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Abstract We discuss the design and implementation of Tachyon, a high-speed, scal-
able optical hardware accelerator. In addition, we go over programming the acceler-
ator with an instruction set architecture (ISA) capable of efficiently communicating 
with on-chip optical components to perform ultrafast.O(1)matrix-vector multiplica-
tion (MVM). We first introduce the optoelectronic accelerator’s computing scheme. 
We then go over our pipeline for programming the accelerator and introduce our 
optical ISA. Our results show that the accelerator’s optical core is scalable and can 
perform an MVM in a single pass with a performance per watt (PPW) clocked 3 
orders of magnitude higher than Google’s Tensor Processing Unit. The core is rated 
at 7 TFLOPS and 245 TFLOPS/W for a.4 × 4 matrix tile, but scales to 478 TFLOPS 
and 261 TFLOPS/W for a .256 × 256. 

Keywords Data analytics · High-speed computing · Machine learning ·
Matrix-vector multiplication · Neural networks · Optical computing 

1 Introduction 

Over the past decade, there has been a dramatic increase in the parameter count of 
neural networks, driven by advances in machine learning algorithms, hardware, and 
data availability. This increase has enabled significant improvements in performance 
on a wide range of tasks, from image classification to natural language processing. In 
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2012, the state-of-the-art image classification model, AlexNet, had only 61 million 
parameters . By 2015, the VGG-19 model had 143 million parameters, and by 2016, 
the ResNet-152 model had 60 million parameters. In 2018, the DenseNet-264 model 
had 36.4 million parameters, while the EfficientNet-B7 model, released in 2019, had 
66 million parameters [ 1]. The parameter counts of natural language models have 
also increased significantly. In 2015, the state-of-the-art language model had only 5 
million parameters. By 2018, the OpenAI GPT-2 model had 1.5 billion parameters, 
and by 2020, the GPT-3 model had 175 billion parameters [ 2]. 

The increase in parameter count has enabled significant improvements in perfor-
mance on a range of benchmarks. For example, in the ImageNet Large Scale Visual 
Recognition Challenge, the top-1 error rate of the winning models decreased from 
26.2% in 2012 to 3.5% in 2021 . Similarly, in the GLUE benchmark for natural 
language understanding, the state-of-the-art performance has increased from 81.6% 
in 2018 to 90.4% in 2021 [ 2]. 

However, the increase in parameter count has also raised concerns about the com-
putational cost and environmental impact of training and running these models. For 
example, training the GPT-3 model on a single accelerator can consume up to 1.2 
GWh of electricity [ 3]. To address these concerns, in addition to exploring various 
techniques for reducing the neural network parameter counts while maintaining per-
formance, researchers are building more efficient hardware. The market demand for 
high performance per watt chips is incredibly high, resulting in large companies to 
join in developing powerful hardware applicable to even future model iterations, e.g., 
Cerebras AI lining up to tackle GPT-4’s estimated trillion-parameter workload. 

Such AI-based applications primarily base their functionality in tensor arithmetic. 
NVIDIA, a pioneer in high performance computing (HPC), takes advantage of this by 
building efficient electronic processors labeled Graphics Processing Units (GPUs). 
These GPUs are able to accelerate artificial intelligence processes by enabling high-
speed matrix multiplication to take place through tensor cores or unique applications 
of the Single Instruction-Stream, Multiple Data-Stream (SIMD) architecture. Google 
developed a digital Application-Specific Integrated Circuit (ASIC) specialized in 
AI processing, labeled a Tensor Processing Unit (TPU). The TPU specializes in 
computing important activation functions and matrix multiplication for NN inference 
[ 4]. The Edge TPU is able to perform 4 trillion operations per second using 2 watts of 
power (2 TOPS/watt) [ 5]. It is apparent that many significant hardware advancements 
have been made over the decades. 

