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Abstract. Graph Convolutional Network (GCN) has achieved promis-
ing performance in skeleton-based action recognition by modeling skele-
ton sequences as spatio-temporal graphs. However, most existing meth-
ods only focus on the overall characteristics of the skeleton, thus lacking
fine-grained exploration of human body parts semantics. In this paper, we
propose a novel Combined Part-wise Topology Graph Convolutional Net-
work (CPT-GCN), including SPT-GC, TPT-GC, and STPT-GC mod-
ules, to refine the spatio-temporal topology from the spatial, tempo-
ral, and spatio-temporal perspectives, respectively. Specifically, SPT-GC
aggregates spatial features by combining global topology and partial cor-
relations. TPT-GC combines the overall motion trend and the motion
details of parts to capture temporal dynamics. STPT-GC establishes a
spatio-temporal dependency, focusing on exploiting the implicit spatio-
temporal information in motions. Ultimately, the effectiveness of CPT-
GCN is demonstrated through experiments on two large-scale datasets:
NTU RGB+D 60 and NTU RGB+D 120.

Keywords: Skeleton action recognition · Graph convolutional
network · Part-wise topology · Spatio-temporal correlation

1 Introduction

As a major research topic of computer vision technology, human action recogni-
tion plays an important role in applications such as video surveillance, human-
computer interaction and abnormal behavior detection [1,3,8,14,27]. Skeleton
data is a compact and expressive modality that has less data volume compared
with RGB or depth modality, and is insensitive to complex backgrounds and
dynamic camera perspectives. Therefore, skeleton-based human action recogni-
tion technology has received widespread attention [12,13,25,31,32].

Early deep learning-based action recognition methods manually construct
human skeleton coordinates into vector sequences or pseudo-images, and feed
them into a recurrent neural network (RNN) or convolutional neural net-
work (CNN) to predict action results [5,7,10,36]. Kim et al. [11] used a one-
dimensional residual CNN to identify skeleton sequences based on directly-
concatenated joint coordinates. Li et al. [18] constructed an adaptive tree-
structured RNN, and Si et al. [28] proposed a novel attention-enhanced graph
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convolutional LSTM network called AGC-LSTM for human action recognition
from skeleton data. However, these methods ignore the important property of
human skeleton as a topological structure, and it is difficult to capture the spatio-
temporal dependencies between joints.

Graph Convolutional Network (GCN) can efficiently handle non-Euclidean
data such as graphs, and it can generalize convolutions from images to graphs
of arbitrary size and shape. In recent years, more and more skeleton action
recognition models use GCN-based methods to extract spatio-temporal fea-
tures [4,7,16,22,25,26,34]. Yan et al. [34] manually defined the human body
topology, and Shi et al. [25] learned the human body topology dynamically
through adaptive graph convolution. They all focus on graph convolution on the
global human body topology while ignoring body part information. For many
actions, such as clapping and throwing, the motion characteristics of parts are
more important. Thakkar et al. [30] is the first to split the human skeleton into
different parts for graph convolution. Wang et al. [33] proposed adaptive multi-
part graph convolution to learn the spatial correlation between parts based on
the self-attention mechanism. However, the topology of the human skeleton has
not been fully utilized, and we construct the more refined local topology to
extract more detailed features.

In this paper, we will further model the human skeleton topology from the
three dimensions of spatial, temporal, and spatio-temporal based on human body
parts. We then propose a novel network named Combined Part-wise Topology
Graph Convolutional Networks (CPT-GCN), which focuses on exploring fine-
grained features and capturing intrinsic spatio-temporal correlations. Specifi-
cally, we propose three modules, SPT-GC, TPT-GC and STPT-GC, to perform
graph convolution based on locally refined topology. SPT-GC establishes spe-
cific global and local topologies in different channels, taking into account both
global and local information to capture the spatial connections of joints in more
detail. TPT-GC reasonably changes the receptive field of temporal convolution
to extract the motion trend and motion details of the whole and part of the
action. STPT-GC focuses on extracting the implicit spatio-temporal association
information in the skeleton sequence, and establishes the part-enhanced spatio-
temporal association topology. Combining the above three modules, our network
dynamically aggregates high-dimensional features and achieves excellent perfor-
mance on large-scale datasets.

