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Abstract. Lidars and cameras are critical sensors that provide com-
plementary information for 3D detection in autonomous driving. While
most prevalent methods progressively downscale the 3D point clouds and
camera images and then fuse the high-level features, the downscaled fea-
tures inevitably lose low-level detailed information. In this paper, we
propose Fine-Grained Lidar-Camera Fusion (FGFusion) that make full
use of multi-scale features of image and point cloud and fuse them in a
fine-grained way. First, we design a dual pathway hierarchy structure to
extract both high-level semantic and low-level detailed features of the
image. Second, an auxiliary network is introduced to guide point cloud
features to better learn the fine-grained spatial information. Finally, we
propose multi-scale fusion (MSF) to fuse the last N feature maps of image
and point cloud. Extensive experiments on two popular autonomous driv-
ing benchmarks, i.e. KITTI and Waymo, demonstrate the effectiveness
of our method.

Keywords: Lidar-Camera Fuison · Fine-grained Fusion · Multi-scale
Feature · Attention Pyramid

1 Introduction

3D object detection is a crucial task in autonomous driving [1,8]. In recent
years, lidar-only methods have made significant progress in this field. However,
relying solely on point cloud data is insufficient because lidar only provides low-
resolution shape and depth information. Therefore, researchers hope to leverage
multiple modalities of data to improve detection accuracy. Among them, vehicle-
mounted cameras can provide high-resolution shape and texture information,
which is complementary to lidar. Therefore, the fusion of point cloud data with
RGB images has become a research hotspot.

In the early stages of fusion method research, researchers naturally assumed
that the performance of fusion methods would be better than that of lidar-only
methods, because the essence of fusion methods is to add RGB information as an
auxiliary to lidar-only methods. Therefore, the performance of the model should
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be at least as good as before, rather than declining [22]. However, this is not
always the case.

There are two reasons for the performance decline: 1) a suitable method for
aligning the two modal data has not yet been found, 2) the features of the two
modalities used in the fusion are too coarse. Regarding the first issue, fusion
methods have evolved from the initial post-fusion [3,10] and point-level fusion
[22,23] methods to today’s more advanced feature fusion [2,12,24] methods.
However, the second problem has not yet been solved. Specifically, we know that
lidar-only methods are mainly divided into one-stage methods [14,26,31] and
two-stage methods [4,18–20]. Usually, the performance of two-stage methods is
better than that of one-stage methods because the features extracted by the first
stage can be refined in the second stage. However, most current fusion methods
focus on how to fuse features more effectively and ignore the process of refining
fused features.

To solve the above problems, we utilize fine-grained features to improve
the model accuracy and propose an efficient multi-modal fusion strategy called
FGFusion. Specifically, since both image and point cloud data inevitably lose
detailed features and spatial information during the downscaling process, we
design different feature refinement schemes for the two modalities. First, for
image data, we exploit a dual-path pyramid structure and designs a top-down
feature path and a bottom-up attention path to better fuse high-level and low-
level features. For point cloud data, inspired by SASSD [7], we construct an
auxiliary network with point-level supervision to guide the intermediate features
from different stages of 3D backbone to learn the fine-grained spatial structures
of point clouds. In the fusion stage, we select several feature maps of the same
number from the feature pyramids of images and point clouds respectively, and
fuse them by cross-attention. The fused feature pyramids can then be passed
into modern task prediction head architecture [2,28].

In brief, our contributions can be summarized as follows:

– We design different feature refinement schemes for camera image and point
cloud data, in order to fuse high-level abstract semantic information and low-
level detailed features.

– We design a multi-level fusion strategy for point clouds and images, which
fully utilizes the feature pyramids of the two modalities in the fusion stage to
improve the model accuracy.

– We verify our method on two mainstream autonomous driving point cloud
datasets (KITTI and Waymo), and the experimental results prove the effec-
tiveness of our method.

2 Related Work

2.1 LiDAR-Only 3D Detection

Lidar-only methods are mainly divided into point-based methods and voxel-
based methods. Among them, point-based methods such as PointNet [16] and
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PointNet++ [17] are the earliest neural networks directly applied to point clouds.
They directly process unordered raw point clouds and extract local features
through max-pooling. Based on their work, voxel-based and pillar-based meth-
ods have been derived. They transform the original point cloud into a Euclidean
feature space and then use standard 2D or 3D convolution to calculate the fea-
tures of the BEV plane. Representative methods include VoxelNet [31], SECOND
[25], PointPillars [11], etc.

