
What Types Are Needed for Typing
Dynamic Objects? A Python-Based

Empirical Study

Ke Sun1 , Sheng Chen2, Meng Wang3 , and Dan Hao1(B)

1 Key Lab of HCST (PKU), MOE; SCS, Peking University, Beijing, China
sunke@stu.pku.edu.cn, haodan@pku.edu.cn

2 The Center for Advanced Computer Studies, UL Lafayette, Lafayette, USA
sheng.chen@louisiana.edu

3 University of Bristol, Bristol, UK
meng.wang@bristol.ac.uk

Abstract. Dynamic object-oriented languages, such as Python, Ruby,
and Javascript are widely used nowadays. A distinguishing feature of
dynamic object-oriented languages is that objects, the fundamental run-
time data representation, are highly dynamic, meaning that a single con-
structor may create objects with different types and objects can evolve
freely after their construction. While such dynamism facilitates fast pro-
totyping, it brings many challenges to program understanding. Many
type systems have been developed to aid programming understanding,
and they adopt various types and techniques to represent and track
dynamic objects. However, although many types and techniques have
been proposed, it is unclear which one suits real dynamic object usages
best. Motivated by this situation, we perform an empirical study on 50
mature Python programs with a focus on object dynamism and object
type models. We found that (1) object dynamism is highly prevalent in
Python programs, (2) class-based types are not precise to handle dynamic
behaviors, as they introduce type errors for 52% of the evaluated poly-
morphic attributes, (3) typestate-based types, although mostly used in
static languages, matches the behaviors of dynamic objects faithfully,
and (4) some well-designed but still lightweight techniques for object-
based types, such as argument type separation and recency abstraction
can precisely characterize dynamic object behaviors. Those techniques
are suitable for building precise but still concise object-based types.

Keywords: Type System · Empirical Study · Python

1 Introduction

Dynamic object-oriented languages, such as Python, Ruby, and Javascript are
commonly used across many domains. They use dynamic typing to increase
reusability and flexibility, facilitating fast prototyping (development) not pro-
vided by most static languages. In particular, unlike in static object-oriented
languages where objects have mostly fixed attributes and their types [25], objects
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 24–45, 2023.
https://doi.org/10.1007/978-981-99-8311-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_2&domain=pdf
http://orcid.org/0000-0002-2966-9889
http://orcid.org/0000-0001-7780-630X
http://orcid.org/0000-0001-8295-303X
https://doi.org/10.1007/978-981-99-8311-7_2


What Types Are Needed for Typing Dynamic Objects? 25

in dynamic languages are highly dynamic. Both the attributes and types of an
object may be changed freely over its life cycle.

To illustrate, consider the Python program in Fig. 1, which is adapted from
Rich, a terminal beautification tool [34]. This program defines two instance
objects (shorted as objects) of Panel: panel1 and panel2. However, the types
of the two objects are not stipulated by class definition and can be set and
changed freely. We refer to this phenomenon as object dynamism.

Fig. 1. An example Python program

Behaviors Causing
Object Dynamism.
Object dynamism orig-
inates from two sources:
constructor polymorph-
ism and object evolu-
tion [42,54]. With con-
structor polymorph-
ism, objects of differ-
ent types can be made
from the same con-
structor. Lines 17-18
show such an exam-
ple. Specifically, although
panel1 and panel2 are
created from the same
init , panel1 has the

type τ1 = {title :
Text, width : int, height :
int}, while panel2 has
the type τ2 = {title :
str, width : NoneType}1.
In particular, two attributes (title and width) are shared but with different
types, and one attribute (height) appears only in τ1. After the construction
phase, objects can dynamically evolve, making the types continue to change,
denoted as object evolution. Lines 19-20 present such an example, which
changes the width attribute of panel2 from NoneType to int and adds the attribute
height.
An Empirical Study on Dynamic Objects for Type Systems. As dynamic
languages are being used to build more and more important and large software
systems, many type systems [10,23,30,33] have been developed to aid program
comprehension and early programming error detection. Those type systems come
up with special object types for representing dynamic objects. The most widely
adopted design choice is to augment the class-based types, which assign a single
type to all objects created from the same class, with features such as union
types [9], and the ability to reason about type tests [28,48] and local type

1 We refer the constructed types of panel1/panel2 by τ1/τ2 in the rest of this paper.



26 K. Sun et al.

assignments [3]. Due to their performance superiority and annotating conve-
nience, class-based types have been extensively used in industrial and academic
type systems [10,19,22,30,40,53]. However, it is not clear whether they provide
dynamic objects with type representations that are precise enough.

On the other hand, many object-based type systems [8,17,45,55] have
also been proposed, which assign a unique type to each object, according to
its abstract address and evolution processes. Since those techniques provide
dynamic objects with more precise representations, it is clear that they pro-
duce fewer type errors compared with class-based types. However, the actual
improvement has not been investigated on a large scale. Meanwhile, the contri-
butions of individual aspects of object-based types to the improvements are not
understood.

To help understand the prevalence and characteristics of dynamic object
behaviors, as well as the effectiveness of existing object types, we present an
empirical study based on a dynamic analysis of 50 mature Python programs
with over 3.76 million LOC. There have been several studies [4,24,42,54] that
also consider the dynamic object behaviors. However, their analysis is not focused
on types, and thus their implications on type systems are limited.

Some of our significant findings include: (1) Both constructor polymorphism
and object evolution are very prevalent. The average proportions of classes expos-
ing them are both higher than 20%, and they often occur at the same time. (2)
Class-based types can be a practical choice, especially when paired with the
ability to reason about type tests and local assignments. Although false type
errors are reported for 52% of the polymorphic attributes when experiment-
ing with them, those type errors are largely due to attribute absence, which is
notoriously hard to detect statically [32]. (3) Typestate-based types, as already
utilized extensively to represent object evolution in static languages [6,29,46],
can be promising to be adopted to dynamic languages, considering the large
proportion of attribute-absences-related errors, which turn out to be introduced
mainly by object evolution. (4) Object-based types are found to be effective
in representing dynamic objects. In particular, the ability to perform strong
updates [8,23] is critical to increase the precision.

In summary, this paper makes the following contributions.

1. A large corpus composed of 50 mature Python projects with over 3.76 million
LOC and a well-designed dynamic analysis infrastructure capable of analyzing
precise and detailed object behaviors.

2. An empirical study of object dynamism in Python with findings and advice
for evaluating current type systems and inspiring future type systems.

The artifact of this paper, containing the analysis infrastructure and the
experiment scripts, can be accessed via https://github.com/ksun212/Python-
objects.

2 Background

In this section, we introduce dynamic object behaviors in detail and review
related studies on dynamic behaviors.

https://github.com/ksun212/Python-objects
https://github.com/ksun212/Python-objects


What Types Are Needed for Typing Dynamic Objects? 27

2.1 Dynamic Object Behaviors in Python

Constructor Polymorphism. We name the behavior that objects of differ-
ent types are made from a single constructor as constructor polymorphism. In
Python, a constructor is a normal member method that initializes attributes. In
our example, different objects are constructed in a functional way, i.e., object
types are solely decided by argument types. However, as an imperative language,
the program’s state can also influence the behaviors of constructors. For example,
an attribute may be set when a global variable holds a specific value.
Object Evolution. We name the behavior that an object changes its type after
being constructed as object evolution. Based on the action, object evolution can
be classified into (1) extension (i.e., adding new attributes), (2) modification
(i.e., modifying types of attributes), and (3) deletion (i.e., deleting attributes).

