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Abstract. Smart buildings are generally equipped with thousands of
heterogeneous sensors and control devices that impact the operation of
their electrical systems. Analytical tools that aim to optimise the energy
efficiency within such complex systems requires prior mapping or (classi-
fication) of diverse set of sensors according to a standard. Prior research
primarily focuses on exploiting the similarities in sensor names (text
metadata) to categorise them into identical classes (or groups). How-
ever, the sensors within and across buildings often follow distinct nam-
ing conventions by different vendors. In addition the definition of the
classes or groups also varies significantly amongst researchers. This lim-
its the usability and portability of prior techniques when applied across
buildings. There are standard ontologies (Brick, Haystack etc.) that pro-
vide a set of standardized classes for the sensors in the buildings. The
work herein follows a new avenue to address this challenging classifi-
cation problem by (i) utilizing only time-series data of sensors and not
text metadata, (ii) developing a simple, effective and hitherto unexplored
Machine Learning (ML) model to classify the sensors into a set of stan-
dard Brick classes, and (iii) evaluating the model on a large proprietary
dataset comprising of 129 buildings. Experimental results demonstrate
promising performance of the presented data driven model, with average
classification accuracy in terms of weighted F-score at 0.78 (±0.14), and
statistically significant improvements over prior methods.
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1 Introduction

Building Automation Systems (BAS) integrate various applications that moni-
tor, analyse, and optimise the energy usage of modern buildings. Their increasing
adoption reduces building operational costs, overall emissions, and enable us to
achieve urgent sustainability goals [7]. Successful integration of diverse energy
analytics with BAS requires access to both the semantic information of a large
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number of entities (e.g., sensors, control points), and their associated opera-
tional data. The semantic information (aka metadata) is required to identify
the equipment, locations, physical phenomenon being sensed, and the relation-
ships between those entities. However, such information is often unavailable,
unstructured or inconsistent [15]. Reasons for this include: changes in the physi-
cal configuration of the buildings over time, and heterogeneous entities that are
installed, managed, and named by different vendors. As a result, the usability
and portability of energy analytics across buildings are severely limited.

Consequently, several standard schemata like Brick [2] and Haystack [1] have
been developed. These schemata describe the heterogeneous sensors and control
devices in buildings and the complex relationships among them in a structured
and consistent format using a predefined set of classes (or tags). This allows the
use of machine readable representations of the different subsystems of buildings
for diverse analytical applications. However, the mapping of entities in build-
ings by following a standard schema is a time and labour intensive, requiring
significant effort from highly specialised domain experts and yet ultimately, is
an exercise that is susceptible to errors. Our goal here is to investigate the auto-
mated and data-driven mapping of building sensors based on their time series
data. In this paper, we use sensors and entities interchangeably.

Existing approaches predominantly address this classification problem from
a purely text processing perspective, using information retrieved from entity
names as inputs to the classifiers. The main reason for this is that important
properties of the entities are embedded in their names in most cases. The embed-
ded information can help to infer their types, locations, and relationships [10].
However, the success of these approaches are heavily dependent on intrinsic sim-
ilarities of entity names in both source and target buildings. Any variations of
entity naming conventions between source and target buildings negatively affect
the portability and usability of the models across buildings. In such case, it is
required to integrate domain expertise (e.g., [3]) or use knowledge from target
buildings (e.g., [8]) which is not feasible. In contrast, the Time-Series (TS) data
associated with similar types of sensors is expected to be consistent within and
across buildings. Such data contains patterns that can be utilised as signatures
for accurately classifying different types of sensors, regardless of their deployed
buildings. Therefore, we’ve focused on the classification of sensor types based on
TS data. Our contributions can be summarized as follows:

– We present a TS-data-driven approach for automatically classifying the sensors
in buildings by utilizing XGBoost [4]. A set of statistical features representing
the patterns in TS data is explored for classification. Since the approach only
requires TS data, it provides better portability and usability across buildings
compared to the approaches utilising entity names.

– In contrast to the existing approaches that use user-defined classes or Haystack
tags, our approach aims to classify sensors according to the popular Brick
schema and at a more granular level (as opposed to shallower levels in current
literature) in the class hierarchy to facilitate more widespread applications.

– We evaluate the approach against 129 buildings contained within a propri-
etary dataset from Australian Data Cleaning House (DCH). The operational
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patterns across its diverse building range varies greatly, leading to sensor data
with different characteristics and statistical distributions. Using this dataset
imposes a stricter challenge, as opposed to datasets that display more homo-
geneous properties.

