
SimMining-3D: Altitude-Aware 3D Object
Detection in Complex Mining

Environments: A Novel Dataset
and ROS-Based Automatic Annotation

Pipeline

Mehala Balamurali(B) and Ehsan Mihankhah

Australian Centre for Robotics, University of Sydney, Camperdown, Australia
{mehala.balamurali,ehsan.mihankhah}@sydney.edu.au

Abstract. Accurate and efficient object detection is crucial for safe and
efficient operation of earth-moving equipment in mining. Traditional 2D
image-based methods face limitations in dynamic and complex mine envi-
ronments. To overcome these challenges, 3D object detection using point
cloud data has emerged as a comprehensive approach. However, training
models for mining scenarios is challenging due to sensor height varia-
tions, viewpoint changes, and the need for diverse annotated datasets.

This paper presents novel contributions to address these challenges.
We introduce a synthetic dataset SimMining-3D [1] specifically designed
for 3D object detection in mining environments. The dataset captures
objects and sensors positioned at various heights within mine benches,
accurately reflecting authentic mining scenarios. An automatic annota-
tion pipeline through ROS interface reduces manual labor and accelerates
dataset creation.

We propose evaluation metrics accounting for sensor-to-object height
variations and point cloud density, enabling accurate model assessment
in mining scenarios. Real data tests validate our model’s effectiveness
in object prediction. Our ablation study emphasizes the importance of
altitude and height variation augmentations in improving accuracy and
reliability.

The publicly accessible synthetic dataset [1] serves as a benchmark for
supervised learning and advances object detection techniques in mining
with complimentary pointwise annotations for each scene. In conclusion,
our work bridges the gap between synthetic and real data, addressing
the domain shift challenge in 3D object detection for mining. We envi-
sion robust object detection systems enhancing safety and efficiency in
mining and related domains.
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1 Introduction

Effective object detection is vital for ensuring the safe and efficient operation
of earth-moving equipment in the mining industry. However, traditional 2D
image-based methods often encounter limitations in dynamic and complex mine
environments where objects can be occluded or obscured. To overcome these
challenges, 3D object detection utilizing point cloud data provides a more com-
prehensive representation of objects and the environment, leading to improved
accuracy and efficiency.

Training models for 3D object detection poses unique challenges, including
adapting pretrained models to new datasets and effectively handling viewpoint
variations. Additionally, collecting real-world data for training in mining scenar-
ios can be particularly challenging due to complex terrains, cluttered surround-
ings, safety concerns, and logistical difficulties in active mining environments.
However, simulation offers a valuable solution by generating large and diverse
datasets without incurring the risks and costs associated with real-world data
collection.

Simulated environments provide researchers with precise control over data
variability and complexity, facilitating the training and evaluation of algorithms
specifically tailored for the detection of earth-moving equipment in mining con-
texts. Furthermore, simulations offer the opportunity for automatic annotation,
significantly reducing the manual labor and costs involved in accurately labeling
real-world data (Fig. 1).

Fig. 1. Proposed workflow illustrates the scope of this study

In this work, we propose a novel approach that addresses the domain shift
between synthetic and real data in 3D object detection for complex mining envi-
ronments. Our methodology involves training a model on a synthetic dataset
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generated from representative simulated mine environments. This approach effec-
tively overcomes the challenges inherent to object detection in complex mining
scenarios, accounting for variations in sensor height and other critical factors.

One of our significant contributions is the development of a comprehensive
synthetic dataset explicitly designed for 3D object detection in mining envi-
ronments. This dataset includes objects and sensors placed at different heights
within pit benches, accurately capturing the complexities of real mining opera-
tions. Furthermore, we introduce novel evaluation metrics that consider sensor-
to-object height and point cloud density variations for more accurate model
performance assessment in mining scenarios.

Moreover, through extensive experiments, we successfully predict the pres-
ence of objects in real data captured from actual mining environments and eval-
uate the accuracy of our approach. The results demonstrate the effectiveness and
practicality of our 3D object detection model in real-world mining scenarios.

Additionally, we have incorporated an automatic annotation pipeline lever-
aging the ROS interface. This pipeline includes new algorithmic solution to auto-
mate the annotation process, reducing manual labor and accelerating the dataset
creation for 3D object detection in complex mining environments.

