
Chung-Kil Hur (Ed.)
LN

CS
 1

44
05

21st Asian Symposium, APLAS 2023 
Taipei, Taiwan, November 26–29, 2023 
Proceedings

Programming Languages 
and Systems



Lecture Notes in Computer Science 14405
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Chung-Kil Hur
Editor

Programming Languages
and Systems
21st Asian Symposium, APLAS 2023
Taipei, Taiwan, November 26–29, 2023
Proceedings



Editor
Chung-Kil Hur
Seoul National University
Seoul, Korea (Republic of)

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-981-99-8310-0 ISBN 978-981-99-8311-7 (eBook)
https://doi.org/10.1007/978-981-99-8311-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023
Chapters “Compilation Semantics for a ProgrammingLanguagewithVersions” and “Towards a Framework for
Developing Verified Assemblers for the ELF Format” are licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see
license information in the chapters.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Paper in this product is recyclable.

https://orcid.org/0000-0002-1656-0913
https://doi.org/10.1007/978-981-99-8311-7
http://creativecommons.org/licenses/by/4.0/


Preface

This volumecontains the papers presented at the 21stAsianSymposiumonProgramming
Languages and Systems (APLAS 2023), held in Taipei, Taiwan duringNovember 26–29,
2023. APLAS aims to stimulate programming language research by providing a forum
for the presentation of the latest results and the exchange of ideas in programming
languages and systems. APLAS is based in Asia but is an international forum that serves
the worldwide programming languages community.

APLAS 2023 solicited contributions in the form of regular research papers. Among
others, solicited topics included the following: semantics, logics, and foundational
theory; design of languages, type systems, and foundational calculi; domain-specific
languages; compilers, interpreters, and abstract machines; program derivation, syn-
thesis, and transformation; program analysis, verification, and model-checking; logic,
constraint, probabilistic, and quantum programming; software security; concurrency
and parallelism; tools and environments for programming and implementation; and
applications of SAT/SMT to programming and implementation.

This year we employed a lightweight double-blind reviewing process with an author
response period. Each paper received at least three reviews before the author response
period, which was followed by a 12-day period of Program Committee (PC) discussion.
We received 36 submissions, out of which 4 submissions were desk-rejected due to
formatting issues. After a rigorous assessment, the PC accepted 15 papers. Additionally,
after reviewing the final versions of papers, the PC discussed and selected the following
paper as the best paper, deserving of this extra recognition.

– A Fresh Look at Commutativity: Free Algebraic Structures via Fresh Lists.
Clemens Kupke, Fredrik Nordvall Forsberg, Sean Watters.

We were also honored to include three invited talks by distinguished researchers:

– Hakjoo Oh (Korea University, South Korea) on “Data-Driven Static Analysis”
– Bow-Yaw Wang (Academia Sinica, Taiwan) on “Certified Automatic Verification of

Industrial Cryptographic Primitive Programs”
– YongKiamTan (Institute for InfocommResearch,A*STAR,Singapore) on “Covering

the Last Mile in Trustworthy Automated Reasoning with CakeML”

The success of this program owes a debt of gratitude to the dedicated individuals
whose efforts were instrumental. I extend my sincere thanks to the Program Committee,
sub-reviewers, and external expert reviewers for their diligent work in selecting robust
papers and providing constructive feedback in their reviews.

Special appreciation goes to Shin-Cheng Mu (Academia Sinica, Taiwan), who, as
the General Chair of APLAS 2023, carefully managed all conference details. Ryosuke
Sato (University of Tokyo, Japan), in his role as the Publicity Chair, was consistently
responsive and invaluable. I also wish to express my deep gratitude to the APLAS Steer-
ing Committee for their leadership. Finally, I would like to acknowledge the organizers



vi Preface

of the associated events that contributed to the success of APLAS 2023: the Poster
Session and Student Research Competition, led by Hsiang-Shang ‘Josh’ Ko (Academia
Sinica, Taiwan), and the APLAS Workshop on New Ideas and Emerging Results, held
by Atsushi Igarashi (Kyoto University, Japan).

October 2023 Chung-Kil Hur



Organization

General Chair

Shin-Cheng Mu Academia Sinica, Taiwan

Publicity Chair

Ryosuke Sato University of Tokyo, Japan

Program Chair

Chung-Kil Hur Seoul National University, South Korea

Program Committee

Soham Chakraborty TU Delft, The Netherlands
Yu-Fang Chen Academia Sinica, Taiwan
Ronghui Gu Columbia University, USA
Ichiro Hasuo National Institute of Informatics, Japan
Ralf Jung ETH Zurich, Switzerland
Ohad Kammar University of Edinburgh, UK
Jeehoon Kang KAIST, South Korea
Jieung Kim Inha University, South Korea
Robbert Krebbers Radboud University Nijmegen, The Netherlands
Ori Lahav Tel Aviv University, Israel
Doug Lea State University of New York at Oswego, USA
Woosuk Lee Hanyang University, South Korea
Hongjin Liang Nanjing University, China
Nuno P. Lopes University of Lisbon, Portugal
Chandrakana Nandi Certora, USA
Liam O’Connor University of Edinburgh, UK
Bruno C. d. S. Oliveira University of Hong Kong, China
Jihyeok Park Korea University, South Korea
Clément Pit-Claudel EPFL, Switzerland
Matthieu Sozeau Inria, France



viii Organization

Kohei Suenaga Kyoto University, Japan
Tarmo Uustalu Reykjavik University, Iceland
John Wickerson Imperial College London, UK
Danfeng Zhang Penn State University, USA

SRC and Posters Chair

Hsiang-Shang ‘Josh’ Ko Academia Sinica, Taiwan

Workshop on New Ideas and Emerging Results Organizer

Atsushi Igarashi Kyoto University, Japan

Additional Reviewers

Philipp Joram
Xupeng Li
Dylan McDermott
Matthew Might
Yaozhu Sun
Jinhao Tan
Runzhou Tao
Jianan Yao



Contents

Types

Compilation Semantics for a Programming Language with Versions . . . . . . . . . . 3
Yudai Tanabe, Luthfan Anshar Lubis, Tomoyuki Aotani,
and Hidehiko Masuhara

What Types Are Needed for Typing Dynamic Objects? A Python-Based
Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Ke Sun, Sheng Chen, Meng Wang, and Dan Hao

Types and Semantics for Extensible Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Cas van der Rest and Casper Bach Poulsen

Functional Languages

A Diamond Machine for Strong Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Beniamino Accattoli and Pablo Barenbaum

Proofs as Terms, Terms as Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Jui-Hsuan Wu

Typed Non-determinism in Functional and Concurrent Calculi . . . . . . . . . . . . . . . 112
Bas van den Heuvel, Joseph W. N. Paulus, Daniele Nantes-Sobrinho,
and Jorge A. Pérez

Interactive Theorem Proving

A Fresh Look at Commutativity: Free Algebraic Structures via Fresh Lists . . . . . 135
Clemens Kupke, Fredrik Nordvall Forsberg, and Sean Watters

Oracle Computability and Turing Reducibility in the Calculus of Inductive
Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Yannick Forster, Dominik Kirst, and Niklas Mück

Experimenting with an Intrinsically-Typed Probabilistic Programming
Language in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Ayumu Saito and Reynald Affeldt



x Contents

Verification

Towards a Framework for Developing Verified Assemblers for the ELF
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Jinhua Wu, Yuting Wang, Meng Sun, Xiangzhe Xu, and Yichen Song

Transport via Partial Galois Connections and Equivalences . . . . . . . . . . . . . . . . . . 225
Kevin Kappelmann

Argument Reduction of Constrained Horn Clauses Using Equality
Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Ryo Ikeda, Ryosuke Sato, and Naoki Kobayashi

Static Analysis and Testing

Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection . . . . 269
Wenhua Li, Quang Loc Le, Yahui Song, and Wei-Ngan Chin

m-CFA Exhibits Perfect Stack Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Kimball Germane

TorchProbe: Fuzzing Dynamic Deep Learning Compilers . . . . . . . . . . . . . . . . . . . 310
Qidong Su, Chuqin Geng, Gennady Pekhimenko, and Xujie Si

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333



Types



Compilation Semantics for a Programming
Language with Versions

Yudai Tanabe1(B) , Luthfan Anshar Lubis2 , Tomoyuki Aotani3 ,
and Hidehiko Masuhara2

1 Kyoto University, Kyoto, Japan
yudaitnb@fos.kuis.kyoto-u.ac.jp

2 Tokyo Institute of Technology, Tokyo, Japan
luthfanlubis@prg.is.titech.ac.jp, masuhara@acm.org

3 Sanyo-Onoda City University, Yamaguchi, Japan
aotani@rs.socu.ac.jp

Abstract. Programming with versions is a paradigm that allows a pro-
gram to use multiple versions of a module so that the programmer can
selectively use functions from both older and newer versions of a single
module. Previous work formalized λVL, a core calculus for programming
with versions, but it has not been integrated into practical programming
languages. In this paper, we propose VL, a Haskell-subset surface lan-
guage for λVL along with its compilation method. We formally describe
the core part of the VL compiler, which translates from the surface lan-
guage to the core language by leveraging Girard’s translation, soundly
infers the consistent version of expressions along with their types, and
generates a multi-version interface by bundling specific-version interfaces.
We conduct a case study to show how VL supports practical software
evolution scenarios and discuss the method’s scalability.

Keywords: Type system · Type inference · Version control system

1 Introduction

Updating dependent software packages is one of the major issues in software
development. Even though a newer version of a package brings improvements,
it also brings the risk of breaking changes, which can make the entire software
defective.

We argue that this issue originates from the principle of most programming
languages that only allow the use of one version of a package at a time. Due to
this principle, developers are faced with the decision to either update to a new,
improved version of a package that requires many changes or to remain with an
older version. The problem gets worse when a package is indirectly used. This
dilemma often results in delays in adopting upgrades, leading to stagnation in
software development and maintenance [2,16].

Programming with versions [15,28,29,31] is a recent proposal that allows
programming languages to support multiple versions of programming elements
c© The Author(s) 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 3–23, 2023.
https://doi.org/10.1007/978-981-99-8311-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_1&domain=pdf
http://orcid.org/0000-0002-7990-0989
http://orcid.org/0000-0002-1498-7788
http://orcid.org/0000-0003-4538-0230
http://orcid.org/0000-0002-8837-5303
https://doi.org/10.1007/978-981-99-8311-7_1


4 Y. Tanabe et al.

at a time so that the developer can flexibly cope with incompatible changes. λVL

is the core calculus in which a versioned value encapsulates multiple versions of
a value (including a function value). The λVL type system checks the consistency
of each term so that a value produced in a version is always passed to functions in
the same version. The calculus and the type system design are based on coeffect
calculus [3,20].

While λVL offers the essential language constructs to support multiple ver-
sions in a program, the language is far from practical. For example, with multiple
versions of a module, each version of the function must be manually represented
inside a versioned value (i.e., a record-like expression). λVL is as simple as lambda
calculus, yet it has a verbose syntax due to the coeffect calculus. In short, there
are aspects of versioning in λVL that a surface language compiler can automate.

We propose the functional language VL as a surface language for λVL along
with its compilation method. In VL, a function name imported from an external
module represents a multi-version term, where each occurrence of the function
name can reference a different version of the function. The VL compiler trans-
lates a program into an intermediate language VLMini, a version-label-free vari-
ant of λVL, determines the version for each name occurrence based on a type
and version inference algorithm, and translates it back into a version-specialized
Haskell program. VL also offers the constructs to explicitly control versions of
expressions, which are useful to keep using an older version for some reason.

This paper presents the following techniques in VL: (a) an application of
Girard’s translation for translating VL into VLMini, (b) the bundling for mak-
ing a top-level function act as a versioned value, and (c) a type and version
inference algorithm for identifying the version of each expression with respect
to the λVL type system. Finally, we prove the soundness of the inference system
and implement a VL compiler. Code generation converts a VL program into a
version-specialized Haskell program using the solution obtained from z3 [18].

Paper Organization. Section 2 introduces incompatibility issues and fundamental
concepts in programming with versions with λVL and VL. Section 3 introduces
bundling and Girard’s transformation. Section 4 presents an algorithmic version
inference for VL. Section 5 features an implementation of VL, and Sect. 6 intro-
duces a case study that simulates an incompatible update made in a Haskell
library. Finally, Sect. 7 discusses further language development and concludes
the paper by presenting related work and a conclusion.

2 Overview

2.1 Motivating Example

First, we will explain a small example to clarify incompatibility issues. Consider a
scenario where an incompatible change is made to a dependent package. Figure 1
shows the package dependencies in a file explorer App based on a hash-based
file search. This function is developed using the system library Dir and the
cryptography library Hash. For simplicity, we equate packages and modules here



Compilation Semantics for a Programming Language with Versions 5

Fig. 1. Minimal module configuration before and after the dependency update causing
an error due to inconsistency expected to the dependent package.

(each package consists of a single module), and we only focus on the version of
Hash. The pseudocode is written in a Haskell-like language.

Before its update, App depends on version 1.0.0 of Hash (denoted by ���).
The App’s main function implements file search by a string from standard input
using mkHash and exists. The function mkHash is in version 1.0.0 of Hash,
and it generates a hash value using the MD5 algorithm from a given string. Hash
also provides a function match that determines if the argument string and hash
value match under mkHash. The function exists is in version 1.0.0 of Dir,
which is also dependent on version 1.0.0 of Hash, and it determines if a file with
a name corresponding to a given hash exists.

Due to security issues, the developer of App updated Hash to version 2.0.0
(denoted by −→). In version 2.0.0 of Hash, SHA-3 is adopted as the new hash
algorithm. Since Dir continues to use version 1.0.0 of Hash, App needs two
different versions of Hash. Various circumstances can lead to this situation: Dir
may have already discontinued maintenance, or functions in Dir, other than
exists, might still require the features provided by version 1.0.0 of Hash.



6 Y. Tanabe et al.

Although the update does not modify App, it causes errors within App. Even
if a file with an input filename exists, the program returns Not Found error con-
trary to the expected behavior. The cause of the unexpected output lies in the
differences between the two versions required for main. In line 6 of App, an SHA-
3 hash value is generated by mkHash and assigned to digest. Since exists
evaluates hash equivalence using MD5, exists digest compares hashes gen-
erated by different algorithms, evaluating to false.

This example highlights the importance of version compatibility when deal-
ing with functions provided by external packages. Using different versions of
Hash in separate program parts is fine, but comparing results may be seman-
tically incorrect. Even more subtle changes than those shown in Fig. 1 can lead
to significant errors, especially when introducing side effects or algorithm modi-
fications that break the application’s implicit assumptions. Manually managing
version compatibility for all external functions is unfeasible.

In practical programming languages, dependency analysis is performed before
the build process to prevent such errors, and package configurations requiring
multiple versions of the same package are rejected. However, this approach tends
towards conservative error reporting. In cases where a core package, which many
other libraries depend on, receives an incompatible change, no matter how minus-
cule, it requires coordinated updates of diverse packages across the entire package
ecosystem [2,29,32].

2.2 λVL

λVL [28,29] is a core calculus designed to follow the principles: (1) enabling
simultaneous usage of multiple versions of a package, (2) ensuring version con-
sistency within a program. λVL works by encapsulating relevant terms across
multiple versions into a record-like term, tagged with a label indicating the spe-
cific module version. Record-like terms accessible to any of its several versions
are referred to as versioned values, and the associated labels are called version
labels.

Version Labels. Figure 2 shows the syntax of λVL. Given modules and their
versions, the corresponding set of version labels characterizes the variation of
programs of a versioned value. In λVL, version labels are implicitly generated
for all external module-version combinations, in which Mi is unique, with the
universal set of these labels denoted by L. Specifically, in the example illustared
in Fig. 1, L = {l1, l2} and l1 = {Hash = 1.0.0, Dir = 1.0.0}, l2 = {Hash =
2.0.0, Dir = 1.0.0}. The size of L is proportional to V M where M is the number
of modules and V is the maximum number of versions.

Syntax of λVL. λVL extends �RPCF [3] and GrMini [20] with additional terms
that facilitate introducing and eliminating versioned values. Versioned values
can be introduced through versioned records {li = ti} and promotions [t]. A ver-
sioned record encapsulates related definitions t1, . . . , tn across multiple versions



Compilation Semantics for a Programming Language with Versions 7

λVL syntax

t ::= n | x | t1 t2 | λx.t | let [x] = t1 in t2 | u.l | 〈li = ti | lk〉 | u (terms)

u ::= [t] | {li = ti} (versioned values)

A, B ::= Int | A → B | �rA (types)

r ::= ⊥ | { li } (resources)

L � l ::= {Mi = Vi} (version labels)

Mi and Vi are metavariables over module names and versions of Mi, respectively.

Fig. 2. The syntax of λVL.

and their version labels l1, . . . , ln. For instance, the two versions of mkHash in
Fig. 1 can be bundled as the following version record.

mkHash :=
{l1 = λs.{- make MD5 hash -},

l2 = λs.{- make SHA-3 hash -}}
In λVL, programs are constructed via function application of versioned values.

A function application of mkHash to the string s can be written as follows.

app :=
let [mkHash ′] = mkHash in
let [s] = [“compiler.vl”] in [mkHash ′ s]

This program (app hereafter) makes a hash for the string “compiler.vl"
and is available for both l1 and l2. The contextual let-binding let [x] = t1 in t2
provides the elimination of version values by binding a versioned value for t1
to x, thus making it accessible in t2. Promotion [x] offers an alternative way to
introduce versioned values, making any term t act as a versioned value.

The evaluation of terms ti stored in a versioned value {li = ti} and [t] is
postponed until a specific version label is later specified. To proceed with a
postponed evaluation of a versioned value, we use extraction u.lk. Extraction
specifies one versioned label lk for the versioned value u and recursively extracts
the inner term tk corresponding to lk from {li = ti}, and t from [t] as follows.

app#l1 :=
let [mkHash ′] = mkHash in
let [s] = [“compiler.vl”] in [mkHash ′ s].l1

−→∗ (λs.{- make MD5 hash -}) “compiler.vl”
−→ 4dcb6ebe3c6520d1f57c906541cf3823

Consequently, app#l1 evaluates into an MD5 hash corresponding to l1.

Type of Versioned Values. The type of a versioned value is expressed as
�rA, assigning a set of version labels r, called version resources, to a type A.
Intuitively, the type of a versioned value represents the versions available to that
versioned value. For example, mkHash and app are typed as follows.

mkHash : �{l1,l2} (String → String) app : �{l1,l2} (String → String)



8 Y. Tanabe et al.

Fig. 3. The programs in Fig. 1 in VL.

The types have {l1, l2} as their version resource, illustrating that the ver-
sioned values have definitions of l1 and l2. For function application, the type
system computes the intersection of the version resource of subterms. Since the
promoted term is considered to be available in all versions, the version resource
of the entire function application indicates {l1, l2} = {l1, l2} ∩ L.

For extractions, the type system verifies if the version resource contains the
specified version as follows.

app#l1 : String → String app#l3 : (rejected)

Assuming L = {l1, l2, l3}, app#l3 is rejected by type checking because the
version resource of app does not contain l3. Conversely, app#l1 is well-typed,
but note that the resultant type lost its version resource. It is attributed to the
design principle that it could be used in other versions upon extraction.

The λVL type system incorporates the notion of version consistency in addi-
tion to the standard notions of preservation and progress. Proofs of these theo-
rems can be found in Appendix C [30].

2.3 Programming with Versions in VL

Our contributions enjoy the benefits of programming with versions on a λ-
calculus-based functional language VL. To achieve this, we develop a compi-
lation method between lambda calculus and VLMini, a version-label free variant



Compilation Semantics for a Programming Language with Versions 9

Fig. 4. The translation phases for a single module with multiple versions.

of λVL, and a version inference algorithm to infer the appropriate version of
expressions.

In VL, (1) all versions are available for every module, and (2) the version
of each expression is determined by expression-level dependency analysis. This
approach differs from existing languages that determine one version for each
dependent package. Figure 3 shows how the programs in Fig. 1 are interpreted in
VL. The VL compiler bundles the interfaces of multiple versions and generates a
cross-version interface to make external functions available in multiple versions.
The VL type system enforces version consistency in main and selects a newer
version if multiple versions are available. Thus it gives the version label {Hash =
2.0.0, Dir = 1.0.0} to dependent expressions of main. As a result, since Hash
version referenced from Dir is no longer limited to 1.0.0, exists digest is
evaluated using SHA-3 under the context of Hash version 2.0.0.

Furthermore, VL provides version control terms to convey the programmer’s
intentions of versions to the compiler. For example, to enforce the evaluation in
Fig. 3 to MD5, a programmer can rewrite line 7 of App as follows.

7 if ver [Hash=1.0.0] of (exists digest)

The program dictates that exists digest is evaluated within the con-
text of the Hash version 1.0.0. Consequently, both mkHash and match, which
depend on exists digest, are chosen to align with version 1.0.0 of Hash.
Moreover, VL provides unversion t. It eliminates the dependencies associ-
ated with term t, facilitating its collaboration with other versions under the
programmer’s responsibility, all while maintaining version consistency within
its subterm. Thus, VL not only ensures version consistency but also offers the
flexibility to control the version of a particular part of the program.

3 Compilation

The entire translation consists of three parts: (1) Girard’s translation, (2) an
algorithmic type inference, and (3) bundling. Figure 4 shows the translation
process of a single module. First, through Girard’s translation, each version of



10 Y. Tanabe et al.

the VL program undergoes a version-wise translation into the VLMini program.
Second, the type inference synthesizes types and constraints for top-level sym-
bols. Variables imported from external modules reference the bundled interface
generated in the subsequent step. Finally, to make the external variables act as
multi-version expressions, bundling consolidates each version’s interface into one
VLMini interface. These translations are carried out in order from downstream
of the dependency tree. By resolving all constraints up to the main module, the
appropriate version for every external variable is determined.

It is essential to note that the translations focus on generating constraints
for dispatching external variables into version-specific code. While implement-
ing versioned records in λVL presents challenges, such as handling many ver-
sion labels and their code clones, our method is a constraint-based approach
in VLMini that enables static inference of version labels without their explicit
declaration.

In the context of coeffect languages, constraint generation in VL can be seen
as the automatic generation of type declarations paired with resource constraints.
Granule [20] can handle various resources as coeffects, but it requires type dec-
larations to indicate resource constraints. VL restricts its resources solely to the
version label set. This specialization enables the automatic collection of version
information from external sources outside the codebase.

3.1 An Intermediate Language, VLMini

Syntax of VLMini. Figure 5 shows the syntax of VLMini. VLMini encom-
passes all the terms in λVL except for versioned records {li = ti}, intermediate
term 〈li = ti | lk〉, and extractions t.lk. As a result, its terms are analogous to
those in �RPCF [3] and GrMini [20]. However, VLMini is specialized to treat
version resources as coeffects. We also introduce data constructors by introduc-
tion C t1, ..., tn and elimination case t of pi �→ ti for lists and pairs, and version
control terms unversion t and version {Mi = Vi} of t. Here, contextual-let in
λVL is a syntax sugar of lambda abstraction applied to a promoted pattern.

let [x] = t1 in t2 � (λ[x].t2) t1

Types, version labels, and version resources are almost the same as λVL. Type
constructors are also added to the type in response to the VLMini term having
a data constructor. The remaining difference from λVL is type variables α. Since
VLMini is a monomorphic language, type variables act as unification variables;
type variables are introduced during the type inference and are expected to be
either concrete types or a set of version labels as a result of constraint resolution.
To distinguish those two kinds of type variables, we introduce kinds κ. The kind
Labels is given to type variables that can take a set of labels {li} and is used to
distinguish them from those of kind Type during algorithmic type inference.

Constraints. The lower part of Fig. 5 shows constraints generated through
bundling and type inference. Dependency constraints comprise variable depen-
dencies and label dependencies in addition to propositional formulae. Variable



Compilation Semantics for a Programming Language with Versions 11

Fig. 5. The syntax of VLMini.

dependencies α � α′ require that if a version label for α′ expects a specific version
for a module, then α also expects the same version. Similarly, label dependencies
α � 〈〈Mi = Vi〉〉 require that a version label expected for α must be Vi for Mi.
For example, assuming that versions 1.0.0 and 2.0.0 exist for both modules A and
B, the minimal upper bound set of version labels satisfying α � 〈〈A �→ 1.0.0〉〉 is
α = {{A = 1.0.0,B = 1.0.0}, {A = 1.0.0,B = 2.0.0}}. If the constraint resolution
is successful, α will be specialized with either of two labels. Θ is a set of type
equations resolved by the type unification.

3.2 Girard’s Translation for VLMini

We extend Girard’s translation between VL (lambda calculus) to VLMini fol-
lowing Orchard’s approach [20].

�n� ≡ n �x� ≡ x �λx.t� ≡ λ[x].�t� �t s� ≡ �t� [�s�]

The translation replaces lambda abstractions and function applications of
VL by lambda abstraction with promoted pattern and promotion of VLMini,
respectively. From the aspect of types, this translation replaces all occurrences
of A → B with �rA → B with a version resource r. This translation inserts a
syntactic annotation [∗] at each location where a version resource needs to be



12 Y. Tanabe et al.

addressed. Subsequent type inference will compute the resource at the specified
location and produce constraints to ensure version consistency at that point.

The original Girard’s translation [11] is well-known as a translation between
the simply-typed λ-calculus and an intuitionistic linear calculus. The approach
involves replacing every intuitionistic arrow A → B with !A � B, and subse-
quently unboxing via let-in abstraction and promoting during application [20].

3.3 Bundling

Bundling produces an interface encompassing types and versions from every
module version, allowing top-level symbols to act as multi-version expressions.
During this process, bundling reviews interfaces from across module versions,
identifies symbols with the same names and types after removing �r using
Girard’s transformation, and treats them as multiple versions of a singular sym-
bol (also discussed in Sect. 7). In a constraint-based approach, bundling inte-
grates label dependencies derived from module versions, ensuring they align
with the version information in the typing rule for versioned records of λVL.

For example, assuming that the id that takes an Int value as an argument is
available in version 1.0.0 and 2.0.0 of M as follows:

id : �α1(�α2 Int → Int) | C1 (version 1.0.0)
id : �β1(�β2 Int → Int) | C2 (version 2.0.0)

where α1 and α2 are version resource variables given from type inference. They
capture the version resources of id and its argument value in version 1.0.0. C1

is the constraints that resource variables of version 1.0.0 will satisfy. Likewise
for β1, β2, and C2. Since the types of id in both versions become Int → Int via
Girard’s translation, they can be bundled as follows:

id : �γ1(�γ2 Int → Int) | C1 ∧ C2∧
(
(γ1 � 〈〈M = 1.0.0〉〉 ∧ γ1 � α1 ∧ γ2 � α2)

∨ (γ1 � 〈〈M = 2.0.0〉〉 ∧ γ1 � β1 ∧ γ2 � β2)
)

where γ1 and γ2 are introduced by this conversion for the bundled id inter-
face, with label and variable dependencies that they will satisfy. γ1 captures
the version resource of the bundled id . The generated label dependencies
γ1 � 〈〈M = 1.0.0〉〉 and γ1 � 〈〈M = 2.0.0〉〉 indicate that id is available in either
version 1.0.0 or 2.0.0 of M. These label dependencies are exclusively1 generated
during bundling. The other new variable dependencies indicate that the id bun-
dled interface depends on one of the two version interfaces. The dependency is
made apparent by pairing the new resource variables with their respective ver-
sion resource variable for each version. These constraints are retained globally,
and the type definition of the bundled interface is used for type-checking modules
importing id .
1 In the type checking rules for version l of t, type inference exceptionally generates

label dependencies. Please see Appendix B.4 [30].



Compilation Semantics for a Programming Language with Versions 13

Fig. 6. VLMini algorithmic typing.

4 Algorithmic Type Inference

We develop the algorithmic type inference for VLMini derived from the declar-
ative type system of λVL [28,29]. The type inference consists of two judgments:
type synthesis and pattern type synthesis. The judgment forms are similar to
Gr [20], which is similarly based on coeffect calculus. While Gr provides type-
checking rules in a bidirectional approach [8,9] to describe resource constraint
annotations and performs unifications inside the type inference, VLMini only
provides synthesis rules and unification performs after the type inference. In addi-
tion, Gr supports user-defined data types and multiple computational resources,
while VLMini supports only built-in data structures and specializes in version
resources. The inference system is developed to be sound for declarative typing
in λVL, with the proof detailed in Appendix D [30]. Type synthesis takes type
variable kinds Σ, a typing context Γ of term variables, and a term t as inputs.
Type variable kinds Σ are added to account for distinct unification variables
for types and version resources. The synthesis produces as outputs a type A,
type variable kinds Σ′, type constraints Θ, and dependency constraints C. The
type variable kinds Σ and Σ′ always satisfy Σ ⊆ Σ′ due to the additional type
variables added in this phase.

Pattern type synthesis takes a pattern p, type variable kinds Σ, and resource
environment R as inputs. It synthesizes outputs, including typing context Γ ,



14 Y. Tanabe et al.

type variable kinds Σ′, and type and dependency constraints Θ and C. Pattern
type synthesis appears in the inference rules for λ-abstractions and case expres-
sions. It generates a typing context from the input pattern p for typing λ-bodies
and branch expressions in case statements. When checking a nested promoted
pattern, the resource context R captures version resources inside a pattern.

4.1 Pattern Type Synthesis

Pattern type synthesis conveys the version resources captured by promoted pat-
terns to the output typing context. The rules are classified into two categories,
whether or not it has resources in the input resource context R. The base rules
are pVar, p�, while the other rules are resource-aware versions of the corre-
sponding rules. The resource-aware rules assume they are triggered within the
promoted pattern and collect version resource r in the resource context.

The rules for variables pVar and [pVar] differ in whether the variable pat-
tern occurs within a promoted pattern. pVar has no resources in the resource
context because the original pattern is not inside a promoted pattern. There-
fore, this pattern produces typing context x : A. [pVar] is for a variable pattern
within the promoted pattern, and a resource r is recorded in the resource con-
text. The rule assigns the collected resource r to the type A and outputs it as a
versioned assumption x : [A]r.

The rules for promoted patterns p� propagate version resources to the sub-
pattern synthesis. The input type A is expected to be a versioned type, so the
rule generates the fresh type variables α and β, then performs the subpattern
synthesis considering A as �αβ. Here, the resource α captured by the promoted
pattern is recorded in the resource context. Finally, the rule unifies A and �αβ
and produces the type constraints Θ′ for type refinement.

4.2 Type Synthesis

The algorithmic typing rules for VLMini, derived from declarative typing rules
for λVL, are listed in Fig. 6. We explain a few important rules in excerpts.

The rule ⇒abs generates a type variable α, along with the binding pattern p
of the λ-abstraction generating the typing context Γ ′. Then the rule synthesizes
a type B for the λ-body under Γ ′, and the resulting type of the λ-abstraction is
α → B with the tentatively generated α. With the syntax sugar, the type rules of
the contextual-let are integrated into ⇒abs. Instead, λ-abstraction does not just
bind a single variable but is generalized to pattern matching, which leverages
pattern typing, as extended by promoted patterns and data constructors.

The rule ⇒pr is the only rule that introduces constraints in the entire type
inference algorithm. This rule intuitively infers consistent version resources for
the typing context Γ . Since we implicitly allow for weakening, we generate a
constraint from Γ ′ that contains only the free variables in t, produced by context
grading denoted as [Γ ]Labels. Context grading converts all assumptions in the
input environment into versioned assumptions by assigning the empty set for
the assumption with no version resource.



Compilation Semantics for a Programming Language with Versions 15

Finally, the rule generates constraints from Γ ′ and a fresh type variable α
by constraints generation defined in the lower part of Fig. 6. The rules assert
that the input type variable α is a subset of all the resources of the versioned
assumptions in the input environment Γ . The following judgment is the simplest
example triggered by the type synthesis of [f x].

r : Labels, s : Labels � α �c f : [Int → Int]r, x : [Int]s � α � r ∧ α � s

The inputs are type variable α and the type environment (f : [Int → Int]r, x :
[Int]s). In this case, the rules generate variable dependencies for r and s, each
resource of the assumptions, and return a constraint combined with ∧.

4.3 Extensions

Version Control Terms. The rule for version l of t uses the same trick as
(⇒pr), and generates label dependencies from the input environment Γ to 〈〈l〉〉.
Since version l of t only instructs the type inference system, the resulting type
is the same as t. unversion t removes the version resource from the type of
t, which is assumed to be a versioned value. We extend Girard’s translation so
that t is always a versioned value. Since a new resource variable is given to the
term by the promotion outside of unversion, the inference system guarantees
the version consistency inside and outside the boundary of unversion. The list
of the rules is provided in Appendix B.4 [30].

Data Structures. To support data structures, Hughes et al. suggest that coef-
fectful data types are required to consider the interaction between the resources
inside and outside the constructor [13]. They introduce the derivation algorithm
for push and pull for an arbitrary type constructor K to address this.

push : ∀{a b: Type, r: Labels}. (a,b)[r] -> (a[r],b[r])
push [(x, y)] = ([x], [y])
pull : ∀{a b: Type, m n: Labels}. (a[n],b[m]) -> (a,b)[n�m]
pull ([x], [y]) = [(x, y)]

Following their approach, we developed inference rules for pairs and lists.
When a data structure value p is applied to a function f , the function application
f p is implicitly interpreted as f (pull p). As a dual, a pattern match for a data
structure value case p of pi �→ ti is interpreted as case (push p) of pi �→ ti.
Appendix B.5 [30] provides the complete set of extended rules.

5 Implementation

We implement the VL compiler2 on GHC (v9.2.4) with haskell-src-exts3 as its
parser with an extension of versioned control terms, and z3 [18] as its constraint
2 https://github.com/yudaitnb/vl.
3 https://hackage.haskell.org/package/haskell-src-exts.

https://github.com/yudaitnb/vl
https://hackage.haskell.org/package/haskell-src-exts


16 Y. Tanabe et al.

Table 1. Availability of functions in hmatrix before and after tha update.

version join vjoin udot, sortVector, roundVector

< 0.15 available undefined undefined
≥ 0.16 deleted available available

solver. The VL compiler performs the code generation by compiling VLMini
programs back into λ-calculus via Girard’s translation and then translating them
into Haskell ASTs using the version in the result version labels.

Ad-hoc Version Polymorphism via Duplication. The VL compiler repli-
cates external variables to assign individual versions to homonymous external
variables. Duplication is performed before type checking of individual versions
and renames every external variable along with the type and constraint envi-
ronments generated from the import declarations. Such ad hoc conversions are
necessary because VLMini is monomorphic, and the type inference of VLMini
generates constraints by referring only to the variable’s name in the type environ-
ment. Therefore, assigning different versions to homonymous variables requires
manual renaming in the preliminary step of the type inference. A further discus-
sion on version polymorphism can be found in Sect. 7.

Constraints Solving with z3. We use sbv4 as the binding of z3. The sbv
library internally converts constraints into SMT-LIB2 scripts [1] and supplies it
to z3. Dependency constraints are represented as vectors of symbolic integers,
where the length of the vector equals the number of external modules, and the
elements are unique integers signifying each module’s version number. Constraint
resolution identifies the expected vectors for symbolic variables, corresponding
to the label on which external identifiers in VL should depend. If more than one
label satisfies the constraints, the default action is to select a newer one.

6 Case Study and Evaluation

6.1 Case Study

We demonstrate that VL programming achieves the two benefits of program-
ming with versions. The case study simulated the incompatibility of hmatrix,5
a popular Haskell library for numeric linear algebra and matrix computations,
in the VL module Matrix. This simulation involved updating the applications
Main depending on Matrix to reflect incompatible changes.

Table 1 shows the changes introduced in version 0.16 of hmatrix. Before ver-
sion 0.15, hmatrix provided a join function for concatenating multiple vectors.
4 https://hackage.haskell.org/package/sbv-9.0.
5 https://github.com/haskell-numerics/hmatrix/blob/master/packages/base/

CHANGELOG.

https://hackage.haskell.org/package/sbv-9.0
https://github.com/haskell-numerics/hmatrix/blob/master/packages/base/CHANGELOG
https://github.com/haskell-numerics/hmatrix/blob/master/packages/base/CHANGELOG


Compilation Semantics for a Programming Language with Versions 17

Fig. 7. Snippets of Main before (left) and after (right) rewriting.

The update from version 0.15 to 0.16 replaced join with vjoin. Moreover,
several new functions were introduced. We implement two versions of Matrix
to simulate backward incompatible changes in VL. Also, due to the absence of
user-defined types in VL, we represent Vector a and Matrix a as List Int
and List (List Int) respectively, using List, a partial port of Data.List
from the Haskell standard library.

We implement Mainworking with two conflicting versions of Matrix. The left
side of Fig. 7 shows a snippet of Main in the process of updating Matrix from ver-
sion 0.15.0 to 0.16.0. main uses functions from both versions of Matrix together:
join and sortVector are available only in version 0.15.0 and 0.16.0 respec-
tively, hence Main has conflicting dependencies on both versions of Matrix.
Therefore, it will be impossible to successfully build this program in existing lan-
guages unless the developer gives up using either join or sortVector.

– Detecting Inconsistent Version: VL can accept Main in two stages. First,
the compiler flags a version inconsistency error. It is unclear which Matrix
version the main function depends on as join requires version 0.15.0 while
sortVector requires version 0.16.0. The error prevents using such incom-
patible version combinations, which are not allowed in a single expression.

– Simultaneous Use of Multiple Versions: In this case, using join and
sortVector simultaneously is acceptable, as their return values are vec-
tors and matrices. Therefore, we apply unversion t for t to collaborate
with other versions. The right side of Fig. 7 shows a rewritten snippet of
Main, where sortVector vec is replaced by unversion (sortVector vec).
Assuming we avoid using programs that depend on a specific version elsewhere
in the program, we can successfully compile and execute main.

6.2 Scalability of Constraint Resolution

We conducted experiments on the constraint resolution time of the VL com-
piler. In the experiment, we duplicated a VL module, renaming it to #mod



18 Y. Tanabe et al.

Fig. 8. Constraint resolution time for the duplicated List by #mod × #ver.

like List_i, and imported each module sequentially. Every module had the
same number of versions, denoted as #ver. Each module version was imple-
mented identically to List, with top-level symbols distinguished by the module
name, such as concat_List_i. The experiments were performed ten times on
a Ryzen 9 7950X running Ubuntu 22.04, with #mod and #ver ranging from 1
to 5.

Figure 8 shows the average constraint resolution time. The data suggests
that the resolution time increases polynomially (at least square) for both #mod
and #ver. Several issues in the current implementation contribute to this inef-
ficiency: First, we employ sbv as a z3 interface, generating numerous redun-
dant variables in the SMT-Lib2 script. For instance, in a code comprising 2600
LOC (with #mod = 5 and #ver = 5), the VL compiler produces 6090 version
resource variables and the sbv library creates SMT-Lib2 scripts with approxi-
mately 210,000 intermediate symbolic variables. Second, z3 solves versions for all
AST nodes, whereas the compiler’s main focus should be on external variables
and the subterms of unversion. Third, the current VL nests the constraint
network, combined with ∨, #mod times at each bundling. This approach results
in an overly complex constraint network for standard programs. Hence, to accel-
erate constraint solving, we can develop a more efficient constraint compiler for
SMT-Lib2 scripts, implement preprocess to reduce constraints, and employ a
greedy constraint resolution for each module.

7 Related Work, Future Work, and Conclusion

Managing Dependency Hell. Mainstream techniques for addressing depen-
dency hell stand in stark contrast to our approach, which seeks to manage depen-
dencies at a finer granularity. Container [17] encapsulates each application with



Compilation Semantics for a Programming Language with Versions 19

all its dependencies in an isolated environment, a container, facilitating multiple
library versions to coexist on one physical machine. However, it does not han-
dle internal dependencies within the container. Monorepository [10,21] versions
logically distinct libraries within a single repository, allowing updates across mul-
tiple libraries with one commit. It eases testing and bug finding but can lower
the system modularity.

Toward a Language Considering Compatibility. The next step in this
research is to embed compatibility tracking within the language system. The
current VL considers different version labels incompatible unless a programmer
uses unversion. Since many updates maintain backward compatibility and
change only minor parts of the previous version, the existing type system is
overly restrictive.

To illustrate, consider Fig. 3 again with more version history. The module
Hash uses the MD5 algorithm for mkHash and match in the 1.x.x series. How-
ever, it adopts the SHA-3 algorithm in version 2.0.0, leaving other functions
the same. The hash by mkHash version 1.0.1 (an MD5 hash) aligns with any
MD5 hash from the 1.x.x series. Therefore, we know that comparing the hash
using match version 1.0.0 is appropriate. However, the current VL compiler
lacks mechanisms to express such compatibility in constraint resolution. The
workaround involves using unversion, risking an MD5 hash’s use with match
version 2.0.0.

One promising approach to convey compatibilities is integrating semantic
versioning [22] into the type system. If we introduce semantics into version labels,
the hash generated in version 1.0.1 is backward compatible with version 1.0.0.
Thus, by constructing a type system that respects explicitly defined version
compatibilities, we can improve VL to accept a broader range of programs.

It is important to get reliable versions to achieve this goal. Lam et al. [14]
emphasize the need for tool support to manage package modifications and the
importance of analyzing compatibility through program analysis. Delta-oriented
programming [24–26] could complement this approach by facilitating the way
modularizing addition, overriding, and removal of programming elements and
include application conditions for those modifications. This could result in a
sophisticated package system that provides granular compatibility information.

Such a language could be an alternative to existing technologies for automatic
update, collectively known as adoptation. These methods generate replacement
rules based on structural similarities [5,33] and extract API replacement pat-
terns from migrated code bases [27]. Some techniques involve library maintain-
ers recording refactorings [7,12] and providing annotations [4] to describe how
to update client code. However, the reported success rate of these techniques is
less than 20% on average [6].

Supporting Type Incompatibility. One of the apparent problems with the
current VL does not support type incompatibilities. VL forces terms of different
versions to have the same type, both on the theoretical (typing rules in λVL)



20 Y. Tanabe et al.

and implementation (bundling in VLMini) aspects. Supporting type incompat-
ibility is important because type incompatibility is one of the top reasons for
error-causing incompatibilities [23]. The current VL is designed in such a way
because it retains the principle that equates the types of promotions and ver-
sioned records in λVL, easing the formalization of the semantics.

A promising approach to address this could be to decouple version inference
from type inference and develop a version inference system on the polymorphic
record calculus [19]. The idea stems from the fact that versioned types �{l1,l2}A
are structurally similar to record types {l1 : A, l2 : A} of Λ∀,•. Since Λ∀,• allows
different record-element types for different labels and has concrete inference algo-
rithms with polymorphism, implementing version inference on top of Λ∀,• would
also make VL more expressive.

Adequate Version Polymorphism. In the current VL, there is an issue
that the version label of top-level symbols in imported modules must be spec-
ified one, whereas users can select specific versions of external variables using
unversion within the importing module. Consider using a generic function
like List.concat in Fig. 7. If it is used in one part of the program within
the context of Matrix version 1.0.0, the solution of the resource variable of
List.concat version 1.0.0 becomes confined to {Matrix = 1.0.0,List =
. . .}. As a result, it is impossible to utilize List.concat version 1.0.0 with
Matrix version 2.0.0 elsewhere in the program. This problem becomes appar-
ent when we define a generic module like a standard library.

It is necessary to introduce full-version polymorphism in the core calculus
instead of duplication to address this problem. The idea is to generate a type
scheme by solving constraints for each module during bundling and instanti-
ate each type and resource variable at each occurrence of an external variable.
Such resource polymorphism is similar to that already implemented in Gr [20].
However, unlike Gr, VLMini provides a type inference algorithm that collects
constraints on a per-module basis, so we need the well-defined form of the prin-
cipal type. This extension is future work.

Conclusion. This paper proposes a method for dependency analysis and version
control at the expression level by incorporating versions into language semantics,
which were previously only identifiers of packages. This enables the simultaneous
use of multiple versions and identifies programs violating version consistency at
the expression level, which is impossible with conventional languages.

Our next step is to extend the version label, which currently only identi-
fies versions, to semantic versions and to treat the notion of compatibility with
language semantics. Like automatic updates by modern build tools based on
semantic versioning, it would be possible to achieve incremental updates, which
would be done step-by-step at the expression level. Working with existing pack-
age managers to collect compatibility information at the expression level would
be more feasible to realize the goal.



Compilation Semantics for a Programming Language with Versions 21

References

1. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: version 2.0. In:
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(Edinburgh, UK), vol. 13, p. 14 (2010)

2. Bavota, G., Canfora, G., Di Penta, M., Oliveto, R., Panichella, S.: How the apache
community upgrades dependencies: an evolutionary study. Empir. Softw. Eng.
20(5), 1275–1317 (2015). https://doi.org/10.1007/s10664-014-9325-9

3. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coeffect
calculus. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 351–370. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8_19

4. Chow, Notkin: Semi-automatic update of applications in response to library
changes. In: 1996 Proceedings of International Conference on Software Mainte-
nance, pp. 359–368. IEEE, New York, USA (1996). https://doi.org/10.1109/ICSM.
1996.565039

5. Cossette, B., Walker, R., Cottrell, R.: Using structural generalization to discover
replacement functionality for API evolution (2014). https://doi.org/10.11575/
PRISM/10182, https://prism.ucalgary.ca/handle/1880/49996

6. Cossette, B.E., Walker, R.J.: Seeking the ground truth: a retroactive study on the
evolution and migration of software libraries. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software Engineering.
FSE 2012, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2393596.2393661

7. Dig, D., Johnson, R.: How do APIs evolve? A story of refactoring. J. Softw. Maint.
Evol. Res. Pract. 18(2), 83–107 (2006). https://doi.org/10.1002/smr.328, https://
onlinelibrary.wiley.com/doi/abs/10.1002/smr.328

8. Dunfield, J., Krishnaswami, N.R.: Complete and easy bidirectional typechecking
for higher-rank polymorphism. SIGPLAN Not. 48(9), 429–442 (2013). https://doi.
org/10.1145/2544174.2500582

9. Dunfield, J., Krishnaswami, N.R.: Sound and complete bidirectional typechecking
for higher-rank polymorphism with existentials and indexed types. In: Proceedings
of ACM Programming Language, vol. 3(POPL) (2019). https://doi.org/10.1145/
3290322

10. Durham Goode: Facebook Engineering: Scaling Mercurial at Facebook (2014).
https://code.fb.com/core-data/scaling-mercurial-at-facebook/

11. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–102 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

12. Henkel, J., Diwan, A.: Catchup! Capturing and replaying refactorings to support
API evolution. In: Proceedings. 27th International Conference on Software Engi-
neering, 2005. ICSE 2005, pp. 274–283. IEEE, New York, USA (2005). https://
doi.org/10.1109/ICSE.2005.1553570

13. Hughes, J., Vollmer, M., Orchard, D.: Deriving distributive laws for graded linear
types. In: Dal Lago, U., de Paiva, V. (eds.) Proceedings Second Joint International
Workshop on Linearity & Trends in Linear Logic and Applications, Online, 29–30
June 2020. Electronic Proceedings in Theoretical Computer Science, vol. 353, pp.
109–131. Open Publishing Association (2021). https://doi.org/10.4204/EPTCS.
353.6

14. Lam, P., Dietrich, J., Pearce, D.J.: Putting the Semantics into Semantic Versioning,
pp. 157–179. Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3426428.3426922

https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1109/ICSM.1996.565039
https://doi.org/10.1109/ICSM.1996.565039
https://doi.org/10.11575/PRISM/10182
https://doi.org/10.11575/PRISM/10182
https://prism.ucalgary.ca/handle/1880/49996
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1002/smr.328
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.328
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.328
https://doi.org/10.1145/2544174.2500582
https://doi.org/10.1145/2544174.2500582
https://doi.org/10.1145/3290322
https://doi.org/10.1145/3290322
https://code.fb.com/core-data/scaling-mercurial-at-facebook/
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1109/ICSE.2005.1553570
https://doi.org/10.1109/ICSE.2005.1553570
https://doi.org/10.4204/EPTCS.353.6
https://doi.org/10.4204/EPTCS.353.6
https://doi.org/10.1145/3426428.3426922


22 Y. Tanabe et al.

15. Lubis, L.A., Tanabe, Y., Aotani, T., Masuhara, H.: Batakjava: an object-oriented
programming language with versions. In: Proceedings of the 15th ACM SIGPLAN
International Conference on Software Language Engineering, pp. 222–234. SLE
2022, Association for Computing Machinery, New York, NY, USA (2022). https://
doi.org/10.1145/3567512.3567531

16. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption
in the Android ecosystem. In: 2013 IEEE International Conference on Software
Maintenance, ICSM, pp. 70–79. IEEE, New York, USA (2013). https://doi.org/10.
1109/ICSM.2013.18

17. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 239, 2 (2014)

18. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 337–340. Springer, Heidelberg (2008)

19. Ohori, A.: A polymorphic record calculus and its compilation. ACM Trans. Pro-
gram. Lang. Syst. 17(6), 844–895 (1995). https://doi.org/10.1145/218570.218572

20. Orchard, D., Liepelt, V.B., Eades, H., III.: Quantitative program reasoning with
graded modal types. Proc. ACM Program. Lang. 3(ICFP), 1–30 (2019). https://
doi.org/10.1145/3341714

21. Potvin, R., Levenberg, J.: Why google stores billions of lines of code in a single
repository. Commun. ACM 59(7), 78–87 (2016). https://doi.org/10.1145/2854146

22. Preston-Werner, T.: Semantic versioning 2.0.0 (2013). http://semver.org
23. Raemaekers, S., van Deursen, A., Visser, J.: Semantic versioning and impact of

breaking changes in the maven repository. J. Syst. Softw. 129, 140–158 (2017).
https://doi.org/10.1016/j.jss.2016.04.008, http://www.sciencedirect.com/science/
article/pii/S0164121216300243

24. Schaefer, I., Bettini, L., Damiani, F.: Compositional type-checking for delta-
oriented programming. In: Proceedings of the Tenth International Conference
on Aspect-Oriented Software Development, pp. 43–56. AOSD 2011, Association
for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/
1960275.1960283, https://doi.org/10.1145/1960275.1960283

25. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6_6

26. Schaefer, I., Damiani, F.: Pure delta-oriented programming. In: Proceedings of
the 2nd International Workshop on Feature-Oriented Software Development, pp.
49–56. FOSD 2010, Association for Computing Machinery, New York, NY, USA
(2010). https://doi.org/10.1145/1868688.1868696

27. Schäfer, T., Jonas, J., Mezini, M.: Mining framework usage changes from instan-
tiation code. In: Proceedings of the 30th International Conference on Software
Engineering, pp. 471–480. ICSE 2008, Association for Computing Machinery, New
York, NY, USA (2008). https://doi.org/10.1145/1368088.1368153

28. Tanabe, Y., Aotani, T., Masuhara, H.: A context-oriented programming app-
roach to dependency hell. In: Proceedings of the 10th International Workshop on
Context-Oriented Programming: Advanced Modularity for Run-time Composition,
pp. 8–14. COP 2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/
3242921.3242923

https://doi.org/10.1145/3567512.3567531
https://doi.org/10.1145/3567512.3567531
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1145/218570.218572
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2854146
http://semver.org
https://doi.org/10.1016/j.jss.2016.04.008
http://www.sciencedirect.com/science/article/pii/S0164121216300243
http://www.sciencedirect.com/science/article/pii/S0164121216300243
https://doi.org/10.1145/1960275.1960283
https://doi.org/10.1145/1960275.1960283
https://doi.org/10.1145/1960275.1960283
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1145/1868688.1868696
https://doi.org/10.1145/1368088.1368153
https://doi.org/10.1145/3242921.3242923
https://doi.org/10.1145/3242921.3242923


Compilation Semantics for a Programming Language with Versions 23

29. Tanabe, Y., Lubis, L.A., Aotani, T., Masuhara, H.: A functional program-
ming language with versions. Art, Sci. Eng. Programm. 6(1), 5:1–5:30 (2021).
https://doi.org/10.22152/programming-journal.org/2022/6/5, https://doi.org/10.
22152%2Fprogramming-journal.org%2F2022%2F6%2F5

30. Tanabe, Y., Lubis, L.A., Aotani, T., Masuhara, H.: Compilation semantics for a
programming language with versions (2023). https://doi.org/10.48550/arXiv.2310.
00298

31. Tanabe, Y., Lubis, L.A., Aotani, T., Masuhara, H.: A step toward programming
with versions in real-world functional languages. In: Proceedings of the 14th ACM
International Workshop on Context-Oriented Programming and Advanced Mod-
ularity, pp. 44–51. COP 2022, Association for Computing Machinery, New York,
NY, USA (2022). https://doi.org/10.1145/3570353.3570359

32. Tolnay, D.: The semver trick (2017). https://github.com/dtolnay/semver-trick
33. Wu, W.: Modeling framework API evolution as a multi-objective optimization

problem. In: 2011 IEEE 19th International Conference on Program Comprehension,
pp. 262–265. IEEE, New York, USA (2011). https://doi.org/10.1109/ICPC.2011.
43

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.22152/programming-journal.org/2022/6/5
https://doi.org/10.22152%2Fprogramming-journal.org%2F2022%2F6%2F5
https://doi.org/10.22152%2Fprogramming-journal.org%2F2022%2F6%2F5
https://doi.org/10.48550/arXiv.2310.00298
https://doi.org/10.48550/arXiv.2310.00298
https://doi.org/10.1145/3570353.3570359
https://github.com/dtolnay/semver-trick
https://doi.org/10.1109/ICPC.2011.43
https://doi.org/10.1109/ICPC.2011.43
http://creativecommons.org/licenses/by/4.0/


What Types Are Needed for Typing
Dynamic Objects? A Python-Based

Empirical Study

Ke Sun1 , Sheng Chen2, Meng Wang3 , and Dan Hao1(B)

1 Key Lab of HCST (PKU), MOE; SCS, Peking University, Beijing, China
sunke@stu.pku.edu.cn, haodan@pku.edu.cn

2 The Center for Advanced Computer Studies, UL Lafayette, Lafayette, USA
sheng.chen@louisiana.edu

3 University of Bristol, Bristol, UK
meng.wang@bristol.ac.uk

Abstract. Dynamic object-oriented languages, such as Python, Ruby,
and Javascript are widely used nowadays. A distinguishing feature of
dynamic object-oriented languages is that objects, the fundamental run-
time data representation, are highly dynamic, meaning that a single con-
structor may create objects with different types and objects can evolve
freely after their construction. While such dynamism facilitates fast pro-
totyping, it brings many challenges to program understanding. Many
type systems have been developed to aid programming understanding,
and they adopt various types and techniques to represent and track
dynamic objects. However, although many types and techniques have
been proposed, it is unclear which one suits real dynamic object usages
best. Motivated by this situation, we perform an empirical study on 50
mature Python programs with a focus on object dynamism and object
type models. We found that (1) object dynamism is highly prevalent in
Python programs, (2) class-based types are not precise to handle dynamic
behaviors, as they introduce type errors for 52% of the evaluated poly-
morphic attributes, (3) typestate-based types, although mostly used in
static languages, matches the behaviors of dynamic objects faithfully,
and (4) some well-designed but still lightweight techniques for object-
based types, such as argument type separation and recency abstraction
can precisely characterize dynamic object behaviors. Those techniques
are suitable for building precise but still concise object-based types.

Keywords: Type System · Empirical Study · Python

1 Introduction

Dynamic object-oriented languages, such as Python, Ruby, and Javascript are
commonly used across many domains. They use dynamic typing to increase
reusability and flexibility, facilitating fast prototyping (development) not pro-
vided by most static languages. In particular, unlike in static object-oriented
languages where objects have mostly fixed attributes and their types [25], objects
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 24–45, 2023.
https://doi.org/10.1007/978-981-99-8311-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_2&domain=pdf
http://orcid.org/0000-0002-2966-9889
http://orcid.org/0000-0001-7780-630X
http://orcid.org/0000-0001-8295-303X
https://doi.org/10.1007/978-981-99-8311-7_2


What Types Are Needed for Typing Dynamic Objects? 25

in dynamic languages are highly dynamic. Both the attributes and types of an
object may be changed freely over its life cycle.

To illustrate, consider the Python program in Fig. 1, which is adapted from
Rich, a terminal beautification tool [34]. This program defines two instance
objects (shorted as objects) of Panel: panel1 and panel2. However, the types
of the two objects are not stipulated by class definition and can be set and
changed freely. We refer to this phenomenon as object dynamism.

Fig. 1. An example Python program

Behaviors Causing
Object Dynamism.
Object dynamism orig-
inates from two sources:
constructor polymorph-
ism and object evolu-
tion [42,54]. With con-
structor polymorph-
ism, objects of differ-
ent types can be made
from the same con-
structor. Lines 17-18
show such an exam-
ple. Specifically, although
panel1 and panel2 are
created from the same
init , panel1 has the

type τ1 = {title :
Text, width : int, height :
int}, while panel2 has
the type τ2 = {title :
str, width : NoneType}1.
In particular, two attributes (title and width) are shared but with different
types, and one attribute (height) appears only in τ1. After the construction
phase, objects can dynamically evolve, making the types continue to change,
denoted as object evolution. Lines 19-20 present such an example, which
changes the width attribute of panel2 from NoneType to int and adds the attribute
height.
An Empirical Study on Dynamic Objects for Type Systems. As dynamic
languages are being used to build more and more important and large software
systems, many type systems [10,23,30,33] have been developed to aid program
comprehension and early programming error detection. Those type systems come
up with special object types for representing dynamic objects. The most widely
adopted design choice is to augment the class-based types, which assign a single
type to all objects created from the same class, with features such as union
types [9], and the ability to reason about type tests [28,48] and local type

1 We refer the constructed types of panel1/panel2 by τ1/τ2 in the rest of this paper.



26 K. Sun et al.

assignments [3]. Due to their performance superiority and annotating conve-
nience, class-based types have been extensively used in industrial and academic
type systems [10,19,22,30,40,53]. However, it is not clear whether they provide
dynamic objects with type representations that are precise enough.

On the other hand, many object-based type systems [8,17,45,55] have
also been proposed, which assign a unique type to each object, according to
its abstract address and evolution processes. Since those techniques provide
dynamic objects with more precise representations, it is clear that they pro-
duce fewer type errors compared with class-based types. However, the actual
improvement has not been investigated on a large scale. Meanwhile, the contri-
butions of individual aspects of object-based types to the improvements are not
understood.

To help understand the prevalence and characteristics of dynamic object
behaviors, as well as the effectiveness of existing object types, we present an
empirical study based on a dynamic analysis of 50 mature Python programs
with over 3.76 million LOC. There have been several studies [4,24,42,54] that
also consider the dynamic object behaviors. However, their analysis is not focused
on types, and thus their implications on type systems are limited.

Some of our significant findings include: (1) Both constructor polymorphism
and object evolution are very prevalent. The average proportions of classes expos-
ing them are both higher than 20%, and they often occur at the same time. (2)
Class-based types can be a practical choice, especially when paired with the
ability to reason about type tests and local assignments. Although false type
errors are reported for 52% of the polymorphic attributes when experiment-
ing with them, those type errors are largely due to attribute absence, which is
notoriously hard to detect statically [32]. (3) Typestate-based types, as already
utilized extensively to represent object evolution in static languages [6,29,46],
can be promising to be adopted to dynamic languages, considering the large
proportion of attribute-absences-related errors, which turn out to be introduced
mainly by object evolution. (4) Object-based types are found to be effective
in representing dynamic objects. In particular, the ability to perform strong
updates [8,23] is critical to increase the precision.

In summary, this paper makes the following contributions.

1. A large corpus composed of 50 mature Python projects with over 3.76 million
LOC and a well-designed dynamic analysis infrastructure capable of analyzing
precise and detailed object behaviors.

2. An empirical study of object dynamism in Python with findings and advice
for evaluating current type systems and inspiring future type systems.

The artifact of this paper, containing the analysis infrastructure and the
experiment scripts, can be accessed via https://github.com/ksun212/Python-
objects.

2 Background

In this section, we introduce dynamic object behaviors in detail and review
related studies on dynamic behaviors.

https://github.com/ksun212/Python-objects
https://github.com/ksun212/Python-objects


What Types Are Needed for Typing Dynamic Objects? 27

2.1 Dynamic Object Behaviors in Python

Constructor Polymorphism. We name the behavior that objects of differ-
ent types are made from a single constructor as constructor polymorphism. In
Python, a constructor is a normal member method that initializes attributes. In
our example, different objects are constructed in a functional way, i.e., object
types are solely decided by argument types. However, as an imperative language,
the program’s state can also influence the behaviors of constructors. For example,
an attribute may be set when a global variable holds a specific value.
Object Evolution. We name the behavior that an object changes its type after
being constructed as object evolution. Based on the action, object evolution can
be classified into (1) extension (i.e., adding new attributes), (2) modification
(i.e., modifying types of attributes), and (3) deletion (i.e., deleting attributes).

2.2 Existing Studies on Dynamic Behaviors

Although object dynamic behaviors are significant for building type systems and
other static analyses for dynamic languages, only a few studies have been done
to study their actual prevalence. In particular, Richards et al. [42] and Wei et
al. [54] conducted empirical studies on the dynamic behaviors in JavaScript pro-
grams. However, the former did not distinguish between changes of attribute
types (changes that lead to object evolution) and attribute values (changes do
not lead to object evolution), and the latter measured constructor polymor-
phism via the number of runtime instances instead of object types that matter
more to type system design. Only two pieces of work [4,24] investigated the
dynamic behavior of Python objects. However, they mainly focus on object evo-
lution, without investigating constructor polymorphism. Meanwhile, neither of
the above studies analyzes the effectiveness of existing object types.

Several studies investigated other features of dynamic languages, such as eval
expressions [41], callsite polymorphism [5,27], and dynamic variables [14]. These
studies are not from type systems’ perspective, the focus of this work.

3 Types for Dynamic Objects

In this section, we present a type syntax for class-based types and discuss local
type refinements. Then, we review important aspects for object-based types.

3.1 Class-Based Types

Fig. 2. Syntax for class-based types.

Type Syntax. To consolidate the
notion of class-based types in this
paper, we propose a type syntax,
which mostly coincides with the def-
inition of class-based types in exist-
ing class-based type systems [10,19,



28 K. Sun et al.

22,30,40,53]. The only difference is that we model attribute absence using a
constant type abs, while other systems provide type qualifiers [31] or simply
omit it [19,30,53] (Fig. 2).
Under this syntax, the type environment (Γ ) maps from variables to class names.
The class table (CT ) maps from class names to object types, which is a record
labeled by attribute names with values ranging over attribute types (τ). τ can
be another class name (such as builtin classes int, str, and user-defined classes
Panel, Text), a special constant type abs to signify that the attribute is absent
or a union of two attribute types. For the example in Fig. 1, a type system using
this syntax gives type environment {panel1 : Panel, panel2 : Panel}, and class
table {Panel : {title : Text ∨ str, width : int ∨ NoneType, height : int ∨ abs}}.
Polymorphic Attributes Cause Type Errors. Although class-based types
provide a natural way to express object dynamism, they often introduce type
errors. To see this, consider type-checking the method measure, which results in a
type error, since width can be NoneType while height can be abs, both invalidating
the addition operation. Those type errors are caused by polymorphic attributes,
i.e., the attributes holding union types, when not all components of the union
type can be used in any access-site of the attribute.
Local Type Refinements. To eliminate suspicious type errors, local type
refinements [3,28,48] are often used to refine the union types. The core obser-
vation is that developers tend to use type tests and local assignments to refine
the type of polymorphic attributes, which can be utilized to refine the union
types to a smaller range thus eliminating type errors. For example, consider
type-checking the method title, in the first branch, the type of title is refined
to be str by the type test isinstance(self.title,str). For an example of local
assignments, consider inserting if self.width is None: self.width=42 into the
beginning of the method measure, which refines the type of width to be only int.

3.2 Object-Based Types

Class-based type systems assign all objects belonging to the same class with the
same type. We have discussed that this design choice introduces spurious type
errors. Although local type refinements can be used to eliminate type errors, they
rely on type tests or local assignments, which are unavailable in many cases. To
eliminate the type errors, another idea is to assign more precise types to dynamic
objects, by exposing more fine-grained object addresses and performing strong
updates for object evolution as much as possible [1,8,17,44,45,52,55]. In the
following of this paper, we name this kind of typing discipline as object-based
types, whose effectiveness will be discussed in our study.
Store Abstraction. Each dynamic object receives a unique address from the
heap (store). While types of objects may be identified by their addresses, few
type systems support this, since addresses are allocated at runtime while the type
systems we are investigating perform static checking. Instead, type systems often
use abstractions of store to denote object types. In class-based type systems, each
object uses the class name as its address. All objects of the same class share the



What Types Are Needed for Typing Dynamic Objects? 29

same address. To keep sound, the types of all those objects, along their life
cycles, must be merged. This is the reason that many attributes in class-based
type systems are polymorphic, causing spurious type errors.

Using class names as addresses often leads to imprecision. A prominent app-
roach is extending the class name with the construction location. Construc-
tion location can be annotated [16,45] or inferred [19,23,36]. In our example,
we can separate the types of panel1 and panel2 using this approach, yield-
ing Γ = {panel1 : Panel@17, panel2 : Panel@18} and CT = {Panel@17 :
{title : Text, width : int, height : int}, Panel@18 : {title : str, width :
int ∨ NoneType, height : int ∨ abs}}. Note that Panel@18 must cover all the
types of panel2 in its life cycle. Suppose the method measure is called on panel1,
this type system would correctly accept it but still reject the call on panel2.

Sometimes, using the construction locations is not precise enough, since many
construction-sites can be called many times (e.g., occurring inside a function
that is repeatedly called.). To handle this, location polymorphism [16] and k-
callsite [36] have been proposed. We evaluate the help of k-callsites in our study.
Flow Sensitivity. As we discussed earlier, to keep sound, the types in the life
cycle of an object must be merged. The reason is that the store abstraction (i.e.,
CT ) must over-approximate the store at any time of the program execution.
One common approach to relax this constraint is flow-sensitive store abstrac-
tion [2,16,36,43], which allows each program location to be associated with a
different store abstraction. In our example, this yields CT = {..., Panel@18 :
{title : str, width : NoneType, height : abs}}, CT ′ = {.., Panel@18 : {title :
str, width : int ∨ NoneType, height : abs}}, and CT ′′ = {.., Panel@18 : {title :
str, width : int ∨ NoneType, height : int ∨ abs}}, where CT/CT ′/CT ′′ denote
the store abstraction associated with Line 18/19/20. Suppose that an access of
width is inserted before Line 19, which requires it to have the type NoneType,
then flow sensitivity allows this access to be accepted since the system knows
that width can only be NoneType before Line 19. In a flow-insensitive system, this
access would be incorrectly rejected. However, the method measure still cannot
be called on panel2, even after Line 20. This is because, due to the potential
existence of aliases, one attribute must be typed with all the types that are pre-
viously assigned to the attribute, a methodology often called “weak updates” [8].
Strong Updates. A type system that is able to replace the old type for an
attribute with a new type when an object evolves is said to be able to perform
“strong updates”. Strong updates have to be performed on the top of flow-
sensitive store abstraction. With strong updates, the type system knows CT ′′ =
{..., Panel@18 : {title : Text, width : int, height : int}}, and subsequently,
allows measure be called on panel2 after Line 20.

Due to the alias problem, strong updates can not be performed arbi-
trarily [8]. It is widely known that strong updates can be applied to linear
addresses [2,16,43], i.e., the addresses that refer to only one object. In our exam-
ple, we have seen that the class name extended with construction locations lin-
early refer to the two objects. In general, more precise techniques like location
polymorphism [16] and k-callsite [36] make more addresses linear. However, those



30 K. Sun et al.

Table 1. Statistics and Categories of Experiment Subjects

Category Subjects LOC

Scientific Computing (SCI) networkx, pinyin, sklearn, nltk, altair, kornia, stanza, featuretools,
dvc, torch, pandas, seaborn, statsmodels, pyod, spacy, snorkel

2.29M

Programming (PRG) pydantic, typer, bandit, isort, arrow, jedi, black, yapf, mypy 0.46M

Web (WEB) requests, flask, impacket, routersploit, itsdangerous, pelican,
sphinx

0.24M

Terminal (TER) rich, thefuck, cookiecutter, click, prompt toolkit 0.14M

Formating (FMT) jinja, pypdf, markdown, weasyprint 0.12M

Utility (UTL) pywhat, icecream, pendulum, pre commit, faker 0.34M

Others (OTH) newspaper, wordcloud, pyro, pyecharts 0.14M

All (ALL) 50 projects 3.76M

techniques have been witnessed to significantly increase running overhead [36]
or incur excessive annotation burden [16]. Another widely adopted solution is
recency abstraction [8,23]. Recency abstraction splits one address into two, one
for the most recently constructed object and one for all previously constructed
objects. Supposing just use the class name as addresses, recency abstraction
gives Γ = {panel1 : Panels, panel2 : Panelr}. For the most recently constructed
object, since it is the only object referred to by the address, strong updates
can be performed, while all previously constructed objects can only be updated
weakly2. The assumption of recency abstraction is object evolution usually hap-
pens to the most recent object, instead of the previously constructed objects.
Our example obeys this assumption since only panel2 evolves.

4 Experimental Design

This study investigates the following questions around object dynamism in
Python.
RQ1. Are dynamic object behaviors prevalent in the wild?
RQ2. How effective are class-based types and object-based types?

4.1 Subjects

In this experiment, we use 50 Python projects from Github. In particular, we
select the top 50 popular Python projects on Github whose testing framework
is pytest, after removing the ones that need to be run on multiprocessing mode
(which causes potential races of the log file) or have special requirements (e.g.,
network or peripheral devices). By requiring pytest to be the testing framework,
we can run all the subjects under a unified interface, simplifying the experiment
setup. Due to space limitations, when presenting and analyzing the results, we

2 In our example, only panel1 is not recent. However, in general, there can be many.



What Types Are Needed for Typing Dynamic Objects? 31

divide these 50 subjects into 7 categories and present the results for each cate-
gory. Table 1 presents these categories, the subjects they contain, and their total
LOC. We present the details of these 50 subjects on the artifact.

To learn the dynamic behaviors of these Python projects, we run the test
suite of each subject. In order to facilitate the analysis, we prune the test suites
until they can be executed within 12 h and produce a trace file of less than 20G.
The details of the used tests are also presented on the artifact.

4.2 Tracing and Analysis Infrastructure

Overview of the Infrastructure. Our infrastructure consists of a tracing
module and an analysis module. The tracing module is based on CPython 3.93.
The tracing module traces the execution of a subject and records the events
related to Python objects, such as the start/end of object construction, and
assigning/deleting object attributes. The events are recorded with the necessary
information to conduct our analysis, such as where the event happens (program
location), and which object is related to the event. The analysis module analyzes
the events to construct and evaluate class-based types and object-based types.
Constructing Types. We construct class-based types and object-based types
from the traces. To construct class-based types for a class c, if one of its objects
is observed to be assigned with an attribute a and type c′ in the trace, we add a
to the attribute set of c, and add c′ to the types of c.a. If one attribute a is owned
by one object of the class, but is not owned by another, we add abs to the types
of c.a. We also add abs if the attribute is added/deleted in the evolution phase,
since the attribute is absent before/after the extension/deletion. For class-based
types, all objects of the same class share the same type. The construction of
object-based types is similar, the only difference is that all objects of the same
object address (instead of class) share the same type. For object-based types,
we simulate flow-sensitive store abstraction by constructing different stores for
different locations. On top of flow-sensitive store abstraction, We simulate strong
updates by performing strong updates whenever the condition is met (i.e., the
object address is linear or obeys recency abstraction).

Note that when constructing types, we construct for all classes observed in
the traces. However, when evaluating the types, we focus on the objects whose
classes are defined directly in the program, ignoring the objects defined in built-
in or third-party libraries, to better reflect the nature of the analyzed programs.
Evaluating Types. We evaluate the effectiveness of class-based types and
object-based types against the access-sites. To illustrate, consider the class-based
type of panel1, namely, {title : Text ∨ str, width : int ∨ NoneType, height :
int ∨ abs}. Supposing we observe that the attribute title of panel1 is accessed
at Line 11, we evaluate this access-site in two steps. The first step performs local
type refinements based on the type tests [28,48] and local assignments [3]. In our
example, the polymorphic attribute title holds two classes, i.e., str and Text.

3 https://github.com/python/cpython/tree/3.9.

https://github.com/python/cpython/tree/3.9


32 K. Sun et al.

However, for the access-site at Line 11, only Text is valid, while str is ruled out
at Line 8. The second step judges if the types after refinement (i.e., Text) can
be used in the access-site, i.e., satisfy the constraints of the access-site.

The complete constraints in one access-site can not be collected without
building a complicated analysis. In our study, we utilize a substantial subset of
the complete constraints, named local constraints. The major generation rules of
local constraints are presented in Fig. 3. In this figure, obj.a denotes the access
expression, T denotes the set of all types of the attribute a after refinement
({Text} for title in our example). Attr is the function to extract the attribute
set of one object type. In our example, since we have self.title.copy, we can
generate the constraint abs /∈ {Text} ∧ copy ∈ Attr(Text), which is true by
examining the type set ({Text}) and the type of Text.

Similarly, consider another access-site of title, at Line 9. We can refine the
type of title to str this time. However, since title is directly passed to another
function, we cannot collect any local constraints, and thus we do not evaluate
this access-site. So far, we have examined all the access-sites of title. Since it
satisfies all examined access-sites, it is determined to be safe. For object types to
be precise, they should make as many polymorphic attributes safe, since unsafe
polymorphic attributes are very likely to be false alarms, due to the fact that the
access-sites are collected dynamically without witnessing runtime type errors.

obj.a =⇒ abs /∈ T

obj.a() =⇒ ∀τ ∈ T, call ∈ Attr(τ)

obj.a[e] =⇒ ∀τ ∈ T, getitem ∈ Attr(τ)

obj.a + e =⇒ ∀τ ∈ T, add ∈ Attr(τ)

obj.a.f =⇒ ∀τ ∈ T, f ∈ Attr(τ)

len(obj.a) =⇒ ∀τ ∈ T, len ∈ Attr(τ)

Fig. 3. Local Constraint Generation Rules

5 Results and Analysis

In this section, we answer the two research questions in two subsections.

5.1 Prevalence of Dynamic Behaviors

In this section, we study the prevalence of dynamic behaviors, as well as several
important aspects of them, to help characterize the difficulty of analyzing them.
Constructor Polymorphism. Table 2 presents the statistics of classes that
expose constructor polymorphism, where the second column presents the total
number of classes in a specific category and in all subjects. The third and fourth
columns present statistics on these classes, which we refer to as ratio results
and subject-wise median results, respectively. To obtain ratio results (given by
column “Ratio”), we divide the total number of classes that expose constructor
polymorphism in one category by the total number of classes in that category. To
obtain the subject-wise median results (given by column “Median”), we calculate
the proportion of classes exposing constructor polymorphism for each subject in



What Types Are Needed for Typing Dynamic Objects? 33

Table 2. Prevalence of constructor
polymorphism. Class shows the num-
ber of classes. Ratio and Median show
the proportion of classes.

Category Class Ratio Median

SCI 1773 0.24 0.28

PRG 360 0.32 0.20

WEB 643 0.12 0.14

TER 214 0.27 0.20

FMT 258 0.30 0.40

UTL 28 0.18 0.20

OTH 266 0.17 0.23

ALL 3542 0.23 0.20

Fig. 4. Degree of constructor polymorphism.
The X-axis/Y-axis denotes the number of dis-
tinct object types/classes.

Fig. 5. Overall Relation among
Object Types.

Fig. 6. Separability of Different Construc-
tion Contexts.

one category and take the median. Ratio results emphasize the overall propor-
tion, while subject-wise median results emphasize the subject-wise differences.
Due to space limitations, we present the results for each category and a summary
of all subjects. The results of individual subjects are given on the artifact.

From this figure, the ratio and median proportion of classes that expose
constructor polymorphism are both over 20%, indicating that constructor poly-
morphism is prevalent. Besides, we can also notice the differences among cat-
egories, e.g., UTL, WEB and OTH have fewer classes that expose constructor
polymorphism. Many classes belonging to those categories have relatively simple
functionality and do not need constructor polymorphism.

Now we know that constructor polymorphism is prevalent. But how poly-
morphic are polymorphic constructors, and how difficult it is to analyze them?

How Polymorphic. Figure 4 shows the degree of constructor polymorphism,
that is, the number of distinct object types made out of polymorphic construc-
tors. According to Fig. 4, most of the polymorphic constructors have a relative
low degree (less than 5), indicating that typically only a few object types are
made.



34 K. Sun et al.

Table 3. Prevalence of object evolution.
RO/MO presents the ratio/median for
objects, while RC/MC presents that for
classes.

Category Object RO MO Class RC MC

SCI 3 × 106 0.31 0.21 1773 0.36 0.28

PRG 1 × 106 0.11 0.02 360 0.11 0.15

WEB 2 × 105 0.28 0.40 643 0.31 0.43

TER 5 × 104 0.08 0.07 214 0.18 0.23

FMT 1 × 106 0.46 0.49 258 0.47 0.61

UTL 1 × 105 0.02 0.02 28 0.25 0.20

OTH 3 × 105 0.17 0.21 266 0.42 0.38

ALL 6 × 106 0.27 0.12 3542 0.33 0.28
Fig. 7. Actions of Object Evolution

Polymorphic constructor constructs objects of different types. But, how dif-
ferent are these types? To answer this question, we divide the polymorphic con-
structors into three kinds, according to whether they construct object types
with inconsistent attribute types (labeled TYPE in Fig. 5, e.g., {attr : int} and
{attr : str}), inconsistent attribute sets (ATTR, e.g., {attr : int} and {attr :
int, attr2 : int}), or both (BOTH, e.g., {attr : int} and {attr : str, attr2 : int}).
Figure 5 shows the proportion of those three kinds, which shows that most (87%)
polymorphic constructors construct object types with consistent attribute sets
but inconsistent attribute types. This suggests that polymorphic attribute types,
instead of attribute sets, are contributed by constructor polymorphism. Thus,
if the main cause of false type errors is attribute sets (we will see that it is),
constructor polymorphism should be generally innocent.

Separability. Constructors in Python are just normal functions. To precisely
analyze functions, context sensitivity is the prominent technique used in static
analysis and type systems [21,26,37,52]. Context sensitivity relies on func-
tion call contexts to separate the return types of different function calls. The
most widely used function call contexts are k-callsites [21,26,37] and argument
types [1,52], namely k-length call stacks and types of arguments of call-sites.
Figure 6 shows the proportion of polymorphic constructors that can be sepa-
rated by argument types or k-callsite contexts. For a polymorphic constructor,
if given an argument type/k-callsite of the constructor, only one object type
is observed to be constructed under the argument type/k-callsite, we mark the
constructor as separable by argument types/k-callsites. Otherwise, it is insep-
arable. According to Fig. 6, argument types effectively separate more than
80% of polymorphic constructors, implying the high dependency of constructed
object types on the argument types. However, k-callsites are not as effective as
argument types, although the separability increases with a longer callsite.
Object Evolution. Table 3 shows the prevalence of object evolution. Its second,
third, and fourth columns present the total number of objects, the ratio, and
the median proportion of objects that expose object evolution. The last three
columns of this table present the total number of classes, the ratio, and the
median proportion of classes that expose object evolution. Note that if any



What Types Are Needed for Typing Dynamic Objects? 35

object of one class exposes object evolution, we regard the class as exposing
object evolution. From the table, a large number of objects/classes (27%/33%)
expose object evolution, indicating the prevalence of object evolution. Besides,
SCI, FMT, and WEB have more objects/classes exposing object evolution and
we suspect the reason to be the specific functionalities of these categories. For
example, objects of class DecisionTree of the subject sklearn in the SCI category
are extended with new attributes after they are trained.

Now we know that object evolution happens frequently. But how do the
objects evolve, and how difficult it is to analyze the evolution?

How. Fig. 7 presents the statistics of evolution action. It shows the ratio
and median proportion of objects and classes that expose extension, modifica-
tion, and deletion, among all the evolving objects and classes. From this table,
extension and modification are dominant. Meanwhile, deletion seldom occurs:
although the ratio of deletion is around 10%, the median proportion is zero.

Furthermore, we analyze the pattern of evolution and find that most of the
evolution processes are monotonic. Monotonicity is a property that has been
used extensively in previous studies on object evolution [7,11,47]. Different from
the types described in Sect. 3, types based on monotonicity allow object evolu-
tion to be soundly analyzed without the need for store abstraction [39]. In this
study, following previous studies, we define monotonic evolution as the evolution
in which attributes are only added but not deleted, and when the type of one
attribute is changed, it only changes from a type to its subtype (we only con-
sider nominal subtype). We calculate the ratio of evolving objects that evolve
monotonically and find the ratio very high (85%). We believe that although
monotonicity has not been widely spread around the techniques for dynamic
languages, it is promising to propose systems utilizing it.

Function. The function where one evolution action happens significantly
influences the difficulty of analyzing it. As shown in Fig. 8, we divide the func-
tions where evolution actions happen into three kinds: Local means the evolution
action happens in the same function as the construction-site. Method means the
evolution action happens in one of the member methods of the evolving objects.
Those two kinds generally allow modular reasoning to be performed [30,51,55]
and are easier to analyze; Others denotes other functions. From the figure, we can
see that most functions are member methods of the object. There are also some
(23%) functions belonging to Local. Those findings indicate modular techniques
for analyzing object evolution should be able to cover most cases.

Condition. Figure 9 shows the conditions under which object evolution hap-
pens. More precisely, this figure shows the distribution of evolution locations
(evolution-sites), based on the intraprocedural preconditions. The intraproce-
dural precondition of one evolution-site is the condition that must be satisfied
to reach the evolution-site from the function entry. While in actual systems,
interprocedural preconditions (i.e., the condition to reach the function callsite)
must also be considered, collecting them requires a complicated infrastructure.
Thus, we use intraprocedural preconditions to speculate the difficulty of analyz-
ing the conditions. We split the intraprocedural preconditions into four major



36 K. Sun et al.

Fig. 8. Functions of
Object Evolution

Table 4. Overall Dynamism
Category Ratio Median

Static Hybrid Static Hybrid

SCI 0.54 0.14 0.59 0.11
PRG 0.60 0.03 0.67 0.02
WEB 0.61 0.05 0.50 0.05
TER 0.64 0.09 0.69 0.08
FMT 0.46 0.23 0.53 0.27
UTL 0.64 0.07 0.60 0.00
OTH 0.52 0.11 0.54 0.14
ALL 0.56 0.11 0.56 0.06 Fig. 9. Condition of Evo-

lution

Table 5. Results of the Evaluation of Class-based Types

Category Attributes Access-site Evaluation Absences

ALL POL EVA UNI TES LOC RN RA RB ABS CABS

SCI 18127 3802 1127 0.12 0.36 0.50 0.54 0.87 0.93 2623 239

PRG 2143 360 100 0.50 0.62 0.72 0.76 0.77 0.82 23 2

WEB 3842 957 217 0.13 0.26 0.41 0.59 0.74 0.95 572 58

TER 1126 187 36 0.36 0.78 0.83 0.92 0.86 0.94 12 0

FMT 1832 746 245 0.15 0.19 0.26 0.28 0.92 0.95 460 39

UTL 146 21 2 0.00 0.00 0.50 0.50 0.50 0.50 6 1

OTH 2145 231 31 0.42 0.55 0.55 0.65 0.87 0.97 114 6

ALL 29361 6304 1758 0.16 0.35 0.48 0.53 0.86 0.93 3810 345

kinds: (1) Uncond, where the precondition is simply True; (2) Iden, where the
precondition is not True, but all branches conduct evolution identically4; (3)
Excep, where the precondition is just to exclude the exceptional execution path
(e.g., if cond then raise exception else evolve); (4) Cond, where the precon-
dition does not belong to the previous three cases. From the figure, we can see
most (77%) of the evolution-sites fall into Uncound, Iden, or Excep. Meanwhile,
the proportion of Cond is still non-negligible (23%). This kind of evolution can be
precisely analyzed only by path-sensitive type systems. However, most existing
type systems for dynamic objects are not path-sensitive; instead, they merge the
different types of one object in different branches. Although there do exist path-
sensitive systems based on dependent and intersection types [16], or abstract
interpretation [36], those systems suffer from performance issues, and complex
type annotations [50]. To this end, we argue that more advanced techniques
should proposed, maybe by making better use of the potential correspondence
between conditional evolution and conditional accesses.
Overall Dynamism. Table 4 shows the overall dynamism of evaluated projects.
The second and fourth columns show the ratio and median proportion of classes
that do not expose any dynamic behaviors (i.e., static classes). The third and
fifth columns show the metrics of classes that expose both kinds of dynamic

4 In such cases, there is no need to precisely distinguish the branches.



What Types Are Needed for Typing Dynamic Objects? 37

behaviors (i.e., hybrid classes). From the table, the proportions of static classes
in all classes and within a project are both 56%. Since static objects are ideal for
performing program optimization [15,49], we believe that their high proportion
encourages more optimization for them. Also, the infrastructure of this paper is
a good start for identifying static objects/classes.

On the other hand, the ratio of classes that expose both behaviors is non-
negligible (11%). This implies that two behaviors are sometimes utilized simulta-
neously because they may serve different purposes. Thus, we believe it is promis-
ing to develop unified techniques to handle both dynamic behaviors.

5.2 Effectiveness of the Types

In this section, we analyze the effectiveness of class-based types and object-based
types. We start with the analysis of class-based types.
Class-Based Types. As discussed, polymorphic attributes are a good indicator
of the effectiveness of class-based types. Thus, we first analyze polymorphic
attributes, followed by an evaluation of the effectiveness of class-based types.
Polymorphic Attributes. Recall that an attribute is polymorphic if it holds a
union type. In other words, it is assigned with multiple classes or abs. The second
and third columns of Table 5 present the number of all attributes and polymor-
phic attributes. We observe that the proportion of polymorphic attributes is high
(6304/29361 = 21.4%), indicating their prevalence in dynamic languages.

To understand how types held by polymorphic attributes are related, we clas-
sify polymorphic attributes into six kinds in Fig. 10. These six kinds include: (a)
ABS, where each attribute (e.g., height) holds a single class or abs, (b) OPT,
where each attribute (e.g., width) holds a single class or NoneType, after removing
abs, (c) NOM, where each attribute holds multiple classes that, after removing
NoneType and abs, have nominal relation (i.e., the nominal join is not Object), (d)
NUM, where each attribute holds multiple classes that, after removing NoneType

and abs, are all numeric (i.e., builtin numeric classes, int and float, and user-
defined numeric classes, e.g., numpy.float32), (e) STRU, where each attribute
holds multiple classes that, after removing NoneType and abs, have structural
relation (i.e., the structural join is not Object), and (f) OTHE : the polymor-
phic attributes not belonging to previous kinds. When a polymorphic attribute
belongs to more than one kind, we classify it into the earlier appeared kind
because it is more specific. For example, the polymorphic attribute holding int

and float belongs to both NUM and STRU. We classify it into NUM since all
attributes belonging to NUM belong to STRU, but not vice versa.

From Fig. 10, we observe that a large proportion (53%+21%) of polymor-
phic attributes are ABS and OPT, meaning that most attributes are polymor-
phic because of abs or NoneType. Nevertheless, a significant proportion (26%)
of polymorphic attributes are actually assigned with multiple classes even after
removing abs and NoneType. Luckily, we find that most of those attributes do not
belong to OTHE , indicating that a supertype (in the sense of nominal, numeric,
or structural) is likely to be the intended type of each such attribute. Those



38 K. Sun et al.

Fig. 10. Classification Fig. 11. Object Addresses

attributes are likely to be used without precisely distinguishing their actual
types.
Evaluation. We will next evaluate the safety of accessing polymorphic attributes,
as specified in Sect. 4.2. In this study, we evaluate only the polymorphic
attributes for which at least one access-site exposes local constraints since con-
straints are necessary for the evaluation. Column EVA of Table 5 gives the ratio
of evaluated attributes, i.e., 27% (1758/6304). The reason that many polymor-
phic attributes are not evaluated is twofold. First, there are 27% (1711/6304)
attributes that we observe no access-site. The other attributes have access-sites
observed, but those access-sites expose constraints that can not be collected by
our local constraint generation rules. For example, the attributes may be passed
into another function, put into a global container, or directly returned.

Columns UNI through LOC of Table 5 show the ratio of evaluated attributes
that are determined to be safe. According to Sect. 4.2, an attribute is safe if
it satisfies the local constraints of all evaluated access-sites. Also, local type
refinements (i.e., type tests and local assignments) can be used to refine the
types of the evaluated attribute and make the accesses safe. To analyze the
effectiveness of local type refinements, we show the ratio of safe attributes with
and without local type refinements. First, Column UNI shows the ratio of safe
attributes without local type refinements. In this case, all access-sites of an
attribute have to be safe for all its classes. Overall, UNI attributes are about
16%. The UNI is much higher in some categories, such as PRG and OTH,
indicating that though polymorphic, attributes may be used uniformly without
distinguishing their types. Second, the attribute may be type-tested against
how it will be used, as illustrated in Sect. 3.1. The ratio of attributes that are
safe due to such tests or the previous reason is shown in Column TES . Third,
accessing polymorphic attributes may be safe thanks to local assignments [3]
before the access, as illustrated also in Sect. 3.1. The ratio of attributes whose
accesses are safe due to local assignments or previous reasons is shown in Column
LOC . The TES and LOC results for all subjects are 35% and 48%, respectively,
and are much higher in some categories (e.g., PRG, TER), meaning that local
type refinements can significantly increase the effectiveness of class-based types.



What Types Are Needed for Typing Dynamic Objects? 39

Threats to Validity. There are three threats to the validity. First, since we only
evaluate 27% of all polymorphic attributes, it is possible that the findings can-
not be generalized to all polymorphic attributes. We do believe that the results
are generalizable, however, since the difficulty in collecting constraints is due
to the surrounding contexts which do not affect typing in general. To test this
assumption, we sampled 300 polymorphic attributes from the 73% unevaluated
attributes and conducted a manual analysis of them. We provided the necessary
annotations to calculate LOC and RB for those attributes. The results are very
close to the ones in Table 5, with LOC = 50%, and RB = 97%. Second, since
we do not consider interprocedural constraints, it is possible that the types are
actually unsafe to use in the access-site, but we report them to be safe. To this
end, we manually investigate 100 safe attributes from the attributes belonging to
LOC , and analyze if they are actually safe. Among the 100 attributes, we find no
unsafe attributes. Thus, we believe that local constraints are effective in deter-
mining the safety of polymorphic attributes. Third, our interpretation of type
tests is not complete. We only consider built-in type tests such as isinstance

and hasattr and their boolean combinations, and ignore user-defined type tests
and value tests. It is possible that the attributes considered unsafe by our app-
roach are actually safe if we consider more complete type tests. To this end, we
additionally classify all attributes “mentioned” in the type tests as safe. In this
setting, LOC reaches 51%, only 3% higher than the original LOC results. Thus,
we believe that our interpretation of type tests covers most cases.
Attribute Absences. For the 52% of attributes whose accesses are deemed unsafe,
we manually investigate them and find the main reason is that attributes may
hold abs or NoneType but are used without type tests or local assignments. Com-
bined with our observation that a large proportion of attributes are ABS or OPT,
we conduct an additional experiment to evaluate the connection between those
two types and type safety. Specifically, for each attribute deemed as unsafe, we
discard NoneType, abs, and both of them and rerun the experiment. For example,
when evaluating width/height against their access-sites in measure, we remove
NoneType and abs from their types and evaluate int only. We show the results
of removing NoneType, abs, and both in columns RN, RA, and RB, respectively.
According to the results, removing NoneType helps increase the proportion (48%
to 53%), while removing absences helps significantly (48% to 86%), implying
that attribute absences are the main cause of the type errors.

Since attribute absences are the main cause of the type errors, we conduct
a specialized analysis of their sources, as shown in Columns ABS and CABS.
ABS shows the number of polymorphic attributes holding abs, while CABS
shows the same number when we only consider just-constructed objects. It can
be observed from the results that construction contributes a little (345/3810 =
9%) to attribute absences, which implies that evolution is the main source of
absences.
Object-Based Types. As discussed earlier, object addresses play an important
role in object-based types. In this section, we first investigate several object
addresses and then the effectiveness of object-based types.



40 K. Sun et al.

Table 6. Results of the Evaluation of Object-based Types

CAT Flow-insensi Flow-sensi Strong Updates (wo/w Recency)

CLS L0 L2 L4 CLS L0 L2 L4 CLS L0 L2 L4

SCI 0.50 0.55 0.55 0.56 0.51 0.55 0.56 0.56 0.52/0.65 0.58/0.72 0.61/0.94 0.62/0.94

PRG 0.72 0.78 0.85 0.85 0.74 0.79 0.86 0.86 0.74/0.78 0.79/0.84 0.87/0.91 0.87/0.91

WEB 0.41 0.44 0.46 0.46 0.41 0.45 0.46 0.46 0.48/0.83 0.55/0.91 0.57/0.93 0.57/0.93

TER 0.83 0.86 0.92 0.92 0.83 0.86 0.92 0.92 0.86/0.89 0.89/0.92 0.94/0.97 0.94/0.97

FMT 0.26 0.27 0.27 0.27 0.26 0.27 0.27 0.27 0.26/0.35 0.27/0.37 0.27/0.37 0.28/0.37

UTL 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00

OTH 0.55 0.58 0.58 0.58 0.55 0.58 0.58 0.58 0.65/0.77 0.77/0.97 0.77/0.97 0.77/0.97

ALL 0.48 0.51 0.53 0.53 0.49 0.52 0.53 0.53 0.50/0.65 0.55/0.71 0.58/0.86 0.59/0.86

Object Addresses. Recall that an address is nonlinear if it refers to multi-
ple objects. Nonlinear addresses prevent strong updates. There are two solu-
tions to this problem: more precise addresses or recency abstraction. To mea-
sure the effectiveness of more precise addresses, we compare four kinds of
addresses, including class names and class names extended with 0/2/4-callsite
of construction-sites (the 0-callsite case is simply construction location and so
on for the rest). In Fig. 11, Nonlinear results measure the proportion of evolving
classes that have at least two objects referred to by a single address. To measure
the effectiveness of recency abstraction, we compare object addresses with and
without recency abstraction. For an address with recency abstraction, strong
updates cannot be performed when it refers to inrecent, evolving objects. Inre-
cency measures the proportion of evolving classes that have at least one address
witnessing such a problem. From the figure, we can observe that the class name
can easily be nonlinear, as 93% of the class names are nonlinear. More precise
addresses help insignificantly. However, recency abstraction helps significantly.
Even with the most imprecise object address (class name), only 34% of evolv-
ing classes belong to Inrecency. With 2-callsite only 15% of the evolving classes
belong to Inrecency. In other words, with 2-callsite, most (85%) classes support
strong updates.
Evaluation. We now extend the evaluation of class-based types to object-based
types. The results are shown in Table 6. Columns under “Flow-insensi” show
the proportion of safe polymorphic attributes when typed under flow-insensitive
store abstraction with the four kinds of object addresses. CLS shows the propor-
tion when class names are used as object addresses. This column is the same as
the LOC column of Table 5. L0, L2, and L4 show the proportions when 0/2/4
callsite of the construction-sites are used to extend the class names. Note that
to keep the comparison with class-based types straightforward, we enable local
refinements and use the same polymorphic attributes as in the evaluation of
class-based types. It is possible that one attribute (e.g., title) is not polymor-
phic anymore when typed under more precise addresses. Even so, we still include
it. It can be observed that using more precise object addresses increases the pre-



What Types Are Needed for Typing Dynamic Objects? 41

cision. However, the improvement is not significant. Columns under “Flow-sensi”
show the same metrics but with flow-sensitive store abstraction. It can be shown
that flow-sensitivity alone cannot improve the precision much. Flow-sensitivity
alone (i.e., without strong updates) is effective only if one object can do some-
thing before taking some evolution actions, but not after. We can observe that
such conditions should be rare since flow-sensitivity alone is not effective. This
observation also aligns with our previous finding that object evolution is mostly
monotonic, which means that objects gain new abilities as the evolution goes
on, but never lose old abilities.

Columns under “Strong Updates” show the same metrics, but strong updates
are performed for linear addresses/addresses that obey recency abstraction.
Overall, we can find that the ability to perform strong updates significantly
improves precision. This finding conforms to our previous finding that most
errors are caused by attribute absences, which are themselves caused by object
evolution. Strong updates make it possible to distinguish the object type before
and after the evolution, and thus eliminate attribute absences and increase pre-
cision. Meanwhile, it can be observed that only performing strong updates for
linear addresses is not sufficient, and using recency abstraction helps significantly,
especially when used together with L2 or more precise addresses.

Note that our evaluation of object-based types only reveals the upper bound
of the precision. The precision of object-based types is also influenced by other
factors such as the analysis of function calls/control flows (which determines
whether the effects of different function calls/control flows are precisely sepa-
rated). As the results in Sect. 5.1 suggest, the analysis of them is not a trivial
task. However, since we want to focus on the factors that are specific to object
types, while those factors influence the typing of the whole program, we do not
conduct a detailed analysis of them and assume them to be precisely analyzed5.
In other words, our aim is not to conduct a systematic evaluation of object-based
types, but to derive observations on some important and representative factors.
Discussion. Now, we summarize the observations gained from our analysis and
make suggestions on real-world type systems.
Class-Based Types. As can be observed from our experiment, class-based types
can handle many polymorphic attributes. The effectiveness of class-based types
is contributed significantly by local type refinement techniques, especially the
ability to interpret type tests (a feature typically referred to as occurrence typ-
ing [13,28,48]). Moreover, since we find that our relatively simple “occurrence
typing” covers most cases, we believe that the technique for occurrence typing
needs not be very complicated to fulfill practical uses.

