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Abstract. Recognizing target objects using an event-based camera
draws more and more attention in recent years. Existing works usu-
ally represent the event streams into point-cloud, voxel, image, etc., and
learn the feature representations using various deep neural networks.
Their final results may be limited by the following factors: monotonous
modal expressions and the design of the network structure. To address
the aforementioned challenges, this paper proposes a novel dual-stream
framework for event representation, extraction, and fusion. This frame-
work simultaneously models two common representations: event images
and event voxels. By utilizing Transformer and Structured Graph Neural
Network (GNN) architectures, spatial information and three-dimensional
stereo information can be learned separately. Additionally, a bottleneck
Transformer is introduced to facilitate the fusion of the dual-stream infor-
mation. Extensive experiments demonstrate that our proposed frame-
work achieves state-of-the-art performance on two widely used event-
based classification datasets. The source code of this work is available
at: https://github.com/Event-AHU/EFV event classification.

Keywords: Event Camera · Graph Neural Networks · Transformer
Network · Bottleneck Fusion

1 Introduction

Recognizing the category of a given object is a fundamental problem in computer
vision. Most of the previous classification models are developed for frame-based
cameras, in other words, these recognition models focus on encoding and learning
the representation of RGB frames. With the rapid development of deep learning,
frame-based classification achieves significant improvement in recent years. Rep-
resentative deep models (e.g., the AlexNet [1], ResNet [2], and Transformer [3])
and datasets (e.g., ImageNet [4]) are proposed one after another. However, the
recognition performance in challenging scenarios is still far from unsatisfactory,
including heavy occlusion, fast motion, and low illumination.
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Fig. 1. Comparison of the frame- and event-based cameras https://youtu.be/
6xOmo7Ikwzk. (a, b) shows representative samples in regular scenarios, low-
illumination, and fast motion. (c, d) illustrates the different types of raw data rep-
resentation of frame- and event-based cameras.

To improve object recognition in challenging scenarios, some researchers have
started leveraging other sensors to obtain more effective signal inputs, thus
enhancing recognition performance [5]. Among them, one of the most represen-
tative sensors is the event camera, also known as DVS (Dynamic Vision Sensor),
which has been widely exploited in computer vision [6–8]. This paper focuses on
using event cameras for object recognition. As shown in Fig. 1, different from the
frame-based camera which records the light intensity for each pixel simultane-
ously, the event camera captures pulse signals asynchronously based on changes
in light intensity, recording binary digital values of either zero or one. Typically,
an increase in brightness is denoted as an ON event, while a decrease corre-
sponds to an OFF event. An event pulse signal can be represented as a quadru-
ple (x, y, t, p), where x, y represents the spatial position information, t represents
the timestamp, and p represents the polarity, i.e., ON/OFF event. Many works
demonstrate that the event camera performs better in High Dynamic Range
(HDR), high temporal resolution, low latency response, and strong robustness.
Therefore, utilizing event cameras for object recognition is a research direction
that holds great research value and practical potential.

Recently, researchers have already conducted studies on object recognition
using event cameras and have proposed various approaches to address this task,
including CNN (Convolutional Neural Network) [9], GNN (Graph Neural Net-
work) [10], Transformer [3], etc. Although these methods have achieved good
accuracy by representing and learning events from different perspectives, they
are still limited by the following aspects: Firstly, they rely on a single event
representation form, such as images, point clouds, or voxels, which may limit
the expressiveness and versatility of the learned features. Different event repre-
sentation forms may capture different aspects of the data, and using only one
representation may lead to the loss of valuable information. Secondly, the cur-
rent methods are constrained to using only one of the deep learning architectures,
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such as CNNs, GNNs, or Transformers, for feature learning. Each architecture
has its strengths and limitations in capturing different types of patterns and
dependencies in data. By restricting the choice to a single architecture, the meth-
ods may not fully exploit the potential benefits and complementary strengths
of different architectures. To address these limitations, future research should
explore approaches that can integrate multiple event representation forms and
leverage the combined power of different deep learning architectures. This could
involve developing novel fusion techniques or hybrid architectures that can effec-
tively capture and leverage diverse features and dependencies present in event
data. By doing so, we can potentially enhance the performance and flexibility of
event-based object recognition methods.

