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Abstract. The recent rise in both popularity and performance of large
language models has garnered considerable interest regarding their appli-
cability to education. Technologies like ChatGPT, which can engage in
human-like dialog, have already disrupted educational practices given
their ability to answer a wide array of questions. Nevertheless, integrat-
ing these technologies into learning contexts faces both technological
and pedagogical challenges, such as providing appropriate user inter-
faces and configuring interactions to ensure that conversations stay on
topic. To better understand the potential large language models have
to power educational chatbots, we propose an architecture to support
educational chatbots that can be powered by these models. Using this
architecture, we created a chatbot interface that was integrated into a
web application aimed at teaching software engineering best practices.
The application was then used to conduct a case study comprising a
controlled experiment with 26 university software engineering students.
Half of the students interacted with a version of the application equipped
with the chatbot, while the other half completed the same lesson with-
out the chatbot. While the results of our quantitative analysis did not
identify significant differences between conditions, qualitative insights
suggest that learners appreciated the chatbot. These results could serve
as a starting point to optimize strategies for integrating large language
models into pedagogical scenarios.

Keywords: Educational Chatbots · Prompting · GPT-3 · Large
Language Models · Software Engineering Education · Digital Education

1 Introduction

As large language models (LLMs) become more accessible through publicly avail-
able application programming interfaces (APIs), the potential these models have
to support a wide variety of pedagogical scenarios is becoming evident. One
obvious application of these models is to power educational chatbots. Indeed,
researchers have advocated for the use of LLMs to support more natural con-
versation and overcome the limitations of rule-based systems or systems based
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on limited training data [15]. However, several challenges limit the integration
of LLM-powered chatbots into educational contexts. These challenges include—
among others—providing the appropriate user interfaces and configuring the
LLMs to ensure that the generated text is aligned with the pedagogical scenario
in which the educational chatbots are deployed [11].

To help address these challenges, we designed an architecture that devel-
opers in education can follow to create interfaces that educators can use to
configure and deploy LLM-powered chatbots for use in digital education. At its
core, this architecture considers chatbots as configuration objects that define the
user interface elements that will be shown to the learner as well as the prompt
that will be sent to the LLM. Following this architecture, we created a chat-
bot interface that was embedded in a web application designed to execute and
review snippets of code. We used this application in a case study consisting of a
between-subjects controlled experiment with 26 software engineering students.
While 13 students completed a lesson on programming best practices supported
by the chatbot, the other 13 students completed the same lesson without support
from the chatbot. Our mixed-method analysis of the data from this experiment
focused on how the chatbot affected five aspects of the learning experience. A
sixth aspect—conversation—was applicable only to the treatment group that
was exposed to the chatbot.

Given the increasing interest in the applications of powerful natural lan-
guage processing (NLP) technologies, our study is timely and relevant to both
research and practice. Our architecture can serve developers in education looking
to integrate chatbots into digital education platforms, while findings from our
case study can guide researchers and educators in conducting future empirical
studies and incorporating educational chatbots into their practice.

2 Background and Related Work

Our research is underpinned by advances in NLP methods and, in particular,
by the success of LLMs. LLMs are used for a wide array of language tasks and
can also be used to power chatbots. The most notable example is OpenAI’s
ChatGPT [13]. Without further configuration, this open-domain chatbot can
interact with users on diverse topics through unrestrained conversations. How-
ever, understanding how LLMs can be harnessed to create task-oriented chatbots
for specific domains is still the focus of ongoing research.

A recent position paper by Kasneci et al. [11] outlined opportunities and
challenges of incorporating LLMs into education. Among the challenges identi-
fied, the authors highlight (i) the possible biases that LLMs can perpetuate and
amplify, (ii) the need for open educational resources (OERs) to guide educators
on how to access and use these models, (iii) the need to ensure data privacy and
security, and (iv) the lack of adaptability to align the models with the objectives
of individual learners and educators. Addressing these challenges could open the
door to more powerful applications of LLMs to education. Kasneci et al. also
underlined the need to ensure that the interfaces used to interact with these
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models are aligned with the needs of different types of learners (e.g., adapting
for age-related constraints and accessibility requirements).