To assess the impact of altitude and height variation, we conduct an exten-
sive ablation study. This study showcases the significance of an altitude shift
augmentations in improving the overall accuracy and reliability of 3D object
detection models specifically tailored for complex mining environments.

Our key contributions are as follows:

1) The development of a comprehensive synthetic dataset capturing the com-
plexities of mining environments, including objects and sensors placed at
different heights within pit benches.

2) Introduction of novel evaluation metrics that consider sensor-to-object height
and point cloud density variations for more accurate model performance
assessment in mining scenarios.

3) Successful prediction of objects in real data captured from actual mining
environments, demonstrating the effectiveness of our approach.

4) The implementation of an automatic annotation pipeline using the ROS inter-
face, significantly reducing manual labor and expediting the dataset creation
process.

5) An extensive ablation study showcasing the importance of altitude and height
variation augmentations in enhancing the accuracy and reliability of 3D
object detection models for mining environments.

To support our research and foster collaboration, we have made our compre-
hensive synthetic dataset publicly accessible. Researchers can utilize this dataset
as a benchmark for supervised learning, enabling the evaluation and advance-
ment of object detection techniques in mining environments. Additionally, we
provide a video summarizing our experimental trials, and the dataset is avail-
able at [1], ensuring accessibility and encouraging further exploration in this
field.
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By effectively bridging the gap between synthetic and real data, our work
demonstrates the potential of synthetic data and simulation-based methodologies
in overcoming domain shift challenges. We envision the development of robust
and reliable object detection systems that can be practically deployed in mining
and related domains, enhancing safety and operational efficiency.

2 Related Study

Automatic annotation and data generation have been the focus of extensive
research in recent years [2–5], with several state-of-the-art methods available for
generating labeled data. One of the most popular techniques for data generation
is through simulation environments. Simulations are widely used to collect data
for machine learning applications, especially for perception systems.

Gazebo [6] and CARLA [7] are two popular simulation environments used for
autonomous vehicle research. These environments offer realistic virtual environ-
ments with a large number of sensors, including cameras and LiDARs, for data
collection. Publicly available datasets from simulation environments have become
a crucial source for training machine learning algorithms. Several datasets have
been made publicly available for research purposes, including the CARLA [7],
LGSVL [8], and Udacity datasets [9], which include labeled data for autonomous
vehicle perception systems. These datasets cover a wide range of scenarios,
including urban and highway driving, and offer various sensor modalities, such
as LiDAR, camera, and radar. In addition, these datasets offer accurate ground-
truth labels for different perception tasks such as object detection, semantic
segmentation, and lane detection.

In [10,11], synthetic multimodal 3D raw data and automated semantic
labeled data have been generated from Gazebo simulations of a ground vehi-
cle operating in diverse natural environments and off-road terrains. The aim is
to expedite software development and improve the generalization of models to
new scenes.

However, the proposed approach for automatic 3D annotation aims to tackle
the challenges of generating labeled data to increase automation in earth moving
operations at mine sites. By leveraging the advantages of simulation environ-
ments, a large volume of labeled data can be generated. This approach has the
potential to significantly enhance the performance of machine learning models
for various applications in dynamic and degraded environments, such as mining.

3 New Dataset: SimMining3D

3.1 Data Collection at Simulated Environment

The data collection process took place within a representative simulation envi-
ronment based on the Yandicoogina mine site, as described in [12]. This simu-
lated environment accurately replicates the real-world conditions and character-
istics of the mine site, that contained within a rectangular area, spanning 583m
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in longitude and 379m in latitude. Additionally, the environment has an eleva-
tion of 63.5m, ensuring a comprehensive representation of the mine site’s terrain
and topography. The CAD models of earthmoving equipment and sensors were
imported into Gazebo (Fig. 2). The point clouds in this dataset were acquired
with a simulated MST system [12]. The system consists of a simulated 128-line
OS2 LiDAR sensor and a RGB camera. LiDAR sensor can capture point clouds
at up to 700,000 points per second at a vertical field of view of 22.5◦ with an
accuracy of ±2.5–8 cm.

Fig. 2. Left: Representative Yandicoogina mine simulation environment in Gazebo,
Right: Coordinate system used: x, y, z denote the coordinate system, with subscripts
o, b, and w referring to Ouster sensor, mobile study trailer base footprint, and world
coordinate, respectively.