To address the aforementioned issues, in this work, we propose an effective
dual-stream event information processing framework, referred to as EFV, as
shown in Fig. 2. Specifically, we first transform the dense event point cloud sig-
nals into event images and event voxel representations. For the input of image
frames, we utilize advanced spatiotemporal Transformer networks to learn spa-
tiotemporal features. For voxel input, considering the sparsity of events, we
employ a top-k selection method to sample meaningful signals for construct-
ing a structured graph, and then use GNN (Graph Neural Network) to learn
these volumetric structured features. Importantly, we introduce the Bottleneck
Transformer to integrate these two types of feature representations, which are
ultimately input to the dense layer for classification. It is easy to find that our
proposed EFV possesses the characteristics of efficient event information pro-
cessing, integration of multiple feature representations, spatiotemporal modeling
capability, consideration of event sparsity, and accurate classification capability.

To sum up, the main contributions of this work can be concluded as the
following two aspects:

• We propose an effective framework for recognition in event-based cameras,
utilizing Event Image-Voxel feature representation and fusion.

• The introduction of the Bottleneck Transformer enables the interaction and
fusion of dual-stream information, leading to improved recognition results.

2 Related Work

In this section, we give an introduction to Event-based Recognition1, Graph
Neural Networks, and Bottleneck Transformer.
Event-Based Recognition. Current research on event-based recognition can
be divided into three distinct streams: CNN-based [9], SNN (Spiking Neural
Networks)-based [11,12], and GNN-based models [13–15]. For the CNN-based
models, Wang et al. [9] proposed an event-based gait recognition (EV-gait)
method, which effectively removes noise via motion consistency. SNN is also
utilized for encoding the event stream in order to achieve energy-efficient recog-
nition. A kind of highly efficient conversion of ANN to SNN method is put
1 https://github.com/Event-AHU/Event Camera in Top Conference.
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forward by Peter and others [16], the method involves the balance of the weights
and thresholds, while achieving lower latency and requiring fewer operations.
In [17], a sparse backpropagation method for SNN was introduced by redefining
the surrogate gradient function form. Fang et al. [18] propose spike element-wise
(SEW) ResNet to implement residual learning for deep SNNS, while proving that
SEW ResNet can easily implement identity mapping and overcome the vanish-
ing/exploding gradient problem of Spiking ResNet. Wang et al. propose a hybrid
SNN-ANN framework for RGB-Event based recognition by fusing the memory
support Transformer and spiking neural networks, termed SSTFormer [19]. Jiang
et al. propose to aggregate the event point and voxel using absorbing graph neu-
ral networks for event-based recognition [20].

For point cloud based representation, Wang et al. [21] treat the event stream
as a set of 3D points in space-time, i.e., space-time event clouds, and adopt the
PointNet [22] architecture, which directly takes the point cloud as input and
outputs the class label for the entire input or each point segment/part label for
each input point. Xie et al. [23] propose VMV-GCN, a voxel-wise graph learning
model designed to integrate multi-view volumetric data. Li et al. [24] introduce
a Transformer network to directly process event sequences in its native vector
tensor format to effectively represent the temporal and spatial correlations of
input raw events, thereby generating effective spatio-temporal features for the
task. Different from previous works, this paper designs an event recognition
method based on Transformer and graph convolutional neural network, which
transmits bimodal information through a specific method and learns a unified
feature representation, so as to represent event data more effectively.
Graph Neural Networks. One notable application of GNNs in event data
recognition is gait recognition. Wang et al. [15] propose a 3D graph neural net-
work specifically designed for gait recognition. The model leverages the graph
structure to capture the spatial and temporal dependencies in gait patterns.
Bi et al. introduce the concepts of residual Graph Convolutional Neural Net-
works (RG-CNN) and Graph2Grid blocks [13,14], which exploit graph structure
to extract and exploit spatial and temporal information from event data. The
Asynchronous, Event-based Graph Neural Networks (AEGNN) proposed by [25]
addresses the processing of events as “evolving” spatio-temporal graphs. In the
field of object recognition, Li et al. [26] introduce SlideGCN, a GNN-based model
that focuses on fast graph construction using a radius search algorithm. Different
from previous works, we adopt a graph Convolutional Neural Network (GCN)
to process the graph data and connect the outputs of GCN and ST-Transformer
module for accurate event-based pattern recognition.
Bottleneck Transformer. The traditional Transformer model has the prob-
lem of large computation and memory overhead when processing large-size
images. Srinivas et al. [27] propose a novel network architecture called Bottle-
neck Transformer, which achieves dimensionality reduction of spatial attention
by introducing a “bottleneck layer” between high-resolution and low-resolution
representations of input features, thereby reducing computational consumption
and increasing model scalability. Li et al. [28] introduce a local multi-head self-
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attention mechanism and a novel position encoding method to solve the scalabil-
ity bottleneck of Transformer under GPU memory constraints. Nagrani et al. [29]
propose a multimodal bottleneck converter (MBT) and guided the bottlenecks
in it to connect across modes. Song et al. [30] propose a new model BS2T that
captures long-range dependencies between pixels in HS images by leveraging the
self-attention mechanism in Transformers. In addition, we innovatively introduce
bottleneck Transformer to promote the fusion of dual-stream information and
improve the performance of module fusion.

