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Abstract. Few-shot action recognition aims to classify unseen action
classes with limited labeled training samples. Most current works fol-
low the metric learning technology to learn a good embedding and an
appropriate comparison metric. Due to the limited labeled data, the
generalization of embedding networks is limited when employing the
meta-learning process with episodic tasks. In this paper, we aim to
repurpose self-supervised learning to learn a more generalized few-shot
embedding model. Specifically, a Spatio-Temporal Self-supervision (STS)
framework for few-shot action recognition is proposed to generate self-
supervision loss at the spatial and temporal levels as auxiliary losses. By
this means, the proposed STS can provide a robust representation for
few-shot action recognition. Furthermore, we propose a Spatio-Temporal
Aggregation (STA) module that accounts for the spatial information rela-
tionship among all frames within a video sequence to achieve optimal
video embedding. Experiments on several challenging few-shot action
recognition benchmarks show the effectiveness of the proposed method
in achieving state-of-the-art performance for few-shot action recognition.

Keywords: Few-shot learning · Action recognition · Self-supervised
learning

1 Introduction

Deep learning has achieved remarkable success in the field of action recogni-
tion [10,13,18,22]. The main reason for the significant progress is the sufficiently
large-scale labeled training data. However, the time-consuming and costly anno-
tation process renders acquiring adequate data for network training an infrequent
occurrence. Hence, recent research has placed greater attention on enhancing
the generalization of the model to novel data with limited instances. Similar
to the capacity of humans to transfer knowledge from only a few examples,
few-shot learning (FSL) shows promise in mitigating data scarcity issues. While
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recent few-shot classification has made significant progress for images, progress in
video classification has remained unsolved. Few-shot action recognition (FASR)
is much more complicated due to the additional temporal dimension. Besides,
video actions have different characteristics in terms of speed, duration, and occur-
rence scenarios.

To deal with the FASR problem, most existing metric-based FASR methods
simply calculate the similarity between the embedding of a support class and a
query video. Moreover, these methods mainly use frame-level embeddings [1,2],
clip-level embeddings [12,16], or patch-level embeddings [24] for temporal align-
ment to obtain accurate video matching. Despite significant effects, these meth-
ods still need to address the key challenge of improving the generalization of the
learned few-shot embedding model. Besides, unconstrained learning from train-
ing data will lead to the inductive bias of source classes and weaken the gen-
eralization performance of embeddings. ARN [23] has recently used spatial and
temporal self-supervision to train a more robust encoder and attention. However,
this method alone self-supervises support videos and query videos without fully
capitalizing on their inherent connection, which is more suitable for few-shot
learning. Therefore, using support and query videos together for self-supervision
can help narrow the distances between the same categories and map instances
of different categories to different clusters.

To address the above problems, a spatial-temporal self-supervision (STS)
framework using self-supervised learning for few-shot action recognition is pro-
posed. To be specific, we first propose a spatial cross self-supervision module
(SCS) based on the spatial scale to enhance patch representations by establish-
ing correlations between patches at different locations. This module effectively
addresses the issue of key patches impacting correlation establishment in various
video scenarios caused by displacement and indentation. Secondly, we develop
a temporary cross self-supervision (TCS) module based on a temporary scale
to fully enhance the temporality of the video, which can solve the problem of
misclassification due to similar directionality of videos (e.g.,“moving something
away from the camer” vs.“moving something towards the camer”). Moreover, the
spatio-temporal aggregation (STA) module is utilized to aggregate video repre-
sentations along the spatial and temporal dimensions, reducing the emphasis
on a specific frame during temporal matching. Our model achieves competitive
performance on several action recognition benchmarks: Something v2 (SSv2) [5],
Kinetics [7], HMDB51 [8], and UCF101 [15].