Six excavators were placed at random locations in the simulation environ-
ment, and their movements and rotations were automatically controlled and
repeated for each sensor position. The data collection of an object in the sensor
coordinate frame is demonstrated in Fig. 2.

The data collection process involved capturing information from distinct sen-
sor heights in different scenarios. In one scenario, both the sensor and excavators
were placed within the bench. In the second scenario, the sensor was positioned
inside the pit, observing excavators within the pits and benches taller than 10m.
In the third scenario, the sensor was placed on the benches, observing excavators
within the pit. Excavators were continuously rotated at 0.2 rad per second and
moved from their initial location by approximately 75m with a speed of 0.5m/s.
In total, 818, 617, and 690 frames were captured for each scenario, respectively,
resulting in a total of 2125 frames. This approach allowed us to gather diverse
data across different sensor heights and excavator locations within the complex
mining environment.

3.2 Automatic Annotation

Once the data is collected from the simulation environment, the next step in
the automatic annotation pipeline is to determine the position, orientation, and
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dimension of the objects in the simulation environment. As detailed in the Algo-
rithm1 this information was obtained by using ROS tools and packages such
as “tf” or “odometry” that provide the pose information of objects in the envi-
ronment. Unlike other autonomous vehicle or robots with sensors, the proposed
data collection platform in this study will remain stable during data collection
at multiple locations. Hence the base-footprint coordinate frame of the MST will
not change constantly. Then ROS package was used to publish the object pose
information via object recognition messages. Using the published object pose
information, the next step is to generate 3D bounding boxes around the objects.
This was done by inferring the dimension of the objects and creating a box that
encompasses the entire object from the ros messages as described in Algorithm 1.
The generated bounding box information were used to crop the point clouds of
interested objects from the environment and stored in separates folders corre-
sponding to each different objects as annotations in a format suitable for 3d
object detection. Furthermore, as described in the original custom object format
in the OpenPCDet library, the bounding box information in LiDAR coordinates,
including the center of the box (x, y, and z), the dimensions of the box (dx, dy,
and dz), yaw value, and the object class name, was saved for all objects in each

Algorithm 1. Automatic Annotation
1: Input: Objects and sensor pose information, LiDAR scans, objects’ dimensions

(dx, dy, dz), Number of object classes=3
2: Output: kitty format.txt, Semantic Labels .csv, gt_database
3: for all fi in frames do
4: bbox = []
5: pcd ← read_points(fi, field_names=[’x’, ’y’, ’z’, ’rgb’])
6: for all oi in objects do
7: label ← name(oi)
8: center ← center(oi, field_names=[’x’, ’y’, ’z’])
9: size ← Size(oi, field_names=[’dx’, ’dy’, ’dz’])

10: rotation ← RotationMatrix(oi, field_names=[’w’, ’qx’, ’qy’, ’qz’])
11: center[z] ← center[z] + size[dz]/2
12: roll_X, pitch_Y, yaw_Z ← quaternion_to_euler_angle(oi, field_names=

[’w’, ’qx’, ’qy’, ’qz’])
13: Write to text file (’x’, ’y’, ’z’, ’dx’, ’dy’, ’dz’, yaw_Z, label)
14: Bbox ← OrientedBoundingBox(center, rot, size)
15: Crop_3d ← crop(pcd, Bbox)
16: Save_point_cloud(gt_database/Crop_3d_fi_oi, Crop_3d)
17: for all ci in [c1, c2, c3] do
18: if oi = ci then
19: color ← [ri, gi, bi]
20: write to csv (frame_fi.csv, Crop_3d (x, y, z, color, ci))
21: end if
22: end for
23: end for
24: end for
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scene. In addition, we introduced a new column in the above text files to indi-
cate the objects’ difficulties, labeled as 0 for easy, 1 for moderate, and 2 for
hard difficulties. The corresponding changes were made in the OpenPCDet files
to read and utilize this additional information from the text files. Similarly, the
semantic values correspond to each 3D LiDAR points (coordinates) were saved
in the csv files (Fig. 3).

The annotation pipeline generated a large dataset of annotated objects in the
simulation environment. To avoid close similarities between frames, we strategi-
cally selected total of 933 frames from continuous recordings, ensuring diversity
in the dataset with corresponding labels provided with each difficulty level. The
dataset includes ground truth information for 5353 excavators observed from
multiple perspectives, ensuring comprehensive coverage and robust analysis.

