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Abstract. Under low-light conditions, visible light imaging technology
exhibits poor imaging performance, whereas infrared thermal imaging
technology can effectively detect and identify targets. To solve the tar-
get imaging problem in low-light environments, multimodal image fusion
technology can combine the advantages of both aforementioned methods.
Existing fusion methods focus excessively on information from infrared
images, obscuring the original texture details of the targets and result-
ing in low-quality images. Therefore, in this study, we propose a multi-
scale edge-fusion network for infrared and visible images called EdgeFu-
sion, which can produce an edge-fusion image. Specifically, the network
utilises infrared multiscale gradient information to enhance the edges of
the thermal targets, thereby improving the ability to identify them. By
designing a balanced loss, EdgeFusion suppresses the global information
from infrared images that obscured the fine texture details of the original
images. In addition, a residual gradient method is introduced to enhance
the textural details of the generated images. After extensive experimen-
tation on the public datasets LLVIP and TNO, the results indicate that
EdgeFusion outperforms existing state-of-the-art methods in preserving
fine-grained infrared edges and enhanced image texture details.

Keywords: Image fusion · Convolution network · Multiscale gradient
retention module

1 Introduction

Image fusion techniques [1,2] integrate multimodal images into a single image,
combining the advantages of different modalities. Under low-light conditions,
visible images struggle to differentiate between background and targets, whereas
infrared images lack texture information. Combining the two can generate images
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that highlight targets and preserve texture. These advantages enable a wide
range of applications in military security [3], target detection [4], semantic seg-
mentation [5], and other fields.

Over decades of development, various methods for infrared and visible image
fusion have emerged. Among them, traditional methods [6–8] involve three steps:
feature extraction, fusion, and inverse transformation. However, owing to coarse
fusion rules such as the maximum and mean value strategies, these methods
face challenges in adapting to feature specificity, leading to information distor-
tion. In recent years, fusion methods based on deep learning have shown bet-
ter results; they include autoencoders [4,9–12], CNN (convolutional neural net-
works) [13–15], and GAN (generative adversarial networks) [4,16–19]. Although
current deep learning-based image fusion algorithms can generate images with
complementary information, they face significant challenges in preserving edges
and enhancing fine texture details. As shown in Fig. 1, Fig. 1(a) and Fig. 1(b)
respectively represent the infrared image and visible image captured in low-light
conditions, Fig. 1(c) represents the fusion results using existing methods, which
focus on the overall infrared information of foreground thermal targets, leading
to complete highlighting of the targets and obscuring certain color and texture
details [20]. Figure 1(d) depicts the effect of edge-fusion image, which effectively
distinguishes the targets from the background and enhances the person’s color
and texture details, and facilitates subsequent tasks.

(a) Infrared (b) Visible (c) Fusion image (d) Edge-fusion image

Fig. 1. Fusion results of infrared and visible images under low-light conditions.

To get the edge-fusion images, we propose a multiscale edge-fusion network
EdgeFusion, for infrared and visible images. This method extracts the infrared
thermal radiation gradient information and visible texture information for fusion.
Specifically, a gradient operating module (GOM) has been introduced to enable
feature reuse and enhance fine-grained details through residual gradient flow.
This enables the extraction of rich texture information from visible images. More-
over, for the infrared image, a multiscale gradient retention module (MGRM) is
designed to merge features from different scales of convolution and gradient oper-
ations, which allows the extraction of the gradient information from the infrared
images. Additionally, to prevent the dominant infrared information from over-
shadowing the target texture, a balance loss is proposed to achieve convergence
between the intensity and texture losses, allowing for the coexistence of intensity
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and texture information. This significantly preserved the rich information in the
original image. In summary, this paper provides the following key contributions:

• EdgeFusion is designed for infrared and visible images. This network effec-
tively combines fine texture information from visible images with edge gradi-
ent information from infrared images, producing fusion images that are more
visually appealing in low-light environments.

• An MGRM is proposed to extract fine-grained infrared edge information and
accurately distinguish targets from the background. The design of the balance
loss helps preserve the internal texture details of the visible image while reduc-
ing the interference from infrared information and increasing the amount of
preserved information.