2.2 Existing Studies on Dynamic Behaviors

Although object dynamic behaviors are significant for building type systems and
other static analyses for dynamic languages, only a few studies have been done
to study their actual prevalence. In particular, Richards et al. [42] and Wei et
al. [54] conducted empirical studies on the dynamic behaviors in JavaScript pro-
grams. However, the former did not distinguish between changes of attribute
types (changes that lead to object evolution) and attribute values (changes do
not lead to object evolution), and the latter measured constructor polymor-
phism via the number of runtime instances instead of object types that matter
more to type system design. Only two pieces of work [4,24] investigated the
dynamic behavior of Python objects. However, they mainly focus on object evo-
lution, without investigating constructor polymorphism. Meanwhile, neither of
the above studies analyzes the effectiveness of existing object types.

Several studies investigated other features of dynamic languages, such as eval
expressions [41], callsite polymorphism [5,27], and dynamic variables [14]. These
studies are not from type systems’ perspective, the focus of this work.

3 Types for Dynamic Objects

In this section, we present a type syntax for class-based types and discuss local
type refinements. Then, we review important aspects for object-based types.

3.1 Class-Based Types

Fig. 2. Syntax for class-based types.

Type Syntax. To consolidate the
notion of class-based types in this
paper, we propose a type syntax,
which mostly coincides with the def-
inition of class-based types in exist-
ing class-based type systems [10,19,



28 K. Sun et al.

22,30,40,53]. The only difference is that we model attribute absence using a
constant type abs, while other systems provide type qualifiers [31] or simply
omit it [19,30,53] (Fig. 2).
Under this syntax, the type environment (Γ ) maps from variables to class names.
The class table (CT ) maps from class names to object types, which is a record
labeled by attribute names with values ranging over attribute types (τ). τ can
be another class name (such as builtin classes int, str, and user-defined classes
Panel, Text), a special constant type abs to signify that the attribute is absent
or a union of two attribute types. For the example in Fig. 1, a type system using
this syntax gives type environment {panel1 : Panel, panel2 : Panel}, and class
table {Panel : {title : Text ∨ str, width : int ∨ NoneType, height : int ∨ abs}}.
Polymorphic Attributes Cause Type Errors. Although class-based types
provide a natural way to express object dynamism, they often introduce type
errors. To see this, consider type-checking the method measure, which results in a
type error, since width can be NoneType while height can be abs, both invalidating
the addition operation. Those type errors are caused by polymorphic attributes,
i.e., the attributes holding union types, when not all components of the union
type can be used in any access-site of the attribute.
Local Type Refinements. To eliminate suspicious type errors, local type
refinements [3,28,48] are often used to refine the union types. The core obser-
vation is that developers tend to use type tests and local assignments to refine
the type of polymorphic attributes, which can be utilized to refine the union
types to a smaller range thus eliminating type errors. For example, consider
type-checking the method title, in the first branch, the type of title is refined
to be str by the type test isinstance(self.title,str). For an example of local
assignments, consider inserting if self.width is None: self.width=42 into the
beginning of the method measure, which refines the type of width to be only int.

3.2 Object-Based Types

Class-based type systems assign all objects belonging to the same class with the
same type. We have discussed that this design choice introduces spurious type
errors. Although local type refinements can be used to eliminate type errors, they
rely on type tests or local assignments, which are unavailable in many cases. To
eliminate the type errors, another idea is to assign more precise types to dynamic
objects, by exposing more fine-grained object addresses and performing strong
updates for object evolution as much as possible [1,8,17,44,45,52,55]. In the
following of this paper, we name this kind of typing discipline as object-based
types, whose effectiveness will be discussed in our study.
Store Abstraction. Each dynamic object receives a unique address from the
heap (store). While types of objects may be identified by their addresses, few
type systems support this, since addresses are allocated at runtime while the type
systems we are investigating perform static checking. Instead, type systems often
use abstractions of store to denote object types. In class-based type systems, each
object uses the class name as its address. All objects of the same class share the



What Types Are Needed for Typing Dynamic Objects? 29

same address. To keep sound, the types of all those objects, along their life
cycles, must be merged. This is the reason that many attributes in class-based
type systems are polymorphic, causing spurious type errors.

Using class names as addresses often leads to imprecision. A prominent app-
roach is extending the class name with the construction location. Construc-
tion location can be annotated [16,45] or inferred [19,23,36]. In our example,
we can separate the types of panel1 and panel2 using this approach, yield-
ing Γ = {panel1 : Panel@17, panel2 : Panel@18} and CT = {Panel@17 :
{title : Text, width : int, height : int}, Panel@18 : {title : str, width :
int ∨ NoneType, height : int ∨ abs}}. Note that Panel@18 must cover all the
types of panel2 in its life cycle. Suppose the method measure is called on panel1,
this type system would correctly accept it but still reject the call on panel2.

Sometimes, using the construction locations is not precise enough, since many
construction-sites can be called many times (e.g., occurring inside a function
that is repeatedly called.). To handle this, location polymorphism [16] and k-
callsite [36] have been proposed. We evaluate the help of k-callsites in our study.
Flow Sensitivity. As we discussed earlier, to keep sound, the types in the life
cycle of an object must be merged. The reason is that the store abstraction (i.e.,
CT ) must over-approximate the store at any time of the program execution.
One common approach to relax this constraint is flow-sensitive store abstrac-
tion [2,16,36,43], which allows each program location to be associated with a
different store abstraction. In our example, this yields CT = {..., Panel@18 :
{title : str, width : NoneType, height : abs}}, CT ′ = {.., Panel@18 : {title :
str, width : int ∨ NoneType, height : abs}}, and CT ′′ = {.., Panel@18 : {title :
str, width : int ∨ NoneType, height : int ∨ abs}}, where CT/CT ′/CT ′′ denote
the store abstraction associated with Line 18/19/20. Suppose that an access of
width is inserted before Line 19, which requires it to have the type NoneType,
then flow sensitivity allows this access to be accepted since the system knows
that width can only be NoneType before Line 19. In a flow-insensitive system, this
access would be incorrectly rejected. However, the method measure still cannot
be called on panel2, even after Line 20. This is because, due to the potential
existence of aliases, one attribute must be typed with all the types that are pre-
viously assigned to the attribute, a methodology often called “weak updates” [8].
Strong Updates. A type system that is able to replace the old type for an
attribute with a new type when an object evolves is said to be able to perform
“strong updates”. Strong updates have to be performed on the top of flow-
sensitive store abstraction. With strong updates, the type system knows CT ′′ =
{..., Panel@18 : {title : Text, width : int, height : int}}, and subsequently,
allows measure be called on panel2 after Line 20.

