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Abstract. The model performance on cross-domain pulmonary nodule
detection usually degrades because of the significant shift in data distri-
butions and the scarcity of annotated medical data in the test scenarios.
Current approaches to cross-domain object detection assume that training
data from the source domain are freely available; however, such an assump-
tion is implausible in the medical field, as the data are confidential and can-
not be shared due to privacy concerns. Thus, this paper introduces source
data-free cross-domain pulmonary nodule detection. In this setting, only
a pre-trained model from the source domain and a few annotated sam-
ples from the target domain are available. We introduce a novel method
to tackle this issue, adapting the feature extraction module for the target
domain through minimizing the proposed General Entropy (GE). Specifi-
cally, we optimize the batch normalization (BN) layers of the model by GE
minimization. Thus, the dataset-level statistics of the target domain are
utilized for optimization and inference. Furthermore, we tune the detection
head of the model using annotated target samples to mitigate the rater dif-
ference and improve the accuracy. Extensive experiments on three differ-
ent pulmonary nodule datasets show the efficacy of our method for source
data-absent cross-domain pulmonary nodule detection.

Keywords: Pulmonary Nodule Detection · Domain Adaptation ·
Source Free · Entropy Minimization · Model Reuse

1 Introduction

There has been much progress in various object detection tasks [13,15,16,28,37]
with the prosperity of deep learning. In the medical field, detection algorithms
are able to obtain performance comparable to that of clinical experts, e.g. pul-
monary nodule detection [18,27,33,34], etc. Nonetheless, most of the approaches
are based on the assumption that the training/source and test/target data come
from similar distributions. This assumption restricts the application of these
approaches in the real world, because there often exists nontrivial domain dif-
ference between the training data and the real-world test data; the domain shift
causes significant performance degradation of the algorithms in the test/target
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domain. Hence, a great deal of effort has been directed towards cross-domain
object detection [1,2,5,7,12,23,32,38,39] in recent years to enhance the perfor-
mance of the source model on the target domain.

However, current approaches for cross-domain object detection still contain
an improper assumption for medical applications. They assume that the training
samples from the source domain are freely accessible, while in reality, medical
data are usually not shareable due to privacy issues and merely a pre-trained
source model is accessible. What’s more, acquiring and annotating medical data
are both time-consuming and costly, resulting in limited training samples of the
target domain, making cross-domain object detection in the medical field very
challenging. Considering these two aspects, we present a realistic but demanding
setting, source data-free cross-domain detection of lung nodule. In this scenario,
merely a pre-trained source model and a few annotated samples from the target
domain are available. As far as we know, this is the first work that tackles source
data-absent cross-domain adaptation in the pulmonary nodule detection task.

The batch normalization (BN) [9] layers of a model normalize and modulate
the features, and thus are closely tied to the model performance when there is
a shift in data distribution. In cross-domain image classification and semantic
segmentation tasks, some studies simply substitute the source batch statistics
with the statistics of the current batch of the target domain [14]. Some studies
combine the statistics of both source and target [36]. Some other studies [31,35]
pay attention to the target statistics, and minimize entropy loss to optimize the
affine parameters as well. Nevertheless, these methods are either too weak or not
applicable for cross-domain object detection.

In our cross-domain pulmonary nodule detection setting, which does not
rely on source data, we propose adapting to the target domain by reducing the
entropy of the model predictions. However, the original entropy [25] only sup-
ports image classification and segmentation currently. We successfully solve this
problem by extending entropy to its detection variant, termed General Entropy
(GE). We choose entropy for its ability to quantify uncertainty and shifts, as
low entropy predictions are all-in-all more reliable and high entropy predictions
represent larger shifts. To better utilize the source information and efficiently
adapt, we only optimize the affine parameters and estimate the target dataset-
level statistics in the batch normalization layers via entropy minimization. This
step enables us to learn a target-specific feature encoding module under the same
detection head, without requiring access to the source data or the labels of the
target data.

