
Superpixel Attack
Enhancing Black-Box Adversarial Attack

with Image-Driven Division Areas

Issa Oe1(B) , Keiichiro Yamamura1 , Hiroki Ishikura1 , Ryo Hamahira1 ,
and Katsuki Fujisawa2

1 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan
issa-oe@kyudai.jp

2 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan

Abstract. Deep learning models are used in safety-critical tasks such
as automated driving and face recognition. However, small perturbations
in the model input can significantly change the predictions. Adversarial
attacks are used to identify small perturbations that can lead to mis-
classifications. More powerful black-box adversarial attacks are required
to develop more effective defenses. A promising approach to black-box
adversarial attacks is to repeat the process of extracting a specific image
area and changing the perturbations added to it. Existing attacks adopt
simple rectangles as the areas where perturbations are changed in a single
iteration. We propose applying superpixels instead, which achieve a good
balance between color variance and compactness. We also propose a new
search method, versatile search, and a novel attack method, Superpixel
Attack, which applies superpixels and performs versatile search. Super-
pixel Attack improves attack success rates by an average of 2.10% com-
pared with existing attacks. Most models used in this study are robust
against adversarial attacks, and this improvement is significant for black-
box adversarial attacks. The code is available at https://github.com/
oe1307/SuperpixelAttack.git.

Keywords: adversarial attack · security for AI · computer vision ·
deep learning

1 Introduction

Deep learning models have recently found applications in automatic driving and
face recognition tasks. These tasks are critical for safety, involving potential
risks to life and information privacy. It has been observed that even small per-
turbations to the model input can significantly alter predictions [26], leading to
worst-case scenarios like accidents in automatic driving or information leakage
in face recognition. Adversarial attacks are used to identify such perturbations
that cause misclassifications. To counter these attacks, defense methods such as
adversarial training [28,32] and adversarial detection [3,19] have been explored.
However, more potent attacks are needed to develop more effective defenses.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
T. Liu et al. (Eds.): AI 2023, LNAI 14471, pp. 141–152, 2024.
https://doi.org/10.1007/978-981-99-8388-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8388-9_12&domain=pdf
http://orcid.org/0009-0001-7216-2143
http://orcid.org/0000-0003-4696-2881
http://orcid.org/0000-0002-4979-5276
http://orcid.org/0009-0004-7634-451X
http://orcid.org/0000-0001-8549-641X
https://github.com/oe1307/SuperpixelAttack.git
https://github.com/oe1307/SuperpixelAttack.git
https://doi.org/10.1007/978-981-99-8388-9_12

142 I. Oe et al.

This study targets black-box adversarial attacks, which operate under real-
world constraints where only the model’s predictions can be accessed. We focus
on black-box adversarial attacks that aim to maximize attack success rates within
allowed perturbations. A promising approach is to repeat the process of extract-
ing a specific image area and changing the perturbations added to it.

Existing attacks use simple rectangles as the areas where perturbations are
changed in a single iteration (Sect. 3.1). However, it is natural to determine the
areas based on the image’s color information, as it directly influences the pertur-
bation to be added. Therefore, we focus on the color variance of the area where
perturbations are changed in a single iteration (Sect. 3.2). Additionally, we focus
on the compactness of the area, because existing attacks have adopted rectan-
gles (Sect. 3.3). Through our analysis of the relationship among color variance,
compactness, and attack success rates (Sect. 3.4), we discovered that areas that
are compact and have a low color variance result in higher attack success rates
(Sect. 3.5). Consequently, we propose applying superpixels, which achieve a good
balance between color variance and compactness.

Additionally, we introduce versatile search, a new search method that
restricts the search to the boundary of perturbation and allows for searches
using areas beyond rectangles. With these advancements, we propose Superpixel
Attack, a novel attack method that applies superpixels and performs versatile
search (Sects. 4.1 and 4.2). To evaluate the performance of Superpixel Attack, we
conducted comparison experiments with existing attacks using 19 models trained
on the ImageNet dataset [13] and available on RobustBench [8] (Sect. 5). Super-
pixel Attack significantly enhances attack success rates, resulting in an average
improvement of 2.10% compared to existing attacks. Considering that most mod-
els used in this study are robust against adversarial attacks, this improvement
becomes especially noteworthy for black-box adversarial attacks. Our contribu-
tions can be summarized as follows:

1. We analyze the relationship among the color variance, compactness, and
attack success rates.

2. We propose applying superpixels to black-box adversarial attacks and a new
search method called versatile search.

3. We conducted comparison experiments on Superpixel Attack, which applies
superpixel and performs versatile search, and found improvement in attack
success rates by an average of 2.10% compared to existing attacks.

