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Abstract. Ransomware is a growing threat in the digital world, posing signifi-
cant challenges to malware detection systems due to its rapidly evolving nature.
Addressing this issue requires innovative approaches and robust datasets for train-
ing advanced machine learning models. This paper presents a method for generat-
ing synthetic ransomware image samples using the InfoGANmodel in conjunction
with Portable Executable (PE) Header features. The generated samples mimic
real ransomware’s structural characteristics, enhancing their realism and utility
for model training. A detailed implementation of the Information Maximizing
Generative Adversarial Network (InfoGAN) model and an evaluation of its per-
formance in generating high-quality ransomware images are provided. The utility
of the generated samples is further validated through classification experiments
using a Convolutional Neural Network (CNN) model. The results demonstrate
the promise of the proposed method in enhancing malware detection capabilities,
particularly in the context of ransomware.
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1 Introduction

The integration of Artificial Intelligence (AI) is increasingly becoming a crucial determi-
nant in the growth of any nation’s digital economy, a subject of discussion in academia for
many years [1]. In cybersecurity, recent years have seen concerted efforts toward devel-
oping AI-centric solutions [2]. One specific area in the cybersecurity field, malware
analysis, stands to gain significantly from this computational assistance [3].

Malware analysis involves studyingmalware’s behavioral patterns to detect and neu-
tralize it. However, malware analysis faces challenges, such as the need formore automa-
tion and integrated tools, which makes tracking malware patterns over time and iden-
tifying connections and similarities among different malware families in large datasets
difficult [4]. AI can deal with this difficulty.
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However, real-world datasets are typically chaotic, disorganized, and unstructured,
posing challenges to AI performance [5]. The success of an AI model heavily relies
on the quantity, quality, and relevance of the dataset, but achieving the right balance
is a challenging task. For specific problem statements, assembling a domain-specific
dataset, cleaning, visualizing, and comprehending its relevance become essential to
obtain desired outcomes [6].

One contemporary approach to address this issue involves employing AI models
and algorithms to emulate real-world datasets. Such datasets are referred to as synthetic
datasets. Generative Adversarial Networks (GANs) [7] are among the premier methods
for creating these synthetic datasets. Based on neural networkmodels, these architectures
generate datasets that closely resemble real-world data. This characteristic rendersGANs
especially suitable for creating malware samples to serve AI or machine learning models
in malware analysis and cybersecurity [8].

In this study, we use image processing capabilities to classify malware, emphasiz-
ing ransomware due to its increasingly prevalent and destructive nature [9]. It entails
the conversion of malware samples from binary into image form, followed by applying
machine learningmodels andAImethodologies to these converted images, as opposed to
the direct application to the actual malware samples. The rationale behind this methodol-
ogy of image-based analysis arises from several factors. Image representation of binary
malware samples facilitates pattern recognition thatmay remain undetected in rawbinary
form. The features derived in this manner can be processed more efficiently by image-
centric models. Furthermore, this approach offers an added layer of security as it miti-
gates the risk associated with the direct execution of malware. The method also accom-
modates applying transfer learning techniques using pre-existing, pre-trainedAImodels.
Image data also offer opportunities for augmentation, thereby enhancing the robustness
of the model. Consequently, the model’s ability to classify various forms of malware is
amplified.

Portable Executable (PE) Header features1 are pivotal in this research. They repre-
sent the structural information of the executable files, providing valuable insights into
the underlying behavior of the malware. PE Header features such as the image size,
the number of sections, and the characteristics of these sections can serve as signifi-
cant indicators of malware presence. In our study, these features are utilized as part of
the input to the Information Maximizing Generative Adversarial Network (InfoGAN)
model, guiding the generation process to produce synthetic ransomware samples that
mimic the structural characteristics of the original ransomware. By doing so, we aim
to enhance the realism and quality of the generated samples, thereby improving their
utility for model training and testing in ransomware detection tasks.

Our main contributions are as follows:

• Utilizing the InfoGAN model to generate synthetic ransomware images from a
specific ransomware family;

• Using Portable Executable features as input for generating the ransomware images
with custom features;

• Validating the synthetic ransomware samples’ utility through classification experi-
ments with a CNN model.