Combining these efforts above, our main contributions are summarized as
follows:

– Our proposed SPT-GC refines the spatial topology based on body parts by
fusing global and local topology, which extracts more fine-grained spatial
features.

– We propose the spatio-temporal module, including TPT-GC and STPT-
GC, which establishes a specific temporal correlation topology and spatio-
temporal correlation topology, and effectively extracts the temporal and
spatio-temporal correlation of parts and joints.
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– We propose a novel action recognition model CPT-GCN based on skeleton
data. It accurately captures the relationship between and within parts, and
effectively aggregates the spatial, temporal and spatio-temporal information
of skeleton data.

– We conduct experiments on two widely-used datasets: NTU RGB+D [24] and
NTU RGB+D 120 [19], on which our proposed method outperforms state-of-
the-art approaches.

2 Related Work

2.1 Skeleton-Based Action Recognition

With the development of deep learning technology, deep learning methods have
gradually replaced traditional manual feature methods. The mainstream meth-
ods can be divided into three categories according to the network architecture:
convolutional neural network (CNN), recurrent neural network (RNN) and graph
convolutional network. (GCN).

CNN-based method usually converts the skeleton data into a pseudo-image
according to the manually designed conversion rules. RNN-based methods usu-
ally extract frame-level skeleton features, represent skeleton data as sequential
data with predefined traversal rules [4,18]. However, human skeleton is a natu-
ral graphical structure, and GCN has obvious advantages in processing graph-
structured data. Yan et al. was the first to use GCN to model human skele-
ton, proposing Spatio-temporal Graph Convolutional Network (ST-GCN). They
build joint connection edges based on the natural connections of the human body,

Fig. 1. The overview of the proposed CPT-GCN model. The entire combined part-wise
topology graph convolutional block is represented as Bi(Cin, Cout, S). Cin, Cout and S
denote the number of input channels, the number of output channels and the stride,
respectively. There are a total of 10 blocks. GAP represents the global average pooling.
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and add temporal associations for the same joints in consecutive frames, con-
structing a skeletal spatio-temporal graph [34]. Shi et al. proposed an adaptive
graph convolution network (AGCN), which uses the self-attention mechanism
to change the topology of human skeletons and adaptively learns the connec-
tion between the original disconnected skeletons [25,26]. Liu et al. introduced a
multi-scale graph topology to achieve multi-scale joint relationship modeling [21].
Cheng et al. proposed Shift-GCN [7], replacing the traditional convolution oper-
ator with the shift convolution operator, using shifted graph convolution. The
CTR-GCN proposed by Chen et al. [5] designs channel-wise topology graphs to
explore more possibilities for feature learning in different channels.

2.2 Partial Graph Convolution in Skeleton-Based Action
Recognition

A complete action can be regarded as composed of different postures of human
body parts. For example: in the process of clapping, the clapping of the palm
plays a key role in the whole action, while the waving of the arm plays an
auxiliary role. Previous studies [7,21,25,26,34] mostly learn the global features
of actions based on the whole skeleton, ignoring the important contribution
of local features to actions. Thakkar et al. [30] is the first to split the human
skeleton into different parts for graph convolution, which effectively improves
performance of recognition. Wang et al. [33] proposed adaptive multi-part graph
convolution to learn the spatial correlation between parts based on the self-
attention mechanism. Zhu et al. [38] focused on fusing global and local features
from a spatial perspective, effectively aggregating multi-level joint features by
constructing a topology based on bodyparts.

3 Methods

In this section, we first introduce the construction of skeletal spatio-temporal
graph and conventional graph convolution. Then we elaborate the modeling
strategies of part-wise spatial topology and spatio-temporal topology respec-
tively. Finally, as shown in Fig. 1, we present the full model structure of the
proposed Combined Part-wise Topology Graph Convolutional Networks model
named CPT-GCN.

