
Minimising Cost for Travel Bus Operator

Bryan Kai Xuan Koh, Hong Liang Sia, Jun Hui Lim, Louis Jia Jun Chun,
Rui Feng Chia, Huaqun Guo(B), and Kar Peo Yar

Infocomm Technology Cluster, Singapore Institute of Technology, Singapore, Singapore
{2201543,2201493,2201476,2201618,

2201695}@sit.singaporetech.edu.sg, {huaqun.guo,

KarPeo.Yar}@singaporetech.edu.sg

Abstract. The tourist travel bus sector is one of the main contributors to the Sin-
gapore economy. However, the cost optimization is a challenging factor when it
comes to operating a travel bus. This project, BusPathFinder, aims to identify the
shortest and most efficient routes between Changi Airport Terminal 3 and vari-
ous hotels by utilising advanced pathfinding map algorithms. The project uses the
Google Map API and three pathfinding algorithms: Dijkstra Algorithm, Bellman-
Ford, and the Travelling Salesperson (TSP). As a result, The BusPathFinder appli-
cation is materialised as an advanced tool capable of mapping out the best paths
using three algorithms fromChangi Airport Terminal 3 to different hotels. In addi-
tion, BusPathFinder can also visualise these routes in HTML format, as well as
calculate the cost of each travel route and the total distance travelled. The project’s
findings will be applied to improve the efficiency and cost-effectiveness of bus
routes in the tourism sector.

Keywords: Pathfinding algorithm · BusPathFinder · Cost optimization

1 Introduction

In today’s bustling world of tourism, effective transportation services are necessary to
provide a seamless travel experience. In this context, our project, BusPathFinder, aims
to revolutionise the tourist travel bus industry through the usage of advanced pathfinding
map algorithms. Due to the millions of tourists that arrive at Changi Airport Terminal 3
each year, it is paramount to find optimal bus routes to hotels to streamline operations
and raise service standards. Our project investigates advanced pathfinding algorithms
and seeks to implement them with BusPathFinder, to significantly save costs as well as
improve operations in the current landscape.

The approach of this project is founded on a combination of the Google Map API
and 3 pathfinding algorithms: Dijkstra Algorithm, Bellman-Ford, and the Travelling
Salesperson. These algorithms will be used to calculate the shortest and most efficient
routes between Changi Airport Terminal 3 and different hotels. Simultaneously, the
Google Map API will be used to extract real-time data from Google to find which path
will have the least amount of Electronic Road Pricing (ERP) gantries to determine the
most cost-effective path.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. Lu et al. (Eds.): IRC-SET 2023, Proceedings of the 9th IRC Conference on Science,
Engineering, and Technology, pp. 21–30, 2024.
https://doi.org/10.1007/978-981-99-8369-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8369-8_3&domain=pdf
https://doi.org/10.1007/978-981-99-8369-8_3

22 B. K. X. Koh et al.

2 Related Works or Literature

Scenic Athens is a context-aware mobile city guide for Athens (Greece) which uses an
innovative algorithmic approach in an attempt to solve the Tourist Trip Design Problem
(TTDP). The mobile city guide formulates the optimization problem as a Mixed Team
Orienteering Problem with Time Windows (MTOPTW) and presents a metaheuristic
method, such as the Iterated Local Search method to solve it [1]. The modified adaptive
large neighbourhood search (MALNS) method, using the four destructions and the four
reconstructions approach, was proposed in 2021 to present a solution to the family
tourism route problem in Thailand [2]. To efficiently determine the shortest tourist route
while visiting multiple destinations in a confined area, the study proposes a genetic
algorithm (GA) based on biological evolution and natural selection [3].

R.R. Donnelley and Sons introduced MapQuest in 1996, used a proprietary bidirec-
tional version of Dijkstra’s Shortest Path Algorithm to determine the shortest route for
early website users [4]. Maposcope is a route planning app that allows a user to choose
stops by typing in addresses, and launches the navigation app as the user navigates from
stop to stop. Once arriving at a stop, the user will have to switch back to the app and click
done before moving on to the next stop [5]. Waze is a navigation app and collects data
from users’ devices about traffic conditions to suggest the most optimal routes to other
users. However, Waze does not currently support navigating in lanes dedicated to public
transportation, bicycles, or trucks. An active internet connection is essential for Waze to
function correctly, as it relies on real-time data and map updates [6]. Badger Maps is a
route planning and optimization tool designed to streamline and enhance location-based
operations for businesses, and allow users to access statistics such as mileage, travel
time, and full-day time of their routes [7].