An important factor to consider when assessing the applicability of these
LLMs to education is the process through which they can be configured for spe-
cific tasks, such as generating the responses that an educational chatbot can
use in its interactions. This process is supported by prompting, which consists
in providing the model with instructions and a few examples of how it should
respond to a query. Finding the most appropriate prompts is a complex task
and using inefficient prompting strategies can result in worse results than using
no prompt at all [14]. Identifying optimal prompts—or prompt engineering—is
an active area of research in NLP. Recent work has focused on automating the
generation of these prompts [9], understanding the biases that prompting can
be susceptible to [18], and providing the appropriate infrastructure to generate
prompts [2]. Nevertheless, there is little guidance for performing prompt engi-
neering with domain-specific applications in mind, as is the case with educational
chatbots.

These gaps in the research motivate the design of our architecture, which
aims to help developers in education provide interfaces for educators to easily
configure and deploy chatbots within digital education platforms.

3 Design

Our architecture—depicted in Fig. 1—consists of six components that inter-
act through three main processes. These components are loosely coupled and
abstractly defined in order to allow developers to adapt them as needed for the
particular constraints that might be present in different digital education plat-
forms. In this section, we detail the functionalities provided by each component
and the processes they support.

Fig. 1. Our design comprises six loosely coupled components (labeled 1–6) that interact
through three main processes (labeled A–C).
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3.1 Components

The architecture defines six components that interact to facilitate the integra-
tion of chatbots powered by LLMs into educational contexts: (1) digital educa-
tion platform, (2) host application, (3) chatbot, (4) API adapter, (5) storage,
(6) external API.

1. Digital Education Platform: The learning activity takes place on a digital
education platform. This platform should provide a way to differentiate con-
tent that is visible to educators from content that is visible to learners. Using
a dedicated view, educators should be able to create a learning activity by
curating multimedia content, such as images, text, and videos. Most impor-
tantly, educators should be able to select interactive learning resources (e.g.,
web applications) that can host chatbots. That is, chatbots are not directly
embedded in the digital education platform, but in interactive applications
that can be added to the learning activity. We refer to these applications as
host applications.

2. Host Application: The host application is an interactive learning resource
that can be embedded in digital education platforms to support learner inter-
actions with chatbots. A host application exposes a configuration panel for
educators to activate and configure chatbots. Once activated, these chatbots
are visible to learners interacting with the application. For this, the host
application should provide an interface through which learners can commu-
nicate with the chatbot (e.g., a forum, chat box, or message thread). How a
chatbot interacts with learners is entirely defined by its configuration and the
interaction affordances provided by the host application.

3. Chatbot: A chatbot in our architecture is not an application by default,
but a component that can be activated and configured within an application.
This increases the portability and customizability of a chatbot, which can be
developed independently from the host application(s) it can be embedded in,
and by educators without technical backgrounds. Hence, the chatbot can be
considered to be an OER that is defined by its configuration. This configu-
ration consists of a name, an avatar, a scope (i.e., who can see the messages
sent by individual students), a prompt (which is sent to the LLM), and a cue
(i.e., a message displayed to learners to invite them to interact).

4. API Adapter: The API adapter is embedded in the digital education plat-
form and serves to communicate with the API exposed by the LLM provider.
This adapter can also be deployed outside of a single digital education plat-
form, thus serving multiple platforms. Given that adapters interface with
APIs external to the digital education platform, they can also provide fall-
back responses in case the APIs are not accessible. Nevertheless, adapters are
stateless and should only serve to handle requests from host applications, thus
delegating the storage of any information to the digital education platform.

5. Storage: Two types of data are stored by the digital education platform:
(i) application data and (ii) application actions. Application data refer to
the content of a learner’s interaction with the chatbot, including both the
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messages provided by the learner and the chatbot’s responses. Application
actions refer to activity traces of how a learner interacts with the conver-
sational interface in which the chatbot is embedded, including keystrokes,
clicks, and other events that can be captured by the browser. These actions
can serve to deliver learning analytics and provide a more nuanced depiction
of how learners interact with chatbots.

