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Abstract. Due to the unordered and irregular nature of point cloud
data, it is challenging for neural networks to learn from it. Attention
mechanisms have shown promising results in point cloud processing.
It is also inherently permutation-invariant when dealing with a set of
points, which makes it ideal for point cloud learning. In this paper, an
attention-based encoder-decoder architecture called KFT-Net (Key Fea-
tures Transformer) is designed for point cloud classification and segmen-
tation tasks. KFT-Net has improved upon previous methods by captur-
ing long-range contextual information, preserving important attention
scores, and utilizing convolutional neural networks to extract local fea-
tures. Additionally, to enhance the computational efficiency, we introduce
the Top-k operation into the attention mechanism and utilize the aver-
age pooling operation to improve attention score calculation and feature
extraction efficiency. Extensive experiments validate the effectiveness of
the KFT-Net, demonstrating impressive performance in point cloud clas-
sification and segmentation tasks.
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Classification · Segmentation

1 Introduction

Point cloud data is represented in coordinate form, where each point contains
positional information and other attributes, such as normals and colors. Point
cloud classification and segmentation tasks are crucial in various applications.
However, point cloud data is often sparse, irregular, and noisy, which makes it
challenging to extract meaningful information using traditional methods.

This paper proposes an encoder-decoder architecture based on self-attention
[20] called KFT-Net, which aims to improve point cloud classification and seg-
mentation performance. KFT-Net can enhance the ability of long-range depen-
dency capturing, global feature modeling, and local feature extraction. To
improve the vanilla attention mechanism, the Top-k operation is incorporated
in the attention matrix, and the average pooling operation is applied on K(key)
and V (values) to improve attention score calculation and feature extraction
efficiency. These include:
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Top-k Operation. We use the Top-k operation, where at each position the
top k elements with the highest attention weight are selected. By ignoring lower
weights, the model can focus on the most important parts for processing. To
normalize and preserve the effectiveness of the chosen attention weights, we
normalize the highest weight values such that their sum is equal to or close to
1. This normalization ensures that the attention probabilities have the same
properties. Using the filtered attention weights, we perform a weighted sum
over the corresponding value vector for each location. This operation directs the
model’s attention to values related to key information. Thus, it helps to create
a more accurate representation.

Average Pooling Operation. We also perform an average pooling operation
before calculating the attention matrix, we perform the average pooling oper-
ation on K and V to alleviate computational overhead and focus on higher
attention weights. This operation involves a weighted average between attention
weights and value vectors, thereby allowing the model to emphasize key features
and disregard irrelevant or noisy influences. Moreover, by summarizing multiple
value vectors while preserving important information, the average pooling oper-
ation helps capture global information and generate more comprehensive and
representative representations.

Experimental results show that KFT-Net achieves good performance in point
cloud classification and segmentation tasks. The main contributions of this paper
are summarized as follows:

1) We propose a novel transformer-based point cloud learning framework called
KFT-Net, which is designed to better handle the irregularity and disorder of
point cloud data.

2) We perform a Top-k operation on the attention matrix, which allows us to
extract the most crucial point cloud features and improve learning efficiency
compared to the original self-attention module.

3) We apply the average pooling operation on K and V , which can reduce the
number of points considered during attention computation. By aggregating
multiple points into a representative point, it helps to capture global infor-
mation and summarize the overall context of the entire point cloud.

2 Related Work

2.1 Point-Based Deep Learning

Deep learning has shown remarkable performance in point cloud classification
and segmentation. PointNet [13] is introduced as a novel framework for directly
processing unordered point clouds without pre-processing or transformations.
In the years following PointNet, many techniques such as Pointnet++ [14],
PointCNN [10], and PointConv [23] are developed to improve the accuracy of
point cloud classification and segmentation. PointWeb [28] addresses the chal-
lenges of arbitrary point order and complex feature extraction through innovative
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techniques. PointGrid [9] converts point cloud data into a structured grid repre-
sentation to achieve efficient feature extraction for various tasks. PointNeXt [16]
improves the PointNet++ framework by introducing Inverted Residual Bottle-
neck and separable MLPs, achieving superior results in point cloud classification
and segmentation tasks.