Due to the alias problem, strong updates can not be performed arbi-
trarily [8]. It is widely known that strong updates can be applied to linear
addresses [2,16,43], i.e., the addresses that refer to only one object. In our exam-
ple, we have seen that the class name extended with construction locations lin-
early refer to the two objects. In general, more precise techniques like location
polymorphism [16] and k-callsite [36] make more addresses linear. However, those



30 K. Sun et al.

Table 1. Statistics and Categories of Experiment Subjects

Category Subjects LOC

Scientific Computing (SCI) networkx, pinyin, sklearn, nltk, altair, kornia, stanza, featuretools,
dvc, torch, pandas, seaborn, statsmodels, pyod, spacy, snorkel

2.29M

Programming (PRG) pydantic, typer, bandit, isort, arrow, jedi, black, yapf, mypy 0.46M

Web (WEB) requests, flask, impacket, routersploit, itsdangerous, pelican,
sphinx

0.24M

Terminal (TER) rich, thefuck, cookiecutter, click, prompt toolkit 0.14M

Formating (FMT) jinja, pypdf, markdown, weasyprint 0.12M

Utility (UTL) pywhat, icecream, pendulum, pre commit, faker 0.34M

Others (OTH) newspaper, wordcloud, pyro, pyecharts 0.14M

All (ALL) 50 projects 3.76M

techniques have been witnessed to significantly increase running overhead [36]
or incur excessive annotation burden [16]. Another widely adopted solution is
recency abstraction [8,23]. Recency abstraction splits one address into two, one
for the most recently constructed object and one for all previously constructed
objects. Supposing just use the class name as addresses, recency abstraction
gives Γ = {panel1 : Panels, panel2 : Panelr}. For the most recently constructed
object, since it is the only object referred to by the address, strong updates
can be performed, while all previously constructed objects can only be updated
weakly2. The assumption of recency abstraction is object evolution usually hap-
pens to the most recent object, instead of the previously constructed objects.
Our example obeys this assumption since only panel2 evolves.

4 Experimental Design

This study investigates the following questions around object dynamism in
Python.
RQ1. Are dynamic object behaviors prevalent in the wild?
RQ2. How effective are class-based types and object-based types?

4.1 Subjects

In this experiment, we use 50 Python projects from Github. In particular, we
select the top 50 popular Python projects on Github whose testing framework
is pytest, after removing the ones that need to be run on multiprocessing mode
(which causes potential races of the log file) or have special requirements (e.g.,
network or peripheral devices). By requiring pytest to be the testing framework,
we can run all the subjects under a unified interface, simplifying the experiment
setup. Due to space limitations, when presenting and analyzing the results, we

2 In our example, only panel1 is not recent. However, in general, there can be many.



What Types Are Needed for Typing Dynamic Objects? 31

divide these 50 subjects into 7 categories and present the results for each cate-
gory. Table 1 presents these categories, the subjects they contain, and their total
LOC. We present the details of these 50 subjects on the artifact.

To learn the dynamic behaviors of these Python projects, we run the test
suite of each subject. In order to facilitate the analysis, we prune the test suites
until they can be executed within 12 h and produce a trace file of less than 20G.
The details of the used tests are also presented on the artifact.

4.2 Tracing and Analysis Infrastructure

Overview of the Infrastructure. Our infrastructure consists of a tracing
module and an analysis module. The tracing module is based on CPython 3.93.
The tracing module traces the execution of a subject and records the events
related to Python objects, such as the start/end of object construction, and
assigning/deleting object attributes. The events are recorded with the necessary
information to conduct our analysis, such as where the event happens (program
location), and which object is related to the event. The analysis module analyzes
the events to construct and evaluate class-based types and object-based types.
Constructing Types. We construct class-based types and object-based types
from the traces. To construct class-based types for a class c, if one of its objects
is observed to be assigned with an attribute a and type c′ in the trace, we add a
to the attribute set of c, and add c′ to the types of c.a. If one attribute a is owned
by one object of the class, but is not owned by another, we add abs to the types
of c.a. We also add abs if the attribute is added/deleted in the evolution phase,
since the attribute is absent before/after the extension/deletion. For class-based
types, all objects of the same class share the same type. The construction of
object-based types is similar, the only difference is that all objects of the same
object address (instead of class) share the same type. For object-based types,
we simulate flow-sensitive store abstraction by constructing different stores for
different locations. On top of flow-sensitive store abstraction, We simulate strong
updates by performing strong updates whenever the condition is met (i.e., the
object address is linear or obeys recency abstraction).

Note that when constructing types, we construct for all classes observed in
the traces. However, when evaluating the types, we focus on the objects whose
classes are defined directly in the program, ignoring the objects defined in built-
in or third-party libraries, to better reflect the nature of the analyzed programs.
Evaluating Types. We evaluate the effectiveness of class-based types and
object-based types against the access-sites. To illustrate, consider the class-based
type of panel1, namely, {title : Text ∨ str, width : int ∨ NoneType, height :
int ∨ abs}. Supposing we observe that the attribute title of panel1 is accessed
at Line 11, we evaluate this access-site in two steps. The first step performs local
type refinements based on the type tests [28,48] and local assignments [3]. In our
example, the polymorphic attribute title holds two classes, i.e., str and Text.

3 https://github.com/python/cpython/tree/3.9.

https://github.com/python/cpython/tree/3.9


32 K. Sun et al.

However, for the access-site at Line 11, only Text is valid, while str is ruled out
at Line 8. The second step judges if the types after refinement (i.e., Text) can
be used in the access-site, i.e., satisfy the constraints of the access-site.

The complete constraints in one access-site can not be collected without
building a complicated analysis. In our study, we utilize a substantial subset of
the complete constraints, named local constraints. The major generation rules of
local constraints are presented in Fig. 3. In this figure, obj.a denotes the access
expression, T denotes the set of all types of the attribute a after refinement
({Text} for title in our example). Attr is the function to extract the attribute
set of one object type. In our example, since we have self.title.copy, we can
generate the constraint abs /∈ {Text} ∧ copy ∈ Attr(Text), which is true by
examining the type set ({Text}) and the type of Text.

Similarly, consider another access-site of title, at Line 9. We can refine the
type of title to str this time. However, since title is directly passed to another
function, we cannot collect any local constraints, and thus we do not evaluate
this access-site. So far, we have examined all the access-sites of title. Since it
satisfies all examined access-sites, it is determined to be safe. For object types to
be precise, they should make as many polymorphic attributes safe, since unsafe
polymorphic attributes are very likely to be false alarms, due to the fact that the
access-sites are collected dynamically without witnessing runtime type errors.

obj.a =⇒ abs /∈ T

obj.a() =⇒ ∀τ ∈ T, call ∈ Attr(τ)

obj.a[e] =⇒ ∀τ ∈ T, getitem ∈ Attr(τ)

obj.a + e =⇒ ∀τ ∈ T, add ∈ Attr(τ)

obj.a.f =⇒ ∀τ ∈ T, f ∈ Attr(τ)

len(obj.a) =⇒ ∀τ ∈ T, len ∈ Attr(τ)

Fig. 3. Local Constraint Generation Rules

5 Results and Analysis

In this section, we answer the two research questions in two subsections.

