q

Check for
updates

OptiTour: Tourist Transit Optimizer

Choon Keat Ling, Han Xiang Kee, Kevin Ong Jia Ming, Siti Halilah Binte Rosley®?,
Zachary Ding Fang Liang, and Huaqun Guo

Singapore Institute of Technology, 10 Dover Dr 138683, Singapore, Singapore
{2201300,2201423,2201380,2201274,
2201365}@sit.singaporetech.edu.sqg,
huaqun.guo@singaporetech.edu.sg

Abstract. The project aims to develop an optimized travel route system for a
tourist travel bus service called “Tourist Transit Optimizer” or “OptiTour”. The
OptiTour is designed to find the most cost-effective route for transporting tourists
from Changi Airport Terminal 3 to their respective hotels in Singapore. The deci-
sion to develop this system was driven by the need to minimize operational costs
and maximize efficiency in the highly competitive travel and tourism industry.
The pre-existing knowledge base for this project includes understanding the local
area, knowledge of the main hotels served, and basics of operations management
and optimization algorithms.

Keywords: Route optimisation - Travelling Salesman Problem - Shortest path
finding

1 Introduction

In this paper, we present “OptiTour”, which uses data structures and algorithms to
optimize tourist bus routes in Singapore, considering various factors such as road net-
work, Electronic Road Pricing (ERP) rates, and the geographical coordinates of tourist
attractions.

Our solution leverages the Dijkstra’s algorithm, a well-known graph traversal algo-
rithm, to find the most cost-effective routes for a tourist bus service. By integrating data
from multiple sources and employing a custom implementation of the Travelling Sales-
man Problem (TSP), OptiTour is capable of determining the optimal route that covers
multiple destinations at the least cost. The system also features a user-friendly Graphical
User Interface (GUI), developed using Flask, HTML, CSS, and JavaScript, to visualize
the optimal routes in a way that is easy to understand.

The rest of the paper will delve into the related works, the details of our solution,
and the data structures and algorithms used. We will also provide a comprehensive
comparison of our solution with existing technologies, a detailed analysis of our results,
and a discussion of potential future improvements.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Lu et al. (Eds.): IRC-SET 2023, Proceedings of the 9th IRC Conference on Science,
Engineering, and Technology, pp. 60-70, 2024.
https://doi.org/10.1007/978-981-99-8369-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8369-8_7&domain=pdf
https://doi.org/10.1007/978-981-99-8369-8_7

OptiTour: Tourist Transit Optimizer 61
2 Related Works

2.1 Literature Review

A relevant study in [1] explores the concept of a flexible bus route optimization schedul-
ing model that considers dynamic changes in passenger demand. The proposed model
showed promising results in a simulation, reducing the planning path error, shortening
travel distance and passenger travel time. The study in [2] presents two strategies for
computing travel plans in public transportation systems, considering route constraints.
The first uses connectivity matrices to identify feasible plans, while the second relies on
hubs where service routes converge. Both strategies performed well in field tests.

Zar and Sein [3] tackles the traffic problem in Yangon area which has negatively
impacted citizens’ quality of life due to pollution, time wastage, and reliance on hydro-
carbon fuel. It focuses on algorithms to provide bus information to promote public
transportation and reduce traffic demands. Dijkstra and A* algorithms are highlighted
as efficient ways to determine the shortest routes. Chien et al. [4] proposes a model
for optimizing bus routes in public transit systems, focusing on areas with a commuter
travel pattern. The model minimizes total costs while considering diagonal links in the
network. It transforms the network into a pure grid for application to irregular grid
networks, beneficial for planning and evaluating bus services in many cities.

Popular navigation apps exist such as Google Maps and Waze. However, these tools
primarily focus on individual vehicle navigation and do not cater to the specific needs
of a travel bus business operation. Furthermore, the solutions are not tailored to the
traffic environment in Singapore and thus do not calculate them based on ERP costs,
instead focusing on shortest travel time based on traffic conditions. Dedicated logistics
management solutions also exist but often lack user-friendly interfaces and might not
include all the factors affecting a tourist bus service [5, 6].

