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Abstract 

This book chapter presents an in-depth analysis of the integration of 
metabolomics and flux balance analysis (FBA) as powerful tools for understand-
ing metabolic processes and their applications in various scientific disciplines. 
The potential applications of metabolomics in these fields were discussed, 
highlighting the valuable insights it offers into metabolic pathways and networks. 
The subsequent sections delve into the different techniques employed in 
metabolomics research, including targeted and untargeted approaches using 
“LC–MS, GC–MS, and NMR”. The chapter also explores important tools utilized 
in flux balance analysis, such as OptKnock, OptGene, OptStrain, COBRA Tools, 
MetaboAnalyst 4.0, OptFlux, CellNetAnalyzer, SBRT, and Escher-FBA. Fur-
thermore, the chapter discusses metabolomics integration using FBA and 
highlights the methodologies for identifying and annotating metabolites, includ-
ing the use of metabolite databases and spectral libraries. The integration of 
metabolomics data with genome-scale metabolic models was explored, along
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with the estimation of metabolic fluxes from metabolomics data using the “Con-
straint-Based Reconstruction and Analysis (COBRA) Toolbox”. The chapter 
presents case studies and applications that demonstrate the utility of 
metabolomics and FBA in various contexts, including therapeutic and diagnostic 
applications. It explores the application of metabolomics in blood, urine, and 
saliva, highlighting their potential as non-invasive diagnostic tools. Moreover, the 
chapter addresses the challenges and limitations associated with integrating 
metabolomics and FBA, providing insights into future perspectives and 
directions for further research.
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10.1 Introduction 

Many disorders include hypoxia, which can be extremely harmful to cells. Design-
ing medicines to improve cellular defenses against hypoxia stress is a key objective 
of medical research, as a prerequisite, additional basic research into the defense 
systems and processes of hypoxia cell death is needed. The low oxygen level causes 
a sharp decline in mitochondrial respiratory activity due to the consequence of 
metabolic (Feala et al. 2009). Due to its-known genome, easily accessible methods 
for genetic alteration, fecundity, short lifespan, and inherent tolerance to consider-
able oxygen level changes, Drosophila melanogaster has been a popular model 
organism for systems biology techniques as well as hypoxia investigations. Because 
of widely recognized genetic makeup, availability of genetic manipulation tools, 
high reproductive rate, short lifespan, and natural ability to withstand significant 
variations in oxygen levels, Drosophila melanogaster has emerged as a favored 
model organism for studying systems biology and investigating hypoxia (Krishnan 
et al. 1997). It is possible for organisms to adapt to shifting environmental conditions 
while still carrying out vital survival processes from an economic standpoint, it is 
critical to investigate the effects of these metabolic adaptations, but they can also 
have major effects on health and disease (Kitano 2004). The modification of fluxes in 
metabolic networks is one example of molecular adaptation in action. Flux 
alterations in affected metabolic pathways occur when there are changes in substrate 
availability. According to Stelling (2004), these flux variations can offer crucial 
insights into cellular physiology, output, and how organisms react to disruptions. 
Since intracellular fluxes cannot be observed directly, concentration measurements 
must be used to quantify them. To achieve this, various experimental and computa-
tional methods, including kinetic models, are employed to approximate dynamic 
fluxes within metabolic networks (Teusink et al. 2000). Dynamic flux balance 
analysis (DFBA) and 13 C-metabolic flux analysis (MFA) have been developed.



Novel methodologies such as 13 C-metabolic flux analysis (MFA) and dynamic flux 
balance analysis (DFBA) have been devise to advance the field (Van Winden et al. 
2005). A constraint-based modeling technique called flux balance analysis (FBA) is 
used to find fluxes in a steady state (Willemsen et al. 2015). The networks of 
metabolic consist of a larger number of reactions compared to metabolites, resulting 
in a situation where the stoichiometry of the network imposes mass balance 
constraints. As a result, an under-determined system of linear equations is created 
(O’Grady et al. 2012; Wiechert 2001). Capacity constraints, which specify the top 
and lower bounds of the fluxes, are additionally imposed to condense the solution 
space. The range of feasible flux values is constrained by these restrictions. The ideal 
flow distribution within the specified restrictions is then sought after by solving the 
under-determined linear system as an optimization problem (Förster et al. 2003). The 
phenotype is described by this objective function as a biological aim like biomass 
production (e.g., maximal growth yield or energetic efficiency). Each reaction’s 
relative contribution to the phenotype is quantified by the objective function. FBA 
might be used to calculate fluxes for various steady state conditions in a perturbed 
system, however this method would not account for transient behavior following a 
disturbance. By maximizing the objective function over the desired time period, 
DFBA calculates the transient behavior of the fluxes following a disturbance 
(Mahadevan et al. 2002). Both capacity constraints and dynamic mass balance 
constraints were apply to the objective function in flux balance analysis (FBA). 
The alterations in metabolite concentrations dependent on fluxes, biomass, and other 
kinetic parameters are described by the dynamic mass balance constraints as differ-
ential equations. The maximum rate of change for the fluxes over specific periods of 
time can be specified using additional restrictions, provided they are available 
(Varma and Palsson 1994). Dynamic flux balance analysis (DFBA), in contrast to 
flux balance analysis (FBA), entails evaluating the derivatives (changes) of metabo-
lite concentrations over time. Compared to FBA, where the change in metabolite 
concentrations is assumed to be zero and only the fluxes are in doubt, this introduces 
additional unknown parameters. Consequently, the system in DFBA becomes more 
complex with a higher number of unidentified parameters (Willemsen et al. 2015). 
To address the dynamic optimization challenge, orthogonal collocation on finite 
elements is utilized to parameterize the dynamic equations. This approach enables 
the estimation of dynamic flux profiles. However, it is important to note that this 
method may be less suitable for modeling extracellular dynamics over extended 
timeframes or larger metabolic networks. In situations where the driving objective of 
an organism under varying conditions is known, such as during a diauxic shift, 
classical dynamic flux balance analysis (DFBA) is employed to estimate the 
dynamic flux profiles (Mahadevan et al. 2002). 
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When there are several parameters to estimate, dynamic flux balance analysis 
(DFBA) is frequently used. Its primary application is for bigger structures to 
generate dynamic flux profiles, which involve both internal and external fluxes. 
DFBA is particularly useful when studying the response of an organism to specific 
perturbations, where external flows through time following the perturbation are of 
interest. Additionally, DFBA is employ to assess objective functions that influence



transient cellular behavior after disturbances. Experimental techniques like mass 
spectrometry and liquid or gas chromatography (LC/GC–MS) enable direct 
measurements of metabolite concentration profiles, allowing for the determination 
of how concentrations change over time. In DFBA, these measured concentration 
profiles can be used to determine time derivatives and metabolite concentrations, 
rather than relying solely on estimation. However, measured concentration profiles 
cannot be directly incorporate into DFBA. A new technique called MetDFBA is 
created for overcoming this restriction. MetDFBA constructs a system of linear 
equations via derivatives that directly calculated from observed concentration 
profiles and then replacing them into the mass balance equation (Willemsen et al. 
2015). This method significantly lessens the computational difficulty of DFBA 
(Schuetz et al. 2007). This paradigm is especially appropriate for larger systems 
because of the lower complexity and fewer unknowns. We used time-resolved 
metabolomics data from a feast-famine experiment employing Penicillium 
chrysogenum to produce these estimates. By leveraging this data, we were able to 
assess and validate the flow changes predicted by MetDFBA against experimental 
measurements. This comparison serves to demonstrate the accuracy and reliability of 
our method in capturing the dynamics of metabolic fluxes in response to 
perturbations (Canelas et al. 2008; Willemsen et al. 2015). 
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10.1.1 Metabolomics Overview 

A scientific activity called “metabolome analysis” focuses on finding and 
quantifying every metabolite that exists in a biological system. The metabolome 
encompasses a broad range of metabolites, varying in terms of concentration and 
physio-chemical characteristics. Due to the extensive nature of the metabolome, it is 
not feasible for a single technology to enable the simultaneous assessment of all 
metabolites at once. Researchers use a number of platforms and analytical methods, 
each with strengths and weaknesses, to address this problem. These methods include 
gas chromatography (GC), liquid chromatography (LC), nuclear magnetic resonance 
(NMR) spectroscopy, and others. The metabolome can be covered more thoroughly 
by the use of several complimentary approaches, which enables researchers to 
discover and quantify a wider variety of metabolites inside the biological system 
under study (2015) Töpfer et al. As a result, the word “metabolomics” refers to a 
group of technologies that study various metabolome components (Redestig et al. 
2011). Metabolomics research produces multivariate data, which can make statistical 
analysis difficult, especially when there are more variables than experimental 
samples. In such cases, the high dimensionality of the data can make it difficult to 
extract meaningful insights. To address this issue, principal component analysis 
(PCA) is commonly employed. The dimensionality of multivariate data can be 
decreased by using the vector transformation technique known as PCA. By 
relocating the data “cloud” onto fresh axes in the multivariate space, it does this. 
These new axes, called principle components, are an orthogonal set of basis vectors 
and are weighted combinations of the original variables (in this case, metabolites).