1 https://learn.microsoft.com/en-us/windows/win32/debug/pe-format.

https://learn.microsoft.com/en-us/windows/win32/debug/pe-format
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The remaining part of this paper encompasses the presentation of several relevant
studies in Sect. 2, followed by an overview of the GAN and InfoGANmodels in Sect. 3.
Section 4 will introduce the methodology, while the evaluation and results will be
elucidated in Sect. 5. The final section will provide the conclusions.

2 Related Works

This section presents an extensive review of existing studies that align closely with
the subject matter of this paper. It aims to explore and discuss key research efforts,
methodologies, and outcomes in synthetic dataset generation using AI, with particular
emphasis on applying GAN.

Moti et al. [10] developed a deep generative adversarial network to create signatures
for potential future malware, enhancing classifier training. The method uses executable
file headers and a neural network for feature extraction, improving classification accuracy
by at least 1%. However, its effectiveness may be limited due to the diverse range of
malware and insufficient header information. Classification is done using random forest,
SVMs, and logistic regression. In the study [11], Ding et al. introduced a method for
creating adversarial malware using feature byte sequences. The method outperforms
random and gradient-based techniques but is effective only for CNN-based detectors
and needs prior algorithmic knowledge.

In the study [12], Lu and Li used the Deep Convolutional Generative Adversarial
Network (DCGAN) to create syntheticmalware samples, boostingResNet-18’s accuracy
by 6%. However, the method requires large datasets and lacks comparison with other
classifiers.

In the study [13], Singh et al. developed a GAN-based model for creating labeled
malware image datasets to improve classifier training. The method benefits from incor-
porating domain knowledge but requires such knowledge, which may not always be
accessible. The study is limited to a single dataset, not covering all malware types.

In the study [14], Gao et al. presented the MaliCage framework for accurate mal-
ware classification. It has three main components: a packer detector, a deep neural
network-based malware classifier, and a packer generative adversarial network. The
framework identifies and classifies packed and unpacked malware using synthetic sam-
ples to improve training and accuracy. The evaluation shows that it effectively mitigates
the impact of packed malware on machine learning models.

The use of Information Maximizing GAN (InfoGAN) [15] in creating malware
images is an emerging field that improves malware detection and classification. Info-
GANs generate images with specific features, allowing for exploring and analyzing
different malware variants. This approach excels at identifying unique malware char-
acteristics that traditional methods may miss, such as specific encryption or packing
techniques.

3 Overview of GAN Models

Generative Adversarial Networks (GANs) consist of a generator network (G) and a
discriminator network (D).
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The generator network inputs a random noise vector and generates synthetic data
(like images) from this noise. The generator aims to produce data indistinguishable from
the real-world data it tries to mimic. On the other hand, the discriminator network takes
both real-world data and the synthetic data produced by the generator as input. Its task is
to distinguish between real and synthetic data. In other words, it tries to classify whether
each input data is real or fake.

The Generator tries to fool the Discriminator by generating increasingly realistic
data. In contrast, the Discriminator tries to better distinguish real data from the fake data
produced by the Generator. This competition improves both networks, leading to the
Generator producing highly realistic data. The mathematical formulation of the GAN
model [15] can be written as:

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

Here,V (D,G) is the objective function of theGAN. The first term,Ex∼pdata (x)[logD(x)],
is the expected log probability that the Discriminator correctly classifies real data (drawn
from the true data distribution pdata (x)). The second term, Ez∼pz(z)[log(1−D(G(z)))],
is the expected log probability that the Discriminator correctly classifies synthetic data
(generated by passing noise z drawn from the noise distribution pz(z) through the
Generator).

The loss function for the Discriminator can be derived from the objective function
and is given by:

LD = −Ex∼pdata (x)[logD(x)] − Ez∼pz(z)[log(1 − D(G(z)))] (2)

The loss function for the Generator is:

LG = −Ez∼pz(z)[logD(G(z))] (3)

Figure 1 shows the design of the GAN architecture.
Nevertheless, a conventional GAN is not intended for multiclass data and additional

information. Therefore, we aim to employ InfoGAN, an improved version of GAN that
incorporates a class label and extra information into the generative model.