To enhance the detection performance further and alleviate the common
problem of rater disagreement in the medical field, we also fine-tune the detection
head of the model using annotated samples from the target domain.

Our primary contributions are summarized as follows:

– We establish a source data-free setting for cross-domain lung nodule detection,
utilizing merely a well-trained source model and a limited number of labeled
target samples.
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Fig. 1. The pipeline of our proposed method. The source model is composed of a feature
encoding module and a detection head module. (a) We keep the detection head frozen,
and adapt the batch normalization (BN) layers in the feature extraction module by
minimizing our Generalized Entropy (GE) to obtain target dataset-level statistics. (b)
The detection head is fine-tuned using a small fraction of target data with labels.

– We propose a novel method, which adapts the model feature extraction mod-
ule for the target domain via General Entropy (GE) minimization. We further
fine-tune the model detection head with labeled target samples to improve
the adaptation performance.

– For the purpose of evaluation, we curate a benchmark using four widely used
pulmonary nodule datasets.

Experiments on the benchmark show our method can achieve the state-of-the-art
results, demonstrating the effectiveness of our method.

2 Method

For a vanilla cross-domain adaptation (DA) task, we have Ns labeled samples
{xs

i , y
s
i }Ns

i=1 from the source domain and also N t labeled samples {xt
i, y

t
i}Nt

i=1 from
the target domain. The main goal of DA is to address the domain shift between
the source domain and the target domain, thus to well predict labels {yt

i}Nt

i=1 in
the target domain. In this work, we assume that we cannot obtain samples from
the source domain because of concerns related to privacy. Instead of the source
dataset, we are given a well-trained source model fθ(x) with parameters θ. Based
on this assumption, we present source data-free cross-domain pulmonary nodule
detection, and aim to learn a target model with the given well-trained source
model fθ(x) and target samples {xt

i, y
t
i}Nt

i=1.
Our method comprises two steps as shown in Fig. 1. First, the feature extrac-

tion module of the well-trained source model is adjusted to the target domain
using unsupervised learning. To be specific, the batch normalization (BN) layers
of the model are optimized by minimizing entropy loss to obtain target dataset-
level statistics, where a general form of entropy termed Generalized Entropy
(GE) is proposed. Then, using the annotated target samples, we further employ
supervised learning to fine-tune the detection head of the model for rater dif-
ference mitigation and performance enhancement. In the following, we would
like first to revisit two types of the uncertainty of the bounding box, the prob-
ability distribution representation and localization quality estimation, and then
elaborate on our method in detail.
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Preliminaries. There are two conventional representations for the bounding
box B in detection. For instance, the central point coordinates, width, height,
and depth, {a, b, c, w, h, d} [3,17,21], and the distance from the sampling point to
the up, down, top, bottom, left, and right planes, {u, d, t, b, l, r} [28] are utilized
to denote bounding boxes in the pulmonary nodule detection task. According to
[37], there is no performance difference between the two representations. In this
work, relative offsets from the sampling point to the six planes of a bounding box
B = {u, d, t, b, l, r} are used as the regression targets, since the physical meaning
of each variable in {u, d, t, b, l, r} is consistent. Given the {a, b, c, w, h, d} form,
we will convert it to the {u, d, t, b, l, r} form.

Yet this form follows the Dirac delta distribution that only concentrates on
the ground-truth locations, and is too rigid to reflect the ambiguity of bounding
boxes [6,13]. Recently, some works [13,20] adopt the probability distribution
representation of the bounding box to learn its localization uncertainty. Let
y ∈ B be the distance to a certain plane of a bounding box, whose estimated
value ŷ can be represented as:

