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Abstract The purpose of this study is to use an SMC controller to build a speed 
control scheme for an independently stimulated DC motor. The speed control system 
is created first, after which it is applied to the model in MATLAB SIMULINK. 
Following that, we used SMC to gauge the DC motor’s speed. The results of the simu-
lation show that a sliding mode controller is the best option for managing the speed 
of a DC motor as compared when with PID. The SMC’s immunity to interruptions 
allows it to perfectly match the intended pace. 

Keywords SMC controller · PI controller · DC separately excited motor · Speed 
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1 Introduction 

There is a lot of work being put into the control of discontinuous control actions 
because managing nonlinear systems has always been a significant problem for the 
study of control systems and automated control theory. In the industrial world, there 
are quite a few applications for direct current (DC) motors. Changes in armature 
current are required to alter the variable resistance in the armature circuit or field 
circuit. A typical speed control system of the motor characteristics is used to regulate 
the DC motor mentioned above. In order to keep the system stable and create the 
required system responses, a suitable control should be designed when there are 
systemic upheavals and uncertainty. So-called “matched uncertainties,” as well as 
other outside uncertainties and disturbances, have no effect on sliding mode control
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(SMC). Real-time processing capability has improved thanks to quick processor 
advancements, making it possible to digitally apply cutting-edge control methods 
that were previously only feasible in principle. Other difficulties include modifying 
traditional controllers, which in SMC design is not at all difficult. The distinguishing 
characteristics of SMC enable its practical application in the management of electrical 
drives. Strong resilience, ease of implementation, order reduction, and disturbance 
rejection are some of these characteristics. Following is a summary of the main 
benefits of the SLMC technique: dynamic reaction time simple to implement and 
simple-to-design resilience, low sensitivity to changes in system characteristics and 
load obstacles. To ensure the requisite performance, a precise understanding of the 
motor characteristics is important. While the drive is running, a number of parameters 
are unknown with certainty and/or are liable to change, which lowers performance. 
The SMC is an obvious alternative to avoid this design issue. In actuality, it is 
created from the ground up to regulate system uncertainties, and it may even deliver 
appropriate performance in the presence of considerable and quick changes in the 
motor characteristics and a wide range of disturbances. 

Since a long time ago, PI controllers are typically utilized for speed control. 
However, PI controllers cannot completely stabilize the speed when there are prob-
lems with modelling uncertainties, parameter fluctuations, load disturbances, or 
severe nonlinearity. In these circumstances, where speed control is a major issue, 
SMC can be employed successfully. SMC is utilized in the suggested strategy to 
develop the controller and ensure reliable functioning. 

2 Model of DC Separately Excited DC Motor 

Using amplifiers or power modules, commonly known as DC motor drives, a 
controller and a DC motor are coupled. The controller’s step and direction inputs are 
converted by them into currents and voltages that work with motors. Robotic and 
electrical machinery typically employ DC motors. In the light of how important it is 
to control the DC motor’s speed. 

2.1 Armature Control 

The rear emf or Eb has a direct impact on the speed of the DC motor. This demon-
strates that speed and armature current Ia are directly related when the supply voltage 
V and armature resistance Ra are both constant. Figure 1 depicts the DC Motor Corre-
spondence Circuit. Dc motors are frequently employed in the magnetization curve’s 
linear region. One method is to use armature resistance, which involves adding a 
variable resistance to the armature’s circuit. The voltage drop across the armature is 
lower than the voltage across the line after it has been raised because of the circuit’s 
increased resistance. The armature circuit consists of an inductor (La), a resistor (Ra),
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Fig. 1 DC motor circuit 
diagram 

Table 1 Specification of DC 
motor Parameters Values and unit 

Resistance (Ra) 00.6 Ω

Inductance (La) 00.012 H 

Moment of inertia of rotor (J) 1.67 kg m2/s2 

Electromotive force const. (Kt) 3.0 Nm/A 

Back EMF const. (Kb) 3.0 Vs/rad 

b 1.67 

and a voltage source (eb). Table 1 displays the nominal rating of the DC motor drive 
utilized in this. 

Consequently, the field current is proportional to the air gap flux.

Φ = f (x) = K f i f (1) 

where K f is a const. or fixed value. 
As a result of the armature current and air gap flux, the motor’s torque Tm is 

proportional to that product. 