2 Related Work

2.1 Few-Shot Action Recognition

CMN [25] proposes a memory network structure to obtain an optimal video
representation and a multi-saliency embedding algorithm to encode a variable-
length video sequence into a fixed-size representation. OTAM [2] proposes a
dynamic time-warping algorithm to enhance long-term temporal ordering infor-
mation by ordered temporal alignment. ARN [23] constructs a C3D encoder
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to capture short-term dependencies and leverage permutation-invariant pool-
ing to learn discriminative action representations. The recent method TRX [12]
compares the query samples to sub-sequences of all support samples with an
attention mechanism to construct query-specific class prototypes for few-shot
matching and achieves promising results. STRM [16] proposes spatio-temporal
enrichment and temporal relationship modeling modules to measure query-class
similarity. In contrast to previous works, our algorithm uses a self-supervised
approach to construct separate spatial and temporal pretext tasks of the model,
enhancing the generalization to novel classes of spatio-temporal modeling.

2.2 Self-supervised Learning (SSL)-Based Few-Shot Learning

The success of contrastive learning approaches like SimCLR [3] and MoCo [6]
shows that the feature extraction network trained using self-supervised learning
can have a robust representational capacity. Few-shot learning works [9,14] have
achieved better results by combining the FSL framework with well-designed aux-
iliary self-supervised pretext tasks. This indicates that such methods can facil-
itate the transferability of learned feature representations. SLA [9] augments
original labels through self-supervision of input transformation to relax invari-
ant constraints during simultaneous learning of the original and self-supervised
tasks. More recently, ESPT [14] proposes a new type of self-supervised pretext
task for few-shot image classification that uses relations between local spatial
features of multiple image samples in each episode to construct a supervision
signal. However, most SSL augmented few-shot learning methods are not used
in action recognition. Our algorithm is specifically designed for few-shot action
recognition. By separately constructing self-supervised objective functions at the
spatial and temporal levels, we combine them with the objective function of the
original task to optimize the model parameters.

3 Method

3.1 Problem Definition

In the few-shot action recognition task, the goal is to classify an unlabeled video
(query set) into one of the several classes represented by a limited number of
labeled video samples (support set) that have not been seen during training. To
this end, videos in a dataset are divided into two sets with disjoint classes: the
meta-training set Dtrain and the meta-testing set Dtest, i.e., Ctrain ∩ Ctest = ∅.
Then, following previous work [2,23,25] using the episodic training strategy [17]
to optimize the model with a meta-training set Dtrain. For each episode, we
randomly sample N action classes each with K videos from Dtrain to construct
the support set S = {(xs, ys), ys ∈ Ctrain, s = 1, . . . , n × k}. And the query set
S = {(xq, yq), yq ∈ Ctrain, s = 1, . . . , n × p} sampled from the rest of the videos
of the N selected classes. To perform meta-learning, S and Q are completely
disjoint, i.e., S ∩ Q = ∅. Specifically, we use a large number of episodic tasks
sampled from Dtrain for training to adapt to Dtest. During the inference phase,
episodic tasks are sampled on the Dtest in a similar way as meta-training.
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Fig. 1. Illustration of the proposed overall framework. Embedded video features are
first fed into the spatial cross self-supervision (SCS) module to enhance patch repre-
sentations. After that, the temporary cross self-supervision (TCS) module is used to
boost the temporality of the video. Moreover, the spatiotemporal aggregation (STA)
module incorporates the spatial relationships between frames to obtain optimal video
embedding. Finally, we compute the similarity scores to make the final prediction.

3.2 Spatio-Temporal Self-supervision Framework

Overview. Figure 1 illustrates the overview of the proposed STS framework.
The input support videos S and query videos Q with T frames are passed
through an embedding network (e.g., ResNet-50) to extract support features
Fs = {s1, s2, . . . , sn×k} and query features Fq = {q1, q2, . . . , qn×p}, where
si = {s1i , s

2
i , · · · , sTi }, qi = {q1i , q

2
i , · · · , qTi } and sji , q

j
i ∈ RP 2×D. Each frame

feature consists of P × P patch features with dimension D.

