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Abstract. Mushrooms play a pivotal role in bolstering Australia’s econ-
omy, impacting key sectors like agriculture, food production, and medic-
inal advancements. To meet the escalating need for sustainable food
options and enhance mushroom harvesting efficiency, this research: i)
introduces an innovative dataset featuring three growth stages of oys-
ter mushrooms; ii) designs a monitoring system which consists of image
acquisition, cloud storage, label map and applications to achieve effective
monitoring; and iii) proposes a label map method to monitor different
stages within panoramic images captured from the real mushroom cul-
tivation environment. Our preliminary studies show that the label map
with state-of-art VGG-16 model emerges as the optimal choice, achiev-
ing an impressive accuracy of 82.22%. Our dataset can be obtained upon
request.
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1 Introduction

Edible mushrooms are highly valued for their nutritional benefits, which encom-
pass reducing the risk of cancer, enhancing antioxidant levels, bolstering immu-
nity, improving neurocognition, and augmenting Vitamin D intake [1]. Mush-
rooms hold a significant position as a vital food source in Australia, contribut-
ing substantially to the economy. As of June 2022, the country had produced
an impressive 66, 236 tons of mushrooms, with a substantial production value of
$434.2 million [5]. Small mushroom companies aspire to monitor the growth of
mushrooms to improve growth conditions, enable timely and efficient harvesting,
reduce waste, and optimize labor allocation. However, the expense associated
with labeling is not affordable. Driven by industrial demand and a scarcity of
relevant research in Australia, this paper undertakes an exploration of computer
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Fig. 1. (a) Mushroom cultivation in a shipping container at a mushroom company; (b)
Three growth stages of oyster mushroom: Stage one is the early stage (top); Stage two
is the intermediate stage (middle); Stage three is the mature stage (bottom).

vision technologies for monitoring the growth of mushrooms. Due to oyster mush-
room’s low environmental control prerequisites and limited vulnerability to fruit-
ing body-affecting pests and diseases [6], it can be cultivated in a straightforward
and cost-effective manner. Accordingly, this study concentrates on monitoring
the growth of oyster mushrooms by using image classification algorithms.

In the realm of mushroom classification, prevailing studies predominantly
focus on binary classification to differentiate between poisonous and edible mush-
rooms [8], or encompass multi-class classification for mushroom species catego-
rization [12]. Notably, within the oyster mushroom domain, research endeavours
have concentrated on aspects like freshness assessment [11,17] and automated
harvesting [13–15]. Exploring the growth stages of oyster mushrooms remains a
scarcely explored avenue. Even when venturing into the broader realm of plant
growth, analogous endeavours are infrequent. Hence, the primary objective of
this paper is to delve into potential solutions for effectively monitoring the growth
of oyster mushrooms under the real-world setting.

Our work is a preliminary study to explore the automatic solution for a small
company which grows exotic mushrooms in containers. There are two main chal-
lenges for this work: (1) The challenge lies in obtaining data. Due to the lack of
appropriate existing data for monitoring of mushroom growth, the acquisition
of data from a local small-scale mushroom company necessitates careful con-
siderations: the optimal choice of an image collection device, the intricacies of
image labeling, and the allocation of resources within a defined budget. (2) Nav-
igating the challenge of image feature identification of mushrooms in different
stages proves distinctive. Prior studies have predominantly concentrated on indi-
vidual mushrooms positioned at the centre of the images, whereas this research
extends the scope to capture the holistic representation of the growth stages in a
complex setting. Our panoramic images (shown in Fig. 1(a)) encapsulate diverse
mushroom stages dispersed across varying positions within each image.

