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Abstract. Floods are amongst the most severe natural disasters. Accu-
rate flood risk maps are vital for emergency response operations and
long-term flood defence planning. Currently the validation of such maps
is often neglected and suffers from a lack of high-quality data. The pro-
liferation of social media usage worldwide in recent years has supplied
access to large amounts of data linked to flooding, and the detection
of real-world events using such data is termed ‘social sensing’. In this
paper we investigate the use of social sensing for the validation of flood
risk maps. We apply this methodology to 7 years’ worth of flood related
Tweets in order to perform a comparison to long term planning flood risk
maps in England. The results show that there is a low level of correlation
between the collection of socially sensed floods and high-risk flood areas
as well as highlighting areas with high levels of socially sensed flooding
that have low levels of flood risk, showcasing the potential importance
of social media data for use in flood risk validation and planning policy.
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1 Introduction

Natural disasters are among the world’s greatest challenges and 80,000 people
per day are affected with an economic loss of US$ 1.5 trillion since 2003. Flood-
ing alone, which is the most frequent and wide-reaching weather-related natural
hazards in the world [4], has affected 2.3 billion people with an estimated eco-
nomic losses of US$ 662 billion from 1995 to 2015, and US$ 60 billion in 2016
alone [15]. On top of this, impacts of floods are projected to increase in the
future due to climate change [13].

The generation of long term flood risk maps is then of extreme importance for
planning procedures. Such maps are produced by utilising features such as terrain
elevation, land use and meteorological data as parameters within physical models
to estimate the flood extent of various simulated levels of rainfall events [7].
The maps output from this process are then used in urban planning for flood
mitigation and defence [14].
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The validation of such models is a key topic in flood modelling but as noted
by Molinari et al. [8] in their review of existing practices in this area, ‘Validation
is perhaps the least practised activity in current flood risk research and flood risk
assessment’. One major problem in the validation process is a lack of high quality
data and when validation is performed often crowd-sourced data is used [10,12].

Social sensing is the use of unsolicited crowd-sourced information to observe
real world events. This information can be gathered from a variety of different
sources including web searches and social media. The major advantage of social
media data over other crowd-sourcing avenues is the volume of data; social media
platforms such as Twitter, Instagram and TikTok have millions of active users
each month and millions of posts per day. This paper focuses on social sensing
using Twitter due to the public accessibility of its data.

A variety of studies have been conducted in the topic of social sensing of
floods. Arthur et al. [2] used tweet observations to produce flood maps of the
UK validated against data of flood events provided by the Flood Forecasting
Centre and concluded that social sensing can reproduce the validation data to
a high accuracy, even finding flood events that were not contained in the vali-
dation dataset, albeit at the cost of false positives. Moore et al. [9] introduced
a method for social sensing of coastal floods. They proposed to use a metric of
remarkability of a high-tide event as a way to measure impact of coastal flood-
ing where it is felt the most, as apposed to earlier methods which focus on high
population areas due to ease of data collection. Individual regression models
were built for counties along the east coast of the USA, building a relationship
between number of geo-located tweets that day and maximum daily tide height
measured at nearby tidal gauges including controlling for daily rainfall. Young
et al. [18] utilised Twitter data as well as data from social media site Telegram
in order to analyse the impacts of the 2018 floods in Kerala. They were able
to analyse not only the extent of flood impacts but also the kind of impacts
such as requests for help. The results showed good agreement with government
created post flood database of damages. Ansell et al. [1] introduced a statistical
approach involving the use of vine copulas, where they combined social media
data including Twitter data, Google Trends data as well as average sentiment
with environmental variables such as wave height and water level in order to pre-
dict inundation. Here they showed that performance of the model was improved
by assuming a relationship between the social and environmental factors rather
than assuming independence, showcasing that integration of social media data
can produce more accurate forecasts.

