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Abstract. Composed image retrieval (CIR) is a challenging task where
the input query consists of a reference image and its corresponding
modification text. Recent methodologies harness the prowess of visual-
language pre-training models, i.e., CLIP, yielding commendable perfor-
mance in CIR. Despite their promise, several shortcomings linger. First,
a salient domain discrepancy between the CLIP’s pre-training data and
the CIR’s training data leads to suboptimal feature representation. Sec-
ond, the existing multimodal fusion mechanisms solely rely on weighted
summing and feature concatenation, neglecting the intricate higher-
order interactions inherent in the multimodal query. This oversight poses
challenges in modeling complex modification intents. Additionally, the
paucity of data impedes model generalization. To address these issues,
we propose a CLIP-based composed image retrieval model with com-
prehensive fusion and data augmentation (CLIP-CD), consisting of two
training stages. In the first stage, we fine-tune both the image and text
encoders of CLIP to alleviate the aforementioned domain discrepancy. In
the second stage, we propose a comprehensive multimodal fusion module
that enables the model to discern complex modification intentions. Fur-
thermore, we propose a similarity-based data augmentation method for
CIR, ameliorating data scarcity and enhancing the model’s generaliza-
tion ability. Experimental results on the Fashion-IQ dataset demonstrate
the effectiveness of our method.

Keywords: Image retrieval · Vision-Language pre-training model ·
Multimodal fusion

1 Introduction

Image retrieval [7] stands as a cornerstone within the computer vision field,
playing pivotal roles in diverse domains ranging from face recognition [19] to
fashion retrieval [27]. Traditional image retrieval has predominantly centered on
single-modal queries, including text-based image retrieval [22] and content-based
image retrieval [17]. However, in many cases, expressing precise search intent via
a single-modal query often poses formidable challenges for users.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
T. Liu et al. (Eds.): AI 2023, LNAI 14471, pp. 190–202, 2024.
https://doi.org/10.1007/978-981-99-8388-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8388-9_16&domain=pdf
http://orcid.org/0009-0000-5768-5467
http://orcid.org/0000-0003-0633-3722
http://orcid.org/0000-0003-4638-0603
http://orcid.org/0000-0002-5274-4197
https://doi.org/10.1007/978-981-99-8388-9_16


CLIP-Based CTR with Comprehensive Fusion and Data Augmentation 191

To address the limitations of conventional image retrieval, composed image
retrieval (CIR) [21] has been proposed and gained increasing research attention.
In this task, the input is a multimodal query, i.e., a reference image plus a modifi-
cation text. The reference image reflects the user’s overarching retrieval demands,
while the modification text delineates the user’s specific unsatisfactory features
in the reference image and his/her desired modifications. This multimodal query
enables users to express their retrieval intents more flexibly and accurately.

Recent efforts have been increasingly devoted toward CIR. Predominantly,
these works apply conventional frameworks like CNNs [12] and LSTM [8] to
cultivate representations for the multimodal query. Yet, with the burgeoning
prowess of vision-language pre-training models in feature extraction, the inno-
vative method Clip4Cir [2] has integrated CLIP [4] and achieved impressive
results. Nevertheless, there are still some limitations that need to be addressed.
1) Clip4Cir overlooks the substantial domain discrepancy between the CLIP’s
pre-training image data and the CIR’s image data, which results in suboptimal
feature extraction. 2) Clip4Cir employs a simple combiner network reliant on
mere weighted summing and feature concatenation. It neglects the higher-order
interaction between the multimodal query and potentially fails to model com-
plex modification intents. And 3) the laborious data annotation limits the scale
of most CIR’s datasets. Like other existing works, Clip4Cir overlooks this issue,
resulting in insufficient model generalization.

To address the above limitations, we present a CLIP-based composed image
retrieval model with comprehensive fusion and data augmentation (CLIP-CD),
as illustrated in Fig. 1, which comprises two stages. In the first stage, we fine-tune
the CLIP’s image and text encoders to alleviate the domain discrepancy problem.
In the second stage, we design a multimodal fusion module, which incorporates
weighted summing, feature concatenation, and bilinear pooling [20], to enhance
the model’s multimodal fusion capabilities. Moreover, we propose a similarity-
based data augmentation method to expand the dataset size and enhance the
model’s generalization capabilities. Extensive experiments on the Fashion-IQ
dataset corroborate the superiority of our method.