– We provide a systematic comparison of XGboost against: (i) other ML clas-
sifiers such as Random Forest (RF), Neural Networks (NNs), and Support
Vector Machines (SVM) used in prior data-driven approaches; and (ii) the
Building Adapter model [11] which utilises both TS and text name space.

2 Related Work

Prior approaches for classification of sensors in buildings can be broadly cate-
gorised based on the type of data used [7]: (i) name space; and (ii) time series.
Koh et al. [15] reviewed and implemented several state-of-the-art approaches
from both groups. The first group of studies focus on utilising encoded infor-
mation in text metadata (entity names, vendor specified descriptions, specifica-
tion of target buildings) as inputs for classification. Balaji et al. [3] proposed
“Zodiac”, a semi-automatic model that grouped entities by processing their
names thru a bag-of-words method and utilising the resultant count values. The
entities in each cluster were classified by repeatedly training a Random Forest
(RF) model and incorporating feedback from domain experts. He and Wang [8]
utilized information extraction principles to merge differing text corpuses gath-
ered from buildings. Text from source buildings were combined with additional
knowledge (known as “specification files”) that were synthesised from target
buildings, which were then fed into a Bi-LSTM model. Scrabble [14] used the
combination of Conditional Random Fields and Neural Networks (NNs) on text
metadata to apply Brick classes to the sensors. Other prominent studies that
adopted similar approaches include [12,18].

In contrast to the abundance of studies utilising text metadata, there are very
few studies that rely on TS data to train ML classifiers. Gao et al. [7] utilised
several statistical features (e.g., mean, mode, quantiles and deciles) from TS
as input to train a set of ML models that including RF, k-Nearest Neighbour
(kNN), and SVM. They trained these models for classifying both composite tags
and individual tags from Haystack ontology. Hong et al. [9] studied clustering of
TS data based on a similarity metric (cross-predictability) that was applied to
group four types of sensors. The labels used in their study were defined manually
instead of following any standard ontology. TS data was also used in Koc et
al. [13] but only for inferring spatial relationships between sensors.

There exists studies that incorporate both TS and name space data for classi-
fication. The Building Adapter (BA) model in [11] stands as a prominent exam-
ple. A group of classifiers (SVM, RF, and Logistic Regression (LR)) were trained
using 44 TS-based features as inputs. It then transferred the knowledge from
source to target building based on clustering of entities using text data from
target buildings. Mishra et al. [17] also adopted a similar approach based on RF
and SVM classifiers trained on TS data, and clustering on text data.
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3 Datasets and Problem Statement

3.1 Datasets

We consider a dataset from DCH, which contains energy and operational data for
more than 150 buildings from 30 sites across Australia. After excluding a small
subset due to data quality issues, 129 buildings encompassing corporate offices,
libraries and research labs remained. Some buildings recorded comprehensive
sensor data, whilst others were limited to specific subsystems such as electri-
cal systems. These buildings were modelled manually using the Brick schema
by domain experts. The entities in different buildings are named using differ-
ent naming conventions and by different vendors. Table 1 presents a sample of
metadata in our dataset (with anonymised site and building names).

Table 1. Sample metadata for different entities.

Bld id Entity name Brick class

Bld 2(Site 5) dsapi-tacit-silent-start-
Site 5 Bld 2.Bld2LandP.VoltageBN

Voltage Sensor

Bld 1(Site 2) dsapi-thick-gusty-rest-Building 1-Site 2.
E5 07 OfficeL2Lighting.CurrentPhaseA

Current Sensor

Bld 1(Site 7) dsapi-synonymous-tender-campaign-
Site 7.B 1...EMeter 3 DB LG P2 kVAr

Electrical Power Sensor

Our classification approach relies on TS data attached to the entities in each
building, which were typically recorded over several years. Nonetheless, we only
considered data from 1st Jan 2022 onwards due to quality issues and to avoid
pandemic related anomalies. Moreover, the TS data for buildings in DCH were
recorded at different resolutions varying from 5 to 45 min. When modeling the
data, we extracted several features representing their statistical properties and
patterns, and this is elaborated upon in Sect. 4.1.

3.2 Problem Statement

Given the following:

1. the TS data TSN
B = {ts1, ts2, ..., tsN} of a set of N entities EB = {e1, e2,

..., eN} in a building B where tsi = [o1i , o
2
i , ..., o

L
i ] is vector of L time ordered

numerical observations of a phenomenon sensed by an entity ei.
2. the class label yi of each entity ei∈{1 to N}. YB = {yi, y2, ..., yN} is the set of

class labels for all entities in the same building.