To address the challenges, we design a oyster mushroom monitoring system,
consisting of image acquisition, cloud storage, label map, and applications. We
collect a small dataset of encompassing various growth stages of oyster mush-
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rooms and collaborate with the staff at the mushroom company to label the
dataset. The dataset contains oyster mushroom images in three growth stages
as shown in Fig. 1(b). To accomplish the objective of monitoring oyster mush-
room growth, we introduce label map to show the stage information from the
patches of a panoramic image. The essence of the label map lies in equitably
partitioning a panoramic image into N patches, subjecting these patches to an
optimal feature extraction methodology and classifier, resulting in distinct labels.
Later, these labels are subsequently organized into a vector, which is reshaped
into a label map. Finally, our experimental findings highlight VGG-16 as the
optimal architecture for feature extractor and classifier within our label map
method by comparing the machine learning and deep learning image classifica-
tion algorithms, achieving an accuracy rate of 82.22%.

Our main contributions are:

– We design a solution for classifying multiple oyster mushroom growth stages
within a panoramic image in a real-world complex setting.

– We perform preliminary studies on recognizing oyster mushroom growth
stages by exploring both traditional machine learning and deep learning mod-
els.

– We address the data gap by curating and meticulously labeling a dataset
encompassing various growth stages of oyster mushrooms.

Next, the subsequent sections encompass an exploration of related work
(Sect. 2), a comprehensive elucidation of the research design (Sect. 3), and an
insightful interpretation of empirical studies (Sect. 4).

2 Related Works

Data. In recent years, research endeavors in the oyster mushroom domain have
spanned a diverse array of subjects, encompassing valorization and waste man-
agement [20], automated harvesting [13–15], freshness evaluation [11,17], grad-
ing assessment [21], growth enhancement [7], as well as IoT-based monitoring
systems [19]. This research focuses on monitoring the growth stage of oyster
mushrooms using image classification algorithms. However, the work for the
oyster mushroom stage image classification is rare. The most relevant work is
Surige et al. [19] in which, the authors proposed to classify five different stages
of the oyster mushroom life cycle, consisting of stage one (ten hours to harvest),
stage two (five hours to harvest), stage three (harvest now), stage four (one
day past - suitable for consumption) and stage five (2 days past - not suitable
for consumption). Our work condensed five stages proposed in Surige et al. [19]
into three distinct stages with revised descriptions, specifically highlighting the
key phases that contribute to its successful cultivation, shown in Fig. 1(b). In
the growth stages of oyster mushrooms, stage one is characterised by the readi-
ness of mushroom grow kits for pinning or their presence in the pinning stage,
where small pin-like structures emerge on the substrate as an early sign of mush-
room development. Stage two is characterised by the emergence of small pin-like
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structures that reach a cap scanning of 3–4 cm, while stage three represents the
maturation phase of the mushroom with a cap size ranging between 5–7 cm.
Moreover, this paper aims to categorize the panoramic view of the entire oyster
mushroom growing environment into three stages, which presents a more com-
plex and challenging task compared to the classification of individual mushroom
images.

Algorithm. In the past decade, computer vision has predominantly embraced
deep learning algorithms, especially convolutional neural networks (CNNs).
Regardless of architectural variations, CNNs fundamentally include convolu-
tional layers (with or without ReLU activation and pooling) for feature extrac-
tion and fully connected layers for classification. The famous architectures con-
sist of Visual Geometry Group (VGG) [18], MobileNet [16] and residual net-
work (ResNet) [4]. Some researchers designed system to monitor or measure the
growth of mushroom and used CNNs to recognize and localize mushroom. Lu
et al. proposed a mushroom growth measurement system for common mush-
rooms in greenhouse encompassing image capture, mushroom recognition (using
CNNs), position correction, size measurement, growth rate estimation, quan-
tity assessment, harvest time calculation, data recording, and harvest notifi-
cations throughout the mushroom fruiting phase [10]. Surige et al. developed
an IoT-based monitoring system for oyster mushroom featuring four functions:
Environmental Monitoring utilizing long short term memory (LSTM), Harvest
Time Detection using CNNs with the MobileNet V2 model, Disease Detection
and Control Recommendation based on CNNs with MobileNet V2, and Yield
Prediction employing LSTM [19]. This paper also proposes a oyster mushroom
monitoring system with different components, including image acquisition, cloud
storage, label map, and applications (shown in Fig. 2(a)). Zarifie et al. used pre-
trained VGG-16 to extract features and classify different grades based on quality
of grey oyster mushroom [21]. However, in oyster mushroom domain, algorithms
not only use deep learning methodologies, but also use machine learning method-
ologies (shown in Table 1).

