang from
Peking University.

We give sincere appreciation to all the authors of submitted papers, the members of
the Program Committee, the reviewers, and the Organizing Committee. Their combined
efforts have been instrumental in the success of this conference. A special acknowledg-
ment goes to our sponsors and the organizers of various special forums; their support
made the conference a success. We also express our thanks to Springer for taking on the
publication and to the staff of Springer Asia for their meticulous coordination efforts.
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We hope these proceedings will be both enlightening and enjoyable for all readers.
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Abstract. Face spoofing attacks have become an increasingly critical
concern when face recognition is widely applied. However, attacking
materials have been made visually similar to real human faces, mak-
ing spoof clues hard to be reliably detected. Previous methods have
shown that auxiliary information extracted from the raw RGB data,
including depth map, rPPG signal, HSV color space, etc., are promising
ways to highlight the hidden spoofing details. In this paper, we con-
sider extracting novel auxiliary information to expose hidden spoofing
clues and remove scenarios specific, so as to help the neural network
improve the generalization and interpretability of the model’s decision.
Considering that presenting faces from spoof mediums will introduce
3D geometry and texture differences, we propose a spoof-guided face
decomposition network to disentangle a face image into the components
of normal, albedo, light, and shading, respectively. Besides, we design
a multi-stream fusion network, which effectively extracts features from
the inherent imaging components and captures the complementarity and
discrepancy between them. We evaluate the proposed method on various
databases, i.e. CASIA-MFSD, Replay-Attack, MSU-MFSD, and OULU-
NPU. The results show that our proposed method achieves competitive
performance in both intra-dataset and inter-dataset evaluation protocols.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-981-99-8469-5_1.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 3-15, 2024.
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Keywords: Face Anti-spoofing - Face Presentation Attack Detection -
Imaging Components - Face Decomposition

1 Introduction

With the development of mobile devices and embedded devices, face authen-
tication technology has infiltrated all aspects of our lives. Face authentication
systems widely adopt RGB cameras as acquisition devices, but they are easily
deceived by identity attacks. Face spoofing [1-3] is one of the most easily imple-
mented identity attacks. Attackers fool face authentication systems by presenting
the target faces from spoof mediums, such as printed photos and video replay.
To secure face authentication systems, both the industry and academia have
been paying great attention to the problem of face anti-spoofing, which aims to
discriminate spoofing attacks from bonafide attempts of genuine users.

In this paper, we aim to find the spoofing clues from a single RGB image by
analyzing the imaging process of presentation attack instruments. Advances in
making spoofing materials have been able to reduce the spoofing signals to a low
magnitude, making anti-spoofing an extremely challenging task. For example,
the appearance of the high-resolution recorded sensors, high-precision color laser
printers, and retina screens have made it difficult for traditional anti-spoofing
methods [1,2] to achieve satisfactory results. Despite the success of recent deep
learning techniques in face anti-spoofing, training a vanilla CNN with binary
supervision to predict the spoofness of an RGB input will easily overfit the
training data leading to poor performance on unseen data [4]. To solve the
problem, works show that the combination of auxiliary information extracted
from raw RGB images effectively improves the generalization of the face anti-
spoofing methods, including complementary color space [5,6], rPPG [7], noise
pattern [8], reflectance [9,10], depth map [11-13], etc. This auxiliary information
proves that although the subtle spoofing clues in the original image are difficult
to detect, they can be highlighted in some auxiliary information extracted by
specially designed preprocessing methods.

Considering that the spoofing images are obtained through secondary imag-
ing, it will inevitably introduce imaging components differences from the genuine
face. Compared with the genuine faces, the printed photos or digital displays
adopted by presentation attack have different 3D geometry, which is more like a
flat surface. Therefore, we use the surface normal to better represent the intra-
structure and depth variation of the scene. In addition, the material textures of
the printed photos and display devices are different from the human skin, and
this material difference can be reflected in the inherent imaging components of
the face, like albedo. We compare the albedo difference between genuine face
and spoofing mediums in Appendix Fig. 1. Besides, the meaning and advantages
of normal and albedo are detailed in Appendix B.

To capture and magnify this difference, we proposed a learnable decompo-
sition network called Spoof-guided Decomposition Network (SgDN), which can
disentangle an RGB face image into the imaging components normal, albedo,
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light, and shading maps. This is a challenging objective due to the lack of the
ground-truth components of real-world data and spoofing data during the model
learning. To enable the network to disentangle both genuine and spoof faces, we
first train SgDN with a mixture of labeled synthetic and unlabeled real-world
images to simulate the physical model of Lambertian image generation. Then,
we set the normal channel of spoofing samples to 0, and push the albedo to
encode the artifacts that Lambertian imaging model cannot resolve. To further
utilize the above auxiliary features effectively, we design a multi-stream network
to fuse the information from different components at different scales.
In summary, our contributions are:

1) we propose a Spoof-guided Decomposition Network to disentangle an image
into normal, albedo, light, and shading maps, either on real or spoof data.

2) A multi-stream fusion network is developed to capture the complementarity
and discrepancy of imaging components for face anti-spoofing.

3) Our method not only outperforms the state-of-the-art methods on the intra-
testing of OULU-NPU dataset, but also demonstrates better performance on
MICO (with initial letters from the four datasets) and a variant of the MICO
benchmark without using domain knowledge.

2 Related Work

2.1 Deep Learning-Based Face Anti-spoofing

As deep learning has proven to be more effective than the traditional methods
in many computer vision problems, there are many recent attempts at CNN-
based methods in face anti-spoofing. At first, most of the works regard face
anti-spoofing as a simple binary classification problem by applying softmax loss.
For example, Yang et al. [3] use CNN as a feature extractor, and train an SVM
classifier with deep features to discriminate genuine and spoofing faces. Then,
some methods [11,14] propose to use pixel-wise labels for the supervision of net-
work training, proving that pixel-wise supervision can improve the performance
of spoofing detection. Among them, the depth map is widely used in various
face anti-spoofing methods, which is more informative than binary labels since it
indicates one of the fundamental differences between genuine and spoofing faces.
Yu et al. [13] propose a central difference operator to extract inherent spoofing
patterns, and combine it with depth supervision to significantly improve the
performance of face anti-spoofing.

2.2 Auxiliary Information-Based Face Anti-spoofing

Since spoofing images are obtained by secondary imaging, the inherent imaging
components of faces are changed when they are compared with genuine faces. To
explore the distortion of spoofing faces, Boulkenafet et al. [5] propose to extract
color distortion from the YCrCb or HSV color spaces. Chen et al. [6] propose
a two-stream CNN that works on two complementary spaces: RGB space and
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Fig. 1. The overall architecture of Spoof-guided Decomposition Network. RGB image
is fed into the decomposition network for disentangling the imaging components into
normal, albedo, and shading maps.

an illumination-invariant space called MSR. Bian et al. [15] propose a frame-
work to learn multiple generalizable cues from the boundary of spoof medium,
moiré pattern, reflection artifacts, and facial depth. Recent literature [5,10] have
shown that exploring the texture and 3D geometry information can improve the
detection performance. Many methods draw on the idea of 3D geometry by sens-
ing depth changes [7,11,13]. The reflectance of the face image is another widely
used cue for face anti-spoofing [9,10] as the material differences between genuine
and spoofing faces. Mishra et al. [16] also identify the contribution of albedo
in enhancing presentation attack detection, but their method does not leverage
the potential of the normal map. Moreover, their model trained exclusively on
genuine data tend to excessively focus on the semantic information of genuine
faces, which consequently compromises its robustness in decomposing spoofing
samples. See more related work in Appendix A.

3 Approach

3.1 Spoof-Guided Decomposition Network (SgDN)

Estimating normal and albedo for genuine and spoofing faces from single images
is the key to our method. An intuitive solution is fitting an imaging model defined
in computer graphics, like the 3D morphable model (3DMM) [17] and Phong
reflection model [18], to the image. However, the fitted results are unsatisfac-
tory because the highly simplified imaging model cannot cover the complicated
appearance variations of human faces, especially in our task where faces are
possibly unreal.
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To model the structural and textured difference, SgDN is designed to reflect
the Lambertian reflectance model [19], where the formation process of face image
I can be represented as:

I=f(N,-L)OA, (1)

where N € R™*"*3 T, ¢ R3*9 A € R"*"*3 are normal, lighting and albedo, ®
represents the element-wise product and fis the Lambertian shading function.

To approximate the local behavior of light on the face, we adopt the spherical
harmonics as a decomposition basis. Specifically, the lighting L is defined as nine-
dimensional second order spherical harmonics coefficients v = [y1, 72, ..., Yo] for
each RGB channels, and the normal map N is utilized to construct spherical
harmonic basis [19]:

B= [B007B107Bflv (1)17BQO7B§DB(2)17-B§27B§2]' (2)
Then the shading map can be calculated as:
S = B(N) ®~. (3)

To reconstruct the face, the model is further required to estimate the albedo
map. According to the constraint of Lambertian assumption, the albedo is

obtained as: ;
A=—. 4
. (®)
Finally, with the estimated Normal and Albedo maps, the reconstructed face
R € R™**™%3 becomes:

R=S0OA. (5)

As the image reconstruction is an end-to-end process in our SgDN, the face
image formation process defined in Eq. 1 is a differentiable function. We propose
a deep learning-based network to regress texture and shape parameters directly
from a single image, which is shown in the diagram of Fig. 1. The detailed con-
struction of different components and training settings of SgDN are deferred to
sections C.1 and C.2 in Appendix.

The SgDN can be trained by synthetic data [20] and CelebA [21] with pseudo-
supervision to produce a precise reconstruction. However, the SgDN trained in
this stage cannot be directly applied to spoofing data as the Lambertian imag-
ing model cannot cover the complicated appearance variations of human faces,
especially the unreal faces in our task. We show the decomposition results of
SgDN without discriminative supervision in Appendix Fig.2. As the presenta-
tion attack instruments are like a flat surface, we refine the pseudo-supervision
of spoofing samples by setting the normal channel to zero, which can enforce the
SgDN to not only reconstruct the spoofing images but also capture the spoofing
artifacts that the Lambertian model cannot resolve, simultaneously. In Sect. 4,
we will prove the effectiveness of the pseudo-supervised training method.
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Fig. 2. Imaging components of RGB, normal, and albedo maps are transmitted into the
three-stream fusion network to extract features from different components and capture
the complementarity and discrepancy between them.

3.2 Fusion Framework

To capture the complementarity and discrepancy of imaging components, we
propose a three-stream fusion network as shown in Fig.2. The three-stream
fusion network consists of three identical sub-networks with different inputs and
extracts the learned features derived from RGB, albedo, and normal images fol-
lowing different convolution modules of the three subnetworks. Instead of aggre-
gating different levels of information separately, an aggregation block is utilized
to aggregate the extracted features and the output from previous layers, which
is explained in detail in Appendix D.

4 Experiments

4.1 Settings

Datasets including MSU-MFSD [22], Replay-Attack [23], CASIA-MFSD [24],
and OULU-NPU [25] are used to evaluate our proposed method with print and
replay attacks. We strictly follow the evaluation benchmarks for data partitioning
and the implementation details of SgDN and the three-stream fusion network
are given in Appendix C, D and E.

4.2 Ablation Study

1) Pseudo-supervised training: In Sect. 3.1, we propose to achieve a more dif-
ferentiated decomposition by refining the pseudo-supervision process. Different
from traditional Shape from Shading algorithm [26,27], our face decomposition
network is a data-driven model and relies on preprocessing to achieve a better
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Table 1. The ablation study results (%) of the pseudo-supervised training and other
decomposition algorithm on the Protocol-2 of OULU-NPU.

Methods APCER | | BPCER | | ACER |
SgDN w/o zero 5.6 5.8 5.7
SgDN w/ zero (Our) | 1.9 0.5 1.2
ADMM [26] 4.7 47 47
3DMM [17] 2.8 3.1 2.9

decomposition performance. As shown in Table 1, we can see that our pseudo-
supervised training achieves lower HTER than the method without setting the
normal channel to zero.

2) Comparison with Traditional Decomposition Method: This section compares
our method with other traditional Shape from Shading methods. We employ
a PDEs-based method ADMM [26] and a 3DMM-based method to estimate
albedo and normal maps as a comparison. All experiments are carried out under
the same fusion model, and the 3DMM-based method is realized by fitting a
classical face reconstruction model 3DMM [17]. As shown in Table1, our pro-
posed method achieves significant improvement over the traditional Shape from
Shading methods.

3) Efficacy of Each Components: As discussed in Appendix B, we argue that
RGB, normal, and albedo contain complementary information for spoofing detec-
tion. To further understand the characteristics of these components, we list all
possible combinations of the imaging components in Appendix Table 1, including
albedo, normal, and shading, proving that RGB fused with albedo and Normal
can achieve the best performance.

4) Multi Levels: In our multi-stream fusion framework, features from different
levels play an important part in spoofing detection, so we concatenate these
features to fully explore the spoofing clues. We present the results of fusion at
different levels in Appendix Table 2.

4.3 Intra Testing

The intra-testings are carried out on the OULU-NPU, a large-scale face
anti-spoofing dataset with four testing protocols. Table2 shows the result of
our method on these protocols and our method surpasses all state-of-the-art
approaches on three or more protocols. When compared with the convMLP [30]
model, our method is slightly weaker on protocol 2. Moreover, compared to the
IDCL [16] method, we are not only able to perform differential decomposition but
also further utilize normal information, and exceed their method’s performance,
especially under challenging scenarios such as protocols 3 and 4.
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Table 2. The results of intra-testing on four protocols of OULU-NPU.

Prot | Method APCER| | BPCER| | ACER]

1 | STASN [28] 1.2 2.5 1.9
Auxiliary [7] 1.6 1.6 1.6
FAS-TD [12] |25 0 1.3
CDCN [13] 0.4 1.7 1
PGSTD [29] 0O 0.8 0.4
Conv-MLP [30] | 2.5 3.2 2.8
IDCL [16] 0.7 0.6 0.6
Ours 0.6 0.8 0.7

2 | Auxiliary [7] | 2.7 2.7 2.7
STASN [28] 4.2 0.3 2.2
FAS-TD [12] | 1.7 2.0 1.9
CDCN [13] 15 1.4 15
PGSTD [29] | 1.2 1.3 1.3
Conv-MLP [30] | O 1.6 0.8
IDCL [16] 1.3 1.1 1.2
Ours 1.9 0.5 1.2

3 |FASTD[12] |59+19 59+30 59+1.0
Auxiliary [7] |2.74+13 |[3.14+1.7 [29+15
STASN [28]  |4.7+39 |0.9+1.2 28+16
CDCN [13)] 24413 22420 |23+14
PGSTD [29] |1.74+14 22435 |1.9423
Conv-MLP [30] 25410 [2.0£0.8 22+0.6
IDCL [16] 17414 18411 [1.7+0.7
Ours 1.44+0.6 1.7+15 1.5+1.0
4 | Auxiliary [7] |9.3+5.6 |10.4+6.0|9.5+6.0
FAS-TD [12] |14.248.7|/4.24+38 |9.24+3.4
STASN [28] 6.7+£10.6 8.3+84 7.5+47
CDCN [13] 4.6+46 9.2+80 |6.94+29
PGSTD [29] |2.3+3.6 42454 |3.6+42
Conv-MLP [30] 64445 |34+51 49+48
IDCL [16] 34415 55+44 45+27
Ours 25427 3.3+2.6 2.9+1.0

4.4 Inter Testing

1) Result on MICO: MICO benchmark is a widely used evaluation about domain
generalization, which follows the ’Leave-one-out’ protocol with four face anti-
spoofing datasets. Table 3 compares our method with the state-of-the-art meth-
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Table 3. The results of inter-testing on MICO benchmark. The proposed method is
compared with the methods without utilizing domain knowledge.