3 Our Proposed Approach

3.1 Overview

Given an input event stream consisting of hundreds of thousands of events,
our approach involves several steps to enhance the representation. Initially, we
employ event frame stacking and voxel construction techniques to generate event
frame and voxel representations, respectively. Subsequently, we utilize two inter-
mediate representations, namely event frame and voxel graph, to capture the
spatio-temporal relationships within the event stream. To further improve the
feature descriptors for event frame and graph-based event representation, we
propose a novel dual branch learning network. Finally, we combine these rep-
resentations to create a comprehensive representation for event data, enabling
effective recognition. The overall framework is depicted in Fig. 2. In the following
sections, we provide a detailed explanation of each module.

3.2 Network Architecture

Input Representation. Considering the large amount of data and compu-
tational complexity, it is necessary to employ some down-sampling techniques
to reduce the number of events. In this paper, we adopt two kinds of sampling
techniques to obtain the compressed event representations. We first transform
the asynchronous event flow into the synchronous event images by stacking the
events in a time interval based on the exposure time. We also employ voxeliza-
tion to obtain voxel representations. Specifically, given the original event stream
E with range H,W, T , we divide the spatio-temporal 3D space into voxels with
the size of each voxel being h′, w′, t′. Hence, each voxel generally contains sev-
eral events and the resulting event voxels in spatio-temporal space are of size
H/h′,W/w′, T/t′. In practice, the above voxelization usually still produces tens
of thousands of voxels. In order to further reduce the number of voxels and
alleviate the effect of noisy voxels, we also adopt a voxel selection process to
select top K voxels based on the number of events contained in each voxel. Let
O = {o1, o2 · · · oK} denote the collection of the final selected voxels. Each event
voxel oi is associated with a feature descriptor ai ∈ R

C which integrates the
attributes (polarity) of its involved events. Hence, each oi ∈ O is represented as:
oi = (xi, yi, ti,ai), where xi, yi, ti denotes the 3D coordinate of each voxel.
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Graph Neural Networks for Event Voxel Encoding. We similarly con-
struct a geometric neighboring graph Go(V o, Eo) for voxel event data O. To be
specific, each node vi ∈ V o represents a voxel oi = (xi, yi, ti,ai) ∈ O which is
described as a feature vector ai ∈ R

C . The edge eij ∈ Eo exists between node
vi and vj , if the Euclidean distance between their 3D coordinates is less than a
threshold R. We adapt Gaussian Mixture Model (GMM), convolution to learn
the effective representations for voxel graph. To be specific, in each GCN layer,
each event node vi aggregates the features from its adjacency nodes as

f ′
d(vi) ← σ

( ∑
v∈V

ωd(vi, v)f(v)
)
, d = 1, 2 · · · D (1)

where σ(·) denotes the activation function, such as ReLU. V denotes adjacency
nodes of vi. ωd(vi, v) denote the learnable convolution kernel weights. Finally,
we adapt average graph pooling to get the global representation of voxel graph.

Fig. 2. An overview of our proposed Image-Voxel Feature Learning framework for
event-based recognition.

