
Automatic and Authentic eAssessment
of Online Database Design Theory

Assignments

Hasan M. Jamil(B) and Farjahan R. Shawon

University of Idaho, Moscow, ID 83844, USA

jamil@uidaho.edu, shaw0901@vandals.uidaho.edu

Abstract. One of the main reasons MCQ assessments are popular is
that tests using text understanding is difficult and often erroneous. The
emergence of large language models such as ChatGPT is not mature
enough to help grading engineering assignments yet. Since MCQ tests
are not well suited for summative assessment, scaling up eLearning for
large number of students is difficult using non-MCQ tests. In this paper,
we introduce a new eAssessment tool for database design courses that
uses graphical conversations to understand learner’s mental model of
cognitive state. We show that the model is capable of substituting NLP
for authentic assessment for eLearning.

Keywords: Intelligent tutoring · authentic assessment · eLearning ·
self-paced learning · user interface · graphical conversation · NLP
substitute

1 Introduction

Recent research suggest that among various types of technologies, e-learning is
the most commonly validated mode of delivery, followed by m-learning, Learning
Management Systems (LMSs), and social media services [8]. While technology
adoption, LMS adoption in particular [15], in higher education is increasing
significantly in the post-Covid era, barriers still exist that prevent effective use
of these tools. These barriers largely include instructors’ lack of confidence, and
preparedness, and less than enthusiastic acceptance of the available tools [4]. It
is, therefore, not surprising that the instructors use these technologies mainly for
blended learning [1] in which assessment1 accounts only for 19% [17], perhaps
because the instructors believe that the existing technologies are not a good
fit for their style or personality [14], a factor that motivated the design of the
system and research discussed in this article.
1 According to Rhodes et al. [17], the main usage of LMSs can be broken down in

different categories as follows: Announcements (82%), Items (77%), Grade (71%),
Folders (62%), Files (53%), Assignments (53%), Web links (30%), Plagiarism detec-
tion (22%), Discussion boards (21%) and Tests (19%).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Xie et al. (Eds.): ICWL 2023, LNCS 14409, pp. 77–91, 2023.
https://doi.org/10.1007/978-981-99-8385-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8385-8_7&domain=pdf
https://doi.org/10.1007/978-981-99-8385-8_7


78 H. M. Jamil and F. R. Shawon

While there are tutoring systems for many CS subjects, there are signifi-
cantly fewer systems for a first database course. The ones that are available,
they split the topics into multiple tutoring systems (e.g., SQL [18], conceptual
database design [11], relational algebra [13], and normalization [20]). We are,
however, unaware of a single comprehensive tutoring system for database teach-
ing. Using multiple independent systems to teach a single subject introduces
substantial impedance mismatch, management hurdles and potential equity
issues. To address these complex set of issues, we have initiated Project 360
as a comprehensive database tutoring system. It is designed to include four
inter-connected and integrated tutoring systems – Conceptual Database Design
(CoDD), Visual SQL (ViSQL [12]), Relational Algebra Query Language (ReliQ
[10]), and Normalization and Database Design Theory (NoDD [9]). In the
remainder of this article, we discuss how NoDD approaches plagiarism averse
authentic assessment and tutoring of functional dependency (FD) theory and
database normalization.

2 Related Research

As opposed to a tutoring systems for teaching conceptual database modeling or
database query languages, teaching functional dependency theory and database
normalization probably are technically simpler. This is because these concepts
are well defined and have established algorithms to compute them. As can be
expected, there are several online normalization tools, or calculators, that do
pretty well in computing various steps and components of dependency theories
and normalization [19,20], and perform not too poorly in explaining the steps to
the students. Unfortunately, that also means many existing online calculators,
and more recently ChatGPT, make it extremely challenging to administer an
online test without the risk of a dishonest student cheating [5].

From the tutoring view point, the concepts of functional dependency theory
and normalization, the challenge is in designing a system that can get the point
across, guide the students to learn the theories, and improve learning outcomes
overall. There are several online systems that actually are effective at varying
degrees. When it come to assessment, to the best of our knowledge, there is
probably no online system that covers authentic assessment. Even if one existed,
we believe that would be hugely vulnerable to plagiarism and cheating and will
go undetected. NoDD most likely is the first attempt to rectify the shortcomings
of contemporary online database normalization tutoring and assessment systems.

There have been several few attempts at building database normalization
tools. However, only a handful of them have been designed for tutoring [20],
and none are designed for assessment even though it is an integral component
of learning. Essentially, assessment is left as an offline exercise. Furthermore,
among the online normalization calculators, only the Normalization Tool [20],
and Cho’s normal form calculator [7] are live.