2.2 Tools and Technologies

The OptiTour will be built utilizing a number of technologies and methodologies to
ensure robustness, reliability, and scalability. Specially, the OptiTour will employ Python
as the primary language for implementation [7], OSMnx to retrieve and manipulate
the street network data required for the dynamic scheduling system [8], NetworkX to
provides a wide range of tools and algorithms for working with networks and graph
structures, LTA DataMall to provide APIs for real-time vehicle locations and other
transport-related data in Singapore and essential data inputs such as Electronic Road
Pricing (ERP) data [9], Flask for the UI implementation [10], MatplotLib in the Flask
application to visualize the route and save it as an image file, and Pandas for efficient
data manipulation and analysis [12].

3 Solution Designed

Our solution will be tailored to the needs of travel operators in Singapore and will
thus calculate the best routes based on costs, factoring the costs of both ERP Gantries
and fuel mileage with distance into the route calculations. This is implemented using

62 C. K. Ling et al.

the Dijkstra’s algorithm which finds the shortest path between nodes in a graph. This
algorithm uses weights of the edges to find the path that shortens the total distance
between the starting node and the next following node.

3.1 System Diagram

The flow of the execution of our main program described above is illustrated by Fig. 1.

User runs flaskgui py

Instantiate
road_network_data_loader
road_edge_cost_calculator

route_planner
classes to initialise the
program

s there existing ERP
and graph data?

ves

Wait for user input

Call the tsp_greedy() function from

the route planner class to calculate
0st cost efficient bus route.

instantiate the route_visualiser class

load graph data and/or ERP
No—>{ data from the internet and
insert ERP data into graph

Run Djikstra’s algorithm on all
unvisited nodes

Select destination node with the
smallest cost and add it to the list of
visited nodes. Add the cost of the
route to the total route cost

Are all the nodes visited?
ves
Did the user want
a round trip?
No
v

Return the completed route based on
list of visited nodes, export the plotted
image of it and visualise in an
interactive map json file

T

[Run Dijikstras algorithm to the|
onigin node, in this case
Changi Airport T3

'Add origin node to the list of
nodes visited and add the
cost of the return trip to the

total cost of the route

Return the complete visualised route

/\

Does the user click on
enerate another route?

No

Fig. 1. A flowchart diagram of the main program

OptiTour: Tourist Transit Optimizer 63

The solution will be able to plot routes starting at Changi Airport Terminal 3 to a list
of hotel locations in Singapore. These hotel destinations can be arranged by the user after
selecting from a set pool of hotel destinations. The hotel destinations are chosen based
on their ratings, frequency of being fully booked and relative distance to each other.
As Changi Airport Terminal 3 services many intercontinental flights, the hotels selected
will cater to international tourists looking for luxury 5-star hotel accommodations in
Singapore. The application will allow users to select from a list of the 20 5-star hotels
in Singapore chosen based on how remote they are from other hotels and allow them to
get a route from Changi Airport Terminal 3 to any number of them in any order.

List of hotels: Marina Bay Sands, Ritz Carlton, Shangri-La (main), Park Royal, Man-
darin Oriental, Capella, Dusit Thani Laguna Singapore, Hotel Indigo Singapore Katong,
The Clan, Vagabond, Duxton Reserve Singapore, W Singapore, The St. Regis Singa-
pore, Singapore Marriott Tang Plaza Hotel, M Social Singapore, The Fullerton Hotel,
Four Seasons Hotel, InterContinental Singapore, Raffles Singapore, Sofitel Singapore,
Andaz Singapore.

3.2 Data Structures Used

Dictionary. Dictionaries were used in our pathing algorithms as far as possible due to
their low time complexity of access. The nature of our data set also suited this as there
are fixed data for nodes and edges.