Our main contributions can be summarized as follows:

• We present a novel CLIP-based method for CIR. Our approach not only
incorporates a fine-tuning strategy specifically designed to address the domain
discrepancy problem but also integrates a comprehensive multimodal fusion
module to enhance the effectiveness of multimodal fusion.

• To the best of our knowledge, we are the first to introduce a similarity-
based data augmentation mechanism in CIR, which alleviates the insufficient
training data problem.

• Extensive experiments conducted on the real-world Fashion-IQ dataset vali-
date the superiority of our model.

2 Related Work

Our work is closely related to composed image retrieval (CIR) and vision-
language pre-training (VLP).



192 H. Lin et al.

2.1 Composed Image Retrieval

Recently, there have been numerous works aiming to solve this problem. For
example, Vo et al. [21] employed gate mechanisms coupled with residual mod-
ules to fuse the multimodal query features. Later, Lee et al. [13] handled changes
in both content and style conveyed by modification text through the designed
content modulator and the style modulator. Meanwhile, Wen et al. [23] har-
nessed the mutual learning strategy to unify both local-wise multimodal fusion
and global-wise multimodal fusion. Baldrati et al. [2] pioneered the integration
of CLIP into this task and achieved remarkable performance. However, they
overlooked the domain discrepancy between the CLIP’s pre-training image data
and the CIR’s image data. The combiner network employed in their approach
also exhibits limitations in effectively modeling complex modification intents
within multimodal queries. Furthermore, like other works, they fail to address
the issue of the limited scale of most CIR’s datasets, resulting in constrained
model generalization. In light of this, we fine-tuned both the image and text
encoders to alleviate the domain discrepancy, and also introduced a compre-
hensive multimodal fusion module to effectively capture complex modification
intents. Besides, we proposed a similarity-based data augmentation method to
expand the dataset size and enhance the model’s generalization capabilities.

2.2 Vision-Language Pre-training

Vision-language pre-training models leverage vast data for pre-training and
generalize well on numerous downstream tasks through fine-tuning. Examples
of vision-language pre-training models include ViLBERT [16], Oscar [14], and
CLIP. Among them, CLIP stands out due to its contrastive learning based on
400 million image-text pairs. It can handle both text and visual inputs and
model the relationship between them. This capability has led to advancements
in multimodal areas like fine-grained classification [4], zero-shot retrieval [5], and
visual commonsense reasoning [22]. Drawing from these insights, we proposed an
effective fine-tuning strategy to bridge the gap between the CLIP’s pre-training
data and the CIR’s data.

3 Methodology

In this section, we first formulate the problem, and then detail the proposed
CLIP-CD.

3.1 Problem Formulation

In this work, we aim to tackle the CIR task, which can be formally defined as
that given a multimodal query comprising a reference image and its modification
text, the goal is to retrieve the optimal target image from a set of gallery images.
Suppose we have a set of triples denoted as D = {(Ir, Tm, It)i}Ni=1, where Ir is the
reference image, Tm is the modification text, It signifies the target image, and N
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is the total number of triplets. Based on D, our goal is to train a model that can
effectively fuse the multimodal query (Ir, Tm) to be close to the representation
of the target image It. This can be formalized as follows,

f(Ir, Tm) → h(It), (1)

where f(·) represents the multimodal fusion function mapping the multimodal
query to the latent space, while h(·) denotes the feature embedding function for
the target image.

3.2 CLIP-CD

As illustrated in Fig. 1, we propose a CLIP-based composed image retrieval
model with comprehensive fusion and data augmentation, which consists of two
training stages. In the first stage (encoder fine-tuning stage), we simultaneously
fine-tune the text and image encoders of CLIP, which helps alleviate the problem
of domain discrepancy. In the second stage (multimodal fusion stage), we freeze
the parameters of the CLIP’s encoder fine-tuned in the first stage and focus
on learning a multimodal fusion module. Additionally, to further expand the
dataset size and improve the model’s generalization, we generate pseudo triplets
by replacing the reference/target image with another similar one.