On the other hand, many polymorphic attributes cannot be handled by class-
based types yet, especially when they hold abs. To make this insight more con-
crete, we check the polymorphic attributes with Pyright [35], a widely-used class-
based type checker for Python, using class-based types similar to ours. More
specifically, we randomly sample 100 polymorphic attributes from the 52% of
the polymorphic attributes thought as unsafe in our study. We provide neces-

5 As a dynamic analysis, we can naturally simulate the precision analysis of them.



42 K. Sun et al.

sary type annotations for those polymorphic attributes and their related code
and check the code with Pyright. We found that type errors are reported for 95
of the attributes. The reason that errors are not reported for some attributes is
due to the unsound aspects of Pyright. For example, Pyright does not raise any
error for the attribute whose corresponding class overrides the getattr method.
Object-Based Types. It is obvious from the results that object-based types are
much more precise than class-based types. However, we want to emphasize that
although our results are in favor of object-based types to a large extent, we
do not mean that class-based types are useless since most of the spurious type
errors related to class-based types are just caused by attribute absences, which
are normally not expected to be excluded statically6. What’s more, type check-
ing/inference of class-based types is faster, and annotating class-based types is
much easier than object-based types [38]. Thus, we suggest using these two
kinds of types accordingly. In the scenarios where errors such as type mis-
matches are emphasized, and attribute absences matter less, we recommend
class-based types. Meanwhile, in the scenarios where more rigorous verification
is expected [12,18], we believe that object-based types are more suitable. In
particular, in dependent type systems [16,50], object-based types with strong
updates should be preferred, since they can help dependent type systems prove
stronger properties.
Typestate-Based Types. At last, we discuss typestates [6,46]. By modeling evo-
lution processes as finite state machines, typestates allow fine-grained represen-
tation of classes whose instances evolve. Typically, users must provide typestate
annotations to use such types. However, recent studies [12,20] have proposed an
inference algorithm for typestate annotations, when only attribute absences are
concerned and evolution happens only inside member methods. Since we have
found that attribute absences are the main cause of type errors and evolution
does happen mainly inside member methods, we believe that it is promising
to utilize typestate-based types. Future work in this direction should carefully
differentiate among three states of an attribute, that is, absent, uninitialized
(holding None), and initialized. What’s more, adopting typestate-based types
also requires some kind of strong update mechanism and can benefit from the
monotonicity, which some findings in our study should help.

6 Conclusion and Future Work

In this paper, we conduct a systematic evaluation of object dynamism and object
types. Our results reveal the prevalence of dynamic object behaviors. We also
evaluate the widely used types for handling object dynamism and draw impor-
tant implications for them. Although our study is set on Python, we expect the
main findings to be transferable to other dynamic languages, since they share
the same core semantics. For future work, we plan to build a type system for
dynamic object-oriented languages based on the insights gained in this study.

6 Even some static languages such as Java do not exclude them.



What Types Are Needed for Typing Dynamic Objects? 43

References

1. Agesen, O.: The Cartesian product algorithm. In: Tokoro, M., Pareschi, R. (eds.)
ECOOP 1995. LNCS, vol. 952, pp. 2–26. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-49538-X 2

2. Ahmed, A., Fluet, M., Morrisett, G.: L3: a linear language with locations. Funda-
menta Informaticae 77(4), 397–449 (2007)

3. Aiken, A., Foster, J.S., Kodumal, J., Terauchi, T.: Checking and inferring local non-
aliasing. In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pp. 129–140 (2003)

4. Åkerblom, B., Stendahl, J., Tumlin, M., Wrigstad, T.: Tracing dynamic features
in python programs. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, pp. 292–295 (2014)

5. Åkerblom, B., Wrigstad, T.: Measuring polymorphism in python programs. In:
Proceedings of the 11th Symposium on Dynamic Languages, pp. 114–128 (2015)

6. Aldrich, J., Sunshine, J., Saini, D., Sparks, Z.: Typestate-oriented programming.
In: Proceedings of the 24th ACM SIGPLAN Conference Companion on Object
Oriented Programming Systems Languages and Applications, pp. 1015–1022 (2009)

7. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for
JavaScript. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452.
Springer, Heidelberg (2005). https://doi.org/10.1007/11531142 19

8. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006).
https://doi.org/10.1007/11823230 15

9. Barbanera, F., Dezaniciancaglini, M., Deliguoro, U.: Intersection and union types:
syntax and semantics. Inf. Comput. 119(2), 202–230 (1995)

10. Bierman, G., Abadi, M., Torgersen, M.: Understanding TypeScript. In: Jones, R.
(ed.) ECOOP 2014. LNCS, vol. 8586, pp. 257–281. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44202-9 11

11. Blaudeau, C., Liu, F.: A conceptual framework for safe object initialization: a prin-
cipled and mechanized soundness proof of the celsius model. Proc. ACM Program.
Lang. 6(OOPSLA2), 729–757 (2022)

12. Bravetti, M., et al.: Behavioural types for memory and method safety in a core
object-oriented language. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470,
pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6 6

13. Castagna, G., Laurent, M., Nguyen, K., Lutze, M.: On type-cases, union elimina-
tion, and occurrence typing. Proc. ACM Program. Lang. 6(POPL), 1–31 (2022)

14. Chen, Z., Li, Y., Chen, B., Ma, W., Chen, L., Xu, B.: An empirical study on
dynamic typing related practices in python systems. In: Proceedings of the 28th
International Conference on Program Comprehension, pp. 83–93 (2020)

15. Choi, W., Chandra, S., Necula, G., Sen, K.: SJS: a type system for JavaScript with
fixed object layout. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp.
181–198. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-
9 11

16. Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, pp. 587–606 (2012)

17. Eifrig, J., Smith, S., Trifonov, V.: Sound polymorphic type inference for objects.
In: Proceedings of the Tenth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 169–184 (1995)

https://doi.org/10.1007/3-540-49538-X_2
https://doi.org/10.1007/3-540-49538-X_2
https://doi.org/10.1007/11531142_19
https://doi.org/10.1007/11823230_15
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-030-64437-6_6
https://doi.org/10.1007/978-3-662-48288-9_11
https://doi.org/10.1007/978-3-662-48288-9_11


44 K. Sun et al.

18. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-
oriented language. In: Proceedings of the 18th Annual ACM SIGPLAN Conference
on Object-Oriented Programing, Systems, Languages, and Applications, pp. 302–
312 (2003)

19. Furr, M., An, J.h., Foster, J.S., Hicks, M.: Static type inference for ruby. In: Pro-
ceedings of the 2009 ACM Symposium on Applied Computing, pp. 1859–1866
(2009)

20. Golovanov, I., Jakobsen, M.S., Kettunen, M.K.: Typestate inference for mungo:
Algorithm and implementation. Online Material (2020)

21. Google: Pytype, a static type analyzer for python code. Online Material (2023)
22. Hassan, M., Urban, C., Eilers, M., Müller, P.: MaxSMT-based type inference for

Python 3. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part II. LNCS,
vol. 10982, pp. 12–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96142-2 2

23. Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages. In:
D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200–224. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14107-2 10

24. Holkner, A., Harland, J.: Evaluating the dynamic behaviour of python applica-
tions. In: Proceedings of the Thirty-Second Australasian Conference on Computer
Science, vol. 91, pp. 19–28 (2009)

25. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. (TOPLAS) 23(3), 396–450
(2001)

26. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

27. Kaleba, S., Larose, O., Jones, R., Marr, S.: Who you gonna call: analyzing the
run-time call-site behavior of ruby applications. In: Proceedings of the 18th ACM
SIGPLAN International Symposium on Dynamic Languages, pp. 15–28 (2022)

28. Kent, A.M., Kempe, D., Tobin-Hochstadt, S.: Occurrence typing modulo theories.
ACM SIGPLAN Not. 51(6), 296–309 (2016)

29. Kouzapas, D., Dardha, O., Perera, R., Gay, S.J.: Typechecking protocols with
Mungo and StMungo. In: Proceedings of the 18th International Symposium on
Principles and Practice of Declarative Programming, pp. 146–159 (2016)

30. Lehtosalo, J.: Optional static typing for python. Online Material (2023)
31. Lerner, B.S., Politz, J.G., Guha, A., Krishnamurthi, S.: TeJaS: retrofitting type

systems for JavaScript. ACM SIGPLAN Not. 49(2), 1–16 (2013)
32. Madhavan, R., Komondoor, R.: Null dereference verification via over-approximated

weakest pre-conditions analysis. ACM Sigplan Not. 46(10), 1033–1052 (2011)
33. Maia, E., Moreira, N., Reis, R.: A static type inference for python. Proc. DYLA

5(1), 1 (2012)
34. McGugan, W.: Rich, a python library for rich text and beautiful formatting in the

terminal. Online Material (2023)
35. Microsoft: Pyright, a static type checker for python. Online Material (2023)
36. Monat, R., Ouadjaout, A., Miné, A.: Static type analysis by abstract interpretation

of python programs. In: 34th European Conference on Object-Oriented Program-
ming (ECOOP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

37. Oxhøj, N., Palsberg, J., Schwartzbach, M.I.: Making type inference practical. In:
Madsen, O.L. (ed.) ECOOP 1992. LNCS, vol. 615, pp. 329–349. Springer, Heidel-
berg (1992). https://doi.org/10.1007/BFb0053045

https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1007/978-3-642-14107-2_10
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/BFb0053045


What Types Are Needed for Typing Dynamic Objects? 45

38. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
39. Pilkiewicz, A., Pottier, F.: The essence of monotonic state. In: Proceedings of the

7th ACM SIGPLAN Workshop on Types in Language Design and Implementation,
pp. 73–86 (2011)

40. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe & efficient
gradual typing for typescript. In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 167–180 (2015)

41. Richards, G., Hammer, C., Burg, B., Vitek, J.: The eval that men do. In: Mezini,
M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 52–78. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22655-7 4

42. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of JavaScript programs. In: Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 1–12 (2010)

43. Rondon, P.M., Kawaguchi, M., Jhala, R.: Low-level liquid types. ACM Sigplan
Not. 45(1), 131–144 (2010)

44. Salib, M.: Starkiller: a static type inferencer and compiler for Python. Ph.D. thesis,
Massachusetts Institute of Technology (2004)

45. Smith, F., Walker, D., Morrisett, G.: Alias types. In: Smolka, G. (ed.) ESOP 2000.
LNCS, vol. 1782, pp. 366–381. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-46425-5 24

46. Strom, R.E., Yemini, S.: Typestate: a programming language concept for enhancing
software reliability. IEEE Trans. Softw. Eng. SE-12(1), 157–171 (1986). https://
doi.org/10.1109/TSE.1986.6312929

47. Summers, A.J., Müller, P.: Freedom before commitment: a lightweight type system
for object initialisation. In: Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications, pp. 1013–
1032 (2011)

48. Tobin-Hochstadt, S., Felleisen, M.: Logical types for untyped languages. In: Pro-
ceedings of the 15th ACM SIGPLAN International Conference on Functional Pro-
gramming, pp. 117–128 (2010)

49. Van Rossum, G., Drake, F.L., Jr.: The Python Language Reference. Python Soft-
ware Foundation, Wilmington (2014)

50. Vekris, P., Cosman, B., Jhala, R.: Refinement types for typescript. In: Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 310–325 (2016)

51. Vitousek, M.M., Kent, A.M., Siek, J.G., Baker, J.: Design and evaluation of gradual
typing for python. In: Proceedings of the 10th ACM Symposium on Dynamic
languages, pp. 45–56 (2014)

52. Wang, T., Smith, S.F.: Precise constraint-based type inference for Java. In: Knud-
sen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 99–117. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45337-7 6

53. Wang, Y.: PySonar2: an advanced semantic indexer for python. Online Material
(2019)

54. Wei, S., Xhakaj, F., Ryder, B.G.: Empirical study of the dynamic behavior of
JavaScript objects. Softw. Pract. Exper. 46(7), 867–889 (2016)

55. Zhao, T.: Polymorphic type inference for scripting languages with object exten-
sions. In: Proceedings of the 7th Symposium on Dynamic Languages, pp. 37–50
(2011)

https://doi.org/10.1007/978-3-642-22655-7_4
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1007/3-540-46425-5_24
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1007/3-540-45337-7_6


Types and Semantics for Extensible Data
Types

Cas van der Rest(B) and Casper Bach Poulsen

Delft University of Technology, Delft, The Netherlands
{c.r.vanderrest,c.b.poulsen}@tudelft.nl

Abstract. Developing and maintaining software commonly requires (1)
adding new data type constructors to existing applications, but also (2)
adding new functions that work on existing data. Most programming
languages have native support for defining data types and functions in
a way that supports either (1) or (2), but not both. This lack of native
support makes it difficult to use and extend libraries. A theoretically
well-studied solution is to define data types and functions using initial
algebra semantics. While it is possible to encode this solution in existing
programming languages, such encodings add syntactic and interpretive
overhead, and commonly fail to take advantage of the map and fold
fusion laws of initial algebras which compilers could exploit to generate
more efficient code. A solution to these is to provide native support for
initial algebra semantics. In this paper, we develop such a solution and
present a type discipline and core calculus for a language with native
support for initial algebra semantics.

Keywords: Type systems · Modularity · Programming Language
Design · Categorical Semantics

1 Introduction

A common litmus test for a programming language’s capability for modularity
is whether a programmer is able to extend existing data with new ways to
construct it as well as to add new functionality for this data. All in a way
that preserves static type safety; a conundrum which Wadler [38] dubbed the
expression problem. When working in pure functional programming languages,
another modularity question is how to model side effects modularly using, e.g.,
monads [28]. Ideally, we would keep the specific monad used to model the effects
of a program abstract and program against an interface of effectful operations
instead, defining the syntax and implementation of such interfaces separately
and in a modular fashion.

The traditional approach for tackling these modularity questions in pure func-
tional programming languages is by embedding the initial algebra semantics [18] of
inductive data types in the language’s type system. By working with such embed-
dings in favor of the language’s built-in data types we gain modularity without
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 46–66, 2023.
https://doi.org/10.1007/978-981-99-8311-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_3&domain=pdf
http://orcid.org/0000-0002-0059-5353
http://orcid.org/0000-0003-0622-7639
https://doi.org/10.1007/978-981-99-8311-7_3


Types and Semantics for Extensible Data Types 47

sacrificing type safety. This approach was popularized by Swierstra’s Data Types
à la Carte [36] as a solution to the expression problem, where it was used to derive
modular interpreters for a small expression language. In later work, similar tech-
niques were applied to define the syntax and implementation of a large class of
monads using (algebraic) effects and handlers based on different flavors of induc-
tively defined free monads. This was shown to be an effective technique for mod-
ularizing both first order [23] and higher order [7,31,40] effectful computations.

The key idea that unifies these techniques is the use of signature functors,
which act as a de facto syntactic representation of an inductive data type or
inductively defined free monad. Effectively, this defines a generic inductive data
type or free monad that takes its constructors as a parameter. The crucial benefit
of this setup is that we can compose data types and effects by taking the coprod-
uct of signature functors, and we can compose function cases defined over these
signature functors in a similarly modular way. Inductive data types and func-
tions in mainstream functional programming languages generally do not support
these kinds of composition.

While embedding signature functors has proven itself as a tremendously use-
ful technique for enhancing functional languages with a higher degree of type
safe modularity, the approach has some downsides:

– Encodings of a data type’s initial algebra semantics lack the syntactic con-
venience of native data types, especially when it comes to constructing and
pattern matching on values. Further overhead is introduced by their limited
interoperability, which is typically relies on user-defined isomorphisms.

– The connection between initial algebra semantics encodings of data types, and
the mathematical concepts that motivate them remains implicit. This has two
drawbacks: (1) the programmer has to write additional code witnessing that
their definitions possess the required structure (e.g., by defining instances of
the Functor typeclass), and (2) a compiler cannot leverage the properties
of this structure, such as by implementing (provably correct) optimizations
based on the well-known map and fold fusion laws.

In this paper, we explore an alternative perspective that makes type-safe mod-
ularity part of the language’s design, by including built-in primitives for the
functional programmer’s modularity toolkit—e.g., functors, folds, fixpoints, etc.
We believe that this approach has the potential to present the programmer with
more convenient syntax for working with extensible data types (see, for exam-
ple, the language design proposed by Van der Rest and Bach Poulsen [32]).
Furthermore, by supporting type-safe modularity through dedicated language
primitives, we open the door for compilers to benefit from their properties, for
example by applying fusion based optimizations.

1.1 Contributions

The semantics of (nested) algebraic data types has been studied extensively in
the literature (e.g., by Johann et al. [20–22], and Abel et al. [2–4]) resulting
in the development of various calculi with the purpose of studying different



48 C. van der Rest and C. B. Poulsen

aspects of programming with algebraic data types. In this paper, we build on
these works to develop a core calculus that seeks to distill the essential language
features needed for developing programming languages with built-in support for
type-safe modularity, while retaining the same formal foundations. Although the
semantic ideas that we build on to develop our calculus are generally well-known,
their application to improving the design of functional programming languages
has yet to be explored in depth. It is still future work to leverage the insights
gained by developing this calculus in the design of programming language that
provide better ergonomics for working with extensible data types, but we believe
the development of a core calculus capturing the essentials of programming with
extensible data types to be a key step for achieving this goal. To bridge from
the calculus presented in this paper to a practical language design, features
such as smart constructors, row types, and (functor) subtyping (as employed, for
example, by Morris and McKinna [29] and Hubers and Morris [19]) would be
essential. We make the following technical contributions:

– We show (in Sect. 2) how modular functions over algebraic data types in
the style of Data Types à la Carte and modular definitions of first-order and
higher-order (algebraic) effects and handlers based on inductively defined free
monads can be captured in the calculus.

– We present (in Sect. 3) a formal definition of the syntax and type system.
– We sketch (in Sect. 4) a categorical semantics for our calculus.
– We present (in Sect. 5) an operational semantics for our calculus, and discuss

how it relates to the categorical semantics.

Section 6 discusses related work, and Sect. 7 concludes. An extended version of
the paper [33] disucusses the categorical semantics in more detail.

2 Programming with Extensible Data Types, by Example

The basis of our calculus is the polymorphic λ-calculus extended with kinds,
restricted to rank-1 polymorphism. We can define many familiar polymorphic
functions, such as (id : ∀α.α ⇒ α) = λx.x or (const : ∀α.∀β.α ⇒ β ⇒ α) =
λx.λy.x. Types are closed under products and coproducts, with the unit type (1)
and empty type (0) as their respective units. Furthermore, we include a type-level
fixpoint (μ), which can be used to encode many well-known algebraic data types.
For example, the type of lists is defined as List � λα.μ(λX.1+ (α × X)). A key
feature of the calculus is that all higher-order types (i.e., that have one or more
type argument) are, by construction, functorial in all their arguments. While
this imposes some restrictions on the types we can define, it also means that the
programmer gets access to primitive mapping and folding operations that they
would otherwise have to define themselves. For the type List , for example, this
means that we get both the usual mapping operation transforming its elements,
as well as an operation corresponding to Haskell’s foldr , for free.

Although the mapping and folding primitives for first-order type constructors
(i.e., of kind � � �) are already enough to solve the expression problem for



Types and Semantics for Extensible Data Types 49

many algebraic data types (Sect. 2.1) and to encode modular algebraic effects
(Sect. 2.2), they generalize to higher-order type constructors. The benefit of this
generalization is that our calculus can also capture the definition of so-called
nested data types [8], which arise as the fixpoint of a higher-order functor. We
make essential use of the calculus’ higher-order capabilities in Sect. 2.3 to define
modular handlers for scoped effects [41] and modular elaborations for higher-
order effects [31], as in both cases effect trees that represents monadic programs
with higher-order operations is defined as a nested data type.

Notation. The examples in this section correspond to programs in our calculus,
but we take some notational liberty to simplify the exposition. Abstraction and
application of type variables is omitted, just as rank-1 universal qualifiers. By
convention, variables bound by type-level λ-abstraction are denoted by capital
letters (e.g., X), and universally quantified variables by Greek letters (e.g., α,β).

2.1 Modular Interpreters in the Style of Data Types à la Carte

We consider how to define a modular interpreter for a small expression language
of simple arithmetic operations. For starters, we just include literals and addi-
tion. The corresponding BNF equation and signature functor are given below:

e ::= N | e + e Expr � λX.N + (X × X)

Now, we can define an eval that maps expressions—given by the fixpoint of
Expr—to their result:

expr : N + (N × N) ⇒ N

expr = (λx.x) ��� (λx.π1 x + π2 x)

eval : μ(Expr) ⇒ N

eval = � expr �Expr

Terms typeset in purple are built-in operations. π1 and π2 are the usual projec-
tion functions for products, and − ��� − is an eliminator for coproducts. Following
Meijer et al. [27], we write � alg �τ (i.e., “banana brackets”) to denote a fold
over the type μ(τ) with an algebra of type alg : τ τ ′ ⇒ τ ′. The calculus does
not include a general term level fixpoint; the only way to write a function that
recurses on the substructures of a μ-type is by using the built-in folding oper-
ation. While this limits the operations we can define for a given type, it also
ensures that all well-typed terms in the calculus have a well-defined semantics.

Now, we can extend this expression language with support for a multiplica-
tion operation as follows, where Mul � λX.X × X:

mul : N × N ⇒ N

mul = λx.π1 x ∗ π2 x

eval : μ(Expr + Mul) ⇒ N

eval = � expr ��� mul �Expr+Mul

2.2 Modular Algebraic Effects Using the Free Monad

As our second example we consider how to define modular algebraic effects and
handlers [30] in terms of the free monad following Swierstra [36]. First, we define



50 C. van der Rest and C. B. Poulsen

the Free type which constructs a free monad for a given signature functor f . We
can think of a term with type Free f α as a syntactic representation of a monadic
program producing a value of type α with f describing the operations which we
can use to interact with the monadic context.

Free : (� � �) � � � � � λf.λα.μ(λX.α + fX)

Note that Free is a functor in both its arguments, and thus there are two ways to
“map over” a value of type Free f α; we can transform the values at the leaves
using a function α ⇒ β, or the shape of the nodes using a natural transformation
∀α.f α ⇒ g α. The higher order map can be used, for example, for defining
function that reorders the operations of effect trees with a composite signature.

reorder : Free (f + g) α ⇒ Free (g + f) α

reorder = map〈ι2 ��� ι1〉Free

Here, we use the higher-order instances of the coproduct eliminator − ��� −, the
injections ι1, ι2, and the functorial map operation map〈 − 〉−.

Effect handlers can straightforwardly be implemented as folds over Free. In
fact, the behavior of a handler is entirely defined by the algebra that we use to
fold over the effect tree, allowing us write a generic handle function:

handle : (α ⇒ β) ⇒ (f (Free g β) ⇒ Free g β) ⇒ Free (f + g) α ⇒ Free g β

handle = λh.λi.� (in ◦ ι1 ◦ h) ��� i ��� (in ◦ ι2) �α+(fX)+(gX)

Here, in is the constructor of a type-level fixpoint (μ). The fold above distin-
guishes three cases: (1) pure values, in which case we return it again using the
function h; (2) an operation of the signature f which is handled using the func-
tion i; or (3) an operation of the signature g which is preserved by reconstructing
the effect tree and doing nothing.

As an example, we consider how to implement a handler for the Abort effect,
which has a single operation indicating abrupt termination of a computation.
We define its signature functor as follows:

Abort : � � � � λX.1

The definition of Abort ignores its argument, X, which is the type of the contin-
uation. After aborting a computation, there is no continuation, thus the Abort
effect does not need to store one. A handler for Abort is then defined like so,
invoking the generic handle function defined above:

hAbort : Free (Abort + f) α ⇒ Free f (Maybe α)
hAbort = handle Just (λx.in (ι1 Nothing))

2.3 Modular Higher-Order Effects

To describe the syntax of computations that interact with their monadic context
through higher-order operations—that is, operations that may have monadic
computations as arguments—we need to generalize the free monad as follows.



Types and Semantics for Extensible Data Types 51

Prog : ((� � �) � � � �) � � � � � λf.μ(λX.λα.α + (f X α))

Note that, unlike the Free type, Prog is defined as the fixpoint of a higher-order
functor. This generalization allows for signature functors to freely choose the
return type of continuations. Following Yang et al. [41], we use this additional
expressivity to describe the syntax of higher-order operations by nesting contin-
uations. For example, the following defines the syntax of an effect for exception
catching, that we can interact with by either throwing an exception, or by declar-
ing an exception handler that first executes its first argument, and only runs the
second computation if an exception was thrown.

Catch : (� � �) � � � � � λX.λα.1 + (X(Xα) × (X(Xα))

A value of type Prog Catch α is then a syntactic representation of a monadic
program that can both throw and catch exceptions. From this syntactic represen-
tation we can proceed in two different ways. The first option is to replace excep-
tion catching with an application of the hAbort handler, in line with Plotkin and
Pretnar’s [30] original strategy for capturing higher-order operations. In recent
work, Bach Poulsen and Van der Rest [31] demonstrated how such abbrevia-
tions can be made modular and reusable by implementing them as algebras over
the Prog type. Following their approach, we define the following elaboration of
exception catching into a first-order effect tree.

eCatch : Prog Catch α ⇒ Free Abort α

eCatch = � (in ◦ ι1) ��� (in ◦ ι2)

��� (λX.hAbort (π1 X) �= maybe (join (π2 X)) id) �α+Catch X α

Here, the use of bind (�=) and join refer to the monadic structure of Free.
Alternatively, we can define a handler for exception catching directly by folding
over the Prog type, following the scoped effects approach by Wu et al. [40]:

hCatch : Prog (Catch + h) α ⇒ Prog h (Maybe α)
hCatch = � (in ◦ ι1 ◦ Just)

��� (λx.in (ι1 Nothing))
��� (λx.π1 x �= maybe (π2 x �= fwd) id))

��� (in ◦ ι2) �α+(Catch X α)+(h X α)

Where the function fwd establishes that Maybe commutes with the Prog type
in a suitable way:

fwd : Maybe (Prog h (Maybe α)) ⇒ Prog h (Maybe α)

That is, we show that Prog h is a modular carrier for Maybe [35].



52 C. van der Rest and C. B. Poulsen

Fig. 1. Type syntax

As demonstrated, our calculus supports defining higher-order effects and their
interpretations. To conveniently sequence higher-order computations we typi-
cally also want to use monadic bind—i.e., �= : Prog h α → (α → Prog h β) →
Prog h β. While it is possible to define monadic bind for Free from Sect. 2.2
in terms of a fold, defining the monadic bind for Prog requires a generalized
fold [9,41]. Adding this and other recursion principles [27] to our calculus is
future work.

3 The Calculus

The previous section demonstrated how a language with built-in support for
functors, folds, and fixpoints provides support for defining and working with
state-of-the-art techniques for type safe modular programming. In this section
we present a core calculus for such a language. The basis of our calculus is the
first-order fragment of System Fω—i.e., the polymorphic λ-calculus with kinds,
where universal quantification is limited to prenex normal form à la Hindley-
Milner. Additionally, the syntax of types, defined in Fig. 1, includes primitives
for constructing recursive types (μ(−)), products (×) and coproducts (+), as
well as a unit type (1) and empty type (0). In the definition of the syntax of
types, the use of ∀-types is restricted by stratifying the syntax into two layers,
types and type schemes. Consequently, our calculus is, by design, predicative:
∀-types can quantify over types but not type schemes.

The motivation for this predicative design is that it permits a relatively
straightforward categorical interpretation of ∀-types in terms of ends [33, §4.2].
Whereas the restriction of universal quantification to prenex normal form is usu-
ally imposed to facilitate type inference, our calculus does not support inference
in its current form due to the structural treatment of data types. In a structural
setting, inference requires the reconstruction of (recursive) data type definitions
from values, which is, in general, not possible.

We remark that the current presentation of the type system is declarative,
meaning that algorithmic aspects crucial to type checking, such as normalization
and equality checking of types, are not covered by the current exposition. Our
system is a subset of System Fω, whose Church-style formulation is decidable
while its Curry-style formulation is not. As such, we expect our type system to



Types and Semantics for Extensible Data Types 53

inherit these properties. Since we are restricting ourselves to a predicative subset
of Fω, we are optimistic that the Curry-style formulation of our type system will
be decidable too, but verifying this expectation is future work.

Fig. 2. Well-formedness rules for types and type schemes

3.1 Well-Formed Types

Types are well-formed with respect to a kind k, describing the arity of a type’s
parameters, if it has any. Well-formedness of types is defined using the judgment
Δ | Φ 
 τ : k, stating that the type τ has kind k under contexts Δ and Φ.
Similarly, well-formedness of type schemes is defined by the judgment Δ 
 σ,
stating that the type scheme σ is well-formed with respect to the context Δ.

Following Johann et al. [21], well-formedness of types is defined with respect
to two contexts, one containing functorial variables (Φ), and one containing
variables with mixed variance (Δ). Specifically, the variables in the context Φ
are restricted to occur only in strictly positive [1,13] positions (i.e., they can never
appear to the left of a function arrow), while the variables in Δ can have mixed
variance. This restriction on the occurrence of the variables in Φ is enforced in the
well-formedness rule for function types, K-Fun, which requires that its domain is
typed under an empty context of functorial variables, preventing the domain type
from dereferencing any functorial variables bound in the surrounding context.
While it may seem overly restrictive to require type expressions to be strictly
positive—rather than merely positive—in Φ, this is necessary to ensure that



54 C. van der Rest and C. B. Poulsen

μ-types, as well as its introduction and elimination forms, have a well-defined
semantics. Variables in Φ are bound by type-level λ-abstraction, meaning that
any type former with kind k1 � k2 is functorial in its argument. In contrast, the
variables in Δ are bound by ∀-quantification.

Products (×), coproducts (+), units (1) and empty types (0) can be con-
structed at any kind, reflecting the fact that the corresponding categorical
(co)limits can be lifted from Set to its functor categories by computing them
pointwise. This pointwise lifting of these (co)limits to functor categories is
reflected in the β equalities for these type formers (shown in Fig. 5), which allow
an instance at kind k1 � k2, when applied with a type argument, to be replaced
with an instance at kind k2.

The well-formed judgements for types effectively define a (simply typed) type
level λ-calculus with base “type” �. Consequently, the same type has multiple
equivalent representations in the presence of β-redexes, raising the question of
how we should deal with type normalization. The approach we adopt here is to
add a non-syntactic conversion rule to the definition of our type system that
permits any well-formed term to be typed under an equivalent type scheme.
Section 3.3 discusses type equivalence in more detail.

3.2 Well-Typed Terms

Figure 3 shows the term syntax of our calculus. Along with the standard syntactic
forms of the polymorphic λ-calculus we include explicit type abstraction and
application, as well as introduction and elimination forms for recursive types
(in/unin), products (π1/π2/− ��� −), coproducts (ι1/ι2/− ��� −), and the unit
(tt) and empty (absurd) types. Furthermore, the calculus includes dedicated
primitives for mapping (map〈 − 〉−) and folding (� − �−) over a type.

Figure 3 also includes the definition of arrow types. In spirit of the syntactic
notion of natural transformations used by Abel et al. [2–4] to study generalized
(Mendler) iteration, an arrow type of the form τ1

k−→ τ2 (where τ1, τ2 : k) defines
the type of morphisms between the objects that interpret τ1 and τ2. Arrow types
are defined by induction over k, since the precise meaning of morphism for any
pair of types depends on their kind. If k = �, then a morphism between τ1 and τ2
is simply a function type. However, if τ1 and τ2 have one or more type argument,
they are to be interpreted as objects in a suitable functor category, meaning that
their morphisms are natural transformations. This is reflected in the definition
of arrow types, by unfolding an arrow τ1

k−→ τ2 to a ∀-type that closes over all
type arguments of τ1 and τ2, capturing the intuition that polymorphic functions
cor respond to natural transformations.1 For instance, we would type the inorder
traversal of binary trees as inorder : Tree ���−→ List (� ∀α.Tree α ⇒ List α),
describing a natural transformation between the Tree and List functors.

1 This intuition is made formal in the extended version [33, Theorem 1].



Types and Semantics for Extensible Data Types 55

Fig. 3. Term syntax

The typing rules are shown in shown in Fig. 4. The rules rely on arrow
types for introduction and elimination forms. For example, Products can be
constructed at any kind (following rule K-Product in Fig. 2), so the rules for
terms that operate on these (i.e., T-Fst, T-Snd, and T-Fork) use arrow types
at any kind k. Consequently, arrow types should correspond to morphisms in a
suitable category, such that the semantics of a product type and its introduc-
tion/elimination forms can be expressed as morphisms in this category.

3.3 Type Equivalence

In the presence of type level λ-abstraction and application, the same type can
have multiple representations. For this reason, the type system defined in Fig. 4
includes a non-syntactic conversion rule that allows a well-typed term to be
re-typed under any equivalent type scheme. The relevant equational theory for
types is defined in Fig. 5, and includes the customary β and η equivalences for λ-
terms, as well as β rules for product, sum, unit, and empty types. The equations
shown in Fig. 5 are motivated by the semantic model we discuss in Sect. 4, in the
sense that equivalent types are interpreted to naturally isomorphic functors. The
relation is also reflexive and transitive, motivated by respectively the identity
and composition of natural isomorphisms. Viewing the equalities in Fig. 5 left-
to-right provides us with a basis for a normalization strategy for types, which
would be required for implementing the type system.

4 Categorical Semantics

In this section, we consider how to define a categorical semantics for our calculus,
drawing inspiration from the semantics defined by Johann and Polonsky [22] and
Johann et al. [20,21]. To define this semantics, we must show that each type in
our calculus corresponds to a functor, and that all such functors have initial
algebras. In the extended version of this paper [33] we discuss the requirements



56 C. van der Rest and C. B. Poulsen

Fig. 4. Well-formed terms

for these initial algebras to exist, and argue informally why they should exist for
the functors interpreting our types. Although Johann and Polonsky [22] present a
detailed argument for the existence of initial algebras of the functors underlying
nested data types, it is still future work to adapt this argument to our setting.

4.1 Semantic Setup

The general setup is as follows: kinds and kind contexts are associated with a
category; i.e., an object in the category of categories, and the semantics of well-
formed types are functors between the category associated with its context to the
category associated with its kind. Crucially, these functors are both a morphisms



Types and Semantics for Extensible Data Types 57

Fig. 5. Equational theory for types

in the category of categories, and objects in a functor category. Well-typed terms
map to a natural transformation between the functors interpreting respectively
its context and its type. Formally, we define the semantics of kinds as follows:

��� = Set �k1 � k2� = [�k1�, �k2�]

Where Set denotes the category of sets and total functions, and [C,D] the
category of functors between C and D.2 By interpreting the function kind as
objects in a functor category, we give formal grounds to our intention that all
types of kind k1 � k2 define a functor. Indeed, if every type of kind k1 �
k2 can be interpreted as a functor between the categories �k1� and �k2�, this
automatically entails that there is a corresponding action on morphisms that we
can use to define the semantics of the map〈 − 〉− primitive for that type. The
motivation for the folding (� − �−) primitive is more involved, as it requires us to
show that the functors interpreting type level functions have an initial algebra.
We argue the existence of initial algebras for these endofunctors by appealing
to Adámek’s theorem [5]; the extended version [33, §4] discusses this in more
detail.

4.2 Interpreting Types and Type Schemes

Following the general setup described above, the interpretation of a well-formed
type (or type scheme) should be a functor from the category interpreting its
context to the category interpreting its kind. Unlike the type variables in Φ,
which are syntactically restricted to covariant occurrences, the variables in Δ
have mixed variance. For this reason, we adopt a difunctorial semantics,3 inter-
preting judgments as functors over the product category �Δ�op × �Δ�:

� Δ | Φ 
 τ : k � : (�Δ�op × �Δ�) × �Φ� → �k�

Similarly, well-formed type schemes are also interpreted as a difunctor over �Δ�:

� Δ 
 σ � : �Δ�op × �Δ� → Set

2 For presentational purposes, we omit some necessary restrictions on sizes here. The
extended version [33, §4] defines these restrictions and the precise semantics.

3 Similar models of type expressions with mixed variance appear, for example, when
considering Mendler-style inductive types [37], or in the object calculus semantics
by Glimming and Ghani [17].



58 C. van der Rest and C. B. Poulsen

The extended version [33, Fig.6] defines a full semantics of types and type
schemes. To interpret the fragment of well-formed types that corresponds to
the simply-typed λ-calculus, we appeal to the cartesian closed structure of the
category of categories [26, p. 98]. Products, sums, unit types, empty types, and
μ-types, are interpreted as their respective (co)limits in Set, which are pre-
served by its functor categories by computing objects pointwise, and universal
quantifications are interpreted as an end.

Defining the semantics of function types requires slightly more care. The
existence of exponentials in Set induces a functor (−)− : Set → Setop →
Set, which, due to contravariance of the exponent, cannot be lifted to functor
categories in the same way. However, by typing the domain of a function type
under an empty context of functorial variables, we circumvent this problem. This,
together with the fact that constructing the opposite category of the product
category �Δ�op × �Δ� is an idempotent operation (up to isomorphism), ensures
that we can construct a functor of the form (�Δ�op × �Δ�) × �Φ� → Set from
the denotations of the sub-derivations by computing exponentials pointwise.

4.3 Interpreting Arrow Types

The intuition of terms typed by an arrow type of the form τ1
k−→ τ2 is that

they describe a morphism between the objects �τ1� and �τ2� in the category �k�.
However, the definition of arrow types unfolds to a type scheme, and thus their
semantics is an object in Set. Informally speaking, this object should internalize
the morphisms between �τ1� and �τ2� in �k�. We make this intuition formal by
establishing a form of currying for arrow types:

�k�(F (δ) × �τ1�(δ◦), �τ2�(δ)) � Set(F (δ), �τ1
k−→ τ2�(δ))

Here, F : �Δ�op×�Δ� → Set is a functor that interprets type environments, and
δ, δ◦ ∈ �Δ�op × �Δ� are objects interpreting the kind environment respectively
its opposite. In the extended version [33, Theorem 1] we derive the isomorphism
above, which is crucial for describing the semantics of well-typed terms. We write
↑ (−)/ ↓ (−) for the functions that transport along this isomorphism.

4.4 Interpreting Terms

The semantics of a well-typed term is a natural transformation between the
functors interpreting its type environment its type. The semantics of type envi-
ronment is defined component-wise in terms of the semantics for type schemes.

� Γ 
 M : σ � : Nat(�Γ �, �σ�)



Types and Semantics for Extensible Data Types 59

Fig. 6. Semantics of Well-Typed Terms.

Fig. 6 shows how this natural transformation is defined. Both the denotation
function �−� as well as the function it computes are total. Consequently, a well-
typed value can be computed from every well-typed term. In this sense, the
categorical model provides us with a sound computational model of the calculus,
which we could implement by writing a definitional interpreter [34]. In the next
section, we will discuss how a more traditional small-step operational semantics
can be derived from the same categorical model.

5 Operational Semantics

The previous section gave an overview of a categorical semantics of our calculus.
In this section, we define a small-step operational semantics for our calculus, and
discuss how it relates to the categorical model.



60 C. van der Rest and C. B. Poulsen

Fig. 7. Values and Evaluation Contexts. Highlights indicate optional occurrences of

(type) arguments

5.1 Reduction Rules

We define our operational semantics as a reduction semantics in the style of
Felleisen and Hieb [16]. Figure 7 shows the definition of values and evaluation
contexts. In our definition of values, we must account for the fact that language
primitives can exist at any kind. For example, the primitive ι1 by itself is a
value of type τ1

k−→ τ1 + τ2. Simultaneously, applying ι1 with a value and/or
a sequence of type arguments (the number of which depends on the kind of its
arrow type), also yields a value. In fact, all the partial applications of ι1 with
only some of its type arguments, or all type arguments but no value argument,
are also values. We use gray highlights to indicate such an optional application
with type and/or value arguments in the definition of values.

Figure 8 defines the reduction rules. We split the rules in two categories: the
first set describes β-reduction4 for the various type formers, while the second
set determines how the map〈 − 〉− primitive computes. Similar to the definition
of values and contexts in Fig. 7, we use the notation τ to depict a sequence of
zero or more type applications. Unlike for values, these type arguments are not
optional; terms typed by an arrow types must be fully applied with all their
type arguments before they reduce. The notation N • M is used as a syntactic
shorthand for the composition of two arrow types, which is defined through
η-expansion of all its type arguments and the term argument. The reduction
rules for the map〈τ〉M primitive are type directed, in the sense that the selected
reduction depends on τ . This is necessary, because in an application of map〈−〉−

to a value, there is no way to decide whether to apply the function or to push
the map〈 − 〉− further inwards by only looking at the value.

5.2 Relation to the Denotational Model

The reduction rules shown in Fig. 8 define a computational model for our calcu-
lus. We now discuss how this model arises from the denotational model discussed
in Sect. 4 and the extended version [33]. Informally speaking, reducing a term

4 Here, we mean “β-reduction” in the more general sense of simplifying an application
of an elimination form to an introduction form.



Types and Semantics for Extensible Data Types 61

Fig. 8. Reduction rules

should not change its meaning. This intuition is reflected by the following impli-
cation, which states if M reduces N , their semantics should be equal.5

M −→ N =⇒ �M� = �N� (1)

While we do not give a formal proof of the implication above, by relying on the
categorical model to inform how terms compute we can be reasonably confident
that our semantics does not contain any reductions that violate this property.
That is, all the reductions shown in Fig. 8 are supported by an equality of mor-
phisms in the categorical model.

What does this mean, specifically? The semantics of well-typed terms is given
by a natural transformation, so if M −→ N , M and N should be interpreted
as the same natural transformation. Equivalence of natural transformations is
defined pointwise in terms of the equality relation for morphisms in the under-
lying category. In our case, this is the category Set, as terms are interpreted as
natural transformations between functors into Set. By studying the properties—
expressed as equalities between morphisms—of the constructions that give a
semantics to the different type formers, and reifying these equalities as syntactic
reduction rules, we obtain an operational model that we conjecture respects the
denotational model by construction.

Let us illustrate this principle with a concrete example. The semantics of a
sum type τ1 + τ2 : k is given by a coproduct in the category �k�. The universal

5 This property implies what Devesas Campos and Levy [15] call soundness of the
denotational model with respect to the operational model. Their soundness property
is about a big-step relation; ours is small-step.



62 C. van der Rest and C. B. Poulsen

property of coproducts tells us that [f, g] ◦ ι1 = f and [f, g] ◦ ι2 = g, or in other
words, constructing and then immediately deconstructing a coproduct is the
same as doing nothing. Rules (8) and (9) in Fig. 8 reflect these equations. That
is, since the ι1, ι2, and − ��� − primitives are interpreted as the injections ι1, ι2,
and unique morphism [−,−] respectively, the universal property of coproducts
tells us that the left-hand side and right-hand side of rule (8) and (9) in Fig. 8
are interpreted to equal morphism in the categorical domain.

The remaining reduction rules are justified by the categorical model in a
similar fashion. More specifically:

– Rules (1,2) follow from the β-law for exponential objects, which states that
eval ◦ 〈curry(f), id〉 = f .

– Rule (3) holds definitionally, assuming type substitution is appropriately
defined such that it corresponds to functor application.

– Rule (4) follows from Lambek’s lemma, which states that the structure map of
an initial algebra is always an isomorphism. That is, there exists a morphism
unin such that unin ◦ in = id.

– Rule (5) reflects the universal property of folds, i.e., cata(f) ◦ in = f ◦
F (cata(f)).

– Rules (6,7) follow from the universal property of products, which states that
π1 ◦ 〈f, g〉 = f and π2 ◦ 〈f, g〉 = g.

– Rule (10) mirrors the identity law for functors, i.e. F (id) = id.
– Rule (11) is derived from naturality of the component of the initial algebra

of higher-order functors, which states that μ(F )(f) ◦ in = in ◦ F (μ(F ))(f).
– Rule (12,13,14,15) are derived from the way (co)-limits are computed point-

wise in functor categories. For example, the morphism action of the product
of two functors F and G is defined as (F × G)(f) = 〈F (f) ◦ π1, G(f) ◦ π2〉,
which gives rise to rule (12).

6 Related Work

The problem of equipping functional languages with better support for modular-
ity as been studied extensively in the literature. One of the earlier instances is the
Algebraic Design Language (ADL) by Kieburtz and Lewis [24], which features
language primitives for specifying computable functions in terms of algebras.
ADL overlaps to a large extent with the first-order fragment of our calculus,
but lacks support for defining nested data types. Zhang et al. [42] recently pro-
posed a calculus and language for compositional programming, called CP. Their
language design is inspired by object algebras, which in turn is based on the tag-
less final approach [11,25] and final algebra semantics [39], which, according to
Wand [39, §7], is an extension of initial algebra semantics. These lines of work
thus provide similar modularity as initial algebra semantics, but in a way that
does not require tagged values. While the categorical foundations of Zhang et
al.’s CP language seems to be an open question, the language provides flexible
support for modular programming, in part due to its powerful notion of subtyp-
ing. We are not aware of attempts to model (higher-order) effects and handlers



Types and Semantics for Extensible Data Types 63

using CP. In contrast, our calculus is designed to have a clear categorical seman-
tics. This semantics makes it straightforward to define state of the art type safe
modular (higher-order) effects and handlers. Morris and McKinna [29] define a
language that has built-in support for row types, which supports both extensi-
ble records and variants. While their language captures many known flavors of
extensibility, due to parameterizing the type system over a so-called row theory
describing how row types behave under composition, rows are restricted to first
order types. Consequently, they cannot describe any modularity that hinges on
the composition of (higher-order) signature functors.

The question of including nested data types in a language’s support for mod-
ularity has received some attention as well. For example, Cai et al. [10] develop
an extension of Fω with equirecursive types tailored to describe patterns from
datatype generic programming. Their calculus is expressive enough to capture
the modularity abstractions discussed in this paper, including those defined as
nested types, but lacks a denotational model. The interpretation of a subset of
types in their calculus and (traversable) functors is discussed informally. Simi-
larly, Abel et al. [4] consider an operational perspective of traversals over nested
datatypes by studying several extensions of Fω with primitives for (general-
ized) Mendler iteration and coiteration. Although these are expressive enough
to describe modular higher-order effects and handlers, their semantic founda-
tion is very different from the semantics of the primitive fold operation in our
calculus.

A major source of inspiration for the work in this paper are recent works
by Johann and Polonsky [22], Johann et al. [21], and Johann and Ghiorzi [20],
which respectively study the semantics and parametricity of nested data types
and GADTs. For the latter, the authors develop a dedicated calculus with a
design and semantics that is very similar to ours. Still, there are some subtle but
key differences between the designs; for example, their calculus does not include
general notions of ∀-types and function types, but rather integrates these into
a single type representing natural transformations between type constructors.
While their setup does not require the same stratification of the type syntax we
adopt here, it is also slightly less expressive, as the built-in type of transforma-
tions is restricted to closing over 0-arity arguments.

Data type generic programming commonly uses a universe of descriptions [6],
which is a data type whose inhabitants correspond to a signature functor. Generic
functions are commonly defined by induction over these descriptions, ranging
over a semantic reflection of the input description in the type system of a
dependently-typed host language [14]. In fact, Chapman et al. [12] considered
the integration of descriptions in a language’s design by developing a type theory
with native support for generic programming. We are, however, not aware of any
notion of descriptions that corresponds to our syntax of well-formed types.

7 Conclusion and Future Work

In this paper, we presented the design and semantics of a calculus with support
for modularity. We demonstrated it can serve as a basis for capturing several



64 C. van der Rest and C. B. Poulsen

well-known programming patterns for retrofitting type-safe modularity to func-
tional languages, such as modular interpreters in the style of Data Types à la
Carte, and modular (higher-order) algebraic effects. The formal semantics asso-
ciates these patterns with their motivating concepts, creating the possibility for
a compiler to benefit from their properties such as by performing fusion-based
optimizations.

Acknowledgements. This research was partially funded by the NWO VENI
Composable and Safe-by-Construction Programming Language Definitions project
(VI.Veni.192.259).

References

1. Abbott, M.G., Altenkirch, T., Ghani, N.: Containers: constructing strictly posi-
tive types. Theor. Comput. Sci. 342(1), 3–27 (2005). https://doi.org/10.1016/j.
tcs.2005.06.002

2. Abel, A., Matthes, R.: (Co-)Iteration for higher-order nested datatypes. In: Geu-
vers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 1–20. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39185-1 1

3. Abel, A., Matthes, R., Uustalu, T.: Generalized iteration and coiteration for higher-
order nested datatypes. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS, vol. 2620,
pp. 54–69. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36576-1 4

4. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theor. Comput. Sci. 333(1–2), 3–66 (2005)

5. Adámek, J.: Free algebras and automata realizations in the language of categories.
Comment. Math. Univ. Carol. 15(4), 589–602 (1974)

6. Benke, M., Dybjer, P., Jansson, P.: Universes for generic programs and proofs in
dependent type theory. Nord. J. Comput. 10(4), 265–289 (2003)

7. van den Berg, B., Schrijvers, T., Poulsen, C.B., Wu, N.: Latent effects for reusable
language components. In: Oh, H. (ed.) APLAS 2021. LNCS, vol. 13008, pp. 182–
201. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89051-3 11

8. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998.
LNCS, vol. 1422, pp. 52–67. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054285

9. Bird, R.S., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects
Comput. 11(2), 200–222 (1999). https://doi.org/10.1007/s001650050047

10. Cai, Y., Giarrusso, P.G., Ostermann, K.: System f-omega with equirecursive types
for datatype-generic programming. In: Bod́ık, R., Majumdar, R. (eds.) Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 January
2016, pp. 30–43. ACM (2016). https://doi.org/10.1145/2837614.2837660

11. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19(5), 509–
543 (2009). https://doi.org/10.1017/S0956796809007205

12. Chapman, J., Dagand, P., McBride, C., Morris, P.: The gentle art of levitation. In:
Hudak, P., Weirich, S. (eds.) Proceeding of the 15th ACM SIGPLAN international
conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA,
27–29 September 2010, pp. 3–14. ACM (2010), https://doi.org/10.1145/1863543.
1863547

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1007/3-540-39185-1_1
https://doi.org/10.1007/3-540-36576-1_4
https://doi.org/10.1007/978-3-030-89051-3_11
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/s001650050047
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547


Types and Semantics for Extensible Data Types 65

13. Coquand, T., Paulin, C.: Inductively defined types. In: Martin-Löf, P., Mints,
G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990).
https://doi.org/10.1007/3-540-52335-9 47

14. Dagand, P.: A cosmology of datatypes: reusability and dependent types. Ph.D.
thesis, University of Strathclyde, Glasgow, UK (2013). https://oleg.lib.strath.ac.
uk/R/?func=dbin-jump-full&object id=22713

15. Devesas Campos, M., Levy, P.B.: A syntactic view of computational adequacy.
In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 71–87.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2 4

16. Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235–271 (1992). https://doi.org/
10.1016/0304-3975(92)90014-7

17. Glimming, J., Ghani, N.: Difunctorial semantics of object calculus. In: Bono,
V., Bugliesi, M., Drossopoulou, S. (eds.) Proceedings of the Second Workshop
on Object Oriented Developments, WOOD 2004, London, UK, 30 August 2004.
ENTCS, vol. 138, pp. 79–94. Elsevier (2004). https://doi.org/10.1016/j.entcs.2005.
09.012

18. Goguen, J.A.: An intial algebra approach to the specification, correctness and
implementation of abstract data types. IBM Research Report 6487 (1976)

19. Hubers, A., Morris, J.G.: Generic programming with extensible data types: Or,
making ad hoc extensible data types less ad hoc. Proc. ACM Program. Lang.
7(ICFP) (2023). https://doi.org/10.1145/3607843

20. Johann, P., Ghiorzi, E.: Parametricity for nested types and gadts. Log. Methods
Comput. Sci. 17(4) (2021). https://doi.org/10.46298/lmcs-17(4:23)2021

21. Johann, P., Ghiorzi, E., Jeffries, D.: Parametricity for primitive nested types. In:
FOSSACS 2021. LNCS, vol. 12650, pp. 324–343. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-71995-1 17

22. Johann, P., Polonsky, A.: Higher-kinded data types: syntax and semantics. In:
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, 24–27 June 2019, pp. 1–13. IEEE (2019), https://doi.
org/10.1109/LICS.2019.8785657

23. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Morrisett, G., Uustalu,
T. (eds.) ACM SIGPLAN International Conference on Functional Programming,
ICFP 2013, Boston, MA, USA, 25–27 September 2013, pp. 145–158. ACM (2013).
https://doi.org/10.1145/2500365.2500590

24. Kieburtz, R.B., Lewis, J.: Programming with algebras. In: Jeuring, J., Meijer,
E. (eds.) AFP 1995. LNCS, vol. 925, pp. 267–307. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-59451-5 8

25. Kiselyov, O.: Typed tagless final interpreters. In: Gibbons, J. (ed.) Generic and
Indexed Programming. LNCS, vol. 7470, pp. 130–174. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32202-0 3

26. Mac Lane, S.: Categories for the Working Mathematician. GTM, vol. 5. Springer,
New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

27. Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas,
lenses, envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523,
pp. 124–144. Springer, Heidelberg (1991). https://doi.org/10.1007/3540543961 7

28. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

29. Morris, J.G., McKinna, J.: Abstracting extensible data types: or, rows by any other
name. Proc. ACM Program. Lang. 3(POPL), 12:1–12:28 (2019). https://doi.org/
10.1145/3290325

https://doi.org/10.1007/3-540-52335-9_47
https://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
https://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
https://doi.org/10.1007/978-3-319-89366-2_4
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/j.entcs.2005.09.012
https://doi.org/10.1016/j.entcs.2005.09.012
https://doi.org/10.1145/3607843
https://doi.org/10.46298/lmcs-17(4:23)2021
https://doi.org/10.1007/978-3-030-71995-1_17
https://doi.org/10.1007/978-3-030-71995-1_17
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1007/3-540-59451-5_8
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/3290325
https://doi.org/10.1145/3290325


66 C. van der Rest and C. B. Poulsen

30. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: Castagna, G. (ed.) ESOP
2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00590-9 7

31. Poulsen, C.B., van der Rest, C.: Hefty algebras: modular elaboration of higher-
order algebraic effects. Proc. ACM Program. Lang. 7(POPL), 1801–1831 (2023).
https://doi.org/10.1145/3571255

32. van der Rest, C., Poulsen, C.B.: Towards a language for defining reusable pro-
gramming language components - (project paper). In: Swierstra, W., Wu, N. (eds.)
Trends in Functional Programming - 23rd International Symposium, TFP 2022,
Virtual Event, March 17–18, 2022, Revised Selected Papers. LNCS, vol. 13401, pp.
18–38. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21314-4 2

33. van der Rest, C., Poulsen, C.B.: Types and semantics for extensible data types
(extended version) (2023)

34. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
High. Order Symb. Comput. 11(4), 363–397 (1998). https://doi.org/10.1023/A:
1010027404223

35. Schrijvers, T., Piróg, M., Wu, N., Jaskelioff, M.: Monad transformers and modular
algebraic effects: what binds them together. In: Eisenberg, R.A. (ed.) Proceedings
of the 12th ACM SIGPLAN International Symposium on Haskell, Haskell@ICFP
2019, Berlin, Germany, 18–23 August 2019, pp. 98–113. ACM (2019). https://doi.
org/10.1145/3331545.3342595

36. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008).
https://doi.org/10.1017/S0956796808006758

37. Uustalu, T., Vene, V.: Mendler-style inductive types, categorically. Nord. J. Com-
put. 6(3), 343 (1999)

38. Wadler, P.: The expression problem. https://homepages.inf.ed.ac.uk/wadler/
papers/expression/expression.txt (1998), Accessed 1 Jul 2020

39. Wand, M.: Final algebra semantics and data type extensions. J. Comput. Syst. Sci.
19(1), 27–44 (1979). https://doi.org/10.1016/0022-0000(79)90011-4

40. Wu, N., Schrijvers, T., Hinze, R.: Effect handlers in scope. In: Swierstra, W. (ed.)
Proceedings of the 2014 ACM SIGPLAN symposium on Haskell, Gothenburg, Swe-
den, 4–5 September 2014, pp. 1–12. ACM (2014), https://doi.org/10.1145/2633357.
2633358

41. Yang, Z., Paviotti, M., Wu, N., van den Berg, B., Schrijvers, T.: Structured han-
dling of scoped effects. In: ESOP 2022. LNCS, vol. 13240, pp. 462–491. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-99336-8 17

42. Zhang, W., Sun, Y., d. S. Oliveira, B.C.: Compositional programming. ACM Trans.
Program. Lang. Syst. 43(3), 9:1–9:61 (2021). https://doi.org/10.1145/3460228

https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1145/3571255
https://doi.org/10.1007/978-3-031-21314-4_2
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1017/S0956796808006758
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1016/0022-0000(79)90011-4
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1007/978-3-030-99336-8_17
https://doi.org/10.1145/3460228


Functional Languages



A Diamond Machine for Strong
Evaluation

Beniamino Accattoli1(B) and Pablo Barenbaum2,3

1 Inria & LIX, École Polytechnique, UMR 7161, Palaiseau, France
beniamino.accattoli@inria.fr

2 Universidad Nacional de Quilmes (CONICET), Bernal, Argentina
3 CONICET-Universidad de Buenos Aires, Instituto de Ciencias de la Computación,

Rosario, Argentina

Abstract. Abstract machines for strong evaluation of the λ-calculus
enter into arguments and have a set of transitions for backtracking out
of an evaluated argument. We study a new abstract machine which avoids
backtracking by splitting the run of the machine in smaller jobs, one for
argument, and that jumps directly to the next job once one is finished.

Usually, machines are also deterministic and implement deterministic
strategies. Here we weaken this aspect and consider a light form of non-
determinism, namely the diamond property, for both the machine and the
strategy. For the machine, this introduces a modular management of jobs,
parametric in a scheduling policy. We then show how to obtain various
strategies, among which leftmost-outermost evaluation, by instantiating
in different ways the scheduling policy.

Keywords: Lambda calculus · abstract machines · strong evaluation

1 Introduction

An abstract machine for the λ-calculus, or for one of its extensions, is an imple-
mentation schema for a fixed evaluation strategy →str with sufficiently atomic
operations (accounting for the machine part) and without too many implemen-
tative details (accounting for the abstract part). An abstract machine for →str,
ideally, refines the reduction of →str-redexes realizing the following three tasks:

1. Search: searching for →str-redexes;
2. Names: avoiding variable captures through some mechanism implementing

α-conversion, or allowing one to avoid α-conversion altogether;
3. Substitution: refining meta-level substitution with an approximation based

on delaying the substitution, which boils down to adopting a form of sharing,
and replacing one variable occurrence at a time, in a demand-driven fashion.

These tasks are usually left to meta-level operations in λ-calculi, meaning that
they happen outside the syntax of the calculus itself, in a black-box manner. The
role of abstract machines is to explicitly take care of these aspects, or at least of
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 69–90, 2023.
https://doi.org/10.1007/978-981-99-8311-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_4&domain=pdf
http://orcid.org/0000-0003-4944-9944
https://doi.org/10.1007/978-981-99-8311-7_4


70 B. Accattoli and P. Barenbaum

some of them, reifying them from the meta-level to the object-level. Concretely,
this is obtained by enriching the specification of the operational semantics with
dedicated data structures. Additionally, such a specification is usually designed
as to be efficient, and usually the evaluation strategy →str is deterministic.

Search, Backtracking, and Jumping. A first motivation of this paper is obtaining
a better understanding of the search mechanism of abstract machines. When
pushed at the meta-level, search is usually specified via deduction rules or via a
grammar of evaluation contexts, assuming that, at each application of a rewriting
rule, the term is correctly split into an evaluation context and a redex. The meta-
level aspect is the fact that the process of splitting the term (or applying the
deductive rules) is not taken into account as an operation of the calculus.

For simple evaluation strategies such as, for instance, weak call-by-name in
the pure λ-calculus (also known as weak head reduction), abstract machines
(such as the Krivine or the Milner abstract machine) have one search transi-
tion for every production of the evaluation contexts for the meta-level definition
of search. For less simple strategies, the searching for redexes by the machine
often also accounts for the further mechanism of backtracking search, that is
not visible in the operational semantics, not even at meta-level. Such a form
of search—which is completely unrelated to backtracking-as-in-classical-logic—
happens when the machine has finished evaluating a sub-term and needs to
backtrack to retrieve the next sub-term to inspect. Typically, this happens when
implementing strategies that evaluate arguments, and in particular for strategies
evaluating to strong normal form (that is, also under abstraction), the paradig-
matic and simplest example of which is leftmost(-outermost1) evaluation.

As an example, let f be a strong normal form and consider executing a
machine for leftmost evaluation on λx.xft. The machine would go under λx., find
the head variable x and then start searching for a β-redex in f . Since there are
none, the machine arrives at the end of f and then it usually backtracks through
the structure of f , as to exit it and then start searching inside t. Backtracking
search is natural when one sees the searching process as a walk over the code,
moving only between adjacent constructors. This is the dominating approach in
the design of abstract machines for λ-calculi, since the entirety of the (small)
literature on machines for strong evaluation adopts it [4,8,12,14–16,20,23,24].

There is, however, a natural alternative approach which is saving the position
where one would next backtrack, and then directly jumping to that position,
instead of walking back to it. In this paper, we explore how to avoid backtracking
search by adopting a form of jumping search. The idea is embarrassingly simple:
creating a new job when an argument ready to be evaluated is found, adding it
to a pool of jobs; then when the active job terminates, jumping to another job
in the pool, without backtracking out of the terminated one.

Diamond Non-determinism. A second motivation of the paper is to under-
stand how to deal with diamond non-determinism at the level of machines. It

1 To ease the language, in the paper we shorten leftmost-outermost to leftmost.



A Diamond Machine for Strong Evaluation 71

is often the case that a deterministic strong strategy can be relaxed as to be
non-deterministic. For instance, on the head normal form x t u r leftmost evalu-
ation would first evaluate t, then u, and then r. But the evaluations of t, u, and
r are in fact independent, so that one could evaluate them in any order. One
could even interleave their evaluations, as it is done for instance by the least
level strategy, a non-deterministic strong strategy coming from the linear logic
literature, introduced—we believe—by Girard [25] and studied for instance by
de Carvalho et al. [19] on proof nets and by Accattoli et al. [9] on the λ-calculus.

Such a form of non-determinism is benign, as it does not affect the result, nor
the length of the evaluation. Abstractly, it is captured by the diamond property
(here defined following Dal Lago and Martini [21], while Terese [32] defines it
more restrictively, without requiring u1 �= u2), the strongest form of confluence:

t u1

u2

and u1 �= u2 imply ∃r s.t.
t u1

u2 r

What makes it stronger than confluence is that both the opening span from t
and the closing one to r are made of single steps, not of sequences of steps.

The diamond property can be seen as a liberal form of determinism,
because—when it holds—all reductions to normal form have the same length,
and if one such reduction exists then there are no diverging reductions.

External Strategy and Machine. Here we introduce a relaxed, diamond version
of the leftmost strategy, which we deem external strategy. We are inspired by
Accattoli et al. [8], who study a similar strategy for strong call-by-value.

Diamond strategies can be seen as uniform frameworks capturing different
deterministic strategies (for instance the leftmost and the least level strategy).
Accordingly, a non-deterministic machine implementing a diamond strategy
would factor out the commonalities of different deterministic machines.

We then design a machine for the external strategy, the EXternal Abstract
Machine (EXAM) by building over the jumping search explained above. The
idea, again, is very simple. It amounts to relaxing the scheduling of jobs from the
pool, by allowing the machine to non-deterministically select whatever unfinished
job at each step, instead of having to terminate the active job and then having
to move to the next one in the pool.

In fact, we go one step further. We define a pool interface and the definition
of the EXAM is abstract in that it only refers to the interface. Then one can
define different pool templates that implement various scheduling policies for
jobs. The external strategy is implemented when adopting the most general,
non-deterministic template. By only replacing the template, we show how the
same machine can also implement the leftmost strategy. At the end of the paper,
we also quickly overview a template for the least level strategy, as well as one
for a fair strategy.



72 B. Accattoli and P. Barenbaum

Related Work. This work adopts terminologies and techniques from the work on
abstract machines by Accattoli and coauthors [1,3–5,7,8,10], and in particular
refines their machine for leftmost evaluation [4]. They focus on the complexity
of machines, while here we focus on search and ignore complexity, since their
work shows that search has linear cost (in the time cost model, i.e. the number
of β-steps) and thus it does not affect the asymptotic behavior, which is instead
linked to how the machine realizes the orthogonal substitution task. The study of
machines for strong evaluation is a blind spot of the field, despite the relevance
for the implementation of proof assistants. The few studies in the literature
have all been cited above. Search for abstract machines is related to Danvy and
Nielsen’s (generalized) refocusing [17,22], which however has never dealt with the
jumping search introduced here. General non-deterministic machines are studied
by Biernacka et al. [13], but the setting is different as they are not diamond.

Proofs. Proofs are in the technical report [2].

2 Normal Forms and the Importance of Being External

Basics of λ. The set T of untyped λ-terms is defined by t ::= x | λx. t | t t. The
capture-avoiding substitution of x by u in t is written t{x := u}. The relation of
β-reduction at the root �→β ⊆ T × T is defined by (λx. t)u �→β t{x := u}.

We shall use various notions of contexts, which are terms with a single occur-
rence of a free variable 〈·〉, called a hole. If C is a context, C〈t〉 denotes the
plugging of t in C which is the textual substitution of 〈·〉 by t in C. Plugging
might capture variables, for instance if C = λx.λy.〈·〉 then C〈xy〉 = λx.λy.xy.
Note that instead one would have (λx.λy.z){z := xy} = λx′.λy′.xy.

The relation of β-reduction →β ⊆ T × T is the context closure of �→β , i.e.
C〈t〉 →β C〈u〉 if t �→β u, compactly noted also as →β := C〈�→β〉. An evaluation
e : t →β

∗ u is a possibly empty sequence of β-steps.

Proposition 1 (Normal forms). β-Normal forms are described by:

Neutral terms n ::= x | nf Normal forms f ::= n | λx.f

Weak Head Reduction and External Redexes. The simplest evaluation strategy
is weak head reduction →wh, which is obtained as the closure A〈�→β〉 of the root
β-rule �→β by the following notion of applicative contexts:

Applicative contexts A ::= 〈·〉 | At.

Example: (λx.t)ur →wh t{x←u}r. Weak head reduction is deterministic. It fails
to compute β-normal forms because it does not reduce arguments nor abstraction
bodies, indeed r((λx.t)u) �→wh r(t{x←u}) and λy.((λx.t)u) �→wh λy.t{x←u}.

The key property of the weak head redex is that it is external, a key concept
from the advanced rewriting theory of the λ-calculus studied by many authors
[6,11,18,26–32]. Following Accattoli et al. [6], the intuition is that a redex R of
a term t is external if:



A Diamond Machine for Strong Evaluation 73

1. Action constraint : no other redex in t can act on (that is, can erase or dupli-
cate) R, and

2. Hereditary clause: the same it is true, hereditarily, for all the residuals of R
after any other redex.

In δ(Ix), where δ := λy.yy is the duplicator combinator and I := λz.z is the
identity combinator, the redex Ix can be duplicated by δ, so it is not external
because the action constraint is not respected. In Iδ(Ix), instead, the redex Ix
respects the action constraint, because Ix is an outermost redex, and yet Ix is
not external because it does not validate the hereditary clause: its only residual
after the step Iδ(Ix) →β δ(Ix) can be duplicated by δ.

Defining external redexes requires the introduction of the theory of residuals,
which is heavy and beyond the scope of this paper. The intuition behind it
however guides the study in this paper, and we consider it a plus—rather than
a weakness—that this can be done circumventing the theory of residuals.

Leftmost Reduction. One way to extend weak head reduction to compute β-
normal forms as to always reduce external redexes is provided by leftmost-
outermost reduction →lo (shortened to leftmost). The definition relies on the
notion of neutral term n used to describe normal forms, and it is given by the
closure L〈�→β〉 of root β by the following notion of leftmost contexts, defined by
mutual induction with neutral contexts:

Neutral ctxs N ::= 〈·〉 | nL | Nt Leftmost ctxs L ::= N | λx.L

Some examples: y((λx.t)u) →lo y(t{x←u}) and λy.((λx.t)u) →lo λy.t{x←u}
but Iy((λx.t)u) �→lo Iy(t{x←u}). Leftmost reduction is deterministic and nor-
malizing, that is, if t has a reduction to normal form f then leftmost reduction
reaches f . Formally, if t →β

∗ f with f normal then t →∗
lo f—for a recent simple

proof of this classic result see Accattoli et al. [9]. The normalization property
can be seen as a consequence of the fact that the strategy reduces only external
redexes. Note that the outermost strategy (that reduces redexes not contained in
any other redex) is instead not normalizing, as the following Ω redex is outermost
(but not leftmost), where Ω := δδ is the paradigmatic looping λ-term:

(λx. λy. x) z Ω →β (λx. λy. x) z Ω →β . . . (1)

The key point is that the outermost strategy does reduce redexes that cannot
be acted upon, but it does not satisfy the hereditary clause in the intuitive
definition of external redex given above, for which one also needs an additional
requirement such as selecting the leftmost redex among the outermost ones.

External Reduction. It is possible to define a strategy relaxing leftmost reduc-
tion, still reducing only external redexes, what we call external reduction. The
definition uses the auxiliary notions of rigid terms and contexts, plus the applica-
tive contexts A used for weak head reduction. The terminology is inspired by
Accattoli et al.’s similar strategy for strong call-by-value evaluation [8].



74 B. Accattoli and P. Barenbaum

Definition 1. The following categories of terms and contexts are defined mutu-
ally inductively by the grammar:

Rigid terms r ::= x | r t
Rigid ctxs R ::= 〈·〉 | r E | R t External ctxs E ::= R | λx.E

External reduction is the rewriting relation →x ⊆ T × T on λ-terms defined as
the closure of root β-reduction under external contexts, that is, →x := E〈�→β〉.

Alternative streamlined definitions for these notions are:

r ::= x t1 . . . tn
R ::= 〈·〉 t1 . . . tn | xu1 . . . um E t1 . . . tn E ::= λx1 . . . xk. R

As proved below, the leftmost strategy is a special case of the external one.
The converse does not hold: t = x(Iy)(Iz) →x x(Iy)z = u but t �→lo u. Instead,
t →lo xy(Iz) = r. Note also a case of diamond: t →x r and r →x xyz x← u.

Proposition 2 (Properties of external reduction).

1. Leftmost is external: if t →lo u then t →x u.
2. External diamond: if u x← · →x r with u �= r then u →x · x← r.

3 Preliminaries: Abstract Machines

Abstract Machines Glossary. Abstract machines manipulate pre-terms, that is,
terms without implicit α-renaming. In this paper, an abstract machine is a
quadruple M = (States,�, · � ·, ·) the component of which are as follows.

– States. A state s ∈ States is composed by the active term t, and some data
structures. Terms in states are actually pre-terms.

– Transitions. The pair (States,�) is a transition system with transitions
� partitioned into β-transitions �β (usually just one), that are meant to
correspond to β-steps, and overhead transitions �o, that take care of the
various tasks of the machine (searching, substituting, and α-renaming).

– Initialization. The component � ⊆ Λ × States is the initialization relation
associating λ-terms to initial states. It is a relation and not a function because
t � s maps a λ-term t (considered modulo α) to a state s having a pre-term
representant of t (which is not modulo α) as active term. Intuitively, any two
states s and s′ such that t�s and t�s′ are α-equivalent. A state s is reachable
if it can be reached starting from an initial state, that is, if s′ �∗ s where
t � s′ for some t and s′, which we abbreviate using t � s′ �∗ s.

– Read-back. The read-back function · : States → Λ turns reachable states into
λ-terms and satisfies the initialization constraint : if t � s then s =α t.

Further Terminology and Notations. A state is final if no transitions apply. A
run ρ : s �∗ s′ is a possibly empty finite sequence of transitions, the length
of which is noted |ρ|; note that the first and the last states of a run are not
necessarily initial and final. If a and b are transitions labels (that is, �a⊆� and
�b⊆�) then �a,b:=�a ∪ �b and |ρ|a is the number of a transitions in ρ.



A Diamond Machine for Strong Evaluation 75

Well-Namedness and Renaming. For the machines at work in this paper, the pre-
terms in initial states shall be well-named, that is, they have pairwise distinct
bound names; for instance (λx.x)(λy.yy) is well-named while (λx.x)(λx.xx) is
not. We shall also write tR in a state s for a fresh well-named renaming of t,
i.e. tR is α-equivalent to t, well-named, and its bound variables are fresh with
respect to those in t and in the other components of s.

Implementation Theorem, Abstractly. We now formally define the notion of a
machine implementing a strategy.

Definition 2 (Machine implementation). A machine M = (States,�, ·�·, ·)
implements a strategy →str when given a λ-term t the following holds:

1. Runs to evaluations: for any M-run ρ : t � s �∗
M s′ there exists a →str-

evaluation e : t →∗
str s′.

2. Evaluations to runs: for every →str-evaluation e : t →∗
str u there exists a

M-run ρ : t � s �∗
M s′ such that s′ = u.

3. β-Matching: in both previous points the number |ρ|β of β-transitions in ρ is
exactly the length |e| of the evaluation e, i.e. |e| = |ρ|β.

Next, we give sufficient conditions that a machine and a strategy have to satisfy
in order for the former to implement the latter, what we call an implementa-
tion system. In the literature, strategies and machines are usually assumed to be
deterministic. In Accattoli et al. [8], there is the case of a deterministic machine
implementing a diamond strategy. Here we shall have a diamond machine imple-
menting a diamond strategy, which is why the requirements are a bit different
than for previous notion of implementation systems in the literature [7,8,10].

Definition 3 (Implementation system). A machine M = (States,�, ·� ·, ·)
and a strategy →str form an implementation system if:

1. Overhead transparency: s �o s′ implies s = s′;
2. β-projection: s �β s′ implies s →str s′;
3. Overhead termination: �o terminates;
4. β-reflection: if s is �o-normal and s →str u then there exists s′ such that

s �β s′ and s′ = u.

The first two properties guarantee that the runs to evaluations part of the
implementation holds, the third and fourth properties instead induce the evalua-
tion to runs part, which is slightly more delicate. In the deterministic case, such
a second part usually follows from a weaker notion of implementation system,
where β-reflection is replaced by the weaker halt property, stating that if s is
final then s is normal. The diamond aspect of our study requires the stronger
β-reflection property, which actually subsumes the halt one. Indeed, if s is not
normal then by β-reflection s is not final.

Thanks to a simple lemma for the evaluation to runs part (in the technical
report [2]), we obtain the following abstract implementation theorem.



76 B. Accattoli and P. Barenbaum

Theorem 1 (Sufficient condition for implementations). Let M be a
machine and →str be a strategy forming an implementation system. Then, M
implements →str. More precisely, β-projection and overhead transparency imply
the runs to evaluations part (plus β-matching), and overhead termination and
β-reflection imply the evaluations to runs part (plus β-matching).

Fig. 1. Definition of the Milner Abstract Machine (MAM).

4 Preliminaries: The Milner Abstract Machine

The new machine for the external strategy that we are about to introduce builds
on the Milner Abstract Machine (shortened to MAM) for weak head reduction
by Accattoli et al. [3], that is probably the simplest abstract machine for the
λ-calculus in the literature. In this section, we overview the MAM, the data
structures and transitions of which are defined in Fig. 1.

Data Structures. The MAM has two data structures, the stack S and the envi-
ronment E, which are lists. We use ’:’ for consing a single element onto a list, but
also for list concatenation, so for instance S : S′ stands for the concatenation of
stacks. The set of variables bound by an environment E = [x1←t1] . . . [xk←tk]
is {x1, . . . , xk} and it is noted domE.

Transitions of the MAM. A term t is initialized into an initial state t�s by simply
using an arbitrary well-named renaming tR as active term together with empty
stack and environment. The MAM searches for β-redexes in the active term by
descending on the left of applications via transition �sea@ , while accumulating
arguments on the (applicative) stack, which is simply a stack of terms. If it finds
an abstraction λx.t and the stack has u on top, then it performs the machine
analogous of a β-redex, that is a �β transition, which adds the entry [x←u] on
top of the environment, to be understood as a delayed, explicit substitution. If



A Diamond Machine for Strong Evaluation 77

the MAM finds a variable x, then it looks up in the environment E if it finds an
associated entry [x←t], and replaces x with an α-renamed tR copy of t.

Transitions �sea@ and �sub are the overhead transitions of the MAM, that
is, �o:=�sea@,sub, and �β is its only β-transition. The MAM is deterministic.

Read-Back. The read-back of MAM states to terms can be defined in at least
two ways, by either first reading back the environment or the stack. Here we
give an environment-first definition, which shall be used also for the EXAM.

Definition 4 (MAM read-back). The read-back tE and SE of terms and
stack with respect to an environment E are the terms and stacks given by:

Terms tε := t t[x←u]:E := (t{x := u})
E

Stacks εE := ε t : SE := tE : SE

The read-back tS of t with respect to a stack S is the term given by:

tε := t tu:S := (t u)
S

Finally, the read-back of a state is defined as (t | S | E) := tESE

.

Theorem 2 ([3]). The MAM implements weak head reduction →wh.

Environments are defined as lists of entries, but they are meant to be con-
cretely implemented as a store, without a rigid list structure. The idea is that
variables are implemented as memory locations, as to obtain constant-time access
to the right entry of the environment via the operation E(x). It is nonetheless
standard to define environments as lists, as it helps one stating invariants con-
cerning them. For more implementative details, see Accattoli and Barras [5].

Comparison with the KAM. For the reader acquainted with the famous Krivine
Abstract Machine (KAM), the difference is that the stack and the environment
of the MAM contain codes, not closures as in the KAM, and that there is a single
global environment instead of many local environments. A global environment
indeed circumvents the complex mutually recursive notions of local environment
and closure, at the price of the explicit α-renaming tR which is applied on the fly
in �sub. The price however is negligible, at least theoretically, as the asymptotic
complexity of the machine is not affected, see Accattoli and co-authors [3,5] (the
same can be said of variable names vs de Bruijn indexes/levels).

5 The External Abstract Machine

In this section, we define the EXternal Abstract Machine (EXAM), an abstract
machine for the external strategy →x, by using the MAM as a sort of building
block. The EXAM is given in Fig. 2 and explained in the following paragraphs.
An example of run is given at the end of this section.



78 B. Accattoli and P. Barenbaum

Data Structures. The EXAM has three data structures, two of which are new
with respect to the MAM:

– The approximant (of the normal form) A, which collects the parts of the
normal form already computed by the run of the EXAM. The approximant
is a named multi-context, defined below, that is, a context with zero, one, or
more named holes 〈·〉α, each one identified by a distinct name α, β, etc.

– The pool P , which is a data structure containing a set of named MAM jobs,
providing operations for scheduling the execution of these jobs. Each named
job jα has shape (t, S)α, that is, it contains a term and a stack. The idea is that
the job jα = (t, S)α of name α is executing the term corresponding to (t, S)
and that the result of such execution shall be plugged in the approximant A,
replacing the hole 〈·〉α. Pools are discussed in detail below.

– The environment E, which is as for the MAM except that it is shared among
all the jobs in the pool.

Fig. 2. Definition of the EXternal Abstract Machine (EXAM).

Transitions and Functioning of the EXAM. A term t is initialized into an initial
state t�s by creating a pool with a single named job (tR, ε)α (having a well-named
tR version of t and an empty stack) and pairing it with the approximant A = 〈·〉α

and empty environment. The EXAM proceeds as the MAM until it reaches a
MAM final state. Let us consider the normal forms for weak head reduction and
the corresponding final states of the MAM, which are of two kinds:

1. Abstractions (with no arguments): the →wh normal form is λx.u which is the
read-back of a final MAM state (λx.t, ε, E) with empty stack (that is, u = tE).
In this case, the EXAM performs a �seaλ

transition, storing λx.〈·〉α into the
approximant A at α, and adding a named job (t, ε)α to the pool P .



A Diamond Machine for Strong Evaluation 79

2. Possibly applied variables (with no substitution): the →wh normal form is
xu1 . . . un with n ≥ 0, which is the read-back of a final state (x, t1 : . . . : tn, E)
with x /∈ domE (that is, ui = tiE). In this case, the EXAM performs a �seaV
transition. If n = 0 then �seaV simply adds x into the approximant A at α.
If n > 0 then �seaV adds n new named jobs (t1, ε)β1 , .., (tn, ε)βn

to the pool
P and adds x〈·〉α1 ..〈·〉α1 into the approximant A at α.

Transitions �sea@ , �seaλ
, and �seaV are the search transitions of the EXAM.

Together with �sub, they are the overhead transitions of the EXAM, that is,
�o:=�sea@,sub,seaλ,seaV , and �β is its only β-transition. The transition relation
of the EXAM is the union of all these relations, i.e. �EXAM :=�sea@,β,sub,seaλ,seaV .

Pool Interface and Templates. The EXAM selects at each step a (named) job
from the pool—the one performing the step—according to a possibly non-deter-
ministic policy, and drops it back in the pool after the transition, unless the job
is over, which happens in transition �seaV . In general, dropping a job back into
a pool and adding a job to a pool are not the same operation, since the former
applies to jobs that were in the pool before being selected, while addition is
reserved to new jobs. We actually abstract away from a job scheduling policy
and from the details of the pool data structure: the pool is an abstract interface
which can be realized by various concrete data structures called pool templates.

Definition 5 (Pool templates). A pool template is a data structure P coming
with the following five operations of the pool interface:

– Names, support, and new: there are a name function names(P ) = {α1, .., αn}
providing the finite and possibly empty set of the names of the jobs in the pool
(N  n ≥ 0), a support function supp(P ) = {jα1 , .., jαn

} providing the set
of jobs in the pool (indexed by names(P )), and a function new(jα) creating a
pool containing jα, that is, such that supp(new(jα)) = {jα}.

– Selection: there is a selection relation sel
↽ (P, jα, P ′) such that jα ∈ supp(P )

and supp(P ′) = supp(P ) \ {jα}. The intuition is that P ′ is P without jα,
which has been selected and removed from P . There is a choice constraint:
if P is non-empty then sel

↽ (P, jα, P ′) holds for some jα and P ′. We write
jα

sel
↽ P ′ for a pool P such that sel

↽ (P, jα, P ′).
– Dropping: there is a dropping function dro

⇁ (jα, P ) = P ′ defined when α /∈
names(P ) and such that supp(P ′) = supp(P ) ∪ {jα}. Dropping is meant to
add a job jα back to a pool P from which jα was previously selected. It is not
necessarily the inverse of selection. We write jα

dro
⇁ P for the pool dro

⇁ (jα, P ).
– Adding: similarly, there is an adding function add

⇁ (jα, P ) = P ′ defined when
α /∈ names(P ) and such that supp(P ′) = supp(P ) ∪ {jα}. Adding is meant to
add a new job jα to a pool P , that is, a job that has never been in P . We write
jα

add
⇁ P for add

⇁ (jα, P ) = P ′, and extend it to lists as follows: ε
add
⇁ P := P ,

and jα1 : .. : jαn

add
⇁ P := jαn

add
⇁

(
jα1 : .. : jαn−1

add
⇁ P

)
.



80 B. Accattoli and P. Barenbaum

Set EXAM. The simplest pool template is the set template where pools P
are sets of named jobs, the support is the pool itself (and the name set is
as expected), new(jα) creates a singleton with jα, selection is the relation
{(P, jα, P \ {jα}) | jα ∈ P}, and both dropping and adding are the addition
of an element. The set template models the most general behavior, as any job
of the pool can then be selected for the next step. The EXAM instantiated on
the set template is called Set EXAM. Other templates shall be considered at the
end of the paper, motivating in particular the distinction between dropping and
adding.

Approximants and Named Multi-Contexts. The definition of the EXAM rests on
approximants, which are stable prefixes of normal forms, that is, normal forms
from which some sub-terms have been removed and replaced with named holes.
In fact, we are going to introduce more general (named) multi-contexts to give
a status to approximants in which some but not all holes have been replaced
by an arbitrary term—which shall be needed in proofs (when manipulating the
read-back)—thus losing their “normal prefix” property.

Definition 6 (Named multi-contexts). A (named) multi-context C is a λ-
term in which there may appear free occurrences of (named) holes, i.e.:

(Named) Multi-contexts C ::= x | 〈·〉α | λx.C | CC

The plugging C〈C′〉α of α by C′ in C, is the capture-allowing substitution of
〈·〉α by C′ in C. We write names(C) for the set of names that occur in C. We
shall use only multi-contexts where named holes have pairwise distinct names.

Note that a multi-context C without holes is simply a term, thus the defined
notion of plugging subsumes the plugging C〈t〉α of terms in multi-contexts.

Approximants A are defined in Fig. 2 by mutual induction with rigid approx-
imants R, and are special cases of multi-contexts. Alternative streamlined defi-
nitions for (rigid) approximants are (possibly y = xi for some i ∈ {1, . . . , n}):

R ::= xA1..An A ::= λx1..xn. 〈·〉α | λx1..xn. yA1..An

Note that in A and R holes are never applied, that is, they are non-applying
multi-contexts. For the sake of readability, in the paper we only give statements
about approximants, which are then reformulated in the technical report [2] by
pairing them with a similar statement about rigid approximants, and proving
the two of them simultaneously by mutual induction.

We prove two properties of approximants. Firstly, to justify that transitions
�seaλ

and �seaV are well-defined, we show that the first component of the
state on their right-hand side is indeed an approximant. Secondly, we relate
approximants with normal forms, to justify the terminology.



A Diamond Machine for Strong Evaluation 81

Lemma 1 (Inner extension of approximants). If A is an approximant
and β1, . . . , βn /∈ names(A) then A〈λx. 〈·〉α〉α and A〈x 〈·〉β1 ..〈·〉βn

〉α are approxi-
mants.

Lemma 2. An approximant A without named holes is a normal form.

Read-Back. To give a notion of read-back that is independent of the pool tem-
plate, we define the read-back using a set X of uniquely named jobs—standing
for the support supp(P ) of the pool—rather than the pool P itself. Moreover,
we need a way of applying the substitution induced by an environment to named
jobs and sets of named jobs, which is based on the notions tE and SE for terms
and stacks given for the MAM, from which we also borrow the definition of tS .

Definition 7 (EXAM read-back). Applying an environment E to jobs and
job sets is defined as follows:

Jobs/jobs sets (t, S)α
E

:= (tE , SE)α {jα1 , .., jαn
}

E
:= {jα1E

, .., jαn E
}

The read-back of jobs, and of a multi context C with respect to a set of uniquely
named jobs {jα1 , .., jαn

} are defined as follows:

(t, S)α := tS C{jα1 ,..,jαn} := C〈jα1〉α1 ..〈jαn
〉αn

An EXAM state s is read-back as a multi-context setting �A | P | E� := Asupp(P )
E

.

Diamond. Since the selection operation is non-deterministic, the EXAM in gen-
eral is non-deterministic. The most general case is given by the Set EXAM, which
is the EXAM instantiated with the set template for pools described after Defi-
nition 5. As for the external strategy, the Set EXAM has the diamond property
up to a slight glitch: swapping the order of two β-transitions on two different
jobs, adds entries to the environment in different orders.

Let ≈ be the minimal equivalence relation on environments containing the
following relation:

E : [x←t] : [y←u] : E′ ∼ E : [y←u] : [x←t] : E′ if x /∈ u and y /∈ t

Let ≡ be the relation over states s. t. �A | P | E1� ≡ �A | P | E2� if E1 ≈ E2.

Proposition 3. The Set EXAM is diamond up to ≡, i.e., if s �EXAM s1 and
s �EXAM s2 then ∃s′

1 and s′
2 such that s1 �EXAM s′

1, s2 �EXAM s′
2, and s′

1 ≡ s′
2.

Example 1. The following is a possible run of the Set EXAM—that is, the EXAM
with the set template for pools—on the term t := x(Iyz)(δwz) where Iy = λy.y
and δw = λw.ww, ending in a final state.



82 B. Accattoli and P. Barenbaum

Approx. | Pool | Env Tran. Selected Job

〈·〉α | {(x(Iyz)(δwz), ε)α} | ε �sea@ α
〈·〉α | {(x(Iyz), δwz)α} | ε �sea@ α
〈·〉α | {(x, Iyz : δwz)α} | ε �seaV α

x〈·〉β〈·〉γ | {(Iyz, ε)β , (δwz, ε)γ} | ε �sea@ γ
x〈·〉β〈·〉γ | {(Iyz, ε)β , (δw, z)γ} | ε �β γ
x〈·〉β〈·〉γ | {(Iyz, ε)β , (ww, ε)γ} | [w←z] �sea@ β
x〈·〉β〈·〉γ | {(Iy, z)β , (ww, ε)γ} | [w←z] �sea@ γ
x〈·〉β〈·〉γ | {(Iy, z)β , (w,w)γ} | [w←z] �β β
x〈·〉β〈·〉γ | {(y, ε)β , (w,w)γ} | [y←z] : [w←z] �sub β
x〈·〉β〈·〉γ | {(z, ε)β , (w,w)γ} | [y←z] : [w←z] �sub γ
x〈·〉β〈·〉γ | {(z, ε)β , (z, w)γ} | [y←z] : [w←z] �seaV γ

x〈·〉β(x〈·〉γ′) | {(z, ε)β , (w, ε)γ′} | [y←z] : [w←z] �sub γ′

x〈·〉β(x〈·〉γ′) | {(z, ε)β , (z, ε)γ′} | [y←z] : [w←z] �seaV β
xz(x〈·〉γ′) | {(z, ε)γ′} | [y←z] : [w←z] �seaV γ′

xz(zz) | ∅ | [y←z] : [w←z]

6 Runs to Evaluations

In this section, we develop the projection of EXAM runs on external evalua-
tions, and then instantiates it with a deterministic pool template obtaining runs
corresponding to leftmost evaluations.

Overhead Transparency. By the abstract recipe for implementation theorems in
Sect. 3, to project runs on evaluations we need to prove overhead transparency
and β-projection. Overhead transparency is simple, it follows from the definition
of read-back plus some of its basic properties (in the technical report [2]).

Proposition 4 (Overhead transparency). If s �o s′ then s = s′.

Invariants. To prove the β-projection property, we need some invariants of the
EXAM. We have a first set of invariants concerning variable names, hole names,
and binders. A notable point is that their proofs use only properties of the pool
interface, and are thus valid for every pool template instantiation of the EXAM.

Terminology : a binding occurrence of a variable x is an occurrence of λx. t in
A, P or E, or an occurrence of [x←t] in E, for some t.

Lemma 3 (EXAM Invariants). Let s = �A | P | E� be an EXAM reachable
state reachable. Then:

1. Uniqueness. There are no repeated names in A.
2. Freshness. Different binding occurrences in s refer to different variable names.
3. Bijection. The set of names in A is in 1–1 correspondence with the set of

names in P , that is, names(A) = names(P ).
4. Freeness. The free variables of A are globally free, that is, fv(A)∩domE = ∅.



A Diamond Machine for Strong Evaluation 83

5. Local scope. For every sub-term of the form λx. t in a job in supp(P ) or in
E, there are no occurrences of x outside of t. Moreover, in the environment
[x1←t1] : .. : [xn←tn], there are no occurrences of xi in tj if i ≤ j.

The read-back of an EXAM state is defined as a multi-context, but for reach-
able states it is a term, as stated by Point 2 of the next lemma, proved by putting
together the bijection invariant for reachable states (Lemma 3.3) and Point 1.

Lemma 4 (Reachable states read back to terms).

1. Let A be an approximant and let X be a set of uniquely named jobs such that
names(A) ⊆ names(X). Then AX is a term.

2. Let s be a reachable state. Then its read-back s is a term.

Contextual Read-Back. The key point of the β-projection property is proving
that the read-back of the data structures of a reachable state without the active
term/job is an evaluation context—an external context in our case. This is
ensured by the following lemma. It has a simple proof (using Lemma 4) because
we can state it about approximants without mentioning reachable state, given
that we know that the first component of a reachable state is always an approxi-
mant (because of Lemma 1). The lemma is then used in the proof of β-projection.

Lemma 5 (External context read-back). Let X be a set of uniquely named
jobs and A be an approximant with no repeated names such that names(A) \
names(X) = {α}. Then AX〈〈·〉〉α is an external context.

Theorem 3 (β-projection). If s �β s′ then s →x s′.

Now, we obtain the runs to evaluations part of the implementation theorem,
which by the theorem about sufficient conditions for implementations (Theo-
rem 1) follows from overhead transparency and β-projection.

Corollary 1 (EXAM runs to external evaluations). For any EXAM run
ρ : t � s �∗

EXAM s′ there exists a →x-evaluation e : t →∗
x s′. Moreover, |e| = |ρ|β.

Last, we analyze final states.

Proposition 5 (Characterization of final states). Let s be a reachable final
state. Then there is a normal form f such that s = �f | ∅ | E� and s = f . More-
over, if s ≡ s′ then s′ is final and s′ = f .

6.1 Leftmost Runs to Leftmost Evaluations

Now, we instantiate the EXAM with the stack template for pools, obtaining a
machine implementing leftmost evaluation.



84 B. Accattoli and P. Barenbaum

Leftmost EXAM. Let the Leftmost EXAM be the deterministic variant of the
EXAM adopting the stack template for pools, that is, such that:

– Pools are lists jα1 : .. : jαn
of named jobs, new(jα) creates the list containing

only jα, and the support of a pool is the set of jobs in the list;
– Selection pops from the pool, that is, if P = jα1 : .. : jαn

then jα
sel
↽ P pops

jα from the list jα : jα1 : .. : jαn
;

– Both dropping and adding push on the list, and are inverses of selection.

Example 2. The Leftmost EXAM run on the same term t := x(Iyz)(δwz) used
for the Set EXAM in Example 1 follows (excluding the first three transitions,
that are the same for both machines, as they are actually steps of the MAM).

Approx. | Pool | Env Trans. Selected Job

x〈·〉β〈·〉γ | (Iyz, ε)β : (δwz, ε)γ | ε �sea@ β
x〈·〉β〈·〉γ | (Iy, z)β : (δwz, ε)γ | ε �β β
x〈·〉β〈·〉γ | (y, ε)β : (δwz, ε)γ | [y←z] �sub β
x〈·〉β〈·〉γ | (z, ε)β : (δwz, ε)γ | [y←z] �seaV β
xz〈·〉γ | (δwz, ε)γ | [y←z] �sea@ γ
xz〈·〉γ | (δw, z)γ | [y←z] �β γ
xz〈·〉γ | (ww, ε)γ | [w←z] : [y←z] �sea@ γ
xz〈·〉γ | (w,w)γ | [w←z] : [y←z] �sub γ
xz〈·〉γ | (z, w)γ | [w←z] : [y←z] �seaV γ

xz(z〈·〉γ′) | (w, ε)γ′ | [w←z] : [y←z] �sub γ′

xz(z〈·〉γ′) | (z, ε)γ′ | [w←z] : [y←z] �seaV γ′

xz(zz) | ε | [w←z] : [y←z]

Proving that Leftmost EXAM runs read back to leftmost evaluations requires
a new β-projection property. Its proof is based on the following quite complex
invariant about instantiations of the approximants computed by the Leftmost
EXAM. Terminology : a context C is non-applying if C �= D〈〈·〉t〉 for all D and
t, that is, it does not apply the hole to an argument.

Proposition 6 (Leftmost context invariant). Let

– s = �A | jα1 : .. : jαn
| E� be a reachable Leftmost EXAM state with n ≥ 1;

– fj be a normal form for all j such that 1 ≤ j < n,
– tj be a term for all j such that 1 < j ≤ n, and
– L be a non-applying leftmost context.

Then Cs
f1,..,fi−1|L|ti+1,..,tn

:= A〈f1〉α1 ..〈fi−1〉αi−1〈L〉αi
〈ti+1〉αi+1 ..〈tn〉αn

is a non-
applying leftmost context for every i ∈ {1, . . . , n}.

From the invariant, it follows that a reachable state less the first job reads
back to a leftmost context, which implies the leftmost variant of β-projection,
in turn allowing us to project Leftmost EXAM runs on leftmost evaluations.



A Diamond Machine for Strong Evaluation 85

Lemma 6 (Leftmost context read-back). Let s = �A | jα1 : .. : jαn
| E� be

a reachable Leftmost EXAM state with n ≥ 1 and s• := �A | jα2 : .. : jαn
| E�.

Then s•〈〈·〉〉α1 is a non-applying leftmost context.

Proposition 7 (Leftmost β-projection). Let s be a reachable Leftmost
EXAM state. If s �β s′ then s →lo s′.

Corollary 2 (Leftmost EXAM runs to leftmost evaluations). For any
Leftmost EXAM run ρ : t � s �∗

EXAM s′ there exists a →lo-evaluation e : t →∗
lo s′.

Moreover, |e| = |ρ|β.

7 Evaluations to Runs

Here, we develop the reflection of external evaluations to EXAM runs. By the
abstract recipe for implementation theorems in Sect. 3, one needs to prove over-
head termination and β-reflection. At the level of non-determinism, the external
strategy is matched by the most permissive scheduling of jobs, that is, the set
template. Therefore, we shall prove the result with respect to the Set EXAM.