Minimum heap. The minimum heap is a tree data structure suited to accessing the
minimum of a dataset with a low time complexity. We utilized the python heapq library
to help us implement this. It is thus suited to our implementation of Dijkstra’s algorithm,
ensuring it performs at O(V + Elog V) complexity in the worst case. Figure 2 (a) illustrates
the layout of a minimum heap which allows for easy access to the minimum value in a
heap of values.

Multi-directional graph. Our road network is visualized using the Multi-directional
graph data structure from the library NetworkX, with street data from OSMnx. The edge
data contains attributes of the road segment, such as length, ERP rates, etc. which aid in
the calculation of the best route. In our graph, road intersections are represented as nodes
while roads are represented as edges. Figure 2 (b) illustrates the various functionalities
that a multi-direction graph is capable of that made it suitable for use in OptiTour.

4 Solution Implementation

4.1 Classes and Methods

The system uses class objects and their methods to organize various processes in the
algorithm’s execution.

RoadNetworkDataL oader: It contains methods that detect and load the graph and ERP
data and download them if they are missing. The class provides methods to check the
presence of the graph file, load or retrieve the road network graph, save the graph, load

64 C. K. Ling et al.
o &l
@ @ E
© 0 O B

(a) Diagram of a minimum heap tree (b) Diagram of a Multi-direction graph

Fig. 2. Data structures

ERP data, and load coordinate data as a DataFrame for easy access by other methods
later.

RoadEdgeCostCalculator: The RoadEdgeCostCalculator class is responsible for cal-
culating the cost of traversing a road edge in a road network. It considers two factors:
fuel consumption and ERP charges. The class provides methods to insert ERP rates into
the road network graph and calculate the cost of traversing a road edge based on the
provided attributes.

RoutePlanner: The RoutePlanner class is designed to plan routes in a road network using
a greedy approach to solve the TSP. The class takes into account a graph representing the
road network, an edge cost calculator for calculating road edge costs, and an origin node
to start the path. The class provides a method to solve the TSP using a greedy approach.

RouteVisualizer: The RouteVisualizer class is responsible for visualizing and manip-
ulating routes in a road network. It provides methods to plot the route on a map, save
the route as a PNG file, retrieve the road names along the route, and convert the route to
GeoJSON format used to display an interactive map in the GUI’s output.

DijkstraHeap: The DijkstraHeap class implements Dijkstra’s algorithm for finding the
shortest path in a graph. As the name implies, the minimum heap data structure is used
to decrease the time complexity of accessing the edge with the minimum cost in the
implementation of Dijkstra’s algorithm.

4.2 ERP Implementation

ERP implementation is a crucial component of the algorithm, as it allows for the con-
sideration of ERP charges in the cost calculation process. The algorithm inserts ERP
rates and zone information into the graph based on ERP gantry coordinates. For each
road segment, the algorithm finds the corresponding ERP rate within the specified time
range and associates it with the segment. This enables the calculation of accurate costs,
considering both fuel consumption and ERP charges.

ERP Data Retrieval: The ERP data is obtained from a reliable data source, specifically
the LTA DataMall API. The algorithm accesses the ERP rates and zone information
through the API using the appropriate authentication headers. The retrieved data is in
JSON format.

OptiTour: Tourist Transit Optimizer 65

Data Integration and Preprocessing: The ERP data is integrated into the road net-
work graph. Each ERP gantry’s location is matched with the nearest road edge in the
graph using the nearest edges function from the OSMnx library. The corresponding zone
identifier is assigned to the road edge.

ERP Charges Assignment: For each road edge associated with an ERP gantry, the ERP
rates and time ranges are assigned as attributes to the graph edge. The ERP charges are
stored in a dictionary structure within the edge attributes, categorized by day type and
time range.