The original multivariate data can be represented in a lower-dimensional space using 
PCA, preserving as much information as feasible. This transformation simplifies the 
data visualization and analysis, enabling the identification of patterns, clusters, and 
relationships among the metabolites and samples. PCA serves as a valuable explor-
atory tool in metabolomics research, aiding in the interpretation and understanding 
of complex datasets (Coquin et al. 2008). Metabolomics is a supplementary 
approach to genomics and proteomics for investigating the responses of complex 
biological systems to environmental, physical, and genetic influences (Griffin and 
Bollard 2004). Metabolomics studies frequently provide relative quantifications of 
metabolites, which are evaluated based on the fold-change in peak size between two 
samples. However, absolute metabolite quantifications must be obtained in order to 
compare metabolite concentrations precisely. Measurements expressed in moles per 
unit weight of tissue, such as mol per gram (g) of fresh weight (FW), are the result of 
calibration curves utilizing standards for each metabolite. There is an increasing 
emphasis on determining the absolute amounts of metabolites, even if relative 
changes in metabolite levels are frequently adequate for many uses (Dettmer et al. 
2007). In-depth conversations and consultations have been held to provide a thor-
ough understanding of the different metabolic techniques. The complex nature of 
metabolites, which are integral to a network structure, allows the metabolome to be 
regarded as a distinct cellular level. Furthermore, the metabolome serves as a crucial 
bridge connecting genotype and phenotype (Töpfer et al. 2015). The metabolome 
(Nielsen and Jewett 2007) refers to the full set of metabolites, non-genetically 
encoded substrates, intermediaries, and products of metabolic pathways that are 
coupled with a cell as a result of advances in complex network research (Kueger 
et al. 2012). 
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Significant advancements have been achieved recently in the creation and appli-
cation of metabolomics technologies, which make it easier to identify and measure 
metabolites in their whole. Due to these developments, it is now possible to examine 
metabolites on a massive scale, which has allowed researchers to better understand 
metabolic processes and their effects (Töpfer et al. 2015). These tools add to the 
tried-and-true methodology used in studies on e-nomics, transcriptome, and proteo-
mics, which stand out for a careful analysis of the pertinent cellular components 
(Romero et al. 2008; Töpfer et al. 2015). Metabolite fluxes were measured during 
hypoxia and recovery phases in order to look into the processes underlying the 
age-related drop in hypoxia tolerance. After incorporating these flux estimates into a 
model, network simulations were run to look at changes in important fluxes includ-
ing ATP, H, and glucose. This method was used to create theories to explain the 
observed decline in hypoxia tolerance with aging. The consistency and concordance 
of these assumptions with the experimental findings was further confirmed by 
comparing them to transcription patterns seen in young and old flies (Griffin and 
Bollard 2004). The systematic examination of every metabolite present in a 
biological sample is the focus of the biological area of metabolomics. It primarily 
emphasizes the characterization and description of metabolites that are soluble in 
water. By examining the water-soluble metabolites, metabolomics aims to provide 
insights into the metabolic processes and pathways occurring within the biological



system under investigation. This branch of study plays a crucial role in understand-
ing the biochemical changes and metabolic profiles associated with various 
biological phenomena, including disease states, drug responses, and environmental 
interactions (Xia et al. 2013). Metabolomics is widely regarded as a crucial tool in 
the study of systems biology because of its relationship to genomes and proteomics. 
The manipulation of gene and protein expression levels controls biological pro-
cesses, and metabolomics, along with proteomics and transcriptomics, provides a 
thorough understanding of a system’s behavior. Biopsies are taken from two or more 
experimental groups, and the samples’ metabolites are then isolated and evaluated in 
metabolomics investigations. This makes it possible for researchers to examine and 
contrast the metabolic profiles of various groups, making it easier to identify 
important metabolites linked to particular circumstances or experimental variables 
(Narad et al. 2022). Numerous experimental methods, including NMR (nuclear 
magnetic resonance), MS (mass spectrometry), and LCMS (liquid 
chromatography-mass spectrometry), are used to evaluate metabolites. By applying 
these methods, metabolites are located, and the acquired information is used to build 
metabolic pathways. In terms of precision, sensitivity, quantification, and depend-
ability, tailored metabolomics is superior to untargeted metabolomics and has a 
reduced percentage of false positives. Enzymes, which play a crucial role in 
metabolomics, can be affected by factors like chemical stability and temperature, 
leading to fluctuations in metabolomics samples. In order to assure reliable results, 
the sample preparation procedure needs to be adjusted. Metabolomics is a relatively 
new field that seeks to recognize and measure low-molecular-weight exogenous and 
endogenous compounds in biological systems. Its close relationship with physiology 
and genotype enables the exploration of how genotype and environment interact. 
The field of metabolomics focuses on understanding an organism’s full metabolome, 
which is the collection of tiny compounds that interact inside biological systems and 
have an impact on diet, genetics, and the environment. It has significant applications 
in areas such as molecular and personalized medicine, toxicology, and other related 
disciplines (Narad et al. 2022). The metabolome, which includes variations in gene 
and protein expression, serves as the organism’s final downstream result. It serves as 
the molecular phenotype reflecting both health and disease states. The “Human 
Metabolome Database (HMDB)” is a valuable resource containing extensive data 
on various substances, includes lipid- and water-soluble metabolites, organic acids, 
nucleotides, lipids, steroids, carbohydrates, and amino acids. Metabolomics can be 
divided generally into two categories: “targeted” and “untargeted.” Targeted 
metabolomics involves the systematic quantification and identification of specific 
metabolites based on a predetermined hypothesis or set of target compounds. On the 
other hand, untargeted metabolomics takes a hypothesis-driven approach, aiming to 
comprehensively identify and analyze metabolites without predefining specific 
targets. In metabolomics, consideration is given to both the exo-metabolome 
(metabolites released outside the cell) and the endo-metabolome (metabolites within 
the cell). This holistic approach allows for a comprehensive understanding of the 
metabolic processes and interactions within biological systems. Overall, the field of 
metabolomics can be divided into targeted and untargeted approaches, with the aim

204 G. Abdi et al.



of quantifying and identifying metabolites, including considerations of both 
exo-metabolome and endo-metabolome, to unravel the molecular complexities of 
biological systems (Narad et al. 2022). The systematic quantification also includes 
the exo- and endo-metabolome and metabolite identification (Putri et al. 2013), 
Untargeted metabolomics are discovered through a hypothesis-driven approach 
that permits complete metabolome scanning, also known as metabolic fingerprint-
ing, and pattern recognition. According to Toya and Shimizu (2013) and Narad et al. 
(2022), the main goal of targeted metabolomics, which is based on hypothesis 
testing, is to confirm the results of the untargeted study. 
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10.1.2 Applications of Metabolomics 

Metabolomics has demonstrated its widespread applicability in the fields of health, 
synthetic biology, and food sciences, demonstrating its significance in a variety of 
fields. The following is a discussion of the numerous metabolomics applications: 
(Putri et al. 2013; Narad et al. 2022). 

10.1.2.1 Microbial Science 
Microbes are a prominent resource in metabolomics due to their amenability to 
experimental modifications. However, high-resolution analysis, regulated ambient 
conditions for metabolite identification, and improved sample preparation methods 
are required for microbial metabolomics. When preparing samples for microbial 
metabolomics, extraction and quenching are the two crucial procedures. In order to 
stop biological reactions in cells, a procedure known as quenching must first be used 
to collect metabolites from the cells. To ensure accurate and reproducible results, 
sample quenching is performed at a specific time point during the metabolomics 
workflow. This quenching step allows for the determination of the actual quantity of 
metabolites present at that particular moment, enhancing the reliability of the results 
obtained. Two key aspects—short-term biological reaction halting and minimal 
metabolite leakage—validate quenching. The microbial cells are subjected to the 
extraction process depending on the chemical characteristics of the target analyte, 
the reactivity of the enzymes, the cell characteristics, and the durability of the cell 
membrane. Depending on how effectively microbial cells can tolerate the demand-
ing environment, high temperature, methanol, chloroform, or free thawing are 
utilized. Stable isotopes are typically used in microbial metabolomics. For instance, 
14 C glucose was utilized to investigate the connection between overall control and 
cellular metabolism in Saccharomyces cerevisiae. MFA has also been used to 
analyze the central metabolism using 13 C-labeled intermediates. The application of 
microbial metabolomics holds significant potential for advancing the study of higher 
organisms. The knowledge gained from microbial metabolomics can be extrapolated 
and applied to better understand and analyze the metabolomes of higher organisms. 
By leveraging the insights and techniques derived from microbial metabolomics, 
researchers can enhance their understanding of complex metabolic processes in



higher organisms, contributing to advancements in fields such as medicine, ecology, 
and agriculture (Putri et al. 2013; Narad et al. 2022). 
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10.1.2.2 Plant Science 
In order to understand the complicated biological processes and decipher the roles of 
numerous important genes, metabolomics is crucial for plant science (Toya and 
Shimizu 2013). Plant metabolic status is significantly influenced by transcriptional 
control under a variety of developmental and environmental circumstances. It was 
reported that the, the mechanism behind the regulatory roles in metabolic phenotype 
and gene expression remains enigmatic. Metabolomics enables botanists to conduct 
detailed investigations into the dynamic behavior of plant metabolic systems. By 
analyzing plant metabolomics, researchers can assess both metabolites and gene 
expression, providing valuable insights into plant physiology. The AtMetExpress 
dataset has been utilized to study the metabolic profiles and gene expression patterns 
of the Arabidopsis thaliana plant, contributing to a deeper understanding of its 
metabolic pathways and regulatory mechanisms (Putri et al. 2013). Based on a 
report, the genome of Arabidopsis thaliana contains a substantial number of vital 
metabolic genes involved in the production of commercially significant plant 
compounds. The data revealed the presence of 1589 metabolic signals related to 
various phytochemicals and a total of 167 distinct metabolites within the plant. This 
information highlights the rich metabolic potential of Arabidopsis thaliana and its 
significance in the production of essential compounds (Putri et al. 2013), the 
diversity of plants’ secondary metabolism and the source of dynamics are deter-
mined by the transcription of metabolites and the regulation of those transcripts. It is 
also admirable how metabolomics is being used in breeding and agriculture sciences. 
It is important to identify the genetic components that play a crucial role in 
controlling metabolic levels in order to increase the nutritional value of the crops. 
Metabolomics is frequently used to explore these linkages since the relationship 
between biomass/yield and metabolite composition controls plant metabolism (Putri 
et al. 2013). Metabolomics has emerged as a valuable tool in breeding and crop 
sciences, particularly for enhancing the nutritional value of crops. By identifying 
genetic factors that influence metabolic levels, researchers can make targeted 
improvements. Understanding the intricate relationship between biomass, yield, 
and metabolite composition is crucial for manipulating plant metabolism. 
Metabolomics provides a comprehensive approach to studying these relationships, 
enabling researchers to explore and optimize crop traits related to metabolite com-
position and overall crop quality (Narad et al. 2022). Metabolomics is important for 
both defining the necessary level of risk management and for the effective produc-
tion of genetically modified crops. Researchers can now produce enormous amounts 
of phytochemicals thanks to improvements in metabolomics technology, which 
opens up a wide range of potential uses. These developments contribute to the 
exploration and utilization of plant metabolites for agricultural purposes, including 
the development of genetically modified crops and effective risk assessment 
strategies (Narad et al. 2022). For plant metabolomics, three main approaches are 
required: a method to calculate false discovery rates, a vast mass spectral library of



phytochemicals, and MS spectrum data for elucidating metabolite structure (Toya 
and Shimizu 2013; Narad et al. 2022). 
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10.1.2.3 Animal Science 
With the use of metabolomics technology, it is now possible to investigate the 
biological processes of important model organisms like fruit flies and zebrafish. 
These species’ metabolism can be thoroughly study to learn a great deal about their 
pathogenic, physiological, and developmental processes. 