We also believe that an effective normalization theory learning tool must
introduce to the students the fundamental concepts of functional dependencies,



Automatic and Authentic eAssessment of Online Database Design 79

the inference rules and cognate theories so that they are able to derive closure of
a set of a dependencies (F ∗). This fundamental understanding serves as the foun-
dation for them to follow the notions of attribute closures (X+

F ), which can be
used to compute candidate keys, covers, and to test loss-less join decomposition.

While there are a few tools that could potentially help compute some of
these, most are not comprehensive, and often only cover a subset of comput-
ing needs. Even when they do, are not in a form that is suitable for a learn-
ing system such as ours. For example, for the set of functional dependencies
F = {A → CD,B → DE,AG → BC,AB → G,BG → A} over the scheme
R = (ABCDEGH) the FD calculator developed by Chakravarty [6] does not
compute the normal forms. While it computes attribute and functional depen-
dency (FD) closures, and minimal covers, it computes everything exhaustively
and unnecessarily without offering any insight or explanation. An interesting FD
calculator by Cho [7] also generates explanations of all its derivations. However,
it does all the computations in one go in a non-interactive fashion. Unfortunately
it is also not being maintained.

However, none of these systems are open sourced and no support is offered.
Furthermore, they are designed for online direct interactions by the users and no
APIs are supported. Thus considering all the aspects, the Normalization Tool [20]
appears to be a standard calculator because it has shown a higher commitment
to maintenance even though it does not offer all the functionalities we desire. It
can optionally show the derivation steps, but without any explanations. Similar
to FD Calculator, this is also modular and interactive. As we will highlight in
the upcoming sections, NoDD also covers everything Normalization Tool does,
and much more, but in a significantly unique way.

3 Database Design Assignments

Before we discuss the graphical conversation technique we have developed for
eAssessment, it is perhaps helpful to discuss the nature and uniqueness of
database design assignments, the subject of our eAssessment tool. One of the
steps in database design is called schema normalization. A database scheme is
a list of attributes, or column names of a table, and a set of functional depen-
dencies that apply. To illustrate the concept of normalization, let us consider
Example 1 below.

Example 1. R is a relation scheme over attributes {A,B,C,D,E}, and associ-
ated functional dependencies F = {AB → C,A → C,C → A,CD → A}.

R is said to be non-3NF compliant, and a decomposition into a 3NF scheme is
required. This is done by discovering the canonical cover of the dependency set
F , and following the 3NF decomposition algorithm and yielding two schemes –
R1(AC), and R2(ABDE).

The tools instrumental in this decomposition are concepts of Armstrong’s
Axioms and Inference Rules, candidate key identification, attribute closure X+

F ,
canonical cover, loss-less join decomposition and 3NF decomposition algorithm.



80 H. M. Jamil and F. R. Shawon

a 3NF decomposition of a scheme ensures that all functional dependencies are
preserved and the splitting of the scheme is also loss-less. The decomposition
of R into R1 and R2 above was accomplished first by determining that the
dependency CD → A is redundant because F \ {CD → A} |= CD → A,
i.e., even when CD → A is removed from F and A ∈ CD+

F\{CD→A}. Then
recognizing that AB → C is left-redundant. These two observations reduced F
to the set Fc = {A → C,C → A, and is called the canonical cover of F . We can
also use standard techniques to discover the set of all candidate keys from either
F or Fc easily. The complete set of candidate keys K of R is thus ABDE and
BCDE. Based on Fc and K, using the 3NF decomposition algorithm we obtain
R1 and R2.

4 Graphical Conversational Interface

Our goal in the design of our graphical conversational interface for eAssessment
is to construct a set of graphical alphabets or words with predefined meanings
from which students will choose to write sentences with place holders for val-
ues. We then use a grammatical parsing system to understand the sentences to
determine admissibility – or correctness. These sentences then can be assem-
bled into a description of a solution. It turns out that the vocabulary can be
compartmentalized based on the algorithms described in Sect. 5.

4.1 Language for Graphical Conversation

ChatBots, smart interfaces and many question answering systems use various
forms of natural language conversations to engage with the users. While con-
temporary generative AI ChatBots actually construct responses live with a rea-
sonable understanding of user questions, most other conversational systems are
simpler and responses are often predetermined. For example, the retired Expe-
dia travel help ChatBot2 was largely a keyword and short phrase comprehension
based decision tree workflow execution engine that was capable of performing
simple routine tasks such as cancelling a reservation, re-booking a travel, reim-
bursements inquiry, etc. Amazon’s essentially uses a fixed dialogue system with
deterministic steps and outcomes. The graphical, or visual conversation system
we are considering is somewhat similar to the Expedia’s keyword based ChatBot
with markedly distinct features in which users make numerous decisions to drive
the conversation, graphically, withing a defined search space.