Cost Calculation: During the route planning process, the algorithm calculates the cost
of traversing each road edge. It takes into account both the fuel consumption and the
ERP charges. The fuel consumption cost is calculated based on the length of the edge
and the current fuel price per liter. The ERP charges are retrieved from the edge attributes
and added to the total edge cost if applicable.

Cost Optimization: The integration of ERP charges enables the algorithm to optimize
routes based on overall cost, including both fuel consumption and ERP charges. By
considering ERP charges in the cost estimation process, the algorithm can identify routes
with lower overall costs and guide users towards more cost-effective paths.

4.3 GUI Implementation

A GUI is essential to keep our application usable for as many people as possible. It is
implemented as a flask web application in HTML and CSS with more advanced features
being realized in JavaScript. It can show the route in brief on a zoomed-out map as
shown in Fig. 3 (a). It can also show an interactive map view like the one in Fig. 3 (b)
in a lightbox by clicking on the map.

(a) Diagram of the zoomed-out map (b) Diagram of the interactive map

Fig. 3. GUI diagrams

The found route is also displayed as a breadcrumb trail of streets as shown in Fig. 4.

Relevant data about the route such as estimated cost, ERPs passed, and distance are
also displayed as in Fig. 5.

JavaScript is used on the inputs which allows for multiple fields to be added and
removed depending on how many destinations the user wants. Checking is also per-
formed to ensure that no duplicate hotels can be selected and input. The functionalities
enabled by JavaScript for adding and removing fields are shown in Fig. 6.

66 C. K. Ling et al.

To Hotel Indigo Singapore Katong:

Eastwood Road > Upper East Coast Road > East Coast Road

To The Vagabond Club:
East Coast Road > Mountbatten Road > Sims Way > Kallang Airport Way > Kallang Airport
Drive > Geylang Road > Kallang Road > Victoria Street > Jalan Sultan > Syed Alwi Road

Fig. 4. Diagram of the route displayed

Estimated Cost Per Trip:
ALIC ! $27.49
Distance (km) ERP Gantries ®

Fig. 5. Diagram of the route displayed

Start Point: Destination: remove add
Changi Airport Terminal 3 > Marina Bay Sands v
The Ritz-Carlton v

Shangri-La Singapore v

Fig. 6. Diagram of the user input

4.4 Dataset Used

The algorithm relies on three primary data sources: OpenStreetMap data, ERP rates
data from LTA DataMall, and coordinates of each ERP Gantry from Google Maps.
OpenStreetMap data provides detailed information about the road network, including
road types, connectivity, and geographical coordinates. This data is used to construct
the road network graph, which serves as the foundation for calculating least-cost paths.
ERP rate data contains information about the rates charged for traversing specific zones
at different timings. This data is used to determine the ERP charges associated with
each road segment in the graph at all times of day. We also generated a spreadsheet
of coordinates of the destinations and ERPs using longitude and latitude data found on
Google Maps.

4.5 Data Pre-processing

To determine the nodes that will be associated with our destination coordinates, we
converted the coordinates to points and used the NetworkX and OSMnx functions
osmnx.get_nearest_node() and osmnx.get_nearest_edge(). These ERP rate values are

OptiTour: Tourist Transit Optimizer 67

then inserted into the OpenStreetMap graph at the edges found earlier to be accessed by
the algorithm calculating the most cost-effective route. The destination node numbers
and names found earlier are stored in a dictionary named “all_destination_ids_dict”
and “all_destination_names_dict” for easy translation between destinations and node
numbers. The average fuel consumption of the buses is around 25 L per 100 km [13].

5 Results and Insight

We implemented the following algorithms: Dijkstra’s algorithm, A-Star algorithm and
the Bellman-ford algorithm. We benchmarked the 3 algorithms against each other and
noted their performance over 20 runs with values and 1 calibration run per task. Each
run was performed with fixed destination and origin nodes, namely, the first and last
nodes in our graph. The benchmark results shown in Table 1 shows the total duration
for each task, which includes the time taken to run the task multiple times, as well as
warmup runs and loop iterations.

