
WeightRelay: Efficient Heterogeneous
Federated Learning on Time Series

Wensi Tang and Guodong Long(B)

Australian Artificial Intelligence, Institute Faculty of Engineering and IT,
University of Technology Sydney, Ultimo, Australia

wensi.tang@student.uts.edu.au, guodong.long@uts.edu.au

Abstract. Federated learning for heterogeneous devices aims to obtain models
of various structural configurations in order to fit multiple devices according to
their hardware configurations and external environments. Existing solutions train
those heterogeneous models simultaneously, which requires extra cost (e.g. com-
putation, communication, or data) to transfer knowledge between models. In this
paper, we proposed a method, namely, weight relay (WeightRelay), that could get
heterogeneous models without any extra training cost. Specifically, we find that,
compared with the classic random weight initialization, initializing the weight
of a large neural network with the weight of a well-trained small network could
reduce the training epoch and still maintain a similar performance. Therefore, we
could order models from the smallest and train them one by one. Each model
(except the first one) can be initialized with the prior model’s trained weight for
training cost reduction. In the experiment, we evaluate the weight relay on 128-
time series datasets from multiple domains, and the result confirms the effective-
ness of WeightRelay. More theoretical analysis and code can be found in (https://
github.com/Wensi-Tang/DPSN/blob/master/AJCAI23_wensi_fedTSC.pdf).

Keywords: Time series classification · Federated learning · Heterogeneous
model

1 Introduction

With the development of smart devices, an increasing amount of time series data can be
collected, such as daily heartbeats, blood oxygen levels, electronic consumption, and
motion signals for smart device control [1,6–8,19,21,35].

With the advent of sophisticated devices and advanced data analysis technologies,
there is potential to bring immense value to society. However, privacy concerns limit the
integration of smart devices with state-of-the-art deep learning [24,59]. Specifically,
smart devices encounter challenges when training large models due to limited power
and computational resources for local training. Concurrently, uploading information
from these devices, which are commonly found in homes, can pose significant privacy
risks, as they often contain sensitive data [14,23].

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
T. Liu et al. (Eds.): AI 2023, LNAI 14471, pp. 129–140, 2024.
https://doi.org/10.1007/978-981-99-8388-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8388-9_11&domain=pdf
https://github.com/Wensi-Tang/DPSN/blob/master/AJCAI23_wensi_fedTSC.pdf
https://github.com/Wensi-Tang/DPSN/blob/master/AJCAI23_wensi_fedTSC.pdf
https://doi.org/10.1007/978-981-99-8388-9_11


130 W. Tang and G. Long

Federated learning [14] can be used to train deep learning models with privacy
protection. However, there are still many unsolved challenges in applying those solu-
tions to smart devices. Specifically, smart devices even for a similar function, typically
have varying hardware configurations. The hardware heterogeneous brings a challenge
for federated learning. Specifically, how to transfer knowledge between heterogeneous
models [14,21,59]. Specifically, this heterogeneous federated learning aims to obtain
models of various structural configurations to fit multiple devices according to their
hardware configurations and working environment. Under this setting, it is hard for
low-capacity devices to contribute their knowledge to big models, for they might have
enough memory, bandwidth or computational power to join the big model training via
Federate average. Therefore, solutions that could enable big models to get knowledge
from the small models are highly desired [14,21].

Existing solutions tackle the problem by adding one or more resources such as
computational, communication, and extra data. For example, distillation-based methods
require training cost on multiple models and extra cost for knowledge transfer between
those models [20,30,31,58,61]. Pruning-based methods [25,29] require an extra cost to
pruning the single model onto multiple smaller models. Weight sharing methods, some
of them [51] require the computational cost to match the weight of various models iter-
atively, and some methods [11,55] need a weight scale module to adjust weight before
sharing.

