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Abstract. Under natural conditions, license plate recognition is easily
affected by factors such as lighting and shooting angles. Given the diverse
types of Chinese license plates and the intricate structure of Chinese
characters compared to Latin characters, accurate recognition of Chi-
nese license plates poses a significant challenge. To address this issue, we
introduce a novel Chinese License Plate Transformer (CLPT). In CLPT,
license plate images pass through a Transformer encoder, and the result-
ing Tokens are divided into four categories via an Auto Token Classify
(ATC) mechanism. These categories include province, main, suffix, and
noise. The first three categories serve to predict the respective parts of
the license plate - the province, main body, and suffix. In our tests, we
employed YOLOvS8-pose as the license plate detector, which excels in
detecting both bounding boxes and key points, aiding in the correction
of perspective transformation in distorted license plates. Experimental
results on the CCPD, CLPD, and CBLPRD datasets demonstrate the
superior performance of our method in recognizing both single-row and
double-row license plates. We achieved an accuracy rate of 99.6%, 99.5%,
and 89.3% on the CCPD Tilt, Rotate, and Challenge subsets, respec-
tively. In addition, our method attained an accuracy of 87.7% in the
CLPD and 99.9% in the CBLPRD, maintaining an impressive 99.5%
accuracy even for yellow double-row license plates in the CBLPRD.

Keywords: License Plate Recognization - License Plate Detection -
Transformer

1 Introduction

Automatic License Plate Recognition (ALPR) is a computational system that
automatically detects and recognizes license plates from images or videos using
computer vision and machine learning technologies. Compared to pure Latin
character license plates, Chinese license plate recognition proposes additional
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challenges. Chinese license plates have two structures: single line and double
line, and the algorithm’s adaptability to non-single-line license plates needs to
be further considered. Chinese license plates include characters that represent 34
provincial-level administrative regions, which increases the types of characters
to be recognized, and certain license plates feature distinct suffixes, such as ‘¥’
, 2B ete. Compared to Latin characters, Chinese characters have a high
degree of glyph complexity and similarity, making recognition more challenging.
These characters are also more susceptible to misidentification due to factors
such as lighting conditions, blur, and shooting angles.

In this paper, we propose a novel Chinese License Plate Transformer (CLPT)
for the recognition of Chinese license plates. This system is inspired by the
transformer model’s [11] remarkable performance and adaptability in various
vision tasks. Our method has the following four insights:

1. We propose a Tripartite Architecture(TA) that deconstructs all Chinese
license plates into a province-main-suffix format. This separation not only
comprehensively encompasses all types of Chinese license plates but also
enables the model to leverage the inherent structural characteristics of license
plates. Consequently, this approach significantly enhances the accuracy of
license plate recognition.

2. We propose an Auto Token Classify(ATC) mechanism, designed to comple-
ment the TA architecture. This mechanism adaptively categorizes all out-
put tokens from the transformer into several groups, aligning with specific
subtasks, including province classification, recognition of the Latin character
main body, and suffix classification.

3. Compared to conventional algorithms that directly utilize YOLO for license
plate detection, the extension of YOLOvS8, known as YOLOv8-pose, offers the
capability to predict the four key points of a license plate additionally, without
imposing a significant computational burden. Harnessing these key points
for perspective transformation correction enhances the model’s proficiency in
recognizing license plates under distorted viewing angles.

4. Compared to traditional Recurrent Neural Networks (RNNs), the utiliza-
tion of a Transformer architecture does not inherently constrain recognition
content to a predefined left-to-right single-line sequence. As a consequence,
Transformer models demonstrate notable advantages in the recognition of
dual-line license plates.