In general, the Bellman Ford algorithm took longer to execute compared to the other
two. Between Dijkstra and A-Star algorithms, we have chosen to incorporate Dijkstra
over A-Star due to several reasons. A-Star relies on heuristics and making heuristic
selection can be challenging and computationally expensive. Dijkstra, on the other hand,
does not require heuristics, simplifying implementation. A-Star’s additional memory
requirements and inefficiency in uniform cost graphs further contributed to our decision.
Considering the project’s goals and constraints, Dijkstra’s algorithm’s simplicity, lower
memory usage, and ability to guarantee the shortest path without heuristics make it the
optimal choice for our pathfinding needs.

Table 1. Shortest path algorithms comparisons.

Benchmark time complexity A-Star Dijkstra’s Bellman-ford
Total duration 148.8 s 149.6 s 183.1s
Mean performance 1.78 s 1.79 s 2.20s
Median performance 1.78 s 1.77 s 220s
Standard deviation 0.06 s 0.06 s 0.02's
Minimum 1.69 s 1.71 s 2.16s
Maximum 191s 1.92s 2.27s

The TSP was also implemented as it allows for our algorithm to run on multiple
destinations regardless of what order they are entered in and calculate the shortest round-
trip route which would likely be used for a shuttle bus service. The built in NetworkX
TSP function took too long to run due to our large node dataset so we decided to code a
custom implementation of the TSP that only considered our destination nodes.

68 C. K. Ling et al.

The brute force method, Dynamic Programming, the Greedy method and Without
TSP algorithm are evaluated and the results are shown in Table 2. Compared to Without
TSP algorithm, the TSP has greater time complexity on average due to having to find
the node with the lowest cost from the current position. However, the routes generated
are also less efficient on average if an optimal sequence of destinations is not entered.
This inefficiency is caused by the suboptimal route having cases where it back tracks
to a destination previously bypassed by it. Thus, the trade-off between time complexity
of the algorithms and the accuracy of the shortest route between multiple destinations
is justified. This algorithm will thus be able to use Dijkstra’s Algorithm in the TSP to
give the user the most cost-effective path in terms of fuel and ERP costs to their set of
destinations in a reasonable amount of time.

Table 2. Shortest TSP comparison.

Algorithm Time complexity | Pros Cons
Brute force O(n!) Always finds the Not feasible for large n
optimal solution due to high time and

space complexity

Dynamic programming O<n22“> More efficient than High time and space
brute force for larger n, | complexity, not feasible
always finds the optimal | for very large n

solution
Greedy 0(n2) Efficient for larger Does not always
datasets guarantee the globally
optimal solution
Without TSP O(n) Much smaller time Does not generate the
complexity overall most cost-effective path

if the sequence of
destinations is not
optimal

Our algorithm is tailored for the needs of a bus operator as it can integrate ERP
charges at all times of day into its cost calculation process and offers the capability to
calculate the best route between multiple destinations, with the option of making it a
round trip. It is also capable of displaying a detailed route with an intuitive breadcrumb
trail of road names to the destination. These quality-of-life improvements are currently
unavailable in similar map software such as Google Maps and Waze.

We have concluded that the optimum algorithm for calculating a cost-effective route
when applied to the TSP is Dijkstra’s algorithm but only when implemented with the
minimum heap data structure. This will result in a good balance between time complexity
and accuracy of results generated. This is also supported by how most other similar
solutions in the market implement Dijkstra’s algorithm in their applications. The TSP

OptiTour: Tourist Transit Optimizer 69

implementation, however, is more specific to our chosen application, as bus routes may
be required to be round trips and have to optimise routes between multiple nodes in the
optimum order. Our analysis of the growth of the time complexity of our TSP algorithm
is shown in Table 3.