2.2 Transformer for Point Cloud

Point cloud processing faces challenges in preserving spatial relationship and
capturing long-range dependencies. To address these challenges, attention mech-
anisms are proposed. Self-attention [20] is designed to capture global and local
features simultaneously. Transformers have shown impressive performance in
both the field of NLP (Natural Language Processing) [11,20] and CV (Computer
Vision) [2,7,21]. PointASNL [27] use an adaptive sampling strategy to exploit
higher-order local structures in graphs. PCT [4] hierarchically extracts local
features using point-to-cluster operations. PT [15] aggregates contextual infor-
mation using prism-based pooling methods. Pointformer [29] encodes point rela-
tionships using multi-head attention mechanisms after translating point clouds
to continuous tensors.

3 Point Cloud Processing with KFT-Net

Fig. 1. KFT-Net architecture. The encoder consists of a Group module, a Sample mod-
ule, and Contextual-Aware Attention Module (CAAM). The decoder is mainly com-
posed of a Coarse Feature Transfer Module (CFTM) and Fine Feature Transfer Mod-
ule (FFTM), which outputs segmentation and classification results. And the number
of output channels is marked below each module. CFTM combines Linear, BatchNorm
and ReLU layers. FFTM combines Linear, BatchNorm, ReLU and dropout layers.
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3.1 Overall Architecture

The overall architecture of KFT-Net is shown in Fig. 1. KFT-Net is an encode-
decoder architecture. The encoder consists of a Group module, a Sample module,
and Contextual-Aware Attention Module (CAAM). The decoder is mainly com-
posed of a Coarse Feature Transfer Module (CFTM) and Fine Feature Transfer
Module (FFTM), which produces the final feature representation for segmenta-
tion and classification results.

Given the input point cloud P ∈ R
N×d, where N points have d-dimensional

features, the encoder learns dc-dimensional reduction embedding feature Fc ∈
R

N×dc through the Group and Sample modules [4]. The per-point feature rep-
resentation Fo ∈ R

N×do is obtained by concatenating the CAAM outputs.

F1 = CAAM1(Fc),
Fi = CAAMi(Fi−1), i = 2, 3, 4, 5, 6,

Fo = concat(F1, F2, F3, F4, F5, F6) · Wo,

(1)

where CAAMi represents the i-th CAAM layer, each layer has the same output
dimension and Wo is the learnable parameters. A detailed explanation of the
CAAM layer will be elaborated in Sect. 3.2. Various implementations of input
embedding and attention mechanisms will be described in detail below. We con-
catenate CAAM outputs to learn per-point feature representation. Thus, global
feature representation Fg is extracted based on the learned per-point features.

We classify the point cloud P into Nc specific categories (e.g. airplane, car,
chair) using the extracted global features for classification tasks. The global
features Fg are fed into the decoder, which consists of CFTM and FFTM. Finally,
we predict the classification score S ∈ R

Nc (where Nc is the number of object
categories), and the label of the point cloud is assigned to the class with the
maximal score.

In the segmentation task, we find the corresponding category for each point.
As it involves categorizing points, we extract global and per-point features from
the point cloud. Then, we merge the global feature Fg and the per-point feature
Fo together to further segment the point cloud into Nc classes (e.g. airplane
head, airplane tail, airplane wings). In the decoder, after fusing the global fea-
tures and per-point features obtained from the encoder, we use a CFTM and a
FFTM. Finally, we apply a linear layer for score prediction. Specifically, after
the decoding process, we can obtain the predicted scores S ∈ R

N×Nc for each
point, and we determine the label of the point based on the highest score.