In addition to the 3D bounding box annotations used for object detection
evaluation in this paper, complementary semantic point-wise labels were pro-
vided for 933 frames.

This dataset was used to train state of the art machine learning model for
3D object detection and semantic segmentation tasks. The dataset is available
at [1].

Fig. 3. Automatic annotation pipeline

4 Perception: Baseline Experiment

4.1 Experimental Setup

Baseline results are provided using OpenPCDet framework [13], Poinpillar 3D
object detection model trained on only the source domain of simulation envi-
ronment, ideally representing the worst-case and best-case respectively for per-
formance on the target domain-real data. PointPillars is an end-to-end model
that uses a set of pillar-based representations for 3D object detection in point
clouds. It processes each pillar individually and applies a set of convolutions and
max-pooling operations to generate features for object detection [14].
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This study focuses on the exacavator static model. Unlike in other 3d object
detection models studied in other literature the excavators are dimensionally
huge and the small change in the 3d box orientation can result noticeably differ-
ent in the prediction. Given the large discrepancy in the size of the ground truth
anchor boxes and the points from the objects, we filter out the ground truths
which consists of less than 100 points from the objects.

As our datasets contain only one object class that needs to be detected, we
adapt the output layers of the algorithms to predict a single class only. The
anchor size is set to the ground truth dimensions of the Hitachi excavator, with
l = 8.65m, w = 23.9m, and h = 10.02m for length l, width w, and height h,
respectively. We empirically test different network parameters, such as the voxel
size for PointPillars, the number of filters in network. For all other parameters,
we choose the voxel size of 2.19, 2.19, 14 and the maximum point per voxels
of 32. For data augmentation, we use random horizontal flip, scale augmenta-
tions. Although the LiDAR sensors capture reflections at over 200m distance,
we limit the detection range of our network to a horizontal range of 175.2m in
the dimensions x and y and −12 and 4m in z direction in order to capture the
large variation of mine pit walls and the tall objects. We remove the intensity
channel from network and only use x, y, and z as input features. The network
was trained on 1235 object samples chosen from all senarios with batch size of
2 and learning rate for 120 epochs and validated on 509 object samples using
modified-Kitty format validation as discussed at section Evaluation metric.

Data Augmentation. In this study, we propose the ‘altitude shift’ augmenta-
tion technique tailored for point cloud data. Unlike the previous Random World
Translation (RWT) method, our approach utilizes a uniform distribution to gen-
erate random values within a specified range. By simulating altitude variations,
the altitude shift augmentation enhances the adaptability and generalization
capabilities of 3D object detection models.

Unlike RWT technique, which introduces noise based on standard deviations
for each axis, our Altitude Shift augmentation guarantees an equal probability for
all values within the specified range. This approach allows the models to adapt to
various object heights commonly found in real-world scenarios. Additionally, the
Altitude Shift is implemented on-the-fly during each run, providing the flexibility
to either apply a fixed shift (Constant_Altitude_Shift) or randomly sample
values (Random_Altitude_Shift) within the range.

Implemented along the z-axis, the altitude shift function modifies the vertical
position of points and their corresponding ground truth bounding boxes. It takes
three input parameters: ground truth boxes (gt_box), points, and an offset range
determining the permissible shift values.
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Algorithm 2. Altitude Shift
1: Input: LiDAR point cloud L ∈ R

N×3 with N points, ground truth box gt_box,
Offset range [min,max]

2: Output:Shifted LiDAR point cloud L
3: for l ∈ L do
4: offset ← RandomUniform(offset_range[0], offset_range[1])
5: l.z ← l.z + offset
6: gt_box.z ← gt_box.z + offset
7: end for

We further evaluate other augmentation techniques based on OpenPCDet
[13] to compare the impact of altitude variation on the overall accuracy in com-
plex object detection environments. These environments are characterized by
varying heights, presenting unique challenges for accurate object detection. By
conducting a comprehensive analysis, we aim to understand how different aug-
mentation strategies, including altitude variation, specifically address the com-
plexities associated with height variation.

Evaluation Metric. We assess excavator detection difficulty using specific cri-
teria based on height variation between the sensor and object, as well as point
cloud density. The difficulty levels are as follows:

Level 0 - Easy: Height variation < 10m, point cloud density > 750 points.
Level 1 - Moderate: Height variation < 10 units, point cloud density 100 to

750 points, or height variation > 10m, point cloud density > 750 points.
Level 2 - Hard: Height variation > 10m, point cloud density 100 to 750

points.
By categorizing excavator instances into these levels, we evaluate detection

algorithm performance in complex mining environments. Our modifications in
OpenPCDet enable accurate evaluation aligned with mining-specific challenges.