2 Preliminaries

2.1 Problem Definition

Let H ∈ N be the height, W ∈ N be the width, and C ∈ N be the number of
color channels of the input image. Let D = [0, 1]H×W×C denote the image space,
Y ∈ N denote the number of classes of the model, and f : D → [0, 1]Y denote the
classification model. The output of f is the predicted probability of each class,
and we denote fi(x) ∈ [0, 1] the predicted probability of class i when image

Superpixel Attack 143

x ∈ D is the input. Adversarial attacks are to find an image xadv ∈ D with the
predicted label differs from the ground truth label y ∈ {1, . . . , Y } of the original
image xorg ∈ D by adding perturbations that are imperceptible to humans. The
inputs generated by adversarial attacks are called adversarial examples. This
study focuses on adversarial attacks that maximize attack success rates within
the allowed perturbations. We set the allowed perturbation size ε ∈ R

+ and the
loss function L : [0, 1]Y × {1, . . . , Y } → R, and solve the following constrained
nonlinear optimization problem:

max
xadv∈D

L (f(xadv), y)

s.t. ||xadv − xorg||∞ ≤ ε
(1)

2.2 Related Work

Parsimonious attack [20], Square Attack [4], and SignHunter [2] have been pro-
posed as black-box adversarial attacks defined by Eq. (1). Parsimonious attack
restricts the search space to the boundaries of allowed perturbations because
attacks mostly succeed even on the boundaries. Square Attack achieves high
success rates despite its reliance on random sampling. It is a part of AutoAttack
[10], a well-known white-box adversarial attack. SignHunter searches for adver-
sarial examples by repeating image division and gradient direction estimation.

Black-box adversarial attacks that minimize perturbations under misclassifi-
cation [22,27] and those that reduce the number of perturbed pixels [9,11] have
also been investigated. Attacks that generate adversarial examples from gradient
information of surrogate models have also been proposed [21,31]. These meth-
ods are based on transferability, that is, adversarial examples of one model often
become those of others. However, training is required to make surrogate models
resemble an attacking model and incurs high computational costs.

3 Research on Update Areas

3.1 Update Areas of Existing Methods

The most promising approach for black-box adversarial attacks defined by Eq.
(1) involves searching for adversarial examples by repeating the following steps:
i. Extract a specific area from the image, ii. Collectively change the perturba-
tion added to the extracted area, iii. Calculate the value of the loss function
and update the perturbations when the loss increases. In this paper, we refer
to the area where perturbations are changed in a single iteration as Update
Area. Existing black-box adversarial attacks have adopted simple rectangles as
Update Areas. Parsimonious attack sets them using squares that divide the
image equally. Square Attack sets them using randomly sampled squares from
a uniform distribution. SignHunter sets them using rectangles that divide the
image into equal horizontal sections.

144 I. Oe et al.

3.2 Color Variance of Update Areas

As described in the previous section, Update Areas of the existing attacks are set
using simple rectangles. However, it is natural to determine the area by consider-
ing the color information of the image because it determines the perturbation to
be added. Therefore, we focus on the color variance of Update Areas. As a metric
to express the color variance in divided areas of an image, Intra-Cluster Variation
(ICV) [5] is proposed. ICV is calculated based on the following equation:

ICV =
1

#S̃

∑

s∈S̃

√∑
p∈s(I(p) − μ(s))2

|s| , (2)

where S̃ is the set of image segmentations. In this paper, it refers to the set of all
Update Areas used in an attack. s ∈ S̃ denotes a single Update Area, and p ∈ s
denotes a pixel. I(p) is the value of the pixel p in the LAB color space1 and μ(s)
is the average value in the LAB color space within a single Update Area. #S̃ is
the number of Update Areas and |s| is the number of pixels in a single Update
Area. Smaller ICV indicates smaller color variance in each Update Area.