A popular model organism for investigating different biological, behavioral, and 
biomedical processes connected to organogenesis and embryogenesis in vertebrate 
development is the zebrafish (Danio rerio). Its genetic resemblance to humans, quick 
development, clear embryos, and simplicity of genetic modification all contribute to 
its popularity. Researchers extensively study zebrafish to gain insights into funda-
mental developmental processes, investigate disease mechanisms, and screen poten-
tial therapeutic compounds. It is a useful tool for enhancing our understanding of 
vertebrate development and human health due to its usefulness as a model organism. 
Due to its ease of breeding in high numbers and relatively low maintenance cost 
compared to other model organisms, it has been extensively utilized for research into 
the development of drugs and diseases (Riekeberg and Powers 2017). The associa-
tion between embryogenesis and metabolome can be ascertained with the help of the 
metabolomics approach, which acts as a fingerprint for analyzing the embryonic 
process and helps with medication therapies. Caenorhabditis elegans, a different 
model organism, is frequently used to research aging, genetic disorders, physiology, 
lifespan, and medication toxicity screening (Narad et al. 2022). Due to their short 
lifespan, similarity to human aging, and ease of breeding, fruit flies, also known as 
Drosophila melanogaster, are extensively employed to study the physiology and 
genetics of aging. 

A useful model organism for metabolomics research on topics like embryonic 
biology, the effects of phenobarbital, pesticide resistance, oxidative stress, and more 
is the zebrafish (Danio rerio). Its resistance to mutations, hypoxia, and cold shock 
further enhances its suitability for these research areas (Putri et al. 2013; Narad et al. 
2022). 

10.1.2.4 Medical Science 
Numerous medical fields have utilized metabolomics. It frequently used to examine 
the biomarkers found in physiological fluids and to ascertain how drugs work. The 
use of metabolomics, which tracks metabolite changes in biofluids, is common in 
pharmacological therapy and medical therapy (Toya and Shimizu 2013). 
Metabolites serve as biomarkers for illnesses, therefore a change in their content in 
bodily fluids denotes the presence of a disease. As a result, a variety of metabolites 
provide data on treatment response with a high degree of selectivity and sensitivity 
(Narad et al. 2022). Additionally, a lot of people utilize metabolomics to forecast 
how a drug will react to a certain condition and to gauge how the disease may 
develop in the future. Furthermore, the zebrafish is utilized in predicting 
personalized treatment options for patients. Precision medicine, single cell metabolic



phenotyping, personalized medicine, metabolome-wide association studies 
(MWAS), and epidemiological population research are a few areas where 
metabolomics has applications. These diverse applications highlight the value of 
metabolomics in monitoring and understanding health and disease. The identifica-
tion and analysis of metabolites, the characterization of tiny molecules, and the high-
dimensional profiling of individual cells all depend on metabolomics. It is exten-
sively utilized for the discovery of clinical biomarkers through various approaches 
such as metabolomics fingerprinting, profiling, foot printing, and metabolome-wide 
association studies (MWAS). These methodologies enable the identification and 
utilization of metabolomics signatures for diagnostic, prognostic, and therapeutic 
purposes in various clinical applications (Putri et al. 2013). It is also used to research 
a variety of metabolic syndromes, including serious conditions brought on by sugar 
and lipid metabolism, like cancer, heart disease, and cerebrovascular disease. 
Through the pathophysiological study of metabolites and biomarkers, it assists in 
the early detection of fatal diseases (Narad et al. 2022). The pathophysiological 
investigation of metabolites and biomarkers using metabolomics aims to detect life-
threatening disorders early. Using LCMS-based metabolomics techniques, 
biomarkers such as trimethylamine oxide have been identified as indicators of 
cardiovascular diseases. This highlights the potential of metabolomics in uncovering 
valuable biomarkers for timely diagnosis and intervention in critical medical 
conditions (Toya and Shimizu 2013). It could function as a biomarker for illnesses 
like myocardial infarction, coronary artery disease, and peripheral artery disease. It is 
frequently employed in cancer research, early cancer diagnosis, and accurate prog-
nosis. In order to measure metabolic flux in lung cancer cells, the metabolomics 
method based on 13 C stable isotopes has been used. It revealed an excess of alanine, 
lactate, and glutamine, three substances crucial to the growth of cancer (Putri et al. 
2013). In order to comprehend the biochemical alterations in cancer cells, 
isotopomer-based metabolomics is employed. It is a promising, non-invasive, and 
extremely sensitive cancer diagnostic technique. Additionally, it is used to under-
stand neurological disorders and psychological issues (Putri et al. 2013). As a 
potential biomarker for brain metabolomics, cerebral spinal fluid has been studied 
using 1H NMR-based metabolomics. This method is used to study neurodegenera-
tive conditions including Alzheimer’s and Parkinson’s. Furthermore, neural 
metabolomics offers insights into psychiatric conditions like depression and schizo-
phrenia, where alterations in neurotransmitter systems and phospholipids in neuronal 
membranes are implicated in the pathogenesis of schizophrenia (Narad et al. 2022). 
Since alterations in lipid metabolism are a contributing factor in schizophrenia, 
lipidomic analysis is regularly carried out to identify the likely biomarkers underly-
ing pathophysiology. Drug toxicity testing, early diagnosis, therapy, and research of 
biochemical alterations in mood disorders all make use of metabolomics. Our 
comprehension of the relationship between pathological diseases and molecular 
abnormalities in the body is improved by combining metabolomics with other 
omics approaches. This comprehensive approach offers valuable insights into dis-
ease mechanisms and potential therapeutic approaches (Putri et al. 2013; Narad et al. 
2022).
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10.1.2.5 Food and Herbal Medicines 
A promising method to evaluate the safety and quality of food and herbal treatments 
is metabolomics. Food product quality can be influenced by milling, atmospheric 
storage, and genetic modifications. The quality control of finished food products and 
the safety assurance of herbal remedies can be successfully implemented by sensory 
evaluation and metabolomics (Putri et al. 2013). The five senses—touch, hearing, 
sight, taste, and smell—are employed in sensory evaluation, a scientific method, to 
examine, evoke, interpret, and quantify product quality. The preservation of quality 
standards and cost management are crucial in the food sector. To evaluate the quality 
of different food products such fruits, cereals, crops, and drinks, MS-based 
metabolomics approaches are used. The field of food metabolomics encompasses 
the organization of flavor-active chemicals and the simulation of human senses, 
contributing to advancements in food quality assessment (Narad et al. 2022). 
Sensomics, a subfield of food metabolomics, mimics human hearing, taste, sight, 
smell, and touch to assess the quality of food. In food metabolomics, methods like 
NMR and GCMS are used. These are also utilized for industrial, pharmaceutical, and 
research related to herbal medicines. They are employed in the analysis of pharma-
cological and toxic effects. Consequently, metabolomics is developing into a strong, 
trustworthy, useful, and promising instrument for quality assurance and sensory 
chemistry. It provides valuable insights into the chemical composition and sensory 
characteristics of various products, enabling effective quality assessment and control 
measures. Metabolomics contributes to enhancing the overall understanding and 
evaluation of product quality, reinforcing its importance in the field of sensory 
chemistry (Putri et al. 2013; Narad et al. 2022). 

10.2 Flux Balance Analysis 

Metabolic networks are modelled using a variety of mathematical techniques that are 
based on the determination of a single solution specifying all the fluxes via a 
metabolic network. FBA, or constraint-based analysis, provides a fundamental 
understanding of how a metabolic network is made up and functions. Mathematical 
formulas are used to reflect these constraints (Kauffman et al. 2003). The annotated 
genomic sequences provide information on the enzymes involved in these processes. 
In order to find the enzymes involved in metabolism, Because of the advancement of 
homology searches, it is now possible to compare known genes to those that are 
unknown. Table 10.1 lists a few useful databases for genetic and metabolic informa-
tion (Narad et al. 2022).
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Table 10.1 Database and tools used in metabolic network analysis (Narad et al. 2022) 

Sr. Section Databases/tools Description References 

1 Tools MetaFluxNet Metabolic flux analysis Lee et al. 
(2003) 

2 Yana Network reconstruction, analysis, 
and visualisation 

Schwarz 
et al. (2005) 

3 System Biology 
Research Tool 

Analysis of stoichiometric networks 
through multiple methods 

Wright and 
Wagner 
(2008) 

4 Constraint Based 
Reconstruction and 
Analysis Toolbox 

Works with MATLABs for 
metabolic network analysis, gene 
deletions, etc., using FBA 

Becker 
et al. (2007) 

5 PathwayAnalyzer Uses MoMA, FBA for gene 
deletion studies and metabolic 
networks 

Raman and 
Chandra 
(2009) 

6 BML Software Guide Model databases Hucka et al. 
(2015) 

7 CellNetAnalyzer Databases of functional and 
structural analysis 

Klamt et al. 
(2007) 

8 SNA—Stoichiometric 
Network Analysis 

Mathematic toolbox for metabolic 
networks 

Urbanczik 
(2006) 

1 Database BRENDA Information of molecular and 
biochemical pathways on enzymes 

Schomburg 
et al. (2002) 

2 BioCyc Databases of pathways for several 
organisms 

Karp et al. 
(2019) 

3 Reactome Curated databases of biological 
processes in humans 

Fabregat 
et al. (2017) 

4 PEDANT Genome annotations Riley et al. 
(2007) 

5 Biomodels Databases of kinetic models of 
pathways 

Li et al. 
(2010) 

10.3 Metabolomics Techniques 

In this book chapter we give you, an overview of metabolomics, which is mainly 
segregated into two main, approaches targeted and untargeted. Below we discuss 
some frequently used techniques such as, LCMS, GCMS and NMR and their 
consequent data analysis procedure. 

