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Abstract. In 2020s, the state of the art (SOTA) in financial volatility
forecasting is underpinned by deep learning (DL). Despite this, fore-
casting methods in practice tend to be dominated by their more tradi-
tional counterparts (e.g., Generalised Auto-Regressive Conditional Het-
eroscedasticity (GARCH) models) or relatively simple neural networks
(NN), leaving much of DL unexplored. Hence, this study experimented
the power of DL in forecasting financial volatility and expedited further
progress in such multidisciplinary DL applications to quantitative finance
by releasing open-source software and proposing a shared task. We com-
pared the financial forecasting ability of the SOTA methods used to more
recent DL work, proceeding from simpler or shallower to deeper and more
complex models. Specifically, the volatility of five assets (i.e., S&P500,
NASDAQ100, gold, silver, and oil) was forecast with the GARCH mod-
els, multi-layer perceptrons, recurrent NNs, temporal convolutional net-
works, and Temporal Fusion Transformer. The results indicated that in
almost all cases, DL models forecast volatility with less error than the
SOTA models in financial volatility research. These experiments were
repeated and the difference between competing models was shown to be
statistically significant, therefore encouraging their use in practice.
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1 Introduction

One of the most important tasks for a financial institution is to monitor the
volatility of its portfolio and other market variables. However, there are many
different ways to quantify this latent and unobservable variable, such as historical
volatility (HV, a.k.a. close-to-close, the standard deviation of log-returns over a
time window) [27]1, realised volatility (RV, the square root of the sum of squared
log-returns over a time window) [1], implied volatility (IV, backwards calculated
from options prices via an option pricing model, such as Black-Scholes) [20],
and many more [26]. Because volatility is a key factor in security valuation,
risk management, and options pricing, as well as affecting investment choice
and valuation of public and corporate liabilities, sophisticated computational
models are studied for financial volatility forecasting to support practitioners’
judgment and decision-making in quantitative finance [6,19,27,30]. In the 2020s,
such computer-assisted forecasting methods are dominated by Generalised Auto-
Regressive Conditional Heteroscedasticity (GARCH) models and relatively sim-
ple Neural Networks (NN), leaving much of Machine Learning (ML) and Deep
Learning (DL) unexplored [10].

Hence, this multidisciplinary paper will exemplify the power of ML/DL in
forecasting financial volatility to practitioners in quantitative finance. We will
compare the financial forecasting ability of a range of methods by proceeding
from simpler or shallower models (i.e., the GARCH models and Multi-Layer
Perceptrons (MLP)) to deeper and more complex NNs (i.e., the Recurrent NNs
(RNN), Convolutional NNs (CNN), Temporal Convolutional Networks (TCN),
and Temporal Fusion Transformer (TFT)). These performance evaluations and
statistical analyses on five assets (i.e., S&P500, NASDAQ100, gold, silver, and
oil), completed by releasing our Python code2 under the MIT license should
encourage practitioners to apply DL as a way to reduce error in forecasting
financial volatility.

2 Related Work

A convenient property of financial price data is the efficient market hypothesis,
which stipulates that all publicly available information is reflected in the market
prices of assets at a given time point [30]. At the finest resolution, market prices
are a list of prices of all the buy and sell orders that were matched, which can
then be aggregated over time (e.g., 1-h or 1-day intervals) to create more coarse-
grained views and can be further described by its highest, lowest, opening, and
closing price for that interval, as well as the total number of assets traded,
known as volume; however, introducing additional data tends to be helpful in

1 Despite the name containing the word ‘historical’, it is not defined exclusively for
historical data. This can still be forecast in the same way that realized volatility can
forecast.

2 All results, tables, figures, and analysis methods can be found at https://github.
com/xyz, along with extended results.

https://github.com/xyz
https://github.com/xyz
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this predictive modeling task [21,35]. In addition to the definition of volatility
and financial price data, the volatility forecasting model should consider the
time period for which the data is useful: If the goal was to forecast for the
next 15 min, using data from the previous 50 years might be wasteful but with
1 week, information from past market regimes that could repeat might be missed.
Moreover, the amount of information provided at inference time is important as
it impacts the computation time, as well as may dilute the useful information;
when inferring the volatility of the next 30 days, all data could be useful, but the
most recent entries are likely to carry more insights than earlier ones. Finally,
the timing of the data and the window of time that the volatility captures must
also be considered, keeping in mind that the further into the future we are
trying to forecast, the more uncertain any forecast will be. Although this part
of modeling should depend on the reason for forecasting volatility3, asking the
model to forecast volatility in a wide range of time frames may be beneficial4.