Method 0&C&I to M 0&M&I to C 0&C&M to I 1&C&M to O
HTER | | AUC 1 | HTER | | AUC 1 | HTER | | AUC 1 | HTER | | AUC 1
Binary CNN [3] | 29.25 82.87 |34.88 71.94 | 34.47 65.88 | 29.61 77.54
IDA [22] 66.67 27.86 | 55.17 39.05 | 28.35 78.25 | 54.20 44.69
Color Texture [31] | 28.09 78.47 | 30.58 76.89 | 40.40 62.78 | 63.59 32.71
Auxiliary [32] 22.72 85.88 | 33.52 73.15 | 29.14 71.69 | 30.17 77.61
NAS-FAS [33] 19.53 88.63 | 16.54 90.18 | 14.51 93.84 |13.80 |93.43
DTN [34] 19.40 86.87 | 22.03 87.71 | 21.43 88.81 |18.26 89.40
Ours 10.46 | 94.43 |10.95 |94.73 |9.95 95.57 | 17.78 88.93

Table 4. The results of inter-testing with limited source domains. The proposed
method is compared with other methods in terms of HTER(%) and AUC(%).

Method M&I to C M&I to O \
HTER| | AUCT | HTER| | AUCT
IDA [22] 45.16 | 58.80 |54.52 | 42.17
LBP-TOP [36] |45.27 |54.88 | 47.26 |50.21
MADDG [37] 41.02 | 64.33 | 39.35 |65.10
SSDG-M [35] 31.89 | 71.20 | 36.01 | 66.88
DR-MD-Net [38] | 31.67 | 75.23 | 34.02 |72.65
ANRL [39] 31.06 | 72.12 | 30.73 | 74.10
SSAN-M [40] 30 76.20 |29.44 | 76.62
Ours 26.67 |81.34 | 22.50 | 83.64

ods trained without domain information, and we achieve the best results in three
testing tasks. Meanwhile, our method outperforms most of the domain general-
ization methods as shown in Appendix Table 3.

2) Result on limited source domains: When the number of source data domains
is limited, the performance of specially designed domain generalization methods
may degrade. To further evaluate the proposed methods, a variant of the MICO
benchmark [35] is proposed to conduct domain generalization experiments. We
also evaluate our method on this benchmark, and the comparison results are
shown in Table 4. It can be seen that our method’s HTER and AUC performance
is comparable with that of the state-of-the-art methods, which has a significant
improvement over other domain generalization methods.

3) Result on CASIA-MFSD and Replay-Attack: In this experiment, there are
two cross-dataset testing protocols. The first protocol ‘CR’ is trained on CASTA-
MFSD and tested on Replay-Attack. The second one 'RC’ is trained on Replay-
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Attack and tested on CASTA-MFSD. It can be seen from Appendix Table 4 that
the HTER of our proposed method is 11.7% on C2R and 28.4% on R2C. Our
method outperforms the prior state-of-the art method CDCN [13] over 24.5%
on C2R protocol.

4.5 Performance Analysis

1) The Effectiveness of SgDN: To further illustrate the effectiveness of the
pseudo-supervised training method for the SgDN, we show the decomposition
results of different spoofing samples in Appendix Fig. 3. Because of the spoof-
guided supervision, SgDN is able to decompose the genuine face into reasonable
normal and albedo, and the normal obtained from the spoofing face is inclined
to a plane. Under careful comparison, we can observe that the albedo maps of
spoofing faces have a blurred visual appearance compared with genuine faces.

2) The interpretability of our Fusion Network: We convert the final-layer fea-
tures into heatmaps to produce a visual explanation for our three-stream fusion
network, which is illustrated and discussed in Appendix Fig. 4 and section G.4.
Through the multi-stream fusion network, the subtle artifacts can be harvested
from RGB, normal, and albedo map.

5 Conclusion and Future Work

This work proposes a novel method for face anti-spoofing by designing a spoof-
guided face decomposition network and harvesting spoofing clues from the imag-
ing components of RGB, albedo, and normal. With the spoofing guidance, our
decomposition network can push the imaging components of spoofing samples to
encode the artifacts that the Lambertian imaging model cannot resolve. Besides,
we devise a multi-stream network to fuse the information from different compo-
nents and capture the complementarity and discrepancy between them. More-
over, extensive experiments are performed to demonstrate that our method can
achieve state-of-the-art performances in the intra-testing protocol of OULU-NPU
and three domain generalization benchmarks. We note that the study of spoof-
guided image decomposition is still at an early stage. Future directions include:
1) designing a more generalized decomposition method for spoofing samples. 2)
exploring other auxiliary information for presentation attack detection.

Acknowledgement. This work was supported in part by Chinese National Nat-
ural Science Foundation Projects #62276254, #62176256, #62106264, #62206280,
#U2003111), Beijing Natural Science Foundation under no. L221013, the Defense
Industrial Technology Development Program (#JCKY2021906A001), Shandong
Provincial Natural Science Foundation under Project ZR2021MF066 and the InnoHK
program.
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Abstract. Since pores are widely used to represent high-resolution fin-
gerprint images, the detection and representation of pores are essen-
tial for high-resolution fingerprint recognition. The latest method uses
only one fully convolutional network to represent high-resolution fin-
gerprint images for subsequent recognition by combining pore detec-
tion and pore representation into one stage, showing good generalization
and pore detection ability. Nevertheless, it still has limitations in fea-
ture learning and pore detection due to its network architecture and the
loss used. To tackle the limitations, in this paper, we propose a novel
network architecture, namely TransFCN, for one-stage high-resolution
fingerprint representation. We introduce the transformer and attention
module into our network architecture and combine them with the fully
convolutional network to effectively learn both global and local infor-
mation. In addition, we employ the adaptive wing loss and weighted
loss map to further improve the pore detection capability. Experimental
results on the PolyU HRF dataset demonstrate the effectiveness of our
proposed method in pore detection and feature learning. Furthermore,
the experimental results on an in-house dataset demonstrate the excel-
lent generalization capability of our proposed method when compared to
the state-of-the-art two-stage method.

Keywords: High-Resolution Fingerprint Recognition - Transformer -
Fingerprint Representation - Pore Detection

1 Introduction

Fingerprint is the most widely deployed biometrics characteristic because of its
well-known distinctiveness and permanence [1]. With the development of finger-
print sensors, high-resolution fingerprint images become available, accompanied
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by the emergency of level-3 features. The addition of level-3 features has driven
researchers toward the use of new features for more accurate and more secure
fingerprint recognition, namely high-resolution fingerprint recognition. Among
various level-3 features, sweat pores have many excellent properties, including
high distinctiveness, natural anti-spoof ability, and large quantities, which have
attracted the most attention of researchers [2-14]. Current high-resolution fin-
gerprints are almost entirely represented by sweat pores.

High-resolution fingerprint representation based on sweat pores involves two
important parts: pore detection and pore representation. These two parts are
usually two separate stages. For pore detection, traditional methods based on
image processing technique [2,3] and learning-based methods [4-8] have been
investigated. Learning-based methods demonstrate improved adaptability and
robustness to various image qualities and have become the mainstream method.
For pore representation, hand-crafted feature based [9-11], and deep feature
based [12,13] have been proposed. In [9], the pore representation is directly
built from the pixel values in the local neighborhood to the pore. In [10,11],
sparse representation methods are proposed to represent pore. As deep learning
has evolved, Zhao et al. [12,13] propose the DeepPorelD method, which involves
training a classification network to classify between different pores. Subsequently,
the deep features obtained from the classification network are utilized as pore
representations. After the two-stage fingerprint representation, the commonly
used hierarchical coarse-to-fine DP framework [9] is used for recognition. In the
coarse matching step, coarse pore correspondences are established by pore rep-
resentation. In the fine matching step, RANdom SAmple Consensus (RANSAC)
is used for refinement to obtain the final result.

To avoid information loss and improve robustness, Liu et al. [14] propose a
novel high-resolution fingerprint representation method that uses only one fully
convolutional network (FCN) to provide both pore and deep matching features
simultaneously to represent high-resolution fingerprint images. By combining
pore detection and pore representation into one stage, the method can achieve
the best pore detection capability and have better generalization ability than
the state-of-the-art two-stage method [12] when using the DP framework for
recognition. However, it still has some limitations: (1) the deep features learned
from a single fully convolutional network may struggle to cope with pore changes
and thus many true correspondences may be missed. (2) the mean square error
(MSE) loss used for pore detection treats foreground and background pixels
equally, which makes it easy for training to be dominated by a large number of
meaningless background pixels, resulting in poor regression accuracy.

To tackle the above limitations, in this paper, we propose a novel one-stage
high-resolution fingerprint representation method, namely TransFCN. Firstly,
we utilize the transformer-based encoder to learn the preliminary patch repre-
sentation of the high-resolution fingerprint image, leveraging the self-attention
module to incorporate global information for a more robust pore representation.
Subsequently, the fully convolutional network is employed to detect pores and
further learn fingerprint representation for one-stage high-resolution fingerprint
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representation. An attention module is utilized to optimize the learning of fin-
gerprint representation, while the adaptive wing loss and weighted loss map are
applied to prioritize the regression of foreground pixels, specifically the pore loca-
tions, to improve pore detection accuracy. To sum up, our main contributions
can be summarized as follows:

— We propose a novel network architecture for one-stage high-resolution fin-
gerprint representation, which combines the transformer and the fully con-
volutional network to learn global and local information. To the best of our
knowledge, the transformer is the first time to be used for pore detection and
pore representation.

— We propose to utilize the attention module and apply adaptive wing loss for
facial landmark localization to fingerprint pore detection with the weighted
loss map to improve the pore detection and feature learning ability.

— Extensive experimental results on the public PolyU HRF dataset and an in-
house dataset have demonstrated the effectiveness of the proposed method.

2 Methodology

2.1 Overall Framework

The overall framework is illustrated in Fig. 1, consisting of three parts: input, pro-
posed network, and DP framework. Among them, the proposed network adopts
an encoder-decoder structure. Firstly, the input fingerprint image is fed into the
proposed network and outputs the corresponding pore map and reconstructed
fingerprint image. Similar to DeepPore [4], the output pore map is also a Gaus-
sian heat map for pore detection. After obtaining the pore map, the sliding
window algorithm is used to obtain the pore locations. The sliding window algo-
rithm scans the entire pore map using a window of k£ x k and a threshold of P;.
When the center of the window is the maximum value of the entire window and
is greater than the threshold P;, the location is then judged to be a pore. In
addition, we fill the boundary of the pore map with a value of 0 to deal with the
pores at the boundary. By guiding the network to learn the reconstruction of
the fingerprint image and the prediction of pore positions, discriminative pore
features can be learned.

Subsequently, the DP framework is employed for fingerprint recognition.
Specifically, the detected pore locations, the original image, and the intermediate
feature map (F'eat) of the proposed network are input into the DP framework.
Given N and M detected pores in the query image and the template image,
we utilize these pore locations to extract pore representations from the original
image or Feat, resulting in N x D, and M x D, pore representations, respec-
tively. We start by using each detected pore location to slice the corresponding
patch from the original image or Feat. For the multi-channel Feat patch, we
perform the channel-wise sum to obtain the single-channel patch.

Finally, the resulting patch is flattened into the D,, dimension vector to rep-
resent the pore. The size of dimension D), is 961, consistent with [9,14]. These
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pore representations are used for subsequent coarse-to-fine pore matching. In
the coarse matching step, a M x N similarity matrix can be obtained by cal-
culating pair-wise pore distances in the query and template images using Eq. 1.
In the similarity matrix, a lower value means more similarity. Coarse one-to-
one pore correspondences are then established by this similarity matrix. The
rule for matching pore A and pore B is that both pore A and pore B are the
most matched pores with each other. In the fine matching step, the RANSAC
algorithm is used to refine the coarse matched results. The number of the final
matched pore pairs is considered as the match score for recognition.

961 ,
> Pl
k=1
Sij=1-

i €[1,N],je[l,M] (1)

961 5 961 o
> Phy |3 P
k=1 i=1

where S; ; represents the similarity of the ¢th pore in the query image to the jth
pore in the template image. F; ; and PJQ i Tepresent the kth dimension of the ith
pore representation in the query image and the jth pore representation in the
template image, respectively.
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Fig. 1. The overall framework for fingerprint recognition.

2.2 Transformer-Based Encoder

As shown in Fig. 2, given a 2D high-resolution fingerprint image x € R3*#xW

the fingerprint image is first divided into a grid of % X % patches and then

these patches are flattened into a LY x (p?
2

- 3) sequence, where (H,W) is
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Fig. 2. The detailed architecture of the proposed network. It consists of a Transformer-
based encoder and an FCN-based decoder to regress the pore map and reconstruct the
original image with different losses. The CBAM module is incorporated to enhance the
feature learning ability.

the resolution of the fingerprint image and p is the patch size. Afterward, each
vectorized patch v, is projected into a latent D. dimension embedding e by
using a linear projection function fe: e = fe(v),). To retain the patch positional
information, we learn a specific position embedding pos; for each patch position
7 and is added to the corresponding e; to constitute the final patch embedding
input sequences F. The whole process is as follows:

aw
el ®

The 1D sequence E is then input into the transformer-based encoder to
learn patch representations. As illustrated in Fig.2, the transformer encoder
consists of N transformer blocks where each block contains two main compo-
nents, the Multi-head Self-Attention (MSA) and MultiLayer Perceptron (MLP).
Layer norm (LN) is employed before each component and residual connections
after each component. The output Z,, of the nth transformer block is input into
the next transformer block (Eq.3, 4, 5). With the Self-Attention (SA) module,
each transformer block has a global receptive field, which tackles the limitations
of the pure CNN’s receptive field and enables global information to be learned.

E = {e; +pos;, i¢€]ll,

Zo=FE, EcR#* *P (3)

Z, = MSA(LN(Zy_1)) 4 Zn_1, ne€[1,N] (4)
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Zn = MLP(LN(Z,))+ Z,, n€[l,N] (5)

2.3 FCN-Based Decoder

To generate the pore map and reconstruct the original image, the transformer
encoder output Zy is first projected to a higher dimension D, and the corre-
sponding learnable position embedding is added. The resulting sequence is then
reshaped into a 2D feature map, as shown in Fig. 2. However, due to the patch
operation in the encoder, the resolution of the reshaped feature map is only
% of the original image. To restore the feature map to its original resolution,
we design an upsampling module that utilizes £ double upsampling operations.
Specifically, we employ the deconvolution (DeConv) operation, which is a com-
monly used technique for upsampling in deep learning, to increase the resolution
of the feature map. After restoring the feature map to its original resolution, we
further use the convolution (Conv) operation to learn feature representation. In
addition, we use the convolutional block attention module (CBAM) [15] at the
end of the convolution operation to enhance feature learning. Finally, two predic-
tors utilize convolution operations to generate the pore map and reconstructed
image. The feature with both low correlation [16] and high discrimination [17]
is useful for differentiating between different pores. To this end, we select the
output feature map of the CBAM module to represent the pore.