5.1 Prevalence of Dynamic Behaviors

In this section, we study the prevalence of dynamic behaviors, as well as several
important aspects of them, to help characterize the difficulty of analyzing them.
Constructor Polymorphism. Table 2 presents the statistics of classes that
expose constructor polymorphism, where the second column presents the total
number of classes in a specific category and in all subjects. The third and fourth
columns present statistics on these classes, which we refer to as ratio results
and subject-wise median results, respectively. To obtain ratio results (given by
column “Ratio”), we divide the total number of classes that expose constructor
polymorphism in one category by the total number of classes in that category. To
obtain the subject-wise median results (given by column “Median”), we calculate
the proportion of classes exposing constructor polymorphism for each subject in



What Types Are Needed for Typing Dynamic Objects? 33

Table 2. Prevalence of constructor
polymorphism. Class shows the num-
ber of classes. Ratio and Median show
the proportion of classes.

Category Class Ratio Median

SCI 1773 0.24 0.28

PRG 360 0.32 0.20

WEB 643 0.12 0.14

TER 214 0.27 0.20

FMT 258 0.30 0.40

UTL 28 0.18 0.20

OTH 266 0.17 0.23

ALL 3542 0.23 0.20

Fig. 4. Degree of constructor polymorphism.
The X-axis/Y-axis denotes the number of dis-
tinct object types/classes.

Fig. 5. Overall Relation among
Object Types.

Fig. 6. Separability of Different Construc-
tion Contexts.

one category and take the median. Ratio results emphasize the overall propor-
tion, while subject-wise median results emphasize the subject-wise differences.
Due to space limitations, we present the results for each category and a summary
of all subjects. The results of individual subjects are given on the artifact.

From this figure, the ratio and median proportion of classes that expose
constructor polymorphism are both over 20%, indicating that constructor poly-
morphism is prevalent. Besides, we can also notice the differences among cat-
egories, e.g., UTL, WEB and OTH have fewer classes that expose constructor
polymorphism. Many classes belonging to those categories have relatively simple
functionality and do not need constructor polymorphism.

Now we know that constructor polymorphism is prevalent. But how poly-
morphic are polymorphic constructors, and how difficult it is to analyze them?

How Polymorphic. Figure 4 shows the degree of constructor polymorphism,
that is, the number of distinct object types made out of polymorphic construc-
tors. According to Fig. 4, most of the polymorphic constructors have a relative
low degree (less than 5), indicating that typically only a few object types are
made.



34 K. Sun et al.

Table 3. Prevalence of object evolution.
RO/MO presents the ratio/median for
objects, while RC/MC presents that for
classes.

Category Object RO MO Class RC MC

SCI 3 × 106 0.31 0.21 1773 0.36 0.28

PRG 1 × 106 0.11 0.02 360 0.11 0.15

WEB 2 × 105 0.28 0.40 643 0.31 0.43

TER 5 × 104 0.08 0.07 214 0.18 0.23

FMT 1 × 106 0.46 0.49 258 0.47 0.61

UTL 1 × 105 0.02 0.02 28 0.25 0.20

OTH 3 × 105 0.17 0.21 266 0.42 0.38

ALL 6 × 106 0.27 0.12 3542 0.33 0.28
Fig. 7. Actions of Object Evolution

Polymorphic constructor constructs objects of different types. But, how dif-
ferent are these types? To answer this question, we divide the polymorphic con-
structors into three kinds, according to whether they construct object types
with inconsistent attribute types (labeled TYPE in Fig. 5, e.g., {attr : int} and
{attr : str}), inconsistent attribute sets (ATTR, e.g., {attr : int} and {attr :
int, attr2 : int}), or both (BOTH, e.g., {attr : int} and {attr : str, attr2 : int}).
Figure 5 shows the proportion of those three kinds, which shows that most (87%)
polymorphic constructors construct object types with consistent attribute sets
but inconsistent attribute types. This suggests that polymorphic attribute types,
instead of attribute sets, are contributed by constructor polymorphism. Thus,
if the main cause of false type errors is attribute sets (we will see that it is),
constructor polymorphism should be generally innocent.

Separability. Constructors in Python are just normal functions. To precisely
analyze functions, context sensitivity is the prominent technique used in static
analysis and type systems [21,26,37,52]. Context sensitivity relies on func-
tion call contexts to separate the return types of different function calls. The
most widely used function call contexts are k-callsites [21,26,37] and argument
types [1,52], namely k-length call stacks and types of arguments of call-sites.
Figure 6 shows the proportion of polymorphic constructors that can be sepa-
rated by argument types or k-callsite contexts. For a polymorphic constructor,
if given an argument type/k-callsite of the constructor, only one object type
is observed to be constructed under the argument type/k-callsite, we mark the
constructor as separable by argument types/k-callsites. Otherwise, it is insep-
arable. According to Fig. 6, argument types effectively separate more than
80% of polymorphic constructors, implying the high dependency of constructed
object types on the argument types. However, k-callsites are not as effective as
argument types, although the separability increases with a longer callsite.
Object Evolution. Table 3 shows the prevalence of object evolution. Its second,
third, and fourth columns present the total number of objects, the ratio, and
the median proportion of objects that expose object evolution. The last three
columns of this table present the total number of classes, the ratio, and the
median proportion of classes that expose object evolution. Note that if any



What Types Are Needed for Typing Dynamic Objects? 35

object of one class exposes object evolution, we regard the class as exposing
object evolution. From the table, a large number of objects/classes (27%/33%)
expose object evolution, indicating the prevalence of object evolution. Besides,
SCI, FMT, and WEB have more objects/classes exposing object evolution and
we suspect the reason to be the specific functionalities of these categories. For
example, objects of class DecisionTree of the subject sklearn in the SCI category
are extended with new attributes after they are trained.

Now we know that object evolution happens frequently. But how do the
objects evolve, and how difficult it is to analyze the evolution?

How. Fig. 7 presents the statistics of evolution action. It shows the ratio
and median proportion of objects and classes that expose extension, modifica-
tion, and deletion, among all the evolving objects and classes. From this table,
extension and modification are dominant. Meanwhile, deletion seldom occurs:
although the ratio of deletion is around 10%, the median proportion is zero.

Furthermore, we analyze the pattern of evolution and find that most of the
evolution processes are monotonic. Monotonicity is a property that has been
used extensively in previous studies on object evolution [7,11,47]. Different from
the types described in Sect. 3, types based on monotonicity allow object evolu-
tion to be soundly analyzed without the need for store abstraction [39]. In this
study, following previous studies, we define monotonic evolution as the evolution
in which attributes are only added but not deleted, and when the type of one
attribute is changed, it only changes from a type to its subtype (we only con-
sider nominal subtype). We calculate the ratio of evolving objects that evolve
monotonically and find the ratio very high (85%). We believe that although
monotonicity has not been widely spread around the techniques for dynamic
languages, it is promising to propose systems utilizing it.

Function. The function where one evolution action happens significantly
influences the difficulty of analyzing it. As shown in Fig. 8, we divide the func-
tions where evolution actions happen into three kinds: Local means the evolution
action happens in the same function as the construction-site. Method means the
evolution action happens in one of the member methods of the evolving objects.
Those two kinds generally allow modular reasoning to be performed [30,51,55]
and are easier to analyze; Others denotes other functions. From the figure, we can
see that most functions are member methods of the object. There are also some
(23%) functions belonging to Local. Those findings indicate modular techniques
for analyzing object evolution should be able to cover most cases.