Tm = K f K1i f ia (2) 

where K1 is a const. or fixed value. 
The field current in the armature-controlled DC motor is maintained constant, 

Tm = KT ia (3) 

KT , the motor torque const., is used here. 
Given as follows, the relationship between the motor back emf and speed is



336 P. Sulakhe et al.

eb = Kb 
dθ̇ 
dt 

(4) 

Kb is used here. It follows that the armature circuit’s differential equation is 

La 
dia  
dt 

+ Raia + eb = ea (5) 

Equation for torque is 

J 
d2 θ 
dt2 

+ f0 dθ 
dt 

= Tm = KT ia (6) 

If we apply the Laplace transforms to Eqs. (3) through (5) and assume that the 
initial conditions are zero, we obtain 

Eb(s) = Ebsθ (s) (7) 

(Las + Ra)Ia(s) = Ea(s) − Eb(s) (8)

(
Js2 + f0s

)
θ(s) = TM (s) = KT Ia(s) (9) 

From Eqs. (6)–(8) we obtained as following transfer function 

G(s) = θ(s) 
Ea(s) 

= KT 

s[(Ra + sLa)(Js + f0) + KT Kb] (10) 

2.2 Sliding Mode Control 

To adjust a DC motor’s speed via sliding mode control, the motor must be constructed 
in a way that allows us to input the signal deriving from the sliding mode control 
that was discussed before. Nearly perfect noise rejection and set point tracking are 
needed for many real-world issues. To accomplish these performances, such systems 
can use SMC. As a result of the swift switching between a pair or more control limits, 
this control is referred to as nonlinear. The system’s structure can change or switch 
when the system’s state moves over each discontinuity when this control is used as 
feedback. The state intersects and intersects the surface—also known as the button 
or sliding surface—and exists continuously on the button such that the error and the 
rate at which the error changes are both zero. Moving in a sliding motion is the term 
for this action. The term “sliding mode control” is frequently used to emphasize how 
crucial sliding motion is (Fig. 2).
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ẋ1 = x2 A = 1 
5 
, x1, x2 < 0 

X2 = −Ux1 = 5, x1, x2 > 0t 

where is the angular velocity expressed in rad/sec. B is a viscous friction coefficient 
that resists the direction of motion in Nms. and J is the moment of inertia kgm2/s2. 
The armature control’s torque, expressed in Nm, is provided. 

τ(t) = J dw 
dt 

+ Bω(t) (11) 

τ(t) = Ktia(t) (12) 

Va(t) − Eb(t) = Raia(t) + La 
dia 
dt 

(13) 

where Eb represents electromagnetic force in V and Ra and La, respectively, show 
the resistance and inductance of the armature in ohms and H, respectively. 

Eb(t) = Kb(t)ω(t) (14) 

One may create a state model using the preceding equation and the variables and 
as illustrated below, ia serve as state variables while Va serves as a manipulating 
variable.

[ dw(t) 
dt 

dia (t) 
dt

]
=

[ −b 
J 

Kt 
J−Kb 

La 

−Ra 
La

][
ω(t) 
ia(t)

]
+

[
0 
1 
La

]

Va(t) (15) 

ω(s) 
Va(s) 

= 3992.015 

s2 + 51s + 51.39 (16) 

The aforementioned equation solved in time domain as

Fig. 2 DC motor schematic with SMC 
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(t) + 51.39 ω̇(t) = 3992.015Va(t) (17) 

Now consider, x1 = ω(t) and u = Va(t) once transformed, the system can then 
take the canonical form shown below. 

x1 = x2 (18) 

x2 = −51.39x1 − 51x2 + 3992.015U (19) 

y = x1 (20) 

Next, choose the sliding surface. 

σ = c(r − x1) + x2 (21) 

c being the sliding matrix’s constant CσεRm+n such that c < 0 total control legislation 
is stipulated by 

U = U1 + Unl (22) 

where K > 0 is picked where it is large enough the trajectory converges to the sliding 
surface more quickly, the higher the value of K. 

3 PID Controller 

PID control is a tried-and-true technique for moving a system towards a desired 
location or level. It is used in numerous chemical and scientific processes, as well as 
automation, and is essentially omnipresent as a technique of managing temperature. 
To keep a process’s real output as close as feasible to the target or set point output, 
PID control employs closed-loop control feedback. 

4 Result 

The control system is designed by using MATLAB/Simulink. The maximum voltage 
is 100 V. Both the driving parameters and the load is changed. Figure 3 shows the DC 
motor drive with load with SMC. We must design the motor based on the designed 
parameters in order to regulate the DC motor speed using a SMC controller.

Figure 4 says that changing PID constants as the DC motor parameters are 
changed. It is seen that the output speed of DC motor increases due to SMC from 30 
to 32 rpm and tend to adapt as the DC motor parameters are changed.
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Fig. 3 Simulation model of DC motor with load with SMC

Fig. 4 Comparison of DC motor speed a without controller b with PID c SMC controller 

Figure 5 shows the graph between time and speed where SMC gives the better 
result than PID.
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Fig. 5 Comparison of DC separately excited motor a with PID b with SMC 

5 Conclusion 

Due to their benefits of easy speed and position control and broad adjustability range, 
DC motors are commonly utilized as actuation devices in industrial applications. 
There has been provided a mathematical model of a DC motor. The speed of a DC 
motor has been controlled using a conventional SMC controller. The performance 
curves produced with and without controllers, as well as those from the conventional 
SMC controller, are compared using time domain requirements. The SMC controller 
aids in increasing the motor’s speed. Comparison of PID with load and with load 
with SMC it is seen that SMC gives the better result than PID. As the DC motor’s 
parameters are modified and a control signal is applied to it, the controller constants 
in the simulation’s output can automatically update. 
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