3.3 Compactness of Update Areas

Furthermore, considering that existing attacks use rectangles to set Update
Areas, we focus on the compactness of Update Areas. The compactness (CO)
[24] is a metric calculated by dividing the size of the segments by that of a circle
with the same perimeter length. The following equation defines this:

CO =
∑

s∈S̃ Q(s) · |s|∑
s∈S̃ |s| , Q(s) =

4π|s|
|R(s)|2 , (3)

where |R(s)| is the perimeter length of the Update Areas (number of pixels
on the boundary). Higher CO indicates more centrally clustered Update Areas.
We examined ICV and CO and attack success rates for various Update Areas
construction in Sect. 3.5.

3.4 Superpixel Calculated by SLIC

Superpixel is a set of pixels that are close in color and position. They have
applications in object detection [30], semantic segmentation [16], and depth esti-
mation [7]. Dong et al. proposed a white-box adversarial attack that adds the
same perturbation to each superpixel to avoid disrupting the local smoothness
of a natural image [14]. We use superpixels to improve the efficiency of black-
box adversarial attacks. To the best of our knowledge, no black-box adversarial
attacks that apply superpixels have been proposed. Various methods have been
proposed for computing superpixels. We use one of the most popular methods:
1 LAB color spaces in this paper refer to CIELAB (L, a*, b*) color space.

Superpixel Attack 145

Simple Linear Iterative Clustering (SLIC) algorithm [1]. It places representative
points at equal intervals according to the maximum number of segments and
clusters pixels based on the k-means method. Let (hi, wi) and (hj , wj) be the
positions in the image, and (li, ai, bi) and (lj , aj , bj) be the values in the LAB
color space. Clustering is performed based on similarity k.

kcolor =
√

(li − lj)2 + (ai − aj)2 + (bi − bj)2

kspace =
√

(hi − hj)2 + (wi − wj)2

k = max(0, kcolor + α · kspace),

(4)

where α is a hyperparameter that weighs the positional distance relative to the
color distance. α = 10 is generally set to calculate superpixels. We examine
the relationship between ICV, CO, and attack success rates for α = ±0.1, ±1,
±10, ±100, ±1000 in Sect. 3.5. In addition, the SLIC implementation of scikit-
image has the option to force each superpixel to be connected. The experiment
in Sect. 3.5 examine both cases. For α = 1000, Update Areas are constructed as
squares that divide the image equally, regardless of whether they are forced to
be connected.

3.5 Analysis of Color Variance and Compactness

Fig. 1. Relationship between ICV, CO and attack success rates

The experiments use Salman et al. (ResNet-18) [23] trained on the ImageNet
dataset and available on RobustBench. According to the RobustBench settings,
we use 5,000 images randomly sampled from the ImageNet dataset, and the

146 I. Oe et al.

allowed perturbation size is set to ε = 4/255. We adopted versatile search,
a new search method proposed in Sect. 4.2. We examine attack success rates
at the maximum iterations T = 500 for each Update Area construction. The
attack success rate is calculated as follows: (number of misclassified images after
the attack)/(total number of images), where the higher the attack success rate,
the more powerful the attack. The seed value is fixed at 0. We used a CPU:
Intel(R) Xeon(R) Gold 5220R CPU@2.20GHz×2, GPU: Nvidia RTX A6000,
RAM:768GB. The results are shown in Fig. 1.

Each point in Fig. 1 represents the values of CO and ICV for different Update
Area construction. The numerical values represent the attack success rate at the
point. The horizontal axis represents the value of CO, and the right side indicates
that more centrally clustered Update Areas are constructed. The vertical axis
represents the value of ICV, where the upper side indicates that Update Areas
with lower color variance are constructed. Note that the same Update Areas are
constructed for some parameters of α, and the points with equal ICV, CO, and
attack success rates coincided with each other. For some representative points,
the Update Areas generated by the SLIC algorithm are shown in different colors.
This result indicates that it is effective to set Update Areas that are compact
and have a low color variance.

4 Superpixel Attack

Based on the analysis in Sect. 3, we consider applying superpixels, which achieve
a good balance between color variance and compactness, to black-box adversarial
attacks. In this section, we describe the construction of Update Areas using
superpixels (Sect. 4.1) and a new search method called versatile search (Sect. 4.2).
We propose a novel attack method called Superpixel Attack that sets Update
Areas using superpixels and performs versatile search. An overview of Superpixel
Attack is shown in Fig. 2, and the pseudo-code is shown in Algorithm 1.

