
An Online Tutoring and Assessment
System for Teaching Relational Algebra

in Database Classes

Hasan M. Jamil(B), Kallol Naha, and Farjahan R. Shawon

University of Idaho, Moscow, ID 83844, USA
jamil@uidaho.edu, {naha7197,shaw0901}@vandals.uidaho.edu

Abstract. While there are several online tools to practice SQL, except
for single tool to practice relational algebra, there practically are no sys-
tem for teaching, tutoring or assessing relational query language assign-
ments for database classes. In this paper, we introduce ReliQ, an online
tutoring and assessment system for teaching relational query languages
to database students. ReliQ supports a number of features for conve-
nient management of assignments and tests for both practice (in tutor-
ing mode) and authentic assessment (in testing mode). It is capable of
grading assignments autonomously and generating useful hints for an
effective, enriching and unparalleled eLearning experience.

Keywords: Intelligent tutoring · authentic assessment · eLearning ·
self-paced learning · user interface · relational algebra · database classes

1 Introduction

As delivery and management of traditional courses increasingly go online, the
demands for more sophisticated learning and administrative tools are also grow-
ing. Two of the advantages online platforms promise are self-paced learning
[24] and scalability [1]. The absence of a physical classroom in online learning
also necessitates, among many other support systems, a robust tutoring [9] and
assessment [18] system support for effective eLearning. For database teaching
in particular, several decoupled tutoring systems were designed to cover topics
of a first database class with varying degrees of focus and sophistication. The
absence of a comprehensive database teaching, tutoring and assessment system
leaves open the opportunity for developing one.

The relational algebra query language tutoring and assessment system, ReliQ,
we present in this paper is one of the subsystems of a larger and comprehen-
sive database tutoring and assessment system called Project 360. Project 360
is designed to include four inter-connected and integrated tutoring systems –
Conceptual Database Design (CoDD), Visual SQL (ViSQL [11]), Relational
Algebra Query Language (ReliQ), and Normalization and Database Design
Theory (NoDD [7,8]). In the remainder of this article, we discuss how ReliQ
approaches authentic assessment and tutoring of database courses using rela-
tional algebra querying.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
H. Xie et al. (Eds.): ICWL 2023, LNCS 14409, pp. 62–76, 2023.
https://doi.org/10.1007/978-981-99-8385-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8385-8_6&domain=pdf
https://doi.org/10.1007/978-981-99-8385-8_6

An Online Tutoring and Assessment System 63

2 Related Research

A recent system for conceptual database design, ERDPlus [10], was introduced.
While it allows several sophisticated features to help design and understand
ER diagrams and their relationships with SQL schema, it does not particularly
support feedback generation or assessment. It is also not part of a tutoring
system designed for class management as we discuss in this paper. Similarly,
SQL tutoring systems [5,12,14], and normalization tools [22] are not compre-
hensive systems though they support simple problem solving features toward
online tutoring. Of particular interest are the relational algebra tutoring sys-
tems RelaX [13] and a cognate system called Alloy [2] for discrete math lab
exercises.

RelaX is the closest system that compares well with ReliQ that actually
allows execution of relational algebra expressions. It supports most of the rela-
tional algebra expressions including several extended operators. Among the con-
temporary relational algebra tutoring systems, such as radb [23], Relational [21],
and IRA [17], RelaX probably is the most advanced and widely used. However,
this system is not suitable for a full-fledged tutoring system such as ReliQ. In
particular, it does not support assignment posting, tests, or grading. Nor can
it be made part of a more elaborate system without extensive redesign even
though the source code is made available online. Similar observations apply to
radb, Relational and IRA as well.

In contrast, ReliQ is a complete and comprehensive tutoring and assess-
ment system. Instructors are able to design courses around ReliQ, and man-
age the delivery and conduct of the course in full. It supports a comprehensive
set of features traditionally supported by learning management systems (LMS),
and more. In particular, relational algebra questions can be asked in assign-
ments and tests, students can be allowed to test their queries before submission,
and the tests can be graded fully autonomously. A more sophisticated feed-
back and query explanation option for ReliQ is being developed along the lines
of RATest [15].