Table 1. Oyster Mushroom Works

Ref. Classification Tasks Dataset Size Model Performance (Acc.)

[11] Freshness 120 ANN, SVM ANN (95%), SVM (98%)

[17] Freshness 240 ANN 94.4%

[21] Grading 600 VGG-16 90%

[19] Growing Stages 1,887 MobileNetV2 92%

Some researchers realized colour, texture and morphology are important
mushroom features, and extracted the important features manually by colour
maps, then used ANN or the combination of ANN and SVM to classify the
freshness of oyster mushrooms [11,17]. Additionally, Vision Transformer (ViT)
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(a) Monitoring System (b) Label Map

Fig. 2. (a) Oyster mushroom monitoring system; (b) Label map procedure: (1) Auto-
Cutter: automatically divide a panoramic image into P×P patches; (2) Arrange patches
in order from left to right, top to bottom and labelled by mushroom company staff;
(3) Feature Extractor: extract features from the patches respectively; (4) Classifier:
classify features into one of three distinct stages and generate corresponding labels,
where the labels are represented as 0, 1, or 2; (5) Create a concatenated 1D vector of
labels and increment the label values by 1, aligning them with the corresponding stage
indices (1, 2, 3); (6) Reconstructor: Reshape the 1D vector into P × P label map.

[3], a deep learning based algorithm which utilises self-attention mechanisms to
extract feature inspired by Transformer models used in natural language pro-
cessing, have gained popularity in the last three years. There is no paper explore
ViT for oyster mushroom image classification. This paper delves into two dis-
tinct types of image classification algorithms. On one hand, given the small
dataset and the significance of morphology as a feature, machine learning-based
image classification algorithms exhibit promising potential. On the other hand,
recognizing the subtle differences within and between classes, pretrained deep
learning-based image classification algorithms may demonstrate exceptional dis-
criminatory power in distinguishing various stages of oyster mushrooms.

3 The Monitoring System

To facilitate oyster mushroom growth monitoring, we introduce a comprehensive
system illustrated in Fig. 2(a), comprising four key components: image acqui-
sition, cloud storage, label map, and applications. Initially, panoramic oyster
mushroom images are captured via a camera and transmitted to cloud stor-
age via WIFI. Subsequently, these cloud-stored images are processed through a
supervised image classification method, referred to as the “label map”, which
selects an optimal model. Finally, this model is leveraged for applications. Given
the unique challenges posed by panoramic images, as discussed in Sect. 3.1, we
employ label map for panoramic monitoring, with detailed insights provided in
Sects. 3.2.
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3.1 The Problem

This study emphasises handling complex images that closely resemble real-world
scenarios captured by cameras. In our scenario, oyster mushrooms are cultivated
within bottles arranged on various tiers of shelves. These intricate panoramic
images (shown in Fig. 1(a)) introduce some challenges in image recognition. Due
to the limited perspective of the lens, occlusion becomes a challenge because
only a portion of the front-row bottles is captured, while those positioned behind
remain concealed from view. Also, the cultivation environment incorporates both
natural and LED lighting, posing an additional challenge in terms of illumi-
nation. Moreover, viewpoint variation presents another challenge, given that
the three shelves are arranged in a left, middle, and right configuration. The
toughest challenge is oyster mushrooms can span across three distinct growth
stages, further complicating the task of accurately identifying each stage within
a panoramic image. Due to the large amounts of bottles and the closely spaced
arrangement of them, identifying a bottle of mushroom become difficult. Thus we
propose label map as a solution to automatically identify the mushroom stages.
We first split the panoramic images into patches, and then based on the split
images, we classify them into different stages and reconstruct the classification
results to automatically monitor the panoramic images.