Spatial-Temporal Transformer for Event Frame Encoding. After a series
of data augmentation, each video sample obtained T event frames with a size
of H × W . We extract initial CNN features and embed event frames through
StemNet (ResNet18 [2] is used in our experiments). After obtaining the initial
features, we designed an ST-Transformer module to further achieve a better
representation of spatio-temporal information. The proposed module consists
of multi-head self-attention (MSA), MLP, and Layernorm (LN). As shown in
Fig. 2, T event frames are divided into N patches in spatial dimension, there-
fore, the T × N tokens can be obtained. We add learnable location encoding to
these tokens and feed them into the ST-Transformer module to fully extract the
enhanced spatio-temporal features, as shown in Eq. 2 and Eq. 3:

Y = Xin + MSA(LN(Xin)) (2)

Xout = Y + MLP (LN(Y )) (3)
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Bottleneck Transformer. In order to achieve the interaction between Event
Images and Event Voxels information representations and learn a unified spatio-
temporal context data representation. We also designed the Fusion Transformer
module and introduced the Bottleneck mechanism. Specifically, let Ximage ∈
R

T×N×d and Xvoxel ∈ R
1×d represent the outputs of the previous ST Trans-

former and GNN modules, respectively. We first collect the T × N image and
T × N randomly initialized Bottleneck tokens together and feed them to Fusion
Transformer which includes multi-head self-attention (MSA) and MLP submod-
ule, i.e.,

F 1 = [Ximage,Xbottleneck] ∈ R
2×T×N×d (4)

F̃ 1 = FusionTransformer(F 1) (5)

We then split F̃ 1 into two parts, i.e., the images feature representation F̃ image

and the bottleneck feature representation F̃ bottleneck. The latter one will be
concatenated with Xvoxel and fed into the Fusion-Transformer module for inter-
active learning of the two representations. Similarly,

F 2 = [Xbottleneck,Xvoxel] ∈ R
(T×N+1)×d (6)

F̃ 2 = FusionTransformer(F 2) (7)

Finally, we concatenate both F̃ 2 and F̃ image together and flattened them into a
feature representation. After that, we utilize a two-layer MLP to output the final
class label prediction, as shown in Fig. 2. We adopt the Negative Log Likelihood
Loss function [31] to train the whole network.

4 Experiment

4.1 Dataset and Evaluation Metric

In this work, we utilized two datasets, namely DVS128-Gait-Day [10], N-
MNIST [32], and ASL-DVS [14], to evaluate our proposed model. Here is a
brief introduction to these datasets:

• ASL-DVS [14]: This dataset consists of 100,800 samples, with 4,200 samples
available for each letter. The focus was on the 24 letters representing the
handshapes of American Sign Language. Each video in this dataset has a
duration of approximately 100 ms. The author captured these samples using
an iniLabs DAVIS240c camera under realistic conditions.

• DVS128-Gait-Day [10] dataset is proposed for event-based gait recogni-
tion. It contains 4,000 videos corresponding to 20 classes. 20 volunteers are
recruited for data collection using a DVS128 Dynamic Vision Sensor (the
pixel resolution is 128 × 128).

• N-MNIST [32] dataset is obtained by recording the display equipment when
visualizing the original MNIST (28 × 28 pixels). The ATIS event camera is
used for the data collection and each event sample lasts about 10 ms. There
are 70,000 event files for this dataset, the training and testing subset contains
60,000 and 10,000 videos, respectively. The resolution of this dataset is 28×28.
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Note that the top-1 and top-5 accuracy are employed as the evaluation met-
rics throughout our study.

4.2 Implementation Details

Our proposed dual-stream event-based recognition framework can be trained in
an end-to-end manner. The initial learning rate is set as 0.001 and multiplied by
0.1 for every 60 epochs. We select eight frames for each video sample and divide
each frame into eight tokens. For the constructed voxel graph, the threshold R
is set to 2. The scale of the voxel grid is (4. 4. 4) for the ASL-DVS dataset.
We select 512 voxels as the graph node for the structured graph representation
learning. Our code is implemented using Python 3.8 and trained on a server with
RTX3090 GPUs.

Table 1. Results on the ASL-DVS [14] dataset.