ŷ =

∫ ymax

ymin

sPr(s)ds, (1)

where s is the regression distance in range of [ymin, ymax], and Pr(s) is the
corresponding probability. Then, to be congenial with the convolutional neural
networks, the continuous regression range [ymin, ymax] is converted into a uni-
form discretized representation, {y0, y1, ..., yi, yi+1, ..., yn−1, yn} with even inter-
vals Δ, where Δ = yi+1 − yi,∀i ∈ [0, n − 1], y0 = ymin, and yn = ymax. Thus,
the estimated value ŷ becomes:

ŷ =

n∑
i=0

Pr(yi)yi, (2)

where
∑n

i=0 Pr(yi) = 1, and the Pr(s) can be easily implemented using a SoftMax
function with n+1 outputs. Hereto, the uncertainty of the bounding box offsets
are modeled.

There is also another simple way to model the localization uncertainty of
the bounding box, i.e. the localization quality estimation in the form of IoU [30]
or centerness [28] score. Thereinto, the centerness [28] represents the distance
measurement between the center points of the location and its corresponding
object. Given the regression targets u∗, d∗, t∗, b∗, l∗, and r∗ for a sampling point,
the centerness ŷ can be defined as:

ŷ =

√
min(u∗, d∗)
max(u∗, d∗)

× min(t∗, b∗)
max(t∗, b∗)

× min(l∗, r∗)
max(l∗, r∗)

. (3)

In our method, we employ the centerness [28] score measurement for its
simplicity and good performance in pulmonary nodule detection.
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2.1 Feature Extractor Adaptation

Entropy Objective. Our training goal is to reduce the entropy H(ŷ) of the
model detection results ŷ = fθ(xt). This is because entropy is an unsupervised
objective for uncertainty measurement, while related to the supervised task and
model. However, the current Shannon entropy [25] only supports classification.
Therefore, we propose Generalized Entropy (GE) that generalizes the Shannon
entropy [25] for dense detectors. Assume that a model’s final prediction ŷ is
the linear combination of two variables ŷ = ylpyl

+ yrpyr
, (yl ≤ ŷ ≤ yr), where

pyl
, pyr

(pyl
≥ 0, pyr

≥ 0, pyl
+ pyr

= 1) are probabilities for these variables
estimated by the model respectively. The proposed GE is able to cover the three
special cases of the General Focal Loss (GFL) [13] for dense detectors:

When β = γ, yl = 0, yr = 1, pyr
= p, pyl

= 1 − p and y ∈ {1, 0} in GFL [13],
GE for focal loss (FL) can be written as:

H(p) = −((1 − α)pγ(1 − p) log(1 − p) + α(1 − p)γp log(p)). (4)

When yl = 0, yr = 1, pyr
= σ and pyl

= 1 − σ in GFL [13], GE for quality
focal loss (QFL) can be written as:

H(σ) = −(σβ(1 − σ) log(1 − σ) + (1 − σ)βσ log(σ)). (5)

When β = 0, yl = yi, yr = yi+1, pyl
= Pr(yl) = Pr(yi) = Si and pyr

=
Pr(yr) = Pr(yi+1) = Si+1 in GFL [13], GE for distribution focal loss (DFL) can
be written as:

H(Si, Si+1) = −(Si log(Si) + Si+1 log(Si+1)). (6)

Modulation Parameters. As shown in Fig. 1, the pulmonary nodule detection
network fθ(x) is composed of two modules: the feature encoding module gθ : x →
R

d and the detection head module hθ : Rd → R
K ; fθ(x) = hθ(gθ(x)), d and K

are dimensions of the extracted feature and the model output respectively. To
keep the same hypothesis hθ, a natural choice of the modulation parameters is all
the feature extractor parameters gθ; however, altering gθ may cause the model
to diverge from its training, since θ is the only representation of the source data
in our setting. Besides, the limited number of training samples from the target
domain is not suitable for optimizing the high dimensional θ. Previous works
[31,35] find that adapting the batch statistics, especially dataset-level statistics,
is effective for domain adaptation. Considering the feature modulation ability
and low dimensional computation of the batch normalization (BN) layers, we
choose to update the BN layers during training. Inside the BN layer, there are
two sets of parameters: the statistics (μ, σ), which normalize the feature, and
the affine parameters (β, γ), which modulate the feature. Given a batch of target
samples {xt

i}B
i=1, where B is the batch size, the outputs of the BN layer {xt

i
′}B

i=1

are calculated as:

xt
i
′
= γxt

i + β = γ
xt

i − μ

σ
+ β,

μ = E[xt
i], σ

2 = E[(xt
i − μ)2].