In NoDD, every conversation is based on a specific task, and the task defines
the alphabet and the language for the conversation, all using graphical artifacts
such as radio buttons, check boxes, selections, etc. As the Fig. 1 shows, once the
choice for Proof by Inference Rules is selected, the vocabulary and the conver-
sational grammar is preset. In this case, the four FDs over the scheme R are the
context, and the conversation is about derivation of inferences using the choices

2 Expedia recently introduced ChatGPT based travel assistant.



Automatic and Authentic eAssessment of Online Database Design 81

of rule application at the top (radio buttons). The sentences are the FDs, and the
grammar for the construction of sentences are defined by these inference rules.
NoDDs job is to ascertain if the user is constructing a valid sentence based on
the grammar. It logs each step, so that feedback can be generated and the para-
graph (the set of sentences) written can be graded. The editor in Fig. 1 simply
allows the users construct fixed formatted sentences using check boxes without
offering too much help. Only help it is offering is that it is constraining attribute
choices within the scheme R3.

Fig. 1. NoDD graphical conversation for logical consequence of F .

4.2 NoDD Interface

The Normalization and Database Design tool we have designed is a unique and
novel tutoring and authentic assessment system built for the sole purpose of
database design theory teaching and learning. While there are several online
calculator to help students solve database design theory related problems, none
are comprehensive, and none can be used as an assessment tool. Technically, they
also cannot be used as a tutoring tool, because they are designed to compute
solutions directly without helping the students to do it themselves or removing
their conceptual blocks. In contrast, the generic solution interface of NoDD,
shown in Fig. 1, can be used for all FD related problems with slight adaptation
for both tutoring and assessment.

3 Removing this indirect help can be achieved by actually listing no attributes on
both sides of the FDs, and letting the users write. For now, we believed that such an
imposition does not buy much in terms of learning gains. Depending on user studies,
this stance may change in the future.



82 H. M. Jamil and F. R. Shawon

The interface in Fig. 1 is partitioned into four quadrants. The top horizontal
quadrant runs from the left edge to the right. This quadrant displays two types
of menus and options selection. Users choose to solve or practice one of eight
problem types from a drop down list on the left top quadrant. In the middle, there
are seven radio buttons to choose one of the six inference rules, or choose any of
the FDs in F . To the right, there are two buttons – one to create a new solution
step, and one to conclude the solution. The remaining three quadrants are placed
side by side just below the top quadrant. The leftmost quadrant lists all the active
FDs with a serial number and a checkbox next to them. The middle quadrant
is a workspace where users create solution steps using graphical alphabets. The
rightmost quadrant primarily lists historical information of the solution steps.
The sections below detail how this interface is used to solve the eight problem
types in dependency theory. For the sake of brevity, in this presentation, we will
only discuss the use of NoDD in assessment mode. The tutoring and practice
mode is functionally similar but has important differences in how feedback is
generated.

5 Functional Dependency Theory Algorithms in NoDD

Functional dependency theories are in the heart of database normalization. A
sound understanding of its various components is essential for students to master
normalization intricacies. Fortunately, all the concepts involved are algorithmi-
cally definable. In this section, we utilize those algorithms in the design of the
conversational interfaces they must use to master functional dependency con-
cepts and to help students learn normalization theory using NoDD.

5.1 Logical Consequence of FDs

Logical consequences of a set of dependencies F can be tested in two principal
ways – by derivation using the Armstrong’s axioms and inference rules, and by
attribute closure computation. In both of these approaches, our principal goal is
to understand if the student is following the correct algorithm by reconstructing
it. Figure 1 illustrates how the process works in NoDD in reference to Example 2.

Example 2. Let the relational scheme be R = (ABCDE) and the set of depen-
dencies be F = {A → B,B → C,BC → AD,BCD → E}. Show that
F |= A → E.

Derivation Method. The graphical conversation proceeds as follows: To begin,
the student selects the set of dependencies F , the scheme R, and the method
she will use, and NoDD immediately prepares the interaction process as shown
in Fig. 1 for F |= f using derivation. NoDD displays the four dependencies of
F and assigns the FDs a chronological number 1 through 4. Since a derivation
method is chosen, a new FD is expected, and a new blank FD with a number 5
is displayed in the middle quadrant in the format shown below:



Automatic and Authentic eAssessment of Online Database Design 83

� f5 : ��A�B�C�D�E → �A��B�C�D�E – Given 1 � �
The derivation steps for FDs 6 and 7 are as follows:

� f5 : �A��B�C�D�E → �A�B��C�D�E – Given 2 �� �
� f7 : ��A�B�C�D�E → �A�B��C�D�E – Transitivity 5 and 6 � �
The result of the student choosing “Transitivity” in the third derivation step

from the top panel indicating she is applying transitivity between FDs 5 and 6
is shown as f7 above. The right quadrant comment shows what rules are being
applied between the FDs 5 and 6.