• Extensive experiments were conducted on the LLVIP and TNO datasets, and
the outcomes were qualitatively and quantitatively compared with that of the
state-of-the-art methods. The experimental results verify the effectiveness of
EdgeFusion, and the experimental results for target detection demonstrate
the benefits of this method for downstream tasks.

2 Related Work

2.1 AE-Based Image Fusion Methods

Methods based on autoencoder networks have strong interpretability, and their
feature fusion processes rely mainly on manually designed fusion rules. Li et al.
proposed DenseFuse [10], which is composed of three layers: encoding, fusion,
and decoding. Owing to the limited feature extraction capability of autoen-
coders, Li et al. proposed NestFuse [4], which introduces a nested connection
network and a spatial attention model. They also proposed spatial and channel
attention as fusion strategies. RFN-Nest [11] employs a novel loss function for
detail preservation and a loss function for feature enhancement, integrating more
information into the network. DRF [12], proposed by Xu et al., employs various
fusion strategies to decompose the original image into representations associated
with scene and sensor modalities.

2.2 CNN-Based Image Fusion Methods

Methods based on CNNs use specially designed network architectures and loss
functions for feature extraction, fusion, and image reconstruction. DeepFuse [13]
exhibits robustness to varying input conditions and can handle extreme exposure
without artefacts, thereby addressing the limitations of multiexposure image
fusion. Zhang et al. proposed the IFCNN [14], which is a generic image fusion
framework that utilises a linear element fusion rule to fuse the convolutional
features of multiple input images and designs a universal loss function for various
fusion tasks. Xu et al. have designed a unified multitask fusion framework [21]
that can perform different types of fusion tasks. STDFusionNet [15] leverages
the salient characteristics of thermal targets in infrared images to guide fusion
using saliency masks.
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2.3 GAN-Based Image Fusion Methods

GANs are unsupervised learning frameworks highly suitable for image fusion.
FusionGAN, proposed by Ma et al. [4], was the first model to introduce GANs
into the field of image fusion. However, owing to the issue of mode collapse,
Ma et al. further proposed DDcGAN [17], which utilises a dual-discriminator
GAN to improve the robustness and ensure that the fused image retains the
characteristics of both source images simultaneously. Additionally, Ma et al.
introduced a multiclassification-constrained GAN [18]. Li et al. designed a GAN
that incorporates a multiscale attention mechanism, enabling the network to
focus more on the key information of both infrared and visible images [19].

However, current existing fusion methods of various kinds emphasise the
usefulness of global infrared information while neglecting situations in which the
texture information of the fused image is obscured. Therefore, it is necessary
to design a method that preserves the internal details and highlights the edge
information of thermal targets. This study innovatively extracts edge information
from an infrared image and fuses it with texture information from a visible image,
resulting in fused images that contain the infrared edges of thermal targets while
preserving the details and textures of the image.

3 Design of EdgeFusion

3.1 Problem Formulation

In low-light environments, distinguishing between the targets and backgrounds
in visible images is extremely challenging. To address this issue, an MGRM is
specifically designed for infrared images to extract multiscale edges. Consider
a pair of visible and infrared images denoted as Ivi and Iir, respectively. The
visible image is converted into the YCrCb colour space and only the Y channel is
extracted and denoted as IYvi. The GOM [22] feature extraction module, denoted
as EG, was used to extract texture features from the visible image. The MGRM
is denoted as EV . Thus, it can be expressed as:

Fvi = EG

(
IYvi

)
, Fir = EV (Iir) (1)

where Fvi represents the extracted visible image feature information from the
Y channel of the visible image and Fir represents the extracted infrared image
feature information from the infrared image.

The MGRM was used to extract edge features from the infrared image. With
Iir as the input infrared image, Fn

m as the single-layer output feature, and Fir

as the module output feature, the MGRM can be represented as:

Fn
m = ∇ (Conv n∗n (Iir)), (n = 1, 3, 5) (2)

Fir = C
(
F 1
m, F 3

m, F 5
m

)
(3)

The symbol ∇ represents the Sobel gradient operator, Convn∗n denotes the
convolution operation, where n × n denotes the size of the convolutional kernel.
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Function C(·) represents the concatenation along the channel dimension. The
MGRM obtains rich edge texture information through multiscale convolution
and gradient computations.