3.2 The Label Map

Instead of obtaining the stage information of individual mushroom bottles, using
label map method can achieve global modelling by integrating of the stage
information from patches. As depicted by Fig. 2(b), a panoramic RGB image
(H ×W × 3) can be divided into P × P patches (H

P × W
P × 3) by auto-cutter.

These patches are arranged from left to right, and then top to bottom. Because
the patches include positional information of the original images, the sequen-
tial order of the patches is important. Within these P × P patches, each patch
exclusively corresponds to a single growth stage rather than encompassing all
three stages. Then, these patches are passed through feature extractor and clas-
sifier sequentially. Each patch will generate a corresponding label based on the
probability outcome. After concatenating these labels, the output (1 × P 2) will
be a label representative of the original image. To match the original stage
indices, add 1 to the output. The addition will not increase the model complex-
ity. Reconstructor reshapes the output into a P × P grid which yields a label
map that effectively delineates the growth stages present within the panoramic
image. A related issue with this method is that within a single patch, it’s pos-
sible to encounter a combination of two stages, typically a mixture of stage one
and stage two. To address this challenge, during the ground-truth labeling pro-
cess, the mushroom company staff assigns a label to only one stage based on
either the majority of mushroom stages within the patch or by considering the
misclassification cost and assigning it to the stage with the lowest cost.

To measure the distance between the true growth stage probabilities y and
predicted growth stage probabilities ŷ, this paper uses multi-class cross entropy
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loss function shown in the Eq. (1) where M is the number of panoramic samples,
C is the number of classes and ŷi is the predicted probability of a specify class
j to the sample xi .

CE(y, ŷ) = −
M∑

i=1

yi log(ŷi) = −
M∑

i=1

C∑

j=1

yij log(pθ(yij |xi)) (1)

To minimize the loss, our primary objective shifts towards identifying an opti-
mal feature extractor and classifier within the label map method. This optimal
model needs to be robust against challenges such as occlusion, varying illumina-
tion, and changes in viewpoint. In this paper, we explore existing machine learn-
ing and deep learning-based image classification algorithms to find the optimal
feature extractor and classifier for our label map method.

Machine Learning Based Image Classification Algorithm. We first
explore the classic machine learning solution, in which we use scale invariant
feature transform (SIFT) technique [9] to extract features and then we apply
support vector machine (SVM) [2] to classify the patches. For M panoramic
RGB images, a total of M×P ×P RGB patches can be obtained. These patches
constitute a dataset, which is subsequently divided into training and testing data.
To obtain SIFT features, we transform the RGB patches from three dimensions
to grayscale images with two dimensions, as The SIFT technique [9] handles
grayscale images. For each patch, SIFT [9] employs various levels of the Gaussian
pyramid, in which multi-scale patches apply Gaussian smoothing and downsam-
pling, to detect the key points. Subsequently, SIFT [9] computes gradients within
a 16 × 16 window centred on an identified keypoint, generating an orientation
histogram in vector form to construct a keypoint descriptor, thus creating SIFT
features. Next, we apply k-means clustering to establish the visual vocabulary
(Bag of Features) using the training SIFT features. Then, we associate each
SIFT descriptor of a patch with the closest visual word in the BoF vocabulary
and create a visual word histogram for the patch. Later, we combine these BoF
histograms into a unified feature matrix for both training and testing purposes.
Finally, we use the SVM classifier [2] to find the hyperplane that maximally
separates three classes while aiming to minimize classification errors.