Although existing solutions enable knowledge sharing between heterogeneous mod-
els, the extra resource consumption makes it hard to implement them on smart devices.
This is because most of those devices do not have strong computational, memory or
commutations capacity [14,21]. Therefore, solutions with huge training costs bring an
embarrassing burden to low-capacity smart devices. When a device’s ability limits it
from using big models, it may also limit it from contributing its knowledge to big mod-
els or getting knowledge from big models via distillations, pruning or weight matching.

Other than capacity neglection, for smart devices, the appropriate 1D-CNN (one-
dimensional-convolutional neural networks) model is also seldom mentioned. Specif-
ically, most solutions were tested with 2D-CNN(two-dimensional-convolutional neu-
ral networks) models [11,20,30,51,55,58,61] or language models [31]. However,
we should notice that most of the data gathered by smart devices are time-series
data [33,53] which can mathematically be described as a series of data points recorded
in time order [8,9,13,49]. Such as the heartbeat data collected by smartwatches [37,39],
the electricity consumption data gathered by energy management devices [15], build-
ing structural vibration data recorded by motion sensors [27,50], etc. According to the
University of California, Riverside time series archive (UCR archive) [9], the state-of-
the-art solutions for time series classification tasks are all 1D-CNNs [10,13,49].

The characteristics of 1D-CNN allow a novel weight relay solution, which does not
need any extra resources. Specifically, suppose we have a small 1D-CNN network and
a large 1D-CNN network. For the large network training, we could initialize it with a
classic randomweight initialization or we could initialize it with the weight from a well-
trained small network. We find that these two kinds of initialization will be of similar
performance, but the second initialization could reduce the training cost of the large
network. This training cost reduction could be used to lower the capacity requirement



WeightRelay: Efficient Heterogeneous Federated Learning on Time Series 131

and allows more low-capacity devices to join the big model training. Via ordering those
heterogeneous 1D-CNN models from the smallest to the largest, except for the first
smallest model, all the other models’ training will be benefited.

In experiments, we show the consistently training cost reduction ability of the
weight relay on time series datasets frommultiple domains i.e., healthcare, human activ-
ity recognition, speech recognition, and material analysis. Despite the dynamic patterns
of these datasets, weight relay robustly shows its effectiveness.

2 Related Work

2.1 Deep Learning for Time Series Classification

The success of deep learning encourages the exploration of its application on time series
data [12,13,28]. Intuitively, the Recurrent Neural Network (RNN), which is designed
for temporal sequence, should work on the time series tasks. However, in practice, RNN
is rarely applied to TS classification [13]. One widely accepted reason among many is
that RNN models suffer from vanishing and exploding gradients when dealing with
long sequence data [2,13,38]. Nowadays, 1D-CNN is the most popular deep-learning
method TSC tasks. [22,26,40,41,52,60]. According to the University of California,
Riverside time series archive (UCR archive) [9], the state-of-the-art solutions for time
series classification tasks are all 1D-CNNs [10,22,49,52].

2.2 Federated Learning on Heterogeneous Devices

Based on the method of transferring knowledge between heterogeneous models,
the solutions to heterogeneous Federated learning could be divided into three
columns. These are distillation-based, weight-sharing-based pruning-based methods
and prototype-based methods.

The knowledge distillation [5,18] allows the knowledge sharing between heteroge-
neous models. It requires extra data or computational resources to enable knowledge
sharing between models [20,30,56], which brings multiple challenges under the feder-
ated learning setting. For example, the distillation process requires a large amount of
computational resources [61]. What’s more, the performance of the distillation is highly
related to the similarity of the distributions between the training data and distillation
data.

The weight sharing method is based on the assumption that some parts of the weight
of various structure models are the shareable, and the shareable part could help to trans-
fer the knowledge between various structure models [4,36,42,51]. In practice, finding
which parts of various models should be of the same parameter is hard. Therefore, a
large number of computation resources have to be taken to find which parts of models
should be matched together [51], or taken to calculate the adjustment module for weight
re-scale [11,43].