2.4 Loss Function

The overall loss consists of two parts. The first part L econstructed 1 derived from
the fingerprint reconstruction branch. We employ the MSE as the loss function
for this branch, which is widely used in most image reconstruction tasks. The
formula is as follows:

1 H W
- T2
»creconstructed - ﬁ Zl Zl(‘[l] IZJ) (6)
i=1j=

where I;; and fij represent the pixel values at coordinates (4,j) of the original
image and the reconstructed image, respectively. The second part Lporemap 1S
derived from the pore detection branch. To further improve the pore detection
ability, we propose to use adaptive wing (AW) [18] loss for pore detection instead
of MSE loss because of its better adaptability. Furthermore, we use the weighted
loss map (WLM) to increase the penalty on the regression of sweat pore locations,
enabling the network to focus more on the regression of the pixels corresponding
to the pore locations. The WLM is generated by a mask matrix Mask with a
value of 0 or 1 for each position. The positions with a value of 1 are those with
a value greater than a certain threshold in the ground truth pore map. The
formula is as follows:
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-y
y=y i Y
AW (y,§) = win(1+ ’ - ‘ ), if[(y y)\ <40 (7)
Aly—g9|-C, otherwise
WLM = (w- Mask + 1) © AW (P, P) (8)
1 AW
me‘e’map = W Z Z WLMI] (9)
i=1 j=1

where w, «, 0 and € are positive hyperparameters. A = w(1 + (g)”"y))*l(a —
y)(%)(ga_y_l) and C' = (fA — win(l + (£)*7¥) are utilized to ensure the loss

€
function remains continuous and smooth at ly — §| = 6. © represents element-
wise production. P and P are ground truth pore map and prediction pore map.
w is a scaling factor to control the degree of weighting. Finally, the overall loss

is formulated as follows:

['all = )\‘Creconstructed + ﬁﬁporemap (10)

where A and (3 are used to balance two loss.

3 Experiments

3.1 Datasets and Evaluation Protocols

Two high-resolution fingerprint datasets are used to evaluate the performance of
our proposed method. The first dataset is the most used PolyU HRF dataset. The
second dataset is an in-house HRF dataset to further evaluate the generalization
of the proposed method, which is the same as [14].

PolyU HRF dataset contains two sub-datasets, denoted as DBI and DBII.
Both the DBI and DBII datasets contain 1480 high-resolution fingerprints
(~1200 dpi) from 148 fingers. Each finger is collected in two sessions, with five
fingerprint images collected in each session. The difference between DBI and
DBII is the size of the fingerprint image, which is 240 x 320 pixels in DBI and
640 x 480 pixels in DBII. In addition, the PolyU HRF dataset contains 30 man-
ually annotated pore images from the DBI dataset which are used to evaluate
the effectiveness of pore detection.

In-house HRF dataset is collected using the same equipment as the PolyU
HRF dataset, which contains 1000 high-resolution fingerprints from 250 fingers.
Each finger is collected in two sessions, with two fingerprint images collected in
each session. The image size of the in-house dataset is 640 x 480 pixels.

Evaluation protocols. For pore detection evaluation, the true detection
rate (Rr) and the false detection rate (Rp) are employed to evaluate the effec-
tiveness of pore detection. Ry is the ratio of the number of truly detected pores
to the number of all ground truth pores. R is the ratio of the number of falsely
detected pores to the number of all detected pores. The equal error rate (EER)
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is employed to evaluate the recognition performance. The recognition proto-
col on DBI and DBII is the same as the previous method [6,9,14,19], which
includes 3,700 genuine matches and 21,456 imposter matches. Genuine matches
consist of pairwise matching fingerprints of the same finger from different ses-
sions. Imposter matches consist of matching the first images of different fingers
between the first session and the second session. In the in-house dataset, we use
the same recognition protocol as [14]. The four images of the same finger are
matched pairwise, leading to 1500 genuine matches. The first image of the first
session of one finger is matched with the first image of the second session of the
other fingers, leading to 62,250 imposter matches.

3.2 Implementation Details

Our network is implemented using the PyTorch framework and trained on a
single NVIDIA Tesla V100 GPU with a batch size of 32 for 50 epochs. We use
the VIT-Base [20] as our encoder, initialing it with pre-trained model parameters.
During training, the input image size is 240 x 320. We use the same fingerprint
image as [14] and apply data augmentation to construct the training data. During
inference, when the input image size is 480 x 640, we obtain the corresponding
position embedding through interpolation. The Dy is 1024. The hyperparameters
are determined based on experimental results. Specifically, w, «,§ and € in the
AW loss are set to 14, 2.1, 0.5, and 1. The threshold used to generate Mask is
set to 0.3 and the scaling factor w is set to 10. The A\ and 3 are set to 0.8 and 1.
We apply linear warmup to adjust the learning rate, with a maximum value of
le-4 and a warmup step size equal to one-tenth of the total number of iterations.
The network is optimized using AdamW [21].

3.3 Ablation Study

To analyze the impact of AW loss plus WLM and CBAM used in the pro-
posed network, we conducted pore detection ablation experiments on 30 man-
ually annotated fingerprint images from the PolyU DBI dataset with different
slide window parameters, as well as pore matching ablation experiments on both
the PolyU DBI and DBII datasets using the original image and F'eat to represent
pores, as shown in Table 1 and Table 2. Baseline refers to using the traditional
MSE loss and without attention module. Observing Table1, we can see that
smaller sliding windows achieve higher Rp but also result in higher Rp under
the same conditions. For the same threshold, we believe that larger sliding win-
dows have a larger field of view, rendering more reliable results and thus have
lower Rp. However, smaller sliding windows offer a more complete detection of
pores in areas with a dense distribution of pores, leading to higher Rp. More-
over, it’s clear that the complete network structure achieves the highest Ryp.
Additionally, the results show that the combination of AW loss and WLM can
significantly enhance the Rp. For all subsequent experiments, we adopt a sliding
window size of 5 x 5 and a threshold of 0.35 for pore detection. The recognition
results, as presented in Table 2, indicate that the ability to detect and represent
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Table 1. Effects of two components on pore detection with different sliding window
parameters (window size and threshold) on PolyU DBI dataset.

Baseline | CBAM | AW+WLM | 5 x 5 Tx7

0.25 0.3 0.35 0.25 0.3 0.35

Rr Rr | Rr Rr | Rr Rr | Rr Rr | Rr Rr | Rr Rp
91.74 16.90 |90.54 | 5.64 |88.87 4.77 |90.89 /6.70 |89.81 |5.55 |88.29 |4.69
93.13 |8.11 |91.64 6.65 |89.78 |5.32 |92.30 |7.79 |90.97 |6.50 |89.34 |5.22
97.26 | 24.13/97.08 |21.34|96.68 | 17.88|96.04 | 21.34/95.96 | 19.20 | 95.70 | 16.49
98.15 | 23.59 | 97.93 | 20.06 | 97.61 | 16.33 | 97.13 | 20.19 | 97.00 | 17.94 | 96.77 | 15.16

ANENENEN
<Ixlalx
Sl x %

Table 2. Effects of two components on pore matching on PolyU DBI and DBII dataset.

Baseline | CBAM | AW+WLM | DBI DBII
Feat |original image | Fleat | original image
v X X 16.18 | 6.47 10.63 | 1.45
v v X 11.49 | 6.46 6.22 | 1.50
v X v 11.89 | 5.29 8.22 |1.64
v v v 4.85|5.22 0.891.35

pores is key to recognition performance. By incorporating both components, we
observe significant improvements in these aspects, leading to the best recogni-
tion performance. These findings provide strong evidence for the effectiveness of
these components within our proposed network.

3.4 Comparison with Other Pore Detection Methods

Accurate pore detection is vital for high-resolution fingerprint representation and
recognition. Therefore, we evaluated the performance of pore detection compared
with other existing pore detection methods on the same dataset used in the
pore ablation experiment, as shown in Table 3. As seen in the table, a state-of-
the-art Rp can be achieved by our proposed method. Although the proposed
method also have a higher Rp than some of the other methods, we believe
that even a slight increase in Rp can improve recognition performance as long
as Rp is high enough. This is because accurately detecting more sweat pores
provides greater opportunities to establish correct pore correspondences. Thus,
we believe that achieving a high Ryp is crucial for subsequent pore matching and
the proposed method effectively achieves this goal. We will further demonstrate
this in subsequent experiments.

3.5 Comparison with Other Pore Matching Methods

To further evaluate the effectiveness of the proposed method, several compar-
ative recognition experiments have been carried out. Firstly, we compared the
recognition performance with some classical methods on the PolyU HRF dataset
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Table 3. Pore detection results of Rt (%) and Rr (%) compared with other methods.

Gabor Filter [2] | 75.90 |23.00
Adapt. DoG [3] |80.80 |22.20
DAPM [3] 84.80 | 17.60
Labati et al. [5] | 84.69 |15.31
Xuetal. [22] | 85.70 |11.90
DeepPore [4] 93.09 | 8.64
Zhao et al. [7] |93.14 |4.39
Gabriel et al. [6] | 92.00 |16.90
Shen et al. [§] 93.20 | 8.10
Liu et al. [14] | 94.88 | 24.25
Ours 97.6116.33

using a simple pore representation, namely the original image. Table 4 shows the
recognition results. Observing Table4, it can be seen that our method achieves
the best recognition performance compared with other methods. The results also
demonstrate the effectiveness of our method in pore detection. Then, we com-
pared the recognition performance with the latest one-stage method [14] on the
same dataset using both the original image and deep features to represent pores,
as shown in Table 5. The results reveal a significant improvement in recognition
performance, particularly when utilizing deep features. Notably, the recognition
performance of our method’s deep features outperforms the original image. Fur-
thermore, the fusion results show that the fusion of the original image and deep
features can further improve recognition performance and the deep features play
an important role. Finally, we compared the recognition performance with the
state-of-the-art two-stage high-resolution representation method, DeepPorelD
[12], and the latest one-stage method [14] on an in-house dataset to evaluate the
generalization ability of the proposed one-stage method, as shown in Table 6. The
results show that the one-stage method can achieve better generalization and our
proposed one-stage method outperforms the latest one-stage method. Figure 3
shows the recognition results of genuine and imposter matching examples using
our proposed method and the latest one-stage method on three datasets, with
deep features being used to represent pores. The results show that our proposed
method can match more pore pairs for challenging genuine matching pairs, while
yielding close or fewer pore pairs for imposter matching pairs, further demon-
strating the effectiveness of our proposed method.
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Table 4. The EERs (%) of original image on PolyU DBI and DBII dataset.

DP [9] | DAPM [3] | Gabriel et al. [6] | Shen et al. [8] | Ours
DBI 1542 9.6 9.2 7.7 5.22
DBII| 7.05 4.4 4.5 4.4 1.35

Table 5. The EERs (%) of the original image, deep feature, and their fusion on PolyU
DBI and DBII dataset.

original image Feat fusion

Liu et al. [14] | Ours | Liu et al. [14] | Ours | Liu et al. [14] | Ours
DBI |5.73 5.22|7.93 4.85 | 5.55 4.24
DBII | 1.64 1.35 | 1.84 0.89 | 1.27 0.65

Table 6. The EERs (%) compared with a typical two-stage and the latest one-stage
representation method on three datasets.

DeepPorelD [12] | Liu et al. [14] | Ours
DBI 1.42 5.55 4.24
DBII 0.51 1.27 0.65
In-house Dataset | 1.02 0.50 0.37

nga ndlod 16 NA1od

asnoy-uy

(a) (b)

Fig. 3. Visualization of genuine (top) and imposter (bottom) matching pairs using
deep features on three datasets: (a) Our method (b) The latest one-stage method.
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4 Conclusion

The latest one-stage high-resolution fingerprint representation method outper-
forms the current two-stage method in robustness and generalization. However,
the pore detection and feature learning ability are still limited by the network
architecture and the loss used. To further improve the one-stage high-resolution
fingerprint representation method, in this paper, we propose to combine the
transformer-based encoder and the fully convolutional network to learn both
local and global information, providing a more robust pore representation. More-
over, we incorporate the attention module and apply adaptive wing loss with
a weighted loss map to further improve pore detection and feature learning
capability. The experimental results on two high-resolution fingerprint datasets
demonstrate the effectiveness of our proposed method. In our future work, we
will continue to focus on better integrating various information related to pores
and designing more lightweight models.
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Abstract. Video face recognition (VFR) has gained significant atten-
tion as a promising field combining computer vision and artificial intel-
ligence, revolutionizing identity authentication and verification. Unlike
traditional image-based methods, VFR leverages the temporal dimen-
sion of video footage to extract comprehensive and accurate facial infor-
mation. However, VFR heavily relies on robust computing power and
advanced noise processing capabilities to ensure optimal recognition per-
formance. This paper introduces a novel length-adaptive VFR frame-
work based on a recurrent-mechanism-driven Vision Transformer, termed
TempoViT. TempoViT efficiently captures spatial and temporal infor-
mation from face videos, enabling accurate and reliable face recognition
while mitigating the high GPU memory requirements associated with
video processing. By leveraging the reuse of hidden states from previ-
ous frames, the framework establishes recurring links between frames,
allowing the modeling of long-term dependencies. Experimental results
validate the effectiveness of TempoViT, demonstrating its state-of-the-
art performance in video face recognition tasks on benchmark datasets
including iQIYI-ViD, YTF, 1JB-C, and Honda/UCSD.

Keywords: Video face recognition - Vision Transformer - Temporal
information

1 Introduction

Video face recognition (VFR) has emerged as a dynamic and promising field
at the intersection of computer vision and artificial intelligence, revolutioniz-
ing the way individuals are identified and authenticated [7]. Unlike traditional
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image-based approaches, video face recognition utilizes the temporal dimension
inherent in video footage to extract more comprehensive and accurate facial
information. As surveillance systems, social media platforms, and video commu-
nication technologies continue to proliferate, the demand for robust and efficient
VFR systems has grown significantly. However, VFR receives far less attention
than image-based face recognition [7,10].

To date, two prevalent approaches have emerged for VFR. The first approach
treats the frames of a video sequence as a collection of individual images, dis-
regarding the temporal order of the frames, e.g., [23]. However, such methods
lack computational efficiency as they necessitate comparing similarities across all
feature vectors between two face videos. Another approach involves aggregating
feature vectors from each frame in a sequential manner, preserving the tempo-
ral order. This method allows for the comprehensive capture of facial dynamics
over time, leading to a more accurate representation of the evolving face, e.g.,
[11,17]. In practice, the sequential aggregation approach may be preferred as it
can accurately capture temporal dynamics and ultimately boost the recognition
performance even under an uncontrolled environment.

However, using videos for face recognition has two sides of the same coin. On
the one hand, face videos offer the potential for enhanced performance due to
their enriched information content, encompassing valuable temporal dynamics
and multi-view perspectives. On the other hand, processing hundreds or thou-
sands of frames typically takes a lot of computing power, and noise frames may
also impair performance. Therefore, a good VFR system should make full use of
video data, avoid noisy distortion, and be efficient and accurate.