3.2 Contextual-Aware Attention Module

When dealing with point clouds, the extracted point is regarded as a word, and
the entire point cloud is treated as a sentence. In this case, the point cloud P
is embedded into a dc-dimensional space represented by Fc ∈ R

N×dc , where
N is the number of points and dc is set to 128 for computational efficiency.
In our KFT-Net, we propose Contextual-Aware Attention Module (CAAM) to
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Fig. 2. Architecture of Contextual-Aware Attention Module.

enhance point cloud processing, where CAAM is decomposed of self-attention
mechanism, Top-K operation and average pooling operation. The structure of
CAAM is illustrated in Fig. 2.

Self-Attention Mechanism. The self-attention mechanism involves trans-
forming each element in the input sequence into three vectors: query, key, and
value. The similarity between the query vector and key vector is then calculated
to obtain attention weights. Finally, the attention weights are multiplied with
the value vector and summed up. Referring to literature [20], let Q, K, V be the
query matrix, key matrix, and value matrix generated by linear transformation
of the input features Fin ∈ R

N×dc as follows:

Attn(Q,K, V ) = Fin · (Wq,Wk,Wv),

Q,K ∈ R
N×dk , V ∈ R

N×dc ,

Wq,Wk ∈ R
dc×dk ,Wv ∈ R

dc×dc ,

(2)

where Attn is the vanilla self-attention mechanism, Wq , Wk and Wv are shared
learnable linear transformation operations, dk is the dimension of the query
vector and key vector, and dc is the dimension of the value vector.

Average Pooling Operation. To obtain features Fsa, we perform an average
pooling [7] operation on K ′ and V ′. The specific operation is as follows:

Fsa(Q′,K ′, V ′) = Attn (Fin · Wq, Pt (Fin · Wk) , Pt (Fin · Wv)) , (3)

where Attn is the vanilla self-attention mechanism. Pt is an average pooling
operation with stride t for transforming the spatial dimension to reduce com-
putational cost. Then, we can use the query and key matrices to calculate the
attention weights through matrix dot-product:

Āsa = S̄i,j = Q′ · K ′T . (4)
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These weights are then normalized to obtain Asa = Si,j . Here, we depart from
the conventional attention mechanism and instead employ the l1-norm used in
the [4] network for regularization:

Ãsa = S̃i,j =
S̄i,j√

d′
k

,

Asa = Sij =
exp

(
S̃i,j

)

∑
k exp

(
S̃i,k

) .

(5)

Average pooling operation in Fig. 2 is performed by taking the weighted aver-
age of the value vectors using the corresponding attention weights to obtain the
transformed output. After the operation of weighted average pooling operation,
we obtain the pooled K ′ and V ′. The K ′ summarizes the feature representa-
tions of keys with higher attention weights, while the V ′ summarizes the feature
representations of values with higher attention weights. In this way, during the
calculation process of the attention matrix A and V ′, each value vector V ′ is mul-
tiplied by its corresponding attention weight, and then all the weighted value
vectors are summed up. The final result is a weighted average value vector that
represents the aggregated information of the query vector Q′.

Top-K Operation. After implementing the average pooling operation on self-
attention mechanism, an attention weight matrix Asa is obtained. Different from
the random dropout strategy that randomly drops scores, an adaptive selection
of the Top-k operation contributing scores on matrix Asa is implemented here,
aiming to retain the most important components and discard irrelevant ones.
Here, k is a tunable parameter that dynamically controls the sparsity level,
which is formally obtained through the weighted average of appropriate scores,
we set k = N/2, where N is the number of elements in the input sequences.
Therefore, for softmax computation, only the top k values within the range
[δ1, δ2] are normalized for each row of matrix Asa. For other elements below the
top k scores, their probabilities are replaced with 0 using a scatter function at
the given indices. This dynamic selection shifts attention from dense to sparse,
which is written by the following equation:

Atopk = [Tk (S)]i,j =
{

Si,j , Si,j ∈ Top − k (row, j) ,
0 , otherwise.

