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Abstract This paper presents a comprehensive study about the dynamic behavior 
of a fractional ordered three-machine infinite bus (TMIB) power system model using 
Grunwald–Letnikov’s method. The study investigates nonlinear behaviors including 
chaos, coexisting behavior and multistability behaviors, using nonlinear tools such 
as phase portraits, bifurcation analysis, Lyapunov exponents and Lyapunov dimen-
sions. The results demonstrate that the TMIB system exhibits chaos behavior, which 
is resulting instability in rotor angle through multiscroll chaotic attractors. Further-
more, it is found that the presence of coexisting attractors and multistability leads 
to undesired state switching and pose a potential threat to the stability of the TMIB 
power system. These findings provide valuable insights into the nonlinear behavior 
of TMIB power system via varying fractional order range and can be used to develop 
effective countermeasures to address potential stability issues arise in TMIB and 
similar modern power systems. The simulation is conducted in MATLAB, and the 
obtained results illustrate the efficacy of the work. 

Keywords Power system · Fractional order · Coexisting attractor ·
Multistability · Chaos · Bifurcation · TMIB 

1 Introduction 

A multimachine power system is a complex electrical power system consisting of 
multiple interconnected synchronous generators, transmission lines, transformers, 
and loads [ 1]. It is a vital component of the modern electric power grid and is used 
to supply electrical energy to homes, businesses, and industries. The behavior of a 
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multimachine power system is highly nonlinear and dynamic, making its analysis 
and control a challenging task [ 2]. 

Previous studies have investigated the chaos and bifurcation behavior of differ-
ent power system models [ 3– 6]. The SMIB system has been specifically studied 
for its nonlinear complex dynamic motions, including period-doubling bifurcations 
(PDB), chaotic movements, and unbounded motions [ 7, 8]. Furthermore, the SMIB 
power system’s qualitative behavior has been investigated through the imposition of 
a periodic load disturbance [ 9]. In addition, the presence of white Gaussian noise in 
a system can affect its dynamical behaviors, with higher intensity of random noise 
potentially leading to increased chaos and instability [10, 11]. Besides single machine 
models, there have also been studies on multimachine power system models. The 
Melnikov method has been used to investigate chaos in rotor dynamics of power sys-
tems [ 12]. Specifically, a special case of the conservative swing equation based on a 
three-machine system was analyzed. The rotor dynamics of this three-machine swing 
equation were studied using qualitative and quantitative tools to examine its chaotic 
behavior. State feedback and dither signal control were also applied to transform the 
chaotic oscillation into a periodic oscillation [ 13, 14]. 

Multistability is a common phenomenon in complex systems, such as biological, 
physical, and engineering systems, and can have important implications for their 
behavior and stability [ 15, 16]. Multistability is a property of a system that can 
exhibit multiple stable equilibrium states or attractors. This means that the system 
can maintain different stable states depending on its initial conditions, and small 
changes or perturbations may cause it to transition from one stable state to another 
[ 2, 17]. In recent years, the analysis of chaos and multistability behavior has become 
increasingly popular, including its fractional order counterpart. Fractional calculus, 
which is a generalization of traditional calculus, has emerged as a powerful tool for 
modeling and analyzing the dynamics of systems [ 18]. It has gained attention in 
various fields due to its ability to capture nonlocal and memory-dependent behavior, 
making it suitable for describing complex systems with long-range interactions [ 19]. 
The application of fractional calculus to the study of chaos and multistability behav-
ior has provided new insights and perspectives, leading to a deeper understanding of 
the underlying dynamics of complex systems [ 20, 21]. Despite the existence of mul-
tiple power systems in which chaos and bifurcation behavior have been discussed, the 
phenomenon of multistability in power system models has received limited attention. 
Although there have been recent studies on multistability in certain power system 
models [ 2, 17], the fractional order counterparts of such models have not yet been 
explored in the literature. Therefore, the investigation of the fractional order coun-
terpart of power system models exhibiting multistability is a significant research 
direction that needs to be addressed. Motivated by the above literature, this paper 
focuses on fractional order model of TMIB power system. The contribution and 
novelty of this work are listed as follow: 

1. A TMIB power system model is derived from the conventional N-machine power 
system model, and its fractional order analysis is carried out using Grunwald– 
Letnikov’s (GL) method.
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2. The TMIB power system model shows the rotor angle instability by multiscroll 
chaotic attractors. 