However, while these advancements have proven to be advantageous with regard 
to computational efficiency, they are fundamentally limited by the decline of trends 
such as Moore’s Law and Dennard Scaling. Moore’s Law asserts that the number 
of transistors on a digital electronic microchip will approximately double every two 
years, directly correlating to the increase in computing power [ 6]. However, it has 
been predicted by experts that this trend will no longer be viable by 2036 due to 
an inability to further reduce the size of transistors. For this reason, coupled with 
the end of Dennard Scaling, their computational ability will stagnate unless matrix 
processing systems are reinvented to function without the usage of digital electronics.
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To account for this problem, the use of analog computing for AI has been inves-
tigated; such a platform eliminates the reliance on transistors. Years of research and 
production have confirmed that while having lower accuracy and higher loss, the 
analog approach is generally more efficient for operations such as matrix multipli-
cation [ 7, 8]. Mythic AI’s M1076 analog matrix processor achieves the AI com-
pute performance of a digital electronic desktop GPU while consuming 10% of the 
energy, the typical power consumption for running complex neural networks being 
approximately 3–4 W [ 9]. Digital-analog electronic hybrid processors have also been 
investigated in an attempt to maximize speed and accuracy together [ 8]. 

However, most electronics-based systems are subject to interference and temper-
ature problems. Even recently created analog architectures, such as Mythic’s AMPs, 
possess limitations from electromagnetic crosstalk and Joule heating. In addition, 
the computing power required for functional operation scales dramatically with NN 
feature size. Such problems are sidestepped through silicon photonics, with matrix-
vector multiplication (MVM) able to be done cleanly and passively. While such 
circuits are themselves inherently analog, they are significantly faster than their ana-
log electronic equivalents. In this paper, we explore a hybrid silicon photonic-digital 
electronic hardware accelerator. We first go over the accelerator design and imple-
mentation. We then discuss the programming interface used to run tensor arithmetic 
on the accelerator. We finish by discussing results and implications. 

2 Accelerator Design 

2.1 Overview 

The Tachyon accelerator contains an optical matrix processing unit (MPU), an engine 
where MVM sequences are executed at high speed to power important linear algebra-
based tasks such as NN inference. When an operation is run within an application, 
relevant aspects of it are sent to the MPU (Fig. 1). 

Tachyon’s instruction set architecture (ISA) is given in Table 1. When instructed 
to a) write a matrix or vector to the MPU, or b) compute an MVM, the host platform 
sends instructions to a master microcontroller within the Tachyon accelerator via 
serial communications. The master relays corresponding digital signals to digital-
to-analog converters (DACs); corresponding analog signals are then used to drive a 
grid of laser beams that send analog optical signals within the MPU. These signals 
are then manipulated to perform an MVM as outlined in Sect. 2.2. Output optical 
signals are read through photodetectors and converted into corresponding analog 
current streams, which are then converted to digital signals through analog-to-digital 
converters (ADCs). The bitstreams are sent back to the master and results are reported 
back to the host through serial.
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Fig. 1 System on-chip diagram of the Tachyon hardware accelerator 

Table 1 Instruction set Name Location 

mwrite m MPU 

vsend v MPU 

mvmul a b MPU 

2.2 Matrix Processing Unit 

The MPU, shown in Fig. 3, performs a matrix-vector multiplication (MVM) using 
analog optical signals. A single laser toggles on and the output beam is split into . n
channels through an even beam splitter network. A modulator is integrated into each 
splitter arm to alter incoming light discretely, inherently allowing unique elements in 
the input vector . →x to the MPU. The grid of laser light is then altered by components 
within the MPU that correspond to a matrix transformation .→x |→ M→x, where .M is 
determined by the specific component settings. The results are sent as optical analog 
signals to a grid of photodetectors, each of which reports back an analog current 
stream. This concept is shown in Fig. 2. 

To configure the components within the MPU to represent any.M ∈ R
m×n , we take  

advantage of the fact that any such matrix.M can be represented as.U∑V∗ through the 
singular value decomposition (SVD), where .U ∈ R

m×m and .V∗ ∈ R
n×n are unitary, 

and .∑ ∈ R
m×n is a diagonal matrix. The MPU performs .→x |→ M→x by splitting . M

into these 3 smaller matrix transformations, as shown in Fig. 4. Light passes through 
each input port; the corresponding Stokes vector is transformed by .V∗, . ∑, and . U,
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Fig. 2 .→x |→ M→x transformation pipeline. On-chip driving laser split across beam splitter network, 
tuned according to input vector . →v, sent to optical components implementing . M, and read out via 
on-chip photodetectors 

respectively. This essentially means that rather than explicitly manipulating each 
entry in . U, . ∑, and .V∗, the MPU manipulates a set of phase angles parameterizing 
each matrix. Doing so allows the MVM computation to be done on hardware in.O(1), 
but extra work is required for setting up calculations (writing matrices and vectors). 