3.1 Preliminaries

Graph Construction. A full action consists of multiple frames containing dif-
ferent samples. We construct spatio-temporal skeleton graphs to describe the
structured information between nodes along the spatial and temporal dimen-
sions. The complete spatio-temporal skeleton graph is established based on the
natural connections of the human body structure and the connection of consecu-
tive frames, so it contains the connection edges between joints and the connection
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edges between frames. The graph is defined as G = (X ,V, E). X denotes the fea-
ture set of vertices, which is represented as a matrix X ∈ RC×V ×T , there are V
vertices, T frames and C channels. V = {v1, v2, ..., vV } denotes the vertex set. E
is the set of edges, reflecting the connection strength between vertices.
Graph Convolution. After the skeleton spatio-temporal feature map is con-
structed, we weight and sum the skeleton points in the input feature map with
the features of their corresponding neighbor points to obtain the output feature
map. The graph convolution implementation of feature maps can be intuitively
formulated as:

fout =
S∑

s

Ws · fin · As (1)

where fin and fout denote the input and output feature maps. S denotes the
sampling area of the spatial dimension. As and Ws denote the adjacency matrix
and weight function under the sampling area s.

3.2 Part-Wise Spatial Modeling

Almost any action is composed of sub-actions of different parts, and the differ-
ence mainly lies in the correlation between parts and the contribution of parts
to the whole action. For example, clapping can be decomposed into the action
of two palms and arms, and nodding can be regarded as the action of the head.
Thus, optimizing the topology of skeleton based on human body parts can more
accurately obtain the dependencies between joints.

Most of the previous studies explored the global features of the skeleton, and
learned the spatial relationship of the skeleton through the natural connection of
the human body or the attention mechanism [25,26,32,34], which will generate a
lot of redundant information, and the spatial topology shared by each channel is
also not optimal. Existing part-based models usually aim to extract features from
body parts individually or only focus on discovering the importance of different
body parts [29,35]. However, we take full account of inter-part dependencies
and intra-part differences, and construct a refined part-wise topology for each
channel.

Before performing GCN, body part correlations need to be modeled. Specif-
ically, we divide the human body into 8 parts, which are head, body, two arms,
two palms and two legs. The input features X ∈ RC×V ×T is aggregated accord-
ing to the proposed part division strategy, which is formulated as:

Xpart
i = Concat({Xj | j ∈ L(i)}) i = 1, 2, ..., P (2)

where P denotes the number of parts, Concat(·) denotes the splicing function,
L(i) denotes the set of joint numbers corresponding to the ith part, and Xpart

i

denotes the feature of the ith part after aggregation.
Parts Correlation Modeling. In order to obtain the best dependencies
between parts, we propose the modeling strategie M(·) to model the part depen-
dencies.
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Since each joint contributes to the corresponding body part, we perform an
average pooling operation on the joints inside the part. In addition, in order to
reduce the computation cost, we utilize linear transformations ψ(·) and ϕ(·) to
reduce the feature dimension before the local topology modeling. M(·) needs
to calculate the distance of the channel dimension between different parts, and
utilizes the nonlinear transformation of the distance to represent the correlation
between parts, which is formulated as:

M(i, j) = σ(ψ(AvgPoolST (Xpart
i )) − ϕ(AvgPoolST (Xpart

j ))) (3)

where AvgPoolST (·) denotes the average pooling in both spatial and temporal
dimensions. M(i, j) is the modeling strategy, and its value denotes the correla-
tion between parts i and j.
Part-wise Topology Modeling. The part correlation graph obtained by M(·)
represents the correlation between parts and cannot be directly applied to the
human skeleton graph, so it needs to be mapped to joints relation graph through
a mapping function. According to the relationship between the various parts
obtained, the part correlation features are first connected into a whole vertex
matrix, which is formulated as:

Gpart = Concat({Concat({M(i, j) | j = 1, 2, ..., P}) | i = 1, 2, ..., P}) (4)

where Gpart denotes the spliced inter-part relationship graph. It expresses dif-
ferent part correlations on each channel. But in fact, the joints within a part
do not share weights, so the topology needs to be refined while mapping. We
optimize the topology through learnable bias and linear transformation, which
is formulated as:

Glocal
s = φ(R(Gpart) + B0) s = 1, 2, ..., S (5)

where R(·) denotes the mapping function, it maps the part association graph
to the joint association graph. φ(·) denotes the linear transformation function.
B0 denotes the positional bias of the channel and joint, which is a learnable
parameter. Glocal

s is the feature map based on body parts.
Spatial Part-wise Topology Graph Convolution(SPT-GC). Local topol-
ogy captures both part correlations and intra-part differences. On this basis, a
global topology is introduced to perform adaptive learning driven by data to cap-
ture the global spatial characteristics of actions. Our proposed CPT-GC is more
flexible, which combines global and local topology to more accurately obtain
the correlation between human skeletons. A gating mechanism α is introduced
in the process of fusing the global graph and the individual refined graph to
control the difference in the contribution of required parts and joints in different
sampling regions. Finally, the graph convolution can be completed by perform-
ing Einstein summation of the part-wise topology and the input features in the
spatial dimension.
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Fig. 2. Model architecture of CPT-GCN block. It consists of three modules: SPT-GC,
TPT-GC, and STPT-GC. D1(·), D2(·) denote parts partition function. M1(·), M2(·)
denote parts correlation modeling function. FC denotes the fully connected layer. BN
denotes Batch Normalization. Relu is the activation function.

GCN will dynamically update the global and local topology during the infer-
ence process to capture the features of the previously disconnected joints. There-
fore, Eq. 1 is modified into the following form:

fout =
S∑

s

Ws · fin · (Gglobal
s + αGlocal

s ) (6)

where Gglobal
s is the global topology, which is initialized with the natural connec-

tion of the human skeleton, and changed by adaptively learning the correlation
of actions.

The complete SPT-GC module is shown in Fig. 2 (a). We first divide the bone
input feature Xin into parts, and then perform adaptive average pooling on the
aggregated features. After that, they are respectively input to two convolutional
layers with a convolution kernel of 1×1 for dimensionality reduction. After part-
wise modeling, the associated topology graph of the part is obtained. Then it
needs to be mapped to joint topology and fused with the global topology. In
addition, multiple sampling regions S are set to learn semantic information at
different levels.
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3.3 Part-Wise Spatio-Temporal Modeling

The skeleton feature map composed of human action sequences contains rich
spatio-temporal semantics, and there is actually a certain relationship between
spatial and temporal information. We propose novel TPT-GC and STPT-GC
for extracting temporal and spatio-temporal semantic information of action.

Based on the temporal perspective of the action, a complete action is com-
posed of multiple sub-actions, such as squatting, bouncing, jumping forward, and
standing can constitute a complete long jump action. TCN [2] learns the asso-
ciated information between sub-actions or the trajectory of a complete action
by setting convolution kernels of different sizes. But in fact, the sub-actions
composed of different actions have different periods. Some actions pay more
attention to long-term motion trends, others actions need to rely on short-term
motion details to distinguish. Our designed TPT-GC contains different convo-
lutional dilation coefficients, which focus on capturing long-term motion trends
and short-term motion details, respectively.

Most of the previous methods extract the features of space and time sep-
arately, ignoring the internal relationship of time and space in the action. In
fact, if we can extract the correlation between non-corresponding joints between
frames, it will surely improve the accuracy of action recognition. Our proposed
STPT-GC is used to capture spatio-temporal correlation features, and the effec-
tiveness is verified in ablation experiments, as shown in Table 2.

In addition, the sub-actions that occur in different human body parts are also
different. The arms and thighs may dominate the motion trend of this action,
or the hands control the motion details of a certain action. It is obvious that
adding part information helps to promote the learning of motion paterns. There-
fore, we also introduced the concept of parts in the spatio-temporal modeling,
and constructed the refined temporal and spatio-temporal topology respectively,
achieving the part-enhanced effect.
Temporal Part-wise Topology Graph Convolution(TPT-GC). Inspired
by Multi-scale Temporal Convolution [21], we design a part-based temporal
modeling module for finer-grained extraction of joint motion trends and motion
details. The part division strategy of Eq. 2 is used to aggregate the joint features
of body parts. In order to reduce the computational complexity of the model, we
utilize the ψ(·) linear transformation function to reduce the feature dimension.
We set two convolution branches with different expansion coefficients in parallel
to expand the neighborhood learned by graph convolution and extract semantic
information at different levels of actions. The TPT-GC module is shown in Fig. 2
(b), which is formulated as:

f1
out(i) =

K∑

k

W1 · ψ(fin(i + k)) i = 1, 2, ..., T (7)

f2
out(i) =

K∑

k

W2 · ψ(fin(i + 2k)) i = 1, 2, ..., T (8)
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where f1
out, f2

out denote the output feature obtained by the two branches. W1,
W2 denote the weight corresponding to the convolution. K is the size of the
convolution kernel in the time dimension.
Spatio-temporal Part-wise Topology Graph Convolution(STPT-GC).
In order to obtain the inherent spatio-temporal correlation information of the
action, we designed a novel spatio-temporal modeling module, which is also
guided by the part information to establish the more refined spatio-temporal
correlation topology. The STPT-GC module is shown in Fig. 2 (c). Specifically,
STPT-GC relies on the spatio-temporal correlation topology to obtain spatio-
temporal correlation information, and needs to construct a spatial correlation
graph and a temporal correlation graph first. It uses the same part division strat-
egy to aggregate joints features of the parts, and then aggregates the temporal
and spatial information respectively through the average pooling operation. A
linear transformation function is then used to reduce the temporal and spatial
feature dimensions. It is formulated as:

GS
out = WS · σ(φ1(AvgPoolS(fin)))) (9)

GT
out = WT · σ(φ2(AvgPoolT (fin))) (10)

where GS
out and GT

out denote the spatial and temporal correlation graphs, respec-
tively. AvgPoolS(·) and AvgPoolT (·) denote the average pooling operation on
the spatial and temporal dimensions, respectively. φ1(·) and φ2(·) denote the lin-
ear transformation function. σ(·) denotes the activation function. We add learn-
able parameters WS and WT to assist in learning the spatio-temporal features
of actions, and then use the Kronecker product to model the spatio-temporal
correlation topology. It is formulated as:

GST
out = σ(GS

out × GT
out) (11)

where GS
out and GT

out denote the spatial and temporal correlation graphs, respec-
tively. GST

out denotes the obtained spatiotemporal correlation topology. Our pro-
posed STPT-GC is parallel to TPT-GC. The output features of TPT-GC and
STPT-GC are concatenated after spatio-temporal topological graph convolution.
It is formulated as:

f3
out = W · φ3(fin) · GST

out (12)

fout = Concat(f (i)
out) i = 1, 2, ..., N branch (13)

where f3
out denotes the output feature of the STPT-GC module. φ3(·) denotes

the linear transformation function. f
(i)
out denotes the output feature of the ith

branch. fout denotes the output features after N branch branches are cascaded.
It can be understood that the first part of the channel represents the temporal
characteristics of the action, and the latter part of the channel represents the
spatiotemporal correlation characteristics of the action. The joints of each part
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can be restored to the original feature dimension through mapping and splicing
strategies.

3.4 Model Architecture

We synthesize three modules of SPT-GC, TPT-GC and STPT-GC to construct
a powerful graph convolutional network CPT-GCN for skeleton-based action
recognition. The overall architecture is shown in Fig. 1 (a), which mainly con-
sists of 10 basic blocks and a classification layer. The output channels of each
block in the middle are 64, 64, 64, 64, 128, 128, 128, 256, 256, and 256. The resid-
ual network is connected between blocks [9], and finally perform global average
pooling and softmax classification to obtain behavior prediction results.

Specifically, each individual block contains a spatial model and a spatio-
temporal model, which are responsible for extracting spatial features and spatio-
temporal joint features in skeleton information, respectively. As shown in Fig. 1
(b).
Spatial Modeling. The spatial model is mainly composed of SPT-GC mod-
ules, and three SPT-GCs are used in parallel to extract semantic information
at different levels between parts and joints, as shown in Fig. 2 (a). For a single
SPT-GC, first utilizes channel reduction rate r1 to compact representations, uses
temporal and intra-part spatial pooling to aggregate features. After that, SPT-
GC conducts pair-wise subtraction and activation, then fused with the global
map. Finally, the graph convolution is completed to obtain the output feature
map, as shown in Eq. 6.
Spatio-temporal Modeling. We demonstrate through ablation experiments
that the spatio-temporal model with three branches has better performance.
Among them, TPT-GC occupies two branches and STPT-GC occupies one
branch, as shown in Fig. 2 (b) and (c).