3. The TMIB power system model reveals the presence of multistability (coexis-
tence of attractors) behavior. 

The rest of the paper is organized as follows: In Sect. 2, the mathematical model 
of fractional order TMIB power system is described. In Sect. 3, different nonlinear 
dynamic behaviors, including chaos, bifurcation, and multistability, in the fractional 
order range are discussed. Finally, in Sect. 4, the conclusions and future scope of the 
work are presented. 

2 Mathematical Modeling of TMIB Power System 

The n-machine system [ 12], is the basic for the classical model of the electrical 
network. The system comprises n internal machine nodes (. 1 to . n) working in par-
allel mode, with reference node . 0 acting as a neutral node. During stability anal-
ysis, the voltages .E1, E2, E3, . . . En are assumed to remain constant throughout 
the transient period. The rotor angles for the n-machine system are represented by 
.δ1, δ2, δ3, . . . δn , while.r1, r2, r3, . . . rn and.x '

d1, x
'
d2, x

'
d3, . . . x

'
dn denote the resistance 

and sub-transient reactance of the n generators. The current output from each gener-
ator unit is represented by .I1, I2, I3, . . . In . 

The expression for the electrical power output of the .i th machine in the network 
is given as: 

.Pei = E2
i Gii +

n∑

j=1
j /=i

Ei E j Yi j cos(θi j − δi + δ j ) (1) 

Here,.Yii and.Yi j represent the self admittance or driving point admittance at node 
. i and mutual admittance between nodes . i and . j , respectively. This can be further 
written as in term of conductance .(G) and susceptance .(B) as: .Yii = Gii + Bii and 
.Yi j = Gi j + Bi j . 

.Pei = E2
i Gii +

n∑

j=1 j /=i

Ei E j [Bi j sin(δi − δ j ) + Gi jcos(δi − δ j )] (2) 

Assuming the resistance of the transmission line is negligible and can be modeled 
as a pure reactive component, the expression for the electromagnetic output power 
is simplified as:
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.Pei = E2
i Gii +

n∑

j=1 j /=i

Ei E j Bi j sin(δi − δ j ) (3) 

The equation of motion for a multimachine system can be expressed as: 

.δ̇i = ωi (4) 

.
2Hi

ωs
ω̇i + Diωi = Pmi − Pei (5) 

By utilizing Eqs. (3) and (5), we can derive the following Eq. (6): 

.
2Hi

ωs
ω̇i = −Diωi + Pmi − E2

i Gii −
n∑

j=1
j /=i

Ei E j Bi j sin(δi − δ j ) (6) 

where .ωs represents for synchronous speed, .ωi for the deviation between the rotor 
angle velocity and synchronous speed for the .i th bus, .Hi for the inertia of the . i th
machine, .Pmi and .Pei for the mechanical input power and electromagnetic output 
power respectively of the.i th machine..Di represents the damping coefficient of the. i th
machine. To simplify the system parameters, we can define. 2Hi

ωs
as.Mi ,. Pmi − E2iGii

as . Pi , and .E j Bi j as .Ti j . 
Assuming that an infinite bus node connects the three generators, shown in Fig. 1, 

a simplified swing equation for the TMIB power system that describes the generator 
rotors can be written by using Eq. (6). 

.

⎧
⎨

⎩
δ̇i = ωi ,

ω̇i = 1
Mi

[−Diωi + Pi − Ei
∑n

j=1
j /=i

Ti j sin(δi − δ j ) − Ei VB Bi B sin(δi − δB)] (7) 

where i=1,2,3,.VB and.δB are the infinite bus voltage and phase angle..BiB represents 
the admittance between the .i th machine and infinite bus bar. 