Previous studies where social sensing of flooding has been used have focused
mostly on the validation of the method to detect past flood events [2] or in post
event analysis [18] and are often short term studies from a temporal standpoint.
Only one study was found that utilised social sensing in term of flood risk,
Brangbour et al. [5] utilised Twitter data to compute probabilities of rasterised
grid cells being flooded during Hurricane Harvey. This was a study done using
high quality, highly curated data for a single extremely severe event. On the
other hand the main contribution, and unique goal, of this paper is to perform
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social sensing of floods using a much greater time period of data, collecting data
on all types of flooding over a country wide area in order to compare this analysis
with long term flood risk models. As social sensing of floods by its very nature
observes the impact of floods on a societal and human level, this report seeks to
discover the relationship between areas considered a high risk in flood defence
and mitigation planning and areas of high social ‘floodiness’, and in doing so
investigate the potential of social sensing as a useful tool in the key area of flood
risk model validation.

The main contributions of this paper are:

– The first long term study of socially sensing of floods via the creation of a
dataset consisting of 7 years of geolocated relevant tweets.

– The first study to investigate the relationship between socially sensed flooding
and flood risk models on a national scale.

The structure of the paper is as follows. Section 2 describes the data sources
used, the methodology for various filtering techniques used to curate the Twitter
data as well as the method used to infer locations from tweets. In Sect. 3 the
results of the analysis are presented. Section 4 contains a discussion of these
results. Finally Sect. 5 presents the conclusions of the paper.

2 Methodology

2.1 Data Collection

Twitter Dataset. Tweets were collected using Twitter’s Streaming API and
searching for the terms “flood”, “flooding” and “flooded” as a basic first filter.
It’s important to note that this API was accessed using Twitter’s Academic
track which has significantly increased in price as Twitter have changed their
data policies. The API returns tweets in the form of a JSON object which consists
of key-value pairs for various metadata such as tweet text, user profile informa-
tion and user location. In total 160,424,089 tweets were collected between the
dates of 22/10/2015 and 11/04/2022. Due to collection issues there are gaps
between 28/12/2015 and 04/01/2016 as well as between the dates 26/11/2016
and 02/01/2017 and 17/11/2021 and 10/01/2022.

Flood Maps. Recent flood maps (early 2022) produced by the Environment
Agency1 were used for comparison with the Twitter dataset. These maps are
produced using physical modelling methods and separate maps are produced
considering different types of flooding. The first of these is called ‘Risk of Flood-
ing from Rivers and Sea’. This map consists of 50 m × 50 m gridded areas of
England with the likelihood of flooding from rivers and the sea presented in
four different categories; namely Very Low, Low, Medium and High, whilst also
taking account of flood defences and the condition they are in. High risk flood
1 https://data.gov.uk/.

https://data.gov.uk/
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areas, which refers to a 1 in 30 annual probability of flooding, were chosen for
use in this study providing the best comparison to the nearly 7 years worth of
Twitter data. The map for the category of high risk can be seen in Fig. 1a.

As well as maps based on river and coastal flooding the Environment Agency
also produce maps for surface water flood risk. High spatial resolution maps of
this type are unavailable for download and are restricted to tiles, or small grid
squares, of England due to the large complexity of these maps. Instead, so called
‘Indicative Flood Risk’ maps are available where the modelled data is aggregated
to 1 km square grids based on 1 in 100 annual probability of flooding as well
as minimum thresholds for either area population (200 people per 1 km grid) or
critical services (at least one per 1 km square grid) or number of non-residential
buildings at risk (at least 20 per 1 km square). The produced grids can be seen
in Fig. 1b.

Fig. 1. Environment Agency flood maps

2.2 Twitter Data Pre-processing

As previously mentioned an initial filter was applied to tweets as they were
collected. Several different filters were then applied post collection to remove
irrelevant data as follows:

Retweet and Quote Tweet Filtering. One feature of Twitter is the ability
to retweet and quote tweets. This is done to promote the tweet and to increase
the likelihood of the tweet being seen by other users. As these are not original
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and independent flood observations by users all retweets and quote tweets are
removed. Sometimes people type ‘RT’ at the beginning of a tweet to indicate that
they are reposting someone else’s content instead of using the retweet function
and these were also removed.