Spatial Cross Self-supervision Module. The position of the notable patches
within a frame vary across different video scenes and motion postures. Thus,
enhancing the correlation between associated patches is advantageous for cap-
turing the precise frame-level appearance. Given the support feature Fs and
query feature Fq, as illustrated in Fig. 2(a), we initially leverage self-attention
to capture spatial relationships among patches within a frame. Let xi ∈ R

P 2×D

denote the patch features sji , q
j
i of a frame pj (j ∈ [1, T ]), where P × P is the

number of patches. Then we use weights Wq,Wk,Wv ∈ R
D×D to map patch

features to xq
i , xk

i , and xv
i , where [xq

i ;x
k
i ;x

v
i ] = [Wqxi;Wkxi;Wvxi] and D is

the dimension of the input patch features. The attention matrix is computed by
the dot-products between the query and key matrices. Then the value matrix
and attention matrix are dot-products to reweight the correlations among all
patches:

zi = λ(
xq
ix

kT
i

D
)xv

i + xi (1)

where λ denotes the softmax function. Although this attention mechanism can
establish correlations between patches, it cannot capture the relative positions
and relationships of noteworthy patches in different video scenes. Meanwhile,
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the absence of robust constraints may introduce the induction bias, ultimately
resulting in incorrect relationships between the query and support sets. There-
fore, we calculate ordered cross-attention aspace and unordered cross-attention
âspace between the query and support sets separately and then use âspace to
enhance the relative relationship between patches. Let Qi denote the patch fea-
tures zi obtained from the query feature qji and Si from the support feature sji . A
sub-network φ(·) is then used to approximately enhance Qi before mapping with
the parameter Wq. The QT

i ∈ R
D×P 2

is mapped with the parameter Wp ∈ R
P 2

to obtain patch-level enriched features Q̂i. Thus, φ(Qi) = Q̂i can be defined as:

Q̂i = σ(QT
i Wp)T + Qi (2)

where σ denotes the ReLU non-linearity. After that, Qq
i and Sk

j are mapped from
weights Ŵq, Ŵk ∈ R

D×D, where [Qq
i ;S

k
j ] = [ŴqQ̂i; ŴkSj ]. Let os ∈ N

P 2
repre-

sent randomly shuffling the order of patches, then the ordered cross-attention
aspace
(i,j) and the unordered cross-attention âspace

(i,j) can be defined as:

aspace
(i,j) = Qq

iS
k
j (3)

âspace
(i,j) = ν(φ(Qq

i ), o
s)Sk

j (4)

where ν(x, os) is a function that shuffles the patches in x based on the order os.
For instance, let os be the shuffle order [2, 1, 3]. In this case, the first patch of
Q̂i is obtained by enhancing the second patch of Qi. Therefore, we can propose
a spatial cross self-supervised loss to enhance the correlation between related
patches in a frame, and the loss can be defined as:

Lself
spa =

1
TN2

T∑

t=1

N∑

k=1

N∑

p=1

(1 − âspace−t
(k,p) )ε(aspace−t

(os(k),p)) (5)

where ε(a) = 1 if a > θ, otherwise ε(a) = −1. The default setting for the
judgment value θ is the P-th largest value in a. By employing ordered cross
attention to guide unordered cross attention, we effectively enhance spatial con-
nections between patches, thereby facilitating the utilization of a reweighted
value embedding to generate more discriminative support class-specific embed-
ding. The generation process can be defined as:

αi = λ(
ai

D
)Sv

i (6)

where Sv
i is mapped from weights Ŵv ∈ R

D×D, the query features Qv
i also uses

the same weights. Let [Qv
i ;S

v
i ] = [ŴvQv; ŴvSv]. Then we calculate the distances

between spatial patches point-to-point based on the ground truth label between
query features and support class-specific features to define the cross-entropy loss
Lspa at the spatial level.
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Fig. 2. (a) The spatial cross self-supervision (SCS) module, where the output self-
supervision loss Lself

spa and the spatial cross-entropy loss Lspa are calculated by guiding
the original cross-attention matrix using the disrupted cross-attention matrix. (b) The
spatio-temporal aggregation (STA) module, where the output feature AF is aggregated
by all the attention weights, which are computed by the cross-attention matrices for
two adjacent frames in succession.