The pruning-based method aims at training a large neural network and pruning it
into various small networks [57] according to the hardware configuration and external
environment [25,32,54]. One limitation is that it is hard to control the structure of



132 W. Tang and G. Long

the pruned network, which challenges fitting those small networks according to the
configuration of each edge device. [25,29,47]

The prototype-based federated learning [3,16,17,46] can also be viewed as a solu-
tion for heterogeneous devices for it requires a very limited resource for classification
calculation. However, as the number of classes increases, prototype learning struggles
to scale effectively. Put simply, due to the warp characteristic, comparing the distance
between two-time series incurs a computational cost of N2. Where N is the length of
the signal. As the number of classes grows, this cost rises substantially. As a result,
the computational cost shifts from training to classification, which is not conducive for
small devices. While somemethods can map the time series into a feature space [45,48],
their classification accuracy cannot match that of larger models.

3 Motivation

To train a 1D-CNN model, we could 1) start from a classic random weight initialization
or 2) replace parts of the random initialization weight with a well-trained weight from
a small network. The second initialization could reduce the training cost of the large
network and won’t influence the final performance.

Therefore, to train multiple models on a smaller budget, we don’t need to train every
model from the stretch. We could initialize some of those models by the trained weight
from the others for fast convergence. Figure 1 gives an example of the weight relay on
the Crop [44] dataset.

Fig. 1. The left image shows the relationship between the accumulated computational cost and the
test accuracy of each model. The accumulated computational cost calculates the computational
cost we used to obtain a well-trained model. As the image shows, to obtain a single largest model
from classic initialization (purple), we need about 0.8e7 computational resources, and we could
only get 1 model. However, with weight relay, at the point 0.8e7, we have four models(blue,
orange, green and red). And the red model, which has the same structure as the purple model,
also has the same performance. The right image shows the performance of each model by com-
munication round. We could see that the weight relay model (red) converged much faster than the
classic initialization models (purple). (Color figure online)



WeightRelay: Efficient Heterogeneous Federated Learning on Time Series 133

4 Weight Relay

In Fig. 2, a schematic of weight relay is given. What’s more, in this Section, we will
explain the weight relay in detail. Specifically, Sect. 4.1 will introduce heterogeneous
models for time series classifications. Section 4.2 will introduce how to align those mod-
els. Specifically, when a well-trained weight is passed to a large model, which part of
the large network should be replaced.

Fig. 2. The schematic shows training multiple models with weight relay. Weight relay starts from
the training of the smallest network with classic initialization. The trained weight of the smallest
network will be used to replace a part of the classic initialization weight of a large network. When
the large network is trained, its weight could be used to accelerate the training of a larger network.
Since the weight relay only replaces the random initialization with a well-trained one, it requires
almost no cost, and the training cost of each model (except the first one) is also smaller than
training those from classic initialization.

4.1 Heterogeneous Models

According to the result statistics on the UCR archive, all state-of-the-art neural network
solutions on time series classification tasks are 1D-CNN models [13,34,49,52]. There-
fore, this paper mainly talked about 1D-CNN models and heterogeneous could happen
on all three main structure configurations: the number of layers, kernel sizes and the
number of channels.

4.2 Weight Alignment

The weight alignment defines which part of the large network should be replaced with
the weight of the small network. The alignment will have three steps because the neu-
ral network has three hierarchies. Specifically, a neural network is composed of layers.
Layers are composed of weight sets. And the weight sets are composed of weight ten-
sors. Therefore, we need to pair weight sets and layers before we align weight tensors.

First Step: Pair Weight Sets by Layers. The convolutional layer and the batch nor-
malization layer will be indexed from the input to the output. For example, the first
convolutional layer is the convolutional layer closest to the input. The fully connected
layer will be indexed by reverse order. Therefore, the first fully connected layer will
be the layer closest to the output. For each of those three types of layers, the ∗-th layer’s
tensor set of the small network should be paired with the ∗-th layer’s tensor set of the
large network



134 W. Tang and G. Long

Second Step: Pair Tensors by Paired Weight Sets: According to the definitions of
the 1D-CNN, tensors in each set will have different functions, such as weight, bias, and
running mean. Therefore, for two paired sets, tensors in the two sets will be paired by
their function name.