Fig. 1. The overall architecture of the proposed framework consists of two training
stages: (a) Encoder Fine-tuning and (b) Multimodal Fusion. The parameters of the
image encoder are shared by the reference image and the target image.

3.2.1 Encoder Fine-Tuning
The first step is to address the domain discrepancy between the data of the
CLIP’s pre-training and that of the CIR’s training.

Regarding text data, CLIP is trained on descriptive texts directly related to
images, such as “A photo of a dog”. However, CIR’s modification texts high-
light differences between the reference and target images, such as “has more
colors and is purple”. In addition, as for image data, CLIP’s pre-training data
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contain images from diverse domains in the open domain, like objects, land-
scapes, and humans. Conversely, CIR’s training image data are usually domain-
specific, such as fashion-related items. Hence, there are significant domain dis-
crepancies between these two tasks in both image and text training data.

Based on the above analysis, in this stage, we focus on fine-tuning both the
image and text encoders of CLIP to address the domain discrepancy problem.
Figure 1(a) illustrates the overview of the first stage. Specifically, we first utilize
CLIP to extract image and text features from the training triplet (Ir, Tm, It),
which can be formulated as follows,

⎧
⎨

⎩

xr = IE (Ir) ,
tm = TE (Tm) ,
xt = IE (It) ,

(2)

where IE(·) and TE(·) represent the image and text encoders of CLIP, respec-
tively. xr, tm,xt ∈ R

D represent the encoded reference image feature, modifica-
tion text feature, and target image feature, respectively. Then we fuse xr and
tm with an element-wise summation followed by L2-normalization as follows,

φ = L2 (xr ⊕ tm) , (3)

where φ represents the combined features of xr and tm. ⊕ serves as element-
wise summation. Finally, to fine-tune the CLIP’s image and text encoders, we
leverage the widely-used batch-based classification (BBC) loss [2] as follows,

L =
1
B

B∑

i=1

[

− log

(
exp{κ(φ(i),xt

(i))/τ}
∑B

j=1 exp{κ(φ(j),xt
(j))/τ

)]

, (4)

where the subscript i refers to the i-th triplet sample in the mini-batch, B is
the batch size, κ (·, ·) serves as the cosine similarity function, and τ denotes the
temperature factor.

Fig. 2. The architecture of the multimodal fusion module. It takes the reference image
feature and the modification texts feature as inputs and outputs a fused representation.
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3.2.2 Multimodal Fusion
The overview of the second training stage is depicted in Fig. 1(b). In this stage,
we freeze the parameters of CLIP and focus on training a comprehensive multi-
modal fusion module.

The details of the proposed multimodal fusion module are illustrated in Fig. 2.
It employs three strategies for multimodal feature fusion: weighted summing, fea-
ture concatenation, and bilinear pooling. Notably, the former two strategies have
been explored in Clip4Cir. However, we argue that merely relying on weighted
summing and feature concatenation neglects the intricate higher-order interac-
tions inherent in the multimodal query, posing challenges in modeling complex
modification intents. To address this limitation, we additionally introduce bilin-
ear pooling as depicted in Fig. 2(b). By leveraging bilinear pooling, the model
can comprehensively capture the multimodal query features. This enhancement
allows for capturing higher-order interactions between the reference image and
modification text features and hence boosts the understanding of the multimodal
query.

The bilinear pooling consists of three essential components: the feature pro-
jection layer, the bilinear pooling layer, and the output block. First, the features
of the reference image and the modification text are processed through the fea-
ture projection layers, respectively. Formally, we have,

{
fI = ξ (FC (xr)) ,
fT = ξ (FC (xm)) ,

(5)

where fI ∈ R
K and fT ∈ R

K refer to the output vectors through the feature
projection layer of the reference image and the modification text, respectively.
ξ is the RELU activation function and FC(·) denotes the fully-connected layer.
Note that considering the memory cost of storing high dimensional features, we
set K < D.