The Goal is to develop a model, M , to classify the class labels for the entities in
the set of E using information from TSN

B . In other words, the model M intends
to learn the mapping function F (X) → YB where X is the input feature set
computed from TSN

B .
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In this study, the entity represents the set of sensors measuring different
phenomena (e.g., current, voltage, energy usages, etc.) of electrical systems as
well as the outside air temperatures of buildings. The class labels of the entities
or sensors are assigned from Brick version 1.2, and we are specifically focused on
sensors belonging to five main classes {Electrical Power Sensor, Voltage Sensor,
Current Sensor, Energy Sensor, Outside Air Temperature Sensor} and their
associated sub-classes in the Brick ontology.

4 Proposed Data-Driven Approach

Figure 1 presents a schematic diagram of the proposed approach for sensor types
classification. It consists of two main steps: i) model development, and ii) testing.

4.1 ML Model Development

Time Series Feature Extraction. Feature selection is a crucial step for ML
model development. It is the process of identifying a set of informative inputs
that can represent the statistical distribution and the patterns in the data [16].
An appropriate feature set helps the ML model to learn both linear and non-
linear relationships between inputs and target, and reduce the chances of over-
fitting that consequently lead to better performance.

Fig. 1. Schematic diagram of the proposed ML approach for sensor type classification.

The TS data belonging to different groups of sensors shows different statis-
tical distribution over times. Therefore, we aim to extract a set of features from
each TS based on a windowing technique as described in [11]. We first segment
each TS data into a set of fixed length window where each segment has 50% over-
laps with previous one. The length of the window varies depending on the gaps
between the consecutive samples in the TS since our dataset has TS with varying
sampling rate. For TS with gaps between consecutive samples ≥15 min, we set
the window length to be 1 h considering possible hourly pattern in TS. Other-
wise, it is set dynamically such that the window contains a minimum number
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of samples (10 in our case). Following [11], for each window we then computed
11 statistical features representing 4 different statistical properties: i) extreme:
min and max, ii) variability: median, root mean square, 1st quartile, 3rd quar-
tile, inter quartile range, iii) moments: variance, skewness, and kurtosis, and iv)
shape: slope. For each of the 11 statistical features, we then compute 4 summary
statistics min, max, variance, and standard deviation from the series of values
for all window. This will results in 44 final features (11 features × 4 summary
statistics for each feature) for each TS.

Model Training. As the classifier, we adapt the Extreme Gradient Boosting
(XGBoost) model. XGBoost is a scalable and distributed gradient-boosted deci-
sion tree model that can be applied for supervised classification and regression.
The main motivations of choosing XGBoost over other classical ML models like
NNs include: i) it is more robust to the noisy data, ii) it is highly parallelizable
and hence faster to train on large datasets, iii) it requires less computational
resources, and iv) it has less parameters and is easier to tune.

XGBoost trains a set of base learners (shallow Decision Trees (DT)) itera-
tively such that each base learner focuses on the examples that were difficult to
classify by the previous one. In other words, in each iteration XGBoost trains a
new base learner which aims to minimise the error of the previous learner. The
final prediction is computed by combining the predictions from all base learners
based on their weights that are determined based on their performance on train-
ing data. In contrast to the RF algorithm which also applies a set of DTs each
trained on separate subset of training data chosen based on bootstrap sampling
and minimizes the variance and over-fitting, the XGBoost focuses on minimizing
the bias and under-fitting during the training process. For more details on the
theory of XGBoost we refer to [6].

The 44 statistical features extracted from all the TS streams and their respec-
tive Brick class labels, from all the source buildings are then fed into XGBoost
model. The model learns the mapping between input features and targets (Brick
classes) through a training process. We tune the parameters of the XGBoost
model by applying a grid search strategy based on 10-folds cross validation of
training data from all the source buildings combined. The searching space the of
different parameters are presented in Table 2. After finding the best combination
of parameters, the model is trained on the entire training data.

4.2 Testing

The evaluation of the trained model using the data from the target buildings
begins with feature extraction. For each entity in a target building, we first
compute the 44 features explained in Sect. 4.1. These features are the provided
to the trained model as inputs and the model predicts the sensors types (Brick
classes) for the entities in target buildings. The predicted sensor type labels are
then compared with ground-truth Brick class labels to compute the performance
of the model.
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Table 2. Parameters of the XGBoost model used for grid searching.

