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Abstract. Due to the small size, anti-interference and strong robustness
of skeletal data, research on human skeleton-based action recognition
has become a mainstream. However, due to the incomplete utilization of
semantic information and insufficient time modeling, most methods may
not be able to fully explore the connections between non-adjacent joints
in the spatial or temporal dimensions. Therefore, we propose a Multi-
scale Dilated Attention Graph Convolutional Network for Skeleton-Based
Action Recognition (MDKA-GCN) to solve the above problems. In the
spatial configuration, we explicitly introduce the channel graph com-
posed of high-level semantics (joint type and frame index) of joints into
the network to enhance the representation ability of spatiotemporal fea-
tures. MDKA-GCN uses joint-level, velocity-level and bone-level graphs
to more deeply mine the hidden features of human skeletons. In the time
configuration, two lightweight multi-scale strategies are proposed, which
can be more robust to time changes. Extensive experiments on NTU-
RGB+D 60 datasets and NTU-RGB+D 120 datasets show that MDKA-
GCN has reached an advanced level, and surpasses the performance of
most lightweight SOTA methods.

Keywords: Action Recognition · Multi-scale · Semantic Information ·
Dilated Attention · Lightweight

1 Introduction

In recent years, the task of action recognition has become one of the most attrac-
tive topics in the field of artificial intelligence, especially human action recogni-
tion (HAR) is widely used in various fields such as human or object interaction,
video surveillance systems and healthcare systems [1], providing accurate judg-
ment analysis and understanding of human actions for machinery and equipment
in these fields, playing a crucial role in the development and progress of artificial
intelligence.

Early on, research on human skeleton action recognition is mainly through
deep neural network models to learn the correlation of human actions in time and
space. In these models, the performance of human skeleton action recognition
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based on graph convolutional networks (GCN) [2] is better than that based on
recurrent neural networks (RNN) [3] and convolutional neural networks (CNN)
[4]. GCN methods can construct a spatiotemporal topology graph of 3D positions
of human skeleton joint nodes by regarding human joint nodes as vertices of a
graph, treating natural topological connections between adjacent joint nodes as
spatial edges of a graph and considering temporal correlation between adjacent
frames as temporal edges. Then input the processed human skeleton topology
graph sequence into the network for learning to finally achieve action classifi-
cation. The GCN-based method has been proven to be an effective solution for
achieving the task of human action recognition.

To further improve the performance of the model, they [5–8] focus on intro-
ducing adaptive graph residual masks to capture the relationships between dif-
ferent joints, that is, to extract more hidden information from the original human
skeleton dataset, such as bone and velocity. In order to enhance the feature repre-
sentation of every actions, they train this information through multiple network
streams and fuse all the trained features together to obtain the score of each
action and achieve the task of action classification. However, more information
will cause information redundancy and model size doubling sacrificing model
storage space and computational efficiency, which is extremely disadvantageous
for model promotion in practical applications.

In response, SGN [9] achieves superior performance with a smaller model,
however, it also has problems such as insufficient data mining and incomplete
semantic utilization. Guided by literature [10,11], we consider combining chan-
nel attention with dilated convolution attention to enhance feature connections
between frame dimensions and channels in the model. The main contributions
of this paper can be summarized as follows:

– This paper introduces multiple hidden information of human skeletons after
data preprocessing and effectively fuses them in the early stage of the model,
enhancing feature representation of each information and obtaining a richer
topology graph.

– In order to make full use of two semantic relationships, we integrate two
semantic information into graph convolution modules by adjusting graph
convolution layers and channel width effectively, solving defects in spatial-
temporal separation processing.

– In the time module, we design a time multi-scale dilated convolution kernel
attention (T-MDKA), to obtain a large receptive field by replacing large ker-
nel convolution with dilated convolution, thereby simulating remote depen-
dencies. In addition, we construct two branch time convolution blocks to more
robustly learn the temporal features of actions.