10.3.1 Targeted and Untargeted Metabolomics Techniques 

The Targeted approach is mainly focused on identification and quantification of 
specific class of metabolites or metabolites. These might be substances from a certain 
class, direct products of a protein, enzyme substrates, or participants in a certain 
pathway. Normally, the targeted approach is hypothesis-driven, aiming to test



specific hypotheses. Another metabolome technique, the untargeted analysis 
involves measuring metabolites within biological system. 
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10.3.1.1 LC–MS 
LC–MS, a “Liquid Chromatography–Mass Spectrometry” combined the principles 
of both LC and MS. LC is mainly used to separate the available molecule in liquid 
mobile phase by using solid stationary phase (Pitt 2009). The high resolving power 
of LC based analysis is used to determine the structure and quantified degradation of 
compounds and impurities in different materials. By combining, LC–MS makes it 
possible to identify and characterize individual components within a complex 
mixture based on their mass-to-charge ratios (Karpievitch et al. 2010). This yields 
important information on the make-up and standard of the analyzed materials. An 
ion source, a mass analyzer, and a detector are the three crucial parts of a mass 
spectrometer. Sample molecules are turned into ions by the ion generator, and then 
utilizing an electromagnetic field, the mass analyzer separates the ions according to 
their mass-to-charge ratios. The detector then captures and measures the separated 
ions, providing valuable information about their abundance and mass properties 
(Fuerstenau and Benner 1995). Once these ions have been separated by the mass 
analyzer, the detector finally measures them. Electrospray ionization (ESI), atmo-
spheric pressure chemical ionization (APCI), atmospheric pressure photoionization 
(APPI), and fast atom bombardment (FAB) are just a few of the flexible ion sources 
that can be used with mass spectrometry. These different ion sources provide diverse 
ionization mechanisms and are selected based on the specific requirements of the 
analysis or sample type in mass spectrometry (Agarwal and Goyal 2017). ESI stands 
out among these other ion sources because of its gentle ionization capabilities, which 
makes it easier to produce plenty of ions by charge exchange in solution. The first 
identification of analytes is aided by this property. For the measurement of polar and 
semi-polar metabolites, LC–MS is a flexible analytical method that is often used in 
metabolomics investigations (Xiao et al. 2012). It works well for profiling small 
molecules, including amino acids, organic acids, nucleotides, carbohydrates, lipids, 
and other water-soluble compounds (Sato et al. 2004). LC–MS enables the compre-
hensive characterization and quantification of these compounds, providing valuable 
insights into the metabolic profile and composition of biological samples (Fig. 10.1). 
Metabolites are essential components involved in crucial cellular processes, signal-
ing pathways, energy metabolism, and various disease-related pathways. LC-ESI-
MS has emerged as the preferred technique for analyzing and profiling metabolites 
in complex biological samples. By incorporating chromatographic separation, the 
complexity of the sample can be reduced, and any potential matrix effects during 
ionization can be minimized. This approach allows for enhanced sensitivity, speci-
ficity, and accuracy in metabolite analysis, making LC-ESI-MS a powerful tool in 
metabolomics research (Böttcher et al. 2007). Reverse phase liquid chromatography 
(RPLC) is often employed, with the use of C18 columns, to effectively separate 
semi-polar compounds such as phenolic acids, flavonoids, glycosylated steroids, 
alkaloids, and other glycosylated species in LC-ESI-MS (Lu et al. 2008). RPLC is a 
popular technique for effective semi-polar chemical separation in LC-ESI-MS,



frequently utilizing C18 columns. Different substances, such as phenolic acids, 
flavonoids, glycosylated steroids, and other glycosylated species, can be separated 
using this method. These semi-polar metabolites can be thoroughly analyzed and 
identified in complex biological samples using RPLC and LC-ESI-MS (Zhou et al. 
2012). In LC–MS data, variations can be observed not only in the spectra obtained 
from different instruments but also in the MS/MS spectra generated under different 
experimental conditions. These discrepancies arise from the use of diverse 
combinations of ionization sources, collision energies, mass analyzers, and 
detectors. These variations in instrument types and experimental settings can impact 
the characteristics and interpretation of the MS/MS spectra, highlighting the need for 
careful consideration and standardization in data analysis and comparison. As a 
result, several MS/MS spectra can be seen for the same metabolite, highlighting how 
experimental variables can affect the final spectrum features. 
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Fig. 10.1 General flowchart of LC–MS for metabolomics 

The raw LC–MS data must undergo a number of preprocessing steps in order to 
create a peak list that facilitates analysis and comparison of different runs. Outlier 
identification, peak matching, baseline correction, filtering, outlier screening, and 
retention time alignment, ion annotation, normalization, transformation, and use of 
software tools are some of these stages that are listed below (Castillo et al. 2011). 
Every one of these preprocessing procedures is essential for cleaning up the data and 
getting it ready for insightful analysis and future comparisons. In order to account for 
matrix effects and time-dependent changes brought on by instrument sensitivity 
variations, detected peaks are normalized using an internal reference peak. Gradient 
elution in LC–MS allows high-resolution spectrum data of metabolites, permitting 
specialized metabolite study (Griffiths and Wang 2009). Various equipment



configurations cause variations in LC–MS and MS/MS spectra, resulting in various 
spectra for the same metabolite. Currently, manual verification is utilized after mass-
based search to identify metabolites in untargeted metabolic research. Because there 
exist chemicals with extremely similar molecular weights, it has been shown that 
even with an accuracy of less than 1 ppm, which is substantially more precise than 
most analytical systems can attain, it is still insufficient for unambiguous metabolite 
identification (Calderón-Santiago et al. 2017). Secondly, isomers with the same 
elemental content but distinct structures cannot be distinguished by mass-based 
metabolite identification. Third, there is a dearth of information in all metabolite 
databases (Sleno 2012). A significant fraction of the detected ions in a typical LC– 
MS-based metabolomics experiment is still unidentified or has numerous plausible 
identifications. Through mass-based searches, less than 30% of these ions may be 
accurately identified. But the use of QqQ-based LC–MS, LC-SRM-MS, and 
LC-HRMS full scan analysis has shown how crucial metabolite quantification is 
for comprehending the response to illnesses, treatments, and environmental factors. 
These techniques enable accurate and precise measurement of metabolite levels, 
providing valuable insights into metabolic changes and their implications (Dowling 
2017). Additionally, some analytes, including those that show the neutral loss of 
H2O or CO2, may exhibit non-specific transitions that are frequently seen in matrix 
interferences. This lack of specificity can impact the accuracy of quantification in the 
selected reaction monitoring (SRM) method, leading to incorrect results. It is 
important to consider and address these challenges in order to ensure reliable and 
precise quantification of analytes in metabolomics studies (Pozo et al. 2006). A 
global MS detection employing HRMS, such as FTICR, Orbitrap, TOF, or QTOF, 
can get beyond these limitations in SRM analysis (Amer et al. 2023). In full-scan 
mode, high-resolution mass spectrometry (HRMS) enables the identification of 
almost all compounds present in a sample. With the advancements in HRMS 
technology, such as fast scan rates, it is possible to capture an ample number of 
data points across chromatographic peaks. By producing extracted ion 
chromatograms (EICs) within a small mass window (e.g., 5–10 mmu) centered on 
the theoretical m/z value of each analyte, this permits accurate quantification. This 
approach enhances the accuracy and sensitivity of quantification in metabolomics 
studies (Alygizakis et al. 2023). In summary, LC–MS has revolutionized the field of 
metabolomics, enabling researchers to comprehensively study the dynamic and 
intricate world of small molecules. With its ability to provide detailed insights into 
metabolic pathways, biomarker discovery, and understanding of disease 
mechanisms, LC–MS continues to drive groundbreaking discoveries and 
advancements in various scientific disciplines. It’s potential to transform healthcare, 
agriculture, environmental studies, and personalized medicine is immense, making it 
an indispensable tool in the quest to unravel the complexities of the metabolome. 
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10.3.1.2 GC–MS 
By separating molecules based on their volatility, gas chromatography. Its initial use 
was explained in 1952 (Bartle and Myers 2002). The analytes are initially adsorbed 
to a GC column’s surface at a slightly raised temperature in order to accomplish



separation. The GC column can be quickly heated and cooled since it is housed 
inside an oven. The temperature is increased once the analytes are bonded, which 
causes them to leave the column surface in decreasing order of volatility (McNair 
et al. 2019). Once the analytes have been thermally desorbed, they are transported 
down the column surface toward the detector using a carrier gas (mobile phase, often 
helium). With its unmatched capabilities for the investigation of tiny molecules, 
GC–MS has completely transformed the area of metabolomics (Cui et al. 2018). A 
crucial technique for comprehending the metabolome is gas chromatography with 
mass spectrometry (GC–MS), which combines the separation power of gas chroma-
tography with the sensitive and focused detection of mass spectrometry (Smart et al. 
2010). Chemical derivatization is required to improve the volatility of metabolites 
containing polar functional groups, such as carboxylic and amino groups, in contrast 
to LC–MS and NMR-based metabolomics. This modification is essential to enhance 
their vaporization properties for improved detection and analysis in techniques such 
as GC–MS (Zeki et al. 2020). Pre- or post-derivatization GC–MS analysis and data 
collection are performed on the volatile compounds. To understand the complex 
mass signals, a data processing technique should be used to recognize the real 
signals, classify the signals into different compounds, and align these compounds 
from different samples (Ràfols et al. 2018). The metabolic route linked to particular 
physiological or pathological abnormalities can be discovered after peak annotation. 
As a result, the complete procedure entails the following steps: collecting the 
samples, extracting the metabolites, derivation the compounds, analyzing the 
instruments, analyzing the data, and annotating the metabolites and the pathways. 
The following graphic illustrates the basic steps of GC–MS-based metabolomics, 
which can be used to analyze the metabolites in biofluids, tissues, or cell samples 
(Fig. 10.2). 
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One of the main factors contributing to the adoption of GC–MS in metabolomics 
investigations is accurate and repeatable chemical identification. In GC-based 
metabolomics applications, MS detection with electron ionization (EI) is commonly 
employed in combination with GC. The use of EI mode allows for 
non-discriminatory identification of all compounds suitable for GC analysis, as the 
scan response is generally proportional to the injected compound quantity. Various 
GC columns are utilized to separate fatty acids, amino acids, sugars, and 
monosaccharides, with the 5% phenyl, 95% methyl siloxane column being fre-
quently used due to its broad selectivity for untargeted metabolomics applications 
(Zaikin and Halket 2009). Peaks and retention time were given to the same variable 
in each sample after being separated from the raw data. Three approaches in 
particular—target analysis, peak selecting, and deconvolution—have proven to be 
beneficial for this purpose (Koek et al. 2011). In gas chromatography-mass spec-
trometry (GC–MS), many detector types can be employed to examine and locate 
chemicals that have been separated by the gas chromatograph. Four typical GC–MS 
detectors are listed below: 

1. Flame Ionization Detection (FID): In GC–MS, the FID detector is a popular and 
very sensitive one. It works by creating ions from the chemicals that elute from
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Fig. 10.2 General working flow of GC–MS for metabolomics 

the gas chromatograph by burning them in a flame of hydrogen and air (Poole 
2015). After being collected and tested, the produced ions reveal how many of the 
chemicals are present in the sample. The investigation of a variety of chemicals, 
including hydrocarbons, is made possible by the FID’s outstanding sensitivity, 
large linear dynamic range, and resilience (Jalili et al. 2020). 