158 R. Xu et al.

In the meantime, a running mean vector μr and a running variance vector
σr are estimated using moving average to derive dataset-level statistics for the
target domain:

μr = λμ + (1 − λ)μr, σ
2
r = λσ2 + (1 − λ)σ2

r . (7)

The affine parameters (β, γ) are optimized via minimizing the GE loss.

2.2 Detection Head Adaptation

Transfer learning by fine-tuning is a common way to adjust a well-trained net-
work to a new domain. To enhance the performance of pulmonary nodule detec-
tion even further, we tune the detection head of the model hθ using the training
samples from the target domain {xt

i, y
t
i}Nt

i=1. Meanwhile, this can also alleviate
the issue of rater disagreement between different datasets, a common problem
in the medical field.

3 Experiments

3.1 Benchmark and Evaluation

We establish a benchmark from PN9 [18] to LUNA16 [24]/tianchi [29]/russia [19]
for shifts, as shown in Fig. 2. The specifics of these datasets are listed in Table 1.
As seen, the CT scans in these datasets, which are gathered from various sites,
have different image sizes and voxel sizes. In Table 2, we display the lung nodule
size and quantity distribution of the four datasets.

Recall that vanilla domain adaptation requires the use of the labeled source
data, while our setting denies the use of source data PN9 [18] during adapta-
tion. We take into account only those CT scans having publicly available nodule
annotations. The annotation files of the four datasets are csv files. Each line of
the files holds the information of one nodule, including the CT scan filename
it belongs to, and its location. In the three target datasets, the nodule location
is indicated by the center coordinates and diameter, whereas in PN9 [18], it is
marked by the top-left and bottom-right coordinates.

LUNA16 [24], tianchi [29], and russia [19] are divided into 7/1/2 for training,
validation, and testing. In these three datasets, the raw CT data undergoes three
pre-processing steps: 1) We use lungmask [8] to extract lung regions from each
CT image and mask other regions to minimize irrelevant calculations. In this
process, the HU values of the raw CT data are clipped into the range [−1200, 600]
and then linearly converted into the range [0, 255], resulting in uint8 values. Then
we set a padding value of 170 for regions outside the lung masks. 2) To prevent
an excess of unnecessary hyper-parameters, the spacing of all the CT images is
resampled to (1.00, 1.00, 1.00) mm, ensuring consistency for the anchor design
across all detectors. 3) To further improve the computational efficiency, we crop
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Fig. 2. Samples from four lung nod-
ule datasets are shown, with each
column corresponding to a dataset
as marked. CT images from different
datasets exhibit domain discrepancy,
for instance, color contrast/saturation,
voxel intensity, image spacing, amount
of nodules.

Fig. 3. Samples of the pre-processed
images in the LUNA16, tianchi, and
russia. The 1st row contains the
raw images, the 2nd row shows the
extracted lung regions, and the 3rd row
displays the pre-processed images.

Table 1. Pulmonary nodule datasets. ‘Scans’ and ‘Class’ indicates the number of CT
scans and the class, respectively. ‘Raw’ denotes whether the CT images in the dataset
are pre-processed. ‘Image Size’ refers to the CT image matrix size in the direction of
the x, y, and z axes. ‘Spacing’ denotes the voxel sizes (mm) in the direction of the x,
y, and z axes.