The development of lidar-only methods later shows two different develop-
ment trends. Like 2D object detection, they are divided into one-stage and two-
stage methods. One-stage methods [14,26,31] directly regress category scores
and bounding boxes in one stage, and the network is relatively simple and has
fast inference speed. Two-stage methods [4,18–20] usually generate region pro-
posals in the first stage and then refine them in the second stage. The accuracy
of two-stage methods is usually higher than that of one-stage methods, because
the second stage can capture more detailed and distinctive features, but the cost
is a more complex network structure and higher computational cost.

2.2 Fusion-Based 3D Detection

Due to the sparsity of point cloud data and its sole possession of spatial struc-
tural information, researchers have proposed to complement point clouds with
RGB images. Early methods [3,15] use result-level or proposal-level post-fusion
strategies, but the fusion granularity is too coarse, resulting in performance infe-
rior to that of lidar-only methods.

PointPainting [22] is the first to utilize the hard correlation between LiDAR
points and image pixels for fusion. It projects the point clouds onto the images
through a calibration matrix and enhances each LiDAR point with the semantic
segmentation score of the image. PointAugmenting [23] builds on PointPaint-
ing and proposes using features extracted from 2D object detection networks
instead of semantic segmentation scores to enhance LiDAR points. Feature-level
fusion methods points out that the hard association between points and pixels
established by the calibration matrix is unreliable. DeepFusion [12] uses cross-
attention to fuse point cloud features and image features. TransFusion [2] uses
the prediction of point cloud features as a query for image features and then
uses a transformer-like architecture to fuse features.

It can be seen that whether using semantic segmentation scores and image
features obtained from pre-trained networks, or directly querying and fusing
at the feature level, these methods essentially fuse high-level features with the
richest semantic information, while ignoring low-level detailed information.

3 FGFusion

3.1 Motivations and Pipeline

The previous fusion methods only exploit high-level features, ignoring the impor-
tant fact that detailed feature representations are lost in the downsampling pro-
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cess. For example, PointPainting [22] directly makes use of pixel-wise seman-
tic segmentation scores as image features to decorate point cloud data, which
only uses the results of last feature map and ignores multi-scale information.
PointAugmenting [23] utilizes the last feature map with the richest semantic
information to decorate point cloud data, but discards all the others that contain
low-level detailed information. DeepFusion [12] is a feature-level fusion method,
which improves the accuracy compared to point-level fusion methods such as
PointAugmenting, but the essence is the same, as shown in Fig. 1.

Fig. 1. Most point-level fusion methods [22,23] and feature-level fusion methods [2,12]
only use the last layer of image or point cloud features for fusion, while our FGFusion
performs fusion at multiple feature scales, fully utilizing low-level detail information to
improve model accuracy.

We noticed that in some 2D object detection tasks, such as small object
detection and fine-grained image recognition, multi-scale techniques are often
used to extract fine-grained features. While in 3D object detection, point cloud
data is suitable for capturing the spatial structural features, but it is easy to
ignore small targets and fine features due to its sparse characteristic. Therefore,
we hope to fuse point cloud and image data in a multi-scale way to make up for
the shortcomings of point clouds. To achieve this goal, we fuse the features of
point cloud and image at multiple levels instead of only using the last feature
map generated by the backbone network. In addition, to extract finer features, we
design a dual-path pyramid structure in the image branch and add an auxiliary
network to guide convolutional feature perception of object structures in the
point cloud branch.

To summarize, our proposed fine-grained fusion pipeline is shown in Fig. 2.
For the image branch, we exploit 2D backbone and a dual-path pyramid structure
to obtain the attention pyramid. For the point cloud branch, the raw points are
fed into the existing 3D backbone to obtain the lidar features, and at the same
time, guide the learning of features through an auxiliary network. Finally, we
fuse the image and point cloud features at different levels and attach the same
designed head to each fused layer of features to obtain the final results.
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Fig. 2. An overview of FGFusion framework. FGFusion consists of 1) a dual path-
way hierarchy structure with a top-down feature pathway and a bottom-up attention
pathway, hence learning both high-level semantic and low-level detailed feature repre-
sentation of the images, 2) an auxiliary network to guide point cloud features to better
learn the fine-grained spatial information, and 3) a fusion strategy that can fuse the
two modalities in a multi-scale way.