3 Solution Designed

3.1 API Used

The Python client forGoogleMaps Services [8] empowers developers to performvarious
tasks, including geocoding, finding directions, obtaining directionmatrices, and integrat-
ing other features of the Google Maps PlatformWeb Services into a Python application.
To utilise the Python client for Google Maps Services, developers are required to have
Python 3.5 or a later version installed on their system, in addition to possessing a valid
Google Maps API key. For every Google Maps Web Service request, an API key or
client ID is necessary. API keys are generated through the ‘Credentials’ page within the
‘APIs and Services’ section of the Google Cloud console.

ThePython client forGoogleMapsServices can be installed by running the following
command:

Minimising Cost for Travel Bus Operator 23

This command will ensure that the latest version of the Google Maps package is
installed or update it to the latest version if it is already installed. Once the installation is
complete, developers can begin integrating and using the Google Maps services within
their Python applications.

The Python Client for GoogleMaps Services allows two primary GoogleMaps APIs
namely Directions API and Places API utilise in the project. The Directions API [9] is
a service that processes HTTP requests and provides directions between locations in
either JSON or XML format. This API enables users to calculate directions for various
modes of transportation. Additionally, it supports multipart directions using a series of
waypoints along the route. The Directions API prioritises efficiency when calculating
routes, taking into account travel elements like travel time, distance, and the number of
turns to provide the most optimal and accurate directions to users. In our project, we
leverage the Directions API to create routes from Changi Airport Terminal 3 to different
hotels with the use of various algorithms.

The Places API [10] is a versatile service that accepts HTTP requests to retrieve
location data through various methods. It provides formatted information and imagery
related to establishments, geographic locations, and notable points of interest. It offers
location-aware features that grant easy access to detailed location data for users. To
interact with the Places API, developers can send requests in standard URL format,
specifying the service endpoint, such as /place or /photo. The API accepts requests in
either JSON or XML format. Specific parameters relevant to the chosen endpoint can be
included in the service request to retrieve refined and relevant data for application use.
In BusPathFinder, the Places API is used to extract data on ERPs. These ERPs data are
then integrated into the driving routes to consider cost-effectiveness during navigation.
By incorporating ERP information, our system can provide users with route options that
optimise both travel time and cost, taking into account ERP charges along the way.

3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is a well-known approach for finding the shortest path between two
nodes in a graph. Dijkstra’s algorithm can be utilised to determine the best path between
the hotels in our bus travel operation. This can be helpful for a number of reasons such as
planning bus routes, optimising travel distance, and minimising Electronic Road Pricing
(ERP) gantries. The time complexity of Dijkstra’s algorithm is O(V 2) where V is the
number of hotels on the map. Therefore, it is an effective technique to calculate the most
cost-effective and quickest routes in general.

3.3 Bellman-Ford’s Algorithm

The Bellman-Ford algorithm is another algorithm for finding the shortest path between
a source node and all other nodes. Unlike Dijkstra’s algorithm which is only able to
account for positive weights between nodes, the Bellman-Ford algorithm takes into
account negative weights, but at the cost of added time complexity of O(V * E), where
E is the number of edges in the map that link to the hotels. The Bellman-Ford algorithm
also potentially risks a state called Negative Cycle where the cost is forever changing
when performing edge relaxation causing a scenario similar to feedback loop, where

24 B. K. X. Koh et al.

the algorithm would run forever. Bellman-Ford’s algorithm can be utilised to determine
the shortest path between hotels for our scenario of bus travel operation. While slower
than Dijkstra’s algorithm in terms of time complexity, the ability to find shorter paths
taking into account negative weights would result in a faster travel time for our bus travel
operation, in turn leading to lower operating costs.

3.4 Travelling Salesperson Problem (Using the Nearest Neighbour Algorithm
as the Solution)

The travelling salesperson problem (TSP) is determining the shortest possible route to
visit each city once and returning to the beginning of the tour, given a list of cities and the
distances between them. One solution that resolves the travelling salesperson problem
is known as the travelling salesperson algorithm.