2.2.1 Optical Unitary Matrix Transform 

The MPU uses silicon photonic sub-circuits to implement the unitary matrix trans-
forms given by . U and .V∗. A lattice of Mach-Zehnder Modulators (MZMs) are laid 
out in the pattern proposed by Clements et al. [ 10]. Each MZM is 50:50 directional-
coupler based, with the following .R

2×2 transfer matrix: 

.U(2) = 1

2

[
e jα

(2)
(e jθ

(2) − 1) je jα
(2)

(1 + e jθ
(2)

)

je jβ
(2)

(1 + e jθ
(2)

) e jβ
(2)

(1 − e jθ
(2)

)

]
∈ R

2×2. (1) 

The phase angles.θ, α, β are shifts induced by modulators incorporated in rib waveg-
uides within the MZM. The full MZM lattice then represents the unitary matrix 
.U(n) ∈ R

n×n as 

.U(n) =
n∏

i=1

n−i∏
j=1

Tn− j,n− j (θ
(n)
i, j , α

(n)
i, j , β

(n)
i, j ) ∈ R

n×n, (2) 

where .Ti, j ∈ R
n×n contains the top left of a unitary matrix .U(2) ∈ R

2×2 at location 
.(i, j), a diagonal of 1s (excluding .U(2)), and the remaining entries as 0s [ 10].
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Fig. 3 Example MPU accepting an.R4 vector as input. One optical input from the LASER port is 
tuned by analog voltage signals from 30 other ports 

Fig. 4 Optical.V∗, . ∑, and. U cores making up the MPU, respectively 

2.2.2 Optical Diagonal Matrix Transform 

Left-multiplying a vector.→v ∈ R
n by a diagonal matrix. ∑ effectively scales each entry 

in. →v by a corresponding entry in. ∑. We therefore use. n single ports of dual-modulator 
MZMs arranged in a column, where each MZM scales the input electric field: 

.Eout = Ein

2
e jω(e jφ − 1). (3) 

2.3 Supporting Electronics 

Voltaire is the interconnect enabling the optical Tachyon chip to communicate with 
external systems. The MPU operates using analog voltage signals, which are used to 
produce and manipulate laser light. We use a series of off-the-shelf microcontrollers
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and other components such as digital-to-analog converters (DACs) in a master-slave 
system to organize, distribute, and convert digital signals from the host hardware. 
The host interfaces with these components through serial communications protocols. 
After the MPU completes its operation, it outputs an analog differential current signal 
which is converted to a digital signal using analog-to-digital converters (ADCs). 
These digital signals are sent back to the host hardware, and the next operation is 
ready to be carried out. 

2.3.1 Microcontroller Master-Slave System 

Information from the host is communicated to a Teensy 4.1 development board 
through a hardware serial communications protocol [ 11]. The Teensy is connected 
to an additional pair of microcontrollers: Texas Instrument’s Arm Cortex based 
RM57L843 [ 12]. The devices are set up in a master-slave system using the Serial 
Peripheral Interface (SPI) protocol with the Teensy as the master and the 2 RM57L843 
microcontrollers as slaves. The vector and matrix data from the host is distributed 
from the Teensy to each RM57L843. The slaves then distribute the digital signals 
representing element data to each DAC. The output analog signals from the MPU 
are routed directly to the slaves which then convert them back to digital signals using 
onboard ADCs. The resultant element data is communicated back to the host via the 
Teensy through SPI and hardware serial. 