3 Relational Algebra Assignments and Tests

A traditional relational algebra assignment usually has a description of a
database scheme, a set of table schemes, and a number of queries over the
database scheme written in a natural language such as English. A student’s
task is to implement or translate those natural language queries into relational
algebra expressions that when executed will return a response semantically con-
sistent with the queries written in English. For example, the query below

Example 1. List all cats which like to eat the most expensive Purina brand foods.

over the database scheme below where the primary keys are underlined in each
table scheme.

64 H. M. Jamil et al.

Pets(PetID, Name, City, Zip, Age, PetType)
Likes(PetID, Year, FoodID)
Foods(FoodID, Name, Brand, Price)

In ReliQ, in order to compute this query using relational algebra and be graded,
a student must write an expression similar (technically speaking, semantically
equivalent) to the reference query provided by the instructor. However, for now,
let us assume that the student wrote the query below as her answer.

R1: ΠName(σPetType=′Cat′(Pets �� Likes ��

ΠFoodID,max(Price) as mPrice(σBrand=′Purina′(Foods))))

A more convenient and structured way of composing the query uses extended
relational algebra operators such as assignment and renaming as follows.

R2: Temp ←
ρtmp(FoodID,mPrice)(ΠFoodID,max(Price)(σBrand=′Purina′(Foods)))

ΠName(σPetType=′Cat′(Pets �� Likes �� Temp)

3.1 Question Answering in ReliQ

ReliQ supports a query editor using which users are able to construct relational
algebra expressions. Figure 1 shows the ReliQ editor for query construction and
execution over a target database. It has three main parts: the operator bank at
the top, database table schemes to the right, and the editing pane below the
operator bank. Users can choose operators by clicking on the operator icons for
ReliQ to insert it in the editor pane at the selected location. Operator arguments
or qualifiers (e.g., selection conditions or projection lists) can be inserted as
subscripts, or on the same level of the operator, so long the syntax is semantically
equivalent, i.e., ReliQ is subscript agnostic.

Fig 1 also shows ReliQ’s functional components in an active editing session in
which the query R1 has been constructed and executed against a sample data,
e.g., the Pet database. The result of the execution is shown as a table below
the editor pane. The displayed table also has column sorting, pagination and
page size selection options for convenient visualization. For validation purposes,
users are also able to inspect the base table instances just by clicking on the table
names at the right segment of the interface. Options to display the standard SQL
and MySQL SQL equivalent of the queries in the editor pane are also available
as references.

3.2 ReliQ Query Execution

ReliQ query execution is by translation of algebra queries into SQL. In ReliQ, we
use MySQL version 8.0.33 on Linux. Since MySQL does not always support or
follow standard SQL, ReliQ to SQL translation is MySQL specific, and follows
MySQL syntax specific mapping rules. In this section, we present an overview of
ReliQ expression to SQL translation procedures, and discuss how student queries
are assessed against an instructor provided reference query.

An Online Tutoring and Assessment System 65

Fig. 1. ReliQ IDE and editor.

ReliQ to SQL Mapping. Query translation has been leveraged as a less
costly implementation strategy in numerous applications [16,20,25] relying on its
demonstrated strengths and usefulness [3,6]. The key to assigning translational
semantics to a query language is to ensure that the semantic view of the source
language is preserved in the target language, and if an inverse mapping to the
source language is applied, there will be no “loss”. In ReliQ too, we exploit this
implementation strategy and translate ReliQ queries into SQL, MySQL version
of SQL to be exact, for execution. In the current edition of ReliQ, our focus
is on correctness of translation, and a straightforward implementation without
a serious focus on efficiency concerns of the back-end query processing costs in
MySQL.

Query Classes For the purpose of translation, we recognize that only set opera-
tions in ReliQ can be translated directly in SQL. For example, ΠPetID(Pets) −
ΠPetID(Likes) can implemented as the SQL query

(SELECT PetID FROM Pets)
EXCEPT
(SELECT PetID FROM Likes);

to discover pets which have no specific food they like to eat. In this query, two
subqueries are connected as operands of the EXCEPT operator. In contrast, the
query ΠPetID(Pets �� Likes) cannot be implemented as the SQL query below
even though this query too is similar in structure and spirit to the query above.