Overhead Termination. To prove overhead termination, we define a measure.
The measure does not depend on job names nor bound variable names, which is
why the definition of the measure replaces them with underscores (and it is well
defined even if it uses the renaming E(x)R).

Definition 8 (Overhead measure). Let jα be a job and E be an environ-
ment satisfying the freshness name property (together) of Lemma 3, and s be a
reachable state. The overhead measures |jα, E|o and |s|o are defined as follows:

|(λ .t, u : S) , E|o := 0
|(λ .t, ε) , E|o := 1 + |(t, ε) , E|o
|(tu, S) , E|o := 1 + |(t, u : S) , E|o
|(x, ε) , E|o := 1 + |(E(x)R, ε) , E|o if x ∈ domE

|(x, t1 : .. : tn) , E|o := 1 +
∑n

i=1 |(ti, ε) , E|o with n ≥ 0, if x /∈ domE

|�A | P | E�|o :=
∑

jα∈supp(P ) |jα, E|o

Proposition 8 (Overhead termination). Let s be a Set EXAM reachable
state. Then s �|s|o

o s′ with s′ �o-normal.

Addresses and β-Reflection. For the β-reflection property, we need a way to
connect external redexes on terms with β-transitions on states. We use addresses.

Definition 9 (Address and sub-term at an address). An address a is a
string over the alphabet {l, r, λ}. The sub-term t|a of a term t at address a is
the following partial function (the last case of which means that in any case not
covered by the previous ones t|a is undefined):



86 B. Accattoli and P. Barenbaum

t|ε := t (tu)|l:a := t|a (tu)|r:a := u|a (λx.t)|λ:a := t|a
|c:a := ⊥ if c ∈ {l, r, λ}

The sub-term C|a at a of a multi-context is defined analogously. An address a
is defined in t (resp. C) if t|a �= ⊥ (resp. C|a �= ⊥), and undefined otherwise.

There is a strong relationship between addresses in the approximant of a
state and in the read-back of the state, as expressed by the following lemma.
The lemma is then used to prove β-reflection, from which the evaluation to runs
part of the implementation theorem follows.

Lemma 7. Let s = �A | P | E� be a state and a a defined address in A. Then a
is a defined address in s, and s|a starts with the same constructor of A|a unless
A|a is a named hole.

Proposition 9 (β-reflection). Let s be a �o-normal reachable state. If s →x u
then there exists s′ such that s �β s′ and s′ = u.

Corollary 3 (Evaluations to runs). For every →x-evaluation e : t →∗
x u

there exists a Set EXAM run ρ : t � s �∗
EXAM s′ such that s′ = u.

A similar result for leftmost evaluation and the Leftmost EXAM follows
more easily from the characterization of final states (Proposition 5), overhead
termination (Proposition 8), and determinism of the Leftmost EXAM—this is
the standard pattern for deterministic strategies and machines, used for instance
by Accattoli et al. for their machine for leftmost evaluation [4].

Names and Addresses. It is natural to wonder whether one can refine the EXAM
by using addresses a as a more precise form of names for jobs. It is possible, it
is enough to modify the EXAM as to extend at each step the name/address. For
instance, transition �sea@ would become:

Ap. | Pool |Env Ap. | Pool |Env
A | (t u, S)a

sel
↽ P | E �sea@ A | (t, u : S)l:a

dro
⇁ P | E

Then a β-transition of address a in a reachable state s corresponds exactly to a β-
redex of address a in s. We refrained from adopting addresses as names, however,
because this is only useful for proving the β-reflection property of the EXAM,
the machine does not need such an additional structure for its functioning.

8 Further Pool Templates

Least Level. Another sub-strategy of external reduction that computes β-normal
forms is provided by least level reduction →��, a notion from the linear logic
literature. Picking a redex of minimal level, where the level is the number of
arguments in which the redex is contained, is another predicate (similarly to
the leftmost one) that ensures externality of an outermost redex. Note that the



A Diamond Machine for Strong Evaluation 87

Ω redex in (1) (page 5) is not of minimal level (it has level 1 while the redex
involving z has level 0). Least level reduction is non-deterministic but diamond.
For instance the two redexes (of level 1) in x(Iy)(Iz) are both least level. Note
that the leftmost redex might not be least level, as in x(x(Iy))(Iz), where the
leftmost redex is Iy and has level 2, while Iz has level 1.

By replacing the stack template with a queue one, the Leftmost EXAM turns
into a machine for least level evaluation. The key point is that when new jobs are
created, which is done only by transition �seaV , they all have level n + 1 where
n is the level of the active job. To process jobs by increasing levels, then, it is
enough to add the new jobs at the end of the pool, rather than at the beginning.
This is an example where dropping (which pushes an element on top of the list
of jobs) and adding (which adds at the end) are not the same operation.

Fair Template. Another interesting template is the one where pools are lists and
dropping always adds at the end of the list. In this way the EXAM is fair, in
the sense that even when it diverges, it keeps evaluating all jobs. This kind of
strategies are of interest for infinitary λ-calculi, where one wants to compute all
branches of an infinite normal form, instead of being stuck on one.

9 Conclusions

This paper studies two simple ideas and applies them to the paradigmatic case of
strong call-by-name evaluation. Firstly, avoiding backtracking on the search for
redexes by introducing jobs for each argument and jumping to the next job when
one is finished. Secondly, modularizing the scheduling of jobs via a pool interface
that can be instantiated by various concrete schedulers, called pool templates.

The outcome of the study is a compact, modular, and—we believe—elegant
abstract machine for strong evaluation. In particular, we obtain the simplest
machine for leftmost evaluation in the literature. Our study also gives a compu-
tational interpretation to the diamond non-determinism of strong call-by-name.

For the sake of simplicity, our study extends the MAM, which implements
weak head reduction using global environments. Our technique, however, is rea-
sonably modular in the underlying machine/notion of environment. One can,
indeed, replace the MAM with Krivine abstract machine (KAM), which instead
uses local environments, by changing only the fact that the jobs of the EXAM
have to carry their own local environment. Similarly, the technique seems to
be adaptable to the CEK or other machines for weak evaluation. It would be
interesting to compare the outcome of these adaptations with existing machines
for strong call-by-value [8,14,15] or strong call-by-need [12,16].



88 B. Accattoli and P. Barenbaum

References

1. Accattoli, B.: The useful MAM, a reasonable implementation of the strong λ-
calculus. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016.
LNCS, vol. 9803, pp. 1–21. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-52921-8 1

2. Accattoli, B., Barenbaum, P.: A diamond machine for strong evaluation. CoRR
abs/2309.12515 (2023). https://arxiv.org/abs/2309.12515

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Proceed-
ings of the 19th ACM SIGPLAN International Conference on Functional Program-
ming, Gothenburg, Sweden, September 1–3, 2014, pp. 363–376 (2014). https://doi.
org/10.1145/2628136.2628154

4. Accattoli, B., Barenbaum, P., Mazza, D.: A strong distillery. In: Feng, X., Park,
S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 231–250. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26529-2 13

5. Accattoli, B., Barras, B.: Environments and the complexity of abstract machines.
In: Vanhoof, W., Pientka, B. (eds.) Proceedings of the 19th International Sym-
posium on Principles and Practice of Declarative Programming, Namur, Belgium,
October 09–11, 2017, pp. 4–16. ACM (2017). https://doi.org/10.1145/3131851.
3131855

6. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20–21, 2014, pp. 659–670. ACM (2014). https://doi.
org/10.1145/2535838.2535886

7. Accattoli, B., Condoluci, A., Guerrieri, G., Sacerdoti Coen, C.: Crumbling abstract
machines. In: Komendantskaya, E. (ed.) Proceedings of the 21st International Sym-
posium on Principles and Practice of Programming Languages, PPDP 2019, Porto,
Portugal, October 7–9, 2019, pp. 4:1–4:15. ACM (2019). https://doi.org/10.1145/
3354166.3354169

8. Accattoli, B., Condoluci, A., Sacerdoti Coen, C.: Strong Call-by-Value is Reason-
able, Implosively. In: 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pp. 1–14. IEEE (2021).
https://doi.org/10.1109/LICS52264.2021.9470630

9. Accattoli, B., Faggian, C., Guerrieri, G.: Factorization and normalization, essen-
tially. In: Lin, A.W. (ed.) APLAS 2019. LNCS, vol. 11893, pp. 159–180. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34175-6 9

10. Accattoli, B., Guerrieri, G.: Abstract machines for open call-by-value. Sci. Comput.
Program. 184 (2019). https://doi.org/10.1016/j.scico.2019.03.002

11. Barendregt, H.P., Kennaway, R., Klop, J.W., Sleep, M.R.: Needed reduction and
spine strategies for the lambda calculus. Inf. Comput. 75(3), 191–231 (1987).
https://doi.org/10.1016/0890-5401(87)90001-0

12. Biernacka, M., Biernacki, D., Charatonik, W., Drab, T.: An abstract machine for
strong call by value. In: Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp.
147–166. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64437-6 8

13. Biernacka, M., Biernacki, D., Lenglet, S., Schmitt, A.: Non-deterministic abstract
machines. In: Klin, B., Lasota, S., Muscholl, A. (eds.) 33rd International Conference
on Concurrency Theory, CONCUR 2022, September 12–16, 2022, Warsaw, Poland.
LIPIcs, vol. 243, pp. 7:1–7:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022). https://doi.org/10.4230/LIPIcs.CONCUR.2022.7

https://doi.org/10.1007/978-3-662-52921-8_1
https://doi.org/10.1007/978-3-662-52921-8_1
https://arxiv.org/abs/2309.12515
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1007/978-3-319-26529-2_13
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/3131851.3131855
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1145/3354166.3354169
https://doi.org/10.1109/LICS52264.2021.9470630
https://doi.org/10.1007/978-3-030-34175-6_9
https://doi.org/10.1016/j.scico.2019.03.002
https://doi.org/10.1016/0890-5401(87)90001-0
https://doi.org/10.1007/978-3-030-64437-6_8
https://doi.org/10.4230/LIPIcs.CONCUR.2022.7


A Diamond Machine for Strong Evaluation 89

14. Biernacka, M., Charatonik, W.: Deriving an abstract machine for strong call by
need. In: Geuvers, H. (ed.) 4th International Conference on Formal Structures for
Computation and Deduction, FSCD 2019, June 24–30, 2019, Dortmund, Germany.
LIPIcs, vol. 131, pp. 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.FSCD.2019.8

15. Biernacka, M., Charatonik, W., Drab, T.: A derived reasonable abstract machine
for strong call by value. In: Veltri, N., Benton, N., Ghilezan, S. (eds.) PPDP 2021:
23rd International Symposium on Principles and Practice of Declarative Program-
ming, Tallinn, Estonia, September 6–8, 2021, pp. 6:1–6:14. ACM (2021). https://
doi.org/10.1145/3479394.3479401

16. Biernacka, M., Charatonik, W., Drab, T.: A simple and efficient implementation of
strong call by need by an abstract machine. Proc. ACM Program. Lang. 6(ICFP),
109–136 (2022). https://doi.org/10.1145/3549822

17. Biernacka, M., Charatonik, W., Zielinska, K.: Generalized refocusing: from hybrid
strategies to abstract machines. In: 2nd International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2017, September 3–9, 2017, Oxford,
UK, pp. 10:1–10:17 (2017). https://doi.org/10.4230/LIPIcs.FSCD.2017.10

18. Boudol, G.: Computational semantics of term rewriting systems. In: Algebraic
Methods in Semantics, pp. 169–236. Cambridge University Press (1986)

19. de Carvalho, D., Pagani, M., Tortora de Falco, L.: A semantic measure of the
execution time in linear logic. Theor. Comput. Sci. 412(20), 1884–1902 (2011).
https://doi.org/10.1016/j.tcs.2010.12.017

20. Crégut, P.: Strongly reducing variants of the Krivine abstract machine. High. Order
Symb. Comput. 20(3), 209–230 (2007). https://doi.org/10.1007/s10990-007-9015-
z

21. Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine.
Theor. Comput. Sci. 398(1–3), 32–50 (2008). https://doi.org/10.1016/j.tcs.2008.
01.044

22. Danvy, O., Nielsen, L.R.: Refocusing in Reduction Semantics. Tech. Rep. RS-04-26,
BRICS (2004)

23. Garćıa-Pérez, Á., Nogueira, P.: The full-reducing Krivine abstract machine KN
simulates pure normal-order reduction in lockstep: a proof via corresponding calcu-
lus. J. Funct. Program. 29, e7 (2019). https://doi.org/10.1017/S0956796819000017

24. Garćıa-Pérez, Á., Nogueira, P., Moreno-Navarro, J.J.: Deriving the full-reducing
Krivine machine from the small-step operational semantics of normal order. In:
15th International Symposium on Principles and Practice of Declarative Pro-
gramming, PPDP’13, pp. 85–96. ACM (2013). https://doi.org/10.1145/2505879.
2505887

25. Girard, J.: Light linear logic. Inf. Comput. 143(2), 175–204 (1998). https://doi.
org/10.1006/inco.1998.2700

26. Gonthier, G., Lévy, J.J., Melliès, P.A.: An abstract standardisation theorem. In:
Proceedings of the Seventh Annual Symposium on Logic in Computer Science
(LICS ’92), Santa Cruz, California, USA, June 22–25, 1992, pp. 72–81. IEEE Com-
puter Society (1992). https://doi.org/10.1109/LICS.1992.185521

27. Huet, G.P., Lévy, J.J.: Computations in orthogonal rewriting systems, I. In: Lassez,
J., Plotkin, G.D. (eds.) Computational Logic - Essays in Honor of Alan Robinson,
pp. 395–414. The MIT Press (1991)

28. Huet, G.P., Lévy, J.J.: Computations in orthogonal rewriting systems, II. In:
Lassez, J., Plotkin, G.D. (eds.) Computational Logic - Essays in Honor of Alan
Robinson, pp. 415–443. The MIT Press (1991)

https://doi.org/10.4230/LIPIcs.FSCD.2019.8
https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1145/3479394.3479401
https://doi.org/10.1145/3549822
https://doi.org/10.4230/LIPIcs.FSCD.2017.10
https://doi.org/10.1016/j.tcs.2010.12.017
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1016/j.tcs.2008.01.044
https://doi.org/10.1017/S0956796819000017
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1145/2505879.2505887
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1109/LICS.1992.185521


90 B. Accattoli and P. Barenbaum

29. Maranget, L.: Optimal derivations in weak lambda-calculi and in orthogonal terms
rewriting systems. In: Wise, D.S. (ed.) Conference Record of the Eighteenth Annual
ACM Symposium on Principles of Programming Languages, Orlando, Florida,
USA, January 21–23, 1991, pp. 255–269. ACM Press (1991). https://doi.org/10.
1145/99583.99618

30. Melliès, P.A.: Description Abstraite de système de réécriture. PhD thesis, Paris 7
University (1996)

31. Oostrom, V.: Normalisation in weakly orthogonal rewriting. In: Narendran, P.,
Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 60–74. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48685-2 5

32. Terese: Term rewriting systems. Cambridge tracts in theoretical computer science,
vol. 55. Cambridge University Press (2003)

https://doi.org/10.1145/99583.99618
https://doi.org/10.1145/99583.99618
https://doi.org/10.1007/3-540-48685-2_5


Proofs as Terms, Terms as Graphs

Jui-Hsuan Wu(B)

LIX, Institut Polytechnique de Paris, Palaiseau, France

jwu@lix.polytechnique.fr

Abstract. Starting from an encoding of untyped λ-terms with sharing,
defined using synthetic inference rules based on a focused proof system
for Gentzen’s LJ, we introduce the positive λ-calculus, a call-by-value
calculus with explicit substitutions. This calculus is closely related to
Accattoli and Paolini’s value substitution calculus but has a different
style of reduction rules that provides a good notion of sharing along
the reduction. We also propose a graphical representation in order to
capture the structural equivalence on terms that can be described using
rule permutations. On one hand, this graphical representation provides
a way to remove redundancy in the syntax, and on the other hand, it
allows implementing basic operations such as substitution and reduction
in a straightforward way.

Keywords: Proof theory · Term representation · λ-calculus ·
Sharing · Graphical representation

1 Introduction

Terms (or expressions) are essential in different settings: mathematical proofs,
programming languages, proof assistants, etc. To prevent redundancy in these
systems, a canonical and compact syntactic structure is needed. Proof theory
has been broadly used in the studies of term representation. There have been
several different approaches to address the question of the canonicity of proofs,
such as proof nets [20], expansion trees [25], focusing [7], combinatorial proofs
[22], etc.

Focusing and Synthetic Inference Rules. In this paper, we choose to use
focusing as our main tool. Andreoli introduced the first focused proof system
to describe proofs in linear logic in a more structured way. Inference rules are
organized into two different phases: positive and negative phases. Andreoli [8]
and Chaudhuri [11] suggested that phases should be viewed as large-scale rules
for proof construction. In [24], Marin et al. defined another version of large-scale
rules, called synthetic inference rule, which is essentially composed of a negative
phase and a positive phase, in order to provide more high-level descriptions of
proof systems. The invention of synthetic inference rules also provides a system-
atic way to extend proof systems such as LJ and LK .

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 91–111, 2023.
https://doi.org/10.1007/978-981-99-8311-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_5&domain=pdf
http://orcid.org/0000-0001-5880-5379
https://doi.org/10.1007/978-981-99-8311-7_5


92 J.-H. Wu

Various focused proof systems have been proposed for LJ [18,21,23] and
LK [15,23]. Several authors also designed term calculi for LJT [21], LJQ [18],
and LJF [10]. In [27], Miller and Wu use synthetic inference rules built using the
focused proof system LJF to study term structures. In LJF, formulas are polar-
ized and different polarity assignments yield different forms of proofs and thus
provide different styles of term representation. In this paper, we are interested
in their encoding of untyped λ-terms defined by giving the positive polarity to
every atomic formula. Unlike the usual syntax of untyped λ-terms, this encod-
ing constructs terms in a bottom-up style and allows sharing within a term using
named structures, or explicit substitutions. This term representation is, however,
not compact, in the sense that a lot of named structures can be permuted or put
in parallel. These permutations correspond, in fact, to phase permutations in
focused proof systems, and to rule permutations in terms of synthetic inference
rules.

Focusing and Graphical Structures. Several authors have proposed multi-
focused proof systems to illustrate this phenomenon for MALL [13,16,26],
LK [12], and LJ [28]. Moreover, in each of [12,13], an isomorphism has been
established between the multi-focused proof system and a graphical representa-
tion of proofs (proof nets and expansion trees, respectively). This is where our
graphical representation for terms comes in. Though inspired by these works on
multi-focusing, we choose to put our focus on terms, i.e. (single-)focused proofs,
and define the structural equivalence that can also be justified by rule permu-
tations. Also, note that the structural equivalence considered in this paper does
not cover all the possible permutations that are captured by multi-focused proof
systems.

Explicit Substitution and Proof Nets. Historically, there have been several
attempts to connect λ-calculus with sharing, or explicit substitution [1], to proof
nets. This connection was first proposed by Di Cosmo and Kesner [17] to study
cut-elimination. Recently, proof nets have also been connected to calculi such
as the call-by-value λ-calculus [2] and the linear substitution calculus [3]. In
this paper, like in each of [2,3], we show that the structural equivalence on
terms is exactly the same as the one captured by the graphical representation.
In contrast to these works that often introduce boxes to deal with sharing, we
decide to use the notion of bodies, which is closely related to the notion of level
in these works. This choice does not make a huge difference in our theoretical
results, but it provides a clear way to establish the correspondence between the
usual syntax and the graphical one.

Graphs and Sharing. Graphs have been widely used in the studies of sharing.
Since Wadsworth [29], several authors have proposed different graphical struc-
tures to study full laziness (see [9] for an overview), a concept related to evalua-
tion based on the call-by-need mechanism. Another aspect about sharing, called
sharing equality, whose goal is to decide whether the unfoldings of two terms
with sharing are equal, has also been discovered in recent years. A linear algo-



Proofs as Terms, Terms as Graphs 93

rithm was proposed in [14] based on a graphical representation called λ-graphs
for untyped λ-terms. This graphical representation is close to the one studied in
our work, which allows us to apply the algorithm without any difficulty.

Contribution.

1. We propose a rewrite system for the encoding of untyped λ-terms proposed
in [27], called the positive λ-calculus. Note that it is inspired by proof theory
but does not follow the usual ”redex = cut” paradigm. This rewrite system
follows a call-by-value discipline and is closely related to the value substitution
calculus [6] and the linear substitution calculus [4].

2. We propose a graphical representation, called λ-graphs with bodies, for
this encoding of untyped λ-terms and provide a one-to-one correspondence
between λ-graphs with bodies and terms up to permutations of independent
named structures (Theorem 5).

3. We describe how substitution and reduction can be easily implemented on
λ-graphs with bodies.

Proofs. Most proofs are ignored and can be found in the full version, available
at https://hal.inria.fr/hal-04222527.

2 Preliminaries: The Focused Proof System LJF
and Synthetic Inference Rules

Fix a set atom of atomic formulas. Formulas are built with implications and
atomic formulas. An atomic bias assignment is a map δ from atom to {+,−}. A
polarized formula (resp. polarized theory) is a formula (resp. multiset of formulas)
together with an atomic bias assignment. Implications are negative and atomic
formulas can be either positive or negative following the atomic bias assignment.
In LJF, there are two kinds of sequents: ⇑-sequents Γ ⇑ Θ � Δ ⇑ Δ′ and ⇓-
sequents Γ ⇓ Θ � Δ ⇓ Δ′. Here, Γ,Θ,Δ,Δ′ are multisets of formulas. Γ and Δ′

are called storage zones and Θ and Δ are called staging zones. In a ⇓-sequent,
exactly one of Θ and Δ can be non-empty and contains exactly one formula.
To simplify the notation, we drop an arrow whenever its corresponding staging
zone is empty. As a result, sequents without any arrow are ⇑-sequents as any
⇓-sequent has exactly one non-empty staging zone. Furthermore, Δ ∪ Δ′ is a
singleton, as we are in an intuitionistic setting. The rules of the implicational
fragment of LJF are presented in Fig. 1. LJF proofs have a two-phase structure:
⇑-phases and ⇓-phases.

Definition 1 (Synthetic inference rules, [24]). A synthetic inference rule is
a rule of the form

Γ1 � A1 · · · Γn � An
N

Γ � A

justified by an LJF

derivation of the

form

Γ1 � A1 · · · Γn � An

Π
Γ ⇓ N � A

Dl
Γ � A

Here, N is a negative formula that appears in Γ , n ≥ 0, and within Π, a ⇓-
sequent never occurs above an ⇑-sequent. The structure of LJF proofs implies
N ∈ Γi for all 1 ≤ i ≤ n. This rule is called the synthetic inference rule for N .

https://hal.inria.fr/hal-04222527.


94 J.-H. Wu

Fig. 1. The implicational fragment of the focused proof system LJF. Here, P is positive,
N is negative, A is atomic, and B, B′ and C are arbitrary formulas.

Fig. 2. Two derivations justifying synthetic inference rules (D is atomic and polarized
positively).

Synthetic inference rules show how a formula can be used in a proof and
they can be used to extend sequent systems such as LJ. Since the synthetic
inference rules for atomic formulas are exactly the same as the initial rule of
LJ, we will only consider synthetic inference rules for non-atomic formulas. We
give in Fig. 2 two LJF derivations justifying synthetic inference rules for two
different formulas. In [24], it is shown that the synthetic inference rules for
certain formulas are particularly simple and can be easily used to extend LJ
with a (polarized) theory. To express this, we first define the order of a formula.

Definition 2. The order of a formula B, written ord(B), is defined as follows:
ord(A) = 0 if A is atomic and ord(B1 ⊃ B2) = max(ord(B1) + 1, ord(B2)).

Definition 3 (Extensions of LJ by polarized theories, [24]). Let T be
a finite multiset of formulas of order one or two, and let δ be an atomic bias
assignment. We define the extension LJ
T , δ� of LJ by the polarized theory
(T , δ) to be the two-sided proof system built as follows. The only sequents in the
LJ
T , δ� proof system are of the form Γ � A where A is atomic and Γ is a
multiset of atomic formulas. The inference rules of LJ
T , δ� include the initial
rule of LJ and for every synthetic inference rule

N,Γ1 � A1 . . . N, Γn � An
N

N,Γ � A



Proofs as Terms, Terms as Graphs 95

where N ∈ T , then the rule

Γ1 � A1 . . . Γn � An
N

Γ � A

is included in LJ
T , δ�.

Note that in the original version proposed in [24], T is a set instead of a
multiset. In fact, each formula in T corresponds to a combinator in annotated
proofs. Different occurrences of the same formula define different combinators.
This is why we consider multisets instead of sets of formulas.

The following theorem justifies Definition 3.

Theorem 1. Let T be a finite multiset of formulas of order one or two, and let δ
be an atomic bias assignment. Then for any atomic formula A and Γ containing
atomic formulas only, Γ, T � A is provable in LJ if and only if Γ � A is provable
in LJ
T , δ�.

Fig. 3. Annotated inference rules of the systems LJ�Γ0, δ
−� (left) and LJ�Γ0, δ

+�
(right) where δ−(D) = −, δ+(D) = + and Γ0 = {D ⊃ D ⊃ D, (D ⊃ D) ⊃ D}.

3 The positive λ-calculus

The notion of terms, which is usually a primitive notion in most of the literature,
is a derived notion here: they are annotations of proofs. By annotating inference
rules in the proof system LJ
T , δ�, we obtain rules for various combinators,
each one of which corresponds to a formula in T . In [27], Miller and Wu give an
encoding of untyped λ-terms by considering the theory Γ0 = {D ⊃ D ⊃ D, (D ⊃
D) ⊃ D} where D is an atomic formula. If D is given the negative polarity, we
get the negative bias syntax, i.e., the usual tree structure for untyped λ-terms.
If D is given the positive polarity, we get the positive bias syntax, a structure
where explicit sharing is possible. The annotated inference rules obtained using
both polarity assignments are shown in Fig. 3. As an example, the papp and
pabs rules are obtained from the two derivations given in Fig. 2. Note that the
branches ended with Ir rule become a side condition on the schema variable Γ .

In the following, we introduce a calculus called positive λ-calculus based on
terms built using the positive bias syntax. Since the sequents and inference rules



96 J.-H. Wu

considered only involve the atomic formula D, we often replace the annotated
formula x : D (resp. t : D) with simply its annotation x (resp. t).

Terms. Fix a set name = {x, y, z, . . .} of names (or variables). The set term
of terms, denoted by s, t, u, . . ., is generated by the following grammar:

Terms s, t := x | t[x ← yz] | t[x ← λy.s]

A term is essentially a list of constructs [x ← p], called explicit substitutions or
named structures, preceded by a name, which we call the output of the term.

The set fv(t) of free variables of a term t is given by: fv(x) = {x}, fv(t[x ←
yz]) = (fv(t) \ {x}) ∪ {y, z} and fv(t[x ← λy.s]) = (fv(s) \ {y}) ∪ (fv(t) \ {x}).
Note that every name x introduced by the construct [x ← p] is bound. We should
consider terms up to α-equivalence and assume that all bound names are distinct
from each other and from any free variables.

A signature is a finite subset Σ of name. We write Σ, x for Σ ∪{x} and this
also implies that x /∈ Σ. We say that t is a Σ-term if Σ � t using the pvar, papp,
and pabs rules in Fig. 3.

Contexts. We define contexts and left contexts by the following grammar:

Contexts C := � | C[x ← yz] | C[x ← λy.s] | t[x ← λy.C]
Left Contexts L := � | L[x ← yz] | L[x ← λy.s]

The plugging C〈t〉 (resp. L〈t〉) of t in the context C (resp. left context L) is
obtained from C (resp. L) by replacing the placeholder � with t. Every term
can be written uniquely as L〈x〉 for some left context L and variable x. Note
that we allow plugging in a context to capture variables. A congruence on terms
is an equivalence relation that is closed by context.

Structural Equivalence. Named structures can be seen as intermediate defini-
tions within a term. If two definitions are independent of each other, we should be
able to permute them. By defining fv(yz) = {y, z} and fv(λy.s) = fv(s) \ {y},
this can be expressed using the equation:

t[x1 ← p1][x2 ← p2] ∼str t[x2 ← p2][x1 ← p1] if x1 /∈ fv(p2) and x2 /∈ fv(p1)

Definition 4 (Structural equivalence). We define an equivalence relation
≡str on terms, called the structural equivalence, as the smallest congruence con-
taining ∼str.

Note that the structural equivalence can also be justified by rule permuta-
tions.

Substitution. In [27], there is a big-step (atomic) cut-elimination procedure for
proofs built using synthetic inference rules. This procedure provides a definition
of substitution for terms.



Proofs as Terms, Terms as Graphs 97

Definition 5 (Substitution on terms, [27]). Let t, u be terms and x a name
such that x /∈ fv(u). We define the result of substituting u for x in t, written
t[x/u], as follows:

t[x/s[y ← zw]] = t[x/s][y ← zw] t[x/s[y ← λz.u]] = t[x/s][y ← λz.u]

Here, t[x/y] is obtained from t by renaming x to y. Note that by expressing the term
u uniquely as L〈y〉, we have t[x/u] = L〈t[x/y]〉 by a straightforward induction.

Unfolding and Reduction. Term reduction is often related to cut-elimination
in the literature. However, terms considered here correspond to cut-free proofs.
A natural question to ask is: How should we evaluate them? Of course, we could
unfold all the named structures of a term and get its corresponding untyped
λ-term.

Definition 6. The unfolding t of a term t is the untyped λ-term defined as
follows:

x = x t[x ← yz] = t{x/yz} t[x ← λy.s] = t{x/λy.s}

where {·/·} is the meta-level substitution of untyped λ-terms.

For example, we have y[y ← fz][f ← λx.x] = (λx.x)z. This definition provides a
way to translate from the positive bias syntax to the negative bias syntax. Note
that the unfolding of a term is not necessarily a β-normal untyped λ-term. For
a term t, we could refer to the β-normal form of its unfolding as its meaning.
However, computing unfoldings of terms might require exponential costs.

Fig. 4. Rewrite rules of the positive λ-calculus.

Therefore, we proceed in a different way here: we look for a reduction pro-
cedure that only involves the positive bias syntax and is compatible with the
β-reduction in the negative bias syntax (a reduction step should not change the
meaning of a term). We now define beta-redexes and the beta-rule. Consider
the following annotated proof:



98 J.-H. Wu

Π1

Σ, y : D � s : D

Π2

Σ′, x : D, z : D � t : D
papp

Σ′, x : D � t[z ← xw] : D

...
Σ, x : D � C〈t[z ← xw]〉 : D

pabs
Σ � C〈t[z ← xw]〉[x ← λy.s] : D

with w : D ∈ Σ′, x : D and C a context. In the term annotating the conclusion,
the name x is used to introduce an abstraction λy.s and is later applied to an
argument w. We call the named application pattern xw here a beta-redex. To
eliminate this beta-redex, we shall consider the following proof:

Π ′
1

Σ′, x : D � s{y/w} : D
Π2

Σ′, x : D, z : D � t : D
cut

Σ′, x : D � Cut(z.t, s{y/w}) : D

where Π ′
1 is obtained from Π1 by variable renaming and weakening. By eliminat-

ing this cut, we obtain a cut-free proof of the conclusion Σ′, x : D � t[z/s{y/w}] :
D. This gives the following beta-rule:

C〈t[z ← xw]〉[x ← λy.s] �→beta C〈t[z/s{y/w}]〉[x ← λy.s]

that can also be expressed using left contexts as shown in Fig. 4. We also consider
a garbage collection rule for named abstractions. This rule can be justified by
the fact that if a formula is never used in a proof, then we can remove the rule
that introduces it.

Intuitively, to eliminate a beta-redex, it suffices to make a copy of the abstrac-
tion body, make a variable renaming within this copy and a variable renaming
in the rest of the term. We illustrate these steps in the following example:

x2[x2 ← fx1][x1 ← fx0][f ← λx.z[z ← yy][y ← xx]] →beta

x2[x2 ← fz1][z1 ← y1y1][y1 ← x0x0][f ← λx.z[z ← yy][y ← xx]] →beta

z2[z2 ← y2y2][y2 ← z1z1][z1 ← y1y1][y1 ← x0x0][f ← λx.z[z ← yy][y ← xx]] →gc

z2[z2 ← y2y2][y2 ← z1z1][z1 ← y1y1][y1 ← x0x0]

Like the VSC, the positive λ-calculus enjoys the confluence property.

Theorem 2. The positive λ-calculus is confluent.

The →pos is not terminating as shown by the term w[w ← xx][x ← λy.z[z ←
yy]].

The following proposition shows that →pos does not affect the meaning of a
term.

Proposition 1. Let s and t be terms such that s →pos t. Then s →∗
β t.

It is easy to see that, for every named application [x ← yz] in a normal
term t, y is not a name introducing an abstraction. We have thus the following
proposition.



Proofs as Terms, Terms as Graphs 99

Proposition 2. If s is a normal term, then s is β-normal.

The converse is however not true as shown by the term t = z′[z ← wx][x ← λy.s].
t = z′ is β-normal but t is normal if and only if s is normal.

This rewrite system follows a call-by-value discipline that can be observed in
the example above as there is no way to remove the named application [z ← wx].
Also, note that it is a strong calculus as we allow reduction under an abstraction.

The positive λ-calculus is closely related to the value substitution calculus
(VSC) of [6], presented in Fig. 5, and the linear substitution calculus (LSC)
of [4], presented in Fig. 6. In both systems, m stands for multiplicative and e
stands for exponential (these terms come from the literature on linear logic). On
one hand, the positive λ-calculus has a call-by-value behavior similar to that of
the VSC, and on the other hand, it admits a micro-step exponential rule (for
named abstractions) as in the LSC. Another difference between the positive λ-
calculus and the VSC is that in the positive λ-calculus, a named abstraction is
only duplicated when it is applied to an argument in a named application. This
is also connected to an optimization sometimes called substituting abstractions
on-demand. For example, consider the term

t = w[w ← fx][f ← λz0.z3[z3 ← G(z2)][z2 ← G(z1)][z1 ← G(z0)]][x ← λy.s].

where G(t) = λw0.w3[w3 ← w1w2][w2 ← gt][w1 ← gt] with g a fixed name
and s a normal term in positive λ-calculus. In the positive λ-calculus, after one
beta-step and one gc-step, we obtain

z′
3[z

′
3 ← G(z′

2)][z
′
2 ← G(z′

1)][z
′
1 ← G(x)][x ← λy.s].

which is a normal term in the positive λ-calculus. However, in the VSC, we have

z′
3[z

′
3 ← G(z′

2)][z
′
2 ← G(z′

1)][z
′
1 ← G(x)][x ← λy.s] →e

z′
3[z

′
3 ← G(z′

2)][z
′
2 ← G(z′

1)][z
′
1 ← G(λy.s)] →e

z′
3[z

′
3 ← G(z′

2)][z
′
2 ← G(G(λy.s))] →e

z′
3[z

′
3 ← G(G(G(λy.s)))] →e

G(G(G(λy.s)))

which contains 23 = 8 copies of λy.s. From this example, we can see that the
positive λ-calculus allows more sharing and avoids some possible exponential
blow-ups that can occur in the VSC. Also, note that one has s = t for s →e t.
As a result, these e-steps can be seen as redundant since they do not create any
redex and can be ignored with the positive λ-calculus.

More formally, we can consider a variant of the VSC that treats substitutions
in a linear style. That is, the e-rule is replaced by the following two rules:

C〈x〉[x ← L〈v〉] �→e′ L〈C〈v〉[x ← v]〉
t[x ← L〈v〉] �→gc′ t if x /∈ fv(t)



100 J.-H. Wu

Then the beta-rule can be expressed as a sequence of m, e′, and gc′-steps.

C〈t[z ← xw]〉[x ← λy.L〈y′〉] →e′

C〈t[z ← (λy.L〈y′〉)w]〉[x ← λy.L〈y′〉] →m

C〈t[z ← L〈y′〉[y ← w]]〉[x ← λy.L〈y′〉] →∗
e′→gc′

C〈t[z ← L〈y′〉{y/w}]〉[x ← λy.L〈y′〉] →∗
e′→gc′

C〈L〈t{z/y′}〉{y/w}〉[x ← λy.L〈y′〉]

This shows that the reduction in the positive λ-calculus can be seen as a reduc-
tion strategy in the VSC that only applies useful substitutions to abstractions
(a substitution is useful if it creates new redexes) and thus allows more sharing
within a term. Therefore, we can say that the reduction of the positive λ-calculus
works better than that of the VSC in terms of sharing on terms of the positive λ-
calculus. However, we cannot say that the positive λ-calculus is better in general
as the VSC contains more terms.

Fig. 5. Reduction rules of the value substitution calculus [2]. Here, v is either a variable
or an abstraction.

Fig. 6. Reduction rules of the linear substitution calculus [3].

Furthermore, ≡str is a bisimulation with respect to →pos.

Theorem 3. Let t and u be two terms. If t ≡str u and t →pos t′, then there
exists u′ such that u →pos u′ and t′ ≡str u′.

Proof. It suffices to see that ∼str never creates or removes redexes.

A few more comments on the positive λ-calculus:

1. The positive bias syntax resembles the A-normal form [19]. A similar rep-
resentation called crumbled forms has also been adapted in [5] to build an
abstract machine for strong call-by-value. One issue common to calculi with
explicit substitutions is the need for commutation rules to preserve specific
syntactic forms. Terms in the positive bias syntax or crumbled forms can,
however, be evaluated without using these rules.



Proofs as Terms, Terms as Graphs 101

2. While the beta-step keeps the sharing structure used to define the argument,
there are still some redundancies in the positive λ-calculus. Consider the term
x2[x2 ← fx1][x1 ← fx0][f ← λx.z[z ← xy][y ← aa]]. To eliminate the two
beta-redexes fx0 and fx1, we have to make two copies of the abstraction
body. Thus, the structure aa is introduced twice. To solve this redundancy,
a possible solution is to lift the named structure [y ← aa] to top-level before
evaluation and obtain x2[x2 ← fx1][x1 ← fx0][f ← λx.z[z ← xy]][y ← aa].
This observation is often related to full laziness [29], a concept that has been
widely studied in call-by-need settings, often using some graphical structures.
However, we do not explore this aspect in this paper, and we leave it as a
future work.

4 A Graphical Representation for Terms: λ-graphs with
bodies

In this section, we introduce a graphical representation for terms, called λ-graphs
with bodies, that will be proved to capture the structural equivalence on Σ-terms
given in Sect. 3. The definition of λ-graphs with bodies is split into two parts: we
first define pre-graphs, and then define λ-graphs with bodies by giving additional
structures and properties to deal with abstractions.

Definition 7. A pre-graph is a directed acyclic graph built with the following
three kinds of nodes:

– Application: an application node is labeled with @ and has two incoming edges
(left and right). An application node is also called an @-node.

– Abstraction: an abstraction node is labeled with λ and has one incoming edge.
Its only direct predecessor is called the output of the abstraction node. An
abstraction node is also called a λ-node.

– Variable: a variable node has no incoming edge.

A direct predecessor of a node is also called a child of the node.

Internal nodes (application and abstraction) of a pre-graph are used to rep-
resent intermediate expressions defined using constructs [x ← p] within a term.
We orient edges in such a way that there is an edge from n to m if and only if
the definition of m requires the definition of n. In other words, nodes are defined
in a bottom-up fashion.

In the following, we denote by NG and EG ⊆ NG × NG , respectively, the set
of nodes and the set of edges of a graph G.

Definition 8. An unlabeled λ-graph with bodies is a pre-graph G together with
two functions bv : ΛG → VG and body : ΛG → 2NG\VG where ΛG is the set of
abstraction nodes of G and VG is the set of variable nodes of G:

1. body(l) ∩ body(l′) = ∅ for l �= l′.



102 J.-H. Wu

2. The graph BG = (ΛG , {(l, l′) | l, l′ ∈ ΛG , l ∈ body(l′)}), called the scope graph
of G, is a DAG.

3. If a node n is bv(l) or is in body(l) and there is an edge (n,m) ∈ EG, then we
have
– m = l, or
– m ∈ body(l′) such that there is a path from l′ to l in BG. Note that this

path is unique.

We call bv(l) the bound variable node and body(l) the body of the abstraction
node l. A node that does not belong to any body is called body-free and we denote
by body(G) the set of body-free non-variable nodes in G. A free variable node is
a variable node that is not a bound variable node and a global node is a body-free
node that is not a bound variable node.

Intuitively, Point 3. of Definition 8 checks that every definition in a term is
used in a valid scope: a name introduced in an abstraction can only be used
within the abstraction.

Definition 9. A well-labeled λ-graph with bodies, or simply a λ-graph with bod-
ies, is an unlabeled λ-graph with bodies with a unique label assigned to each free
variable node, and with a global node chosen, called the output of the λ-graph
with bodies. A Σ-λ-graph with bodies is a λ-graph with bodies with a free variable
node labeled by each element of a signature Σ.

In order to visualize the maps bv(·) and body(·), we color the labels of abstrac-
tion nodes to distinguish them and color the frame of the nodes in their bodies
with the same color. We proceed similarly for bound variables. In particular,
a global node has its frame colored in black. Figure 7(a) shows a λ-graph with
bodies, while Fig. 7(b) shows an example that breaks Point 3. of Definition 8. In
Fig. 7(b), n belongs to the red body, m belongs to the blue body and there is an
edge (n,m). m is not the red λ-node and there is no path from the blue λ-node
to the red λ-node in the scope graph.

Fig. 7. Various figures.



Proofs as Terms, Terms as Graphs 103

5 Σ-λ-graphs with bodies and Σ-terms

In this section, we prove that there is a one-to-one correspondence between
Σ-λ-graphs with bodies and Σ-terms up to ≡str. In order to establish such a
correspondence, we first establish a one-to-one correspondence between ordered
Σ-λ-graphs with bodies and Σ-terms where ordered Σ-λ-graphs with bodies are
refinements of Σ-λ-graphs with bodies with some additional structure.

Dependency. Terms are expressed in a linear style. In other words, all the
intermediate expressions within a term are defined in some (linear) order. How-
ever, graphs do not usually have this kind of structure. In order to establish the
correspondence between terms and graphs, we have to give some more structure
to our graphical representation. To do that, we first define dependency relations
on nodes.

Definition 10. Let G be a λ-graph with bodies and l an abstraction node. We
define a relation ≺l, called the dependency relation of l, on the set body(l) of
nodes as follows:

– n ≺l m if (n,m) ∈ EG.
– n ≺l m if (n,m′) ∈ EG for some m′ ∈ body(l′) with l′ �= l, and there is a path

from l′ to m in BG.

Definition 11. Let G be a λ-graph with bodies. We define the dependency rela-
tion ≺G of G on the set body(G) of body-free non-variable nodes of G as follows:

– n ≺G m if (n,m) ∈ EG.
– n ≺G m if (n,m′) ∈ EG for some m′ ∈ body(l), and there is a path from l to

m in BG.

Definition 12. Let G be a λ-graph with bodies. We define

– the dependency graph of G, as the graph DG = (body(G), {(n,m) | n ≺G m}),
and

– for all abstraction node l, the dependency graph of l, as the graph Dl =
(body(l), {(n,m) | n ≺l m}).

Proposition 3. Let G be a λ-graph with bodies. Then we have:

– DG is a DAG, and
– for all abstraction node l of G, Dl is a DAG.

For example, for the λ-graph with bodies G in Fig. 7(a), the dependency
graph of the red (resp. blue) λ-node is the subgraph of G induced by its body,
while the dependency graph DG of G has an edge from the application node to
the blue λ-node.



104 J.-H. Wu

As mentioned previously, our graphical representation should be equipped
with some linear orderings on internal nodes. Moreover, these orderings should
be compatible with the dependency relations defined above: they should be topo-
logical sorts of their corresponding dependency graphs.

Definition 13. A topological sort of a directed graph G is a sequence containing
each of its vertices such that for every edge (n,m), n appears before m in the
sequence.

Definition 14. An ordered λ-graph with bodies Ĝ is a λ-graph with bodies G
together with a topological sort TG of the graph DG and a topological sort Tl of
the graph Dl, for each l.

Figures 7(c) and 7(d) show two ordered λ-graphs with bodies whose underly-
ing λ-graphs with bodies are the same. As an example, the term corresponding
to 7(c) is

x[x ← λb0.b3[b3 ← b2b1][b2 ← λr0.r3[r3 ← r1r2][r2 ← ab0][r1 ← r0r0]][b1 ← ab0]].

Before giving a one-to-one correspondence between ordered λ-graphs with
bodies and terms, we give a notion of boxes that is useful in the following.

Definition 15. Let G be a λ-graph with bodies and l an abstraction node. We
define the box of l as the union of bodies together with their bound variable nodes
below l:

box(l) =
⋃

l′�l in BG

(body(l′) ∪ {bv(l′)})

where l′ � l in BG means that there is a path from l′ to l in BG.

In 7(a), the box of the red λ-node contains all the red-framed nodes while the
box of the blue λ-node contains all the blue-framed and red-framed nodes.

Intuitively, for a λ-node l of a λ-graph with bodies G, the graph obtained from
the subgraph of G induced by box(l) corresponds to the abstraction it introduces.

Ordered λ-graphs with bodies can actually be defined inductively as terms.
We first give the following useful definitions.

Definition 16. Let Σ be a signature and x ∈ Σ. We define (x)Σ as the ordered
Σ-λ-graph with bodies that contains a free variable node labeled by each element
of Σ and has the one labeled by x as the output.

Definition 17. Let Σ and Σ′ be signatures, x, y, x1, x2 be names such that
{x1, x2} ⊆ Σ, x /∈ Σ and y /∈ Σ′, Ĝ an ordered (Σ, x)-λ-graph with bodies
and Ĝ′ an ordered (Σ′, y)-λ-graph with bodies. Then



Proofs as Terms, Terms as Graphs 105

– Ĝ{nd x ← x1@x2} is defined as the graph Ĥ obtained from Ĝ by replacing the
free variable node labeled by x with an @-node whose left (resp. right) child
is the variable node labeled by x1 (resp. x2). We then extend the topological
sort TG by having this application node as the minimal node. It is clear that
Ĥ is also an ordered Σ-λ-graph with bodies.

– Ĝ{nd x ← λy.Ĝ′} is defined as the graph Ĥ obtained from by merging G and
G′ and by replacing the free variable node labeled by x with a new abstraction
node l constructed as follows:

• its only child is the output of G′,
• its bound variable is the free variable node labeled by y in G′ (we erase the

label y),
• its body contains all the body-free non-variable nodes of G′, and
• its topological sort Tl is that of Ĝ′.

Note that G and G′ can share some free variable nodes: they are merged so
that there is only one free variable node labeled by each element of Σ ∩Σ′. In
the end, we extend the topological sort TG by having this new abstraction node
as the minimal node. It is not difficult to see that Ĥ is an ordered (Σ ∪ Σ′)-
λ-graph with bodies.

Note that we can also use these definitions for λ-graphs with bodies by forgetting
topological sorts.

Proposition 4. Let Σ be a signature. Then Ĝ is an ordered Σ-λ-graph with
bodies if and only if Σ � Ĝ where Σ � Ĝ is defined by the following rules.

x ∈ Σ var
Σ � (x)Σ

Σ, x � Ĝ{y, z} ⊆ Σ @
Σ � Ĝ{nd x ← y@z}

Σ, y � Ĝ′ Σ, x � Ĝ
λ

Σ � Ĝ{nd x ← λy.Ĝ′}

Proof. (⇒) Immediate from Definition 16 and Definition 17.
(⇐) Let Ĝ = (G, TG , {Tl | l ∈ ΛG}) be an ordered Σ-λ-graph with bodies.

We proceed by induction on the number of non-variable nodes and consider
each time the minimal node with respect to TG . Details can be found in the full
version.

Note that the rules defining terms (pvar,papp,pabs) have the same structure
as those in Proposition 4.

Theorem 4. Let Σ be a signature. Then there is a one-on-one correspondence
between ordered Σ-λ-graphs with bodies and Σ-terms.

Proof. We can define translations [[·]]Σ from Σ-terms to ordered Σ-λ-graphs with
bodies and [ · ]Σ from ordered Σ-λ-graphs with bodies to Σ-terms by induction
on the rules pvar,papp,pabs and those in Proposition 4. For the base cases, let
[[x]]Σ = (x)Σ and [(x)Σ ]Σ = x. We then have [[[t]]Σ ]Σ = t and [[[Ĝ]Σ ]]Σ = Ĝ for
all Σ-term t and ordered Σ-λ-graph with bodies Ĝ.

We have established an isomorphism between Σ-terms and ordered Σ-λ-
graphs with bodies. In Sect. 3, terms are considered equivalent up to ≡str. How



106 J.-H. Wu

about ordered λ-graphs with bodies? It is natural to consider that ordered λ-
graphs with bodies are equivalent if they share the same underlying λ-graph with
bodies. The following proposition shows that topological sorts of a DAG can be
connected to each other via swaps, similar to permutations of named structures
for terms.

Proposition 5. Let G be a DAG and S a topological sort of G. We call swapping
two non-adjacent nodes of G in a sequence of nodes a valid swap. Then a sequence
of nodes can be obtained from S by a sequence of valid swaps if, and only if, it
is a topological sort of G.

The following theorem is a consequence of Theorem 4 and Proposition 5.
Details can be found in the full version.

Theorem 5. We have a one-to-one correspondence between Σ-λ-graphs with
bodies and Σ-terms up to ≡str.

In the following, we also use [[ · ]]Σ (resp. [ · ]Σ) to denote the (bijective) map
from the set of Σ-terms to the set of Σ-λ-graphs with bodies.

6 Substitution and Reduction on λ-graphs with bodies

In this section, we show how substitution and reduction can be easily imple-
mented on λ-graphs with bodies.

Substitution. Note that variable renaming, which is required in the case of
terms, is not needed as internal nodes do not come with a label.

Definition 18 (Substitution on λ-graphs with bodies). Let G be a Σ-λ-
graph with bodies and G′ a Σ′-λ-graph with bodies with x /∈ Σ′. We define the
substitution of x for G′ in G, written G[x/G′], as the ((Σ \ {x}) ∪ Σ′)-λ-graph
with bodies obtained from by merging G′ into G and, if x ∈ Σ by replacing the
free variable node labeled by x with the output node of G′. Note that we have to
merge common free variable nodes labeled by elements of (Σ \ {x}) ∩ Σ′ and the
output node of G[x/G′] is that of G.

In Fig. 8, we present an example for the substitution on λ-graphs with bodies.
From this example, we can clearly see that the structure of bodies is kept under
substitution.

The substitution on λ-graphs with bodies implements indeed the substitution
on terms.

Theorem 6. Let t be a Σ-term and u a Σ′-term such that x /∈ Σ′. Then
[[t[x/u]]](Σ\{x})∪Σ′ = [[t]]Σ [x/[[u]]Σ′ ].

Proof. A straightforward induction on u.



Proofs as Terms, Terms as Graphs 107

Fig. 8. An example for the substitution on λ-graphs with bodies: (c) is the result of
substituting the free variable node x for (b) in (a).

Reduction. We now show how to implement the two rewrite rules on λ-graphs
with bodies. We first define contexts for λ-graphs with bodies using the following
grammar:

C := � | C[nd x ← y@z] | C[nd x ← λy.G] | G[nd x ← λy.C]

The plugging C〈G〉 of a λ-graph with bodies G in the context C is defined induc-
tively by:

�〈G〉 = G
C[nd x ← y@z]〈G〉 = C〈G〉{nd x ← y@z}

C[nd x ← λy.G′]〈G〉 = C〈G〉{nd x ← λy.G′}
G′[nd x ← λy.C]〈G〉 = G′{nd x ← λy.C〈G〉}.

The gc-rule can be defined by erasing an abstraction node with no parent and
its box. A beta-redex is simply an @-node that has a λ-node as its left child. To
eliminate it, it suffices to duplicate the box of the λ-node, replace the @-node
with the copy of the output node of λ-node, and then replace the bound variable
in this copy with the argument, i.e., the right child of the @-node. One should
be careful about the structure of bodies: in this copy, all the nodes that were in
the body of the λ-node should be moved to the same body as the argument or
to the corresponding body if the argument is a bound variable. Figure 9 shows a
beta-reduction step on λ-graphs with bodies. We denote by →G the contextual
closure of these two steps (gc and beta).

The translation [[ · ]]Σ is a strong bisimulation between the positive λ-calculus
and λ-graphs with bodies with →G.

Theorem 7. Let s and t be two Σ-terms. Then s →pos t if and only if [[s]]Σ →G

[[t]]Σ.

Proof. This is a consequence of Theorem 6.

In general, strong bisimulations preserve confluence quotient by the transla-
tion. Here, the quotient induced by the translation [[ · ]]Σ on Σ-λ-graphs with



108 J.-H. Wu

Fig. 9. An example of beta-reduction on λ-graphs with bodies. The thick dashed box
is a beta-redex and the two thin dashed boxes in the λ-graphs with bodies correspond
to the box of the red λ-node and its copy, respectively. (Color figure online)

bodies is the identity, so the confluence coincides with the confluence modulo
quotient by [[ · ]]Σ . Hence, we have the confluence of →G from that of →pos.

Theorem 8. →G is confluent.

Proof. Straightforward from Theorem 2, Theorem 3 and Theorem 7.

Relations with Other Graphical Representations. In [2], Accattoli
revealed a close relationship between the proof nets and the value substitu-
tion calculus. As mentioned earlier, the VSC is equipped with a small-step but
not a micro-step e-rule. By replacing the e-rule by its micro-step variant, one is
actually able to simulate the positive λ-calculus in the VSC. This is also true
on the graphical side. However, we have a slightly different treatment of free
variables here: free variable nodes are considered shared between all the bodies,
so no free variable node is explicitly included in any body. This approach is
suggested by the rules papp and pabs where the left hand side of the conclusion
is entirely included in those of the premises (this is actually a feature of LJF,
where weakenings are delayed and only allowed in initial rules Il and Ir). Due
to this choice, the content of a box is no longer a λ-graph with bodies (one has
to include all the free variable nodes), which makes induction arguments a bit
more complicated. However, it provides us a clear way to sequentialize λ-graphs
with bodies.

In [14], λ-graphs are used to study the sharing equality. As the name suggests,
λ-graphs with bodies can be (almost) seen as an extension of λ-graphs with
bodies. They only differ in the following points:

– λ-graphs are not pointed: there is no unique output assigned to a λ-graph as
their goal is to study if two terms have the same encoding under the same
context.

– There is no useless node under an abstraction in λ-graphs: an abstraction
node has a unique child (output). Without the notion of bodies, there is no
way to define nodes that are under an abstraction but not used to define
the output. This is not a drawback as these useless nodes do not affect the
unfoldings of terms.



Proofs as Terms, Terms as Graphs 109

7 Generalization

In this section, we explain briefly how this graphical representation can be gen-
eralized using LJF and different polarized theories.

In Definition 3, LJ can be extended by any polarized theory of order one or
two. In our study of untyped λ-terms, we use exactly one formula of order one
(D ⊃ D ⊃ D) and one formula of order two ((D ⊃ D) ⊃ D). Our graphical
representation can be generalized to any positively polarized theory of order one
or two in the following way.

Each node comes with a type which is an atomic formula. A formula of order
one or two can be written as B1 ⊃ · · · ⊃ Bn ⊃ A with n ≥ 1, Bi of order at
most one and A atomic. This formula corresponds to a node of type A that has
n incoming edges, each of which corresponds to one Bi. For 1 ≤ i ≤ n, if Bi is
atomic, then it corresponds to simply a node of type Bi, and if Bi is of order
one, then it comes with a notion of body.

A similar notion of reduction can also be defined: a redex is simply a group
of nodes that follow a certain pattern, and reduction rules can be defined using
the children (or boxes) of these nodes.

8 Conclusion

We propose the positive λ-calculus based on the encoding of untyped λ-terms
defined using the positive bias assignment in [27]. This calculus features a call-
by-value rewrite system and is closely related to the value substitution calculus.

We introduce a graphical representation for terms of the positive λ-calculus,
called λ-graphs with bodies and show how operations such as substitution and
reduction can be implemented on this structure.

Using the focused proof system LJF as a framework to build term structures
makes it possible to generalize the results in this paper to other kinds of term
calculi.

Future Work. We plan to explore at least the following directions in the future:

– Fully lazy sharing: As mentioned, the reduction procedure of the positive λ-
calculus is not perfect since all the named structures within an abstraction are
duplicated. We hope to explore the possibilities of allowing more sharing along
the reduction and works on full laziness can surely provide more insights.

– Mixing positive and negative term structures: An important feature of LJF
is polarization. This paper focuses on the case that atoms are all given the
positive polarity. What if we consider atoms of different polarities? Will this
allow expressing more term structures while having a good notion of sharing?
These are the questions we hope to answer in our follow-up study.

– Connections with the VSC: The VSC has been applied to study the call-
by-value λ-calculus and various topics related to it: abstract machines, shar-
ing, etc. Also, a correspondence between VSC-terms and proof nets has been
established. In this paper, we show how these two calculi are similar but dif-
ferent at the same time. It seems natural and interesting to look for more



110 J.-H. Wu

connections between these two calculi and to see if the positive λ-calculus
can provide a different perspective on the topics mentioned above.

Acknowledgement. I would like to thank Dale Miller and Beniamino Accattoli for
their valuable discussions and suggestions. I am also grateful to the anonymous review-
ers for their helpful comments.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. J. Funct.
Program. 1(4), 375–416 (1991)

2. Accattoli, B.: Proof nets and the call-by-value λ-calculus. J. Theor. Comput. Sci.
(TCS) (2015). https://doi.org/10.1016/j.tcs.2015.08.006

3. Accattoli, B.: Proof nets and the linear substitution calculus. In: Fischer, B.,
Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 37–61. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02508-3 3

4. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 659–670 (2014)

5. Accattoli, B., Condoluci, A., Coen, C.S.: Strong call-by-value is reasonable, implo-
sively. In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pp. 1–14. IEEE (2021)

6. Accattoli, B., Paolini, L.: Call-by-value solvability, revisited. In: Schrijvers, T.,
Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 4–16. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29822-6 4

7. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992). https://doi.org/10.1093/logcom/2.3.297

8. Andreoli, J.M.: Focussing and proof construction. Ann. Pure Appl. Logic 107(1),
131–163 (2001)

9. Balabonski, T.: A unified approach to fully lazy sharing. In: Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 469–480 (2012)

10. Brock-Nannestad, T., Guenot, N., Gustafsson, D.: Computation in focused intu-
itionistic logic. In: Falaschi, M., Albert, E. (eds.) Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative Programming, Siena,
Italy, 14–16 July 2015. pp. 43–54. ACM (2015). https://doi.org/10.1145/2790449.
2790528

11. Chaudhuri, K.: Focusing strategies in the sequent calculus of synthetic connectives.
In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol.
5330, pp. 467–481. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89439-1 33

12. Chaudhuri, K., Hetzl, S., Miller, D.: A multi-focused proof system isomorphic to
expansion proofs. J. Log. Comput. 26(2), 577–603 (2016)

13. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing.
In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol.
273, pp. 383–396. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-
387-09680-3 26

14. Condoluci, A., Accattoli, B., Coen, C.S.: Sharing equality is linear. In: Proceedings
of the 21st International Symposium on Principles and Practice of Declarative
Programming, pp. 1–14 (2019). https://doi.org/10.1145/3354166.3354174

https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1007/978-3-030-02508-3_3
https://doi.org/10.1007/978-3-642-29822-6_4
https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1145/2790449.2790528
https://doi.org/10.1145/2790449.2790528
https://doi.org/10.1007/978-3-540-89439-1_33
https://doi.org/10.1007/978-3-540-89439-1_33
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1145/3354166.3354174


Proofs as Terms, Terms as Graphs 111

15. Danos, V., Joinet, J.B., Schellinx, H.: LKT and LKQ: sequent calculi for sec-
ond order logic based upon dual linear decompositions of classical implication. In:
Girard, J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 211–
224. No. 222 in London Mathematical Society Lecture Note Series, Cambridge
University Press (1995). https://doi.org/10.1017/CBO9780511629150

16. Delande, O., Miller, D.: A neutral approach to proof and refutation in MALL. In:
Pfenning, F. (ed.) 23th Symposium on Logic in Computer Science, pp. 498–508.
IEEE Computer Society Press (2008). https://doi.org/10.1016/j.apal.2009.07.017

17. Di Cosmo, R., Kesner, D.: Strong normalization of explicit substitutions via cut
elimination in proof nets. In: Proceedings of Twelfth Annual IEEE Symposium on
Logic in Computer Science, pp. 35–46 (1997). https://doi.org/10.1109/LICS.1997.
614927

18. Dyckhoff, R., Lengrand, S.: LJQ: a strongly focused calculus for intuitionistic
logic. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006.
LNCS, vol. 3988, pp. 173–185. Springer, Heidelberg (2006). https://doi.org/10.
1007/11780342 19

19. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. In: Proceedings of the ACM SIGPLAN 1993 Conference on Pro-
gramming Language Design and Implementation, pp. 237–247 (1993)

20. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–102 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

21. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022247

22. Hughes, D.J.D.: Proofs without syntax. Ann. Math. 143(3), 1065–1076 (2006)
23. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and clas-

sical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009). https://doi.org/10.
1016/j.tcs.2009.07.041, abstract Interpretation and Logic Programming: In honor
of professor Giorgio Levi

24. Marin, S., Miller, D., Pimentel, E., Volpe, M.: From axioms to synthetic inference
rules via focusing. Ann. Pure Appl. Logic 173(5), 1–32 (2022). https://doi.org/10.
1016/j.apal.2022.103091

25. Miller, D.: A compact representation of proofs. Stud. Logica. 46(4), 347–370
(1987). https://doi.org/10.1007/BF00370646

26. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focal-
ization in linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS,
vol. 4646, pp. 405–419. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74915-8 31

27. Miller, D., Wu, J.H.: A positive perspective on term representations. In: Klin, B.,
Pimentel, E. (eds.) 31st EACSL Annual Conference on Computer Science Logic
(CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), vol. 252, pp.
3:1–3:21. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2023). https://doi.org/10.4230/LIPIcs.CSL.2023.3

28. Pimentel, E., Nigam, V., Neto, J.: Multi-focused proofs with different polarity
assignments. In: Benevides, M., Thiemann, R. (eds.) Proceedings of the Tenth
Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2015),
ENTCS, vol. 323, pp. 163–179, July 2016. https://doi.org/10.1016/j.entcs.2016.06.
011

29. Wadsworth, C.P.: Semantics and Pragmatics of the Lambda Calculus. Ph.D. thesis,
University of Oxford (1971)

https://doi.org/10.1017/CBO9780511629150
https://doi.org/10.1016/j.apal.2009.07.017
https://doi.org/10.1109/LICS.1997.614927
https://doi.org/10.1109/LICS.1997.614927
https://doi.org/10.1007/11780342_19
https://doi.org/10.1007/11780342_19
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/BFb0022247
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1016/j.apal.2022.103091
https://doi.org/10.1016/j.apal.2022.103091
https://doi.org/10.1007/BF00370646
https://doi.org/10.1007/978-3-540-74915-8_31
https://doi.org/10.1007/978-3-540-74915-8_31
https://doi.org/10.4230/LIPIcs.CSL.2023.3
https://doi.org/10.1016/j.entcs.2016.06.011
https://doi.org/10.1016/j.entcs.2016.06.011


Typed Non-determinism in Functional
and Concurrent Calculi

Bas van den Heuvel1 , Joseph W. N. Paulus1,2 ,
Daniele Nantes-Sobrinho3,4 , and Jorge A. Pérez1(B)

1 University of Groningen, Groningen, The Netherlands
j.a.perez@rug.nl

2 University of Oxford, Oxford, UK
3 University of Braśılia, Braśılia, Brazil
4 Imperial College London, London, UK

Abstract. We study functional and concurrent calculi with non-deter-
minism, along with type systems to control resources based on linearity.
The interplay between non-determinism and linearity is delicate: careless
handling of branches can discard resources meant to be used exactly
once. Here we go beyond prior work by considering non-determinism in
its standard sense: once a branch is selected, the rest are discarded. Our
technical contributions are three-fold. First, we introduce a π-calculus
with non-deterministic choice, governed by session types. Second, we
introduce a resource λ-calculus, governed by intersection types, in which
non-determinism concerns fetching of resources from bags. Finally, we
connect our two typed non-deterministic calculi via a correct translation.

1 Introduction

In this paper, we present new formulations of typed programming calculi with
non-determinism. A classical ingredient of models of computation, non-deter-
minism brings flexibility and generality in specifications. In process calculi such
as CCS and the π-calculus, one source of non-determinism is choice, which is
typically non-confluent : that is, given P + Q, we have either P + Q −→ P or
P + Q −→ Q. Thus, committing to a branch entails discarding the rest.

We study non-determinism as a way of increasing the expressivity of typed
calculi in which resource control is based on linearity. The interplay between
non-determinism and linearity is delicate: a careless discarding of branches can
jeopardize resources meant to be used exactly once. On the concurrent side, we
consider the π-calculus, the paradigmatic model of concurrency [27]. We focus
on π-calculi with session types [14,15], in which linear logic principles ensure
communication correctness: here the resources are names that perform session
protocols; they can be unrestricted (used multiple times) and linear (used exactly
once). To properly control resources, non-confluent non-determinism is confined
to unrestricted names; linear names can only perform deterministic choices.

In this context, considering confluent forms of non-determinism can be
appealing. Intuitively, such formulations allow all branches to proceed inde-
pendently: given P1 −→ Q1 and P2 −→ Q2, then P1 + P2 −→ Q1 + P2 and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 112–132, 2023.
https://doi.org/10.1007/978-981-99-8311-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_6&domain=pdf
http://orcid.org/0000-0002-8264-7371
http://orcid.org/0000-0002-1711-9361
http://orcid.org/0000-0002-1959-8730
http://orcid.org/0000-0002-1452-6180
https://doi.org/10.1007/978-981-99-8311-7_6


Typed Non-determinism in Functional and Concurrent Calculi 113

P1 + P2 −→ P1 + Q2. Because confluent non-determinism does not discard
branches, it is compatible with a resource-conscious view of computation.

Confluent non-determinism has been studied mostly in the functional setting;
it is present, e.g., in Pagani and Ronchi della Rocca’s resource λ-calculus [21] and
in Ehrhard and Regnier’s differential λ-calculus [10]. In [21], non-determinism
resides in the application of a term M to a bag of available resources C; a
β-reduction applies M to a resource non-deterministically fetched from C. Con-
fluent non-deterministic choice is also present in the session-typed π-calculus
by Caires and Pérez [5], where it expresses a choice between different imple-
mentations of the same session protocols, which are all non-deterministically
available—they may be available but may also fail. In their work, a Curry-
Howard correspondence between linear logic and session types (‘propositions-
as-sessions’ [6,31]) ensures confluence, protocol fidelity, and deadlock-freedom.
Paulus et al. [22] relate functional and concurrent calculi with confluent non-
determinism: they give a translation of a resource λ-calculus into the session
π-calculus from [5], in the style of Milner’s ‘functions-as-processes’ [17].

Although results involving confluent non-determinism are most significant,
usual (non-confluent) non-determinism remains of undiscussed convenience in
formal modeling; consider, e.g., specifications of distributed protocols [2,20] in
which commitment is essential. Indeed, non-confluent non-deterministic choice
is commonplace in verification frameworks such as mCRL2 [12]. It is also rele-
vant in functional calculi; a well-known framework is De’Liguoro and Piperno’s
(untyped) non-deterministic λ-calculus [8] (see also [9] and references therein).

To further illustrate the difference between confluent and non-confluent non-
determinism, we consider an example adapted from [5]: a movie server that
offers a choice between buying a movie or watching its trailer. In sπ+, the typed
π-calculus that we present in this paper, this server can be specified as follows:

Servers = s.case

{
buy : s(title); s(paym); s[movie]; s[] ,
peek : s(title); s[trailer]; s[]

} −Serverbuys

−Serverpeeks

where s(−) and s[−] denote input and output prefixes on a name/channel s,
respectively, and ‘movie’ and ‘trailer’ denote references to primitive data. Also,
the free names of a process are denoted with subscripts. Process Servers offers a
choice on name s (s.case{−}) between labels buy and peek. If buy is received,
process Serverbuys is launched: it receives the movie’s title and a payment method,
sends the movie, and closes the session on s (s[]). If peek is received, it proceeds
as Serverpeeks : the server receives the title, sends the trailer, and closes the session.

Using the non-deterministic choice operator of sπ+, denoted ‘ ||−’, we can spec-
ify a process for a client Alice who is interested in the movie ‘Jaws’ but is unde-
cided about buying the film or just watching its trailer for free:

Alices := s.buy; s[Jaws]; s[mcard]; s(movie); s();0 −Alicebuys

||− s.peek; s[Jaws]; s(trailer); s();0 −Alicepeeks

If Alices selects the label buy (s.buy), process Alicebuys is launched: it sends title
and payment method, receives the movie, waits for the session to close (s()),



114 B. van den Heuvel et al.

and then terminates (0). If Alices selects peek, process Alicepeeks is launched: it
sends a title, receives the trailer, waits for the session to close, and terminates.
Then, process Sys := (νs)(Servers | Alices) denotes the composition of client
and server, connected along s (using (νs)). Our semantics for sπ+, denoted �,
enforces non-confluent non-determinism, as Sys can reduce to separate processes,
as expected:

Sys � (νs)(Serverbuys | Alicebuys ) and Sys � (νs)(Serverpeeks | Alicepeeks )

In contrast, the confluent non-deterministic choice from [5], denoted ‘⊕’, behaves
differently: in their confluent semantics, Sys reduces to a single process including
both alternatives, i.e., Sys−→(νs)(Serverbuys |Alicebuys )⊕(νs)(Serverpeeks |Alicepeeks ).

Contributions. We study new concurrent and functional calculi with usual (non-
confluent) forms of non-determinism. Framed in the typed (resource-conscious)
setting, we strive for definitions that do not exert a too drastic discarding of
branches (as in the non-confluent case) but also that do not exhibit a lack of
commitment (as in the confluent case). Concretely, we present:
(Section 2) sπ+, a variant of the session-typed π-calculus in [5], now with non-
confluent non-deterministic choice. Its semantics adapts to the typed setting
the usual semantics of non-deterministic choice in the untyped π-calculus [27].
Well-typed processes enjoy type preservation and deadlock-freedom (Theorems
1 and 2).
(Section 3) λ�

C, a resource λ-calculus with non-determinism, enhanced with con-
structs for expressing resource usage and failure. Its non-idempotent intersection
type system provides a quantitative measure of the need/usage of resources.
Well-typed terms enjoy subject reduction and subject expansion (Theorems 3
and 4).
(Section 4) A typed translation of λ�

C into sπ+, which provides further validation
for our non-deterministic calculi, and casts them in the context of ‘functions-as-
processes’. We prove that our translation is correct, i.e., it preserves types and
satisfies tight operational correspondences (Theorems 5 and 6).
Moreover, Sect. 5 closes by discussing related works. Omitted technical material
can be found in the full version of the paper [13].

2 A Typed π-calculus with Non-deterministic Choice

We introduce sπ+, a session-typed π-calculus with non-deterministic choice. Fol-
lowing [5], session types express protocols to be executed along channels. These
protocols can be non-deterministic: sessions may succeed but also fail. The nov-
elty in sπ+ is the non-deterministic choice operator ‘P ||−Q’, whose lazily commit-
ting semantics is compatible with linearity. We prove that well-typed processes
satisfy two key properties: type preservation and deadlock-freedom.



Typed Non-determinism in Functional and Concurrent Calculi 115

Fig. 1. sπ+: syntax (top) and structural congruence (bottom).

2.1 Syntax and Semantics

We use P,Q, . . . to denote processes, and x, y, z, . . . to denote names represent-
ing channels. Figure 1 (top) gives the syntax of processes. P{y/z} denotes the
capture-avoiding substitution of y for z in P . Process 0 denotes inaction, and
[x ↔ y] is a forwarder: a bidirectional link between x and y. Parallel composi-
tion appears in two forms: while the process P | Q denotes communication-free
concurrency, process (νx)(P | Q) uses restriction (νx) to express that P and Q
implement complementary behaviors on x and do not share any other names.

Process P ||− Q denotes the non-deterministic choice between P and Q: intu-
itively, if one choice can perform a synchronization, the other option may be
discarded if it cannot. Since ||− is associative, we often omit parentheses. Also,
we write ||−

i∈I
Pi for the non-deterministic choice between each Pi for i ∈ I.

Our output construct integrates parallel composition and restriction: process
x[y]; (P |Q) sends a fresh name y along x and then continues as P |Q. The type sys-
tem will ensure that behaviors on y and x are implemented by P and Q, respec-
tively, which do not share any names—this separation defines communication-
free concurrency and is key to ensuring deadlock-freedom. The input process
x(y);P receives a name z along x and continues as P{z/y}, which does not
require the separation present in the output case. Process x.case{i : Pi}i∈I

denotes a branch with labeled choices indexed by the finite set I: it awaits a
choice on x with continuation Pj for each j ∈ I. The process x.�;P selects on
x the choice labeled � before continuing as P . Processes x[] and x();P are dual
actions for closing the session on x. We omit replicated servers !x(y);P and
corresponding client requests ?x[y];P , but they can be easily added (cf. [13]).



116 B. van den Heuvel et al.

The remaining constructs define non-deterministic sessions which may pro-
vide a protocol or fail, following [5]. Process x.some;P confirms the availability of
a session on x and continues as P . Process x.none signals the failure to provide
the session on x. Process x.somew1,...,wn

;P specifies a dependency on a non-
deterministic session on x (names w1, . . . , wn implement sessions in P ). This
process can either (i) synchronize with a ‘x.some’ and continue as P , or (ii) syn-
chronize with a ‘x.none’, discard P , and propagate the failure to w1, . . . , wn. To
reduce eye strain, in writing x.some we freely combine names and sets of names.
This way, e.g., we write x.somey,fn(P ),fn(Q) rather than x.some{y}∪fn(P )∪fn(Q).

Name y is bound in (νy)(P | Q), x[y]; (P | Q), and x(y);P . The set fn(P )
includes the names in P that are not bound. We adopt Barendregt’s convention.

Structural Congruence. Reduction defines the steps that a process performs on
its own. It relies on structural congruence (≡), the least congruence relation on
processes induced by the rules in Fig. 1 (bottom). Like the syntax of processes,
the definition of ≡ is aligned with the type system (defined next), such that ≡
preserves typing (subject congruence, cf. Theorem 1). Differently from [5], we do
not allow distributing non-deterministic choice over parallel and restriction. As
shown in [13], the position of a non-deterministic choice in a process determines
how it may commit, so changing its position affects commitment.

Reduction: Intuitions and Prerequisites. Barring non-deterministic choice, our
reduction rules arise as directed interpretations of proof transformations in the
underlying linear logic. We follow Caires and Pfenning [6] and Wadler [31] in
interpreting cut-elimination in linear logic as synchronization in sπ+.

Before delving into our reduction rules (Fig. 2), it may be helpful to consider
the usual reduction axiom for the (untyped) π-calculus (e.g., [19,27]):

(x[z];P1 + M1) | (x(y);P2 + M2) −→ P1 | P2{z/y} (1)

This axiom captures the interaction of two (binary) choices: it integrates the com-
mitment of choice in synchronization; after the reduction step, the two branches
not involved in the synchronization, M1 and M2, are discarded. Our semantics
of sπ+ is defined similarly: when a prefix within a branch of a choice synchronizes
with its dual, that branch reduces and the entire process commits to it.

The key question at this point is: when and to which branches should we
commit? In (1), a communication commits to a single branch. For sπ+, we define
a lazy semantics that minimizes commitment as much as possible.

The intuitive idea is that multiple branches of a choice may contain the
same prefix, and so all these branches represent possibilities for synchronization
(“possible branches”). Other branches with different prefixes denote different
possibilities (“impossible branches”). When one synchronization is chosen, the
possible branches are maintained while the impossible ones are discarded.

Example 1. To distinguish possible and impossible branches, consider:

P := (νs)
(
s.case{buy : ... , peek : ...} | (s.buy; ... ||− s.buy; ... ||− s.peek; ...)

)



Typed Non-determinism in Functional and Concurrent Calculi 117

The branch construct (case) provides the context for the non-deterministic
choice. When the case synchronizes on the ‘buy’ label, the two branches pre-
fixed by ‘s.buy’ are possible, whereas the branch prefixed by ‘s.peek’ becomes
impossible, and can be discarded. The converse occurs when the ‘peek’ label is
selected. �

To formalize these intuitions, our reduction semantics (Fig. 2) relies on some
auxiliary definitions. First, we define contexts.

Definition 1. We define ND-contexts ( N, M) as follows:

N, M:: = [·] | N | P | (νx)(N | P ) | N ||− P

The process obtained by replacing [·] in N with P is denoted N[P ]. We refer to
ND-contexts that do not use the clause ‘ N ||− P ’ as D-contexts, denoted C, D.

Using D-contexts, we can express that, e.g., ||−
i∈I

Ci[x[]] and ||−
j∈J

Dj[x();Qj ]
should match. To account for reductions with impossible branches, we define a
precongruence on processes, denoted �S , where the parameter S denotes the
subject(s) of the prefix in the possible branches. Our semantics is closed under
�S . Hence, e.g., anticipating a reduction on x, the possible branch C1[x(y);P ]
can be extended with an impossible branch to form C1[x(y);P ] ||− C2[z();Q].

Before defining �S (Definition 3), we first define prefixes (and their subjects).
Below, we write x̃ to denote a finite tuple of names x1, . . . , xk.

Definition 2. Prefixes are defined as follows:

α, β:: = x[y] | x(y) | x.� | x.case | x[] | x() | x.some | x.none | x.somew̃ | [x ↔ y]

The subjects of α, denoted subj{α}, are {x, y} in case of [x↔y], or {x}. By abuse
of notation, we write α;P even when α takes no continuation (as in x[], x.none,
and [x ↔ y]) and for x[y] which takes a parallel composition as continuation.

Definition 3. Let �� denote the least relation on prefixes (Definition 2) defined
by:
(i) x[y] �� x[z], (ii) x(y) �� x(z), and (iii) α �� α otherwise.

Given a non-empty set S ⊆ {x, y}, the precongruence P �S Q holds when
both following conditions hold:

1. S = {x} implies
P =

( ||−
i∈I

Ci[αi;Pi]
)

||−
( ||−

j∈J
Cj[βj ;Qj ]

)
and Q = ||−

i∈I
Ci[αi;Pi], where

(i) ∀i, i′ ∈ I. αi �� αi′ and subj{αi} = {x}, and
(ii) ∀i ∈ I.∀j ∈ J. αi 
�� βj ∧ x ∈ fn(βj ;Qj);

2. S = {x, y} implies
P =

( ||−
i∈I

Ci[[x ↔ y]]
)

||−
( ||−

j∈J
Cj[[x ↔ zj ]]

)
||−

( ||−
k∈K

Ck[αk;Pk]
)

and Q = ||−
i∈I

Ci[[x ↔ y]], where
(i) ∀j ∈ J. zj 
= y, and (ii) ∀k ∈ K. x ∈ fn(αk;Pk) ∧ ∀z. αk 
�� [x ↔ z].



118 B. van den Heuvel et al.

Fig. 2. Reduction semantics for sπ+.

Intuitively, �� allows us to equate output/input prefixes with the same subject
(but different object). The rest of Definition 3 accounts for two kinds of reduc-
tion, using S to discard “impossible” branches. In case S is {x} (Item 1), it
concerns a synchronization on x; in case S is {x, y}, it concerns forwarding on x
and y (Item 2). In both cases, P and Q contain matching prefixes on x, while P
may contain additional branches with different or blocked prefixes on x; x must
appear in the hole of the contexts in the additional branches in P (enforced with
x ∈ fn(. . .)), to ensure that no matching prefixes are discarded.

Example 2. Recall process P from Example 1. To derive a synchronization with
the ‘buy’ alternative of the case, we can use �S to discard the ‘peek’ alternative,
as follows: s.buy; ... ||− s.buy; ... ||− s.peek; ... �s s.buy; ... ||− s.buy; ... �

Reduction Rules. Figure 2 gives the rules for the (lazy) reduction semantics,
denoted �S , where the set S contains the names involved in the interaction. We



Typed Non-determinism in Functional and Concurrent Calculi 119

omit the curly braces in this annotation; this way, e.g., we write ‘�x,y’ instead
of ‘�{x,y}’. Also, we write �k

S to denote a sequence of k ≥ 0 reductions.
The first six rules in Fig. 2 formalize forwarding and communication: they

are defined on choices containing different D-contexts (cf. Definition 1), each
with the same prefix but possibly different continuations; these rules preserve
the non-deterministic choices. Rule [�Id] fixes S to the forwarder’s two names,
and the other rules fix S to the one involved name. In particular, Rule [�⊗ �] for-
malizes name communication: it involves multiple senders and multiple receivers
(grouped in choices indexed by I and J , respectively). Because they proceed in
lock-step, reduction leads to substitutions involving the same (fresh) name w;
also, the scopes of the choice and the contexts enclosing the senders is extended.

Rule [��S
] is useful to derive a synchronization that discards groups of

choices. Rule [�
ν ||−] allows inferring reductions when non-deterministic choices

are not top-level: e.g., (νx)
(
x[] | (νy)((x();Q1 ||− x();Q2) | R)

)
�x (νy)(Q1 | R) ||−

(νy)(Q2 | R). The last four rules formalize that reduction is closed under struc-
tural congruence, restriction, parallel composition, and non-deterministic choice.

As mentioned earlier, a key motivation for our work is to have non-determinis-
tic choices that effectively enforce commitment, without a too drastic discarding
of alternatives. Next we illustrate this intended form of gradual commitment.

Example 3. (A Modified Movie Server). Consider the following variant of the
movie server from the introduction, where the handling of the payment is now
modeled as a branch:

NewServers := s(title); s.case

⎧⎨
⎩
buy : s.case

{
card : s(info); s[movie]; s[],
cash : s[movie]; s[]

}
,

peek : s[trailer]; s[]

⎫⎬
⎭

Consider a client, Eve, who cannot decide between buying ‘Oppenheimer’ or
watching its trailer. In the former case, she has two options for payment method:

Eves := s[Oppenheimer];

⎛
⎝ s.buy; s.card; s[visa]; s(movie); s();0

||− s.buy; s.cash; s(movie); s();0
||− s.peek; s(link); s();0

⎞
⎠

Let Sys∗ := (νs)(NewServers |Eves). After sending the movie’s title, Eve’s choice
(buying or watching the trailer) enables gradual commitment. We have:

Sys∗ �2
s (νs)

(
s.case{card : . . . , cash : . . .} | (s.card; . . . ||− s.cash; . . .)

)
=: Sys∗1

and Sys∗ �2
s (νs)(s[trailer]; . . . | s(trailer); . . .) =: Sys∗2

Process Sys∗1 represents the situation for Eve after selecting buy, in which case the
third alternative (s.peek; . . .) can be discarded as an impossible branch. Process
Sys∗2 represents the dual situation. From Sys∗1, the selection of payment method
completes the commitment to one alternative; we have: Sys∗1 �s (νs)(s(info); ... |
s[visa]; ...) and Sys∗1 �s (νs)(s[movie]; ... | s(movie); ...). �



120 B. van den Heuvel et al.

Fig. 3. Typing rules for sπ+.

2.2 Resource Control for sπ+ via Session Types

We define a session type system for sπ+, following ‘propositions-as-sessions’ [6,
31]. As already mentioned, in a session type system, resources are names that
perform protocols: the type assignment x : A says that x should conform to the
protocol specified by the session type A. We give the syntax of types:

A,B:: = 1 | ⊥ | A ⊗ B | A �B | ⊕{i : A}i∈I | �{i : A}i∈I | �A | ⊕A

The units 1 and ⊥ type closed sessions. A⊗B types a name that first outputs a
name of type A and then proceeds as B. Similarly, A �B types a name that inputs
a name of type A and then proceeds as B. Types ⊕{i : Ai}i∈I and �{i : Ai}i∈I

are given to names that can select and offer a labeled choice, respectively. Then,
�A is the type of a name that may produce a behavior of type A, or fail; dually,
⊕A types a name that may consume a behavior of type A.

For any type A we denote its dual as A. Intuitively, dual types serve to avoid
communication errors: the type at one end of a channel is the dual of the type
at the opposite end. Duality is an involution, defined as follows:

1 = ⊥ A ⊗ B = A �B ⊕{i : Ai}i∈I = �{i : Ai}i∈I �A = ⊕A

⊥ = 1 A

�

B = A ⊗ B �{i : Ai}i∈I = ⊕{i : Ai}i∈I ⊕A = �A

Judgments are of the form P � Γ , where P is a process and Γ is a context,
a collection of type assignments. In writing Γ, x : A, we assume x /∈ dom(Γ ).
We write dom(Γ ) to denote the set of names appearing in Γ . We write �Γ to
denote that ∀x : A ∈ Γ. ∃A′. A = �A′.



Typed Non-determinism in Functional and Concurrent Calculi 121

Figure 3 gives the typing rules: they correspond to the rules in Curry-Howard
interpretations of classical linear logic as session types (cf. Wadler [31]), with the
rules for �A and ⊕A extracted from [5], and the additional Rule [T ||−] for non-
confluent non-deterministic choice, which modifies the confluent rule in [5].

Most rules follow [31], so we focus on those related to non-determinism.
Rule [T�some] types a process with a name whose behavior can be provided,
while Rule [T�none] types a name whose behavior cannot. Rule [T⊕some] types
a process with a name x whose behavior may not be available. If the behavior
is not available, all the sessions in the process must be canceled; hence, the rule
requires all names to be typed under the �A monad.

Rule [T ||−] types our new non-deterministic choice operator; the branches
must be typable under the same typing context. Hence, all branches denote the
same sessions, which may be implemented differently. In context of a synchro-
nization, branches that are kept are able to synchronize, whereas the discarded
branches are not; nonetheless, the remaining branches still represent different
implementations of the same sessions. Compared to the rule for non-determinism
in [5], we do not require processes to be typable under the �A monad.

Example 4. Consider again process Eves from Example 3. The three branches of
the non-deterministic choice give different implementations of the same session:
assuming primitive, self-dual data types C, M, and L, all three branches on s are
typable by ⊕{

buy : ⊕{card : C ⊗ M �⊥, cash : M �⊥}, peek : L �⊥}
. �

Example 5 (Unavailable Movies). Consider now a modified movie server, which
offers movies that may not be yet available. We specify this server using non-
deterministic choice and non-deterministically available sessions:

BuyServs := s(title); (s.none ||− s.some; s(paym); s[movie]; s[]) � s : T �(
�(P �

M ⊗ 1)
)
,

where T, P, M denote primitive, self-dual data-types. While the branch ‘s.none’
signals that the movie is not available, the branch ‘s.some; ...’ performs the
expected protocol. We now define a client Ada who buys a movie for Tim, using
session s; Ada only forwards it to him (using session u) if it is actually available:

Adas,u := s[Barbie]; s.someu; s[visa]; s(movie); s();u.some;u[movie];u[]

� s : T ⊗ ( ⊕ (P ⊗ M �⊥)
)
, u : �(M ⊗ 1)

Timu := u.some;u(movie);u();0 � u : ⊕(M �1)

Let BuySys := (νs)
(
BuyServs | (νu)(Adas,u | Timu)

)
. Depending on whether the

server has the movie “Barbie” available, we have the following reductions:

BuySys �2
s (νu)(u.none | Timu) or BuySys �5

s (νu)(u.some;... | Timu)

�
Our type system ensures session fidelity and communication safety, but not

confluence: the former says that processes correctly follow their ascribed ses-
sion protocols, and the latter that no communication errors/mismatches occur.
Both properties follow from the fact that typing is consistent across structural
congruence and reduction. See [13] for details.



122 B. van den Heuvel et al.

Fig. 4. Syntax of λ�
C: terms, bags, and contexts.

Theorem 1 (Type Preservation). If P � Γ , then both P ≡ Q and P �S Q
(for any Q and S) imply Q � Γ .

Another important, if often elusive, property in session types is deadlock-
freedom, which ensures that processes can reduce as long as they are not inactive.
Our type system satisfies deadlock-freedom for processes with fully connected
names, i.e., typable under the empty context. See [13] for details.

Theorem 2 (Deadlock-freedom). If P � ∅ and P 
≡ 0, then there are Q and
S such that P �S Q.

3 A Non-deterministic Resource λ-calculus

We present λ�
C, a resource λ-calculus with non-determinism and lazy evaluation.

In λ�
C, non-determinism is non-confluent and implicit, as it arises from the fetch-

ing of terms from bags of linear resources. This is different from sπ+, where the
choice operator ‘ ||−’ specifies non-determinism explicitly. A mismatch between
the number of variable occurrences and the size of the bag induces failure.

In λ�
C, the sharing construct M [x1, . . . , xn ← x], expresses that x may be

used in M under “aliases” x1, . . . , xn. Hence, it atomizes n occurrences of x
in M , via an explicit pointer to n variables. This way, e.g., the λ-term λx.(x x)
is expressed in λ�

C as λx.(x1 �x2 � [x1, x2 ← x]), where �x2� is a bag containing x2.

3.1 Syntax and Reduction Semantics

Syntax. We use x, y, z, . . . for variables, and write x̃ to denote a finite sequence
of pairwise distinct xi’s, with length |x̃|. Figure 4 gives the syntax of terms
(M,N,L) and bags (C,D). The empty bag is denoted 1. We use Ci to denote
the i-th term in C, and size(C) denotes the number of elements in C. To ease
readability, we often write, e.g., �N1, N2� as a shorthand notation for �N1�·�N2�.

In M [x̃ ← x], we say that x̃ are the shared variables and that x is the sharing
variable. We require for each xi ∈ x̃: (i) xi occurs exactly once in M ; (ii) xi is
not a sharing variable. The sequence x̃ can be empty: M [← x] means that x does
not share any variables in M . Sharing binds the shared variables in the term.



Typed Non-determinism in Functional and Concurrent Calculi 123

Fig. 5. Reduction rules for λ�
C.

An abstraction λx.M binds occurrences of x in M . Application (M C) is
as usual. The term M〈|C/x̃|〉 is the explicit substitution of a bag C for x̃ in M .
We require size(C) = |x̃| and for each xi ∈ x̃: (i) xi occurs in M ; (ii) xi is not
a sharing variable; (iii) xi cannot occur in another explicit substitution in M .
The term M〈〈C/x〉〉 denotes an intermediate explicit substitution that does not
(necessarily) satisfy the conditions for explicit substitutions.

The term failx̃ denotes failure; the variables in x̃ are “dangling” resources,
which cannot be accounted for after failure. We write fv(M) to denote the free
variables of M , defined as expected. Term M is closed if fv(M) = ∅.

Semantics. Figure 5 gives the reduction semantics, denoted −→, and the head
variable of term M , denoted head(M). Rule [RS : Beta] induces an interme-
diate substitution. Rule [RS : Ex-Sub] reduces an intermediate substitution to
an explicit substitution, provided the size of the bag equals the number of
shared variables. In case of a mismatch, the term evolves into failure via
Rule [RS : Fail�].

An explicit substitution M〈|C/x̃|〉, where the head variable of M is xj ∈ x̃,
reduces via Rule [R : Fetch�]. The rule extracts a Ci from C (for some 0 <
i ≤ size(C)) and substitutes it for xj in M ; this is how fetching induces a non-



124 B. van den Heuvel et al.

deterministic choice between size(C) possible reductions. Rules [RS : Consj] for
j ∈ {1, 2, 3} consume terms when they meet failure. Finally, Rule [RS : TCont]
closes reduction under contexts. The following example illustrates reduction.

Example 6. Consider the term M0 = (λx.x1 �x2 �x3 1 � �[x̃ ← x]) �fail∅, y, I �,
where I = λx.(x1[x1 ← x]) and x̃ = x1, x2, x3. First, M0 evolves into an inter-
mediate substitution (2). The bag can provide for all shared variables, so it then
evolves into an explicit substitution (3):

M0 −→ (x1�x2�x3 1��[x̃ ← x])〈〈�fail∅, y, I�/x〉〉 (2)

−→ (x1�x2�x3 1��)〈|�fail∅, y, I �/x̃|〉 = M (3)

Since head(M) = x1, one of the three elements of the bag will be substituted.
M represents a non-deterministic choice between the following three reductions:

−→ (fail∅
� x2 � x3 1 � �)〈| � y, I � /x2, x3|〉 = N1

M −→ (y � x2 � x3 1 � �)〈| � fail∅, I � /x2, x3|〉 = N2−→ (I � x2 � x3 1 � �)〈| � fail∅, y � /x2, x3|〉 = N3

�

3.2 Resource Control for λ�
C via Intersection Types

Our type system for λ�
C is based on non-idempotent intersection types. As in

prior works [4,21], intersection types account for available resources in bags,
which are unordered and have all the same type. Because we admit the term
failx̃ as typable, we say that our system enforces well-formedness rather than
well-typedness. As we will see, well-typed terms form the sub-class of well-formed
terms that does not include failx̃ (see the text after Theorem 3).

Strict types (σ, τ, δ) and multiset types (π, ζ) are defined as follows:

σ, τ, δ:: = unit | π → σ π, ζ:: =
∧
i∈I

σi | ω

Given a non-empty I, multiset types
∧

i∈I σi are given to bags of size |I|. This
operator is associative, commutative, and non-idempotent (i.e., σ ∧σ 
= σ), with
identity ω. Notation σk stands for σ ∧ · · · ∧ σ (k times, if k > 0) or ω (if k = 0).

Judgments have the form Γ � M : τ , with contexts defined as follows:

Γ,Δ:: = - | Γ, x : π | Γ, x : σ

where - denotes the empty context. We write dom(Γ ) for the set of variables
in Γ . For Γ, x : π, we assume x 
∈ dom(Γ ). To avoid ambiguities, we write x : σ1

to denote that the assignment involves a multiset type, rather than a strict type.
Given Γ , its core context Γ ↓ concerns variables with types different from ω; it
is defined as Γ ↓ = {x : π ∈ Γ |π 
= ω}.



Typed Non-determinism in Functional and Concurrent Calculi 125

Fig. 6. Well-Formedness Rules for λ�
C.

Definition 4 (Well-formedness in λ�
C). A term M is well-formed if there

exists a context Γ and a type τ such that the rules in Fig. 6 entail Γ � M : τ .

In Fig. 6, Rule [FS : var�] types variables. Rule [FS : 1�] types the empty bag with
ω. Rule [FS : bag�] types the concatenation of bags. Rule [FS : fail] types the
term failx̃ with a strict type τ , provided that the domain of the core context
coincides with x̃ (i.e., no variable in x̃ is typed with ω). Rule [FS : weak] types
M [← x] by weakening the context with x : ω. Rule [FS : shar] types M [x̃ ← x]
with τ , provided that there are assignments to the shared variables in x̃.

Rule [FS : abs-sh] types an abstraction λx.(M [x̃ ← x]) with σk → τ , provided
that M [x̃ ← x] : τ can be entailed from an assignment x : σk. Rule [FS : app]
types (M C), provided that M has type σj → τ and C has type σk. Note that,
unlike usual intersection type systems, j and k may differ. Rule [FS : Esub] types
the intermediate substitution of a bag C of type σk, provided that x has type
σj ; again, j and k may differ. Rule [FS : Esub�] types M〈|C/x̃|〉 as long as C has
type σ|x̃|, and each xi ∈ x̃ is of type σ.

Well-formed terms satisfy subject reduction (SR), whereas well-typed terms,
defined below, satisfy also subject expansion (SE). See [13] for details.

Theorem 3 (SR in λ�
C). If Γ � M : τ and M −→ M ′, then Γ � M ′ : τ .

From our system for well-formedness we can extract a system for well-
typed terms, which do not include failx̃. Judgments for well-typedness are
denoted Γ � M : τ , with rules copied from Fig. 6 (the rule name prefix FS is
replaced with TS), with the following modifications: (i) Rule [TS:fail] is removed;
(ii) Rules [TS:app] and [TS:Esub] are modified to disallow a mismatch between



126 B. van den Heuvel et al.

Fig. 7. Translation of λ�
C into sπ+.

variables and resources, i.e., multiset types should match in size. Well-typed
terms are also well-formed, and thus satisfy SR. Moreover, as a consequence of
adopting (non-idempotent) intersection types, they also satisfy SE:

Theorem 4 (SE in λ�
C). If Γ � M ′ : τ and M −→ M ′, then Γ � M : τ .

4 A Typed Translation of λ�
C into sπ+

While sπ+ features non-deterministic choice, λ�
C is a prototypical programming

language in which implicit non-determinism implements fetching of resources.
Resources are controlled using different type systems (session types in sπ+, inter-
section types in λ�

C). To reconcile these differences and illustrate the potential of
sπ+ to precisely model non-determinism as found in realistic programs/protocols,
we give a translation of λ�

C into sπ+. This translation preserves types (Theorem 5)
and respects well-known criteria for dynamic correctness [11,23,24] (Theorem 6).

The Translation. Given a λ�
C-term M , its translation into sπ+ is denoted �M�u

and given in Fig. 7. As usual, every variable x in M becomes a name x in process
�M�u, where name u provides the behavior of M . A peculiarity is that, to handle
failures in λ�

C, u is a non-deterministically available session: the translated term
can be available or not, as signaled by prefixes u.some and u.none, respectively.
As a result, reductions from �M�u include synchronizations that codify M ’s
behavior but also synchronizations that confirm a session’s availability.