(6)

where Tk represents the Top-k operation.
After adding the Top-k operation in Fig. 2, we can select specific elements

with the highest attention weights. By dropping lower attention weights, noise
or irrelevant information could be restrained, and it is of benefit to improve
the model’s robustness and accuracy. For large-scale point cloud data, we can
reduce computational costs and storage requirements by retaining more impor-
tant information. The output feature Fr is the weighted sum of the value vectors
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using the refined attention weights:

Fr = Atopk · V ′. (7)

3.3 Output

In the final output, we refer to the methods of [24] and [4]. As shown in Fig. 2,
during the decoding process, we perform element-wise subtraction between
encoded features Fr and the input features Fin. The subtracted result is then
passed into the CFTM and FFTM.

We shift offsets and add them to query features, which boosts sensitivity to
other points and helps in calculating similarities. This operation is performed on
all query features and yields attention distributions for each one. Offset vectors
enhance positional information and make the attention mechanism more flexible
and accurate, ultimately improving performance in point cloud classification and
segmentation tasks.

4 Experiments

We conduct extensive experiments on three public benchmarks to evaluate the
effectiveness of the KFT-Net. We use the same softmax cross-entropy loss func-
tion as [4]. KFT-Net is trained with the Adam (Adaptive Moment Estimation)
optimizer using a learning rate of 10−4 and weight decay of 10−3.

Table 1. ModelNet40 shape classification. We compare our model with other networks.
‘P’ denotes the number of input points, and ‘N’ denotes the corresponding normals.

Method Input Accuracy

PointNet [13] P, N 89.4

PointMLP [12] P 91.1

Kd-Net [5] P 91.5

PointNet++ [14] P, N 91.9

PointGrid [9] P 92.0

PointWeb [28] P 92.2

PointCNN [10] P 92.4

PointConv [23] P, N 92.5

KPConv [18] P 92.7

DGCNN [24] P 92.9

PointASNL [27] P 92.9

PCT [4] P 92.9

Ours P 93.4
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4.1 Shape Classification on ModelNet40

We use ModelNet40 [25] to evaluate the performance on point cloud classification
tasks. The dataset is divided into a training set and a test set, following a
standard evaluation protocol for a fair comparison. Each object is uniformly
sampled to 1,024 points using the same sampling strategy as [13]. Our model
is trained for 250 epochs with an initial learning rate of 10−4, employing cosine
decay per epoch and a batch size of 16. The experimental results are shown in
Table 1. Compared to [13] and [4], KFT-Net makes a 4.0% and 0.5% improvement
respectively. KFT-Net achieves the best result of 93.4% overall accuracy.

Table 2. Comparison on the ShaperNet part segmentation dataset. ‘pIoU’ means part-
average Intersection-over-Union.

Method pIoU airplane bag cap car chair earphone guitar knife lamp laptop motorbike mug pistol rocket skateboard table

Kd-Net [5] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet [13] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ [14] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

DGCNN [24] 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

SFCNN [17] 85.4 83.0 83.4 87.0 80.2 90.1 75.9 91.1 86.2 84.2 96.7 69.5 94.8 82.5 59.9 75.1 82.9

PointConv [23] 85.5 – – – – – – – – – – – – – – – –

SGPN [22] 85.5 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4

PT [15] 85.7 – – – – – – – – – – – – – – – –

PCT [4] 85.8 84.8 81.3 88.5 81.2 90.9 71.5 91.2 87.9 86.3 95.6 63.3 95.8 83.2 61.3 77.6 83.7

PointCNN [10] 85.8 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.2 84.2 64.2 80.0 83.0

PointASNL [27] 86.0 84.1 84.7 87.9 79.7 92.2 73.7 91.0 87.2 84.2 95.8 74.4 95.2 81.0 63.0 76.3 83.2

Ours 86.2 85.0 82.4 88.4 77.8 92.5 72.0 91.4 88.6 84.3 95.6 71.9 95.9 82.0 64.8 80.7 82.9

4.2 Object Part Segmentation on ShapeNet

We conduct point cloud segmentation experiments using the ShapeNet [26]
dataset. According to [13], all models are downsampled to 2048 points, preserv-
ing point-to-part annotations. Table 2 shows the class-wise segmentation results.
The evaluation metric used is partial mean pIoU, which provides overall and
per-object category performance metrics. The results indicate that our KFT-Net
outperforms [13] and [4] by 2.5% and 0.4%, respectively. KFT-Net achieves the
best performance with pIoU of 86.2%. Figure 3 illustrates segmentation examples
using KFT-Net.