Third Step: Align Two Paired Tensors. For two paired tensorsA andB, the alignment
of the two tensors is to align the output and input dimensions with the left margin
and align the kernel dimension with the centre. Specifically, the small network’s ∗-th
element should be aligned with the middle of the large network’s ∗-th element on the
input(output) channel. Therefore, the small network’s i-th element should be aligned
with the middle of the large network’s j-th element on the kernel dimension. Then the
i and j describe the alignment relationship of A and B in the Eq. 1

j = i+ �(b − 1)/2� − �(a − 1)/2� (1)

where the b and a are kernel sizes of large network and small network.

5 Analysis of Weight Relay

This section will have two parts. In Sect. 5.1, we will show that though the alignment
method in Eq. 1 is defined in pair, it is reliable for the alignment of multiple models.
Secondly, we will give a macro (Sect. 5.2) and a micro (Sect. 5.3) explanation of the
coverage acceleration of the weight relay.

5.1 Consistency Proof for the Alignment

This section will show that despite we only define the relationship between two ker-
nels, this operation will keep the consistency when we have multiple kernels. The
consistency of weight alignment can be describe as below: For any three kernel weights
{A,B,C} and their length relationship are:

a < b < c

We could use weight alignment to deter the alignment relationship between C and the
other two kernels as:

Ai
align with−−−−−→ Ck (2)

Bj
align with−−−−−→ Ck (3)

The signal Phase alignment can be called consistency if, with the same operation on
A and B , we should have

Ai
align with−−−−−→ Bj

Here, we give an example to illustrate the consistency of multiple kernels. Suppos-
ing we have three kernels of length 3, 5, 8. Via Eq. 1, the A1 should align with C4, the
B3 should align with C4. Consistency means that the A1 should align with B3.



WeightRelay: Efficient Heterogeneous Federated Learning on Time Series 135

Proof of Consistency for Eq. 1:
When we combine Eq. 1 and Eq. 2 we know that the a th element of kernelA should

align with c th element of kernel C and their index relationship is:

k = i+ �(c − 1)/2� − �(a − 1)/2� (4)

With Eq. 1 and Eq. 3 we know the alignment relationship between elements in B and C
is:

k = j + �(c − 1)/2� − �(b − 1)/2� (5)

Using the Eq. 5 to subtract Eq. 4 and we have:

k − k =
i+ �(c − 1) /2� − �(a − 1) /2�

+
−j − �(c − 1) /2� + �(b − 1) /2�

(6)

Therefore, we know

j ≡ i+ �(b − 1) /2� − �(a − 1) /2�

Which means that
Ai

should align with−−−−−−−−−→ Bj

as it should be.

Fig. 3. This example shows that: Given the same input and target, the gradient direction of the
small kernel is the same as the gradient direction of the aligned part of the large network. Specif-
ically, images from left to right are: 1) input and target, which are generated by random noise;
2) A large kernel weight which is random noise, and the weight of the small kernel, which is
cropped from the large kernel; 3) The convolution results for large kernel and small kernel with
the input in image 1); 4) The gradients of kernels which is calculated with the random target in
image 1). To demonstrate the overlapping parts of the two kernels are in a similar direction, their
magnitude was adjusted; 5). A zoom view of the overlapping gradient parts (indexed 70 to 90).

5.2 Macro Explanation of the Training Acceleration

One explanation of the training acceleration is that compared with the classic initial-
ization weight, the weight relay initialization is closer to the final weight. In Fig. 4 We
statistic the distance between the initialization weight and trained weight, and we will
see that compared with the random initialization, the weight relay initialization are of a
smaller distance to the final value.



136 W. Tang and G. Long

Fig. 4. The blue points are results from 5000 tests with random input, targets, and weight. The
orange point is the origin point. We could see that when the value of the x-axis approaches 0
(target similar), the value of the y-axis comes to 0 (gradient direction similar). (Color figure
online)

5.3 Micro Explanation of the Training Acceleration

The micro explanation to the training acceleration is that: the small network’s optimiza-
tion direction is the optimization direction of the large network’s sub-network, where the
small network should replace the weight. Therefore, the training acceleration is because
the training of the small network makes the sub-network close to the final target.