6. External API: Finally, our architecture requires an LLM that is accessi-
ble through a public API in order to generate the responses to the queries
provided by the learners.

3.2 Process

There are three main processes that define the interactions between the afore-
mentioned components. These processes are outlined below.

(A) Configure: Educators should be able to configure the chatbot through the
educator interface of the host application. The chatbot’s configuration is kept
in the storage component and allows for the personalization of the chatbot
integration for each educator’s particular needs. This configuration is also
seamlessly reproducible, allowing educators to quickly replicate chatbot inte-
grations across learning activities.

(B) Interact: The core process defined by our architecture is how learners inter-
act with the chatbot. When a learner interacts with the chatbot, the host
application’s learner interface connects to an external LLM API provider
through the API adapter component hosted in the digital education plat-
form’s backend.

(C) Persist: As interactions take place, the host application ensures that the
outcomes of these interactions are persisted on the digital education platform.
These outcomes mainly concern the conversation between the chatbot and the
learner (and any related content such as emoji reactions) but also include any
actions that the learner might take using the chatbot interface. These actions
can then be used to provide learning analytics.

4 Methodology

To test the applicability of our architecture in practice, we implemented a chat-
bot integration following our design and conducted an evaluation focused on
addressing one main research question:

How does incorporating a large language model-based chatbot to support a
lesson on software engineering best practices affect the learning experience?

We conducted this study in January 2023. This evaluation took the form of
a case study consisting of a between-subjects controlled experiment comprising
one control (no chatbot) and one treatment (chatbot) condition. For both condi-
tions, we analyzed five aspects of the learning experience: (i) short-term learning
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gains, (ii) engagement, (iii) self-reflection on the learning experience, (iv) feed-
back regarding the lesson, and (v) usability. For the treatment group, we also
analyzed a sixth aspect (vi) conversation, which focused on the exchanges the
learners had with the chatbot. The small-scale nature of our study allowed us to
conduct a mixed-method analysis. In this section, we present our methodology.

4.1 Scenario

To ensure ecological validity, our evaluation took place in a formal education set-
ting. As part of their coursework, students completed an in-class online lesson
consisting of an ungraded 45-min exercise. The exercise comprised a code review
notebook [5] covering JavaScript code style standards. Code review notebooks
allow educators to scaffold pedagogical scenarios that introduce the code review
process to learners through code snippets, following a template resembling com-
putational notebooks. More specifically, we started by introducing the concept
of linting code, which involves the use of static analysis tools to detect issues in
software [10]. The lesson then covered ESLint [17], a linter for JavaScript [16],
as well as the Airbnb JavaScript Style Guide [1], a popular configuration for
ESLint. In this section, we outline the technological context and pedagogical
scenario used in our evaluation.

Fig. 2. The Code Capsule application can be used to write, execute, and review code.
The code used in this example has been adapted from the Python Matplotlib library’s
documentation [7].
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Technological Context. In this section, we describe how we implemented
our architecture to provide the technological context for our experiment. Our
chatbot was integrated into the Graasp digital education platform [6] through
Code Capsule as the host application. Code Capsule is an application that allows
learners to both review and execute code (see Fig. 2). This application supports
the integration of chatbots when used to review code.

The chatbot that was integrated into Code Capsule was configured as follows.
To remain gender-neutral and maximize consistency with Graasp, we named
our chatbot Graasp Bot and represented it with a robot avatar. All chatbot
interactions were scoped at the individual level, so students could only see their
own interactions and not those of their peers. The prompts for each code snippet
were only visible to the educator via Code Capsule’s configuration panel and
were prepended to the conversation as learners interacted with the chatbot.
These prompts were defined following the pattern below1:

The following is a conversation between a chatbot and a student discussing
the correction of an exercise about linting, ESLint, code styling, and best
practices in JavaScript. After each response, the chatbot gives the student
one or two options to continue the conversation.