In the subsequent bilinear pooling layer, an outer product computation is
performed between fI and fT to obtain a feature map matrix, and this matrix is
then flattened into a vector fbil ∈ R

K2
. It can be formulated as follows,

fbil = Flatten (fI ⊗ fT ) , (6)

where ⊗ represents the outer product operation. Next, we feed fbil to the output
block, which is as follows,

fout = FC (ξ [FC (fbil)]) . (7)

Similar to the first stage, we add fout ∈ R
D to the features obtained from the

weighted summing and the feature concatenation as the final output of the mul-
timodal fusion module. And the parameters of the multimodal fusion module
are optimized by the BBC loss the same as Eq. 4.
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Fig. 3. Examples that multiple images satisfy the same multimodal query.

3.2.3 Similarity-Based Data Augmentation
Another major novelty of our work is that we propose a similarity-based data
augmentation method, to alleviate the overfitting phenomenon caused by the
limited size of training data.

We observe that a single multimodal query could correspond to multiple
images that meet the retrieval requirements. Intuitively, these images that align
with the same multimodal query tend to exhibit a high similarity degree to the
desired target image. As illustrated in Fig. 3, the multimodal query specifies a
red dress and intends to modify it into a long blue one with an empire waist.
However, apart from the target image, two additional blue dresses meet the
multimodal query.

This observation suggests the potential of creating a pseudo triplet by sub-
stituting the target image with another similar one. Likewise, replacing the ref-
erence image with a similar one can also yield a new pseudo triplet. Specifically,
we first utilize the CLIP’s image encoder trained from the first stage to extract
features of all images in the training dataset, which can be represented as follows,

xk = IE (Ik) , k = 1, · · · , n, (8)

where Ik is the image in the training dataset, n denotes the total number of train-
ing images, and xk ∈ R

D is the feature vector corresponding to Ik. Subsequently,
we employ the cosine similarity function to calculate the similarity score between
the reference/target image and the training images based on the extracted fea-
tures. To ensure the validity of the pseudo triplets upon image replacement, we
design specific constraints from two perspectives: 1) image similarity constraint
and 2) triplet matching constraint.

In the image similarity constraint, to ensure the quality of pseudo triplets
and distinguish them from the original triplets, we establish the lower similarity
threshold εl and upper similarity threshold εu. Besides, to control the number
of pseudo triplets, we follow a method where for each image, only the first smax

images with the highest similarity that meet the similarity threshold are selected
as its substitute set. The image similarity constraint is as follows,

Mk = {I
′
1, I

′
2, ..., I

′
smax

},∀I
′
i ∈ Mk, εl ≤ κ(xk,x

′
i) ≤ εu, (9)

where I
′
i is a suitable substitute image for Ik, Mk is the substitute image set for

Ik, x
′
i is the feature vector corresponding to I

′
i . Following this constraint, we can
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construct the pseudo triplet by replacing the reference image or the target image
in the original triplet from their substitute image set. Specifically, the pseudo
triplets are denoted as D̃.

Considering that obtaining similar images directly based on the visual feature
outputted by the image encoder could introduce certain noise similar images,
we additionally incorporate the triplet matching constraint where we further
evaluate the matching degree between the multimodal query and the target
image within the pseudo triplets. Specifically, we employ the model derived from
the first stage to compute the matching score. If the score surpasses the pre-
defined threshold α, the pseudo triplet is retained; otherwise, it is discarded.
Finally, the pseudo triplets are a subset of D̃, denoted as D̃sub.

Although we have introduced two constraints to ensure the quality of the
pseudo triplets, their quality may be still inferior compared to the original
dataset. Therefore, during the second training stage, we adopt an iterative app-
roach utilizing the two types of data. Specifically, we train the model on the orig-
inal training data D for k epochs, followed by one training epoch using pseudo
data D̃sub. This training strategy can not only augment the training data to
improve the model’s generalization ability but also mitigate the adverse effects
posed by the lower quality of the pseudo triplets.