To explain this, we could start from a simple case study in Fig. 3.

6 Experiment

6.1 Benchmarks

University of California, Riverside (UCR) 128 archive [9] is selected to evaluate the
weight relay under the federated setting. This is an archive of 128 univariate TS datasets
from various domains, such as speech reorganizations, health monitoring, and spectrum
analysis. What’s more, those datasets also have different characteristics. For instance,
among those datasets, the class number varies from 2 to 60, and the length of each
dataset varies from 24 to 2844. The number of training data varies from 16 to 8,926.

6.2 Evaluation Criteria

Following the datasets archive [9], the accuracy score is selected to measure the perfor-
mance. Following the paper, the communication round multiple model size is selected
to measure the training cost.

6.3 Experiment Setup

Following [13,22,49], for all benchmarks, we follow the standard and unify set-
tings [52] for all 128 datasets in the UCR archive. The training will stop when the
training loss is less than 1e-3 or reach 5000 epoch. To mimic the federated learning sce-
nario, the client number is 10. More details can be found in the supplementary material.

6.4 Experiment Result

The experiment shows that weight relay has similar performance and fewer computation
resources costs than using federated average on all devices to obtain each model. Due
to the larger number of datasets, we cannot list the results of all datasets. Therefore, we
plot the statistical result of the 128 datasets, and the result is shown in Fig. 5.



WeightRelay: Efficient Heterogeneous Federated Learning on Time Series 137

Fig. 5. From top to bottom, each row shows the statistical results when the large model has 2Xker-
nel size, 2Xchannel number, one extra layer, and all extensions than the smaller model. From the
left to the right image, we can see that, for most of the dataset, the large model will perform bet-
ter than the small model (the first column). The performance of the weight relay is similar to the
performance of training from classic (the second column); the weight relay has a lower training
cost (the third column); To archive similar performance, the weight relay has a smaller training
cost (the fourth column).

7 Conclusion

In this paper, we proposed the weight relay method, which could reduce the training cost
for heterogeneous model training. We theoretically analyse the mechanism of weight
relay and experimentally verify the effectiveness on multiple datasets from multiple
domains.

Acknowledgements. Please place your acknowledgments at the end of the paper, preceded by
an unnumbered run-in heading (i.e. 3rd-level heading).



138 W. Tang and G. Long

References

1. Bagnall, A., et al.: The UEA multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075 (2018)

2. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent
is difficult. IEEE Trans. Neural Netw. 5(2), 157–166 (1994)

3. Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning. Wiley
Interdisc. Rev.: Cogn. Sci. 7(2), 92–111 (2016)

4. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: train one network and specialize
it for efficient deployment. arXiv preprint arXiv:1908.09791 (2019)

5. Chen, F., Long, G., Wu, Z., Zhou, T., Jiang, J.: Personalized federated learning with graph.
arXiv preprint arXiv:2203.00829 (2022)

6. Chen, S., Long, G., Shen, T., Jiang, J.: Prompt federated learning for weather forecasting:
toward foundation models on meteorological data. arXiv preprint arXiv:2301.09152 (2023)

7. Chen, S., Long, G., Shen, T., Zhou, T., Jiang, J.: Spatial-temporal prompt learning for feder-
ated weather forecasting. arXiv preprint arXiv:2305.14244 (2023)

8. Chen, Y., et al.: The UCR time series classification archive (2015). www.cs.ucr.edu/eamonn/
time_series_data/

9. Dau, H.A., Bagnall, A., Kamgar, K., et al.: The UCR time series archive. arXiv:1810.07758
(2018)

10. Dempster, A., Petitjean, F., Webb, G.I.: ROCKET: exceptionally fast and accurate time series
classification using random convolutional kernels. Data Min. Knowl. Disc. 34(5), 1454–1495
(2020)