Condition. Figure 9 shows the conditions under which object evolution hap-
pens. More precisely, this figure shows the distribution of evolution locations
(evolution-sites), based on the intraprocedural preconditions. The intraproce-
dural precondition of one evolution-site is the condition that must be satisfied
to reach the evolution-site from the function entry. While in actual systems,
interprocedural preconditions (i.e., the condition to reach the function callsite)
must also be considered, collecting them requires a complicated infrastructure.
Thus, we use intraprocedural preconditions to speculate the difficulty of analyz-
ing the conditions. We split the intraprocedural preconditions into four major



36 K. Sun et al.

Fig. 8. Functions of
Object Evolution

Table 4. Overall Dynamism
Category Ratio Median

Static Hybrid Static Hybrid

SCI 0.54 0.14 0.59 0.11
PRG 0.60 0.03 0.67 0.02
WEB 0.61 0.05 0.50 0.05
TER 0.64 0.09 0.69 0.08
FMT 0.46 0.23 0.53 0.27
UTL 0.64 0.07 0.60 0.00
OTH 0.52 0.11 0.54 0.14
ALL 0.56 0.11 0.56 0.06 Fig. 9. Condition of Evo-

lution

Table 5. Results of the Evaluation of Class-based Types

Category Attributes Access-site Evaluation Absences

ALL POL EVA UNI TES LOC RN RA RB ABS CABS

SCI 18127 3802 1127 0.12 0.36 0.50 0.54 0.87 0.93 2623 239

PRG 2143 360 100 0.50 0.62 0.72 0.76 0.77 0.82 23 2

WEB 3842 957 217 0.13 0.26 0.41 0.59 0.74 0.95 572 58

TER 1126 187 36 0.36 0.78 0.83 0.92 0.86 0.94 12 0

FMT 1832 746 245 0.15 0.19 0.26 0.28 0.92 0.95 460 39

UTL 146 21 2 0.00 0.00 0.50 0.50 0.50 0.50 6 1

OTH 2145 231 31 0.42 0.55 0.55 0.65 0.87 0.97 114 6

ALL 29361 6304 1758 0.16 0.35 0.48 0.53 0.86 0.93 3810 345

kinds: (1) Uncond, where the precondition is simply True; (2) Iden, where the
precondition is not True, but all branches conduct evolution identically4; (3)
Excep, where the precondition is just to exclude the exceptional execution path
(e.g., if cond then raise exception else evolve); (4) Cond, where the precon-
dition does not belong to the previous three cases. From the figure, we can see
most (77%) of the evolution-sites fall into Uncound, Iden, or Excep. Meanwhile,
the proportion of Cond is still non-negligible (23%). This kind of evolution can be
precisely analyzed only by path-sensitive type systems. However, most existing
type systems for dynamic objects are not path-sensitive; instead, they merge the
different types of one object in different branches. Although there do exist path-
sensitive systems based on dependent and intersection types [16], or abstract
interpretation [36], those systems suffer from performance issues, and complex
type annotations [50]. To this end, we argue that more advanced techniques
should proposed, maybe by making better use of the potential correspondence
between conditional evolution and conditional accesses.
Overall Dynamism. Table 4 shows the overall dynamism of evaluated projects.
The second and fourth columns show the ratio and median proportion of classes
that do not expose any dynamic behaviors (i.e., static classes). The third and
fifth columns show the metrics of classes that expose both kinds of dynamic

4 In such cases, there is no need to precisely distinguish the branches.



What Types Are Needed for Typing Dynamic Objects? 37

behaviors (i.e., hybrid classes). From the table, the proportions of static classes
in all classes and within a project are both 56%. Since static objects are ideal for
performing program optimization [15,49], we believe that their high proportion
encourages more optimization for them. Also, the infrastructure of this paper is
a good start for identifying static objects/classes.

On the other hand, the ratio of classes that expose both behaviors is non-
negligible (11%). This implies that two behaviors are sometimes utilized simulta-
neously because they may serve different purposes. Thus, we believe it is promis-
ing to develop unified techniques to handle both dynamic behaviors.

5.2 Effectiveness of the Types

In this section, we analyze the effectiveness of class-based types and object-based
types. We start with the analysis of class-based types.
Class-Based Types. As discussed, polymorphic attributes are a good indicator
of the effectiveness of class-based types. Thus, we first analyze polymorphic
attributes, followed by an evaluation of the effectiveness of class-based types.
Polymorphic Attributes. Recall that an attribute is polymorphic if it holds a
union type. In other words, it is assigned with multiple classes or abs. The second
and third columns of Table 5 present the number of all attributes and polymor-
phic attributes. We observe that the proportion of polymorphic attributes is high
(6304/29361 = 21.4%), indicating their prevalence in dynamic languages.

To understand how types held by polymorphic attributes are related, we clas-
sify polymorphic attributes into six kinds in Fig. 10. These six kinds include: (a)
ABS, where each attribute (e.g., height) holds a single class or abs, (b) OPT,
where each attribute (e.g., width) holds a single class or NoneType, after removing
abs, (c) NOM, where each attribute holds multiple classes that, after removing
NoneType and abs, have nominal relation (i.e., the nominal join is not Object), (d)
NUM, where each attribute holds multiple classes that, after removing NoneType

and abs, are all numeric (i.e., builtin numeric classes, int and float, and user-
defined numeric classes, e.g., numpy.float32), (e) STRU, where each attribute
holds multiple classes that, after removing NoneType and abs, have structural
relation (i.e., the structural join is not Object), and (f) OTHE : the polymor-
phic attributes not belonging to previous kinds. When a polymorphic attribute
belongs to more than one kind, we classify it into the earlier appeared kind
because it is more specific. For example, the polymorphic attribute holding int

and float belongs to both NUM and STRU. We classify it into NUM since all
attributes belonging to NUM belong to STRU, but not vice versa.

From Fig. 10, we observe that a large proportion (53%+21%) of polymor-
phic attributes are ABS and OPT, meaning that most attributes are polymor-
phic because of abs or NoneType. Nevertheless, a significant proportion (26%)
of polymorphic attributes are actually assigned with multiple classes even after
removing abs and NoneType. Luckily, we find that most of those attributes do not
belong to OTHE , indicating that a supertype (in the sense of nominal, numeric,
or structural) is likely to be the intended type of each such attribute. Those



38 K. Sun et al.

Fig. 10. Classification Fig. 11. Object Addresses

attributes are likely to be used without precisely distinguishing their actual
types.
Evaluation. We will next evaluate the safety of accessing polymorphic attributes,
as specified in Sect. 4.2. In this study, we evaluate only the polymorphic
attributes for which at least one access-site exposes local constraints since con-
straints are necessary for the evaluation. Column EVA of Table 5 gives the ratio
of evaluated attributes, i.e., 27% (1758/6304). The reason that many polymor-
phic attributes are not evaluated is twofold. First, there are 27% (1711/6304)
attributes that we observe no access-site. The other attributes have access-sites
observed, but those access-sites expose constraints that can not be collected by
our local constraint generation rules. For example, the attributes may be passed
into another function, put into a global container, or directly returned.