2 Related Works

2.1 Attention Mechanism

The attention mechanism can be seen as simulating the degree of attention that
people pay to a certain part when processing information by adjusting the size
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Fig. 1. Skeleton diagrams of 5 frames from three action sequences.

of the weights. It is currently widely used in various fields. [10–12]. SENet [10]
proposes a squeeze-and-excitation block to learn global channel information,
which enables the model to focus on more useful feature information. VAN [12]
improves channel adaptability by using large kernels. To maximize the role of
large convolution kernels, MAN [11] adopts the structure of transformer and
introduces GSAU to replace MLP structure to obtain multi-scale remote mod-
eling dependencies not only improving model representation ability, but also
reducing model parameters and computational complexity.

2.2 Lightweight Models

In the image field [13] and object detection field [14], methods using depth-
separable convolution and grouped convolution are proposed respectively to
replace traditional convolution greatly reducing model parameters. Zhang et al.
[9] based on graph convolutional neural networks introduce high-order semantic
information to enhance feature expression ability achieving low parameters while
maintaining high recognition accuracy. Cheng et al. [15] construct a lightweight
network framework using dynamic displacement graph convolution instead of
traditional convolution, In order to further simplify, they [16] use edge RELU
distillation technology, which also improves model recognition performance. In
addition, Song et al. [17] embed separable convolution layers into early multi-
information fusion module. It makes the model’s parameter size extremely small,
making the model more lightweight.

3 Method

In this section, we will detail the composition of our proposed MDKA-GCN.
Figure 2(a) is our overall model framework.



Multi-scale Dilated Attention Graph Convolutional Network 19

Fig. 2. (a) the overall framework of this paper’s model includes three parts; (b) the
pyramid partition attention module applied to TCN1 and TCN2; (c) the dilated con-
volution attention module proposed in this paper.

3.1 Multi-Branch Fusion Module

Earlier research [17] has shown that more skeleton topology graphs play a key
role in model performance. In this work, we mine three types of input features
from skeleton data: 1) joint stream, 2) velocity stream, 3) bone stream.

Specifically, this paper represents the skeleton sequence as a set of joint sets
St,k = {xt,k|t = 1, 2, ..., T ; k = 1, 2, ..., J}, where T represents the total number
of time frames and J represents the total number of human joints.

Joint St,k ∈ R
C×T×V is the original 3D coordinate provided by the datasets

where channel C is equal to 3. Therefore, through formula vt,k = xt,k − xt,m, we
can obtain the relative position of joints where xt,m represents the position of
the human skeleton’s center of gravity. Considering that many subtle actions are
concentrated on the hands such as “play Rubik’s cube” in Fig. 1(c), we determine
three central joints as the upper and lower spine and palm wrist joints of the
action sequence.

Similarly joint velocity can also be easily defined by joint position that is the
position change between adjacent frames represented as vt,k = xt,k − xt−1,k.

Like the definition of relative position, bone information can also be defined
by the position difference between two adjacent joints on a skeleton represented
as bt,k = xt,k − xt,i, where joint xt,k represents a position away from the human
body’s center of gravity and joint xt,i represents a position close to the human
body’s center of gravity adjacent to joint xt,k. Similar to formula of joint velocity,
we can easily get bone velocity. Since acceleration information is crucial for
capturing some small actions, we can obtains bone acceleration information from
bone velocity information as input information. Finally, these input information
are encoded through two fully connected layers (FC),

Pt,k = σ(FC(σ(FC(xt,k)))) (1)
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Fig. 3. (a) and (b) are two divergent convolution modules that integrate the Pyramid
Split Attention (PSA) module.

where Pt,k represents the joint information encoded by the fully connected layer;
σ in this paper represents activation function RELU.

In the feature fusion module, we obtain different channel attention weights
through two layers of convolution operations, further enhancing feature repre-
sentation of each information stream. Then fuse three information streams and
input them into graph convolution modules,

P̂t,k = Conv(σ(bn(pt,k))) (2)

fin = Cat[P̂t,k, V̂t,k, B̂t,k] (3)

where V̂t,k and B̂t,k represents respectively the velocity information and bone
information encoded by the fully connected layer; bn and Cat represent nor-
malization function and concatenation operation respectively. Conv represents
pointwise convolution, which reduces the channel dimension to avoid generating
a large number of parameters due to high dimensions after concatenation.

3.2 Semantic Information

In this work, we use a one-hot vector J ′
k to represent the kth skeleton joint.