EST [33] AMAE [34] M-LSTM [35] MVF-Net [36] EventNet [37]

0.979 0.984 0.980 0.971 0.833

RG-CNNs [14] EV-VGCNN [38] VMV-GCN [23] EV-Gait-3DGraph [9] Ours

0.901 0.983 0.989 0.738 0.996

4.3 Comparison with Other SOTA Algorithms

As shown in Table 1, previous works already achieve high performance on the
ASL-DVS [14] dataset. For example, the EST [33] (0.979), AMAE [34] (0.984),
M-LSTM [35] (0.980), and MVF-Net [36] (0.971). Note that the GCN-based
model, VMV-GCN [23], achieves better results, i.e., 0.989 on the top-1 accuracy.
Thanks to the spatial-temporal feature learning and fusion network proposed in
this work, we set new state-of-the-art performance on this dataset, i.e., 0.996. On
the N-MNIST [32] dataset, as shown in Table 2, we also achieve SOTA perfor-
mance compared with recent strong models. These comparisons fully validated
the effectiveness of our proposed framework for event-based recognition. We pro-
vide two figures to better illustrate our results, as shown in the left subfigure of
Fig. 3.

Table 2. Results on the N-MNIST [32] dataset.

EST [33] M-LSTM [35] MVF-Net [36] Gabor-SNN [39] EvS-S [26]

99.0 98.6 98.1 83.7 99.1

HATS [39] EventNet [37] RG-CNNs [14] EV-VGCNN [38] Ours

99.1 75.2 99.0 99.4 98.9
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4.4 Ablation Study

To help researchers better understand the method we proposed, in this section,
we conduct comprehensive experiments of component analysis on the DVS128-
Gait-Day dataset and ASL-DVS dataset to check their influence on the overall
model.
Component Analysis. Table 3 shows the effect of using different components
on experimental results. In this part, we didn’t use the Bottleneck, and the
dataset we use is DVS128-Gait-Day. Event image only indicates that we only
transform the event flow into the synchronous event images, which gets the result
of 95.2. Event voxel only indicates that we only employ voxelization to obtain
the compressed event representation and it achieves 98.0. We also use Event
image and Event voxel together when obtaining event representation, denoted
by Event Image+Voxel. It gets the result of 98.7. We can easily draw the
conclusion by comparing the above three cases that using Event Image and Event
voxel together can achieve higher performance, which reflects the effectiveness
of our method.
Effect of Bottleneck. In this paper, we use Bottleneck Transformer to enhance
the performance when fusing the modules. As shown in Table 4, w/o Bottle-
neck Feature means we do not feed the learning token into Bottleneck. It gets
the result of 98.5. w/o FusionFormer means we do not use Fusion Transformer
before the linear layer, in other words, we use the all components proposed in
this paper except for the Bottleneck, and the result is 98.3. We found that com-
pared with these two experiments, the result has increased after introducing the
Bottleneck which indicates that the Bottleneck is a better choice for our frame-
work. At the same time, a comparison with the experimental results in Table 1
shows that the experimental result drops when there is no Bottleneck, which also
demonstrates Bottleneck has a positive effect on our proposed model (Table 3).

Fig. 3. Visualization of top-5 recognition results and feature distribution on the ASL-
DVS dataset.



12 C. Yuan et al.

Table 3. Ablation study on DVS128-Gait-
Day dataset [10].

Index Component Results

1 Event image only 95.2

2 Event voxel only 98.0

3 Event Image + Voxel 98.7

Table 4. Ablation study on ASL-DVS [14].

Index Component Results

1 w/o Bottleneck Feature 98.5

2 w/o FusionFormer 98.3

4.5 Parameter Analysis

The storage space of our proposed method is 220.3 MB. Our model spends 16.7
ms for each video in ASL-DVS dataset.

5 Conclusion

Previous event-based recognition approaches typically represented event streams
as point clouds, voxels, or images, and employed various deep neural networks to
learn feature representations. However, these approaches are usually challenged
by monotonous modal expressions and the design of the network structure. To
overcome these challenges, this paper introduces a novel dual-stream frame-
work for event representation, extraction, and fusion. The proposed framework
simultaneously models two common representations: event images and event vox-
els. By leveraging Transformer and Structured Graph Neural Network (GNN)
architectures, spatial information and three dimensional stereo information can
be learned separately. Moreover, the introduction of a bottleneck Transformer
facilitates the fusion of the dual-stream information. Extensive experiments were
conducted to evaluate the performance of our framework, using two widely used
event-based classification datasets. The results demonstrate that our proposed
framework achieves state-of-the-art performance. These findings highlight the
effectiveness of the dual-stream framework in addressing the limitations of exist-
ing approaches and improving the recognition accuracy in event-based object
recognition tasks.
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dation of China (No. 62102205).
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