Temporal Cross Self-supervision Module. The temporary orders play an
important role in the video, but using temporary matching directly does not
reveal the difference, such as “moving something away from the camera” vs.
“moving something towards the camera”. Thus, learning about temporary orders
is beneficial for processing more detailed temporal relationships. Similar to spa-
tial processing, we use the Qq

i , Q
v
i , S

k
i , and Sv

i for temporal cross self-supervision.
Then spatial global-average pooling is applied to collapse the spatial dimension.
Let ot ∈ N

N represent randomly shuffling the order of video frames, and then
the unordered cross-attention âtime

(i,j) can be defined as:

âtime
(i,j) = ν(φ(ψ(Qq

i )), o
t)ψ(Sk

j ) (7)

where ν(x, ot) is a function that disrupts the video frames in x based on the
order ot, ψ(·) represents a spatial pooling function. Therefore, we can propose a
temporal cross self-supervised loss to learn the temporary orders, and the loss
can be defined as:

Lself
time =

1
T 2

T∑

t=1

T∑

t′=1

(1 − âtime
(t,t′))ζ((ot(t), t′)) (8)

where ζ(i, j) = 1 if i > j, otherwise ζ(i, j) = −1. By supervising the order
of videos, the directionality between frames can be enhanced to generate more
discriminative temporal features.

Spatio-Temporal Aggregation Module. Many previous works [1,2] tend to
ignore the long-term temporal relationships existing in the sequence of video. To
address this limitation, our approach introduces a spatio-temporal aggregation
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module (STA) that accounts for the spatial information relationship among all
frames within a video sequence in order to achieve optimal video embedding.
As illustrated in Fig. 2(b), we use Z = {z1, z2, . . . , zT } to represent the original
input, where zi ∈ R

P 2×D. To reduce the amount of computation, we utilize a
1 × 1 convolution operation to compute the reduced dimensional video sequence
Ẑ = {ẑ1, ẑ2, . . . , ẑT }, where ẑi ∈ R

P 2×d. We apply a linear transformation to
both the dimensionality reduction feature ẑt and the original feature zt to obtain
triplets of query-key-values:

zqt = W̃q ẑt, z
k
t = W̃kẑt, z

v
t = W̃vzt (9)

where W̃q, W̃k, W̃q denote the weight of the linear transformation layer. In
a similar manner, other frame features are processed. The spatial relationship
between adjacent frames is captured via the computation of the attention matrix
of frame t + 1 using the dot product between the query matrix of frame t + 1
and the key matrix of frame t.

Attet+1 =
zqt+1z

k
t
T

d
(10)

However, Eq. (10) only accounts for the interaction between two adjacent frames.
To capture the spatial relationships of all frames effectively, we combine all the
preceding attention matrices leading up to a specific frame t. This aggregation
facilitates to compute the spatio-temporal characteristics of frame t + 1:

z̃t+1 = λ(
t+1∑

i=1

Attei)zvt+1 (11)

where λ denotes the softmax function. Finally, the spatial-temporal aggregation
feature Z̃ and the original feature Z are simply pooled in the spatio-temporal
dimension and added together to obtain the final feature AF :

AF =
∑T

i=1 ψ(z̃i)
T

+

∑T
j=1 ψ(zi)

T
(12)

where ψ(·) represents a spatial pooling function. Simply by calculating the
Euclidean distance between the aggregated features AF , we can obtain the dis-
tance Dc. However, only using this strategy will fail to capture some fine-grained
action information. To address this, we use the existing fine-grained distance
function TRX [12] to calculate the fine-grained distance Df . Finally, the global
distance Dg can be expressed as follows:

Dg = Dc + Df (13)

Then we calculate the distances based on the ground truth label using the video-
to-class distance Dg to define the cross-entropy loss Lg as the main loss. With
ωi as hyper-weights, our STS is trained using the joint formulation given by:

L = ω1Lg + ω2Lspa + ω3Lself
spa + ω4Lself

time (14)
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4 Experiments

4.1 Experimental Settings

Datasets. We evaluate our method on four widely used datasets, including
Something v2 (SSv2) [5], Kinetics [7], HMDB51 [8], and UCF101 [15] for few-
shot action recognition. For Kinetics, we follow the splits in CMN [25] to select
100 action classes from Kinetics-400, which contains various activities in daily
life and is rich in scene context. The 100 classes with 100 video clips per class
are divided into 64, 12, and 24 for training, validation, and testing. For SSv2,
we follow the two widely used splits denoted as SSv2† and SSv2∗, proposed
by [26] and [2] respectively. Both splits adopt 64, 24, and 12 non-overlapping
action classes as the training set, validation set, and testing set. But compared
with SSv2†, the training set of SSv2∗ uses approximately 10x videos per class.
For UCF101, we use the splits from [23], which sample 70, 10, and 21 non-
overlapping action classes as the training set, validation set and testing set. For
HMDB51 with 51 classes with at least 101 video clips per class, we also use the
split from [23] and select 31 training, 10 validation, and 10 testing classes.

Implementation Details. We follow the sparse sampling strategy described
in TSN [19], which divides each input video into N = 8 segments and then
randomly samples one frame in each segment. We resize the each frame scale
into 224 × 224. Then we use ResNet-50 pretrained on ImageNet as the feature
extractor. With D = 2048, an adaptive max pooling operation reduces the spatial
resolution to P , where P = 4. During training, the weight of Lg, Lspa, Lself

spa ,
and Lself

time is set to 1, 0.5, 0.1, and 0.1, respectively. We train our model for
75,000 randomly sampled training episodes for SSv2∗ and SSv2† dataset with a
learning rate of 1 × 10−4. For the other three datasets, we set the learning rate
to 1 × 10−3 and trained for 50,000 episodes. To evaluate few-shot performance
on each benchmark, we randomly construct 10,000 episodes from the test set
and report the average classification accuracy.

4.2 Comparison with State-of-the-Art Methods

In Table 1, we compare our method with state-of-the-art algorithms on Kinet-
ics, SSV2†, SSV2∗, UCF101, and HMDB51. On the five datasets, we conduct
experiments under 5-way 5-shot settings.

Results on Kinetics. Table 1 shows that our model significantly outperforms
all competing methods under 5-shot settings. For instance, our STS achieves
new state-of-the-art results with 87.5%. Compared with current state-of-the-art
methods, such as TRX [12] and STRM [16], our STS outperforms these methods
by 1.7% and 0.9% under the 5-shot setting, respectively. This demonstrates that
the attributes of the spatio-temporal self-supervision framework surpass these
traditional spatio-temporal modeling methods.
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Results on SSV2. We also evaluate the proposed STS on the SSV2 dataset,
which is more complex in temporal reasoning. The gains of our STS on SSv2
are more evident, further demonstrating the advantages of our temporary self
supervision on this dataset. Our method achieves +2.0% improvements on SSV2†

compared with STRM [16] under the 5-shot settings. For the SSV2∗, which
includes more training data, our method achievements +1.1% improvement in
the 5-shot settings. These results indicates that more training data can generate
more discriminative embeddings through self -supervision.

Table 1. Comparison with state-of-the-art methods on Kinetics, SSV2†, SSV2∗,
UCF101, and HMDB51 in terms of 5-shot classification accuracy. “-” stands for the
result is not available in published works. The best results are in bold.

Method Kinetics SSV2† SSV2∗ UCF101 HMDB51

MAML [4] 75.3 41.9 - - -

CMN [25] 78.9 - - - -

TARN [1] 78.5 - - - -

OTAM [2] 85.8 48.0 52.3 88.9 68.0

TRX [12] 85.9 59.1 64.6 96.1 75.6

MTFAN [21] 87.4 - 60.4 95.1 74.6

STRM [16] 86.7 55.3 68.1 96.9 77.3

HyRSM [20] 86.1 56.1 69.0 94.7 76.0

Nguyen et al. [11] 87.4 - 61.1 95.9 76.9

HCL [24] 85.8 55.4 64.9 93.9 76.3

Ours 87.5 57.3 69.2 97.1 77.5

Results on UCF101 and HMDB51. In order to further verify our STS,
we also compare it with state-of-the-art methods on the UCF101 and HMDB51
datasets, whose data is simpler compared with Kinetics and SSv2. And the
results are shown in Table 1. Our method improves over TRX [12] on HMDB51
e.g., +1.9% for the 5-shot settings. Similarly, STS improves over TRX on
UCF101 e.g., +1.0% for the 5-shot settings.