InfoGAN aims to make the generated data more interpretable and meaningful. It
maximizes the mutual information between a fixed small subset of the GAN’s noise
variables and the observations. These variables could represent specific, meaningful
characteristics of ransomware that we want to vary in a controlled way, such as the type
of encryption used, the type of files targeted, or the message displayed.

For the case of generating ransomware samples, the original GAN loss function is
modified in InfoGAN to include an additional term that represents themutual information
between the generated ransomware samples and a subset of the input noise variables. It
encourages the model to use these variables meaningfully, leading to more interpretably
generated ransomware samples.

The objective function of InfoGAN [15] can be written as: min
G

max
D

V (D,G) −
λI(c;G(z, c)). Here, V (D,G) is the original GAN objective function. The term
−λI(c;G(z, c)) encourages the Generator to use the variable c in meaningfully, leading
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to ransomware samples that vary in a controlled and interpretable way based on c. c
is also called the interpretable latent code, learned by InfoGAN. It represents different
aspects of the data that the GAN is trying to generate.

Fig. 1. Design of the GAN architecture.

The parameter λ is a hyperparameter that controls the trade-off between the original
GAN objective and the mutual information term. A higher λ places more emphasis on
maximizing mutual information.

The mutual information I(c;G(z, c)) can be difficult to compute directly, so in prac-
tice, an auxiliary distribution Q(c | G(z, c)) is introduced, and the mutual information
is maximized by maximizing a lower bound:

I(c;G(z, c)) ≥ Ec,z[logQ(c | G(z, c))] + H (c) (4)

Here, H (c) is the entropy of c, which is a constant with respect to Q so maximizing this
lower bound is equivalent to maximizing the expectation Ec,z[logQ(c | G(z, c))]. It can
be done using standard backpropagation and gradient ascent, like the rest of the GAN
training process.

4 Methodology

The methodology employed in our research is a multi-step process revolving around
using the InfoGAN model and PE features. Our approach encapsulates a comprehen-
sive strategy from ransomware collection to testing synthesized images using a CNN
classifier. The step-by-step procedure of the methodology is visually depicted in Fig. 2,
providing a clear and concise overview of our research design.

In the initial phase, we collected ransomware samples as the primary data for our
study. It served as the basis for our analysis and the foundation of our image dataset.
Following the data collection, we performed two crucial steps. Firstly, the binary data
of the ransomware were converted into images, and secondly, we extracted and selected
the Portable Executable (PE) header features.
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Fig. 2. Research flow.

After the conversion and selection, a dataset of these images for further processing
was created. We then resized the images to ensure uniformity and consistency in the
data, which is an essential pre-processing step in image analysis and processing tasks.

Having prepared our image dataset, we applied the InfoGAN model with multi-
ple input values. The synthesized images generated by the InfoGAN model were then
subjected to a CNN classifier for testing.

The details of each step, including the nuances of the InfoGAN model application
and the CNN classifier testing, will be discussed in the subsequent sections.

4.1 Converting Binary to Image

Obtaining a comprehensive dataset of ransomware proved challenging, prompting the
decision to create our own dataset, referred to as the “ransomware dataset”. We man-
ually searched, downloaded, and classified the ransomware samples (only Windows
executable binary files) from Virusbay, Hybrid-analysis, Bazaar, Virusshare, GitHub,
and Virustotal.

Leveraging the Dataloader modules provided by PyTorch, we extracted images and
labels from the ransomware executable files. Furthermore, the transform functions were
employed to address our pre-processing requirements effectively.