2.3.2 Signal Converter System 

The digital signals from the host need to be converted to analog signals to be 
compatible with the optical components in the MPU. The digital signals from the 
RM57L843 slave microcontrollers are converted to analog signals using Analog 
Devices’ AD9748 DAC [ 13]. The converter accepts 8 digital signals as input to rep-
resent an 8 bit digital representation of the signal. The DAC then outputs a differential 
current as the analog representation of the 8 bit digital signal. The AD9748 includes 
an option for scaling the output to fit the MPU’s input parameters. This differential 
current is then converted to an analog voltage signal using Analog Device’s AD8047 
operational amplifier (op amp) [ 14]. Figure 5 shows this DAC assembly. This analog 
voltage is passed to MPU for calculation. There are a total of 36 DACS for every 
input the MPU requires, including the laser, the initial 4 dimensional vector, and the 
initial.4 × 4 matrix. Figure 6 shows a schematic of the DACs connected to the MPU. 

The MPU’s photodetectors output a differential current to represent each output 
vector element. This is converted to a single analog voltage signal and routed to the 
ADCs on each slave microcontroller. Each slave has 2 ADC modules with up to 
12 bits of resolution, with the option of reducing resolution for higher conversion 
speeds. The slave ADCs convert the 4 output analog signals into digital form to be 
sent back to the host.
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Fig. 5 AD9748 current-driven DAC extended to output single-ended voltage with an AD8047 
operational amplifier. Both resistors have a 200 resistance, whereas the capacitor is rated at 0.1. 
Connections for digital signal inputs, analog signal output, power, timing signals, and the power 
down function are noted 

Fig. 6 Schematic of DACs connected to the MPU 

3 Accelerator Implementation 

Chip fabrication took place at the Maryland NanoCenter. We used the Raith eLINE 
electron-beam lithography (EBL) machine operated at 100 keV with an 8 nA beam 
current on a 20 nm process node. The Matrix Processing Unit (MPU) itself is on a 
diced 605 . µm.× 410 . µm.× 0.22 . µm silicon wafer.
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3.1 Matrix Processing Unit 

3.1.1 Passive Circuitry 

We use strip waveguides for passive structures throughout the Matrix Processing 
Unit, each with a height of 220 nm and a width of 20 nm. The waveguide cladding is 
composed of Silicon Dioxide (.SiO2). The waveguide bend radius is 5, the smallest 
bend radius practical for transverse electric (TE) polarization. The waveguide mode 
profile, along with a corresponding wavelength sweep, is shown in Fig. 7. Through 
the obtained data, the compact model was calculated: 

. neff(undoped)(λ) = 2.56862 − 0.729403(λ − 1.55) + 0.0995556(λ − 1.55)2 + jneff(imag). (4) 

The last term is included to convert the loss to the imaginary part of the effective 
index. Here, .neff(imag) is equal to the standard .

λ[cm]
4π ln (10loss[

dB
cm ]/10). 

3.1.2 Phase Shifters 

We use rib waveguides within our phase shifters. To achieve the phase shifts.θ, α, β, 
we modulate the light using electro-optic modulators. Electro-optic modulators 
induce a phase shift by altering the effective index of the rib waveguide compos-
ing it. Forward-biased PIN diodes are able to achieve a larger effective index change 
.Δneff. However, their speed is limited by the carrier recombination rate. In addition, 
they consume a significant amount of power and have a large absorption. α. Reverse-
biased PN diodes, on the other hand, consume less power and are able to achieve 
higher speeds, but have a smaller effect on .Δneff and a greater loss. 

Taking these factors into consideration, we proceed to use reverse-biased PN 
diodes in our electro-optic modulators, a Computer Aided Design (CAD) model of 
which is shown in Fig. 8. The cathode and anode are made from aluminum, and we 
use the standard carrier recombination models. An increase in applied voltage to one 
of these diodes corresponds to a decrease in the width of the depletion layer, directly 
modulating the light. The rib waveguide after carrier injection is shown in Fig. 9. 