Of the many types of models that can be used to understand and fore-
cast volatility, none are as widespread as the auto-regressive (AR) models:
The seminal Auto-Regressive Conditional Heteroscedasticity (ARCH) models
future volatility conditioned on previous observations [7] and its adaptation
as the well-known GARCH model includes an Auto-Regressive Moving Aver-
age (ARMA) component [2]. Since these models from the 1980s, there have
been many advancements that attempt to address the models’ inability to cap-
ture several stylized facts of volatility [8]5. Despite the countless variants of the
GARCH model, several experiments have found that the simple ARCH(1) and
GARCH(1, 1) forecasting models perform the best [11,24].

ML and DL models have also shown much success and are rising in popularity
[4,5,12]. NN-based models are commonly used, and although they do not have
the same theoretical underpinnings as the GARCH models, they are flexible,
possessing the ability to learn any arbitrary mapping f from input X to output
y; y = f(X). In the context of time series analysis, a Nonlinear Auto-Regressive
(NAR) framework is often adopted with the MLP, enforcing an AR property
to the nonlinear mapping (e.g., ŷt+1 = f([yt, yt−1, ..., yt−m]T ) with t referring
to a given time point) [15]. This can be extended into a NARX framework
by including exogenous variables (such as those derived from several indices,

3 E.g., market makers and day traders may want to monitor short-term volatility in
the span of minutes to watch for entry/exit signals.

4 E.g., (1) if using daily prices in forecasting financial volatility, some assets are not on
the market every day, and as a result, when using multiple data streams, a mismatch
between the date and time of each point in the time series is likely to be present,
calling for interpolation to fill in the missing data between points, or (2) when using
ML/DL methods for modeling, having multiple learning signals aggregated can keep
the learning on track.

5 E.g., Exponential, Threshold, and Glosten-Jagannathan-Runkle versions (EGARCH,
TGARCH, GJR-GARCH) which allow for asymmetric dependencies in volatility,
and the Integrated and Fractionally Integrated versions (IGARCH, FIGARCH) which
address volatility persistence, where an observed shock in the volatility series seems
to impact future volatility over a long horizon.
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exchange rates, and outputs of GARCH models), thus providing more infor-
mation to the model [3] which has been beneficial for forecasting performance
[14]. Other NN architectures (e.g., RNNs, CNNs, and Long Short Term Mem-
ory (LSTM) models) have also been used in volatility forecasting. For instance,
LSTM and GARCH models have been combined to forecast HV [13] and gold
prices can be converted into a 3-channel RGB image and then processed with a
pre-trained vgg16 (a well-known and high performing CNN model) [32].

Whilst RNNs, LSTMs, and CNNs are deep models, they are not considered as
the state-of-the-art (SOTA) for time series processing in DL, and models used in
financial volatility forecasting tend to be even shallower and simpler, a distinct
gap highlighted in a recent systematic literature review [10]. This is reserved
for recent models that have the extremely deep capacity and use complex mod-
els, often adapted from other fields such as TCNs, which have been successful
in music generation, speech enhancement, and many other areas involving time
series [16,23,25]. The TCN is a CNN adaptation, consisting of 1-dimensional con-
volutional blocks structured in a way that does not violate the temporal ordering
of data (i.e., only past data can be seen when forecasting), known as a causal
convolution [23]. In conjunction with a progressively increasing dilation size, the
receptive field can be increased exponentially as layers increase, thus allowing
the exploitation of long-term relationships. These blocks also often use residual
connections, layer normalization, gradient clipping, and dropout, all of which
have been shown to improve learning and performance [34]. Another recently
developed SOTA model that handles sequential data well is the Transformer
[31]. Its TFT variant deploys a gating mechanism to skip unused components of
the network, variable selection networks to select relevant input variables at each
time step, static co-variate encoders to provide context to the model, temporal
processing to learn long and short-term relationships, and quantile predictions
to forecast with a corresponding confidence [17].