To achieve the mentioned objective, one can employ state-of-the-art sequen-
tial data modeling tools like ConvLSTM [29], ConvGRU [2], 3DCNN [16], and
Vision Transformer (ViT) [3,6]. Among these options, ViT stands out as a
promising candidate for capturing temporal information in videos. ViT has
proven its effectiveness in modeling long-distance relationships [26] and has
shown success in various video understanding tasks [3] when compared to models
based on LSTM and ConvNets.

Yet, it is crucial to acknowledge that face videos in real-world scenarios
can have varying lengths. This presents a formidable obstacle for ViT-based
approaches, as transformers are inherently limited in their ability to capture
dependencies within input sequences due to the fixed input size employed dur-
ing training [31]. For instance, if the maximum sentence size is set to 256 words,
the transformer model will be unable to capture dependencies between words
that occur beyond this limit.

Inspired by the above discussion, we propose a new video face recognition
framework, termed TempoViT, based on the sequential temporal information
aggregation concept. Specifically, the proposed framework centers around a care-
fully crafted recurrent Vision Transformer for temporal information extraction.
The TempoViT consists of a stack of units that operate by taking the current
input frame, denoted as 2, and the hidden state A*~1) from the previous frame
as inputs. From this current TempoViT unit, an output O®) and an updated
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hidden state h(*) are generated. Then, a joint attention mechanism is proposed
for the TempoViT unit, which is used to draw global dependencies between
image patches and temporal dependencies between neighboring frames through
a hidden state. Length-adaptive spatial-temporal feature extraction can be done
by recursively running the TempoViT unit on individual frames.

An important aspect to highlight is that we leverage the reuse of hidden
states from previous frames instead of computing them from scratch for each new
frame. The reused hidden states act as a memory for the current frame, forming
a recurring link between them. As a result, modeling very long-term dependen-
cies becomes possible because information can be propagated through recurrent
connections. Additionally, the frame-wise recursive mechanism can help mitigate
the high GPU memory requirements associated with video processing.

The contributions of our work can be summarized as follows: 1) We introduce
an end-to-end ViT-based length-adaptive VFR framework, termed TempoViT.
By directly inputting face videos, our system can output the corresponding face
embeddings. The TempoViT framework efficiently captures spatial and temporal
information from videos, allowing for accurate and reliable face recognition. Fur-
thermore, we address the high GPU memory requirements typically associated
with video processing, ensuring that our framework is suitable for applications
requiring both accuracy and efficiency in face video identification; 2) We evalu-
ate the performance of our face recognition framework on benchmark datasets
such as iQIYI-ViD, YTF, IJB-C, and Honda/UCSD. Our results demonstrate
the effectiveness of TempoViT in achieving state-of-the-art performance in face
recognition tasks.

2 Related Works

Video Face Recognition. In comparison to image-based face recognition,
videos offer a richer source of information as they inherently capture faces of
the same individual in diverse poses and lighting conditions. This abundance
of data enhances the robustness and accuracy of face recognition algorithms,
enabling them to better handle variations in facial appearance and improve
overall performance.

The primary difficulty in video face recognition lies in constructing a suitable
representation for the video face, which can successfully combine information
from multiple frames while filtering out noisy or irrelevant data.

Convolutional neural networks (CNNs) have emerged as one of the most
widely used and successful tools for video face recognition. In 2017, a Neural
Aggregation Network (NAN) was proposed in [30] for video face recognition,
which consists of two modules that can be trained sequentially or individually.
The first is a deep CNN feature embedding module that extracts frame-level
features. The other is the aggregation module, which performs the adaptive
fusion of feature vectors from all video frames.

For dealing with bad frames, [25] proposed a method for discarding unde-
sirable frames using a Markov decision process and trained an attention model
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through a deep reinforcement learning framework. In [5], a trunk-branch ensem-
ble CNN model was proposed to solve the illumination and low-resolution prob-
lems. It has been shown to have competitive performance compared to conven-
tional CNN networks.

A recurrent regression neural network (RRNN) framework was introduced in
[19] for cross-pose face recognition tasks, specifically targeting still images and
videos. RRNN explicitly builds the potential dependencies of sequential images
and adaptively memorizes and forgets information that benefits final classifica-
tion by performing progressive transforms on adjacent images sequentially.

In [9], a novel approach called the component-wise feature aggregation net-
work (C-FAN) was introduced. C-FAN is designed to handle a set of face images
belonging to a particular individual as input and generates a single feature vec-
tor as the representation for face recognition. The key aspect of C-FAN is its
ability to automatically learn the significance of different face features by assign-
ing quality scores, which enhances the overall face representation for improved
performance in recognition tasks.

Vision Transformer. Recently, transformer-based networks have gained sig-
nificant attention and have been increasingly applied to computer vision tasks.

Dosovitskiy et al. [6] introduced the Visual Transformer (ViT) model and
made a groundbreaking observation that the transformer framework, even with-
out convolutional layers, can achieve impressive performance on image processing
tasks [6].

Zhong et al. [33] conducted the first study to investigate the performance of
Transformer models in face recognition. They trained and evaluated a ViT model
on several mainstream benchmarks. The results showed that Face Transformer
models trained on a large-scale database can perform similarly to CNN models.
However, it is important to note that the proposed ViT model was only tested
on still images [33].

Transformer-based models have also been increasingly utilized for video-
related tasks [1,3,8,24]. The ViViT model [1] employs two transformer encoders,
one for processing spatial information and the other for temporal information.
This approach effectively captures both spatial and temporal features in videos.

The TimeSformer [3] introduces a convolution-free methodology that extends
self-attention to incorporate joint spatial-temporal attention. It allows the model
to capture both spatial and temporal dependencies in videos. The VTN model
[24] combines a 2D spatial feature extraction model with a temporal-attention-
based encoder. This combination results in an efficient architecture specifically
designed for video understanding tasks.

The MViT model [8] introduces multi-head pooling attention with a focus
on specific spatial-temporal resolutions, which leads to promising performance.
Unlike traditional RNN and LSTM methods, transformer-based approaches are
designed to process batches of frames in parallel for video tasks. However, these
approaches often require significant GPU memory due to their parallel process-
ing nature. Additionally, the extraction of temporal features is typically per-
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formed within the batch, which can limit the amount of information captured
in the temporal domain. These considerations highlight the trade-offs and chal-
lenges involved in designing efficient and informative transformer-based models
for video analysis tasks.

To address these challenges, recursive methods, such as ConvLSTM [29],
have been successfully employed in video tasks. These recursive models have
demonstrated effectiveness in capturing temporal dependencies and modeling
video sequences. However, recent studies suggest that transformer-based meth-
ods, with their self-attention mechanisms designed specifically for video tasks,
can establish interactions between the spatial and temporal domains [1,3,8,24].

In summary, current face recognition approaches for videos primarily rely on
convolutional neural networks (CNNs), while limited efforts have been made to
extend the usage of Vision Transformer (ViT) models to video face recognition.
However, incorporating recursive mechanisms and Transformer self-attention
mechanisms hold promise in improving performance.

3 Methods

3.1 Overview

The proposed TempoViT is a video face recognition framework that utilizes a
carefully designed recurrent Vision Transformer. In the following subsections we
introduce the specific details of preprocessing, recurrent unit and joint attention
gate respectively, as shown in Fig. 1. The main idea is to capture both spatial and
temporal information from face videos while addressing the challenges associated
with varying video lengths and high computational requirements.

The TempoViT consists of a stack of units that operate on individual frames
of a video sequence in a sequential manner. Specifically, given the current
input frame z(® and the hidden state h(*~1) obtained from the previous frame,
the TempoViT unit processes this information and produces an output O
along with a new hidden state h(*) for the current frame. To enhance perfor-
mance, a custom-designed multi-head temporal-spatial joint attention module is
employed, which facilitates interaction between the current frame input and the
previous hidden state.

3.2 Preprocessing

The input frame X® € REXWXCwith dimensions of height (H), width (W),
and channel number (C), will undergo a decomposition process, where it is
divided into non-overlapping patches of size P x P. These patches are subse-
quently flattened into vectors wz(,t) € RP*XD and D = % : % -C. In order to gen-
erate the input vector for the TempoViT unit, the patched vector x,(,t) undergoes
a convolutional embedding layer. This layer applies a convolution operation to
extract relevant features from the patch vector. Additionally, a position encoding
vector is added to the embedded representation:

z® = E(J:Z(f)) + Pos, (1)
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Fig. 1. TempoViT. (a) provides an overview of the TempoViT framework, showcasing
a two-layer TempoViT architecture as an example. In (b), a recurrent unit is depicted,
representing the core component of our framework. (c) illustrates the joint attention
gate, which operates on both the current input z and the hidden state h(*~1.

where ¢ denotes the convolution embedding function and Pos, € R” XD g g
learnable positional encoding vector. The positional encoding vector is the same
for all frames.

In a manner similar to the conventional ViT approach, Fig. 1a demonstrates
the usage of learnable tokens T's € RP and Tt € RP to represent spatial and
temporal directions, respectively. Thereby, T's tokens are added at the begin-
ning of each input frame x(t) to aggregate spatial features, while Tt tokens are
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appended to the initial hidden state in each layer to aggregate temporal features.
The aggregated Tt tokens and the T's tokens from the last frame’s output are
concatenated. This concatenated representation is then fed into a linear classifi-
cation layer W5, enabling the model to generate a prediction result. Hence a
prediction result can be given as:

P= Wclass(Concat(Tt(()t), oy T Ty, (2)

3.3 TempoViT Recurrent Unit

Figure 1b provides an overview diagram of a single TempoViT unit, illustrating
its key components and their interactions. The input frame z(¢) and hidden state
h(t — 1) collaborate to compute the current hidden state h(t) and output O(t)
in a TempoViT unit. The attention unit in the TempoViT framework takes as
input the current frame z(t) and the previous hidden state h(t — 1), both of
which are first passed through a Layer Normalization layer. Following that, the
attention preserves previous attention while appending new information from
the current frame. Finally, the hidden state h(*) of the current frame, belonging
to RP**D , is generated in a residual manner.

Bt — pt—1) + A(t), (3)

The output O € R” D of the current unit is generated by a Feed-Forward
Network (FFN) with a residual connection. This can be defined as follows:

O = f(o) + 0, (4)

where o®) is the intermediate output defined as o = z®) + A® and f(-)
represents the FFN.

Unlike existing approaches that often process a batch of frames, our method
takes a different approach by utilizing a recurrent unit to process face videos
frame by frame. This sequential processing allows us to effectively reduce redun-
dant computation, especially when dealing with long video sequences. In contrast
to methods such as 3D-ResNet and TimeSformer which require the entire video
sequence for inference and training, our approach focuses on individual frames,
resulting in more efficient and streamlined processing.

3.4 Temporal-Spatial Joint Attention

As shown in Fig. 1c, a joint attention gate based on [31] is specifically designed
to establish an interaction between the current frame xz(*) and the hidden state
R(t=D € RP**D from the previous frame. It takes these inputs and generates
an attended vector a®) € RP**D , which represents a fused representation that
captures the relevant information from both the current frame and the previous
hidden state. By utilizing the joint attention gate, the TempoViT framework
enhances the integration of temporal and spatial information, enabling more
effective and accurate analysis of the video frames.
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Table 1. Datasets of face videos

Datasets #ldentity | # Video | Remarks
iQIYI-VID [21] 10034 200k length of the video clip ranges from 1s to 30s
YTF [28] 1,595 3,425 length of the video clip ranges from 48 to 6,070 frames
1JB-C [22] 3,531 11779 video with a length <6 frame will be excluded
Honda/UCSD [18] | 37 1480 captured indoors with natural light, fixed distance

a® = (J(Q(t)K(t)))V(t) (5)

The activation function o(+), in this case, represents the ELU (Exponential
Linear Unit) function elu(-). Q®¥), K® V) are matrices denoting the Query,
Key, and Value, respectively. These matrices are defined as follows:

Q(t) _ x(t)WwQ + h(t_l)W}?
KW = zOWwE L pt=byyK (6)
v — x(t)W;/ + h(t—l)W’y

Note that the attention vector a(t) captures a joint attention mechanism
between the current frame input z(¢) and the previous hidden state h(t — 1).
This joint attention is achieved because the matrices Q(t), K(t), and V (¢) are
computed from both the current frame input and the previous hidden state. Fur-
thermore, to achieve multi-head attention, ¢ attention heads are concatenated
together, resulting in a combined representation that incorporates the contribu-
tions from multiple attention heads.

A®) — Concat(agt), e aaz(zt))WProj (7)

where a,(f) = (U(Qgt)K,Et)))Vq(t) and a,(f) € RP"¥ 7. A linear layer Wp,,; € RP*P
is applied to project the attended vector to a desired output dimension.

4 Experiments and Results

4.1 Experiment Setting

Datasets. As given in Table1, four public video face benchmark datasets
are used in our experiments to verify the effectiveness of the proposed Tem-
poViT, including iQIYI-VID-FACE [21], YouTube Face (YTF) [28], IJBC [22]
and Honda/UCSD [18].

The iQIYI-VID dataset is the largest open-source video celebrity recognition
dataset composed of more than 200k video clips of 10, 034 celebrities. The train-
ing set is 90% samples of each user in the iIQIYI-VID dataset and the remaining
samples are composed of a testing set. YFT is a comprehensive database of
labeled videos of faces in challenging, uncontrolled conditions, which contains
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3425 videos of 1595 subjects. IJBC is composed of 3531 subjects with 117. 5k
images from 11779 videos. Still images and frames with insufficient length (<6
frames) are not used in our experiments. YTF and IJB-C are used in the training
of the multilayer perceptron head (MLP), and follow the training protocol from
[4]. The Honda/UCSD video database contains 1480 videos of 37 subjects and
all are recorded indoors with natural light. The training set consists of one video
of each of 20 subjects, while the 39 videos of 17 subjects are used in the testing
set. Some examples are shown in Fig. 2.

Implementation Details. We first verify the performance of the proposed
TempoViT on the iQIYI-VID dataset. Then we use the pretained model
on the iIQIYI-VID dataset to evaluate the performance of YTF, IJB-C, and
Honda/UCSD datasets which is in line with practical application scenarios.
We apply a random initialization to train our proposed TempoViT on the
iQIYI-VID dataset with Adam optimizer and Cross-entropy loss. The initial
learning rate and weight decay are set to 3e~* and 5e~*, respectively. Both the
training and testing phases randomly sample 8 frames from each video with a
sampling rate of 1/1 to 1/8. The frames from the sample are first resized to
112 x 112. Additionally, a random horizontal flipping is applied to each frame.

time
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Fig. 2. Dataset examples.

Table 2. Performance on iQIYI-ViD dataset

Method mAPQ1(%) | mAPQ@100(%) | Params(M) | Flops(G)
ArcFace,Res100 [4] N/A 79.80 59.27 2.04
MobileNetV3+LSTM [14] | 78.19 80.42 15.82 0.50
ResNet3D-50 [12] 82.65 86.13 48.71 5.29
Ours(TempoViT) 85.07 87.11 1.49 1.76
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After these transformations, we set P to 8. Each frame is divided into 8 x 8
non-overlapping patches and flattened for further processing.

4.2 Quantitative Evaluation

In this section, we adopt mAP@l and mAP@100 as the retrieval perfor-
mance indicator to evaluate the proposed TempoViT on iQIYI-VID. We com-
pare the recognition performance of different methods, including ArcFace [4],
MobileNetV3+LSTM [14], ResNet3D-50 [12] and ours, the result is shown in
Table 2.