4.2 Results and Discussion

Evaluations on Simulated Data. The evaluation was conducted on a syn-
thetic dataset captured in a complex mining environment using a simulation
environment. The 3D object detection performance of Pointpillar for the Hitachi
excavator is presented in Table 1, reporting Mean Average Precision (mAP)
results for 3D and Bird’s Eye View (BEV) detection at IoU 0.7. The evalu-
ation includes 40 recall positions, providing comprehensive assessment across
difficulty levels: Easy, Moderate, and Hard proposed in this paper. The results
demonstrate the impact of different augmentation techniques compared to no
augmentation on object detection performance in complex environments. The
Random_Altitude_Shift (RAS) augmentation is highly effective for improving
object detection accuracy. It consistently outperforms the baseline across diffi-
culty levels and evaluation metrics, providing significant improvements in both
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BEV and 3D detection. Comparing RAS with other techniques like RWT, CAS,
and standard augmentation, RAS performs better, especially in the Hard level.
It captures altitude variations in the dataset, resulting in more accurate object
detection. CAS and standard augmentation show improvements but are not as
consistent as RAS. RWT, focusing on z-axis offset, lags behind RAS in accu-
racy. Considering altitude-specific variations is crucial for improved detection,
as shown by RAS outperforming RWT. The controlled altitude shifts introduced
by RAS allow better adaptation to real-world height variations. RAS has prac-
tical implications for robust object detection in complex environments, enhanc-
ing accuracy and reliability in critical applications like autonomous driving and
robotics.

Table 1. Object Detection Performance Evaluation with Augmentation (BEV and 3D
at 0.7 IoU)

Method BEV at 0.7 IoU 3D at 0.7 IoU
Easy Mod. Hard Easy Mod. Hard

None 94.96 90.44 61.05 91.57 87.38 58.23
RAS ([−2, 2]) 99.00 94.16 64.35 94.31 90.10 60.86
RAS ([−0.5, 0.5]) 95.42 91.00 61.40 94.45 87.93 60.91
CAS (0.5) 93.23 86.92 60.25 56.38 35.19 37.73
RWT_z_only (0.5) 95.47 91.00 61.47 88.64 84.65 57.93
Standard 98.11 91.20 61.59 97.85 91.00 61.43
Standard + RAS 98.47 91.33 61.65 94.52 90.12 60.82
Standard + CAS 97.94 90.97 61.45 85.66 79.82 53.88
Standard + RWT_z_only 97.79 90.93 61.39 93.88 87.37 60.56

Validation on Real Data. Predictions on both simulated and real data were
presented in Fig. 4. Figure 4(b) and (c) showcase the video and point cloud cap-
tured at the real minesite, respectively. Figure 4(c) demonstrates the successful
transfer of the trained model on synthetic data to a real-world scenario. Con-
sidering the disparity in lidar positions between simulation and reality in terms
of height, the input point cloud was transformed to accommodate the sensor’s
height variation during model prediction. Videos depicting the predictions from
simulation to simulation and simulation to real for various scenarios can be found
at [1].
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Fig. 4. Model predictions on both simulated data (a), (c) and real data (d)

5 Conclusion

In conclusion, our study emphasizes the significant contributions of synthetic
data generation, automatic annotation, altitude shift augmentation, and sim-to-
real transformation in enhancing object detection models for mining environ-
ments.

Furthermore, excavators’ complex shapes during operations should be accom-
modated in future studies. Addressing the impact of random values on augmen-
tations through systematic work will provide valuable insights.

The integration of these approaches improves the accuracy and reliability of
object detection models for mining applications. These advancements have the
potential to enhance safety, efficiency, and productivity in mining operations,
addressing challenges related to domain gap and limited real data availability.

Acknowledgements. This work has been supported by the Australian Centre for
Robotics and the Rio Tinto Centre for Mine Automation, the University of Sydney.