(SELECT PetID FROM Pets)
NATURAL JOIN
(SELECT PetID FROM Likes);

66 H. M. Jamil et al.

Instead, this ReliQ query can be implemented as the following SQL query.

SELECT *
FROM (SELECT PetID FROM Pets)

NATURAL JOIN
(SELECT PetID
FROM Likes);

Or, more directly as

SELECT PetID
FROM Pets NATURAL JOIN Likes;

Though both versions appear simple, and the second version simpler yet, the
appearances are deceiving. The first version is a direct translation of the ReliQ
query that exploits the knowledge that the SQL equivalent of the entire ReliQ
query must reside inside a FROM clause, and not much else. In contrast, the
second query though more intuitive and cleaner, it requires extensive analysis
of the ReliQ query to understand the query sufficiently enough to construct an
equivalent SQL version, which in some cases could turn very complicated. We,
therefore, chose the first approach for the sake of simplicity even though it is
computationally more expensive than the latter.

Mapping Algorithms The mapping algorithm we have developed are case by
case, extensive and too elaborate to include in this article. Instead, we present
the essence of the steps involved in most of these mapping algorithms using
the Ex 1 and discuss the general and simple structure they follow on intuitive
grounds below.

We first create the query tree from the expressions. Then we proceed to
construct SQL expressions step wise from the leaf nodes to the root. The process
involves recognizing unary operations (selection, projection, rename, assignment,
etc.), and in expression binary operations (joins, Cartesian product, etc.) and
open binary operations (union. intersection, difference), and constructing SQL
expressions according to the principles discussed above in this section. Special
considerations are given to special operations such as division, group by and
ordering.

Figures 2(a) and 2(b) show the query trees corresponding to the ReliQ queries
R1 and R2 respectively in which the leaf nodes are all tables. While they compute
the same query and identical responses in two very distinct different ways, we
choose to explain the mapping process using the query tree for R2 in Fig. 2(b)
since it covers more operators than R1. The steps we follow to convert the left
query tree of R2 into an SQL query can be summarized as follows.

Step 1 Identify leaf node Foods. Construct expression e as the clause FROM
Foods.

Step 2 Recognize unary operation selection. Update expression e as FROM
Foods WHERE Brand=’Purina’.

An Online Tutoring and Assessment System 67

Fig. 2. Query trees.

Step 3 Recognize unary projection operation. Update expression e as SELECT
FoodID, max(Price) FROM Foods WHERE Brand=’Purina’.

Step 4 Recognize unary operation renaming. Update e as SELECT *
FROM (SELECT FoodID, max(Price) as mPrice FROM Foods WHERE
Brand=’Purina’) as tmp.

Step 5 Recognize root assignment node. Create final expression e as

CREATE VIEW Temp as
SELECT *
FROM (SELECT FoodID, max(Price) as mPrice

FROM Foods
WHERE Brand=’Purina’) as tmp;

Finally, the right query tree in Fig. 2(b) is interpreted as the SQL query

SELECT Name
FROM Temp NATURAL JOIN Likes NATURAL JOIN Pets
WHERE PetType=’Cat’;

It does so by recognizing that Temp is a virtual table and needs to be computed
prior to executing the query above. Also, this time, it starts with the expression
FROM Temp NATURAL JOIN Likes since JOINs are in expression binary oper-
ators, and builds up the query above following steps we have outlined above. In
contrast, if we were to create an SQL query for the query tree in Fig. 2(a), the
query will be as follows.