Dataset Year Scans Class Raw Image Size Spacing

LUNA16 [24] 2016 601 2 Yes 512 × 512 × 95 − 512 × 512 × 733 (0.86, 0.86, 2.50) − (0.64, 0.64, 0.50)

tianchi [29] 2017 800 2 Yes 512 × 512 × 114 − 512 × 512 × 1034 (0.66, 0.66, 2.50) − (0.69, 0.69, 0.30)

russia [19] 2018 364 2 Yes 512 × 512 × 313 − 512 × 512 × 1636 (0.62, 0.62, 0.80) − (0.78, 0.78, 0.40)

PN9 [18] 2021 8796 9 No 212 × 212 × 181 − 455 × 455 × 744 (1.00, 1.00, 1.00) − (1.00, 1.00, 1.00)

Table 2. Distribution of the pulmonary nodule size. ‘d’ indicates the nodule diameter
(mm).

Dataset d < 3 3 ≤ d < 5 5 ≤ d < 10 10 ≤ d < 30 30 ≤ d All

LUNA16 [24] - 270 635 279 2 1186
tianchi [29] 1 213 596 423 11 1244
russia [19] 6 552 907 360 25 1850
PN9 [18] 9 4678 29213 6053 483 40436

the CT images according to the extracted lung masks. Figure 3 shows the CT
image samples after being pre-processed. For PN9 [18] dataset, the data pre-
processing procedure is kept the same as in [18]. In our experiments, the voxel



160 R. Xu et al.

coordinates are utilized. Based on our pre-processing procedures and the voxel
coordinates, the nodule locations in the annotation files are recalculated.

In terms of the evaluation metric, the Free-Response Receiver Operating
Characteristic (FROC), a commonly used measure for pulmonary nodule detec-
tion, is selected. It is calculated by averaging the sensitivities at 0.125, 0.25, 0.5,
1, 2, 4, and 8 false positives per scan. We also use the detection sensitivity at
8 false positives per image for evaluation, since false positives in the medical
field are preferable to false negatives. The detected nodule is counted as a true
positive if there exists one annotated nodule, and the distance between the cen-
ter points of the detected nodule and the annotated nodule is smaller than the
radius R of the annotated nodule. Otherwise, the detected nodule is considered
a false positive.

3.2 Implementation Details

In our experiments, we employ the same backbone as the SANet [18], thus utiliz-
ing the weights pre-trained on PN9 [18] for source model training. Concretely, the
backbone is U-shaped [22], consisting of a 3D ResNet50 [4] equipped with Slice
Grouped Non-local modules [18] and a decoder. Different from [18], the back-
bone is followed by FPN [15] as neck, and the FCOS-style [28] anchor-free head
for classification and localization. The network is optimized using the Stochastic
Gradient Descent (SGD). The training batch size of the 3D patches is 16. We
implement the patch-based input strategy for training and use the complete 3D
volume for inference as in [18]. The learning rate, the momentum, and the weight
decay coefficients are respectively fixed at 0.001, 0.9, and 1×10−4. To obtain the
source model, the network is set to be trained for a maximum of 30 epochs. For
learning in the target domain, we tune the pre-trained source model for 1 epoch.
For other training and testing hyper-parameters, we follow the [28], and spe-
cialize some hyper-parameters in the task of detecting pulmonary nodules. We
use FPN [15] with two levels, a detection head with two classification/regression
towers, and a radius of 3. All the experiments are carried out with PyTorch on
four NVIDIA GeForce RTX 3090 GPUs, each having 24 GB of memory.

3.3 Results

We evaluate the proposed method by contrasting it with the baseline approach,
which simply fine-tunes all the parameters of the source model using the labeled
samples from the target domain. Experiments are conducted with 20%, 40%,
60%, 80%, and 100% labeled training samples from the target domains respec-
tively, and the results are reported for the whole target testing sets. Table 3
lists the experimental results of our method and the baseline on target dataset
LUNA16 [24] and tianchi [29]. Our method obviously outperforms the baseline.
Meanwhile, it adapts more efficiently. It is especially noteworthy that utilizing
only the feature extraction module adaptation, the first step of our method
without the use of any labeled training samples from the target domain, already
brings a good performance. This shows the potential of our method in the more
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Fig. 4. FROC curves of our method
and the baseline on target dataset rus-
sia w.r.t 60% percentage of its training
set.