Parameters Description Values used for grid search

n estimators number of base learners
(gradient boosted trees) to train

[50, 100, 200]

max depth maximum depth each base
learner can be expanded

[5, 10, 20, None (fully expanded)]

learning rate regularisation to control the
contribution of base learners

[1, 0.5, 0.1]

max leaves maximum umber of leave nodes
each base leaner can have

[0 (no limit), 10, 20, 50]

5 Results and Discussion

5.1 Evaluation Process

The performance of the proposed approach for sensor type classification are
evaluated using two metrics: accuracy and F-score. Accuracy represents the per-
centage of total number of sensors that are correctly classified by the model.
For an imbalanced classification problem like ours, accuracy alone may not pro-
vide sufficient insight of model’s performance since it doesn’t consider the ratio
of observations in different classes. F-score is another assessment metric which
evaluates the predictive skill of a model by considering its class-wise perfor-
mance. For a binary classification task, it can be defined as the harmonic mean
of precision and recall as in (1) where precision is the proportion of correctly
predicted positive class relative to the all positive predictions and recall indi-
cates the fraction of correctly predicted positive class with respect to the total
number of observations belonging to actual positive class. For our multi-class
classification task, we consider the weighted F-score which is computed as the
average of the F-score of each class where the weights are determined by the
number of observations in each class.

Fscore = 2 × (precision × recall)
(precision + recall)

(1)

Moreover, we evaluate the performance of the model on each building sep-
arately. Specifically, out of N sites in our DCH dataset, we consider one site
Sitei∈{1 to N} as the target site and remaining N −1 sites {Sitej = 1 to N & j �=i} as
the source sites. The model was trained on the data from all buildings in source
sites and tested on each building from the target sites. This process is repeated
N times, each time we have a different set of source sites and a target site.

5.2 Model’s Performance

Table 3 presents the performance of our model. Although our dataset consists of
129 buildings, for brevity we included the results for 11 buildings each having at
least 100 sensors to be classified.
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Classification results shows that performance of the proposed approach varies
for different site/building pairs. The accuracy is the range of 0.53 to 0.94 and
the F-score is between 0.55 to 0.95. The model shows the best performance on
the buildings Bld 1(Site 5), Bld 1(Site 6), and Bld 1(Site 8) with both accu-
racy and F-score over 0.90. On the other hand, the classification accuracy of
the sensors belonging to the three buildings Bld 1(Site 7), Bld 1(Site 3), and
Bld 1(Site 9) are the lowest (0.53, 0.56, 0.61, respectively). The same trend is
also observed if F-score is considered as the assessment metric. The main rea-
son for the comparatively lower accuracy of the model for these three buildings
is relatively poor quality of TS data. Although the TS data from most of the
buildings was recorded for at least 1 year (Jan–Dec 2022), the sensors in build-
ings Bld 1(Site 7), Bld 1(Site 3), and Bld 1(Site 9) has only few short bursts
of data possibly due to outages. This consequently made the extracted features
atypical due to the lack of sufficient samples and representative patterns associ-
ated to different sensor types. The accuracy or F-score of the model on the data
from other buildings is ≥0.70.

Table 3. Performance of the proposed approach.

Bld id Samples Accuracy F-score

Bld 1(Site 1) 1872 0.76 0.72

Bld 2(Site 1) 252 0.83 0.83

Bld 3(Site 1) 179 0.83 0.72

Bld 1(Site 2) 1003 0.70 0.71

Bld 1(Site 3) 312 0.56 0.55

Bld 1(Site 4) 276 0.88 0.87

Bld 1(Site 5) 218 0.94 0.95

Bld 1(Site 6) 216 0.92 0.91

Bld 2(Site 6) 165 0.87 0.88

Bld 1(Site 7) 131 0.53 0.61

Bld 1(Site 8) 124 0.91 0.91

Bld 1(Site 9) 118 0.61 0.59

Moreover, the distribution of the number of sensors in different buildings
shows that buildings Bld 1(Site 1) and Bld 1(Site 2) have the highest number
of sensors (1872 and 1003, respectively). The accuracy (or F-score) of the model
computed using the sensors from these two buildings is 0.76 (0.72) and 0.70
(0.71), respectively. In addition, the overall accuracy/F-score (averaged over all
the buildings) is 0.78 with a standard deviation of 0.14. All these results are
obtained using the features extracted from TS data only. This highlights that
the TS data contains signature information or patterns that can be utilised in
conjunction with ML algorithms to classify the sensors in buildings.
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5.3 Comparison

We assess and compare the performance of the proposed approach from dif-
ferent perspectives. Firstly, we assess the advantage and generalisation ability
the XGBoost classifier for sensor type classification task by integrating several
other ML algorithms as the classifiers in our approach. Secondly, we compare the
performance of the proposed approach with a state-of-the-art model (BA [11]).

Fig. 2. Comparison of XGBoost with different ML models.