TPT-GC first uses the channel reduction rate r2 to compress the channel
information, and constructs two temporal convolutional layers of different scales
to increase the receptive field, which are used to extract the motion trend and
motion details of the action respectively.

STPT-GC aggregates temporal and spatial information through average
pooling operations, and uses the channel reduction rate of r3 to reduce com-
putational complexity. We use the Kronecker product to model spatio-temporal
association topology. Finally, it performs a dot product of the compressed input
features with the spatio-temporal correlation topology to complete the graph
convolution, which can extract the spatio-temporal correlation information of
the action.

4 Experiments

4.1 Datasets

NTU RGB+D. NTU RGB+D (NTU-60) [24] is currently the most widely used
large-scale action recognition dataset, containing 60 action categories and 56,000



Combined Part-Wise Topology Graph Convolutional Networks 53

action clips. The clips were captured by three KinectV2 cameras with different
perspectives and performed by 40 volunteers. Each sample contains one action
and is guaranteed to have at most 2 subjects. The skeleton information consists
of the 3D coordinates of 25 body joints and the corresponding action category
labels. NTU-60 recommends two benchmarks [24]: Cross-View Evaluation (X-
View) split according to different camera views and Cross-Subject Evaluation
(X-Sub) split according to different subjects.
NTU RGB+D 120. NTU RGB+D 120 (NTU-120) [19] extends NTU-60 with
a larger scale. It contains 120 action categories and 114,480 action clips. The
clips were performed by 106 volunteers in 32 camera setups. NTU-120 also rec-
ommends two benchmarks [19]: the first is Cross-Subject Evaluation(X-Sub),
which is the same cross-subject evaluation as NTU-60. The other is Cross-Setup
Evaluation (X-Set), which splits training and test samples based on the parity
of camera setup IDs.

4.2 Training Details

All experiments are conducted on one RTX 3070 TI GPU with the PyTorch
deep learning framework. We use the stochastic gradient descent(SGD) with
Nesterov momentum(0.9) as the optimizer and the cross-entropy as the loss
function. Weight decay is 0.0004. The initial learning rate is set to 0.1 and a
warmup strategy [9] is used in the first 5 epochs to make the training procedure
more stable. The batch size is 32. The learning rate is divided by 10 at the 35th
epoch and 55th epoch. The training process is ended at the 70th epoch.Since the
number of frames of the samples is not consistent, we uniformly downsample the
frames to 64 frames. In addition, we adopt the data preprocessing strategy of
[21] for the input skeleton features.

4.3 Ablation Studies

In this section, we use the X-Sub benchmark of the NTU-60 to verify the effec-
tiveness of proposed modules in CPT-GCN.
Effectiveness of TPT-GC and STPT-GC. In order to test the performance
of the space-time model proposed in Sect. 3.3 and obtain its optimal branch
configuration, we conduct experiments on TPT-GC and STPT-GC with different
branch numbers. We adopt ST-GCN [34] as the baseline method and replace the
temporal module of the baseline model with the proposed spatio-temporal model.
The specific ablation experiment configuration and results are shown in Table 1.
The experimental results in the table show that the spatio-temporal model with
two TPT-GCs and one STPT-GC branch configuration has better performance.
Model Configuration Exploration. As mentioned in Sect. 3.4, our proposed
CPT-GCN contains three different modules, namely SPT-GC, TPT-GC and
STPT-GC. We manually remove or only keep any kind of modules to test the
parameter cost and model performance of different configurations of CPT-GCN.
Additionally, we adopt ST-GCN [34] as the baseline method, which does not use
any of these three modules.
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Table 1. Comparison of the validation accuracy of spatio-temporal model with differ-
ent settings.

Methods Configuration Acc(%)

Baseline – 84.3

CPT-GCN (w/o SPT-GC) TPT-GC + STPT-GC 87.5

TPT-GC + 2STPT-GC 87.6

TPT-GC + 3STPT-GC 86.6

2TPT-GC + STPT-GC 88.2

2TPT-GC + 2STPT-GC 88.0

2TPT-GC + 3STPT-GC 87.1

3TPT-GC + STPT-GC 87.7

3TPT-GC + 2STPT-GC 87.4

3TPT-GC + 3STPT-GC 86.9

Table 2. Comparison of the validation accuracy of CPT-GC with different settings.