4.1 Update Areas Using Superpixels

Below, we describe the construction of Update Areas using superpixels. Inspired
by existing attacks, Update Areas are set using a few segments of superpixels
at an early stage and many segments of superpixels as the attack progresses.
Specifically, the segment ratio r is given and superpixels S are computed follow-
ing the maximum number of segmentations n = rj (j = 1, 2, . . .). Let S be the
set of Update Areas constructed for each maximum number of segments n. The
original image xorg is divided into superpixels S for each RGB color channel
{1, . . . , C}, which are set as Update Areas S = S × {1, . . . , C}. Note that the
maximum number of superpixel segments n is not always equal to the number
of superpixels computed #S in the SLIC algorithm employed in this study. The
segment ratio is set to r = 4 based on pre-examination. We set α = 10 and force
the areas to be connected.

Superpixel Attack 147

Fig. 2. Flow of proposed method: Superpixel Attack

Algorithm 1. Superpixel Attack
Input: Image height H ∈ N, Image width W ∈ N, Number of color channels C ∈ N,

Allowed perturbation size ε ∈ R
+, Maximum iterations T ∈ N,

Original image xorg ∈ D, Ground truth label y ∈ {1, . . . , Y }, Segments ratio r ∈ N,
Classification model f : D → [0, 1]Y , Loss function L : [0, 1]Y × {1, . . . , Y } → R,
Projection function P : RH×W×C → D

Output: Image with best loss xbest

1: Ebest ← {ε}H×W×C Initialize perturbation
2: A ← {(h, w, c)|h ∈ [1, H], w ∈ [1, W], c ∈ [1, C]} Entire area of image
3: S ← {A} Initialize Update Area
4: Lbest ← −∞ Best loss
5: n ← 1 Maximum number of superpixel
6: for t = 1, 2, . . . , T do
7: s ∈ S, S ← S \ {s} Randomly extract next Update Area
8: Ebest → Ebest[s] + Ebest[A \ s], E ← −Ebest[s] + Ebest[A \ s]

Flip perturbation only in Update Area s ∈ S
9: x̂ ← P (xorg + E), L ← L(f(x̂), y)

10: if L ≥ Lbest Loss increase then
11: Lbest ← L, Ebest ← E
12: end if
13: if S = ∅ All areas are searched then
14: n ← n × r, S ← SLIC(xorg, n) Calculate superpixels by SLIC algorithm
15: S ← S × {1, . . . , C} Divide area into superpixels for each RGB channel
16: end if
17: end for
18: xbest ← P (xorg + Ebest)

148 I. Oe et al.

4.2 Procedure of Versatile Search

Below, we describe a new search method called versatile search. It searches only
the boundaries of the allowed perturbations {−ε, ε}H×W×C according to the
analysis by Moon et al. [20]. At the beginning of the search, the perturbations
are initialized with Ebest = {ε}H×W×C . Let A be the entire area of the image
and initialize the set of Update Areas with S = {A}. The best loss is initialized
as Lbest = −∞. The following steps are repeated until the number of iterations
t reaches the maximum iterations T .

First, the next area where the perturbations are changed is randomly
extracted s ∈ S. In the first iteration, Update Area is set to the entire image
(s = A). Only the perturbations in the extracted Update Area Ebest[s] is flipped
to generate new perturbations E . These perturbations E are added to the orig-
inal image xorg, and the loss L is calculated. When the calculated loss L is
higher than the best loss Lbest, the best loss Lbest and the perturbation Ebest are
updated. Superpixels are computed when all Update Areas are searched (S = ∅),
and new Update Areas are set using them.

When the attack is completed, the image with the best loss xbest is returned.
Superpixel Attack employs CW loss [6] (Lcw) as the loss function based on pre-
examination. CW loss is calculated as follows:

Lcw(f(x), y) = max
i�=y

fi(x) − fy(x) (5)

5 Experiments

In this section, we describe the comparison experiments conducted to confirm
the performance of Superpixel Attack. We compare it to Parsimonious attack
(Parsimon) [20], Square Attack (Square) [4], SignHunter (SignH) [2], and Accel-
erated SignHunter (AccSignH) [17] as a baseline. All of these are black-box
adversarial attacks with the same problem settings. The experiments use 19
models trained on the ImageNet dataset and available on RobustBench. Accord-
ing to the RobustBench settings, we use 5,000 images randomly sampled from
the ImageNet dataset, and the allowed perturbation size is set to ε = 4/255.
We examine the attack success rates at the maximum iterations T = 100 and
1000. The baseline hyperparameters are the same as those in the original paper.
The seed value is fixed at 0. We use the same computational environment as in
Sect. 3.5. Table 1 presents the results. The highest attack success rate for each
iteration is bolded, and the difference between the best baseline method and
Superpixel Attack is noted on the right side.