To study the effectiveness of using XGBoost classifier in our proposed app-
roach, we evaluate the performance of proposed approach with three most widely
used classical ML algorithms in the literature that include NNs, SVM, and RF.
For a fair comparison, the evaluation is conducted using the same feature sets
and following the same process applied with XGBoost.

Figure 2 presents the performance of the proposed approach with different
ML models used as classifiers, evaluated using F-score. The graph using accu-
racy is similar and hence not included here. It shows that proposed approach
achieves the best performance using the XGBoost as the classifier for all the
buildings. The main reason for better performance of XGBoost is its robustness
to noisy data as ours TS dataset. The pairwise differences of accuracy/F-score
for XGBoost and any classifiers used for comparison is statistically significant
(measured by Wilcoxon rank-sum test) at p ≤ 0.05 for all the buildings except
Bld 2(Site 6). Among the three classifiers used for comparison, RF which uses
ensemble of decision trees provides the highest classification accuracy. This high-
lights the better generalisation ability of ensemble based models in mapping
input-output relationship for sensor types classification.

Moreover, the BA [11] model implemented for comparison utilises both TS
and text names space of the entities as inputs. BA first trains a group of ML
models (SVM, RF, and LR) using the 44 feature (discussed in Sect. 4.1) as
inputs, extracted from the TS data of the sensors in the source buildings. The
classification of sensors from a target building is done in two steps. Firstly, it
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groups the sensors in the target building into different clusters by using the a set
of text features formed from the entity names by applying k-mers [5] method.
Basically, these text features are the count values of each sub-string of consecu-
tive characters of length k from the entity names. Secondly, the prediction from
the ML models are weighted per instance basis based on the similarity between
the neighbouring graphs produced from both clustering and prediction of base
models for each entity in target buildings. Since our approach used the same
TS feature set as in the BA, comparison with BA allows us to investigate if the
different classifier (e.g., XGBoost) can provide better classification accuracy and
to investigate whether the combination of text and TS feature is beneficial for
our dataset.

Fig. 3. Comparison with the Building Adapter model [11].

Figure 3 present the performance (F-score) of our proposed approach and the
BA model implemented for comparison. The proposed approach using XGBoost
as the classifier provides better classification accuracy compared to the BA which
utilises SVM, LR and RF to model TS data. The proposed approach provides
better classification accuracy for 9 (out of 11) buildings and for remaining 2
buildings (Bld 1(Site 2), Bld 1(Site 3)) both show similar performance. Over-
all, the average F-score over all the buildings is 0.78 ± 0.14 for the proposed
approach vs 0.65 ± 0.12 for BA. The improvement of classification over the BA
model is also statistically significant at p ≤ 0.05. This indicate that utilisation
XGBoost instead of other classifiers used in BA to model TS data leads to better
classification accuracy for our dataset. Moreover, the better performance of the
proposed approach is obtained by using TS data only as opposed to both TS
and text name space data in BA.

Although it is expected that name space data can provide useful additional
information to the model for classification, in our case the BA model which
utilises text data in addition to TS did not show better performance. The rela-
tively lower performance of BA can be explained from two perspectives. Firstly,
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similar to our approach, BA trains the ML models on TS data from source build-
ings and utilises the text data from target buildings to provide weights to ML
models. However, the among three ML models in BA, RF provided the most
accurate prediction with high confidence. Hence the weighting based clustering
utilising text data doesn’t make big difference in the contributions of the base
classifiers to compute final prediction. Secondly, to obtain features from text
data, our implementation of k-mers used k = 3 following the actual BA model.
However, sub-strings of lengths 3 obtained from entity names possibly cannot
distinguish the sensors accurately and different values of k set based on empirical
evaluation could be a better choice for our DCH dataset.

6 Conclusions

We presented a straight-forward and effective data-driven approach for classi-
fying varying types of electrical and temperature sensors within buildings. The
classification was performed in accordance with widely used Brick ontology, and
at a more granular hierarchical level than in prior art. This approach was eval-
uated using a large Australian dataset comprising 129 buildings, with experi-
mentation showing performance at up to 95% accuracy and an average F-score
of 0.78 across all buildings. We also found that the classification accuracy for
few buildings were not as high as others, with F-scores below 0.6. However, in
contrast to the approaches based on text metadata, the main advantages of the
proposed approach is its portability and usability. It can be applied across build-
ings without worrying about the variation of naming conventions of entities in
source and target buildings, and it does not require any knowledge from target
buildings at all. Building on these promising preliminary results, future work
will focus on: (i) augmenting the feature set by using advanced signal processing
methods; and (ii) adapting deep learning based classifiers to further improve
classification accuracy.
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