11. Diao, E., Ding, J., Tarokh, V.: Heterofl: computation and communication efficient federated
learning for heterogeneous clients. arXiv preprint arXiv:2010.01264 (2020)

12. Dong, X., Kedziora, D., Musial, K., Gabrys, B.: Automated deep learning: Neural architec-
ture search is not the end. arXiv preprint arXiv:2112.09245 (2021)

13. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for time
series classification: a review. Data Min. Knowl. Disc. 33(4), 917–963 (2019)

14. Ferrag, M.A., Friha, O., Maglaras, L., Janicke, H., Shu, L.: Federated deep learning for cyber
security in the internet of things: concepts, applications, and experimental analysis. IEEE
Access 9, 138509–138542 (2021)

15. Gans, W., Alberini, A., Longo, A.: Smart meter devices and the effect of feedback on residen-
tial electricity consumption: evidence from a natural experiment in northern ireland. Energy
Econ. 36, 729–743 (2013)

16. Gee, A.H., Garcia-Olano, D., Ghosh, J., Paydarfar, D.: Explaining deep classification of
time-series data with learned prototypes. In: CEURWorkshop Proceedings, vol. 2429, p. 15.
NIH Public Access (2019)

17. Ghods, A., Cook, D.J.: PIP: pictorial interpretable prototype learning for time series classifi-
cation. IEEE Comput. Intell. Mag. 17(1), 34–45 (2022)

18. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput.
Vision 129(6), 1789–1819 (2021)

19. Gu, P., et al.: Multi-head self-attention model for classification of temporal lobe epilepsy
subtypes. Front. Physiol. 11, 1478 (2020)

20. He, C., Annavaram, M., Avestimehr, S.: Group knowledge transfer: federated learning of
large CNNs at the edge. Adv. Neural. Inf. Process. Syst. 33, 14068–14080 (2020)

21. Imteaj, A., Thakker, U., Wang, S., Li, J., Amini, M.H.: A survey on federated learning for
resource-constrained IoT devices. IEEE Internet Things J. 9(1), 1–24 (2021)

22. Ismail Fawaz, H., et al.: InceptionTime: finding AlexNet for time series classification. arXiv
e-prints arXiv:1909.04939 (2019)

http://arxiv.org/abs/1811.00075
http://arxiv.org/abs/1908.09791
http://arxiv.org/abs/2203.00829
http://arxiv.org/abs/2301.09152
http://arxiv.org/abs/2305.14244
www.cs.ucr.edu/ eamonn/time_series_data/
www.cs.ucr.edu/ eamonn/time_series_data/
http://arxiv.org/abs/1810.07758
http://arxiv.org/abs/2010.01264
http://arxiv.org/abs/2112.09245
http://arxiv.org/abs/1909.04939


WeightRelay: Efficient Heterogeneous Federated Learning on Time Series 139

23. Ji, S., Long, G., Pan, S., Zhu, T., Jiang, J., Wang, S.: Detecting suicidal ideation with data
protection in online communities. In: Li, G., Yang, J., Gama, J., Natwichai, J., Tong, Y. (eds.)
DASFAA 2019. LNCS, vol. 11448, pp. 225–229. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18590-9_17

24. Jiang, J., Ji, S., Long, G.: Decentralized knowledge acquisition for mobile internet applica-
tions. World Wide Web 23(5), 2653–2669 (2020)

25. Jiang, Y., et al.: Model pruning enables efficient federated learning on edge devices. IEEE
Trans. Neural Netw. Learn. Syst. (2022)

26. Kashiparekh, K., Narwariya, J., Malhotra, P., Vig, L., Shroff, G.: Convtimenet: a pre-trained
deep convolutional neural network for time series classification. arXiv:1904.12546 (2019)

27. Kavyashree, B., Patil, S., Rao, V.S.: Review on vibration control in tall buildings: from the
perspective of devices and applications. Int. J. Dyn. Control 9(3), 1316–1331 (2021)

28. Längkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning and deep
learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)