Deep Learning Based Image Classification Algorithm. In terms of deep
learning based image classification algorithms, this paper used pretrained VGG-
16 [18], ResNet18 [4], ResNet34 [4], ResNet50 [4], MobileNetV2 [16] and ViT-
B-16 [3]. All the models are pretrained on ImageNet-1k dataset, and then fine-
tuned on Oyster Mushroom dataset. P × P patches from a panoramic image
can be set as a batch of the whole M × P × P dataset to the model, which
eliminates the need for any further image processing and does not increase the
computation complexity. VGG [18] employs sequential 3 × 3 convolution/ReLU
blocks and 2 × 2 max pooling, progressively increasing the channel count from
64 to 512, and culminating in three fully connected layers, yielding networks
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with 16–19 layers. ResNet [4] works by first passing a patch image through a
convolutional layer that detects the basic features like edges and corners, then
feed forward through several residual blocks. These blocks consist of multiple
convolutional layers with shortcut connection, which performs identity mapping
and add the result to the output of stacked layers. Finally, ResNet [4] ends with
a global average pooling and fully connected layer to classify the input. In con-
trast to VGG [18], ResNet [4] has a similar structure but is significantly deeper,
ranging from 18 to 152 layers, due to its utilization of direct connections across
convolutional layers, addressing the accuracy degradation problem when layers
increase. MobileNetV2 [16], begins with an initial convolutional layer for extract-
ing low-level features from a patch image, followed by seven bottleneck residual
blocks with varying strides. Each block involves a combination of pointwise and
depthwise convolutional layers to capture spatial information while managing
computational efficiency. The architecture concludes with a 1 × 1 convolutional
layer, a global average pooling layer, and a fully connected linear classifier with
dropout to classify the input. ViT-B-16 [3] transforms an oyster mushroom patch
image by converting it into a sequence of 2D 16×16 patches, then flatten the 2D
patches and process through a linear projection layer. Position embeddings and
an additional class token are incorporated, then forward to multiple Transformer
Encoder which has a self-attention mechanism for global context information.
Lastly, the extra class token is fed through an MLP Head (two-layer classification
network) to predict the stage.

4 Empirical Studies

4.1 Settings

For image acquisition in the monitoring system, images for this research were
collected from two different shipping containers at a small mushroom company,
where oyster mushrooms were cultivated under controlled environmental condi-
tions (temperature: 18–22 ◦C, humidity: 70–90%, CO2 levels: 800–1500 ppm).
The shipping containers were illuminated with RGB LED strip lights. The
panoramic images were captured using a Tapo C310 IP camera connected via
WIFI. Due to the unstable WIFI signal, the camera often went offline, resulting
in the inability to capture images. Also, variations in natural and LED lighting
conditions can lead to image blurring. Moreover, considering the approximately
14-day life cycle of oyster mushrooms, detecting growth changes occurring within
1-hour intervals proves challenging for human observations. Due to previous con-
cerns, our current dataset is approximate to the patches divided from panoramic
images. Images from this dataset were captured using an iPhone 11 in the high-
efficiency HEIC format, featuring a resolution of 4, 032×3, 024 pixels and utiliz-
ing the RGB colour space. The images were captured within different distances
between the lens and the samples. The dataset size is a balanced dataset with
150 images so far (we are continuing the image capturing). We used 70% for
training and 30% for testing.
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4.2 Performances

After training and testing the model, we used Accuracy, Macro Precision, Macro
Recall, Macro F1 and Macro Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) for evaluation.

Table 2. Model Performances. Acc. denotes accuracy, Pre. means precision and Rec.
represents recall.

Model Pretrained Acc.(%) Pre.(%) Rec.(%) F1(%) AUC-ROC(%)

SIFT-SVM No 48.89 51.43 48.89 48.52 –

VGG-16 Yes 82.22 82.24 82.22 82.00 92.07

ResNet18 Yes 66.67 67.86 66.67 66.05 86.89

ResNet34 Yes 80.00 82.78 80.00 80.41 87.85

ResNet50 Yes 82.22 82.73 82.22 81.79 91.33

MobileNetV2 Yes 68.89 69.34 68.89 68.43 84.00

ViT-B-16 Yes 62.22 66.67 62.22 59.98 79.56

As Table 2 shows, the deep learning-based feature extractors and classi-
fiers surpass the traditional methodology SIFT-SVM. Even the least performing
deep learning-based model exhibits superior results compared to the SIFT-SVM
model. One factor is that images have RGB channels, which have three dimen-
sions. However, SIFT-SVM converts colourful images into grey-scale images,
resulting in the loss of valuable information by dimension reduction. Another
factor lies in transfer learning because the pretrained models have learnt rich
features from other huge datasets, they already have useful information, and
fine-tuning helped inject domain knowledge.