Chatbot:
<EXPLANATION OF WHAT IS WRONG IN THE CODE SNIPPET>. So, I would
change the following line of code:

<INCORRECT CODE>

To the following:

<CORRECT CODE>

<QUESTION ASKING THE STUDENT IF THEY UNDERSTAND THE

DIFFERENCE>

Student: OK. <QUESTION ASKING THE CHATBOT SOMETHING RELATED
TO THE ISSUE>

Chatbot: <ANSWER>. Do you want me to provide you with an example
of <THE ISSUE> ?

Student: No, that’s OK. Thanks! Any other issues I should be aware
of?

To invite users to interact with the chatbot, we showed them a message that
was embedded as a comment in the code snippet featured on Code Capsule. We
refer to these messages as cues. Cues were dependent on each code snippet in
1 Note that placeholders are presented between angle brackets (<>).
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which the chatbot was embedded. All of these cues followed the same pattern
(see Fig. 3). This pattern consisted of (i) an explanation of an issue present in
the code snippet, (ii) a suggestion on how to fix the issue, and (iii) a question
asking students whether they agreed with some facet of the proposed solution.

Fig. 3. The cue consisted of an explanation of the issue present in the snippet, a
suggested fix, and a question asking students whether they agreed with the solution
proposed.

When students interacted with our chatbot, Code Capsule interfaced with the
external API exposed by OpenAI through an API adapter that was integrated
into Graasp. The adapter was configured to use the GPT-3 text-davinci-003
model, with a temperature parameter of 0.9 (higher values make completions
of the same prompt more random), a presence penalty of 0.6 (higher values
penalize new tokens if they have already appeared), a top p parameter of 1
(always returning the best completion), and the maximum number of tokens to
be included in the chatbot response fixed at 150.

Pedagogical Scenario. The lesson used in this experiment followed the Fixer
Upper pedagogical pattern [3]. For coding exercises, this pedagogical pattern
consists of presenting students with code “that is generally sound but [contains]
carefully introduced flaws [that] can both introduce a complex topic early and
serve as a way to introduce error analysis and correction” [3]. In our case, we
structured the lesson over 10 phases, which students were meant to navigate
sequentially (see Fig. 4). Students were first introduced to the lesson (Phase 1)
and then asked to complete a short exercise that served as a pre-test to gauge
their knowledge of JavaScript code style standards (Phase 2). Phases 3 (Introduc-
tion) and 4 (ESLint) covered the concept of code linting and ESLint specifically,
while Phases 5 (Styling) and 6 (Best Practices) presented examples of code style
standards that students should follow when writing JavaScript code. In these
phases, 10 code snippets were included using Code Capsule alongside a textual
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explanation of the issue present in the snippet. For students in the treatment
condition, the code snippet also included a cue from Graasp Bot, as shown in
Fig. 3. Phase 7 (Exercise) consisted of an exercise that served as a post-test,
while Phase 8 (Solutions) presented the solutions to the exercise and asked the
students to reflect on their performance in the exercise. For students in the
treatment condition, Phase 8 also included explanations presented by Graasp
Bot. Phase 9 (Chatbots) was also different between the control and treatment
conditions. On the one hand, students in the control condition were asked to
imagine how they would integrate chatbots into the exercise and to provide
sample dialogs that they would envision having with the chatbot. On the other
hand, students in the treatment condition were asked to report on their expe-
rience interacting with the chatbot. Finally, Phase 10 (Conclusion) served as a
conclusion to the exercise and provided a link to a questionnaire.

Fig. 4. The lesson used in this study consisted of a code review notebook aimed at
teaching software engineering best practices and included the ten phases shown in
the sidebar. In this figure, we highlight the Styling phase and show the explanation
block—including a cue from the chatbot—recommending the use of trailing commas.