However, the derivation is not yet complete since the student is yet to con-
struct the derived dependency after applying transitivity between FDs 5 and
6, which should be A → C. Student uses the check boxes on both sides of the
dependency template f7 to pick the attributes of R she believes should be in this
new dependency. Figure 1 also shows the proper and complete derivation of the
proof for F |= A → E. Notice that, at every step until f14, the yellow checkbox
was selected to indicate that the derivation is incomplete at this step and a new
derivation step is needed for the next derivation. Finally, the green checkbox was
chosen at f14 to indicate completion of the proof.

Attribute Closure Method. When the “Attribute Closure” method is chosen,
an interface simulating the derivation process below is presented. It starts by
instantiating a derivation template as shown below:

{A}+F = {�A�B�C�D�E} – FD � �
Here too, the derivation follows systematically until the green checkbox is

selected. The complete derivation and proof by attribute closure is shown below.
In this process, students choose one dependency at each step that she believes is
applicable, and adds or deletes the set of attributes believed to be in the closure.

{A}+F = {��A�B�C�D�E} – Reflexivity �� �
{A}+F = {��A��B�C�D�E} – FD 1 �� �
{A}+F = {��A��B��C�D�E} – FD 2 �� �
{A}+F = {��A��B��C��D�E} – FD 3 �� �
{A}+F = {��A��B��C��D��E} – FD 4 � ��

Grading Student Responses. In both methods, the selections, rule appli-
cations, and the derivations are systematically logged as shown in the fourth
quadrant history log. It is a simple process to determine if the student is incor-
rect, and all NoDD has to do is check if the final step is reached correctly.
Although we are not discussing NoDD’s tutoring mode in this article, it is not
too hard to see how NoDD could offer feedback to the student in the event she
made a mistake, which NoDD is able to detect at each step. However, designing
effective hints is a research topic by itself, and will be presented separately.



84 H. M. Jamil and F. R. Shawon

5.2 Candidate Keys

One of the most important steps in database design is the discovery of candidate
keys. However, to be able to determine if a relation scheme is in Third Normal
Form (3NF) or Boyce-Codd Normal Form (BCNF), it is necessary to discover
all candidate keys, not just one. Therefore, mastering a systematic derivation
technique is essential. It turns out that candidate keys can be derived in three
principal ways – exhaustive or iterative method, heuristic method and FD based
reduction method. We present the tools we have developed for each below.

Exhaustive Method. In this method, a student basically tries every possi-
ble combination of the attributes in the scheme, and attempts to determine if
the attribute closure recovers the entire scheme to declare the combination a
superkey or a candidate key. The process is similar to the technique outlined in
Sect. 5.1 for attribute closure computation. NoDD prepares a derivation template
of attribute closure for all possible combinations, along with four check boxes –
yellow, green, cyan and red, as shown below. As usual, yellow requests another
step in the derivation process. Checking green indicates the current attribute set
is a candidate key, cyan declares it a superkey, and red concludes it to be a non
key, and the derivation for this combination stops.

{A}+F = {�A�B�C�D�E} – FD 1 � � � �

This method is quite laborious and demands significant attention. A better
method is the heuristic method described next that eliminates a large number
of combinations that need to be tried, and thus shortens the process.

Heuristic Method. A sound heuristic that can be used to determine candidate
keys involves separating the attributes into three distinct sets called the K+, K−

and K?. The attributes in a scheme that appear always on the left hand side in
all FDs, or never appear in any FD, are placed in K+ because they will always be
in any candidate key. Similarly, the attributes that always appear on the right
hand side, cannot appear in any candidate key since they are determined by
other attributes, and thus belong to the K− set. The remaining attributes are
placed in the K? set because no decisions can be made about their status. The
idea is to try attribute closures of all the combinations of the sets of attributes
in K+ ∪ K?, and not include attributes in K− at all.

The derivation step follows the process in Sect. 5.2 preceded by the identi-
fication of these three sets, and displaying only the combinations involving the
sets identified in K+ and K?. In Example 2, only E is always on the right hand
side, and the remaining attributes are on both sides. Therefore, the identification
follows the steps below:

K+ = {�A�B�C�D�E} – FD ��
K− = {�A�B�C�D��E} – FD 4 ��
K? = {��A��B��C��D�E} – FD 1, 2, 3, 4 ��



Automatic and Authentic eAssessment of Online Database Design 85

NoDD therefore will list all combinations of ABCD from the lowest cardi-
nality combinations to the highest, and allow the process of key identification as
in Sect. 5.2.