At this phase, since the ransomware files are executable binaries, they can be con-
verted into images using a similar approach as used in [16]. According to it, the binaries
were converted into pixels, as described in Fig. 3. The samples belonging to the same
variant will have similar pixel distribution. It should be noted that the pixel distribution
may no longer accurately represent the variants of the samples due to the obfuscations
introduced. Consequently, the reliability of the results for classifying malware variants
may be compromised. To minimize this impact, we tested and removed obfuscated
ransomware samples using PEiD and Exeinfo PE tools.
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Fig. 3. Process of converting the binary file to image.

Figure 4 shows the distribution of the ransomware dataset in each ransomware family.

Fig. 4. Distribution of ransomware families in the dataset.

Table 1 presents the number of samples for each family. It is observed that the
sample distribution within each family exhibits a relatively balanced distribution. The
Stop family stands outwith a notably higher sample count than the other families. In order
to address the inherent data imbalance, we implemented shuffling of the data during the
training phase and employed balanced accuracy as the evaluation metric during testing.
This approach ensures that each class is equally represented during training, mitigating
the potential bias introduced by the imbalanced data distribution. By utilizing balanced
accuracy, we account for the disproportionate class sizes and comprehensively assess
the model’s performance across all classes.

When converting binary executable files into images, the selection of the imagewidth
is based on the corresponding file size range (Table 2). This choice aims to represent the
original file effectively while balancing visual details and computational efficiency. By
associating each file size range with a specific image width, we ensure that the resulting
images accurately capture the essence of the files. Narrower images with lower pixel
counts are assigned to smaller file sizes, while wider images with higher pixel counts
represent larger file sizes. This approach successfully tra a diverse range of executable
files into image representations, optimizingmemory usage and computational resources.

Upon completing the transformation process, the images were resized to predeter-
mined dimensions to create an input dataset tailored for training the model. This resizing
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Table 1. Number of samples in each ransomware family.

Ransomware Families Number of samples Ransomware Families Number of samples

Babuk 43 Nitro 104

Cerber 141 Ryuk 99

Conti 84 Stop 556

GandCrab 170 WannaCry 92

Table 2. Width (in pixel) of image based on the size of the binary.

File Size Range Image Width File Size Range Image Width

<10 kB 32 100 kB–200 kB 384

10 kB–30 kB 64 200 kB–500 kB 512

30 kB–60 kB 128 500 kB–1000 kB 768

60 kB–100 kB 256 >1000 kB 1028

operation enabled us to obtain images that offer various scale views of the underlying
data. Figure 5 exemplifies the diverse scale views captured by the images depicting a
Nitro family.

4.2 Extract PE Header Features and Apply Them to the InfoGAN Model

Portable Executable Header features are a critical aspect of our methodology, serving as
a key input for the InfoGAN model in generating synthetic ransomware samples. The
PE Header, which forms the structural metadata of the executable files, provides crucial
insights into the behavior of the malware. The use of PE Header features in this manner
serves a dual purpose. Firstly, it enhances the quality of the generated samples, making
them more representative of real ransomware. Secondly, it allows for the exploration of
specific features and their variations in the generated samples, aiding in understanding
their influence on ransomware detection.

In the first step, we extract the PE Header features from a dataset of known ran-
somware samples. This process is facilitated using a Python library named pefile, which
parses the PE Header information from the binary executable files. Table 3 presents
some important features of the PE Header derived from an analysis of a WannaCry
ransomware sample.

Given the extensive number of PE feature values, an evaluation was conducted to
assess the influence of these features through variousmodels, thereby determiningwhich
values to use for training.Machine learningmodels, specificallyXGBoost andCatBoost,
were employed due to their superior performance in machine learning competitions
hosted on Kaggle2. These models were used to assess the impact of features on the

2 https://www.kaggle.com/code/nholloway/catboost-V-xgboost-V-lightgbm.

https://www.kaggle.com/code/nholloway/catboost-V-xgboost-V-lightgbm
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Fig. 5. Images of a Nitro family from other scale views.

Table 3. A short list ofWannacry’s PE features.