At its core, our translation follows Milner’s. This way, e.g., the process
�(λx.M) C�u enables synchronizations between �λx.M�v and �C�x along name v,



Typed Non-determinism in Functional and Concurrent Calculi 127

Fig. 8. Translation of intersection types into session types (cf. Definition 5).

resulting in the translation of an intermediate substitution. The key novelty is the
role and treatment of non-determinism. Accommodating non-confluent non-de-
terminism is non-trivial, as it entails translating explicit substitutions and shar-
ing in λ�

C using the non-deterministic choice operator ||− in sπ+. Next we discuss
these novel aspects, while highlighting differences with respect to a translation
by Paulus et al. [22], which is given in the confluent setting (see Section 5).

In Fig. 7, non-deterministic choices occur in the translations of M〈|C/x̃|〉
(explicit substitutions) and M [x̃ ← x] (non-empty sharing). Roughly speaking,
the position of ||− in the translation of M〈|C/x̃|〉 represents the most desirable
way of mimicking the fetching of terms from a bag. This use of ||− is a central idea
in our translation: as we explain below, it allows for appropriate commitment in
non-deterministic choices, but also for delayed commitment when necessary.

For simplicity, we consider explicit substitutions M〈|C/x̃|〉 where C = �N1,N2�

and x̃ = x1, x2. The translation �M〈|C/x̃|〉�u uses the processes �Ni�zi
, where

each zi is fresh. First, each bag item confirms its behavior. Then, a vari-
able xi ∈ x̃ is chosen non-deterministically; we ensure that these choices con-
sider all variables. Note that writing ||−

xi∈{x1,x2} ||−
xj∈{x1,x2}\xi

is equivalent
to non-deterministically assigning xi, xj to each permutation of x1, x2. The
resulting choice involves �M�u with xi, xj substituted by z1, z2. Commitment
here is triggered only via synchronizations along z1 or z2; synchronizing with
zi.somefv(Ni); �Ni�zi

then represents fetching Ni from the bag. The size of the
translated term �M〈|C/x̃|〉�u is exponential with respect to the size of C.

The process �M [x̃ ← x]�u proceeds as follows. First, it confirms its behavior
along x. Then it sends a name yi on x, on which a failed reduction may be
handled. Next, the translation confirms again its behavior along x and non-
deterministically receives a reference to an xi ∈ x̃. Each branch consists of
�M [(x̃\xi) ← x]�u. The possible choices are permuted, represented by ||−

xi∈x̃
.

Synchronizations with �M [(x̃\xi) ← x]�u and bags delay commitment in this
choice (we return to this point below). The process �M [← x]�u is similar but
simpler: here the name x fails, as it cannot take further elements to substitute.

In case of a failure (i.e., a mismatch between the size of the bag C and the
number of variables in M), our translation ensures that the confirmations of C
will not succeed. This is how failure in λ�

C is correctly translated to failure in sπ+.



128 B. van den Heuvel et al.

Translation Correctness. The translation is typed: intersection types in λ�
C are

translated into session types in sπ+ (Fig. 8). This translation of types abstractly
describes how non-deterministic fetches are codified as non-deterministic session
protocols. It is worth noting that this translation of types is the same as in [22].
This is not surprising: as we have seen, session types effectively abstract away
from the behavior of processes, as all branches of a non-deterministic choice
use the same typing context. Still, it is pleasant that the translation of types
remains unchanged across different translations with our (non-confluent) non-
determinism (in Fig. 7) and with confluent non-determinism (in [22]).

To state static correctness, we require the following definition:

Definition 5. Let Γ = x1 : σ1, ..., xm : σm, v1 : π1, ..., vn : πn be a context. The
translation � · � in Fig. 8 extends to contexts as follows:

�Γ � = x1 : ��σ1�, · · · , xm : ��σm�, v1 : �π1�(σ,i1)
, · · · , vn : �πn�(σ,in)

Well-formed terms translate into well-typed processes:

Theorem 5. If Γ � M : τ , then �M�u � �Γ �, u : �τ�.

To state dynamic correctness, we rely on established notions that (abstractly)
characterize correct translations. A language L = (L,→) consists of a set of terms
L and a reduction relation → on L. Each language L is assumed to contain a
success constructor �. A term T ∈ L has success, denoted T ⇓ �, when there is
a sequence of reductions (using →) from T to a term satisfying success criteria.

Given L1 = (L1,→1) and L2 = (L2,→2), we seek translations �·� : L1 → L2

that are correct: they satisfy well-known correctness criteria [11,23,24]. We state
the set of correctness criteria that determine the correctness of a translation.

Definition 6 (Correct Translation). Let L1 = (M,�1) and L2 = (P,�2) be
two languages. Let �2 be an equivalence over L2. We use M,M ′ (resp. P, P ′) to
range over terms in M (resp. P). Given a translation �·� : M → P, we define:

Completeness: For every M,M ′ such that M �
∗
1 M ′, there exists P such

that �M� �
∗
2 P �2 �M ′

�.
Weak Soundness: For every M and P such that �M� �

∗
2 P , there exist M ′,

P ′ such that M �
∗
1 M ′ and P �

∗
2 P ′ �2 �M ′

�.
Success Sensitivity: For every M , we have M ⇓ � if and only if �M� ⇓ �.

Let us write Λ to denote the set of well-formed λ�
C terms, and Π for the set

of all well-typed sπ+ processes, both including �. We have our final result:

Theorem 6 (Translation correctness under �). The translation � · � :
(Λ,−→) → (Π,�) is correct (cf. Definition 6) using equivalence ≡ (Fig. 1).

The proof of Theorem 6 involves instantiating/proving each of the parts of Def-
inition 6. Among these, weak soundness is the most challenging to prove. Prior
work on translations of typed λ into π with confluent non-determinism [22] rely



Typed Non-determinism in Functional and Concurrent Calculi 129

critically on confluence to match a behavior in π with a corresponding behavior
in λ. Because in our setting confluence is lost, we must resort to a different proof.

As already discussed, our translation makes the implicit non-determinism in
a λ�

C-term M explicit by adding non-deterministic choices in key points of �M�u.
Our reduction � preserves those branches that simultaneously have the same
prefix available (up to ��). In proving weak soundness, we exploit the fact that
reduction entails delayed commitment. To see this, consider the following terms:

(νx)((α1;P1 ||− α2;P2) | Q) (4)

(νx)(α1;P1 | Q) ||− (νx)(α2;P2 | Q) (5)

In (4), commitment to a choice relies on whether α1 �� α2 holds (cf. Definition
3). If α1 
�� α2, a choice is made; otherwise, commitment is delayed, and depends
on P1 and P2. Hence, in (4) the possibility of committing to either branch is kept
open. In contrast, in (5) commitment to a choice is independent of α1 �� α2.

Our translation exploits the delayed commitment of non-determinism illus-
trated by (4) to mimic commitment to non-deterministic choices in λ�

C, which
manifests in fetching resources from bags. The fact that this delayed commit-
ment preserves information about the different branches (e.g., P1 and P2 in (4))
is essential to establish weak soundness, i.e., to match a behavior in sπ+ with
a corresponding step in λ�

C. In contrast, forms of non-determinism in �N�u that
resemble (5) are useful to characterize behaviors different from fetching.

5 Summary and Related Work

We studied the interplay between resource control and non-determinism in typed
calculi. We introduced sπ+ and λ�

C, two calculi with non-confluent non-determin-
ism, both with type systems for resource control. Inspired by the untyped π-
calculus, non-determinism in sπ+ is lazy and explicit, with session types defined
following ‘propositions-as-sessions’ [5]. In λ�

C, non-determinism arises in the fetch-
ing of resources, and is regulated by intersection types. A correct translation of
λ�
C into sπ+ precisely connects their different forms of non-determinism.

Related Work. Integrating (non-confluent) non-determinism within session types
is non-trivial, as carelessly discarding branches would break typability. Work
by Caires and Pérez [5], already mentioned, develops a confluent semantics by
requiring that non-determinism is only used inside the monad �A; our non-
confluent semantics drops this requirement. This allows us to consider non-
deterministic choices not possible in [5], such as, e.g., selections of different
labels. We stress that linearity is not jeopardized: the branches of ‘ ||−’ do not
represent different sessions, but different implementations of the same sessions.

Atkey et al. [1] and Kokke et al. [16] extend ‘propositions-as-sessions’ with
non-determinism. Their approaches are very different (conflation of the additives
and bounded linear logic, respectively) and support non-determinism for unre-
stricted names only. Also, [1,16] do not connect with typed λ-calculi, as we do.



130 B. van den Heuvel et al.

Rocha and Caires also consider non-determinism, relying on confluence in [25]
and on unrestricted names in [26]. Casal et al. [7,30] develop a type system for
mixed sessions (sessions with mixed choices), which can express non-determinism
but does not ensure deadlock-freedom. Ensuring deadlock-freedom by typing is
a key feature of the ‘propositions-as-sessions’ approach that we adopt for sπ+.

Our language λ�
C is most related to calculi by Boudol [3], Boudol and Lan-

eve [4], and by Pagani and Ronchi Della Rocca [21]. Non-determinism in the cal-
culi in [3,4] is committing and implicit; their linear resources can be consumed
at most once, rather than exactly once. The work [21] considers non-committing
non-determinism that is both implicit (as in λ�

C) and explicit (via a sum opera-
tor on terms). Both [3,21] develop (non-idempotent) intersection type systems
to regulate resources. In our type system, all terms in a bag have the same type;
the system in [21] does not enforce this condition. Unlike these type systems, our
system for well-formedness can type terms with a lack or an excess of resources.

Boudol and Laneve [4] and Paulus et al. [22] give translations of resource
λ-calculi into π. The translation in [4] is used to study the semantics induced
upon λ-terms by a translation into π; unlike ours, it does not consider types.
As already mentioned in Sect. 4, Paulus et al. [22] relate calculi with confluent
non-determinism: a resource λ-calculus with sums on terms, and the session π-
calculus from [5]. Our translation of terms and that in [22] are very different:
while here we use non-deterministic choice to mimic the sharing construct, the
translation in [22] uses it to translate bags. Hence, our Theorem 6 cannot be
derived from [22].

The last decade of work on ‘propositions-as-sessions’ has delivered insightful
connections with typed λ-calculi—see, e.g., [28,29,31]. Excepting [22], already
discussed, none of these works consider non-deterministic λ-calculi.

Acknowledgments. We are grateful to the anonymous reviewers for useful comments
on previous versions of this paper. We are also grateful to Mariangiola Dezani for
her encouragement and suggestions. This research has been supported by the Dutch
Research Council (NWO) under project No. 016.Vidi.189.046 (‘Unifying Correctness for
Communicating Software’) and the EPSRC Fellowship ‘VeTSpec: Verified Trustworthy
Software Specification’ (EP/R034567/1).

References

1. Atkey, R., Lindley, S., Morris, J.G.: Conflation confers concurrency. In: Lindley, S.,
McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes That Can Change
the World. LNCS, vol. 9600, pp. 32–55. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-30936-1 2

2. Berger, M., Honda, K.: The two-phase commitment protocol in an extended pi-
calculus. In: Aceto, L., Victor, B. (eds.) 7th International Workshop on Expres-
siveness in Concurrency, EXPRESS 2000, Satellite Workshop of CONCUR 2000,
State College, PA, USA, 21 August 2000. Electronic Notes in Theoretical Com-
puter Science, vol. 39, pp. 21–46. Elsevier (2000). https://doi.org/10.1016/S1571-
0661(05)82502-2

https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1016/S1571-0661(05)82502-2
https://doi.org/10.1016/S1571-0661(05)82502-2


Typed Non-determinism in Functional and Concurrent Calculi 131

3. Boudol, G.: The lambda-calculus with multiplicities. In: Best, E. (ed.) CONCUR
1993. LNCS, vol. 715, pp. 1–6. Springer, Heidelberg (1993). https://doi.org/10.
1007/3-540-57208-2 1

4. Boudol, G., Laneve, C.: Lambda-calculus, multiplicities, and the pi-calculus. In:
Proof, Language, and Interaction, Essays in Honour of Robin Milner, pp. 659–690
(2000)

5. Caires, L., Pérez, J.A.: Linearity, control effects, and behavioral types. In: Yang,
H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 229–259. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1 9

6. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

7. Casal, F., Mordido, A., Vasconcelos, V.T.: Mixed sessions. Theor. Comput. Sci.
897, 23–48 (2022). https://doi.org/10.1016/j.tcs.2021.08.005

8. de’Liguoro, U., Piperno, A.: Non deterministic extensions of untyped lambda-
calculus. Inf. Comput. 122(2), 149–177 (1995). https://doi.org/10.1006/inco.1995.
1145

9. Dezani-Ciancaglini, M.: Logical semantics for concurrent lambda-calculus. Ph.D.
thesis, Nijmegen University (1996). https://www.di.unito.it/∼dezani/papers/tesi.
ps

10. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci.
309(1–3), 1–41 (2003). https://doi.org/10.1016/S0304-3975(03)00392-X

11. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. Inf. Comput. 208(9), 1031–1053 (2010). https://doi.org/10.1016/
j.ic.2010.05.002

12. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Sys-
tems. MIT Press (2014). https://mitpress.mit.edu/books/modeling-and-analysis-
communicating-systems

13. van den Heuvel, B., Paulus, J.W.N., Nantes-Sobrinho, D., Pérez, J.A.: Typed
non-determinism in functional and concurrent calculi (extended version). CoRR
abs/2205.00680 (2022). https://doi.org/10.48550/arXiv.2205.00680

14. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

16. Kokke, W., Morris, J.G., Wadler, P.: Towards races in linear logic. Log. Meth.
Comput. Sci. 16(4) (2020). https://doi.org/10.23638/LMCS-16(4:15)2020

17. Milner, R.: Functions as processes. Research Report 1154, INRIA, Sophia Antipolis
(1990). Final version appeared as [18]

18. Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(2), 119–141
(1992). https://doi.org/10.1017/S0960129500001407

19. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput.
100(1), 1–40 (1992). https://doi.org/10.1016/0890-5401(92)90008-4

20. Nestmann, U., Fuzzati, R., Merro, M.: Modeling consensus in a process calculus.
In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 399–414.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45187-7 26

https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1007/3-540-57208-2_1
https://doi.org/10.1007/978-3-662-54434-1_9
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1016/j.tcs.2021.08.005
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1006/inco.1995.1145
https://www.di.unito.it/~dezani/papers/tesi.ps
https://www.di.unito.it/~dezani/papers/tesi.ps
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://mitpress.mit.edu/books/modeling-and-analysis-communicating-systems
https://doi.org/10.48550/arXiv.2205.00680
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.23638/LMCS-16(4:15)2020
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1007/978-3-540-45187-7_26


132 B. van den Heuvel et al.

21. Pagani, M., della Rocca, S.R.: Solvability in resource lambda-calculus. In: Ong, L.
(ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 358–373. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12032-9 25

22. Paulus, J.W.N., Nantes-Sobrinho, D., Pérez, J.A.: Non-deterministic functions
as non-deterministic processes. In: Kobayashi, N. (ed.) 6th International Confer-
ence on Formal Structures for Computation and Deduction, FSCD 2021, Buenos
Aires, Argentina (Virtual Conference), 17–24 July 2021. LIPIcs, vol. 195, pp. 21:1–
21:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.org/
10.4230/LIPIcs.FSCD.2021.21, Extended version on https://arxiv.org/abs/2104.
14759

23. Peters, K.: Translational expressiveness. Comparing process calculi using encod-
ings. Ph.D. thesis, Berlin Institute of Technology (2012). https://doi.org/10.14279/
depositonce-3416

24. Peters, K.: Comparing process calculi using encodings. In: Pérez, J.A., Rot, J. (eds.)
Proceedings Combined 26th International Workshop on Expressiveness in Concur-
rency and 16th Workshop on Structural Operational Semantics, EXPRESS/SOS
2019, Amsterdam, The Netherlands, 26th August 2019. EPTCS, vol. 300, pp. 19–38
(2019). https://doi.org/10.4204/EPTCS.300.2

25. Rocha, P., Caires, L.: Propositions-as-types and shared state. Proc. ACM Program.
Lang. 5(ICFP), 79:1–79:30 (2021). https://doi.org/10.1145/3473584

26. Rocha, P., Caires, L.: Safe session-based concurrency with shared linear state. In:
Wies, T. (ed.) Programming Languages and Systems. LNCS, vol. 2072, pp. 421–
450. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30044-8 16

27. Sangiorgi, D., Walker, D.: The Pi-Calculus - A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

28. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. In:
Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 346–360. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-28729-9 23

29. Toninho, B., Yoshida, N.: On polymorphic sessions and functions. In: Ahmed, A.
(ed.) ESOP 2018. LNCS, vol. 10801, pp. 827–855. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-89884-1 29

30. Vasconcelos, V.T., Casal, F., Almeida, B., Mordido, A.: Mixed sessions. In: ESOP
2020. LNCS, vol. 12075, pp. 715–742. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-44914-8 26

31. Wadler, P.: Propositions as sessions. In: Thiemann, P., Findler, R.B. (eds.) ACM
SIGPLAN International Conference on Functional Programming, ICFP 2012,
Copenhagen, Denmark, 9–15 September 2012, pp. 273–286. ACM (2012). https://
doi.org/10.1145/2364527.2364568

https://doi.org/10.1007/978-3-642-12032-9_25
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://doi.org/10.4230/LIPIcs.FSCD.2021.21
https://arxiv.org/abs/2104.14759
https://arxiv.org/abs/2104.14759
https://doi.org/10.14279/depositonce-3416
https://doi.org/10.14279/depositonce-3416
https://doi.org/10.4204/EPTCS.300.2
https://doi.org/10.1145/3473584
https://doi.org/10.1007/978-3-031-30044-8_16
https://doi.org/10.1007/978-3-642-28729-9_23
https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1007/978-3-319-89884-1_29
https://doi.org/10.1007/978-3-030-44914-8_26
https://doi.org/10.1007/978-3-030-44914-8_26
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568


Interactive Theorem Proving



A Fresh Look at Commutativity: Free
Algebraic Structures via Fresh Lists

Clemens Kupke , Fredrik Nordvall Forsberg , and Sean Watters(B)

University of Strathclyde, Glasgow, UK
{clemens.kupke,fredrik.nordvall-forsberg,sean.watters}@strath.ac.uk

Abstract. We show how types of free idempotent commutative monoids
and free commutative monoids can be constructed in ordinary dependent
type theory, without the need for quotient types or setoids, and prove
that these constructions realise finite sets and multisets, respectively.
Both constructions arise as generalisations of C. Coquand’s data type
of fresh lists. We also show how many other free structures also can be
realised by other instantiations. All of our results have been formalised
in Agda.

Keywords: Free algebraic structures ¨ Dependent Type theory

1 Introduction

The type of lists is one of the most elementary inductive data types. It has
been studied and used extensively by computer scientists and programmers for
decades. Two conceptually similar structures are those of finite sets and multi-
sets, which can be thought of as unordered analogues to lists. However, capturing
unordered structures in a data type while maintaining desirable properties such
as decidable equality and the correct equational theory is challenging.

The usual approach to formalise unordered structures in mathematics is to
represent them as functions (with finite support): finite sets as X Ñ 2, and finite
multisets as X Ñ N, respectively. However, these representations do not enjoy
decidable equality, even if the underlying type X does.

The approach taken in most programming languages is to pretend — one
uses a list (or another ordered structure for efficiency) internally, but hides it
and any invariants behind a layer of abstraction provided by an API. However,
each set or multiset can then be represented by many different lists, meaning that
the equational theory might not be correct. This is a problem in a dependently
typed setting, where having equality as a first-class type allows us to distinguish
between different representations of the same set.

The analogous approach in dependent type theory is to encode these invari-
ants in an equivalence relation on lists, and define finite sets and multisets as
setoids of lists plus the appropriate equivalence relation [4]. However, this merely
side-steps the issue; we may still have two distinct lists which represent the same
finite (multi)set. Thus, we are forced to work with the equivalence relation at
all times instead of the identity type.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 135–154, 2023.
https://doi.org/10.1007/978-981-99-8311-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_7&domain=pdf
http://orcid.org/0000-0002-0502-391X
http://orcid.org/0000-0001-6157-9288
http://orcid.org/0009-0007-1249-254X
https://doi.org/10.1007/978-981-99-8311-7_7


136 C. Kupke et al.

In the setting of homotopy type theory [30] (HoTT), we can use higher induc-
tive types (HITs) to define the identities on an inductive type simultaneously
with its elements. This allows us to bridge the gap from the setoid approach to
obtain a data type which enjoys both decidable equality and the right equational
theory, as demonstrated by Choudhury and Fiore [9].

However, it may not always be possible to work in HoTT; thus, the main
question we set out to answer in this work is whether it is possible in ordinary
dependent type theory to define data types of finite sets and multisets, which:

(i) have decidable equality iff the underlying set has decidable equality; and
(ii) satisfy the equational theories of finite sets and multisets.

For the latter, we take as our success criteria the facts that the type of finite
sets is the free idempotent commutative monoid [13] and that finite multisets are
the free commutative monoid. Thus, we are really aiming to find data types for
the free idempotent commutative monoid and free commutative monoid, which
satisfy the above property (i). We accomplish this by restricting our attention
to only those sets with decidable equality that can be totally ordered. We can
then form a type of sorted lists over such a set. Provided we treat the existence
of the ordering data carefully, this type turns out to give us exactly finite sets
when the order is strict, and finite multisets when it is non-strict.

We show that our constructions satisfy universal properties, in the sense that
they are left adjoints to forgetful functors — this is the standard way to state
freeness in the language of category theory. However, note that the notion of
freeness is with respect to e.g. totally ordered monoids, rather than all monoids.
For proving the universal properties and for defining the categories involved, we
need function extensionality. Nevertheless the constructions themselves work in
ordinary dependent type theory.

Related Work. Fresh lists, the key inductive data type of this work, were first
introduced by C. Coquand to represent contexts in the simply typed lambda
calculus [11], and then highlighted as an example of an inductive-recursive defi-
nition by Dybjer [12]. The particular notion of fresh list discussed here is a minor
variation of the version found in the Agda standard library [2], which generalises
the notion of freshness to an arbitrary relation.

In Sect. 4 we discuss sorted lists and finite sets, both of which have been exten-
sively investigated in the past. Sorted lists are one of the archetypal examples of
a dependent type, with one particularly elegant treatment of them being given
by McBride [21]. Meanwhile, Appel and Leroy [3] recently introduced canonical
binary tries as an extensional representation of finite maps. These can be used to
construct finite sets with elements from the index type (positive natural numbers
for Appel and Leroy). The use of tries allows for significantly improved lookup
performance compared to lists, and with more work, it is conceivable that finite
sets with elements from an arbitrary but fixed first-order data type could be
extensionally represented this way [16]. Our representation using sorted lists is
not as efficient, but on the other hand works uniformly in the element type, as
long as it is equipped with a total order.



A Fresh Look at Commutativity 137

In the setting of HoTT, there is a significant body of existing work. Choud-
hury and Fiore [9] give a treatment of finite multisets, showing how they can be
constructed using HITs. Joram and Veltri [19] continue this thread with a treat-
ment of the final coalgebra of the finite multiset functor. Earlier, Piceghello’s
PhD thesis [24] investigated coherence for symmetric monoidal groupoids, show-
ing an equivalence between free symmetric monoidal groupoids and sorted lists.
Building on this, Choudhury et al. [10] investigated the relationship between sort-
ing algorithms and the symmetric group Sn, as part of a study of the groupoid
semantics of reversible programming languages.

Contributions. We make the following contributions:

– We show how finite sets and multisets can be constructed in ordinary depen-
dent type theory, without using quotient types or working with setoids.

– We prove that, assuming function extensionality, our finite sets construction
forms a free-forgetful adjunction between the category of sets equipped with
an order relation, and the category of idempotent, commutative monoids
equipped with an order relation. Similarly our finite multisets construction
form an adjunction between sets equipped with an order relation and the
category of commutative monoids equipped with an order relation.

– We show how the above constructions arise from instantiations of the data
type of fresh lists, and how other instantiations give free left-regular band
monoids, free reflexive partial monoids, free monoids, and free pointed sets.

All our constructions and results are formalised in the proof assistant Agda, using
the --safe and --cubical-compatible flags. The development [31] builds on
the Agda standard library, contains around 5,300 lines of code, and typechecks in
around 35 s on an Intel i5-1145G7 laptop with 16 GiB of RAM. An HTML listing
of the Agda code can be found at https://seanwatters.uk/agda/fresh-lists/. Each
result also has a clickable hyperlink � to the corresponding formalised statement.

2 Preliminaries and Setting

We work in the mathematical setting of Martin-Löf type theory, for example as
realised by Agda [23]. We write (x : A) Ñ B x for the dependent function type,
and use curly braces {x : A} Ñ B x when we wish to leave the argument x
implicit. We write a “ b for the identity type, and a :“ b for definitions.

We say that a type A is propositional if all its elements are equal, that is, if
(x, y : A) Ñ x “ y is provable. A type is a set if its identity type is propositional.
Many of the types we work with will turn out to be sets (indeed, at times we
take this as a prerequisite), but we do not assume Streicher’s Axiom K [27] at
the meta level, which states that every type is a set. On the other hand, we
also do not assume any features from homotopy type theory, but aim to stay
compatible with it. We write Type for the universe of all types, and Set and Prop
for the appropriate restrictions to sets and propositions, respectively.

https://seanwatters.uk/agda/fresh-lists/


138 C. Kupke et al.

3 Fresh Lists

In this section we introduce the key notion of fresh lists. As we will see later,
depending on the notion of freshness, fresh lists can represent various data types
such as lists consisting of repetitions of one element, or lists where all elements
are distinct. For us the most important example of fresh lists will be sorted lists.
We will use these in Sects. 4 and 5 as representations of the free (idempotent)
commutative monoid over a set equipped with an order relation.

In technical terms, the type of fresh lists is a parameterised data type similar
to the type of ordinary lists, with the additional requirement that in order to
adjoin a new element x to a list xs, that element x must be “fresh” with respect
to all other elements already present in the list xs. For convenience, we use an
inductive-inductive [22] simultaneous definition of the freshness predicate; the
Agda standard library instead uses an inductive-recursive definition.

Definition 1 (�). Given a type A and a binary relation R : A Ñ A Ñ Type,
we mutually inductively define a type FList(A,R), together with a relation #R :
A Ñ FList(A,R) Ñ Type, by the following constructors:

nil : FList(A,R)
cons : (x : A) Ñ (xs : FList(A,R)) Ñ x #R xs Ñ FList(A,R)

nil# : {a : A} Ñ a #R nil

cons# : {a : A} Ñ {x : A} Ñ {xs : FList(A,R)} Ñ {p : x #R xs} Ñ
R a x Ñ a #R xs Ñ a #R (cons x xs p )

For a, x : A, and xs : FList(A,R), we say that a is fresh for x when we have
R a x, and that a is fresh for xs when we have a #R xs.

Our presentation of fresh lists internalises the proof data in the cons con-
structor. One alternative “externalised” approach is to define the type of fresh
lists as the type of pairs of an ordinary list, together with a single freshness proof
for the whole list. This externalised presentation is isomorphic to ours, but we do
not make further use of it in this work as we find it more convenient to enforce
our invariants at the level of the constructors.

Proposition 2 (�). For any R : A Ñ A Ñ Type, we have FList(A,R) –
Σ(xs : List A).is-freshR xs, where is-freshR : List A Ñ Type is defined by

is-freshR nil :“ J
is-freshR (cons x xs) :“ (All (R x) xs) ˆ (is-freshR xs)

��
The definition of the type of fresh lists makes no explicit assumptions about

the properties of the relation R. Note in particular that R x y may or may not be
propositional. However, in practice, we would like to have that two fresh lists are

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-1
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-2


A Fresh Look at Commutativity 139

equal if and only if their heads and tails are equal. For this, we need to require
x #R xs to be propositional for all x : A and xs : FList(A,R). This is the case
exactly when R x y is propositional for all x, y : A.

Proposition 3 (�). Let R : A Ñ A Ñ Type. The type R xy is propositional
for all x, y : A if and only if x #R xs is propositional for all x : A and xs :
FList(A,R).

Proof. If R is propositional, then any two p, q : x #R xs are equal by induction
over p and q. In the other direction, if p, q : R xy, then cons# p nil#, cons# q nil# :
x #R [y], hence p “ q by assumption, and injectivity of cons#. ��

This gives us the expected characterisation of equality of fresh lists:

Corollary 4 (�). Assume R is propositional. We have cons x xs p “
cons y ys q for any freshness proofs p and q if and only if x “ y and xs “ ys.
In particular, if A has decidable equality, then so does FList(A,R). ��

The following lemma tells us that when the freshness relation R is transitive,
then a #R xs can be established by a single proof that a is related to the head
of xs. It follows by a straightforward induction on xs.

Lemma 5 (�). If R is transitive, then for any a, x : A and xs : FList(A,R), if
R ax and x #R xs then a #R xs. ��

We next define the standard Any P predicate on fresh lists, which holds if
the predicate P is satisfied by some element of the list.

Definition 6 (�). Let P : A Ñ Type. The family Any P : FList(A,R) Ñ Type
is defined inductively by the following constructors:

here : {x : A}{xs : FList(A,R)}{p : x #R xs} Ñ P x Ñ Any P (cons x xs p)

there : {x : A}{xs : FList(A,R)}{p : x #R xs} Ñ Any P xs Ñ Any P (cons x xs p)

Using this construction, we can now define the membership relation P on
fresh lists, i.e., the type of proofs x P xs that some element of xs is equal to x.

Definition 7 (�). For x : A and xs : FList(A,R), let

x P xs :“ Any (λ(a : A). x “ a) xs .

The following lemma relates freshness and the membership relation: a is fresh
for xs if and only if a is related to every element in xs.

Lemma 8 (�). Let a : A and xs : FList(A,R). We have a #R xs if and only
if R a b holds for every b : A such that b P xs. ��

Although the freshness proofs are essential when building a list, if we want to
do recursion on a given list, we frequently only care about the elements, not the
proofs (regardless of whether the freshness relation is propositional or not). As
such, we can define right fold in the same manner as for ordinary lists, and show
that it is the universal way to define functions which ignore freshness proofs.

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-3
https://seanwatters.uk/agda/fresh-lists/index.html#Corollary-4
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-5
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-6
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-7
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-8


140 C. Kupke et al.

Proposition 9 (�). For types X and Y , there is a function

foldr : (X Ñ Y Ñ Y ) Ñ Y Ñ FList(X,R) Ñ Y

satisfying foldr f e nil “ e and foldr f e (cons x xs p) “ f x (foldr f e xs), and
foldr is universal in the following sense: For all functions h : FList(X,R) Ñ Y ,
if there is e : Y and f : X Ñ Y Ñ Y such that h nil “ e and h (cons x xs p) “
f x (h xs), then h xs “ foldr f e xs for all xs : FList(X,R). ��
The proof is identical to the analogous one for ordinary lists [17].

4 Free Idempotent Commutative Monoids via Sorted
Lists

The important mathematical concept of a (finite) set is also a useful abstract data
structure for programmers. In circumstances where we are only concerned with
whether a particular element is present or not, it is advantageous to represent
data in an unordered form. However, the details of exactly how to do this in a
programming context are not straightforward. Inductive data types such as lists
and trees, for example, are inherently ordered.

In this section, we unify the two notions of finite sets and sorted lists. We
instantiate fresh lists with a strict total order as the freshness relation, giving
a data type for sorted lists which cannot contain duplicates, and use this as
our representation of finite sets. The key idea is that instead of working with
ordinary lists quotiented by permutations (as Choudhury and Fiore [9] do), we
force every collection of elements to have exactly one permissible permutation
via our lists being sorted-by-construction. As a direct consequence, this type
admits an extensionality principle analogous to that of sets — two sorted lists
are equal if and only if they have the same elements.

4.1 Sorted Lists

We begin by defining the type SList(A, ă) of sorted duplicate-free lists over A
as an instance of FList.

Definition 10 (�). Let A be a type, and ă: A Ñ A Ñ Prop a propositional
strict total order, i.e., ă is propositional, transitive, and trichotomous: for every
x, y : A, exactly one of x ă y or x “ y or y ă x holds. Then let SList(A, ă) :“
FList(A, ă).

We write # for #ă, for simplicity. Note that with this exclusive-disjunction
presentation of trichotomy, having a constructive witness that ă is trichotomous
immediately implies decidable equality on A. This makes intuitive sense as we
would like the question of whether an element can be appended to a list to be
decidable. By Hedberg’s theorem, having decidable equality also means that A
is a set [15].

We now define the binary operation which merges two sorted lists together,
suggestively named Y, with a view towards showing that (SList(A, ă), Y, nil) is

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-9
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-10


A Fresh Look at Commutativity 141

an idempotent commutative monoid. We initially define the monoid multiplica-
tion only on elements, without heed to whether any appropriate freshness proofs
exist that validate the definition. We then show that such proofs do exist for all
inputs.

Proposition 11 (�). There is Y : SList(A, ă) Ñ SList(A, ă) Ñ SList(A, ă)
with

nil Y ys :“ ys

xs Y nil :“ xs

(cons x xs p) Y (cons y ys q) :“
⎧
⎪⎨

⎪⎩

cons x (xs Y (cons y ys q)) r if x ă y

cons x (xs Y ys) s if x “ y

cons y ((cons x xs p) Y ys) t if x ą y

for freshness proofs r, s, and t of the following types, which can be computed
mutually with the definition of Y:

r : x # (xs Y (cons y ys q))
s : x # (xs Y ys)
t : y # ((cons x xs p) Y ys)

Proof. Mutually with the definition of Y, we prove that for all a : A and
xs, ys : SList(A, ă), if a is fresh for both xs and ys, then a is fresh for xs Y ys.
The freshness proofs r, s, and t required can then be constructed from p and
q. The proof follows by induction on both lists. If either list is nil, then the
proof is trivial. Now consider the case where we must show that a is fresh for
(cons x xs p) Y (cons y ys q), for some x, y : A, xs, ys : SList(A, ă), p : x # xs,
and q : y # ys. By trichotomy, we have three cases to consider; either x ă y, x “
y, or x ą y. If x ă y, then we must show that a # cons x (xs Y (cons y ys q)).
By assumption, a ă x, and a # (xs Y (cons y ys q)) by the induction hypoth-
esis. The cases for x “ y and x ą y follow by similar arguments. ��

4.2 Sorted Lists Form an Idempotent Commutative Monoid

We now prove that (SList(A, ă), Y, nil) is an idempotent commutative monoid.
The main tool we use for this proof is an extensionality principle for sorted lists,
which is analogous to the axiom of extensionality for sets. In order to prove
the extensionality principle, we require the following lemma. Its proof follows
straightforwardly from the properties of ă.

Lemma 12 (�). Let a, x : A, xs : SList(A, ă), and p : x # xs.

(i) If a ă x, then a R (cons x xs p).
(ii) If a # xs, then a R xs. ��

We are now ready to prove the extensionality principle, which characterises
the identity type of SList.

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-11
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-12


142 C. Kupke et al.

Theorem 13 (� Extensionality Principle for SList). Given sorted lists
xs, ys : SList(A, ă), we have (a P xs) ←→ (a P ys) for all a : A iff xs “ ys.

Proof. The direction from right to left is obvious. For the other direction, we
proceed by induction on both lists. The case where both are nil is trivial. The
cases where one is nil and the other is cons are trivially impossible.

We focus on the case where we must show (cons x xs p) “ (cons y ys q),
for some x, y : A, xs, ys : SList(A, ă), p : x # xs and q : y # ys. Assume
(a P cons x xs p) ←→ (a P cons y ys q). By trichotomy, either x ă y, x ą y,
or x “ y. The former two cases are impossible by Lemma 12. Therefore, x “ y.
By Corollary 4, since ă is proof irrelevant, it now suffices to show xs “ ys. By
the induction hypothesis, this will be the case if (a P xs) ←→ (a P ys). For the
forward direction, assume u : a P xs. Applying there u to our initial assumption,
we get a P (cons y ys q). Either a “ y, or a P ys. The former case is impossible;
if a “ y, then a “ x by transitivity, so by Lemma 12, a R xs. But a P xs by
assumption. Contradiction. The other direction follows the same argument. ��

Using the extensionality principle, it is now not hard to prove that sorted
lists form an idempotent commutative monoid.

Proposition 14 (�). (SList(A, ă), Y, nil) is an idempotent commutative
monoid. That is, the following equations hold for all xs, ys, zs : SList(A, ă):

– unit: (nil Y xs) “ xs “ (xs Y nil)
– associativity: ((xs Y ys) Y zs) “ (xs Y (ys Y zs))
– commutativity: (xs Y ys) “ (ys Y xs)
– idempotence: (xs Y xs) “ xs

Proof. The unit laws are trivial. For associativity, commutativity, and idempo-
tence, we first prove that a P (xs Y ys) if and only if a P xs or a P ys. The
equations then follow more or less directly using Theorem 13. ��

4.3 A Free-Forgetful Adjunction

Since singleton lists are always sorted, they clearly give an inclusion of the under-
lying type A into the type of sorted lists. We might thus hope that SList(A, ă)
can be characterised by the universal property of being the smallest idempotent
commutative monoid generated by A, i.e., that it is the free idempotent commu-
tative monoid. However, in order to form the type of sorted lists over some type
A, we must already have a strict total order on A. And we cannot assume that
we would be able to find such an order for any set; this is a weak form of the
Axiom of Choice, called the Ordering Principle (OP) (see e.g. [18, §2.3]), which
implies excluded middle, as proven by Swan [28]. As such, in our constructive
setting, the domain of the SList functor cannot be Set, as it lacks the required
data to form sorted lists. Instead of Set, we must consider a category whose
objects are linearly ordered sets (in the same sense as we have used thus far,
which implies decidable equality on the elements).

https://seanwatters.uk/agda/fresh-lists/index.html#Theorem-13
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-14


A Fresh Look at Commutativity 143

We also require a forgetful functor from our category of idempotent com-
mutative monoids into this category of linearly ordered sets, which intuitively
needs to retain this ordering data — we only want to forget the monoid structure.
As such, instead of the category of idempotent commutative monoids, we must
consider a category of such structures equipped with their own linear orders.
There are some design decisions to be made in defining these categories, regard-
ing how much structure the morphisms ought to preserve. Specifically, we must
decide whether they should be monotone with respect to the ordering data of the
objects. We argue that the correct decision here is (perhaps counter-intuitively)
to not preserve the order, a choice that we will motivate more fully in Sect. 4.4.

Definition 15 (�). Let STO denote the category whose objects are strictly
totally ordered types, and whose morphisms are (not necessarily monotone) func-
tions on the underlying types. That is:

– Objects are pairs (X, ăX) of a type X together with a propositional strict
total order ăX : X Ñ X Ñ Prop.

– Morphisms from (X, ăX) to (Y, ăY ) are functions X Ñ Y .

As previously remarked, the trichotomy property of ăX implies that X has
decidable equality, which in turn means that X is a set, by Hedberg’s theo-
rem [15].

Definition 16 (�). Let OICMon denote the category whose objects are strictly
totally ordered idempotent commutative monoids (where the monoid multipli-
cation does not necessarily preserve ordering), and whose morphisms are (not
necessarily monotone) monoid homomorphisms. That is:

– Objects are 4-tuples (X, ăX , ¨X , εX) of a set X, a propositional strict total
order ăX : X Ñ X Ñ Prop, a binary operation ¨X : X Ñ X Ñ X, and an
object εX : X, such that (X, ¨X , εX) is an idempotent commutative monoid.

– Morphisms from (X, ăX , ¨X , εX) to (Y, ăY , ¨Y , εY ) are functions f :
X Ñ Y which preserve units and multiplication.

Since morphisms in OICMon formally carry witnesses that the underlying
functions preserve unit and multiplication, this could potentially make proofs of
equality between such morphisms troublesome. Thankfully, because the underly-
ing types are sets, these troubles do not materialise, as long as we have function
extensionality. This is recorded in the following lemma.

Lemma 17 (�). Assuming function extensionality, two morphisms of OICMon
are equal if and only if their underlying set functions are (pointwise) equal. ��

We must now show that as well as being idempotent commutative monoids,
our sorted lists also come equipped with strict total orders. We do this by defining
a lifting of orders on a type to orders on sorted lists over that type, using the
lexicographic order. Note that while we require the existence of an order to have
an object in OICMon, the exact choice of order does not matter; any two objects
in the category with the same underlying set will be isomorphic.

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-15
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-16
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-17


144 C. Kupke et al.

Proposition 18 (�). Let ă be a propositional strict total order on a type A.
Then the lexicographic order ăL on SList(A, ă), defined inductively below, is also
a propositional strict total order.

nilăL
: {y : A} {ys : SList(A, ă)} {q : y # ys}

Ñ nil ăL cons y ys q

hereăL
: {x, y : A} {xs, ys : SList(A, ă)} {p : x # xs} {q : y # ys}

Ñ x ă y Ñ cons x xs p ăL cons y ys q

thereăL
: {x, y : A} {xs, ys : SList(A, ă)} {p : x # xs} {q : y # ys}

Ñ x “ y Ñ xs ăL ys Ñ cons x xs p ăL cons y ys q

��
We can now show that SList is a functor STO Ñ OICMon, with action on

objects given by SList(A, ăA) :“ (SList(A, ăA), ăL, Y, nil). We define the action
on morphisms on the underlying sets, and then show that it preserves the monoid
structure, and hence is a morphism in OICMon. Our implementation of map for
sorted lists is essentially insertion sort; we take a function on the underlying set,
apply it to each element, and insert the result into the output list.

Definition 19 (�). Given two types A and B with strict total orders ăA: A Ñ
A Ñ Prop and ăB: B Ñ B Ñ Prop, let:

map : (A Ñ B) Ñ SList(A, ăA) Ñ SList(B, ăB)
map f nil :“ nil

map f (cons x xs p) :“ insert (f x) (map f xs)

where insert x xs :“ (cons x nil nil#) Y xs.

We now show that map preserves the monoid structure, and hence is a mor-
phism in OICMon. The proof uses Theorem 13.

Lemma 20 (�). For all functions f : A Ñ B and xs, ys : SList(A, ă), we have

map f (xs Y ys) “ (map f xs) Y (map f ys)

��
Similarly, assuming function extensionality and using Lemma 17, we can show

that map preserves identity and composition, and hence is a functor.

Theorem 21 (�). Assuming function extensionality, SList : STO Ñ OICMon
forms a functor which is left adjoint to the forgetful functor U : OICMon Ñ STO
defined by U(X, ă, ¨, ε) :“ (X, ă).

Proof. The bijection on homsets sends a monoid morphism f : SList(A, ăA) Ñ
(B, ă, ¨, ε) to the function f̂ : A Ñ B defined by f̂ :“ λ(x : A). f (cons x nil nil#),
and a function g : A Ñ B to the monoid morphism ǧ : SList(A, ăA) Ñ (B, ă, ¨, ε)
defined by ǧ :“ foldr (λ(a : A)(b : B). (g a) ¨B b) εB . The fact that ˇ̂

f “ f follows
from Proposition 9. The proofs of ˆ̌g “ g and naturality follow by unfolding the
definitions and Lemma 17 — hence the assumption of function extensionality.

��

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-18
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-19
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-20
https://seanwatters.uk/agda/fresh-lists/index.html#Theorem-21


A Fresh Look at Commutativity 145

4.4 Motivating the Lack of Monotonicity

We now return to our decision to not require monotonicity for the morphisms
of STO and OICMon. That we require our objects to have ordering information
at all could be seen as an implementation detail; the ordering is needed to form
the type of sorted lists, but thereafter we would like to treat them as finite sets.

For an illustrative example, consider the different notions of map that we
obtain with and without monotonicity (recall Definition 19 for the latter). With
monotonicity, we would obtain a functorial action which applies a monotone
function to each element in place, such that map is also monotone. However, in
practice we do not find much value in respecting whichever arbitrary order was
chosen; we would rather have the freedom to lift any function to act on sorted
lists, and have the implementation of map handle the details. In practice, we
are mostly interested in finite sets over first order inductive data types anyway,
and these can always be totally ordered. More provocatively: since we work on
a computer, all of our data ought to be represented by a bit pattern in the end
anyway, and by considering not necessarily monotone functions, we ensure that
the particular choice of ordering derived from these bit patterns play no role.

In the same spirit, one could wonder if there is actually any difference between
the categories STO and Set. After all, since morphisms are not monotone, all
objects in STO with the same underlying type are actually isomorphic. The
following proposition makes clear what kind of choice principle is needed in order
to choose a canonical representative for these isomorphism classes. Recall that
the Ordering Principle states that every set can be totally ordered: for every set
X, there is a strict total order on X. This principle is weaker than the Axiom of
Choice, but not provable in ZF set theory [25]; in the context of Homotopy Type
Theory, Swan proved that the Ordering Principle implies Excluded Middle [28].

Proposition 22 (�). The Ordering Principle holds if and only if both forgetful
functors USTO : STO Ñ Set and UOICMon : OICMon Ñ ICMon are equivalences.

Proof. If the Ordering Principle holds, then each type can be equipped with an
strict total order, which gives an inverse to each forgetful functor. Conversely,
an inverse to the forgetful functors equips each set with a strict total order. ��
Thus, in the presence of the non-constructive Ordering Principle, sorted lists are
the free idempotent commutative monoid over sets. However we prefer to stay
constructive and ask for more input data in the form of an order instead.

5 Free Commutative Monoids via Sorted Lists
with Duplicates

Finite multisets have long been applied across computer science, particularly in
database theory [6]. However their unordered nature again makes representing
them in a data type challenging. We have seen that when we consider fresh
lists with a strict total order as the freshness relation, we obtain a data type

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-22


146 C. Kupke et al.

for sorted lists which contain no duplicate elements. If we drop the requirement
that the order is irreflexive, we obtain a type SListD(A, ď) of sorted lists where
repetitions are allowed. The corresponding notion of trichotemy in this setting
is totality of the order (i.e., for all x and y, either x ď y or y ď x), together with
decidability of both the order and the equality on the underlying type.

Definition 23 (�). Let A be a type with decidable equality, and ď: A Ñ A Ñ
Prop a propositional, decidable total order. Then let SListD(A, ď) :“ FList(A, ď).

Again we write # for #ď. Using the decidability of the order, we can now again
define the merge operation on sorted lists.

Proposition 24 (�). There is Y : SListD(A, ď) Ñ SListD(A, ď) Ñ
SListD(A, ď) with

nil Y ys :“ ys

xs Y nil :“ xs

(cons x xs p) Y (cons y ys q) :“
{
cons x (xs Y (cons y ys q)) r if x ď y

cons y ((cons x xs p) Y ys) s otherwise

where freshness proofs r and s with the following types exist by the same argument
as in Proposition 11:

r : x # (xs Y (cons y ys q))
s : y # ((cons x xs p) Y ys)

��
Just as SList corresponds to finite sets and free idempotent commutative
monoids, SListD corresponds to finite multisets and free commutative monoids.
Our proof strategy follows the same structure as for Theorem 13, with one
notable exception — the extensionality principle as stated for SList is not true
for SListD, where for example [a, a] and [a] have the same elements, but with
different multiplicity. Put differently: as Gylterud noted, the membership rela-
tion is prop-valued for sets, but set-valued for multisets [14, § 3.5]. As such,
the extensionality principle for multisets uses isomorphism rather than logical
equivalence: multisets xs and ys are equal if and only if (a P xs) » (a P ys) for
every element a.

However, isomorphisms can be onerous to work with formally, and we can do
better. Note that there will be a function count : SListD(A, ď) Ñ A Ñ N which,
given a sorted list and some element of A, returns the number of occurrences
of that element in the list. We can also think of this function as converting a
sorted list to its multiplicity function. The extensionality principle that we will
prove is the following: two sorted list with duplicates are equal if and only if
their multiplicity functions are pointwise equal. We stress that we do not need
to assume function extensionality for this result.

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-23
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-24


A Fresh Look at Commutativity 147

We prove the non-trivial “if” direction in two stages: pointwise equality of
multiplicity functions implies isomorphism of membership relations, which in
turn implies equality of sorted lists. First, we define the count function:

Definition 25 (�). Let count : SListD(A, ď) Ñ A Ñ N, where:

count nil x :“ 0

count (cons y ys p) x :“
{

1 ` (count ys x) if x “ y

count ys x otherwise

We collect some basic properties of the count function.

Lemma 26 (�).

(i) For any x : A and ys : SListD(A, ď), if x R ys then count ys x “ 0.
(ii) If for all a : A we have count (cons x xs p) a “ count (cons y ys q) a, then

for all a : A also count xs a “ count ys a.

Proof. Part (i) follows by induction on ys. For (ii), by decidable equality of A,
either x “ y, or x ‰ y, and by decidability of ď, either x ď y, or y ď x. Without
loss of generality, assume x ď y.

If x “ y, then peeling away the heads will either preserve the number of as
on both sides, or decrement each count by one; in either case, the conclusion
follows.

If x ‰ y, we consider the four cases where each of x and y are either equal
to a or not. The case where x ‰ a ‰ y follows by the same argument as when
x “ y. The case where x “ a “ y is impossible since x ‰ y. Finally, also the case
where x “ a ‰ y (or the other way around) is impossible: we have a “ x ď y and
y # ys, hence a R cons y ys q, hence count (cons y ys q) a “ 0 by (i). But since
a “ x, we have that count (cons x xs p) a ě 1, contradicting the assumption. ��

We are now ready to prove the first step towards the extensionality principle.

Proposition 27 (�). Let xs, ys : SListD(A, ď). If count xs a “ count ys a for
all a : A, then we have isomorphisms (a P xs) – (a P ys) for all a : A.

Proof. The proof proceeds by induction on both lists. The case where both lists
are nil holds trivially. Both cases where one is nil and the other is not are trivially
impossible. When the lists are of the form cons x xs p and cons y ys q, we can
apply Lemma 26 to obtain that count xs a “ count ys a for all a : A. Then
by the induction hypothesis, there is f : (a P xs) – (a P ys). We now apply
decidable equality of A to make a case distinction between x “ y and x ‰ y. If
x “ y, we extend the isomorphism f by sending here p to here p and shifting the
old proofs of membership by there. The other case x ‰ y is impossible, which we
now show. By Lemma 26, we have count xs x “ count ys x for all a : A. Hence
by instantiating the hypothesis with x, we have, since x ‰ y,

count (cons x xs p) x “ count (cons y ys q) x “ count ys x “ count xs x

but also count (cons x xs p) x “ 1 ` count xs x, which is a contradiction. ��

https://seanwatters.uk/agda/fresh-lists/index.html#Definition-25
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-26
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-27


148 C. Kupke et al.

We now prove the second step: sorted lists are equal if and only if they have
isomorphic membership relations. We first show that we can “peel off” the same
head and still have isomorphic membership relations for the tails of the lists.

Lemma 28 (�). For all b : A, xs, ys : SListD(A, ď), and freshness proofs p
and q, if we have an isomorphism (a P cons b xs p) – (a P cons b ys q) for every
a : A, then we also have an isomorphism (a P xs) – (a P ys) for every a : A.

Proof. Given an isomorphism f : (a P cons b xs p) Ñ (a P cons b ys q), we
construct a function gxs,ys : a P xs Ñ a P ys, and show that gys,xs is the inverse
of gxs,ys. Given u : (a P xs), we have a P (cons b ys q), by f (there u). There
are two possible cases: if f (there u) “ there v for some v : a P ys, then we take
g(u) “ v. Otherwise if f (there u) “ here v for some v : a “ b, then we can apply
f again. If f (here v) “ there w for some w : a P ys, then we take g(u) “ w.
If f (here v) “ here w for some w : a “ b, then we can derive a contradiction:
since equality on A is propositional, v “ w, and hence f (here v) “ f (there u),
and applying the inverse of f to both sides, we get here v “ there u. However,
different constructors of an inductive type are never equal. ��

Using this lemma, we can now prove the extensionality principle for sorted
lists with duplicates up to isomorphism of membership. Note that this theorem
is not true for ordinary lists — it relies on the lists being sorted.

Proposition 29 (�). Let xs, ys : SListD(A, ď). If for all a : A we have iso-
morphisms (a P xs) – (a P ys), then xs “ ys.

Proof. By induction on xs and ys; the only non-trivial case is when the lists are
of the form cons x xs p and cons y ys q, in which case they are equal if x “ y
and xs “ ys by Corollary 4. We have xs “ ys by Lemma 28 and the induction
hypothesis. To prove x “ y, note that x P cons y ys q and y P cons x xs p by the
assumed isomorphism. Thus either x “ y, or x P ys and y P xs. In the former
case, we are done, and in the latter case, since also x # xs and y # ys, we then
have both x ď y and y ď x by Lemma 8, so that indeed x “ y by antisymmetry.

��
Combining Propositions 27 and 29, we get a convenient characterisation of

the identity type for sorted lists with duplicates.

Theorem 30 (� Extensionality Principle for SListD). For sorted lists
xs, ys : SListD(A, ď), if count xs a “ count ys a for all a : A, then xs “ ys. ��

We can now put this principle to use in order to prove that sorted lists with
duplicates satisfies the axioms of a commutative monoid. This is very direct,
after proving that count (xs Y ys) a “ count xs a ` count ys a for all a : A.

Proposition 31 (�). (SListD(A, ď), Y, nil) is a commutative monoid. ��
From here, we can define a category DTO of propositional decidable total

orders with decidable equality, whose morphisms are not necessarily monotone

https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-28
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-29
https://seanwatters.uk/agda/fresh-lists/index.html#Theorem-30
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-31


A Fresh Look at Commutativity 149

functions between the underlying sets, and a category OCMon of ordered com-
mutative monoids. By using the lexicographic order ďL on sorted lists, SListD
can be extended to a functorial mapping DTO Ñ OCMon, which is left adjoint
to the forgetful functor from OCMon to DTO. This exhibits SListD(A, ď) as the
free commutative monoid over A. The proofs are similar to the ones in Sect. 4,
so we simply state the main result:

Proposition 32 (�). Let A be a type with decidable equality and ď : A Ñ
A Ñ Prop a propositional decidable total order. Assuming function extension-
ality, (SListD(A, ď), ďL, Y, nil) is the free commutative monoid over A, i.e.,
SListD : DTO Ñ OCMon forms a functor which is left adjoint to the forget-
ful functor U : OCMon Ñ DTO defined by U(X, ď, ¨, ε) :“ (X, ď). ��

Again we can get rid of the order relations if and only if we accept a little
non-constructivity: The Ordering Principle holds if and only if both forgetful
functors UDTO : DTO Ñ Set and UOCMon : OCMon Ñ CMon are equivalences.

6 Notions of Freshness for Other Free Structures

There are other notions of freshness relations that one can consider. These give
rise to many other familiar free structures, some of which we consider here.

6.1 Free Monoids

It is well known that free monoids can be represented as ordinary lists, with
list concatenation as multiplication, and the empty list as the unit. A moment’s
thought gives that lists are the same thing as fresh lists with the constantly
true relation as the freshness relation, i.e., when everything is fresh. Further, the
category of sets equipped with their constantly true relation is isomorphic to the
category of sets. We thus achieve the following theorem:

Proposition 33 (�). Let RJ denote the complete relation on A. Then List A
is isomorphic to FList(A,RJ), and hence, assuming function extensionality,
FList(A,RJ) is the free monoid over the set A, i.e., FList(´, RJ) : Set Ñ Mon
forms a functor which is left adjoint to the forgetful functor U : Mon Ñ Set
defined by U(X, ¨, ε) :“ X. ��

6.2 Free Pointed Sets

If we instead choose the constantly false relation, then we can only construct
lists of lengths at most 1: creating a two-element list would require a proof that
the first element is “fresh” for the second, i.e., a proof of falsity. This means that
fresh lists for this relation gives rise to free pointed sets: elements can be included
as singleton lists, and there is a new canonical point, namely the empty list. This
is nothing but the Maybe monad in disguise! The category of sets equipped with
their constantly false relation is again isomorphic to the category of sets, and
writing Set‚ for the category of pointed sets, we have:

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-32
https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-33


150 C. Kupke et al.

Proposition 34 (�). Let RK denote the empty relation on A. Then Maybe A
is isomorphic to FList(A,RK), and hence, assuming function extensionality,
FList(A,RK) is the free pointed set over the set A, i.e., FList(´, RK) : Set Ñ Set‚
forms a functor which is left adjoint to the forgetful functor U : Set‚ Ñ Set
defined by U(X,x) :“ X. ��

6.3 Free Left-Regular Band Monoids

What kind of free structure do we get if we consider C. Coquand’s original use of
fresh lists for the inequality relation, or, more generally, for an apartness relation?
Recall that an apartness relation ff : A Ñ A Ñ Prop is a binary propositional
relation satisfying axioms dual to those of an equivalence relation:

– irreflexivity : for all x : A, we do not have x ff x;
– symmetry : for all x, y : A, if y ff x then x ff y; and
– cotransitivity : for all x, y, z : A, if x ff y, then x ff z or z ff y.

An apartness relation ff is tight, if �x ff y Ñ x “ y. For any type X, there is
a canonical “denial inequality” apartness relation ‰: X Ñ X Ñ Type given by
x ‰ y :“ �(x “ y) (which is tight if X has decidable equality), but there are
often other more informative apartness relations for specific types.

In a fresh list where the notion of freshness is given by an apartness relation,
it is thus indeed the case that if x #ff xs, then x does not occur in xs due to
the irreflexivity axiom. One might think that this should give rise to idempotent
monoids, but in fact an even stronger axiom is satisfied, which allows to cancel a
second occurrence of the same element also when there is an arbitrary number of
elements between the occurrences. Such monoids are known as left regular band
monoids [7] (and also as graphic monoids [20]).

Definition 35 (�). A left-regular band monoid is a monoid (X, ¨, ε), such that
for any x, y : X, we have x ¨ y ¨ x “ x ¨ y.

Of course, a left-regular band monoid is in particular idempotent, since

x ¨ x “ x ¨ ε ¨ x
LR“ x ¨ ε “ x

for any x : X. We will now show that fresh lists for a decidable tight apartness
relation gives rises to left-regular band monoids, again equipped with a decidable
tight apartness relation. An apartness relation ff is tight and decidable if and
only if for any x, y : A, we have either x “ y or x ff y — we will need this property
to be able to remove elements from lists. Types equipped with a decidable tight
apartness relation form a category Typedec-apart, whose morphisms are functions
between the underlying types. Note that due to the decidability of the apartness
relation, the underlying type also has decidable equality, and hence is in fact
a set. Similarly, left-regular monoids equipped with apartness relations form a
category LRMonapart, whose morphisms are monoid homomorphisms.

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-34
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-35


A Fresh Look at Commutativity 151

Proposition 36 (�). Let A be a type and ff: A Ñ A Ñ Prop a decidable
tight apartness relation. Assuming function extensionality, (FList(A, ff), ‰) is the
free left regular band monoid with a decidable tight apartness relation over the
apartness type (A, ff), i.e., FList : Typedec-apart Ñ LRMonapart forms a functor
which is left adjoint to the forgetful functor U : LRMonapart Ñ Typedec-apart
defined by U(X, ¨, ε, ff) :“ (X, ff).

Proof. To construct a monoid operation on FList(A, ff), we first use tightness
and decidability of ff to define element removal ´z{´} : FList(A, ff) Ñ A Ñ
FList(A, ff), with nilz{x} “ nil, and

(cons y ys p)z{x} “
{

ys if x “ y

cons y (ysz{x}) (z-fresh(p)) if x ff y

where z-fresh : y #ff ys Ñ y #ff (ysz{x}) is defined simultaneously. For each
zs : FList(A, ff) and y : A, we then prove z-removes(zs, y) : y #ff (zsz{y}) by
induction on zs. We define the monoid multiplication on FList(A, ff) as follows:

nil Y ys :“ ys

(cons x xs p) Y ys :“ cons x ((xs Y ys)z{x}) (z-removes(xs Y ys, x))

Associativity and the left regular band identity xs Y ys Y zs “ xs Y ys
are proven by induction on the lists involved. Finally the adjunction is proven
similarly to the other fresh lists adjunctions. ��

6.4 Free Reflexive Partial Monoids

Next we consider fresh lists for the equality relation on a set A. After forming a
singleton list, we can only extend it by adding more copies of the already existing
element in the list. Such a fresh list is thus either the empty list, or consists of
n ą 0 copies of some element in A:

Lemma 37 (�). Let A be a set. Fresh lists for the equality relation FList(A, “)
are isomorphic to structures of the form 1 ` (A ˆ N

ą0). ��
All our previous instantiations have been, at the very least, monoids. But

what is the correct notion of multiplication for FList(A, “)? In particular, how
should we define it for lists which contain different elements, for example [a, a] ¨
[b]? There is no sensible way to combine these lists to produce a fresh list — we
would like the monoid multiplication to be undefined in such cases. This leads
us to consider the notion of partial monoids [26] (also called pre-monoids [5]):
monoid-like structures that come with a “definedness” predicate which tells us
when two elements may be multiplied.

Definition 38 (�). A partial monoid is a set X : Set together with a proposi-
tional relation ¨ Ó: X Ñ X Ñ Prop, a dependent function op : (x, y : X) Ñ
(x ¨ y Ó) Ñ X, and an element ε : X, such that the following axioms hold, where
we write x ¨p y for op x y p.

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-36
https://seanwatters.uk/agda/fresh-lists/index.html#Lemma-37
https://seanwatters.uk/agda/fresh-lists/index.html#Definition-38


152 C. Kupke et al.

– identity: For all x : X, we have ιx,ε : (x ¨ ε Ó) and ιε,x : (ε ¨ x Ó), and x ¨ιx,ε
ε “

x “ ε ¨ιε,x
x;

– associativity: For all x, y, z : X,

(Σ(p : (y ¨ z Ó)).(x ¨ (y ¨p z) Ó)) ←→ (Σ(q : (x ¨ y Ó)).((x ¨q y) ¨ z Ó))

and for all p : (y ¨ z Ó), p′ : (x ¨ (y ¨p z) Ó), q : (x ¨ y Ó), q′ : ((x ¨q y) ¨ z Ó), we
have x ¨p′ (y ¨p z) “ (x ¨q y) ¨q′ z.

A partial monoid is reflexive if (x ¨ x Ó) for all x : X.

Using Lemma 37, it is now not hard to show that FList(A, “) is a reflexive
partial monoid with inl ∗ as unit, and ((inr (x, n)) ¨ (inr (y,m)) Ó) holding exactly
when x “ y, with inr (x, n)¨refl inr (x,m) “ inr (x, n`m). To show that FList(A, “)
is the free reflexive partial monoid, we need to be able to construct powers xn in
arbitrary reflexive partial monoids. For example, x3 “ x¨(x¨x) is defined because
(x ¨ x) ¨ (x ¨ x) is defined by reflexivity, hence by associativity also x ¨ (x ¨ (x ¨ x))
is defined, and in particular x3 “ x ¨ (x ¨ x) is defined. In the general case, we
define xn by induction on n : N, and simultaneously prove that both (x ¨ xk Ó)
and (xm ¨ x Ó) for all k,m : N, as well as that x ¨ x� “ x� ¨ x for all � : N.

A morphism between partial monoids is a function between the carriers that
preserves definedness and operations. Reflexive partial monoids and their mor-
phisms form a category RPMon, and we again obtain a free-forgetful adjunction:

Proposition 39 (�). Let A be a set. Assuming function extensionality, the set
FList(A, “) with definedness relation and operations as described above is the
free reflexive partial monoid over A, i.e., FList : Set Ñ RPMon forms a functor
which is left adjoint to the forgetful functor U : RPMon Ñ Set. ��

7 Conclusions and Future Work

We have shown how finite sets and multisets can be realised as fresh lists in plain
dependent type theory, resulting in a well-behaved theory with good computa-
tional properties such as decidable equality, and without resorting to setoids or
higher inductive types. Our only requirement is that the type we start with can
be equipped with an order relation — a strict total order for finite sets, and a
non-strict one for finite multisets. However, as suggested by a reviewer, relative
adjunctions [29] can perhaps be used to formulate a universal property also over
unordered structures. We have also shown how many other free structures can
be understood in this unifying framework, such as free monoids, free pointed
sets, and free left-regular band monoids. Measuring the efficiency of for example
deciding equality in our free structures is left as future work.

There are many more algebraic structures that could be studied from the
point of view of fresh lists, such as Abelian groups. Free algebraic structures
without associativity tend to correspond to variations on binary trees [8]; as
such, it would make sense to also investigate notions of “fresh trees”, or perhaps

https://seanwatters.uk/agda/fresh-lists/index.html#Proposition-39


A Fresh Look at Commutativity 153

a general notion of freshness for containers [1]. It would also be interesting to pin
down exactly in which sense SList realises a predicative finite power set functor
in type theory. One future use for this could be a constructive framework for
modal logics supporting verification algorithms that are correct by construction.

Acknowledgements. We thank Guillaume Allais for interesting suggestions, Ezra
Schoen for the idea to consider reflexive partial monoids in Sect. 6.4, and the referees
for insightful comments and improvements. This work was supported by the Engineer-
ing and Physical Sciences Research Council [EP/W52394X/1]; the National Physical
Laboratory; and the Leverhulme Trust [RPG-2020-232].

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Categories of containers. In: Gordon, A.D.
(ed.) FoSSaCS 2003. LNCS, vol. 2620, pp. 23–38. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36576-1 2

2. The Agda Community: Agda standard library (2023). https://github.com/agda/
agda-stdlib

3. Appel, A.W., Leroy, X.: Efficient extensional binary tries. J. Autom. Reason. 67(1),
8 (2023). https://doi.org/10.1007/s10817-022-09655-x

4. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. J. Funct. Program.
13(2), 261–293 (2003). https://doi.org/10.1017/S0956796802004501

5. Bessis, D.: The dual braid monoid. Annales scientifiques de l’Ecole normale
supérieure 36(5), 647–683 (2003). https://doi.org/10.1016/j.ansens.2003.01.001

6. Blizard, W.D.: The development of multiset theory. Modern Logic 1(4), 319–352
(1991)

7. Brown, K.S.: Semigroups, rings, and Markov chains. J. Theor. Probab. 13(3), 871–
938 (2000). https://doi.org/10.1023/a:1007822931408

8. Bunkenburg, A.: The Boom hierarchy. In: O’Donnell, J.T., Hammond, K. (eds.)
Proceedings of the 1993 Glasgow Workshop on Functional Programming, pp. 1–8.
Springer (1994). https://doi.org/10.1007/978-1-4471-3236-3 1

9. Choudhury, V., Fiore, M.: Free commutative monoids in Homotopy Type Theory.
In: Hsu, J., Tasson, C. (eds.) Mathematical Foundations of Programming Semantics
(MFPS ’22). Electronic Notes in Theoretical Informatics and Computer Science,
vol. 1 (2023). https://doi.org/10.46298/entics.10492

10. Choudhury, V., Karwowski, J., Sabry, A.: Symmetries in reversible programming:
From symmetric rig groupoids to reversible programming languages. In: Proceed-
ings of the ACM on Programming Languages 6(POPL), pp. 1–32 (2022). https://
doi.org/10.1145/3498667

11. Coquand, C.: A formalised proof of the soundness and completeness of a simply
typed lambda-calculus with explicit substitutions. Higher Order Symbol. Comput.
15(1), 57–90 (2002). https://doi.org/10.1023/A:1019964114625

12. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions
in type theory. J. Symb. Log. 65(2), 525–549 (2000). https://doi.org/10.2307/
2586554

13. Frumin, D., Geuvers, H., Gondelman, L., Weide, N.v.d.: Finite sets in homotopy
type theory. In: International Conference on Certified Programs and Proofs (CPP
’18), pp. 201–214. Association for Computing Machinery (2018). https://doi.org/
10.1145/3167085

https://doi.org/10.1007/3-540-36576-1_2
https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib
https://doi.org/10.1007/s10817-022-09655-x
https://doi.org/10.1017/S0956796802004501
https://doi.org/10.1016/j.ansens.2003.01.001
https://doi.org/10.1023/a:1007822931408
https://doi.org/10.1007/978-1-4471-3236-3_1
https://doi.org/10.46298/entics.10492
https://doi.org/10.1145/3498667
https://doi.org/10.1145/3498667
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.2307/2586554
https://doi.org/10.2307/2586554
https://doi.org/10.1145/3167085
https://doi.org/10.1145/3167085


154 C. Kupke et al.

14. Gylterud, H.R.: Multisets in type theory. Math. Proc. Cambridge Philos. Soc.
169(1), 1–18 (2020). https://doi.org/10.1017/S0305004119000045

15. Hedberg, M.: A coherence theorem for Martin-Löf’s type theory. J. Funct. Pro-
gram. 8(4), 413–436 (1998). https://doi.org/10.1017/s0956796898003153

16. Hinze, R.: Generalizing generalized tries. J. Funct. Program. 10(4), 327–351 (2000).
https://doi.org/10.1017/S0956796800003713

17. Hutton, G.: A tutorial on the universality and expressiveness of fold. J. Funct.
Program. 9(4), 355–372 (1999). https://doi.org/10.1017/s0956796899003500

18. Jech, T.: The Axiom of Choice. North-Holland (1973)
19. Joram, P., Veltri, N.: Constructive final semantics of finite bags. In: Naumowicz, A.,

Thiemann, R. (eds.) Interactive Theorem Proving (ITP ’23). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 268, pp. 20:1–20:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2023). https://doi.org/10.
4230/LIPIcs.ITP.2023.20

20. Lawvere, F.W.: Display of graphics and their applications, as exemplified by 2-
categories and the Hegelian “taco”. In: Proceedings of the First International Con-
ference on Algebraic Methodology and Software Technology, pp. 51–74 (1989)

21. McBride, C.: How to keep your neighbours in order. In: Jeuring, J., Chakravarty,
M.M.T. (eds.) International conference on Functional programming (ICFP ’14), pp.
297–309. Association for Computing Machinery (2014). https://doi.org/10.1145/
2628136.2628163

22. Nordvall Forsberg, F.: Inductive-inductive definitions. Ph.D. thesis, Swansea Uni-
versity (2013)

23. Norell, U.: Towards a practical programming language based on dependent type
theory. Ph.D. thesis, Chalmers University of Technology (2007)

24. Piceghello, S.: Coherence for Monoidal and Symmetric Monoidal Groupoids in
Homotopy Type Theory. Ph.D. thesis, The University of Bergen (2021)

25. Pincus, D.: The dense linear ordering principle. J. Symb. Log. 62(2), 438–456
(1997). https://doi.org/10.2307/2275540

26. Poinsot, L., Duchamp, G., Tollu, C.: Partial monoids: associativity and confluence.
J. Pure Appl. Math. Adv. Appl. 3(2), 265–285 (2010)

27. Streicher, T.: Investigations into intensional type theory. Habilitation thesis (1993)
28. Swan, A.: If every set has some irreflexive, extensional order, then excluded middle

follows. Agda formalisation by Tom De Jong available at https://www.cs.bham.
ac.uk/∼mhe/TypeTopology/Ordinals.WellOrderingTaboo.html

29. Ulmer, F.: Properties of dense and relative adjoint functors. J. Algebra 8(1), 77–95
(1968). https://doi.org/10.1016/0021-8693(68)90036-7

30. The Univalent Foundations Program: Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study (2013). https://
homotopytypetheory.org/book/

31. Watters, S., Nordvall Forsberg, F., Kupke, C.: Agda formalisation of “A Fresh
Look at Commutativity: Free Algebraic Structures via Fresh Lists”. https://doi.
org/10.5281/zenodo.8357335 (2023)

https://doi.org/10.1017/S0305004119000045
https://doi.org/10.1017/s0956796898003153
https://doi.org/10.1017/S0956796800003713
https://doi.org/10.1017/s0956796899003500
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.4230/LIPIcs.ITP.2023.20
https://doi.org/10.1145/2628136.2628163
https://doi.org/10.1145/2628136.2628163
https://doi.org/10.2307/2275540
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.WellOrderingTaboo.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.WellOrderingTaboo.html
https://doi.org/10.1016/0021-8693(68)90036-7
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://doi.org/10.5281/zenodo.8357335
https://doi.org/10.5281/zenodo.8357335


Oracle Computability and Turing
Reducibility in the Calculus of Inductive

Constructions

Yannick Forster1(B) , Dominik Kirst2,3 , and Niklas Mück3

1 Inria, LS2N, Université Nantes, Nantes, France
yannick.forster@inria.fr

2 Ben-Gurion University of the Negev, Beer-Sheva, Israel
kirst@cs.bgu.ac.il

3 Saarland University and MPI-SWS, Saarland Informatics Campus, Saarbrücken,
Germany

mueck@mpi-sws.org

Abstract. We develop synthetic notions of oracle computability and
Turing reducibility in the Calculus of Inductive Constructions (CIC),
the constructive type theory underlying the Coq proof assistant. As usual
in synthetic approaches, we employ a definition of oracle computations
based on meta-level functions rather than object-level models of compu-
tation, relying on the fact that in constructive systems such as CIC all
definable functions are computable by construction. Such an approach
lends itself well to machine-checked proofs, which we carry out in Coq.

There is a tension in finding a good synthetic rendering of the higher-
order notion of oracle computability. On the one hand, it has to be infor-
mative enough to prove central results, ensuring that all notions are
faithfully captured. On the other hand, it has to be restricted enough to
benefit from axioms for synthetic computability, which usually concern
first-order objects. Drawing inspiration from a definition by Andrej Bauer
based on continuous functions in the effective topos, we use a notion of
sequential continuity to characterise valid oracle computations.

As main technical results, we show that Turing reducibility forms an
upper semilattice, transports decidability, and is strictly more expressive
than truth-table reducibility, and prove that whenever both a predicate
p and its complement are semi-decidable relative to an oracle q, then p
Turing-reduces to q.

Keywords: Type theory · Logical foundations · Synthetic
computability theory · Coq proof assistant

Yannick Forster received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No.
101024493. Dominik Kirst is supported by a Minerva Fellowship of the Minerva Stiftung
Gesellschaft fuer die Forschung mbH.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 155–181, 2023.
https://doi.org/10.1007/978-981-99-8311-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_8&domain=pdf
http://orcid.org/0000-0002-8676-9819
http://orcid.org/0000-0003-4126-6975
http://orcid.org/0009-0006-9622-0762
https://doi.org/10.1007/978-981-99-8311-7_8


156 Y. Forster, D. Kirst, and N. Mück

1 Introduction

In recent years, synthetic computability theory [1,2,5,37] has gained increas-
ing attention in the fields of constructive mathematics and interactive theorem
proving [10,12,16,24,39,40]. In contrast to the usual analytic approach based
on describing the functions considered computable by means of a model like
Turing machines, μ-recursive functions, or the λ-calculus, the synthetic app-
roach exploits that in a constructive setting no non-computable functions can
be defined in the first place, making a later description of the computable frag-
ment obsolete. This idea enables much more compact definitions and proofs, for
instance decidability of sets over N can be expressed by equivalence to functions
f :N→B without any further computability requirement regarding f , simplifying
a formal mathematical development.

Furthermore, synthetic computability is the only approach to computability
enabling a feasible mechanisation using a proof assistant. The general value of
machine-checking important foundational results, for instance to obtain a library
of mathematics and theoretical computer science, has become more appreciated
in more and more subcommunities, up to the point that some mechanisations
of results reach cutting edge research. However, even though machine-checked
mathematics has a long history, computability theory, and even more so relative
computability theory based on oracles, have not been tackled to a substantial
amount past basic results such as Rice’s theorem before the use of synthetic
computability. This is because there is a big amount of “invisible” mathematics [4]
that has to be made explicit in proof assistants, due to the use of the informal
Church Turing thesis on paper that cannot be formally replicated. Filling in
these missing details is infeasible, to the amount that textbook computability
theory based on models of computations and the informal Church Turing thesis
is not really formalisable to a reasonable extent.

The synthetic perspective remedies these issues and has been fruitfully used
to describe basic concepts in computability theory in proof assistants. The app-
roach is especially natural in constructive type theories such as the Calculus of
Inductive Constructions (CIC) [6,34] underlying the Coq proof assistant [41]:
as CIC embodies a dependently-typed functional programming language, every
definable function conveys its own executable implementation.

However, the synthetic characterisation of oracle computations in general
(i.e. algorithms relative to some potentially non-computable subroutine) and
Turing reductions in particular (i.e. decision procedures relative to some ora-
cle giving answer to a potentially non-decidable problem) has turned out to be
more complicated. First, a Turing reduction cannot naively be described by a
transformation of computable decision procedures N → B as this would rule
out the intended application to oracles for problems that can be proved unde-
cidable using usual axioms of synthetic computability such as Church’s thesis
(CT). Secondly, when instead characterising Turing reductions by transforma-
tions of possibly non-computable decision procedures represented as binary rela-
tions N → B → P, one has to ensure that computability is preserved in the
sense that computable oracles induce computable reductions in order to enable



Oracle Computability and Turing Reducibility in CIC 157

intended properties like the transport of (un-)decidability. Thirdly, to rule out
exotic reductions whose behaviour on non-computable oracles differs substan-
tially from their action on computable oracles, one needs to impose a form of
continuity.

The possible formulations of continuity of functionals on partial spaces such
as N → B → P are numerous: Bauer [3], who gave the first synthetic definition of
oracle computability we draw our inspiration from, employs the order-theoretic
variant of functionals preserving suprema in directed countable partial orders.
The first author of this paper [11] describes a reformulation in CIC in joint work
with the second author, using a modified variant of modulus continuity where
every terminating oracle computation provides classical information about the
information accessed from the oracle. We have suggested a more constructive
formulation of modulus continuity in past work [15] and established Post’s the-
orem connecting the arithmetical hierarchy with Turing degrees for this defini-
tion [22,30]. However, this proof assumes an enumeration of all (higher-order)
oracle computations defined via modulus continuity, which seems not to follow
from CT, therefore leaving the consistency status of the assumption unclear.

As a remedy to this situation, we propose an alternative synthetic characteri-
sation of oracle computability based on a stricter notion of sequential continuity,
loosely following van Oosten [33]. Concretely, a sequentially continuous function
with input type I and output type O with an oracle expecting questions of
type Q and giving answers of type A can be represented by a partial function
τ : I→A∗⇀Q + O, where τi can be seen as a (potentially infinite) tree. Con-
cretely, τi is a function that maps paths of type A∗ (i.e. edges are labeled by
elements of type A) to inner nodes labeled by Q and leafs labeled by O.

While this concept naturally describes the functionals considered computable
by emphasising the sequence of computation steps interleaved with oracle inter-
actions, it immediately yields the desired enumeration from CT by reducing
higher-order functionals on partial spaces to partial first-order functions.

In this paper we develop the theory of oracle computability as far as possible
without any axioms for synthetic computability: we show that Turing reducibility
forms an upper semilattice, transports decidability, and is strictly more expres-
sive than truth-table reducibility, and prove that whenever both a predicate p
and its complement are semi-decidable relative to an oracle q, then p Turing-
reduces to q.1 All results are mechanised in Coq, both to showcase the feasibility
of the synthetic approach and as base for future related mechanisation projects.

For easy accessibility, the Coq development2 is seamlessly integrated with
the text presentation: every formal statement in the PDF version of this paper
is hyperlinked with HTML documentation of the Coq code. To further improve

1 The non-relativised form of the latter statement also appears under the name of
“Post’s theorem” in the literature [42], not to be confused with the mentioned theo-
rem regarding the arithmetical hierarchy, see the explanation in Sect. 9.

2 https://github.com/uds-psl/coq-synthetic-computability/tree/code-paper-oracle-
computability.

https://github.com/uds-psl/coq-synthetic-computability/tree/code-paper-oracle-computability
https://github.com/uds-psl/coq-synthetic-computability/tree/code-paper-oracle-computability


158 Y. Forster, D. Kirst, and N. Mück

fluid readability, we introduce most concepts and notations in passing, but hyper-
link most definitions in the PDF with the glossary in Appendix A.

Contribution. We give a definition of synthetic oracle computability in con-
structive type theory and derive notions of Turing reducibility and relative
semi-decidability. We establish basic properties of all notions, most notably that
Turing reducibility forms an upper semi-lattice, transports decidability if and
only if Markov’s principle holds, and is strictly more general than truth-table
reducibility. We conclude by a proof of Post’s theorem relating decidability with
semi-decidability of a set and its complement.

Outline. We begin by introducing the central notion of synthetic oracle com-
putability in Sect. 2, employed in Sect. 3 to derive synthetic notions of Turing
reducibility and oracle semi-decidability. Before we discuss their respective prop-
erties (Sects. 6 and 7) and show that Turing reducibility is strictly weaker than
a previous synthetic rendering of truth-table reducibility (Sect. 8), we develop
the basic theory of synthetic oracle computations by establishing their closure
properties (Sect. 4) and by capturing their computational behaviour (Sect. 5).
Some of these closure properties rely on a rather technical alternative charac-
terisation of oracle computability described in Appendix B, which will also be
used to establish the main result relating oracle semi-decidability with Turing
reducibility discussed in Sect. 9. We conclude in Sect. 10 with remarks on the
Coq formalisation as well as future and related work.

2 Synthetic Oracle Computability

The central notion of this paper is the synthetic definition of oracle computabil-
ity. Historically, oracle computability was introduced as an extension of Turing
machines in Turing’s PhD thesis [43], but popularised by Post [35]. Various
analytic definitions of oracle computability exist, all having in common that
computations can ask questions and retrieve answers from an oracle.

For our synthetic definition, we specify concretely when a higher-order func-
tional F : (Q→A→P)→(I→O→P) is considered (oracle-)computable. Such a func-
tional takes as input a possibly non-total binary relation R:Q→A→P, an oracle
relating questions q:Q to answers a:A, and yields a computation relating inputs
i: I to outputs o:O. For special cases like Turing reductions, we will instantiate
Q, I := N and A,O := B. Note that we do not require oracles R to be determinis-
tic, but if they are, then so are the resulting relations FR (cf. Lemma 11).

We define oracle computability by observing that a terminating computation
with oracles has a sequential form: in any step of the sequence, the oracle compu-
tation can ask a question to the oracle, return an output, or diverge. Informally,
we can enforce such sequential behaviour by requiring that every terminating
computation FR i o can be described by (finite, possibly empty) lists qs:Q∗ and
as:A∗ such that from the input i the output o is eventually obtained after a
finite sequence of steps, during which the questions in qs are asked to the oracle



Oracle Computability and Turing Reducibility in CIC 159

one-by-one, yielding corresponding answers in as. This computational data can
be captured by a partial3 function of type I→A∗⇀Q + O, called the (compu-
tation) tree of F , that on some input and list of previous answers either returns
the next question to the oracle, returns the final output, or diverges.

So more formally, we call F : (Q→A→P)→(I→O→P) an (oracle-)computable
functional if there is a tree τ : I→A∗⇀Q + O such that

∀R i o. FR i o ↔ ∃qs as. τ i ; R �qs ; as ∧ τ i as � out o

with the interrogation relation σ;R � qs; as being defined inductively by

σ ; R �[] ; []
σ ; R �qs ; as σas � ask q Rqa

σ ; R �qs++[q] ; as++[a]

where A∗ is the type of lists over a, l++l′ is list concatenation, where we use the
suggestive shorthands ask q and out o for the respective injections into the sum
type Q + O, and where σ:A∗⇀Q + O denotes a tree at a fixed input i.

To provide some further intuition and visualise the usage of the word “tree”,
we discuss the following example functional in more detail:

F : (N → B → P) → (N → B → P)
FR i o := o = true ∧ ∀q < i.R q true

Intuitively, the functional can be computed by asking all questions q for q < i
to the oracle. If the oracle does not return any value, F does not return a value.
If the oracle returns false somewhere, F also does not return a value – i.e. runs
forever. If the oracle indeed returns true for all q < i, F returns true.

In the case of i = 3, this process may be depicted by

where the paths along labelled edges represent the possible answer lists as while
the nodes represent the corresponding actions of the computation: the paths
along inner nodes denote the question lists qs and the leafs the output behaviour.
Note that ret :X⇀X is the return of partial functions, turning a value into an
always defined partial value, while undef denotes the diverging partial value.
Formally, a tree τ :N→B

∗⇀N+ B computing F can be defined by

τ i as :=

⎧
⎪⎨

⎪⎩

undef if false ∈ as
ret (ask |as|) if false 	∈ as ∧ |as| < i

ret (out true) if false 	∈ as ∧ |as| ≥ i

3 There are many ways how semi-decidable partial values can be represented in CIC,
for instance via step-indexing. Since the actual implementation does not matter, we
abstract over any representation providing the necessary operations, see Appendix
A.



160 Y. Forster, D. Kirst, and N. Mück

where here and later on we use such function definitions by cases to represent
(computable) pattern matching.

As usual in synthetic mathematics, the definition of a functional F as being
computable if it can be described by a tree is implicitly relying on the fact that
all definable (partial) functions in CIC could also be shown computable in the
analytic sense. Describing oracle computations via trees in stages goes back to
Kleene [25], cf. also the book by Odifreddi [31]. Our definition can be seen as
a more explicit form of sequential continuity due to van Oosten [32,33], or as
a partial, extensional form of a dialogue tree due to Escardó [9]. Our definition
allows us to re-prove the theorem by Kleene [26] and Davis [7] that computable
functionals fulfill the more common definition of continuity with a modulus:

Lemma 1. Let F be a computable functional. If FR i o, then there exists a list
qs:Q∗, the so-called modulus of continuity, such that ∀q ∈ qs. ∃a. Rqa and for
all R′ with ∀q ∈ qs.∀a. Rqa ↔ R′qa we also have that FR′ i o.

Proof. Given FR i o and F computable by τ we have τi ; R �qs ; as and
τ i as � out o. It suffices to prove both ∀q ∈ qs. ∃a. Rqa and τi ; R′ �qs ; as
by induction on the given interrogation, which is trivial. ��

Nevertheless, our notion of computable functionals is strictly stronger than
modulus continuity as stated, while we are unaware of a proof relating it to a
version where the moduli are computed by a partial function.

Lemma 2. There are modulus-continuous functionals that are not computable.

Proof. Consider the functional F : (N→B→P)→(I→O→P) defined by

FRio := ∃q.R q true.

Clearly, F is modulus-continuous since from a terminating run FRio we obtain
q with R q true and therefore can choose qs := [q] as suitable modulus.

However, suppose τ : I → B
∗⇀N+ O were a tree for F , then given some

input i we can inspect the result of τ i [] because F R� i o holds for all i, o, and
the full oracle R� q a := . However, the result cannot be out o for any output
o, as this would yield FR⊥ for the empty oracle R⊥ q a := ⊥, violating the
definition of F . Thus τ i [] � ask q0, conveying an initial question q0 independent
of the input oracle. But then employing the oracle R0 defined by R0 q0 a := ⊥
and R0 q a :=  for all q 	= q0 we certainly have F R0 i o by definition but no
interrogation τi ;R0 �qs ; as with τ i as � out o, as this would necessarily include
an answer a with R0 q0 a as first step, contradicting the construction of R0. ��

The advantage of using the stricter notion of sequential continuity over mod-
ulus continuity is that by their reduction to trees, computable functionals are
effectively turned into flat first-order functions on data types. Thus one directly
obtains an enumeration of all oracle computations, as needed in most advanced
scenarios, from an enumeration of first-order functions, which itself could be
obtained by assuming usual axioms for synthetic computability.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#cont_to_cont
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#counterex


Oracle Computability and Turing Reducibility in CIC 161

3 Turing Reducibility and Oracle Semi-decidability

Using our synthetic notion of oracle computability, we can directly derive syn-
thetic formulations of two further central notions of computability theory: Turing
reducibility – capturing when a predicate is decidable relative to a given predicate
– and oracle semi-decidability – capturing when a predicate can be recognised
relative to a given predicate. To provide some intuition first, we recall that in the
synthetic setting a predicate p : X → P over some type X is decidable if there
is a function f :X→B such that ∀x. px ↔ fx = true, i.e. f acts as a decider of
p. This definition is standard in synthetic computability [1,16] and relies on the
fact that constructively definable functions f :X→B are computable.

To relativise the definition of a decider to an oracle, we first define the char-
acteristic relation p̂:X→B→P of a predicate p:X→P by

p̂ := λxb.

{
px if b = true

¬px if b = false.

Employing p̂, we can now equivalently characterise a decider f for p by requir-
ing that ∀xb. p̂xb ↔ fx = b. Relativising this exact pattern, we then define Tur-
ing reducibility of a predicate p:X→P to q:Y →P by a computable functional F
transporting the characteristic relation of q to the characteristic relation of p:

p �T q := ∃F. F is computable ∧ ∀xb. p̂xb ↔ F q̂xb

Note that while we do not need to annotate a decider f with a computability
condition because we consider all first-order functions of type N→N or N→B as
computable, a Turing reduction is not first-order, and thus needs to be enriched
with a tree to rule out unwanted behaviour. In fact, without this condition, we
would obtain p �T q for every p and q by simply setting F R := p̂.

Next, regarding semi-decidability, a possible non-relativised synthetic defini-
tion is to require a partial function f :X⇀1 such that ∀x. px ↔ fx � �, where 1
is the inductive unit type with singular element �. That is, the semi-decider f
terminates on elements of p and diverges on the complement p of p (cf. [11]).

Again relativising the same pattern, we say that p:X→P is (oracle-)semi-
decidable relative to q:Y →P if there is a computable functional F mapping
relations R:Y →B→P to relations of type X→1→P such that F q̂ accepts p:

Sq(p) := ∃F. F is computable ∧ ∀x. px ↔ F q̂x�

As in the case of Turing reductions, the computability condition of an oracle
semi-decider is crucial: without the restriction, we would obtain Sq(p) for every
p and q by setting F R x � := p x.

While we defer developing the theory of synthetic Turing reducibility and
oracle semi-decidability to later sections, we can already record here that the
fact that decidability implies semi-decidability also holds in relativised form:

Lemma 3. If p �T q then Sq(p) and Sq(p).

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#Turing_to_sdec


162 Y. Forster, D. Kirst, and N. Mück

Proof. Let F witnesses p �T q, then F ′ R x� := F R x true witnesses Sq(p). In
particular, if τ :X→B

∗⇀N+ B computes F , then τ ′:X→B
∗⇀N+ 1, constructed

by running τ and returning out � whenever τ returns out true, computes F ′. The
proof of Sq(p) is analogous, simply using false in place of true. ��

4 Closure Properties of Oracle Computations

In this section we collect some examples of computable functionals and show
how they can be composed, yielding a helpful abstraction for later computabil-
ity proofs without need for constructing concrete computation trees. Note that
the last statements of this section depend on a rather technical intermediate
construction using a more flexible form of interrogations. We refer to the Coq
code and to Appendix B, where we will also deliver the proofs left out.

First, we show that composition with a transformation of inputs preserves
computability and that all partial functions are computable, ignoring the input
oracle. The latter also implies that total, constant, and everywhere undefined
functions are computable.

Lemma 4. The following functionals mapping relations R:Q→A→P to rela-
tions of type I→O→P are computable:

1. λR i o. FR (gi) o for g: I→I ′ and computable F : (Q→A→P)→(I ′→O→P),
2. λR i o. fi � o given f : I⇀O,
3. λR i o. fi = o given f : I→O,
4. λR i o. o = v given v:O,
5. λR i o. ⊥.

Proof. For 1, let τ compute F and define τ ′ i l := τ (gi) l. For 2, define τ ′ i l :=
fi>>=λo. ret (out o), where >>= is the bind operation of partial functions. All
others follow by using (2). ��

Next, if Q = I and A = O, then the identity functional is computable:

Lemma 5. The functional mapping R:Q→A→P to R itself is computable.

Proof. Define

τ q l :=

{
ret (ask q) if l = []
ret (out a) if l = (q, a) :: l′.

��
Moreover, given two functionals and a boolean test on inputs, the process

calling either of the two depending on the test outcome is computable:

Lemma 6. Let F1 and F2 both map relations R:Q→A→P to relations of type
I→O→P and f : I→B. Then F mapping R to the following relation of type
I→O→P is computable:

λio.

{
F1 R i o if fi = true

F2 R i o if fi = false

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_precompose
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_id
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_if


Oracle Computability and Turing Reducibility in CIC 163

Proof. Let τ1 and τ2 compute F1 and F2 respectively and define

τ i l :=

{
τ1 i l if fi = true

τ2 i l if fi = false.

��
Taken together, the previous three lemmas yield computability proofs for

functionals consisting of simple operations like calling functions, taking identi-
ties, and branching over conditionals. The next three lemmas extend to partial
binding, function composition, and linear search, so in total we obtain an abstrac-
tion layer accommodating computability proofs for the most common ingredients
of algorithms. As mentioned before, we just state the last three lemmas without
proof here and refer to the Coq development and Appendix B for full detail.

Lemma 7. Let F1 map relations R:Q→A→P to relations of type I→O′→P,
F2 map relations R:Q→A→P to relations of type (I × O′)→O→P, and both be
computable. Then F mapping R:Q→A→P to λio.∃o′:O′. F1 R i o′ ∧F2 R (i, o′) o
of type I→O→P is computable.

Lemma 8. Let F1 map relations R:Q→A→P to relations X→Y →P, F2 map
relations R:X→Y →P to relations I→O→P, and both be computable. Then F
mapping R:Q→A→P to λio. F2 (F1R) i o of type I→O→P is computable.

Lemma 9. The functional mapping R: (I × N)→B→P to the following relation
of type I→N→P is computable: λin R (i, n) true ∧ ∀m < n. R (i,m) false.

5 Computational Cores of Oracle Computations

In this section, we prove that if F maps R:Q→A→P to a relation I→O→P

and F is computable, then there is a higher-order function f : (Q⇀A)→(I⇀O)
such that for any r:Q⇀A with graph R, the graph of fr agrees with FR. This
means that every computable functional possesses an explicit computational
core, mapping (partially) computable input to (partially) computable output,
needed for instance to justify that decidability is transported backwards along
Turing reductions (Lemma 26).

In preparation, the following two lemmas state simple properties of interro-
gations regarding concatenation and determinacy. Given σ:A∗⇀Q + O and l:A∗

we write σ@l for the sub-tree of σ starting at path l, i.e. for the tree λl′. σ(l++l′).

Lemma 10. We have interrogations σ ;R �qs1 ; as1 and σ@as1 ;R �qs2 ; as2 if
and only if |qs2| = |as2| and σ ; R �qs1++qs2 ; as1++as2.

Lemma 11. Let R be functional and σ ;R �qs1 ; as1 as well as σ ;R �qs2 ; as2.
Then if |qs1| ≤ |qs2|, then qs1 is a prefix of qs2 and as1 is a prefix of as2.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_bind
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_comp
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#computable_search
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_app_iff
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_output_det


164 Y. Forster, D. Kirst, and N. Mück

Now conveying the main idea, we first define an evaluation function δ σ f :
N⇀Q + O which evaluates σ:A∗⇀Q + O on f :Q⇀A for at most n questions.

δ σ f n := σ[ ]>>=λx.

⎧
⎪⎨

⎪⎩

ret (out o) if x = out o

ret (ask q) if x = ask q, n = 0
fq >>=λa. δ (σ@[a]) f n′ if x = ask q, n = S n′.

The intuition is that δ always reads the initial node of the tree σ by evaluat-
ing σ[ ]. If σ[ ] � out o, then δ returns this output. Otherwise, if σ[ ] � ask q and δ
has to evaluate no further questions (n = 0), it returns ask q. If δ has to evaluate
S n questions, it evaluates fq � a and recurses on the subtree of σ with answer a,
i.e. on σ@[a]. We first verify that δ composes with interrogations by induction
on the interrogation:

Lemma 12. If σ ; (λqa. fq � a)�qs ; as and δ(τ@as)fn � v then δτfn � v.

Conversely, every evaluation of δ yields a correct interrogation:

Lemma 13. If δ σ f n � out o then there are qs and as with |qs| ≤ n and
σ ; (λqa. fq � a)�qs ; as, and σ as � out o.

Proof. By induction on n, using Lemma 10. ��
Put together, a computable functional is fully captured by δ for oracles

described by partial functions:

Lemma 14. Given a functional F computed by τ we have that

F (λqa. fq � a)io ↔ ∃n. δ (τi) f n � out o.

This is enough preparation to describe the desired computational core of
computable functionals:

Theorem 15. If F maps R:Q→A→P to a relation I→O→P and F is com-
putable, then there is a partial function f : (Q⇀A)→I⇀O such that if R is com-
puted by a partial function r:Q⇀A, then FR is computed by fr.

Proof. Let F be computed by τ . We define fri to search for n such that δ (τi) f n
returns out o, and let it return this o. The claim then follows straightforwardly
by the previous lemma and Lemma 11. ��

6 Properties of Oracle Semi-decidability

In the following two sections we establish some standard properties of our syn-
thetic renderings of oracle semi-decidability and Turing reducibility, respectively.
All proofs are concise but precise, given that in the synthetic setting they just
amount to the essence of the computational manipulations often described just
informally for a concrete model of computation in the analytic approach to com-
putability employed e.g. in textbooks.

We first establish the connection to non-relative semi-decidability.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_plus
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#evalt_to_interrogation
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#interrogation_equiv_evalt
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_transports_computable


Oracle Computability and Turing Reducibility in CIC 165

Lemma 16. If p is semi-decidable, then Sq(p) for any q.

Proof. Let f :X⇀1 be a semi-decider for p. With Lemma 4 (2) the functional
mapping R to λxo. fx � o is computable, and it is easily shown to be a semi-
decider for p relative to q. ��
Lemma 17. If Sq(p) and q is decidable, then p is semi-decidable.

Proof. Let g decide q and let F be a semi-decider of p relative to q. Let f be the
function from Theorem 15 that transports computable functions along F . Now
f(λy. ret(gy)) is a semi-decider for p. ��

We next establish closure properties of oracle semi-decidability along reduc-
tions. First, we can replace the oracle by any other oracle it reduces to:

Lemma 18. If Sq(p) and q �T q′, then also Sq′(p).