4.2 Participants

We recruited 28 third-year bachelor students taking part in a course on human-
computer interaction at the School of Engineering and Architecture of Fribourg,
Switzerland. A total of 26 students—25 male, 1 female—completed the study.
Students were informed that this was an ungraded, optional exercise. To encour-
age participation, students were given extra credit for completing the activity.
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4.3 Instruments

Short-term learning gains were operationalized based on the learner’s perfor-
mance in the pre- and post-tests by calculating the difference between both
tests. These gains could range from −100% to 100%. Engagement was measured
by calculating the total amount of time spent in each phase during the one-hour
time frame that was allocated for the lesson. Self-reflection and feedback were
respectively operationalized through the following two open-ended questions:
(i) Did you manage to find all of these [issues]? If not, which ones did you miss?
Did you find any of them particularly tricky/helpful? and (ii) What did you think
about this lesson? Any comments, suggestions, or feedback?. A second feedback
question was relevant only to the students in the treatment group: In a few
phrases, describe your experience interacting with the chatbot used in this activ-
ity. What did you like about it? What could be improved? This second question
was only used for our qualitative analysis of the feedback aspect. Usability was
measured with the User Experience Questionnaire (UEQ), a standard instru-
ment that measures usability across six dimensions [12]. Finally, for students in
the treatment group, our analysis included the conversations students had with
the chatbot. This qualitative analysis focused on (i) whether conversations were
on topic, (ii) how long the conversations were, (iii) how natural the conversations
were, and (iv) what responses were elicited by the different types of cues.

4.4 Data Analysis

We applied both descriptive and inferential statistics to our quantitative data,
reporting the means (x̄), medians (x̃), standard deviations (sx), minima (xmin),
and maxima (xmax), as well as the results of t-tests for independent samples
comparing across the two conditions. To perform sentiment analyses on stu-
dents’ self-reflection and feedback responses, we used VADER [8], which assigns
a sentiment score ranging from −1 (negative sentiment) to +1 (positive senti-
ment). The results of the UEQ were analyzed using its data analysis toolkit [12].
Finally, open-ended responses were analyzed using qualitative methods, follow-
ing line-by-line data coding [4].

5 Results

In this section, we present our results with respect to the aspects studied.

5.1 Learning Gains

The mean learning gains were x̄ = 0.429 (x̃ = 0.369, sx = 0.212, xmin = 0.115,
xmax = 0.746) in the control condition and x̄ = 0.430 (x̃ = 0.492, sx = 0.243,
xmin = −0.146, xmax = 0.692) in the treatment condition. These results—
illustrated in Fig. 5—show that both conditions led to, on average, positive learn-
ing gains for students, with all students except one achieving positive learning
gains. While the median learning gain was higher in the treatment condition, a
t-test did not show a significant difference between conditions.
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Fig. 5. Learning Gains

5.2 Engagement

On average, learners in the treatment condition spent a total of x̄ = 41.7 min
(x̃ = 37.8, sx = 9.31, xmin = 29.4, xmax = 59.5) to complete the lesson, while
learners in the control condition did so in x̄ = 40.1 min (x̃ = 36.5, sx = 10.4,
xmin = 22.2, xmax = 55.2). There were no significant differences in the time spent
by students either overall (see Fig. 6) or across the 10 phases that constituted
our lesson (see Fig. 7).

Fig. 6. Engagement

Fig. 7. Time Spent per Phase
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5.3 Self-reflection

Of the 26 students that participated in the study, 22 students (10 control, 12
treatment) provided responses to the self-reflection question. The sentiment anal-
ysis performed on student responses to the self-reflection question did not pro-
duce any significant differences between conditions. Nevertheless—as shown in
Fig. 8—the distribution of scores in the treatment condition had a more positive
tendency than the scores in the control condition. Specifically, the responses
of the students in the control group resulted in a mean sentiment score of
x̄ = −0.128 (x̃ = −0.0766, sx = 0.454, xmin = −0.743, xmax = 0.757),
while those in the treatment condition resulted in a mean score of x̄ = 0.0297
(x̃ = 0.0386, sx = 0.423, xmin = −0.595, xmax = 0.649).