The results in Table 1 show that Superpixel Attack improves the attack suc-
cess rates by an average of 1.65% for 100 iterations and 2.10% for 1000 iterations
compared to existing attacks. Most models used in this study are robust against
adversarial attacks, and this improvement is significant for black-box adversarial
attacks. In fact, the difference between the second-best and next-best existing
attacks averaged 0.67% for 100 iterations and 0.71% for 1000 iterations. For

Superpixel Attack 149

Table 1. Comparison experiments with baselines

100 iter Attack Success Rate (%)

source Architecture Parsimon Square SignH AccSignH Superpixel diff

Wong [29] ResNet-50 48.32 49.10 50.86 49.48 53.86 3.00

Engstrom [15] ResNet-50 42.40 41.68 42.92 42.08 45.26 2.34

Salman [23] ResNet-50 41.24 40.42 41.98 41.06 44.44 2.46

Salman ResNet-18 52.08 51.50 52.58 52.06 56.06 3.48

Salman WideResNet-50-2 36.84 35.64 37.82 36.54 39.84 2.02

PyTorcha ResNet-50 33.92 47.56 50.08 38.80 47.52 -2.52

Debenedetti [12] XCiT-S12 31.72 30.66 32.36 31.64 33.86 1.50

Debenedetti XCiT-M12 30.36 29.38 31.06 30.14 32.84 1.78

Debenedetti XCiT-L12 30.12 29.58 30.66 29.94 32.32 1.66

Singh [25] ViT-S+ConvStem 31.16 30.10 31.40 30.92 33.48 2.08

Singh ViT-B+ConvStem 27.12 26.40 27.56 26.68 29.22 1.66

Singh ConvNeXt-T+ConvStem 30.52 29.76 30.64 30.04 32.78 2.14

Singh ConvNeXt-S+ConvStem 29.26 28.46 29.72 28.98 31.34 1.62

Singh ConvNeXt-B+ConvStem 26.90 26.20 27.38 26.82 28.86 1.48

Singh ConvNeXt-L+ConvStem 25.36 24.82 25.94 25.34 26.94 1.00

Liu [18] ConvNeXt-B 26.48 25.88 26.84 26.44 28.36 1.52

Liu ConvNeXt-L 25.08 24.26 25.78 24.90 26.88 1.10

Liu Swin-B 26.86 26.06 27.20 26.74 28.88 1.68

Liu Swin-L 24.16 23.36 24.62 23.80 26.06 1.44

1,000 iter Attack success rate (%)

source Architecture Parsimon Square SignH AccSignH Superpixel diff

Wong ResNet-50 56.62 56.62 52.46 50.34 59.96 3.34

Engstrom ResNet-50 48.92 48.16 45.10 44.12 51.84 2.92

Salman ResNet-50 46.96 46.70 44.06 43.08 50.16 3.20

Salman ResNet-18 58.60 58.72 54.92 54.26 61.98 3.26

Salman WideResNet-50-2 42.94 42.22 39.66 38.32 44.86 1.92

PyTorch ResNet-50 72.04 84.64 80.80 55.80 87.28 2.64

Debenedetti XCiT-S12 37.44 36.48 33.74 32.96 39.66 2.22

Debenedetti XCiT-M12 36.04 35.10 32.70 31.86 37.64 1.60

Debenedetti XCiT-L12 35.32 34.64 32.38 31.52 37.02 1.70

Singh ViT-S+ConvStem 35.50 35.30 32.68 32.44 37.58 2.08

Singh ViT-B+ConvStem 31.02 30.38 28.76 28.20 32.56 1.54

Singh ConvNeXt-T+ConvStem 34.88 34.50 32.24 31.58 37.12 2.24

Singh ConvNeXt-S+ConvStem 33.36 32.80 30.94 30.62 35.28 1.92

Singh ConvNeXt-B+ConvStem 30.78 30.14 28.62 28.24 32.44 1.66

Singh ConvNeXt-L+ConvStem 29.24 28.80 27.30 26.42 30.64 1.40

Liu ConvNeXt-B 30.32 29.76 28.22 27.62 31.94 1.62

Liu ConvNeXt-L 28.92 28.34 26.86 26.40 30.20 1.28

Liu Swin-B 30.88 30.44 28.64 28.08 32.60 1.72

Liu Swin-L 28.18 27.44 25.86 25.32 29.90 1.72
a https://pytorch.org/vision/stable/models.html