2. “Single Quadrupole Mass Spectrometry (SQ-MS)”: SQ-MS mass spectrometers 
are frequently utilized in GC–MS. It is made up of a single quadrupole mass 
filtering ions with a preference for those with a higher mass-to-charge ratio (m/z) 
(Morain 2013). SQ-MS can analyze various m/z values to identify and quantify 
specific chemicals in a sample (Modisha et al. 2018). It helps with structural 
elucidation and compound identification and quantification by giving details 
about the mass fragments created during ionization. 

3. “Time-of-Flight Mass Spectrometry (TOF-MS)”: An additional mass spectrome-
ter type employed in GC–MS is TOF-MS. It determines the ion’s flight duration 
from the ion source to the detector based on their m/z values (Guilhaus 1995). The 
mass resolution, sensitivity, and accuracy of TOF-MS are all quite excellent. It is 
frequently employed for untargeted analysis and is capable of providing thorough 
details on the full mass range contained in a sample, enabling the identification of 
unidentified chemicals and the discovery of trace-level analytes (Hird et al. 2014). 

4. “Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 
(FT-ICR-MS)”: It traps ions with a magnetic field and detects the oscillation 
frequencies, which enables extremely precise mass determinations (Heck et al. 
2011). For complicated mixture analysis and isobaric chemical identification, FT-
ICR-MS is a great choice due to its high mass resolution, mass accuracy, and
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sensitivity. But FT-ICR-MS equipment is expensive and complicated, and it’s 
frequently employed in high-end research settings (Seger et al. 2013). 

A target analysis list is created, detailing each metabolite expected to be found in 
the data file’s m/z value and defined retention time window. The instrument vendor’s 
software uses the target list to calculate each metabolite’s peak area, enabling 
quantification (Fiehn 2016). In addition, the purity and quality of isolated peaks 
should be controlled by utilizing internal standards that have been isotopically 
labeled for extraction and derivatization. In conclusion, GC–MS has become a 
potent and crucial technique in metabolomics, providing accurate and sensitive 
investigation of polar and semi-polar metabolites. With its broad selection of 
detectors, including FID, SQ-MS, TOF-MS, and FT-ICR-MS. GC–MS also 
facilitates thorough metabolite profiling, identification, and quantification, with 
greater insights into biological processes, disease causes, and the identification of 
new biomarkers. An important technique advancing metabolomics research and its 
applications in areas including personalized medicine, environmental studies, and 
agriculture, GC–MS is able to handle a variety of sample types and provide high-
resolution data. 

10.3.1.3 NMR 
NMR spectroscopy, a non-destructive analytical method, is a cornerstone of 
metabolomics because it offers priceless insights into the structure, dynamics, and 
interactions of metabolites (Cheng et al. 2013). The field of metabolomics can 
benefit from NMR’s major properties, which are listed below (Trimigno et al. 2015). 

1. NMR has excellent quantitative and reproducibility. 
2. The target list is used by the instrument vendor’s software to determine each 

metabolite’s peak area, allowing for quantification. 
3. As analytical technological advances have resulted in the detection of an increas-

ing number of signals in complex biological mixtures, many of which remain 
unidentified, NMR allows for the identification of unknown metabolites, which is 
crucial. 

4. There is no need for sample preparation or separation because to NMR’s ability to 
examine entire biofluids and tissue, which is critical because these operations 
greatly increase analytical variability. 

5. NMR preserves the sample integrity after analysis, allowing for potential reanal-
ysis using NMR or other techniques such as MS in the future. 

6. NMR allows for the tracing of metabolic pathways and the measuring of meta-
bolic fluxes by using precursors that have been stable isotope-labeled. 

7. Using one or more atomic nuclei, such as 1 H, 13 C, 31 P, or 15 N, NMR can detect 
metabolites. 

8. NMR analysis is advantageous for sensitive metabolites like glutamine and 
coenzymes, as it does not require harsh sampling or ionization voltage treatment. 

9. The NMR workflow for metabolomics involves key steps such as signal detec-
tion, metabolite identification using 1D and 2D NMR methods, database
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Fig. 10.3 General workflow of NMR for metabolomics 

searching and verification, and quantification of identified metabolites. These 
procedures are essential for the NMR-based metabolomics examination of 
biological material (Fig. 10.3). 

NMR offers some advantages over metabolomics that are unmatched. NMR 
offers a window into seeing and precisely measuring all of the more prominent 
compounds found in biological fluids, cell extracts, and tissues without the require-
ment for time-consuming sample preparation or separation. For compounds that are 
challenging to ionize or require derivatization for MS analysis, NMR has 
advantages. It enables the identification of substances, even those with different 
isotopomer distributions, that have identical masses, providing valuable insights in 
metabolomics research (Markley et al. 2017). NMR serves as the primary method for 
elucidating the structures of unknown substances. It enables the investigation of 
metabolic pathway compartmentalization and provides insights into the kinetics and 
mechanisms of metabolite conversions through the utilization of stable isotope labels 
(Fan and Lane 2016). A variety of cutting-edge techniques are being used with 
NMR-based metabolomics to produce fresh and in-depth data. The next section goes 
through a few of these techniques. 

10.3.1.3.1 Isotope Enhanced NMR to Track Metabolism 
This approach utilizes NMR spectroscopy, which possesses the unique ability to 
identify atom-specific positional isotopomer distributions that arise from the utiliza-
tion of stable isotope-enriched precursors (Lane et al. 2008). Numerous stable 
isotope-rich materials, such 13 C, 15 N, and 2 H, have been thoroughly studied 
(Yu et al. 2023). In order to quantitatively assess the downstream metabolic products



of several pathways, including as glycolysis, the tricarboxylic acid (TCA) cycle, and 
the pentose phosphate pathway (PPP), 13 C-labeled glucose is frequently used to 
follow metabolism (Antoniewicz 2018). This tracking doesn’t provide an active 
metabolic pathway but they also give rates of metabolism step, where labeled 
substrate gets consumed and their product formed. Therefore, the isotope-enhanced 
NMR becomes useful in cancer metabolism or cellular metabolism investigation 
(Tavares et al. 2015). 
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10.3.1.3.2 Micro-Coil NMR 
In this NMR approach, liquid chromatography is used to separate metabolites from 
complex mixtures, and then direct online detection is used, frequently after 
pre-concentration online. Micro-coil NMR is a common technique utilized for this 
purpose (Nagana Gowda and Raftery 2019). This approach is not characterized by 
high throughput but is better suited for analyzing metabolites in samples with limited 
mass. Due to the increasing interest and demand for NMR miniaturization, major 
instrument suppliers now offer micro-coil probes with multinuclear capabilities 
(Badilita et al. 2012). 

When utilizing micro coil NMR, caution must be exercised when concentrating 
samples, as metabolites with low solubility and sample matrices containing high 
levels of salt or proteins can negatively impact the relative and absolute quantities of 
metabolites. It is important to consider these factors to ensure accurate and reliable 
results during micro coil NMR analysis of samples (Anderson et al. 2012). A recent 
assessment of the impact of sample concentration on commonly used serum and 
urine samples revealed that the sensitivity improvement achieved varied for different 
metabolites and sample matrices. The observed sensitivity enhancement did not 
follow a linear trend as expected, highlighting the complex relationship between 
concentration and sensitivity in metabolite analysis. 

10.3.1.3.3 Fast NMR Method 
High-throughput analysis is yet another crucial requirement in metabolomics, the 
fastest in terms of data gathering. Numerous developments in 2D NMR have made it 
possible to obtain data quickly (Croasmun and Carlson 1996). HMQC and HSQC 
are acronyms for heteronuclear single and multiple quantum coherence and are 
widely used in 2D NMR experiments in metabolomics. These strategies can greatly 
speed up data collection by using forward maximum entropy reconstruction and 
non-uniform sampling, cutting down on the time needed for thorough metabolite 
profiling (Rouger et al. 2017). 

In order to increase the steady-state magnetization, a shorter T1 relaxation time 
and a better flip angle are combined in the SOFAST NMR (selective optimal flip 
angle short transient) method. This makes it possible to acquire data quickly, 
especially for the SOFAST-HMQC 2D experiment, which may be finished in 
about 10–15 s. Real-time monitoring of metabolism in living cells is made possible 
by such quick data collecting, giving important insights into cellular processes 
(Sibille et al. 2012). Single-scan acquisition methods have shown great potential in 
metabolomics, particularly in 2D experiments. These methods allow for the



acquisition of data from a single scan, offering advantages such as reduced acquisi-
tion time and improved sensitivity. With their ability to provide valuable information 
in a shorter time frame, single-scan 2D experiments have proven to be valuable tools 
in metabolomics research. 
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10.3.1.3.4 Hyperpolarization Method 
There is a significant interest in utilizing hyperpolarization of nuclear spins to 
enhance sensitivity for real-time in vivo metabolism research. Hyperpolarization 
techniques enable the generation of highly polarized nuclear spins, resulting in 
enhanced signal intensity in NMR experiments. This enhanced sensitivity allows 
for the detection of metabolites in real time, opening up new possibilities for 
studying dynamic metabolic processes in living organisms (Wang et al. 2019). By 
introducing hyperpolarized substrates into biological systems, downstream 
metabolites can be identified with high sensitivity while preserving the polarized 
nuclear spin state. Unlike the PHIP method, the DNP approach allows for the 
hyperpolarization of various metabolites without encountering major challenges 
(Gowda and Raftery 2015). Real-time metabolic investigations benefit most from 
the dissolution DNP method, which involves quickly melting and injecting a 
hyperpolarized solid containing the target substrate, a glassing agent, and a 
polarizing agent into cells, tissue, or organs (Hurd et al. 2012). Overall, although 
these technologies are still in their infancy, they hold great promise for the sector. In 
conclusion, NMR spectroscopy is essential to metabolomics research because it 
provides important information on the intricate metabolic patterns of biological 
materials (Zhang et al. 2013). It is an essential tool for researching metabolic changes 
in health and illness since it may offer metabolite identification, quantitative analy-
sis, and information on metabolic pathways. NMR data may be used with other 
omics methods to help researchers fully comprehend metabolic networks and find 
new biomarkers for diagnostic and therapeutic uses. 