PE Features Size (Bytes) PE Features Size (Bytes)

Machine 2 BaseOfCode 4

SizeOfOptionalHeader 2 BaseOfData 4

Characteristics 2 ImageBase 8

MajorLinkerVersion 1 SectionAlignment 4

MinorLinkerVersion 1 DllCharacteristics 2

SizeOfCode 4 CheckSum 4

SizeOfInitializedData 4 FileAlignment 4

SizeOfUninitializedData 4 MajorOperatingSystemVersion 2

AddressOfEntryPoint 4 SizeOfStackCommit 8

ability to classify ransomware families. While the quantity of these features was not
extensive, their impact on classification results and model accuracy was significantly
superior to other features within the PE header. The average influence of the features
was then calculated as presented in Table 4, incorporating the top five features that exert
the greatest influence on the model. Nevertheless, in practice, the number of features
may vary depending on the computational power of the hardware utilized and desired
training time during the model training. The optimal determination of the number of
features falls beyond the scope of this study and could be a prospective avenue for future
research.

These selected features are then fed into the InfoGANmodel as part of the input data,
which also includes Noise code, Ransomware Label. In particular, the selected features
are used as conditioning variables in the InfoGAN, influencing the generation process
of the synthetic samples. By integrating the PE Header features, the InfoGAN model is
guided to generate ransomware samples that appear realistic and mimic the original ran-
somware’s structural characteristics. The model’s output will be a ransomware variant
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learned by the model. The Implementation section will provide a more detailed presen-
tation of the Generator and the overall InfoGAN model. This approach aligns with the
primary objective of this study, which is to utilize image-processing capabilities for the
classification of ransomware.

Table 4. The average influence of the five greatest features.

Features Impact level (%)

CheckSum 12.51

SizeOfUninitializedData 11.23

SizeOfStackCommit 8.54

DllCharacteristics 7.35

MinorLinkerVersion 7.21

5 Evaluation and Results

In order to evaluate the image generation capabilities of the model, two groups of
experiments are conducted:

• InfoGAN experiments: The application of the InfoGAN model was systematically
examined through three distinct experiments, encompassing images of varying sizes:
32 × 32, 64 × 64, and 128 × 128 pixels.

• CNN experiments: The employment of the CNN model to differentiate the real and
the synthesized ransomware samples generated by the InfoGANmodel and PE header
features.

5.1 InfoGAN Experiments

The application of the InfoGAN model was systematically examined through three
distinct experiments, encompassing images of varying sizes: 32 × 32, 64 × 64, and
128 × 128 pixels. The dataset images were resized to the respective dimensions in each
case to ensure uniformity. The InfoGAN model was trained over 1000 epochs with a
batch size of 32, with each training process conducted on Google Colab Pro lasting
approximately 10 h for the 32 × 32 and 64 × 64 image sets and about 12 h for the 128
× 128 image set.

Table 5 presents themean loss values for each experiment conducted using InfoGAN.
The results demonstrate a notable consistency, independent of the image dimensions.

As the image size increases, the average discriminator loss decreases while the
average generator loss rises. This trend suggests that the InfoGAN model was able to
generate more refined images as the size of the images increased. The discriminator
model, tasked with distinguishing real images from synthesized ones, improved with
the increase in image size. Conversely, the generator model, responsible for creating
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Table 5. Average loss values of InfoGAN models.

Image Size Average Discriminator
Loss

Average Generator Loss Average Information Loss

32 × 32 0.1899 0.5865 1.274

64 × 64 0.1212 0.7597 1.275

128 × 128 0.0525 0.9626 1.274

synthetic images, found the task progressively more challenging with the larger image
size, as seen by the increase in loss.

Interestingly, the average information loss remained relatively constant across all
image sizes. It indicates that the InfoGANmodel preserved consistent information across
all experiments, regardless of the image size.

These results collectively suggest a trade-off between the generator and discriminator
performance as the image size increases. The increasing challenge for the generator, jux-
taposed with the improved performance of the Discriminator, underscores the intricate
dynamics at play within the GAN model. Despite this, the constancy in the informa-
tion loss shows the model’s stability across different image resolutions, reinforcing the
versatility of the InfoGAN model for generating high-quality ransomware images.