Fig. 8. Self-Reflection

Our qualitative analysis showed that responses were consistent between both
groups, with students providing short answers in which they quickly described
what they missed. All students, except five (two control, three treatment), specif-
ically listed at least one issue they missed. A typical answer reads as follows: “I
forgot a let that had to be const , a comma after the last element of an object
and a semicolon at the end of a line”.

Six students (four control, two treatment) provided more detail regarding
the issues they missed. In this case, a typical answer was: “I forgot the first
let giftList to const giftList despite seeing it for total at the end.
I fell into the trap thinking it was redeclared in the getGiftsTotal(person)

function because it had the same name”.

5.4 Feedback

Of the 26 students that participated in the study, 22 students (10 control, 12
treatment) provided responses to the feedback question. The sentiment analysis
performed on these responses did not yield any significant differences between
conditions. As shown in Fig. 9, the distribution of the scores was mostly positive
in both conditions, with only a few negative outliers. Responses from students
in the control group resulted in a mean sentiment score of x̄ = 0.451 (x̃ =
0.556, sx = 0.400, xmin = −0.317, xmax = 0.859), while those in the treatment
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condition resulted in a mean score of x̄ = 0.460 (x̃ = 0.598, sx = 0.331, xmin =
−0.356, xmax = 0.796).

Fig. 9. Feedback

Our qualitative analysis of the first feedback question—which concerned both
conditions—showed that all students except two (two treatment) provided a
positive comment. Codes such as good, great, fun, interesting, and helpful were
prevalent in students’ responses under both conditions. Regarding the negative
feedback, while one student provided a minor, off-topic comment regarding the
color of the user interface, the other student questioned the need for a chatbot:
“Was the chatbot REALLY necessary? This lesson needs to end on a link to a
lesson/tutorial on how to use/configure/install/firststeps/basics/... on ESLint”.

Nevertheless, four students specifically provided positive feedback regard-
ing their interactions with the chatbot, such as: “It was helpful and I liked the
interactivity with a bot”. Finally, one student noted that while the interactivity
and response time provided by the chatbot were positive, the chatbot would
never replace the educator: “ESLint was interesting. It’s nice to have an answer
directly to our questions. After that, it will never replace the answers of a teacher
(even if the answer is direct)”.

Furthermore, all students in the treatment group (n = 13) provided an
answer to the second feedback question, which specifically asked about the chat-
bot and was therefore only visible to students in the treatment group. Although
eight students provided positive feedback about the chatbot, four of these com-
ments also included a note about how the chatbot had been “repetitive” or
“asked too many questions”. One student noted the following:

“It was nice, but sometimes repetitive. He wished me twice a great day
and when I asked how to implement something in the linter, it didn’t show
me the code. But overall, I find it ludic and it’s a nice way to learn since
we have interactions. May be interesting for children too. Maybe less with
adults.”

Repetitiveness was also observed in the five negative comments, with stu-
dents urging the chatbot to “stop asking questions at the end” or characterizing
chatbots as “pushy salesmen”. One student provided the following constructive
comment:
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“Sometimes less interaction is more. In this lesson maybe too many inter-
actions are offered and this could be at some point a bit annoying for the
user. But still if correctly dosed it may bring some value for the user!”

5.5 Usability

Both groups rated the usability of the lesson positively. Compared to the UEQ
benchmark, in the control group, the results achieved were above average (25% of
results better, 50% of results worse) for four dimensions—attractiveness, depend-
ability, stimulation, and novelty—while they were good (10% of results better,
75% of results worse) for efficiency and excellent (in the range of the 10% best
results) for perspicuity. In the treatment group, the results achieved were above
average for stimulation, good for three dimensions—attractiveness, efficiency,
and dependability—and excellent for perspicuity and novelty.

Fig. 10. Results of the User Experience Questionnaire (UEQ)

When comparing between conditions, however, two-sample t-tests did not
result in any significant differences across any of the usability dimensions. Never-
theless, it is worth noting that the treatment condition achieved a better usability
score in all dimensions, except efficiency, and specifically for the novelty dimen-
sion (p = 0.0886). These ratings are summarized in Fig. 10.