2 Related Work

2.1 License Plate Recognition

Raj et al. [7] segmented the characters on the license plate for OCR, recognition.
However, this method is dependent on the segmentation model and therefore
has an error accumulation issue. Xu et al. [15] proposed RPnet, an end-to-end
license plate recognition system that finally uses seven classifiers to predict the
characters on the license plate separately. However, this method can only identify
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7-digit blue plates rigidly. GONG Y et al. [3] proposed predicting the rotation
angle € in the LPD part to correct the rotated license plate and then use CTC
to predict characters of variable length. However, this method struggles with
non-planar rotated license plates; Wang et al. [13] proposed a shared-parameter
classification head for the CCPD dataset, which segments the prediction of blue
license plates into province, city alphabet, and a sequence of five Latin char-
acters. However, this method presents challenges when attempting to apply it
universally to other types of license plates.

2.2 Transformer

Transformers have shown good performance in the field of natural language pro-
cessing. ViT [2] (Vision Transformer) applied Transformers to the visual field
and achieved excellent results. However, due to the large architecture and slow
inference speed of ViT, it is limited in its application in the license plate recog-
nition task. With the birth of lightweight Transformers, such as MobileViT [6],
Deit [10], etc., we propose a new solution to this problem. Wu et al. [14] pro-
posed TinyViT, a new family of tiny and efficient vision transformers, pretrained
on large-scale datasets with their proposed fast distillation framework. While
ensuring lightweight and high efficiency, TinyViT possesses a hierarchical struc-
ture that can better handle the detailed features in Chinese characters. We use
the lightest TinyViT-5M as the pre-training encoder, divide the output results
into three sub-tasks of province and suffix classification, and Latin character
body sequence recognition through the ATC mechanism. This not only achieves
excellent license plate recognition performance, but also provides a new way of
thinking for using Transformer models for license plate recognition.

3 Proposed Method

3.1 License Plate Detection

Specifically in license plate detection tasks, the bbox-based YOLO algorithm
may face accuracy issues due to possible rotation and distortion of the license
plate, as its rectangular representation struggles to capture the detailed charac-
teristics of these distortions.

We adopted the YOLO-Pose algorithm, an extension of the traditional
YOLO, which includes key point prediction. This feature provides a significant
advantage over regular YOLO algorithms in addressing rotated license plates. By
modifying the detection head, our model simultaneously predicts the bbox and
the four corner points of the license plate. This key point information enables us
to perform a perspective transformation, effectively correcting for rotation and
distortion without significantly adding complexity to our approach.

3.2 License Plate Recognition

Tripartite Architecture(TA). Asshown in Fig. 1, our Tripartite Architecture
(TA) partitions the license plate into three components: province, main body,
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and suffix. This strategy, which leverages the structural information of the license
plate, positions the province and suffix at fixed points, each containing specific
Chinese characters.
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Fig. 1. partitioning of Different Types of License Plates

This design allows the main body to focus solely on Latin characters, reducing
the prediction task complexity. To further enhance flexibility for various license
plate structures, we incorporate the ‘.’ character. Within the province and suffix,
it represents an absent character, while it signals sequence termination in the
main body. This design handles different license plate structures and lengths
effectively, showcasing strong generalization capabilities.

CLPT. As shown in Fig.2, the network mainly consists of a Transformer
encoder with a pyramid structure, an ATC module, and post-processing cor-
responding to the token. The 224 x 224 image is first encoded into a series of
tokens that enter the Transformer Encoder after the Patch Embedding process.
The Transformer Encoder of TinyViT consists of downsampling three times and
Transformer Block, forming a hierarchical structure. Specifically, downsampling
in the Transformer Encoder uses MBConv, and the Swin structure is used in
the Transformer Block to perform self-attention on tokens within the window.
This process gradually downsamples the original encoded 56 x 56 tokens to 7 x 7
tokens. After the encoding is complete, each of the 49 tokens of 320 dimensions
contains features of the corresponding patch after sufficient self-attention inter-
action. At this time, the ATC module performs soft grouping on these 49 tokens.
For noise tokens, we do not do any subsequent processing; for province and suffix
tokens, we perform a global average pooling on these tokens, followed by a fully
connected layer, to classify the province character or suffix character. For the
variable-length Latin character sequence, we need to select n key tokens from it
for sequence prediction. n represents the maximum length of the middle char-
acter sequence, which includes a special symbol ‘__ to indicate the end of the
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Fig. 2. Flowchart of CLPT

sequence. We use the A3 (Adaptive Addressing and Aggregation) module pro-
posed by Wang et al. [12] to adaptively weight the results through the spatial
attention mechanism and fuse n key tokens containing character information
from these 49 tokens. We connect a fully connected layer after key tokens to get
the prediction of the main part. All three prediction processes use cross-entropy
as the loss function, and the sum is added in a certain ratio to obtain the final
loss function formula as follows:

Loss = A1 - LosSpro + A2 - LOSSmain + Ag - Lossgut (1)

where A is the weight of different losses. In our method, A1, A2, and A3 are set
to 0.35, 0.5, and 0.15, respectively.

Auto Token Classify(ATC) Mechanism. Once the image has passed
through the encoder, each token obtains its corresponding information. We use
the ATC mechanism to softly classify the output tokens, allowing tokens contain-
ing specific corresponding information to complete different tasks. Specifically,
some tokens contain provincial information, some contain information of the
Latin character main body, and some contain suffix information. In addition, we
added a Noise Token category to store tokens that primarily contain noise (Fig.

For a token classifier with four categories (province, main body, suffix, and
noise), we first map the input « to the scores of the four categories. This can be
expressed as:

s(z) = W3ReLU(LayerNorm(W iz + by)) + bs (2)

where W1, by, W5, and by are the weight and bias parameters of the network.
Then, we use the softmax function to transform the output of the classifier
into a probability distribution:

p(x) = softmax(s(z)) (3)



Tripartite Architecture License Plate Recognition Based on Transformer 417

Scores
49x4

CIS - 0T¢
IoAeT osus(q
ny
UWLION ToAe ]
SIS
IoAeT asud(g
Xeunjog

Output tokens
49x320

Suf tokens

Fig. 3. © represents the element-wise multiplication operation. The gray part in the
“scores” indicates the proportion of Noise Tokens (Color figure online)

Finally, the ATC computes the result tensor corresponding to each category, i.e.,
province, Latin character main body, and suffix, excluding the noise token. This
process involves multiplying the input vector element-wise by the probability of

each category:
ri=z0p;(z) forie0,1,2 (4)

where © represents the element-wise multiplication operation, and p,(x) is the
output of the softmax function, corresponding to the probability of category i.
Finally, we obtain the result tensor r; corresponding to each category (province,
main body, suffix), which encodes the information related to each category in
the input vector x.

4 Experiments

4.1 Datasets

CCPD Dataset. The Chinese City Parking Dataset (CCPD) [15] is a large
license plate recognition dataset comprising about 290k images from various
parking lots in China. The dataset includes the following subsets: CCPD-base
(200k), CCPD-db (20k), CCPD-fn (20k), CCPD-rotate (10k), CCPD-tilt (10k),
CCPD-weather (10k), CCPD-challenge (10k). Half of the CCPD-base subset is
used for training, while the remaining subsets are utilized for testing.

CLPD Dataset. The Comprehensive License Plate Dataset (CLPD) is a richly-
annotated dataset containing 1200 images of various types of vehicles, covering
all 31 provinces in mainland China, with diverse shooting conditions and regional
codes. Notably, the dataset includes both seven-letter and eight-letter license
plates, presenting increased recognition complexity, and making it a significant
tool for our experimental setup.
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CBLPRD Dataset. The “China-Balanced-License-Plate-Recognition-Dataset-
330k” (CBLPRD) is an open-source, large-scale dataset containing 330k Chinese
license plate images produced by Generative Adversarial Networks (GANs). The
images in this dataset are of excellent quality and cover a variety of Chinese
license plate types.The dataset consists of 300,000 training images and 10,000
validation images, supporting the training and validation of models. In partic-
ular, it includes some license plate types that are rare in other datasets, such
as yellow double-row license plates, embassy license plates, and tractor green
plates, which add to the value and importance of the dataset.