Similarly use a one-hot vector T ′
i to represent the ith frame index. This paper

concatenates two semantic information in low dimensions, then convolves them
through multi-layer perceptron (MLP). Finally, input them into each layer graph
convolution,

G0 = Cat[J′
k,T

′
i] (4)

Gj = MLP(Gj−1) (5)

where J′
k and T′

i respectively refer to joint type and frame index semantic infor-
mation, and j = 1, 2, 3, 4. The purpose of MLP is to increase channel dimensions
to match input dimensions of each layer graph convolution.

3.3 Graph Convolution Module

The operation in this paper’s graph convolution module is different from previ-
ous work [9], which often extracts spatial features through adjacency matrices
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composed of natural human joint nodes or deformations thereof. This paper con-
siders the importance of two semantic information, inputs channel graphs fused
with semantics into graph convolution modules,

fout = σ(bn(Conv(fin ⊗ Gj) + Conv(fin))) (6)

where fin and fout are respectively input and output of graph convolution, ⊗
represents matrix multiplication, the size of the convolutional kernel of Conv is
1 × 1 with different training weights.

3.4 Time Convolution Module

Considering that time processing method of SGN only uses a fixed convolu-
tion operation which is not enough to distinguish some similar actions, such
as Fig. 1(a) and Fig. 1(b). Therefore, we propose a time convolution module
composed of two branch convolution blocks in Fig. 3 and multi-scale dilated
attention in Fig. 2(c).

Branch Convolution Block. In order to obtain receptive fields at different
scales while controlling model parameter volume and computational volume.
Inspired by [18], We introduce the PSA module and design two types of pyra-
mid split convolution modules in Fig. 2(b) for extracting multi-scale temporal
features of action sequences,

Fi = Convi(σ(bn(chunk(Xin))) (7)

F = F0 ⊕ F1 (8)

where chunk is the split operator, which divides the input information into
two equal parts on the channel dimension. And Convi means the convolution
operation with kernel sizes of 1×1 and 1×3. ⊕ is the concat operator. Then, the
SEweight module is used to obtain the attention weight from the input feature
map with different scales,

Zi = SEweight(Fi) (9)

Z = Softmax(Z0 ⊕ Z1) (10)

Out = F � Z (11)

where the Softmax is used to obtain the re-calibrated weight, � represents the
dot product operation. Different from TCN1, TCN2 uses grouped convolutions
and dilated convolutions with dilation rate 2 with kernel size 1 × 3.

Time Multi-scale Dilated Attention. Inspired by some large kernel works
[8,11] without adding too much computational burden obtaining advantages
of attention mechanisms in long-term modeling, we propose a time multi-scale
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dilated kernel attention and replace large kernel convolutions with dilated convo-
lutions focusing on extracting temporal dependencies between action sequences.
It is shown in Fig. 2(c), the formula is as follows:

xi = Split(x) (12)

DKA(xi) = PWConv(ConvDWD(xi)) (13)

MDKA(x) = Cat(DKA(xi) � xi) (14)

where Split is the split operation, i = 1, 2, 3, 4; ConvDWD is a dilated separable
convolution with a kernel size of 1 × 3, and the dilation rate can be 2, 3, 4,
PWConv represents a normal pointwise convolution.

4 Experiment

4.1 Dataset

NTU-RGB+D 60 Dataset [19]: One of the current mainstream skeleton-
based action recognition datasets, containing 56880 skeleton sequences of 60
action categories captured simultaneously from 40 different subjects and 3
Microsoft Kinect V2 depth cameras. Each skeleton sequence contains three-
dimensional spatial coordinates of 25 joints. The dataset provides two evalu-
ation benchmarks: Cross-Subject (C-Sub) and Cross-View (C-View). C-Sub is
completed by 40 subjects with half of the subjects used for training and the rest
for testing. C-View selects samples captured by cameras 2 and 3 for training and
the rest for testing.