Wong (ResNet-50), PyTorch (ResNet-50), and Singh (ViT-S+ConvStem), we
plot the trends of attack success rates per iteration for each attack method in
Fig. 3.

https://pytorch.org/vision/stable/models.html

150 I. Oe et al.

Fig. 3. Transition of attack success rates of each attack method

Figure 3 indicates that Superpixel Attack achieves high success rates in all
iterations, including the PyTorch (ResNet-50) model in contrast to SignHunter,
which only has high success rates in short iterations. For the other models,
each attack method exhibited trends similar to those of Wong (ResNet-50) and
Singh (ViT-S+ConvStem). Furthermore, Fig. 4 shows the computational time for
superpixels and forward propagation in Superpixel Attack. Although it depends
on the computational environment, the computation time of superpixels is less
than that of the forward propagation. This indicates that applying superpixels
to adversarial attacks is practical in terms of the computation time. For 1000
iterations, the superpixel computation accounts for a very small percentage of
the attacks, as indicated by the orange bars.

Fig. 4. Computational time of superpixels and forward propagation

6 Conclusion

This study demonstrated that the attack success rates are related to the color
variance and compactness of the Update Area. The experimental results sug-
gest that Update Areas with low color variance and high compactness is desir-
able. Therefore, we propose the Superpixel Attack, which employs superpixels
as Update Areas to achieve a good balance between color variance and compact-
ness. The comparison experiments show that the Superpixel Attack improves the
attack success rates by an average of 2.10% compared with existing methods for
1000 iterations, which is significant for black-box adversarial attacks. This study
indicates that adjusting the Update Areas according to the image can enhance
the attack success rates.

Superpixel Attack 151

Acknowledgements. This research project was supported by the Japan Science and
Technology Agency (JST), the Core Research of Evolutionary Science and Technology
(CREST), the Center of Innovation Science and Technology based Radical Innova-
tion and Entrepreneurship Program (COI Program), JSPS KAKENHI Grant Number
JP16H01707 and JP21H04599, Japan.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic super-
pixels. Technical report (2010)

2. Al-Dujaili, A., O’Reilly, U.M.: Sign bits are all you need for black-box attacks. In:
International Conference on Learning Representations (2020)

3. Aldahdooh, A., Hamidouche, W., Fezza, S.A., Déforges, O.: Adversarial example
detection for DNN models: a review and experimental comparison. Artif. Intell.
Rev. 55(6), 4403–4462 (2022)

4. Andriushchenko, M., Croce, F., Flammarion, N., Hein, M.: Square attack: a query-
efficient black-box adversarial attack via random search. In: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 484–501.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_29

5. Benesova, W., Kottman, M.: Fast superpixel segmentation using morphological
processing. In: Conference on Machine Vision and Machine Learning, pp. 67–1
(2014)

6. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

7. Chen, J., Hou, J., Ni, Y., Chau, L.P.: Accurate light field depth estimation with
superpixel regularization over partially occluded regions. IEEE Trans. Image Pro-
cess. 27(10), 4889–4900 (2018)

8. Croce, F., et al.: RobustBench: a standardized adversarial robustness benchmark.
arXiv preprint arXiv:2010.09670 (2020)

9. Croce, F., Andriushchenko, M., Singh, N.D., Flammarion, N., Hein, M.: Sparse-
RS: a versatile framework for query-efficient sparse black-box adversarial attacks.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp.
6437–6445 (2022)

10. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In: International Conference on Machine Learn-
ing, pp. 2206–2216. PMLR (2020)

11. Dai, Z., Liu, S., Tang, K., Li, Q.: Saliency attack: towards imperceptible black-box
adversarial attack. arXiv preprint arXiv:2206.01898 (2022)