Bot Filtering. A number of accounts on Twitter are automated bot accounts
and in the context of floods a large number of tweets that pass the initial top level
filter are from weather stations which tweet out a large amount of flood related
information. As we are interested in socially sensed flood events these tweets add
a large amount of noise to the data and are removed. In total around 100 accounts
are identified as bots and are removed from the dataset, including accounts such
as @RiverLevelsUK @ukfloodtweets and @ShropshirePulse. Weather stations in
general are removed by searching for a large number of keywords within tweets
such as “north”, “south”, “rain” and “wind” and also units such as “mm” and
“m/s”. If the number of keyword matches is greater than a threshold then the
tweet is removed.

Language Filtering. As the focus of this study is England and for use with
geographical databases used in future steps all non English tweets are removed
by using the “lang” key within the tweet JSON.

Relevance Filtering. Even after the previous filtering steps there remain a
large number of tweets containing the top-level keyword terms in irrelevant con-
texts. Examples of this include phrases such as ‘flooded with’ or ‘flood of’. A
number of manually curated terms such as these were created and tweets con-
taining these terms were filtered out.

Next, tweets were manually tagged as relevant or not relevant where relevant
in this case refers to a tweet about an immediate flood situation such as “flooding
in Exeter right now” as opposed to tweets about historic flood events or flood
warnings which were tagged as not relevant. In total 4524 tweets were tagged
with 1733 tagged as relevant and 2791 tagged as not relevant.

Using these tagged tweets as training data, a Multinomial Naive Bayes clas-
sifier was built and the tagged dataset of tweets was split into training and vali-
dation sets. 75% of the data was used to train the models and 25% was used for
validation. Tweets were cleaned to remove stop words, URLs and punctuation.
Tweets were tokenized, stemmed and lemmatized. A Bag of Words technique
was used and the data was vectorised by counting the number of single word
and two word occurrences in the corpus. Overall the Naive Bayes model achieved
an F1-score of 0.84 with a Precision of 0.79 and a Recall of 0.83 indicating good
overall classification.

Location Inference. Only a very small amount of tweets contain GPS data
(less than 1%) [6]. For the purpose of creating accurate flood maps based on this
data, it is important to be able to accurately infer locations from tweet metadata.
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If a tweet contains an exact GPS tag then that latitude/longitude pair is used
to map the tweet. For every other tweet a location inference heuristic is applied
which is based on [11].

Table 1. Tweets remaining after each processing step

Filtering stage Tweets

Top-level 160,424,089

Relevance 2,193,999

Location inference 408,172

Large polygon removal 165,663

In order to validate the performance of the location inference heuristic com-
parisons were made to a subset of the filtered tweets with exact GPS coordinates.
In total, there were 71,688 tweets with GPS coordinates. Location polygons were
inferred using the heuristic method with GPS metadata specifically ignored.
Using this, a parameter grid search was performed using a range of different
gazetteer database weightings as well as indicator weightings. The displacement
between inferred locations and actual locations was calculated in kilometres and
a tweet was considered correctly classified if the displacement was lower than 10
km. The best performing set of parameters was shown to be all indicator weight-
ings set to 1 except tweet text which was set to 2. The displacement in kilometres
between the inferred location and the actual location for this parameter is shown
in Fig. 2. It can be seen that the method performs very well albeit with some large
displacements shown for a number of tweets. The total tweets retained after each
processing step can be seen in Table 1. Overall, just over 165,000 tweets were
retained which were then used to create the socially sensed flood maps.

Fig. 2. Displacement of inferred location polygons from true geotagged coordinates
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2.3 Flood Map Development

Socially Sensed Flooding Maps. In order to produce maps containing all
remaining tweets, we first start with a bounding box of England and discretise
it. Based on the results seen in Fig. 2 it was decided to create grid squares of 10
km by 10 km, as this achieves a good balance between accuracy and granularity.
Each grid square starts with a weight of 0, gW = 0, and is incremented for each
tweet that falls within the grid square:

gW = gW +
Areag∩p

Areap
, (1)

where g is the grid square and p is the tweet polygon. When the tweet has a
precise location, p is a point and a score of 1 is added to the weight of the grid
square, otherwise the proportion of overlap is added. This enables tweets with
precise locations to be more influential for the detection of flooding.