4.2 Experimental Environment and Tools

Our network was run on a computer with a 24G RTX 3090 graphics card and
an 11th generation Intel Core i7-11700K processor. We implemented the deep
learning algorithm based on Pytorch. For yolov8-pose, we used the Adam opti-
mizer, set the batch size to 128, set the learning rate to 0.01, and used mosaic
enhancement and random perspective transformation. For CLPT, we used the
Adadelta optimizer, set the batch size to 128, set the learning rate to 1, and did
not use any data augmentation.

5 Results

5.1 CCPD

For license plate detection, we utilized the method proposed by [15], focusing
solely on precision. A prediction is deemed correct if the Intersection over Union
(IoU) between the predicted bounding box and the ground truth exceeds 0.7.
As presented in Table 1, YOLOvVS8 outperforms the other methods across all sub-
sets, particularly achieving a 7.0% and 5.8% boost in the Rotate and Challenge
subsets, respectively.

Table 1. Comparison of the average precision (percentage) of license plate detection
in different subsets. AP represents the average accuracy of the entire dataset.

Method AP |Base| DB |FN |Rotate | Tilt | Weather | Challenge
Faster-RCNN [9] | 92.9 1 98.1 |92.1 83.7 |91.8 89.4 | 81.8 83.9
TE2E [4] 94.2 198.5 |91.7 |83.8 1 95.1 94.5 | 83.6 93.1
RPnet [15] 94.5 199.389.5 85.3 |94.7 93.2 | 84.1 92.8
YOLOv4 [1] 95.1 |96.8 |93.7 193.1 |93.5 94.7 1 96.6 85.5
YOLOv3 [§] 96.0 |97.1 |97.2 |193.3 | 91.6 94.6 | 97.9 90.5
YOLOv8 99.0/99.3 | 99.1 | 98.8 | 98.6 99.2 | 99.7 96.3
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For combined license plate detection and recognition, a positive sample is
confirmed when the IoU between the bounding box and ground truth surpasses
0.6 and all characters are predicted correctly. We tested using both bounding
box results (without rotation correction) and keypoint results (with distortion
correction). As depicted in Table 2, aside from the DB subset, our method yielded
the best results.

Table 2. The table compares license plate detection and recognition accuracy across
various subsets, distinguishing between using bounding boxes ([bbox]) and corrected
keypoints ([keypoint]), both detected by YOLOvVS.

Methods Base | DB |FN | Rotate | Tilt | Weather | Challenge
Ren et al. [9] 92.8 |97.2 |94.4 1 90.9 82.9 |87.3 76.3
Liu et al. [5] 95.2 198.3 | 96.6 195.9 88.4 |91.5 83.8
Xu et al. [15] 95.5 |98.5 |96.9 |94.3 90.8 192.5 85.1

Zhang et al. . [16] | 93.0 1 99.1 | 96.3 1 97.3 95.1 |96.4 83.2
Zhou et al. [17] 97.5 199.298.1 | 98.5 90.3 |95.2 86.2
ours|[bbox] 99.899.2|98.8|98.5 98.8 |98.3 89.3
ours[kepoint] 99.8 /989 [98.8/99.5 |99.6|98.1 89.0

Keypoint correction notably enhances the accuracy in handling rotated
license plates (Rotate and Tilt subsets) improving the results by 1.6% and 0.2%
respectively, however, it shows a slight decrease of 0.1% on the FN and Weather
subsets, and 0.5% on the DB subset. Conversely, predicting with bounding boxes
results in higher accuracy when the license plates are brighter or darker (DB sub-
set) (Fig. 4).