References

1. SimMining-3D. https://github.com/MehalaBala/SimMining_3D
2. Nikolenko, S.I.: Synthetic simulated environments. In: Nikolenko, S.I. (ed.) Syn-

thetic Data for Deep Learning. SOIA, vol. 174, pp. 195–215. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75178-4_7

3. Yue, X., Wu, B., Seshia, S.A., Keutzer, K., Sangiovanni-Vincentelli, A.L.: A LiDAR
point cloud generator: from a virtual world to autonomous driving. In: Proceedings
of the ACM International Conference on Multimedia Retrieval, Yokohama, Japan,
11–14 June 2018, pp. 458–464 (2018)

https://github.com/MehalaBala/SimMining_3D
https://doi.org/10.1007/978-3-030-75178-4_7


66 M. Balamurali and E. Mihankhah

4. Smith, A., et al.: A deep learning framework for semantic segmentation of under-
water environments. In: OCEANS 2022, Hampton Roads, pp. 1–7 (2022)

5. Saputra, R.P., Rakicevic, N., Kormushev, P.: Sim-to-real learning for casualty
detection from ground projected point cloud data. In: 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Macau, China, pp.
3918–3925 (2019). https://doi.org/10.1109/IROS40897.2019.8967642

6. Koenig, K., Howard, A.: Design and use paradigms for Gazebo an open-source
multi-robot simulator. In: Proceedings of the IEEE-RSJ International Conference
on Intelligent Robots and Systems, pp. 2149–2154 (2004)

7. Dworak, D., Ciepiela, F., Derbisz, J., Izzat, I., Komorkiewicz, M., Wójcik, M.:
Performance of LiDAR object detection deep learning architectures based on arti-
ficially generated point cloud data from CARLA simulator. In: 2019 24th Interna-
tional Conference on Methods and Models in Automation and Robotics (MMAR),
Miedzyzdroje, Poland, pp. 600–605 (2019). https://doi.org/10.1109/MMAR.2019.
8864642

8. Rong, G., et al.: LGSVL simulator: a high fidelity simulator for autonomous driv-
ing. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Sys-
tems (ITSC), Rhodes, Greece, pp. 1–6 (2020). https://doi.org/10.1109/ITSC45102.
2020.9294422

9. Udacity Dataset (2018). https://github.com/udacity/self-driving-car/tree/
master/datasets

10. Sánchez, M., Morales, J., Martínez, J.L., Fernández-Lozano, J.J., García-Cerezo,
A.: Automatically annotated dataset of a ground mobile robot in natural environ-
ments via gazebo simulations. Sensors 22, 5599 (2022). https://doi.org/10.3390/
s22155599

11. Tallavajhula, A., Meriçli, Ç., Kelly, A.: Off-road lidar simulation with data-
driven terrain primitives. In: 2018 IEEE International Conference on Robotics and
Automation (ICRA), Brisbane, QLD, Australia, pp. 7470–7477 (2018). https://
doi.org/10.1109/ICRA.2018.8461198

12. Balamurali, M., et al.: A framework to address the challenges of surface mining
through appropriate sensing and perception. In: 17th International Conference
on Control, Automation, Robotics and Vision (ICARCV), pp. 261–267 (2022).
https://doi.org/10.1109/ICARCV57592.2022.10004309

13. OpenPCDet Development Team. OpenPCDet: An opensource toolbox for 3D
object detection from point clouds (2020). https://github.com/open-mmlab/
OpenPCDet

14. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast
encoders for object detection from point clouds. CoRR, abs/1812.05784 (2018)

https://doi.org/10.1109/IROS40897.2019.8967642
https://doi.org/10.1109/MMAR.2019.8864642
https://doi.org/10.1109/MMAR.2019.8864642
https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.1109/ITSC45102.2020.9294422
https://github.com/udacity/self-driving-car/tree/master/datasets
https://github.com/udacity/self-driving-car/tree/master/datasets
https://doi.org/10.3390/s22155599
https://doi.org/10.3390/s22155599
https://doi.org/10.1109/ICRA.2018.8461198
https://doi.org/10.1109/ICRA.2018.8461198
https://doi.org/10.1109/ICARCV57592.2022.10004309
https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet

	SimMining-3D: Altitude-Aware 3D Object Detection in Complex Mining Environments: A Novel Dataset and  ROS-Based Automatic Annotation Pipeline
	1 Introduction
	2 Related Study
	3 New Dataset: SimMining3D
	3.1 Data Collection at Simulated Environment
	3.2 Automatic Annotation

	4 Perception: Baseline Experiment
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusion
	References