3.1.3 Mach-Zehnder Modulator 

To implement a Mach-Zehnder Modulator (MZM), we place an electro-optic modu-
lator on each arm of a Mach-Zehnder Inteferometer. Our undoped MZM’s compact 
model is given by 

. neff(undoped)(λ) = 2.54606 − 0.872858(λ − 1.55) + 0.196977(λ − 1.55)2 + jneff(imag). (5)
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Fig. 7 a Mode profile and b wavelength versus effective index in our undoped rib waveguides
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Fig. 8 a We integrate a PN junction into the center of a rib waveguide. b N and P doped regions 
are placed to the left and right, respectively, increasing in doping concentration as shown 

Fig. 9 Waveguide charge profile
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We now let the phase angles .θ, α, β = 2π
λ
L(neff(undoped)1,2(λ) + Δneff1,2(V )), noting 

that we can halve the driving voltage needed by using the push-pull operation, where 
we apply opposite voltages to each electro-optic modulator on the MZM arm. 

We integrate broadband directional couplers and extra modulators to our MZMs 
when needed. Note that our directional couplers each have a transmission coefficient 
.τ = 1√

2
and a coupling coefficient .κ = 1√

2
. 

3.1.4 Optical I/O 

Our design makes use of on-chip quantum lasers and photodetectors for optical I/O. 
During our fabricated chip tests, we used an off-chip HP81680A continuous wave 

(CW) diode laser and HP81635A InGaAs photodetectors. 

3.2 Supporting Electronics 

All electronic and optical components are to be placed on a custom designed Printed 
Circuit Board (PCB). Most off-the-shelf and all optical components are surface 
mounted. The Teensy 4.1 development board is inserted into surface mounted female 
headers and connected to the host using a USB connection. The MPU is packaged 
into a Ceramic Pin Grid Array (CPGA) format which is inserted into a socket on the 
PCB. An example of the CPGA package is shown in Fig. 10. The RM57L843 slave 
microcontrollers are manufactured into 337-pin Ball Grid Array (BGA) packages, 
the AD9748 DACs are 32-lead Lead Frame Chip Scale Packages (LFCSP), and the 
AD8047 op amps are 8-lead Small Outline Integrated Circuit (SOIC) packages. 

Listing 1 Initiating a tensor algebra request on the host platform through Apollo. 

/  /  i n i t ia l ize  vector v and rank−3 tensor T 
le t  tensor v = {2,  9 ,  5};  
l e t  tensor T = 
{ 

{ 
{3, 4 , 2}, 
{0, 8 , 9}, 
{1, 9 , 4} 

} ,  
{ 

{31, 3 , 5}, 
{0, 0 , 3}, 
{43, 0 , 16} 

} 
};  
/ / compute tensor dot product and store resultant tensor R 
le t  tensor R = T ∗ v;  
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Fig. 10 CPGA packaging used for the MPU 

4 Programming the Accelerator 

4.1 Overview 

We intend for the Tachyon accelerator to be programmable from an external host 
platform. Therefore, we developed a custom Domain-Specific Language (DSL) ori-
ented toward tensor algebra computations, coined Apollo [ 15]. Apollo supports the 
scalar-tensor product, rank-. n Kronecker product, tensor inner product, tensor dot 
product, Khatri-Rao product, face-splitting product, and the.R3 vector cross product. 
The language also supports writing tensors and vectors directly to the MPU for ease 
of future calculations [ 15]. 

As indicated in Fig. 11, the accelerator programming pipeline starts when user 
creates a program on a host platform. The Apollo compiler front end generates an 
optimized program tree given any input code sequence. 1 The compiler back end then 
takes the optimized tree and traverses it to generate appropriate Virtual Machine (VM) 
instructions. The VM then determines if the selected instruction involves MVM. If 
so, it accepts each leftover matrix or vector from the tensor computation, (1) mapping 
into corresponding phase angles/voltages and (2) scheduling groups of instructions 
to be sent to the on-accelerator microcontroller. If not, it keeps it within the host 
platform and executes it traditionally.