Among the various deep learning models, VGG-16, ResNet18, ResNet34,
ResNet50 and MobileNetV2, the variants of CNNs demonstrate higher accu-
racy compared to transformer-based ViT-B-16. Essentially, the inherent induc-
tive biases of CNNs, such as translation equivariance and locality, outperform
the self-attention mechanism of ViT-B-16 on this small dataset. When features
are extracted at an earlier layer, the translation equivariance principle makes
sure the neural network’s response remains consistent for the same image patch,
regardless of its position. And the locality principle makes sure the network
focuses on local regions, without paying attention to the distant regions. As
channel numbers and layer depth increase, the features capturing local informa-
tion are aggregated to make predictions. Hence, CNNs have the ability to capture
fine-grained image details, which are crucial due to the subtle differences in both
intra-class and inter-class variations. ViT-B-16 acquires these inherent biases by
training on a large dataset.

Among the CNN variants, VGG-16 stands out as the top performer with
an accuracy of 82.22%, slightly surpassing ResNet50 in terms of macro F1 and
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Fig. 3. ROC curve at One-vs-One Multiclass Classification

macro ROC scores, 82% and 92.07% respectively. In our case, diverse impacts
of misclassifications incur varying costs. For example, misclassifying stage two
as stage three bears fewer adverse consequences due to their shared importance,
warranting harvest. Conversely, misclassifying stage three as stage two carries
greater repercussions, given the diminished quality, loss of nutrients, and reduced
selling potential, underscoring the significance of accurate classification. Further-
more, misidentifying stage one as stage two not only squanders labour time but
also poses challenges in labour scheduling and rearrangement. Due to the diverse
costs associated with different types of misclassifications and the discriminative
ability between minute intra-class and inter-class variances, both macro F1 and
marco AUC-ROC are crucial metrics. The macro-F1 score represents the har-
monic mean of precision and recall across all stages of mushroom growth. It takes
into account both false positives and false negatives for each individual stage,
providing a balanced assessment of the model’s performance across all classes.
Thus, a higher macro-F1 score is important as it indicates a better balance
between accurately identifying different stages of mushroom growth while min-
imizing the overall misclassification rate. Additionally, the Receiver Operating
Characteristic (ROC) curve (depicted in Fig. 3) is a graphical representation that
illustrates the trade-off between the true positive rate (sensitivity) and the false
positive rate (1-specificity) as the classification threshold for each stage is varied.
The ROC curve helps assess the model’s ability to discriminate between differ-
ent stages of mushroom growth by showing how well it can distinguish between
positive and negative samples for each class. The area under the ROC curve
(AUC-ROC) is often used as a quantitative measure of the model’s overall per-
formance, where a higher AUC-ROC value indicates better discriminatory power
and accuracy in distinguishing between different growth stages of oyster mush-
rooms. As Fig. 3 shows, the VGG-16 classifier effectively discriminates between
stage one and three with an AUC score of 1.00, while distinguishing between
stage two and three proves to be the most challenging with an AUC score of
0.85. This observation is logical, given that the delicate pin-like structures of
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the mushroom during stage one are distinctly different from the matured mush-
room in stage three. In contrast, stage two is close to the maturation process of
stage three. Therefore, we select VGG-16 as our optimal feature extractor and
classifier for our dataset.

5 Conclusion and Future Works

In conclusion, this study introduces the Oyster Mushroom dataset, encompassing
three distinct growth stages of the oyster mushroom, and addresses the challenge
of classifying panoramic images through the innovative use of a monitoring sys-
tem. Our experimental results indicate that the label map method within the
monitoring system exhibits remarkable performance, achieving an accuracy of
82.22%. In future endeavours, we aim to delve into alternative approaches for
predicting harvest timing, including treating growth stage images as time series
data and leveraging techniques such as regression or recurrent neural networks.
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