2.1 Fractional Order Model of TMIB Power System 

Although there are several available methods for fractional order computations, previ-
ous studies have primarily utilized the Caputo method for numerical solutions of frac-
tional order systems. However, research has shown that the GL method [ 22] provides 
better smoothness in coefficients for solving fractional order systems. Therefore, we
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Fig. 1 Three-machine infinite bus (TMIB) power system (7) 

utilize the GL method to solve the fractional order multimachine power system 
model. 

The fractional order equation has limits of . a and . t and is represented by the 
equation .aDq

t f (t), where . q is the fractional order of the differential equation. The 
calculation involves the use of the generalized difference.Δq

h f (t), where. h represents 
the step size. The GL derivative can be defined as: 

.aD
q
t f (t) = lim

h→0

⎧
⎨

⎩
1

hq

[ t−a
h ]∑

m=0

(−1)m
(
q
m

)
f (t − mh)

⎫
⎬

⎭ = lim
h→0

(
1

hα
Δ

q
h f (t)

)
(8) 

To perform numerical calculations, the equation mentioned above can be modified 
as follows: 

.(t−L)D
q
t f (t) = lim

h→0

(
h−q

N (t)∑

m=0

β j ( f (t − mh)

)
. (9) 

To simulate the fractional order TMIB system using the GL method, we utilize 
the discretization method described in previous studies . Since the required memory 
for calculating binomial coefficients is theoretically infinite, we truncate the number 
of samples to make the calculation feasible. The discretization method is as follows:
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.

δi (tk) = A (δi (tk−1) , ωi (tk−1)) h
qδi −

N∑

m=1

β
qδi
m δi (tk−m)

ωi (tk) = B (δi (tk−1) , y (tk−1)) h
qωi −

N∑

m=1

β
qωi
m ωi (tk−m)

(10) 

In the above equation, . β denotes the binomial coefficients. The value of .N is 
determined based on the available memory. Specifically, if the available memory is 
not fully utilized, .N is set to the truncation window size . L . Otherwise, .N is set to 
. k to make the most of the available memory elements. We can define the fractional 
order TMIB power system derived using Eq. (7) as follows: 

. 

⎧
⎨

⎩
Dqδi δi = ωi ,

Dqωi ωi = 1
Mi

[−Diωi + Pi − Ei
∑n

j=1
j /=i

Ti j sin(δi − δ j ) − Ei VB Bi B sin(δi − δB)]

(11) 

The discrete version of the fractional order TMIB power system can be expressed 
as follows: 

.

⎧
⎪⎪⎨

⎪⎪⎩

δi (tk) = (ωitk−1
)hqδi − ∑N

m=1 β
qδi
m x (tk−m) ,

ωi (tk) = [ 1
Mi

{−Diωitk−1
+ Pi − Ei

∑n
j=1
j /=i

Ti j sin(δitk−1
− δ j )

− Ei VB Bi B sin(δitk−1
− δB)}]hqωi − ∑N

m=1 β
qωi
m x (tk−m)

(12) 

The value of .N is taken as the truncation window size . L and as . k when all the 
available memory elements are used. Calculation parameters for analysis of fractional 
order TMIB power system are given as: .D1 = 0.003, .D2 = 0.0045, .D3 = 0.003, 
.M1 = 0.01, .M2 = 0.015, .M3 = 0.01, .P1 = 0.3, .P2 = 0.4, .P3 = 0.3, . T12 = T21 =
0.1, .T13 = T31 = 0.6, .T23 = T32 = 1, .B1B = 2, .B2B = 1.5, .B3B = 2, .E1 = 1, . E2 =
1,.E3 = 1,.VB = 1, and.δB = 0. To investigate the various dynamic behaviors within 
the fractional order range, the value of the fractional order parameter . q is varied. 