4 Experiments

In this section, we first present the experimental settings and then detail the
experiments conducted on the Fashion-IQ dataset.

4.1 Datasets and Metrics

Fashion-IQ [24] is a fashion image retrieval dataset based on natural language
descriptions. It comprises 77, 648 clothing images and is divided into three sub-
training sets: dress, shirt, and top&tee. The training data includes over 18, 000
triplets, where each triplet includes a reference image, a target image, and a
modification text. As the test set of Fashion-IQ is not publicly available, we
followed the experimental setup of other related works [2,26] in terms of dividing
the dataset into training and testing sets.

Following previous efforts [2,23], we adopted the Recall at rank k (R@k) as
the evaluation metric. It measures the fraction of queries for which the ground
truth target is retrieved among the top k results. For all three subsets of the
Fashion-IQ dataset, k is set to 10 and 50.

4.2 Implementation Details

Similar to Clip4Cir, we used RN50×4 CLIP as the feature encoder for our model.
In the similarity-based data augmentation section, to ensure the validity of the
obtained pseudo triplets, we set the lower similarity threshold εl and the upper
similarity threshold εu in Eq. (9) to 90% and 99.5%, respectively. The max
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number of substitute images smax in Eqn. (9) is set to 4 and the threshold α
for the triplet matching constraint is set to 0.6. In the first stage, we employed
AdamW optimizer [15] with a learning rate of 2e − 6 and a weight decay coeffi-
cient of 1e − 2 to optimize the model. The batch size is set to 64. Additionally,
following [18], the temperature factor τ in Eq. (4) is set to 100 to ensure an ade-
quately wide dynamic range of similarity probabilities without interfering with
the normal training process. In the second stage, we frozen the CLIP’s image
and text encoders from the first stage and focused on training the multimodal
fusion module. We adopted Adam [11] optimizer with a learning rate of 2e − 5.
The batch size is set to 1, 024. All the experiments are implemented by PyTorch,
and we fixed the random seeds to ensure reproducibility.

4.3 Performance Comparison

To validate the effectiveness of our method in CIR, we chose the following base-
lines: TIRG [21], ComAE [1], VAL [3], DATIR [6], CosMo [13], Heteroge [25],
SAC [9], DCNet [10], CLVC-Net [23], Clip4Cir [2].

Table 1 summarizes the performance comparison on the Fashion-IQ dataset.
From this table, we obtained the following observations. 1) Our proposed method
outperforms all baselines over the Fashion-IQ dataset. This confirms the advan-
tages of leveraging a two-stage training approach with a novel fine-tuning strat-
egy and incorporating pseudo triplets. And 2) both our proposed method and
Clip4Cir perform better than others without employing visual-language pre-
training models, i.e., CLIP. This highlights the crucial role of visual-language
pre-training models in this task.

Table 1. Performance comparison on Fashion-IQ. The best results are in boldface,
while the second best are underlined.

Method Dress Shirt Top&Tee Avg

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50

TIRG [21] 14.87 34.66 18.26 37.79 19.08 39.62 17.40 37.39

ComAE [1] 14.03 35.10 13.88 34.59 15.80 39.26 19.89 36.31

VAL [3] 21.12 42.19 21.03 43.44 25.64 49.49 22.60 45.04

DATIR [6] 21.90 43.80 21.90 43.70 27.20 51.60 23.70 46.40

CosMo [13] 25.64 50.30 24.90 49.18 29.21 57.46 26.58 52.31

Heteroge [25] 26.20 51.20 22.40 46.00 29.30 56.40 26.10 51.20

SAC [9] 26.52 51.01 28.02 51.86 32.70 61.23 29.08 54.70

DCNet [10] 28.95 56.07 23.95 47.30 30.44 58.29 27.78 53.89

CLVC-Net [23] 29.85 56.47 28.75 54.76 33.50 64.00 30.70 58.41

Clip4Cir [2] 33.81 59.40 39.99 60.45 41.41 65.37 38.52 61.74

CLIP-CD 37.68 62.62 42.44 63.74 45.33 67.72 41.82 64.79
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Table 2. Ablation study on Fashion-IQ. The results are the average result of the three
categories on Fashion-IQ’s three sub-training sets.