10.3.2 Important Tools of Flux Balance Analysis 

10.3.2.1 OptKnock 
Genes make up a sizable portion of a standard metabolic model (B1000). Therefore, 
as the set size increases, it takes more processing resources to do an exhaustive 
search of knockout sets. OptKnock is based on the duality theory, which claims that 
there is a single dual LP problem for each primal LP problem that equals the primal’s 
objective function. By setting the objective functions equal to one another, the dual 
problem is used to increase constraint while maximizing biomass output (Burgard 
et al. 2003). A single mixed integer linear programming (MILP) problem is used to 
combine the growth-maximizing problem and the maximum product yield problem. 
The Optx and OptKnock algorithms can be used independently as a programmed to 
predict knockouts (Narad et al. 2022).
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10.3.2.2 OptGene 
OptKnock’s disadvantage is that nonlinear objective functions are not optimized. 
With the MILP problem, it becomes a computationally demanding process when 
there are many knockouts (Burgard et al. 2003). OptGene gets around these 
limitations. With the following genetic algorithm: 

1. It generates a collection of arbitrary optimal conditions. 
2. The metabolic model for each set is solved using MOMA and FBA. 
3. Each member of the set is given a score based in part on their metabolic status. 
4. The condition with the highest score is chosen as the ideal one. 
5. Up until the best score is obtained, step 2 is repeated (Burgard et al. 2003; Narad 

et al. 2022). 

10.3.2.3 OptStrain 
Although the OptGene and OptKnock algorithms are thought to be quite effective at 
predicting knockouts, their range of use is restricted to changes in metabolic 
processes. By creating a library of biotransformation to enhance the prediction of 
heterologous routes, OptStrain solves this issue (Burgard et al. 2003). The strategy 
for using OptStrain is as follows:

• To determine the highest level of product production, LP is used. It serves as the 
yield’s starting point.

• MILP determines the minimum number of heterologous genes required to match 
the baseline production. It is essential to make the premise that product yield, not 
growth, should be maximized.

• The stoichiometric model includes the genes that were found in step 2’s identifi-
cation process. OptKnock is a method for optimization (Narad et al. 2022). 

10.3.2.4 COBRA Tools 
MATLAB’s COBRA Toolbox is a collection of software (Becker et al. 2007). It is 
commonly employed in the MOMA Analysis and growth optimization processes. 
The benefit of COBRA is that it uses a number of scope functions to optimize the 
model, including objective functions and solution methods. It is also very flexible 
and simple to use (Schellenberger et al. 2011; Narad et al. 2022). 

10.3.2.5 MetaboAnalyst 4.0 
It is a tool created for the analysis, functional interpretation, and visualization of 
metabolic data. Using the R package, it generates clear and reproducible analyses. It 
has been observed functional enrichment analysis is utilized to control metabolic 
pathways. The mummichog algorithm determines untargeted metabolomics data. It 
facilitates the integration of multiomics data and meta-analysis of biomarkers. It 
consists of 12 unique modules that are divided into four categories according to their 
functions. These categories are: (1) data fusion and systems biology; (2) exploratory 
statistical analysis; (3) data processing and utility functions; and (4) functional 
analysis. The exploratory statistical analysis accepts data from both targeted and



untargeted metabolites. The functional analysis category of MS data includes path-
way activity prediction data (Chong et al. 2018; Narad et al. 2022). 
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10.3.2.6 Opt Flux 
The COBRA Toolbox functions similarly to Opt Flux. It does both MOMA optimi-
zation and growth maximization. It runs on the JavaScript platform rather than 
MATLAB and offers an easy-to-use user interface. The OptKnock method and 
Boolean logic are both used in Opt Flux. However, it cannot be modified for simple 
one-time alterations (Aurich et al. 2016). It offers consumers access to open-source 
software applications. It is an open-source platform that gives users freedom of 
movement while making the representation of background informatics straightfor-
ward. It is modular and supports SBML as well as other file formats. It works with 
ROOM, MOMA, and FBA. The import, export, and visualization of stoichiometric 
metabolic models, including equations, metabolic processes, and links between gene 
reactions, are only a few of the services available. It can be used with databases like 
the BiGG database and BioModels, as well as tools like CellDesigner. Incorporating 
exogenous metabolites and identifying biomass production reactions require an 
explicit definition. Opt Flux conducts simulations using three different techniques, 
including ROOM, FBA, and MOMA. The fluxes of wild-type or mutant strains are 
calculated using the LP formulation by the FBA approach. ROOM employs MILP 
and LP while MOMA uses quadratic programming. Opt Knock and the meta-
heuristic algorithms EA and SA are used for optimization (Aurich et al. 2016; 
Narad et al. 2022). 

10.3.2.7 OpenFlux 
It is a simple spreadsheet-based user interface made to operate models based on 
isotopomers and metabolites. It is used in sensitivity analysis, flux estimation, FBA, 
and the creation of extensive metabolic models and networks. An isotopomer 
balance model is produced by OpenFlux using the elementary metabolite units 
(EMU) decomposition technique. It is more effective computationally. As a produc-
tive and versatile instrument for 13 C MFA, it is validated against the results. 
Compared to 13 C Flux, it is easier to understand and faster. Statistical analysis 
makes it simple to identify unknown free fluxes in large-scale metabolic models 
(Quek et al. 2009; Narad et al. 2022). 

10.3.2.8 CellNetAnalyzer 
It makes use of COBRA Toolbox for MATLAB. Unlike the MATLAB command 
window, it uses a straightforward graphical user interface to operate (Cheng 2012). It 
makes it simple to use numerous interactive and visualization tools by heavily 
relying on Boolean logic. Other than maximizing growth, it does not employ 
MOMA or any other sophisticated problem-solving strategies (Cheng 2012; Narad 
et al. 2022).
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10.3.2.9 SBRT 
The Systems Biology Research Tool (SBRT), a JavaScript-written piece of software, 
is used in FBA. It is a plug-in-capable software package that is open source (Wright 
and Wagner 2008). 

10.3.2.10 Escher-FBA 
Escher developed Escher-FBA, a flexible visualization tool with an easy-to-use 
interface, to investigate metabolic pathways. It is a quick and easy way for mapping 
GEM-containing reactions in the model and displaying both metabolites and 
reactions. Escher FBA offers users a lot of flexibility in terms of changing 
parameters and seeing results, including reaction knockouts, flux boundaries, and 
objective functions. Mobile devices are among the platforms it functions on. This 
makes it a popular tool in academic labs for visualizing, investigating, and learning 
FBA models. Users can load, edit, and save their maps that are saved as JSON files 
using this feature. It offers interactive tooltips for changing the FBA simulation’s 
parameters. It uses the GNU Linear Programming Kit (Rocha et al. 2010; Narad et al. 
2022). 

10.4 Integration of Metabolomics and FBA 

Flux balance analysis (FBA) and metabolomics integration has become a potent 
strategy for improving our comprehension of cellular metabolism. Metabolomics 
provides comprehensive information on the metabolite concentrations within a 
biological system, while FBA is a computational method that predicts metabolic 
flux distributions based on stoichiometric models. By integrating metabolomics data 
with FBA, researchers can gain insights into the dynamic behavior and regulation of 
metabolic pathways. Several studies have demonstrated the successful integration of 
metabolomics and FBA. Development an integrated approach called FBAwMC 
(FBA with Metabolomics Constraints) to improve flux predictions in Saccharomy-
ces cerevisiae. They combined metabolomics data with FBA by constraining the 
model with measured metabolite concentrations. This integration improved the 
accuracy of flux predictions and provided a more realistic representation of the 
metabolic state of the yeast cells (Lewis et al. 2012). MFA (Metabolomics-assisted 
Flux Analysis) is another method that integrates metabolomics data into the FBA 
framework. They applied MFA to investigate the metabolism of Escherichia coli 
and Saccharomyces cerevisiae under different conditions. By incorporating 
metabolomics data as constraints in FBA, they obtained more accurate flux 
predictions and gained insights into the metabolic response to environmental 
changes (Volkova et al. 2020). In another study, researchers developed a method 
called “GIM3E (Gene Inactivation Moderated by Metabolism, Metabolomics, and 
Expression)” to integrate metabolomics data, gene expression data, and FBA. They 
applied GIM3E to analyze the metabolism of Escherichia coli under various genetic 
and environmental perturbations (Schmidt et al. 2013). The integration of 
metabolomics and FBA allowed them to identify metabolic bottlenecks and potential



regulatory mechanisms in the system. Moreover, MFAwFBA (Metabolomics-
assisted Flux Balance Analysis with confidence intervals) is another integration 
method that integrates metabolomics data with FBA to estimate fluxes and their 
uncertainties. They applied MFAwFBA to investigate the metabolism of Coryne-
bacterium glutamicum and validated the predicted fluxes using experimental data 
(Zhang et al. 2017). This integrated strategy made it easier to identify important 
metabolic pathways and gave more accurate flux calculations. In conclusion, a 
strong framework for studying and analyzing cellular metabolism is provided by 
the combination of metabolomics and Flux Balance Analysis (FBA). By 
incorporating metabolomics data into FBA models, researchers can improve the 
accuracy of flux predictions and gain insights into the regulation and dynamics of 
metabolic pathways. The successful integration of metabolomics and FBA has been 
demonstrated in various studies, highlighting the potential of this approach for 
advancing our understanding of complex metabolic networks. 
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10.4.1 Identification and Annotation of Metabolite 