Table 3. Comparison on the S3DIS semantic segmentation dataset tested on Area 5.
‘OA’ means overall point accuracy. ‘mIoU’ means Intersection-over-Union.

Method OA mIoU ceiling floor wall beam column window door chair table bookcase sofa board clutter

PointNet [13] 78.5 49.6 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2

PointNet++ [14] – 53.2 90.8 96.5 74.1 0.0 5.8 43.6 25.4 69.2 76.9 21.5 55.6 49.3 41.9

DGCNN [24] 84.1 56.1 – – – – – – – – – – – – –

SPG [8] 85.5 62.1 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2

PointCNN [10] 88.1 65.4 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

PointWeb [28] 87.3 66.7 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5

PCT [4] 87.6 67.1 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3

Ours 88.3 67.9 92.8 98.5 80.0 0.0 20.6 63.5 51.2 75.8 84.1 47.1 68.3 66.4 51.6
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4.3 Semantic Segmentation on S3DIS

The S3DIS [1] dataset is a dataset used for 3D segmentation and understanding
of indoor scenes. We used the S3DIS dataset for the task of semantic segmenta-
tion of indoor scenes. We use the same method as [13] for semantic segmentation
of the S3DIS dataset, but we made improvements in the network model. Our
KFT-Net outperforms [13] in terms of mIoU, and OA by 18.3% and 9.8% respec-
tively. At the same time, it is faster in terms of speed. The speed improvement
is due to the use of Top-k operation in the SA block of KFT-Net, which reduces
computation. As the model expands, the performance of KFT-Net can gradually
improve. As shown in Table 3, our KFT-Net achieves the best results with mIoU
and OA reaching 67.9% and 88.3%.

Fig. 3. Qualitative results of PointNet, PointNet++, PCT, KFT-Net.

4.4 Ablation Studies

Effectiveness of Top-k Operation. With the Top-k operation, we focus the
attention mechanism on the most relevant elements in the input sequence while
discarding irrelevant elements. This reduces complexity and improves accuracy.
As shown in Table 4, the Top-k operation achieves accuracy improvements on
all three tasks, which verifies the advantages of the proposed Top-k operation.
For example, 0.7% Acc has been improved on ModelNet40, and 0.6% pIoU has
been increased on ShapeNet.
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Table 4. Ablation study on ModelNet40, ShapeNet and S3DIS benchmarks with dif-
ferent modules.

Datasets Baseline +Top-k +Average pooling KFT-Net

ModelNet40 Acc(%) 92.9 93.6 92.2 93.4

ShapeNet pIoU(%) 85.8 86.4 85.4 86.2

S3DIS mIoU(%) 67.1 68.2 66.5 67.9

Effectiveness of Average Pooling Operation. We leverage the average pool-
ing operation to narrow the focus to only the most relevant key-value pairs for
the computation. This increases speed and maintains high-quality attention. As
shown in Table 4, after adding average pooling operation, the accuracy rate has
a small drop, but the overall operation speed has been greatly improved, and the
benefits brought by the operation efficiency are higher than the accuracy rate
benefits with a small drop.

5 Conclusion

In this paper, KFT-Net is proposed to point cloud classification and segmen-
tation, which has shown effective and robust performance. By utilizing the
attention mechanism to capture contextual information between points, we can
extract key features more effectively. To improve the computation of attention
scores and key feature extraction, we incorporate Top-k operation into the atten-
tion matrix and average pooling operation on K and V . Experimental results
demonstrate that the KFT-Net is capable of learning excellent semantic features
and achieving high performance in point cloud classification and segmentation
tasks.
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