Methods SPT-GC TPT-GC STPT-GC Param Acc(%)

Baseline – – – 1.27M 84.3

CPT-GCN � � � 2.30M 88.8

� � � 1.52M 87.5

� � � 1.45M 87.2

� � � 2.47M 89.1

� � � 2.40M 88.9

� � � 1.62M 88.2

� � � 2.57M 89.5

The specific ablation experiment configuration and results are shown in
Table 2. The experimental results in the table show that although our pro-
posed SPT-GC module introduces some additional parameters, it can effectively
improve the performance of the model. The TPT-GC and STPT-GC modules
have a significant effect on improving the performance of the model under the
premise that a small number of parameters are required. The combination of
the three modules of SPT-GC, TPT-GC and STPT-GC is the optimal configu-
ration of this model. Under this configuration, CPT-GCN bring improvements
of +5.2% over the baseline method on the X-Sub benchmark.

4.4 Comparison with the State-of-the-Art

Most state-of-the-art methods employ a multi-stream fusion framework to enrich
semantic information. Our proposed method adopts the same strategy as [5,7,26]
to generate four data modalities, namely joint, bone, joint motion and bone
motion, and fuse the prediction scores of the four modalities.
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We compare the final model with state-of-the-art skeleton-based action
recognition methods on the NTU-60 and NTU-120 datasets. The results are
shown in Tables 3 and 4. These methods for comparison include RNN-based
methods [17,20,24], CNN-based methods [2,15,37] and GCN-based meth-
ods [6,7,16,21,25,34].

Table 3. Recognition accuracy comparison against state-of-the-art methods on the
NTU RGB+D dataset.

Methods X-Sub(%) X-View(%)

Deep LSTM [24] 60.7 67.3

Ind-RNN [17] 81.8 88.0

TCN [2] 74.3 83.1

HCN [15] 86.5 91.1

SGN [37] 89.0 94.5

ST-GCN [34] 81.5 88.3

AS-GCN [16] 86.8 94.2

2 s-AGCN [25] 88.5 95.1

PT-GCN [38] 90.7 96.0

Shift-GCN [7] 90.7 96.5

MS-G3D [21] 91.5 96.2

MST-GCN [6] 91.5 96.6

CPT-GCN (Bone) 90.1 94.5

CPT-GCN (Joint+Bone) 91.9 96.2

CPT-GCN 92.2 96.5

Table 4. Recognition accuracy comparison against state-of-the-art methods on the
NTU RGB+D 120 dataset.

Methods X-Sub(%) X-Set(%)

ST-LSTM [20] 55.7 57.9

SGN [37] 79.2 81.5

ST-GCN [34] 70.7 73.2

AS-GCN [16] 77.9 78.5

ST-Transformer [23] 82.7 84.7

2 s-AGCN [25] 82.9 84.9

PT-GCN [38] 85.0 87.3

Shift-GCN [7] 85.9 87.6

MS-G3D [21] 86.9 88.4

MST-GCN [6] 87.5 88.8

CPT-GCN 88.9 89.8
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Our model achieves significant improvements of +1.4% and +1.0% over MST-
GCN on the X-Sub and X-Set benchmark of NTU-120, respectively. Overall,
CPT-GCN achieves better performance than other methods on both datasets,
which demonstrates the superiority of our model.

5 Conclusion

In this work, we present a novel combined part-wise topology graph convolutional
network (CPT-GCN) for skeleton-based action recognition. SPT-GC accurately
learns the joint correlation of actions in a way that combines global topology and
local topology. TPT-GC reasonably changes the receptive field of time convolu-
tion to extract the motion trend and motion details of the whole and part of the
action. STPT-GC focuses on extracting the implicit spatio-temporal association
information in the skeleton sequence, and establishes the part-enhanced spatio-
temporal association topology. The combination of the three modules shows a
powerful correlation modeling capability. We evaluate the proposed model on
two large-scale datasets. The experimental results demonstrate that CPT-GCN
has stronger performance than other graph convolutions, and the final model
has excellent performance and generalization ability.
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