The Nearest Neighbour Algorithm is an efficient heuristic algorithm that finds the
shortest tour in a bus travel operator. It operates by developing a route iteratively, starting
with one city and then appending the next city to the tour in order to minimise overall
travelling distance. The algorithm terminates after all the cities have been appended to
the tour. The Nearest Neighbour algorithm can be utilised to plan the shortest and most
precise tour in a graph. The time complexity of the Nearest Neighbour algorithm is
O(V 2), where V is the number of routes in the map. The Nearest Neighbour Algorithm
excels at efficiently finding a relatively short tour in the Travelling Salesperson Problem,
making it our choice for bus travel operators looking for practical and time-efficient
route planning solutions that do not require exhaustive calculations or negative weight
considerations.

3.5 Algorithm Comparison

Table 1 shows the comparison in time complexity of the 3 different algorithms imple-
mented in the project. Because the number of edge E is bigger than the number of hotels
V, the time complexity of Dijkstra’s algorithm and Travelling Salesperson algorithm
is the same, while the time complexity of Bellman-Ford’s algorithm is worse. Hence
Dijkstra’s algorithm and Travelling Salesperson algorithm are preferred in our project.

Table 1. Comparison table

Algorithm Time complexity

Dijkstra’s algorithm O(V 2)

Bellman-Ford’s algorithm O(V * E)

Travelling salesperson algorithm O(V 2)

3.6 System Diagram

Figure 1 compiles the overall flowchart of the program. The system starts with:

Minimising Cost for Travel Bus Operator 25

1. Loading an Excel sheet and reading the data
2. Creating a map object by adding hotel parkers
3. Calculating the distance between hotels by looping all pairs of hotels
4. Finding the shortest path using an algorithm
5. Detecting and counting ERP gantries passed
6. Generating data output in the following items:

• Map.html
• Shortest_path_table.html
• Total_cost.html.

Fig. 1. Overall system flow

4 Solution Implementation

4.1 Dataset Used

In this project, we will be demonstrating a use case scenario where we have a number
of customers using our travel bus operating service. The figure shows an Excel file of
hotel names, their coordinates, as well as the number of customers going to those hotels
(Fig. 2). Those with 0 as the number of outgoing will be excluded from the calculation.

5 Results and Insight

5.1 Execution of the Test Case

Once the number of customers has chosen their respective hotels, the sheet will be
updated and run by Google API as well as all the 3 algorithms executed in the main.py
execution file. Figure 3 shows the output of the basic Google map and Dijkstra’s map
which enables the user to see the files being executed properly. It displays the process

26 B. K. X. Koh et al.

Fig. 2. Excel sheet for input

of map creation, marked location, drawing of driving route, the distance data and the
number of ERP gantries passed. It is apparent that the difference between both maps
is the number of ERP gantries passed during the trip. Figure 4 shows the output of the
Bellman-Ford map, Travelling Salesperson map and all the necessary steps required that
allow the user to track the progression of the file execution.

5.2 Results

Figure 5 shows the plotted location of various hotels which are our nodes in the map. The
red line represents the shortest path route calculated based on the different algorithms
while the blue line represents the actual path that the bus operator should be taking that
is based on the algorithm.

5.3 Cost Comparison

Table 2 shows the comparison among the 4 algorithms, and it is apparent that both
Dijkstra’s and Bellman-Ford’s algorithm has the least number of ERP gantries passed,

Minimising Cost for Travel Bus Operator 27

Fig. 3. Output of basic map and Dijkstra’s map

Fig. 4. Output of Bellman-Ford and TSP’s algorithm map

the least distance travelled and the lowest cost as compared to Basic Google API and
TSP. They are equal because there is no negative weightage in the graph. However, it is
highlighted before that the Travelling Sales algorithm has a fully planned route back to

28 B. K. X. Koh et al.

Fig. 5. Map for routing path

Changi Terminal 3, whereas both Dijkstra’s and Bellman-Ford’s algorithms only take
the shortest possible route to its last hotel destination.

At first glance, bothDijkstra andBellman-Ford’s algorithms seem to be themost cost-
efficient at a low cost of $34.454 butwhen taking into account of Travelling Salesperson’s
return trip and removing its return cost of 19833 m resulting in 32448 m overall which
is lower than Dijkstra and Bellman-Ford. It is evident that TSP is efficient in addition to
taking into account returning to Changi for another round of ferrying customers which
will, in turn, result in higher returns and profit for the bus travelling operation, particularly
the real profit increases as TSP is designed to bring the cost to the minimum for a round
trip and the Bus Operator would be making multiple round trips in a day.