SELECT Name
FROM (SELECT FoodID, max(Price) as mPrice

68 H. M. Jamil et al.

FROM Foods
WHERE Brand=’Purina’) NATURAL JOIN Likes

NATURAL JOIN Pets
WHERE PetType=’Cat’

Automatic Grading of Student Assignments. While translating student
ReliQ expressions into SQL is not too complex a technical challenge, grading
them properly somewhat is. Recall that Ex 1 expects the list of cats that eat the
most expensive Purina foods and assume that the instructor wanted the name
of the cats along with the PetID or Zip to distinguish between the cats with
identical names. Then the reference query she wrote is as follows:

Rr: ΠPetID,Name(σPetType=′Cat′(Pets �� Likes ��

(ΠFoodID(σBrand=′Purina′(Foods)) ��

Πmax(Price) as Price(σBrand=′Purina′(Foods))))

Incidentally, the reference query Rr is the correct expression for the query in Ex
1, and therefore the student queries R1 and R2 are incorrect1. The computational
challenge here is that how do we test equivalence of the two queries, i.e., Rr

s≡ R1

or Rr
s≡ R2 (here,

s≡ denotes semantic equivalence). Semantic equivalence (
s≡)

technically entails |R1| = |R2| = |Rr|, and ∀x(x ∈ R1 ⇔ x ∈ Rr) or ∀x(x ∈
R2 ⇔ x ∈ Rr).

The queries R1, and similarly R2, are not equal to Rr for the obvious reason
that they have mismatched schemes. Even if they had matching schemes (just
the attribute Name), they are most likely to have different sets of rows, and thus
should not be equal. Technically, for the two tables R1 and Rr, if the conjunct

SELECT ’true’
WHERE

NOT EXISTS AND NOT EXISTS
(SELECT * (SELECT *
FROM R1 FROM Rr
EXCEPT EXCEPT
SELECT * SELECT *
FROM Rr) FROM R1)

holds true, then the two tables are identical in scheme and content. The problem
is, in MySQL, EXCEPT requires the order and names of the columns to be
identical which is complicated because students potentially could use arbitrary
order and apply renaming of the columns. While MINUS does not impose these
restrictions, it is not available in MySQL which is what we use as our back-end
1 It is not just because the student did not include the PetID in the projection, but

because the query as written will also include all the Purina brand FoodIDs in the
inner projection and thereby making all the non priciest foods also eligible. The
reference query Rr first finds the price of the highest priced Purina item, then picks
the item’s FoodID with an extra join before joining with Likes and Pets to avoid
picking all the lower priced items unlike the student’s queries R1 and R2.

An Online Tutoring and Assessment System 69

storage, and thus does not work. While there are other computational2 and query
equivalence theory based [4] solutions, they usually require custom case by case
programming, or impose significant restrictions on the class of queries, which
is a major hurdle in designing a general good-for-all solution. For example, the
ViSQL [11] SQL tutoring system based on Cosette [4] has significant limitations
on the class of queries it can support, and was found to be handicapped as a
first database class.

To avoid excessive custom coding not guaranteed to work well, we have
designed an unorthodox walk around solution to equivalence checking problem
that works even though it is slightly inefficient. Given that in a database class,
the example databases used are small, and the queries often compute a very small
sized table, the solution described below works perfectly well and flawlessly. We
first concatenate all the rows in the two tables after converting them into strings,
and create two giant strings. Then we sort the characters in the giant strings
before generating a hash value using MD5 hash function. The expectation is
that if the tables are identical, the hash values will be too. This approach is not
impacted by column renaming or order.

4 Implementation of ReliQ

The IDE and the editor in Fig. 1 is the front-end of the ReliQ relational algebra
query processor. Though we have abused the usage of the term ReliQ tutoring
and assessment system, ReliQ is fundamentally a query processor. What makes
it a tutoring and assessment system is its inclusion in the larger Project 360
engine. Project 360 is implemented using HTML, JavaScript, PHP, and MySQL
to create a responsive, user-friendly, and feature-rich web-based platform. It
consists of two components: the front end and the back end. The front-end of
this platform is designed using the Bootstrap HTML framework, coupled with
the versatile jQuery JavaScript framework.

The back-end system, on the other hand, is powered by the PHP Laravel
framework, serving as the server-side scripting language. The foundation of this
platform is the well trusted and widely used relational database management sys-
tem MySQL. MySQL offers effective tools for data storage, retrieval, and mod-
ification, making it a prudent option for managing challenging database tasks.
Also its compatibility with Laravel ensures smooth integration and seamless
data interactions between the back-end and the database. We leverage Laravel’s
built-in authentication system to implement secure user registration, login, and
password management.