The next step is to account for population density as large cities will have
vastly more tweets associated with them than small towns. To this end, popula-
tion data is taken from Lower Layer Super Output Areas (LSOAs), a geographic
hierarchy for small area statistics. LSOAs are population areas of at least 1000
people and are designed to be consistent in population size. As a result, LSOAs
within cities are much smaller than their counterparts in the countryside. The
proportion of overlap between grid squares and their intersecting LSOAs is calcu-
lated and the corresponding proportion of the LSOA population is added to the
grid square. This population data is taken from the 2011 Census so is somewhat
out of date and taking proportions makes the assumption of uniform popula-
tion across the LSOA which is not necessarily true but as the LSOAs are small
enough it provides a reasonable estimate.

We then rescale the grid weights as follows,

gW =
gW

gP
α

(2)

where gP is the calculated population for the grid square and α is a scaling factor
between 0 and 1. The factor α is necessary as it has been found that there is an
imbalance between the number of twitter users in cities and rural areas [3]. A
larger value of α will result in the population of the grid square having a larger
effect on the weighting, meaning flooding detected in less populated rural areas
will be more pronounced. For the purpose of this study α is set to 0.4 as this
was found to have the best balancing effect.

Flood Risk Maps. In order to perform direct comparisons between our pro-
duced socially sensed flood maps and the flood risk maps produced by the Envi-
ronment Agency it is necessary to have each type of map at the same spatial
resolution. To this end, the Environment Agency flood risk maps are aggregated
up to the same grid system as the socially sensed flood maps. In order to do
this, for each grid square its intersecting flood risk polygons are obtained. The
area of intersection of each polygon with the grid square is then calculated and
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summed. This is then divided by the area of the grid square in order to obtain
the proportion of the grid square that is consider under risk of flooding.

3 Results

Maps produced from the aggregated Environment Agency flood risk maps can
be seen in Fig. 3b for river and seas flooding and in Fig. 3c for surface water
flooding. Figure 3a shows the population weighted flood maps based on the fully
filtered tweet dataset.

For statistical comparison between the aggregated flood risk maps and the
produced socially sensed flood maps, correlation between grid squares was cal-
culated as well as the use of simple linear models. The correlation between grid
squares was calculated using Spearman’s rank correlation coefficient and is shown
in Table 2. Overall correlation between river and coastal flood risk and social
floodiness was r = 0.27 with a p-value of 1e−26 and for surface water flood risk
was r = 0.41 with a p-value of 7e−61. Scatter plots of tweet weighting against
aggregated flood risk can be seen in Fig. 4. The equations for the lines fitted are
y = 4.75x + 1.3 and y = 11.4x + 1.2 for river and coastal flood risk and surface
water flood risk respectively. R2 values were 0.01 and 0.1 respectively showing
no linear relationships. Overall the results show a moderate level of correlation
between the socially sensed flood map and Environment Agency produced maps,
particularly with regards to surface water flooding.

Of particular note, the scatter plots show a number of outlier areas which
have little to no modelled flood risk that have a high weighting for socially sensed
flooding especially in the case of surface water flooding. Indeed by re-scaling the
socially sensed grid weights between 0 and 1 by dividing through by the max of
all grid square weights, we can calculate the difference between flood risk and
social floodiness.

Figure 5 shows these differences with values between (0,1) indicating higher
flood risk than social floodiness and values between (−1,0) indicating lower flood
risk than social floodiness. Figure 5a compares the socially sensed response to
flood risk from coastal and river flooding. In the north east we see that we
have higher flood risk associated with rivers flowing into the Wash and Humber
estuaries, as well as for the coast of East Anglia than we would predict from
observing floods on Twitter. In contrast we see a much higher Twitter signal
than the corresponding risk would predict in the north west (Cumbria) and far
south west (Plymouth), likely due to major flood events which occurred during
the data collection. Figure 5b which compares against surface flooding shows
similar under-estimation in the north- and south-west with over-estimation in
Greater London (south east). In general outside of these outliers it can be seen
in both maps that flood risk is slightly underestimated against socially sensed
flooding.
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Fig. 3. Aggregated flood maps