Minimising Cost for Travel Bus Operator 29

Table 2. Cost calculation table

Algorithms Google API Dijkstra’s
algorithm

Bellman-Ford’s
algorithm

Travelling
salesperson

No. of ERP passed 2 1 1 1

Total distance
travelled (m)

104553 32454.0 32454.0 52281

Total cost/km 1$ =
1 km + ERP

$108.553 $34.454 $34.454 $54.28

6 Conclusion

Given the context of this project, it is overall better to use the travelling salesperson
algorithm as its advantages surpass those of Dijkstra’s algorithm and Bellman-Ford’s
algorithm. It is a more effective approach to finding the shortest route between various
hotel points then back to theAirport.We are able to create our bus routesmore efficiently,
which can also effectively save our business operating time and money. For example,
we can use the Travelling Salesperson algorithm to find the shortest route back and
forth from Changi Terminal 3 while evading ERP. This can help to ensure a minimum
travelling cost for the bus route.

In conclusion, the Travelling Salesperson algorithm is a more viable algorithm that
can be used for our travel bus operating project.We believe that in the future, the potential
of this work can not only help in business operations but also provide better services to
customers.

References

1. Gavalas, D., Kasapakis, V., Pantziou, G., Konstantopoulos, C., Zaroliagis, C.: Scenic Athens:
a personalized scenic route planner for tourists. In: IEEE Symposium on Computers and
Communication, Messina, Italy, pp. 1151–1156 (2016)

2. Khamsing, N., Chindaprasert, K., Pitakaso, R., Sirirak, W., Theeraviriya, C.: Modified ALNS
algorithm for a processing application of family tourist route planning: a case study ofBuriram
in Thailand. Computation 9(2), 23 (2021)

3. CorCystems: Mapping Technology Before Google Maps. https://www.corcystems.com/ins
ights/20-year-tech-evolution-of-maps/#:~:text=MapQuest’s%20system%20utilized%20a%
20proprietary,into%20a%20%E2%80%9Cweight%E2%80%9D%20value. Accessed 22
July 2023

4. Cao, S.: An optimal round-trip route planning method for tourism based on improved genetic
algorithm. Comput. Intell. Neurosci. 2022 (2022)

5. Maposcope: Getting Started. https://maposcope.com/help/. Accessed 22 July 2023
6. Google: How does Waze work? https://support.google.com/waze/answer/6078702?hl=en&

ref_topic=9022747&sjid=2281966397362315587-AP. Accessed 23 July 2023
7. Badger Maps: Features that sell more. https://www.badgermapping.com/features/. Accessed

23 July 2023
8. Google Maps: Python Client for Google Maps Services. https://github.com/googlemaps/goo

gle-maps-services-python. Accessed 23 July 2023

https://www.corcystems.com/insights/20-year-tech-evolution-of-maps/#:~:text=MapQuest's%20system%20utilized%20a%20proprietary,into%20a%20%E2%80%9Cweight%E2%80%9D%20value
https://maposcope.com/help/
https://support.google.com/waze/answer/6078702?hl=en&ref_topic=9022747&sjid=2281966397362315587-AP
https://www.badgermapping.com/features/
https://github.com/googlemaps/google-maps-services-python

30 B. K. X. Koh et al.

9. Google Maps Platform: Directions API overview. https://developers.google.com/maps/doc
umentation/directions/overview. Accessed 23 July 2023

10. Google Maps Platform: Overview. https://developers.google.com/maps/documentation/pla
ces/web-service/overview. Accessed 23 July 2023

https://developers.google.com/maps/documentation/directions/overview
https://developers.google.com/maps/documentation/places/web-service/overview

	Minimising Cost for Travel Bus Operator
	1 Introduction
	2 Related Works or Literature
	3 Solution Designed
	3.1 API Used
	3.2 Dijkstra’s Algorithm
	3.3 Bellman-Ford’s Algorithm
	3.4 Travelling Salesperson Problem (Using the Nearest Neighbour Algorithm as the Solution)
	3.5 Algorithm Comparison
	3.6 System Diagram

	4 Solution Implementation
	4.1 Dataset Used

	5 Results and Insight
	5.1 Execution of the Test Case
	5.2 Results
	5.3 Cost Comparison

	6 Conclusion
	References