Figure 6 demonstrates the visual comparisons of the original and synthesized images
that share identical characteristics for the ransomware family, GandCrab. In the 32 ×
32 pixel scenario context, the resolution appears to be suboptimal across all instances.
However, in the cases involving 64× 64 and 128× 128 pixels, it becomes discernible that
the synthesized samples, as generated by the InfoGAN, manifest a substantial degree of
visual similarity to the original images. It indicates that the model can more accurately
replicate the original image structure as the resolution increases, thus suggesting its
potential efficacy in synthesizing high-resolution images for further studies.

5.2 CNN Experiments

In this section, we try to differentiate between real ransomware images and those synthe-
sized by the InfoGAN model. The CNN model was employed, treating the original and
synthesized images as separate classes within multiclass experiments. There are eight
classes derived from the dataset. Therefore, this procedure results in 16 classes, each
encompassing the eight original families and their corresponding synthesized classes.
Subsequent sections will individually explore experiments for image sizes of 32 × 32,
64 × 64, and 128 × 128 pixels. Approximately 100 samples were generated per sub-
class for each case, resulting in a novel ransomware dataset of 800 synthetic images in
conjunction with 1100 original images. Table 6 below delineates the accuracy scores
attained on these test sets.

The accuracy is particularly high for ransomware families such as Babuk, Conti,
GandCrab,Nitro, and Stop. These families exhibited accuracy values close to or at 100%
in most test scenarios, showcasing the efficacy of both InfoGAN’s ability to generate
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a) 32x32 pixel

b) 64x64 pixel

c) 128x128 pixel

Real Synthetic

Real Synthetic

Real Synthetic

Fig. 6. Real and synthetic samples of the GandCrap ransomware family.

Table 6. Accuracy of test sets from prediction of CNNs model.

Class (Label) Accuracy values of CNN model (%)

32 × 32 pixel images 64 × 64 pixel images 128 × 128 pixel images

Real Synthesized Real Synthesized Real Synthesized

Babuk 100 93.8 100 93.8 100 98.8

Cerber 28.6 96 50 100 66.7 100

Conti 94.4 100 59.1 100 86.4 100

GandCrab 96.8 100 96.8 100 96.6 100

Nitro 100 90 94.7 100 95.2 98.7

Ryuk 33.3 96.4 100 96.4 33.3 96.7

Stop 100 100 95.8 100 97.9 100

WannaCry 91.7 85.7 57.1 100 54.5 100
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high-quality synthetic ransomware images and CNN’s ability to classify these images
accurately.

On the other hand, the ransomware families Cerber, Ryuk, and WannaCry showed
relatively lower accuracy rates, especially with real images at smaller resolutions (32 ×
32 and 64 × 64 pixels). These discrepancies could be due to the inherent complexity
of these particular ransomware families or limitations within the training data that may
have resulted in less optimal feature learning.

The fluctuation in accuracy across different resolutions indicates the importance
of image size in the training of the models. Larger image sizes might contain more
detailed information that contributes to better feature learning and, thus, more accurate
classification.

The results underscore the successful application of GANs, specifically the Info-
GAN model, in generating synthetic ransomware images. The synthesized images were
seemingly close enough to real images to be effectively utilized for model training and
testing. It not only broadens the possibilities for data augmentation but also provides a
safer and more efficient method for model training, as it mitigates the risks associated
with the direct execution of malware.

6 Conclusions

In conclusion, this study has successfully demonstrated the potential of using the
InfoGAN model and PE Header features for generating synthetic ransomware samples.

By leveraging PE Header features, the InfoGAN model could generate realistic
samples that mimic the structural characteristics of real malware, thereby enhancing the
quality and utility of the generated data.

Validation of the synthetic samples using a CNN model further underscored the
realism and quality of the generated images. The high classification accuracy achieved
by the CNN model on the synthetic samples attests to their potential as a valuable
resource for training and testing malware detection models.

While the results of this study are promising, future work should focus on expanding
the methodology to other types of malware and improving the generation process to
produce more diverse samples. It would help further to enhance the generalizability and
robustness of malware detection models.
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