Proof. Straightforward using Lemma 8. ��
Secondly, if we can semi-decide a predicate p relative to q, then also simpler

predicates should be semi-decidable relative to q. This however requires a stricter
notion of reduction, for instance many-one reductions that rule out complemen-
tation. As in [16], we say that p′ : X → P many-one reduces to p : Y → P if
there is a function f : X → Y embedding p′ into p:

p′ �m p := ∃f : X → Y. ∀x. p′x ↔ p(fx)

Now the sought after property can be stated as follows:

Lemma 19. If Sq(p) and p′ �m p, then also Sq(p′).

Proof. Straightforward using Lemma 4 (1,4) and Lemma 7. ��

7 Properties of Turing Reducibility

We continue with similarly standard properties of Turing reducibility. Again,
all proofs are concise but precise. As a preparation, we first note that Turing
reducibility can be characterised without the relational layer.

Lemma 20. p �T q if and only if there is τ such that for all x and b we have

p̂xb ↔ ∃qsas. τx ; q �qs ; as ∧ τ x as � out b.

Now to begin, we show that Turing reducibility is a preorder.

Theorem 21. Turing reducibility is reflexive and transitive.

Proof. Reflexivity follows directly by the identity functional being computable
via Lemma 4. Transitivity follows with Lemma 8. ��

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#semi_decidable_OracleSemiDecidable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#OracleSemiDecidable_semi_decidable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#Turing_transports_sdec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#red_m_transports_sdec
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_reducible_without_rel
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_refl


166 Y. Forster, D. Kirst, and N. Mück

In fact, Turing reducibility is an upper semilattice:

Theorem 22. Let p:X→P and q:Y →P. Then there is a lowest upper bound
p + q:X + Y →P w.r.t. �T : Let (p + q)(inl x) := px and (p + q)(inr y) := qy.
then p+ q is the join of p and q w.r.t �T , i.e. p �T p+ q, q �T p+ q, and for all
r if p �T r and q �T r then p + q �T r.

Proof. The first two claims follow by Lemma 4 (1) and Lemma 5. For the third,
let F1 reduce p to r and be computed by τ1 and F2 reduce q to r computed by
τ2. Define

FR z o :=

{
F1R xo if z = inl x

F2R xo if z = inr y
τzl :=

{
τ1xl if z = inl x

τ2yl if z = inr y

τ computes F , and F reduces p + q to r. ��
We continue by establishing properties analogous to the ones concerning

oracle semi-decidability discussed in Sect. 6. First, analogously to Lemma 16,
the non-relativised notion of decidability implies Turing reducibility:

Lemma 23. If p and p are semi-decidable, then p�T q for any q. In particular,
if p is decidable, then p �T q for any q.

Proof. Let f semi-decide p and g semi-decide p. Define FR x b := p̂xb and let
τxl ignore l and find the least n such that either fxn = true or gxn = true and
then return out (fxn). ��

Secondly, Lemmas 18 and 19 correspond to the transitivity of Turing
reducibility, the latter relying on the fact that many-one reductions induce Tur-
ing reductions:

Lemma 24. If p �m q then p �T q.

Proof. Let f be the many-one reduction. Define FR x b := R (fx) b. ��
Thirdly, in connection to Lemma 17, we prove the more involved result that

Turing reducibility reflects decidability if and only if Markov’s principle holds.
Markov’s principle is an axiom in constructive mathematics stating that satisfi-
ability of functions N→B is stable under double negation, i.e.:

MP := ∀f :N→B. ¬¬(∃n. fn = true) → ∃n. fn = true

Concretely, MP will be needed as it corresponds to the termination of non-
diverging partial functions:

Lemma 25. MP if and only if ∀XY.∀f :X⇀Y .∀x.¬¬(∃y. fx � Y )→∃y. fx � Y .

Another ingredient is that total partial function X⇀Y induce functions X →
Y , as stated here for the specific case of deciders X → B:

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_upper_semi_lattice
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#bisemidecidable_Turing
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#red_m_impl_red_T


Oracle Computability and Turing Reducibility in CIC 167

Lemma 26. Let f :X⇀B and p:X→P. If ∀x. px ↔ fx � true and ∀x.∃b. fx � b,
then p is decidable, i.e. there is a function g:X→B such that ∀x. px ↔ gx = true.

Now assuming p �T q for q decidable, we can derive a non-diverging partial
decider for p, which is turned into a total partial decider with Lemma 25 and
then into an actual decider with Lemma 26:

Theorem 27. Given MP, if q is decidable and p�T q, then p is decidable.

Proof. Let F be the reduction relation and let f transport computability along
it as in Theorem 15. Let g decide q. It is straightforward that ∀xb. p̂xb ↔
f(λy.ret (gy))x � b (*). It suffices to prove that ∀x.∃b. f(λy.ret (gy))x � b to
obtain the claim from Lemma 26.

Using Lemma 25 and MP, given x it suffices to prove ¬¬∃b. f(λy.ret
(gy))x � b. Because the goal is negative and we can prove ¬¬(px ∨ ¬px), we
are allowed to do a case analysis on px. In both cases we can prove termination
using (*). ��

As hinted above, the previous theorem could be stated without MP by using
a notion of decidability via a non-diverging partial decider f :X⇀B, i.e. with
∀x.¬¬∃b. fx � b. However, in the stated form, it is in fact equivalent to MP:

Lemma 28. If p is decidable if there is decidable q with p�T q, then MP holds.

Proof. By [16, Theorem 2.20] it suffices to prove that whenever p:N→P and p
are semi-decidable, then also p is decidable, which follows by Lemma 23 and the
assumption for some choice of a decidable predicate q. ��

Lastly, we prove that using classical logic, predicates are Turing-equivalent
to their complement, providing evidence for the inherent classicality:

Lemma 29. For double-negation stable p, p�T p and p �T p.

Proof. Assume ∀x. ¬¬px → px. For both reductions, take FR x b := R x (¬Bb),
which is computable by Lemma 7, Lemma 5, and Lemma 4 (1,3). ��
Lemma 30. Let X be some type with x0:X. If p �T p for all p:X→P, then MP
implies the law of excluded middle (LEM := ∀P : P. P ∨ ¬P ).

Proof. Assume MP, X with x0 : X, and that p �T p for all p : X → P. It suffices
to prove that for every proposition P we have ¬¬P → P . So assume ¬¬P .

By MP and Theorem 27, we have that whenever λx.¬P is decidable, then so
is λx. P . Now since ¬¬P holds, λx. false decides λx.¬P . Thus we have a decider
f for λx. P . A case analysis on fx0 yields either P and we are done – or ¬P ,
which is ruled out by ¬¬P . ��

The last lemma ensures that some amount of classical logic is necessary to
prove that Turing reducibility is closed under complements, since it is well-known
that MP does not imply LEM.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#partial_decidable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#transport_decidable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#decidable_Turing_MP
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#Turing_red_compl
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#rev


168 Y. Forster, D. Kirst, and N. Mück

8 Turing Reducibility and Truth-Table Reducibility

As a further expectable property, we establish the well-known connection of
Turing reducibility to truth-table reducibility [35], namely that every truth-table
reduction induces a Turing reduction while the converse does not hold. Note that
the proofs in this section have a classical flavour where explicitly mentioned.

Intuitively, a truth-table reduction can be seen as a restricted form of a Turing
reduction: to reduce a predicate p:X→P to a predicate q:Y →P, on input x, it has
to compute a list of oracle queries of type Y ∗ and provide a truth-table mapping
the list of answers of the oracle for q to an output of the reduction. Consequently,
questions can not depend on answers of the oracle, and no non-termination is
permitted. See also the explanations by Rogers [38, §8.3] or Odifreddi [31, III.3].

Concretely, we use the synthetic definition of truth-table reducibility from
Forster and Jahn [13]. We model truth-tables as lists B

∗, but just work with a
boolean evaluation predicate l � T and refer to the Coq code for its definition.

p �tt q := ∃f :X→Y ∗×B
∗.∀x:X.∀l:B∗.Forall2 q̂ (π1(fx)) l → (px ↔ l � π2(fx))

where Forall2 lifts binary predicates to lists pointwise by conjunction.
We first show that truth-table reducibility implies Turing reducibility.

Theorem 31. If q is classical (i.e. ∀y. qy ∨ ¬qy), then p�tt q implies p �T q.

Proof. Let f be the truth-table reduction. Define F to map R:Y →B→P to

λxb. ∃l:B∗. Forall2 R (π1(fx)) l ∧ l � π2(fx))

which can be computed by the tree

τxl :=

{
ret (ask a) if π1(fx) at position |l| is a

ret (out (l � π2(fx))) otherwise.

The direction from right to left is straightforward. For the direction from left
to right, it suffices to prove the existence of l with Forall2 q̂ π1(fx) l, following
by induction on π1(fx), using the assumption that q is classical to construct l.
��

We now prove that the inclusion of truth-table reducibility in Turing
reducibility is strict. Forster and Jahn [13] introduce a hypersimple predi-
cate HI :N→P as the deficiency predicate of a strongly enumerable predicate
I:N→P [8]: Given an injective, strong enumerator EI of I (∀x. Ix↔∃n.EIn =
x), they set

HIx := ∃x0 > x. EIx0 < EIx.

They prove that I does not truth-table reduce to HI assuming axioms for
synthetic computability, and in particular that the halting problem fulfills the
preconditions for I. Thus, to separate truth-table from Turing reducibility, it

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#truthtable_Turing


Oracle Computability and Turing Reducibility in CIC 169

suffices to give a Turing reduction I �T HI (without having to assume axioms
for synthetic computability).

Algorithmically, one can decide Iz given a partial function f :N⇀B deciding
HI as follows: We search for x such that fx � false and EIx > z, i.e. ¬HIx. Such
an x does (not not) exists because the complement of HI is non-finite. Then Iz
holds if and only if z ∈ [EI0, . . . EI(x + 1)].

Formally, we first establish the classical existence of such x in the more
general situation of arbitrary non-finite predicates and injections.

Lemma 32. If p:X→P is non-finite and f :X→N is injective, then for z:N

¬¬∃x. px ∧ fx ≥ z ∧ ∀y. py → fy ≥ z → fx ≤ fy.

Next, we verify the resulting characterisation of I via list membership.

Lemma 33. If ¬HIx and EIx > z, then Iz ↔ [EI0, . . . , EI(x + 1)].

Put together, we can describe the desired Turing reduction.

Theorem 34. Assuming LEM, if I is strongly enumerable, then I �T HI .

Proof. We define F to map relations R to the relation

λzb. ∃x.R x false ∧ EIx > z ∧ (b = true ↔ z ∈ [EI0, . . . , EI(x + 1)])
∧ (∀x′ < x. (R x′ true ∨ (R x′ false ∧ EIx

′ ≤ z)))

which is straightforward to show computable.
Regarding F (ĤI)zb ↔ Îzb, the direction from left to right is immediate from

Lemma 33. For the direction from right to left, assume Îzb. Let x be obtained
for HI and EI from Lemma 32. Then x fulfils the claim by Lemma 33. ��

Since in this paper we do not assume axioms for synthetic computability that
imply I 	�tt HI , we keep the conclusion that truth-table reducibility is strictly
stronger than Turing reducibility implicit.

9 Post’s Theorem (PT)

There are various results (rightly) called “Post’s theorem” in the literature. Here,
we are concerned with the result that if both a predicate and its complement are
semi-decidable, the predicate is decidable. This theorem was proved by Post in
1944 [35], and is not to be confused with Post’s theorem relating the arithmetical
hierarchy and Turing jumps from 1948 [36]. We thus simply refer to the result
we consider as PT0, and use PT for its relativised version.

It is well-known that PT0 is equivalent to Markov’s principle [1,16,42]. We
here prove that the relativised version PT is fully constructive, and that in fact
the equivalence proof of MP and PT0 can be given using PT and the already
proven equivalence between MP and the statement that Turing reducibility trans-
ports decidability backwards given in Sect. 7.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#non_finite_to_least
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#I_iff
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.OracleComputability.html#red


170 Y. Forster, D. Kirst, and N. Mück

As an auxiliary notion, we introduce an equivalent but a priori more expres-
sive form of interrogations which maintains an internal state of the computation
and can “stall”, i.e. trees do not have to either ask a question or produce an out-
put, but can alternatively choose to just update the state. Such trees are of type
S → A∗⇀(S × Q?) + O, where Q? is the inductive option type with elements
None and Some q for q:Q.

A stalling tree is a partial function σ:S→A∗⇀(S × Q?) + O. We define a
stalling interrogation predicate σ ; R �qs ; as ; s � s′ inductively by:

σ ; R �[] ; [] ; s � s

σ ; R �qs ; as ; s � s′′ σ ; s′′ ; as � ask (s′,None)
σ ; R �qs ; as ; s � s′

σ ; R �qs ; as ; s � s′′ σ ; s′′ ; as � ask (s′,Some q) Rqa

σ ; R �qs++[q] ; as++[a] ; s � s′

The first and third rule are not significantly different from before, apart from
also threading a state s. The second rule allows the tree to stall by only updating
the state to s′, but without asking an actual question. Intuitively, we can turn
a stalling tree τ into a non-stalling one τ ′ by having τ ′ compute on input as
first all results of τ on all prefixes of as, starting from a call τ i s0 as for a given
initial state s0. We give this construction in full detail in Appendix B.

A functional F mapping R:Q→A→P to a relation of type I→O→P is com-
putable via stalling interrogations if there are a type S, an element s0:S, and a
function τ : I→S→A∗⇀(S × Q?) + O such that

∀R i o. FR i o ↔ ∃qs as s. τ i ; R �qs ; as ; s0 � s ∧ τ i s as � out o.

We prove that the two definitions of computability are equivalent in Appendix
B and immediately move on to the proof of PT.

Theorem 35. (PT) If Sq(p) and Sq(p), then p �T q.

Proof. Let p:X→P and q:Y →P as well as F1 and F2 be the functionals repre-
senting the semi-deciders, computed respectively by τ1 and τ2. The intuition is,
on input x and as, to execute τ1 x and τ2 x in parallel and ensure that both
their questions are asked. The interrogation can finish with true if τ1 x outputs
a value, and with false if τ2 x does.

There are two challenges in making this intuition formal as an oracle com-
putation: Only answers from as that τ1 and τ2 asked for have to be actually
passed to it, respectively, and both τ1 and τ2 need to be allowed to ask all of
their questions and eventually produce an output fairly, even though only one
of them ever will.

Using Lemma 20, we define the Turing reduction without providing the rela-
tional layer and instead directly construct a tree τ based on stalling interro-
gations with state type S := Y ? × N × (B × Y )∗. The first argument is used
to remember a question that needs to be asked next, arising from cases where
both τ1 and τ2 want to ask a question. The second argument is a step-index n

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.TuringReducibility.SemiDec.html#PT


Oracle Computability and Turing Reducibility in CIC 171

used to evaluate both τ1 and τ2 for n steps. The third argument records which
question was asked by τ1 and which by τ2. To then construct τ compactly, we
define helper functions getas1,2: (B × Y )∗→B

∗→Y ∗ which choose answers from
the second list according to the respective boolean in the first list.

We then define

τ(Some q, n, t)as := ret (ask (None, n, t++[(false, q)],Some q))

τ(None, n, t)as :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ret (out true) if x1 = Some (out o)

ret (out false) if x2 = Some (out o)

ret (ask (Some q′, S n, t++[(true, q)], Some q)) if x1 = Some (ask q)

and x2 = Some (ask q′)
ret (ask (None, S n, t++[(true, q)], Some q)) if x1 = Some (ask q)

ret (ask (None, S n, t++[(false, q)], Some q)) if x2 = Some (ask q)

ret (ask (None, S n, t,None)) otherwise

where x1 = ρn (τ1 x (getas1 t as)) and x2 = ρn (τ2 x (getas2 t as)), with ρ being a
step-indexed evaluation function for partial values.

This means that whenever τ1 returns an output, then true is returned and
whenever τ2 returns an output, then false is returned while no question is ever
missed and the interrogation stalls if n does not suffice to evaluate either τ1 or
τ2. The invariants to prove that this indeed yields the wanted Turing reduction
are technical but pose no major hurdles, we refer to the Coq code for details. ��
Corollary 36. The following are equivalent:

1. MP
2. Termination of partial functions is double negation stable.
3. Turing reducibility transports decidability backwards.
4. PT0

Proof. Implications (1) → (2) and (4) → (1) are well-known. We have already
proved implication (2) → (3). It suffices to prove (3) → (4), which is almost direct
using PT: Assume that for all X, Y , p:X→P, and q:Y →P we have that if q is
decidable and p �T q, then p is decidable. Let furthermore p and its complement
be semi-decidable. We prove that p is decidable. Clearly, it suffices to prove
that p �T q for a decidable predicate q (e.g. λn:N.). Using PT, it suffices to
prove p and its complement semi-decidable in q, which in turn follows from the
assumption that they are semi-decidable and Lemma 16. ��

10 Discussion

Mechanisation in Coq. The Coq mechanisation accompanying this paper
closely follows the structure of the hyperlinked mathematical presentation and
spans roughly 2500 lines of code for the novel results, building on a library of
basic synthetic computability theory. It showcases the feasibility of mechanising
ongoing research with reasonable effort and illustrates the interpretation of syn-
thetic oracle computations as a natural notion available in dependently-typed



172 Y. Forster, D. Kirst, and N. Mück

programming languages. In fact, using Coq helped us a lot with finding the proofs
concerning constructive reverse mathematics (Lemmas 28 and 30 and Corollary
36) in the first place, where subtleties like double negations need to be tracked
over small changes in the definitions.

On top of the usual proof engineering, we used three notable mechanisation
techniques. First, we generalise over all possible implementations of partial func-
tions, so our code is guaranteed to just rely on the abstract interface described in
Appendix A. Secondly, we devised a custom tactic psimpl that simplifies goals
involving partial functions by strategically rewriting with the specifications of
the respective operations. Thirdly, to establish computability of composed func-
tionals, instead of constructing a complicated tree at once, we postpone the
construction with the use of existential variables and apply abstract lemmas
such as the ones described in Sect. 4 to obtain the trees step by step.

Related Work. Synthetic computability was introduced by Richman [37] and
popularised by Richman, Bridges, and Bauer [1–3,5]. In synthetic computability,
one assumes axioms such as CT (“Church’s thesis” [28,42]), postulating that all
functions are μ-recursive. CT is proved consistent for univalent type theory by
Swan and Uemura [39]. Since univalent type theory proves unique choice, using
it as the basis for computability theory renders CT inconsistent with already the
weak principle of omniscience [10], and consequently with the law of excluded
middle, precluding interesting results in constructive reverse mathematics.

Forster [12] identifies that working in CIC allows assuming CT and its con-
sequences even under the presence of the law of excluded middle. This approach
has been used to develop the theory of many-one and truth-table reducibil-
ity [13], to give a proof of the Myhill isomorphism theorem [14] and a more
general treatment of computational back-and-forth arguments [21], to show that
random numbers defined using Kolmogorov complexity form a simple set [17], to
analyse Tennenbaum’s theorem regarding its constructive content [20], to give
computational proofs of Gödel’s first incompleteness theorem [23,24], and to
develop an extensive Coq library of undecidability proofs [18].

The first synthetic definition of oracle computability is due to Bauer [3], based
on continuous functionals in the effective topos. The first author introduced
a classically equivalent definition in his PhD thesis [11] based on joint work
with the second author. Subsequently, we have adapted this definition into one
constructively equivalent to Bauer’s definition [15]. All these previous definitions
however have in common that it is unclear how to derive an enumeration of
all oracle computable functionals from CT as used in [22,30], because they do
not reduce higher-order functionals to first-order functions. Recently, Swan has
suggested a definition of oracle computability based on modalities in univalent
type theory [40].

Future Work. With the present paper, we lay the foundation for several
future investigations concerning synthetic oracle computability in the context of
axioms like CT, both by improving on related projects and by tackling new chal-
lenges. First, a rather simple test would be the Kleene-Post theorem [27], estab-
lishing incomparable Turing degrees as already approximated in [22], assuming



Oracle Computability and Turing Reducibility in CIC 173

an enumeration of all oracle computations of their setting. Similarly, we plan to
establish Post’s theorem [36], connecting the arithmetical hierarchy with Turing
degrees. An interesting challenge would be a synthetic proof of the Friedberg-
Muchnik theorem [19,29], solving Post’s problem [35] concerning the existence
of undecidable Turing degrees strictly below the halting problem.

Acknowledgements. We want to thank Felix Jahn, Gert Smolka, Dominique
Larchey-Wendling, and the participants of the TYPES ’22 conference for many fruit-
ful discussions about Turing reducibility, as well as Martin Baillon, Yann Leray, Assia
Mahboubi, Pierre-Marie Pédrot, and Matthieu Piquerez for discussions about notions
of continuity. The central inspiration to start working on Turing reducibility in type
theory is due to Andrej Bauer’s talk at the Wisconsin logic seminar in February 2021.

A Glossary of Definitions

We collect some basic notations and definitions:

– P is the (impredicative) universe of propositions.
– Natural numbers: n : N ::= 0 | S n
– Booleans: b : B ::= true | false
– Unit type: 1 ::= �
– Sum type: X + Y ::= inlx | inry (x : X, y : Y )
– Option type: o : X? ::= None | Some x (x : X)
– Lists: l : X∗ ::= [ ] | x :: l (x : X)

List operations. We often rely on concatenation of of two lists l1++l2:

[ ]++l2 := l2 (x :: l1)++l2 := x :: (l1++l2)

Also, we use an inductive predicate Forall2: (X→Y →P)→X∗→Y ∗→P

Forall2 p [ ] [ ]
pxy Forall2 p l1 l2

Forall2 p (x :: l1) (y :: l2)

Characteristic Relation. The characteristic relation p̂:X→B→P of a predicate
p:X→P is introduced in Sect. 3 as

p̂ := λxb.

{
px if b = true

¬px if b = false.

Reducibility. �m is many-one reducibility, introduced in Sect. 6. �tt is truth-
table reducibility, introduced in Sect. 8. �T is Turing reducibility, introduced in
Sect. 3.



174 Y. Forster, D. Kirst, and N. Mück

Interrogations. The interrogation predicate σ ;R �qs ;as is introduced in Sect. 2.
It works on a tree σ:A∗→Q + O. We often also use trees taking an input, i.e.
τ : I→A∗→Q + O. Given σ, we denote the subtree starting at path l:A∗ with
σ@l := λl′. σ(l++l′).

Partial Functions. We use an abstract type of partial values over X, denoted
as PX, with evaluation relation � :PX→X→P. We set X⇀Y := X→PY and
use

– ret :X⇀X with ret x � x,
– >>=:PX→(X→PY )→PY with x>>= f � y ↔ ∃v. x � v ∧ fv � y,
– μ: (N→PB)→PN with μf � n ↔ fn � true ∧ ∀m < n. fm� false, and
– undef:PX with ∀v. undef 	 � v.

One can for instance implement PX as monotonic sequences f : N → X?,
i.e. with fn = Some x → ∀m ≥ n. fm = Some x and f � x := ∃n. fn = Some x.
For any implementation it is only crucial that the graph relation λxy.fx � y
for f :N⇀N is semi-decidable but cannot be proved decidable. Semi-decidability
induces a function ρ:PX→N→X?, which we write as ρnx with the properties
that x � v ↔ ∃n. ρnx = Some v and ρnx = Some v → ∀m ≥ n. ρmx = Some v.

B Extended Forms of Interrogations

B.1 Extended Interrogations with State

As an auxiliary notion, before introducing the stalling interrogations, we first
introduce extended interrogations with a state argument, but without stalling.
An extended tree is a function σ : S → A∗⇀(S × Q) + O. We define an inductive
extended interrogation predicate σ ; R �qs ; as ; s � s′ by:

σ ; R �[] ; [] ; s � s

σ ; R �qs ; as ; s � s′′ σ s′′ as � ask (s′, q) Rqa

σ ; R �qs++[q] ; as++[a] ; s � s′

A functional F mapping R:Q→A→P to a relation of type I→O→P is com-
putable via extended interrogations if there are a type S, an element s0 : S, and
a function τ : I→S→A∗⇀(S × Q) + O such that

∀R i o. FR i o ↔ ∃qs as s. τ i ; R �qs ; as ; s0 � s ∧ τ i s as � out o.

Note that we do not pass the question history to the function here, because
if necessary it can be part of the type S.

Lemma 37. Computable functionals are computable via extended interroga-
tions.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#eOracleComputable_equiv


Oracle Computability and Turing Reducibility in CIC 175

Proof. Let F be computable by τ . Set S to be any inhabited type with element
s0 and define

τ ′ i s l := τ i l >>=λx.

{
ret (ask (s, q)) if x = ask q

ret o if x = out o.
.

Then τ ′ computes F via extended interrogations. ��
Lemma 38. Functionals computable via extended interrogations are computable.

Proof. Let τ : I→S→A∗⇀(S × Q) + O compute F via extended interrogations.
Define τ ′:S→A∗→I→A∗⇀Q + O as

τ ′ s l i [] := τ i s l >>=

{
ret (ask q) if x = ask (e, q)
ret (out o) if x = out o,

τ ′ s l i (a :: as) := τ s l i>>=λx.

{
τ ′ s′ (l++[a]) i as if x = ask (s′, q)
ret (out o) if x = out o.

Then τ ′ s0 [] computes F . ��

B.2 Stalling Interrogations

We here give the left out proofs that stalling interrogations as described in Sect. 9
and interrogations are equivalent.

Lemma 39. Functionals computable via extended interrogations are computable
via stalling interrogations.

Proof. Let F be computable using a type S and element s0 by τ via extended
interrogations. We use the same type S and element s0 and define τ ′ to never
use stalling:

τ ′ i s l := τ i s l >>=λx.

{
ret (ask (s′,Some q)) if x = ask (s′, q)
ret (out o) if x = out o.

Then τ ′ computes F via stalling interrogations. ��
Lemma 40. Functionals computable via stalling interrogations are computable
via extended interrogations.

Proof. Take τ : I→S→A∗⇀(S × Q?) + O computing F via stalling interroga-
tions. We construct τ ′ i s as to iterate the function λs′. τ i s′ as of type
S⇀(S × Q?) + O. If ask (s′′,None) is returned, the iteration continues with s′′. If
ask (s,Some q) is returned, τ ′ i sas returns ask (s, q). If out o is returned, τ ′ i s as
returns out o as well.

We omit the technical details how to implement this iteration process using
unbounded search μ : (N⇀B)⇀N. ��

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#eOracleComputable_equiv
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#sOracleComputable_equiv
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#sOracleComputable_equiv


176 Y. Forster, D. Kirst, and N. Mück

B.3 Proofs of Closure Properties

We here give the proofs that executing two computable functionals one after
the other, composing computable functionals, and performing an unbounded
search on a computable functional are all computable operations as stated in
Sect. 4. We explain the tree constructions, which are always the core of the argu-
ment. The verification of the trees are then tedious but relatively straightforward
inductions, we refer to the Coq code for full detail.

Proof (of Lemma 7). Let τ1 compute F1 maping relations R:Q→A→P to rela-
tions of type I→O′→P, and τ2 compute F2 mapping relations R:Q→A→P to
relations of type (I × O′)→O→P.

To compute the functional mapping an oracle R:Q→A→P to a computation
λio.∃o′:O′. F1 R i o′ ∧ F2 R (i, o′) o of type I→O→P we construct a stalling tree
with state type (O′ × N)? and starting state None. The intuition is that the state
s remains None as long as τ1 asks questions, and once an output o′ is produced
we save it and the number of questions that were asked until then in the state,
which remains unchanged after. Then, τ2 can ask questions, but since as contains
also answers to questions of τ1, we drop the first n before passing it to τ2.

Formally, the tree takes as arguments the input i, state s ans answer list as,
and returns
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ret (ask (None, Some q)) if s = None, τ1 i as � Some (ask q)

ret (ask (Some (o′, |as|),None)) if s = None, τ1 i as � Some (out o′)

ret (ask (Some (o′, n), Some q)) if s = Some (o′, n), τ2 (i, o′) (as ↑n) � Some (ask q)

ret (ask (Some (o′, n), Some q)) if s = Some (o′, n), τ2 (i, o′) (as ↑n) � Some (out o)

where as ↑n drops the first n elements of as. Note that formally, we use bind to
analyse the values of τ1 and τ2, but just write a case analysis on paper. ��
Proof (of Lemma 8). Let τ1 compute F1 mapping relations R:Q→A→P to rela-
tions X→Y →P, and τ1 compute F2 mapping relations R:X→Y →P to rela-
tions I→O→P. We construct a stalling tree τ computing a functional mapping
R:Q→A→P to λio. F2 (F1R) i o of type I→O→P.

Intuitively, we want to execute τ2. Whenever it asks a question x, we record
it and execute τ1 x to produce an answer. Since the answer list as at any point
will also contain answers of the oracle produces for any earlier question x′ of τ2,
we record furthermore how many questions were already asked to the oracle to
compute τ1x.

As state type, we thus use (X × Y )∗ × (X × N)?, where the first compo-
nent remembers questions and answers for τ2, and the second component indi-
cates whether we are currently executing τ2 (then it is None), or τ1, when it is
Some (x, n) to indicate that on answer list as we need to run τ1 x (as ↓n), where
as ↓n contains the last n elements of as. The initial state is ([ ],None).



Oracle Computability and Turing Reducibility in CIC 177

We define τ to take as arguments an input i, a state (t, z), and an answer
list as and return

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

out o if x = None, τ2 i (mapπ2 t) � out o

ask (t,Some (x, 0),None) if x = None, τ2 i (mapπ2 t) � ask x

ask (t,Some (x,S n),Some q) if x = Some (x, n), τ1 x (as ↑n) � ask q

ask (t++[(x, y)],None,None) if x = Some (x, n), τ1 x (as ↑n) � out y

Intuitively, when we are in the mode to execute τ2 and it returns an output,
we return the output. If it returns a question x, we change mode and stall. When
we are in the mode to execute τ1 to produce an answer for x, taking the last
n given answers into account and it asks a question q, we ask the question and
indicate that now one more answer needs to be taken into account. If it returns
an output y, we add the pair [(x, y)] to the question answer list for τ1, change
the mode back to execute τ2, and stall. ��
Proof (of Lemma 9). We define a tree τ computing the functional mapping
R: (I × N)→B→P to the following relation of type I→N→P: λin. R (i, n) true ∧
∀m < n. R (i,m) false.

τ i as :=

{
ret (out i) if as[i] = true

ret (ask (i, |as |)) if ∀j. as[j] = false

Note that a function find as computing the smallest i such that as at position i
is true, and else returning None is easy to implement.

Intuitively, we just ask all natural numbers as questions in order. On answer
list l with length n, this means we have asked [0, . . . , n − 1]. We check whether
for one of these the oracle returned true, and else ask n = |l|. ��

C Relation to Bauer’s Turing Reducibility

We show the equivalence of the modulus continuity as defined in Lemma 1 with
the order-theoretic characterisation used by Bauer [3]. The latter notion is more
sensible for functionals acting on functional relations, so we fix some

F : (Q � A) → (I � O)

where X � Y denotes the type of functional relations X → Y → P. To simplify
proofs and notation, we assume extensionality in the form that we impose R = R′

for all R,R′ : X � Y with Rxy ↔ R′xy for all x : X and y : Y .
To clarify potential confusion upfront, note that Bauer does not represent

oracles on N as (functional) relations but as pairs (X,Y ) of disjoint sets with
X,Y : N → P, so his oracle computation operate on such pairs. However, since
such a pair (X,Y ) gives rise to a functional relation R : N � B by setting
R nb := (X n ∧ b = true) ∨ (Y n ∧ b = false) and, conversely, R : N � B induces



178 Y. Forster, D. Kirst, and N. Mück

a pair (X,Y ) via X n := R n true and Y n := R n false, Bauer’s oracle function-
als correspond to our specific case of functionals (N�B)→(N�B). He then
describes the computable behaviour of an oracle functional by imposing conti-
nuity and a computational core operating on disjoint pairs (X,Y ) of enumerable
sets that the original oracle functional factors through, which in our chosen app-
roach correspond to the existence of computation trees. So while the overall
setup of our approach still fits to Bauer’s suggestion, we now show that our
notion of continuity is strictly stronger than his by showing the latter equivalent
to modulus continuity.

Informally, Bauer’s notion of continuity requires that F preserves suprema,
which given a non-empty directed set : (Q � A) → P of functional relations
requires that F (

⋃
R∈S R) =

⋃
R∈S F R, i.e. that the F applied to the union of S

should be the union of F applied to each R in S. Here directedness of S means
that for every R1, R2 ∈ S there is also R3 ∈ S with R1, R2 ⊆ R3, which ensures
that the functional relations included in S are compatible so that the union of
S is again a functional relation.

Lemma 41. If F is modulus-continuous, then it preserves suprema.

Proof. First, we observe that F is monotone, given that from F R i o we obtain
some modulus L : Q∗ that directly induces F R′ i o for every R′ with R ⊆ R′.

So now S be directed and non-empty, we show both inclusions separately.
First

⋃
R∈S F R ⊆ F (

⋃
R∈S R) follows directly from monotonicity, since if

F R i o for some R ∈ S we also have F (
⋃

R∈S R) i o given R ⊆ ⋃
R∈S R.

Finally assuming F (
⋃

R∈S R) i o, let L : Q∗ be a corresponding modulus, so
in particular L ⊆ dom(

⋃
R∈S R). Using directedness (and since S is non-empty),

by induction on L we can find RL ∈ S such that already L ⊆ dom(RL). But
then also F RL i o since L is a modulus and RL agrees with

⋃
R∈S R) on L. ��

Lemma 42. If F is preserves suprema, then it is modulous continuous.

Proof. Again, we first observe that F is monotone, given that for R ⊆ R′ the
(non-empty) set S := {R,R′} is directed and hence if F R i o we obtain F R′ i o
since R′ =

⋃
R∈S R.

Now assuming F R i o we want to find a corresponding modulus. Consider

S := {RL | L ⊆ dom(R)}

where RL q a := q ∈ L ∧ R q a, so S contains all terminating finite subrelations
of R. So by construction, we have R =

⋃
R∈S R and hence F (

⋃
R∈S R) i o, thus

since F preserves suprema we obtain L ⊆ dom(R) such that already F RL i o.
The remaining part of L being a modulus for F R i o follows from monotonicity.
��

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#modulus_continuous_to_Bauer_continuous
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.OracleComputability.html#Bauer_continuous_to_continuous


Oracle Computability and Turing Reducibility in CIC 179

References

1. Bauer, A.: First steps in synthetic computability theory. Electron. Not. Theoret.
Comput. Sci. 155, 5–31 (2006). https://doi.org/10.1016/j.entcs.2005.11.049

2. Bauer, A.: On fixed-point theorems in synthetic computability. Tbilisi Math. J.
10(3), 167–181 (2017). https://doi.org/10.1515/tmj-2017-0107

3. Bauer, A.: Synthetic mathematics with an excursion into computability theory
(slide set). University of Wisconsin Logic seminar (2020). http://math.andrej.com/
asset/data/madison-synthetic-computability-talk.pdf

4. Bauer, A.: Formalizing invisible mathematics. In: Workshop on Machine Assisted
Proofs, Institute for Pure and Applied Mathematics (IPAM) at the University
of California in Los Angeles (UCLA), 13–17 February 2023 (2023). https://www.
youtube.com/watch?v=wZSvuCJBaFU

5. Bridges, D., Richman, F.: Varieties of Constructive Mathematics, vol. 97. Cam-
bridge University Press (1987). https://doi.org/10.1017/CBO9780511565663

6. Coquand, T., Huet, G.P.: The calculus of constructions. Inf. Comput. 76(2/3),
95–120 (1988). https://doi.org/10.1016/0890-5401(88)90005-3

7. Davis, M.D.: Computability and Unsolvability. McGraw-Hill Series in Information
Processing and Computers. McGraw-Hill (1958)

8. Dekker, J.C.E.: A theorem on hypersimple sets. Proc. Am. Math. Soc. 5, 791–796
(1954). https://doi.org/10.1090/S0002-9939-1954-0063995-6

9. Escardo, M.: Continuity of Gödel’s system T definable functionals via effectful
forcing. Electron. Not. Theoret. Comput. Sci. 298, 119–141 (2013). https://doi.
org/10.1016/j.entcs.2013.09.010

10. Forster, Y.: Church’s thesis and related axioms in Coq’s type theory. In: Baier,
C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Conference on Computer
Science Logic (CSL 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 183, pp. 21:1–21:19. Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CSL.2021.21.
https://drops.dagstuhl.de/opus/volltexte/2021/13455

11. Forster, Y.: Computability in constructive type theory. Ph.D. thesis, Saarland Uni-
versity (2021). https://doi.org/10.22028/D291-35758

12. Forster, Y.: Parametric Church’s thesis: synthetic computability without choice. In:
Artemov, S., Nerode, A. (eds.) LFCS 2022. LNCS, vol. 13137, pp. 70–89. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-93100-1_6

13. Forster, Y., Jahn, F.: Constructive and synthetic reducibility degrees: post’s prob-
lem for many-one and truth-table reducibility in Coq. In: Klin, B., Pimentel, E.
(eds.) 31st EACSL Annual Conference on Computer Science Logic (CSL 2023).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 252, pp. 21:1–
21:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2023). https://doi.org/10.4230/LIPIcs.CSL.2023.21. https://drops.dagstuhl.de/
opus/volltexte/2023/17482

14. Forster, Y., Jahn, F., Smolka, G.: A computational cantor-Bernstein and Myhill’s
isomorphism theorem in constructive type theory. In: CPP 2023–12th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, pp. 1–8. ACM,
Boston, United States, January 2023. https://doi.org/10.1145/3573105.3575690.
https://inria.hal.science/hal-03891390

15. Forster, Y., Kirst, D.: Synthetic Turing reducibility in constructive type theory. In:
28th International Conference on Types for Proofs and Programs (TYPES 2022)
(2022). https://types22.inria.fr/files/2022/06/TYPES_2022_paper_64.pdf

https://doi.org/10.1016/j.entcs.2005.11.049
https://doi.org/10.1515/tmj-2017-0107
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
http://math.andrej.com/asset/data/madison-synthetic-computability-talk.pdf
https://www.youtube.com/watch?v=wZSvuCJBaFU
https://www.youtube.com/watch?v=wZSvuCJBaFU
https://doi.org/10.1017/CBO9780511565663
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1090/S0002-9939-1954-0063995-6
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.1016/j.entcs.2013.09.010
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://drops.dagstuhl.de/opus/volltexte/2021/13455
https://doi.org/10.22028/D291-35758
https://doi.org/10.1007/978-3-030-93100-1_6
https://doi.org/10.4230/LIPIcs.CSL.2023.21
https://drops.dagstuhl.de/opus/volltexte/2023/17482
https://drops.dagstuhl.de/opus/volltexte/2023/17482
https://doi.org/10.1145/3573105.3575690
https://inria.hal.science/hal-03891390
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_64.pdf


180 Y. Forster, D. Kirst, and N. Mück

16. Forster, Y., Kirst, D., Smolka, G.: On synthetic undecidability in Coq, with an
application to the Entscheidungsproblem. In: Proceedings of the 8th ACM SIG-
PLAN International Conference on Certified Programs and Proofs - CPP 2019.
ACM Press (2019). https://doi.org/10.1145/3293880.3294091. https://doi.org/10.
1145/3293880.3294091

17. Forster, Y., Kunze, F., Lauermann, N.: Synthetic kolmogorov complexity in Coq.
In: Andronick, J., de Moura, L. (eds.) 13th International Conference on Inter-
active Theorem Proving (ITP 2022). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 237, pp. 12:1–12:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.
12. https://drops.dagstuhl.de/opus/volltexte/2022/16721

18. Forster, Y., et al.: A Coq library of undecidable problems. In: The Sixth Inter-
national Workshop on Coq for Programming Languages (CoqPL 2020) (2020).
https://github.com/uds-psl/coq-library-undecidability

19. Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees of
unsovlability (solution of Post’s problem), 1944. Proc. Nat. Acad. Sci. 43(2), 236–
238 (1957). https://doi.org/10.1073/pnas.43.2.236. https://doi.org/10.1073/pnas.
43.2.236

20. Hermes, M., Kirst, D.: An analysis of Tennenbaum’s theorem in constructive type
theory. In: Felty, A.P. (ed.) 7th International Conference on Formal Structures for
Computation and Deduction, FSCD 2022, 2–5 August 2022, Haifa, Israel. LIPIcs,
vol. 228, pp. 9:1–9:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.FSCD.2022.9

21. Kirst, D.: Computational back-and-forth arguments in constructive type theory.
In: Andronick, J., de Moura, L. (eds.) 13th International Conference on Inter-
active Theorem Proving (ITP 2022). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 237, pp. 22:1–22:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.
22. https://drops.dagstuhl.de/opus/volltexte/2022/16731

22. Kirst, D., Forster, Y., Mück, N.: Synthetic versions of the kleene-post and
post’s theorem. In: 28th International Conference on Types for Proofs and
Programs (TYPES 2022) (2022). https://types22.inria.fr/files/2022/06/TYPES_
2022_paper_65.pdf

23. Kirst, D., Hermes, M.: Synthetic undecidability and incompleteness of first-order
axiom systems in Coq: extended version. J. Autom. Reason. 67(1), 13 (2023).
https://doi.org/10.1007/s10817-022-09647-x

24. Kirst, D., Peters, B.: Gödel’s theorem without tears - essential incompleteness
in synthetic computability. In: Klin, B., Pimentel, E. (eds.) 31st EACSL Annual
Conference on Computer Science Logic, CSL 2023, 13–16 February 2023, Warsaw,
Poland. LIPIcs, vol. 252, pp. 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2023). https://doi.org/10.4230/LIPIcs.CSL.2023.30

25. Kleene, S.C.: Recursive functionals and quantifiers of finite types I. Trans. Am.
Math. Soc. 91(1), 1 (1959). https://doi.org/10.2307/1993145. https://www.jstor.
org/stable/1993145?origin=crossref

26. Kleene, S.C.: Introduction to Metamathematics, vol. 483. Van Nostrand, New York
(1952)

27. Kleene, S.C., Post, E.L.: The upper semi-lattice of degrees of recursive unsolvabil-
ity. Ann. Math. 59(3), 379 (1954). https://doi.org/10.2307/1969708

28. Kreisel, G.: Mathematical logic. Lect. Mod. Math. 3, 95–195 (1965). https://doi.
org/10.2307/2315573

https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.4230/LIPIcs.ITP.2022.12
https://doi.org/10.4230/LIPIcs.ITP.2022.12
https://drops.dagstuhl.de/opus/volltexte/2022/16721
https://github.com/uds-psl/coq-library-undecidability
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.1073/pnas.43.2.236
https://doi.org/10.4230/LIPIcs.FSCD.2022.9
https://doi.org/10.4230/LIPIcs.ITP.2022.22
https://doi.org/10.4230/LIPIcs.ITP.2022.22
https://drops.dagstuhl.de/opus/volltexte/2022/16731
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_65.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_65.pdf
https://doi.org/10.1007/s10817-022-09647-x
https://doi.org/10.4230/LIPIcs.CSL.2023.30
https://doi.org/10.2307/1993145
https://www.jstor.org/stable/1993145?origin=crossref
https://www.jstor.org/stable/1993145?origin=crossref
https://doi.org/10.2307/1969708
https://doi.org/10.2307/2315573
https://doi.org/10.2307/2315573


Oracle Computability and Turing Reducibility in CIC 181

29. Muchnik, A.A.: On strong and weak reducibility of algorithmic problems. Sibirskii
Matematicheskii Zhurnal 4(6), 1328–1341 (1963)

30. Mück, N.: The arithmetical hierarchy, oracle computability, and Post’s theorem in
synthetic computability. Bachelor’s thesis, Saarland University (2022). https://ps.
uni-saarland.de/~mueck/bachelor.php

31. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of
Natural Numbers. Elsevier (1992)

32. van Oosten, J.: A combinatory algebra for sequential functionals of finite type. In:
Models and Computability, pp. 389–406. Cambridge University Press, June 1999.
https://doi.org/10.1017/cbo9780511565670.019

33. van Oosten, J.: Partial combinatory algebras of functions. Notre Dame J. Formal
Logic 52(4), 431–448 (2011). https://doi.org/10.1215/00294527-1499381

34. Paulin-Mohring, C.: Inductive definitions in the system Coq rules and properties.
In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345.
Springer, Heidelberg (1993). https://doi.org/10.1007/BFb0037116

35. Post, E.L.: Recursively enumerable sets of positive integers and their decision prob-
lems. Bull. Am. Math. Soc. 50(5), 284–316 (1944). https://doi.org/10.1090/S0002-
9904-1944-08111-1

36. Post, E.L.: Degrees of recursive unsolvability - preliminary report. Bull. Am. Math.
Soc. 54(7), 641–642 (1948)

37. Richman, F.: Church’s thesis without tears. J. Symbolic Logic 48(3), 797–803
(1983). https://doi.org/10.2307/2273473

38. Rogers, H.: Theory of Recursive Functions and Effective Computability (1987)
39. Swan, A., Uemura, T.: On Church’s thesis in cubical assemblies. arXiv preprint

arXiv:1905.03014 (2019)
40. Swan, A.W.: Oracle modalities. In: Second International Conference on Homotopy

Type Theory (HoTT 2023) (2023). https://hott.github.io/HoTT-2023/abstracts/
HoTT-2023_abstract_35.pdf

41. The Coq Development Team: The Coq proof assistant, June 2023. https://doi.org/
10.5281/zenodo.8161141

42. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics. Studies in Logic
and the Foundations of Mathematics, vol. i, 26 (1988)

43. Turing, A.M.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. 2(1),
161–228 (1939). https://doi.org/10.1112/plms/s2-45.1.161

https://ps.uni-saarland.de/~mueck/bachelor.php
https://ps.uni-saarland.de/~mueck/bachelor.php
https://doi.org/10.1017/cbo9780511565670.019
https://doi.org/10.1215/00294527-1499381
https://doi.org/10.1007/BFb0037116
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.2307/2273473
http://arxiv.org/abs/1905.03014
https://hott.github.io/HoTT-2023/abstracts/HoTT-2023_abstract_35.pdf
https://hott.github.io/HoTT-2023/abstracts/HoTT-2023_abstract_35.pdf
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1112/plms/s2-45.1.161


Experimenting with an
Intrinsically-Typed Probabilistic
Programming Language in Coq

Ayumu Saito1,2 and Reynald Affeldt2(B)

1 Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Tokyo, Japan

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
reynald.affeldt@aist.go.jp

Abstract. Although the formalization of probabilistic programs already
has several applications in the fields of security proofs and artificial intel-
ligence, formal verification experiments are still underway to support the
many features of probabilistic programming. We report on the formaliza-
tion in the Coq proof assistant of a syntax and a denotational semantics
for a probabilistic programming language with sampling, scoring, and
normalization. We use dependent types in a crucial way since our syntax
is intrinsically-typed and since the semantic values are essentially depen-
dent records. Thanks to the features of Coq, we can use notations that
hide the details of type inference when writing examples. The resulting
formalization is usable to reason about simple probabilistic programs.

1 Introduction

The formalization of probabilistic programs [9] already has several applications in
security (e.g., [8]) or artificial intelligence (e.g., [7]). However, the support to for-
malize all the features of probabilistic programs is still lacking. For example, the
formalization of equational reasoning by Heimerdinger and Shan [14] is axiom-
atized; the study of nested queries and recursion by Zhang and Amin [30] relies
on a partially axiomatized formalization of measure theory. Efforts are underway
to improve the formal foundations of probabilistic programming languages. For
example, Affeldt et al. have been formalizing in the Coq proof [29] assistant
s-finite kernels (which are essentially families of measures that lend themselves
well to composition [23,24]) to represent the semantics of a first-order probabilis-
tic programming language [4]. Hirata et al. have been formalizing quasi-Borel
spaces in Isabelle/HOL to handle higher-order features [15,16].

In this paper, we address the problem of the formalization of the syntax and
the denotational semantics of a probabilistic programming language, to reason
about programs with sampling, scoring, and normalization, in a proof assistant
based on dependent type theory. In such programs, semantic values are typically
measurable functions or s-finite kernels. However, a mere formalization of s-finite
kernels (such as [4]) does not provide a practical mean to reason about programs
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 182–202, 2023.
https://doi.org/10.1007/978-981-99-8311-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_9&domain=pdf
http://orcid.org/0000-0002-3908-0496
http://orcid.org/0000-0002-2327-953X
https://doi.org/10.1007/978-981-99-8311-7_9


Intrinsically-Typed Probabilistic Programming Language in Coq 183

in the absence of syntax. Indeed, criteria that are easily thought of as syntactic
(e.g., the fact that a variable is not free in an expression) need to be recast into
semantic terms [4, Sect. 7.1.2]. The evaluation of variables needs to be expressed
semantically as measurable functions that access the execution environment by
indices akin to de Bruijn indices (see [4, Sections 7.1.2 and 7.2.2]). This situation
calls for more formalization experiments of syntax and semantics of probabilistic
programming languages.

In the following we provide a formal syntax and denotational semantics for
sfPPL, a probabilistic programming language based on s-finite kernels. For
syntax formalization, we choose intrinsic typing by which the typing rules of
the language are embedded into the syntax. This guarantees that one can only
write well-typed programs but requires a proof assistant based on dependent
type theory such as Coq or Agda. The idea of intrinsic-typing is well-known
but has not been applied to a probabilistic programming language as far as we
know. Besides syntax, we also use dependent types in a crucial way to represent
semantic values of sfPPL, which are either a measurable function (a dependent
pair of a function and a proof that it is measurable) or an s-finite kernel. In
addition to dependent types, we exploit other features of Coq to provide a
concrete syntax by using bidirectional hints [28], canonical structures [13], and
custom entries [27]. This provides a generic approach to represent a programming
language inside Coq with intrinsic-typing and a user-friendly syntax. Using this
approach, we eventually investigate the formalization of reusable lemmas for the
verification of probabilistic programs with sfPPL.

Outline. We complete our review of related work in Sect. 2. Section 3 is for
preliminaries on measure theory and its formalization in Coq. Section 4 is an
overview of the syntax, the typing rules, and the semantics of sfPPL. We
split the formalization of the syntax of sfPPL by first explaining the idea
of intrinsically-typed concrete syntax using a toy language in Sect. 5. We then
explain the formalization of the syntax of sfPPL in Sect. 6 and its denotational
semantics in Sect. 7. We experiment with the resulting framework by verifying
simple programs in Sect. 8 and conclude in Sect. 9.

2 Related Work

To the best of our knowledge, our experiment is the first formalization of a
probabilistic programming language using an intrinsically-typed syntax.

The formalization of probabilistic programs in proof assistants is a long-
standing topic. In seminal work in HOL, Hurd verifies the Miller-Rabin proba-
bilistic primality test [17]. In Coq, Audebaud and Paulin-Mohring verify ran-
domized algorithms [6] but the measure theory they rely on has some limitations
(discrete distributions only, etc.). More recent applications have been targeting
artificial intelligence. Bagnall and Stewart encode in Coq a denotational seman-
tics in which a program is interpreted as the expected value of a real number-
valued valuation function w.r.t. the distribution of its results [7]; this work is



184 A. Saito and R. Affeldt

limited to discrete distributions. In Lean, Tassarotti et al. represent stochas-
tic procedures using the Giry monad to formalize PAC learnability for decision
stumps [26]. These pieces of work do not feature the combined use of sampling
and scoring. We already mentioned in Sect. 1 formalization work in Coq partly
relying on axiomatization [14,30]. To address this problem, Affeldt et al. formal-
ize s-finite kernels in Coq, allowing for the support of sampling, scoring, and
normalization, without being limited to discrete distributions [4]. They apply
their formalization to the encoding of the semantics of a probabilistic program-
ming language. One practical limitation is that they use ad hoc Coq notations
to represent variables as De Bruijn indices. In Isabelle/HOL, Hirata et al.
formalize quasi-Borel spaces to handle sampling and higher-order features [15],
to which they recently add scoring [16]. These last pieces of work do not provide
an encoding of syntax.

The encoding of intrinsically-typed syntax in proof assistants based on depen-
dent type theory has also attracted much interest. Benton et al. provide an his-
torical account [10, Sect. 1] along with applications in Coq to a simply-typed
language and to the polymorphic lambda calculus. Indeed, this technique is often
applied to foundational calculi, e.g., system F in Agda [12]. In Coq, Affeldt and
Sakaguchi apply it to a subset of the C programming language [5]. Intrinsically-
typed syntax allows for a succinct handling of the many integral types of C.
While the encoding of well-formed type contexts in C is a source of difficulty,
the absence of let-in expressions simplifies the encoding of an intrinsically-typed
syntax for C. Poulsen et al. propose to use intrinsically-typed syntax to write
in Agda definitional interpreters for imperative languages. They explain how to
deal with mutable state and apply this approach to a subset of Java [20]. Besides
encoding of semantics, intrinsically-typed syntax also has other applications such
as compiler calculation [18]. We are however not aware of related work applying
intrinsically-typed syntax to a probabilistic programming language.

3 Preliminaries: Measure Theory in MathComp-Analysis

3.1 Reminder About Measure Theory

A σ-algebra on a set X is a collection of subsets of X that contains ∅ and that is
closed under complement and countable union. We note ΣX for such a σ-algebra
and call measurable sets the sets in ΣX . For example, the standard σ-algebra on
R is the smallest σ-algebra containing the intervals: the Borel sets. A measurable
space is a set together with the σ-algebra defining the measurable sets. Given
two σ-algebras ΣX and ΣY , the product σ-algebra is the smallest σ-algebra
generated by {A × B | A ∈ ΣX , B ∈ ΣY }.

A (non-negative) measure is a function μ : ΣX → [0, ∞] such that μ(∅) = 0
and μ(

⋃
i Ai) =

∑
i μ(Ai) for pairwise-disjoint measurable sets Ai, where the

sum is countable. This property is called σ-additivity. The Dirac measure δx is
defined by δx(U) = [x ∈ U ] (using the Iverson bracket notation). A probability
measure on ΣX is a measure μ such that μ(X) = 1.



Intrinsically-Typed Probabilistic Programming Language in Coq 185

If ΣX and ΣY are two σ-algebras, a measurable function f : X → Y is
such that, for all measurable subsets B ∈ ΣY , the inverse image is a measurable
subset f−1(B) ∈ ΣX . If ΣD is a σ-algebra, we can integrate a measurable
function f : D → [0, ∞] w.r.t. a measure μ over D to get an extended real
number denoted by

∫
x∈D

f x(dμ).
A kernel X � Y is a function k : X → ΣY → [0, ∞] such that for all x, k x

is a measure and for all measurable sets U , x �→ k x U is a measurable function.
A kernel k : X � Y is a finite kernel when there is a finite bound r such that for
all x, k x Y < r; this is a uniform upper bound, i.e., the same r for all x. When
for all x, k x Y = 1, we talk about a probability kernel.

A kernel k : X � Y is an s-finite kernel when there is a sequence s of finite
kernels such that k =

∑∞
i=0 si. Let us denote by X s-fin Y the type of s-finite

kernels. Given a kernel l : X � Y and a kernel k : X × Y � Z, the composition
of the kernel l and of the kernel k is x, U �→ ∫

y
k (x, y) U(d l x).

3.2 Basics of MathComp-Analysis and Its Measure Theory

This paper relies on MathComp-Analysis [1], a library for classical analysis1
in Coq that provides among others a formalization of measure theory including
s-finite kernels.

The type set T is for sets of objects of type T. The set of all the objects
of type T is denoted by setT : set T. The type \bar R is the type R extended
with two infinity elements. It is typically used when R is a numeric type. In
particular, the numeric type realType corresponds to real numbers, so that when
the type of R is realType, R corresponds to R and \bar R corresponds to R =
R∪{+∞, −∞}. The expression %:R injects a natural number into R, %:E injects
a real number into R. Non-negative numeric types are noted {nonneg R} where
R is a numeric type. Given e : {nonneg R}, e%:num is the projection of type R.
A function returning unconditionally c is represented by cst c.

σ-algebra’s are represented by objects of type measurableType d where d is a
“display parameter” [2, Sect. 3.2.1]. Given T of type measurableType d and U of
type set T, measurable U asserts that U belongs to the σ-algebra corresponding
to T. The parameter d controls the display of the measurable predicate, so that
measurable U is printed as d.-measurable U. The display mechanism is useful to
disambiguate goals with several σ-algebras [2, Sect. 3.4]. For example, the display
of the product of two measurable types with displays d1 and d2 is a measurable
type with display (d1, d2).-prod.

Given T of type measurableType d, a non-negative measure on T is denoted
by {measure set T -> \bar R}, where R has type realType. The Dirac measure is
denoted by dirac a with notation \d_a. The type of a R-valued probability mea-
sure over the measurable type T is probability T R. We write measurable_fun D f
for a measurable function f with domain D. A kernel f : X � Y (resp. an s-finite
kernel f : X s-fin Y ) is noted R.-ker X ~> Y (resp. R.-sfker X ~> Y) (R indicates
the support type of extended real numbers).
1 MathComp-Analysis adds to the constructive logic of Coq functional and proposi-

tional extensionality and the axiom of constructive indefinite description [3, Sect. 5].



186 A. Saito and R. Affeldt

4 Probabilistic Programming Language Using s-Finite
Kernels

Before entering the details of formalization, we explain the syntax and the seman-
tics of sfPPL, a probabilistic programming language based on s-finite kernels.
The syntax corresponds to [25, Sect. 3] [23, Sect. 3.1] [24, Sect. 4.1, 4.3]. The
semantics comes from [23,24]. It is a simplification because we do not formalize
a generic notion of sum types.

The main specificity of sfPPL types is a type for probability distributions:

A ::=U | B | R | P (A) | A1 × A2

The syntax U is for a type with one element, B for boolean numbers, R for real
numbers, P (A) for distributions over A, A1 × A2 for the cartesian product.

The expressions of sfPPL extend the expressions of a first-order func-
tional language with three instructions specific to probabilistic programming
languages:

e ::= tt | b | r | f(e1, . . . , en) | (e1, e2) | π1(e) | π2(e)
if e then e1 else e2 | x | return e | let x := e1 in e2 |
sample(e) | score(e) | normalize(e)

The syntax tt is for the element of type U, b for boolean numbers, r for real num-
bers. All measurable functions (and arithmetic operations) can be introduced as
constants with the syntax f(e1, . . . , en). Pairs are (e1, e2), π1 and π2 access their
projections. If-then-else branching is self-explanatory. Variables are ranged over
by x (y, z, etc.). Last we have return, let-in expressions, and the three instruc-
tions specific to probabilistic programming languages: sampling (from a proba-
bility measure), scoring (to record that a datum was observed as being drawn
from a probability distribution, the parameter is the density of the probability
distribution), and normalization (of a measure into a probability measure).

Typing judgments distinguish deterministic and probabilistic expressions.
Typing environments (hereafter, contexts) are tuples (x1 : A1; . . . ; xn : An)
ranged over by Γ . The typing judgment is Γ �D e : A for deterministic expres-
sions and Γ �P e : A for probabilistic ones. We reproduce here the typing rules
for the basic datatypes, constants, products, projections, and variables.

Γ �D tt : U
b ∈ B

Γ �D b : B
r ∈ R

Γ �D r : R
Γ �D ei : Ai

Γ �D f(e1, . . . , en) : A f is measurable

Γ �D e1 : A1 Γ �D e2 : A2
Γ �D (e1, e2) : A1 × A2

Γ �D e : A1 × A2
Γ �D πi(e) : Ai

x /∈ dom(Γ ′)
Γ, x : A, Γ ′ �D x : A

Γ, Γ ′ �z e : A0 x /∈ dom(Γ ), x /∈ dom(Γ ′)
Γ, x : A1, Γ ′ �z e : A0

z ∈ {D,P}

These typing rules are mostly about deterministic expressions except the weak-
ening rule that also applies to probabilistic expressions.



Intrinsically-Typed Probabilistic Programming Language in Coq 187

The typing rules for the other instructions illustrate the interplay between
deterministic and probabilistic expressions. For example, return turns a deter-
ministic expression into a probabilistic one. Note that we assume that normalize
returns a default distribution when the normalization constant is 0 or ∞.

Γ �D e : B Γ �z e1 : A Γ �z e2 : A
Γ �z if e then e1 else e2 : A z ∈ {D,P}

Γ �D e : A
Γ �P return e : A

Γ �P e1 : A1 Γ, x : A1 �P e2 : A2
Γ �P let x := e1 in e2 : A2

Γ �D e : P (A)
Γ �P sample(e) : A

Γ �D e : R
Γ �P score(e) : U

Γ �P e : A
Γ �D normalize(e) : P (A)

Let us denote the denotational semantics of sfPPL by a function [[·]] that
interprets the syntax of types, of contexts, and of typing judgments resp. to mea-
surable spaces, products of measurable spaces, and measurable functions or s-
finite kernels. For example, the measurable space corresponding to R is [[R]], the
set R of real numbers with its Borel sets. A context Γ = (x1 : A1; . . . ; xn : An)
is interpreted by the product space [[Γ ]] def=

∏n
i=1 [[Ai]]. Deterministic expressions

Γ �D e : A are interpreted by measurable functions [[Γ ]] → [[A]] and probabilis-
tic expressions Γ �P e : A are interpreted by s-finite kernels [[Γ ]] s-fin [[A]]. In
particular, the semantics of [[let x := e1 in e2]] is the composition (see Sect. 3.1)
of a kernel [[Γ ]] s-fin [[A1]] corresponding to e1 and a kernel [[Γ ]] × [[A1]] s-fin [[A2]]
corresponding to e2; the result is a kernel of type [[Γ ]] s-fin [[A2]] [23].

5 Intrinsically-Typed Concrete Syntax for a Toy
Language

We recall the notion of intrinsically-typed syntax and introduce the notion of
intrinsically-typed concrete syntax. For this purpose, we use a subset of sfPPL
(Sect. 4) where types are ranged over by A ::=U | R and expressions are ranged
over by e ::= tt | r | x | e1 + e2 | let x := e1 in e2. The symbol + represents
the addition of real numbers. Typing contexts and typing rules are defined as in
Sect. 4 except that both �D and �P become � because there are no probabilistic
expressions; the only difference is a typing rule for addition: Γ � e1 : R ∧ Γ �
e2 : R → Γ � e1 + e2 : R.

We explain an encoding of this toy language using intrinsically-typed syntax
in Sect. 5.1. This syntax enforces the property that only well-typed expressions
can be encoded but type-checking can only be automated for ground expressions.
In Sect. 5.2, we show that we can solve this problem using Coq’s canonical
structures. In Sect. 5.3, we explain how to give our toy language a readable
concrete syntax.

5.1 Intrinsically-Typed Syntax for a Toy Language

We formalize the basic types U and R as an inductive type and define a context
as a list of pairs of a string and of a type:



188 A. Saito and R. Affeldt

Inductive typ := Unit | Real. Definition ctx := seq (string * typ).

With intrinsically-typed syntax, the expressions are defined by an inductive type
indexed by a context and a type:

1 Inductive exp : ctx -> typ -> Type :=
2 | exp_unit g : exp g Unit
3 | exp_real g : R -> exp g Real
4 | exp_var g t str : t = lookup Unit g str -> exp g t
5 | exp_add g : exp g Real -> exp g Real -> exp g Real
6 | exp_letin g t1 t2 x : exp g t1 -> exp ((x, t1) :: g) t2 -> exp g t2.

The constructors exp_unit and exp_real build basic data structures. The con-
structor exp_var builds an expression exp g t where t is the type associated with
the string str in the context, as proved by the equality at line 4. In particular,
given a concrete type and a concrete context, this equality can be checked by the
Coq’s conversion rule using erefl. In the constructor exp_letin, a new bound
variable is introduced and the context is extended; this is the reason why con-
texts appear as an index of exp. We observe here that intrinsically-typed syntax
also means that expressions are well-scoped by construction.

We complete the encoding of the intrinsically-typed syntax by setting the
context and type parameters of constructors as implicit (using curly brackets):

1 Arguments exp_unit {g}.
2 Arguments exp_real {g}.
3 Arguments exp_var {g t}.
4 Arguments exp_add {g} &.
5 Arguments exp_letin {g} & {t1 t2}.

The & mark at lines 4 and 5 is a bidirectionality hint: it indicates that Coq should
first type-check g and propagate the information to type-check the remaining
arguments [28].

For example, here is the abstract syntax for let x := 1 in let y := 2 in x+y:

1 Example letin_add : exp [::] _ :=
2 exp_letin "x" (exp_real 1) (exp_letin "y" (exp_real 2)
3 (exp_add (exp_var "x" erefl) (exp_var "y" erefl))).

As intended, we only need to pass the outermost context (here the empty context
[::]) for this expression to type-check. Without bidirectionality hints, the above
expression would fail to type-check with the following error message:

The term "exp_var "x" (erefl (lookup Unit ?g1 "x"))" has type "exp ?g1
(lookup Unit ?g1 "x")" while it is expected to have type "exp ?g1 Real".

In other words, type-checking gets stuck on a hole ?g1 corresponding to the con-
text. This can be fixed by inserting an intermediate context, e.g., by replacing
the syntax for the variable x at line 3 by (@exp_var g _ "x" erefl)2 where g is

2 In Coq, @ disables implicit arguments.



Intrinsically-Typed Probabilistic Programming Language in Coq 189

the context [:: ("y", Real); ("x", Real)] but that somehow defeats the pur-
pose of intrinsically-typed syntax. As a side node, we observe that in Agda,
letin_add type-checks using a similar encoding without explicit bidirectionality
hints.

The intrinsically-typed syntax above allows for type-checking ground expres-
sions but fails to type-check expressions where string identifiers are parameters,
making it difficult to write generic statements about intrinsically-typed terms.

5.2 Canonical Structures for Intrinsically-Typed Syntax

We use canonical structures in the manner of Gonthier et al. [13, Sections 2.3
and 6.1] so that one can write easily generic statements about intrinsically-typed
expressions. The idea is to provide an alternative way to construct program
variables that triggers a search that builds the context along with type inference.

We define “tagged contexts” (T is a decidable type with an element t0):

Let ctx := seq (string * T). Structure tagged_ctx := Tag {untag : ctx}.

We define a structure find, parameterized by a string, that contains a tagged
context and a proof that the string is associated with some datum:

Structure find str t := Find {
ctx_of : tagged_ctx ;
ctx_prf : t = lookup (untag ctx_of) str}.

Then, we define an alternative way to build variables that is parameterized by
a find structure:

Definition exp_var’ str {t : typ} (g : find str t) :=
@exp_var (untag (ctx_of g)) t str (ctx_prf g).

The important point is the use of the projection ctx_of that will trigger a search
for an appropriate g : find str t. We still need to tell Coq how to search for
instances of find. There are two ways to instantiate this structure. The pair
(str, t) can be the head of the context, in which case the following lemma
provides a way to instantiate the second field of find:

Lemma ctx_prf_head str t g : t = lookup ((str, t) :: g) str.

Otherwise, the pair (str, t) might be in the tail of the context:

Lemma ctx_prf_tail str t g str’ t’ : str’ != str ->
t = lookup g str -> t = lookup ((str’, t’) :: g) str.

To account for these two situations, we introduce two definitions that unfold to
Tag, the constructor for tagged contexts:

Definition recurse_tag h := Tag h.
Canonical found_tag h := recurse_tag h.



190 A. Saito and R. Affeldt

We associate the definition found_tag with the situation where the sought vari-
able is in the head of the context and recurse_tag with the other situation:

Canonical found str t g : find str t :=
@Find str t (found_tag ((str, t) :: g)) (@ctx_prf_head str t g).

Canonical recurse str t str’ t’ {H : infer (str’ != str)}
(g : find str t) : find str t :=

@Find str t (recurse_tag ((str’, t’) :: untag (ctx_of g)))
(@ctx_prf_tail str t (untag (ctx_of g)) str’ t’ H (ctx_prf g)).

(The identifier infer comes from MathComp-Analysis [1] and provides a proof
that two strings are different automatically using type classes.) Since found_tag
is canonical it will be searched for first, in case of success we will have inferred
a correct context, otherwise Coq unfolds found_tag to reveal recurse_tag and
tries to look for the variable in the tail of the context, recursively [13,31].

Using exp_var’ instead of exp_var, we can rewrite the example of the previous
section with just the assumption that the string identifiers are different:

Example letin_add (x y : string)
(xy : infer (x != y)) (yx : infer (y != x)) : exp [::] _ :=

exp_letin x (exp_real 1) (exp_letin y (exp_real 2)
(exp_add (exp_var’ x _) (exp_var’ y _))).

We can therefore use exp_var’ instead of exp_var; moreover the former can always
be rewritten into the latter:

Lemma exp_var’E str t (g : find str t) H : exp_var’ str g = exp_var str H.

5.3 Intrinsically-Typed Concrete Syntax with Custom Entries

Custom entries [27] are a feature of Coq to support autonomous grammars of
terms. The definition of a grammar for our toy language starts by declaring an
identifier for the custom entry: Declare Custom Entry expr. Then we introduce
a notation ([...]) to delimit expressions written with the expr grammar and a
notation ({...}) to delimit Coq terms that appear inside expr expressions:

Notation "[ e ]" := e (e custom expr at level 5).
Notation "{ x }" := x (in custom expr, x constr).

We can then write the grammar e ::= tt | r | x | e1 + e2 | let x := e1 in e2:

1 Notation "x" := x (in custom expr at level 0, x ident).
2 Notation "x ’:R’" := (exp_real x) (in custom expr at level 1).
3 Notation "e1 + e2" := (exp_add e1 e2)
4 (in custom expr at level 2, left associativity).
5 Notation "’let’ x ’:=’ e1 ’in’ e2" := (exp_letin x e1 e2)
6 (in custom expr at level 3, x constr, e1 custom expr at level 2,
7 e2 custom expr at level 3, left associativity).



Intrinsically-Typed Probabilistic Programming Language in Coq 191

Line 1 is to allow for the use of Coq identifiers inside expr expressions. The
other lines are for real numbers, additions, and let-in expressions; they all use
the constructors of the syntax. As for variables, we have a notation for exp_var’:

Notation "# x" := (exp_var’ x%string _) (in custom expr at level 1).

Using these notations, our running example let x := 1 in let y := 2 in x+y can
be written succinctly and more generally:

Example letin_add (x y : string)
(yx : infer (y != x)) (xy : infer (x != y)) : exp [::] _ :=

[let x := {1}:R in let y := {2}:R in #x + #y].

6 Intrinsically-Typed Probabilistic Programming
Language

We formalize an intrinsically-typed concrete syntax for sfPPL (Sect. 4) on the
model of the previous section (Sect. 5).

6.1 Intrinsically-Typed Expressions

Fig. 1. Expressions of sfPPL.

First, the Coq encoding of the syntax of the types of sfPPL is immediate:

Inductive typ := Unit | Bool | Real
| Pair : typ -> typ -> typ | Prob : typ -> typ.



192 A. Saito and R. Affeldt

To distinguish between deterministic and probabilistic expressions, we use a flag:
Inductive flag := D | P. It is better to use a flag than a mutually inductive
type because we can have only one constructor for typing rules that do not
depend on whether an expression is deterministic or probabilistic.

The constructors for basic datatypes (exp_unit, exp_bool, exp_real), pairs
(exp_pair) and their projections (exp_proj1, exp_proj2) should read easily
(Fig. 1, lines 2–7). The constructors for variables (exp_var, line 8) and for let-in
expressions (exp_letin, line 13) are essentially the same as in Sect. 5.1. The con-
structors exp_bernoulli and exp_poisson (lines 9–11) provide two examples of
measurable functions that we explain below. The constructors for return, sam-
pling, scoring, and normalizing are as we explained in Sect. 4. The constructors
exp_if and exp_weak accommodate both the deterministic and the probabilis-
tic cases thanks to a flag. The rule exp_weak allows to change the type of an
expression by inserting a fresh variable at an arbitrary position in the context.

The constructor exp_bernoulli represents a Bernoulli distribution that takes
as parameters a non-negative real number r and a proof that r ≤ 1. Since it is
a distribution of boolean numbers, the type of the corresponding expression is
exp D g (Prob Bool). Informally, the typing rule could be written:

r ∈ R 0 ≤ r ≤ 1
Γ �D exp_bernoulli(r) : P (B)

Given a natural number n and an expression e, the constructor exp_poisson
represents the likelihood of n for a Poisson distribution with rate e:

n ∈ N Γ �D e : R
Γ �D exp_poisson(n, e) : R

6.2 Intrinsically-Typed Concrete Syntax for sfPPL

We use custom entries as in Sect. 5.3 to provide a concrete syntax for sfPPL.
Instead of reproducing the complete grammar that can be found online [21], we
consider the following illustrative program from [24]:

normalize( let x := sample(bernoulli(2/7)) in
let r := ifx then 3 else 10 in
let _ := score(poisson(4, r)) in returnx )

This program is about inferring whether today is the weekend according to the
number of buses passing by. It selects a boolean number from a Bernoulli dis-
tribution to represent whether today is the weekend. The if-then-else expression
models the fact that there are three buses per hour during the weekend and ten
buses per hour otherwise. Scoring records the observation that four buses have
been passing by in one hour, assuming buses arrive as a Poisson process with
rate r. The resulting measure is eventually normalized. As a Coq term:



Intrinsically-Typed Probabilistic Programming Language in Coq 193

Definition staton_bus_syntax0 : exp _ [::] _ :=
[let "x" := Sample {exp_bernoulli (2 / 7%:R)%:nng p27} in
let "r" := if #{"x"} then return {3}:R else return {10}:R in
let "_" := Score {exp_poisson 4 [#{"r"}]} in return #{"x"}].

Definition staton_bus_syntax := [Normalize {staton_bus_syntax0}].

We use the same delimiters to enter and exit the grammar and the same notation
for constants as in Sect. 5.3. Other grammar entries should be intuitive. The Coq
expression p27 is a proof that 2/7 ≤ 1.

7 Denotational Semantics of sfPPL

We formalize a denotational semantics for sfPPL that links the syntax of Sect. 6
to previous work [4]. Intuitively, this is the function [[·]] of Sect. 4. Since the
denotations are non-trivial objects (measurable functions and s-finite kernels),
we formalize an evaluation function and show that it is a function.

7.1 Interpretation of Types and Contexts

We first provide Coq functions to interpret types, their sequences, and contexts
to measurable spaces.

We interpret an object t : typ with the function measurable_of_typ that
returns a measurable type (Sect. 3.2) together with its display in the form
of a dependent pair {d & measurableType d}. The implementation is by recur-
sion on the structure of t and uses the product spaces of MathComp-
Analysis. The function mtyp t takes the second projection (using projT2)
of measurable_of_typ t. We interpret a list s : seq typ with the function
measurable_of_seq that essentially iterates the function measurable_of_typ over
s. More precisely, given a list [A1;A2; · · · ;An], it returns a measurable space
made of nested products [[A1]] × ([[A2]] × · · · ([[An]] × [[U]])); we use U to
avoid empty spaces. The result of measurable_seq is a dependent pair of type
{d & measurableType d}. When applied to a context g : ctx, the function mctx
returns the second projection of measurable_seq (map snd g).

7.2 Evaluation Relation for sfPPL Expressions

The evaluation of sfPPL expressions takes the form of a mutually inductive
relation. The relation evalD relates an expression exp D g t to a measurable func-
tion f such that the domain of f is the interpretation of g and the codomain of f
is the interpretation of t, i.e., its type is dval R g t := @mctx R g -> @mtyp R t.
The type of evalD is therefore:

forall g t, exp D g t ->
forall f : dval R g t, measurable_fun setT f -> Prop.



194 A. Saito and R. Affeldt

The expression forall f : dval R g t, measurable_fun setT f is a dependent
pair of a function with a measurability proof; hereafter, evalD e f mf stands for
e -D> f ; mf. Similarly, evalP relates an expression exp P g t to an s-finite ker-
nel of type pval R g t := R.-sfker @mctx R g ~> @mtyp R t. The type of evalP
is therefore forall g t, exp P g t -> pval R g t -> Prop and we note e -P> k
for evalP e k. Let us now explain the main constructors of evalD and evalP.

The constructors eval_unit, eval_bool, and eval_real (Fig. 2, lines 3–5)
relates basic data structures to constant functions (ktt, kb, and kr are notations
for the proof that constant functions are measurable).

The constructors for pairs and their projections use results from MathComp-
Analysis to build measurability proofs for products (measurable_fun_prod,
line 8) or to compose measurability proofs (measurableT_comp, lines 10, 12).

Fig. 2. Evaluation relation for the deterministic expressions of sfPPL. See Fig. 3 for
probabilistic expressions.

The constructor eval_var (line 13) defines the evaluation of a variable x by
first finding its index i in the context g and produces a measurable function.
The function acc_typ accesses the interpretation of g and returns the element
corresponding to the ith measurable space of g:



Intrinsically-Typed Probabilistic Programming Language in Coq 195

Fixpoint acc_typ (s : seq typ) n : projT2 (@measurable_of_seq R s) ->
projT2 (measurable_of_typ (nth Unit s n)) := (* See [21] *) .

Since the interpretation of the context is a nested product, such a function is
built out of projections and is therefore measurable (proof measurable_acc_type).
This generic way to compute measurable functions that access the environment
is an improvement over previous work [4] where accesses were performed using
ad hoc Coq notations for just a handful of functions.

The constructor eval_bernoulli (line 15) yields a constant function that
returns a Bernoulli distribution. This particular method of sampling does not
depend on the execution but there is no fundamental limitation to extend evalD
with nested queries, as long as one provides a proof of measurability.

The constructor eval_poisson (line 18) produces a function poisson n \o f
where n is the observation recorded for scoring and f is a measurable function
that evaluates to the rate of the Poisson process. The expression poisson n is
the measurable function λr. rne−r/n!.

For an expression e : exp P g t corresponding to an s-finite kernel k, the
constructor eval_normalize (line 21) yields a function normalize_pt k going from
mctx g to a probability measure over mtyp t. This function works by lifting a
function that normalizes measures using a default probability measure when
normalization is not possible [21].

The constructor evalD_weak (Fig. 2, line 27) produces a function weak g h x t
of type dval R (g ++ h) t -> dval R (g ++ x :: h) t. The probabilistic version
evalP_weak (Fig. 3, line 15) is similar but of course evaluates to an s-finite kernel.

Fig. 3. Evaluation relation for the probabilistic expressions of sfPPL. See Fig. 2 for
deterministic expressions.



196 A. Saito and R. Affeldt

The constructor eval_letin evaluates a let-in expression by combining the
s-finite kernels of the two sub-expressions (Fig. 3, line 4). The function letin’

has type X s-fin Y → Y × X s-fin Z → X s-fin Z so that it keeps the nesting of
measurable spaces in the same order as the contexts where new variables are
added by list consing. It is defined by composing the composition of kernels
(Sections 3.1 and 4, [4, Sect. 5.1]) with a kernel of type X × Y s-fin Z → Y ×
X s-fin Z that swaps the projections of a product space.

We briefly explain the last constructors of Fig. 3. The constructor eval_sample
(line 5) produces a probability kernel given a measurable function of a type
compatible with the functions yielded by the constructors eval_bernoulli and
eval_normalize. The constructor eval_score (line 8) yields an s-finite kernel of
type (mctx g) s-fin U where g is the context of the expression passed to the Score
expression. The constructor eval_return (line 10) produces an s-finite kernel
ret mf where ret is the functional x �→ δf(x) formalized as kdirac in [4, Sect. 4.6].

7.3 From the Evaluation Relation to a Function
The evaluation relation of the previous section is actually a function because it
is right-unique and left-total. Right-uniqueness can be proved by induction on
the evaluation relation:
Lemma evalD_uniq g t (e : exp D g t) (u v : dval R g t) mu mv :

e -D> u ; mu -> e -D> v ; mv -> u = v.
Lemma evalP_uniq g t (e : exp P g t) (u v : pval R g t) :

e -P> u -> e -P> v -> u = v.

Left-totality can be proved by induction on the syntax:
Lemma eval_total z g t (e : exp z g t) : (match z with

| D => fun e => exists f mf, e -D> f ; mf
| P => fun e => exists k, e -P> k end) e.

Thanks to these properties, we can produce a pair of functions execD and execP
written using the constructive indefinite description axiom cid of Coq:
Definition execD g t (e : exp D g t)

: {f : dval R g t & measurable_fun setT f} :=
let: exist _ H := cid (evalD_total e) in existT _ _ (projT1 (cid H)).

Definition execP g t (e : exp P g t) : pval R g t :=
projT1 (cid (evalP_total e)).

Finally, we prove equations for execD/execP that associate to each expression
of sfPPL its result according to evalD/evalP. In general these equations are
recursive, e.g., the execution of a return expression:
Lemma execP_return g t (e : exp D g t) :

execP [return e] = ret (projT2 (execD e)).

The proofs of these equations are manual but follow an easy pattern which is a
direct application of the equivalence between execD/execP and evalD/evalP (see
lemmas execD_evalD/execP_evalP in [21]).



Intrinsically-Typed Probabilistic Programming Language in Coq 197

8 Using sfPPL to Reason Formally about Programs

Pair of Samplings. The following program samples two values from Bernoulli
distributions with parameters 1/2 and 1/3 and returns the pair (p1Sn is a proof
that 1/(n + 1) ≤ 1):
Definition sample_pair_syntax0 : exp _ [::] _ :=

[let "x" := Sample {exp_bernoulli (1 / 2)%:nng (p1S 1)} in
let "y" := Sample {exp_bernoulli (1 / 3)%:nng (p1S 2)} in
return (#{"x"}, #{"y"})].

We can verify that the pair (true, true) is returned with probability 1/6:
Lemma exec_sample_pair0_TandT :

@execP R [::] _ sample_pair_syntax0 tt [set (true, true)] = (1 / 6)%:E.

Since we compute a pair of boolean numbers and since the context is empty,
the result of execution has type R.-sfker unit ~> bool * bool. This is why we
pass tt and, as an event, the pair whose projections are true. The proof is
by rewriting using equations such as execP_return (Sect. 7.3) and, once the
semantics is revealed, by using generic lemmas from MathComp-Analysis.

Sampling and Scoring. The following program samples a value from a Bernoulli
distributions with parameter 1/3 and scores the output with 1/3 or 2/3:
Definition bernoulli13_score := [Normalize

let "x" := Sample {@exp_bernoulli R [::] (1 / 3)%:nng (p1S 2)} in
let "_" := if #{"x"} then Score {(1 / 3)}:R else Score {(2 / 3)}:R in
return #{"x"}].

We can verify that the resulting probability measure is 1
3 × 1

3 : 2
3 × 2

3 = 1 : 4,
i.e., the Bernoulli distribution with parameter 1/5:
Lemma exec_bernoulli13_score :

execD bernoulli13_score = execD (exp_bernoulli (1 / 5)%:nng (p1S 4)).

The proof is essentially by rewriting [21, file lang_syntax_examples.v].

Probabilistic Inference. We solve the probabilistic inference problem of
Sect. 6.2 by computing the measure corresponding to the execution of
staton_bus_syntax0. This measure corresponds to the probability measure true :
false = 2

7 × 34e−3

4! : 5
7 × 104e−10

4! ≈ 0.78 : 0.22. It can be defined in Coq as a sum
of Dirac measures:
Let staton_bus_probability U := (2 / 7)%:E * (poisson4 3)%:E * \d_true U +

(5 / 7)%:E * (poisson4 10)%:E * \d_false U.

We state that execution of staton_bus_syntax0 yields the expected measure:
Lemma exec_staton_bus0 (U : set bool) :

execP staton_bus_syntax0 tt U = staton_bus_probability U.

The proof goes through the intermediate step of computing the semantics of
staton_bus_syntax0 and then shows that this semantics is the expected measure.



198 A. Saito and R. Affeldt

Program Transformation. We verify the equivalence between the program used
just above (staton_bus_syntax0) and a slightly modified version in which we only
change the associativity of let-in expressions:

[let "x" := Sample {exp_bernoulli (2 / 7%:R)%:nng p27} in
let "_" :=

let "r" := if #{"x"} then return {3}:R else return {10}:R in
Score {exp_poisson 4 [#{"r"}]} in

return #{"x"}].

This seemingly trivial modification is actually explained by a non-
trivial lemma [23, Lemma 3]. The associativity of let-in expressions can
be stated as follows [23, Sect. 4.2]: [[let x := e1 in let y := e2 in e3]] =
[[let y := (let x := e1 in e2) in e3]]. To type-check an equivalent formal state-
ment, we need to be careful about the type of e3. The typing judgment for
e3 on the left-hand side is of the form y : A2, x : A1, Γ � e3 : A3 while on
the right-hand side it is y : A2, Γ � e3 : A3. In our formalization, we use
exp_weak (Sect. 6.1) to weaken e3 of type exp P [:: (y, t2) & g] t3 to the type
exp P [:: (y, t2); (x, t1) & g] t3:

Lemma letinA g x y t1 t2 t3 (xyg : x \notin dom ((y, t2) :: g))
(e1 : exp P g t1) (e2 : exp P [:: (x, t1) & g] t2)
(e3 : exp P [:: (y, t2) & g] t3) :

forall U, measurable U ->
execP [let x := e1 in let y := e2 in

{@exp_weak _ _ [:: (y, t2)] _ _ (x, t1) e3 xyg}] ^~ U =
execP [let y := let x := e1 in e2 in e3] ^~ U.

The notation f ^~ y is for the function λx.f x y. We can prove letinA using
lemmas for execP (Sect. 7.3) and previous work [4], and use this lemma to prove
the equivalence between the two versions of our probabilistic inference problem.

Commutativity. We formalize the commutativity example by Staton [24,
Sect. 5.1]:

[[let x :� e1 in let y :� e2 in return (x, y)]]=[[let y :� e2 in let x :� e1 in return (x, y)]]

This kind of commutativity properties was the main motivation for the use of s-
finite kernels; it relies on a version of Fubini’s theorem for s-finite measures [23].
The property above holds under the condition that x is not free in e2 and y is
not free in e1. We can specify these conditions by having e1 and e2 of types
exp P g t1 and exp P g t2 with x and y not appearing in dom g. However, as in
the associativity of let-in expressions, we need to weaken e1 and e2 appropriately:

Lemma letinC g t1 t2 (e1 : exp P g t1) (e2 : exp P g t2)
(x y : string) (xy : infer (x != y)) (yx : infer (y != x))
(xg : x \notin dom g) (yg : y \notin dom g) :
forall U, measurable U ->



Intrinsically-Typed Probabilistic Programming Language in Coq 199

execP [let x := e1 in let y := {exp_weak _ [::] _ (x, t1) e2 xg} in
return (#x, #y)] ^~ U =

execP [let y := e2 in let x := {exp_weak _ [::] _ (y, t2) e1 yg} in
return (#x, #y)] ^~ U.

The proof of letinC relies on previous work [4, Sect. 7.1.2] and its generic state-
ment relies on our use of canonical structures (Sect. 5.2).

9 Conclusions

To the best of our knowledge, we provide the first formalization of a probabilis-
tic programming language with sampling, scoring, and normalization, using an
intrinsically-typed syntax. Our work builds on top of an existing formalization
of s-finite kernels [4] that we improve (we hinted at some technical improvements
in Sect. 7.2) and, more importantly, that we extend with a syntax and a denota-
tional semantics. We proposed a generic approach to encode intrinsically-typed
syntax in Coq using bidirectional hints and canonical structures; combined with
Coq’s custom entries, this allows for the formalization of a user-friendly con-
crete syntax (Sect. 5). More specifically to probabilistic programming languages,
we explained in Sect. 7 how to handle in the semantics nested product spaces
(an important construct in probability theory) and measurable functions and
s-finite kernels (which present themselves as dependent records). We formalized
a denotational semantics in the form of a function derived from an evaluation
relation. We showed that our formalization can be used to reason about simple
probabilistic programs by rewriting, covering the examples from [4] and more.

Current and Future Work. We have recently added to our framework a for-
malization of iteration as proposed by Staton [23, Sect. 4.2]. It takes the form
of an s-finite kernel iterate t fromx :� u that calls t from x = u, repeats with
x = u′ if t returns u′ : A or stops if t returns in B; see [21, file prob_lang.v]
for the code. This makes it possible to extend sfPPL with loops. As a technical
improvement, we are considering the use of deep-embedded binders [19] to avoid
strings from the Coq standard library in the concrete syntax. It might also be
worth testing whether type classes can be used instead of canonical structures to
type-check intrinsically-typed syntax [13, Sect. 7] [19, Sect. 5]. Though not specif-
ically designed for that purpose, MathComp-Analysis turned out to be a good
match to formalize the denotational semantics of a probabilistic programming
language, which raises the question of its application to the formalization of an
operational semantics such as in [11]. We are now investigating application of
our approach to more verification examples as a step towards the formalization
of equational reasoning for probabilistic programs [14,22].

Acknowledgements. The authors would like to thank the members of the Program-
ming Research Group of the Department of Mathematical and Computing Science at
the Tokyo Institute of Technology for their input, and to the anonymous reviewers for
many comments that substantially improved this paper. The authors acknowledge the
support of the JSPS KAKENHI Grant Number 22H00520.



200 A. Saito and R. Affeldt

References
1. Affeldt, R., et al.: MathComp-Analysis: mathematical components compliant anal-

ysis library (2023). Since 2017. Version 0.6.4. https://github.com/math-comp/
analysis

2. Affeldt, R., Cohen, C.: Measure construction by extension in dependent type the-
ory with application to integration. J. Autom. Reason. 67(3), 28:1–28:27 (2023).
https://doi.org/10.1007/s10817-023-09671-5

3. Affeldt, R., Cohen, C., Rouhling, D.: Formalization techniques for asymptotic rea-
soning in classical analysis. J. Formaliz. Reason. 11(1), 43–76 (2018). https://doi.
org/10.6092/issn.1972-5787/8124

4. Affeldt, R., Cohen, C., Saito, A.: Semantics of probabilistic programs using s-finite
kernels in Coq. In: 12th ACM SIGPLAN International Conference on Certified
Programs and Proofs (CPP 2023), Boston, MA, USA, 16–17 January 2023, pp.
3–16. ACM (2023). https://doi.org/10.1145/3573105.3575691

5. Affeldt, R., Sakaguchi, K.: An intrinsic encoding of a subset of C and its applica-
tion to TLS network packet processing. J. Formaliz. Reason. 7(1), 63–104 (2014).
https://doi.org/10.6092/issn.1972-5787/4317

6. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009). https://doi.org/10.1016/j.scico.2007.09.
002

7. Bagnall, A., Stewart, G.: Certifying the true error: machine learning in Coq with
verified generalization guarantees. In: 33rd AAAI Conference on Artificial Intel-
ligence, 31st Conference on Innovative Applications of Artificial Intelligence, 9th
Symposium on Educational Advances in Artificial Intelligence, Honolulu, Hawaii,
USA, 27 January–1 February 2019, pp. 2662–2669. AAAI Press (2019). https://
doi.org/10.1609/aaai.v33i01.33012662

8. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2009), Savannah, GA, USA, 21–23 January 2009,
pp. 90–101. ACM (2009). https://doi.org/10.1145/1480881.1480894

9. Barthe, G., Katoen, J.P., Silva, A. (eds.): Foundations of Probabilistic Program-
ming. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/
9781108770750

10. Benton, N., Hur, C., Kennedy, A., McBride, C.: Strongly typed term representa-
tions in Coq. J. Autom. Reason. 49(2), 141–159 (2012). https://doi.org/10.1007/
s10817-011-9219-0

11. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: 21st ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP 2016), Nara, Japan, 18–
22 September 2016, pp. 33–46. ACM (2016). https://doi.org/10.1145/2951913.
2951942

12. Chapman, J., Kireev, R., Nester, C., Wadler, P.: System F in Agda, for fun and
profit. In: Hutton, G. (ed.) MPC 2019. LNCS, vol. 11825, pp. 255–297. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33636-3_10

13. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof
automation less ad hoc. J. Funct. Program. 23(4), 357–401 (2013). https://doi.
org/10.1017/S0956796813000051

14. Heimerdinger, M., Shan, C.: Verified equational reasoning on a little language of
measures. In: Workshop on Languages for Inference (LAFI 2019), Cascais, Portu-
gal, 15 January 2019 (2019)

https://github.com/math-comp/analysis
https://github.com/math-comp/analysis
https://doi.org/10.1007/s10817-023-09671-5
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.1145/3573105.3575691
https://doi.org/10.6092/issn.1972-5787/4317
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1609/aaai.v33i01.33012662
https://doi.org/10.1609/aaai.v33i01.33012662
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1017/9781108770750
https://doi.org/10.1017/9781108770750
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1007/978-3-030-33636-3_10
https://doi.org/10.1017/S0956796813000051
https://doi.org/10.1017/S0956796813000051


Intrinsically-Typed Probabilistic Programming Language in Coq 201

15. Hirata, M., Minamide, Y., Sato, T.: Program logic for higher-order probabilistic
programs in Isabelle/HOL. In: Hanus, M., Igarashi, A. (eds.) FLOPS 2022. LNCS,
vol. 13215, pp. 57–74. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-
99461-7_4

16. Hirata, M., Minamide, Y., Sato, T.: Semantic foundations of higher-order proba-
bilistic programs in Isabelle/HOL. In: 14th International Conference on Interactive
Theorem Proving (ITP 2023). LIPIcs, Białystok, Poland, 31 July–4 August 2023,
vol. 268, pp. 18:1–18:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023).
https://doi.org/10.4230/LIPIcs.ITP.2023.18

17. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, Computer
Laboratory, University of Cambridge (2001)

18. Pickard, M., Hutton, G.: Calculating dependently-typed compilers (functional
pearl). Proc. ACM Program. Lang. 5(ICFP), 1–27 (2021). https://doi.org/10.
1145/3473587

19. Pit-Claudel, C., Bourgeat, T.: An experience report on writing usable DSLs in Coq.
In: 7th International Workshop on Coq for Programming Languages (CoqPL 2021)
(2021). https://popl21.sigplan.org/details/CoqPL-2021-papers/7/An-experience-
report-on-writing-usable-DSLs-in-Coq

20. Poulsen, C.B., Rouvoet, A., Tolmach, A., Krebbers, R., Visser, E.: Intrinsically-
typed definitional interpreters for imperative languages. Proc. ACM Program.
Lang. 2(POPL), 16:1–16:34 (2018). https://doi.org/10.1145/3158104

21. Saito, A., Affeldt, R.: Experimenting with an intrinsically-typed probabilistic pro-
gramming language in Coq. Part of MathComp-Analysis Pull Request (2023).
Application of s-finite kernels to program semantics (2023), formal development
accompanying this paper. https://github.com/math-comp/analysis/pull/912

22. Shan, C.: Equational reasoning for probabilistic programming. POPL TutorialFest
(2018)

23. Staton, S.: Commutative semantics for probabilistic programming. In: Yang, H.
(ed.) ESOP 2017. LNCS, vol. 10201, pp. 855–879. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1_32

24. Staton, S.: Probabilistic programs as measures, pp. 43–74 (2020). https://doi.org/
10.1017/9781108770750.003. Chapter in [9]

25. Staton, S., Yang, H., Wood, F.D., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: 31st Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence (LICS 2016), New York, NY, USA, 5–8 July 2016, pp. 525–534. ACM (2016).
https://doi.org/10.1145/2933575.2935313

26. Tassarotti, J., Vajjha, K., Banerjee, A., Tristan, J.: A formal proof of PAC learn-
ability for decision stumps. In: 10th ACM SIGPLAN International Conference on
Certified Programs and Proofs (CPP 2021), Virtual Event, Denmark, 17–19 Jan-
uary 2021, pp. 5–17. ACM (2021). https://doi.org/10.1145/3437992.3439917

27. The Coq Development Team: Custom entries. Inria (2019). Chapter Syntax exten-
sions and notation scopes of [29]. direct link

28. The Coq Development Team: Bidirectionality hints. Inria (2020). Chapter Setting
properties of a function’s arguments of [29]. direct link

29. The Coq Development Team: The Coq Proof Assistant Reference Manual. Inria
(2023). Version 8.17.1. https://coq.inria.fr/distrib/current/refman/

https://doi.org/10.1007/978-3-030-99461-7_4
https://doi.org/10.1007/978-3-030-99461-7_4
https://doi.org/10.4230/LIPIcs.ITP.2023.18
https://doi.org/10.1145/3473587
https://doi.org/10.1145/3473587
https://popl21.sigplan.org/details/CoqPL-2021-papers/7/An-experience-report-on-writing-usable-DSLs-in-Coq
https://popl21.sigplan.org/details/CoqPL-2021-papers/7/An-experience-report-on-writing-usable-DSLs-in-Coq
https://doi.org/10.1145/3158104
https://github.com/math-comp/analysis/pull/912
https://doi.org/10.1007/978-3-662-54434-1_32
https://doi.org/10.1017/9781108770750.003
https://doi.org/10.1017/9781108770750.003
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/3437992.3439917
https://coq.inria.fr/refman/user-extensions/syntax-extensions.html?%20entries#custom-entries
https://coq.inria.fr/refman/language/extensions/arguments-command.html?%20hints#bidirectionality-hints
https://coq.inria.fr/distrib/current/refman/


202 A. Saito and R. Affeldt

30. Zhang, Y., Amin, N.: Reasoning about “reasoning about reasoning”: semantics and
contextual equivalence for probabilistic programs with nested queries and recur-
sion. Proc. ACM Program. Lang. 6(POPL), 1–28 (2022). https://doi.org/10.1145/
3498677

31. Ziliani, B., Sozeau, M.: A comprehensible guide to a new unifier for CIC includ-
ing universe polymorphism and overloading. J. Funct. Program. 27, e10 (2017).
https://doi.org/10.1017/S0956796817000028

https://doi.org/10.1145/3498677
https://doi.org/10.1145/3498677
https://doi.org/10.1017/S0956796817000028


Verification



Towards a Framework for Developing
Verified Assemblers for the ELF Format

Jinhua Wu1 , Yuting Wang1(B) , Meng Sun1 , Xiangzhe Xu2 ,
and Yichen Song1

1 Shanghai Jiao Tong University, Shanghai, China
yuting.wang@sjtu.edu.cn

2 Purdue University, West Lafayette, USA
xu1415@purdue.edu

Abstract. Most of the existing work on verified compilation leaves
unverified the translation of assembly programs into binary code in object
file formats (e.g., the Executable and Linkable Format or ELF). The
challenges of developing verified assemblers come from the intrinsic com-
plexities in low-level assembling processes caused by the need to support
different computer architectures and their details, such as encoding a
large number of instructions and verifying its correctness. We present
a framework that overcomes the above challenges. It works as a tem-
plate which may be instantiated to generate verified assemblers for dif-
ferent architectures targeting ELF object files. For this, it is parameter-
ized over the implementation and verification of architecture-dependent
assembling processes through well-defined interfaces. By plugging the
architecture-dependent parts into the template, we get complete veri-
fied assemblers. To manage the complexity in developing and verifying
encoding of instructions, we integrate into our framework the CSLED
framework for automatically generating verified instruction encoders and
decoders from declarative instruction specifications. To show the effec-
tiveness of our framework, we have applied it to generate verified assem-
blers for the complete X86 and RISC-V assembly languages in CompCert.