Columns UNI through LOC of Table 5 show the ratio of evaluated attributes
that are determined to be safe. According to Sect. 4.2, an attribute is safe if
it satisfies the local constraints of all evaluated access-sites. Also, local type
refinements (i.e., type tests and local assignments) can be used to refine the
types of the evaluated attribute and make the accesses safe. To analyze the
effectiveness of local type refinements, we show the ratio of safe attributes with
and without local type refinements. First, Column UNI shows the ratio of safe
attributes without local type refinements. In this case, all access-sites of an
attribute have to be safe for all its classes. Overall, UNI attributes are about
16%. The UNI is much higher in some categories, such as PRG and OTH,
indicating that though polymorphic, attributes may be used uniformly without
distinguishing their types. Second, the attribute may be type-tested against
how it will be used, as illustrated in Sect. 3.1. The ratio of attributes that are
safe due to such tests or the previous reason is shown in Column TES . Third,
accessing polymorphic attributes may be safe thanks to local assignments [3]
before the access, as illustrated also in Sect. 3.1. The ratio of attributes whose
accesses are safe due to local assignments or previous reasons is shown in Column
LOC . The TES and LOC results for all subjects are 35% and 48%, respectively,
and are much higher in some categories (e.g., PRG, TER), meaning that local
type refinements can significantly increase the effectiveness of class-based types.



What Types Are Needed for Typing Dynamic Objects? 39

Threats to Validity. There are three threats to the validity. First, since we only
evaluate 27% of all polymorphic attributes, it is possible that the findings can-
not be generalized to all polymorphic attributes. We do believe that the results
are generalizable, however, since the difficulty in collecting constraints is due
to the surrounding contexts which do not affect typing in general. To test this
assumption, we sampled 300 polymorphic attributes from the 73% unevaluated
attributes and conducted a manual analysis of them. We provided the necessary
annotations to calculate LOC and RB for those attributes. The results are very
close to the ones in Table 5, with LOC = 50%, and RB = 97%. Second, since
we do not consider interprocedural constraints, it is possible that the types are
actually unsafe to use in the access-site, but we report them to be safe. To this
end, we manually investigate 100 safe attributes from the attributes belonging to
LOC , and analyze if they are actually safe. Among the 100 attributes, we find no
unsafe attributes. Thus, we believe that local constraints are effective in deter-
mining the safety of polymorphic attributes. Third, our interpretation of type
tests is not complete. We only consider built-in type tests such as isinstance

and hasattr and their boolean combinations, and ignore user-defined type tests
and value tests. It is possible that the attributes considered unsafe by our app-
roach are actually safe if we consider more complete type tests. To this end, we
additionally classify all attributes “mentioned” in the type tests as safe. In this
setting, LOC reaches 51%, only 3% higher than the original LOC results. Thus,
we believe that our interpretation of type tests covers most cases.
Attribute Absences. For the 52% of attributes whose accesses are deemed unsafe,
we manually investigate them and find the main reason is that attributes may
hold abs or NoneType but are used without type tests or local assignments. Com-
bined with our observation that a large proportion of attributes are ABS or OPT,
we conduct an additional experiment to evaluate the connection between those
two types and type safety. Specifically, for each attribute deemed as unsafe, we
discard NoneType, abs, and both of them and rerun the experiment. For example,
when evaluating width/height against their access-sites in measure, we remove
NoneType and abs from their types and evaluate int only. We show the results
of removing NoneType, abs, and both in columns RN, RA, and RB, respectively.
According to the results, removing NoneType helps increase the proportion (48%
to 53%), while removing absences helps significantly (48% to 86%), implying
that attribute absences are the main cause of the type errors.

Since attribute absences are the main cause of the type errors, we conduct
a specialized analysis of their sources, as shown in Columns ABS and CABS.
ABS shows the number of polymorphic attributes holding abs, while CABS
shows the same number when we only consider just-constructed objects. It can
be observed from the results that construction contributes a little (345/3810 =
9%) to attribute absences, which implies that evolution is the main source of
absences.
Object-Based Types. As discussed earlier, object addresses play an important
role in object-based types. In this section, we first investigate several object
addresses and then the effectiveness of object-based types.



40 K. Sun et al.

Table 6. Results of the Evaluation of Object-based Types

CAT Flow-insensi Flow-sensi Strong Updates (wo/w Recency)

CLS L0 L2 L4 CLS L0 L2 L4 CLS L0 L2 L4

SCI 0.50 0.55 0.55 0.56 0.51 0.55 0.56 0.56 0.52/0.65 0.58/0.72 0.61/0.94 0.62/0.94

PRG 0.72 0.78 0.85 0.85 0.74 0.79 0.86 0.86 0.74/0.78 0.79/0.84 0.87/0.91 0.87/0.91

WEB 0.41 0.44 0.46 0.46 0.41 0.45 0.46 0.46 0.48/0.83 0.55/0.91 0.57/0.93 0.57/0.93

TER 0.83 0.86 0.92 0.92 0.83 0.86 0.92 0.92 0.86/0.89 0.89/0.92 0.94/0.97 0.94/0.97

FMT 0.26 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.26/0.35 0.27/0.37 0.27/0.37 0.28/0.37

UTL 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

OTH 0.55 0.58 0.58 0.58 0.55 0.58 0.58 0.58 0.65/0.77 0.77/0.97 0.77/0.97 0.77/0.97

ALL 0.48 0.51 0.53 0.53 0.49 0.52 0.53 0.53 0.50/0.65 0.55/0.71 0.58/0.86 0.59/0.86

Object Addresses. Recall that an address is nonlinear if it refers to multi-
ple objects. Nonlinear addresses prevent strong updates. There are two solu-
tions to this problem: more precise addresses or recency abstraction. To mea-
sure the effectiveness of more precise addresses, we compare four kinds of
addresses, including class names and class names extended with 0/2/4-callsite
of construction-sites (the 0-callsite case is simply construction location and so
on for the rest). In Fig. 11, Nonlinear results measure the proportion of evolving
classes that have at least two objects referred to by a single address. To measure
the effectiveness of recency abstraction, we compare object addresses with and
without recency abstraction. For an address with recency abstraction, strong
updates cannot be performed when it refers to inrecent, evolving objects. Inre-
cency measures the proportion of evolving classes that have at least one address
witnessing such a problem. From the figure, we can observe that the class name
can easily be nonlinear, as 93% of the class names are nonlinear. More precise
addresses help insignificantly. However, recency abstraction helps significantly.
Even with the most imprecise object address (class name), only 34% of evolv-
ing classes belong to Inrecency. With 2-callsite only 15% of the evolving classes
belong to Inrecency. In other words, with 2-callsite, most (85%) classes support
strong updates.
Evaluation. We now extend the evaluation of class-based types to object-based
types. The results are shown in Table 6. Columns under “Flow-insensi” show
the proportion of safe polymorphic attributes when typed under flow-insensitive
store abstraction with the four kinds of object addresses. CLS shows the propor-
tion when class names are used as object addresses. This column is the same as
the LOC column of Table 5. L0, L2, and L4 show the proportions when 0/2/4
callsite of the construction-sites are used to extend the class names. Note that
to keep the comparison with class-based types straightforward, we enable local
refinements and use the same polymorphic attributes as in the evaluation of
class-based types. It is possible that one attribute (e.g., title) is not polymor-
phic anymore when typed under more precise addresses. Even so, we still include
it. It can be observed that using more precise object addresses increases the pre-



What Types Are Needed for Typing Dynamic Objects? 41

cision. However, the improvement is not significant. Columns under “Flow-sensi”
show the same metrics but with flow-sensitive store abstraction. It can be shown
that flow-sensitivity alone cannot improve the precision much. Flow-sensitivity
alone (i.e., without strong updates) is effective only if one object can do some-
thing before taking some evolution actions, but not after. We can observe that
such conditions should be rare since flow-sensitivity alone is not effective. This
observation also aligns with our previous finding that object evolution is mostly
monotonic, which means that objects gain new abilities as the evolution goes
on, but never lose old abilities.