Reduction by Elimination Method. The elimination method though simple
in concept, it is a complicated procedure to implement on a computer screen.
It is basically a tree building process with the entire scheme of the relation at
the root. Since all schemes are at least a superkey by itself, it can be used as
a starting point for the reduction process. The idea is to use an FD in F to
remove the attributes (say X) at the right hand side of it from the scheme at
the root. This is because, X can still be recovered if the attribute closure of
R \ {X}+F is computed, and yet the scheme, or the superkey is reduced to a
smaller superkey. The goal is to find the smallest superkey, the candidate key,
by repeatedly applying this technique until no more attributes can be removed.

Fig. 2. Partial derivation of candidate keys using elimination method.

Figure 2 shows a partial expansion of the scheme R over the FDs F . The
numbers on the arrows show the FD application. For example, using FD 1,
the attribute B was removed from the root to create the node ACDE. The
elimination process in this branch stopped because no other FD’s have attributes
in the left hand side that are a subset of ACDE to help us eliminate them.
Though it is a terminal node, it is not minimal as we see next. At the left tallest
branch, we find a terminal node A (marked inside a box) which is minimal and
was reached via repeated FD application in a similar way. Another boxed and
terminal node is B. The other terminal nodes now can be checked to see if
they are super sets of a boxed or any other terminal nodes and thus cannot be
considered a candidate key. In this partial tree, all terminal non-boxed nodes are
super sets of A.

This complex tree expansion and attribute elimination process is modeled in
NoDD in a level wise fashion within the interface we have used so far. To initiate
the elimination process, NoDD presents the root node as



86 H. M. Jamil and F. R. Shawon

1 : {ABCDE} – FD � � � �

On clicking on the yellow checkbox, it generates the following display, where in
the left is the root node, and at the right is a child of the root node at level 2.

1 : {ABCDE} – FD � � � � 2 : {�A�B�C�D�E} – FD � �

To deduce node ACDE as shown in Fig. 2, the user chooses FD 1 at the left,
checks B on the right node number 2. She also checks if this is a candidate key
(green box), or is a superkey (cyan box). In this case, the user chose the cyan
box, when the display reduces to the presentation below.

1 : {ABCDE} – FD � � �� �
2 : {ACDE} – FD 1 � � �� �

When the user selects the yellow box again on node 1, the numbering of the
nodes changes and the following node structure is presented.

1 : {ABCDE} – FD � � �� �
2.1 : {ACDE} – FD 1 � � �� �

2.2 : {�A�B�C�D�E} – FD � �

On expansion in a similar manner, the structure below is generated.

1 : {ABCDE} – FD � � �� �
2.1 : {ACDE} – FD 1 � � �� �
2.2 : {ABCD} – FD 4 � � �� �

A complete expansion of the derivation tree will identify the two candidate
keys A and B. The final node showing A as the candidate key will be presented
as

2.2.1.1.1 : {A} – FD 1 � �� � �

5.3 Covers of Dependencies

Covers of dependencies require two sets of dependencies, say F and G. To estab-
lish the fact that F covers G, we are required to show that ∀g(g ∈ G,F |= g).
However, to show that F ≡ G, we must show that ∀f, g((f ∈ F,G |= f) ∧ (g ∈
G,F |= g)). For this task, we again repurposed the interface discussed in
Sect. 5.1. This time, instead of one set of dependencies, we list two sets, and allow
a checkbox to make one of them active, say F . The required step here is that the
student must choose (the system does not require it) an FD g = X → Y ∈ G
by checking the box next to it. Once she does, a dialog box appears as before in
a slightly different manner as shown below:

{�A�B�C�D�E}+F = {�A�B�C�D�E} – FD 1 � � �



Automatic and Authentic eAssessment of Online Database Design 87

This time, we require the user to choose the set of attributes (X) in the left of
the equal sign for which the attribute closure is to be computed. Then follow
the process in Sect. 5.1 with respect to the dependencies in F and demonstrate
that she could recover Y in the right side of the equal sign. If she could not,
she should check the red box and declare that F does not cover G. Instead, if
Y ⊆ X+

F , then she should choose to check the green box. Then repeat the same
process for all the dependencies in G. Every time she checks the green box, the
check box next to the FD in G also turns green, red otherwise. To show that
F ≡ G, she must now switch F to G as the active FD set, and show that G |= f ,
for all f ∈ F .