3.2 Camera Stream Architecture

In general, the input image will be processed by a convolutional neural network to
obtain a feature representation with high-level semantic information. However,
many low-level detailed features will be lost, which is insufficient for robust
fusion. In order to retain the fine-grained features, inspired by the FPN network
[13], we design a top-down feature path to extract features of different scales.

Let {B1, B2, ..., Bl} represent the feature maps obtained after the input image
passes through the backbone and l represent the number of convolutional blocks.
The general method is to directly use the output of the last block Bl for fusion,
but we hope to make full use of each Bi. Since it will bring huge cost overheads
inevitably if making full use of every blocks of the network, we only select the
last N outputs to generate the corresponding feature pyramid. The final feature
pyramid obtained can be denoted as {Fl−N+1, Fl−N+2, ..., Fl}.

After obtaining the feature pyramid, we design a bottom-up attention path
which includes spatial attention and channel attention. Spatial attention is used
to locate the identifiable regions of the input image at different scales. It can be
represented as:

As
i = σ(K ∗ Fi), (1)

where σ is the sigmoid activation function, ∗ represents the deconvolution oper-
ation, and K represents the convolution kernel. Channel attention is used to add
associations between channels and pass low-level detailed information layer by
layer to higher levels:

Ac
i = σ(Wb · ReLU(Wa · GAP (Fi))), (2)
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where · represents element-wise multiplication, Wa and Wb represent the weight
parameters of two fully connected layers. GAP(·) represents global average pool-
ing. In order to transmit low-level detailed information to high-level features, Ac

i

need to be added with Ac
i−1 and then downsampled twice to generate a bottom-

up path.
After obtaining the attention pyramid, a bottom-up attention path can be

generated in combination with the spatial pyramid. Specifically, this paper first
adds spatial attention As

i and channel attention Ac
i , and then performs dot

product operation with Fi in the feature pyramid to obtain F ′
i :

F ′
i = Fi · (As

i + αAc
i ). (3)

Finally, {F ′
l−N+1, F

′
l−N+2, ..., F

′
l } can be obtained for subsequent classification.

3.3 LiDAR Stream Architecture

Our framework can use any network that can convert point clouds into multi-
scale feature pyramids as our lidar flow. At the same time, inspired by SASSD
[7], we designed an auxiliary network, which contains a point-wise foreground
segmentation head and a center estimation head, to guide the backbone CNN to
learn the fine-grained structure of point clouds at different stages of intermediate
feature learning. It is worth noting that the auxiliary network can be separated
after training, so no additional computation is introduced during inference.

Fig. 3. The multi-scale fusion module first compresses the point cloud features into
BEV features, and then uses TransFusion [2] to fuse the last N layers of BEV features
and image features separately to obtain the prediction results of each layer. Finally,
the post-processing is performed to obtain the final results.
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3.4 Multi-scale Fusion Module

Now we have obtained the attention pyramid of the image and the feature pyra-
mid of the point cloud separately. In order to fully fuse the two modalities,
we take the last N layers of features of both for fusion, rather than just using
the last layer, as shown in Fig. 3. Through the point cloud feature pyramid, we
can obtain a multi-scale point cloud BEV feature map {FB

l−N+1, F
B
l−N+2..., F

B
l }.

Following TransFusion [2], we use two transformer decoding layers to fuse the
two modalities: first decodes object queries into initial bounding box predic-
tions using the LiDAR information, and then performs LiDAR-camera fusion by
attentively fusing object queries with useful image features. Finally, each fusion
feature can generate corresponding prediction results, and the final prediction is
obtained through post-processing.

4 Experiments

We evaluate our proposed FGFuison on two datasets, KITTI [6] and Waymo
[21], and conduct sufficient ablation experiments.

4.1 Datasets

The KITTI dataset contains 7481 training samples and 7518 testing samples of
autonomous driving scenes. As common practice, we divide the training data into
a training set containing 3712 samples and a validation set containing 3769 sam-
ples. According to the requirements of the KITTI object detection benchmark,
we conduct experiments on three categories of cars, pedestrians, and cyclists and
evaluate the results using the average precision (AP) with an IoU threshold of
0.7.

The Waymo Open Dataset contains 798 training sequences, 202 validation
sequences and 150 testing sequences. Each sequence has about 200 frames, which
contain lidar points, camera images, and labeled 3D bounding boxes. We use
official metrics, i.e., Average Precision (AP) and Average Precision weighted by
Heading (APH), to evaluate the performance of different models and report the
results of LEVEL1 (L1) and LEVEL2 (L2) difficulty levels.