1 Introduction

Although the formal development of compilers and their correctness proofs have
been extensively studied (e.g. the state-of-the-art verified C compiler Comp-
Cert [7,8]), few of the existing work has completed the last mile, i.e., to verify
the translation of assembly code into machine code. An obvious obstacle of
developing verified assemblers is the potentially large amount of work to sup-
port different commercial architectures. Even for a single architecture, the details
need to be taken care of during assembly are overwhelming. A typical example
is the encoding of assembly instructions into machine instructions which may be
hundreds or even thousands in number in any instruction set architecture (ISA).

To manage the high complexity in building assemblers that target differ-
ent object files formats (e.g., PE/COFF, Mach-O and ELF) and architectures
c© The Author(s) 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 205–224, 2023.
https://doi.org/10.1007/978-981-99-8311-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_10&domain=pdf
http://orcid.org/0000-0001-5812-053X
http://orcid.org/0000-0003-3990-2418
http://orcid.org/0009-0007-8876-3406
http://orcid.org/0000-0001-6619-781X
http://orcid.org/0009-0003-2445-8403
https://doi.org/10.1007/978-981-99-8311-7_10


206 J. Wu et al.

(e.g., X86, RISC-V and ARM), the standard practice in industry is to sepa-
rate the implementation of platform-independent parts of assemblers from the
platform-dependent parts. The GNU assembler [18] follows this approach by
employing Binary File Descriptor (BFD) to implement this separation. The same
idea should also be applicable to verified assemblers. However, the existing work
on assembler verification does not provide this flexibility as they are designed to
work for ad-hoc machine code formats or for fixed architectures (see Sect. 6).

In this paper, we present our initial attempt to develop a framework for build-
ing verified assemblers that target the ELF format by following the above idea. In
our framework, the architecture-independent parts of assemblers are developed
separately from the architecture-dependent parts. The former is captured by a
template of implementation and proofs which formalizes the assembly processes
that transform the architecture-independent parts of assembly programs into
constituents of ELF objects (e.g., generation of symbol tables). Furthermore,
this template is parameterized over the architecture-dependent transformations
(e.g., instruction encoding) through well-defined interfaces. To generate a veri-
fied assembler for a specific architecture, users instantiate the template with the
implementation and proofs of the architecture-dependent components for this
architecture through these interfaces. An immediate benefit of this approach is
the ability to generate assemblers targeting different platforms by only switching
the architecture-dependent instances, which significantly reduces the complexity
in developing verified assemblers.

An essential architecture-dependent assembly pass is the encoding of assem-
bly instructions into binary machine code. It is difficult to implement and even
more difficult to prove correct because there are at least hundreds or sometimes
even thousands of instructions in a common ISA. To tackle this difficulty, we
adopt the CSLED framework [22]. In CSLED, one can write down an instruc-
tion format as a declarative specification, from which a pair of verified instruc-
tion encoder and decoder is automatically generated. However, the generated
encoders and decoders work with a form of abstract assembly instructions dif-
ferent from our source assembly language. We address this problem by devel-
oping verified translators to connect the verified encoders with our assembly
instructions.

Our framework is implemented in the Coq proof assistant [17] and utilizes
CompCert’s infrastructure [7]. To demonstrate its effectiveness, we apply it to
generate verified assemblers for the complete X86 and RISC-V assembly lan-
guages used in CompCert. There are different challenges to apply our frame-
work to X86 and RISC-V. For X86, we need to deal with the complex instruc-
tion format. For RISC-V, we improve the CSLED framework to overcome the
limitation in CSLED for supporting RISC instructions. To examine their use-
fulness, we have connected them with the back-end of the newest version of
Stack-Aware CompCert [19,21] to form a full compilation chain from C to ELF
objects. We choose to connect with Stack-Aware CompCert instead of the regular
CompCert because its target assembly languages are closer to realistic assembly
languages (e.g., no pseudo instructions for stack manipulation). Note that this



Towards a Framework for Developing Verified Assemblers 207

connection is not fully verified yet due to limitations in (Stack-Aware) CompCert
(see Sect. 5.1).

We summarize our contributions as follows:

– Our key contribution is an approach to developing customizable veri-
fied assemblers targeting different ISAs by separating the architecture-
independent and -dependent components of verified assemblers, such that
the former are abstracted over the latter through well-defined interfaces. To
generate concrete verified assemblers, users only need to provide instances of
architecture-dependent components which meet the abstract interfaces. The
design of such interfaces is a key challenge of this work. To reduce the effort
for instantiating instruction encoders, we integrate the automation frame-
work CSLED into our framework. Users only need to write down declarative
specifications, from which verified encoders are automatically generated, and
add glue code to integrate these encoders into verified assemblers.

– We demonstrate the effectiveness and flexibility of our approach by applying
our framework to develop verified assemblers for the complete X86 and RISC-
V assembly languages in CompCert. We have successfully replaced the unveri-
fied GNU assembler used by CompCert with our verified assemblers, therefore
significantly reduce its TCB. These applications show that the complexity of
implementing verified assemblers for different ISAs is confined in architecture-
dependent components, and it takes a reasonable amount of effort to support
representative CISC and RISC architectures.

The entire framework and their applications can be found at https://doi.org/
10.5281/zenodo.8363543. In the rest of the paper, we first introduce necessary
background in Sect. 2. We then present the design of our framework in Sect.
3. In Sect. 4, we discuss the application of our framework to X86 and RISC-V.
We connect the instantiated assemblers to Stack-Aware CompCert and discuss
evaluation in Sect. 5. Finally, we discuss the related work and conclude in Sect. 6.

2 Background

2.1 A Running Example

To provide a better understanding of the background knowledge, we introduce
a running example which is a simple C program that gets compiled to X86-64
assembly code and finally translated into an ELF object file, as shown in Fig. 1.
In the C program, main initializes the global variable counter and calls incr to
increase it by one. The corresponding assembly code is in the AT&T X86 syntax,
in which incr loads counter into the register eax, adds one to eax by using leal
instruction, and then stores the modified value back to the counter. counter is
labeled as a common symbol which is not initialized and not allocated in the
object file. Note that we have omitted instructions not relevant to our discussion
(e.g., for stack allocation). In the later sections, the running example will be
used to explain the important concepts and components of our framework, such
as generation of symbols and sections, generation of relocation information for
linking, and encoding of instructions.

https://doi.org/10.5281/zenodo.8363543
https://doi.org/10.5281/zenodo.8363543


208 J. Wu et al.

Fig. 1. A Running Example

2.2 Compiler Verification Based on Simulation

Correctness of compilation is often described as preservation of program seman-
tics. A common approach to semantics preservation is to model semantics in a
small-step style as labeled transition systems (LTS) and to establish simulation
relations between the source and target semantics. Our framework makes use of
this approach, in particular, its realization in CompCert [7] which consists of a
sequence of passes that successively translate a large subset of C into assembly
languages. We discuss the essential concepts supporting this approach below.

CompCert provides a uniform abstraction of programs for all of its languages.
In any language L of CompCert, a program P of type PC consists of a mapping
from identifiers to global definitions which are parameterized by the types of
functions and information of variables (denoted by F and V , respectively):

G := λ(F V : Type).〈fun : F, var : Gv V 〉
PC := λ(F V : Type).{defs : List (id ∗ (G F V ))}.

Here, we use {·} to represent records and 〈·〉 to represent variants. id is the type
of identifiers. G is the type of global definitions, which may be either functions of
type F or variables of type Gv V where Gv provides information about variables
such as their initial values. For instance, the formalized C program in the running
example contains three global definitions: two functions and one variable.

Assembly programs are based on this uniform representation, albeit param-
eterized by the type of instructions to support different architectures:

Fn := λ(I : Type).{signature : Sig , code : List I}
Fd := λ(I : Type).〈internal : Fn I, external : Ef 〉
PA := λ(I : Type).PC (Fd I) Unit .

Here, I is the type parameter of instructions. A function of type Fd is either
internal or external, where an internal function (of type Fn) has a signature
and consists of a list of assembly instructions. The type Unit denotes that there
is no type information for global variables in assembly programs. For instance,



Towards a Framework for Developing Verified Assemblers 209

the formalized assembly program in the running example again contains two
functions and one variable where the functions are parameterized by an inductive
definition of X86 instructions.

Memory models are essential components of program semantics. CompCert
adopts a uniform memory model for all of its languages [9,10]. A memory state
m consists of a finite set of memory blocks with distinct identifiers and with
linear memory addresses such that (b, δ) denotes a pointer to block b at address
δ. Such abstraction enables straightforward pointer arithmetic and memory iso-
lation which are essential for low-level programming. With the uniform memory
model, the semantics of a program P of type (PC F V ) is defined as an LTS
derived from the following relations over program states which are pairs of mem-
ory states of type M and language-specific states of type St (e.g., register states
in assembly programs). Moreover, Tc is the type of event traces, and Prop is the
type of propositions.

init : λ(F V : Type).(PC F V ) → (M × St) → Prop
step : (M × St) → Tc → (M × St) → Prop.

Here, init establishes the initial program state as a result of loading P ; step
describes the effect of one-step execution which emits a list of events. The mem-
ory initialized by init contains a unique block for each global definition in P . In
the remaining discussions, we denote the semantics of P in language L as [[P ]]L,
or simply [[P ]] if L can be inferred from the context.

For a given compiler pass C described as a partial function, if C(P ) = �P ′�
(where �·� is the some constructor of the option type), CompCert establishes a
forward simulation between [[P ]] and [[P ′]] denoted by [[P ]] � [[P ′]]. A particular
instance we will use in this paper is the lock-step forward simulation, for which an
invariant (or simulation relation) ∼ between source and target program states
is defined and satisfies the following conditions: 1) (m, s) ∼ (m′, s′) holds for
the initial states (m, s) and (m′, s′), and 2) ∼ is preserved during the execution.
We write [[P ]] �∼ [[P ′]] when ∼ is explicitly given. Note that ∼ must capture
the relation between source and target memory states which is represented by
memory injections [9,10]. A memory injection j is a partial function which maps
source memory blocks into target blocks. The values (e.g., pointers) stored in the
source and target memory must be related according to the injection. A special
case is when ∼ is equality, meaning that the injection is an identity function.
We shall write [[P ]] �= [[P ′]] to denote simulations with the equality invariant.

With the above definitions, the correctness of C is formulated as follows:

∀P P ′,C(P ) = �P ′� =⇒ [[P ]] � [[P ′]].

By vertically composing simulations established for every compiler pass, the
semantics preservation of CompCert is proved.

2.3 Relocatable ELF Object Files

The verified assemblers we intend to develop target relocatable ELF object files,
which represent open binary modules that may be linked into executable ELF



210 J. Wu et al.

programs. As shown in Fig. 1c, a relocatable ELF object consists of an ELF
header which contains meta-information, a list of sections containing program
data (including symbol and relocation tables), and section header tables that
store the attributes of these sections (e.g., locations of sections in the object).

Sections are the key constituents of ELF objects. In this work, we are only
concerned with four kinds of sections: code sections, data sections, symbol tables,
and relocation tables. Code and data sections store the binary form of instruc-
tions and data. In our running example, the assembly program is complied to
an object with two code sections for incr and main, respectively. It has no data
section for counter as it is not needed for global variables with no initial value.
Symbol tables are used to record references to global definitions. A symbol table
consists of a list of symbol entries. Each entry contains the information extracted
from a global definition in the program, including the type of the definition (e.g.,
function or data), the type of its binding (e.g., local or global), the section index
which points to the section where the definition resides in (special indices are
used for common or external symbols), its value (e.g., the offset into its section)
and size. In Fig. 1c, there is a single symbol table containing three symbol entries
for the global definitions, where counter is labeled as a common symbol.

A code or data section may refer to symbols whose addresses cannot be
resolved at compile time (e.g., any reference to global definitions in a section
whose memory location may be adjusted by the linker). In this case, there is a
relocation table associated with this section which consists of relocation entries.
Each relocation entry points to a location in the section that stores an unresolved
symbol. During the linking, the linker would determine the concrete addresses
of these symbols and overwrite this location with them. More specifically, a
relocation entry contains the offset of the unresolved symbol in its section, the
relocation type (e.g., relative or absolute addressing), the identifier of the unre-
solved symbol, and a constant addend for adjusting the symbol address. In our
example, the addresses (or relative addresses) of incr and counter are unknown
before linking. Therefore, there are two relocation tables for the sections for incr
and main, respectively. The table for incr contains two relocation entries pointing
to counter in movl counter,%eax and movl %eax,counter, and main contains one
entry for call incr. The linker will determine the addresses of incr and counter
and overwrite the locations pointed by the relocation entries.

2.4 Machine Instruction Formats

A main job of assemblers is to encode assembly instructions into their binary
form. For this, we need to understand the binary format of instructions. In this
paper, we are concerned with two representative CISC and RISC instruction
formats, i.e., X86 and RISC-V instruction formats.

X86. Figure 2 shows the format of X86 instructions. An instruction consists
of a sequence of binary tokens. The REX prefixes, when present, indicate the
instructions are in 64-bit mode or in 32-bit mode and referring to extended



Towards a Framework for Developing Verified Assemblers 211

Fig. 2. The Format of X86 Instructions

registers (r8 to r15). An opcode is 1 to 3 bytes in length and determines the
types of instructions. The ModRM byte indicates which addressing modes are
used for the operands of this instruction. These addressing modes, which follow
the ModRM byte, include SIB (Scale, Index, and Base) byte and a displacement
of the address of the referred symbol. For an instruction operating on immediate
values, a token of immediate data (Imms) must occur at the end of it.

We use the instruction movl counter,%eax in the running example and its
variants movq counter,%rax and movl counter,%r8 to demonstrate instruction
encoding. For movl counter,%eax, its encoding in hexadecimal is {Opcode:8B,
ModRM:05, Disp:00 00 00 00}. Here, 8B is the opcode for move instructions that
move memory contents to a register. 05 contains the encoding of eax and part
of the addressing mode. Disp is the location that stores the address of counter
which is currently zero and to be resolved by linking. The encoding of movq
counter,%rax has an REX prefix 48 which indicates it is a 64-bit instruction.
movl counter,%r8 is 32-bit albeit refers to an extended register r8. It has an
REX prefix 44 which contains one bit in the encoded r8 because r8 requires four
bits to encode but there is only space for three bits in ModRM.

RISC-V. RISC-V instructions have a uniform size of 32-bit. Therefore, each
instruction consists of a single token. RISC-V uses different formats for differ-
ent types of instructions. Their encoding is straightforward because, given any
instruction of a specific type, the positions of its operands are fixed by its format.

2.5 The CSLED Framework

To alleviate the difficulty of the instruction encoding, we employ the CSLED
framework. CSLED [22] is a meta-programming framework for automatic gener-
ation of verified instruction encoders and decoders from declarative specifications
of instruction formats. Given an instruction set, the user first writes down its
specifications S in the CSLED instruction specification language, which capture
the encoding format of the instruction set (e.g., the X86 format described in Sect.
2.4). Given S, the framework generates an abstract syntax of instructions A, an
encoder E : A → �List Byte� and a decoder D : List Byte → �A × List Byte�
for these instructions. It also generates the proofs of the following properties
asserting that the encoder and decoder are mutual inverses of each other. All
the generated definitions and proofs are formalized in Coq.

Theorem 1 (Consistency of Encoders and Decoders).

∀ k l l′,E(k) = �l� =⇒ D(l++l′) = �(k, l′)�.
∀ k l l′,D(l++l′) = �(k, l′)� =⇒ E(k) = �l�.



212 J. Wu et al.

Fig. 3. An Example of CSLED Specifications

As an example, we show a snippet of the specifications of X86 instructions
in Fig. 3. An instruction is built from tokens. Each token has one or more bytes
(multiple of 8 bits). A field occupies a segment of a token, representing an
operand or a constant. The tokens and fields reflect the instruction formats as
described in Sect. 2.4. A class can be viewed as a variant whose binary form
occupies a list of tokens. It is used to describe either a collection of instructions
or its operands such as the addressing modes. Each branch of the Instruction
class relates constant or values of operands to their corresponding fields in tokens
or other classes through a pattern (written inside the parentheses). Here, the
names of operands are listed in the brackets. The references to the n-th operand
in the patterns are represented by fld %n or cls %n, depending on whether the
operand is a field or a class. For example, the specification of movl counter,%eax
in CSLED makes use of the branch with the constructor mov_mr. Its pattern
corresponds to its encoding discussed in Sect. 2.4, such that the operand reg_op
and the addressing mode are mapped into their corresponding binary tokens
according to the pattern after the opcode 0x8B.

3 The Framework

3.1 An Overview

Our framework is shown in Fig. 4. It can be viewed as a template of verified
assemblers parameterized over architecture-dependent components, as depicted
in the left box. This parameterization is achieved by exposing interfaces for
encapsulation of architecture-dependent assembly processes. The main inter-
faces are highlighted with colored boxes in the assembly passes (C1 and C2)
and disassembly functions (D1 and D2). Here, boxes with the same color repre-
sent interfaces for the same pass. The implementation of architecture-dependent
components is shown in the right dashed box. By plugging them into the tem-
plate through its interfaces, we get complete verified assemblers. The concrete
definitions of these interfaces will be discussed in Sect. 3.3.

The main constituent of the template is a verified assembly chain with four
passes, i.e., Ci(0 ≤ i ≤ 3). The source program is called Realistic Assembly
or RealAsm in which every formalized assembly instruction corresponds to an
actual machine instruction. The assembly chain transforms RealAsm programs
into relocatable ELF objects through an intermediate representation called relo-
catable programs which is an abstract representation of ELF objects. We write



Towards a Framework for Developing Verified Assemblers 213

Fig. 4. The Framework

Pi(0 ≤ i ≤ 4) to represent these programs where P0 is a RealAsm program, P4

is an ELF object and the remaining ones are relocatable programs. Verification
of the assembler is accomplished by proving lock-step forward simulation for
every pass. To define the semantics for intermediate programs at different stages
of assembly by reusing a single semantics of relocatable programs (denoted by
[[·]]R), we define functions D1, D2, and D3 for reverting the assembly processes.
The rationale for using such “disassembly” functions is given in Sect. 3.2. Another
constituent of the template is the enhanced version of CSLED that supports
both CISC and RISC instructions. It is used to automatically generate instruc-
tion encoders and decoders along with their consistency proofs from instruction
specifications. In particular, the decoder is plugged into D2 to implement the



214 J. Wu et al.

inversion of instruction encoding. In the rest of this section, we elaborate on the
representations and semantics of programs and the implementation of assembly
passes along with their verification.

3.2 Source, Intermediate and Target Programs

Memory Model. CompCert’s assembly language treats the stack as an
unbounded linked list of stack frames, therefore requires pseudo instruction
for stack manipulation (e.g., Pallocframe and Pfreeframe). To define semantics
for realistic assembly programs without pseudo instructions, we adopt Stack-
Aware CompCert’s memory model for all the languages of our assembler. It
enhances CompCert’s memory model with a single and continuous stack [19],
thereby enabling stack manipulation using the stack pointer instead of pseudo
instructions.

Realistic Assembly Programs. A realistic assembly (or RealAsm) program is
an instance of the assembly program of the type PA introduced in Sect. 2.2, where
the instructions (of type I) only contain real machine instructions. Its semantic is
defined as an LTS consisting of init and step relations as introduced in Sect. 2.2.
The initial memory as a result of calling init consists of a finite and continuous
stack block, a unique block with initialized data for each internal function or
variable, and a unique empty block for each external function or variable. The
step relation of RealAsm programs is similar to CompCert’s assembly except
that no transition for pseudo instructions is defined and that it makes use of
Stack-Aware CompCert’s memory model.

Relocatable Programs. The relocatable program is a uniform intermedi-
ate representation for the assembly passes. It is a record parameterized by the
instructions and data types (I and D, respectively):

S := λ(I D : Type).〈code : List I , rwdata : List D , rodata : List D〉
PR := λ(I D : Type).{sectbl : id → �S I D�, symbtbl : id → �B�,

reloctbls : id → �List R�}.

Here, PR encodes the four different kinds of ELF sections introduced in Sect.
2.3. It contains a table of sections (for code and data sections), a symbol table,
and a mapping of relocation tables. They respectively map an identifier into a
section (of type S I D), a symbol entry (of type B), and a relocation table
(of type List R where R is the type of relocation entries). An element in the
section table is either a code section containing a list of elements of type I,
or a read-write or read-only data section containing elements of type D. The
formal definitions of symbol entries and relocation entries mirror their informal
definitions in Sect. 2.3.

The semantics for relocatable programs denoted as [[·]]R serves as the uni-
form foundation for describing other languages’ semantics (except for RealAsm)



Towards a Framework for Developing Verified Assemblers 215

in our framework. In this semantics, the order of memory blocks allocated during
memory initialization is different from that for assembly or higher-level programs
where memory blocks for global definitions are allocated in the same order as the
definitions occurring in the program. In the definition of init in [[·]]R, the memory
blocks for sections corresponding to internal definitions with non-empty initial-
ization data or code are first allocated, then followed by the allocation of variable
definitions with no initial values (corresponding to common symbols) and exter-
nal definitions. The step relation is similar to RealAsm as it reuses the semantics
of RealAsm’s instructions. Note that [[·]]R cannot be directly applied to P2 and
P3 which, although also relocatable programs, are the results of further compi-
lation by C1 and C2. To define their semantics by reusing [[·]]R, we first apply
D1 and D2 to disassemble them and then apply [[·]]R. Therefore, their semantics
are [[D1(P2)]]R and [[D1 ◦ D2(P3)]]R, respectively. The definitions of compilation
and disassembly and their interfaces will be discussed in detail in Sect. 3.3.

Relocatable ELF Objects. Relocatable ELF objects (denoted by E) formalize
the ELF format introduced in Sect. 2.3. They are encoded as triples of the form
(Eh, Es, Esh), where Eh formalizes the ELF header, Es is a list of ELF sections
in binary forms and Esh is a list of section headers. To define the semantics of
a relocatable ELF program P4 (denoted as [[P4]]E), we first use a function D3

which models ELF loading to get a relocatable program in binary form and then
apply D2 and D1. That is, [[P4]]E is formulated as [[D1 ◦ D2 ◦ D3(P4)]]R.

Rationale Behind Disassembly. As we have discussed above, we use dis-
assembly functions to describe program semantics so that we only need a uni-
form semantics for relocatable programs which in turn reuses the semantics of
assembly instructions. This greatly simplifies the verification of assemblers. This
reliance on disassembly is not a fundamental limitation for two reasons. First,
some form of disassembly is unavoidable for describing semantics for binary pro-
grams. For example, to describe the semantics of ELF, it is necessary to model
ELF loading and instruction decoding, which are encoded in D3 and D2 in our
framework, respectively. Second, the structure of our framework does not change
even if we use a more realistic ISA or ELF semantics without disassembly (e.g.,
Sail [2]). The only difference is that the forward simulation �= need to be gen-
eralized to �∼. Except for that, the structure of proofs should remain the same.
Therefore, our framework is still applicable with more realistic binary semantics.
The discussion about verification below should make these points clear.

3.3 Assembly Passes

The four assembly passes (C0 to C3) build relocatable ELF objects step-by-step.
C0 and C1 build the relocatable programs, among which C0 constructs a collec-
tion of sections and a symbol table from a RealAsm program and C1 iterates
the sections to generate relocation entries and eliminate unresolved symbols. C2

performs instruction and data encoding that converts the contents in sections



216 J. Wu et al.

into bytes. C3 generates relocatable ELF objects on a particular architecture
(e.g., X86 or RISC-V). Their correctness are established as lock-step forward
simulations as depicted in Fig. 4. The semantics of P0 to P4 have already been
described in the last section. We use ∼ to denote the invariant for verifying
C0 which relates the states of PA and PR. For the remaining three passes, as
the program semantics are defined by reverting the compilation, we use the
equivalent relation = as invariants. This in turn reduces lock-step simulation to
proving correct that disassembly functions are exactly the inversion of compila-
tion. Finally, by composing the correctness proofs of the four passes, we get the
following semantics preservation theorem for our assembler:

Theorem 2 (Semantics Preservation of the Assembler).

∀P P ′, C3 ◦ C2 ◦ C1 ◦ C0(P ) = �P ′� =⇒ [[P ]]A � [[P ′]]E .

In the remaining section, we discuss how to implement and verify these passes.

Generation of Relocatable Programs. This pass (C0) transforms a RealAsm
program into a relocatable program containing sections and a symbol table in
two steps. First, for every internal global definition in the source program, a cor-
responding section is built by invoking a function called gen_section to extract
code or data from the definition. Second, a symbol table is created by repeat-
edly invoking gen_symbol_entry on all global definitions to get the symbol
entries and inserting them into the initially empty symbol table. The types of
C0, gen_section and gen_symbol_entry are given as follows:

gen_section : ∀I , (G (Fd I ) Unit) → �S I Data�
gen_symbol_entry : ∀I , (G (Fd I ) Unit) → B

C0 : ∀I , (PA I ) → �PR I Data�.
Here, Data is the type of initial values of global variables defined in Comp-
Cert. For our running example, C0 generates two sections for incr and main
and a symbol table with three symbol entries for the three global definitions.
Therefore, the generated relocatable program mirrors the structure of the ELF
object as depicted in Fig. 1c (except for the relocation tables). Note that the
implementation of C0 is ignorant of I, therefore independent of architectures.

Given C0(P0) = �P1�, we need to prove [[P0]]A �∼ [[P1]]R. Following the
ideas described in Sect. 2.2, we define an invariant ∼ and prove that it holds for
the initial states and is preserved by lock-step execution. The only non-trivial
component of ∼ is a memory injection between source memory blocks for global
definitions and corresponding target blocks for sections and symbols. The main
difficulty of the proof is to show this injection indeed holds after initialization.
Once the invariant is established, lock-step simulation naturally follows from
it. Establishing this initial injection has been easy for all of CompCert’s passes:
since the global definitions for source and target are initialized in the same order,
the injection is proved to hold by starting from an empty injection and incre-
mentally showing that it is preserved after adding memory blocks for each pair



Towards a Framework for Developing Verified Assemblers 217

of corresponding source and target global definitions. However, this incremental
approach no longer works for C0 because the order of initialization is changed.
Consider our running example. In the source RealAsm program, the order of
initialization is counter, incr and main. However, as described in Sect. 3.2, in
relocatable programs memory blocks are first allocated for sections and then for
the remaining symbols. As a result, the initialization order for the relocatable
program of our example is incr, main and counter. Therefore, incremental pairing
of definitions and growth of injection during initialization is no longer possible.
To solve this problem, we directly prove that an injection between all source defi-
nitions and target blocks holds right after the initialization is completed. Because
of its monolithic nature, this proof is considerably more complicated than the
incremental proofs. Nevertheless, the initial injection can be directly established
by observing that the source block initialized from a definition g is related to
the target block initialized from gen_section(g) or gen_symbol_entry(g).

Generation of Relocation Tables. C1 generates relocation entries for
instructions or data that refer to symbols whose addresses are not determined
until linking. For each code or data section, it generates one relocation table. To
facilitate encoding of instructions and data into binary forms, it also eliminates
the symbols in them. Its type is:

C1 : ∀I, (Z → I → (�R� × I)) → (PR I Data) → �PR I Data�.
The first argument of C1 is a parameter named gen_reloc. As its color shows, it is
part of the interfaces for encapsulating the architecture-dependent components.
Given an instruction i and its offset o in i, gen_reloc o i produces a relocation
entry for i if i contains a symbol and returns an updated instruction with the
symbol replaced by the constant 0. For example, given movl counter,%eax and its
offset inside the incr section, an instance of gen_reloc for the X86 architecture
constructs a relocation entry for counter as described in Sect. 2.3. It also produces
an updated instruction movl 0,%eax where counter is replaced by 0. This makes
the instruction independent of any symbol and hence can be encoded into bits.

Given C1(P1) = �P2�, we need to prove [[P1]]R �= [[D1(P2)]]R. Note that, if
we could show that D1 reverts C1, then the forward simulation holds trivially
with an equality invariant. D1 has the following type:

D1 : ∀I, (R → I → I) → (PR I Data) → (PR I Data).

Its first argument is called restore_symb and is also part of our framework’s
interfaces. Given an instruction i and its relocation entry r, restore_symb r i
extracts the symbol stored in r and writes it back into i. For example,
restore_symb converts movl 0,%eax back to movl counter,%eax given the gen-
erated relocation entry. The key to showing that D1 reverts C1 is to prove the
following property, i.e., restore_symb reverts gen_reloc, whose proof is straight-
forward:

∀ i i′ e o, gen_reloc o i = (�e�, i′) =⇒ restore_symb e i′ = i.

The above verification process is also applicable to the remaining two passes.



218 J. Wu et al.

Instruction and Data Encoding. C2 encodes instructions and data sections
into sections containing bytes. It has the following type:

C2 : ∀I I ′, (I → �List I ′�) → (I ′ → �List Byte�) → (PR I Data) → �PR Byte Byte�.

The first two arguments are called translate_instr and csled_encode, respec-
tively. They are also part of our framework’s interfaces. translate_instr is a
hand-written instruction translator for converting RealAsm instructions into
a list of abstract assembly instructions characterized by the inductive defini-
tion for instructions generated from CSLED specifications (i.e., A introduced
in Sect. 2.5). These CSLED instructions are subsequently encoded into bytes
by csled_encode which makes use of the encoder generated from CSLED spec-
ifications (i.e., E in Sect. 2.5). Unlike instruction encoding, data encoding is
independent of architectures. The data encoder (of type Data → List Byte) is
directly embedded into C2. It encodes data of different types (e.g. int, float, or
double) into bytes by using appropriate encoders for scalar values.

Given C2(P2) = �P3�, we need to prove [[D1(P2)]]R �= [[D1 ◦ D2(P3)]]R. It
follows by showing that D2 reverts C2. D2 decodes binary instructions back to
RealAsm instructions. It has the following type:

D2 : ∀ I I ′, (List Byte → �I ′�) → (List I ′ → �I �) → (PR Byte Byte) → �PR I Byte�.

The first two arguments are called csled_decode and revert_translate where
csled_decode is the instruction decoder generated by CSLED (i.e., D in Sect.
2.5) and revert_translate further decodes CSLED instructions into RealAsm
assembly instructions. To show instruction encoding is reverted by D2, the key is
to prove that revert_translate reverts translate_instr and csled_decode reverts
csled_encode. The former is easily proved manually with certain automation
scripts in Coq. The latter follows directly from Theorem 1 which is automatically
generated by CSLED. Note that there is no need to show data encoding can be
reverted: we can prove that the initial memory values (in bytes) obtained from
data of type Data are equal to those initialized from data of type Byte.

Generation of Relocatable ELF Objects. C3 : (PR Byte Byte) → PE
encodes the symbol table and relocation tables to a list of ELF sections, and
generates headers for all the sections. As mentioned in Sect. 3.2, the ELF seman-
tics is defined by employing an ELF loader D3. To verify this pass, we show that
D3 reverts C3. We elide a discussion of this proof as it is straightforward.

4 Applications

We demonstrate the effectiveness of our framework by building assemblers for
X86 and RISC-V that support all the 32 and 64-bit X86 and RISC-V instructions
used by CompCert. By design, all we need to do is to provide instances for the
interfaces exposed by our framework.



Towards a Framework for Developing Verified Assemblers 219

Fig. 5. A Snippet of the X86 Specifications

4.1 Building an Assembler for X86

To obtain instances of the interfaces for supporting X86 instructions in Comp-
Cert, the most challenging task is to write down the CSLED specifications that
capture the complex X86 instruction format. Instantiation of the remaining inter-
faces (e.g., gen_reloc and translate_instr) is straightforward.

As demonstrated in Sect. 2.5, CSLED is already sufficient for specifying 32-bit
X86 instructions. However, it is more difficult to support 64-bit X86 instructions
which can be viewed as 32-bit instructions prepended with an REX prefix which
extends operands to 64 bits. An obvious solution is to write down two versions of
CSLED specifications: one for 32-bit without the REX prefix and the other for
64-bit with the prefix. However, this duplication is not only tedious and error-
prone, but also generates inefficient encoders and decoders with bloated proofs.
To solve this problem, we treat REX as a new “instruction”, as depicted in Fig. 5
where the first operand (bit) w denotes whether the instruction is in 32-bit or
64-bit mode and the remaining three operands (bits) are used to encode the
extended registers referred by the instruction. The key observation that enables
the treatment of REX as a separate instruction is that, by the design of the
X86 64-bit extension, the binary form of REX does not overlap with any regular
instruction. Therefore, unambiguous encoders and decoders can be generated
from the CSLED specifications in Fig. 5.

4.2 Building an Assembler for RISC-V

RISC architectures have more consistent and much simpler instruction for-
mats than CISC architectures. For instance, no REX prefix is needed to dis-
tinguish between 32-bit and 64-bit instructions. Therefore, it is conceptually
more straightforward to build assemblers for RISC-V than for X86. However, to
apply our framework, we still need to address a practical problem: the original
CSLED cannot directly support encoding and decoding of RISC-V instructions.
The original CSLED describes an instruction as a sequence of bytes such that a
field cannot span over more than one byte. Therefore, CSLED is insufficient for
encoding many RISC-V instructions with this characteristic.

The root cause of the above problem is that the algorithm for generating
encoders and decoders in CSLED treats byte as the atomic unit for binary data.
To support RISC instructions, we switched the atomic unit to bit and refactored
the algorithm so that it can still correctly generate encoders and decoders, and
their correctness proofs. After that, it is easy to write a RISC-V instruction
specification for CompCert and to generate a verified RISC-V assembler.



220 J. Wu et al.

Fig. 6. The End-to-end Compilation Chain

5 Evaluation

5.1 Connecting with Stack-Aware CompCert

To evaluate the effectiveness of our approach, we connect our verified assemblers
with Stack-Aware CompCert [19,21]. The complete compilation chain is shown
in Fig. 6. The pretty printers translate CompCert assembly code into RealAsm
code by expanding all the pseudo instructions into real assembly instructions.
This phase is the only part not yet formally verified. The difficulty in its veri-
fication is mainly caused by the discrepancy between the memory models used
by (Stack-Aware) CompCert and our verified assemblers. In particular, pointer
values and certain scalar values stored in CompCert’s memory are abstract and
cannot be directly interpreted as binary values. As a result, the source and target
semantics of the pretty printer cannot be matched via simulation. To solve this
problem, we will need a version of Stack-Aware CompCert with a more concrete
memory model. This is a non-trivial task and left for future work.

5.2 Statistics and Comparison

To examine the efficiency of our assemblers, we have applied our X86 and RISC-V
compilation chains to the test suite provided by CompCert. Initially, we observed
a 2.6% slowdown on average by running the code generated by our compilation
chains and comparing it with the performance of the code generated by Comp-
Cert which uses the GNU assembler as. By inspecting the code generated by as,
we discovered that it runs more efficiently by choosing instructions operating on
aligned data (especially for floating-point values). We then modified our pretty
printer to generate the same instructions, which brought the slowdown down to
1.1%. We conjecture that our performance can be further improved by choosing
instructions with smaller immediate values (e.g., 8-bit instead of 32-bit), which
may reduce cache misses. Such experiments are left to future work.

The statistics of our Coq development are shown in Table 1, where the num-
bers are measured in lines of code (LoC) and obtained by using coqwc. Note that
we count Coq specifications and proofs separately. The framework column dis-
plays LoC for architecture-independent components, while the applications col-
umn displays LoC for architecture-dependent components. The second to fourth
rows show the statistics for the program representations in our framework. The
subsequent four rows are for the assembly passes. In instruction and data encod-
ing, we show LoC for the manually written translators and the CSLED spec-
ifications separately. The next row shows the statistics for the pretty printers
which are developed for each architecture (but not verified). As shown in the



Towards a Framework for Developing Verified Assemblers 221

Table 1. Statistics of Our Development

Components Framework Applications
X86 RISC-V

Spec Proof Spec Proof Spec Proof

Realistic Assembly 40 28 221 8 332 15
Relocatable Programs 1347 2165 797 48 423 38
Relocatable ELF 970 507 16 0 16 0
Generation of Relocatable Programs 685 1600 251 548 156 134
Generation of Relocation Tables 217 501 443 54 140 21
Instruction and Data Encoding 244 1016 0 0 0 0
• Instruction Translators 0 0 2178 469 2144 432
• CSLED Specifications 0 0 150 0 229 0
Generation of Relocatable ELF 605 1032 87 153 83 121
Pretty Printers 0 0 1005 0 1127 0
Total 4108 6849 5148 1280 4650 761

last row, a major part of the work for developing verified assemblers is isolated
in the generic and architecture-independent framework. Note that a major part
of the architecture-dependent development is for instruction translators (about
2.5k LoC each for X86 and RISC-V). However, we observe that these code and
proofs are highly structured and may be simplified with further automation.
The Coq proof scripts automatically generated by CSLED are quite large and
may slow down the proof checking significantly when the number of instructions
increases. We plan to solve this problem by dividing instructions into smaller
categories which can be verified independently.

Finally, we compare our work with the most relevant existing work, i.e.,
CompCertELF [20] which also implements a verified assembler for the 32-bit X86
backend of CompCert. The main difference is that CompCertELF only supports
a subset of X86-32 instructions and this support is hard-coded in its implemen-
tation. In particular, 89 X86-32 instructions of CompCert are implemented, out
of which 24 are fully verified. This takes about 2300 LoC. As shown in Table 1
we only need 2647 LoC (2178 + 469) for the hand-written translator and 150
lines of the CSLED specifications to support the complete X86-32 and X86-64
backends of CompCert (a total of 146 instructions implemented and verified).
Moreover, since CompCertELF does not separate the architecture-independent
and -dependent implementation and proofs, it is unclear how it can be extended
to support other architectures.

6 Related Work and Conclusion

Verified Assembly. To develop a verified assembler, it is necessary to precisely
describe the semantics of assembly programs and object files. The semantics of



222 J. Wu et al.

assembly programs in CompCert [8] is not ideal as it is not based on a realistic
machine model (e.g., pointers can not be represented as binary values) [9]. There
has been work on fixing these problems [3,4,13]. CompCertS [3] uses a concrete
memory model to map memory blocks to 32-bit integers. Kang et al. [4] combines
the logical and concrete memory models to enable injection (casting) of pointers
into integers. Mullen et al. [13] defines a new semantics for X86-32 assembly
which models pointers as 32-bit integers by introducing a memory allocator
to translate memory blocks to concrete addresses. The memory model we use
is based on Stack-Aware CompCert [19,21]. It extends the memory with an
abstract stack to support the finite and continuous stacks in assembly programs.

There exists a lot of work on formalizing generation of low-level code (e.g.,
proof carrying code [1,14] and typed assembly [11,12]). However, none of them
formally proves the correctness of assemblers. Recent work on verified compi-
lation tried to address this problem. CakeML [6,16] is a verified compiler for a
subset of Standard ML. Its backend supports compilation to machine code on
different architectures. However, it uses an internal representation called LABLANG
to store the encoded data instead of a standard binary file format [16]. Comp-
CertELF [20] supports verified compilation from C programs all the way to the
relocatable ELF files. However, it only supports a small subset of X86-32 and
is difficult to extend due to its hard-coded dependency on X86-32. A transla-
tion validator known as Valex has been developed for the PowerPC assembler in
CompCert [5]. It checks the consistency between generated executable programs
and abstract assembly code. However, it is not formally verified.

Instruction Encoding and Decoding. CSLED [22] is a framework for automati-
cally generating verified encoders and decoders from instruction specifications.
Its specification language is based on the instruction specification language
SLED [15] which does not provide any formal guarantee.

Conclusion. We have presented a framework for developing verified assemblers.
It takes the form of a template implementing the architecture-independent parts
of the verified assemblers. To obtain a verified assembler targeting a specific
architecture, users only need to instantiate the architecture-dependent compo-
nents exposed as interfaces in our framework. To demonstrate its effectiveness,
we have applied our framework to develop assemblers sufficient to support the
X86 and RISC-V backends of CompCert. We have further connected them with
Stack-Aware CompCert via pretty printers and experimented on CompCert’s
official test suite. Our work is an initial attempt to develop realistic assemblers
and linkers for end-to-end compiler verification. In the future, we would like
to formally verify the pretty printers by using a more realistic memory model,
extend our work to support verified linkers and verified compositional compila-
tion, and scale our approach to other compilers, optimizations and object file
formats.



Towards a Framework for Developing Verified Assemblers 223

Acknowledgements. We thank the anonymous referees for their feedback which
improved this paper significantly. This work was supported by the National Natural
Science Foundation of China (NSFC) under Grant No. 62002217.

References

1. Appel, A.W.: Foundational proof-carrying code. In: Proceedings of 31st IEEE Sym-
posium on Logic in Computer Science (LICS’16), pp. 247–256. IEEE Computer
Society, Boston (2001). https://doi.org/10.1109/LICS.2001.932501

2. Armstrong, A., et al.: Isa semantics for armv8-a, risc-v, and cheri-mips. Proc. ACM
Program. Lang. 3(POPL), 71:1–71:31 (2019). https://doi.org/10.1145/3290384

3. Besson, F., Blazy, S., Wilke, P.: CompCertS: a memory-aware verified C compiler
using pointer as integer semantics. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP
2017. LNCS, vol. 10499, pp. 81–97. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66107-0_6

4. Kang, J., Hur, C.K., Mansky, W., Garbuzov, D., Zdancewic, S., Vafeiadis, V.: A
formal c memory model supporting integer-pointer casts. In: Proceedings of 2015
ACM Conference on Programming Language Design and Implementation (PLDI
2015), pp. 326–335. ACM, New York (2015). https://doi.org/10.1145/2737924.
2738005

5. Kästner, D., et al.: Compcert: practical experience on integrating and qualifying
a formally verified optimizing compiler. In: Proceedings of 9th European Congress
Embedded Real-Time Software and Systems, pp. 1–9. SEE (2018)

6. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: Cakeml: a verified implementa-
tion of ml. In: Proceedings of 41st ACM Symposium on Principles of Programming
Languages (POPL 2014), pp. 179–191. ACM, New York (2014). https://doi.org/
10.1145/2535838.2535841

7. Leroy, X.: The CompCert Verified Compiler (2005-2023). http://compcert.inria.
fr/

8. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009). https://doi.org/10.1007/s10817-009-9155-4

9. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert Memory Model, Ver-
sion 2. Research Report RR-7987, INRIA (2012). https://hal.inria.fr/hal-00703441

10. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for
verifying program transformation. J. Autom. Reason. 41(1), 1–31 (2008). https://
doi.org/10.1007/s10817-008-9099-0

11. Morrisett, G., et al.: TALx86: a realistic typed assembly language. In: 1999
ACM SIGPLAN Workshop on Compiler Support for System Software, pp. 25–35.
Atlanta, GA, USA (1999)

12. Morrisett, J.G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. ACM Trans. Program. Lang. Syst. 21(3), 527–568 (1999). https://doi.
org/10.1145/319301.319345

13. Mullen, E., Zuniga, D., Tatlock, Z., Grossman, D.: Verified peephole optimizations
for compcert. In: Proceedings of 2016 ACM Conference on Programming Language
Design and Implementation (PLDI 2016). pp. 448–461. ACM, New York (2016).
https://doi.org/10.1145/2980983.2908109

14. Necula, G.: Proof-carrying code. In: Proceedings of 24th ACM Symposium on
Principles of Programming Languages (POPL 1997), pp. 106–119. ACM, New York
(1997). https://doi.org/10.1145/263699.263712

https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1007/978-3-319-66107-0_6
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2737924.2738005
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
http://compcert.inria.fr/
http://compcert.inria.fr/
https://doi.org/10.1007/s10817-009-9155-4
https://hal.inria.fr/hal-00703441
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/319301.319345
https://doi.org/10.1145/2980983.2908109
https://doi.org/10.1145/263699.263712


224 J. Wu et al.

15. Ramsey, N., Fernández, M.F.: Specifying representations of machine instructions.
ACM Trans. Program. Lang. Syst. 19(3), 492–524 (1997). https://doi.org/10.1145/
256167.256225

16. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.: The
verified cakeml compiler backend. J. Funct. Program. 29, e2 (2019). https://doi.
org/10.1017/S0956796818000229

17. The Coq development team: The Coq proof assistant (1999 - 2023). http://coq.
inria.fr

18. The GNU development team: GNU Binutils (2000 - 2023). https://sourceware.org/
binutils/

19. Wang, Y., Wilke, P., Shao, Z.: An abstract stack based approach to verified com-
positional compilation to machine code. Proc. ACM Program. Lang. 3(POPL),
62:1–62:30 (2019). https://doi.org/10.1145/3290375

20. Wang, Y., Xu, X., Wilke, P., Shao, Z.: Compcertelf: verified separate compilation
of c programs into elf object files. Proc. ACM Program. Lang. 4(OOPSLA) 197,
1–197:28 (2020). https://doi.org/10.1145/3428265

21. Wang, Y., Zhang, L., Shao, Z., Koenig, J.: Verified compilation of C programs with
a nominal memory model. Proc. ACM Program. Lang. 6(POPL), 1–31 (2022).
https://doi.org/10.1145/3498686

22. Xu, X., Wu, J., Wang, Y., Yin, Z., Li, P.: Automatic generation and validation of
instruction encoders and decoders. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021.
LNCS, vol. 12760, pp. 728–751. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-81688-9_34

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/256167.256225
https://doi.org/10.1145/256167.256225
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1017/S0956796818000229
http://coq.inria.fr
http://coq.inria.fr
https://sourceware.org/binutils/
https://sourceware.org/binutils/
https://doi.org/10.1145/3290375
https://doi.org/10.1145/3428265
https://doi.org/10.1145/3498686
https://doi.org/10.1007/978-3-030-81688-9_34
https://doi.org/10.1007/978-3-030-81688-9_34
http://creativecommons.org/licenses/by/4.0/


Transport via Partial Galois Connections
and Equivalences

Kevin Kappelmann(B)

Technical University of Munich, Boltzmannstrasse 3, Garching 85748, Germany
kevin.kappelmann@tum.de

Abstract. Multiple types can represent the same concept. For example,
lists and trees can both represent sets. Unfortunately, this easily leads
to incomplete libraries: some set-operations may only be available on
lists, others only on trees. Similarly, subtypes and quotients are com-
monly used to construct new type abstractions in formal verification.
In such cases, one often wishes to reuse operations on the representa-
tion type for the new type abstraction, but to no avail: the types are
not the same. To address these problems, we present a new framework
that transports programs via equivalences. Existing transport frame-
works are either designed for dependently typed, constructive proof assis-
tants, use univalence, or are restricted to partial quotient types. Our
framework (1) is designed for simple type theory, (2) generalises pre-
vious approaches working on partial quotient types, and (3) is based
on standard mathematical concepts, particularly Galois connections and
equivalences. We introduce the notions of partial Galois connection and
equivalence and prove their closure properties under (dependent) func-
tion relators, (co)datatypes, and compositions. We formalised the frame-
work in Isabelle/HOL and provide a prototype.

Keywords: Galois connections · Equivalences · Relational
parametricity

1 Introduction

Computer scientists often write programs and proofs in terms of representa-
tion types but provide their libraries in terms of different, though related, type
abstractions. For example, the abstract type of finite sets may be represented
by the type of lists: every finite set is related to every list containing the same
elements and, conversely, every list is related to its set of elements. As such,
every function on lists respecting this relation may be reused for a library on
finite sets. To be more explicit, consider the following example in simple type
theory:

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-981-99-8311-7_11.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 225–245, 2023.
https://doi.org/10.1007/978-981-99-8311-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_11&domain=pdf
http://orcid.org/0000-0003-1421-6497
https://doi.org/10.1007/978-981-99-8311-7_11
https://doi.org/10.1007/978-981-99-8311-7_11


226 K. Kappelmann

A Simple Example. Take the types of lists, α list, and finite sets, α fset. There is
a function to_fset : α list ⇒ α fset that turns a list into its set of elements. This
allows us to define the relation LFSxs s := to_fsetxs = s that identifies lists
and finite sets, e.g. LFS [1, 2, 3] {1, 2, 3} and LFS [3, 1, 2] {1, 2, 3}. Our goal is to
use this identification to transport programs between these two types.

For instance, take the function max_listxs := foldr maxxs 0 of type N list ⇒
N that returns the maximum natural number contained in a list. After some
thinking, one recognises that max_list respects the relation LFS in the following
sense: if two lists correspond to the same set, then applying max_list to these
lists returns equal results. Formally,

∀xs ys. to_fsetxs = to_fset ys −→ max_listxs = max_list ys. (1)

Despite this insight, we still cannot directly compute the maximum of a finite
set s : N fset using max_list; the term max_list s does not even typecheck (for
good reasons). But there is an indirect way if we are also given an “inverse” of
to_fset, call it to_listfin : α fset ⇒ α list, that returns an arbitrary list containing
the same elements as the given set. The functions to_fset and to_listfin form an
equivalence between α list and α fset that respects the relation LFS:

∀xs. LFSxs (to_fsetxs) and ∀s. LFS (to_listfin s) s. (2)

Thanks to this equivalence, we can compute the maximum of s by simply trans-
porting s along the equivalence:

max_fset s := max_list (to_listfin s). (3)

The correctness of this transport is guaranteed by (1)–(3):

∀xs s. LFSxs s −→ max_listxs = max_fset s. (4)

We can now readily replace any occurrence of max_fset s by max_list (to_listfin s)
and, vice versa, any occurrence of max_listxs by max_fset (to_fsetxs). This
process can be extended to many other functions, such as map, filter, intersect,
by introducing new terms map_fset, filter_fset, intersect_fset and proving their
respectfulness theorems. Indeed, it is a very repetitive task begging for automa-
tion.

State of the Art. There are various frameworks to automate the transport of
terms along equivalences. Most of them are designed for dependently typed,
constructive proof assistants and are based on type equivalences [8,9,26,28,29],
which play a central role in homotopy type theory. In a nutshell, type equiv-
alences are pairs of functions f, g that are mutually inverse (i.e. g (f x) = x
and f (g y) = y) together with a compatibility condition. They cannot solve our
problem since to_fset and to_listfin are not mutually inverse.

Angiuli et al. [1] note and address this issue in Cubical Agda [32]. Essentially,
they first quotient both types and then obtain a type equivalence between the



Transport via Partial Galois Connections and Equivalences 227

quotiented types. Their approach supports a restricted variant of quasi-partial
equivalence relations [16] but also uses univalence [33], which is unavailable in
major proof assistants like Isabelle/HOL [24] and Lean 3 [22]/Lean 4 [23].

Another existing framework is Isabelle’s Lifting package [13], which trans-
ports terms via partial quotient types:

Definition 1. A partial quotient type (T,Abs,Rep) is given by a right-unique
and right-total relation T and two functions Abs, Rep respecting T , that is
T x y −→ Abs x = y and T (Rep y) y, for all x, y.

In fact,
(
LFS, to_fset, to_listfin

)
forms a partial quotient type. The Lifting pack-

age can thus transport our list library to finite sets1. However, the package also
has its limitations:

Limitations of the Lifting Package. Consider the previous example with one
modification: rather than transporting max_list to finite sets, we want to trans-
port it to the type of (potentially infinite) sets, α set. We cannot build a partial
quotient type from α list to α set because the required relation T : α list ⇒
α set ⇒ bool is not right-total (we can only relate finite sets to lists). The Lift-
ing package is stuck. But in theory, we can (almost) repeat the previous pro-
cess: There is again a function to_set : α list ⇒ α set. We can define a relation
LSxs s := to_setxs = s. We can again prove that max_list respects LS:

∀xs ys. to_setxs = to_set ys −→ max_listxs = max_list ys. (5)

There is a function to_list : α set ⇒ α list, and we obtain a partial equivalence:

∀xs. LSxs (to_setxs) and ∀s. finite s −→ LS (to_list s) s. (6)

We can define the function max_set s := max_list (to_list s). And we again
obtain a correctness theorem: ∀xs s. LSxs s −→ max_listxs = max_set s. While
this process looks rather similar, there is one subtle change: the second part
of Eq. (6) only holds conditionally. As a contribution of this paper, we show
that these conditions are not showstoppers, and that we can transport via such
partial equivalences in general.

Now one may argue that we could still use partial quotient types to transport
from lists to sets: First obtain a right-unique, right-total relation T by building a
subtype of the target type. Then transport to the new subtype and then inject to
the original type. In spirit, this is close to the approach suggested by Angiuli et
al. [1]. But the author finds this unsatisfactory from a practical and a conceptual
perspective: From a practical perspective, it introduces unnecessary subtypes to
our theory. And conceptually, the process for sets and lists was almost identical
to the one for finite sets and lists – there was no detour via subtypes.

A second limitation of the Lifting package is that it does not support inter-
argument dependencies. For example, take the types of natural numbers, N,
1 The Lifting package is indeed used pervasively for such purposes. At the time of

writing, Isabelle/HOL and the Archive of Formal Proofs (https://www.isa-afp.org/)
contain more than 2800 invocations of the package.

https://www.isa-afp.org/


228 K. Kappelmann

and integers, Z. We can construct a partial quotient type (ZN, to_nat, to_int),
where to_int : N ⇒ Z is the standard embedding, to_nat : Z ⇒ N is its inverse
(a partial function), and ZN i n := i = to_intn. It then seems straightforward
to transport subtraction (−Z) : Z ⇒ Z ⇒ Z from integers to natural numbers in
the following way:

n1 −N n2 := to_nat
(
to_intn1 −Z to_intn2

)
. (7)

And of course, we expect a correctness theorem:

∀i1 n1 i2 n2.ZN i1 n1 ∧ ZN i2 n2 −→ ZN (i1 −Z i2) (n1 −N n2). (8)

But alas, the theorem does not hold: we need an extra dependency between the
arguments of the respective subtractions, e.g. i1 ≥ i2 or n1 ≥ n2. Unfortunately,
the Lifting package’s theory [13] cannot account for such dependencies, and as
such, the transport attempt for (−Z) fails.

In a similar way, the list index operator (!!) : α list ⇒ N ⇒ α can only
be transported to the type of arrays for indices that are in bounds (cf. Sect. 5,
Example 2). While solutions for dependently typed environments [1,8,9,26,28,
29] typically handle such examples by encoding the dependencies in a type, e.g.
(xs : α list) ⇒ {0, . . . , lengthxs − 1} ⇒ α, it is unclear how to support this in
a simply typed environment. As a contribution of this paper, we show how to
account for such dependencies with the help of dependent function relators.

Contributions and Outline. We introduce a new transport framework – simply
called Transport. Our framework (1) is applicable to simple type theory, (2)
is richer than previous approaches working on partial quotient types, and (3)
is based on standard mathematical notions, particularly Galois connections and
equivalences. In Sect. 2, we distil the essence of what we expect when we trans-
port terms via equivalences. The derived set of minimal expectations motivates
us to base our framework on Galois connections.

To meet these expectations, we introduce the notion of partial Galois con-
nections, which generalise (standard) Galois connections and partial quotient
types, in Sect. 3.4. We also introduce a generalisation of the well-known function
relator that allows for dependent relations in Sect. 3.2.

Section 4 builds the technical core of the paper. We derive closure conditions
for partial Galois connections and equivalences as well as typical order proper-
ties (reflexivity, transitivity, etc.). Specifically, we show closure properties under
(dependent) function relators, relators for (co)datatypes, and composition. All
these results are novel and formalised in Isabelle/HOL.

Based on our theory, we implemented a prototype for automated transports
in Isabelle/HOL and illustrate its usage in Sect. 5. We conclude with related
work in Sect. 6 and future work in Sect. 7.

This article’s extended version [14] includes the formalisation and a guide
linking all definitions, results, and examples to their formal counterpart in
Isabelle/HOL.



Transport via Partial Galois Connections and Equivalences 229

2 The Essence of Transport

Existing frameworks, although beneficial in practical contexts, are unapplica-
ble to our introductory examples. We hence first want to find the essence of
transport2. To find this essence, we have to answer the following question:

What are the minimum expectations when we transport terms via equivalences?

Fig. 1. Examples of equivalences used in prior work. Types are drawn solid, black.
Transport functions are drawn dashed. Each equivalence gives rise to a number of
equivalence classes on the left and right-hand side of the equivalence, which are drawn
dotted. Arrows inside equivalence classes are omitted.

In this section, we argue that Galois connections are the right notion to cover
this essence. Let us examine prior work to identify some guiding principles.

Type Equivalences. Much recent work is based on type equivalences [1,8,9,26,
28,29]. We denote a type equivalence between α and β with mutual inverses
f : α ⇒ β and g : β ⇒ α by (α � β) f g. Then, on a high level, given a set of
equivalences (αi � βi) fi gi for 1 ≤ i ≤ n and two target types α, β that may
include αi, βi, one tries to build an equivalence (α � β) f g. Given a term t : α,
we can then define t′ := f t, satisfying t = g t′. Symmetrically, for a term t′ : β,
we can define t := g t′, satisfying f t = t′. This situation is depicted in Fig. 1(a).

2 To avoid confusion, our work is not about the transport map from homotopy type
theory [31, Chapter 2]. We focus on the general task of transporting a term t to
another term t′ along some notion of equivalence (not necessarily a type equivalence).



230 K. Kappelmann

Partial Quotient Types. The Lifting package [13] is based on partial quotient
types (T,Abs,Rep) (see Definition 1). Every partial quotient type induces a
relation (≈) : α ⇒ α ⇒ bool that identifies values in α that map to the same
value in β:

x1 ≈ x2 := in_domT x1 ∧ Abs x1 = Abs x2. (9)

Given a set of partial quotient types (Ti : αi ⇒ βi ⇒ bool, Absi, Repi) for
1 ≤ i ≤ n and two target types α, β that may include αi, βi, the Lifting package
tries to build a partial quotient type (T : α ⇒ β ⇒ bool, Abs,Rep). Given a
term t in the domain of (≈), we can then define t′ := Abs t, satisfying t ≈ Rep t′.
Symmetrically, for a term t′ : β, we can define t := Rep t′, satisfying Abs t = t′.
This situation is depicted in Fig. 1(b).

The Essence. Abstracting from these approaches, we note some commonalities:

• As input, they take base equivalences, which are then used to build more
complex equivalences.

• The equivalences include a left transport function l : α ⇒ β and a right
transport function r : β ⇒ α. They can be used to move terms from one side
of the equivalence to a “similar” term on the other side of the equivalence.

• Terms t : α and t′ : β that are “similar” stand in particular relations: in the
case of type equivalences, t = r t′ and l t = t′; in the case of Lifting, t ≈ r t′

and l t = t′. More abstractly, L t (r t′) and R (l t) t′ for some left relation
L : α ⇒ α ⇒ bool and right relation R : β ⇒ β ⇒ bool.3

• More generally, L and R specify how terms ought to be related in α and β
and determine which terms can be meaningfully transported using l and r.

• L,R, l, r are compatible: if terms are related on one side (e.g. L t1 t2), their
transports are related on the other side (e.g. R (l t1) (l t2)).

Based on these commonalities, we can formulate six minimum expectations:

(1) We want to specify how terms in α and β are related using relations L,R.
(2) Transports should be possible by means of functions l : α ⇒ β, r : β ⇒ α.
(3) The notion of equivalence should be closed under common relators, particu-

larly those for functions and (co)datatypes.
(4) Terms related on one side have transports that are related on the other side.
(5) Transporting a term should result in a term that is “similar” to its input.
(6) “Similar” terms t : α and t′ : β are related with each other’s transports, i.e.

L t (r t′) and R (l t) t′.

Applying Expectation (6) to Expectation (5) then yields the requirements

3 The choice of L t (r t′), R (l t) t′ may seem arbitrary – why not pick L t (r t′), R t′ (l t)
instead? In the end, the choice does not matter: While the former leads us to (mono-
tone) Galois connections, the latter leads us to antitone Galois connections. Using
that L,R form a Galois connection if and only if L,R−1 form an antitone Galois
connection, every result in this paper can be transformed to its corresponding result
on antitone Galois connections by an appropriate instantiation of the framework.



Transport via Partial Galois Connections and Equivalences 231

(a) L t (r (l t)), (b) R (l (r t′)) t′.

At this point, one may notice the similarity to Galois connections. A Galois
connection between two preorders (≤L) and (≤R) consists of two functions l
and r such that

• l is monotone, that is x1 ≤L x2 −→ l x1 ≤R l x2 for all x1, x2,
• r is monotone, that is y1 ≤R y2 −→ r y1 ≤L r y2 for all y1, y2, and
• x ≤L r (l x) and l (r y) ≤R y for all x, y.4

The final conditions correspond to Requirements (a) and (b) above, while the
monotonicity conditions on l and r correspond to Expectation (4).

Other Motivations. A second motivation to base our framework on Galois con-
nections comes from category theory. There, an equivalence between two cate-
gories L,R is given by two functors l : L → R and r : R → L and two natural
isomorphisms η : IdL → r◦l and ε : l◦r → IdR. Applied to preorders (≤L), (≤R)
and monotone functions l, r, this translates to the four conditions
(a) x ≤L r (l x), (b) l (r y) ≤R y, (c) r (l x) ≤L x, (d) y ≤R l (r y).

A related categorical concept is that of an adjunction. When applied to preorders
and monotone functions, an adjunction is similar to an equivalence but is only
required to satisfy Conditions (a) and (b). In fact, while Galois connections
are not categorical equivalences, they are adjunctions. From this perspective, a
Galois connection can be seen as a weak form of an (order) equivalence.

A final motivation is the applicability and wide-spread use of Galois connec-
tions. They are fundamental in the closely related field of abstract interpreta-
tion [5,7], where they are used to relate concrete to abstract domains. Moreover,
they are pervasive throughout mathematics. In the words of Saunders Mac Lane:

The slogan is “Adjoint functors arise everywhere”.
(Categories for the Working Mathematician)

We hope our exposition convinced the reader that Galois connections are a
suitable notion to cover the essence of transport. The remaining challenges are

• to bring the notion of Galois connections to a partial world – the relations
L,R may only be defined on a subset of α, β – and

• to check the closure properties of our definitions under common relators.

3 Partial Galois Connections, Equivalences, and Relators

In the previous section, we singled out Galois connections as a promising can-
didate for Transport. Now we want to bring our ideas to the formal world of
proof assistants. In this section, we introduce the required background theory
for this endeavour. In the following, we fix two relations L : α ⇒ α ⇒ bool,
R : β ⇒ β ⇒ bool and two functions l : α ⇒ β, r : β ⇒ α.
4 These two conditions are equivalent to requiring x ≤L r y ←→ l x ≤R y for all x, y.



232 K. Kappelmann

3.1 (Order) Basics

We work in a polymorphic, simple type theory [3], as employed, for example, in
Isabelle/HOL [24]. In particular, our formalisation uses function extensionality.
We assume basic familiarity with Isabelle’s syntax. Here, we only recap the most
important concepts for our work. A complete list of definitions can be found
in [14, Appendix A.1].

A predicate on a type α is a function of type α ⇒ bool. A relation on α and β
is a function of type α ⇒ β ⇒ bool. Composition of two relations R,S is defined
as (R◦S)x y := ∃z. R x z ∧S z y. A relation R is finer than a relation S, written
R ≤ S, if ∀x y.R x y −→ S x y. It will be convenient to interpret relations as infix
operators. For every relation R, we hence introduce an infix operator (≤R) := R,
that is x ≤R y ←→ R xy. We also write (≥R) := (≤R)−1. The field predicate on
a relation is defined as in_fieldR x := in_domR x ∨ in_codomR x.

We use relativised versions of well-known order-theoretic concepts. For exam-
ple, given a predicate P , we define reflexivity on P and R as reflexive_onP R :=
∀x. P x −→ R xx. We proceed analogously for other standard order-theoretic
concepts, such as transitivity, preorders, etc. (see [14, Appendix A.1]).

3.2 Function Relators and Monotonicity

We introduce a generalisation of the well-known function relator (see e.g. [25]).
The slogan of the function relator is “related functions map related inputs to
related outputs”. Our generalisation – the dependent function relator – addition-
ally allows its target relation to depend on both inputs:

(
[x y :: R] � S

)
f g := ∀x y.R x y −→ S (f x) (g y), (10)

where x, y may occur freely in S. The well-known (non-dependent) function
relator is given as a special case:

(
R � S

)
:=

(
[_ _ :: R] � S

)
. A function is

monotone from R to S if it maps R-related inputs to S-related outputs:
(
[x y :: R] �m S

)
f :=

(
[x y :: R] � S

)
f f, (11)

where x, y may occur freely in S. A monotone function relator is like a function
relator but additionally requires its members to be monotone:

(
[x y :: R] �⊕ S

)
f g :=

(
[x y :: R] � S

)
f g

∧ (
[x y :: R] �m S

)
f ∧ (

[x y :: R] �m S
)
g,

(12)

where x, y may occur freely in S. In some examples, we have to include
conditionals in our relators. For this, we define the relational if conditional
rel_if B S xy := B −→ S x y and set the following notation:

(
[x y :: R | B]� S

)
:=

(
[x y :: R] � rel_if B S

)
, (13)

where x, y may occur freely in B,S.



Transport via Partial Galois Connections and Equivalences 233

3.3 Galois Relator

In Expectation (6) of Sect. 2, we noted that “similar” terms t, t′ are related with
each other’s transports, i.e. L t (r t′) and R (l t) t′. We now define this relation
formally, calling it the Galois relator :

Galois (≤L) (≤R) r x y := in_codom(≤R) y ∧ x ≤L r y (14)

When the parameters are clear from the context, we will use the infix notation
(L�) := Galois (≤L) (≤R) r. It is easy to show that Galois relators generalise the
transport relations of partial quotient types:

Lemma 1. For every partial quotient type (T, l, r) with induced left relation
(≤L), we have T = Galois (≤L) (=) r.

3.4 Partial Galois Connections and Equivalences

In their standard form, Galois connections are defined on preorders (≤L), (≤R),
where every x : α is in the domain of (≤L) and every y : β is in the domain
of (≤R). But as we have seen, this is not generally the case when transporting
terms.

We hence lift the notion of Galois connections to a partial setting. We also
do not assume any order axioms on (≤L), (≤R) a priori but add them as needed.
In our formalisation, we moreover break the concept of Galois connections down
into smaller pieces that, to our knowledge, do not appear as such in the literature.
This allows us to obtain very precise results when deriving the closure properties
for our definitions (Sect. 4). But for reasons of brevity, we only state the main
definitions and results here. Details can be found in [14, Appendix A.4].

The (partial) Galois property is defined as:
(
(≤L) � (≤R)

)
l r :=∀x y. in_dom (≤L)x ∧ in_codom(≤R) y −→

(x ≤L r y ←→ l x ≤R y).
(15)

If l and r are also monotone, we obtain a (partial) Galois connection:
(
(≤L) � (≤R)

)
l r :=

(
(≤L) � (≤R)

)
l r

∧ (
(≤L) �m (≤R)

)
l ∧ (

(≤R) �m (≤L)
)
r.

(16)

We omit the qualifier “partial” when referring to these definitions, unless we want
to avoid ambiguity. An example Galois connection can be found in Fig. 2(a).

As mentioned in Sect. 2, Galois connections can be seen as a weak form of an
equivalence. Unfortunately, they are not in general closed under compositions
(cf. Sect. 4.3), where we need a stronger form of an equivalence. We can obtain
a suitable strengthening by requiring a two-sided Galois connection, which we
call a (partial) Galois equivalence:

(
(≤L) ≡G (≤R)

)
l r :=

(
(≤L) � (≤R)

)
l r ∧ (

(≤R) � (≤L)
)
r l (17)



234 K. Kappelmann

An example of a Galois equivalence can be found in Fig. 2(b). It can be shown
that Galois equivalences are, under mild conditions, equivalent to the traditional
notion of (partial) order equivalences (see [14, Appendix A.4]).

In practice, the relations (≤L), (≤R) are often preorders or partial equiva-
lence relations (PERs). Given some

(
(≤L) ≡G (≤R)

)
l r, we hence introduce the

notations
(
(≤L) ≡pre (≤R)

)
l r and ((≤L) ≡PER (≤R)) l r in case both relations

(≤L), (≤R) are preorders and PERs on their domain, respectively. It is easy to
show that Galois equivalences generalise partial quotient types:

Lemma 2. (T, l, r) is a partial quotient type with induced left relation (≤L) if
and only if ((≤L) ≡PER (=)) l r.

Fig. 2. Examples of partial equivalences as defined in (16), (17). Types are drawn solid,
black, transport functions dashed, and left and right relations dotted.

4 Closure Properties

We now explore the closure properties of partial Galois connections and equiva-
lences, as well as standard order properties, such as reflexivity and transitivity.
We will derive closure conditions for the dependent function relator, relators
for (co)datatypes, and composition. In each case, we will also derive conditions
under which the Galois relator aligns with the context-dependent notion of “sim-
ilarity”.

For reasons of brevity, we only show that our framework is robust under
Galois equivalences on preorders (and thus PERs) here. The results for Galois
connections (and proof sketches) can be found in [14, Appendix B.1].



Transport via Partial Galois Connections and Equivalences 235

4.1 (Dependent) Function Relator

In the field of abstract interpretation, it is well-known that Galois connections, as
usually defined in the literature, are closed under the non-dependent, monotone
function relator (see for example [7]). We generalise this result to partial Galois
connections and to dependent function relators.

Remark 1. The relations and functions we use are often non-dependent in prac-
tice. The following definitions and theorems are considerably simpler in this case.
The reader hence might find instructive to first consult the results for this special
case in [14, Appendix B.1].

The Setup. In Sect. 1, we highlighted the need of inter-argument dependencies
when transporting functions. For example, we may only transport the index
operator (!!) : α list ⇒ N ⇒ α if a given index is not out of bounds for a given
list. We can realise such dependencies with the help of the dependent function
relator from Sect. 3.2. For this, we fix the following variables:

L1 : α1 ⇒ α1 ⇒ bool,

R1 : α2 ⇒ α2 ⇒ bool,

L2 : α1 ⇒ α1 ⇒ β1 ⇒ β1 ⇒ bool,

R2 : α2 ⇒ α2 ⇒ β2 ⇒ β2 ⇒ bool,

l1 : α1 ⇒ α2,

r1 : α2 ⇒ α1,

l2 : α2 ⇒ α1 ⇒ β1 ⇒ β2,

r2 : α1 ⇒ α2 ⇒ β2 ⇒ β1.

Each variable L2, R2, l2, r2 takes parameters from α1, α2. These parameters
enable the expression of inter-argument dependencies (cf. Sect. 5, Example 2).
We hence call L2, R2, l2, r2 the dependent variables. Intuitively, we are in a situ-
ation where

(1) we are given an equivalence between (≤L1) and (≤R1), using l1 and r1,
(2) whenever x L1� x′, we are given an equivalence between (≤L2 x (r1 x′)) and

(≤R1 (l1 x) x′), using the transport functions l2 x′ x and r2 xx′, and
(3) we want to construct an equivalence for functions between(

[x1 x2 :: (≤L1)] �⊕ (≤L2 x1 x2)
)

and
(
[x′

1 x′
2 :: (≤R1)] �⊕ (≤R2 x′

1 x′
2
)
)
.

To define suitable transport functions, we use the dependent function mapper :
(
[x :: f ]→ g

)
hx := g (f x) (h (f x)), (18)

where x may occur freely in g. We can now define the target relations and
transport functions:

L :=
(
[x1 x2 :: (≤L1)] �⊕ (≤L2 x1 x2)

)
,

R :=
(
[x′

1 x′
2 :: (≤R1)] �⊕ (≤R2 x′

1 x′
2
)
)
,

l :=
(
[x′ :: r1]→ l2 x′),

r :=
(
[x :: l1]→ r2 x

)
.

(19)

In particular, l f x′ = l2 x′ (r1 x′)
(
f (r1 x′)

)
and r g x = r2 x (l1 x)

(
g (l1 x)

)
.



236 K. Kappelmann

Closure Theorems. Checking the closure of order-theoretic concepts, such as
reflexivity, transitivity, and symmetry, is fairly straightforward. Verifying the clo-
sure of Galois connections and equivalences, however, is nuanced, requiring care-
ful alignment of the dependent variables’ parameters. These alignments require
the following monotonicity conditions, which, broadly speaking, say that (1)
L2, R2 are antimonotone in their first and monotone in their second parameter,
and (2) l2, r2 are monotone in both parameters:

(i) If x1 ≤L1 x2 ≤L1 x3 ≤L1 x4 then (≤L2 x2 x3) ≤ (≤L2 x1 x4).

(ii) If x′
1 ≤R1 x′

2 ≤R1 x′
3 ≤R1 x′

4 then (≤R2 x′
2 x′

3
) ≤ (≤R2 x′

1 x′
4
).

(iii) If x1 ≤L1 x2 L1� x′
1 ≤R1 x′

2 and in_field (≤L2 x1 (r1 x′
2)
) y then(

l2 x′
1 x1 y

) ≤R2 (l1 x1) x′
2

(
l2 x′

2 x2 y
)
.

(iv) If x1 ≤L1 x2 L1� x′
1 ≤R1 x′

2 and in_field (≤R2 (l1 x1) x′
2
) y′ then(

r2 x1 x′
1 y′) ≤L2 x1 (r1 x′

2)

(
r2 x2 x′

2 y′).

We are now ready to state our main result for Galois equivalences on preorders
and PERs. The result for Galois connections (and a proof sketch) can be found
in [14, Appendix B.1]. All other results can be found in our formalisation.

Theorem 1. Let � ∈ {≡pre,≡PER} and assume

(1)
(
(≤L1) � (≤R1)

)
l r,

(2) if x L1� x′ then
(
(≤L2 x (r1 x′)) � (≤R2 (l1 x) x′)

)
(l2 x′ x) (r2 xx′),

(3) Conditions (i)–(iv).

Then
(
(≤L) � (≤R)

)
l r.

“Similarity”. Given the closure theorem, we can readily transport a function
f from (≤L) to a function g in (≤R). Due to Expectations (4) and (6), we
also know that f L� g, that is

(
[x1 x2 :: (≤L1)] �⊕ (≤L2 x1 x2)

)
f (r g) and(

[x′
1 x′

2 :: (≤R1)] �⊕ (≤R2 x′
1 x′

2
)
)
(l f) r. But arguably, this is not quite enough:

Remember the slogan of the function relator: “related functions map related
inputs to related outputs”. We know how to relate terms between (≤L1) and
(≤R1): we can use (L1�). Whenever x L1� x′, we also know how to relate terms
between (≤L2 x (r1 x′)) and (≤R2 (l1 x) x′): we can use

(L2 x x′�) := Galois (≤L2 x (r1 x′)) (≤R2 (l1 x) x′) (r2 xx′). (20)

So when we say that “f and g are similar”, we may actually desire that
(
[xx′ :: (L1�)] � (L2 x x′�)

)
f g. (21)

The following theorem answers when (L�) aligns with this definition of similarity
for preordered Galois equivalences. Preciser results can be found in [14, Appendix
B.1] and the formalisation.

Theorem 2. Assume



Transport via Partial Galois Connections and Equivalences 237

(1)
(
(≤L1) ≡pre (≤R1)

)
l1 r1,

(2) if x L1� x′ then
(
(≤L2 x (r1 x′)) ≡pre (≤R2 (l1 x) x′)

)
(l2 x′ x)(r2 xx′),

(3) Conditions (i) and (iv),
(4) in_dom (≤L) f , and in_codom (≤R) g.

Then f L� g ←→ (
[xx′ :: (L1�)] � (L2 x x′�)

)
f g.

4.2 (Co)datatypes

Different proof assistants ground (co)datatypes in different ways. For instance,
Coq and Lean introduce them axiomatically, whereas Isabelle/HOL proves their
existence using the theory of bounded natural functors [30]. As our formalisation
takes place in Isabelle/HOL, we use the latter theory. Nonetheless, the results
presented in this section are relatively straightforward and can likely be adapted
to other “reasonable” definitions of (co)datatypes.

In this section, we derive closure properties for arbitrary natural functors.
A natural functor is a bounded natural functor without cardinality constraints.
The exact axioms can be found elsewhere [30]. For our purposes, it suffices to say
that natural functors are equipped with a mapper and a relator. More precisely,
for every n-ary natural functor (α1, . . . , αn)F , there are two functions:

mapF : (α1 ⇒ β1) ⇒ · · · ⇒ (αn ⇒ βn) ⇒ (α1, . . . , αn)F ⇒ (β1, . . . , βn)F

relF : (α1 ⇒ β1 ⇒ bool) ⇒ · · · ⇒ (αn ⇒ βn ⇒ bool) ⇒
(α1, . . . , αn)F ⇒ (β1, . . . , βn)F ⇒ bool

The former lifts functions on the functor’s type arguments to the functorial
structure, the latter lifts relations on the functor’s type arguments to the func-
torial structure. Using the mapper and relator, it is straightforward to define
appropriate target relations and transport functions. First we fix the following
variables for 1 ≤ i ≤ n:

Li : αi ⇒ αi ⇒ bool, li : αi ⇒ βi, Ri : βi ⇒ βi ⇒ bool, ri : βi ⇒ αi.

Then we define the new target relations and transport functions as follows:

L := relF (≤L1) . . . (≤Ln
),

R := relF (≤R1) . . . (≤Rn
),

l := mapF l1 . . . ln,

r := mapF r1 . . . rn.
(22)

The closure properties follow without any difficulty:

Theorem 3. Let � ∈ {�,≡G,≡pre,≡PER} and assume
(
(≤Li

) � (≤Ri
)
)
li ri for

1 ≤ i ≤ n. Then
(
(≤L) � (≤R)

)
l r.

As in the previous section, we can ponder whether the relation (L�) adequately
captures our desired notion of “similarity”. Again, we already know how to relate
terms between (≤Li

) and (≤Ri
) for 1 ≤ i ≤ n: we can use (Li

�). We also know
how to relate two functors: we can use relF . We thus may desire that “t and t′

are similar” when relF (L1�) . . . (Ln
�) t t′. It is easy to show that (L�) aligns

with this desire:



238 K. Kappelmann

Theorem 4. (L�) = relF (L1�) . . . (Ln
�).

Proof details for this section can be found in our formalisation. The formali-
sation includes tactic scripts that are applicable to functors of arbitrary arity.
Integrating them into Isabelle/HOL’s datatype package is left as future work.

4.3 Compositions

It is well-known that Galois connections, as defined in the literature, are closed
under composition in the following sense: given Galois connections between
(≤L1), (≤R1) and (≤L2), (≤R2) with (≤R1) = (≤L2), we can build a Galois con-
nection between (≤L1), (≤R2). This result readily generalises to our partial set-
ting (see [14, Appendix B.2]). However, (≤R1) and (≤L2) usually do not coincide
in our context. We need a more general result.

The Setup. Our goal is to define a notion of composition that works even if
(≤R1) and (≤L2) do not coincide. For this, we fix the variables

L1 : α ⇒ α ⇒ bool, l1 : α ⇒ β, R1 : β ⇒ β ⇒ bool, r1 : β ⇒ α,

L2 : β ⇒ β ⇒ bool, l2 : β ⇒ γ, R2 : γ ⇒ γ ⇒ bool, r2 : γ ⇒ β.

Intuitively, we are in a situation where

(1) we are given an equivalence between (≤L1) and (≤R1), using l1 and r1,
(2) we are given an equivalence between (≤L2) and (≤R2), using l2 and r2, and
(3) we want to construct an equivalence with transport functions l2◦l1 and r1◦r2

between those parts of (≤L1) and (≤R2) that can be made “compatible” with
respect to these functions. This particularly means that we can apply the
transport functions on these parts without leaving the domains of the input
equivalences.

The question is: how do we find those parts and how can we make them com-
patible? The solution we propose is inspired by and generalises the approach of
Huffman and Kunčar [13]. We provide details and intuitions for the constructions
in [14, Appendix B.2]. The resulting target relations and transport functions are
defined as follows (where (Ri

�) := Galois (≤Ri
) (≤Li

) li):

L := (L1�) ◦ (≤L2) ◦ (R1�),
R := (R2�) ◦ (≤R1) ◦ (L2�),

l := l2 ◦ l1,

r := r1 ◦ r2.
(23)

Closure Theorems. Again, we only state our main result for Galois equivalences
on preorders and PERs. Preciser results can be found in [14, Appendix B.2]
(including a proof sketch) and in our formalisation.

Theorem 5. Let � ∈ {≡pre,≡PER} and assume

(1) ∀i ∈ {1, 2}.
(
(≤Li

) � (≤Ri
)
)
li ri,

(2)
(
(≤R1) ◦ (≤L2)

)
=

(
(≤L2) ◦ (≤R1)

)
.

Then
(
(≤L) � (≤R)

)
l r.



Transport via Partial Galois Connections and Equivalences 239

“Similarity”, For a final time, we can ponder whether the relation (L�) is suffi-
cient to capture our desired notion of “similarity”: Again, we already know how
to relate terms between (≤Li

) and (≤Ri
) for i ∈ {1, 2}: we can use (Li

�). We
also have a natural way to combine these relations, namely composition. We thus
may desire that “t and t′ are similar” when

(
(L1�) ◦ (L2�)

)
t t′. The next theo-

rem answers when (L�) aligns with this desire for Galois equivalences. Preciser
results can be found in [14, Appendix B.2] and the formalisation.

Theorem 6. Assume

(1) ∀i ∈ {1, 2}.
(
(≤Li

) ≡pre (≤Ri
)
)
li ri,

(2)
(
(≤R1) ◦ (≤L2)

)
=

(
(≤L2) ◦ (≤R1)

)
,

Then (L�) =
(
(L1�) ◦ (L2�)

)
.

5 Application Examples

As all our results are formalised in Isabelle/HOL, we can directly use them to
manually transport terms in said environment. But that would be rather tire-
some. We thus implemented a prototype in Isabelle/ML to automate transports.

The Prototype. The method trprover uses registered base equivalences, along
with the closure theorems from Sect. 4, to construct more complex equivalences.
The prototype is currently restricted to equivalences on partial equivalence rela-
tions (PERs) for pragmatic reasons: their closure theorems have fewer assump-
tions and are hence simpler to apply. Providing automation for weaker equiv-
alences is future work. The current prototype also does not build composition
closures (Sect. 4.3) and automates only a fragment of dependent function relators
for simplicity reasons. Again, these extensions are future work.

The prototype provides a command trp. As input, it takes a term t : α (the
term to be transported) and two optional target relations L : α ⇒ α ⇒ bool,
R : β ⇒ β ⇒ bool. This is unlike other transport frameworks [9,13,26,29], which
only take the term t : α and a target type β. This design decision is crucial
since we can neither assume a unique correspondence between types and target
relations in practice (cf. Example 3), nor can we express dependencies in types,
but we express them using dependent relators (cf. Example 2). The command
then opens two goals. The first one asks for an equivalence ((≤L) ≡PER (≤R)) l r,
the second one for a proof that in_dom (≤L) t. On success, it registers a new term
t′ and a theorem that t L� t′. It also registers a second theorem where the relator
(L�) has been rewritten to its desired form as described in Theorems 2,4, and 6.

The following examples are best explored interactively in our formalisation.
We define the restricted equality relation on predicates as x =P y := P x ∧ x = y
and the restricted equality relation on sets as x =S y := x ∈ S ∧ x = y.

Example 1. It is easy to transport the list and set examples from Sect. 1. We
just have to prove the equivalence between LFSL xs xs′ := LFSxs (to_fsetxs′)



240 K. Kappelmann

and (=) : N fset ⇒ N fset ⇒ bool and invoke our prototype on max_list:

lemma [per_intro]: (LFSL ≡PER (=)) to_fset to_listfin

trpmax_fset : N fset ⇒ Nwhere t = max_listby trprover

The [per_intro] tag is used by trprover to discharge the closure theorems’ side
conditions. trp registers the theorem

(
LFS � (=)

)
max_listmax_fset and the

definition max_fset s := max_list (to_listfin s) as a result. We can also readily
transport in the opposite direction or use sets rather than fsets if we define
LSL xs xs′ := LSxs (to_setxs′):

trpmax_list′ : N list ⇒ Nwhere t = max_fsetby trprover
lemma [per_intro]: (LSL ≡PER (=finite)) to_set to_list

trpmax_set : N set ⇒ Nwhere t = max_listby trprover

Example 2. As noted in Sect. 1, transporting subtractions i1 −Z i2 from Z to
N requires a dependency i1 ≥ i2. We model this dependency using dependent
function relators. We first define Zpos := (=(≤)0) and then proceed as usual:

lemma [per_intro]: (Zpos ≡PER (=)) to_nat to_int

trp (−N) : N ⇒ N ⇒ Nwhere t = (−Z)

and L =
(
[i1 _ :: Zpos] � [i2 _ :: Zpos | i1 ≥ i2]� Zpos

)

and R =
(
[n1 _ :: (=)] � [n2 _ :: (=) | n1 ≥ n2]� (=)

)
by trprover

Similarly, operations on datatypes may only conditionally be transportable. For
example, we may only transport the index operator (!!) : α list ⇒ N ⇒ α to
the type of immutable arrays (α iarray) if the index is not out of bounds. In the
following, let S be an arbitrary partial equivalence relation:

lemma [per_intro]: (ListRelS ≡PER IArrRelS) to_iarr to_list

trp iarr_ind : α iarray ⇒ N ⇒ αwhere t = (!!)

and L =
(
[xs_ :: ListRelS] � [i_ :: (=) | i < lengthxs]� S

)

and R =
(
[arr _ :: IArrRelS] � [i_ :: (=) | i < iarr_length arr]� S

)

by trprover

Example 3. Isabelle/Set [15] is a set-theoretic environment in Isabelle/HOL. Its
type of sets is called set. Isabelle/Set provides a set-extension mechanism: As
input, it takes two sets A : set and B : set and an injection from A to B. It
then creates a new set B′ ⊇ A together with a bijection between B and B′

with mutual inverses l, r : set ⇒ set. This mechanism is used to enforce subset
relationships. For instance, it first uses a construction of the integers Z : set
where N �⊆ Z. It then uses the set-extension mechanism to create a copy Z

′ ⊇ N

with inverses l, r. Doing so necessitates a manual transport of all definitions from



Transport via Partial Galois Connections and Equivalences 241

Z to Z
′. Using Transport, it is possible to automate this process:

lemma [per_intro]: ((=Z) ≡PER (=Z′)) l r

trp (+Z′)where t = (+Z)and L =
(
(=Z) � (=Z) � (=Z)

)

and R =
(
(=Z′) � (=Z′) � (=Z′)

)
by trprover

trp (−Z′)where t = (−Z)and L =
(
(=Z) � (=Z) � (=Z)

)

and R =
(
(=Z′) � (=Z′) � (=Z′)

)
by trprover

Note that all constants (+Z), (+Z′), (−Z), (−Z′) are of the same type set ⇒ set ⇒
set. This stresses the point that users must be able to specify target relations
and not just target types.

6 Related Work

Transport in Proof Assistants. Our work was chiefly inspired by Isabelle’s Lifting
package [13,17], which transports terms via partial quotient types. All closure
theorems in this work generalise the ones in [13]. Besides this source of inspira-
tion, the theory of automated transports has seen prolific work in recent years:

Tabareau et al. [28] proved a strengthened relational parametricity result,
called univalent parametricity, for the Calculus of Inductive Constructions. Their
approach ensures that all relations are compatible with type equivalences. One
can then use univalence [33] to seamlessly transport terms between related types.
The framework is implemented using Coq’s typeclass mechanism [27].

Tabareau et al. [29] extended their work to integrate what they call “white-
box transports”. White-box transports structurally rewrite a term t to t′ using
user-specified correspondences. In contrast, “black-box transports” transport t
without looking at its syntactic structure. For instance, given an equivalence
between unary and binary numbers (N � Bin) l r, black-box transporting the
term 0 +N 0 results in l (0 +N 0). In contrast, given correspondences between
the functions (+)

N
, (+)Bin and constants 0, 0Bin, white-box transporting the term

results in 0Bin+Bin0Bin. These modes can also be mixed: given just the equivalence
(N � Bin) l r and correspondence between (+)

N
, (+)Bin, we obtain (l 0)+Bin (l 0).

Isabelle’s Lifting package also supports white-box transports via the transfer
method [17]. While our work is concerned with black-box transports, our proto-
type also contains experimental support for white-box transports. This integra-
tion will be further polished in future work.

Angiuli et al. [1] establish representation independence results in Cubical
Agda [32]. Their approach applies to a restricted variant of quasi-partial equiv-
alence relations [16]. Essentially, they quotient two types by a given correspon-
dence to obtain a type equivalence between the quotiented types.

Dagand et al. [8,9] introduce what they call “type-theoretic partial Galois con-
nections”, which are essentially partial type equivalences on an enriched α option
type. They allow for partiality on one side of the equivalence but not the other.
Their framework is designed for effective program extraction and implemented
using Coq’s typeclass mechanism.



242 K. Kappelmann

Ringer et al. [26] developed a Coq plugin to transport proof terms via type
equivalences for inductive types. Their theory shares similarities with [28,29],
but it directly transforms proof terms. This way, one can remove all references
to the old datatype once the proof terms have been transported to the new target
type. This is not readily achievable using other mentioned frameworks, including
ours.

Type equivalences enjoy the property of having total and mutually inverse
transport functions. This is not the case for partial Galois connections, which
makes the transport of proofs harder. For example, the parametricity law for
equality

(
T � T � (←→)

)
(=) (=) holds only if T is left-unique and injective.

This is the case if T is described by a type equivalence but not in general by
a Galois connection. Kunčar [17] provides parametricity rules for all prominent
logical connectives. These rules also apply to our setting and will be crucial when
we polish the integration of white-box transports in our prototype.

The works mentioned above all transport terms via certain notions of equiva-
lences. But there are also other approaches, particularly in the field of data refine-
ment. An example is the CoqEAL framework [4], which automatically derives
parametricity results using typeclass search. Another one is Isabelle’s Autoref
framework [18], which derives relational parametricity results using white-box
transports. The core inspiration in both cases goes back to [21,25,34]. A com-
prehensive comparison of these frameworks can be found in [19].

Galois Connections in Computer Science. Galois connections are fundamental
in the field of abstract interpretation. Cousot and Cousot’s recent book [5] pro-
vides an overview of their applications. The closure of Galois connections under
non-dependent function relators goes back to at least [6]. We generalised this
result to partial Galois connections and dependent function relators in Sect. 4.1.
Most work in abstract interpretation does not consider partially defined Galois
connections and assumes partial orderings on relations. The work of Miné [20]
is an exception, allowing for partiality on one side of the connection but not
the other. Darais and Van Horn [10] formalise Galois connections constructively
and apply it to tasks in abstract interpretation. An early application of Galois
connections was by Hartmanis and Stearns [12]. Though they did not use Galois
connections, they introduced an equivalent notion of pair algebras [11]. Our
Galois relator indeed describes the pair algebra induced by a Galois connection.

7 Conclusion and Future Work

We explored existing notions of equivalences used for automatic transport. Based
on this exploration, we identified a set of minimal expectations when transport-
ing terms via equivalences. This essence led us to introduce a new class of equiv-
alences, namely partial Galois connections. Partial Galois connections generalise
(standard) Galois connections and apply to relations that are only defined on
subsets of their types. We derived closure conditions for partial Galois connec-
tions and equivalences, and typical order properties under (dependent) function



Transport via Partial Galois Connections and Equivalences 243

relators, relators for (co)datatypes, and composition. Our framework applies to
simple type theory and – unlike prior solutions for simple type theory – can han-
dle inter-argument dependencies. We implemented a prototype in Isabelle/HOL
based on our results. The prototype needs to be further polished, but it can
already handle relevant examples that are out of scope for existing tools.

Future Work. As our theory subsumes the one of Isabelle’s Lifting package, one
goal is to replace the package by a more general tool. To this end, we have
to integrate our results into Isabelle’s (co)datatypes package [2], extend our
prototype to automate the construction of compositions, and polish the support
of white-box transports (cf. Sect. 6).

Finally, based on our formalisation insights, we conjecture that one can adopt
our theory to constructive logics, but only a formalisation in a constructive prover
will give a definite answer.

Acknowledgements. The author thanks the anonymous reviewers of this and a pre-
vious submission for their valuable feedback and Mohammad Abdulaziz and Tobias
Nipkow for their comments on a draft of this paper.

References

1. Angiuli, C., Cavallo, E., Mörtberg, A., Zeuner, M.: Internalizing representation
independence with univalence. Proc. ACM Program. Lang. 5(POPL), 1–30 (2021).
https://doi.org/10.1145/3434293

2. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08970-6_7

3. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2), 56–68
(1940). https://doi.org/10.2307/2266170

4. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free! In: Gonthier, G., Nor-
rish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 147–162. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1_10

5. Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge (2021)
6. Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive

procedures. In: Neuhold, E. (ed.) IFIP Conference on Formal Description of Pro-
gramming Concepts, St-Andrews, N.B., CA, North-Holland, pp. 237–277 (1977)

7. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Logic Comput. 2(4),
511–547 (1992). https://doi.org/10.1093/logcom/2.4.511

8. Dagand, P.E., Tabareau, N., Tanter, E.: Partial type equivalences for verified
dependent interoperability. SIGPLAN Not. 51(9), 298–310 (2016). https://doi.
org/10.1145/3022670.2951933

9. Dagand, P.E., Tabareau, N., Tanter, E.: Foundations of dependent interoperability.
J. Funct. Program. 28 (2018). https://doi.org/10.1017/S0956796818000011

10. Darais, D., Van Horn, D.: Constructive galois connections. J. Funct. Program. 29
(2019). https://doi.org/10.1017/S0956796819000066

11. Derderian, J.C.: Galois connections and pair algebras. Can. J. Math. 21, 498–501
(1969). https://doi.org/10.4153/CJM-1969-056-x

https://doi.org/10.1145/3434293
https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-3-319-03545-1_10
https://doi.org/10.1093/logcom/2.4.511
https://doi.org/10.1145/3022670.2951933
https://doi.org/10.1145/3022670.2951933
https://doi.org/10.1017/S0956796818000011
https://doi.org/10.1017/S0956796819000066
https://doi.org/10.4153/CJM-1969-056-x


244 K. Kappelmann

12. Hartmanis, J., Stearns, R.: Pair algebra and its application to automata theory.
Inf. Control 7(4), 485–507 (1964). https://doi.org/10.1016/S0019-9958(64)90181-
0

13. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in
Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp.
131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1_9

14. Kappelmann, K.: Transport via partial galois connections and equivalences
(Extended Version) (2023). https://doi.org/10.48550/arXiv.2303.05244

15. Kappelmann, K., Josh, C., Krauss, A.: Isabelle/Set (2023). https://github.com/
kappelmann/Isabelle-Set

16. Krishnaswami, N.R., Dreyer, D.: Internalizing relational parametricity in the
extensional calculus of constructions. In: Rocca, S.R.D. (ed.) Computer Science
Logic 2013 (CSL 2013). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 23, pp. 432–451. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2013). https://doi.org/10.4230/LIPIcs.CSL.2013.432

17. Kunčar, O.: Types, Abstraction and Parametric Polymorphism in Higher-Order
Logic. Ph.D. thesis, Technische Universität München (2016)

18. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2_9

19. Lammich, P., Lochbihler, A.: Automatic refinement to efficient data structures: a
comparison of two approaches. J. Autom. Reason. 63(1), 53–94 (2019). https://
doi.org/10.1007/s10817-018-9461-9

20. Miné, A.: Weakly Relational Numerical Abstract Domains. Theses, Ecole Poly-
technique X (2004). https://pastel.archives-ouvertes.fr/tel-00136630

21. Mitchell, J.C.: Representation independence and data abstraction. In: Proceedings
of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL 1986, pp. 263–276. Association for Computing Machinery, New
York (1986). https://doi.org/10.1145/512644.512669

22. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 378–388. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21401-6_26

23. Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_37

24. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

25. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Mason,
R.E.A. (ed.) Information Processing 83, Proceedings of the IFIP 9th World
Computer Congress, Paris, France, 19–23 September 1983, pp. 513–523. North-
Holland/IFIP (1983)

26. Ringer, T., Porter, R., Yazdani, N., Leo, J., Grossman, D.: Proof repair across type
equivalences. In: Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2021, pp. 112–127.
Association for Computing Machinery, New York (2021). https://doi.org/10.1145/
3453483.3454033

27. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7_23

https://doi.org/10.1016/S0019-9958(64)90181-0
https://doi.org/10.1016/S0019-9958(64)90181-0
https://doi.org/10.1007/978-3-319-03545-1_9
https://doi.org/10.48550/arXiv.2303.05244
https://github.com/kappelmann/Isabelle-Set
https://github.com/kappelmann/Isabelle-Set
https://doi.org/10.4230/LIPIcs.CSL.2013.432
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/s10817-018-9461-9
https://doi.org/10.1007/s10817-018-9461-9
https://pastel.archives-ouvertes.fr/tel-00136630
https://doi.org/10.1145/512644.512669
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1007/978-3-540-71067-7_23


Transport via Partial Galois Connections and Equivalences 245

28. Tabareau, N., Tanter, E., Sozeau, M.: Equivalences for free: univalent parametricity
for effective transport. Proc. ACM Program. Lang. 2(ICFP) (2018). https://doi.
org/10.1145/3236787

29. Tabareau, N., Tanter, E., Sozeau, M.: The marriage of univalence and parametric-
ity. J. ACM 68(1), 1–44 (2021). https://doi.org/10.1145/3429979

30. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic: category theory applied to theorem proving.
In: 2012 27th Annual IEEE Symposium on Logic in Computer Science, pp. 596–605
(2012). https://doi.org/10.1109/LICS.2012.75

31. Univalent Foundations Program, T.: Homotopy Type Theory: Univalent Foun-
dations of Mathematics. https://homotopytypetheory.org/book. Institute for
Advanced Study (2013)

32. Vezzosi, A., Mörtberg, A., Abel, A.: Cubical Agda: a dependently typed program-
ming language with univalence and higher inductive types. Proc. ACM Program.
Lang. 3(ICFP) (2019). https://doi.org/10.1145/3341691

33. Voevodsky, V.: The equivalence axiom and univalent models of type theory (2010).
https://doi.org/10.48550/ARXIV.1402.5556

34. Wadler, P.: Theorems for free! In: Proceedings of the Fourth International Confer-
ence on Functional Programming Languages and Computer Architecture, FPCA
1989, pp. 347–359. Association for Computing Machinery, New York (1989).
https://doi.org/10.1145/99370.99404

https://doi.org/10.1145/3236787
https://doi.org/10.1145/3236787
https://doi.org/10.1145/3429979
https://doi.org/10.1109/LICS.2012.75
https://homotopytypetheory.org/book
https://doi.org/10.1145/3341691
https://doi.org/10.48550/ARXIV.1402.5556
https://doi.org/10.1145/99370.99404


Argument Reduction of Constrained
Horn Clauses Using Equality Constraints

Ryo Ikeda, Ryosuke Sato(B) , and Naoki Kobayashi

The University of Tokyo, Tokyo, Japan

rsato@is.s.u-tokyo.ac.jp

Abstract. Constrained Horn Clauses (CHCs) have recently been stud-
ied extensively as a common, uniform foundation for automated program
verification. Various program verification problems have been shown to
be reducible to CHC solving, and accordingly, CHC solvers have been
developed by several research groups. We propose a new optimization
method for CHC solving, which reduces the number of predicate argu-
ments by finding (conditional) equality constraints among the predicate
arguments. The optimization is especially effective for data-driven CHC
solvers such as HoIce, as it significantly reduces the number of data
required to infer a solution for CHCs. We have implemented our method
and confirmed its effectiveness through experiments.