As can be seen from Table2, ArcFace achieves an mAP@100 accuracy of
79.80%. MobileNetV3+LSTM achieves an mAP@1 accuracy of 78.19% and an
mAP@100 accuracy of 80.42%. ResNet3D-50 achieves an mAP@1 accuracy of
82.65% and an mAP@100 accuracy of 86.13%. Our proposed approach achieves
an mAP@1 accuracy of 85.07% and an mAP@100 accuracy of 87.11%.

The number of parameters (Params) in a model refers to the number of
learnable weights that the model contains. Floating-point operations (Flops)
represent the number of mathematical computations during its forward pass.
Flops are indicative of the computational complexity or workload required by
the model.

The proposed TempoViT model has the lowest number of parameters (1.49
million), indicating a relatively lower complexity compared to the other mod-
els. The TempoViT model requires 1.76 billion Flops, which is in between
the MobileNetV3+LSTM and ResNet3D-50 models. Compared to Arcface,
MobileNetV3+LSTM and ResNet3D-50, our TempoViT can be considered
extremely lightweight and achieve the best performance.

Table 3. Performance(%) on YTF, IJB-C and Honda/UCSD datasets

Method YTF accuracy | IJB-C TPRQFPR=1e-4 | Honda Top-1 accuracy
DSR-Full len. [11], 2017 92.55 - 100.0
TBE-CNN [5], 2017 94.96 - -
NAN [30], 2017 95.72 - -
ADRL [25], 2017 96.52 - -
CosFace [27], 2018 97.60 - -
SeqFace [15], ResNet-64, 2018 98.10 - -
C-FAN [9], 2019 96.50 - -
Hormann et al. [13], 2021 96.62 - -
R100, ArcFace [4], 2019 98.02 95.60 -

Lin et al. [20] (50 frames), 2020 | - - 97.44
DDL [32], 2020 98.18 96.41 -
Ours(TempoViT) 86.19 84.47 100.0
Ours(TempoViT)+MLP 99.40 99.58 100.0

We then evaluate the cross-dataset recognition performance on YTF, IJB-C,
and Honda /UCSD, which is consistent with data deployment in real systems.
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Specifically, the TempoViT model is pre-trained on the large-scale iQIYI-ViD
dataset and then used to infer the YTF and IJB-C datasets. As shown in
Table 3, we calculate the accuracy of the normalized feature embeddings. For
the Honda/UCSD dataset, a multi-layer perceptron (MLP) head is added to the
backbone architecture and fine-tuned using the training set of the Honda/UCSD
dataset to improve the model’s performance. As observed from the table, the
pre-trained TempoViT achieves an acceptable accuracy of 86.19% on YTF
and 84.47% TPRQFPRle~* on IJB-C, while achieving 100% accuracy on the
Honda/UCSD dataset.

Clearly, in the cross-dataset scenario, the accuracy on the YTF and IJB-C
datasets is lower than that of most existing works. Therefore, inspired by [4],
we attach an MLP layer to the pre-trained TempoViT model and fine-tune it
on each testing dataset. As a result, the accuracy of TempoViT improves to
99.27% on YTF and 98.75% on IJB-C. The performance of TempoViT is greatly
improved, and a series of results demonstrate its strong feature extraction ability.

4.3 Ablation Study

Since the video length of the TempoViT input is not fixed, we conduct an abla-
tion study to assess accuracy and time cost for different video lengths in this
stage.

First of all, the Honda/UCSD dataset is chosen for this experiment due to
its videos being primarily captured under similar situations, resulting in fewer
variations. This selection ensures a more controlled and consistent environment
for conducting the study. During training, TempoViT is trained using input
sequences of 8, 50, and 70 frames for each corresponding setting. However, for
input sequences with 100 frames and full frames, we directly use TempoViT
trained with 70 frames for inference due to the limitation of memory resources.

Table4 shows the classification accuracy of different methods for video
lengths ranging from 8 to full frames. We can clearly see that as the video
clip length increases, the performance of face recognition increases. Moreover,
compared with existing methods, our proposed TempoViT achieves better per-
formance on the Honda/UCSD dataset. Specifically, proposed TempoViT with-
out pre-training achieves 100% accuracy at 50 frame lengths, while TempoViT
with pre-training achieves an accuracy of 100% even at 8 frame lengths. This
shows that our TempoViT has the ability to extract the spatial and temporal
information of the faces in the video, which is conducive to the construction of
a high accuracy video-based face recognition system.

To demonstrate the efficiency of the TempoViT, Fig. 3 records the inference
time cost of TempoViT for processing face videos of different lengths. The infer-
ence time takes only 48 ms when the video length is extended to all frames. The
observations confirm that the proposed method can be used for real-time video
face recognition.

In addition, we use attention visualization of the transformer to ascertain
the relationship of the attention maps among frames at the inference stage. As
we can observe in Fig. 4, face areas such as eyes, hair, and nose are activated in
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Table 4. Classification accuracy(%) vs. video length on the Honda/UCSD

Method Video clip Length (Frame)
8 50 70 100 | Full
LBP+AdaBoost [11] - 82.75|88.5292. 63|96. 10
Pose [20] - 97. 44 | - 100.0 |-
DSR [11] - 98. 74|100.0 |100.0 |100.0
TempoViT w/o Pretrained | 98. 69 | 100.0 | 100.0 |100.0 |100.0
TempoViT Pretrained 100.0 |100.0 |100.0 |100.0 |100.0
60
50 4 48
g 40
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2 30
< 2 17
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0.26
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8 50 vided ongth 100 full

Fig. 3. Inference time cost for different video lengths.

Fig. 4. Attention visualisation for TempoViT.
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proposed TempoViT model, which suggests that the model can focuses on face
areas for identity recognition under typical situations.

5 Conclusions

While image-based face recognition has received more attention, the demand
for robust and efficient VFR systems has grown significantly with the prolifer-
ation of surveillance systems, social media platforms, and video communication
technologies. Two prevalent approaches have emerged for VFR: treating video
frames as individual images and aggregating feature vectors sequentially. The lat-
ter approach, which preserves temporal dynamics, has been shown to be more
accurate in capturing the evolving face. However, processing video frames can
be computationally demanding, and noisy frames can impair performance.

To address these challenges, we proposed a video face recognition frame-
work based on the sequential aggregation approach. The framework leverages
the power of Vision Transformer (TempoViT) and carefully crafted recurrent
connections to capture both spatial and temporal information from face videos.
By reusing hidden states and recursively running the TempoViT unit on individ-
ual frames, our framework achieves efficient processing and mitigates high GPU
memory requirements.

Our evaluation on benchmark datasets demonstrates the effectiveness of Tem-
poViT, showcasing its state-of-the-art performance in face recognition tasks.
Overall, TempoViT offers a robust, accurate, and efficient solution for video face
recognition, meeting the increasing demands of real-world applications in various
domains.
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Abstract. Face forgery detection in compressed images is an active
area of research. However, previous frequency-based methods are sub-
ject to two limitations. One aspect to consider is that they apply the
same weight to different frequency bands. Moreover, they exhibit an
equal treatment of regions that contain distinct semantic information.
To address these limitations above, we propose the Central Attention
Network (CAN), a multi-modal architecture comprising two bright com-
ponents: Adaptive Frequency Embedding (AFE) and Central Atten-
tion (CA) block. The AFE module adaptively embeds practical fre-
quency information to enhance forged traces and minimize the impact of
redundant interference. Moreover, the CA block can achieve fine-grained
trace observation by concentrating on facial regions where indications of
forgery frequently manifest. CAN is efficient in extracting forgery traces
and robust to noise. It effectively reduces the unnecessary focus of our
model on irrelevant factors. Extensive experiments on multiple datasets
validate the advantages of CAN over existing state-of-the-art methods.

Keywords: Face Forgery Detection - Multi-level Frequency Fusion -
Attention Mechanism

1 Introduction

Deep learning advancements and the widespread availability of online resources
make tools like deepfakes [1] and face2face [2] easily accessible, allowing indi-
viduals without professional training to easily manipulate facial expressions,
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Fig.1. (a) Overview of our proposed CAN. Combining FDD with AFE allows for
extracting fine-grained frequency information and highlighting the components most
useful for forgery detection. The CA block enables the network to focus more on key
central areas. (b) Illustration of the differences between Real and Fake. The forgery
traces are clustered in the central region (in the red box), indicating that the center is
more important than the other areas. (Color figure online)

attributes, and identities within images. However, criminals misuse these tech-
nologies, resulting in a proliferation of high-quality fake photographs on social
media, making it difficult to distinguish between genuine and modified faces.

The above issues prompt the development of face forgery detection based
on deep neural networks [3-11]. However, they perform poorly in compressed
images. Recent works [12-15] highlight the effectiveness of capturing forgery
traces in the frequency domain under high compression. While decent detection
results are achieved by combining RGB and frequency information, their method
of information processing is coarse-grained, which causes two limitations.

For one thing, previous studies usually obtain frequency domain information
through Discrete Cosine Transform and then use hand-crafted filters to extract
it into high, middle, and low frequency bands. According to [15], the low and
middle frequency preserve rich semantic information, such as human faces and
backgrounds, which is highly consistent with RGB input. Meanwhile, the high
frequency reveals small-scale details, often related to forging sensitive edges and
textures. These show that the role and importance of these three frequency bands
are completely different. Previous works show excellent performance by combin-
ing frequency information. They apply the same weight for different frequency
bands, which may not be optimal for using frequency information and may lead
to magnifying irrelevant noise and ignoring the more valuable components.

For another thing, the equal treatment of regions with different semantic
information prevails in existing methods. However, as shown in Fig. 1(b), most
of the differences between real image and fake image are obviously clustered
in the central region (in the red box). This means that the central region can
provide rich traces of forgery compared to other regions (outside the red box).
Treating the regions equally not only results in superfluous noise but also neglects
significant evidence.
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To address these limitations, we propose a new approach to detect face
forgery, termed as Central Attention Network (CAN), as shown in Fig.1(a).
The CAN consists of four main modules: Frequency Domain Decomposition
(FDD), Adaptive Frequency Embedding (AFE), Multi-modal Attention Fusion
(MAF), and Central Attention (CA) block. CAN initially uses FDD to extract
low, middle, and high frequency information from input images. Then our AFE
module concatenates the three frequency bands for richer frequency perception
cues. In terms of information extraction granularity and channel allocation, it
prioritizes high frequency information. Subsequently, the frequency is fused into
the RGB branch by the MAF module. Finally, we add the CA block, which is
similar to the Transformer block [16], to prevent the network from focusing on
irrelevant areas. The module uses different scale attention mechanisms for the
central and global regions, enabling the network to prioritize the central region
more efficiently.

Extensive experiments have demonstrated that our proposed Central Atten-
tion Network effectively captures forgery traces and significantly improves upon
the shortcomings of existing detection methods. Our work makes the following
primary contributions:

— We propose the AFE module aiming at mining the more valuable fine-grained
frequency components to uncover subtle nuances and hidden artifacts.

— We propose the Central Attention mechanism that provides a refined per-
spective of forged regions and reduces the attention to irrelevant areas.

— Numerous experiments demonstrate that our proposed Central Attention
block is highly versatile and can be seamlessly integrated into various existing
networks, resulting in a significant enhancement of their detection capabili-
ties.

2 Related Work

Face Forgery Detection. With the rise of deep learning, the adverse effects
of image forgery techniques on political credibility, social stability, and personal
reputation have increasingly received attention from society.

Therefore, various image forgery detection technologies have developed
rapidly in recent years. Previous works [7-11] use deep CNN models to pre-
dict whether a face region is real or fake. Unfortunately, they are only partially
effective in high compression scenarios.

Inspired by [13], recent studies try to improve detection performance in high
compression scenes by incorporating frequency domain information into existing
detection techniques. Qian et al. [15] proposes a dual-stream network named F3-
Net, where one branch utilizes three filters to perform frequency decomposition
on RGB information. Chen et al. [17] uses the Spatial Rich Model to extract
residual noise to guide the RGB features. Li et al. [18] and Gu et al. [14] further
decompose fine-grained frequency domain information from the perspective of
image compression. While previous methods demonstrate significant effects, they
either underutilize frequency information or treat all levels of frequency equally.
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In contrast, our method involves decomposing frequency domain information
and adaptive embedding to leverage the available frequency fully.

Vision Transformers. Transformers are known for their powerful remote con-
textual information modeling capabilities and high performance in natural lan-
guage processing tasks. While various backbones are proposed to handle com-
puter vision tasks, conventional transformers treat each patch at a single scale.
Recent works [19-21] introduce multiple scales to focus on objects of different
sizes, [22] proposes a multi-modal framework that integrates multi-scale trans-
former. Nevertheless, these approaches are generic and not tailored to the specific
characteristics of forgery image detection. In this paper, we propose a Central
Attention block that addresses the fact that fake regions tend to be concentrated
in the central area of an image while other areas contain interference information.

3 Proposed Method

3.1 FDD: Frequency Domain Decomposition

For the input rgb € R3>*#*W where H and W are the height and width of
the image. First, we apply DC7T as Discrete Cosine Transform to transform the
RGB domain to the frequency domain. Based on [15], we devise N = 3 filters
that are capable of effectively decomposing the frequency into three distinct
frequency bands: high, middle, and low:

det™ = DCT (rgb) © ", n=1,..,N. (1)

We utilize D as Inverse Discrete Cosine Transform to transform the frequency
domain into RGB domain to obtain the freq € R3N*H>XW which is concatenated
by freq™ along the channel dimension. This manipulation helps to preserve the
shift invariance and local consistency of natural images.

freq™ = ID(dct™), n=1,.., N. (2)

To achieve a more refined analysis of the frequency information, we apply M as
the median filter to extract noise information from the input features fregq:

f;eQnoise = f7:€q - M(f;eq) (3)
To magnify subtle forgery clues, we utilize the following formula:
freq = freq+ Convyx1(Sigmoid(freq, y;..))- (4)

Specifically, a 1 x 1 convolution layer followed by a Sigmoid activation function
is used to generate a noise mask, which is then added back to the original feature
maps to enhance the frequency input.
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Fig. 2. The illustration of the proposed AFE allocates weight based on the value of
frequency levels.

3.2 AFE: Adaptive Frequency Embedding

Previous works show excellent performance by combining frequency informa-
tion. Applying the same weight to different frequency bands might be the gen-
eral method in their works. It may not be optimal for using frequency domain
information because it may magnify irrelevant noise or misuse the valuable com-
ponents. To address this point, we propose the AFE module that fully exploits
the role of different frequency components, as shown in Fig. 2. The AFE module
extracts information from different frequency bands via different convolution ker-
nels. Tampering artifacts reside mainly in the high-frequency spectrum. There-
fore, we use a 2 x 2 convolution kernel to extract fine-grained texture information
from it. For middle and low frequency that still contain basic information, which
provides a solid foundation for fusing Frequency and RGB, we adopt 4 x 4 and
8 x 8 convolution kernels to extract semantic features, respectively. The channel
outputs generated by these convolutions are also treated differently based on
their importance in different frequency bands. Specifically, % channels are allo-
cated for high frequency channels while middle and low frequency each occupy
% channels. The d represents the number of output feature channels. Ultimately,

the three branches are concatenated along the channel to obtain the frAeq.