Method R@10 R@50

w/o FT 23.44 43.15
w/ FT-Text 32.71 54.59
w/ FT-Image 34.02 55.74S

ta
g
e
1

w/ FT-Both 39.45 62.88

w/o Pseudo Data 41.55 64.49
w/o Bilinear 41.51 64.40

S
ta

g
e
2

CLIP-CD 41.82 64.79

4.4 Ablation Study

To verify the importance of each part of our model, we conducted ablation
experiments in two parts: 1) Fine-tune strategy (Stage1) and 2) Component
ablation (Stage2).

In the first part, to demonstrate the importance of our fine-tuning strategy,
we devised four different fine-tuning experiments which are conducted during
the first training stage. In the second part, we compared our proposed method
with two other variants of our model to investigate the effectiveness of our key
components. Both of them are conducted in the second training stage.

• w/o FT, w/ FT-Text, w/ FT-Image, and w/ FT-Both: To investigate the
effectiveness of our fine-tune strategy, we conducted four fine-tuning related
variants, including without any CLIP’s encoder fine-tuning and with fine-
tuning text/ image/ both encoders of CLIP, respectively.

• w/o Pseudo Data: To verify the effectiveness of the proposed similarity-based
data augmentation method in the retrieval process, we removed the generated
pseudo data and only used the original dataset to train.

• w/o Bilinear: To check the importance of bilinear pooling, we removed bilinear
pooling from the multimodal fusion module.

Table 2 shows the ablation results of our proposed method. As can be seen
from this table, we gained the following observations. 1) w/ FT-Both achieves
better performance than other fine-tune related variants, which confirms the
importance of alleviating the domain discrepancy of both text and image simul-
taneously. 2) Our method surpasses w/o Pseudo Data, indicating that the pro-
posed similarity-based data augmentation method helps improve the model’s
generalization performance and alleviates the overfitting phenomenon. And 3)
w/o Bilinear performs worse compared to our method, which demonstrates that
bilinear pooling is useful for boosting the model’s multimodal fusion capability.



200 H. Lin et al.

Fig. 4. Retrieval examples obtained by our CLIP-CD on Fashion-IQ.

4.5 Case Study

Figure 4 illustrates CIR examples from the three sub-datasets of Fashion-IQ. The
top 5 retrieved images are listed, where the green boxes indicate the ground-truth
target images labeled in the dataset, whereas the red boxes signify images that
fail to meet the retrieval requirements based on our evaluation. It can be observed
that the proposed method ranks the ground-truth target image in the first place
for all three examples. Specifically, in Fig. 4(a), all the retrieved images can
align with the multimodal query. This confirms the effectiveness of our method.
Meanwhile, in Fig. 4(b), the 5-th image doesn’t exhibit the “sea creatures” trait,
even though it shows high similarity to the target image. A similar case can
be observed in Fig. 4(c). This may be due to that although we designed two
constraints for filtering pseudo samples, a few low-quality triplets might still
mislead the optimization of the method. Nevertheless, these observations show
that our method succeeds in retrieving the desired target image and most of the
retrieved images can meet the multimodal query requirements. This confirms
the effectiveness and robustness of our method.

5 Conclusions

In this work, we present a CLIP-based composed image retrieval model with
comprehensive fusion and data augmentation, which consists of two training
stages. In the first stage, the focus is fine-tuning the image and text encoders
of CLIP to alleviate the issue related to domain discrepancy. In the second
stage, the emphasis is placed on training a multimodal fusion module to fully
integrate the features extracted from the reference image and the modification
text. Furthermore, we propose a similarity-based data augmentation method to
overcome the problem of insufficient training triplets in the dataset used for
this task. Extensive experiments have been conducted on the public Fashion-IQ
dataset, and the results demonstrate the effectiveness of our method.
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