5.4 Canonical Cover of FDs

Theoretically, the canonical cover of a set of FDs F is the set of FDs Fc such
that there is no redundant FDs in Fc and no FDs has extraneous attributes in
their left hand sides, i.e., minimal. To compute Fc, a student must follow the
following three steps, in no particular order.

Decomposing FDs. While decomposition of FDs of the form f = X → Y into
one attribute in the right hand side is not necessary, but doing so makes the
remaining process simpler. However, combining or taking union of the smaller
schemes into one using applicable FDs may become necessary to reverse the
decomposition of FDs thus made, again not mandatory. This step can be achieved
by choosing an FD, and clicking a button to decompose it. Once clicked, NoDD
decomposes the FD into X → A form, and reorders and renumbers the FDs.
The set of FDs generated to replace the FD X → Y is equal to the number
of distinct attributes A ∈ Y . For example, the FD BC → AD is replaced by
BC → A and BC → D using the simple application of the decomposition rule.

Redundant FD Removal. An FD f = X → A ∈ F is redundant, if F still
implies f , i.e., F \ {f} |= f . That means, for an FD f = X → A to be non-
redundant, A 	∈ X+

F\{f} must hold. We again re-purpose the cover computation
subsystem discussed in Sect. 5.3 with the following adjustments. To test if an
FD is redundant, the student selects an FD f from the FD list F by checking
the box next to it. She is then presented with the conversation below:

{�A�B�C�D�E}+F = {�A�B�C�D�E} – FD 1 � � �

and she must follow the procedure discussed in Sect. 5.3. At the end, she must
check either “not redundant” (green), or “redundant” (red). Once checked, the
button next to the FD in FD list is colored green or red, and the FD is unchecked.
However, she can optionally check the FD checkbox again to remove it from the
FD list, when it is greyed out. The process can be repeated for all the FDs in F .



88 H. M. Jamil and F. R. Shawon

Removing Left-Redundancies in FDs. To remove left redundancies, we use
the same interface and for the redundant FD removal, but now turn on the left-
redundancy removal radio button. Thus the multi-function red button is able
to allow removal of attributes from the FD currently checked. This time, check
boxes in the attributes in the FD appears, and the student is able to select the
attributes she wish to remove. The checkbox next to the FD stays unchecked.
This time too, if the FD checkbox is selected, the attributes checked in the FD
is greyed out to indicate removal.

5.5 Normal Form Decomposition

During this step, students choose a set of dependencies F , and use the tools
described in Sects. 5.2, and 5.4 to compute all the candidate keys K of R and the
canonical cover Fc of F . While there are definitions for both 3NF and BCNF to
test if a scheme is already in these normal forms, and by checking those conditions
we could potentially save some time and avoid unnecessary decomposition, for
the sake of brevity, we will not address this issue in this paper. In the following
two sections, we present the process a student will follow to decompose a scheme
into 3NF or BCNF assuming that the scheme warranted the decomposition4.

Third Normal Form. Recall that the 3NF status of a scheme is related to
transitive and partial dependence of attributes on non-key attributes. To avoid
making mistakes by following a manual inspection, the algorithms for these two
normal forms ensure a correct decomposition. The algorithm leverages the canon-
ical cover computation and asks to create a distinct scheme S using the attributes
in a FD f ∈ Fc only if S 	⊆ Ri where Ri, 1 ≤ i ≤ n, is one of the decomposed
schemes already created, and then renaming S as Rn+1. Finally, if none of the
Ris is a super set of any of the candidate keys in K, then create a final distinct
scheme Rn+1 using the attributes of one of the keys in K.

To respond to a test question on 3NF decomposition, students can start by
computing the canonical cover and the candidate keys. Or, they can enter them
in the system manually. Technically, the interface will have displayed a set of
dependencies and a set of keys. Students will identify an FD or a key by checking
the box, to work on it. NoDD presents the scheme as shown below that is tied
to the FD or key selected. Selecting an FD displays

R1 : {�A�B�C�D�E} – FD 1 � �

and the student selects the attributes for the decomposed scheme. On the other
hand, selecting a key displays

R1 : {�A�B�C�D�E} – Key 1 � �
4 It must be noted here that even if the scheme is already in one of these normal

forms, attempting to decompose it or doing so does not render the decomposition
unsound, or introduce a design error. Finally, most often then not, the algorithms
will return the original schemes anyway.



Automatic and Authentic eAssessment of Online Database Design 89

and the scheme is created as in the previous case. Once the green box is checked,
the scheme is added as one of the decomposed schemes. Checking red box removes
it from the set. We should note that we prefer not to aid in constructing the
schemes by pre-selecting the attributes based on the FD, a key principle we
have discussed as our design feature. This will defeat the purpose of testing the
cognitive process of the students. We offer them enough so that they are able to
pick the right statements, not responses.