Table 3. Time complexity of TSP algorithm based on number of destinations.

Input size (number of destinations) Time complexity (s)
1 0.1
5 0.7
10 24
20 8.6

6 Conclusion

OptiTour’s combination of an easy-to-use GUI and relevant considerations of the needs
of bus operators allow it to be uniquely suited to the road network in Singapore. The use
of Dijkstra’s algorithm with the TSP allows for routes to any number of destinations to be
efficiently plotted with minimal increase in runtime while comprehensively considering
all routes. Those routes are reordered by our solution to generate the order resulting in
the best possible route between all selected destinations.

This software could be expanded to assist in countrywide bus route planning by
allowing it to take in start points from a list of start points. It could also be made to
estimate route times by taking traffic conditions into consideration, avoiding stretches
of road that have higher chances of traffic jams.

References

1. Sun, J.,, Chen, Y., Huang, J., Wei, P., Song, C.: Flexible bus route optimization scheduling
model. Adv. Civ. Eng. 2021 (2021)

2. Liu, C.-L., Pai, T.-W., Chang, C.-T., Hsieh, C.-M.: Path-planning algorithms for public
transportation systems. In: Proceedings on 2001 IEEE Intelligent Transportation Systems,
Oakland, CA, USA (2001)

3. Zar,M.T., Sein, M.M.: Using A* algorithm for public transportation system in Yangon Region.
Int. J. Adv. Comput. Eng. Netw. 3(3), 7-10 (2015)

4. Chien, S.I.-J., Dimitrijevic, B.V., Spasovic, L.N.: Optimization of bus route planning in urban
commuter networks. J. Public Transp. 6(1), 53-79 (2003)

5. Google Maps. https://www.google.com/maps/about/#!/. Accessed 25 May 2023

6. Waze: Driving Directions, Traffic Reports & Carpool Rideshares. https://www.waze.com/
about/. Accessed 25 May 2023

7. Python.org: Welcome to Python.org, 22 May 2023. https://www.python.org/. Accessed 25
May 2023

https://www.google.com/maps/about/
https://www.waze.com/about/
https://www.python.org/

70

10.

11.

12.

13.

C. K. Ling et al.

Boeing, G.: OSMnx. https://github.com/gboeing/osmnx. Accessed 25 May 2023

Land Transport Authority (LTA): DataMall. https://DataMall.lta.gov.sg/content/DataMall/en.
html. Accessed 25 May 2023

Flask: Welcome to Flask—Flask Documentation (2.3.x). https://flask.palletsprojects.com/en/
2.3.x/. Accessed 25 May 2023

Babitz, K.: Introduction to Plotting with Matplotlib in Python (2023). https://www.datacamp.
com/tutorial/matplotlib-tutorial-python. Accessed 25 May 2023

Pandas - Python Data Analysis Library (n.d.). https://pandas.pydata.org/. Accessed 25 May
2023

Eco driving quality system for city and intercity buses. https://jv-technoton.com/cases/eco-
driving-quality-system-for-city-and-intercity-buses/. Accessed 25 May 2023

https://github.com/gboeing/osmnx
https://DataMall.lta.gov.sg/content/DataMall/en.html
https://flask.palletsprojects.com/en/2.3.x/
https://www.datacamp.com/tutorial/matplotlib-tutorial-python
https://pandas.pydata.org/
https://jv-technoton.com/cases/eco-driving-quality-system-for-city-and-intercity-buses/

	OptiTour: Tourist Transit Optimizer
	1 Introduction
	2 Related Works
	2.1 Literature Review
	2.2 Tools and Technologies

	3 Solution Designed
	3.1 System Diagram
	3.2 Data Structures Used

	4 Solution Implementation
	4.1 Classes and Methods
	4.2 ERP Implementation
	4.3 GUI Implementation
	4.4 Dataset Used
	4.5 Data Pre-processing

	5 Results and Insight
	6 Conclusion
	References