12. Debenedetti, E., Sehwag, V., Mittal, P.: A light recipe to train robust vision trans-
formers. arXiv preprint arXiv:2209.07399 (2022)

13. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 248–255. IEEE (2009)

14. Dong, X., et al.: Robust superpixel-guided attentional adversarial attack. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 12895–12904 (2020)

15. Engstrom, L., Ilyas, A., Salman, H., Santurkar, S., Tsipras, D.: Robustness (python
library) (2019). https://github.com/MadryLab/robustness

https://doi.org/10.1007/978-3-030-58592-1_29
http://arxiv.org/abs/2010.09670
http://arxiv.org/abs/2206.01898
http://arxiv.org/abs/2209.07399
https://github.com/MadryLab/robustness

152 I. Oe et al.

16. Kwak, S., Hong, S., Han, B.: Weakly supervised semantic segmentation using super-
pixel pooling network. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 31 (2017)

17. Li, S., Huang, G., Xu, X., Yang, Y., Shen, F.: Accelerated sign hunter: a sign-based
black-box attack via branch-prune strategy and stabilized hierarchical search. In:
Proceedings of the 2022 International Conference on Multimedia Retrieval, pp.
462–470 (2022)

18. Liu, C., et al.: A comprehensive study on robustness of image classification models:
benchmarking and rethinking. arXiv preprint arXiv:2302.14301 (2023)

19. Metzen, J.H., Genewein, T., Fischer, V., Bischoff, B.: On detecting adversarial
perturbations. arXiv preprint arXiv:1702.04267 (2017)

20. Moon, S., An, G., Song, H.O.: Parsimonious black-box adversarial attacks via effi-
cient combinatorial optimization. In: International Conference on Machine Learn-
ing, pp. 4636–4645. PMLR (2019)

21. Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z.B., Swami, A.: Practi-
cal black-box attacks against machine learning. In: Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, pp. 506–519 (2017)

22. Rahmati, A., Moosavi-Dezfooli, S.M., Frossard, P., Dai, H.: GeoDA: a geometric
framework for black-box adversarial attacks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8446–8455 (2020)

23. Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., Madry, A.: Do adversarially robust
ImageNet models transfer better? In: Advances in Neural Information Processing
Systems, vol. 33, pp. 3533–3545 (2020)

24. Schick, A., Fischer, M., Stiefelhagen, R.: Measuring and evaluating the compact-
ness of superpixels. In: Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012), pp. 930–934. IEEE (2012)

25. Singh, N.D., Croce, F., Hein, M.: Revisiting adversarial training for ImageNet:
architectures, training and generalization across threat models. arXiv preprint
arXiv:2303.01870 (2023)

26. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

27. Wang, X., et al.: Triangle attack: a query-efficient decision-based adversarial attack.
In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV
2022. LNCS, vol. 13665, pp. 156–174. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-20065-6_10

28. Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., Gu, Q.: On the convergence and
robustness of adversarial training. arXiv preprint arXiv:2112.08304 (2021)

29. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: revisiting adversarial
training. arXiv preprint arXiv:2001.03994 (2020)

30. Yan, J., Yu, Y., Zhu, X., Lei, Z., Li, S.Z.: Object detection by labeling super-
pixels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5107–5116 (2015)

31. Zhang, J., et al.: Towards efficient data free black-box adversarial attack. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 15115–15125 (2022)

32. Zhao, W., Alwidian, S., Mahmoud, Q.H.: Adversarial training methods for deep
learning: a systematic review. Algorithms 15(8), 283 (2022)

http://arxiv.org/abs/2302.14301
http://arxiv.org/abs/1702.04267
http://arxiv.org/abs/2303.01870
http://arxiv.org/abs/1312.6199
https://doi.org/10.1007/978-3-031-20065-6_10
https://doi.org/10.1007/978-3-031-20065-6_10
http://arxiv.org/abs/2112.08304
http://arxiv.org/abs/2001.03994

	Superpixel Attack
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Related Work

	3 Research on Update Areas
	3.1 Update Areas of Existing Methods
	3.2 Color Variance of Update Areas
	3.3 Compactness of Update Areas
	3.4 Superpixel Calculated by SLIC
	3.5 Analysis of Color Variance and Compactness

	4 Superpixel Attack
	4.1 Update Areas Using Superpixels
	4.2 Procedure of Versatile Search

	5 Experiments
	6 Conclusion
	References