Columns under “Strong Updates” show the same metrics, but strong updates
are performed for linear addresses/addresses that obey recency abstraction.
Overall, we can find that the ability to perform strong updates significantly
improves precision. This finding conforms to our previous finding that most
errors are caused by attribute absences, which are themselves caused by object
evolution. Strong updates make it possible to distinguish the object type before
and after the evolution, and thus eliminate attribute absences and increase pre-
cision. Meanwhile, it can be observed that only performing strong updates for
linear addresses is not sufficient, and using recency abstraction helps significantly,
especially when used together with L2 or more precise addresses.

Note that our evaluation of object-based types only reveals the upper bound
of the precision. The precision of object-based types is also influenced by other
factors such as the analysis of function calls/control flows (which determines
whether the effects of different function calls/control flows are precisely sepa-
rated). As the results in Sect. 5.1 suggest, the analysis of them is not a trivial
task. However, since we want to focus on the factors that are specific to object
types, while those factors influence the typing of the whole program, we do not
conduct a detailed analysis of them and assume them to be precisely analyzed5.
In other words, our aim is not to conduct a systematic evaluation of object-based
types, but to derive observations on some important and representative factors.
Discussion. Now, we summarize the observations gained from our analysis and
make suggestions on real-world type systems.
Class-Based Types. As can be observed from our experiment, class-based types
can handle many polymorphic attributes. The effectiveness of class-based types
is contributed significantly by local type refinement techniques, especially the
ability to interpret type tests (a feature typically referred to as occurrence typ-
ing [13,28,48]). Moreover, since we find that our relatively simple “occurrence
typing” covers most cases, we believe that the technique for occurrence typing
needs not be very complicated to fulfill practical uses.

On the other hand, many polymorphic attributes cannot be handled by class-
based types yet, especially when they hold abs. To make this insight more con-
crete, we check the polymorphic attributes with Pyright [35], a widely-used class-
based type checker for Python, using class-based types similar to ours. More
specifically, we randomly sample 100 polymorphic attributes from the 52% of
the polymorphic attributes thought as unsafe in our study. We provide neces-

5 As a dynamic analysis, we can naturally simulate the precision analysis of them.



42 K. Sun et al.

sary type annotations for those polymorphic attributes and their related code
and check the code with Pyright. We found that type errors are reported for 95
of the attributes. The reason that errors are not reported for some attributes is
due to the unsound aspects of Pyright. For example, Pyright does not raise any
error for the attribute whose corresponding class overrides the getattr method.
Object-Based Types. It is obvious from the results that object-based types are
much more precise than class-based types. However, we want to emphasize that
although our results are in favor of object-based types to a large extent, we
do not mean that class-based types are useless since most of the spurious type
errors related to class-based types are just caused by attribute absences, which
are normally not expected to be excluded statically6. What’s more, type check-
ing/inference of class-based types is faster, and annotating class-based types is
much easier than object-based types [38]. Thus, we suggest using these two
kinds of types accordingly. In the scenarios where errors such as type mis-
matches are emphasized, and attribute absences matter less, we recommend
class-based types. Meanwhile, in the scenarios where more rigorous verification
is expected [12,18], we believe that object-based types are more suitable. In
particular, in dependent type systems [16,50], object-based types with strong
updates should be preferred, since they can help dependent type systems prove
stronger properties.
Typestate-Based Types. At last, we discuss typestates [6,46]. By modeling evo-
lution processes as finite state machines, typestates allow fine-grained represen-
tation of classes whose instances evolve. Typically, users must provide typestate
annotations to use such types. However, recent studies [12,20] have proposed an
inference algorithm for typestate annotations, when only attribute absences are
concerned and evolution happens only inside member methods. Since we have
found that attribute absences are the main cause of type errors and evolution
does happen mainly inside member methods, we believe that it is promising
to utilize typestate-based types. Future work in this direction should carefully
differentiate among three states of an attribute, that is, absent, uninitialized
(holding None), and initialized. What’s more, adopting typestate-based types
also requires some kind of strong update mechanism and can benefit from the
monotonicity, which some findings in our study should help.

6 Conclusion and Future Work

In this paper, we conduct a systematic evaluation of object dynamism and object
types. Our results reveal the prevalence of dynamic object behaviors. We also
evaluate the widely used types for handling object dynamism and draw impor-
tant implications for them. Although our study is set on Python, we expect the
main findings to be transferable to other dynamic languages, since they share
the same core semantics. For future work, we plan to build a type system for
dynamic object-oriented languages based on the insights gained in this study.

6 Even some static languages such as Java do not exclude them.



What Types Are Needed for Typing Dynamic Objects? 43

References

1. Agesen, O.: The Cartesian product algorithm. In: Tokoro, M., Pareschi, R. (eds.)
ECOOP 1995. LNCS, vol. 952, pp. 2–26. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-49538-X 2

2. Ahmed, A., Fluet, M., Morrisett, G.: L3: a linear language with locations. Funda-
menta Informaticae 77(4), 397–449 (2007)

3. Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local non-
aliasing. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pp. 129–140 (2003)

4. Åkerblom, B., Stendahl, J., Tumlin, M., Wrigstad, T.: Tracing dynamic features
in python programs. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, pp. 292–295 (2014)

5. Åkerblom, B., Wrigstad, T.: Measuring polymorphism in python programs. In:
Proceedings of the 11th Symposium on Dynamic Languages, pp. 114–128 (2015)

6. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming.
In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applications, pp. 1015–1022 (2009)

7. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for
JavaScript. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452.
Springer, Heidelberg (2005). https://doi.org/10.1007/11531142 19

8. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006).
https://doi.org/10.1007/11823230 15

9. Barbanera, F., Dezaniciancaglini, M., Deliguoro, U.: Intersection and union types:
syntax and semantics. Inf. Comput. 119(2), 202–230 (1995)

10. Bierman, G., Abadi, M., Torgersen, M.: Understanding TypeScript. In: Jones, R.
(ed.) ECOOP 2014. LNCS, vol. 8586, pp. 257–281. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44202-9 11

11. Blaudeau, C., Liu, F.: A conceptual framework for safe object initialization: a prin-
cipled and mechanized soundness proof of the celsius model. Proc. ACM Program.
Lang. 6(OOPSLA2), 729–757 (2022)

12. Bravetti, M., et al.: Behavioural types for memory and method safety in a core
object-oriented language. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470,
pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6 6