The input feature of the GOM was obtained by passing the visible Y-channel
image through a convolutional layer and can be represented as:

Fin vi = Conv
(
IYvi

)
(4)

Taking Fin vi as the input feature of GOM and Fvi as the output feature, the
formula of GOM can be expressed as:

Fvi = Convn (Fin vi) ⊕ Conv (∇Fin vi) (5)

where Conv(·) represents a convolutional layer, Convn(·) represents n cascaded
convolutional layers, and ⊕ denotes element-wise addition in features. Finally,
image reconstruction was used to reconstruct the fused image, denoted as If ,
where Ff represents the fusion features. R(·) represents image reconstruction.
This can be represented as:

If = R (Ff ) (6)

3.2 Network Architecture

The proposed network architecture for the EdgeFusion is shown in Fig. 2. In
this architecture, two GOM modules are used to extract features from the vis-
ible image, and an MGRM is used to extract edge features from the infrared
image. The visible image is first converted from the RGB colour space to the
YCrCb colour space. The Y channel is then extracted and passed through a 3× 3
convolutional layer using the activation function of LReLU. Subsequently, two
GOM modules are employed to extract the texture and detailed features from
the visible image.

The MGRM was used to extract edge features from an infrared image, and its
detailed structure is shown in Fig. 3(a). This module first performs convolution
operations using kernels of different scales to extract features from an infrared
image. Specifically, 1 × 1, 3 × 3, and 5× 5 convolutional kernels were applied to
the infrared image, and the LReLU activation function was used. After multiscale
convolution, Sobel gradient operations were performed on the infrared features
to extract edge features at different scales. The obtained multiscale features
were then concatenated along the channel dimensions. Subsequently, two 3× 3
convolutional layers were applied to extract deep-level features. Finally, a 1× 1
convolutional layer was used to eliminate the difference in channel dimensions.

The GOM was used to extract texture details from the visible image, as
shown in the Fig. 3(b). It comprises two 3 × 3 LReLU convolutional layers and
a 1 × 1 shared convolutional layer, utilising dense connections to fully leverage
the features extracted by each convolutional layer. The residual flow undergoes
gradient computation, followed by a 1× 1 convolution and addition to the main-
stream flow, achieving the fusion of deep and fine-grained features.
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Fig. 2. EdgeFusion network structure diagram.

Fig. 3. Specific structure of MGRM and GOM modules.

Channel-wise concatenation was performed to combine the visible and
infrared features, and the resulting feature maps were fed into the image recon-
structor for image reconstruction. The decoder consists of three 3 × 3 convo-
lutional layers and one 1× 1 convolutional layer. The 3× 3 convolutional layer
used LReLU as the activation function, whereas the 1× 1 convolutional layer
used tanh as the activation function. No downsampling was introduced into the
fusion network, and the feature maps during the fusion process were maintained
consistent with the size of the source images, thus avoiding information loss.

3.3 Loss Function

To incorporate more essential and useful information into the fused image, detail
loss was introduced in this study. The detail loss comprises three components:
intensity loss Lint [22], texture loss Ltexture [22], and balance loss Lbalance. The
detailed loss is defined as follows:

Ldetail = Lint + αLtexture + βLbalance (7)

where Lint is used to constrain the overall intensity performance of the fused
image, Ltexture is used to encourage the fused image to retain more intricate
texture details, and Lbalance is used to enforce a balanced proportion between
the intensity and texture losses. The parameters α and β are used to adjust the
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weights of the texture loss and the balance loss, respectively. The intensity loss
is defined as follows:

Lint =
1

HW
‖If − max (Ivi, Iir)‖1 (8)

In the formula, H and W represent the height and width of the image, ‖·‖1
denotes the l1 norm, and max(·) represents the selection of the maximum value
among the elements. Here, it represents the fusion of salient pixels from the
visible and infrared images. The texture loss is defined as follows:

Ltexture =
1

HW
‖|∇If | − max (|∇Ivi| , |∇Iir|)‖1 (9)