5.6 Conversation

For students in the treatment group, our analysis included a sixth aspect regard-
ing the conversations students had with the chatbot. This analysis comprised 150
conversations.

First, all conversations were on topic. Occasionally students opened up the
dialogue to cover broader subjects—such as JavaScript in general, instead of
JavaScript code style—but these topics still fell within the lesson’s scope.

Second—as shown in Fig. 11—approximately two-thirds of the conversations
comprised three messages (only one message from the student and two from the
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Fig. 11. Number of Messages per Conversation

chatbot). The other two-thirds of conversations were of length greater than or
equal to five messages (i.e., at least two messages from the student).

Third, in most conversations, learners had to ask several times for the chat-
bot to stop asking if they had any further questions (see Fig. 12). Moreover—as
mentioned above—in over two-thirds of the conversations, students did not pur-
sue the exchange with the chatbot after one reply (as evidenced by the number
of conversations comprising three messages). This means that students ignored
the follow-up question from the chatbot, resulting in an unnatural end to the
conversation.

Finally, we can divide the cues presented by the chatbot into three types:
(i) those in which the student is invited to agree or disagree with its statements
(type I, e.g., Do you agree? ), (ii) those in which it asks for the student’s opinion
(type II, e.g., What do you think about... ? ), and (iii) those coming after the
exercises, in which it asks students whether they were able to identify a particular
set of code style issues (type III, e.g., Did you get all of these issues? ). Out of
the 15 cues, seven were of type I, three were of type II, and five were of type III.
We analyzed the format of the students’ responses for each of these types. These
can be short answers (e.g., “yes”, “no”, “OK”) or long answers, i.e., developed
and/or justified answers (e.g., “It can be disturbing at first but it’s readable too.”).

As shown in Fig. 13, approximately three-fourths of type I questions result
in a short answer, after which most students leave the exchange (reflected in
a conversation comprising three messages). On the other hand, we notice that
about two-thirds of type II questions lead to long answers. Finally, for type III,
we notice that the answer formats are almost equally distributed. By observing
the content of these answers, we notice that short answers correspond most of
the time to students who correctly identified the issues present in the exercise,
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Fig. 12. In many cases, the chatbot kept asking questions even though the learner
sought to end the exchange, as shown by the repeated messages above.

Fig. 13. Length of Answer by Type of Question



Prompting Large Language Models to Power Educational Chatbots 185

while long answers are those of students stating their mistakes and sometimes
explaining the reasons for these mistakes or oversights.

6 Discussion

The results of our evaluation did not surface any significant differences between
conditions for any of the five aspects considered for both conditions. However,
there are a few points that stand out and provide interesting insights into the
directions that we can explore in future work.

First, results were more positive in the treatment condition across all
five aspects. That is, the mean learning gain was higher, students spent—on
average—more time in the lesson, were more positive in reflecting on their per-
formance in the post-test, provided more positive feedback, and rated the lesson
higher on the UEQ. Although we emphasize that the differences were not sta-
tistically significant, these results offer a positive outlook for the integration of
this type of educational chatbot into digital education platforms. At a minimum,
these results show that educational chatbots following our architecture can com-
plement pedagogical scenarios without interfering with the learning experience.
Extensions of this study with larger cohorts, alternative instruments, and longer
exposures could produce more concrete results.

Furthermore, qualitative feedback showed that, in general, learners appreci-
ated the chatbot. Of the 12 students in the treatment condition who provided
general feedback through a response to the first feedback question, five explicitly
mentioned the chatbot, and only one did so to question whether its integration
into the lesson was really necessary. Noting that the chatbot was intended to
provide extra interaction in the lesson—in order not to compromise the learning
experience of students in the control group—the chatbot was indeed designed
to not really be necessary. However, in answers to the question that specifically
asked students in the treatment condition about the chatbot, eight of the 13
students who responded provided a positive comment. The fact that the chat-
bot was appreciated by the majority of students who were exposed to it is a
promising result.