1 The specifics of the compiler front end are discussed in [ 15]. 
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Fig. 11 General program flow within the Apollo DSL compiler 

4.2 Compiler Back End 

The compiler back end takes the generated Virtual Machine (VM) instructions as 
input. For any selected instruction, it schedules it to be run and determines whether 
or not it is MVM-based. If it is MVM-based, the VM runs a process unique to the 
Tachyon setup. In the case where a rank-. n tensor-related request (where .n > 2) is  
initialized as in Listing 1, the compiler implicitly allocates memory in the Binary 
Sparse Tensor Tree format [ 15]. The tensor is recursively unrolled into matrices as 
shown in Fig. 12. Each matrix .M is then converted into a set of voltages which, 
when sent to the modulators, would induce phase shifts collectively representing 
. M. This is done through the phase angle parameterizations discussed in Sect. 4.3. 
The assembly instruction in Table 1 corresponding to the request is then executed. If 
.n < 2, the unrolling step is skipped, and the remaining steps stay the same. Results 
are sent back to the host computer and ripple up the compiler back to the user. 

4.3 Phase Angle Parameterization 

It is important to calculate the required phase angles as parameterizations of input 
matrices and vectors to allow the compiler to send the appropriate signals. Since 
the Matrix Processing Unit (MPU) represents a matrix.M ∈ R

m×n through the SVD, 
parameterizing .M is done by parameterizing each individual SVD term.
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b11 b12 b13 

b21 b22 b23 

b31 b32 b33 

a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

b11 b12 b13 

b21 b22 b23 

b31 b32 b33 

a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

θ1 α1 · · ·  βu ω1 · · ·  φn θ1 α1 · · ·  βv 

θ1 α1 · · ·  βu ω1 · · ·  φn θ1 α1 · · ·  βv 

Fig. 12 Writing a tensor to the MPU. a An tensor is initialized and b unrolled into matrices by the 
Apollo compiler; c each matrix is then translated into a set of angles parameterizing it. The angles 
are mapped into the voltages needed to achieve them and are then sent to the MPU 

4.3.1 Unitary Matrix Phase Angles 

We first go over phase angle parameterizations of unitary matrices .U ∈ R
m×m and 

.VT ∈ R
n×n . Recall that the MPU uses a Mach-Zehnder Modulator (MZM) to imple-

ment (1). The values of the phase angles .θ(2), .α(2), and .β(2) in terms of the desired 
matrix constants can be calculated through a system of equations. For any given 
unitary matrix .U(2) ∈ R

2×2, with values .u(2)
11 , u(2)

12 , u(2)
21 , u(2)

22 , it is true that 

.u(2)
11 (α(2), β(2), θ (2)) = 1

2
e− jα(2)

(e− jθ(2) − 1) (6a) 

.u(2)
12 (α(2), β(2), θ (2)) = j

2
e− jα(2)

(1 + e− jθ(2)
) (6b) 

.u(2)
21 (α(2), β(2), θ (2)) = j

2
e− jβ(2)

(1 + e− jθ(2)
) (6c) 

.u(2)
22 (α(2), β(2), θ (2)) = −1

2
e− jβ(2)

(e− jθ(2) − 1). (6d) 

We vary the phase angle values and store. →fu(2) (θ (2), α(2), β(2)) = u(2)
11 ê1 + u(2)

12 ê2 +
u(2)
21 ê3 + u(2)

22 ê4 in a lookup table, where.→fu(2) : {0 ≤ α(2), β(2), θ (2) ≤ 2π} → C
4. We  

read phase angle values backwards from the stored.U(2) constants; if they are not avail-
able during lookup, we compute them in real time. Solving (6) yields the following 
phase angle equations under constraints.{u(2)

11 = u(2)
22 = 0, u(2)

12 /= 0, u(2)
21 u

(2)
12 = −1}:
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.θ(2) = 2πC1 (7a) 

.α(2) = 2π jC2 + ln
[
− ju(2)

22

]
(7b) 

.β(2) = 2πC3 − j ln
j

u(2)
12

. (7c) 

or, under constraints . {u(2)
12

2 − u(2)
11

2 /= 0, u(2)
11 /= 0, u(2)

11 − ju(2)
12 /= 0, u(2)

21 =
− u(2)

12

u(2)
12

2−u(2)
11

2 , u
(2)
22 = − u(2)

11

u(2)
11

2−u(2)
12

2 }: 

.θ(2) = 2πC1 − j ln
ju(2)

12 − u(2)
11

u(2)
11 + u(2)

12

(8a) 

.α(2) = 2πC2 − j ln
[
−u(2)

11 − ju(2)
12

]
(8b) 

.β(2) = 2πC3 − j ln
u(2)
11 + ju(2)

12

u(2)
12

2 − u(2)
11

2 . (8c) 

where .C1,C2,C3 are constants. These give the required phase angles directly. We 
set them to zero for simplicity. 