NTU-RGB+D 120 Dataset [20]: This dataset is an expansion of the NTU
RGB+D 60 dataset in terms of action categories and number of actors, con-
taining 114480 action videos participated by 106 actors, with a total of 120
action categories including 82 daily life actions 12 medical conditions and 26
actions under two-person interaction. The dataset has two evaluation bench-
marks: Cross-Subject (C-Sub120) and Cross-Setup (C-Set120). C-Sub120 divides
this dataset into training set (63026 videos) and validation set(50919 videos)
according to different actors in the video. C-Set120 divides the dataset accord-
ing to the parity of video numbers. 54468 even-numbered videos are used as
training sets, and 59477 odd-numbered videos are used as test sets.

4.2 Experimental Details

Similar to [9], the difference is that in order to facilitate the operation of channel
graphs composed of two semantic information in the graph convolution module,
we adjust the time dimension to 25. This paper sets the number of epochs in the
model to 120 sets the batch size for each epoch to 64 sets, the initial learning
rate to 0.001 and continues to decrease during iteration. When the number of
iterations is 80 and 100 the learning rate drops tenfold. At the same time, this
paper also uses Adam to optimize the model where weight decay is 0.0001.
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4.3 Ablation Experiment

In this part, we mainly discuss the contributions of different components in this
paper’s model, which includes multi-branch fusion module, high-order semantic
information time convolution module and necessity of attention module.

Table 1. Comparison of the accuracy of different input branches.

Input Param(M) C-Sub/% C-View/%

Joint 0.60 88.4 94.4

Bone 0.60 89.8 94.8

Velocity 0.60 84.8 91.0

Joint and Bone 0.65 90.3 95.6

Joint and Velocity 0.65 90.4 95.8

Bone and Velocity 0.65 90.5 95.7

Baseline 0.69 91.2 96.2

Table 1 experimental results two conclusions are verified: first using informa-
tion fusion of three input branches has obviously highest recognition accuracy on
C-Sub and C-View; second this paper’s information fusion method only increases
about 1/7 of parameter volume while model performance has been significantly
improved.

Table 2. Verification of the accuracy of two types of semantic information.

Input Param(M) C-Sub/% C-View/%

w/o J 0.69 90.2 95.5

w/o T 0.69 90.5 95.3

w/o J and T 0.69 89.9 94.8

Baseline 0.69 91.2 96.2

Table 2 experimental results show the channel graph composed of two seman-
tic information plays an important role in graph convolution operation. It is
worth noting that when there is no channel graph the original graph convolution
becomes ordinary pointwise convolution and the model’s ability to aggregate
different joint features will weaken resulting in a decline in model performance.

Table 3 verifies the effectiveness of the two branch convolution blocks and
multi-scale dilated attention module. From the table it can be seen that the
attention module proposed in this paper effectively improves model performance
while adding a very small amount of parameters; and our reasonable combination
of two branch convolution modules makes the model more balanced in terms of
performance and parameter volume.
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Table 3. Verification of the effectiveness of two divergent convolution modules and
attention mechanisms.

Input Param(M) C-Sub/% C-View/%

w/o Attention 0.70 90.7 96.0

w/o TCN1 0.62 90.9 95.8

w/o TCN2 0.55 90.8 95.4

TCN1 + TCN1 0.62 90.8 95.8

TCN2 + TCN2 0.77 90.8 96.0

Baseline 0.69 91.2 96.2

4.4 Comparison with State-of-the-Art

From Table 4, it can be seen that the best performance of our single-stream net-
work MDKA-GCN (1s) on the two benchmarks is 91.2% and 96.2% respectively,
while the establishment of multi-stream network enables the model to achieve
better performance especially MDKA-GCN (4s) recognition accuracy on the
two benchmarks respectively reach 92.1% and 96.8%, which is better than other
SOTA models.

Table 4. Comparison of accuracy (%) with some recent SOTA methods.