3.3 MAF: Multi-modal Attention Fusion

The complementary relationship between RGB and Freq is acknowledged. The
MAF module integrates them by means of an attention mechanism. The RGB
feature map is denoted as ré]b € R&xhxw while the frequency feature map is
represented as fv:eq € R¥*hxw We obtain the query vector @ from réb using a
1 x 1 convolution layer. Similarly, we obtain the key vector K and value vector
V from f7:eq using 1 x 1 convolution layers. Then, we flatten them along the
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spatial dimension to get 2D embeddings Q., K., V.. Using the self-attention
mechanism, we generate an attention map that represents relevance between the
input features rgb and fregq:

QK.
VD

where D is the dimensionality of the key vectors. After obtaining attention
weights, we compute weighted values via a 3 x 3 convolution. Additionally, we
adopt residual connections to add them to the original input, alleviating the
potential gradient vanishing issue during the training process.

W = softmaax( VWe, (5)

f= réb + COTL’U3><3(W). (6)

3.4 CA Block: Central Attention Block

Mask

Output Feature

Projection

Input Feature

Central
Substitution

1-Mask

Projection

Fig. 3. The proposed Central Attention mechanism when « is 0.5.

The conventional transformer models treat all patches of an image equally with-
out taking into account the relative significance of distinct areas. Recent stud-
ies [20,22] show that incorporating multi-scale information can improve detection
accuracy. Yet these models are not optimized for detecting forged face images.
Our observation is that forged regions tend to cluster around the centre of input
images. Based on this insight, we propose Central Attention, which aids the
network in concentrating on key regions.

For the input global feature f9 € R°*"*% we commence by initializing a
Mask of size h x w. Subsequently, we selectively filled the central region, char-
acterized by dimensions of ah X aw, with the value 1. The surrounding area
is then filled with the value 0 to complete the mask initialization process. « is
the proportion that determines the size of the central region. We then apply
this Mask to the input f9, resulting in a central feature map f¢ = f9 © mask.
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Figure 3 illustrates the framework of the Central Attention mechanism, with a
value of 0.5 for parameter «.

For the global feature f9, we downsample it into % X 5 by convolution to
obtain f¢. We obtain the embedding Qg from f9, the embeddings K, and V,
from f9. Inspired by [21], we define the operation of dividing the input into
G x G patches through sliding windows and grouping as SWE(-).

Qg = SWg(Qg)a Kg, Vg = SW%(Kg, Vg), (7)
f9=MHSAQq, K4, V). (8)

Similarly, for the central feature f¢, we embed f€ into Q., K., V..

Q67 KC; ‘/C :SWC(Q67 K67 ‘/C)v (9)
fc :MHSA(Qm K., Vc): (10)

where M HS A represents Multi-Head Self-Attention.

This allows the network to focus more on the central region while still consid-
ering the surrounding areas. In order to maintain spatial coherence, the grouping
features are rearranged and subsequently substituted with f¢ to replace the cor-
responding position features. [-] denotes the above operations.

f=1r (11)
The CA block can be described mathematically:

=19+ CANorm(f9)), (12)
f =7+ FFN(Norm(f)), (13)

where Norm and FFFFN mean BatchNorm, Feed Forward Network separately.

3.5 Overall Loss

After passing through several CA blocks, the feature is sent into the remaining
backbone network to extract richer features f. Then a fully connected layer and
a sigmoid function are used to obtain the final prediction probability y. So the
Binary cross-entropy loss is defined as:

Lpee(y) = ylogy + (1 —y)log(1 - 7), (14)

where y is set to 1 if the face image has been manipulated, otherwise it is set to 0.
To ensure feature consistency, we use the Consistency loss function Leos in [23]
to constrain the feature distribution. f; and f; are the final features obtained
from the same input image after through distinct data augmentation and being
passed through the network. Mathematically:

Lcos (f1, f2) = (1*1'71']'72)2, (15)
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where f = W denotes the normalized vector of the representation vector f.
2
So we combine the Binary cross-entropy loss and the Consistency loss func-
tion linearly with § = 2.

Eall = LBce(yl) + EBce(y2) + 6[-"008 (fh f2) . (16)

Table 1. Quantitative results on Celeb-DF dataset and FF++ dataset.

Methods FF++(HQ) |FF++(LQ) | Celeb-DF
Acc |AUC |Acc |AUC |Acc |AUC
MesoNet [6] 83.10 |- 70.47 |- - -
Xception [24] 95.73 196.30 |86.86 |89.30 |97.90 |99.73
Face X-ray [7] |- 87.40 |- 61.60 |- -
Two-branch [25] | 96.43 | 98.70 |86.34 |86.59 | - -
RFM [11] 95.69 |98.79 |87.06 |89.83 |97.96 |99.94
Add-Net [9] 96.78 |97.74 |87.5 |91.01 |96.93 |99.55
F3-Net [15] 97.52 98.10 [90.43 |93.30 |95.95 |98.93
FDFL [18] 96.69 99.30 |89.00 |92.40 |- -
Multi-Att [8] 97.60 |99.29 |88.69 90.40 |97.92 |99.94
SIA [26] 97.64 |99.35 |90.23 | 93.15 |- -
PEL [14] 97.63 199.32 |90.52{94.28 |- -
Ours 97.65 | 99.44 | 90.40 |95.09|99.36 | 99.98

4 Experiments

4.1 Experimental Setup

Datasets. We adopt two widely-used public datasets in our experiments, i.e.,
FaceForensics++ [27], Celeb-DF [28].

1) FaceForensics++ (FF++) [27] is a large forensics dataset containing 1000
original video sequences and 4000 manipulated video sequences produced by
four automated face manipulation methods: i.e., Deepfakes [1], Face2Face [2],
FaceSwap [29], NeuralTextures [30]. Raw videos are compressed, resulting in two
versions: high quality (HQ) and low quality (LQ). Following the official splits,
we utilized 720 videos for training, 140 for validation, and 140 for testing.

2) Celeb-DF [28] dataset comprises 590 authentic videos sourced from
YouTube, featuring individuals of varying ages, ethnicities, and genders. Addi-
tionally, the dataset includes 5639 corresponding DeepFake videos.

Implementation Detail. The EfficientNet-B4 [31] pre-trained on ImageNet is
adopted as the backbone of our network. We insert several CA blocks respectively
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after the second and third convolutional blocks with a = 0.5. The input images
are resized to 320 x 320. The whole network is trained with Adam optimizer
with the learning rate of 2 x 1074, B; = 0.9, f2 = 0.999. The batch size is 48
split on 4 x RTX 3090 GPUs.

Evaluation Metrics. Following the convention [10,14,15,22,27], we apply
Accuracy score (Acc), Area Under the Receiver Operating Characteristic Curve
(AUC) as our evaluation metrics.

Comparing Methods. We compare our methods with several advanced meth-
ods: MesoNet [6], Xception [24], Face X-ray [7], Two-branch [25], RFM [11],
Add-Net [9], F3-Net [15], FDFL [18], Multi-Att [8], SIA [26], PEL [14].

Table 2. The effect of each component. Table 3. Ablation study of other back-

The CAB represents CA blocks. bones with our CA blocks.
RGB|Freq| AFE|CAB|Acc |AUC Model Acc |AUC
v 88.70 |92.87 PF +None|66.79|69.28

v 88.49 92.63 +CAB |78.79/80.31
v v 88.89 92.89 CNX |+None|76.45|77.92
v v v 89.94 |93.57 +CAB |80.43|80.64
v v v 90.36 [94.15 PF* | +None|86.93/90.09
v v v v 90.40 | 95.09 +CAB |87.22/90.34

CNX*|+None |87.57/90.77
+CAB |87.93|91.07

4.2 Comparison to the State-of-the-Arts

Following [15,27], we compare our method with various advanced techniques on
the FF++ dataset with different quality settings (i.e., HQ and LQ), and further
evaluate the performance of our approach on the Celeb-DF dataset. In Table 1
the best, second, third results are shown in Red, Blue, . The performance
of our proposed method, especially under high compression, is comparable or
superior to existing methods, as evidenced by the Acc and AUC metrics. It is
worth noting that the method PEL [14] is a two-stream network with twice
as many parameters as ours. We achieve competitive results using only half the
parameters. These gains mainly come from the CAN’s ability to utilize frequency
information and fully reduce interference from irrelevant information.

4.3 Ablation Study and Architecture Analysis

Components. As shown in Table 2, we develop several variants and conduct a
series of experiments on the FF++ (LQ) dataset to explore the impact of differ-
ent components in our proposed method. Using only RGB or frequency as input
in the single-stream setting leads to similar results. Combining both original
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streams can slightly improve performance, which demonstrates that frequency
and RGB are unique and complementary. Adding an AEF module or CA blocks
can significantly improve performance, achieving optimal results using the over-
all CAN framework. It shows that each module is effective: the AFE module
fully mines frequency domain information and filters noise, and the CA blocks
strengthen the network to focus on forged regions.

Validity of the CA Block. We insert the CA block into Transformer and
CNN to further examine its validity and universality. PoolFormer-S (PF) [32] and
ConvNeXt-S (CNX) [33] are chosen as the backbone. The results on FF++ (LQ)
are displayed in Table 3, where * means loading pre-trained weight. Embedding
CA blocks significantly improves the performance of both baseline networks due
to their critical attention to central regions.

Convolution Kernel Size. In the AFE module, we conduct experiments with
several convolution kernel combinations under the same settings. The specific
results are shown in Table4. The combination of [2, 4, 8] performs best.

Table 4. Quantitative results of different Table 5. The results on FF++ (LQ) with

convolution kernel sizes in AFE. different o.
Kernel |Acc |AUC a |Acc |AUC
[2, 4, 8] 190.40/95.09 0.5/90.4095.09
[2, 8, 16]/90.09 |94.04 0.6/90.11 |94.59
[4, 8, 16] 89.79 194.10 0.7190.13 |94.26

Hyperparameter «. The hyperparameter o has a significant impact on the
CA block’s performance by restricting the size of the central area. In Table 5,
we conduct experiments with different value of a and find that the optimal
performance is achieved when the « is 0.5. It means that the inclusion of too
much irrelevant information would weaken the performance, and the center area
can supply adequate forgery traces.

4.4 Visualizations

To further understand how our method makes decisions, we use Grad-CAM [34]
to show the attention maps of input samples for both the baseline and CAN.
Figure4 demonstrates that all four forgery methods have their faked areas
centered in the center. The baseline network is significantly disturbed due to
increased noise information after compression. However, with the AFE module
filtering out noise information and Central Attention emphasis focused on central
areas, the CAN can more reliably capture forgery traces.
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Original

Fig. 4. The attention maps for different kinds of faces

4.5 Limitations

When applying improper masks, the performance drops significantly, suggesting
that a more meticulous attention mechanism is required. Focusing on specific
facial components may lead to better results, which we will explore in the future.

5 Conclusion

The paper proposes a Central Attention Network (CAN) framework for detecting
forged images. We conduct a comprehensive analysis of the frequency amplifica-
tion forgery traces, which has laid a strong foundation for the network’s optimal
performance. The Central Attention block effectively filters out irrelevant back-
ground noise, ensuring the network concentrates primarily on capturing forgery
traces. Visualizing class activation mapping explains the internal mechanism and
demonstrates the effectiveness of our methodology.
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Abstract. Facial Recognition (FR), despite its remarkable precision
and advancements achieved through deep learning, exhibits vulnerability
to security threats, specifically originating from deep generative models
proficient in synthesizing deceptive face images. Generative Adversarial
Networks (GANSs) present substantial risks by showcasing the capacity to
exploit potential vulnerabilities within FR systems. While the existing
research primarily focuses on the scenario of a compromised database
facilitating facial reconstruction attacks, it often overlooks more realistic
threats where adversaries attack with a limited number of queries with-
out breaching the database. This work introduces Minimum Assumption
Reconstruction Attacks (MARA), offering a realistic attack framework
against FR systems. MARA treats an attacker as a regular user inter-
acting with the FR system’s user interface and observing the matching
scores. We formulate the MARA attack as an optimization problem,
aiming to find a latent vector in the W7 latent space of StyleGAN for
generating adversarial face images that can bypass the targeted FR sys-
tem. A latent space mining strategy is also proposed to enhance attack
performance by obtaining ‘good’ initial guesses in the latent space. Our
experiments show that MARA achieves performance comparable to false
accept attacks while adhering to query limits and mimicking user-like
interaction behavior. This study highlights the importance of considering
attack models requiring minimal effort from the adversary, an essential
perspective for adversarial research that seeks to guard against powerful
and less resource-intensive attacks.

Keywords: Face Recognition Attack - Reconstruction Attack -
Black-box Attack - White-box Attack

This work was supported by the National Natural Science Foundation of China (Grant
Nos. 62376003, 62306003).
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024

Q. Liu et al. (Eds.): PRCV 2023, LNCS 14429, pp. 57-73, 2024.
https://doi.org/10.1007/978-981-99-8469-5_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8469-5_5&domain=pdf
https://doi.org/10.1007/978-981-99-8469-5_5

58 D. Li et al.

1 Introduction

Human Facial recognition (FR) has gained significant popularity as a biometric
trait, comparable to fingerprint and iris recognition, owing to its non-intrusive
nature, convenience, user-friendliness, contactless operation, and high accuracy.
Following the recent advancement of deep learning, face recognition systems
using deep neural network encoders are being rapidly deployed in practice. Dur-
ing registration, these systems convert a facial image into a feature vector (a
template). The template is subsequently stored in a database as a reference for
future matching purposes.

On the Vulnerable Points of FR: However, several points in the FR
system can be vulnerable to attacks. Follows Fig. 1: 1) attackers may exploit the
image acquisition stage in facial recognition systems by using fake or manipulated
facial features, such as printed photos, masks, or 3D models; 2) attackers may
target the face recognition system’s database, aiming to gain unauthorized access
and manipulate identity information, compromising the system’s integrity; 3)
attackers may exploit the system’s interface by analyzing output elements like
matching decisions or scores to reverse-engineer the user’s facial image.

System Backend DB
Pre-processing Feature
and face . Compare
s » Extraction » P
detection
User Interface
Output
Sensor comparison
score

Fig. 1. Components of a typical face recognition system.

Table 1. Comparison of attack assumptions and aims of different image-level attacks.

Attack | Access to sth. Know sth. Goal Related reference
User interface | DB in backend | Victim’s photo | Face distribution
FAA v v Deceive/impersonate | Palmprint FAA [3]
PA v v v Deceive/impersonate | See survey [2,9,10]
TI v v Template inversion | NBNet [1], Mapping [7]
MARA | v v Reconstruct face -

On Various Attacks over FR System: Threat actors are developing
sophisticated attack strategies over attack above points, including template
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inversion attacks (TI) [1], presentation attacks (PA) [2] and false acceptance
attack (FAA) [3], to exploit potential vulnerabilities (see Table 1).

Presentation attacks involve the creation of fake biometric images on spoof-
ing carriers like paper, monitors, masks, or gloves to deceive biometric systems
(see survey [2]). The false acceptance attack leverages image generation tech-
niques such as GANs [4] and VAEs [5] to create a vast collection of fraudulent
biometric images or utilize existing real datasets. In FAA, attackers search for an
image within this set that closely matches the target feature template, ensuring
similarity in the feature domain without requiring genuine user images.