1 Introduction

Much progress has been made recently on Constrained Horn Clauses (CHCs,
a.k.a., constraint logic programming) as a common, uniform foundation for
automated program verification [1,5,9]. Indeed, various program verification
methods [2,3,7,10,15,18,23] that utilize CHC solvers as backend solvers have
been proposed, including verification methods for imperative/object-oriented
programs [7,10,15,22], and functional programs (via refinement type infer-
ence) [3,23]. Accordingly, various CHC solvers [3,6,8,11,13] have been developed
such as Z3/Spacer [13], Eldarica [8], HoIce [3], and FreqHorn [24].

As an example of verification problems, let us consider the following imper-
ative program.

int x = 0, y = 0, z = 0;
while(x < 500) {

y += x; z += x + 2; x += 1;
}
z += x;
assert(z >= y + 1000);

Suppose we wish to verify that the program above is safe, i.e., the assertion does
not fail. This verification problem can be reduced to the satisfiability of the fol-
lowing CHCs, i.e., the problem of checking whether there exists an interpretation

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 246–265, 2023.
https://doi.org/10.1007/978-981-99-8311-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_12&domain=pdf
http://orcid.org/0000-0001-8679-2747
http://orcid.org/0000-0002-0537-0604
https://doi.org/10.1007/978-981-99-8311-7_12


CHC Argument Reduction by Equality Constraints 247

for the predicate variable P that makes all the three clauses valid.

P (0, 0, 0).
∀x, y, z.P (x, y, z) ∧ x < 500 =⇒ P (x + 1, y + x, z + x + 2).
∀x, y, z.P (x, y, z) ∧ x ≥ 500 =⇒ z + x ≥ y + 1000.

Here, each logical formula is a CHC, a Horn clause extended with constraints.
The predicate P represents the invariant of the while loop of the original pro-
gram, where the three arguments of P respectively correspond to the variables
x, y, and z. The first clause means that the state x = y = z = 0 at the begin-
ning of the loop should satisfy the invariant. The second clause means that the
invariant is preserved by the loop, i.e., if P (x, y, z) holds at the beginning of the
loop and the loop condition x < 500 holds, then, after the execution of the loop
body, the loop invariant P (x + 1, y + x, z + x + 2) should still hold. The last
clause means that the asserted condition z ≥ y + 1000 holds just after the exit
of the loop. As in this example, various verification problems can naturally be
reduced to the satisfiability problem for CHCs. Although the CHC problem is
undecidable in general, various CHC solvers have been developed [3,6,8,11,13],
which can efficiently solve a number of instances that arise in practice.

Unfortunately, however, despite extensive efforts to develop efficient CHC
solvers, the current CHC solvers are not fully satisfactory. In fact, the state-of-
the-art CHC solvers (namely Z3, Eldarica, HoIce, and FreqHorn) failed to
solve the above CHCs (consisting of just three simple clauses!) within 10 min.

To improve the efficiency of CHC solvers, we propose an optimization for
reducing the number of predicate arguments by finding linear equality con-
straints among the predicate arguments. For the example above, z = 2x + y
holds whenever P (x, y, z) holds, if P is the least predicate that satisfies the first
two clauses. Based on this equality, we can set

P (x, y, z) ≡ P ′(x, y) ∧ z = 2x + y

for a new predicate P ′(x, y), and transform the CHCs above into the following
constraints, by replacing P (x, y, z) with P ′(x, y) ∧ z = 2x + y.

P ′(0, 0) ∧ 0 = 2 · 0 + 0
P ′(x, y) ∧ z = 2x + y ∧ x < 500 =⇒

P ′(x + 1, y + x) ∧ z + x + 2 = 2(x + 1) + (y + x)
P ′(x, y) ∧ z = 2x + y ∧ x ≥ 500 =⇒ z + x ≥ y + 1000.

They can be further simplified to the following CHCs:

P ′(0, 0)
P ′(x, y) ∧ z = 2x + y ∧ x < 500 =⇒ P ′(x + 1, y + x)
P ′(x, y) ∧ z = 2x + y ∧ x ≥ 500 =⇒ z + x ≥ y + 1000.



248 R. Ikeda et al.

Fig. 1. Overall flow of CHC solving with discovering equality relations

The transformation preserves the satisfiability of CHCs, and given a solution
of P ′(x, y) ≡ ϕ of the simplified CHCs, we can obtain P (x, y, z) ≡ ϕ∧z = 2x+y
as a solution of the original CHCs. In this manner, finding equality constraints
on predicate arguments allows us to reduce the number of predicate arguments.
The resulting CHCs are expected to be much easier to solve, especially for CHC
solvers that work in a data-driven manner [3,24]. In fact, for the above example,
the simplified CHCs have the trivial solution P ′(x, y) ≡ true, from which we
obtain the solution P (x, y, z) ≡ z = 2x + y for the original CHCs.

To find equality constraints on predicate arguments, we introduce a
counterexample-guided method. We collect a set of positive samples of a predi-
cate that are combinations of values on which the predicate must evaluate to true,
and find an equality relation among the arguments of predicates. For example,
in the example above, (0, 0, 0), (1, 0, 2), and (2, 1, 5) are positive samples of the
predicate P . By using the positive samples, we can find the relation z = 2x + y
based on the Gaussian elimination.

Figure 1 shows the overall flow of our CHC solving method with a mecha-
nism for finding equality relations among the arguments of a predicate. For each
predicate in the constraints, we repeatedly (i) synthesize candidate equality con-
straints from a set of positive samples and (ii) check whether the candidate is an
inductive invariant of the predicate (i.e., whether it satisfies the definite clauses);
if that is the case, we return the equality constraints. Otherwise, (iii) we can find
a new positive sample, which does not satisfy the candidate equality constraints.
We then go back to step (i) with the new positive sample set. Once we have
found the equality relation, we can reduce one of the arguments appearing in
the equality relation as we have seen above. In the example, above, we actually
start with the empty set of positive samples, and the initial candidate constraint
is ⊥. We then obtain (0, 0, 0) as a new positive sample (since P (x, y, z) ≡ ⊥



CHC Argument Reduction by Equality Constraints 249

does not satisfy P (0, 0, 0)), and the candidate equality constraints are updated
to x = y = z = 0. Then (1, 0, 2) is found as a new positive sample that does
not satisfy the constraints, and the candidate equality constraints are updated
to y = 0 ∧ z = 2x. Since P (x, y, z) ≡ y = 0 ∧ z = 2x does not satisfy the first
two clauses either, a new positive sample (2, 1, 5) is found. At this point, we find
a valid equality constraint z = 2x + y.

Once an equality constraint is found, we generate a reduced CHC by removing
some predicate arguments. The resulting CHC is then passed to an off-the-shelf
CHC solver. If we are unable to find an equality constraint within a time limit
(if we have set one) or there are no equality constraint that can be expressed in
the target domain (such as linear expressions), we simply give the original CHCs
to the solver.

We here remark that our method to find equality relations is useful not only
for satisfiable instances but also for unsatisfiable instances. For example, suppose
that we change the assertion in the first example to z = y. By using the equality
relation z = 2x + y, the goal clause becomes P ′(x, y) ∧ z + x = 2x + y ∧ x ≥
500 =⇒ z = y, which can be simplified to P ′(x, y) =⇒ ⊥. The resulting CHCs
are trivially unsatisfiable because of the first clause P ′(0, 0).

Our counterexample-guided method for finding equality constraints can be
considered a generalization of Sharma et al. [20] for finding algebraic loop invari-
ants to the setting of CHCs. In particular, the overall flow mentioned above
corresponds to the guess-and-check loop of their method. Thanks to the formal-
ization of the method for CHCs (rather than loop programs), our method is
applicable to a wider range of program verification problems, including those for
functional programs. Fedyukovich et al. [6] also proposed a data-driven method
to find and utilize polynomial equalities for solving CHCs, but their method for
finding equalities does not work in a counterexample-guided manner. There are
other methods for reducing the number of arguments, such as RAF (Redundant
Argument Filtering) [14], but they do not utilize arithmetic constraints and are
not effective for the above example. Section 6 discusses related work in more
detail.

Our contributions are summarized as follows:

– A method to discover (conditional) equality relations among the arguments
of the predicates in CHCs by using Gaussian elimination.

– A method to reduce the number of predicate arguments by using discovered
(conditional) equalities without changing the satisfiability of CHCs, which
can be implemented as a preprocessor for any CHC solver.

– An implementation and experiments to confirm that our method indeed
improves the efficiency of HoIce, a data-driven CHC solver.

The rest of this paper is structured as follows. Section 2 reviews the defi-
nition of CHCs. Section 3 describes the method to reduce arguments by using
equality relations, and Sect. 4 describes an extension of the method introduced
in the previous section to deal with conditional equalities. Section 5 reports an
implementation and experimental results. Section 6 discusses related work, and
Sect. 7 concludes the paper.



250 R. Ikeda et al.

2 Preliminaries

In this section, we review the definition of constrained Horn clauses.
A Constrained Horn Clause (CHC) is a first-order logic formula of the fol-

lowing form:

∀x1, . . . , xn. ϕ ∧ L1 ∧ · · · ∧ Lm =⇒ H

where ϕ is an arithmetic formula, L and H are defined as follows.

L (literal) ::= P (x1, . . . , xn) H (head) ::= L | ⊥

We use the meta-variable P for predicate variables, e for arithmetic expressions,
c for CHCs, and C for sets of CHCs. For clause c = ∀x1, . . . , xn. ϕ ∧ L1 ∧ · · · ∧
Lm =⇒ H, we say ϕ ∧ L1 ∧ · · · ∧ Lm is the body of c and H is the head of c.
We call a clause a definite clause if the head of the clause is of the form L, and
call a clause a goal clause if the head is ⊥. We write Defs(C) for the set of the
definite clauses in C, and write PV (C) for the set of the predicate variables in
C. We write ·̃ for a sequence or a tuple of variables/values and write | ·̃ | for its
length. For example, x̃ represents a sequence x1, . . . , xn or a tuple (x1, . . . , xn)
where n = |x̃|. We often omit universal quantifiers of clauses.

In the definition of the CHC, we restrict the arguments of a predicate to only
variables, restrict the head of a goal clause to ⊥, and impose the order restriction
on the formula and the literals in the body of a clause. Note that we do not lose
the generality by these restrictions. For example, we can represent the CHCs
mentioned in the introduction as follows.

Example 1.

∀x, y, z. x = 0 ∧ y = 0 ∧ z = 0 =⇒ P (x, y, z)
∀x, y, z, x′, y′, z′. x < 500 ∧ x′ = x + 1 ∧ y′ = y + x ∧ z′ = z + x + 2

∧ P (x, y, z) =⇒ P (x′, y′, z′)
∀x, y, z. x ≥ 500 ∧ ¬(z + x ≥ y + 1000) ∧ P (x, y, z) =⇒ ⊥

In the rest of the paper, assuming such normalization is implicitly applied, we
use arithmetic expressions as arguments and the heads of clauses.

We say a set C of CHCs is satisfiable if there exists an assignment of the pred-
icate variables in PV (C) that satisfies all the CHCs in C, and call the assignment
a solution of C. Otherwise, we say C is unsatisfiable. For example, the set of CHCs
in Example 1 is satisfiable by the solution [P �→ λ(x, y, z). z = 2x + y].

We can check whether the given assignment is a solution of CHCs or not by
using a Satisfiability Module Theories (SMT) solver if all the arithmetic formulae
appearing in the CHCs and the assignment are decidable logic formulae, e.g.,
formulae in the quantifier-free linear integer arithmetic. We do not specify the
underlying logic, but, for the effectiveness of the method, we assume that the
underlying logic is decidable.



CHC Argument Reduction by Equality Constraints 251

3 Argument Reduction by Equality Constraints

In this section, we describe our method for reducing arguments of predicates by
finding equality relations among the arguments. As described in the introduction,
our method repeatedly guesses equality relations and collects positive samples.

3.1 Guessing Equality Constraints

We first describe how to guess an equality relation from the given set of positive
samples. Here, a positive sample of a n-arity predicate P is a n-tuple ṽ of values
that P (ṽ) must evaluate to true.

To reduce the arguments of predicate P whose arity is n, we wish to find an
equation of the following form:

0 = c0 +
∑

1≤k≤n

ckxk

where x1, . . . , xn are the arguments of P and c0, . . . , cn are integer coefficients.
This means that, xi can be represented by using other variables for each i such
that ci 
= 0.

Given a set of positive samples {(v11, . . . , v1n), . . . , (vm1, . . . , vmn)} and we
assume that there are at least one positive sample, i.e., m 
= 0. If a valid equation
of the form above is given, the values vjk in the positive samples also satisfy

0 = c0 +
∑

1≤k≤n

ckvjk

for any j ∈ {1, . . . ,m}. By using vector notations, we can represent this as

0 =
(

1 v1 · · · vi−1 vi+1 · · · vn

) (

c0 c1 · · · cn
)ᵀ

where vk = (vk1 · · · vkm)ᵀ for each k ∈ {1, . . . , n}, and 0 (resp. 1) is the
vector (0 . . . 0)ᵀ (resp. (1 . . . 1)ᵀ). This means that vi is a linearly dependent
vector of the other vectors. Hence, by checking the linearly independencies of the
vectors constructed from the positive samples, we can synthesize a candidate of
a linear equality on the arguments. This can be performed by applying Gaussian
elimination algorithm to the matrix

(

1 v1 · · · vn

)ᵀ.
Consider a predicate P whose arity is 5 and the following set of positive

samples
{(1, 0, 0, 0, 1), (1, 0, 1, 2, 2), (2, 0, 0, 0, 1), (2, 2, 2, 5, 2)} .



252 R. Ikeda et al.

The matrix we apply Gaussian elimination and the matrices obtained by the
operations of Gaussian elimination are as follows:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1
∣

∣ 1
1 1 2 2

∣

∣ x1

0 0 0 2
∣

∣ x2

0 1 0 2
∣

∣ x3

0 2 0 5
∣

∣ x4

1 2 1 2
∣

∣ x5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1
∣

∣ 1
0 0 1 1

∣

∣ −1 + x1

0 0 0 2
∣

∣ x2

0 1 0 2
∣

∣ x3

0 2 0 5
∣

∣ x4

0 1 0 1
∣

∣ −1 + x5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1
∣

∣ 1
0 1 0 2

∣

∣ x3

0 0 0 2
∣

∣ x2

0 0 1 1
∣

∣ −1 + x1

0 0 0 1
∣

∣ −2x3 + x4

0 0 0 −1
∣

∣ −1 − x3 + x5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1
∣

∣ 1
0 1 0 2

∣

∣ x3

0 0 1 1
∣

∣ −1 + x1

0 0 0 2
∣

∣ x2

0 0 0 1
∣

∣ −2x3 + x4

0 0 0 −1
∣

∣ −1 − x3 + x5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

→

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1
∣

∣ 1
0 1 0 2

∣

∣ x3

0 0 1 1
∣

∣ −1 + x1

0 0 0 2
∣

∣ x2

0 0 0 0
∣

∣ − 1
2x2 − 2x3 + x4

0 0 0 0
∣

∣ −1 + 1
2x2 − x3 + x5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Here, we also write the expression correspond to each row in the right-hand
side of the coefficient matrix. For example, the bottom line of the first matrix
represents that 1, 2, 1, 2 are the values of the variable x5 in the positive samples.

Therefore, when we get the row echelon form of the matrix, if all the values
of a row are all zero, then the expression represents the equality relations on
the variables. In the example above, since the last two lines of the last matrix
consist of zeros, we obtain candidates of equality relations on the arguments as

0 = −1
2
x2 − 2x3 + x4, 0 = −1 +

1
2
x2 − x3 + x5.

Furthermore, we can normalize the rational number coefficients to integers as

0 = −x2 − 4x3 + 2x4, 0 = −2 + x2 − 2x3 + 2x5.

Here, we can regarded x4 and x5 as dependent variables since the last two lines
of the last matrix correspond to x4 and x5. Hence, if the candidate is a valid
equality relation, we can remove x4 and x5 for the arguments of P .

We note here that, in the first iteration of the equality discovery procedure
of Fig. 1, we have no positive samples. In this case, we just return λx̃.⊥ as the
candidate, which can be viewed as the strongest equality.

3.2 Checking Equality Constraints

Once we obtain a candidate equality relation on the arguments of a predicate
P , we next check that the candidate equality relation really holds for the values
on which P evaluate to true.

Given a set C of CHCs and a set of equalities whose element is of the form
(P, λx̃. (ϕ, {y1, . . . , yk})), in which ϕ represents a equality on the arguments x̃
of P and {y1, . . . , yk} are the dependent variables that will be removed. For
example, the equality candidate used in Sect. 3.1 can be represented as

{(P, λx̃. (0 = −x2 − 4x3 + 2x4 ∧ 0 = −2 + x2 − 2x3 + 2x5, {x4, x5}))} .



CHC Argument Reduction by Equality Constraints 253

Below, we treat E as a function from predicate variables to equality relations, and
assumes that E is total. Hence, if there is no equality relation on the argument of
P in E, then E(P ) = λx̃. (�, ∅). We also write Eeq(P ) = λx̃. ϕ and Erm(P ) = X
when E(P ) = λx̃. (ϕ,X).

We check that the candidate E is an inductive invariant of the predicate P by
checking whether [P1 �→ Eeq(P1), . . . , Pm �→ Eeq(Pm)] is a solution of Defs(C)
where {P1, . . . , Pm} = PV (C). If the candidate is really (inductive) invariant
(and the least solution of P has this property), then we can use it to reduce the
arguments as described in Sect. 3.3. Otherwise, there exists a counterexample
of the constraint that is a tuple of values of the arguments on which P must
evaluate to true but the current candidate evaluates to false. We use it as the
new positive sample in the next iteration of the whole loop.

Consider the set C of the CHCs in Example 1 and candidate equality relation
(P, λ(x, y, z). (z = 2x + y, {z})). The definite clauses in C are P (0, 0, 0) and
P (x, y, z) ∧ x < 500 =⇒ P (x + 1, y + x, z + x + 2). By replacing P with
λ(x, y, z). z = 2x + y, we obtain the following constraint:

∀x, y, z.0 = 2 · 0 + 0 ∧
(z = 2x + y ∧ x < 500 =⇒ z + x + 2 = 2(x + 1) + (y + x)).

We then check the validity of the constraint by invoking a SMT solver. Since
the constraint above is valid, we found the relation is really equality relation on
x, y, and z. In contrast, if the candidate is z = x + y, which is not an inductive
invariant of P , is given, then the constraint obtained by the substitution is:

∀x, y, z.0 = 0 + 0 ∧
(z = x + y ∧ x < 500 =⇒ z + x + 2 = (x + 1) + (y + x).

Since this is not valid, there is a counterexample, for instance, x = y = z = 0.
This counterexample comes from the clause P (x, y, z) ∧ x < 500 =⇒ P (x +
1, y + x, z + x + 2). and indicates that P (0 + 1, 0 + 0, 0 + 0 + 2) must be true,
but x = 1 ∧ y = 0 ∧ z = 2 does not satisfy the candidate z = x + y. Hence, we
use (1, 0, 2) as the new positive sample in the next iteration.

We will see the correctness of the checking method later, but here we give the
intuition of the correctness. The correctness can be derived from the property
that, for any CHCs C, C are satisfiable if and only if the least solution of Defs(C)
satisfies the goal clauses. If E satisfies Defs(C), then the least solution of Defs(C)
satisfies E. Therefore, the whole C are satisfiable if and only if there is a solution
that satisfies E.

3.3 Reducing Arguments by Equality Relation

By using equality relations on the argument of a predicate, we can reduce argu-
ments of predicates.

Let C be a set of CHCs, E be a set of equality relations. We can reduce
argument of predicates in C by transforming C into ArgRed (C, E) as defined in



254 R. Ikeda et al.

Fig. 2. The definition of ArgRed (C, E)

Fig. 2. In the definition, z̃|X represents the sequence that can be obtained by
removing the elements of X from the sequence z̃, for example, (x, y, z)|{y} =
(x, z). The substitution [x̃ �→ z̃] represents [x1 �→ z1, . . . , xn �→ zn] where
n = |x̃| = |z̃|. Function ArgRedE (c) just returns the new clause in which the
argument x1, . . . , xm of the predicate P are removed by replacing P (z̃) with
Eeq(P )(z̃) ∧ P

(

z̃|Erm(P )

)

except for the heads of the clauses. When the head
of a clause is P (x̃), the head is replaced just with P

(

z̃|Erm(P )

)

instead of the
conjunction with the equality Eeq(P )(z̃). This removal of the conjunct does not
change the satisfiability of the clause since the implication to the equality has
already been checked by the validity checking step of the equality constraints.

The theorem below states the correctness of ArgRed (C, E).

Theorem 1. Suppose C be a set of CHCs and E is a valid equality relation of
C. Then, C is satisfiable if and only if ArgRed (C, E) is satisfiable.

Proof Sketch. In this proof sketch, we write AR (Pj) for ϕ′
j ∧ Lj where ϕ′

j and
Lj are defined in Fig. 2 (The arguments of Pj is clear from the context below.)

“If” direction: Suppose ArgRed (C, E) has a solution

σ′ = [P1, �→ λx̃1
′
. ϕ1, . . . , Pn, �→ λx̃n

′
. ϕn].

We can show that

σ = [P1, �→ λx̃1. σ
′(AR (P1)), . . . , Pn, �→ λx̃n. σ′(AR (Pn))]

is a solution of C where x̃j
′ = x̃j |Erm(Pj) for each j ∈ {1, . . . , n}. By the definition

of σ, for each j ∈ {1, . . . , n}, the following holds:

σPj(x̃j) = σ′(AR (Pj)) = ϕ′
j ∧ σ′Pj(x̃′

j).

The case of goal clauses is trivial from this equality. The case of definite clauses
also follows from the equality above along with the validity of E.



CHC Argument Reduction by Equality Constraints 255

“Only-if” direction: If C has a solution, then there exists a least solution

σ = [P1, �→ λx̃1. ϕ1, . . . , Pn, �→ λx̃n. ϕn].

We can show that

σ′ = [P1, �→ λx̃1
′
. ϕ′′

1 , . . . , Pn, �→ λx̃n
′
. ϕ′′

n]

is a solution of ArgRed (C). Here, for each j ∈ {1, . . . , n}, x̃j
′ = x̃j |Erm(Pj) and

ϕ′′
j = ϕj [. . . , xji �→ eji, . . . ] where eji is the right-hand side of the equality

obtained by rewriting the corresponding equality relation to the form of xji =
eji for each xji ∈ Erm(Pj). For each j ∈ {1, . . . , n}, σ′(AR (Pj)) is logically
equivalent to ϕ′′

j and, since σ is the least solution, σ(P (x̃j)) holds when ϕ′′
j

holds. This implies that σ′ is a solution of ArgRed (C, E).

4 Argument Reduction by Using Conditional Equalities

In this section, we introduce an extension to deal with more general equality
relations than the equalities dealt by the method described in Sect. 3. In this
extension, we find and use conditional equality relations that are equality rela-
tions of the form

∧

i(ϕi =⇒ ϕ′
i).

For example, consider the following CHCs:

P (0, 0)
P (x, y) ∧ x ≥ 0 =⇒ P (x + 1, y + 1)
P (x, y) ∧ x ≤ 0 =⇒ P (x − 1, y + 1)
P (x, y) =⇒ y ≥ x

The predicate P (x, y) represents that y is the absolute value of integer x. If we
have found the relation (x ≥ 0 =⇒ y = x) ∧ (x < 0 =⇒ y = −x), we can
remove the argument y and obtain the following CHCs:

P ′(0)
(x ≥ 0 =⇒ y = x) ∧ (x < 0 =⇒ y = −x) ∧ P ′(x) ∧ x ≥ 0 =⇒ P (x + 1)
(x ≥ 0 =⇒ y = x) ∧ (x < 0 =⇒ y = −x) ∧ P ′(x) ∧ x ≤ 0 =⇒ P (x − 1)
(x ≥ 0 =⇒ y = x) ∧ (x < 0 =⇒ y = −x) ∧ P ′(x) =⇒ y ≥ x

The satisfiability of them are trivial because the goal clause is valid for any
assignment for P ′.

To find such conditional equality relation, we first find the consequent parts
of the conditional equality, e.g., y = x and y = −x in the example above.
This is achieved by finding disjunctive equalities that are equalities of the form
∨

j(xi = ej). Once we have found consequent parts, we synthesize the antecedent
of each consequent.



256 R. Ikeda et al.

For the example above, we first try to discover disjunctive equality, for
instance, y = x ∨ y = −x as the consequent parts of the conditional equal-
ity above. If we have found the disjunctive equality, we next try to synthesize
the conditional equality of the form (ϕ1 =⇒ x = y) ∧ (ϕ2 =⇒ x = −y).

A conditional equality is typically needed for verification of a loop with con-
ditional branch. For example, consider the following code snippet:

z = x; y = 0;
while(x != 0) {

if(x > 0) then {
y += 2; x -= 1;

} else {
y -= 1; x += 1;

}
}

This loop has invariant (z > 0 =⇒ 2z = 2x + y) ∧ (z ≤ 0 =⇒ z = x + y),
which can be useful for verification.

4.1 Guessing Disjunctive Equality

In this section, we describe how to guess disjunctive equalities. We will call an
equality of the form used in Sect. 3 a simple equality in order to distinguish it
from the equalities introduced in this section.

Given a set S of positive samples. For each predicate P and the i-th argument
of P , we first calculate all possible candidate E of simple equalities by

E =
⋃

{SimpleEq(S′, i) | ∅ � S′ � S}

where SimpleEq(S, i) represents the set of all the candidate simple equalities
of the form λx̃. xi = e that can be synthesized by the method described in Sect. 3.
For example, consider the set of positive samples {(0, 0), (1, 1), (−1, 1), (2, 2)}.
Then, for each S′, SimpleEq(S′, 2) is as follows:

SimpleEq(S′, 2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{λ(x, y). y = x}
if S′ ∈ {{s0, s1} , {s0, s2} , {s1, s2} , {s0, s1, s2}}

{λ(x, y). y = −x}
if S′ = {s0, s−1}

∅
otherwise

where s0 = (0, 0), s1 = (1, 1), s−1 = (−1, 1), and s2 = (2, 2).



CHC Argument Reduction by Equality Constraints 257

We then try to find a subset of E such that each value of xi in the positive
samples can be representable by one of its element. More precisely, we try to
find E′ ⊆ E such that

∀ṽ ∈ S. ∃(xi = e) ∈ E′. |= (xi = e)[x̃ �→ ṽ].

This set E′ represents a candidate disjunctive equalities. For example, since E′ =
{λ(x, y). y = x, λ(x, y). y = −x} satisfy the property above, the corresponding
disjunctive equality λ(x, y). y = x ∨ y = −x is the candidate for the example
above.

We wish to calculate the smallest set with the property above. However, since
this is a kind of the set cover problem, calculating such the smallest set is too
expensive. Hence, we employ the greedy algorithm described below.

If we write s |= ϕ when the sample s satisfy the equality relation ϕ, then the
greedy algorithm G(E,S) can be written as follows:

G(E, ∅) = ∅
G(E,S) = {e} ∪ G(E \ {e} , {s ∈ S | s 
|= e})

where e is the element of E that maximizes | {s ∈ S | s |= e} |

This algorithm repeatedly picks the greatest equality e in the sense that e
covers the largest number of the positive samples, and quits if all the positive
samples are covered.

4.2 Guessing Conditional Equality

Once we have found a candidate disjunctive equality λx̃.
∨

j(xi = ej) on the i-th
argument of the predicate P , we next try to discover the boundary (sufficient
condition) of each disjunct.

For each disjunct xi = ej , we have the set Sj of positive samples that satisfy
the equality, i.e., Sj = {ṽ ∈ S | |= (xi = ej)[x̃ �→ ṽ]}. By using Sj , we try to find
the boundary ϕ of xi = ej that satisfy ϕ[x̃ �→ ṽ] for all ṽ ∈ Sj and ϕ does not
have xi as a free variable.

We can find the boundaries by using a SMT solving if we restrict the form
of a boundary to 0 ≤ c0 +

∑

i cixi. If ṽ ∈ Sj is given, then the coefficients c̃ can
be obtained by solving the following linear inequalities

(

∀ṽ ∈ Sj . 0 ≤ c0 +
∑

i

civi

)

∧
(

∀ṽ ∈ S \ Sj . 0 > c0 +
∑

i

civi

)

where S is the set of all the positive samples. Here, we must cover all the spaces
of values by the union of the boundaries. Hence, for the last disjunct, we use the
negation of the disjunction of the other boundaries, i.e., ϕm = ¬(ϕ1∨· · ·∨ϕm−1)



258 R. Ikeda et al.

where m is the number of disjuncts and, for each k ∈ {1, . . . , m}, ϕk is the
boundary of the k-th disjunct obtained above.

Consider the candidate λ(x, y). y = x ∨ y = −x and the set of positive
samples {(0, 0), (1, 1), (−1, 1), (2, 2)}. The disjunct y = x covers the samples
{(0, 0), (1, 1), (2, 2)}, and the disjunct y = −x covers the samples {(0, 0), (−1, 1)}.
By using a SMT solver, we could obtain 0 ≤ x by the solution of

(0 ≤ c0 + 0 · c1 ∧ 0 ≤ c0 + 1 · c1 ∧ 0 ≤ c0 + 2 · c1) ∧ (0 > c0 − 1 · c1)

as the boundary for y = x, and the boundary for y = −x can be obtained by its
negation, i.e., 0 > x. Therefore, the candidate we obtained here is (0 ≤ x =⇒
y = x) ∧ (0 > x =⇒ y = −x).

The process after we have found the candidate conditional equality is the
same as that for simple equalities. Sections 3.2 and 3.3 do not depend on the fact
that E is a simple equality relation, only on the fact that E is an (inductive)
invariant that expresses a total function to values of the target argument from
ones of the other arguments. We can hence use the same procedure for checking
the candidate and the same transformation ArgRed (C)E to reduce arguments
by using the equality.

5 Implementation and Experiments

We have implemented our method as a preprocess of the state-of-the-art CHC
solvers, namely HoIce [3] and Z3/Spacer [12]. To evaluate the methods intro-
duced in Sect. 3 and Sect. 4, we use two versions of the implementation: (i)
HoIce-SEq and Z3-SEq that use the method for simple equalities introduced in
Sect. 3, and (ii) HoIce-CEq and Z3-CEq that use the method for conditional
equalities introduced in Sect. 4. Due to implementation reasons, we did not set
a time limit for the equality inference in HoIce-SEq and HoIce-CEq, while we
set the time limit to 2 s in Z3-SEq and Z3-CEq.

We evaluated our implementations against: Z3, Eldarica [8], Fre-
qHorn [24], and HoIce. The experiments were conducted on a machine with
AMD Ryzen 9 5900X 3.7 GHz and 32 GB of memory, with a timeout of 1000 s.

We use the two benchmark sets CHC-COMP and SyGuS-Comp. The benchmark
CHC-COMP is the benchmark set of the latest CHC competition (CHC-COMP
2023)1, which consists of 850 CHC instances from various source, e.g., the bench-
marks of FreqHorn, Eldarica, LinearArbitrary, MoCHi, and so on. The
benchmark SyGuS-Comp is the benchmark set of the invariant synthesis track
(Inv) in the latest SyGuS competition (SyGuS-Comp 2019)2. Since the origi-
nal benchmark instances are written in their original specification language, we
translated these instances into general CHC instances written in the standard
SMT-LIB format. The benchmark includes 858 instances. Therefore, the number
of all the instances is 1708.

1 https://chc-comp.github.io/.
2 https://sygus.org/comp/2019/.

https://chc-comp.github.io/
https://sygus.org/comp/2019/


CHC Argument Reduction by Equality Constraints 259

Figure 3 shows the comparison of all the solvers. The vertical axis shows
an elapsed time (measured in seconds) in logarithmic scale, and the horizontal
axis shows the number of instances solved in the time. While the numbers of
solved instances by our tools are less than that of Z3, HoIce-SEq and Z3-SEq
solved more instances than the original solvers with small additional costs (as
discussed later). HoIce-CEq is inferior than HoIce and HoIce-SEq (located to the
upper left of HoIce). This is because the current implementation of the method
described in Sect. 4 in HoIce-CEq is näıve, where all the possible simple equalities
are calculated for all the subsets of the positive samples. Thus, the cost to find
candidates of conditional equalities is too high when the number of arguments
and positive samples are large. The optimization to address this issue is left for
future work.

Fig. 3. Comparison with Z3, Eldarica, FreqHorn, and HoIce

Table 1. Number of uniquely solved instances

Z3 Eldarica FreqHorn HoIce

3 (1,344) 30 (1,335) 7 (616) 0 (1,070)

HoIce-SEq HoIce-CEq Z3-SEq Z3-CEq Ours

1 (1,115) 21 (913) 3 (1,416) 1 (1,405) 43

In spite of this näıve implementation, the method in Sect. 4 was effective for
some instances. Table 1 shows the number of uniquely solved instances, i.e., the



260 R. Ikeda et al.

number of instances that can be solved by the solver but cannot be solved by the
other solvers. In the table, the numbers in the parentheses represent the numbers
of solved instances, and “Ours” represents the result of the parallel execution of
HoIce-SEq, HoIce-CEq, Z3-SEq, and Z3-CEq. In other words, 43 instances were
solved by at least one of HoIce-SEq, HoIce-CEq, Z3-SEq, and Z3-CEq, but could
not be solved by the other solvers. As can be seen from the table, HoIce-CEq
solves 21 instances that cannot be solved by the others. Interestingly, 20 out of
21 instances are unsat instances, which indicates that the invariant discovery
is useful for finding not only a solution but also a counterexample as described
in Sect. 1. Since our method is orthogonal to CHC solving methods, we can
also improve the other CHC solvers by incorporating our method into them.
We believe that optimizations on conditional equality findings may improve the
overall performance further.

Fig. 4. Comparison of ours with HoIce

Figure 4 shows the comparisons of ours and HoIce. The horizontal axis rep-
resents the solving time of HoIce and each vertical axis represents that of ours
in logarithmic scale. As can be seen in Fig. 4(a), even for the instances that can
be solved by HoIce, HoIce-SEq tends to solve the instances faster than HoIce
except very easy instances (More points away from the center line.) In contrast,
HoIce-CEq is slower than HoIce for such instances as can be seen in Fig. 4(b).
This is because finding conditional equality has a high cost.

Figure 5 shows how much the argument reduction improves the overall perfor-
mance. In the figure, the points on the upper line (resp. the lower line) represents
that HoIce (resp. ours) was timeout for the instances. There is no explicit corre-



CHC Argument Reduction by Equality Constraints 261

lation between the number of reduced arguments and the speed-up ratio, which
means that, at least for HoIce, the equality relation itself is more important than
the number of reduced arguments. The important point here is that removals
of one or more arguments enables HoIce to solve more instances, at least for
HoIce-SEq, with small cost (i.e., not much points are below the center line).

Figure 6 shows the cost of finding equalities against the maximum number of
integer arguments. The vertical axis represents the time spent in the procedure of
finding equalities. For simple equalities (Fig. 6(a)), the procedure ends within a
second for most of the instances (992 out of 1,115). Even for most instances that
have predicates with several dozen integer arguments, the procedure ends within
10 s. For conditional equalities (Fig. 6(b)), if the number of integer arguments
exceeds 4, the procedure takes much time for many instances.

Fig. 5. Speed-up ratio against the number of reduced arguments

Fig. 6. Time spent by equality finding against the maximum number of integer argu-
ments



262 R. Ikeda et al.

6 Related Work

Several techniques have been developed [4,14,16] to reduce arguments of pred-
icates for CHC and Constraint Logic Programming (CLP) with respect to its
satisfiability/semantics. Leuschel and Sørensen [14] proposed methods, called
RAF and FAR, for reducing predicate arguments, by detecting redundant argu-
ments that do not affect the satisfiability of CHCs, based on certain syntactic
conditions. Another method has been proposed by Proietti and Pettorossi [17],
which utilizes the fold/unfold transformation technique to detect and eliminate
unnecessary variables. Since those methods do not take into account arithmetic
constraints, they are not effective for the examples presented in this paper.

Our technique of finding linear equalities described in Sects. 3.1 and 3.2 can
be considered a transplant of the technique of Sharma et al. [20] for finding
algebraic loop invariants to the setting of CHCs. More precisely, the method for
guessing equalities from data in Sect. 3.1 is essentially the same as their method,
and the method for checking equalities and finding new data in Sect. 3.2 is a
generalization of their corresponding method to the setting of CHCs, which
can deal with a wider class of control structures than loops, including mutually
recursive functions. Moreover, Sharma et al.’s method first runs the program
to collect the initial data set, but it is difficult to do so (at least efficiently)
in the setting of CHCs. Thus, our procedure is made to work with an empty
initial data set. The important point is that the impact of the generalization to
the settings of CHCs is significant, as CHC solving can be used for verification
of much larger classes of programs and properties. They [20] also proposed a
method for finding disjunctive equalities from polynomial equalities, which may
serve as a good alternative to our method in Sect. 4.1.

In the setting of CHCs, Fedyukovich et al. [6] also gave a data-driven method
for discovering equality constraints. They used the discovered equalities as seeds
for their syntax-guided approach to CHC solving. Instead, we have used equality
constraints for a preprocessing to reduce predicate arguments. Our approach can
be combined with any CHC solvers. Another difference is in the way data are
collected: Fedyukovich et al. [6] collect data by unrolling CHCs, while we collect
them in a counterexample-guided manner, following the approach of Sharma et
al. [20].

Other data-driven approaches for finding invariants of loop programs or
CHCs have been proposed [11,19,21,24]. For example, Zhu et al. [24] used sup-
port vector machines, and Ryan et al. [19] and Kobayashi et al. [11] used neural
networks. While those methods can also deal with inequality constraints, those
methods tend to be more costly than our approach to finding equality con-
straints.



CHC Argument Reduction by Equality Constraints 263

7 Conclusion

We have proposed a method for reducing the number of arguments of predicates
by finding equality relations among the arguments in a counterexample-guided
manner. We have implemented the proposed method and confirmed its effective-
ness through experiments.

Future work includes an extension of our method for finding polynomial
equalities. To that end, we just need to fix the maximum degree d of polynomials,
and add the rows corresponding to xd1

1 · · · xdk

k for d1+· · ·+dk ≤ d when applying
the Gaussian elimination in Sect. 3.1.

It would also be interesting to extend our work to find invariants on data
structures such as lists and trees, to improve the efficiency of solvers for CHCs
with data structures. For example, if we can find relations on integer and data
structure arguments such as “x = y :: z”, “x is the first element of the integer
list y”, and “x is the depth of the tree y”, (where x, y, z are the argument of
some predicate), then we can remove the argument x from the predicate.

Acknowledgement. We would like to thank anonymous referees for useful comments.
This work was supported by JSPS KAKENHI Grant Numbers JP20H05703.

References

1. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

2. Bjørner, N.S., McMillan, K.L., Rybalchenko, A.: Program verification as satisfiabil-
ity modulo theories. In: Fontaine, P., Goel, A. (eds.) 10th International Workshop
on Satisfiability Modulo Theories, SMT 2012, Manchester, UK, 30 June- 1 July
2012. EPiC Series in Computing, vol. 20, pp. 3–11. EasyChair (2012). https://doi.
org/10.29007/1l7f

3. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. J. Autom. Reason. 64(7), 1393–
1418 (2020). https://doi.org/10.1007/s10817-020-09571-y

4. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Semantics-based gener-
ation of verification conditions via program specialization. Sci. Comput. Program.
147, 78–108 (2017). https://doi.org/10.1016/j.scico.2016.11.002

5. Delzanno, G., Podelski, A.: Constraint-based deductive model checking. Int.
J. Softw. Tools Technol. Transf. 3(3), 250–270 (2001). https://doi.org/10.1007/
s100090100049

6. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained Horn
clauses using syntax and data. In: Bjørner, N.S., Gurfinkel, A. (eds.) 2018 Formal
Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, 30 October
- 2 November 2018, pp. 1–9. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.
8603011

7. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-
4 20

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.29007/1l7f
https://doi.org/10.29007/1l7f
https://doi.org/10.1007/s10817-020-09571-y
https://doi.org/10.1016/j.scico.2016.11.002
https://doi.org/10.1007/s100090100049
https://doi.org/10.1007/s100090100049
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-319-21690-4_20


264 R. Ikeda et al.

8. Hojjat, H., Rümmer, P.: The ELDARICA horn solver. In: Bjørner, N.S., Gurfinkel,
A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin,
TX, USA, 30 October - 2 November 2018, pp. 1–7. IEEE (2018). https://doi.org/
10.23919/FMCAD.2018.8603013

9. Jaffar, J., Santosa, A.E., Voicu, R.: A CLP method for compositional and inter-
mittent predicate abstraction. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI
2006. LNCS, vol. 3855, pp. 17–32. Springer, Heidelberg (2005). https://doi.org/10.
1007/11609773 2

10. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: a framework for verifying
java programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
352–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4 19

11. Kobayashi, N., Sekiyama, T., Sato, I., Unno, H.: Toward neural-network-guided
program synthesis and verification. In: Drăgoi, C., Mukherjee, S., Namjoshi, K.
(eds.) SAS 2021. LNCS, vol. 12913, pp. 236–260. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88806-0 12

12. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

13. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39799-8 59

14. Leuschel, M., Sørensen, M.H.: Redundant argument filtering of logic programs.
In: Gallagher, J. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 83–103. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-62718-9 6

15. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification
for Rust programs. ACM Trans. Program. Lang. Syst. 43(4), 15:1–15:54 (2021).
https://doi.org/10.1145/3462205

16. Proietti, M., Pettorossi, A.: An automatic transfomation strategy for avoiding
unnecessary variables in logic programs (extended abstract). In: Clement, T.P.,
Lau, K. (eds.) Logic Program Synthesis and Transformation, Proceedings of LOP-
STR 91, International Workshop on Logic Program Synthesis and Transformation,
University of Manchester, UK, 4–5 July 1991, pp. 126–128. Workshops in Com-
puting. Springer (1991). https://doi.org/10.1007/978-1-4471-3494-7 10

17. Proietti, M., Pettorossi, A.: Unfolding - definition - folding, in this order, for avaoid-
ing unnecessary variables in logic programs. Theor. Comput. Sci. 142(1), 89–124
(1995). https://doi.org/10.1016/0304-3975(94)00227-A

18. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amaras-
inghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ, USA, 7–13 June
2008, pp. 159–169. ACM (2008). https://doi.org/10.1145/1375581.1375602

19. Ryan, G., Wong, J., Yao, J., Gu, R., Jana, S.: CLN2INV: learning loop invari-
ants with continuous logic networks. In: 8th International Conference on Learning
Representations, ICLR 2020. OpenReview.net (2020)

20. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A data
driven approach for algebraic loop invariants. In: Felleisen, M., Gardner, P. (eds.)
ESOP 2013. LNCS, vol. 7792, pp. 574–592. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-37036-6 31

21. Si, X., Naik, A., Dai, H., Naik, M., Song, L.: Code2Inv: a deep learning framework
for program verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.

https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/11609773_2
https://doi.org/10.1007/11609773_2
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-030-88806-0_12
https://doi.org/10.1007/978-3-030-88806-0_12
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/978-3-642-39799-8_59
https://doi.org/10.1007/3-540-62718-9_6
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-1-4471-3494-7_10
https://doi.org/10.1016/0304-3975(94)00227-A
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31


CHC Argument Reduction by Equality Constraints 265

12225, pp. 151–164. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
53291-8 9

22. Toman, J., Siqi, R., Suenaga, K., Igarashi, A., Kobayashi, N.: ConSORT: context-
and flow-sensitive ownership refinement types for imperative programs. In: ESOP
2020. LNCS, vol. 12075, pp. 684–714. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-44914-8 25

23. Unno, H., Kobayashi, N.: On-demand refinement of dependent types. In: Garrigue,
J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 81–96. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78969-7 8

24. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: Foster, J.S.,
Grossman, D. (eds.) Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, Philadelphia,
PA, USA, 18–22 June 2018, pp. 707–721. ACM (2018). https://doi.org/10.1145/
3192366.3192416

https://doi.org/10.1007/978-3-030-53291-8_9
https://doi.org/10.1007/978-3-030-53291-8_9
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.1007/978-3-030-44914-8_25
https://doi.org/10.1007/978-3-540-78969-7_8
https://doi.org/10.1145/3192366.3192416
https://doi.org/10.1145/3192366.3192416


Static Analysis and Testing



Incorrectness Proofs for Object-Oriented
Programs via Subclass Reflection

Wenhua Li1(B), Quang Loc Le2, Yahui Song1, and Wei-Ngan Chin1

1 National University of Singapore, Singapore, Singapore
{liwenhua,yahuis,chinwn}@comp.nus.edu.sg

2 University College London, London, UK
loc.le@ucl.ac.uk

Abstract. Inheritance and method overriding are crucial concepts in
object-oriented programming (OOP) languages. These concepts sup-
port a hierarchy of classes that reuse common data and methods. Most
existing works for OO verification focus on modular reasoning in which
they could support dynamic dispatching and thus efficiently enforce the
Liskov substitution principle on behavioural subtyping. They are based
on superclass abstraction to reason about the correctness of OO pro-
grams. However, techniques to reason about the incorrectness of OOP
are yet to be investigated.

In this paper, we present a mechanism that 1) specifies the nor-
mal and abnormal executions of OO programs by using ok specifica-
tions and er specifications respectively; 2) verifies these specifications
by a novel under-approximation proof system based on incorrectness
logic that can support dynamic modularity. We introduce subclass reflec-
tion with dynamic views and an adapted subtyping relation for under-
approximation. Our proposal can deal with both OOP aspects (e.g.,
behavioural subtyping and casting) and under-approximation aspects
(e.g., dropping paths). To demonstrate how the proposed proof system
can soundly verify the specifications, we prove its soundness, prototype
the proof system, and report on experimental results. The results show
that our system can precisely reason about the incorrectness of programs
with OOP aspects, such as proving the presence of casting errors and
null-pointer-exceptions.

1 Introduction

Proving the correctness and incorrectness of programs are two sides of a coin. On
one side is Hoare logic, the pioneering formal system for correctness reasoning.
Its central feature is Hoare triple, denoted by {pre} S {post} where pre and
post are assertion formulae in some logic, and S is a program written in some
programming languages. This triple means if we execute S starting from any
program state σ (σ are valuations of program variables) satisfying pre and if
it terminates, we will obtain program states σ′ satisfying post . We refer σ′ as
reachable states from pre. This interpretation implies:

– post may be an over-approximation of reachable states, i.e., some of its states
may satisfy post but do not correspond to a terminating execution associated

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 269–289, 2023.
https://doi.org/10.1007/978-981-99-8311-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_13&domain=pdf
https://doi.org/10.1007/978-981-99-8311-7_13


270 W. Li et al.

with a starting state satisfying pre. As such, Hoare logic is primarily used
for correctness proving. Given a program S, a precondition pre, and an asser-
tion bad representing buggy states, to prove that S is safe, we can show
{pre} S {post} is valid and the post does not contain any bad states.

– Hoare logic cannot be used to prove the incorrectness of programs (i.e., con-
firming that S has a bad property by establishing post∧ bad that is satisfiable
is inaccurate). This is due to an over-approximating post state.

Recently, O’Hearn completed the other side of the puzzle with incorrectness
logic (IL) [23]. Its centrepiece is IL triple, the under-approximation counterpart
of Hoare triple. An IL triple, written as [pre] S [post], states that each state of
σ′, that satisfies post , is a reachable state from executing S from one or more
inputs satisfying pre. Given an IL triple [pre] S [post] and a buggy assertion bad,
S has a bug if post ∧ bad is satisfiable. With this, we can always find a counter-
example whose input value(s) satisfy pre from which S goes bad. Notably, Pulse-
X, a recent IL analyser [11], found 15 new bugs in OpenSSL and showed the
importance of incorrectness reasoning for the industrial codebase.

Though IL is a significant advance to under-approximating reasoning, it is
currently limited to static modularity and does not support dynamic modularity
for object-oriented programming (OOP). OOP is one of the vital components
in many imperative programming languages (e.g., Java, Scala and C#). An
OO program is a collection of classes, each of which contains a set of fields and
methods. Classes could be subclasses of others to form a class hierarchy. Methods
of the superclass can be inherited or overridden by the subclass. The design of
OOP must adhere to the Liskov substitution principle (LSP) on behavioural
subtyping [18]: An object of a subclass can always substitute an object of the
superclass, and dynamic dispatching of a method is determined based on its
actual type at the runtime. Most existing OO verification works focus on the
support of dynamic modularity to enforce the substitutivity efficiently. While
these works support correctness reasoning with superclass abstraction in Hoare
logic (e.g., [8,9,13,14]) or its extension, separation logic (e.g., [4,20,24,25]), none
focuses on the incorrectness of programs. Therefore, incorrectness reasoning in
OO programs is worth investigating.

We introduce IL for OOP, with the following challenge: How to support
dynamic modularity to enforce behavioural subtyping in under-approximation?
A key observation is that the superclasses are unaware of the behaviours of
extension fields in the subclasses. However, the subclasses can reflect the reach-
able states for fields inherited from the superclasses. Hence, the specifications of
the subclass methods can be used to show the behaviours of the subclass itself
and the superclasses. We call this subclass reflection.

In some prior works [4,25] on correctness reasoning, they propose the co-
existence of static and dynamic specifications. A static specification (spec) spec-
ifies the functional properties of each method, while a dynamic spec can be used
to verify dynamic dispatching; and the specification subtyping relation between
static/dynamic specs ensures behavioural subtyping. Similar to the prior works,
we propose static specs and reflexive specs to specify OO programs in under-
approximation: A static spec under-approximates a single method while a reflex-



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 271

ive spec under-approximates methods of one class and its superclasses. Moreover,
we propose dynamic views which can efficiently support subclass reflection and
reason about casting operations. Our primary contributions are as follows.

– We present an under-approximate approach to OO verification. Our proposal
extends incorrectness logic, with subclass reflection using dynamic views, to
specify both normal and incorrect behaviours of OO programs.

– We introduce a proof system that supports dynamic modularity (including
dynamic dispatching for class inheritance, casting operator and instanceof
operator) and under-approximating reasoning via dropping paths and classes.

– We prototype the proposal in a verifier, called OURify (OO program Under-
approximation Verifier), and demonstrate its capability of proving the incor-
rectness of OO programs, which is beyond the state-of-the-art.

Organization. Section 2 illustrates our proposal with examples. Section 3
presents the target language and the assertion language. The proof system and
our approach to behaviour subtyping are shown in Sect. 4. Section 5 discusses
our implementation OURify. Finally, Sect. 6 shows related work and concludes.

2 Motivation and Overview

We first explain the dynamic modularity problem and how existing propos-
als address it in correctness reasoning using Hoare logic and separation logic
(Sect. 2.1). After that, in Sect. 2.2, we discuss the motivation of a novel founda-
tion for incorrectness reasoning via incorrectness logic by highlighting the fun-
damental differences between Hoare logic and incorrectness logic. Afterwards,
we informally describe our proposal for incorrectness reasoning.

2.1 Correctness Reasoning with Superclass Abstraction

When the type of an object is dynamically determined, is there a modular way to
verify this object without explicitly considering all the method implementations?
Liskov substitution principle answers this question: the subclass implementation
must satisfy the specification of the superclass for each inherited or overridden
method. This process requires re-verification as all subclasses need to be checked
and could be polynomial in the numbers of inherited classes.

To avoid re-verification and enforce behavioural subtyping efficiently, prior
works [4,25] suggest that each method has a pair of specs: a static spec for
the verification of its implementation and a dynamic spec involving behaviour
subtyping. Furthermore, a method’s static spec is a subtype (written as <:O)
of its dynamic spec. A method’s dynamic spec in the subclass is a subtype
of the dynamic spec in its superclass. This mechanism enhances behavioural
subtyping, such that the dynamic spec of a superclass’s method abstracts (pos-
sibly over-approximating) behaviours of all its subclass methods. This is the
so-called superclass abstraction. Suppose that superclass C has a method mn
with spec {preC} {postC}, and D is a subclass of C – denoted as D ≺ C, and



272 W. Li et al.

D.mn overrides/inherits from C.mn. Then, for all D.mn’s spec {preD} {postD},
{preD} {postD}<:O{preC} {postC}, where the relation <:O is defined as:

preC ∧ type(this)≺D |= preD postD |= postC
{preD} {postD} <:O {preC} {postC}

(Note that the relations proposed in separation logic [4,24,25] consider frame
inference in the premises, which is a generic form of entailment problem.) Regard-
ing this relation, we have the following two observations.

– First, the entailment checks are not straightforward, as the specs are from two
different classes. Various approaches [4,7,25] have been applied to address this
issue. For example, the extension predicate [4] encodes fields from multiple
objects (e.g., one superclass and its subclasses) in a single predicate. When
the extension predicate is used with the subtype constraint type(this)≺D,
the entailments are checked for the subclass D.

– Second, the subtyping relation enforces subtyping behaviour without requir-
ing re-verification. For any program S s.t. {preD}S{postD} is valid, then the
subtyping relation and the consequence rule of Hoare logic (rule HL-Conseq
below) ensure so is {preC}S{postC}.

preC |= preD {preD} S {postD} postD |= postC
(HL-Conseq)

{preC} S {postC}

We notice a phenomenon in which inheritance is not subtyping [6], i.e. sub-
class instances behave differently from instances of its superclass. One solution
to address such odd instances is to provide over-approximation for superclass
abstraction (shown in the following example). Alternatively, Dhara and Leavens
[7] propose a specification inheritance technique in which the specification of the
overriding method is strengthened by conjoining it with the specification of the
overridden method. This technique was realized in separation logic via multiple
specs [4] or specs with the also keyword [25].

Fig. 1. Illustrative example

We elaborate on subtyping behav-
iour through the code shown in Fig. 1.
It defines two classes: the superclass
Cnt and the subclass DblCnt. Cnt
includes a field val and a method
tick, which increases val by one.
DblCnt inherits val, defines another
field bak and overrides the method
tick. Method DblCnt.tick() addi-
tionally backs up the value of val in
bak and nondeterministically increases
val by 1 (on line 10) or 2 (on line 12).
While the if branch shows the subtyp-
ing behaviour of DblCnt.tick(), the
else branch does not.



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 273

To write method specifications, we
need to define an abstraction that captures all fields of the two classes. For
instance, we follow the approach introduced in [4] to define an extension predi-
cate in separation logic. The abstraction is:

this::Cnt〈t, v, p〉 ∗ p::ExtAll(Cnt, t)

this::Cnt〈t, v, p〉 defines the superclass. t is the actual type of this object; value
v is the field val. p is the reference to subclass extensions. ∗ is the separating
conjunction, and predicate p::ExtAll(Cnt, t) defines a chain of subclasses from
Cnt to t. ExtAll(Cnt, t) is defined as the following:

p :: ExtAll(Cnt, t) ≡ t = Cnt ∧ p = null
∨ p::Ext〈t1, v, p1〉 ∗ p1::ExtAll(t1, t) ∧ (t1 ≺1 Cnt) ∧ (t ≺ t1)

where t1 ≺1 Cnt means t1 is an immediate subclass of Cnt and t ≺ t1 means t is
a subclass of t1. With this abstraction, Cnt is realized as:

this::Cnt〈Cnt, v, p〉 ∗ p::ExtAll(Cnt, Cnt) = this::Cnt〈Cnt, v,null〉

And DblCnt is this::Cnt〈DblCnt, v, p〉 ∗ p::ExtAll(Cnt, DblCnt) which is equiva-
lent with this::Cnt〈DblCnt, v, p〉 ∗ p::Ext〈DblCnt, b,null〉 ∧ DblCnt ≺1 Cnt.

Using these predicates, we can write static and dynamic specs for two meth-
ods tick. First, methods Cnt.tick and DblCnt.tick are specified and statically
verified by the following two static specs, respectively.

static {this::Cnt〈Cnt, v,null〉} Cnt.tick() {this::Cnt〈Cnt, v + 1,null〉}
static {this::Cnt〈DblCnt, v, p〉 ∗ p::Ext〈DblCnt, ,null〉 ∧ DblCnt ≺1 Cnt}

DblCnt.tick()
{this::Cnt〈DblCnt, v′, p〉 ∗ p::Ext〈DblCnt, v,null〉 ∧ DblCnt ≺1 Cnt

∧ v + 1 ≤ v′ ≤ v + 2}

Similarly, each method tick is annotated with another dynamic spec, which
is used for dynamic dispatching verification.

dynamic {this::Cnt〈t, v, p〉 ∗ p::ExtAll(Cnt, t)}
Cnt.tick()

{this::Cnt〈t, v′, p〉 ∗ p::ExtAll(Cnt, t) ∧ v′ > v}

dynamic {this::Cnt〈t, v, p〉 ∗ p::Ext〈DblCnt, , p1〉
∗p1::ExtAll(DblCnt, t) ∧ DblCnt ≺1 Cnt}

DblCnt.tick()
{this::Cnt〈t, v′, p〉 ∗ p::Ext〈DblCnt, v, p1〉

∗p1::ExtAll(DblCnt, t) ∧ DblCnt ≺1 Cnt ∧ v+1 ≤ v′ ≤ v+2}
Next, to enforce behaviour subtyping, we first check whether the static spec

of method Cnt.tick() is a subtype of its dynamic spec. Secondly, we check



274 W. Li et al.

whether the dynamic spec of DblCnt.tick() is a subtype of the dynamic spec of
Cnt.tick(). With these specs above, all these checks are valid. Hence, this valid-
ity guarantees behavioural subtyping without requiring re-verification. Moreover,
any dynamic dispatching call with the receiver of static type Cnt can use the
dynamic specification in class Cnt.

2.2 Incorrectness Reasoning with Subclass Reflection

Hoare logic and IL have different foundations. Technically, IL has another con-
sequence rule with a reversed entailment in the premises.

preD |= preC [preD] S [postD] postC |= postD
(IL − Conseq)

[preC ] S [postC ]

Second, an analyser using Hoare logic has to prove the safety of all program
paths to show the absence of bugs in a program. In contrast, to show the pres-
ence of a bug, an analyser using IL could drop paths. A critical insight from
the IL-Conseq rule is that the postcondition can be under-approximated, e.g.,
dropping paths/disjuncts for scalability. Superclass abstraction cannot be eas-
ily adapted to capture reachable states for subclasses in under-approximation.
As the above example shows, the dynamic spec of Cnt.tick only records the
change in the val field; we cannot conclude any information for the bak field.
As a result, we cannot find precise reachable states for the subclass of Cnt when
a dynamic dispatching call is performed.

We observe that while superclasses are unaware of reachable states of
extended fields in the subclasses, the subclasses should satisfy the constraints
(reachable states) over fields inherited from superclasses. To uphold the substitu-
tion principle in under-approximating reasoning, we require the inherited fields
in the postcondition of a subclass method are not weaker than its counterpart
in the superclass.

Based on this observation, we introduce subclass reflection to handle dynamic
dispatching calls for under-approximating reasoning. Superclass abstraction is a
top-down approach while subclass reflection is bottom-up. An abstraction for
under-approximation could be behaviours of a subset of a class hierarchy. With
this setting, we write reflexive specifications in subclasses to reflect their super-
classes’ behaviours. Hence, each subclass will take care of one class chain in a
class hierarchy.

Given a subclass method D.mn, for all D.mn’s specs [preD] [postD], there exists
some specs [preC ] [postC ] of method mn in the superclass C such that
[preC ] [postC ] <:U [preD] [postD] where the relation <:U 1 is defined as:

preC |= preD postD ∧ type(this) = C |= postC
[preC ] [postC ] <:U [preD] [postD]

If [preC ] [postC ] <:U [preD] [postD] , then for all S, and [preC ] S [postC ],
we have [preD] S [postD ∧ type(this) = C]. Note that, the type constraint here
1 This definition is slightly different from the version in Definition 2 for simplicity.



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 275

is type(this) = C which is different from type(this) ≺ D in <:O. This is because
subclass reflection requires postD to reflect its superclass C. We now demonstrate
our proposal through the example in Fig. 1. The reflexive spec of Cnt.tick is
the same as its static spec since Cnt is the only type to be reflected by Cnt:

static/reflex [this::Cnt〈v〉] tick() [ok: this::Cnt〈v + 1〉]

Note that, ok denotes postconditions in normal executions. Objects that need
to be reflected by DblCnt are this::Cnt〈v〉 ∨ this::DblCnt〈v, b〉. We propose a
dynamic view as: this::Cnt〈v〉DblCnt〈b〉 to represent this disjunction.

static [this::DblCnt〈v, b〉] tick() [ok: this::DblCnt〈v′, v〉 ∧ v+1≤v′≤v+2]
reflex [this::Cnt〈v〉DblCnt〈b〉] tick() [ok: this::Cnt〈v+1〉DblCnt〈v〉]

The else branch of DblCnt.tick has been dropped in the reflexive spec.
Let reflex(mn) (resp. static(mn)) be the reflexive (resp. static) spec

of method mn. To show that reflex(DblCnt.tick) is valid for both
DblCnt.tick and Cnt.tick, we prove both 1) static(DblCnt.tick) <:U
reflex(DblCnt.tick) and 2) reflex(Cnt.tick) <:U reflex(DblCnt.tick).
We illustrate 1) here,

this::DblCnt〈v, b〉 |= this::Cnt〈v〉DblCnt〈b〉 //checking for pre

this::Cnt〈v+1〉DblCnt〈v〉 ∧ (type(this) = DblCnt) //checking for post

⇒(this::Cnt〈v+1〉 ∨ this::DblCnt〈v+1, v〉) ∧ (type(this) = DblCnt)
⇒this::DblCnt〈v+1, v〉 |= this::DblCnt〈v′, v〉 ∧ v+1≤v′≤v+2

By doing so, we validate reflex(DblCnt.tick) without verifying it against
the method bodies. We show a simple example in Fig. 2. The precondition
before the dispatching call (line 3) shows that object x has a dynamic view
x::Cnt〈v〉DblCnt〈b〉. We will retrieve a reflexive spec according to the last type
in this dynamic view. Hence, the reflexive spec in DblCnt is chosen as it also
reflects the types before DblCnt in this dynamic view. Alternatively, if we want
to capture the else branch of DblCnt, another reflexive spec in DblCnt.tick()
could be: [this::Cnt〈v〉DblCnt〈b〉] [ok: this::DblCnt〈v+2, v〉]. This reflexive spec
drops the path from Cnt. Hence, we do not have to check reflex(Cnt.tick)
<:U reflex(DblCnt.tick) for this spec as the relation is trivially true.

Fig. 2. Example on casting

Our dynamic view can reason
about casting, which is extensively
used in OOP. For instance, Fig. 2
shows a casting operation performed
on object x. x’s type is either Cnt or
DblCnt. On line 5, as x is casting to
DblCnt, based on x’s possible types,
our system splits into cases with ok
spec on line 6 and er spec on line 7,
respectively. By so doing, our system



276 W. Li et al.

can discover bugs relating to casting effectively. The efficiency is also confirmed
by our experiments: Our system can prove casting bugs which are beyond Pulse,
the bug checker used in products at Meta and other big-tech companies.

3 Language and Specifications

The section presents the core OO language and our assertion grammar.

3.1 Syntax of the Target Language

Figure 3 presents our core language. We assume the language uses single inher-
itance and pass-by-value mechanism. Object is an implicit superclass of all
classes, x, y... for program variables, C,D... for class names, e and B for expres-
sions and boolean expressions respectively, and x.f for the field f of x. Boolean
expression x instanceof C is true if x is in class C or a subclass of C.

Fig. 3. A core Object-Oriented language.

A program P is a collection of class definitions. A class declares its super-
class via keyword extends. A class consists of fields, method declarations and
definitions. Each method meth will be annotated as virtual, inherit or override.
A virtual method only exists in the subclass but not its superclass. An inherit
method uses the same method body as its superclass. Lastly, an override method
re-defines the method body in the subclass. Each method is annotated with two
specifications: one is static sp and another is reflexive rp. ε is program status:
ok (for normal executions) and er (for abnormal ones).

3.2 Semantics

Val defines values of variables including integers, booleans, locations Loc, and
null . A program state σ ∈ PState is a tuple, including a stack s ∈ Stack ,
that maps variables to values, Val , and a heap h ∈ Heap, that partially maps
addresses to the contents. A heap h includes two mappings: h.1 maps locations
to class names (dynamic type of an object) and h.2 maps location-field tuples



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 277

to Val . The semantics is the relation of statements S, exit conditions ε, and
program states σ.

σ ∈ PState def= Stack × Heap s ∈ Stack def= Var→Val v ∈ Val

h ∈ Heap def= (Loc ⇀ Classes) × (Loc × Field ⇀ Val) l ∈ Loc ⊆ Val
def= Statement × Exit × (PState × PState) ε ∈ Exit

def= {ok, er}

The relational denotational semantics is presented in our technical report
[16]. We discuss the semantics of two commands: casting and instanceof in
detail. The semantics of casting is as follows:

�y:=(C) x�ok
def
= {((s, h), (s[y �→ s(x)], h))| (h.1(s(x)) = C1 ∧ C1≺C) ∨ s(x) = null}

�y:=(C) x�er
def
= {((s, h), (s, h))| h.1(s(x)) = C1 ∧ C1 �≺C}

Casting an object to its superclass is always successful, while it is erroneous
another way around. For instance, downcasting a heap object with a type C to
its subclass or any unrelated class causes an error. The statement instanceof
is used to check object types before casting.

Class hierarchy is collected via extends keyword. When for each
C1 extends C2, {C1≺1C2} is added to the environment. The notation C2≺1C1

means C2 is the immediate subclass of C1 while C2≺C1 means C2 is a subclass
of C1 or C2 equals C1. We can query the class hierarchy environment for the
subtyping relation between classes. x instanceof C is a side-effect-free Boolean
expression. Its semantics is as follows:

B�x instanceof C�(s, h)
def
= False iff s(x) = null ∨ (h.1(s(x)) �≺ C)

B�x instanceof C�(s, h)
def
= True iff (h.1(s(x)) ≺ C)

3.3 Assertion Language

We here present the assertion language, an extension of separation logic [4]
with IL. Figure 4 presents the syntax of the specification language (while the
semantics can be found in our technical report [16]). The separation conjunction
κ1 ∗ κ2 describes two non-overlapping heaps, κ1 and κ2. x.f �→e stands for an
object x has a field f which points to e and x : C stands for the type for
x stored in a heap is C. To simplify the notation, we encode a heap object
in the form of x�→C〈e〉, meaning that the object x of exact type C has fields
x.f1 �→e1, x.f2 �→e2, · · · x.fn �→en. That said, x�→C〈e〉 = x : C∗x.f1 �→e1∗x.f2 �→e2∗
· · · x.fn �→en.

Fig. 4. Assertion language.



278 W. Li et al.

We also call x�→C〈e〉 a static view, which describes a single object. In addition,
we introduce the dynamic view to handle the dynamically dispatched method
call. The dynamic view is in the form of x::C1〈e1〉C2〈e2〉 · · · Cn〈en〉 which is a
collection of static views of objects along a class chain from C1 to Cn in a
class hierarchy. Specifically, it is syntactic sugar for the disjunction of objects,
i.e. x�→C1〈e1〉 ∨ x�→C2〈e1, e2〉 · · · ∨ x�→Cn〈e1, · · · en〉. The subclass objects have to
maintain the same state for the fields inherited from its superclass to form a
valid dynamic view.

IL Triples. An IL triple is of the following form: � [P ] S [ε:Q]. In contrast
to Hoare logic, the postcondition Q is an under-approximation of all possible
execution paths and any state in Q, is reachable from some states satisfying P .
Formally,

� [P ] S [ε:Q] def= ∀σ ∈ �Q�. ∃σ′ ∈ �P �.(σ′, σ) ∈ �S�ε.

4 Proof System for Under-Approximating Reasoning

We propose specification subtyping in Sect. 4.1 and the mechanism of static and
reflexive specifications in Sect. 4.2. Finally, proof rules are shown in Sect. 4.3.

4.1 Behavioural Subtyping

Liskov substitution principle (behaviour subtyping) [17,18] gives a general guide-
line for OOP design, which is crucial to the dynamic modularity problem. In
under-approximation, we uphold this principle.

Definition 1 (Specification Subtyping). Given an IL specification
[PC ] [ε:QC ] and another IL specification [PD] [ε:QD]. We say [PC ] [ε:QC ] is a sub-
type specification of [PD] [ε:QD] if the following holds,

QD |= QC ∗ F F ∗ PC |= PD

[PC ] [ε:QC ] <: [PD] [ε:QD]

This definition is a corollary of IL consequence rule and the frame rule. The
frame F can be calculated via the postcondition entailment proving. Then, F
will be carried forward for the precondition entailment proving. Any program
satisfying [PC ] [ε:QC ] will satisfy [PD] [ε:QD].

Recap that the inherited fields in a behavioural subtype should not reach
more states than the superclass. This is the key point to uphold Liskov substi-
tution principle in under-approximation. For instance, we would not expect a
buggy state to be reachable by a method in the subclass but unreachable in the
superclass. Otherwise, the superclass is not replaceable as the program will intro-
duce new errors with the subclass. Hence, according to the above definition, the
under-approximation specification of a superclass should be a subtype of that



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 279

in the subclass. In other words, the subclass specification needs to reflect its
superclass’s behaviours. We call it subclass reflection. With subclass reflection,
the dynamic dispatching call can be handled efficiently.

However, as subclasses might extend superclasses with extra fields, checking
Definition 1 is not straightforward. To address this issue, we incorporate static
view and dynamic view. Recall that the dynamic view is a disjunction of multiple
objects. We allow a constraint type(x) ∈ T to assert if the type of object x is in
a set T of types. Hence, we can check specifications for objects that only belong
to T . For example,

this::C〈e1〉D〈e2〉 ∧ type(this) ∈ {C}
⇒(this�→C〈e1〉 ∨ this�→D〈e1, e2〉) ∧ type(this) ∈ {C}
⇒this�→C〈e1〉

We mainly need two kinds of implications between static view and dynamic view
in our verification processes Sect. 4.2.

Lemma 1 (View Relationship).

this::C〈e1〉D〈e2〉E〈e3〉 ∧ type(this) ∈ {E} ⇒ this�→E〈e1, e2, e3〉

this::C〈e1〉D〈e2〉E〈e3〉 ∧ type(this) ∈ {C,D} ⇒ this::C〈e1〉D〈e2〉
Now, we introduce the specification subtyping for behavioural subtyping.

Definition 2 (Behavioural Subtyping). We say that the under-
approximation specification [PC ] [ε:QC ] for a method mn in superclass C and
another [PD] [ε:QD] for mn in subclass D cater to behavioural subtyping if the
following holds,

QD ∧ type(this) ∈ TC |= QC ∗ F F ∗ PC |= PD

[PC ] [ε:QC ] <:U [PD] [ε:QD]

where TC is the set of types pointed to by this reference in C’s specification.
We use <:U to capture this relationship.

4.2 Static and Reflexive Specifications

In some previous works [4,25], static and dynamic specification co-existence has
been proposed to handle method verification and behavioural subtyping. We
introduce a similar mechanism in an under-approximation flavour. We use the
special variable this to denote the reference of the current object.

Static Specification. Static specification is a description of a single method. The
static view must describe the object referred to by this in the static specification.
Hence, the static specification should be precise (the precondition needs to be
as strong as possible, and the postcondition needs to be as weak as possible).



280 W. Li et al.

Reflexive Specification. Reflexive specification is used for two purposes. Firstly, it
ensures behavioural subtyping: i) The reflexive specification in the superclass is
a subtype of the reflexive specification in the subclass; ii) the static specification
of a method needs to be a subtype of the corresponding reflexive specification.
Secondly, it is used for dynamically dispatching calls. To model dynamic dis-
patching, the dynamic views encode the state of multiple objects along a class
chain. Any object in a dynamic view could be dispatched for a dynamic call. In
contrast to the static specification, we use dynamic view for this reference in
reflexive specifications.

Static/Reflexive Specification Verification. We now discuss the relation-
ship between these two specifications in class inheritance. The first one is virtual
method whose implementation only exists in subclasses. Note that, one speci-
fication can be both static and reflexive in the virtual method as there is no
superclass to reflect.

sp=[P ] [ε:Q]
[P ] S; return y [ε:Q] (Spec verification)

virtual t1 mn (t̄2 x ) [static sp] [reflexive sp] {S; return y} in C

Spec verification is the verification of the static specification against the
method body by using our proof rules in Sect. 4.3 and basic rules in [16].

Second, an inherited method in the subclass uses the same implementa-
tion from its superclass: Inherited methods are semantically equivalent in both
classes. The prior work [4] defines a notion called “statically-inherited” methods.
A method is statically inherited by the subclass if (1) it does not override the
original implementation and (2) if the method calls any other method mn inside
the body, mn must also be statically-inherited. For simplicity, we assume every
inherited method is statically-inherited as a non-statically-inherited method can
always be transferred into an overriding method. To verify the static specifica-
tion for the inherited method in the subclass, we can check whether its specifi-
cation is compatible with the corresponding static specification in the superclass.
Compatible(sp′, sp) means that sp is derivable from sp′ using consequence rule
or frame rule, i.e. sp′ <: sp, which is defined in Definition 1.

D≺1C spc=static(C .mn) rpc=reflex(C .mn) sp′
c=spc[this : D/this : C ]

Compatible(sp′
c, sp) (Spec verification)

sp <:U rp (Dynamic Dispatch)
rpc <:U rp (Behavioural subtyping)

inherit t1 mn (t̄2 x ) [static sp] [reflexive rp] {} in D

Note that, sp′
c = spc[this : D/this : C] is valid when the superclass imple-

mentation does not access the type information of this. If the implementation
accesses the type information of this, we need to verify the implementation
against the static specification of the subclass.



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 281

Lastly, an overriding method redefines the procedure performed in a sub-
class. Hence, the superclass and the subclass may behave differently. However,
the subclass can still be behavioural subtyping if both classes obey the rule in
Definition 2. Again, we require the same relation holds for those specifications.

D≺1C rpc=reflex(C .mn) sp=[P ] [ε:Q]
[P ] S; return y [ε:Q] (Spec verification)
sp <:U rp (Dynamic Dispatch)
rpc <:U rp (Behavioural Subtyping)

override t1 mn (t̄2 x ) [static sp] [reflexive rp] {S; return y} in D

The constructor is a special type of method that initialises the fields of an
object. We use Ccs to denote the constructor for class C. When the subclass’s
constructor is called, by default, the constructor of its superclass is called before
the subclass constructor. As a constructor instantiates a concrete object, con-
structors only have a static specification. A concrete object should use static
specifications for further method calls.

D≺1C spc=static(Ccs) spc=[Pc] [ε:Qc]
sp=[P ] [ε:Q] Pc ∗ Pf � P

[P ′]=[ε:Qc[this : D/this : C ] ∗ Pf ∗ (∗fi∈field(D) this.fi �→null)]
[P ′] S [ε:Q] (Spec verification)

Dcs (t̄2 x ) [static sp] {S}

To ensure sp meets the precondition for calling the superclass’s constructor, we
do an entailment checking for Pc ∗ Pf � P : the precondition of the superclass Pc

should entail the precondition of the subclass P with a possible anti-frame Pf
that captures the extra nodes (do not appear in Pc) in the separation formula
P . This anti-frame Pf is carried forward as part of the pre-states for verification.
In addition, all extension fields of class D will be set to null before executing
the constructor body S.

4.3 Proof Rules

This section presents primary proof rules specific to our OO language in Fig. 5.
We leave the remaining standard rules [23,26] in [16].

Rules Read, Write, NullRead and NullWrite are for object access (read/write).
Programmers typically check object type using instanceof before applying cast-
ing. Rules for instanceof, including InsNull, Ins and DyIns, model the type
checking. While the first two are for objects with static views, the last one is for
objects with dynamic views. Cm represents some classes with fields before Ci while
Ck is for those after Ci. If Ci ≺ C, intanceof operator returns true and drops all
classes before Ci, but keeps the field information (of the dropped classes) in Ci.
Otherwise, it returns false and drops those classes after Ci.

The rules for casting operators are CastNull, CastOk, CastErr, DyCastOk
and DyCastErr. A casting error happens when the type of an object is assigned



282 W. Li et al.

to an incompatible type. Note that the casting operation does not change the
type stored in a heap or which method to call. A casting operator applies on a
null value without any exceptions. Upcasting is always successful, as an instance
of the subclass is also an instance of the superclass. Downcasting fails if we cast
an object of exact type C to its subclass D. Casting to an unrelated class will
also lead to an error. Similar to DyIns, rules DyCastOk and DyCastErr are for
objects with dynamic view. If Ci ≺ C, all classes after Ci in a dynamic view
can be cast to C. Otherwise, all classes before Ci in a dynamic view can lead to
casting errors.

Rules for method invocation are Static MethodInv and Dynamic MethodInv.
When an object has an exact type C, we apply its static specification. For the

Fig. 5. Proof rules



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 283

dynamic method invocation (view(x) = x :: ...D〈...〉 means the dynamic view
of object x in the precondition ends with type D), our system extracts reflexive
specs according to the last type of the object’s dynamic view. Note that, a reflex-
ive spec may describe more classes than necessary. For instance, the dynamic
view of an object x before a dynamic method invocation is x::D〈e2〉E〈e3〉. How-
ever, the dynamic view of this object in the precondition of the corresponding
reflexive spec (class E) might be this::C〈e1〉D〈e2〉E〈e3〉. It seems we could not
apply the Dynamic MethodInv rule. In this case, we can use the Constancy rule
[23] and add a constrain type(this) = {D,E} in the pre/post of the reflexive spec.
Then, we can obtain a spec that can be used for this dynamic method invocation.
Our case studies in [16] utilise this strategy to do the proving. Constructor is
for object constructor and is similar to Static MethodInv. Note that, all method
invocations may need extra efforts for anti-frame inference. As the precondition
P could contain more heap components than Pr for method calls, we need to
infer a formula F where Pr∗F � P and then push F forward by using the frame
rule.

Theorem 1 (Soundness). If � [P ]S[ε:Q], then � [P ]S[ε:Q].

5 Implementation and Evaluation

Implementation. We prototype our incorrectness verification system for OOP,
OURify, which consists of 10,000 lines of OCaml codes. We discharge the entail-
ment checking and the anti-frame inference using the off-the-shelf tool, SLEEK
[5,12].

OURify is an automated verifier that performs under-approximation compo-
sitional reasoning in a bottom-up manner. Specifically, given a program written
in our core language (shown in Fig. 3) with well-annotated static and reflexive
specifications, OURify verifies (i) the implementation against the static specifi-
cations; and (ii) behaviour subtyping conformance via the proposed subtyping
relation among reflexive specifications. Afterwards, OURify reports the verifica-
tion results, SUCCESS or FAILED, to the user.

OURify implements the proof rules in Fig. 5, basic rules in [16,23,26], and a
proof search algorithm. The algorithm takes a specification table T , that stores
verified specifications of methods and uses a function post(P, T, S), that com-
putes the post-states ε′: Q′ of command S from its pre-condition P via applying
the proof rules.

Given a method mn with the static specification [P ] [ε:Q] and implementa-
tion mc, OURify verifies the specification by first computing a set of post-states
via post(P, T,mc). After that, for each post-state assertion ε′ : Q′, it invokes
SLEEK to check whether ε′ is the same with ε and Q ∗ emp |= Q′. If there
is no post-state that satisfies these checks, OURify returns FAILED. Other-
wise, the static specification [P ] [ε:Q] is verified. Theorem 1 ensures the correct-
ness of the function post: [P ] [ε:Q | ε: Q ∈ post(P, T,mc)]. In addition, OURify
checks the validity of the corresponding reflexive specification according to Def-
inition 2 (specification subtyping between static and reflexive specifications of



284 W. Li et al.

the method as well as reflexive specifications between methods of superclasses
and subclasses), with the help of the back-end solver, SLEEK [5,12]. If all checks
are successful, it returns SUCCESS. Otherwise, it produces FAILED.

Evaluation. The implementation is running on a Linux machine with an Intel
i7 processor 3.40 GHz and 8 GB of memory. We have tested OURify on pro-
grams with null-pointer-exceptions (NPE) and class-casting-exceptions (CAST)
and reported the results in Table 1 while the name with “OK” indicates an ok
program.

We have chosen 15 programs as our benchmarks. Six of them are manually
constructed (those with the prefix M). The manually constructed programs are
used to validate our implementation. The rest of the programs are taken from
some existing works and publicly available data set [2,19,21,28,29]. Those pro-
grams have been translated into our core language. We annotate specifications
for each method to capture their functional properties. The benchmarks are col-
lections of commonly occurring bugs from various projects. We keep the crucial
parts for doing the experiments. For instance, we have selected some bench-
marks from Pulse repository [2]. The current version of Pulse does not support
the detection of some OO-related bugs in those benchmarks. We are interested
in those bugs in our system.

Table 1. Experimental results.

Benchmark LOC TIME(s) LoSpec SUCCESS FAILED

NPE 1 34 0.249 3 3 0

M OK 2 61 0.815 8 6 2

M NPE 3 60 0.811 9 9 0

M CAST 4 79 0.695 13 11 2

M OK 5 80 0.799 7 7 0

NPE 6 80 0.956 8 8 0

NPE 7 150 2.850 28 28 0

NPE 8 167 3.251 22 21 1

CAST 9 187 1.717 18 18 0

M NPE&CAST 10 203 1.801 19 19 0

OK 11 321 5.418 49 43 6

NPE 12 331 4.907 42 38 4

NPE 13 335 5.962 53 53 0

M NPE&CAST 14 524 9.498 84 84 0

NPE 15 709 13.282 99 99 0

Sum 3321 53.011 462 447 15

Table 1 summarises the experimental results. The table records: 1) LOC, the
number of lines of code; 2) TIME, the running time (in seconds); 3) LoSpec, the



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 285

number of lines of specifications – one pair of pre/post per line; 4) SUCCESS,
the number of valid triples; and 5) FAILED, the number of invalid triples (all
are false IL triples added to test OURify’s soundness). The experimental results
show that OURify verified all the triples correctly within a short running time
and did not verify a false IL triple. Note that as our approach is compositional,
the verification time increases linearly wrt. the number of specifications.

To demonstrate the practical impact of our proposal, we conduct the second
experiment to reproduce the bugs reported by Pulse, an analyser developed
within the Infer framework to find bugs in products at Meta [1]. Pulse applies
under-approximate bi-abduction to infer static specifications automatically [11].
It reports a bug at a method only when it can derive a manifest er triple e.g.,
the triple is of the form [emp ∧ true] code [er : q], where q is satisfiable.

For this experiment, we take all real-world programs in the above experiment.
For each program, if Pulse reports an NPE bug, we construct corresponding IL
triples, some of them are manifest er triples. If OURify could verify these triples,
we classify the bug as confirmed. Otherwise, if we could not verify manifest er
triples, we write either ok triples or latent er triples (which are er triples but not
in the form of manifest) where OURify can verify them and classify the bug as
unconfirmed. Moreover, we also carefully validated that the ones in confirmed
partition are real bugs and all in unconfirmed one are false positives.

Table 2 presents the experimental results from both tools: 1) OK OR, the
number of ok specifications proved by OURify; 2) Cast OR, the number of error
specifications for casting errors proved by OURify; 3) NPE OR, the number
of error specifications for NPE proved by OURify; 4) Manifest, the number
of manifest bugs (the true bugs, in contrast to latent/possible bugs [11]); 5)
NPE PS, the number of NPE reported by Pulse; 6) Confirmed, the number of
bugs reported by Pulse and confirmed by OURify; 7) FP PS, the number of
errors reported by Pulse but cannot be confirmed by OURify; and 8) FN PS,
the number of manifest bugs OURify could verify with er triples but Pulse did
not discover.

Table 2. Incorrectness verification by OURify vs. bug finding by Pulse.

Benchmark OK OR Cast OR NPE OR Manifest NPE PS Confirmed FP PS FN PS

NPE 1 1 0 2 1 1 1 0 0

NPE 6 5 0 3 1 0 0 0 1

NPE 7 23 0 5 2 2 2 0 0

NPE 8 17 0 4 3 0 0 0 3

CAST 9 10 8 0 3 0 0 0 3

OK 11 43 0 0 0 0 0 0 0

NPE 12 37 0 1 1 1 0 1 1

NPE 13 40 0 13 12 8 5 3 7

NPE 15 75 0 24 11 9 8 1 3

Sum 251 8 52 34 21 16 5 18



286 W. Li et al.

To sum up, there are 34 manifest bugs, including 16 confirmed bugs and
18 false negatives (missed by Pulse), and Pulse also reported 5 false positives.
Interestingly, NPE OR (which is 52) is higher than NPE PS (which is 21) as
NPE OR includes specifications for both latent (may) and manifest (must) bugs
while NPE PS reports manifest bugs only. Furthermore, OURify can prove sev-
eral manifest bugs which Pulse could not discover. (We discuss two case studies in
our technical report [16].) Most of these bugs relate to the hierarchical structure
of OOP. For example, Pulse does not report bugs caused by the casting operator.
In some situations, the superclass and the subclass behave differently (methods
are overridden), as a result of which bugs are triggered when methods of the
subclass are called but not the superclass. Pulse may miss such bugs. Requiring
specification annotation is a drawback of OURify. It limits the applicability of
OURify in large programs. However, writing specifications are always helpful
to the program design. For instance, specifications can be used to support the
regression analysis. Error specifications that are verified indicate the presence of
bugs. They can kept to automatically remind programmers that certain errors
should not re-appear (cannot be verified) when the code is modified in future.
At the current stage, OURify works as a verification tool based on our proof
system. We hope that our proof system could be the foundation for bug-finding
tools, like Pulse, to hunt OO bugs more precisely in real codebases.

6 Related Work and Conclusion

Our work relates to the over-approximating verification for OOP [4,10,24,25].
To verify objects, Kassios [10] introduces a dynamic frame which describes data
separation explicitly and could handle the aliasing problem. However, this work
did not address behavioural subtyping which is essential for OOP. Parkinson and
Bierman [24] propose the abstract predicate family to handle behavioural subtyp-
ing in separation logic, including a mechanism to capture specifications where
subclasses own more fields than their superclasses. Predicates inside a family
can change the arity freely. Hence, the implication between formulae with differ-
ent heap sizes can be proved through existentially quantified arguments. Later,
two independent papers [4,25] propose the co-existence of static and dynamic
specifications for OOP to uphold the Liskov substitution principle.

Following the landscape of the proposals in separation logic [4,24,25],
we introduce the first proof system for under-approximating reasoning over
OOP. Similar to the abstract predicate family, our dynamic view specifies the
behaviours of multiple objects in a class inheritance relationship. In contrast,
while the abstract predicate is a conjunction set (for over-approximation), the
dynamic view is based on disjuncts (i.e., describing a set of objects for under-
approximation) such that it could support instanceof and casting effectively.
Furthermore, we use reflexive specifications to support dynamic dispatching in
a modular manner (e.g., avoid re-verification) while the static specification pro-
vides a precise verification for static method calls.

Another essential concept in OOP is class invariant, which describes classes’
functions [8]. Using class invariants helps to achieve more precise analyses in



Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 287

over-approximately verifying OOP. There are several challenging problems and
solutions for around this concept. For example, Barnett et al. [3] propose a
methodology that can reason about class invariants which could be temporarily
broken while class fields are being updated. They use a special field to explicitly
record if an object’s invariant is valid. Leino and Müller [15] generalise ownership-
based reasoning to support interrelated object invariants. An analogy of class
invariant in IL is beyond this proposal and would be investigated in future.

Under-approximating reasoning in IL helps to avoid false positives which
some static analysis tools are suffering [27]. Like IL, De Vries and Koutavas [30]
proposed the reverse Hoare logic for under-approximation. Incorrectness sep-
aration logic (ISL) [26] enhances the applicability of IL in heap-manipulating
programs. It combines separation logic [22] and IL, which provides the funda-
mental framework for our work. Le et al. [11] bring the ISL theory into practice.
They developed Pulse-X to capture manifest bugs (bugs that will be triggered
regardless of the calling context) in real-world projects. Our work, an IL logic for
OOP, is meant to help build a foundational framework for under-approximating
reasoning that could systematically support bug finding in OOP codebase.

Conclusion. This paper presents a variant of incorrectness separation logic to
show the presence of bugs in Java-like OO programs. In particular, we introduce
the static view and static specification to verify the implementation of a static
method and the dynamic view and reflexive specification to verify behavioural
subtyping. When behavioural subtyping holds, we can avoid costly case anal-
ysis for class objects. The reflexive specification can be further re-used for the
dynamically dispatched method calls. For future work, we plan to extend the
system with the bi-abduction technology to infer specs and automatically find
bugs in real-world OO programs.

Acknowledgements. The authors would like to thank anonymous reviewers for their
comments. This work was partially supported by a Singapore Ministry of Education
(MoE) Tier3 grant “Automated Program Repair”, MOE-MOET32021-0001.

References

1. Infer Static Analyzer: Infer. https://fbinfer.com/. Accessed 02 June 2023
2. Pulse, an interprocedural memory safety analysis. https://github.com/facebook/

infer/tree/main/infer/tests/codetoanalyze/java/pulse. Accessed 20 May 2023
3. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M., Schulte, W.: Verification

of object-oriented programs with invariants. J. Object Technol. 3(6), 27–56 (2004)
4. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Enhancing modular OO verification

with separation logic. ACM SIGPLAN Notices 43(1), 87–99 (2008)
5. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,

size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Prog. 77(9), 1006–1036 (2012)

6. Cook, W.R., Hill, W., Canning, P.S.: Inheritance is not subtyping. In: Proceed-
ings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 1990), New York, pp. 125–135. Association for Computing
Machinery (1989)

https://fbinfer.com/
https://github.com/facebook/infer/tree/main/infer/tests/codetoanalyze/java/pulse
https://github.com/facebook/infer/tree/main/infer/tests/codetoanalyze/java/pulse


288 W. Li et al.

7. Dhara, K.K., Leavens, G.T.: Forcing behavioral subtyping through specification
inheritance. In: Proceedings of the 18th International Conference on Software Engi-
neering (ICSE 1996), pp. 258–267. IEEE Computer Society (1996)

8. Hoare, C.A.R.: Proof of correctness of data representations. Acta Informatica 1(4),
271–281 (1972)

9. Huisman, M., Jacobs, B.: Java program verification via a hoare logic with abrupt
termination. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 284–303.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46428-X 20

10. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006). https://doi.org/10.
1007/11813040 19

11. Le, Q.L., Raad, A., Villard, J., Berdine, J., Dreyer, D., O’Hearn, P.W.: Finding
real bugs in big programs with incorrectness logic. Proc. ACM Program. Lang.
6(OOPSLA1) (2022)

12. Le, Q.L., Sun, J., Qin, S.: Frame inference for inductive entailment proofs in sep-
aration logic. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805,
pp. 41–60. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2 3

13. Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance,
and modular reasoning. ACM Trans. Prog. Lang. Syst. 37(4), 1–88 (2015)

14. Leavens, G.T., Weihl, W.E.: Specification and verification of object-oriented pro-
grams using supertype abstraction. Acta Informatica 32(8), 705–778 (1995)

15. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24851-4 22

16. Li, W., Le, Q.L., Song, Y., Chin, W.-N.: Incorrectness proofs for object-oriented
programs via subclass reflection (technical report). https://www.comp.nus.edu.sg/
∼yahuis/APLAS2023.pdf (2023)

17. Liskov, B.: Keynote address-data abstraction and hierarchy. In: Addendum to the
Proceedings on Object-Oriented Programming Systems, Languages and Applica-
tions (Addendum), pp. 17–34 (1987)

18. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811–1841 (1994)

19. Long, F., Amidon, P., Rinard, M.: Automatic inference of code transforms for
patch generation. In: Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, pp. 727–739 (2017)

20. Luo, C., Qin, S.: Separation logic for multiple inheritance. Electron. Notes Theor.
Comput. Sci. 212, 27–40 (2008)

21. Madeiral, F., Urli, S., Maia, M., Monperrus, M.: Bears: an extensible java bug
benchmark for automatic program repair studies. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 468–
478. IEEE (2019)

22. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

23. O’Hearn, P.W.: Incorrectness logic. Proc. ACM Prog. Lang. 4(POPL), 10:1–10:32
(2020)

24. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 247–258 (2005)

https://doi.org/10.1007/3-540-46428-X_20
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/978-3-319-89960-2_3
https://doi.org/10.1007/978-3-540-24851-4_22
https://www.comp.nus.edu.sg/~yahuis/APLAS2023.pdf
https://www.comp.nus.edu.sg/~yahuis/APLAS2023.pdf
https://doi.org/10.1007/3-540-44802-0_1


Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection 289

25. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance.
ACM SIGPLAN Notices 43(1), 75–86 (2008)

26. Raad, A., Berdine, J., Dang, H.-H., Dreyer, D., O’Hearn, P., Villard, J.: Local
reasoning about the presence of bugs: incorrectness separation Logic. In: Lahiri,
S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 225–252. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53291-8 14

27. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., Jaspan, C.: Lessons
from building static analysis tools at google. Commun. ACM 61(4), 58–66 (2018)

28. Tomassi, D.A., et al.: Bugswarm: mining and continuously growing a dataset of
reproducible failures and fixes. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pp. 339–349. IEEE (2019)

29. van Tonder, R., Le Goues, C.: Static automated program repair for heap properties.
In: Proceedings of the 40th International Conference on Software Engineering, pp.
151–162 (2018)

30. de Vries, E., Koutavas, V.: Reverse hoare logic. In: Barthe, G., Pardo, A., Schneider,
G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 155–171. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24690-6 12

https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1007/978-3-642-24690-6_12


m-CFA Exhibits Perfect Stack Precision

Kimball Germane(B)

Brigham Young University, Provo, UT 84601, USA
kimball@cs.byu.edu

Abstract. m-CFA is a hierarchy of control-flow analyses (CFA) for-
mulated as abstract machines and designed to exhibit polynomial time
complexity while remaining usefully precise. The Pushdown for Free tech-
nique (P4F) prescribes a continuation allocator which induces perfect
stack precision wherein each function invocation returns to only its call.
Unfortunately, it is difficult to apply P4F to m-CFA as P4F is devel-
oped in an ANF setting but m-CFA is formulated in a CPS setting. In
this paper, we recall that ANF corresponds to a CPS sublanguage with-
out non-local control and show that m-CFA behaves identically on both.
With an ANF-based m-CFA in hand, we turn to applying P4F only to
discover that it already follows the prescription. In other words, m-CFA
has always had perfect stack precision, a characteristic neither intended
nor recognized, at its development or since. In addition to being surpris-
ing, we discuss how this result allows a spectrum of non-local control
constructs to be supported more easily and with more precision than
previous techniques.