Fig. 5. FROC curves of our method
and the baseline on target dataset rus-
sia w.r.t 80% percentage of its training
set.

Table 3. Comparison of our method and the baseline on target dataset LUNA16
and tianchi w.r.t percentage of their training set. The values are pulmonary nodule
detection sensitivities (unit: %) at 8 false positives per CT image, with each column
indicating the percentage of the training set.

Method
LUNA16 tianchi

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Fine-tuning 88.53 90.36 91.74 92.66 92.20 91.04 94.02 91.79 90.67 92.91
Ours (Step1) 85.77 89.90 88.99 89.44 88.99 93.28 93.28 93.28 92.91 93.28
Ours (+ Step2) 89.90 86.23 92.20 93.57 94.03 91.41 92.53 92.91 93.65 93.65

Table 4. Comparison of our method and the baseline on target dataset russia w.r.t
percentage of its training set. The values are FROCs (unit: %) with each column
indicating the percentage of the training set.

Method
russia

20% 40% 60% 80% 100%
Fine-tuning 31.18 33.12 35.69 36.52 38.26
Ours 29.91 33.08 37.39 38.02 38.34

wild and challenging settings. Nonetheless, the performance of our method on
target dataset russia [19] is unsatisfactory, probably due to its larger shift with
the source. For more adaptation, we tune all the parameters of the model in
our second step on russia [19]. As listed in Table 4, our method obtains better
FROC scores for lung nodule detection than the baseline, which verifies the effec-
tiveness of our proposed adapting via entropy minimization. The FROC curves
illustrated in Fig. 4 and Fig. 5 further confirm the superiority of our method.
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4 Related Works

Recently, some works propose to adapt the trained model in test-time. This
branch of study originates from the works of recalculating the batch statistics
[14]. Test-time training (TTT) [26] relies on a proxy task for altering training the
entire model on the source, and then adapts to the target using self-supervised
learning. Tent [31] optimizes the affine parameters of batch normalization layers
of the model via entropy minimization. This is demonstrated to be effective for
robustness and source-free domain adaptation tasks. In [36], the authors replace
the target statistics used in Tent with mixed source and target statistics. T3A
[10] utilizes centroid-based modification to adapt the classifier in test-time for
domain generalization. In [35], the authors revisit the batch normalization in
the training process and develop a test-time batch normalization layer design
named GpreBN, which is optimized during testing by minimizing entropy loss.
This newly designed batch normalization operation preserves the same gradi-
ent backpropagation form as training and uses dataset-level statistics for robust
optimization and inference. Unfortunately, all these works focus on image classifi-
cation or semantic segmentation [11], and may not work well on object detection.
In contrast, our method revisits the batch statistics for cross-domain pulmonary
nodule detection, delving into the model optimization method specific for the
detection.

5 Conclusion

In this paper, we present a source data-free setting for cross-domain lung nodule
detection and present a method to tackle this issue, requiring only a pre-trained
source model and a limited number of annotated samples from the target domain.
Specifically, our method adapts the feature extraction module of the model by
minimizing the proposed general entropy loss, and tunes the detection head
with labeled target samples to enhance the detection performance even more.
Experiments on our established benchmark verify that our method is an effective
way to solve cross-domain object detection with data privacy issues involved. To
the best of our knowledge, this is the first work on cross-domain pulmonary
nodule detection without access to the source data. We also hope that this work
in the medical field can bring insights into the general object detection field. In
the future, we plan to pursue adaptation to more and harder types of shifts.
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the Central Universities (No. 2042023kf1033).
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