3 Nonlinear Dynamic Behavior of Fractional Order TMIB 
Power System 

In this section, we analyzed the different dynamic behaviors of the TMIB power 
system by varying the order of differential equation and studying its behavior using 
both qualitative and quantitative analysis tools.
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3.1 Dynamic Response at Varied Fractional Order (. q) 

Bifurcation analysis is a crucial qualitative tool used to analyze the nonlinear behav-
ior of the system under parameter perturbations. This analysis provides information 
about the topological changes in the system’s behavior when it experiences small 
or smooth parameter variations. Nonlinear behaviors are observed using bifurcation 
diagram while keeping all parameter values constant and by varying the fractional 
order derivative within the range .q ∈ [0.9, 1]. Different transitions in the dynamic 
behavior are observed in the bifurcation diagram as shown in Fig. 2. To further ana-
lyze these behavior the dynamic response in the phase plane is plotted at specific 
values to the corresponding bifurcation diagram shown in Fig. 3. Lyapunov expo-
nents also correspond the phase plane behavior at different value of fractional order 
. q listed the Table . At .q = 0.93, by observing bifurcation plot, phase portrait, and 
the nature of maximum positive Lyapunov exponents (MLE) is negative, confirm 
the period-1 behavior. Similarly at.q = 0.965, the system displays a period-2 behav-
ior. However, at .q = 0.982, the system exhibits aperiodic behavior, can be observed 
from the bifurcation plot and phase plane analysis. The Lyapunov exponents have 
been calculated and the nature of MLE confirms the chaos behavior. Further, dis-
sipativity and Lyapunov dimension analysis are performed. Dissipativity analysis 
is an essential measure for understanding the converging and diverging nature of 
dynamical system. It provides a way to quantify the energy flow of a system and 
identify critical parameters that affect the system dynamics. A dynamical system 
is dissipative if the sum of all Lyapunov exponents is negative, i.e., .

∑n
i=1 λi < 0, 

where .λi are the individual Lyapunov exponents of the system, and . n is the state 
space dimension. The dissipativity, at .q = 0.982, is calculated as the sum of Lya-
punov exponents (.L1 + L2 + L3 + L4 + L5 + L6) = −1.4680. The.−ve value indi-
cates that the system is dissipative in nature. Lyapunov dimension or Kaplan–Yorke 
dimension is calculated using the following formula as: 

Fig. 2 Bifurcation diagram 
of TMIB power system (11) 
when the order.q ∈ [0.9, 1]
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Fig. 3 Phase plane behavior (transients are removed) correspond to the bifurcation diagram of 
fractional order multimachine power system (11) at four different value of fractional order. q

. DKY = lim
∈→0

[
k∑

i=1

λi + 1

|λk+1|
n∑

i=k+1

|λi |
]

where .λi denotes the .i-th Lyapunov exponent, . k is the largest index such that the 
sum of the first . k exponents is non-positive, and . n is the total number of Lyapunov 
exponents. The Kaplan–Yorke dimension is obtained as .DKY = 2.699 using calcu-
lated Lyapunov exponents at .q = 0.982 which implies that the system has fractal 
nature and has complex attractor with a dimension between 2 and 3. At the value of 
fractional order .q = 0.997, the phenomenon of chaos breaking has observed, where 
the MLE is positive, resulting in rotor angle instability with the emergence of mul-
tiscroll chaotic attractors. The time series and phase portrait behavior of the rotor 
angle and angular velocity for each machine are shown in Fig. 4, under multiscroll 
chaotic attractors. 

Obtain nonlinear behavior through the bifurcation and Lyapunov exponents in 
fractional order range which can be effectively applied to parameter tuning in the 
stability analysis of multimachine power systems experiencing chaotic behavior. 
Overall, fractional calculus combined with nonlinear theories is used to study chaos 
and chaos breaking behavior in multimachine power systems, which may provide 
helpful insights to aid in the development of counter measures to ensuring its stability 
and reliability.
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Fig. 4 Time series and phase plane behavior of fractional order multimachine power system (11), 
reflects angle instability through multiscroll chaotic attractors at . q = 0.997

3.2 Coexistence of Attractor and Multistability Analysis 

In the previous subsection, we analyzed the TMIB power system for a range of frac-
tional orders. Now, we fixed the order of the differential equation at .q = 0.997 and 
varied the damping coefficient parameter.d1 = D1