3 Experimental Comparison of Forecasting Models

Our experimental study of forecasting models will next exemplify through com-
parative performance evaluation and statistical significance testing the power of
DL in forecasting financial volatility. The volatility of five assets will be forecast
with the SOTA methods; simpler or shallower DL models; and recent deeper and
more complex models. The results will indicate that in almost all cases, DL mod-
els forecast volatility with less error than the SOTA models in financial volatility
research. These experiments will be repeated to give evidence that the difference
between competing models is statistically significant, therefore encouraging their
use in practice and further study as a shared task.

3.1 Posing the Problem as a Shared Task

Volatility was forecast for five assets: S&P500, NASDAQ-100 (NDX), gold, silver,
and oil. The data for each, as well as the corresponding volatility indices, were
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Table 1. Description of data

Asset Start date End date

S&P500 22/Sep/2003 31/Dec/2018

NASDAQ100 01/Jan/2003 31/Dec/2018

Gold 03/Jun/2008 31/Dec/2018

Silver 16/Mar/2011 31/Dec/2018

WTI Crude Oil 10/May/2007 31/Dec/2018

retrieved from Global Financial Data6 (Table 1). The proper permissions to use
the data for the purposes of this study and its reporting were obtained from
Global Financial Data7. The data consisted of the daily closing prices, as well
as the open, high, and low prices for S&P500, NDX, gold, and oil. Volume was
available only for S&P500 and NDX. Each asset was restricted to a starting
date that corresponded with when the volatility index was introduced, except
for S&P500 and NDX. This was because the volatility index for S&P500 was
originally for the S&P100 and later changed on 22 September 2003 and because
the volatility index for NDX began earlier than one of the exogenous variables
used. Additionally, the ending date was restricted to 31 December 2018.

Exogenous variables were also retrieved from Global Financial Data, con-
sisting of several other indices (SZSE, BSE SENSEX, FTSE100, and DJIA),
exchange rates (US-YEN, US-EURO, and the US dollar trade weighted index),
and United States fundamentals (Federal Reserve primary credit rate, mean and
median duration of unemployment, consumer price index inflation rate, Govern-
ment debt per Gross Domestic Product (GDP), gross Federal debt, and currency
in circulation). All variables were date matched with the underlying assets by
bringing forward the nearest historical value.

The task was to forecast the month-long HV and IV (Fig. 1), starting from
1 day ahead, for S&P500, NDX, gold, silver, and oil. The ground truth for HV
was the standard deviation of log returns starting from 1 trading day ahead to
22 trading days ahead (= one calendar month). In other words, with t referring
to the current time, we defined HV over a certain period [τ1, τ2] = [t+1, t+22]
as the standard deviation (std(·)) of log-returns as follows:
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where N = τ2 − τ1 = 21 is the number of samples between the time steps, Pt

is price at time t, and rt = log(Pt/Pt−1) · 100. For IV, this meant the ground
6 https://globalfinancialdata.com/.
7 Due to the underlying data use agreement, the data or their derivatives cannot be

released as part of this paper.

https://globalfinancialdata.com/
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Fig. 1. Groundtruth and näıve forecasts for HV (a) and IV (b).

truth was simply the value of the volatility index for the next trading day, as
the volatility index was already defined for the next calendar month. The values
of the volatility indices were also adjusted by a factor of 1/

√
252, de-annualizing

the value to be on the same scale as HV.

3.2 Methods

Five methods were used to represent the SOTA financial volatility forecasting
performance, the combination of which will be the benchmark for comparison.
These five methods were: a näıve model8, a GARCH model, an MLP model, and
two models from literature: ANN-GARCH [14], and CNN-LSTM [32].

Two models from DL were investigated to represent the experimental fore-
casting performance. The first model was the TCN, as well as the TCN with