13. Castagna, G., Laurent, M., Nguyen, K., Lutze, M.: On type-cases, union elimina-
tion, and occurrence typing. Proc. ACM Program. Lang. 6(POPL), 1–31 (2022)

14. Chen, Z., Li, Y., Chen, B., Ma, W., Chen, L., Xu, B.: An empirical study on
dynamic typing related practices in python systems. In: Proceedings of the 28th
International Conference on Program Comprehension, pp. 83–93 (2020)

15. Choi, W., Chandra, S., Necula, G., Sen, K.: SJS: a type system for JavaScript with
fixed object layout. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp.
181–198. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-
9 11

16. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, pp. 587–606 (2012)

17. Eifrig, J., Smith, S., Trifonov, V.: Sound polymorphic type inference for objects.
In: Proceedings of the Tenth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 169–184 (1995)

https://doi.org/10.1007/3-540-49538-X_2
https://doi.org/10.1007/3-540-49538-X_2
https://doi.org/10.1007/11531142_19
https://doi.org/10.1007/11823230_15
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/978-3-662-48288-9_11
https://doi.org/10.1007/978-3-662-48288-9_11


44 K. Sun et al.

18. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: Proceedings of the 18th Annual ACM SIGPLAN Conference
on Object-Oriented Programing, Systems, Languages, and Applications, pp. 302–
312 (2003)

19. Furr, M., An, J.h., Foster, J.S., Hicks, M.: Static type inference for ruby. In: Pro-
ceedings of the 2009 ACM Symposium on Applied Computing, pp. 1859–1866
(2009)

20. Golovanov, I., Jakobsen, M.S., Kettunen, M.K.: Typestate inference for mungo:
Algorithm and implementation. Online Material (2020)

21. Google: Pytype, a static type analyzer for python code. Online Material (2023)
22. Hassan, M., Urban, C., Eilers, M., Müller, P.: MaxSMT-based type inference for

Python 3. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part II. LNCS,
vol. 10982, pp. 12–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96142-2 2

23. Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200–224. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14107-2 10

24. Holkner, A., Harland, J.: Evaluating the dynamic behaviour of python applica-
tions. In: Proceedings of the Thirty-Second Australasian Conference on Computer
Science, vol. 91, pp. 19–28 (2009)

25. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. (TOPLAS) 23(3), 396–450
(2001)

26. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

27. Kaleba, S., Larose, O., Jones, R., Marr, S.: Who you gonna call: analyzing the
run-time call-site behavior of ruby applications. In: Proceedings of the 18th ACM
SIGPLAN International Symposium on Dynamic Languages, pp. 15–28 (2022)

28. Kent, A.M., Kempe, D., Tobin-Hochstadt, S.: Occurrence typing modulo theories.
ACM SIGPLAN Not. 51(6), 296–309 (2016)

29. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo. In: Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming, pp. 146–159 (2016)

30. Lehtosalo, J.: Optional static typing for python. Online Material (2023)
31. Lerner, B.S., Politz, J.G., Guha, A., Krishnamurthi, S.: TeJaS: retrofitting type

systems for JavaScript. ACM SIGPLAN Not. 49(2), 1–16 (2013)
32. Madhavan, R., Komondoor, R.: Null dereference verification via over-approximated

weakest pre-conditions analysis. ACM Sigplan Not. 46(10), 1033–1052 (2011)
33. Maia, E., Moreira, N., Reis, R.: A static type inference for python. Proc. DYLA

5(1), 1 (2012)
34. McGugan, W.: Rich, a python library for rich text and beautiful formatting in the

terminal. Online Material (2023)
35. Microsoft: Pyright, a static type checker for python. Online Material (2023)
36. Monat, R., Ouadjaout, A., Miné, A.: Static type analysis by abstract interpretation

of python programs. In: 34th European Conference on Object-Oriented Program-
ming (ECOOP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

37. Oxhøj, N., Palsberg, J., Schwartzbach, M.I.: Making type inference practical. In:
Madsen, O.L. (ed.) ECOOP 1992. LNCS, vol. 615, pp. 329–349. Springer, Heidel-
berg (1992). https://doi.org/10.1007/BFb0053045

https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1007/978-3-642-14107-2_10
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/BFb0053045


What Types Are Needed for Typing Dynamic Objects? 45

38. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
39. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Proceedings of the

7th ACM SIGPLAN Workshop on Types in Language Design and Implementation,
pp. 73–86 (2011)

40. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & efficient
gradual typing for typescript. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 167–180 (2015)

41. Richards, G., Hammer, C., Burg, B., Vitek, J.: The eval that men do. In: Mezini,
M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 52–78. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22655-7 4

42. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of JavaScript programs. In: Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 1–12 (2010)

43. Rondon, P.M., Kawaguchi, M., Jhala, R.: Low-level liquid types. ACM Sigplan
Not. 45(1), 131–144 (2010)

44. Salib, M.: Starkiller: a static type inferencer and compiler for Python. Ph.D. thesis,
Massachusetts Institute of Technology (2004)

45. Smith, F., Walker, D., Morrisett, G.: Alias types. In: Smolka, G. (ed.) ESOP 2000.
LNCS, vol. 1782, pp. 366–381. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-46425-5 24

46. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. SE-12(1), 157–171 (1986). https://
doi.org/10.1109/TSE.1986.6312929

47. Summers, A.J., Müller, P.: Freedom before commitment: a lightweight type system
for object initialisation. In: Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, pp. 1013–
1032 (2011)

48. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: Pro-
ceedings of the 15th ACM SIGPLAN International Conference on Functional Pro-
gramming, pp. 117–128 (2010)

49. Van Rossum, G., Drake, F.L., Jr.: The Python Language Reference. Python Soft-
ware Foundation, Wilmington (2014)

50. Vekris, P., Cosman, B., Jhala, R.: Refinement types for typescript. In: Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 310–325 (2016)

51. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for python. In: Proceedings of the 10th ACM Symposium on Dynamic
languages, pp. 45–56 (2014)

52. Wang, T., Smith, S.F.: Precise constraint-based type inference for Java. In: Knud-
sen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 99–117. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45337-7 6

53. Wang, Y.: PySonar2: an advanced semantic indexer for python. Online Material
(2019)

54. Wei, S., Xhakaj, F., Ryder, B.G.: Empirical study of the dynamic behavior of
JavaScript objects. Softw. Pract. Exper. 46(7), 867–889 (2016)

55. Zhao, T.: Polymorphic type inference for scripting languages with object exten-
sions. In: Proceedings of the 7th Symposium on Dynamic Languages, pp. 37–50
(2011)

https://doi.org/10.1007/978-3-642-22655-7_4
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1007/3-540-45337-7_6

	What Types Are Needed for Typing Dynamic Objects? A Python-Based Empirical Study
	1 Introduction
	2 Background
	2.1 Dynamic Object Behaviors in Python
	2.2 Existing Studies on Dynamic Behaviors

	3 Types for Dynamic Objects
	3.1 Class-Based Types
	3.2 Object-Based Types

	4 Experimental Design
	4.1 Subjects
	4.2 Tracing and Analysis Infrastructure

	5 Results and Analysis
	5.1 Prevalence of Dynamic Behaviors
	5.2 Effectiveness of the Types

	6 Conclusion and Future Work
	References