The relational algebra subsystem ReliQ is implemented as a user friendly
editor. The main part of the tool’s body comprises a highly customized a WYSI-
WYG rich text editor, called CKEditor, specifically tailored to support relational
algebra operators. The editor allows users to write and compose algebraic expres-
sions directly within the web application. A third panel is dedicated to displaying
the execution results as shown in Fig. 1 using PHP on the server-side.
2 https://tinyurl.com/3vs8xkjr.

https://tinyurl.com/3vs8xkjr

70 H. M. Jamil et al.

4.1 Syntax and Semantics

ReliQ supports all standard and extended set of relational algebra operators,
and adopts the operator sets of Silberschatz, Korth and Sudarshan [19]. We have
iconized the operators that can be clicked to select and place at the editing pane
where the cursor is. All unary operators (e.g., select σ, project Π and rename
ρ) uses two sets of parentheses – one set for the descriptors (Boolean condition,
attribute list or the scheme) and the other for the operand, e.g., σ()(). Users are
able to fill those appropriately. Relation and attribute names can be selected by
clicking on the table name or attribute names in the right, The subscripting of
the descriptors are optional, and can be toggled by clicking on the X2 icon at the
far right end in the icon panel. Logical operators can also be selected or typed.
In the current edition, the parentheses as described are mandatory.

The parentheses requirement is also true for binary operators such as union,
intersection and join. For example, Foods ∪ Likes is syntactically incorrect. The
correct syntax is (Foods) ∪ (Likes). This is because we are applying uniform
bracketing rules across an expression. Since a binary operator can also be flanked
by a pair of complicated expressions, we require that they be enclosed within a
pair of parentheses to avoid confusion. Thus, the same rule applies to base tables
as well. We are considering relaxing the parentheses rules in the future edition of
ReliQ as it could become unwieldy at times. Yet, we believe that ReliQ syntax
is more intuitive, forgiving, and easy to use than RelaX, radb, Relation or IRA.
Furthermore, the group by (G), assignment (←) and order by (τ) have a more
user friendly syntax in ReliQ than any of its predecessors.

4.2 ReliQ Query Processor

As discussed in Sect. 3.2, ReliQ query processor is implemented in MySQL using
query translation. We did not include all the mapping algorithms from relational
algebra queries to SQL in this paper for the sake of brevity. However, implemen-
tation of the assignment operator warrants special consideration and a brief
discussion.

The MySQL back-end used by ReliQ for database support and SQL engine
can only use one instance of the database. That essentially means all the users
logging in to use a specific database are using one single instance. For querying
purposes it is not a problem most of the time. However, the assignment operator
is implemented using the CREATE VIEW statement at the SQL level. Also,
CREATE VIEW in MySQL makes the generated view permanent for every-
one. This situation has two implications. First, we cannot just drop a generated
view for a given user to clean up the cache because another student may have
generated an identically named view, which is truly common for assignment
statements, e.g., x ← exp. The flip side of this issue is that once a user created
a view named, say x, an assignment statement by another user trying to create
another view named x will fail.

To resolve this issue, we generate a unique ID to the millisecond level and
append to each relation name used to the left of the assignment operator. We

An Online Tutoring and Assessment System 71

also create and maintain a list of these tables, and drop the tables at the end of
the execution of the query to clean up the cache. This strategy helps to manage
the growth of useless tables in the back-end, avoid accidental dropping of active
views, and conflicts with views generated by multiple users.

5 ReliQ as an Online Tutoring and Assessment System

ReliQ primarily supports two types of registered users – students and instructors.
Students and instructors are allowed access to the public partition of ReliQ where
instructors could post assignments, and tests over a test database. All students
will have access to these artifacts for self-learning without any assistance from
the instructor. However, instructors can open a course, and let students register
in their courses in a more closed setting. A course can have defined duration,
structure, help and more guided learning. In this section, we discuss the various
components of ReliQ that support tutoring and assessment of relational algebra
eLearning.

5.1 Instructor’s Dashboard

Figure 3 shows the instructor’s course dashboard through which she manages the
course CS360 she created for her students. Aside from the fact that an instructor
is able to do standard functions such as post syllabus, lecture notes, and learning
materials, she also can post assignments, and tests, and grades. Finally, she is
able to add students to her class. However, for the sake of brevity, we will only
focus on how an instructor creates assignments and tests, and grades them.