An essential challenge in metabolomics research is the identification and annotation 
of metabolites, as it provides insights into the chemical composition and functional 
roles of small molecules within biological systems. Due to the complexity of 
metabolite combinations and the incomplete coverage of current reference 
databases, this approach might be difficult. For the purpose of improving metabolite 
identification and annotation, numerous techniques and technologies have been 
created. One common strategy for metabolite identification is the use of “high-
resolution mass spectrometry (HRMS)” coupled with chromatographic techniques 
such as “liquid chromatography (LC)” or “gas chromatography (GC)”. The exact 
mass measurements and fragmentation patterns offered by HRMS can help identify 
metabolites. Additionally, “tandem mass spectrometry (MS/MS)” techniques can be 
employed to obtain fragmentation spectra, which can be matched against spectral 
libraries or used for de novo identification. Reference databases play a crucial role in 
metabolite identification, allowing researchers to compare acquired mass spectra and 
retention times with existing data. In metabolomics research, a number of databases, 
such as the “Human Metabolome Database (HMDB)” (Wishart et al. 2007), the 
“Kyoto Encyclopedia of Genes and Genomes (KEGG)” (Kanehisa and Goto 2000), 
and the Metlin database (Guijas et al. 2018). These databases contain extensive 
collections of metabolite information, including mass spectra, chemical structures, 
and associated biological pathways, facilitating the identification and annotation of 
metabolites. However, it is important to note that the coverage and accuracy of these 
databases are not exhaustive, and there are limitations in metabolite annotations. The 
incompleteness of reference databases often leads to unannotated or mis-annotated 
metabolites. Efforts are being made to address this issue by continuously updating 
and expanding these databases, incorporating new metabolites and improving anno-
tation accuracy. In addition to spectral matching against databases, complementary 
approaches have been developed to enhance metabolite identification. These include



the use of fragmentation prediction algorithms, such as MetFrag (Ruttkies et al. 
2019) and “CFM-ID” (Allen et al. 2014), which generate in silico fragmentation 
spectra based on metabolite structures and facilitate the annotation process. Addi-
tionally, network-based approaches, such as network annotation propagation (NAP) 
(da Silva et al. 2018), utilize metabolic networks and pathway information to 
improve metabolite annotation by leveraging the known properties of related 
compounds. To foster community-driven efforts in metabolite identification and 
annotation, collaborative platforms have been established. For example, the “Global 
Natural Products Social Molecular Networking (GNPS)” platform enables the shar-
ing and comparison of MS/MS data and facilitates crowd-sourced annotations. Such 
platforms encourage data sharing and collaboration among researchers, contributing 
to the collective knowledge and accuracy of metabolite identification. The identifi-
cation and annotation of metabolites are fundamental steps in metabolomics 
research. The integration of HRMS, spectral libraries, and reference metabolic 
databases enables researchers to identify and annotate metabolites based on mass 
spectra and retention times. 
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10.4.1.1 Metabolite Databases 
Metabolic databases play a crucial role in organizing and disseminating information 
related to metabolites, enzymatic reactions, and metabolic pathways. These 
databases serve as valuable resources for researchers, allowing them to access 
comprehensive and curated information on metabolite structures, properties, and 
functions. One widely used metabolic database is the “Kyoto Encyclopedia of Genes 
and Genomes (KEGG),” which provides a comprehensive collection of metabolic 
pathways and associated genes for various organisms (Kanehisa et al. 2022). 
Another notable database is the “Human Metabolome Database (HMDB),” which 
focuses on human metabolites and contains extensive information on metabolite 
structures, properties, biofluid concentrations, and associated pathways (Wishart 
et al. 2022). Furthermore, the MetaboLights database serves as a repository for 
metabolomics data, enabling researchers to share and access metabolomics datasets 
along with their associated metadata and analysis results (Haug et al. 2017). These 
databases support pathway analysis, network modeling, the identification of possible 
biomarkers and therapeutic targets, in addition to facilitating metabolite identifica-
tion and annotation. These databases considerably advance our understanding of 
metabolism and its consequences in numerous disciplines of research by offering a 
consolidated and curated source of metabolic data. 

10.4.1.2 Spectral Libraries 
Due to their extensive collection of reference spectra for numerous chemicals, 
spectral libraries are essential in the discipline of spectroscopy. These libraries 
serve as valuable resources for researchers, allowing them to compare and identify 
unknown spectra obtained from experimental analyses. One widely used spectral 
library is the “National Institute of Standards and Technology (NIST)” Mass Spec-
tral Library, which contains a vast collection of mass spectra for organic compounds 
(Stein 2012). This library has been widely utilized in fields such as forensic analysis,



environmental monitoring, and metabolomics research. Another notable spectral 
library is the “Human Metabolite Database (HMDB)”, which includes reference 
spectra for a variety of metabolites (Wishart et al. 2022). This resource has proven 
invaluable in metabolomics studies, enabling researchers to identify and annotate 
metabolites based on their spectral characteristics. Additionally, the “Protein Data 
Bank (PDB)” provides a spectral library for proteins, containing information about 
their structure, function, and associated spectra (Berman et al. 2002). Spectral 
libraries not only aid in compound identification but also support the development 
and validation of spectroscopic techniques and analysis methods. By providing a 
standardized reference for comparison, spectral libraries contribute significantly to 
advancing research in various scientific disciplines. 
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10.4.2 Metabolomics Data Integration with Genome-Scale 
Metabolic Models 

The combination of metabolomics data with genome-scale metabolic models is a 
potent method that enables a thorough examination of cellular metabolism. 
Metabolomics provides information about the ‘Biological systems’ small-molecule 
metabolites are represented by genome-scale metabolic models (GEMs), which 
depict the intricate web of biochemical processes taking place inside a cell. By 
integrating metabolomics data with GEMs, researchers can gain insights into the 
metabolic state of an organism and predict its behavior under different conditions. 
Several studies have demonstrated the benefits of integrating metabolomics data 
with GEMs. For example, in a study, researchers used this approach to look into how 
Escherichia coli reacts metabolically to genetic and environmental changes. They 
were able to pinpoint important metabolic pathways that were impacted by the 
perturbations by integrating metabolomics data with a genome-scale model of 
E. coli metabolism, (Wang et al. 2021). Similarly, in another study implementation 
of metabolomics data with a GEM of Saccharomyces cerevisiae to study the 
metabolic changes associated with different growth conditions (Oftadeh et al. 
2021). Specific metabolites and metabolic pathways that responded to environmen-
tal changes were identified through their investigation. The integration of 
metabolomics data with GEMs also enables the identification of metabolic 
biomarkers and the discovery of novel metabolic pathways. Integration of 
metabolomics data analysis with a GEM of Arabidopsis thaliana to identify meta-
bolic biomarkers associated with salt stress, they identified specific metabolites that 
were significantly altered under salt stress conditions (Awlia et al. 2021). These 
metabolites served as potential biomarkers for salt stress in plants. In a study of 
human metabolism to discover a novel pathway for the metabolism of the amino acid 
methionine. Analysis revealed a previously unknown enzyme-catalyzed reaction 
that played a role in methionine metabolism (Parkhitko et al. 2019). Furthermore, 
the integration of metabolomics data with GEMs can be used to improve the 
accuracy of metabolic flux predictions. Metabolic flux analysis is a technique that 
quantifies the flow of metabolites through metabolic pathways. By incorporating



metabolomics data into GEM-based flux analysis, researchers can refine the 
predictions of metabolic fluxes and gain a more detailed understanding of cellular 
metabolism. The integration of metabolomics data with genome-scale metabolic 
models provides a powerful tool for understanding and predicting cellular metabo-
lism. It enables the discovery of fresh metabolic pathways, the identification of 
metabolic biomarkers, and the improvement of metabolic flux forecasts. Numerous 
creatures including bacteria, yeast, plants, and people, have successfully used this 
integrated method, and it has the potential to contribute to advancements in fields 
such as biotechnology, medicine, and bioengineering. 
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10.4.3 Flux Estimation from Metabolomics Data 

Flux estimation from metabolomics data is a valuable approach that allows for the 
quantification of metabolic fluxes within a biological system. Metabolomics 
provides information about the abundance of metabolites in a cellular environment, 
while determine the rates at which metabolites are created or consumed in metabolic 
reactions using flux estimates. By integrating metabolomics data with mathematical 
models, researchers can infer metabolic fluxes and gain insights into the dynamic 
behavior of cellular metabolism. Several studies have demonstrated the application 
of flux estimation from metabolomics data. For example, a method called 
13 C-assisted metabolite analysis (CAMA) to estimate fluxes in central carbon 
metabolism. They combined metabolomics data with 13 C-labeling experiments and 
developed a mathematical model to estimate fluxes in Saccharomyces cerevisiae 
(Van Winden et al. 2005). The integration of metabolomics data allowed them to 
improve the accuracy of gaining knowledge of carbon flux dispersion in yeast 
metabolism and flux estimation. In another study, a method is being called 13 C 
metabolic flux analysis with multiple labeling experiments (13 C-MFA-MLE) to 
estimate fluxes in microbial systems. They integrated metabolomics data from 
13 C-labeling experiments with a mathematical model and used maximum likelihood 
estimation to infer metabolic fluxes. Their method gave information on the control of 
central carbon metabolism and allowed precise flow estimation in Escherichia coli 
(Yao et al. 2019). Furthermore, there is another method called metabolic flux ratio 
analysis (Metabolic Flux Ratio Analysis—MeFRA) to estimate relative fluxes from 
metabolomics data. MeFRA allows for the determination of flux ratios between 
different metabolic reactions without the need for absolute flux quantification. By 
integrating metabolomics data with a stoichiometric model, they demonstrated the 
application of MeFRA in estimating flux ratios in both microbial and mammalian 
cell cultures (Sauer et al. 1999). Analysis of metabolic flux based on the idea of 
fundamental flux modes (13 C-MFA-EFM) to estimate fluxes in large-scale metabolic 
networks is another method, in which they integrated metabolomics data from 
13 C-labeling experiments with a genome-scale metabolic model and used elementary 
flux modes to calculate flux distributions. This method made it possible to estimate 
fluxes in intricate metabolic networks and provided insights into pathway usage and 
regulation (Gerstl et al. 2015). Using flux estimation from metabolomics data is an



effective way to comprehend and measure cellular metabolism. By integrating 
metabolomics data with mathematical models, researchers can infer metabolic fluxes 
and gain insights into the dynamic behavior of metabolic pathways. Various 
methods and approaches have been developed to estimate fluxes from metabolomics 
data, enabling accurate quantification of flux distributions in different biological 
systems. 
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10.4.4 Constraint-Based Reconstruction and Analysis (COBRA) 
Toolbox 