Nevertheless, it is important to acknowledge that the repetitiveness of the
questions posed by the chatbot negatively affected the learning experience, as
made evident in the qualitative feedback provided by the students in the treat-
ment group. These repeated questions were a result of the chatbot’s configu-
ration. More specifically, the chatbot’s prompt (see Sect. 4.1) included the fol-
lowing instructions: After each response, the chatbot gives the student one or
two options to continue the conversation. Although this strategy was effective
in engaging students, it failed to capture the moment when the student wanted
to stop interacting with the chatbot. Thus, this strategy quickly backfired and
resulted in some students referring to the chatbot as pushy and annoying. This
result sheds light on how what may appear to be a minor configuration detail
could potentially have a negative impact on the user experience when using
powerful LLMs.
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Third, a close inspection of Fig. 7 shows that the average time spent in the
phases that included chatbots (Styling, Best Practices, Solutions, and Chatbots)
was actually longer for the control condition than for the treatment condition.
While these differences are not significant, the consistency of these results across
the four phases stands out. We would have expected students in the treatment
condition to spend more time in these phases due to the extra interaction with
the chatbot that students in the control condition—who only had to read the
accompanying text—did not have to engage with. However, it could be the case
that students in the treatment condition favored focusing on the explanation
provided by the chatbot, which served as an interactive summary of what was
contained in the text. Hence, the chatbot might have provided a faster way of
learning the issue that was captured in each code snippet or simply a way to
guide a student’s focus through the exercise.

It is also worth pointing out that the results of the UEQ show that the
differences between conditions were most significant for the novelty dimension.
For this dimension, the ratings provided by students in the treatment condition
are significantly higher than those provided by students in the control condition
at the p < 0.1 level. The need for educational technologies to remain novel and
attractive is particularly relevant in light of the rapidly changing technological
landscape. Learning technologies and digital education platforms that achieve
positive usability results in these dimensions are likely to have an advantage in
attracting learners and keeping learners engaged.

With respect to the exchanges held between students in the treatment group
and the chatbot, a first positive result is that conversations were all on topic. The
fact that about a third of conversations consisted of five or more messages is an
indicator that students took advantage of the opportunity to interact with the
chatbot. However, conversations often lacked naturalness. As discussed above,
this was caused by the fact that the chatbot was configured to end its messages
with a question that was supposed to encourage the student to reply. This caused
problems when the student wanted to end the conversation. Finally, the formu-
lation of the cue appeared to have had an effect on whether student responses
were short or long. While type I cues asking the student just to agree or disagree
did not lead to long answers, type II cues asking the student to reflect were
better at encouraging students to provide more in-depth answers.

7 Conclusion

In this paper, we presented the design of an architecture aimed at supporting
developers in education in integrating LLM-powered chatbots into digital educa-
tion platforms. We then conducted a case study comprising a between-subjects
controlled experiment with 26 software engineering students. Half of the students
completed the lesson with support from Graasp Bot—an educational chatbot
embedded in an application implemented following our architecture—while the
other half completed the lesson without support from the chatbot. Although
there were no significant differences across the aspects considered in our evalua-
tion, the results of our study can help optimize our prompt engineering strategy
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and provide useful examples for researchers and educators looking to incorpo-
rate LLM-powered chatbots into their practice. Furthermore, given that learning
gains were not impacted by the presence of the chatbot, these findings reinforce
the idea that educational chatbots could serve to provide additional information
when educators are not available.

It is also important to note that there are a number of limitations that could
have affected our findings. First, while our sample size was appropriate for our
mixed methods experiment, expanding our study to include more subjects could
help in the detection of differences between conditions, especially in pedagogical
scenarios with shorter durations, where differences could be more subtle than
expected. Similarly, increasing exposure by conducting semester-long or longi-
tudinal studies could also serve to better identify the differences that emerge
between conditions. Second, exploring this interaction strategy with different
pedagogical scenarios and subject matter could help generalize the applicabil-
ity of our architecture. Finally, incorporating standardized instruments to mea-
sure learning gains, self-reflection, and engagement could help reveal more inter-
pretable results regarding how LLM-powered chatbots can provide support in
educational contexts.
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