8 The näıve model simply repeated the most recent known value of volatility (Fig. 1).
For IV, this was the value of the corresponding volatility index at the current time.
For HV, this was the standard deviation of log returns for the current day and
previous 20 days, that is, Eq. (1) with τ1 = t− 20 and τ2 = t. This assumed that at
the time of forecasting, the current trading day is over and observed, an assumption
maintained for all forecasting models.
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several modifications. The first modification was to leverage the näıve model
and forecast a residual, defined as either the difference ygroundtruth,t − ynäıve,t, or
the log difference log(ygroundtruth,t/ynäıve,t). Another modification was to include
multiple tasks to the network, introducing another loss function that will have
a separate but related training effect [28]. The additional task was to predict
either the direction of the forecast (up or down), or the change in direction
(change or no change). The final modification was to include additional input
channels, introducing new information to the network [33], such as descriptors
of the underlying asset (log returns, näıve forecasts for HV and IV, and cur-
rent direction of movement), and variables that describe the market (US dollar
trade-weighted index, Federal Reserve primary credit rate, mean and median
duration of unemployment, consumer price index inflation rate, Government
debt per GDP, gross Federal debt, and currency in circulation) as there is liter-
ature to suggest that this may improve performance [14]. The second DL model
explored was the TFT. Additional variables like descriptors of the asset (open,
high, low, close, volume where possible, log returns, squared log returns, inverse
price of the underlying asset, and näıve forecasts for both HV and IV), descrip-
tors of the market (the US dollar trade-weighted index, Federal Reserve primary
credit rate, mean and median duration of unemployment, consumer price index
inflation rate, Government debt per GDP, gross Federal debt, and currency in
circulation), and descriptors of time (day of the week, month, and a number of
days since previous observation) were also included.

To engineer and evaluate the forecasting models using these five methods, a
70-15-15 train-validation-test split of the data was used because it did not violate
the temporal aspect of the data9. All performances were quantified with the
Mean Squared Error (MSE) with statistical significance testing to distinguish
if competing models were statistically significantly different from each other.
After the hyperparameters of a model were chosen and the testing phase was
completed, the model was reinitialized with a random seed, re-trained, and re-
tested. This was repeated until ten MSE values were obtained for each model.
These values were then tested across different models in a pair-wise fashion to
determine if they were from the same distribution10. The Shapiro-Wilk (SW)
test was first applied to assess the normality of the distribution with significance
level α = 0.0511. If both distributions were normal then Student’s t-test was
used, otherwise the Kruskal-Wallis (KW) test was employed.

9 The training set was used to train the models using different hyperparameters, which
were then evaluated against the validation set to determine the performance with
that given set of hyperparameters. Different combinations of hyperparameters were
searched, and the best performing set of hyperparameters proceeded to the test
phase. Here, the model was re-initialized and trained again with the union of both
the training and validation set, then evaluated once using the test set.

10 If so, the models were assumed to be equivalent, if not, then the model with the
smaller mean MSE was assumed to be superior.

11 The SW test was justified by the applicability of the test to the data with unspecified
mean and variance, as well as its appropriateness for small sample sizes.
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Table 2. Smallest error models (in bold), and models for which no statistically sig-
nificant difference could be found from the smallest error models.

Task Model S&P500 NDX Gold Silver Oil

HV Smallest error TFT TFT ANN-GARCH TCN var. TFT

Equivalent – – TFT TCN –

IV Smallest error TCN var. TCN var. TCN var. TCN var. TCN var.

Equivalent – – – – –

Table 3. Performance (MSE) of forecasting models on the test set. Smaller is better,
bold is the best. HS refers to Hyperparameter Search.