The “Constraint-Based Reconstruction and Analysis (COBRA)” Toolbox is a 
widely used computational tool for modeling and analyzing metabolic networks. 
COBRA Toolbox employs a constraint-based approach, which leverages the stoi-
chiometry of metabolic reactions, along with physiological and environmental 
constraints, to predict and analyze metabolic fluxes (Ng et al. 2022). It provides a 
comprehensive suite of algorithms and functions for tasks such as “flux balance 
analysis (FBA)”, “flux variability analysis (FVA)”, and metabolic pathway analysis. 
The COBRA Toolbox has been applied in numerous studies across different 
organisms and has contributed to advancements in various fields. For instance, in 
the field of bioengineering, The COBRA Toolbox is being used to create microbial 
strains that will produce certain chemicals. They used FBA to find genetic alterations 
that could increase Escherichia coli’s production of desired metabolites. By 
integrating the COBRA Toolbox with experimental data, they successfully 
engineered strains with improved production capabilities (O’Brien et al. 2015). 
The application of COBRA Toolbox to research systems biology the metabolic 
adaptations of Mycobacterium tuberculosis during infection. They reconstructed a 
genome-scale metabolic model of M. tuberculosis and used FBA to predict the 
metabolic fluxes under different conditions. The flow distributions between the 
in vivo and in vitro environments are contrasted, they identified metabolic pathways 
that were upregulated or downregulated during infection, providing insights into the 
metabolic strategies of the pathogen (Colijn et al. 2009). Furthermore, the study of 
human metabolism has used COBRA Toolbox. To analyze the metabolic rewiring in 
cancer cells. They reconstructed a genome-scale metabolic model of human metab-
olism and integrated it with gene expression data from cancer cells. By applying 
FBA, they identified metabolic alterations that were specific to cancer cells and 
could potentially be targeted for therapeutic interventions (Jerby et al. 2010). The 
COBRA Toolbox continues to evolve, with new features and functionalities being 
added over time, COBRApy package, which is a Python implementation of the 
COBRA Toolbox. Constraint-based modeling and analysis are performed using 
COBRApy, which also offers extra features for visualization and integration with 
other Python packages (Ebrahim et al. 2013). “The Constraint-Based Reconstruction 
and Analysis (COBRA)” Toolbox is a powerful computational tool for the analysis 
and modeling of metabolic networks. It has been extensively used in various fields, 
including bioengineering, systems biology, and human metabolism. Using the



COBRA Toolbox, metabolic engineering strategies may be designed and optimized 
while also being able to anticipate and analyze metabolic fluxes, providing insights 
into cellular metabolism. 
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10.5 Case Studies and Applications 

In order to gather knowledge about the metabolic pathways and activities that occur 
in cells, tissues, and organisms, metabolomics involves the identification and mea-
surement of these metabolites. Metabolomics has a significant impact on therapeu-
tics and diagnostic in a number of ways: 

10.5.1 Therapeutic 

Early disease detection plays a crucial role in effective patient care, and the focus on 
biomarker discovery has intensified with advancements in technology. Changes in 
metabolites within biofluids serve as indicators of physiological or pathological 
variations. The quantitative and qualitative examination of metabolites in biological 
systems is the focus of the rapidly developing discipline of metabolomics (Zhang 
et al. 2015). Biomarker discovery, reliability relies on quantitative detection, high 
sensitivity, and specificity in reflecting biological states utilizing analytical technol-
ogy, metabolomics enables the characterization of metabolites in clinical samples 
(blood, urine, feces, and tumor tissue) such as NMR, GC/MS, and LC/MS. By 
applying multivariate statistical methods, significant metabolite markers can be 
identified to differentiate between different groups (Zeki et al. 2020). As the 
Warburg effect suggests, many metabolites would be found in glycolysis pathway 
is associated with cell proliferation, and metastasis (Johar et al. 2021). AML, breast 
cancer, renal cancer, intrahepatic cholangiocarcinoma, and papillary thyroid carci-
noma are just a few of the cancers that have been shown in numerous studies to 
include 2-hydroxyglutarate (2-HG), a byproduct of IDH1/IDH2 mutations (Wang 
et al. 2016). Breast cancer is linked to Omega 3-fatty acids, eicosapentaenoic acid 
(EPA), and docosahexaenoic acid (DHA), according to fatty acid metabolomics 
therefore, these metabolite can be act as biomarker for breast cancer (Fabian et al. 
2015). It is anticipated that more and more metabolomics discoveries will become 
clinical cancer biomarkers as profiling technologies continue to advance and stan-
dardize. Studies conducted in vitro have demonstrated that while reduced glycolysis 
slows the growth of AML cells and increases the cytotoxicity of Ara-C, increased 
glycolysis confers less susceptibility to the “anti-leukemic drug” arabinofuranosyl 
cytidine (Ara-C) (Liu et al. 2019).
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10.5.2 Diagnostic 

In diagnostic medicine, metabolomics has become a potent tool that opens up new 
possibilities for illness diagnosis, monitoring, and stratification. 

10.5.2.1 Metabolomics in Blood 
Due to the varied physicochemical properties of metabolites, a multiplatform 
metabolomics method is strongly advised for untargeted metabolic fingerprinting 
in order to thoroughly investigate metabolites and capture the complexity of 
biological systems. Blood is one of the biological samples most frequently used in 
metabolomics research. As the main metabolite carrier in the body, a specific 
biological system’s pathological and physiological state can be inferred from 
blood serum and plasma at any given time (Zhang et al. 2012). A new study used 
metabolomics to analyze blood samples from patients with advanced metastatic 
breast cancer (MBC) and localized early breast cancer (EBC). To create and test a 
model, patients with EBC and MBC were used as an outside test group for accurately 
distinguishing between the two conditions, achieving a sensitivity of 89.8% and 
specificity of 79.3% (Bujak et al. 2015). Histidine, acetoacetate, glycerol, and 
glutamate were among the statistically significant metabolites that suggested the 
possibility of an breast cancer patients’ diagnosis, prognosis, and therapy using an 
NMR-based metabolomics strategy (Jobard et al. 2014). In recent study of 
Kobayashi et al. (2013), of analysis of serum based metabolomics through GC– 
MS for pancreatic cancer suggests that, xylitol, 1,5-anhydro-D-glucitol, histidine and 
inositol are having high specificity (88.1%) and sensitivity (86%) (Kobayashi et al. 
2013). Through the use of DIMS and RP-UHPLC, Alzheimer’s disease patients’ 
sera’s phospholipid profile revealed elevated levels of sphingo-phospholipid in 
cognitively normal condition, MCI, and finally AD stage patients (González-
Domínguez et al. 2017). Therefore, the elevated level of sphingo-phospholipids 
metabolite can act as an early Alzheimer’s disease indicator. 

10.5.2.2 Metabolomics in Urine 
Urine, similar to saliva, is considered an ideal biological sample for biomarker 
analysis in urogenital cancer due to its non-invasive collection process and easy 
storage. A targeted approach utilizing LC-QqQ/MS with phenylboronic acid gel as a 
selective medium for cis-diol compounds has been used to determine urinary 
nucleosides as potential biomarkers for urogenital cancer (Struck-Lewicka et al. 
2014). 

Out of the 12 nucleosides that were quantitatively measured, five of them 
(inosine, 3-methyluridine, N2-methylguanosine, 6-methyladenosine, and N,N-
dimethyl guanosine) exhibited significant differences between cancer patients 
(n = 61) and healthy controls (n = 68) with statistical significance (p < 0.05). 
These results imply that these nucleosides might function as potential biomarkers for 
detecting or monitoring cancer (Struck et al., 2013). PLS-DA and the k-NN 
approach were used in multivariate statistical analyses for the statistically relevant 
metabolites, yielding sensitivity levels of 62–89% and specificities of 28–50%



(Sugimoto et al. 2012). Sarcosine, alanine, leucine, and proline were quantitatively 
analyzed in a distinct research by Schamsipur et al. from several cancer patients. 
They suggested DDLLME (Dispersive Derivatization Liquid-Liquid Micro-extrac-
tion) by LC, GC, and paired with “GC–MS” and “LC–MS” as a novel method for 
sample pretreatment (Shamsipur et al. 2013). The measurement of these four 
metabolites is low in a wider population of prostate cancer patients. All together, 
these metabolites have potential as prostate cancer biomarkers. On the other hand, 
“GC-IT/MS” was also used to determine some of the volatile urine metabolites 
(Monteiro et al. 2014). The study by Stephens et al. used NMR’s OPLS-DA 
approach to analyze metabolites. As a consequence, TCA-related metabolites such 
as succinate, trans-aconitate, and citrate, amino acids (1-methylhistidine, lysine, and 
asparagine), and it was discovered that other metabolites, including taurine and 
creatine, may be linked to inflammatory bowel disease (Stephens et al. 2013). 
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10.5.2.3 Metabolomics in Saliva 
Salivary metabolites play an important part in shedding light on the molecular 
mechanisms behind a variety of diseases, making it perfectly suited for the early 
identification of a number of diseases, including periodontal and oral cancer (Freire 
et al. 2021). Many diagnostic kits, such as the Oral Fluid Nano Sensor Test 
(OFNASET) for oral cancer, my PerioPath (OralDNA Labs) for periodontal disease, 
and HPV test for detecting the severity of the human papillomavirus in oral cancer, 
have recently undertaken novel detection of biomarker from saliva (Cova et al. 
2015). The experimental results indicate that tumor exosomes or tumor-specific 
proteins, miRNA, or mRNA may be detected in plasma and saliva. As 
metabolomics’ wide-ranging potential for early detection and specialized diagnostic 
responses revolutionizes the area of diagnostics and gives medical sciences a new 
focus for the early identification of numerous disorders. 

10.6 Challenges, Future Perspectives and Conclusion 

Our understanding of cellular metabolism has greatly benefited through 
metabolomics and flux-based analyses and they have opened up new avenues for 
studying complex biological systems. However, these approaches also come with 
challenges and present exciting opportunities for future advancements. The detection 
and annotation of metabolites is one of the main difficulties in metabolomics. 
Metabolomics experiments generate vast amounts of data, and accurately identifying 
and quantifying metabolites from complex mixtures is still a significant hurdle. 
Standardized databases and improved analytical techniques are needed to enhance 
metabolite identification and annotation, enabling more robust and reproducible 
analyses.
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