Template inversion attacks aim to create fake biometric images that resem-
ble genuine ones from the stored biometric template. In recent studies, multiple
efforts have focused on reconstructing facial images using deep features extracted
from the face. These endeavors have predominantly employed convolutional net-
works [6] or de-convolutional neural networks [1]. More recent work [7] trained
a fully connected neural network that projects a feature vector into the latent
space of a pre-trained StyleGAN [8] such that a closely matching face is gener-
ated. Notably, the work presented in [1] is dedicated explicitly to reconstructing
facial images based on their deep features. The resultant face images generated
by the method proposed in [1] have demonstrated a remarkable attack success
rate, setting a new benchmark in this domain. In this work, we focus on especially
attacks of reconstruction face images.

Adopting a More Realistic Attack Environment: While the attacks
above have demonstrated promising results, they often predicate strong assump-
tions about the attacker’s capabilities. These include the attacker having exces-
sive access to the target victims’ facial photos or the ability to breach the
database unauthorizedly. For example, approaches like [1,7] require millions of
queries and access to the template in the database, making them impractical for
real-world scenarios.

On the other hand, although these assumptions represent worst-case scenar-
ios and underscore the need for secure data storage methodologies, they lack
comprehensive insight into evaluating face recognition systems’ security and
privacy preservation. Indeed, the objective of evaluating face recognition sys-
tems should be to contemplate a broader spectrum of realistic scenarios, where
attackers may not necessarily possess the victims’ facial photos or even require
breaching the system storage.

By adopting a less assumption-driven approach, researchers can gain more
realistic insights into the robustness and effectiveness of face recognition systems
against a broader array of potential threats. This evaluation methodology could
guide the development of more reliable and secure systems, focusing on privacy
preservation and risk mitigation associated with face recognition technology.

In this work, we propose Minimum Assumption Reconstruction attacks
(MARA), which adopt a more realistic approach. MARA assumes that the
attacker, with limited resources, can only interact with the user interface and
observe the similarity scores provided by the FR system (see Tablel). We
simulate a challenging scenario where the attacker has a limited number of
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query attempts. This scenario is feasible since an adversary could mimic typical
user behavior, interact with the system through queries, and glean potentially
exploitable information from the returned matching scores.

The implications of the above exploration are significant. Not only does it
shed light on the minimum requirements for an attacker to exploit the system,
but it also has immediate relevance in combating database attacks, which can
be viewed as a ‘stronger version’ of our case (since, in our case, we do not
necessarily require the attacker to compromise a template or database). We can
develop prompt and effective solutions to mitigate attacks on face recognition
systems by uncovering the minimum query threshold necessary for an adversary
to gather exploitable information.

The highlighted contributions in this paper are as follows:

1. We propose the Minimum-assumption-based Reconstruction Attack, which
offers significant less number of query attempts (from 4k to 2.6k) while gaining
comparative attack performance, which prevents the attacker from interacting
with the FR system unlimited.

2. We formulate the attack problem as an optimization task to determine the
optimal latent in W latent space of StyleGAN. To prioritize query efficiency,
we adopt a gradient estimation technique [11,12] to estimate gradients from
the black-box face feature encoder. More importantly, we introduce a latent
space mining strategy to obtain optimal initial guesses in W™ latent space,
thus gaining the attack performance.

3. Through systematic experiments, we demonstrate that our proposed recon-
struction attack achieves comparable performance to the false accept attack,
using the same number of queries. This implies that the attacker’s behavior
resembles a regular user, who adheres to query limits and interacts with the
FR interface accordingly.

2 Related Works

Over the past five years, advancements in computing hardware, big data,
and innovative algorithms have fueled the growth of startups leveraging deep
learning-based facial recognition (FR) techniques. These startups have devel-
oped practical applications that have gained significant attention due to the
widespread deployment of FR systems using deep learning models such as
FaceNet [13], ArcFace [14], and CosFace [15]. However, this increased usage has
also raised concerns about privacy and security, particularly regarding the poten-
tial for reconstructing face images from features extracted from deep learning
models (deep features) [16,17].

In a study by Zhmoginov and Sandler [18], a method was introduced to invert
the face embedding generated by FaceNet [13] back into face images. The inver-
sion process was formulated as a minimization problem, aiming to reduce the
template difference between the original and reconstructed images. To accom-
plish this, a regularization function was employed, utilizing the intermediate
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layer of the feature extractor. However, in real-world scenarios, obtaining the
detailed parameters of the feature extractor may not be feasible.

Another approach proposed by Cole et al. [6] focused on generating face
images using FaceNet features. Although the motivation behind this method
differed from reconstructing faces from features, it relied on differentiable image
warping by combining landmark and texture information. However, this app-
roach required both landmark and texture information, and it also utilized the
last convolutional layer of the feature extractor, which could be impractical for
face image reconstruction in reality.

In the paper by Mai et al. [1], a de-convolutional neural network (DCNN)
called the Neighborly de-convolutional Neural Network (NBNet) is utilized for
face image reconstruction. The choice of DCNN is motivated by its effective
up-sampling capability. Notably, the authors assume that the feature extractor
used in their approach is a black box, meaning that the adversary may not have
access to its specific parameters.

The NBNet consists of multiple stacked de-convolution blocks and a convolu-
tion block. This network architecture is specifically designed to generate output
face images. To train the NBNet, face image datasets are employed along with
a Generative Adversarial Network (GAN) to synthesize face images. The per-
formance of the generated face images is evaluated using two benchmark face
datasets. The experimental results show that 95.20% of the generated face images
can successfully bypass a face recognition system that has enrolled the same face
image, with a False Acceptance Rate (FAR) of 0.1% (type-I attack in [1]).

In a subsequent work by Keller et al. [19], the NBNet is further utilized for
face image reconstruction from a binary template produced by a given binariza-
tion method. This approach leverages the capabilities of the NBNet to recon-
struct the original face image from a simplified binary representation. In [20],
a Bijective Generative Adversarial Network in a Distillation framework (DiBi-
GAN) is proposed to tackle the challenging task of generating face images from
high-level representations obtained from a black box Face Recognition encoder.
The method incorporates a bijective metric learning process for image recon-
struction, utilizes a distillation process to maximize information from the black
box encoder, and introduces a Feature-Conditional Generator Structure with
Exponential Weighting Strategy for robust face synthesis while preserving the
person’s identity.

The paper by Razzhigaev et al. [21] introduces a method for reconstructing
face images from features using a zero-order iterative optimization technique
in the linear space of 2D Gaussian functions. The proposed approach involves
iteratively updating the current state image. Fach iteration generates a batch
of random Gaussian blobs and adds to the current state image. The feature
extractor, treated as a black box, is then used to calculate the embeddings of this
augmented image batch. The loss function is computed based on the embeddings,
and the image from the batch with the lowest loss value is selected as the updated
current image. This process continues until the loss function converges, indicating
the reconstruction of the face image from the given features.
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The paper by Dong et al. [7] presents a framework to reconstruct high-quality
face images from deep features. The approach involves establishing a neural net-
work that learns a mapping between the latent vector space of StyleGAN2 [24]
and the feature vector space of a face feature extraction model. Given a fea-
ture vector as input, the model predicts the corresponding latent vector, which
can then be used to generate face images. However, using a vanilla fully con-
nected neural network in the proposed method has limitations for this task. The
stochastic gradient descent algorithm can get trapped in local minima, hinder-
ing reconstruction. Consequently, the method achieves a relatively low successful
attack rate of only 10% on the Labeled Faces in the Wild (LFW) dataset under
a type-I attack at a 1% False Acceptance Rate (FAR). This implies that most
reconstructed face images exhibit poor visual similarity compared to genuine
face images.

Later, Dong et al. propose using the genetic algorithm [22] to search for
the latent vector that generates a synthetic face close to the target feature in
the feature space of the target encoder. This modification yields state-of-the-art
performance in face image reconstruction, improving upon the limitations of the
initial vanilla fully connected neural network approach.

Significant advancements have been made in the field of face reconstruction
attacks. However, several issues persist, including strong assumptions made by
the attacker and the high number of queries required. Approaches like [1,19,20]
utilize de-convolutional neural networks that operate directly on the feature
template. However, this assumes that the attacker has access to the database
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Fig. 2. Overview of the proposed minimum assumption reconstruction attack. We opti-
mize the latent vector w of a pre-trained StyleGAN G to reconstruct the target face
x, such that the distance between its feature v and the reconstructed feature v* is
minimized. An latent space mining is utilized to find the best initial guess for the
optimization algorithm. We treat the attacker as a regular user interacting with the
system’s user interface and observing the matching scores.
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in the system’s backend, which inadvertently neglects the potential for 'weaker’
attackers who may compromise the system without the necessity of breaching
the database.

Furthermore, most of these methods require a substantial number of queries
in the system to generate the training dataset. This training process, whether it
involves de-convolutional neural network training or mapping network training,
as shown in [7], can be challenging for attackers due to the high query require-
ment. While [23] offers an alternative that does not involve training, their opti-
mization process is inefficient in terms of query usage as it updates multiple
latent vectors simultaneously.

Motivations: Given the preceding discussion, it becomes evident that con-
ventional scenarios may not accurately represent the most plausible threat mod-
els. In reality, an adversary may not have the capability or intent to launch a
large number of queries or to compromise a database. They may instead favor
more covert and efficient tactics that exploit systemic vulnerabilities. Therefore,
while we recognize the efficacy of current techniques, it is vital to continually
explore sophisticated attack strategies that encapsulate a broader range of feasi-
ble real-world adversarial scenarios. This understanding underscores the need for
an encompassing threat model that acknowledges not only ‘strong’ adversaries
capable of database compromise but also ‘weaker’ adversaries who could exploit
the system via less conspicuous avenues.

3 Methods
3.1 Overview of MARA

We consider a scenario where the attacker’s objective is to reconstruct a target
face image, represented as x, using the corresponding similarity score observable
from the user interface. In the system’s back-end, a feature vector v = E(x)
is derived by encoding the face image = via a target encoder E, denoted as
E : X — V. It’s important to note that the attacker does not have access to
v stored in the back-end database. Instead, the attacker’s actions are constrained
to querying the user interface for the similarity score between an input face image
and the stored template, a computationally expensive process.

Based on the above scenario, the attacker must exploit the restricted access
to reconstruct a face image x that closely resembles the original face ones x*.
The reconstructed face image x will then be utilized to launch an attack against
another face recognition system that employs a different encoder E’. It is worth
mentioning that the encoder E’ may not necessarily be the same as the target
encoder E. For the attack to be deemed successful, the distance between x and
* in the feature space of E’ must be smaller than a predefined threshold denoted
as 7. Please refer to Fig. 2 for a visual representation of the attack pipeline.

3.2 Latent Vector Optimization by Gradient Estimation

Based on the approach described in [23] by Dong et al., we adopt a similar
method that utilizes a pre-trained StyleGAN as the generator for face image
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reconstruction. This approach avoids the need to train a generator from scratch,
which typically requires many queries, as shown in prior works such as [1,20].
By leveraging a pre-trained generator, an attacker can iteratively search for the
optimal latent vector that produces a face image close to the original face in the
feature space of the target encoder. We can rewrite the optimization problem as
follows:

z* = argmin d(E(G(2)),v) (1)

z€EZ

where E(-) represents the target encoder that maps a face image to its cor-
responding features, G(z) generates a face image based on the latent vector z
using the pre-trained StyleGAN, dist(-) is a distance metric that quantifies the
dissimilarity between two features.

To tackle this optimization problem, [23] employed the genetic algorithm
(GA) [22], which is an evolutionary algorithm. GA starts by initializing a set of
random samples and then updates them through selection and mutation based
on their fitness values (distance). However, using GA for optimization cannot
make precise adjustments due to its reliance on the random evolution of latent
vectors. This randomness can hinder the attack’s success, as face recognition
encoders rely on capturing fine details to differentiate between different faces.
Additionally, this approach requires numerous queries to update multiple latent
vectors simultaneously in each iteration.

Instead, we propose to optimize the latent vector using gradient descent
directly:

oL

n 0z
where t refers to the current iteration and « is a fixed learning rate. To address
the gradient computation challenge in the black-box setting, where the parame-
ters of E are unknown, a detour is taken by employing zeroth-order optimization
based on our previous preliminary study [12]. This approach allows us to esti-
mate the gradient %, denoted as g for simplicity. The zeroth-order optimization
technique (ZOGE) [11,12] provides a formalized way to perform this estimation:

L(z) := d(E(G(2)),v), (2)

Zt41 2t
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here the dimension of the latent vector is denoted as m, and wu; represents a
random direction sampled from a n-dimensional unit sphere, denoted as S™~1.
Additionally, € is a small positive constant known as the smoothing parameter.
When estimating the gradient ¢ using Eq.(3), there is inherent variance due
to the randomness in the sampling process. This variance can be reduced by
increasing the sampling parameter m, corresponding to the number of random
directions sampled. However, increasing m also leads to extra querying in each
iteration of the optimization process. To compute the gradient estimate § using
Eq. (3), m+ 1 queries are required. To this end, our optimization method works
by combining (2) and (3) can be applied in a black-box setting, allowing us to
optimize the feature .
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3.3 Optimize in W Latent Space

StyleGAN differs from conventional GANs in mapping the latent input vector
z € Z to the output space. Instead of a direct mapping based on the training
distribution, StyleGAN introduces a non-linear mapping function f : 2 — W
that transforms z into an intermediate latent vector w € W.

Recent studies [8,24] have demonstrated that the W space in StyleGAN
learns a more disentangled representation compared to the Z space. In other
words, the W space is less influenced by biases from the training distribution.
This characteristic is advantageous for reconstruction tasks, mainly when the
target face lies far from the training distribution. Therefore, we propose a latent
vector optimization approach that operates in the W latent space of StyleGAN:

w' = argmin dist(B(Gy(w)),v), Ow(/() = G(). (4)

3.4 Latent Space Mining and Cascade Filtering

The convergence, efficiency, and solution quality of an optimization algorithm
are heavily dependent on the initial guess [25]. A good initial guess leads to
faster convergence and better solutions, while a poor guess can cause the algo-
rithm to get stuck or take longer. Overall, a well-informed initial guess enhances
performance and increases the likelihood of finding optimal solutions.

However, it is usually challenging to find a good initial guess. In [26], the
“master faces” notion in the context of facial recognition systems provides good
inspiration for optimizing black-box attacks on initial guess generation. The term
“master faces” is used in analogy to “master keys”, which refers to specific face
images with the unique characteristic of successfully authenticating a significant
number of identities in a given dataset. Inspired by the concept of “master
faces,” we propose the idea of discovering “master latents” that can generate
face images resembling multiple input face images. These master latents can
serve as an initial guess for optimization, thereby minimizing the number of
queries required in subsequent tasks.

Specifically, our methodology consists of three main steps. Firstly, we gener-
ate [ initial latent vectors using a random generation process. Then, we apply
the k-means clustering algorithm [27,28] to partition the [ latent vectors into k
clusters in a mining manner. The detailed algorithm is as below:

1. Initialization: Choose the number of clusters, k. Randomly initialize k cen-
troids, denoted by pi, po, ..., k. Assign each data point z; to the near-
est centroid based on the Euclidean distance, which can be denoted as
¢; = arg miny ||z; — p5][?