Boyce-Codd Normal Form. BCNF decomposition if a complicated and
involved algorithm. It is fundamentally a binary tree expansion algorithm. We,
therefore, adapt an interaction system similar to candidate key discovery algo-
rithm using reduction by elimination method discussed in Sect. 5.2. This time,
we expect a right skewed binary tree, though we support a general tree expansion
as before. Therefore, we simplify the numbering scheme for node identification
with the following changes. The root node is displayed as follows along with its
first possible child:

1 : {ABCDE} � �
a : AB → C �
b : A → C �
c : CD → A �

K1 : ABDE �
K1 : ACDE �

2.1 : {�A�B�C�D�E} – FD �
a : �A�B�C�D�E → �A�B�C�D�E �

K1 : �A�B�C�D�E �

Students are expected to choose one of the dependencies in the root node, and
derive a child node based on the dependency just chosen. In this child node, the
student also is expected to identify the FDs and keys that would hold. She uses
the yellow check boxes to add one more dependency or key, and the green box
to confirm the node and exit. By checking the attribute boxes, she constructs
the scheme, FDs and keys.

Finally, once the child green box is checked, a new child node is created along
with the information just supplied. Student can click on the parent’s yellow box
again to generate one more template for a new child node, and new description
begins. This time, the child is assigned a node number 2.2, since there is already
a number 2.1. Until the green box of the root or parent is checked, more children
can be generated. Furthermore, when node 2.1 (say) is used as the root node,
the new child is numbered 3.1 (child of a level 2 node), and all subsequent level
three nodes are sequentially numbered.

6 Conclusion and Future Research

We believe there are two principal issues in authentic eAssessment we need to
tackle. First, we need to use a language that is easily and correctly interpretable
for the student to express her mental model of the problem being solved or the
question she is responding to. Using a natural language as a modality of commu-
nication, such as English, is ideal in the age of large language models (LLM) and
seems appropriate. However, as a recent conversation5 with ChatGPT reveals,
5 https://chat.openai.com/share/04aaf386-a76b-4ad7-b814-d840d139eb0b.

https://chat.openai.com/share/04aaf386-a76b-4ad7-b814-d840d139eb0b


90 H. M. Jamil and F. R. Shawon

it is not that simple and it is far less perfect than one might expect. Leaving
the costs of developing tailored technologies using LLMs as backbones aside,
its efficacy and efficiency of human-AI communication for such purposes require
further improvement.

Excellent alternatives to natural language based human computer communi-
cation are visual languages [2], and visual interfaces [16]. Visual interfaces are
finite and simpler than visual languages, while visual languages are more open
and difficult to design, they limit the scope. In this paper, we blended these two
technologies into a language to capture the solution process a student follows
in answering database design questions. Though it is limited to our application,
it is highly focused and effective. In particular, it is easy to follow the chain of
thought and easy to interpret the thought process for the purpose of grading.

Second, the approach we have adopted helps us stay plagiarism averse. Given
the nature of the subject and the availability of a large number of online tools
that can instantly provide the answers to all test questions, we needed to focus
on capturing the analytical process followed by the test takers that they can-
not glean from the internet calculators effortlessly. In the absence of a proctor
in online test taking and the real possibility of cheating, forcing the student
to display the depth of subject matter understanding and comprehending the
explanations are critical issues. NoDD achieves that goal by offering a subject-
grounded conversational language for question answering and interpreting the
responses flawlessly.

In this paper, we refrained from discussing the algorithms for interpreting
the responses for the assessment and feedback generation during tutoring ses-
sions [3]. Though it is easy to sense that the NoDD interface diligently collects
the sequence of thought process of a student, interpreting them requires careful
attention to details. Feedback generation in the form of prompts and suggestions
just enough to put the student on track also requires careful design and sophis-
ticated models. These are some of the issues we seek to explore in our future
research.

Acknowledgement. This research was partially supported by an Institutional Devel-
opment Award (IDeA) from the National Institute of General Medical Sciences of the
National Institutes of Health under Grant #P20GM103408.