29. Li, A., Sun, J., Li, P., Pu, Y., Li, H., Chen, Y.: Hermes: an efficient federated learning frame-
work for heterogeneous mobile clients. In: Proceedings of the 27th Annual International
Conference on Mobile Computing and Networking, pp. 420–437 (2021)

30. Li, D., Wang, J.: Fedmd: Heterogenous federated learning via model distillation. arXiv
preprint arXiv:1910.03581 (2019)

31. Liu, R., et al.: No one left behind: inclusive federated learning over heterogeneous devices.
arXiv preprint arXiv:2202.08036 (2022)

32. Liu, S., Yu, G., Yin, R., Yuan, J.: Adaptive network pruning for wireless federated learning.
IEEE Wirel. Commun. Lett. 10(7), 1572–1576 (2021)

33. Liu, Y., et al.: Deep anomaly detection for time-series data in industrial IoT: a
communication-efficient on-device federated learning approach. IEEE Internet Things J.
8(8), 6348–6358 (2020)

34. Long, G., Shen, T., Tan, Y., Gerrard, L., Clarke, A., Jiang, J.: Federated learning for privacy-
preserving open innovation future on digital health. In: Chen, F., Zhou, J. (eds.) Humanity
Driven AI, pp. 113–133. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-72188-
6_6

35. Long, G., Tan, Y., Jiang, J., Zhang, C.: Federated learning for open banking. In: Yang, Q.,
Fan, L., Yu, H. (eds.) Federated Learning. LNCS (LNAI), vol. 12500, pp. 240–254. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-63076-8_17

36. Long, G., Xie, M., Shen, T., Zhou, T., Wang, X., Jiang, J.: Multi-center federated learning:
clients clustering for better personalization. World Wide Web 26(1), 481–500 (2023)

37. Park, S., Constantinides, M., Aiello, L.M., Quercia, D., Van Gent, P.: Wellbeat: a frame-
work for tracking daily well-being using smartwatches. IEEE Internet Comput. 24(5), 10–17
(2020)

38. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.
In: International Conference on Machine Learning, pp. 1310–1318 (2013)

39. Progonov, D., Sokol, O.: Heartbeat-based authentication on smartwatches in various usage
contexts. In: Saracino, A., Mori, P. (eds.) ETAA 2021. LNCS, vol. 13136, pp. 33–49.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93747-8_3

40. Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., Ng, A.Y.: Cardiologist-level
arrhythmia detection with convolutional neural networks. arXiv:1707.01836 (2017)

41. Serrà, J., Pascual, S., Karatzoglou, A.: Towards a universal neural network encoder for time
series. In: CCIA, pp. 120–129 (2018)

42. Singh, A., Vepakomma, P., Gupta, O., Raskar, R.: Detailed comparison of communication
efficiency of split learning and federated learning. arXiv preprint arXiv:1909.09145 (2019)

43. Tan, A.Z., Yu, H., Cui, L., Yang, Q.: Towards personalized federated learning. IEEE Trans.
Neural Netw. Learn. Syst. (2022)

https://doi.org/10.1007/978-3-030-18590-9_17
https://doi.org/10.1007/978-3-030-18590-9_17
http://arxiv.org/abs/1904.12546
http://arxiv.org/abs/1910.03581
http://arxiv.org/abs/2202.08036
https://doi.org/10.1007/978-3-030-72188-6_6
https://doi.org/10.1007/978-3-030-72188-6_6
https://doi.org/10.1007/978-3-030-63076-8_17
https://doi.org/10.1007/978-3-030-93747-8_3
http://arxiv.org/abs/1707.01836
http://arxiv.org/abs/1909.09145


140 W. Tang and G. Long

44. Tan, C.W., Webb, G.I., Petitjean, F.: Indexing and classifying gigabytes of time series under
time warping. In: Proceedings of the 2017 SIAM International Conference on Data Mining,
pp. 282–290. SIAM (2017)