Fig. 4. Results display in CCPD dataset
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5.2 CLPD

In the context of automatic license plate recognition, the generalization capabil-
ity of a model holds significant importance as an evaluation metric. Following
the methodology proposed in reference [16], we exclusively employ the base sub-
set of the CCPD dataset for training, while utilizing the CLPD dataset, which
encompasses license plate samples from various diverse scenarios, as our test set.
By adopting this approach, the results obtained from the CLPD dataset effec-
tively showcase the model’s ability to generalize to other datasets. This eval-
uation technique offers a comprehensive validation of the model’s performance
across different scenarios and conditions. We consider only those license plates
as positive samples which have been entirely and correctly identified, given the
fact that only completely accurate predictions bear practical meaning in license
plate recognition. The experimental results on the CLPD dataset are presented
in Table 3. With the base subset of CCPD as our training set, without any addi-
tion of synthetic license plates, our method achieves a Topl accuracy of 83.4%
on the CLPD. Further, with the inclusion of the CBLPRD dataset as additional
augmentation data, we manage to reach a Topl accuracy of 87.7%.

Table 3. Comparison of License Plate Recognition Accuracy on CLPD Dataset

Method Accuracy
Xu et al. [15] 66.5
Zhang et al. (real data only) [16] 70.8
Zhang et al. (real + synthetic data) [16] | 76.8
Zou et al. [17] 78.7
ours(real data only) 83.4
ours(real+synthetic data) 87.7

5.3 CBLPRD

RNNs carry an inherent assumption that characters are arranged in a sequence
from left to right and are contained in a single line. For instance, the classical
Convolutional Recurrent Neural Network (CRNN) compresses the original image
height to one during the CNN process, thereby inputting it into the subsequent
RNN. Although LPRNet does not utilize an RNN, it primarily extracts horizon-
tal features using a 1 x 13 convolutional kernel and then transforms the feature
map into a sequential format via height-wise pooling. These methods show lim-
itations when faced with double-row license plates. A bidirectional RNN can
alleviate this issue to some extent.

However, in contrast, our proposed Transformer-based model is not limited
by these assumptions. Its feature vectors, extracted by the adaptive addressing
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Fig.5. The figure shows the recognition results of different algorithms on two-way
license plates. The words in parentheses are the ground truth.

module, can adapt more effectively to various license plate structures. In Fig. 5,
we observe that for LPRNet and CRNN, all misclassifications occur in the first
row of characters in dual-row license plates. This underscores the difficulty these
algorithms face in accurately identifying license plates with dual-row structures.
In contrast, our proposed method demonstrates commendable proficiency in the
precise recognition of such dual-row license plates. We conducted experiments
on the CBLPRD dataset and, in addition, listed and tested the accuracy of
yellow double-row license plates in the validation set to observe the algorithm’s
ability to recognize double-row license plates. The experimental results shown in
Table 4 confirmed our hypothesis: on the validation set, the accuracy of LPRNet
is 84.3%, but it cannot recognize double-row license plates; the bidirectional
RNN (BiLSTM) in CRNN alleviates this problem to a certain extent, but when
processing double-row license plates, the accuracy still significantly decreases by
8.9%. Our Transformer model has an accuracy of 99.9% on the validation set,
and when dealing with yellow double-row license plates, the accuracy remains
as high as 99.5%.

Table 4. Performance Comparison of License Plate Recognition Algorithms on Vali-
dation Set, with Additional Emphasis on Yellow Double-row Plates Accuracy

Algorithm | Validation Set | Yellow Double-row Plates
LPRNet 84.3 0.0 (—84.3)

CRNN 97.7 88.8(—8.9)

CLPT(ours) | 99.9 99.5 (—0.4)

These experimental results clearly show that, compared to RNN-based mod-
els, our Transformer model demonstrates exceptionally high adaptability and
robustness when recognizing complex license plate formats (such as double-row
license plates).
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6 Conclusion

This paper introduces a transformer-based license plate recognition framework
named Chinese License Plate Transformer (CLPT).By leveraging a Tripartite
Architecture(TA) and the ATC mechanism, CLPT effectively manages the com-
plexities inherent to Chinese characters and the distinct structures of Chinese
license plates. Furthermore, we have showcased the superiority of YOLOvS in
license plate detection and suggested an extension of YOLOvS8, named YOLOvS8-
Pose. This extension enhances the detection performance for distorted and
rotated license plates without imposing a significant additional computational
burden.
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