References

1. Anthony, B., Jr., et al.: Blended learning adoption and implementation in higher
education: a theoretical and systematic review. TKL 27, 531–578 (2022)

2. Ayala, P., Barandiaran, I., Vicente, D., Graña, M.: Exploring simple visual lan-
guages for real time human-computer interaction. In: IEEE VECIMS 2003, Lugano,
Switzerland, 27–29 July 2003, pp. 107–112 (2003)

3. Ball, M.A., Garcia, D.D.: Autograding and feedback for snap!: a visual program-
ming language (abstract only). In: ACM SIGCSE 2016, Memphis, TN, USA, 02–05
March 2016, p. 692 (2016)



Automatic and Authentic eAssessment of Online Database Design 91

4. Buabeng-Andoh, C.: Factors influencing teachers’ adoption and integration of
information and communication technology into teaching: a review of the liter-
ature. IJEDICT 8, 136–155 (2012)

5. Carr, N., Jamil, H., Shawon, F.: An experiment on leveraging chatGPT for online
teaching and assessment of database students. In IEEE TALE 2023, Auckland,
New Zealand, 27 November–1 December 2023 (2023)

6. Chakravarty, A.: Functional dependencies checker (2018). https://tinyurl.com/
yrzrhcm3. Accessed 8 Jan 2022

7. Cho, R.: Tool for database design (2017). https://tinyurl.com/45jz7bpv. Accessed
8 Jan 2022

8. Granic, A.: Educational technology adoption: a systematic review. Educ. Inf. Tech-
nol. 27, 9725–9744 (2022)

9. Jamil, H.: Online tutoring and plagiarism-aware authentic assessment of database
design assignments. In: IEEE TALE, Auckland, New Zealand, 27 November–1
December 2023 (2023)

10. Jamil, H., Naha, K., Shawon, F.: An online tutoring and assessment system for
teaching relational algebra in database classes. In: ICWL 2023, Sydney, Australia,
26–28 November 2023 (2023)

11. Jukic, N., Vrbsky, S., Nestorov, S., Sharma, A.: Erdplus (2020). https://erdplus.
com/. Accessed 31 July 2022

12. Karimzadeh, M., Jamil, H.: An intelligent online SQL tutoring system. In: IEEE
ICALT 2022, Bucharest, Romania, 1–4 July 2022, pp. 212–213 (2022)

13. Kessler, J., Tschuggnall, M., Specht, G.: Relax: a webbased execution and learning
tool for relational algebra. In: BTW 2019, Rostock, Germany, LNI, 4–8 März 2019,
vol. P-289, pp. 503–506 (2019)

14. Kimmerl, J.: Does who am I as a teacher matter? exploring determinants of teach-
ers’ learning management system adoption in education style. In ICIS 2020, Hyder-
abad, India, 13–16 December 2020. Association for Information Systems (2020)

15. Ngafeeson, M.N., Gautam, Y.: Learning management system adoption: a theory
of planned behavior approach. IJWBLT 16(1), 27–42 (2021)

16. Ohira, M., Masaki, H., Matsumoto, K.: CICRO: an interactive visual interface
for crowd communication online. In: Ozok, A.A., Zaphiris, P. (eds.) OCSC 2011.
LNCS, vol. 6778, pp. 251–260. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21796-8 27

17. Rhode, J., Richter, S., Gowen, P., Miller, T., Wills, C.: Understanding faculty use
of the learning management system. Online Learn. J. 21, 68–86 (2017)

18. Röhm, U., Brent, L., Dawborn, T., Jeffries, B.: SQL for data scientists: designing
SQL tutorials for scalable online teaching. VLDB 13(12), 2989–2992 (2020)

19. Stefanidis, C., Koloniari, G.: An interactive tool for teaching and learning database
normalization. In: Proceedings of the 20th Pan-Hellenic Conference on Informatics,
Patras, Greece, 10–12 November 2016, p. 18. ACM (2016)

20. Wang, J., Stantic, B.: Facilitating learning by practice and examples: a tool for
learning table normalization. In: BCI 2019, Sofia, Bulgaria, 26–28 September 2019,
pp. 35:1–35:4. ACM (2019)

https://tinyurl.com/yrzrhcm3
https://tinyurl.com/yrzrhcm3
https://tinyurl.com/45jz7bpv
https://erdplus.com/
https://erdplus.com/
https://doi.org/10.1007/978-3-642-21796-8_27
https://doi.org/10.1007/978-3-642-21796-8_27

	Automatic and Authentic eAssessment of Online Database Design Theory Assignments
	1 Introduction
	2 Related Research
	3 Database Design Assignments
	4 Graphical Conversational Interface
	4.1 Language for Graphical Conversation
	4.2 NoDD Interface

	5 Functional Dependency Theory Algorithms in NoDD
	5.1 Logical Consequence of FDs
	5.2 Candidate Keys
	5.3 Covers of Dependencies
	5.4 Canonical Cover of FDs
	5.5 Normal Form Decomposition

	6 Conclusion and Future Research
	References