Recall that on the MPU, a unitary matrix .U(n) ∈ R
n×n is represented as (2). The 

angles . θ , . α, and . β then build up to .
3
2n(n − 1) angles used to parameterize .U(n): 

.θ
(n)
1 , α

(n)
1 , β

(n)
1 , θ

(n)
2 , . . . , α

(n)
1
2 n(n−1)

, β
(n)
1
2 n(n−1)

. (9) 

We solve for these angles by equating each entry of .U(n) to a series of .u(2)
mi j

products 
and substituting each vector field angle stored. In the .4 × 4 case, 

.

U(4) =
⎡
⎣1

1
U(2)

1

⎤
⎦

⎡
⎣1

U(2)
2

1

⎤
⎦

⎡
⎣U(2)

3
1
1

⎤
⎦

⎡
⎣1

1
U(2)

4

⎤
⎦

⎡
⎣1

U(2)
5

1

⎤
⎦

⎡
⎣1

1
U(2)

6

⎤
⎦ ∈ R

4×4.

(10) 

Note that the constraint.det(U(4)) = det(U(2)
1,2,...,6) = 1must still hold. Since there are 

16.u(4)
i j values and 24.u(2)

mi j
values, many possible solutions exist for this system. The 

Jacobian matrix. J of a function.→f(u(2)
111 , u

(2)
112 , . . . , u

(2)
622) : R24 → R

16 mapping vectors 
of .U(2) values to .U(4) values is highly sparse and rank-deficient, so we solve using 
a tensor-Krylov method rather than a multivariate form of Newton’s method [ 16]. 
Convergence plots are shown for various trials in Fig. 13. 

We store .→fu(n) : C 3
2 n(n−1) → C

n2 in a secondary lookup table for efficient access.
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Fig. 13 Convergence plots for various tensor-Krylov runs. a Iteration versus first-order optimality. 
b Same algorithm iteration versus.ln(first-order optimality.)
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4.3.2 Diagonal Matrix Phase Angles 

The diagonal matrix in the SVD for a matrix .M ∈ R
m×n is given by 

.∑ =

⎡
⎢⎢⎢⎣

σ11

σ22

. . .

σnn

|||||||||

0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

⎤
⎥⎥⎥⎦ ∈ R

m×n . (11) 

Augmenting the.(m − n) × n zero matrix to the original.n × n diagonal matrix allows 
the SVD product to retain the initial horizontal dimension of . M. On Tachyon, each 
entry .σi i is represented as a function of phase angles .ω

(n)
i i and .φ

(n)
i i : 

.σi i (ωi i , φi i ) = 1

2
e jωi i (e jφi i − 1). (12) 

Thus, a parameterization of .∑ requires .2n phase angles . ω11, φ11, ω22, φ22, . . . ,

ωnn, φnn . We solve for these angles by letting .ωi i = φi i , since we want to distribute 
the workload evenly between modulators. Ideally, we find that 

.ωi i = φi i = 2πn − j ln
1 ± √

8σi i + 1

2
, (13) 

where.
√
8σi i + 1 /= −1, 1 for the positive and negative cases respectively, and.n ∈ Z; 

setting.n = 0 minimizes.|ωi i , φi i |, simplifies (13), and is usable. We vary.ωi i and. φi i

and store .σi i in a lookup table for fast access. 

4.3.3 Vector Phase Angles 

Unlike the matrix case, a length . n vector . →v has exactly . n parameters .γ1, γ2, . . . , γn , 
which are all phase angles. From Fig. 2, it is apparent that 

.→v =

⎡
⎢⎢⎢⎣

v1
v2
...

vn

⎤
⎥⎥⎥⎦ = Ein

2

⎡
⎢⎢⎢⎢⎢⎣

e jγ1

e jγ2
...

e jγn

,

⎤
⎥⎥⎥⎥⎥⎦

(14) 

where .Ein is the amplitude of the input electric field of the laser light into the chip. 2

We solve for the .k-th phase angle . γk ; since .vk = Ein
2 e jγk ,

2 Note that.Ein is a global variable kept constant throughout each individual MVM. 
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.γk = − j ln
2vk
Ein

. (15) 

.Ein is calculated by averaging the input vector’s electric field amplitudes. 
These phase angles and amplitude values are converted to distinct voltages to sent 

to the Tachyon accelerator through a lookup table. 