Fig. 3. Instructor’s course dashboard.

72 H. M. Jamil et al.

Creating Assignments and Tests. One of the main features of ReliQ is
designing and administering relational algebra assignments and tests, for both
practice and credit. Figure 3 shows the preamble screen using which the instruc-
tor designs a test3. A test can be designed as a practice test or a for credit
test by choosing the option from the drop down list on the left (e.g., Credit as
shown). Test date and time, total points and the presentation order of questions
can be selected. It can be saved as a draft, or published. Two additional features
ReliQ supports uniquely are the options to allow query executions on a sample
database, and a mode of grading. There are two modes of grading – immediate
and deferred. In immediate mode, a grade is returned fully automatically at a
preset time, usually after all students have finished taking the test. In deferred
mode, however, the response to the tests are collected and saved, and not graded
until the instructor manually requests an automated grading.

Fig. 4. Assignment creation – text response (inset) and MCQ response (foreground).

Similar to many learning management systems such as Canvas, ReliQ also
supports creating questions in an interactive manner as shown in Fig. 4. As shown
in Fig. 4, ReliQ supports plain text, “True/False” (not shown in Fig. 4) and MCQ
type responses. However, it also supports Code or System type responses that
can be directly executed in the back-end database systems. Every question is
classified along three axes (if Code type response is selected) – subject category
(ER, RA, SQL, FD), database inspection (Yes/No), and execution permission
(Yes/No). For subject category “RA”, database access selection “Yes” means
that for this question, the student will be able to inspect the sample database
tables to help her conceptualize query construction. Otherwise, she will have

3 The process of designing an assignment is almost identical, and hence omitted.

An Online Tutoring and Assessment System 73

to use her imagination to craft the query. On the other hand, if “Execution”
is allowed, the student is allowed to both inspect the database tables and test
run her constructed queries on the sample database since permission to execute
queries is superseding to database inspection permission. But the converse is not
true. Finally, the execution permission at the individual question level is locally
overriding permission of the global execution choice the instructor makes in the
preamble.

Depending on the response type, the panel for model or reference responses
change. Figures 4 and 5 show the model response panels respectively for Text
and MCQ, and RA System type responses. The ReliQ IDE shown in Fig. 1
appearing as a panel allows the construction of a relational algebra query, test
run it against the sample database, and its correctness confirmed4. The model
responses are used to auto grade tests and assignments and are never showed to
the students unless instructor granted the permission.

Fig. 5. RA System model response interface.

Automatic Grading. To be able to auto grade an assignment or test, all
questions must be of any type except “Text” type responses, requiring manual
assessment, in either immediate or deferred grading modes. While the True/False
and MCQ type responses are easily graded using standard methods, the RA
System questions are evaluated using the approach described in Sec 3.2 against
the model response supplied by the instructor.

4 Note that the ReliQ IDE also serves as a standalone interface for query construction
and execution.

74 H. M. Jamil et al.

5.2 Student’s Dashboard

Student’s dashboard allows the students to browse published courses, register for
courses, and attend the classes asynchronously using ReliQ (as part of Project
360). Additional functions allowed in the course interface are Syllabus, Projects,
Groups, People and Notifications. Navigating to a registered courses, she can see
course interface in Fig. 6 after selecting Tests (similarly for Assignments). The
list displays brief descriptions of the test, and various other information related
to the test, including test type and time frame when to take it. If already taken,
it shows the points earned. It has two buttons – “Start” and “View”. A test
obviously cannot be viewed before the start of the test, but any time after the
start time.

Fig. 6. Student’s course dashboard.

The view of the tests (or assignments) students have is similar to the views
of the Figs. 4 and 5. In such test interfaces, they are able to respond to test
questions in ways similar to Canvas for Text, True/False and MCQ type ques-
tions. But distinctively, in Project 360, they are also able to write executable
relational algebra queries directly in the response box for “System” or “Code”
type questions, test run them, and save if allowed by the instructor.