Fig. 4. Scatter plots of each flood map against socially sensed flooding
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Table 2. Spearman’s rank correlation of the socially sensed flood map against specified
maps

Flood Map Spearman’s rank correlation

Rivers and coastal 0.27

Surface water 0.41

Fig. 5. Maps indicating the difference between flood risk and social floodiness for each
type of flood risk, red indicates grids with higher risk than social floodiness, blue
indicates grids with lower risk than social floodiness. (Color figure online)

4 Discussion

From the results obtained we have found that there is a low to moderate cor-
relation between socially sensed flooding and the high risk flood map for rivers
and seas and that there is a moderate correlation between socially sensed flood-
ing and surface water flooding showing that overall there is a modest level of
agreement between socially sensed flooding and flood risk maps.

While 7 years is quite a long period for social media, it is not necessarily
a long period for flood risk, which commonly predicts 1 in 10 to 1 in 100 year
events. However, the fact that we observe significant over and under-predictions
is notable. For example, historic flood events in the north west (Cumbria and
Lancashire) during the data collection period produce a Twitter signal far in
excess of the predicted risk. This occurs because the social response to a flood
is highly non-linear [2,3], doubling the size of the flood generates much more
than 2-fold increase in tweets. If tweets are taken as a rough proxy for impact,
this implies that risk models which aim to predict not just the probability of
occurrence of a flood, but also its potential impact, should incorporate a non-
linear scaling of impact with event size.
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There are a large amount of grid squares which have extremely low tweet
weighting which could indicate that these areas do not suffer from flooding or
that there is a demographic bias in some areas due to the fact that Twitter users
are unrepresentative of the population as a whole. Further work could be done
to explore this hypothesis. Related to this is the idea of the ’remarkability’ of a
flood. For example, an area which floods often may not produce tweets as this is
considered a normality. This could be checked using historical data for severity
and amount of flooding over a long term period, techniques like this were utilised
in [9,16] to great effect and could be used in further work to improve the social
floodiness response.

The most important step in the process of producing socially sensed flood
maps is the initial filtering stage. Social media data is inherently noisy and
improved relevance filtering would lead to a much less noisy dataset and a more
accurate representation of flood events. The model used in this report is a classic
classifier method used in this area but recent transformer models such as BERT
as well as LSTM based models have been shown to perform well [17].

As well as this, location inference is a necessity due to the low level of geo-
tagged tweets. Therefore more accurate location inference will lead to more accu-
rate flood detection which is crucial for any validation of this method. Currently
toponym recognition is limited as it only searches for proper nouns, and methods
could be developed which expand this. Limitations also exist with the use of geo-
databases, with toponym resolution being limited to nonexistent at below town
level meaning potentially useful fine grained data is discarded. Improvements in
this area would also allow future work to be expanded to smaller regional flood
risk maps such as cities.

5 Conclusion

We have shown that it is possible to produce long term socially sensed flood
maps that can be used to form a comparison - and potential validation tool -
to long term flood maps. As socially sensed flood detection by nature detects
floods which affect people, the results show not only the potential use of social
sensing as a new data collection tool to validate flood risk maps compared to
traditional validation methods which take time and may require a large workforce
to manually collect and synthesise flood observation data, but also highlights a
need for models to better take into account the impact of floods. As social media
use continues to grow into the future, the growth of quality observation data that
can be obtained from it will only improve its usability in this area.
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L.M.: Validation of flood risk models: current practice and possible improvements.
Int. J. Disaster Risk Reduction 33, 441–448 (2019)

9. Moore, F.C., Obradovich, N.: Using remarkability to define coastal flooding thresh-
olds. Nat. Commun. 11(1), 1–8 (2020)

10. Schnebele, E., Cervone, G., Waters, N.: Road assessment after flood
events using non-authoritative data. Nat. Hazards Earth Syst. Scie. 14(4),
1007–1015 (2014). https://doi.org/10.5194/nhess-14-1007-2014. https://nhess.
copernicus.org/articles/14/1007/2014/

11. Schulz, A., Hadjakos, A., Paulheim, H., Nachtwey, J., Mühlhäuser, M.: A multi-
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