5 Results 

We demonstrate the efficacy of our core on matrix multiplication with matrices of 
various sizes, and we measure the efficacy for each size. The MPU stats are given in 
Table 2. Unlike most traditional digital electronic processors, the MPU performs an 
MVM in a single pass. Raw clock speed is 3 orders of magnitude higher than Google’s 
Tensor Processing Unit (TPU). The performance per watt is 245 TFLOPS/watt for 
the MPU’s optical core. Power draw does not scale dramatically with matrix size, 
leading to an estimated 261 TFLOPs/watt rating for a .256 × 256 optical core (the 
dimensions currently used within Google’s TPU v4). 

The MPU core comes with several benefits. It can perform an entire ANN forward 
pass in a single clock cycle. In addition, it expels negligible heat due to its silicon 
photonic architecture. At scale, it is faster and more energy-efficient than specialized 
ML hardware: Google’s TPU v4 and GPUs across the board (NVIDIA’s A100, all 
GTX/RTX chips, AMD’s Radeon chips, etc.). 

However, the overall Tachyon accelerator’s performance limiting factor is the sur-
rounding electronic interconnect. We estimate a performance drop to approximately 
13.4 KFLOPS and 1.6 KFLOPS/W with the cheap, off-the-shelf components used in 
research; the drop would be much lower with high quality, custom analog integrated 
circuits (ICs). In addition, due to possessing a very specialized circuit, the acceler-
ator is not applicable (advantageously) to training neural networks without further 
component optimization. 

Table 2 Optical MPU core stats 

Specification Value (.4 × 4) Value (.256 × 256) 

Instructions 1 MVM/cycle 1 MVM/cycle 

Clock 220 GHz 3.7 GHz 

PPW 245 TFLOPS/watt 261 TFLOPS/watt 

Performance 7 TFLOPS 478 TFLOPS
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6 Conclusion 

In this paper, we introduce Tachyon, a highly scalable optical hardware accelerator 
targeted toward matrix-vector multiplication (MVM). We go over the accelerator 
design, cost-efficient implementation, and programming interface. We then go over 
accelerator statistics, benefits, and scalability. We show that the accelerator is able to 

Fig. 14 a Scaled.256 × 256 MPU core outperforms TPU v4 and GPUs in FLOPS and FLOPS/W 
[ 17, 18]. b Tested.4 × 4 MPU core has an energy-efficiency similar to scaled version. However, the 
FLOPS rating is significantly below most deep learning hardware (7.0 TFLOPS) and is not shown
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perform an MVM in a single cycle with a clock speed 3 orders of magnitude higher 
than Google’s TPU v4 and a PPW 2 orders of magnitude higher, while still scaling 
very efficiently to higher matrix dimensions (Fig. 14). 

The Tachyon accelerator, in using configured phase shifter settings to carry out 
computations, is best suited for MVM situations where the matrix is held constant 
and vectors are multiplied sequentially. This is the case in neural network inference, 
making the Matrix Processing Unit (MPU) highly tuned toward forward passes. 
Future research from a software perspective will focus on creating efficient compilers 
to map large models onto Tachyon to take advantage of this capability. Integration 
with packages in popular languages will also be investigated to allow an end user to 
easily access the accelerator’s capabilities. 

From a hardware perspective, future research will focus on developing integrated 
circuits along with optimizing the bottleneck between optics and electronics. In 
addition, further optical enhancements will be investigated, such as parallelization 
boosts through wavelength division multiplexing. Such enhancements are stepping 
stones toward our end goal of having the Tachyon accelerator as a product that 
consumers can use to advantageously accelerate their machine learning workloads. 
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