4.2 Implementation Details

For the KITTI dataset, the voxel size is set to (0.05 m, 0.05 m, 0.1 m). Since
KITTI only provides annotations for the front camera’s field of view, the detec-
tion range of the X, Y and Z axes are set to [0, 70.4 m], [−40 m, 40 m], and
[−3 m, 1 m], respectively. The image size is set to 448 × 800. For the Waymo
dataset, the voxel size is set to (0.1 m, 0.1 m, 0.15 m). The detection range of
the X and Y axes is [−75.2 m, 75.2 m], and the detection range of the Z axis is
[−2 m, 4 m].

We choose TransFusion-L and the DLA34 of the pre-trained CenterNet as
the 3D and 2D backbone networks, respectively. Following TransFusion [2], our



512 Z. Yin et al.

training consists of two stages: 1) First we train the 3D backbone with the first
decoder layer and FFN for 20 epochs. It only requires point clouds as input, and
the last BEV feature map is used to produce initial 3D bounding box predictions.
2) Then we train the LiDAR-camera fusion and image-guided query initialization
module for another 6 epochs. In this stage, the last three feature maps of the 3D
and 2D backbone are fused separately. The advantage of this two-step training
scheme over joint training is that auxiliary networks can be used only in the first
stage, as well as data augmentation methods for pure point cloud methods. For
post-processing, we use NMS with the threshold of 0.7 for Waymo and 0.55 for
KITTI to remove redundant boxes.

4.3 Experimental Results and Analysis

Table 1. Performance comparison on the KITTI val set with AP calculated by 40
recall positions.

Method Modality mAP Car Pedestrian Cyclist

Easy Mod Hard Easy Mod Hard Easy Mod Hard

SECOND [25] L 68.06 88.61 78.62 77.22 56.55 52.98 47.73 80.58 67.15 63.10

PointPillars [11] L 66.53 86.46 77.28 74.65 57.75 52.29 47.90 80.05 62.68 59.70

PointRCNN [19] L 70.67 88.72 78.61 77.82 62.72 53.85 50.25 86.84 71.62 65.59

PV-RCNN [18] L 73.27 92.10 84.36 82.48 64.26 56.67 51.91 88.88 71.95 66.78

Voxel-RCNN [5] L – 92.38 85.29 82.86 – – – – – –

MV3D [3] L+C – 71.29 62.68 56.56 – – – – – –

AVOD [10] L+C – 84.41 74.44 68.65 – 58.80 – – 49.70 –

F-PointNet [15] L+C 65.58 83.76 70.92 63.65 70.00 61.32 53.59 77.15 56.49 53.37

3D-CVF [29] L+C – 89.67 79.88 78.47 – – – – – –

EPNet [9] L+C 70.97 88.76 78.65 78.32 66.74 59.29 54.82 83.88 65.60 62.70

CAT-Det [30] L+C 75.42 90.12 81.46 79.15 74.08 66.35 58.92 87.64 72.82 68.20

FGFusion(Ours) L+C 77.05 92.38 84.96 83.84 72.63 65.07 59.21 90.33 74.19 70.84

KITTI. To prove the effectiveness of our method, we compare the average
precision (AP) of FGFusion with some state-of-the-art methods on the KITTI
dataset. As shown in Table 1, the mAP of our proposed FGFusion is the highest
among all methods. KITTI divides all objects into three difficulty levels: easy,
moderate and hard based on the size of the object, occlusion status and trunca-
tion level. The higher the difficulty level, the harder it is to detect. Our method
leads in different levels of difficulty for multiple categories and has higher accu-
racy than all other methods in the difficult levels of all three categories, which
proves that our method can effectively fuse fine-grained features.

In lidar-only methods, the accuracy of one-stage methods such as SECOND
[25] and PointPillars [11] is lower than that of two-stage methods such as PV-
RCNN [18]. In the easy and medium difficulty levels of the car category, our
FGFusion is competitive with Voxel-RCNN [5], the best-performing method in
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lidar-only methods, and surpasses 0.98% AP in the difficult level. In fusion meth-
ods, early works such as MV3D [3] and AVOD [10] have lower performance than
lidar-only methods. However, recently proposed CAT-Det [30] can achieve higher
overall accuracy than lidar-only methods in all three categories, and achieve
75.42 in mAP, which is a little lower than that of our method.

Table 2. Performance comparison on the Waymo val set for 3D vehicle (IoU = 0.7)
and pedestrian (IoU = 0.5) detection.