6 Conclusion and Future Research

The main focus of this presentation was to highlight the design, functions and
features of ReliQ tutoring and assessment system. We have largely emphasized
how ReliQ supports construction and execution of relational algebra queries and
tested for correctness. As an execution engine, it is similar to RelaX, but its
inclusion into Project 360 afforded it more capabilities than any other known
contemporary relational algebra tutoring system.

An Online Tutoring and Assessment System 75

This cloud based ReliQ tutoring system is currently open to instructors for
use in their database classes. We intend to collect usage and performance data
to share with the community to improve database teaching and learning. We are
distinctly aware of the US federal Family Educational Rights and Privacy Act
(FERPA) law and keenly compliant with student data privacy. We therefore do
not collect student personal identification data, though we collect demographic
data to study social and learning related diversity, equity, inclusion, and acces-
sibility (DEIA) issues. We therefore require students personal information to
be mapped to non-discernible identities before submitted to the system by the
instructors as course participants. Login credentials are then forwarded to the
instructors for onward transmission to the students to gain access.

We have plans to enhance ReliQ with semantic feedback capabilities in the
direction of RATest [15]. In the current edition, we show the standard SQL and
MySQL versions of the relational algebra query. We have plans to also display
the constructed query tree for better semantic comprehension of the structure of
the queries. Finally, we are considering a feedback system similar to QueryVis
[14] and viSQLizer [5] in the near future. These are some of the ideas we plan
to seek as our future research.

Acknowledgement. This research was partially supported by an Institutional Devel-
opment Award (IDeA) from the National Institute of General Medical Sciences of the
National Institutes of Health under Grant #P20GM103408.

References

1. Brinkhuis, M.J.S., Savi, A.O., Hofman, A.D., Coomans, F., van der Maas, H.L.J.,
Maris, G.K.J.: Learning as it happens: a decade of analyzing and shaping a large-
scale online learning system. J. Learn. Anal., 5(2) (2018)

2. Brown, L.E., Feltz, A., Wallace, C.: Lab exercises for a discrete structures course:
exploring logic and relational algebra with alloy. In: ITiCSE 2018, Larnaca, Cyprus,
July 02–04, 2018, pp. 135–140. ACM (2018)

3. Chan, H.C.: Translational semantics for a conceptual level query language. J. Com-
put. Sci. Technol. 10(2), 175–187 (1995)

4. Chu, S., Murphy, B., Roesch, J., Cheung, A., Suciu, D.: Axiomatic foundations
and algorithms for deciding semantic equivalences of SQL queries. Proc. VLDB
Endow. 11(11), 1482–1495 (2018)

5. Folland, K.A.T.: viSQLizer: using visualization for learning SQL. In: NIK 2016,
Høgskolen i Bergen, Bergen, Norway, November 28–30 (2016)

6. Gansner, E., Horgan, J.R., Kintala, C.M.R., Moore, D.J., Surko, P.: Semantics
and correctness of a query language translation. In: DeMillo, R.A., editor, ACM
POPL, Albuquerque, New Mexico, USA, January 1982, pp. 289–298 (1982)

7. Jamil, H.: Online tutoring and plagiarism-aware authentic assessment of database
design assignments. In: IEEE TALE, Auckland, New Zealand, November 27-
December 1 (2023). In press

8. Jamil, H., Shawon, F.: Automatic and authentic eassessment of online database
design theory assignments. In: ICWL 2023, Sydney, Australia, November 26–28
(2023). In press

76 H. M. Jamil et al.

9. Ji, S., Yuan, T.: Conversational intelligent tutoring systems for online learning:
what do students and tutors say? In: Kallel, I., Kammoun, H.M., Hsairi, L., editors,
IEEE EDUCON 2022, Tunisia, March 28–31, 2022, pp. 292–298 (2022)

10. Jukic, N., Vrbsky, S., Nestorov, S., Sharma, A.: Erdplus. https://erdplus.com/
(2020). Accessed 31 July 2022

11. Karimzadeh, M., Jamil, H.: An intelligent online SQL tutoring system. In: IEEE
ICALT 2022, Bucharest, Romania. July 1–4, 2022, pp. 212–213 (2022)