Keywords: Static analysis · Control-flow analysis · Abstract
interpretation

1 Introduction

A flow analysis of a functional program (i.e. control-flow analysis or CFA)
computes, for each call (f e), the set of (closures over) λs which flow to
f (i.e. to which f may evaluate) and, for each function λx.e, the set of
enclosed λs which flow to x (i.e. to which x may be bound) [14]. Per-
haps the most prevalent flow analysis is Shivers’s k-CFA [16], a hierar-
chy of analyses in which the CFA at level k qualifies the analysis of each
expression by the last-k call sites encountered during abstract evaluation.

(let* ([id (lambda (x) x)]
[y (id 10)]
[z (id 12)])

(+ y z))

For instance, 0CFA does not qualify the anal-
ysis of expressions at all, and is thus context-
insensitive; in contrast, 1CFA uses the most-
recent call site to distinguish the analysis
of otherwise-identical evaluation. To illustrate
each, consider the program to the right, adapted from Gilray et al. [6], which
we will use as a running example. The function id is called once at each of two
sites with different arguments and, as a consequence, the analysis will bind x
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 290–309, 2023.
https://doi.org/10.1007/978-981-99-8311-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_14&domain=pdf
http://orcid.org/0000-0003-4903-5645
https://doi.org/10.1007/978-981-99-8311-7_14


m-CFA Exhibits Perfect Stack Precision 291

twice. A 0CFA analysis will conflate these two bindings so that each reference to
x produces the values of both arguments. A 1CFA analysis, on the other hand,
will qualify each binding by the most-recent call site, (id 10) and (id 12)
respectively, so that references to it access only the values so qualified.

Since Shivers introduced k-CFA, techniques have been developed to improve
its precision [12], its power [11,12,21], and its engineerability [19]. In this paper,
we recall and reconcile two concurrent improvements, the development of m-CFA
and the development of stack-precise CFA.

m-CFA [13] emerged from a kind of paradox: when k-CFA is applied to a
functional language, its complexity is exponential (for k > 0); when k-CFA is
applied to an object-oriented (OO) language, however, its complexity is poly-
nomial. The discrepancy arises from the different ways in which environments
are created in each setting. In a functional program, environments are created
implicitly when a λ is encountered whereas, in an OO program, environments
are created as part of explicit constructor invocation using new. Might et al.
resolve this discrepancy to obtain a context-sensitive CFA hierarchy, m-CFA,
with polynomial time complexity.

Stack-precise CFA emerged from the desire for a better model of control
flow in functional languages. For two decades, CFAs modelled control flow as
a finite state machine (FSM), a directed graph of control states connected by
control transitions. While this model can be produced by relatively-simple work-
set algorithms, it cannot precisely capture the control behavior of higher-order
programs whose execution is facilitated by a stack. Without precisely modeling
the stack, it is impossible to capture the call–return behavior of programs with
full precision, and FSM-producing CFAs routinely lose track of which particular
caller to which a given call should return. The example program illustrates this
well: although a 1CFA produces the expected value for each dynamic reference
to x, a 1CFA without a precise stack model may associate both returns from id
to each caller. In this case, y and z are each bound to both dynamic values of
x, and the analysis calculates a result set {10 + 10, 10 + 12 = 12 + 10, 12 + 12}.

In the same year as m-CFA’s presentation, Vardoulakis and Shivers [20] pre-
sented CFA2, a “context-free approach to control-flow analysis”, which mod-
els control flow using a pushdown system. Using a pushdown system, rather
than an FSM, allows CFA2 to precisely model the stack and perfectly asso-
ciate each return to its corresponding call. Unfortunately, CFA2’s summarization
algorithm is substantially more complex than an FSM-producing workset algo-
rithm and must be significantly modified to accommodate additional control fea-
tures [22]. Moreover, its computational complexity is exponential, despite CFA2
not exhibiting call-site sensitivity à la k-CFA. Follow-on work produced stack-
precise CFAs corresponding to FSM CFAs whose context-insensitive instances
had polynomial complexity [7,10], but the techniques still imposed polynomial
overhead and, in some cases, employed similarly-intricate summarization algo-
rithms.

Somewhat surprisingly, Gilray et al. [6] discovered a technique to transform
an FSM-based CFA into a stack-precise CFA “for free” in two senses: first, the



292 K. Germane

technique prescribes a particular continuation allocator but requires no modifi-
cation to the CFA, so it is free in terms of implementation effort; second, the
allocator imposes only a constant factor overhead to running time above the
CFA’s, and so it is free in terms of computational complexity. Following the
authors, we refer to this as the pushdown for free technique, abbreviated P4F.

Naturally, we would like to apply P4F to m-CFA to get the best of both
worlds: a (1) polynomial-time, (2) stack-precise CFA hierarchy that (3) admits
a straightforward workset-based implementation. Applying P4F requires care,
however, because m-CFA is defined in terms of a CPS language but P4F is
demonstrated in an ANF setting [4], and a naïve port will not necessarily result
in the same analysis [15].

In this paper, we reformulate m-CFA so as to be able to directly apply P4F.
After reviewing m-CFA (§2), we identify a subset of its CPS language free from
non-local control (§3) and specialize a formulation of m-CFA to it (§4). We then
translate this subset language to ANF (§5), formulate m-CFA for it (§6), and
show that it is the same analysis as the CPS-based one (§7). Having arrived in
ANF, we review P4F (§8). We observe that ANF-based CFA already uses it and
show that it is indeed stack-precise (§9). We conclude by discussing ramifications
of the corollary that, within the subset language, m-CFA is and always has been
stack-precise (§10).

2 m-CFA

Might et al. [13] developed m-CFA in response to the paradox that, when for-
mulated in an object-oriented (OO) setting, k-CFA [16] exhibits polynomial
time complexity but, when formulated in a functional setting, exhibits expo-
nential time complexity. After ensuring that k-CFA is implemented faithfully in
both settings, Might et al. pinpoint environment construction to be the key dis-
tinction: in functional languages, environment bindings are captured implicitly
within closures when lambda expressions are evaluated; in contrast, programmers
explicitly pass data to constructors in OO languages when creating new objects.
This difference leads to an exponential number of possible environments in the
former case and a polynomial number in the latter, explaining the discrepancy.

Might et al. resolve this paradox by modifying k-CFA to produce only a
polynomial number of environments by flattening the environment structure.

(define (f x)
(log "f call")
(g x))

To support this structure, their modified analysis explic-
itly copies bindings from old environments to new at each
step, mimicking the manual construction that program-
mers carry out in OO programs. However, they observe
that this rebinding policy leads to a precision decrease in typical programs,
which is visible in the program to the right. In 1CFA, the bindings of x in f
before the call to log are distinguished by the f’s caller, it being the most-recent
call site. After the call to log, however, the most-recent call site is this call to
log, or its last inner call, regardless of f’s caller. Consequently, rebinding x from
the former environment to the latter combines bindings from distinct callers, jet-
tisoning precision. Rather than revert the policy to avoid a precision decrease,



m-CFA Exhibits Perfect Stack Precision 293

Might et al. manage the context abstraction differently. Instead of qualifying
evaluation with the last-k call sites, they devise an approach which qualifies
it with the top-m stack frames. The form of the context remains the same—a
sequence of call sites—but its construction and consequent effect on the analysis
differs. The resulting analysis, m-CFA, is characterized by both its rebinding
policy and its context abstraction.

m-CFA is defined over a CPS language, in which all control is effected through
function calls, in terms of a small-step abstract machine. We reproduce its for-
malism in Fig. 1, remaining vague about the details of the CPS language until
§3. A machine state ς̃ is a tuple of a (CPS) call, environment, and store. A store
σ̂ maps addresses to denotable values. A denotable value d̂ is a set of closures,
each of which is a pair of a λ expression and an environment. An address â is
a pair of a variable and an environment. An environment ρ̂ is a sequence of call
site labels up to length m, which is a parameter to the analysis. These labels are
drawn from ULab which we define shortly.

Fig. 1. m-CFA state transition relation

Because of the uniformity of CPS, the machine state transition ⇒Σ̃ can be
characterized by a single rule: a machine step transitions control from a call to
the body of its operator, which is also a call. In CPS, each argument to a call is
trivial, and its value is provided by Ê : Exp × ̂Env × ̂Store → D̂.

Ê(x, ρ̂, σ̂) = σ̂(x, ρ̂) Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)}
The n̂ew metafunction determines the destination environment as a function

of the current call and its environment and the operator λ and its environment.

n̂ew(�, ρ̂, lam, ρ̂′) =

{

��::ρ̂�m lam is a procedure
ρ̂′ lam is a continuation



294 K. Germane

If the call is the application of a procedure, the destination environment is
derived from the source environment by prepending the label of the call being
performed and limiting the environment sequence to m calls overall. If the call
is the application of a continuation, its environment is used as the destination
environment. In the calculated environment m-CFA installs two distinct sets
of bindings: first, the values of each parameter; second, the values of each free
variable in the operator λ, resolved in the closure environment.

m-CFA’s system space Ξ̃ factors the store from machine states so that an
analysis consists of a single, global store and a set R̃ of store-less configurations.

ξ̃ ∈ Ξ̃ = R̃ × ̂Store r̃ ∈ R̃ = P(C̃) c̃ ∈ C̃ = Call × ̂Env

An analysis is the least fixed point of the total monotonic function ⇒Ξ̃ : Ξ̃ → Ξ̃.

(C̃, σ̂) ⇒Ξ̃ (C̃0 ∪ C̃ ∪ C̃ ′, σ̂0 � σ̂′)

where C̃0 = {(call , 〈〉)} and σ̂0 = [(k, 〈〉) �→ {halt}] for program (λ (k) call), and

S̃′ = {ς̃ ′ : c̃ ∈ C̃ and (c̃, σ̂) ⇒Σ̃ ς̃ ′} C̃ ′ = {c̃ : (c̃, σ̂) ∈ S̃′} σ̂′ =
⊔

(c̃,σ̂)∈S̃′

σ̂.

(Here ((call , ρ̂), σ̂) is treated as (call , ρ̂, σ̂) for convenience.) The definition uses
the standard semilattice definition for the store:

⊥σ̂ = λâ.∅ σ̂0 � σ̂1 = λâ.σ̂0(â) ∪ σ̂1(â) σ̂0 � σ̂1 ⇐⇒ ∀â ∈ ̂Addr .σ̂0(â) ⊆ σ̂1(â)

3 CPS and Restricted CPS

Program processors, such as compilers and analyzers, often desugar a rich surface
language into more uniform intermediate representation (IR). Modern languages
a rich in control constructs, such as branching, function call, early return, and
coroutines, and continuation-passing style (CPS) IRs, which express all control
transfer via function call, capably regularize such features. m-CFA is defined over
a quite general dialect of CPS in which λs can bind and calls can pass multiple
continuations, and continuation references can be captured in closure environ-
ments just as value references can [11]. Despite this generality, the uniformity of
CPS allows the m-CFA formalism to be given in terms of only a single rule.

Although CPS represents all control transfers as calls, CPS compilers do not
typically interpret them naïvely; instead, they recognize the role of continua-
tions in execution and keep them distinct from other values to apply particular
compilation strategies, such as allocating continuation closures on the stack [4].
Compilers maintain this distinction by statically partitioning their CPS language
into a user world and a continuation world. Terms in the user world correspond



m-CFA Exhibits Perfect Stack Precision 295

to terms in the source program whereas terms in the continuation world are
those introduced by the CPS transformation. The distinction is carried into the
dynamic semantics as a partition into user- and continuation-world values that
respects the static partition: closures over λs are values from the λ’s world, are
bound exclusively to variables from that world, and are invoked exclusively at
call sites from that world.

Fig. 2. A restricted CPS language

Figure 2 presents the grammar of a partitioned CPS language. A call comes
from either the user or the continuation world. A call in the user world has
operator, value, and continuation arguments; a call in the continuation world
has only continuation and value arguments. Arguments are user or continuation
expressions which consist of references and λs from the corresponding world. A
user-world λ has parameters for its value and continuation, and its body consists
of any kind of call. A continuation-world λ body is also any kind of call, but has
a parameter only for its value. Each call and λ is annotated with a label specific
to its world which distinguishes otherwise-identical terms. A program is a closed
λ binding a single continuation which is α-converted, i.e., in which every binding
instance of a variable is unique.

After converting the example program to this CPS language, we obtain the
program to the right.

(λ (k0)
((λa (id)

(id 10 (λb (y)
(id 12 (λc (z)

(+ y z k0)B))C))D)
(λA (x k1) (k1 x)d))e)

The entire program becomes
a λ awaiting a top-level contin-
uation. The first let* binding
becomes an immediate applica-
tion of a let-continuation bind-
ing id. The two subsequent bind-
ings become the corresponding
calls to id whose continuations bind y and z, respectively. The body of the
let* becomes a call to a continuation-aware definition of + which is passed
the top-level continuation. User-world labels are drawn from {A,B,C, . . . } and
continuation-world labels are drawn from {a, b, c, . . . }.

This language is restricted relative to the expressive dialect of CPS that
m-CFA supports in two ways: (1) calls pass exactly one continuation and (2)
continuation references cannot appear free in the user-world λ which encloses
them. These restrictions ensure that expressed programs exhibit only the simple



296 K. Germane

push–pop stack behavior of function calls, in contrast to that of control con-
structs such as call/cc which goes far beyond. Vardoulakis and Shivers [21]
present a variant of partitioned CPS they call restricted CPS or RCPS which
imposes the latter restriction but not the former; we call our doubly-restricted
variant R2CPS.

In R2CPS, the role of a CPS term in the source program can be determined
merely from its shape. For example, a tail call in the source program is translated
to a user-world call whose continuation argument is a reference whereas a proper
call is translated to one whose continuation argument is a λ. We rely on this
ability heavily in the sequel, beginning in the next section.

4 m-CFAcps

R2CPS is a sublanguage of m-CFA’s more-general CPS dialect, so a definition
of m-CFA over it is no different than m-CFA itself. However, R2CPS allows us
to distinguish terms according to the role they play in the source program and

Fig. 3. R2CPS-restricted m-CFA factored across user/continuation and tail/non-tail
calls



m-CFA Exhibits Perfect Stack Precision 297

specialize the state transition to each. Figure 3 presents m-CFAcps , an R2CPS-
restricted m-CFA whose state transition has been factored across (and special-
ized to) user/continuation and tail/non-tail calls. Because the shape of the con-
tinuation is known, we inline the use of Êcps away in each rule. Similarly, because
the source world of the operator is known, we inline the use of n̂ew—which com-
putes the destination environment—away as well. A call (f e clam)l corresponds
to a non-tail call to the pre-CPS version of f in the source program. A call (k e)γ

corresponds to a return in the source program. A call (f e k)l corresponds to
a tail call to the pre-CPS version of f in the source program. Finally, a call
((λγ (u) call) e)γ corresponds to a let in the source program.

These rules are merely the sole m-CFA transition rule, limited to R2CPS
terms, factored by and specialized to the shape of the call. We capture this fact
in the following lemma.

Lemma 1. For all call , call ′ ∈ Call, ρ̂, ρ̂′ ∈ ̂Env , σ̂cps , σ̂
′
cps ∈ ̂Store,

(call , ρ̂, σ̂cps) ⇒Σ̃ (call ′, ρ̂′, σ̂′
cps) if and only if (call , ρ̂, σ̂cps) ⇒Σ̃cps

(call ′, ρ̂′, σ̂′
cps).

A 1CFAcps analysis of the CPS’d example program yields (R̃, σ̂) where

R̃ = {(e, 〈〉), (D, 〈〉), (d, 〈D〉), (C, 〈〉), (d, 〈C〉), (B, 〈〉), (+, 〈B〉)}
and

σ̂ = [(k0, 〈〉) �→ {halt}, (id, 〈〉) �→ {(A, 〈〉)}, (x, 〈D〉) �→ {10},

(k1, 〈D〉) �→ {(b, 〈〉)}, (y, 〈〉) �→ {10}, (x, 〈C〉) �→ {12},

(k1, 〈C〉) �→ {(c, 〈〉)}, (z, 〈〉) �→ {12},

(+0, 〈B〉) �→ {10}, (+1, 〈B〉) �→ {12}]

in which each call is represented by its label. Note that the variables +0 and
+1, which correspond to the internal variables of the primitive +, are ultimately
bound to single, precise values. This precision is an artifact of call-site sensitivity
combined with precise call–return correspondence.

5 A-Normal Form

Many compilers [1,8,9,16,17] convert source programs to CPS in the middle end

λds •

λa λcps

F

A β̄

U

to do analysis and transformation before generating code.
This pipeline is depicted in the diagram to the right where
a CPS translation carried out by Fischer’s F [3] operates
on a source (direct-style) program in λds . However, the CPS
translator F introduces many administrative redexes which
abstract the continuation within a term. The β̄ rule reduces these so that
repeated application by β̄ to a normal form results in a term in λcps . (For our
purposes, we can consider λcps to be R2CPS.)

λcps terms can be evaluated with a CE machine [4], a machine which manip-
ulates control and environment registers—m-CFA’s abstract machine is a CE



298 K. Germane

machine augmented with a store register. However, a CE machine models a
naïve evaluator which directly interprets CPS terms, allowing the program itself
to manage the continuation. In practice, compilers track the continuation by
statically-partitioning the language (as in R2CPS) and manage it directly using
a CE machine augmented with a kontinuation register—a CEK machine [2].
This machine uses the shape of each call to determine its role in evaluation. In
the call (k e)γ , for example, the CEK does not look up k in the environment,
as a CE machine would do, but instead recognizes this call as a function return
and manipulates the continuation register accordingly.

By intercepting the program’s continuation management, Flanagan et al. [4]
observe:

1. Explicit continuation references are unnecessary; only the role of the call
matters.

2. The CEK machine effectively inverts the CPS transformation (accurately
modeling a code generator).

From these observations they respond in two ways.
First, Flanagan et al. devise a set of axioms A which carry out the corre-

sponding reductions on a λds term as β̄ carries out on a CPS term, thus allowing
a λa term to be obtained without a round trip through CPS. Reduction by the
axioms A is normalizing, and a term in A-normal form (or ANF) is in λa , defined
below.

e ∈Exp :: = letγ x := ce in e | ce ce ∈CExp :: = (ae0 ae1)l | aeγ

ae ∈AExp :: = λlx.e |x x ∈Var = a set of identifiers

Programs in λa lack explicit continuations but, like CPS, name all intermediate
values. A proper expression e is a let expression, which binds a call expression ce
to a variable whose scope is another proper expression, or a call expression itself.
A call expression ce is an atomic expression aeγ or an application (ae0 ae1)l. An
atomic expression ae is a variable reference x or a λ abstraction λlx.e. A program
in λa is a closed expression that is α-converted. Call expressions are annotated
with the user-world labels of λcps ; let expressions and atomic expressions are
annotated with continuation-world labels. The set of λs λlx.e is Lam.

Second, Flanagan et al. define a function U that strips CPS terms of redun-
dant continuation information, converting λcps terms to λa terms. We present U
in Fig. 4 as well as its inverse U−1. Defining U−1 is less straightforward than defin-
ing U because U removes continuation references but U−1 must synthesize them.
To make synthesis straightforward, we define the set λWN

cps of well-named R2CPS
programs. A R2CPS program pr is well-named if, for each user-world function
(λl (u k) call), the name of k is derivable from Ue�call� by Uk : Exp → CVar
and vice versa by U−1

k : CVar → Exp. This correspondence between an ANF
expression and a continuation-world variable helps us build a correspondence
between different formulations of m-CFA (cf. §7). Any R2CPS program can be
α-converted to one that is well-named, so λWN

cps is not materially smaller than
λcps . The U and U−1 definitions are supported by variable conversion functions



m-CFA Exhibits Perfect Stack Precision 299

Fig. 4. The λWN
cps –λa bijection pair U/U−1.

Ux : UVar → Var and U−1
x Var → UVar which convert between user-world vari-

ables in λcps and variables in λa . These functions precisely preserve user- and
continuation-world labels. The following lemma establishes that these functions
are indeed mutual inverses.

Lemma 2. U−1 ◦ U = IλWN
cps

and U ◦ U−1 = Iλa

leta id = (λAx.xd)e

in letb y = (id 10)D

in letc z = (id 12)C

in (+ y z)B

Using U to convert the CPS version of the example
program yields the program to the right. While user-
world labels remain associated with their corresponding
λ or call, continuation-world labels on λs annotate lets
and on calls annotate atomic expressions.

6 m-CFAa

We now define m-CFAa , m-CFA for λa . We then extend the term isomorphism
of §5 to show that an m-CFAa analysis is isomorphic to a m-CFAcps analysis,
thus demonstrating that the continuation references in λcps are redundant with
respect to m-CFA just as they are for a CEK machine.

m-CFAa is defined in terms of an abstract CEK machine using the Abstract-
ing Abstracting Machines (AAM) methodology [19]. Whereas the continuation
register contains a representation of continuation, such as a stack, in a concrete
CEK machine, it contains the address of a store-allocated continuation in an
abstract CEK machine. (Anticipating our application of P4F in §8, we separate
values and continuations into dedicated stores.)



300 K. Germane

Continuation variables, used to form continuation addresses in m-CFAcps ,
are not present in m-CFAa . However, we can use Uk correspondence of each
λcps continuation variable to the λa representation of its scope to obtain a m-
CFAa continuation address from each corresponding one in m-CFAcps . Thus, a
m-CFAa continuation address consists of an expression entailing a continuation
scope—a λ body or the program itself—paired with an environment. For a fixed
program pr (with unique labels), the body of the innermost-enclosing λ of any
expression is apparent; we assume a function ζpr : Exp → Exp which produces
the body of the innermost-enclosing λ of the given expression, or the entire
program if it is not enclosed. This function allows us to derive the continuation
address (ζpr (e), ρ̂) from the CE registers (e, ρ̂) and in turn omit the K register
from configurations altogether.

Figure 5 presents m-CFAa system space and transfer function. Evaluation of
the let-binding of a call creates an abstract frame ar(x, e, ρ̂) which consists of the
bound variable, body expression, and environment. This frame contains a link to
the previous frame, but only implicitly, as we will see momentarily. The transi-
tion constructs an environment for the call and extends the value store, copying
bindings of free variables, in the standard way. For the continuation address, it
uses the body expression of the called procedure paired with its environment, in
correspondence to the continuation variable of its CPS representation. Evalua-
tion of an atomic expression, which represents a function return, looks up the
top frame to bind the return value and continue evaluation. The continuation
address is derived from the atomic expression itself using ζpr . The atomic expres-
sion’s value is bound in the store and the expression and environment within the
stack frame are restored. Evaluation of a tail call is precisely the same as for
a let-bound call, except that the current continuation is obtained by synthesiz-
ing the continuation address using ζpr and copied to the callee’s continuation
address. Similarly, evaluation of a let-bound atomic expression proceeds precisely
the same as for an atomic expression, except that the continuation to which the
value is “returned” is local.

An m-CFAa analysis is defined as the least fixed point of the function ⇒Ξ̃a
,

which is computed in the same way as ⇒Ξ̃cps
.

An [m = 1]-CFAa analysis of the ANF’d example program yields (R̃, σ̂, σ̃κ)
where

R̃ = {(e, 〈〉), (D, 〈〉), (d, 〈D〉), (C, 〈〉), (d, 〈C〉), (B, 〈〉), (+, 〈B〉)}
and

σ̂ = [(id, 〈〉) �→ {(A, 〈〉)}, (x, 〈D〉) �→ {10}, (y, 〈〉) �→ {10},

(x, 〈C〉) �→ {12}, (z, 〈〉) �→ {12}, (+0, 〈B〉) �→ {10},

(+1, 〈B〉) �→ {12}]
and

σ̃κ = [(k0, 〈〉) �→ {mt}, (d, 〈D〉) �→ {(y, b, 〈〉)},

(d, 〈C〉) �→ {(z, c, 〈〉)}].



m-CFA Exhibits Perfect Stack Precision 301

Fig. 5. m-CFAa



302 K. Germane

Fig. 5. (continued)

Value store allocations are identical to user-world allocations in m-CFAcps . Con-
tinuation frames (in which an expression is represented by its label) correspond
directly to continuation-world allocations, as we show in the next section.

7 m-CFAcps–m-CFAa Correspondence

We extend the λWN
cps –λa isomorphism through U to m-CFAcps–m-CFAa , first to

the state space, then to transition rules, and then finally to the entire analysis.
The definitions

U(call , ρ̂, σ̂cps) = (Ue�call�, ρ̂, σ̂a , σ̃κ) where (σ̂a , σ̃κ) = T (σ̂cps)

and
U−1(e, ρ̂, σ̂a , σ̃κ) = (U−1

e �e�(U−1
k (ζpr �e�)), T−1(σ̂a , σ̃κ))

extend it to the state space. Tpr/T−1
pr , seen in Fig. 6, is a lattice isomorphism

(i.e. it is a bijection which commutes with the join operation and refinement
relation) between the m-CFAcps store lattice and the m-CFAa value and contin-
uation store product lattice. The Tpr/T−1

pr isomorphism induces an isomorphism
between the system spaces Ξ̃cps and Ξ̃a (elided for space). We also use Tpr/T−1

pr

to establish that ⇒Σ̃cps
and ⇒Σ̃a

are isomorphic, which is proved straightfor-
wardly since each transition rule in m-CFAa corresponds to a transition rule in
m-CFAcps .



m-CFA Exhibits Perfect Stack Precision 303

Fig. 6. Tpr/T −1
pr lattice isomorphism between ˜Storecps and ˜Storea × ˜KStore

Lemma 3 (⇒Σ̃cps
–⇒Σ̃a

Isomorphism). For all ς̃cps , ς̃
′
cps ∈ Σ̃cps , ς̃cps ⇒Σ̃cps

ς̃ ′
cps ⇐⇒ U(ς̃cps) ⇒Σ̃a

U(ς̃ ′
cps) and, for all ς̃ , ς̃ ′ ∈ Σ̃a , ς̃ ⇒Σ̃a

ς̃ ′ ⇐⇒
U−1(ς̃a) ⇒Σ̃cps

U−1(ς̃ ′
a).

From the Ξ̃cps–Ξ̃a isomorphism and the ⇒Σ̃cps
–⇒Σ̃a

isomorphism, we can show
that ⇒Ξ̃cps

and ⇒Ξ̃a
commute with the isomorphism.

Theorem 1 (m-CFAcps–m-CFAa Correspondence). The following dia-
gram commutes.

Ξ̃cps Ξ̃cps

Ξ̃a Ξ̃a

cps

U/U−1U/U−1

a

An immediate corollary is that the least fixed points of ⇒Ξ̃cps
and ⇒Ξ̃a

corre-
spond to one another so that m-CFAcps and m-CFAa compute the same analysis.

8 Perfect Stack Precision

k-CFA and m-CFA each model the execution of a program using a finite state
machine (FSM) in which the nodes are execution states and the edges are con-
trol transitions. This model has the benefit that it is easy to construct using
a straightforward workset algorithm. However, it is unable to capture the call–
return behavior of programs whose execution is mediated by a stack. In partic-
ular, it cannot precisely associate returns to points of call, instead discovering
spurious control paths within the program’s execution.

In the same year that m-CFA was presented, Vardoulakis and Shivers [20]
presented CFA2, a stack-precise CFA which models program execution with
a pushdown system instead of an FSM. Unlike an FSM, a pushdown model
allows to analysis to precisely associate each return to its corresponding call,



304 K. Germane

thereby significantly increasing control precision. Unfortunately, CFA2 suffers
from the shortcomings that (1) it is context-insensitive (i.e. monovariant); (2)
its algorithm is in EXPTIME, and (3) its algorithm uses a relatively-complex
summarization-based approach.

Follow-on work mitigated each of these shortcomings, achieving context sen-
sitivity, low computational complexity, and algorithmic simplicity [7,10]. In one
fell swoop, Gilray et al. [6] resolved them all with the pushdown for free (or P4F )
technique to achieve perfect stack precision “for free” both in the sense that it
requires essentially no implementation effort and also in the sense that it doesn’t
increase the computational complexity of the target CFA. The technique derives
from two observations:

1. In an abstract-machine based CFA, the stack precision is determined by the
continuation allocator, a (often implicit) function ̂allocκ : Σ̂ × Exp × ̂Env ×
̂Store → ̂Addrκ of the source configuration ς̂ ∈ Σ̂ and the target expression
e ∈ Exp, environment ρ̂ ∈ ̂Env , and store σ ∈ ̂Store.

2. Perfect stack precision is achieved when, within the same abstract invocation,
the set of continuations for an exit configuration is no less precise than that
of the corresponding entry configuration.

The technique entails only the following continuation allocator, by which an
address consists solely of the target expression and environment.

̂allocκ(ς̂ , e, ρ̂, σ̂) = (e, ρ̂)

In essence, the continuation address is the entry configuration itself (when the
store is factored out into the system space), which ensures that it only ever refers
to a single such configuration.

The P4F technique is formulated in an ANF setting; having formulated m-
CFA in such a setting, we are now positioned to apply P4F to realize a stack-
precise variant of m-CFA, which we set out to do in the next section.

9 m-CFA Is Stack-Precise

The application of P4F to achieve perfect stack precision is straightforward: on
a call transition, allocate the continuation at an address consisting of the target
configuration’s expression and environment. By inspection, it is clear that m-
CFAa already uses this allocation strategy and consequently is already stack-
precise. It follows from Theorem 1 that R2CPS-limited m-CFA is and always
has been stack-precise. (We discuss this corollary in §10.)

While our primary result is largely in hand, we review the key pieces of the
proof of precision and discuss the modifications needed to account for tail calls,
which our setting has but P4F’s doesn’t.



m-CFA Exhibits Perfect Stack Precision 305

9.1 Overview of Stack Precision

The property of precision—also called completeness—is dual to the property
of soundness. Whereas soundness conveys that every behavior in the reference
semantics is present in the abstract semantics, completeness conveys that no
other behavior is present. With respect to stacks, completeness means that every
stack implied by the abstract semantics is realizable by a reference semantics
which represents stacks explicitly. We now present this reference semantics ⇒Σ̂a

,
show that the abstract semantics ⇒Σ̃a

are sound with respect to ⇒Σ̂a
, define

what it means for a stack to be realizable by ⇒Σ̂a
and implied by ⇒Σ̃a

, and
finally prove that every stack implied by ⇒Σ̃a

is realizable by ⇒Σ̂a
. (We elide

the straightforward result that ⇒Σ̂a
is sound with respect to a concrete reference

semantics for space.)
Figure 7 presents a small-step semantics for λa in which each configuration

includes a stack instead of a continuation store. Except for the handling of the
continuation, this semantics is identical to the abstract semantics. When an
atomic expression is let-bound or the call is a tail call, the continuation is undis-
turbed. When a call expression is let-bound, a frame is pushed on the contin-
uation. Evaluation of an atomic expression pops the top frame and restores its
expression and environment as it binds the result.

An analysis in the system space Ξ̂a is defined as the least fixed point of ⇒Σ̂a
,

which is defined similarly to ⇒Σ̃a
. However, unlike the abstract system space Ξ̃a ,

the system space Ξ̂a is infinite due to unbounded stacks within configurations.
Consequently, the least fixed point of ⇒Σ̂a

is well-defined but incomputable.

Fig. 7. State transition rules ⇒Σ̂a

We relate the abstract state space Σ̃a and stack state space Σ̂a by way of an
abstraction function | · | : Σ̂a → Σ̃a where

|(e, ρ̂, σ̂a , κ̂)| = (e, ρ̂, σ̂a , F (ζpr �e�, ρ̂, κ̂))



306 K. Germane

The F metafunction allocates a stack frame-by-frame to produce a continu-
ation store in which all frames are allocated. It relies on the ζpr metafunction
which maps an expression to the body of its innermost-enclosing λ or the top-
level program if it is not enclosed.

F (e, ρ̂,mt) = ⊥ F (e, ρ̂, ar(x, e′, ρ̂′, κ̂′)) = F (ζpr �e
′�, ρ̂′, κ̂′) � [(e, ρ̂) �→ {ar(x, e′, ρ̂′)}]

We now define a polymorphic refinement relation � over stack states and
over abstract states. This relation descends componentwise: expressions, environ-
ments, and stacks each have a discrete refinement ordering (i.e. they are related
only by equality); store and continuation store refinements are as follows.

σ̂a � σ̂′
a ⇐⇒ ∀â ∈ ̂Addra .σ̂a(â) ⊆ σ̂′

a(â)

σ̃κ � σ̃′
κ ⇐⇒ ∀ãκ ∈ ˜KAddr .σ̃κ(ãκ) ⊆ σ̃′

κ(ãκ)

Using these definitions, stack state and abstract state refinements are as follows.

(e, ρ̂, σ̂a , κ̂) � (e, ρ̂, σ̂′
a , κ̂) ⇐⇒ σ̂a � σ̂′

a

(e, ρ̂, σ̂a , σ̃κ) � (e, ρ̂, σ̂′
a , σ̃′

κ) ⇐⇒ σ̂a � σ̂′
a and σ̃κ � σ̃′

κ

We now express the simulation property that constitutes soundness.

Theorem 2 (Simulation). If |ς̂| � ς̃ and ς̂ ⇒Σ̂a
ς̂ ′, then there exists ς̃ ′ such

that ς̃ ⇒Σ̃a
ς̃ ′ and |ς̂ ′| � ς̃ ′.

The proof proceeds by cases on the expression, showing in each case that the
abstract transition respects the relationship induced by F .

A path is a sequence of zero or more transitions from the initial state
denoted Î(pr) ⇒∗

Σ̂a
ς̂. A stack κ̂ is realizable with respect to a store σ̂a if

(pr , 〈〉, σ̂a ,mt) ⇒∗
Σ̂a

(e, ρ̂, σ̂′
a , κ̂) for some expression e, environment ρ̂, and store

σ̂′
a . A stack κ̂ is implied with respect to a continuation address (e, ρ̂) and a

continuation store σ̃κ, which we denote κ̂ ∈σ̃κ
(e, ρ̂), as follows.

mt ∈σ̃κ
(e, ρ̂) ⇐⇒ mt ∈ σ̃κ(e, ρ̂)

ar(x, e′, ρ̂′, κ̂′) ∈σ̃κ
(e, ρ̂) ⇐⇒ ar(x, e′, ρ̂′) ∈ σ̃κ(e, ρ̂) and κ̂′ ∈σ̃κ

(ζpr �e′�, ρ̂′)

An empty stack is implied at an address if mt resides there. A non-empty stack
is implied at an address if its top frame resides there and the remaining stack
is implied by the continuation address derived from that frame. A configuration
uniquely determines a continuation address, so it is sensible to consider the stacks
realizable at a configuration.

Now we are able to state the precision property which, essentially, is that
every reachable configuration and continuation thereat is reachable by a stack-
respecting path.

Theorem 3 (Stack Precision). Suppose ξ̃ = (r̃, σ̂a , σ̃κ) is the least fixed point
of ⇒Σ̃a

. For each (e, ρ̂) ∈ r̃ and κ̂ such that κ̂ ∈σ̃κ
(ζpr �e�, ρ̂), there exists a path

(pr , 〈〉, σ̂a ,mt) ⇒Σ̂a
(e, ρ̂, σ̂a , κ̂).



m-CFA Exhibits Perfect Stack Precision 307

As with Gilray et al. [6], the theorem is proved with two inductions, first on
the path length, and second on the continuation. We omit their well-formedness
property, instead relying on the supposed analysis being a least fixed point,
which serves the same purpose to ensure that each present configuration and
continuation has a reason to be. It is this property that allows the proof to easily
accommodate tail calls; namely, once proper callers are ruled out as predecessors
to an invocation entry, there must be a tail call which has the continuation of
the entry, by definition of the continuation store tail call transition.

10 Discussion

An immediate consequence of the result that m-CFAa is stack-precise (Theo-
rem 3) is that m-CFAcps is too, since the two analyses are isomorphic (Theo-
rem 1).

This consequence itself is a striking result since the development of m-CFAcps

(1) was concurrent to and independent of the development of CFA2, the first
stack-precise CFA, (2) makes no mention of stack precision, and (3) preceded
P4F by more than half a decade. It also places m-CFA in a sweet spot in the CFA
space, being a (1) polynomial-time, (2) stack-precise, (3) context-sensitive CFA
hierarchy (4) implementable using a straightforward workset-based algorithm.

However, m-CFA exhibits additional advantages when it comes to non-local
control constructs, such as exceptions, escapes, coroutines, up to full continu-
ations. To illustrate, consider stack-precise CFAs computed by summarization
algorithms, such as CFA2. With such analyses, it is difficult to extend the ana-
lyzed language with non-local control constructs because the summarization
algorithm is the sole manager of the stack. Thus, any stack-touching control
feature requires the summarization algorithm to be modified in a nontrivial way.
This complex algorithm lies at the heart of the analysis’s soundness property,
which means that such a modification requires the soundness of the analysis to
be reestablished. To do this work once and for all, Vardoulakis and Shivers [22]
extend the CFA2’s summarization algorithm to support call/cc, in terms of
which a host of non-local control constructs can be expressed. But, by express-
ing a control feature in terms of call/cc to obtain analysis support, one also
obtains at best the precision at which call/cc is analyzed, and not the higher
precision that weaker non-control constructs, such as exceptions and escapes,
enjoy, using more-tailored modifications to the summarization algorithm [5].

In contrast, m-CFA appears to handle such constructs in its unrestricted
CPS language seamlessly, with no modification to its workset algorithm, and
with as much precision as current techniques. For example, when using the well-
known “double-barrelled CPS” technique to encode exceptions [18], it appears
that m-CFA is able to maintain perfect stack precision (also called “relative com-
pleteness” with reference to exceptions [5]) with no modification to the analysis
whatsoever. We intend to formally characterize the precision m-CFA offers dif-
ferent continuation patterns to allow clients to engineer the CPS transformation
instead of the analyzer.



308 K. Germane

The fact that m-CFAcps implements P4F is due to the clever way in which
Might et al. [13] are able to “pop” the stack of the top-m stack frames by treating
the stack frame context with the discipline of a static environment—indeed, it is
the static environment in the analysis. We can use this observation to completely
isolate m-CFA’s stack precision from its aggressive rebinding. That is, a variant
of m-CFA which used the top-m-stack-frames context abstraction but a k-CFA-
style environment would also be stack-precise (albeit exponential).

References

1. Appel, A.W.: Compiling with Continuations. Cambridge University Press, Cam-
bridge (1992)

2. Felleisen, M., Friedman, D.P.: Control operators, the SECD-machine, and the λ-
calculus. In: Wirsing, M. (ed.) Formal Description of Programming Concepts - III:
Proceedings of the IFIP TC 2/WG 2.2 Working Conference on Formal Description
of Programming Concepts - III, Ebberup, Denmark, 25–28 August 1986, pp. 193–
222. North-Holland (1987)

3. Fischer, M.J.: Lambda calculus schemata. In: Proceedings of ACM Conference on
Proving Assertions About Programs, 6–7 January 1972, Las Cruces, New Mexico,
USA, pp. 104–109. ACM (1972)

4. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. SIGPLAN Not. 28(6), 237–247 (1993)

5. Germane, K., Might, M.: Relatively complete pushdown analysis of escape con-
tinuations. In: Enea, C., Piskac, R. (eds.) VMCAI 2019. LNCS, vol. 11388, pp.
205–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11245-5_10

6. Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.: Pushdown control-
flow analysis for free. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’16, pp. 691–704.
ACM, New York (2016)

7. Johnson, J.I., Van Horn, D.: Abstracting abstract control. In: Proceedings of the
10th ACM Symposium on Dynamic Languages, DLS ’14, pp. 11–22. ACM, New
York (2014)

8. Kennedy, A.: Compiling with continuations, continued. In: Hinze, R., Ramsey,
N. (eds.) Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2007, 1–3 October 2007, Freiburg, Germany, pp.
177–190. ACM (2007)

9. Kranz, D.A., Kelsey, R., Rees, J., Hudak, P., Philbin, J.: ORBIT: an optimizing
compiler for scheme. In: Wexelblat, R.L. (ed.) Proceedings of the 1986 SIGPLAN
Symposium on Compiler Construction, 25–27 June 1986, Palo Alto, California,
USA, pp. 219–233. ACM (1986)

10. Might, C.E.M., Horn, D.V.: Pushdown control-flow analysis of higher-order pro-
grams: precise, polyvariant and polynomial-time. In: Scheme Workshop (2010)

11. Might, M., Shivers, O.: Environment analysis via delta CFA. In: Morrisett, J.G.,
Jones, S.L.P. (eds.) Proceedings of the 33rd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2006, 11–13 January 2006,
Charleston, South Carolina, USA, pp. 127–140. ACM (2006)

12. Might, M., Shivers, O.: Improving flow analyses via gammaCFA: abstract garbage
collection and counting. In: Proceedings of the Eleventh ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP ’06, pp. 13–25. ACM, New
York (2006)

https://doi.org/10.1007/978-3-030-11245-5_10


m-CFA Exhibits Perfect Stack Precision 309

13. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k-CFA
paradox: illuminating functional vs. object-oriented program analysis. In: Proceed-
ings of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’10, pp. 305–315. ACM, New York (2010)

14. Palsberg, J.: Closure analysis in constraint form. ACM Trans. Program. Lang.
Syst. 17(1), 47–62 (1995)

15. Sabry, A., Felleisen, M.: Is continuation-passing useful for data flow analysis?
In: Proceedings of the ACM SIGPLAN 1994 Conference on Programming Lan-
guage Design and Implementation, PLDI ’94, pp. 1–12. Association for Computing
Machinery, New York (1994)

16. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1991)

17. Steele, G.L., Jr.: RABBIT: A Compiler for Scheme. Massachusetts Institute of
Technology, Cambridge (1978)

18. Thielecke, H.: Comparing control constructs by double-barrelled CPS. High. Order
Symb. Comput. 15(2–3), 141–160 (2002)

19. Van Horn, D., Might, M.: Abstracting abstract machines. In: Proceedings of the
15th ACM SIGPLAN International Conference on Functional Programming, ICFP
’10, pp. 51–62. ACM, New York (2010)

20. Vardoulakis, D., Shivers, O.: CFA2: a context-free approach to control-flow anal-
ysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 570–589. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6_30

21. Vardoulakis, D., Shivers, O.: Ordering multiple continuations on the stack. In:
Khoo, S., Siek, J.G. (eds.) Proceedings of the 2011 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM 2011, 24–25 January 2011,
Austin, TX, USA, pp. 13–22. ACM (2011)

22. Vardoulakis, D., Shivers, O.: Pushdown flow analysis of first-class control. In:
Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th ACM SIG-
PLAN International Conference on Functional Programming, ICFP 2011, 19–21
September 2011, Tokyo, Japan, pp. 69–80. ACM (2011)

https://doi.org/10.1007/978-3-642-11957-6_30


TorchProbe: Fuzzing Dynamic Deep
Learning Compilers

Qidong Su1,2, Chuqin Geng1,3,4, Gennady Pekhimenko1,2, and Xujie Si1,2,4(B)

1 University of Toronto, Toronto, Canada
{qdsu,pekhimenko,six}@cs.toronto.edu, chuqin.geng@mail.mcgill.ca

2 Vector Institute, Toronto, Canada
3 McGill University, Montreal, Canada

4 Mila - Quebec AI Institute, Montreal, Canada

Abstract. Static and dynamic computational graphs represent two dis-
tinct approaches to constructing deep learning frameworks. The former
prioritizes compiler-based optimizations, while the latter focuses on pro-
grammability and user-friendliness. The recent release of PyTorch 2.0,
which supports compiling arbitrary deep learning programs in Python,
signifies a new direction in the evolution of deep learning infrastructure to
incorporate compiler techniques in a more dynamic manner and support
more dynamic language features like dynamic control flows and closures.
Given PyTorch’s seamless integration with Python, its compiler aims
to support arbitrary deep learning code written in Python. However,
the inherent dynamism of Python poses challenges to the completeness
and robustness of the compiler. While recent research has introduced
fuzzing to test deep learning compilers, there is still a lack of compre-
hensive analysis on how to test dynamic features. To address this issue,
we propose several code transformations to generate test cases involving
dynamic features. These transformations preserve the program’s seman-
tics, ensuring that any discrepancy between the transformed and original
programs indicates the presence of a bug. Through our approach, we have
successfully identified twenty previously unknown bugs in the PyTorch
compiler and its underlying tensor compiler Triton.

Keywords: Debugging · Software engineering · Deep learning

1 Introduction

Deep Learning (DL) has recently achieved significant success in various crit-
ical fields such as vision [20,23], natural language processing [11,18,42], and
autonomous driving [15]. This progress has led to the emergence of numerous
algorithms, model architectures, and applications, necessitating highly flexible
infrastructure. Python, with its highly dynamic features, has become the de
facto standard programming language in the DL community. It is favored for its
expressiveness, flexibility, and rich ecosystem. Popular DL frameworks like Ten-
sorFlow [7] and PyTorch [44] provide their programming interfaces as domain-
specific languages (DSLs) embedded in Python.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, pp. 310–331, 2023.
https://doi.org/10.1007/978-981-99-8311-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8311-7_15&domain=pdf
https://doi.org/10.1007/978-981-99-8311-7_15


TorchProbe: Fuzzing Dynamic Deep Learning Compilers 311

However, executing high-level DL code efficiently in Python remains a chal-
lenging problem. Training and inference of deep learning models are known to
be time and resource-consuming, particularly given the increasing number of
parameters. Hardware vendors offer various accelerators such as GPUs [28,41],
TPUs [26], and NPUs [1,2,6,25,31,36] to address this issue. These accelerators
typically have distinct specifications, architectures, and programming models.
Therefore, effectively mapping DL tasks onto the underlying hardware is crucial
for maximizing the utilization of accelerators.

To bridge the gap between abstract deep neural network descriptions and
the low-level hardware instructions of accelerators, the concept of “deep learn-
ing compilers” [32] has been introduced. The typical workflow of a deep learning
compiler involves three steps: 1) writing high-level DL code in Python, 2) con-
verting the DL model into an intermediate representation (IR) provided by the
compiler, and 3) calling the DL compiler to generate optimized code. However,
while Python itself is a highly flexible language, the IRs in DL compilers are
usually more restricted as they rely on compile-time information to enable more
optimization opportunities. For instance, static computational graphs allow for
more advanced graph-level optimizations e.g., operator fusion [29,40]. Another
example is fixing the shape of tensors involved in computations, which facilitates
finding optimal configurations for the generated code, such as tiling size [13].

The misalignment in expressiveness between Python and deep learning com-
pilers poses challenges and requires more manual intervention and engineer-
ing effort, hindering the widespread application of compiler techniques. Torch-
Script [17], the first-generation compiler of PyTorch, provides an intermediate
representation (IR) that is incompatible with Python. As a result, users are faced
with the options of either rewriting their code in a constrained subset of Python
(scripting) or tracing the code’s execution trajectory, which only captures partial
information of the original code (tracing). On the other hand, Torch.fx [47], the
second-generation compiler, offers an IR compatible with Python but requires
the code to be purely functional.

In response to this issue, a recent trend in deep learning compiler develop-
ment is to support more dynamic features, enabling the seamless application of
compiler techniques within the original Python language. The newly released
PyTorch 2.0 [60] includes a compiler component that facilitates the automatic
optimization of any Python code through a simple API called torch.compile.
This compiler component modifies the process of launching a Python function
by analyzing the bytecode generated by the Python interpreter. It identifies code
snippets that can be optimized, performs compiler optimizations on them, and
caches the optimized code for future reuse. Given that deep learning tasks often
involve high levels of repetition, this strategy can yield significant performance
improvements in many scenarios.

However, the implementation of the new PyTorch compiler is complex and
intertwined with the original Python interpreter, DL frameworks and libraries,
and heterogeneous hardware. This complexity introduces the risk of potential
bugs in the implementation, many of which may remain hidden and only manifest



312 Q. Su et al.

in specific corner cases. Manually creating test cases as a solution requires sig-
nificant engineering effort and can only cover a limited range of possible inputs.
Therefore, an automated testing framework that generates test cases for dynamic
deep learning compilers would expedite the process of bug detection and enhance
the robustness of the infrastructure. While previous works have utilized fuzzing
techniques on DL infrastructures to identify bugs, they focus on static compu-
tational graphs [21,22,34,38,58], and the exploration of how to effectively fuzz
dynamic deep learning compilers is still an area that lacks comprehensive anal-
ysis, to the best of our knowledge.

To address these challenges, we present a novel fuzzing framework called
TorchProbe. This framework is designed to generate test cases that cover
dynamic features such as control flows, in-place tensor mutation, list comprehen-
sion, and nested functions. For each generated test case, we perform three checks:
1) ensuring that the compiler can generate optimized code without encountering
errors, 2) verifying that the optimized code can be executed successfully, and 3)
validating that the output produced by the optimized code remains consistent
with the original program.

To ensure the meaningfulness of the tests, it is crucial that they are both
logically and numerically valid, capable of producing valid output even before
being optimized by the compiler. For instance, the test cases should be free of
numerical errors (e.g., division by zero) and undefined behaviors like INFINITY
and NaN in floating-point numbers. Furthermore, the introduction of control flows
can potentially lead to programs that never terminate, such as infinite loops.

To ensure the validity of the test cases, we employ two types of program
mutation to generate new test cases based on a “seed” program: Equivalent
Mutation and Equivalence Modulo Inputs (EMI) [51]. We ensure that the test
cases generated through these mutations always produce the same output as
the seed program if the compiler processes them correctly. In our approach, we
convert the computational graphs generated by an existing fuzzer NNSmith [34]
into straight-line code, which serves as the seed program. Since the methods for
guaranteeing the validity of computational graphs have been extensively studied
in prior works [34,38], we can ensure the validity of the mutated programs.

Moreover, these mutations are composable. Each mutation introduces more
dynamic language features, and their composition enlarges the detected program
space, which potentially exposes more bugs. A simple illustrative example is as
follows in Fig. 1, where we derive a test case from one line of tensor declaration via
several steps of program mutations. PyTorch compiler crashed on this program
because it failed to handle hoisting, closures, and graph breaks correctly. One
core developer of PyTorch refers to this bug as ‘a lot of fun for a PL nerd’.

The program mutations presented in this paper represent merely one poten-
tial methodology for generating valid test cases. It’s important to note the validity
of test cases does not necessarily rely on the equivalence. While equivalence-based
program mutations can generate valid test cases, there exist huge numbers of
valid test cases that are not covered by it. This work did not investigate how



TorchProbe: Fuzzing Dynamic Deep Learning Compilers 313

to synthesize valid test cases beyond equivalent program mutations, which is a
vast space to explore for future works.

Fig. 1. An example of constructing more sophisticated test cases from a seed program.
This test case triggers the PyTorch compiler to crash because it does not handle hoisting
well.

We summarize the main contributions of this work as follows:

1. We observe the problem of how to automatically detect bugs in the emerg-
ing dynamic deep learning compilers, which aim to support more dynamic
language features than previous ones.

2. We design novel program mutations to automatically generate test cases
specifically for dynamic language features such as control flows, data muta-
tion, and closure.

3. We find twenty previously undiscovered bugs in the latest compiler of PyTorch
and its underlying backend compiler Triton. All of them are confirmed by the
community, twelve of them have already been fixed, and five test cases have
been integrated as unit tests.

2 Background

In this section, we introduce related background including the recent devel-
opment of deep learning compilers and automatic testing techniques for deep
learning systems.

2.1 Deep Learning Program and Systems

Deep learning applications differ from generic programs in several aspects, with
the most significant one being their high computation intensity. DL code often
involves heavy computations such as matrix multiplications and convolutions,
which require a large number of floating-point operations. Running unoptimized
DL tasks on regular hardware leads to unacceptable slowness.



314 Q. Su et al.

To tackle this challenge, a domain-specific hardware-software stack has been
established, encompassing accelerators, libraries, runtimes, frameworks, and lan-
guages. Hardware accelerators like GPUs, TPUs, and NPUs offer beneficial fea-
tures for DL applications, such as highly parallel SIMT programming models
and dedicated circuits for matrix multiplications [4]. However, new hardware
also poses challenges for upper-level software. Developing high-performance code
that is optimized for specialized hardware demands expertise in computer archi-
tecture and significant engineering effort. To address this, numerous solutions
have been proposed.

High-performance Libraries. One solution is to use high-performance math
libraries provided by hardware vendors. Hardware vendors often provide
highly specialized and optimized libraries for their hardware products, such as
cuBLAS [3] and cuDNN [14] for NVIDIA GPUs, and MKL-DNN [57] for Intel
CPUs. These libraries contain many commonly used operators in the form of par-
allel functions called kernels. Most of them are written in C/C++ or assembly
languages to provide high performance.

Deep Learning Frameworks. While high-performance libraries provide supe-
rior performance, their programming interface is not sufficiently friendly to
DL researchers. Therefore, deep learning frameworks such as TensorFlow and
PyTorch are invented for better user interface and programmability. A common
abstraction of DL frameworks is computational graphs, which we elaborate on in
Sect. 2.2.

2.2 Computational Graphs

Computational graphs are a widely used abstraction in deep learning programs,
providing benefits in automatic differentiation and performance optimization.
These graphs represent the data flow of DL programs, with nodes representing
operators and edges representing data dependencies.

There are two types of computational graphs: static and dynamic. They are
categorized based on when and how they are constructed.

Static Graph. Many frameworks such as Caffe [24], Theano [10], and early ver-
sions of Tensorflow [7] adopt static computation graphs. When writing DL pro-
grams, users explicitly describe the computational graph using the primitives
provided by the framework. The computational graph is not executed until it
is fully constructed (or define-then-run). The advantage of static graphs is that
the framework can obtain complete information about the computational graph
before the program is executed, which enables optimizations based on graph
analysis [29], such as constant folding, common sub-expression elimination, and
operator fusion.



TorchProbe: Fuzzing Dynamic Deep Learning Compilers 315

Dynamic Graph. While static graphs provide opportunities for various opti-
mizations, the define-then-run programming interface is not aligned with the
imperative programming paradigm and other well-known matrix libraries such
as numpy [55], which imposes additional demands on users. PyTorch [44] and Ten-
sorFlow Eager [8] adopt another strategy called dynamic graphs. In PyTorch,
the code of forward propagation is similar to imperative numpy code. When
an operator is called, its computation will be triggered immediately, and it will
also be book-kept by a tape, which constructs the computational graph on the
fly (or define-by-run). The computational graph is later used in the backward
propagation. While dynamic graphs provide a better programming interface, it
makes performance optimizations more challenging [47] (Fig. 2).

Fig. 2. An example of computational graph and its corresponding PyTorch code.

2.3 Deep Learning Compilers

Compilers play an important role in many layers of the DL software stack. The
CUDA compiler nvcc compiles CUDA code into lower-level binary code. Tensor
compilers such as Halide [46], TVM [12], and Hidet [19] translate high-level math-
ematical tensor expressions into efficient kernels for different target hardware.
This process is called scheduling, which is finished either manually or automat-
ically. Triton is an intermediate language between CUDA and other loop-based
tensor compilers, providing a programming model at the tile level.

Generally speaking, most DL compilers work on two distinct levels, namely
the graph level and operator (or kernel) level. They take computational graphs
as inputs, divide them into smaller subgraphs, and generate efficient kernels for
each subgraph.

However, there is a misalignment between the language which DL researchers
use and the frontend language used by the DL compilers. While a lot of DL
researchers write programs in Python, most DL compilers take static graphs as
their input. So it is necessary to convert the DL models to formats that can be
accepted by DL compilers. Some examples of these formats are ONNX [5] and
TorchScript [17]. The conversion is far from seamless due to different operator
sets and implementation details.



316 Q. Su et al.

The PyTorch community provides several solutions to ease the process of
translating PyTorch code into compilable formats. TorchScript [17] is a lan-
guage designed for DL model deployment. There are two methods to convert
PyTorch code into TorchScript namely scripting and tracing. Scripting requires
users to write in a subset of Python, which will be later parsed and translated
into TorchScipt directly. Tracing is to actually run the code and record which
operators are launched, and the recorded trace is later translated into Torch-
Script. Both scripting and tracing have weaknesses. Scripting does not support
all language features of Python so users often need to rewrite the code, while
tracing loses many key information such as control flows.

Torch.fx [47] is purely functional language designed for compiling PyTorch
code, which is equivalent to computational graphs. Users can translate PyTorch
code into torch.fx via symbolic tracing. However, many language features are
still not supported. Figure 3 shows two examples that torch.fx cannot handle.

Fig. 3. Two examples of PyTorch code that torch.fx fails to trace, as it is a purely
functional language design.

2.4 Dynamic Deep Learning Compilers

The recently released PyTorch 2.0 [60] adopts a new strategy of compilation,
which is called TorchDynamo. The workflow of the PyTorch compiler is shown
in Fig. 4. While computational graphs cannot represent all PyTorch programs,
TorchDynamo analyzes the bytecode generated by the Python interpreter and
capture partial computational graphs and translate them into torch.fx graphs.
Therefore, a Python function might be broken down into multiple partial graphs,
and the parts which cannot be compiled will be executed as normal Python code
by the interpreter. In this manner, TorchDynamo has the ability to support
arbitrary Python code.

Captured computational graphs will be compiled by one of the backend com-
pilers in a Just-in-time way and cached for future reuse. Since DL tasks are
repetitive, the compiled code has a high chance to be reused. Every time one
function is called, TorchDynamo will check whether it has already been com-
piled and the conditions of reuse are satisfied (called guards, e.g. the shape of
the input tensors is not changed), and will execute the compiled version if all
requirements are met, which leads to substantial speedup.



TorchProbe: Fuzzing Dynamic Deep Learning Compilers 317

Fig. 4. Overview of the compiler of PyTorch 2.0 – TorchDynamo. TorchDynamo ana-
lyzes bytecode and captures partial computational graphs. It translates these graphs
into torch.fx graphs, which can be compiled by backend compilers like TensorRT in a
Just-in-Time manner.

TorchDynamo now supports many backend compilers including TorchInduc-
tor, TVM [12], TensorRT [56], and ONNX [5]. The official backend compiler is
TorchInductor, which can generate high-performance CPU kernels, or relies on
the Triton [53] intermediate language to generate GPU kernels.

2.5 Fuzzing Deep Learning Systems

As deep learning is applied to many critical scenarios, how to guarantee the
robustness of deep learning systems has become an important topic. Fuzzing
as an automatic testing technique has been introduced to detect bugs in DL
systems. NNSmith [34] generates random valid computational graphs and input
data to check if the tested DL system can produce expected outputs. A more
detailed discussion about related work is included in Sect. 5.

3 Approach

This section presents our proposed deep learning fuzzer for testing dynamic deep
learning compilers.

3.1 Overview

Figure 5 illustrates the overall workflow of our fuzzer. Let L be the language space
of all possible programs, which specifically refers to code written in Python and
PyTorch in our case. Let I be the input space which includes all possible input
data, e.g. tuples of tensors.

A correctly implemented compiler should guarantee that the optimized code
should generate the same output as the original code. More formally, let �P�(x)
be the output of the program P ∈ L given the input x ∈ I, executed on the
original Python interpreter and eager-mode PyTorch, and �P�C(x) be the output
of the compiled version of P produced by the compiler C, which is executed on



318 Q. Su et al.

Fig. 5. The TorchProbe workflow involves translating input computational graphs into
Python code, which serves as seed programs. These seed programs undergo numerical-
equivalence mutations to create corresponding mutated programs. Finally, we verify if
the compiler can produce the same results from the original Python interpreter and
eager-mode PyTorch.

the modified runtime system for compiled code. The correctness of a compiler
could be represented as

∀P ∈ L, x ∈ I, �P �(x) is valid ⇒ �P�(x) = �P�C(x) (1)

where ‘�P�(x) is valid’ means the program P is executed correctly and produces
meaningful results without any syntax or semantic errors, runtime errors, numer-
ical errors, or undefined behaviors including INFINITY and NaN in tensors. The
compiler can pass the test case if 1) It can finish the compilation without errors,
2) the compiled code is runnable, 3) the compiled code can produce consistent
outputs as the original program.

A fuzzer can sample valid test cases (P, x) containing a program P ∈ L and
input data x ∈ I, and check whether the compiled code can produce consistent
results as the original code. In order to ensure the validity of samples, we start
from a valid ‘seed’ test case and perform a series of numerical-equivalence muta-
tions, which preserves its validity in each step. We introduce two categories of
mutations, namely equivalent mutations and equivalence module inputs. There-
fore, as long as the seed test case is valid, the validity of derived test cases can
also be guaranteed. We also design these mutations to be composable so that
the composition of mutations form more sophisticated test cases, which might
expose more bugs.

In order to obtain a valid test case, we use NNSmith [34], a fuzzer for DL
systems based on computational graphs. It can automatically generate valid test
cases, including the computational graph and input data. We then translate the
computational graphs into straight-line Python code in static single-assignment
form (SSA), which we use as the seed program. A seed program consists of a list
of statements in the form of

out = op(in1, in2, . . . , inn)

where op is a DL operator, such as matrix multiplication or convolution, ini-s
are input tensors, and out is the output tensor. Each variable will appear as the
output in at most one statement, that is, be defined once and remain constant.



TorchProbe: Fuzzing Dynamic Deep Learning Compilers 319

3.2 Equivalent Mutations

Given a target deep learning program, the most direct approach to diversify
the program is through equivalent mutations. Equivalent mutations ensure that
both the seed program P and the mutated program P ′ yield the same output
results for any random input x within the valid domain I:

∀x ∈ I, �P �(x) is valid ⇒ �P�(x) = �P ′�(x) (2)

The validity of the mutated test case (P ′, x) comes from the fact that
�P�(x) is valid. Compiler bugs can be detected if the compiler crashes or the
mutated program P ′ produces results that differ from the original program and
the reference (oracle) program. In other words, the compiler passes the test if
�P ′�(x) = �P ′�C(x).

Fig. 6. The three types of equivalent mutations.

Our equivalent mutation method iteratively introduces more dynamic com-
ponents to the target program. Specifically, we consider three types of mutations
(also illustrated in Fig. 6):

1. Operator resolution. Deep learning operators are primarily vectorized
operators. These operators can be fully or partially serialized with basic
Python code blocks, such as for loops and list comprehensions. Specifically in
this paper, we implemented operator resolution for element-wise operators,



320 Q. Su et al.

such as ReLU and element-wise addition. The computation of each entry of
the input tensor is independent, so we can unroll the operator along one axis.
For example, suppose the tensor a and b both have a shape of d1 ×d2 ×d3 in
the assignment statement b = ReLU(a). We first randomly choose a dimen-
sion as the axis of the resolution, and unroll the operator in an equivalent
form using loops or list comprehensions. Taking the second dimension as an
example, the expression can be expanded as:

b = torch.empty_like(a)
for i in range(a.shape[1]):

b[:, i, :] = torch.relu(a[:, i, :])

2. Mutate-then-recover. The straight-line code converted from computa-
tional graphs is in the static single-assignment form where each variable
will be assigned only once and remain constant, while real-world code often
involves the mutation of values of variables. To introduce tensor value muta-
tion while preserving the numerical equivalence, we adopt the mutate-then-
recover strategy, as shown in Fig. 6b. We randomly choose a tensor and an
entry of it, back up its value in a temporary variable, and modify its value with
a random value. Then we scan the following code to find the next statement
which depends on the chosen tensor, and we insert a statement to recover
its value. Therefore, the final output of the mutated program would not be
changed.

3. Functionalization. Python supports nested functions and closures. To test
this feature, we randomly choose a sequence of operations in the program and
wrap them into a function, as shown in 6c. All variables defined or mutated
in the function will be returned as reflected in the upper-level scope. Since
Python supports hoisting (using a variable defined after the definition of a
function), we can move the constructed function anywhere before it is called.

3.3 Equivalence Modulo Inputs (EMI)

The second mutation method guarantees conditional program equivalence that
depends directly on the specific given program input x0, which is called Equiv-
alance Modulo Inputs (EMI). We want the mutated program gives the same
result as the seed program on the given inputs, that is

�P�(x0) = �P ′�(x0)

Leveraging the fixed inputs enlarge the range of possible mutations. A class
of EMI program mutations is Always True Conditional Block (TCB). As shown
in Figure 7, we can randomly select a subset of consecutive statements and wrap
them up with an if statement. As long as the condition expression (highlighted
as red in Fig. 7) is true, the wrapped statements will be executed as the original
program, which is supposed to lead to identical outputs. Synthesizing a true
condition expression takes two steps, 1) program profiling, where we collect the
runtime information which depends on x0, and 2) condition synthesis.



TorchProbe: Fuzzing Dynamic Deep Learning Compilers 321

Fig. 7. By leveraging program profiling (runtime information that depends on x0) and
condition synthesis, Equivalence Modulo Inputs (EMI) ensures that mutated programs
execute in the same order as the original programs.

Program Profiling. We execute the original program step by step until the posi-
tion to insert the if statement while maintaining a symbol table to book-keep
the value of each tensor variable. Note that it is possible that the program is
not in SSA form after other mutations, that is the value of a variable might be
changed. In order to support the composition of mutations, we need to stop the
profiling exactly before the if statement.

Condition Synthesis. Following the grammar defined by Fig. 8, we synthesize an
arithmetic comparison expression based on the execution profile we collect in the
previous step. The comparison expression takes two scalars as operands, which
are either an element of a tensor, the length of a certain dimension of a tensor,
the number of dimensions of a tensor, or the maximum or minimum of a tensor.
Since the input x0 is fixed, all of these values are determined, and so is the order
between two operands. Therefore the operator can also be determined.

Fig. 8. BNF Grammar of Synthesized Expressions



322 Q. Su et al.

3.4 Mutations Beyond Equivalence

It’s noteworthy that the equivalence-based program mutations mentioned are
only one possible approach for generating valid test cases. Their primary pur-
pose is to ensure the meaningfulness of test cases, aligning them with real-world
programs developed by machine learning engineers.

However, it is important to clarify that equivalence is not a strict requirement
for machine learning compiler fuzzing. Since we assume the interpreter always
produces the correct results, the correctness of the compiled program can be
verified by comparing it with the ground truth generated by the interpreter, as
long as the test case is valid. Valid test cases are not necessarily derived from
a seed program using equivalent mutations, and there can be other mutations
that are not based on equivalence, which have the potential to enhance testing
coverage. Nevertheless, how to design such mutations is beyond the scope of this
work and remains a subject for future research.

4 Evaluation

4.1 Testing Settings

We implemented TorchProbe in approximately 1000 lines of Python code on the
top of NNSmith, including 4 types of program mutations mentioned in Sect. 3.

We ran TorchProbe on a workstation equipped with an NVIDIA RTX 2070
GPU. The operating system is Ubuntu 20.04. We build PyTorch from source
in the latest main branch of PyTorch project on GitHub. Both CPU and GPU
backends of the PyTorch compiler are tested.

We use NNSmith [34] as the seed program generator. Note that TorchProbe
is orthogonal to the seed program generator. Any fuzzing tools for DL systems
based on computational graphs can be used as the seed program generator for
TorchProbe, and any improvements (e.g. supporting more operators) could ben-
efit TorchProbe.

We set the number of operators in one computational graph as 20. Compu-
tational graphs that are too large will slow down the testing process and tend
to trigger commonly seen bugs more frequently, impeding the discovery of new
bugs in corner cases. Graphs with too few operators cannot cover a wide range
of combinations of operators.

4.2 Quantitative Results

All bugs have been minimized and de-duplicated. We only list bugs that have
distinct root causes in this section. The related GitHub issues can be found in
https://github.com/pytorch/pytorch/issues/created by/soodoshll and https://
github.com/openai/triton/issues/created by/soodoshll.

https://github.com/pytorch/pytorch/issues/created_by/soodoshll
https://github.com/openai/triton/issues/created_by/soodoshll
https://github.com/openai/triton/issues/created_by/soodoshll


TorchProbe: Fuzzing Dynamic Deep Learning Compilers 323

Bug Counts. Within one month, we found 17 bugs in PyTorch’s main branch
and three PyTorch’s underlying GPU backend compiler Triton. All bugs have
been minimized and reported to the community, and we list them in Table 1.
These bugs have been confirmed by the community and 12 of them have already
been fixed. Five test cases have been integrated as unit tests of the main branch.

Bug Types. We discovered different types of bugs in multiple layers of the soft-
ware stack. According to which part of the software the bugs happen in, they
can be classified into:

– TorchDynamo: The graph capturer fails to capture computational graphs.
We find 4 such bugs and all of them are discovered by composite program
mutations involving dynamic language features.

Table 1. We find 17 bugs in PyTorch’s main branch and 3 bugs in PyTorch’s underlying
GPU backend compiler.

GitHub Issue ID Crashed Component Category Fixed

96432 CPU Backend Inconsistent Results Yes

96446 CPU Backend Compiler Crash Yes

96484 CPU Backend Compiler Crash Yes

96487 CPU & GPU Backend Compiler Crash No

96604 GPU Backend Inconsistent Results Yes

96609 GPU Backend Compiler Crash No

96625 CPU & GPU Backend Compiler Crash Yes

96728 CPU Backend Inconsistent Results Yes

97081 Dynamo Compiler Crash No

97082 Dynamo Compiler Crash No

97083 CPU & GPU Backend Inconsistent Results No

97115 Dynamo Compiler Crash No

97117 GPU Backend Inconsistent Results Yes

97124 CPU Backend Compiler Crash Yes

97127 CPU Backend Compiler Crash Yes

97130 Dynamo Inconsistent Results No

97807 GPU Backend Compiler Crash No

1328 Triton Compiler Hang Yes

1337 Triton Inconsistent Results Yes

1342 Triton Inconsistent Results Yes

– CPU backend: The CPU backend of TorchInductor fails to generate the cor-
rect code. We found 9 such bugs (3 of which also cause errors in the GPU
backend), which are the most among all categories. Type casting and operator
fusion are two fragile parts.



324 Q. Su et al.

– GPU backend: The GPU backend of TorchInductor fails to generate the cor-
rect code. We found 7 such bugs.

– Triton: Bugs related to the underlying Triton compiler, which is maintained
by another community. We found three bugs in Triton, and a fundamental
one of them is that Triton evaluates the expression True < False as true.

According to the error type the bugs, they can be categorized into:

– Compiler Crash: The compiler crashes without producing runnable code.
– Compiler Hang: We found one bug in the Triton compiler where the compi-

lation never terminates.
– Inconsistent Results: The results given by the original and compiled programs

are different.

4.3 Sample Bugs

We select some typical bugs to demonstrate the efficacy of different program
mutations.

Example 1: Mutate-then-recover + EMI. Here b is a scalar parameter of the
upper-level function. In the first step, as shown in Fig. 9b, we insert a mutate-
then-recover snippet before the max statement (the mutation statement is omit-
ted since it will not affect the bug). In the second step, we insert a TCB state-
ment between the two statements we inserted in the last step. This example
causes TorchDynamo to crash, and the root cause is still under investigation
by the developers. This example demonstrates how the interaction between two
different types of program mutation exposes undiscovered bugs.

Fig. 9. Mutate-then-recover + EMI. The three snippets show how to derive new test
cases step by step via mutations. This test case will cause TorchDynamo to crash due
to an error in AOT Autograd (ahead-of-time auto-differentiation). The root cause is
still under investigation.

Example 2: Mutate-then-recover + EMI + functionalize. Figure 10 shows an
example where three different types of mutation collaboratively triggered an
error. It first creates three variables sharing the same underlying storage, i.e.
they point to the same address. Therefore, any mutation of any one of the
three tensors will also manifest in the other two. More specifically, this example



TorchProbe: Fuzzing Dynamic Deep Learning Compilers 325

modifies one element of the tensor b from 1 to 2. So the value of tensor b and
c is supposed to change accordingly, which is the behavior of the original code
before compilation. The compiled code, however, incorrectly returns the c with
the unchanged value.

Example 3: A bug caused by hoisting. Figure 11 shows an Pythonic example,
which one of the core developers of PyTorch compiler refers to as an ‘interesting
puzzle’ and ‘a lot of fun for a PL nerd ’. This example is generated by three trans-
formations collaboratively and has been minimized manually. It involves dynamic
language features including nested functions, closure and variable hoisting.

Fig. 10. Mutate-then-recover + EMI + Functionalize. The variables a, b, and c are
pointed to the same underlying memory address, so any mutation to one tensor should
manifest on the other two. However, the compiled code does not behave as expected.
The root cause of this bug is that TorchInductor does not handle in-place copy (copy )
well.

5 Related Work

5.1 Compiler Testing

Testing has been the dominating technique to validate the robustness of com-
pilers. As an alternative to manually write test cases, automatic testing has
been introduced to improve the testing coverage more efficiently. CSmith [61]
gains great success in automatically finding bugs in C compilers including GCC
and LLVM. It synthesizes programs from scratch and is used to generate seed
programs by other mutation-based fuzzers. Hermes [51] introduces several novel
EMI mutations for live code regions and TCB is one of them. We borrow the
idea from Hermes and extend it to Python and tensor operations.



326 Q. Su et al.

5.2 Fuzzing DL Systems

Fuzzing has been applied to deep learning systems to automatically detect bugs
and improve their robustness. CRADLE [45] leverages existing DL models to
run differential testing on deep learning systems. AUDEE [22] and LEMON [58]
extend CRADLE with mutation-based search strategies to improve the testing
coverage. GraphFuzzer [38] and Muffin [38] enlarge the search space using the
reshape operators. NNSmith [34], which TorchProbe is built upon, adopts SMT-
solving to generate valid computational graphs and gradient-based search to find
valid inputs, which further enlarge the search space. These works all focus on the
computational graph level, while our work can generate test cases that cannot
be represented by computational graphs. Furthermore, any graph-level fuzzers
can be used as the seed program generator of TorchProbe.

Besides graph-level fuzzers, there are also fuzzers like TVMFuzz [43] and
Tzer [35] designed for lower-level tensor program compilers such as TVM. These
tensor compilers correspond to the backends of PyTorch compilers and therefore
the fuzzers targeting on them are not aware of the high-level dynamic language
features. Other techniques like Predoo [62], FreeFuzz [59], and DeepREL [16]
are helpful for testing DL operators, they are insufficient for identifying bugs in
graph-level optimizations.

Fig. 11. A bug caused by hoisting. The function subfunc uses a variable backup in
the upper-level scope, which appears after the definition of subfunc. PyTorch compiler
crashes on this code snippet.

5.3 Verified Compilers

Verified compilers ensure their correctness by formal proofs. Liu et al. [33] imple-
mented a verified Coq framework for optimizing tensor programs written in a
purely functional language with a set of verified program rewrites. For tradi-
tional compilers, CompCert [30] is a verified compiler for the C language. While
formal verification can guarantee the correctness of compilers, it requires exper-
tise in theorem proving and heavy manual intervention. What makes it worse
is that programming languages and compilers for DL are still rapidly evolving,
demanding extra efforts to update the corresponding proofs.



TorchProbe: Fuzzing Dynamic Deep Learning Compilers 327

5.4 Translation Validation

Translation validation is another method to validate compiler optimizations,
which verifies the compiled code is equivalent to the source code. Unlike verified
compilers, translation validation checks the equivalence between the target and
source code of a specific input program. Bang et al. [9] uses SMT solver to verify
the behavior of code compiled by the tensor program compiler MLIR is identical
to the source code. It leverages to lower the complexity of high dimensional tensor
data. There are also studies of applying translation validation on traditional
languages like assembly [48], C [39,49], Java [52], and LLVM [27,37,50,54].

6 Conclusions

The introduction of PyTorch 2.0 signifies a remarkable milestone in the evolution
of deep learning infrastructure by aiming to incorporate compiler techniques in
a more dynamic manner. Nevertheless, the dynamic nature of Python poses
challenges to the compiler’s completeness and robustness.

While recent research has introduced fuzzing as a method to test deep learn-
ing compilers, there is still a lack of investigation concerning the testing of
dynamic features. To bridge this gap, our proposed approach suggests multiple
code transformations to generate test cases involving dynamic features. These
transformations ensure the preservation of the program’s semantics, thereby indi-
cating the presence of a bug if any discrepancies arise between the transformed
and original programs. Through this approach, we have identified a total of
twenty bugs in the PyTorch compiler and its underlying tensor compiler Triton.

Acknowledgment. We thank the anonymous reviewers for their insightful comments.
This work was supported, in part, by Individual Discovery Grants from the Natural
Sciences and Engineering Research Council of Canada and the Canada CIFAR AI
Chair Program.

References

1. AWS Inferentia. https://aws.amazon.com/machine-learning/inferentia/
2. AWS Trainium. https://aws.amazon.com/machine-learning/trainium/
3. cuBLAS. https://docs.nvidia.com/cuda/cublas/
4. NVIDIA Tensor Core. https://developer.nvidia.com/tensor-cores
5. ONNX: Open neural network exchange. https://github.com/onnx/onnx
6. SambaNova DataScale. https://sambanova.ai/products/datascale/
7. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Kee-

ton, K., Roscoe, T., (eds.) 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2016, Savannah, GA, USA, November 2–4, 2016,
pp. 265–283. USENIX Association (2016). https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/abadi

8. Agrawal, A., et al.: TensorFlow Eager: a multi-stage, Python-embedded DSL for
machine learning. Proc. Mach. Learn. Syst. 1, 178–189 (2019)

https://aws.amazon.com/machine-learning/inferentia/
https://aws.amazon.com/machine-learning/trainium/
https://docs.nvidia.com/cuda/cublas/
https://developer.nvidia.com/tensor-cores
https://github.com/onnx/onnx
https://sambanova.ai/products/datascale/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi


328 Q. Su et al.

9. Bang, S., Nam, S., Chun, I., Jhoo, H.Y., Lee, J.: SMT-based translation validation
for machine learning compiler. In: Computer Aided Verification: 34th International
Conference, CAV 2022, Haifa, Israel, August 7–10, 2022, Proceedings, Part II, pp.
386–407. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13188-2 19

10. Bergstra, J., et al.: Theano: deep learning on GPUs with Python. In: NIPS 2011,
BigLearning Workshop, Granada, Spain, vol. 3. Citeseer (2011)

11. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

12. Chen, T., et al.: TVM: an automated end-to-end optimizing compiler for deep
learning. In: Arpaci-Dusseau, A.C., Voelker, G. (eds.) 13th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2018, Carlsbad, CA,
USA, October 8–10, 2018, pp. 578–594. USENIX Association (2018). https://www.
usenix.org/conference/osdi18/presentation/chen

13. Chen, T., et al.: Learning to optimize tensor programs. In: Advances in Neural
Information Processing Systems 31 (2018)

14. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

15. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3213–3223 (2016)

16. Deng, Y., Yan, C., Wei, A., Zhang, L.: Fuzzing deep-learning libraries via auto-
mated relational API inference. In: Roychoudhury, A., Cadar, C., Kim, M. (eds.)
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022,
Singapore, Singapore, November 14–18, 2022, pp. 44–56. ACM (2022). https://
doi.org/10.1145/3540250.3549085

17. DeVito, Z.: Torchscript: Optimized execution of PyTorch programs. Retrieved Jan-
uary (2022)

18. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

19. Ding, Y., Yu, C.H., Zheng, B., Liu, Y., Wang, Y., Pekhimenko, G.: Hidet: task-
mapping programming paradigm for deep learning tensor programs. In: Proceed-
ings of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, vol. 2, pp. 370–384 (2023)

20. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

21. Gu, J., Luo, X., Zhou, Y., Wang, X.: Muffin: testing deep learning libraries via
neural architecture fuzzing. In: Proceedings of the 44th International Conference
on Software Engineering, pp. 1418–1430 (2022)

22. Guo, Q., et al.: Audee: automated testing for deep learning frameworks. In: Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering, pp. 486–498 (2020)

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

24. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–
678 (2014)

25. Jia, Z., Tillman, B., Maggioni, M., Scarpazza, D.P.: Dissecting the graphcore IPU
architecture via microbenchmarking. arXiv preprint arXiv:1912.03413 (2019)

https://doi.org/10.1007/978-3-031-13188-2_19
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://arxiv.org/abs/1410.0759
https://doi.org/10.1145/3540250.3549085
https://doi.org/10.1145/3540250.3549085
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1912.03413


TorchProbe: Fuzzing Dynamic Deep Learning Compilers 329

26. Jouppi, N., Young, C., Patil, N., Patterson, D.: Motivation for and evaluation of
the first tensor processing unit. IEEE Micro 38(3), 10–19 (2018)

27. Kasampalis, T., Park, D., Lin, Z., Adve, V.S., Roşu, G.: Language-parametric
compiler validation with application to LLVM. In: Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 1004–1019 (2021)

28. Keckler, S.W., Dally, W.J., Khailany, B., Garland, M., Glasco, D.: GPUs and the
future of parallel computing. IEEE Micro 31(5), 7–17 (2011)

29. Larsen, R.M., Shpeisman, T.: Tensorflow graph optimizations (2019)
30. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler

with a proof assistant. In: Conference record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 42–54 (2006)

31. Lewington, R.: An AI chip with unprecedented performance to do the unimaginable
(2021)

32. Li, M., et al.: The deep learning compiler: a comprehensive survey. IEEE Trans.
Parallel Distrib. Syst. 32(3), 708–727 (2020)

33. Liu, A., Bernstein, G.L., Chlipala, A., Ragan-Kelley, J.: Verified tensor-program
optimization via high-level scheduling rewrites. In: Proceedings of the ACM on
Programming Languages 6(POPL) (2022)

34. Liu, J., et al.: NNSmith: generating diverse and valid test cases for deep learning
compilers. In: Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, vol. 2, pp.
530–543 (2023)

35. Liu, J., Wei, Y., Yang, S., Deng, Y., Zhang, L.: Coverage-guided tensor compiler
fuzzing with joint IR-pass mutation. Proc. ACM on Program. Lang. 6(OOPSLA1),
1–26 (2022)

36. Liu, S., et al.: Cambricon: an instruction set architecture for neural networks. In:
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architec-
ture (ISCA), pp. 393–405. IEEE (2016)

37. Lopes, N.P., Lee, J., Hur, C.K., Liu, Z., Regehr, J.: Alive2: bounded translation val-
idation for LLVM. In: Proceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, pp. 65–79 (2021)

38. Luo, W., Chai, D., Ruan, X., Wang, J., Fang, C., Chen, Z.: Graph-based fuzz
testing for deep learning inference engines. In: 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 288–299. IEEE (2021)

39. Necula, G.C.: Translation validation for an optimizing compiler. In: Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, pp. 83–94 (2000)

40. Niu, W., Guan, J., Wang, Y., Agrawal, G., Ren, B.: DNNFusion: accelerating deep
neural networks execution with advanced operator fusion. In: Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, pp. 883–898 (2021)

41. Otterness, N., Anderson, J.H.: AMD GPUs as an alternative to NVIDIA for sup-
porting real-time workloads. In: 32nd Euromicro Conference on Real-Time Systems
(ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

42. Ouyang, L., et al.: Training language models to follow instructions with human
feedback. Adv. Neural. Inf. Process. Syst. 35, 27730–27744 (2022)

43. Pankratz, D.: TVMFuzz: fuzzing tensor-level intermediate representation in TVM
(2020)

44. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems 32 (2019)



330 Q. Su et al.

45. Pham, H.V., Lutellier, T., Qi, W., Tan, L.: CRADLE: cross-backend validation
to detect and localize bugs in deep learning libraries. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE), pp. 1027–1038. IEEE
(2019)

46. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. ACM Sigplan Not. 48(6), 519–530 (2013)

47. Reed, J., Devito, Z., He, H., Ussery, A., Ansel, J.: Torch.fx: practical program
capture and transformation for deep learning in Python. Proc. Mach. Learn. Syst.
4, 638–651 (2022)

48. Samet, H.: Automatically proving the correctness of translations involving opti-
mized code, vol. 259. Citeseer (1975)

49. Siegel, M., Pnueli, A., Singerman, E.: Translation validation. In: TACAS, pp. 151–
166 (1998)

50. Stepp, M., Tate, R., Lerner, S.: Equality-based translation validator for LLVM. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 737–742.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 59

51. Sun, C., Le, V., Su, Z.: Finding compiler bugs via live code mutation. In: Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 849–863 (2016)

52. Tate, R., Stepp, M., Tatlock, Z., Lerner, S.: Equality saturation: a new approach
to optimization. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 264–276 (2009)

53. Tillet, P., Kung, H.T., Cox, D.: Triton: an intermediate language and compiler
for tiled neural network computations. In: Proceedings of the 3rd ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages, pp.
10–19 (2019)

54. Tristan, J.B., Govereau, P., Morrisett, G.: Evaluating value-graph translation val-
idation for LLVM. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 295–305 (2011)

55. Van Der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy Array: a structure
for efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011)

56. Vanholder, H.: Efficient inference with TensorRT. In: GPU Technology Conference,
vol. 1, p. 2 (2016)

57. Wang, E., et al.: Intel math kernel library. High-Performance Computing on the
Intel R© Xeon PhiTM: How to Fully Exploit MIC Architectures, pp. 167–188 (2014)

58. Wang, Z., Yan, M., Chen, J., Liu, S., Zhang, D.: Deep learning library testing via
effective model generation. In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 788–799 (2020)

59. Wei, A., Deng, Y., Yang, C., Zhang, L.: Free lunch for testing: fuzzing deep-learning
libraries from open source. In: Proceedings of the 44th International Conference
on Software Engineering, pp. 995–1007 (2022)

60. Wu, P.: PyTorch 2.0: the journey to bringing compiler technologies to the core of
PyTorch (keynote). In: Proceedings of the 21st ACM/IEEE International Sympo-
sium on Code Generation and Optimization, pp. 1–1 (2023)

https://doi.org/10.1007/978-3-642-22110-1_59


TorchProbe: Fuzzing Dynamic Deep Learning Compilers 331

61. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C
compilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 283–294 (2011)

62. Zhang, X., et al.: Predoo: precision testing of deep learning operators. In: Proceed-
ings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 400–412 (2021)



Author Index

A
Accattoli, Beniamino 69
Affeldt, Reynald 182
Aotani, Tomoyuki 3

B
Barenbaum, Pablo 69

C
Chen, Sheng 24
Chin, Wei-Ngan 269

F
Forsberg, Fredrik Nordvall 135
Forster, Yannick 155

G
Geng, Chuqin 310
Germane, Kimball 290

H
Hao, Dan 24

I
Ikeda, Ryo 246

K
Kappelmann, Kevin 225
Kirst, Dominik 155
Kobayashi, Naoki 246
Kupke, Clemens 135

L
Le, Quang Loc 269
Li, Wenhua 269
Lubis, Luthfan Anshar 3

M
Masuhara, Hidehiko 3
Mück, Niklas 155

N
Nantes-Sobrinho, Daniele 112

P
Paulus, Joseph W. N. 112
Pekhimenko, Gennady 310
Pérez, Jorge A. 112
Poulsen, Casper Bach 46

S
Saito, Ayumu 182
Sato, Ryosuke 246
Si, Xujie 310
Song, Yahui 269
Song, Yichen 205
Su, Qidong 310
Sun, Ke 24
Sun, Meng 205

T
Tanabe, Yudai 3

V
van den Heuvel, Bas 112
van der Rest, Cas 46

W
Wang, Meng 24
Wang, Yuting 205
Watters, Sean 135
Wu, Jinhua 205
Wu, Jui-Hsuan 91

X
Xu, Xiangzhe 205

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2023
C.-K. Hur (Ed.): APLAS 2023, LNCS 14405, p. 333, 2023.
https://doi.org/10.1007/978-981-99-8311-7

https://doi.org/10.1007/978-981-99-8311-7

	 Preface
	 Organization
	 Contents
	Types
	Compilation Semantics for a Programming Language with Versions
	1 Introduction
	2 Overview
	2.1 Motivating Example
	2.2 VL
	2.3 Programming with Versions in VL

	3 Compilation
	3.1 An Intermediate Language, VLMini
	3.2 Girard's Translation for VLMini
	3.3 Bundling

	4 Algorithmic Type Inference
	4.1 Pattern Type Synthesis
	4.2 Type Synthesis
	4.3 Extensions

	5 Implementation
	6 Case Study and Evaluation
	6.1 Case Study
	6.2 Scalability of Constraint Resolution

	7 Related Work, Future Work, and Conclusion
	References

	What Types Are Needed for Typing Dynamic Objects? A Python-Based Empirical Study
	1 Introduction
	2 Background
	2.1 Dynamic Object Behaviors in Python
	2.2 Existing Studies on Dynamic Behaviors

	3 Types for Dynamic Objects
	3.1 Class-Based Types
	3.2 Object-Based Types

	4 Experimental Design
	4.1 Subjects
	4.2 Tracing and Analysis Infrastructure

	5 Results and Analysis
	5.1 Prevalence of Dynamic Behaviors
	5.2 Effectiveness of the Types

	6 Conclusion and Future Work
	References

	Types and Semantics for Extensible Data Types
	1 Introduction
	1.1 Contributions

	2 Programming with Extensible Data Types, by Example
	2.1 Modular Interpreters in the Style of Data Types à la Carte
	2.2 Modular Algebraic Effects Using the Free Monad
	2.3 Modular Higher-Order Effects

	3 The Calculus
	3.1 Well-Formed Types
	3.2 Well-Typed Terms
	3.3 Type Equivalence

	4 Categorical Semantics
	4.1 Semantic Setup
	4.2 Interpreting Types and Type Schemes
	4.3 Interpreting Arrow Types
	4.4 Interpreting Terms

	5 Operational Semantics
	5.1 Reduction Rules
	5.2 Relation to the Denotational Model

	6 Related Work
	7 Conclusion and Future Work
	References

	Functional Languages
	A Diamond Machine for Strong Evaluation
	1 Introduction
	2 Normal Forms and the Importance of Being External
	3 Preliminaries: Abstract Machines
	4 Preliminaries: The Milner Abstract Machine
	5 The External Abstract Machine
	6 Runs to Evaluations
	6.1 Leftmost Runs to Leftmost Evaluations

	7 Evaluations to Runs
	8 Further Pool Templates
	9 Conclusions
	References

	Proofs as Terms, Terms as Graphs
	1 Introduction
	2 Preliminaries: The Focused Proof System LJF and Synthetic Inference Rules
	3 The positive -calculus
	4 A Graphical Representation for Terms: lambda-graphs with bodies
	5 Sigma-lambda-graphs with bodies and Sigma-terms
	6 Substitution and Reduction on -graphs with bodies
	7 Generalization
	8 Conclusion
	References

	Typed Non-determinism in Functional and Concurrent Calculi
	1 Introduction
	2 A Typed Pi-calculus with Non-deterministic Choice
	2.1 Syntax and Semantics
	2.2 Resource Control for spi+ via Session Types

	3 A Non-deterministic Resource Lambda-calculus
	3.1 Syntax and Reduction Semantics
	3.2 Resource Control for Lambda via Intersection Types

	4 A Typed Translation of Lambda into Pi
	5 Summary and Related Work
	References

	Interactive Theorem Proving
	A Fresh Look at Commutativity: Free Algebraic Structures via Fresh Lists
	1 Introduction
	2 Preliminaries and Setting
	3 Fresh Lists
	4 Free Idempotent Commutative Monoids via Sorted Lists
	4.1 Sorted Lists
	4.2 Sorted Lists Form an Idempotent Commutative Monoid
	4.3 A Free-Forgetful Adjunction
	4.4 Motivating the Lack of Monotonicity

	5 Free Commutative Monoids via Sorted Lists with Duplicates
	6 Notions of Freshness for Other Free Structures
	6.1 Free Monoids
	6.2 Free Pointed Sets
	6.3 Free Left-Regular Band Monoids
	6.4 Free Reflexive Partial Monoids

	7 Conclusions and Future Work
	References

	Oracle Computability and Turing Reducibility in the Calculus of Inductive Constructions
	1 Introduction
	2 Synthetic Oracle Computability
	3 Turing Reducibility and Oracle Semi-decidability
	4 Closure Properties of Oracle Computations
	5 Computational Cores of Oracle Computations
	6 Properties of Oracle Semi-decidability
	7 Properties of Turing Reducibility
	8 Turing Reducibility and Truth-Table Reducibility
	9 Post's Theorem (PT)
	10 Discussion
	A Glossary of Definitions
	B Extended Forms of Interrogations
	B.1 Extended Interrogations with State
	B.2 Stalling Interrogations
	B.3 Proofs of Closure Properties

	C Relation to Bauer's Turing Reducibility
	References

	Experimenting with an Intrinsically-Typed Probabilistic Programming Language in Coq
	1 Introduction
	2 Related Work
	3 Preliminaries: Measure Theory in MathComp-Analysis
	3.1 Reminder About Measure Theory
	3.2 Basics of MathComp-Analysis and Its Measure Theory

	4 Probabilistic Programming Language Using s-Finite Kernels
	5 Intrinsically-Typed Concrete Syntax for a Toy Language
	5.1 Intrinsically-Typed Syntax for a Toy Language
	5.2 Canonical Structures for Intrinsically-Typed Syntax
	5.3 Intrinsically-Typed Concrete Syntax with Custom Entries

	6 Intrinsically-Typed Probabilistic Programming Language
	6.1 Intrinsically-Typed Expressions
	6.2 Intrinsically-Typed Concrete Syntax for sfPPL

	7 Denotational Semantics of sfPPL
	7.1 Interpretation of Types and Contexts
	7.2 Evaluation Relation for sfPPL Expressions
	7.3 From the Evaluation Relation to a Function

	8 Using sfPPL to Reason Formally about Programs
	9 Conclusions
	References

	Verification
	Towards a Framework for Developing Verified Assemblers for the ELF Format
	1 Introduction
	2 Background
	2.1 A Running Example
	2.2 Compiler Verification Based on Simulation
	2.3 Relocatable ELF Object Files
	2.4 Machine Instruction Formats
	2.5 The CSLED Framework

	3 The Framework
	3.1 An Overview
	3.2 Source, Intermediate and Target Programs
	3.3 Assembly Passes

	4 Applications
	4.1 Building an Assembler for X86
	4.2 Building an Assembler for RISC-V

	5 Evaluation
	5.1 Connecting with Stack-Aware CompCert
	5.2 Statistics and Comparison

	6 Related Work and Conclusion
	References

	Transport via Partial Galois Connections and Equivalences
	1 Introduction
	2 The Essence of Transport
	3 Partial Galois Connections, Equivalences, and Relators
	3.1 (Order) Basics
	3.2 Function Relators and Monotonicity
	3.3 Galois Relator
	3.4 Partial Galois Connections and Equivalences

	4 Closure Properties
	4.1 (Dependent) Function Relator
	4.2 (Co)datatypes
	4.3 Compositions

	5 Application Examples
	6 Related Work
	7 Conclusion and Future Work
	References

	Argument Reduction of Constrained Horn Clauses Using Equality Constraints
	1 Introduction
	2 Preliminaries
	3 Argument Reduction by Equality Constraints
	3.1 Guessing Equality Constraints
	3.2 Checking Equality Constraints
	3.3 Reducing Arguments by Equality Relation

	4 Argument Reduction by Using Conditional Equalities
	4.1 Guessing Disjunctive Equality
	4.2 Guessing Conditional Equality

	5 Implementation and Experiments
	6 Related Work
	7 Conclusion
	References

	Static Analysis and Testing
	Incorrectness Proofs for Object-Oriented Programs via Subclass Reflection
	1 Introduction
	2 Motivation and Overview
	2.1 Correctness Reasoning with Superclass Abstraction
	2.2 Incorrectness Reasoning with Subclass Reflection

	3 Language and Specifications
	3.1 Syntax of the Target Language
	3.2 Semantics
	3.3 Assertion Language

	4 Proof System for Under-Approximating Reasoning
	4.1 Behavioural Subtyping
	4.2 Static and Reflexive Specifications
	4.3 Proof Rules

	5 Implementation and Evaluation
	6 Related Work and Conclusion
	References

	m-CFA Exhibits Perfect Stack Precision
	1 Introduction
	2 m-CFA
	3 CPS and Restricted CPS
	4 m-CFAcps
	5 A-Normal Form
	6 m-CFAa
	7 m-CFAcps–m-CFAa Correspondence
	8 Perfect Stack Precision
	9 m-CFA Is Stack-Precise
	9.1 Overview of Stack Precision

	10 Discussion
	References

	TorchProbe: Fuzzing Dynamic Deep Learning Compilers
	1 Introduction
	2 Background
	2.1 Deep Learning Program and Systems
	2.2 Computational Graphs
	2.3 Deep Learning Compilers
	2.4 Dynamic Deep Learning Compilers
	2.5 Fuzzing Deep Learning Systems

	3 Approach
	3.1 Overview
	3.2 Equivalent Mutations
	3.3 Equivalence Modulo Inputs (EMI)
	3.4 Mutations Beyond Equivalence

	4 Evaluation
	4.1 Testing Settings
	4.2 Quantitative Results
	4.3 Sample Bugs

	5 Related Work
	5.1 Compiler Testing
	5.2 Fuzzing DL Systems
	5.3 Verified Compilers
	5.4 Translation Validation

	6 Conclusions
	References

	Author Index