Method Modality Vehicle(AP/APH) Pedestrian(AP/APH)

L1 L2 L1 L2

SECOND [25] L 72.27/71.69 63.85/63.33 68.70/58.18 60.72/51.31

PointPillars [11] L 71.60/71.00 63.10/62.50 70.60/56.70 62.90/50.20

PV-RCNN [18] L 77.51/76.89 68.98/68.41 75.01/65.65 66.04/57.61

CenterPoint [28] L – -/66.20 – -/62.60

3D-MAN [27] L 74.50/74.00 67.60/67.10 71.70/67.70 62.60/59.00

PointAugmenting [23] L+C 67.40/- 62.70/- 75.04/- 70.60/-

DeepFusion [12] L+C 80.60/80.10 72.90/72.40 85.80/83.00 78.70/76.00

FGFusion(Ours) L+C 81.92/81.44 73.85/73.34 85.73/82.85 78.81/76.14

Waymo. Compared with the KITTI dataset, the Waymo dataset is larger and
more diverse in sample diversity, and hence is more challenging. To verify our
proposed FGFusion, we also conduct experiments on the Waymo dataset and
compare it with some state-of-the-art methods. Table 2 shows that our FGFusion
is better than other methods for both car and pedestrian categories in LEVEL2
difficulty, which is the main metric for ranking in the Waymo 3D detection chal-
lenge. Compared with the best PV-RCNN [18] in lidar-only methods, FGFusion
has improved the APH of vehicle recognition by 4.93% and that of pedestrian
recognition by 18.53%, which proves that our fusion method is more advanta-
geous in small object detection.

4.4 Ablation Study

We conduct a series of experiments on Waymo to demonstrate the effectiveness
of each component in our proposed FGFusion, including the attention pyramid
of the image branch (AP), the auxiliary network of the point cloud branch (AN),
and the multi-scale fusion module (MSF).

Effect of Each Component. As shown in Table 3, our FGFusion is 2.92% and
3.2% higher than the baseline in APH for the two categories, vehicles and pedes-
trians, respectively. Specifically, the multi-scale fusion module brings improve-
ments of 1.74% and 1.93% to the baseline on two categories, which confirms our
proposed fine-grained fusion strategy. The attention pyramid or the auxiliary
network can further bring improvements of (0.7%, 0.87%) and (0.61%, 0.51%),
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Table 3. Effect of each component in FGFusion on Waymo val set with APH in L2
difficulty.

MSF AP AN Vehicle Pedestrian

70.42 72.94

✓ 72.16 74.87

✓ ✓ 72.86 75.74

✓ ✓ 72.77 75.38

✓ ✓ ✓ 73.34 76.14

Table 4. Performance comparison on Waymo val set with APH in L2 difficulty using
different number of features for fusion.

Feature Num Vehicle Pedestrian

1 70.42 72.94

2 71.62 (+1.20) 74.05 (+1.11)

3 72.16 (+0.54) 74.81 (+0.76)

4 72.32 (+0.16) 75.01 (+0.20)

respectively. This indicates that the finer the fused features, the higher the model
accuracy can achieve, which is consistent with our expectation.

Number of Feature Layers Selected for Fusion. The number of fusion fea-
tures for point clouds and images is the key hyperparameter of our multi-scale
fusion module. In order to determine the optimal value, we conduct experiments
on the Waymo dataset without using attention pyramids or auxiliary networks.
As shown in Table 4, the more feature layers used, the higher the model accuracy
can achieve. This is because high-level features have rich semantic information
and low-level features reserve complementary detailed information. The more
feature layers used for fusion, the less information lost during downsampling.
From the experimental results, it is intuitive that using two or three layers of
features for fusion can bring significant improvements to model accuracy. While
the number of fusion layers reaches four, the degree of improvement will be
greatly reduced. It is worth noting that the more fusion layers used, the more
weights the cross-attention model needs to train during fusion. In order to bal-
ance between model accuracy and computational cost, we use three layers of
features for fusion in our experiments.

5 Conclusion

In this paper, we propose a novel multimodal network FGFusion for 3D object
detection in autonomous driving scenarios. We design fine-grained feature extrac-
tion networks for both the point cloud branch and the image branch, and fuse
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features from different levels through a pyramid structure to improve detec-
tion accuracy. Extensive experiments are conducted on the KITTI and Waymo
datasets, and the experimental results show that our method can achieve better
performance than some state-of-the-art methods.
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