12. Kenny, C., Pahl, C.: Automated tutoring for a database skills training environment.
In: Dann, W.P., Naps, T.L., Tymann, P.T., Baldwin, D., editors, ACM SIGCSE
2005, St. Louis, Missouri, USA, February 23–27, 2005, pp. 58–62 (2005)

13. Kessler, J., Tschuggnall, M., Specht, G.: RelaX: a webbased execution and learning
tool for relational algebra. In: Grust, T., et al., editors, BTW 2019, 4–8 March 2019,
Rostock, Germany, volume P-289 of LNI, pp. 503–506 (2019)

14. Leventidis, A., Zhang, J., Dunne, C., Gatterbauer, W., Jagadish, H.V., Riede-
wald, M.: QueryVis: logic-based diagrams help users understand complicated SQL
queries faster. In: SIGMOD, pp. 2303–2318. ACM (2020)

15. Miao, Z., Roy, S., Yang, J.: Explaining wrong queries using small examples. In:
Boncz, P.A., Manegold, S., Ailamaki, A., Deshpande, A., Kraska, T., editors, SIG-
MOD 2019, The Netherlands, June 30 - July 5, 2019, pp. 503–520 (2019)

16. Michel, F., Faron-Zucker, C., Montagnat, J.: A generic mapping-based query trans-
lation from SPARQL to various target database query languages. In: WEBIST
2016, Volume 2, Rome, Italy, April 23–25, 2016, pp. 147–158. SciTePress (2016)

17. Muehe, H.: Interactive relational algebra in latex. https://db.in.tum.de/people/
sites/muehe/ira/ (2022). Accessed 22 July 2023

18. Murad, D.F., Wijanarko, B.D., Leandros, R., Murad, S.A.: The effectiveness of
online-based authentic learning assessment. In: SIET 2022, Malang, Indonesia,
November 22–23, 2022, pp. 277–282. ACM (2022)

19. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, Seventh
Edition. McGraw-Hill Book Company (2020)

20. Song, H., Kim, A., Park, S.: Translation of natural language query into keyword
query using a RNN encoder-decoder. In: ACM SIGIR, Shinjuku, Tokyo, Japan,
August 7–11, 2017, pp. 965–968. ACM (2017)

21. Tomaselli, S.: Relational - educational tool for relational algebra. https://github.
com/ltworf/relational (2022). Accessed 22 July 2023

22. Wang, J., Stantic, B.: Facilitating learning by practice and examples: a tool for
learning table normalization. In: BCI 2019, Sofia, Bulgaria, September 26–28, 2019,
pp. 35:1–35:4. ACM (2019)

23. Yang, J.: IRA - interactive relationale algebra. https://users.cs.duke.edu/junyang/
radb/ (2022). Accessed 22 July 2023

24. Zhang, M., Gu, Z.X., Amer, A., Sidhu, G., Srinivasan, S.: Software suite for self-
paced learning. Int. J. Emerg. Technol. Learn. 17(19), 20–32 (2022)

25. Zhekova, M., Pashev, G., Totkov, G.: An algorithm for translation of a natural
language question into SQL query. In: ICERIS, Plovdiv, Bulgaria, October 13–14,
2022, volume 3372 of CEUR Workshop Proceedings, pp. 32–40 (2022)

https://erdplus.com/
https://db.in.tum.de/people/sites/muehe/ira/
https://db.in.tum.de/people/sites/muehe/ira/
https://github.com/ltworf/relational
https://github.com/ltworf/relational
https://users.cs.duke.edu/junyang/radb/
https://users.cs.duke.edu/junyang/radb/

	An Online Tutoring and Assessment System for Teaching Relational Algebra in Database Classes
	1 Introduction
	2 Related Research
	3 Relational Algebra Assignments and Tests
	3.1 Question Answering in ReliQ
	3.2 ReliQ Query Execution

	4 Implementation of ReliQ
	4.1 Syntax and Semantics
	4.2 ReliQ Query Processor

	5 ReliQ as an Online Tutoring and Assessment System
	5.1 Instructor's Dashboard
	5.2 Student's Dashboard

	6 Conclusion and Future Research
	References