Methods Year C-Sub/% C-View/% C-Sub120/% C-Set120/%

ST-GCN [2] 2018 81.5 88.3 70.7 73.2

2s-AGCN [5] 2019 88.5 95.1 82.5 84.2

4s-Shift-GCN [15] 2020 90.7 96.5 85.9 87.6

SGN [9] 2020 89.0 94.5 79.2 81.5

MS-G3D [21] 2020 91.5 96.2 86.9 88.4

FGCN [22] 2021 90.2 96.3 85.4 87.4

CDGC [23] 2021 90.9 96.5 86.3 87.8

4s-Shift-GCN++ [16] 2021 90.5 96.3 85.6 87.2

Ta-CNN [4] 2022 90.7 95.1 85.7 87.3

4s-AGE-Ens [6] 2022 91.6 96.3 88.2 89.2

2s-ST-GCN++ [24] 2022 91.4 96.7 87.0 89.1

EffiencientB4 [17] 2022 92.1 96.1 88.7 88.9

SMotif-GCN [7] 2022 91.7 96.7 88.4 88.9

LKA-GCN [8] 2023 90.7 96.1 86.3 87.8

MDKA-GCN(1s) − 91.2 96.2 86.8 88.3

MDKA-GCN(2s) − 91.6 96.6 87.5 89.1

MDKA-GCN(4s) − 92.1 96.8 87.9 89.4
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Due to the randomness in the network during training, such as sample shuf-
fling operations and frame extraction randomness, these random operations can
cause incomplete feature learning in model training, resulting in unstable train-
ing results. To avoid this randomness and enhance the robustness of the net-
work, we design a multi-stream network structure where each single-stream sub-
network structure is completely consistent. We fuse the output results of multiple
single-stream sub-networks by adding them together and use them as the final
output result of the multi-stream network.

In addition, Table 4 shows that on the C-Sub120 and C-Set120 compared
with SGN [9], our single-stream method increases the accuracy by 7.6 percent-
age points and 6.8 percentage points respectively. In multi-stream networks
(2s-AGCN [5], 4s-AGE-Ens [6], SMotif-GCN [7]), our multi-stream method
MDKA-GCN(4s), although lower in accuracy on C-Sub120 than 4s-AGE-Ens
and SMotif-GCN, reach the highest accuracy on C-Set120 benchmark.

Table 5. Comparisons with SOTA methods

Methods Param.(M) GFLOPS/% C-View/%

Ta-CNN [4] 1.06 1.06 95.1

ST-GCN [2] 3.1 16.32 88.3

2s-AGCN [5] 6.94 37.32 95.1

4s-Shift-GCN [15] 2.76 10 96.5

SGN [9] 0.69 0.8 94.5

4s-Shift-GCN++ [16] 1.8 1.7 96.3

2s-ST-GCN++ [24] 1.39 2.8 96.7

EffiencientB4 [17] 1.1 4.05 96.1

MDKA-GCN(1s) 0.69 0.69 96.2

MDKA-GCN(2s) 1.38 1.38 96.6

MDKA-GCN(4s) 2.92 2.76 96.8

Comparison with Lightweight SOTA. To verify the overall performance of
our model as shown in Table 5, we compare with SOTA methods in recent years
in terms of accuracy model parameter volume and computational complexity.
Compared to lightweight GCN method EfficientB4, our single-stream model has
a smaller parameter size and computational complexity while achieving higher
accuracy. We compare the model training process of MDKA-GCN and SGN on
two datasets in Fig. 4. For fair comparison the hyperparameter settings and
data preprocessing methods of the two models are kept consistent. Overall our
method’s overall performance has reached an advanced level and is more suitable
for resource-limited mobile devices and practical application scenarios compared
to most lightweight SOTA methods.
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Fig. 4. comparison of the accuracy and convergence of MDKA-GCN and the baseline
model SGN.

Fig. 5. Qualitative examples from NTU-RGB+D 60, Six frames are selected from each
action.

5 Action Visualization

To more intuitively display the action process, this paper visualizes the skeleton
diagrams of actions such as “wear headphones” and “drink water” by observ-
ing some similar or difficult-to-distinguish actions in Fig. 5, and selects a few
frames from them. These actions are mainly completed by both hands and are
extremely similar in spatial configuration and temporal dynamics, requiring long-
term observation to distinguish.

6 Conclusion

In this paper, we introduce two semantic information into multiple graph
convolution layers, and the model performance is improved while reducing
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model parameters. Our designed branch convolution block emphasizes signifi-
cant motion features, the proposed time multi-scale dilated convolution atten-
tion module enlarges the receptive field and enriches the representation abil-
ity of various temporal features. We conduct extensive experiments on current
mainstream action recognition datasets, whose results show that MDKA-GCN
is more effective than most mainstream methods in terms of computational cost
and performance with broader application prospects in the future.
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