4.3 Ablation Studies

Influence of the Different Training Losses in the STS Framework. To
examine the effect of various training losses in our proposed STS, we performed
ablation studies on the SSV2†, Kinetics, and HMDB51 datasets under the 5-
way 5-shot setting. The results are shown in Table 2. The coarse-grained loss
Lc primarily focuses on the similarity between the aggregated video embedding,
while the fine-grained loss Lf mainly considers the similarity between the clip-
level embedding, the total loss is given by Lg = Lc + Lf . As evidenced in lines
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1-3, adopting both coarse-grained and fine-grained classification losses without
a doubt leads to better outcomes than just relying on Lc or Lf . Since Lf is
more suited to the 5-way 5-shot setup, it obtains considerably better results
than Lc. On the Kinetics and HMDB51 datasets, incorporating a distance loss
Lspa between spatial patches point-to-point effectively enhances the model per-
formance. Self-supervised learning of temporal and spatial features has demon-
strated noticeable benefits, as shown in rows 5 and 6 of Table 2, respectively.
Integrating self-supervision in both spatial and temporal domains can signifi-
cantly improve the generality of the acquired embedding. Finally, we achieve the
best results by combining Lg + Lspa + Lself

spa + Lself
time in row 6.

Table 2. Influence of various training losses in the STS framework on Kinetics,
HMDB51, and SSV2† under the 5-way 5-shot setup. The best result are in bold.

STS Kinetics HMDB51 SSV2†

Lc Lf Lg Lspa Lself
spa Lself

time 5-shot 5-shot 5-shot

1 � × × × × × 84.3 68.5 47.5

2 × � × × × × 85.0 75.4 55.1

3 × × � × × × 85.5 75.9 55.9

4 × × � � × × 86.3 76.5 56.2

5 × × � � � × 87.1 77.2 56.5

6 × × � � � � 87.5 77.5 57.3

Results on Using only the TRX Loss Under the 5-Way 1-Shot Setting.
Table 3 shows the performance of our STS framework only based on TRX [12]
alignment metrics in terms of 1-shot setting. TRX is designed for 5-shot, so its
performance is not ideal under the 1-shot setting. To prove the validity of our
model, we removed the coarse-grained loss Lc and kept only the fine-grained loss
Lf , i.e., the TRX loss, and compared the performance of TRX and its subsequent
improvement STRM [16] under the 5-way 1-shot setting.

Table 3. Results on using only the TRX loss on Kinetics, SSV2†, SSV2∗, UCF101,
and HMDB51 under the 5-way 1-shot setup. The best results are in bold.

Method Kinetics SSV2† SSV2∗ UCF101 HMDB51

TRX [12] 63.6 36.0 42.0 78.2 53.1

STRM [16] 62.9 37.1 43.1 80.5 52.3

STS(Lf ) 64.3 37.9 43.7 81.0 54.8

STS(Lf , Lc) 65.1 38.2 44.0 81.6 55.6
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5 Conclusions

In this paper, we propose a novel Spatio-Temporal Self-supervision (STS)
framework for few-shot action recognition that consists of a spatial cross self-
supervision (SCS) module, a temporary cross self-supervision (TCS) module,
and a spatio-temporal aggregation (STA) module. The SCS and TCS modules
for few-shot action recognition are proposed to generate self-supervision loss at
the spatial and temporal levels as auxiliary losses to facilitate the transferabil-
ity of learned feature representations. The STA module accounts for the spatial
information relationship among all frames within a video sequence to achieve
optimal video embedding. Extensive experiments on five commonly used bench-
marks verify the effectiveness of our method and demonstrate that STS achieves
state-of-the-art performance under the 5-shot setting.
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