Model Family and Task Method S&P500 NDX Gold Silver Oil

Benchmark Models

HV Näıve 0.1281 0.1887 0.0216 0.0745 0.2799

GARCH 0.2662 0.9430 0.0191 0.0611 7.9448

MLP 0.2935 0.3542 0.0146 0.0666 0.2080

ANN-GARCH 0.1136 0.1735 0.0105 0.0563 0.2191

CNN-LSTM 0.1550 0.1869 0.0554 0.0488 0.3870

IV Näıve 0.0098 0.0084 0.0013 0.0023 0.0139

GARCH 0.2296 0.5859 0.0263 0.0279 7.6927

MLP 0.0172 0.0151 0.0021 0.0032 0.0278

ANN-GARCH 0.0248 0.0159 0.0022 0.0036 0.0312

CNN-LSTM 0.0141 0.0104 0.0064 0.0104 0.0246

Experimental Models

HV Näıve 0.1281 0.1887 0.0216 0.0745 0.2799

Best benchmark 0.1136 0.1735 0.0105 0.0488 0.2080

TCN 0.1467 0.1912 0.0331 0.0364 0.2614

TCN variants 0.1300 0.1728 0.0153 0.0315 0.2050

TFT 0.0294 0.0513 0.0116 0.0341 0.0864

IV Näıve 0.0098 0.0084 0.0013 0.0023 0.0139

Best benchmark 0.0141 0.0104 0.0021 0.0032 0.0246

TCN 0.0098 0.0083 0.0029 0.0032 0.0136

TCN variants 0.0093 0.0081 0.0013 0.0022 0.0127

TFT 0.0094 0.0083 0.0013 0.0025 0.0134

HS for TCN

HV Grid search 0.1467 0.1912 0.0331 0.0364 0.2614

BOHB 0.1591 0.2010 0.0616 0.0800 0.2107

IV Grid search 0.0098 0.0083 0.0029 0.0032 0.0136

BOHB 0.0126 0.0093 0.0017 0.0025 0.0139

3.3 Result Evaluation and Analysis

A comparison of the benchmark models and experimental models gave evi-
dence of a clear trend. Across almost all volatility forecasting tasks and assets
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investigated, the experimental models outperformed the benchmark models, with
statistical significance. Based on 10 repetitions, for almost all assets and tasks,
the performance values from the experimental models were superior and found
to be statistically significant (Table 2).

Of the benchmark models, the ANN-GARCH model from literature per-
formed best overall in forecasting HV, but for IV forecasting, the näıve model
performed the best overall, achieving the smallest errors for all five assets
(Table 3). However, a comparison of the traditional grid search hyperparameter
optimization method against the more recent Bayesian Optimisation HyperBand
(BOHB) search [9] indicated no clear trend; BOHB only produced a better fore-
casting model for the HV of oil, and the IV of gold and silver . Both methods were
given roughly the same wall time and were both tested using the un-modified
TCN. Though it is difficult to say if one method is superior to the other, the
continued use of grid search is justified and was the primary hyperparameter
optimization method for the remaining experimental TCN models.

Of the experimental models, the TFT performed best overall for HV fore-
casting, achieving the smallest errors for S&P500, NDX, and oil (Table 3). An
encoder length of 21 days was optimal for all assets, with no set of input vari-
ables that were consistently best. S&P500 and NDX performed best with the
addition of variables that describe time and the underlying asset, gold and sil-
ver performed best with the addition of variables that describe time, and oil
performed best with the addition of market and time descriptors. The inclusion
of exogenous variables only increased the performance for forecasting gold HV.
The smallest error for gold was achieved by a benchmark model, specifically
the ANN-GARCH.

The TCN variants were the best performing experimental model for IV fore-
casting, achieving the smallest errors for all assets (Table 3). The optimal mod-
ification was to use a secondary task of predicting the direction, as well as fore-
casting the residuals, consistent amongst all assets. S&P500, NDX, and gold also
benefited from the inclusion of the volatility index value and previous direction
of movements. For the TFT model, an encoder length of 10 days was preferred
for all assets, except for S&P500 which preferred a length of 126.

4 Discussion

This experimental study exemplified the value of DL in forecasting financial
volatility and expedited further progress in such DL applications by releasing
open-source software and proposing a shared task. It created a benchmark of
experimental evaluation results that consisted of the SOTA in NN-based financial
volatility forecasting, several traditional models, and a näıve baseline model.
This was then compared to several DL methods, representing the competing
experimental models.

These results, however, come with some limitations. The main limitation is
that the implementation of several models (GARCH and TFT) was open source
and thus not necessarily under the same strict control as the other models used.
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This study differs from prior publications by presenting a multidisciplinary
approach to DL experimentation in forecasting financial volatility. While some
other studies on financial volatility forecasting exist, they tend to be limited to
literature reviews [10,27,29] or expert systems in economics [5,14]. Our results
imply that DL may offer better volatility forecasting performance than tradi-
tional methods, and hence, our code release and proposed shared task should
expedite this future work. The most obvious is an investigation into other DL
models that have not yet been used for volatility forecasting. Combined with the
larger capacity of deeper models, another avenue to enhance the models is to
make use of multi-modal data (e.g., extend from numeric data to text [18,22]).

Moving forward, the most vital work is not further exploration of DL models
and methods, but rather, the establishment of the proposed shared task that
could include, for example, sharing of relevant resources (e.g., code to train
models and/or the resulting trained models) and tracks for studying models on
a given data modality or expanding them across modalities. This would allow
easy and direct comparisons without the need to implement competing mod-
els, enabling the synthesis of publications, and propelling the field of financial
volatility forecasting further and faster. This task should help gain a deeper
understanding of the factors and mechanisms that may affect the economic fea-
sibility of a statistical result. In conclusion, harvesting the diversity of thought
and other community effects is likely to accelerate knowledge discovery and
methodological innovations required to proceed from statistical significance to
economic impact.
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