The symbol ∇ represents the Sobel gradient operation, and | · | denotes the
absolute value operation. This formulation indicates that the texture of the fused
image tends to be the maximum union of textures from the visible and infrared
images. The balance loss is defined as follows:

Lbalance = (1 − (Lint/γLtexture))
2 (10)

The balance loss is defined as follows: The parameter γ is used to constrain
the proportion between the intensity loss and texture loss. The intensity loss
significantly affects the fusion result, and the proportion between it and the
texture loss affects the visual performance of the fusion result. The balance
loss effectively constrains the overall intensity of the fused image, allowing the
coexistence of texture and edge information.

4 Experimental Validation

4.1 Experimental Configurations

This paper details the extensive experiments conducted on the LLVIP [23] and
TNO [24] datasets to comprehensively evaluate the proposed method. A large
number of images in the LLVIP dataset were taken on night roads and included
12,025 training pairs and 3,463 test pairs. The proposed method is trained using
the LLVIP dataset. The TNO dataset contains grayscale versions of multispectral
nighttime images of various military-related scenes. EdgeFusion was evaluated
in comparison with four state-of-the-art deep learning methods, namely Fusion-
GAN, GANMcC, U2Fusion [21], and SeAFusion. The implementations of the
four compared methods were configured according to publicly available codes
and the original paper parameters.

The training parameters were set as follows: batch size of 8 for the Adam
optimiser, initial learning rate of 10−3, learning rate updated by multiplying the
initial learning rate by power(iter−1), where the initial power was set to 0.75,
and iter represents the current training iteration, with a total of 10 iterations.
All the experiments were conducted on an NVIDIA Station server with an Intel
Xeon E5 2620 v4 processor, 128 GB of memory, and four Tesla V100 GPUs, each
with 32 GB of VRAM.
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Infrared Visible FusionGAN GANMcC U2F usion SeAF usion Ours

Fig. 4. Qualitative comparison of the EdgeFusion method in this paper on the LLVIP
dataset (first and second rows) versus the TNO dataset (third and fourth rows).

4.2 Fusion Metrics

The selected metrics include peak signal-to-noise ratio (PSNR), average gradient
(AG), QAB/F, standard deviation (SD), and mutual information (MI). PSNR
reflects the distortion during the fusion process; AG quantifies the gradient infor-
mation of the fused image; QAB/F measures the amount of edge information
from source to fused image; SD reflects the distribution and contrast of the
fused image; MI measures the amount of information transmitted from source
to fused image. Fusion algorithms with higher PSNR, AG, QAB/F, SD, and MI
values tend to exhibit better fusion performance.

4.3 Comparative Experiment

Qualitative Results. Two pairs of images from the LLVIP and TNO datasets
were selected for fusion. Images #010011 and #190071 were chosen for the
LLVIP dataset, whereas images Kapetein-1123 and Soldiers with jeep were
selected for the TNO dataset. The results are shown in Fig. 4. The informa-
tion provided by visible and infrared images in low light level is limited and the
texture is weakened. However, except for our proposed method, other methods
introduce global information from infrared images, which inevitably leads to cov-
erage of the target and background details in the fused images. Examining the
details within the colored box, it becomes apparent that the image generated
by the edge fusion method exhibits favorable visual results. Targets and back-
grounds can be distinctly differentiated, and the image overall retains a wealth
of texture details, with all edges appearing sharp and clear.
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Fig. 5. A quantitative comparison of five metrics, namely PSNR, AG, Qabf, SD, and
MI, was conducted on 50 images from the LLVIP dataset (row one) and 10 images
from the TNO dataset (row two). The horizontal axis represents the image pairs, while
the vertical axis represents the values of each fusion metric.