2. Assignment Step: For each data point z;, find the nearest centroid and update
its assignment: ¢; = argmin; ||z; — ;>

3. Update Step: Update the centroids by computing the mean of all the data

1 n

points assigned to each cluster: pu; = -~ > ", [2;] where n; is the number of
J

data points assigned to cluster j.
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4. Repeat Steps 2 and 3 until convergence. Return the final assignments of data
points to clusters and the centroids.

Finally, a cascade filtering is applied to the obtained k clusters. Specifically,
k centroid latent vectors are utilized to generate corresponding face images and
face features in a sequential manner. The top r centroids with the lowest distance,
as obtained by the user interface, are selected. Next, all latents belonging to
those r clusters are filtered out and used to find the top-5 latent vectors with
the lowest distance. These vectors are then averaged to create a single latent
vector. This averaged latent vector is utilized for subsequent latent optimization
through gradient estimation. In this latent mining and cascade filtering process,
the query count is determined by k + r é

4 Experiments and Results

4.1 Datasets, Encoders, and Configurations

We evaluated our method using two widely recognized face recognition bench-
marking datasets: Labeled Faces in the Wild (LFW) [29] and Celebrities in
Frontal-Profile (CFP-FP) [30]. We reconstruct the initial image from each posi-
tive pair listed officially to evaluate our method. This process yields 2,551 recon-
structed images for LFW and 2,772 for CFP-FP.

Four different encoders were used, with VGGNet19 trained using CosFace loss
(VGG19-Cos), ResNet50 trained using AdaFace (Res50-Ada), SwinTransformer
trained using AM-Softmax loss (Swin-Softmax) and InceptionResnet trained
using FaceNet triplet loss (InRes-Facenet). Using different encoders to simu-
late encoders in a realistic database, an attacker can use these four encoders
to reconstruct face images corresponding to different feature vector spaces. We
compared our approach with three baselines:NBNet [1], GA [23], and ZOGE
[11]. For NBNet, we utilized the pre-training weights from its FaceNet coun-
terpart and employed the face generator DCGAN [31]. For GA and ZOGE, we
also utilized 4k queries for face reconstruction. In contrast, our proposed method
achieved superior results, with face reconstruction completed in approximately
2.6k queries. Identical to GA, we employed StyleGAN2, trained on the FFHQ
dataset, as the face generator for our approach.

In this paper, £ = 1024,1 = 8000, = 80 are used as the default parameter
in the latent mining process empirically; we utilized ZOGE with parameters
€ = 0.1 and m = 9 to perform face reconstruction. We employed the Adam
optimizer [32] with a fixed learning rate of 0.1. As Fig. 3 illustrates, an optimal
ZOGE performance is achieved when the iteration number reaches 100, thus,
100 iterations are adopted in our subsequent experiments. Therefore, the query
count for ZOGE optimization process is determined as (m + 1) x 100 = 1000,
and the total query count can be computed as:

l
Q = k47 x - +1000. (5)
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Figure4 shows the final feature cosine distance between the reconstructed face
images and target images obtained from 30, 100, 230, and 630 iterations (equiv-
alent to 2k, 2.6k, 4k, and 8k queries, respectively). Our method demonstrates
a lower distance to ZOGE, thereby validating that our approach outperforms
ZOGE and GA with an equal number of queries.
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Fig. 3. Optimal performance is achieved with an iteration number of 100. Cosine sim-
ilarity computation for the test set LEW-200 using different encoders on the left and
the same encoder on the right.
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Fig. 4. Our method can lead to lower cosine distance.

4.2 Qualitative Evaluation

In this subsection, we showcase the robustness of our method in handling
high-resolution images without introducing artifacts. To demonstrate this, we
provide a visual comparison with two existing works: NBNet [1], GA [23] and
ZOGE [11], specifically on the LFW subset. However, it is essential to note that
other existing works were evaluated on different datasets or settings, making a
fair comparison difficult. As a result, we have excluded a direct visual comparison
with those works in this section.
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Fig. 5. Visualization of reconstructed face images from different reconstruction attacks.

The image shown in Fig.5 highlights certain imperfections in the recon-
structed face produced by NBNet. These flaws primarily stem from the utiliza-
tion of DCNN, which decreases image quality from features to a generated face
image during the mapping process. On the other hand, GA and ZOGE demon-
strate good visual quality by leveraging StyleGAN. However, artifacts may still
be present due to sub-optimal latent codes generated by GA. Although ZOGE
achieves comparable visual quality, it requires a higher query count than our
method.

4.3 Quantitative Evaluation on Impersonation Attack

In our experiments, two simulation systems for construction impersonation
attack from [23,33] are adopted:

Compromised System (Sys C): This is a biometric system compromised
by the adversary. In this subsystem, we assume that the adversary can only query
the user interface to observe the similarity score given a face image in Sys C.
The query count is limited, and the adversary can reconstruct a face image in
Sys C.

Targeted System (Sys T): This is a biometric system vulnerable to imper-
sonation attacks. An adversary exploits the reconstructed image from Sys C to
compromise Sys T in this system. The feature extractor E(-) utilized in Sys T
may differ from that of Sys C, and the user’s enrolled image might also be dis-
tinct from that used in Sys C. We consider both scenarios in our subsequent
experiments.

In our experiment, we evaluate impersonation attacks using the Success-
ful Attack Rate (SAR). SAR is calculated as the proportion of mated-attack
attempts that are falsely declared to match the template of the same user at the
given similarity threshold under different FAR, i.e., the ratio of mated-attack
scores above the similarity threshold. The threshold is determined based on nor-
mal genuine and imposter scores. A higher SAR indicates better reconstruction
attack performance, while a lower SAR suggests the opposite. We categorize
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attacks into type-I (same compromised face image in Sys C) and type-II (differ-
ent face images of the same person), following prior research [1,23].

We quantitatively evaluate the performance of the proposed reconstruction
scheme based on type-I and type-II attacks with the same/different feature
extractors. We compute the true accept rate (TAR) at FAR under the normal
situation in Sys T. The SARs of type I and II attacks are evaluated subsequently.

NBNet [1]. When both Sys T and Sys C use the same face feature extractor,
such as InRes-Facenet as presented in Table 2, the NBNet method achieves a
performance on the LFW dataset with an SAR of 80.83% and 46.9% for type-1
and type-II attacks, respectively. Similarly, for the CFP-FP dataset, when InRes-
Facenet is used as the feature extractor for both Sys T and Sys C, the NBNet
method achieves an SAR of 89.97% and 28.8% for type-I and type-II attacks,
respectively. When Sys C and Sys T use different face feature extractors, such
as in Table1 where Sys C uses InRes-Facenet and Sys T uses Res50-Ada, the
NBNet method achieves a type-I SAR of 73.2% and a type-II SAR of 49.03%.
Similarly, on the CFP-FP dataset, targeting the Res50-Ada method, NBNet
achieves a type-I SAR of 83.89% and a type-II SAR of 32.77%. It is important
to note that these success rates are obtained by utilizing 25600 attack queries.

GA [23] and ZOGE [12]. Both GA and ZOGE have shown higher efficiency
than NBNet. They both achieve remarkable performance with 4k queries, as
demonstrated in Table 2. In the case where both Sys T and Sys C use the same
face feature extractor, InRes-Facenet, the GA attack achieves a success rate
(SAR) 0of 90.47% and 49.57% for type-I and type-1T attacks on LEW, respectively.
On the other hand, the ZOGE method achieves a SAR of 100% and 92.1% for
type-I and type-II attacks under the same setting.

When Sys C and Sys T use different face feature extractors, such as InRes-
Facenet for Sys C and Resb50-Ada for Sys T, the GA attack achieves a SAR
of 54.53% and 33.13% for type-I and type-II attacks on LFW. In comparison,
the ZOGE method achieves a SAR of 95.1% and 77.8% for type-I and type-11
attacks under the same setting. Based on the findings presented in Table 2, it
can be concluded that ZOGE outperforms GA in terms of performance when
the same number of queries is used.

Ours Latent Mining Method. By using different values for the parame-
ters k and r in the latent mining process, we can achieve varying results. In our
default setting, we use k = 1024 and r = 80, which results in a query of @ = 2649
(approximately 2.6k). However, to ensure a fair comparison, we also adopt the
values k = 1024 and r = 256, which leads to a query of Q = 4024 (approxi-
mately 4k). The performance of our proposed method using these parameters is
presented in Table 2. Based on Table 2, we can observe that:

1. When comparing GA, ZOGE, and our method using 4k queries, our method
consistently outperforms the others in most settings. Table2 demonstrates
that our method excels when System T and System C use different face
feature extractors. For instance, when InRes-Facenet is used for System C
and VGG19-Cos is used for System T on the LFW dataset, our method
achieves 1.2% and 41.77% higher SAR (Success Attack Rate) compared to
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Table 2. Successful attack rate (%) at 0.1% FAR of each reconstruction attack on LFW
and CFP-FP dataset. The columns colored in blue show the SAR when attacking the
target encoder. Other columns show the SAR when attacking different encoders. The
true accept rate (TAR) is measured instead of SAR for the genuine face. The number
of queries is displayed in units of 1,000 (K).

Dataset Sys C Method Attack Queries Sys T
InRes-Facenet VGG19-Cos Swin-Softmax  Res50-Ada Average
type-I type-II type-I type-II type-I type-II type-I type-II type-I type-II
LFW Genuine Face 96.7 96.93 99.73 99.73 98.27
InRes-Facenet NBNet 25600k 80.83 46.9 66.3 36 3.83 143 732 49.03 56.04 33.34
GA 4k 90.47 49.57 54.53 33.13 22 142 2487 155 4797 281
ZOGE 4k 100 92.1 951 77.8 69.87 51.13 824 60.8 86.84 70.46
Ours 4k 100 91.57 96.3 78.77 708 52.7 82.77 60 87.47 70.76
Ours 2.6k 100 92 9557 77.67 71.33 51.5 81.27 594 87.04 70.14
VGG19-Cos GA 4k 34.63 19.87 94.93 54.27 20.97 15 2313 14.8 4342 2599
ZOGE 4k 90.77 69.13 100 91.63 78.2 59.17 84.73 642 8843 71.03
Ours 4k 91.77 70.93 99.93 91 80.2 60.6 85.87 66.17 89.44 72.18
Ours 2.6k 89.27 68.6 999 8887 765 584 836 627 87.32 69.64
Swin-Softmax ~ GA 4k 121 9.03 1893 1237 92.73 52.07 3877 20.37 40.63 23.46
ZOGE 4k 588 39.57 7287 54.47 100 96.43 942 80.63 8147 67.78
Ours 4k 62.23 43.13 75.37 58 100 96.23 95.83 82.1 83.36 69.87
Ours 2.6k 60.47 40.23 7297 53.5 99.9 9417 93.73 79.63 81.77 66.88
Res50-Ada GA 4k 7.63 44 1147 7 15.07 7.83 4937 20.6 20.89 9.96
ZOGE 4k 38.03 2393 46.83 30.6 57.53 40.1 91.37 T4 5844 42.16
Ours 4k 41.5 24.23 48.5 31.77 57.3 41.37 89.93 7213 59.31 42.38
Ours 2.6k 37.5 2263 437 293 54.03 37.33 89.9 685 56.28 39.44
CFP-FP Genuine Face 74.46 78.46 85.34 88.91 81.79
InRes-Facenet NBNet 25600k 89.97 288 8534 276 6.71 209 8389 3277 66.48 22.82
GA 4k 95.66 29.83 51.97 17.03 2231 8.86 2346 9.2 4835 16.23
7Z0GE 4k 100 66.8 95.69 50.29 70.11 28.54 82.4 33.69 87.05 44.83
Ours 4k 100 64.37 95.29 49.06 70.86 27.34 80.34 34.09 86.62 43.72
Ours 2.6k 100 63.94 9446 4854 698 2751 7894 332 858 433
VGG19-Cos GA 4k 4229 14.54 9551 31.26 20.69 837 23.74 10.06 45.56 16.06
7ZOGE 4k 88 42.6  99.97 65.23 73.74 32.03 80.66 38.34 85.59 44.55
Ours 4k 87.86 42.66 99.97 64.2 73.83 32.77 81.09 37.4 85.69 44.26
Ours 2.6k 84.43 40.23 100 62.14 70.74 31.06 77.74 37.03 83.23 42.62
Swin-Softmax ~ GA 4k 14.09  5.69 1894 6.89 9326 24.8 41 10.71  41.82 12.02
ZOGE 4k 62.77 2249 7254 31.03 100 69.37 9297 49.03 82.07 42.98
Ours 4k 64.57 23.69 74.17 31.57 99.91 67.69 93.4 50.57 83.01 43.38
Ours 2.6k 62.06 21.09 7094 302 99.94 65.6 91.91 48.06 81.21 41.24
Resb0-Ada GA 4k 188 466 6.23 183 21.77 6.51 2631 7.63 18.28 5.16
ZOGE 4k 182 6.46 21.54 8.94 2483 9.66 3494 17.69 24.88 10.69
Ours 4k 19.4 6.06 22.31 837 25 9.14 35.06 16.94 25.44 10.13
Ours 2.6k 17.03 514 20.34 7.29 23.09 837 3471 1566 23.79 9.12

ZOGE and GA, respectively. However, we have observed that our method
only achieves comparable performance to ZOGE when System T and System
C use the same face feature extractor. This is due to the fact that ZOGE
performs 400 iterations, which can lead to overfitting the final reconstructed
face images and consequently result in poor attack performance in settings
involving different face feature extractors.

2. When using 2.6k queries, our method achieved comparable performance with
only a slight degradation. For example, when both System T and System C
use the same face feature extractor, InRes-Facenet, our method achieves a
Success Attack Rate (SAR) of 100% and 92% for type-I and type-II attacks,
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respectively, on the LFW dataset. On the CFP-FP dataset, our method
achieves a SAR of 100% and 63.94% for type-I and type-II attacks, respec-
tively. These results indicate that our method successfully attacked a system
with a reconstructed face image from another system using identical encoders.
When System C and System T use different face feature extractors, such
as InRes-Facenet for System C and VGG19-Cos for System T, our method
achieves a SAR of 95.57% for type-I attacks and 77.67% for type-II attacks
on the LFW dataset. Furthermore, when we consider Swin-S for System C
and Res50-Ada for System T, a SAR of 93.73% for type-I attacks and 79.63%
for type-II attacks on LFW can be achieved. Similar competitive SARs are
also observed across all encoders on the CFP-FP datasets. These outcomes
demonstrate the efficacy of our method in attacking a system by employing
a reconstructed face image from another system that uses different encoders
with only 2.6k queries.

5 Conclusion

We proposed Minimum Assumption Reconstruction Attacks (MARA) that
assume that the attacker, with limited resources, can only interact with the user
interface and observe similarity scores provided by the face recognition system.
We aimed to mimic typical user behavior and evaluate the system’s robustness
against potential threats by simulating a challenging scenario with limited query
attempts.

Our proposed attack methodology uncovered the minimum query threshold
necessary for an attacker to gather exploitable information. This information
can be used to develop effective solutions to mitigate attacks on face recogni-
tion systems, even without compromising the system’s template or database.
Our experiments demonstrated that MARA achieves comparable performance
to false accept attacks, highlighting the resemblance between attacker behavior
and a regular user.
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