M1
while keeping all other parameters 

constant at their previously defined fixed values. The bifurcation diagram, shown 
in Fig. 5, displays the various dynamic behaviors, including PDB route to chaos, 
observed when the damping coefficient .d1 is varied within the range of .[0, 0.6]. The  
bifurcation diagram presented in Fig. 5 not only illustrates the dynamic behavior 
of the TMIB power system with varying damping coefficient . d1, but also shows 
the coexistence phenomenon at three distinct initial conditions. These initial condi-
tions are.[δ1(0), ω1(0), δ2(0), ω2(0), δ3(0), ω3(0))] = [δ1(0), 0, 3, 0, 4, 0]where the 
value of .[δ1(0)] is considered as .2, 3, 4, and represented via .black, red, blue colors 
in throughout analysis. 

Fig. 6 displays the multistability behavior of the TMIB power system (11) at  
machine-1 in terms of its phase plane and time series response. The figure shows 
the response of the rotor angle and angular velocity of machine-1 at three different 
initial conditions for three distinct values of the parameter . d1. Specifically, Fig. 6a 
corresponds to .d1 = 0.15, and it depicts the coexistence of three chaotic attractors 
at the given initial conditions. Figure 6b corresponds to .d1 = 0.14, and it depicts 
the coexistence of two chaotic attractors and one multiscroll chaotic attractor. Fig. 
6c corresponds to .d1 = 0.137, shows the coexistence of three multiscroll chaotic 
attractor. 

The multistability behavior of the TMIB power system (11) at machine-1 is 
depicted in Fig. 6, in terms of its phase plane and time series response. This Fig. 6
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Fig. 5 Coexisting bifurcation behavior of fractional order multimachine power system (11) at three  
initial conditions.[2, 0, 3, 0, 4, 0],.[3, 0, 3, 0, 4, 0],.[4, 0, 3, 0, 4, 0]; depicted via colors, respectively 

Fig. 6 Multistability (coexistence of attractors) in the fractional order multimachine power system 
(11), at three initial conditions depicted with different colours. a Phase plane and time series behavior 
of machine-2, exhibiting the coexistence of three chaotic attractors at .d1 = 0.15. b Coexistence of 
two chaotic and one multiscroll chaotic attractor of machine-2 at .d1 = 0.14. c Coexistence of one 
chaotic attractor with two multiscroll chaotic attractors of machine-2 at . d1 = 0.137

depicts the response of machine-1’s rotor angle and angular velocity under three 
different initial conditions for three different values of the parameter . d1. Figure 6a, 
corresponds to.d1 = 0.15 and displays the presence of three chaotic attractors under 
the specified initial conditions. The coexistence of two chaotic attractors and one 
multiscroll chaotic attractor is depicted in Fig. 6b, which corresponds to .d1 = 0.14. 
The presence of three multiscroll chaotic attractors is shown in Fig. 6c, which cor-
responds to .d1 = 0.137.
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The multistability exhibited by the TMIB power system is concerning due to its 
potential for unpredictable and uncontrolled behavior. Multistability can increase the 
risk of cascading failures in power systems. If one component of the system fails, the 
system may shift to a different stable state, leading to further failures and potentially 
a complete system collapse. 

4 Conclusion 

The paper presents a TMIB power system model which is derived from the classi-
cal N-Machine model power system, and applies Grunwald–Letnikov’s method to 
perform a fractional order analysis. The study reveals interesting behaviors, such 
as period-1, period-2, chaos, and angle instability by multiscroll chaotic attractor 
under specific parameter values and fractional order . q, using both qualitative and 
quantitative analysis tools. Furthermore, coexisting behavior and multistability are 
also observed through the use of coexisting bifurcation diagram, phase plane, and 
time series analysis. However, this study highlights the presence of chaos and mul-
tistability in the fractional order TMIB power system, and it is concerning due to 
its potential for unpredictable and uncontrolled behavior, which can result in power 
outages, equipment damage, and safety hazards. Therefore, it is critical to manage 
and control the effects of chaos and multistability in practical applications such as 
power systems to ensure their safe and reliable operation. 
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