Quantitative Results. In this study, we conducted a quantitative compari-
son of five evaluation metrics on 50 image pairs from four different scenarios in
the LLVIP dataset. The first row of Fig. 5 shows the results of all the methods.
The method proposed in this study demonstrates significant advantages in three
metrics: AG, Qabf, and MI. AG indicates that the fusion results of this method
contain rich details and textures. Qabf suggests that the fusion images generated
using this method contain considerable edge information. MI indicates that the
method preserves most information from the source images. This is attributed
to the strong edge preservation capability of the multiscale gradient preserva-
tion module. Because this method primarily selects the edge information from
infrared images for fusion, it avoids the issue of completely highlighting the
objects in the fused image. Therefore, it is understandable that the SD metric
ranks third. In this study, we also conducted a quantitative evaluation of five
metrics on a subset of 10 image pairs from the TNO dataset. The results are
shown in the second row of Fig. 5. The various experimental results on differ-
ent datasets indicate that EdgeFusion has a significant advantage in preserving
infrared edges and enhancing texture details.

4.4 Detection Performance

This paper uses the LLVIP dataset for training with Yolov5, which has its own
pedestrian detection label. The detection results for the LLVIP dataset are listed
in Table 1. The average precision (mAP) metric was used to assess the detection
performance, where a higher mAP value closer to 1 indicated a better pedestrian
detection performance. The mAP iou scores at different IoU thresholds. Addition-
ally, mAP@[0.5:0.95] represents the average mAP across thresholds ranging from



268 Z. Song et al.

Table 1. The pedestrian detection results on the LLVIP dataset for infrared, visible,
and fused images are as follows (bold indicates the best, underline indicates the second
best).

mAP@0.5 mAP@0.6 mAP@0.7 mAP@0.8 mAP@0.9 mAP@[0.5:0.95]

Infrared 0.649 0.578 0.453 0.279 0.063 0.367

Visible 0.775 0.700 0.545 0.308 0.028 0.429

FusionGAN 0.756 0.698 0.606 0.321 0.064 0.449

GANMcC 0.786 0.717 0.617 0.370 0.046 0.467

U2Fusion 0.784 0.743 0.609 0.433 0.046 0.485

SeAFusion 0.769 0.729 0.597 0.379 0.095 0.475

Ours 0.817 0.746 0.586 0.455 0.057 0.487

Table 2. Quantitative evaluation results of the ablation study on 50 pairs of infrared
and visible images from the LLVIP dataset (bold indicates the best, underline indicates
the second best).

without Lbalance without MGRM Ours

PSNR 28.6715 28.3948 28.6467

AG 6.7383 6.6774 6.9571

Qabf 0.5167 0.4443 0.5045

SD 44.9629 49.9748 51.2208

MI 1.8325 1.9944 2.5100

0.5 to 0.95 with a step size of 0.05. From the comprehensive point of view in
the table, the method proposed in this paper has certain advantages in mAP,
indicating that the method has a promoting effect on downstream tasks.

4.5 Ablation Studies

Important contributions in this paper are MGRM and balance loss. We con-
ducted a series of ablation experiments on LLVIP and TNO datasets, and the

(a) Ours (b) Without Lbalance (c) Without MGRM

Fig. 6. Visualization results of ablation experiments.
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results are shown in Table 2 and Fig. 6. As can be seen from Fig. 6(c), balance
loss significantly inhibits the intensity of infrared information. Without MGRM,
the overall image becomes darker and edge information is missing. In Fig. 6(b),
the absence of balance loss makes the fused image indistishable from the infrared
image. In contrast, only EdgeFusion’s fused images have both the bright edges
of the thermal target and the enhanced texture details.

5 Conclusion

In this study, EdgeFusion was proposed for infrared and visible images. The
network innovatively utilises infrared gradient information to annotate thermal
targets, effectively avoiding the problem of infrared targets becoming completely
highlighted. This was achieved through the gradient preservation capability of
the infrared MGRM. Additionally, a balanced loss function was designed to
introduce infrared image information while avoiding excessive interference from
infrared information. This allowed the fused image to retain additional textural
details. Experimental results on a public dataset demonstrate that this approach
is beneficial for enhancing the visibility of textures in visible images, and the
fused image retains clear and rich texture details. Quantitative experiments com-
paring four state-of-the-art methods using five evaluation metrics further confirm
that the proposed approach preserves more gradients and textures, resulting in
fused images with the highest information content. The results of the object
detection experiments further validated the superior performance of EdgeFusion
in advanced visual tasks, such as pedestrian detection.
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