45. Tan, Y., Liu, Y., Long, G., Jiang, J., Lu, Q., Zhang, C.: Federated learning on non-IID graphs
via structural knowledge sharing. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 37, pp. 9953–9961 (2023)

46. Tan, Y., et al.: Fedproto: federated prototype learning across heterogeneous clients. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8432–8440 (2022)

47. Tan, Y., Long, G., Ma, J., Liu, L., Zhou, T., Jiang, J.: Federated learning from pre-trained
models: a contrastive learning approach. Adv. Neural. Inf. Process. Syst. 35, 19332–19344
(2022)

48. Tang, W., Liu, L., Long, G.: Interpretable time-series classification on few-shot samples. In:
2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

49. Tang, W., Long, G., Liu, L., Zhou, T., Blumenstein, M., Jiang, J.: Omni-scale CNNs: a simple
and effective kernel size configuration for time series classification. In: International Confer-
ence on Learning Representations (2021)

50. Vidal, F., Navarro, M., Aranda, C., Enomoto, T.: Changes in dynamic characteristics of Lorca
RC buildings from pre-and post-earthquake ambient vibration data. Bull. Earthq. Eng. 12(5),
2095–2110 (2014)

51. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with
matched averaging. arXiv preprint arXiv:2002.06440 (2020)

52. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural net-
works: a strong baseline. In: 2017 International Joint Conference on Neural Networks, pp.
1578–1585. IEEE (2017)

53. Xing, L.: Reliability in internet of things: current status and future perspectives. IEEE Inter-
net Things J. 7(8), 6704–6721 (2020)

54. Xu, W., Fang, W., Ding, Y., Zou, M., Xiong, N.: Accelerating federated learning for IoT in
big data analytics with pruning, quantization and selective updating. IEEE Access 9, 38457–
38466 (2021)

55. Xu, Z., Yang, Z., Xiong, J., Yang, J., Chen, X.: Elfish: resource-aware federated learning on
heterogeneous edge devices. Ratio 2(r1), r2 (2019)

56. Yan, P., Long, G.: Personalization disentanglement for federated learning. arXiv preprint
arXiv:2306.03570 (2023)

57. Zhang, C., et al.: Dual personalization on federated recommendation. arXiv preprint
arXiv:2301.08143 (2023)

58. Zhang, L., Yuan, X.: Fedzkt: zero-shot knowledge transfer towards heterogeneous on-device
models in federated learning. arXiv preprint arXiv:2109.03775 (2021)

59. Zhang, T., Gao, L., He, C., Zhang, M., Krishnamachari, B., Avestimehr, A.S.: Federated
learning for the internet of things: applications, challenges, and opportunities. IEEE Internet
Things Mag. 5(1), 24–29 (2022)

60. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Time series classification using multi-
channels deep convolutional neural networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang,
Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 298–310. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08010-9_33

61. Zhu, Z., Hong, J., Zhou, J.: Data-free knowledge distillation for heterogeneous federated
learning. In: International Conference on Machine Learning, pp. 12878–12889. PMLR
(2021)

http://arxiv.org/abs/2002.06440
http://arxiv.org/abs/2306.03570
http://arxiv.org/abs/2301.08143
http://arxiv.org/abs/2109.03775
https://doi.org/10.1007/978-3-319-08010-9_33
https://doi.org/10.1007/978-3-319-08010-9_33

	WeightRelay: Efficient Heterogeneous Federated Learning on Time Series
	1 Introduction
	2 Related Work
	2.1 Deep Learning for Time Series Classification
	2.2 Federated Learning on Heterogeneous Devices

	3 Motivation
	4 Weight Relay
	4.1 Heterogeneous Models
	4.2 Weight Alignment

	5 Analysis of Weight Relay
	5.1 Consistency Proof for the Alignment
	5.2 Macro Explanation of the Training Acceleration
	5.3 Micro Explanation of the Training Acceleration

	6 Experiment
	6.1 Benchmarks
	6.2 Evaluation Criteria
	6.3 Experiment Setup
	6.4 Experiment Result

	7 Conclusion
	References


